
Towards Discrete Phenotypic
Recombination in Cartesian Genetic

Programming

Roman Kalkreuth(B)

Computational Intelligence Research Group, Chair XI Algorithm Engineering,
Department of Computer Science, TU Dortmund University,

Dortmund, North Rhine-Westphalia, Germany
roman.kalkreuth@tu-dortmund.de

https://ls11-www.cs.tu-dortmund.de/

Abstract. The tree-based representation model of Genetic Program-
ming (GP) is largely used with subtree crossover for genetic variation.
Unlike Cartesian Genetic Programming (CGP) which is commonly used
merely with mutation. Compared to comprehensive knowledge about
recombination in the field of tree-based GP, the state of knowledge in
CGP appears to be comparatively poor. Even if CGP was officially intro-
duced over twenty years ago, the role of recombination in CGP has been
recently considered an open issue. Several promising steps have been
taken in recent years, but more research is needed to develop towards a
more comprehensive and holistic perspective on crossover in CGP. In this
work, we propose a phenotypic variation method for discrete recombina-
tion in CGP. We compare our method to the traditional mutation-only
CGP approach on a set of well-known symbolic regression problems. The
initial results presented in this work demonstrate that the use of our pro-
posed discrete recombination method performs significantly better than
the traditional mutation-only approach.

Keywords: Cartesian Genetic Programming · Crossover · Phenotypic
variation

1 Introduction

Cartesian Genetic Programming can be considered a well-established graph-based
GP variant. Initial work towards CGP was done by Miller, Thompson, Kalganova,
and Fogarty [8,14,15] by the introduction of a two-dimensional graph encoding
model of functional nodes. CGP can be seen as an extension to the traditional
tree-based GP representation model since its representation allows many graph-
based applications such as digital circuit design [26], evolution of neural network
topologies [16,28] and synthesis of cryptographic Boolean functions [5,7]. CGP
has introduced over two decades ago but is still predominantly used only with a
probabilistic point mutation operator. The reason for this is that various standard
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 63–77, 2022.
https://doi.org/10.1007/978-3-031-14721-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_5&domain=pdf
http://orcid.org/0000-0003-1449-5131
https://doi.org/10.1007/978-3-031-14721-0_5

64 R. Kalkreuth

genotypic crossover operators failed to improve the search performance of stan-
dard CGP in the past [3,15]. Overall, the state of knowledge about recombination
in CGP appears to be weak when compared to the number of publications in tree-
based GP. The role of recombination in CGP was recently surveyed by Miller [17]
and is still considered to be an open issue. Even if some progress has been made
in recent years, comprehensive and advanced knowledge about recombination in
CGP is still missing [17]. In the field of evolutionary computation (EC), discrete
recombination is a well-established form of recombination in various subfields. Dis-
crete recombination typically selects each gene from one of the two parents with
equal probability. According to Rudolph [22], this method can be therefore con-
sidered as a dynamic n-point crossover since each gene for the chromosome of the
offspring is selected from the first or second parent with equal probability. In this
work, we take a step forward on the issue of crossover and introduce a method for
the adaption of discrete recombination in CGP. We initially evaluate our method
on a set of well-known symbolic regression benchmarks. Our results demonstrate
the effectiveness of our approach for these problems.

Section 2 of this work describes CGP. Related work on crossover in CGP
is surveyed in Sect. 3. This section also gives a brief historical overview of dis-
crete recombination in the field of EC. In Sect. 4, we introduce our new method.
Section 5 is devoted to the description of our experiments and the presentation
of our results. Our findings are discussed in Sect. 6. Finally, Sect. 7 gives a con-
clusion and outlines our future work.

2 Cartesian Genetic Programming

In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic, and directed graph. In this way, CGP
can be seen as an extension of the traditional tree-based GP approach. The
CGP representation model is based on a rectangular grid or row of nodes. Each
genetic program is encoded in the genotype of an individual and is decoded to its
corresponding phenotype. A definition of a cartesian genetic program P is given
in Definition 1. Let φ : P �→ Ψ be a decode function which maps P to a phenotype
Ψ . Originally, the structure of the graph was represented by a rectangular grid
of nr rows and nc columns, but later work focused on a representation with one
row. The CGP decoding procedure processes groups of genes, and each group
refers to a node of the graph, except the last one, which represents the outputs
of the phenotype. Each node is represented by two types of genes that index the
function number in the GP function set and the node inputs. These nodes are
called function nodes and execute functions on the input values. The number of
input genes depends on the maximum arity na of the function set.

Definition 1 (Cartesian Genetic Program). A cartesian genetic program
P is an element of the Cartesian product Ni × Nf × No × F :

– Ni is a finite non-empty set of input nodes
– Nf is a finite set of function nodes

Phenotypic Uniform Crossover in Cartesian Genetic Programming 65

– No is a finite non-empty set of output nodes
– F is a finite non-empty set of functions

A backward search is conducted to decode the corresponding phenotype.
The decoding itself starts at the output nodes and continues until the inputs
nodes are reached. The decoding procedure is done for all output genes. The
result of the decoding procedure can be described as a set of directed paths
Ω. Given the input set I and the output set O, let ω = I × Ω �→ O be an
output function. An example of the backward search of the most popular one-row
integer representation is illustrated in Fig. 1. The backward search starts from
the program output and processes all nodes which are linked in the genotype.
In this way, only active nodes are processed during evaluation. The genotype
in Fig. 1 is grouped by its function nodes. The first (underlined) gene of each
group refers to the function number in the corresponding function set. The non-
underlined genes represent the input connections of the node. Inactive function
nodes are shown in gray color and with dashed lines.

Fig. 1. Example of the decoding procedure of a CGP genotype to its corresponding
phenotype. The identifiers IP1 and IP2 stand for the two input nodes with node index
0 and 1. The identifier OP stands for the output node of the graph.

The number of inputs ni, outputs no, and the length of the genotype is fixed.
Every candidate program is represented with nr∗nc∗(na+1)+no integers. Even
if the length of the genotype is fixed for each candidate program, the length
of the corresponding phenotype in CGP is variable, which can be considered
as an advantage of the CGP representation. CGP is traditionally used with a
(1+λ) evolutionary algorithm (EA). The (1+λ)-EA is often used with a selection
strategy called neutrality, which is based on the idea that genetic drift yields
to diverse individuals having equal fitness. The genetic drift is implemented
into the selection mechanism in a way that individuals which have the same
fitness as the normally selected parent are determined, and one of these same-
fitness individuals is returned uniformly at random. The new population in each
generation consists of the best individual of the previous population and the λ
created offspring. The breeding procedure is mostly done by a point mutation
that swaps genes in the genotype of an individual in the valid range by chance.

66 R. Kalkreuth

Another point mutation is the flip of the functional gene, which changes the
functional behavior of the corresponding function node.

3 Related Work

3.1 Recombination in CGP

According to the reports of Clegg et al. [3], the first attempts of recombination
in standard CGP included testing of various genotypic crossover techniques.
For instance, the genetic material was recombined by swapping parts of the
genotypes of the parent individuals or randomly exchanging selected nodes.
Clegg et al. reported that all techniques failed to improve the convergence of
CGP and that merely swapping the integers disrupts the search performance.
In comparison to mutation only CGP, the addition of genotypic crossover tech-
niques hindered the performance. In one of the first empirical studies about CGP,
Miller [15] analyzed its computational efficiency on Boolean function problems.
More precisely, Miller analyzed and studied the influence of population size on
the efficiency of CGP. The key finding of his study was that extremely low pop-
ulations perform most effectively for the tested problems. The experiments of
this study also demonstrated that the addition of a genotypic crossover reduces
the computational effort only marginally.

This was the motivation for the introduction of a real-valued representa-
tion and intermediate recombination for CGP by Clegg et al. The real-valued
representation of CGP represents the directed graph as a fixed-length list of real-
valued numbers in the interval [0, 1]. The genes are decoded to the integer-based
representation by their normalization values (number of functions or maximum
input range). The recombination of two CGP genotypes is performed by interme-
diate recombination with a random weighting factor. Clegg et al. demonstrated
that the new representation in combination with crossover improves the conver-
gence behavior of CGP on one of the two tested symbolic regression problems.
However, for the later generations, Clegg et al. found that the use of crossover
in real-valued CGP disrupts the convergence on one problem. Later work by
Turner [30] presented results with intermediate recombination on three addi-
tional classes of computational problems, digital circuit synthesis, function opti-
mization, and agent-based wall avoidance. On these problems, it was found that
the real-valued representation together with the crossover operation performed
worse than mutation-only CGP.

Kalkreuth et al. [10] introduced and investigated subgraph crossover in CGP
which exchanges and links subgraphs of active function nodes between two
selected parents and the block crossover exchanges blocks of active function
genes. In recent comparative studies, its use has been found beneficial for sev-
eral symbolic regression benchmarks since it led to a significant decrease in the
number of fitness evaluations needed to find the ideal solution [9,11]. Contrarily,
the gain of the search performance was considerably lower for the tested Boolean
function problems [9,11]. Moreover, the results of the experiments clearly showed
that the subgraph crossover failed to improve the search performance on some of

Phenotypic Uniform Crossover in Cartesian Genetic Programming 67

the tested Boolean benchmarks when compared to the results of the traditional
1 + λ selection strategy.

Husa and Kalkreuth [6] proposed block crossover which selects active function
nodes by chance in accordance with a predefined block size but without any
order. The function genes of the selected active nodes are then swapped. The
block crossover has been compared to mutation-only CGP on a suite of Boolean
functions and symbolic regression problems. The outcome of the study gave
significant evidence that the (1+λ)-CGP cannot be considered the most efficient
CGP algorithm in the Boolean function domain, although it seems to be often a
good choice. The outcome of the study gave the first evidence, that it is possible
for crossover operators to outperform the standard 1 + λ selection strategy.

Sivla et al. [27] introduced a form of crossover for multiple output prob-
lems. The proposed method combines the subgraphs of the best outputs of the
parent individuals produce an offspring. The proposed crossover technique was
applied to the synthesis of combinational logic circuits with multiple outputs.
The so-called X-CGP obtained the best results when compared to single chro-
mosome CGP representations and performed better than the multi-chromosome
representation for some of the tested problems. The experiments of Siliva et al.
indicate that the proposed method is promising. On the other hand, the authors
concluded that more studies are needed since X-CGP performed no better than
the mutation-only multi-chromosome techniques on the majority of the tested
problems.

3.2 Historical Background of Discrete Recombination

Discrete recombination in EC was first described by Rechenberg [20,21] for the
simulation of the first type of a multimembered evolutionary strategy (ES) called
(μ + 1) or steady-state ES. Rechenberg demonstrated that recombination can
improve the speed of the evolutionary process if the measure is taken per gen-
eration rather than per function evaluation [2]. Schwefel [23,24] later utilized
discrete recombination among five types of recombination for two further ver-
sions of the multimembered ES, called (μ + λ)- and (μ, λ)-ES [1]. Schwefel [24]
performed an empirical study with 50 uni- and multimodal test functions and
compared ESs to the most traditional direct optimization strategies and the
outcome showed good results for ESs. According to Bäck et al. [1], the best
results were achieved with the use of several types of recombination. In the field
of GAs, discrete recombination is commonly referred to as uniform crossover
and has been found to be a useful search operator [4]. Uniform crossover was
first proposed for the binary encoding model of GA by Syswerda [29] and its
search performance was found superior to the one- and two-point crossover in
the most cases. Uniform recombination in GA inspired the adaption in tree-based
GP [18,19] where function nodes and subtrees are exchanged between two parent
individuals in accordance with a uniform rate. If the uniform rate is set to 50%,
this method represents the tree-based GP equivalent of the uniform crossover
for binary strings.

68 R. Kalkreuth

4 The Proposed Method

We adapt discrete recombination in CGP by means of phenotypic functional
variation which is performed through the exchange of function genes of active
function nodes. The phenotype of a CGP individual is represented by its active
function nodes which are determined before the crossover procedure. After select-
ing two individuals, the minimum and a maximum number of active function
nodes of the two individuals is determined. The reason for this is that the size of
the phenotype in CGP is not fixed and can vary among individuals. To perform
the exchange of active function genes, the crossover procedure iterates over the
minimum number of active nodes. A binary decision is made by chance in each
iteration whether the function genes are swapped or kept. In the case that both
phenotypes differ in size, our method performs a special step in the last iter-
ation called boundary extension which extends the selection of active function
genes. The idea behind this step is to include active function genes of the larger
phenotype into the selection which would not be considered if the lists of active
function nodes are merely interated in order. Just like the uniform crossover in
GA, our method produces two offspring. The algorithmic implementation of our
method is described in Algorithm 1. Exemplifications of the procedure on geno-
typic and phenotypic level are illustrated in Fig. 2 and 3. An implementation
for the CGP extension package of the Java Evolutionary Computation Research
System (ECJ) [25] is provided in the ECJ GitHub repository1.

2 0 0 1 0 1 0 2 3 2 2 3 0 4 5 4

3 0 0 3 1 1 0 0 2 2 2 3 1 2 5 6

2 3 4 5 6 OP1

2 3 4 5 6 OP2

Node number

N1 = {2, 3, 4} N2 = {2, 3, 5, 6}
Active function nodes

F1 = {2, 1, 0}
Active function genes

F2 = {3, 3, 2, 1}

Boundary extension

3 0 0 1 0 1 1 2 3 2 2 3 0 4 5 4

2 0 0 3 1 1 0 0 2 2 2 3 0 2 5 6

2 3 4 5 6 OP1

2 3 4 5 6 OP2

Gene swap

Parent P1

Parent P2

Offspring O1

Offspring O2

Function gene swaps
S1 = 2 <--> 3 S2 = 0 <--> 1

Node 2 Node 4, 6

Fig. 2. Exemplification of discrete recombination in CGP: Active function genes of two
CGP genotypes are recombined by means of discrete recombination. Function genes,
which have been randomly selected for the exchange, are connected with a double-sided
arrow in the figure. The active function nodes and genes of the respective parent and
offspring individuals are highlighted in red and blue color. (Color figure online)

1 https://github.com/GMUEClab/ecj.

https://github.com/GMUEClab/ecj

Phenotypic Uniform Crossover in Cartesian Genetic Programming 69

Fig. 3. Illustration of discrete recombination in CGP on the phenotypic level based on
the genotypic exemplification presented in Fig. 2. Active function nodes of the respec-
tive parent and offspring individuals are highlighted in red and blue color. (Color figure
online)

5 Experiments

5.1 Experimental Setup

We performed experiments with symbolic regression problems. We compared the
traditional (1 + λ)-CGP to a canonical EA equipped with our proposed discrete
recombination and tournament selection. The algorithms which we used in our
experiments are listed in Table 1. To evaluate the search performance, we mea-
sured the number of fitness evaluations until the CGP algorithm terminated suc-
cessfully as recommended by McDermott et al. [13]. Termination was triggered
when an ideal solution was found or a predefined budget of fitness evaluation
was exceeded. We defined a maximum number of 108 fitness evaluations for our
experiments and calculated the success rate (SR). In addition to the mean values
of the measurements, we also calculated the standard deviation (SD), median
(Q2) as well as lower and upper quartile (Q1 and Q3). Meta-optimization experi-
ments have been performed to compare the algorithms fairly and are described in
more detail in the following subsection. All tested algorithms were compared on
the same number of function nodes to exclude conditions, which can distort the
search performance comparison. Our method was tested against the traditional
(1 + λ)-CGP which we declared as the baseline algorithm for our experiments.
In our experiments, we exclusively used the single-row standard integer-based
representation of CGP. Since we cannot guarantee normally distributed values
in our samples, we used the nonparametric two-tailed Mann-Whitney U test to
evaluate statistical significance. More precisely, we tested the null hypothesis
that two samples come from the same population (i.e. have the same median).
We performed 100 independent runs with different random seeds. The levels
back parameter l was set to ∞.

70 R. Kalkreuth

Algorithm 1. Discrete phenotypic crossover
Arguments
G1, G2: Genomes of the first parent individuals
N1, N2: List of active function node numbers of the first parent inidividuals
Return
˜G1, ˜G2: Genomes of the offspring

1: function DiscreteCrossover(G1, G2, N1, N2)
2: l1 ← |N1| � Number of active nodes of the first parent

3: l2 ← |N2| � Number of active nodes of the second parent

4: min ← Min(l1, l2) � Determine the minimum

5: max ← Max(l1, l2) � Determine the maximum

6: i ← 0
7: while i < min do � Iterate over the minimum number of active nodes

8: if RandomBoolean() = true then � Decision by chance to keep or swap genes

9: � Check if conditions for boundary extension are satisfied

10: if i = min − 1 and l1 �= l2 then
11: r ← RandomInteger(0, max - i) � Determine a random offset

12: if l1 < l2 then � If the first parent has the minimum of active nodes

13: n1 ← N1[i]
14: � Extend node selection for the second, phenotypically larger, parent

15: n2 ← N2[i + r]
16: else � Otherwise, extend the selection for the first parent

17: n1 ← N1[i + r]
18: n2 ← N2[i]
19: end if
20: else � Without boundary extension, just select the nodes in order

21: n1 ← N1[i]
22: n2 ← N2[i]
23: end if
24: p1 ← PositionFromNodeNumber(n1) � Function gene position of n1

25: p2 ← PositionFromNodeNumber(n2) � Function gene position of n2

26: ˜G1, ˜G2 ← SwapGenes(G1, G2, p1, p2) � Swap the function genes

27: end if
28: i ← i + 1 � Loop counter increment

29: end while

30: return ˜G1, ˜G2

31: end function

Table 1. Identifiers for the tested CGP algorithms.

Identifier Description

1 + λ 1 + λ selection strategy with neutral genetic drift

Canonical Canonical EA with phenotypic uniform crossover and tournament selection

Phenotypic Uniform Crossover in Cartesian Genetic Programming 71

5.2 Benchmarks

We chose eleven symbolic regression problems from the work of McDermott et
al. [13] for better GP benchmarks. The reason for our choice of these problems
is the fact that we can find an ideal solution more likely on average and evaluate
the search performance of the whole evolutionary process. Our set of bench-
marks covers uni- as well as bivariate polynomial, trigonometric, logarithmic,
and power functions. The functions of the problems are shown in Table 2. A
training data set U[a, b, c] refers to c uniform random samples drawn from a to b
inclusive. We used the extended Koza function set as recommended by McDer-
mott et al. The function set is shown in Table 3. The fitness of the individuals
was represented by a cost function value. The cost function was defined by the
sum of the absolute difference between the real function values and the values
of an evaluated individual. Let T =

{
xp

}P
p=1

be a training dataset of P random
points and find(xp) the value of an evaluated individual and fref(xp) the true
function value. Let

C :=
P∑

p=1

|find(xp) − fref(xp)|

be the cost function. When the difference of all absolute values becomes less
than 0.01, the algorithm is classified as converged.

5.3 Meta-optimization

We tuned relevant parameters for all tested CGP algorithms on the set of bench-
mark problems. Moreover, we used the meta-optimization toolkit of ECJ. The
parameter space for the respective algorithms, explored by meta-optimization,
is presented in Table 4. For the meta-level, we used a canonical GA equipped
with intermediate recombination and point mutation. Since GP benchmark prob-
lems can be very noisy in terms of finding the ideal solution, we oriented the
meta-optimization with a common approach that has been used in previous
studies [6,11,12]. The meta-evolution process at the base level was repeated
multiple times for each candidate setting and the most effective settings were
compared to find the best setting. For the problems Koza 1–3 and Nguyen 4–7,
we selected effective settings of certain parameters for the (1 + λ)-CGP from
previous parametrization studies [11,12].

72 R. Kalkreuth

Table 2. List of symbolic regression benchmarks.

Problem Objective function Vars Training set Function set

Koza-1 x4 + x3 + x2 + x 1 U[−1, 1, 20] Koza

Koza-2 x5 − 2x3 + x 1 U[−1, 1, 20] Koza

Koza-3 x6 − 2x4 + x2 1 U[−1, 1, 20] Koza

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[−1, 1, 20] Koza

Nguyen-5 sin(x2) cos(x) − 1 1 U[−1, 1, 20] Koza

Nguyen-6 sin(x) + sin(x + x2) 1 U[−1, 1, 20] Koza

Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0, 2, 20] Koza

Nguyen-8
√

x 1 U[0, 4, 20] Koza

Nguyen-9 sin(x2) + sin(y2) 2 U[0, 2, 20] Koza

Nguyen-10 2 ∗ sin(x) ∗ cos(x) 2 U[0, 2, 20] Koza

Nguyen-11 xy 2 U[0, 2, 20] Koza

Table 3. Function set used for the experiments.

Name Functions Constants

Koza + − ∗ / sin cos en ln(|n|) Constant input with a value of 1

Table 4. Parameter space explored by meta-optimization for the 1 + λ and canonical
CGP algorithm.

Algorithm Parameter Description Range

1 + λ λ Number of offspring [1, 1024]

N Number of function nodes [10, 1000]

M Point mutation rate [%] [1.0, 30.0]

Canonical N Number of function nodes [10, 1000]

M Point mutation rate [%] [1.0, 30.0]

C Crossover rate [%] [10, 100]

P Population size [10, 500]

T Tournament size [2, 20]

5.4 Results

The results of our meta-optimization and search performance evaluation are
presented in Table 5 and it is clearly visible that the Canonical-CGP with dis-
crete recombination reduces the number of fitness evaluations to termination
significantly on all tested problems. Moreover, on the more complex problems,
the Canonical-CGP achieves higher success rates. Violin plots are provided in
Fig. 4.

Phenotypic Uniform Crossover in Cartesian Genetic Programming 73

Table 5. Results of the meta-optimization and search performance evaluation.

Problem Algorithm Parametrization Search performance evaluation p

N λ M [%] C [%] P T MFE SD 1Q 2Q 3Q SR

Koza-1 1 + λ 10 4 20 – – – 3,285,238 8,974,193 518,516 1,408,326 3,460,391 1.0

Canonical 10 – 20 70 50 4 532,957 652,332 76,868 311,983 724,563 1.0 10−9

Koza-2 1 + λ 10 4 20 – – – 2,325,581 7,830,950 340,608 1,260,496 2,463,527 1.0

Canonical 10 – 10 50 50 4 733,925 934,455 67,387 394,075 982,325 1.0 10−6

Koza-3 1 + λ 10 4 20 – – – 428,778 663,576 26,527 159,290 502,686 1.0

Canonical 10 – 20 50 50 4 122,629 264,791 17,113 41,282 113,324 1.0 10−4

Nguyen-4 1 + λ 100 16 10 – – – 91,228,744 24,303,588 100,000,000 100,000,000 100,000,000 0.16

Canonical 100 – 8 50 50 4 59,767,376 38,075,889 23,060,887 59,816,675 100,000,000 0.62 10−10

Nguyen-5 1 + λ 60 16 7 – – – 64,092,121 42,126,017 14,078,020 96,894,232 100,000,000 0.50

Canonical 60 – 7 70 50 4 9,758,166 23,157,856 190,312 833,400 6,072,437 0.96 10−13

Nguyen-6 1 + λ 100 16 10 – – – 16,757,903 18,877,924 2,980,764 10,508,376 23,852,124 0.95

Canonical 100 – 8 70 50 4 1,634,090 4,399,397 21,962 132,575 888,900 1.0 10−15

Nguyen-7 1 + λ 200 16 7 – – – 64,033,983 35,411,800 30,458,912 67,583,400 100,000,000 0.67

Canonical 200 – 7 50 50 7 23,424,276 32,155,768 2,622,975 7,966,750 26,935,237 0.93 10−13

Nguyen-8 1 + λ 150 16 15 – – – 1,554,341 1,745,877 93,096 911,720 2,386,644 1.0

Canonical 150 – 15 50 50 7 764,404 890,860 149,262 415,800 1,028,275 1.0 0.02

Nguyen-9 1 + λ 150 16 15 – – – 1,141,109 1,681,517 32,288 560,416 1,572,280 1.0

Canonical 150 – 15 50 50 4 291,008 613,343 14,350 50,975 255,450 1.0 10−5

Nguyen-10 1 + λ 60 128 20 – – – 905,799 1,659,653 26,144 130,176 1,201,152 1.0

Canonical 60 – 15 70 50 4 139,754 178,352 22,837 76,375 185,050 1.0 0.002

Nguyen-11 1 + λ 50 64 10 – – – 155,608 165,428 14,944 111,488 224,784 1.0

Canonical 50 – 10 70 50 4 56,685 65,100 111,62 37,175 75,225 1.0 10−4

Fig. 4. Violin plots for all tested problems and algorithms of our experiments.

74 R. Kalkreuth

6 Discussion

The experiments presented in this work allow certain points that are worthy of
discussion. Even if the initial results of our proposed method are promising we
have to emphasize that more experiments are needed to achieve insight into how
our method performs in other problem domains. Since former work [10] on recom-
bination in CGP presented promising results with symbolic regression problems,
we initially tested our proposed method in this problem domain. However, we
have to evaluate our method in problem domains where the search space differs
from the continuous search spaces of our tested symbolic regression problems.
Recent work [9,11] led to more insight into the antagonism between continuous
and discrete search spaces and its implications for the success of crossover-based
algorithms in CGP. For our experiments, we also did not include the comparison
to other crossover operators that have been proposed for CGP. For our initial
evaluation and generally as a first step we concentrated on comparisons to the
most commonly used algorithm in CGP and ensuring fair conditions with meta-
optimization. But since several crossover operators have been proposed in recent
years, more comparative studies are needed in the field of CGP and should be
addressed by future work.

Another point that should be discussed is the parametrization of our method.
Based on our meta-optimization experiments, we can derive some essential gen-
eralizations for our tested problems. In our experiments, moderate to high
crossover rates performed best in combination with mid-size populations. We
also tested low and very high rates of crossover but obtained no further improve-
ment in the search performance. Likewise, we also experimented with bigger and
smaller populations but the size of 50 individuals turned out to be the best
choice. Overall, our results give more evidence that mid-size populations can be
used effectively in CGP which depicts a significant shift from the popular dogma
that only very small populations can perform effectively in CGP. Moreover, our
results are coherent with the work of Kalkreuth [11] on population sizes in CGP
and reinforce his findings. Nevertheless, we again, have to point out that our
findings are based on results that have been obtained in merely one problem
category.

7 Conclusions and Future Work

In this work, we presented initial results of a method for phenotypic discrete
recombination in CGP. The effectiveness of our approach has been evaluated on
a diverse set of well-known symbolic regression benchmarks, covering uni- and
bivariate functions. Overall, our results indicate that the use of our proposed
methods can be beneficial for symbolic regression. This work primarily focused
on an initial evaluation of the search performance and ensuring fair conditions
through meta-optimization. The next natural following step is the evaluation
of our method in other problem domains and in comparison to other crossover

Phenotypic Uniform Crossover in Cartesian Genetic Programming 75

operators. Therefore, our future work will primarily focus on comparative stud-
ies. Another part of our future work will be devoted to analytical experiments
to study the effects caused by the phenotypic discrete crossover.

References

1. Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Belew,
R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on
Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 2–9. Morgan Kaufmann
(1991)

2. Beyer, H., Schwefel, H.: Evolution strategies - a comprehensive introduction. Nat.
Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

3. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic
programming. In: Thierens, D., et al. (eds.) Proceedings of the 9th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO 2007, London, 7–11 July
2007, vol. 2, pp. 1580–1587. ACM Press (2017). https://doi.org/10.1145/1276958.
1277276. http://www.cs.bham.ac.uk/∼wbl/biblio/gecco2007/docs/p1580.pdf

4. De Jong, K., Spears, W.: On the virtues of parameterized uniform crossover. In:
Proceedings of the 4th International Conference on Genetic Algorithms, pp. 230–
236. Morgan Kaufmann Publishers, San Mateo (1991)

5. Hrbacek, R., Dvorak, V.: Bent function synthesis by means of cartesian genetic
programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
PPSN 2014. LNCS, vol. 8672, pp. 414–423. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10762-2 41

6. Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic pro-
gramming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez,
P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77553-1 13

7. Husa, J., Sekanina, L.: Evolving cryptographic boolean functions with minimal
multiplicative complexity. In: IEEE Congress on Evolutionary Computation, CEC
2020, Glasgow, United Kingdom, 19–24 July 2020, pp. 1–8. IEEE (2020). https://
doi.org/10.1109/CEC48606.2020.9185517.

8. Kalganova, T.: Evolutionary approach to design multiple-valued combinational
circuits. In: Proceedings of the 4th International Conference on Applications of
Computer Systems, ACS 1997, Szczecin, Poland, pp. 333–339 (1997)

9. Kalkreuth, R.: A comprehensive study on subgraph crossover in cartesian genetic
programming. In: Guervós, J.J.M., Garibaldi, J.M., Wagner, C., Bäck, T., Madani,
K., Warwick, K. (eds.) Proceedings of the 12th International Joint Conference on
Computational Intelligence, IJCCI 2020, Budapest, Hungary, 2–4 November 2020,
pp. 59–70. SCITEPRESS (2020). https://doi.org/10.5220/0010110700590070.

10. Kalkreuth, R., Rudolph, G., Droschinsky, A.: A new subgraph crossover for carte-
sian genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haas-
dijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 294–310.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 19

11. Kalkreuth, R.T.: Reconsideration and Extension of Cartesian Genetic Program-
ming. Ph.D. thesis (2021). https://doi.org/10.17877/DE290R-22504. http://dx.
doi.org/10.17877/DE290R-22504

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1145/1276958.1277276
https://doi.org/10.1145/1276958.1277276
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1580.pdf
https://doi.org/10.1007/978-3-319-10762-2_41
https://doi.org/10.1007/978-3-319-10762-2_41
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1109/CEC48606.2020.9185517
https://doi.org/10.1109/CEC48606.2020.9185517
https://doi.org/10.5220/0010110700590070
https://doi.org/10.1007/978-3-319-55696-3_19
https://doi.org/10.17877/DE290R-22504
http://dx.doi.org/10.17877/DE290R-22504
http://dx.doi.org/10.17877/DE290R-22504

76 R. Kalkreuth

12. Kaufmann, P., Kalkreuth, R.: An empirical study on the parametrization of
cartesian genetic programming. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, GECCO 2017, pp. 231–232. ACM,
New York (2017). https://doi.org/10.1145/3067695.3075980. http://doi.acm.org/
10.1145/3067695.3075980

13. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Pro-
ceedings of the 14th International Conference on Genetic and Evolutionary Com-
putation Conference, GECCO 2012, Philadelphia, Pennsylvania, USA, 7–11 July
2012, pp. 791–798. ACM (2012). https://doi.org/10.1145/2330163.2330273

14. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolu-
tionary algorithms. arithmetic circuits: a case study. In: Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science, pp. 105–131. Wiley
(1997)

15. Miller, J.F.: An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In: Banzhaf, W., et al. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference, Orlando,
Florida, USA, 13–17 July 1999, vol. 2, pp. 1135–1142. Morgan Kaufmann (1999).
http://citeseer.ist.psu.edu/153431.html

16. Miller, J.F., Wilson, D.G., Cussat-Blanc, S.: Evolving programs to build artifi-
cial neural networks. In: Adamatzky, A., Kendon, V. (eds.) From Astrophysics to
Unconventional Computation. ECC, vol. 35, pp. 23–71. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-15792-0 2

17. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Pro-
gram. Evolvable Mach. 21(1), 129–168 (2020). https://doi.org/10.1007/s10710-
019-09360-6

18. Poli, R., Langdon, W.B.: On the ability to search the space of programs of standard,
one-point and uniform crossover in genetic programming. Technical report CSRP-
98-7, University of Birmingham, School of Computer Science (January 1998). ftp://
ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz. Presented at GP-98

19. Poli, R., Langdon, W.B.: On the search properties of different crossover opera-
tors in genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming
1998: Proceedings of the 3rd Annual Conference, University of Wisconsin, Madi-
son, Wisconsin, USA, 22–25 July 1998, pp. 293–301. Morgan Kaufmann (1998).
http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf

20. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Dr.-Ing. Ph.D. thesis, Thesis, Technical Uni-
versity of Berlin, Department of Process Engineering (1971)

21. Rechenberg, I.: Evolutionsstrategie Optimierung technischer Systeme nach Prinzip-
ien der biologishen Evolution. Frommann Holzboog Verlag, Stuttgart (1973)

22. Rudolph, G.: Global optimization by means of distributed evolution strategies.
In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 209–213.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029754

23. Schwefel, H.P.: Evolutionsstrategien für die numerische Optimierung, pp. 123–176.
Birkhäuser Basel, Basel (1977). https://doi.org/10.1007/978-3-0348-5927-1 5

24. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, USA (1981)
25. Scott, E.O., Luke, S.: ECJ at 20: toward a general metaheuristics toolkit. In:

López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech
Republic, 13–17 July 2019, pp. 1391–1398. ACM (2019). https://doi.org/10.1145/
3319619.3326865

https://doi.org/10.1145/3067695.3075980
http://doi.acm.org/10.1145/3067695.3075980
http://doi.acm.org/10.1145/3067695.3075980
https://doi.org/10.1145/2330163.2330273
http://citeseer.ist.psu.edu/153431.html
https://doi.org/10.1007/978-3-030-15792-0_2
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/s10710-019-09360-6
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz
http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf
https://doi.org/10.1007/BFb0029754
https://doi.org/10.1007/978-3-0348-5927-1_5
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1145/3319619.3326865

Phenotypic Uniform Crossover in Cartesian Genetic Programming 77

26. Sekanina, L., Walker, J.A., Kaufmann, P., Platzner, M.: Evolution of electronic
circuits. In: Miller, J.F. (ed.) Cartesian Genetic Programming. Natural Computing
Series, pp. 125–179. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-17310-3 5

27. da Silva, J.E.H., Bernardino, H.: Cartesian genetic programming with crossover for
designing combinational logic circuits. In: 7th Brazilian Conference on Intelligent
Systems, BRACIS 2018, São Paulo, Brazil, 22–25 October 2018, pp. 145–150. IEEE
Computer Society (2018). https://doi.org/10.1109/BRACIS.2018.00033

28. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep con-
volutional neural networks using cartesian genetic programming. Evol. Comput.
28(1), 141–163 (2020). https://doi.org/10.1162/evco a 00253

29. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.)
Proceedings of the 3rd International Conference on Genetic Algorithms, George
Mason University, Fairfax, Virginia, USA, June 1989, pp. 2–9. Morgan Kaufmann
(1989)

30. Turner, A.J.: Improving crossover techniques in a genetic program. Master’s thesis,
Department of Electronics, University of York (2012)

https://doi.org/10.1007/978-3-642-17310-3_5
https://doi.org/10.1007/978-3-642-17310-3_5
https://doi.org/10.1109/BRACIS.2018.00033
https://doi.org/10.1162/evco_a_00253

	Towards Discrete Phenotypic Recombination in Cartesian Genetic Programming
	1 Introduction
	2 Cartesian Genetic Programming
	3 Related Work
	3.1 Recombination in CGP
	3.2 Historical Background of Discrete Recombination

	4 The Proposed Method
	5 Experiments
	5.1 Experimental Setup
	5.2 Benchmarks
	5.3 Meta-optimization
	5.4 Results

	6 Discussion
	7 Conclusions and Future Work
	References

