
Günter Rudolph · Anna V. Kononova ·
Hernán Aguirre · Pascal Kerschke ·
Gabriela Ochoa · Tea Tušar (Eds.)

LN
CS

 1
33

99

17th International Conference, PPSN 2022
Dortmund, Germany, September 10–14, 2022
Proceedings, Part II

Parallel Problem Solving
from Nature – PPSN XVII

Lecture Notes in Computer Science 13399

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Günter Rudolph · Anna V. Kononova ·
Hernán Aguirre · Pascal Kerschke ·
Gabriela Ochoa · Tea Tušar (Eds.)

Parallel Problem Solving
from Nature – PPSN XVII
17th International Conference, PPSN 2022
Dortmund, Germany, September 10–14, 2022
Proceedings, Part II

Editors
Günter Rudolph
TU Dortmund
Dortmund, Germany

Hernán Aguirre
Shinshu University
Nagano, Japan

Gabriela Ochoa
University of Stirling
Stirling, UK

Anna V. Kononova
Leiden University
Leiden, The Netherlands

Pascal Kerschke
Technische Universität Dresden
Dresden, Germany

Tea Tušar
Jožef Stefan Institute
Ljubljana, Slovenia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-14720-3 ISBN 978-3-031-14721-0 (eBook)
https://doi.org/10.1007/978-3-031-14721-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Chapters 19, 24 and 35 are licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4223-5257
https://orcid.org/0000-0003-4480-1339
https://orcid.org/0000-0001-7649-5669
https://orcid.org/0000-0002-4138-7024
https://orcid.org/0000-0003-2862-1418
https://orcid.org/0000-0002-6495-006X
https://doi.org/10.1007/978-3-031-14721-0
http://creativecommons.org/licenses/by/4.0/

Preface

The first major gathering of people interested in discussing natural paradigms and their
application to solve real-world problems in Europe took place in Dortmund, Germany,
in 1990. What was planned originally as a small workshop with about 30 participants
finally grew into an international conference named Parallel Problem Solving from
Nature (PPSN) with more than 100 participants. The interest in the topics of the
conference has increased steadily ever since leading to the pleasant necessity of
organizing PPSN conferences biennially within the European region.

In times of a pandemic, it is difficult to find a host for a conference that should be held
locally if possible. To ensure the continuation of the conference series, the 17th edition,
PPSN 2022, returned to its birthplace in Dortmund. But even at the time of writing this
text, it is unclear whether the conference can be held on-site or whether we shall have
to switch to virtual mode at short notice.

Therefore, we are pleased that many researchers shared our optimism by submitting
their papers for review. We received 185 submissions from which the program chairs
have selected the top 85 after an extensive peer-review process. Not all decisions were
easy tomake but in all caseswe benefited greatly from the careful reviews provided by the
international Program Committee consisting of 223 scientists. Most of the submissions
received four reviews, but all of them got at least three reviews. This led to a total of 693
reviews. Thanks to these reviews we were able to decide about acceptance on a solid
basis.

The papers included in these proceedings have been assigned to 12 fuzzy clusters,
entitled Automated Algorithm Selection and Configuration, Bayesian- and Surrogate-
Assisted Optimization, Benchmarking and Performance Measures, Combinatorial
Optimization, (Evolutionary) Machine Learning and Neuroevolution, Evolvable
Hardware and Evolutionary Robotics, Fitness Landscape Modeling and Analysis,
Genetic Programming, Multi-Objective Optimization, Numerical Optimizaiton, Real-
World Applications, and Theoretical Aspects of Nature-Inspired Optimization, that can
hardly reflect the true variety of research topics presented in the proceedings at hand.
Following the tradition and spirit of PPSN, all papers were presented as posters. The
7 poster sessions consisting of about 12 papers each were compiled orthogonally to
the fuzzy clusters mentioned above to cover the range of topics as widely as possible.
As a consequence, participants with different interests would find some relevant papers
in every session and poster presenters were able to discuss related work in sessions
other than their own. As usual, the conference also included one day with workshops
(Saturday), one day with tutorials (Sunday), and three invited plenary talks (Monday to
Wednesday) for free.

Needless to say, the success of such a conference depends on the authors, reviewers,
and organizers. We are grateful to all authors for submitting their best and latest work, to
all the reviewers for the generous way they spent their time and provided their valuable
expertise in preparing the reviews, to the workshop organizers and tutorial presenters

vi Preface

for their contributions enhancing the value of the conference, and to the local organizers
who helped to make PPSN 2022 happen.

Last but not least, we would like to thank for the donations of the Gesellschaft
der Freunde der Technischen Universität Dortmund e.V. (GdF) and the Alumni der
Informatik Dortmund e.V. (aido). We are grateful for Springer’s long-standing support
of this conference series. Finally, we thank theDeutsche Forschungsgemeinschaft (DFG)
for providing financial backing.

July 2022 Günter Rudolph
Anna V. Kononova

Hernán Aguirre
Pascal Kerschke
Gabriela Ochoa

Tea Tušar

Organization

General Chair

Günter Rudolph TU Dortmund University, Germany

Honorary Chair

Hans-Paul Schwefel TU Dortmund University, Germany

Program Committee Chairs

Hernán Aguirre Shinshu University, Japan
Pascal Kerschke TU Dresden, Germany
Gabriela Ochoa University of Stirling, UK
Tea Tušar Jožef Stefan Institute, Slovenia

Proceedings Chair

Anna V. Kononova Leiden University, The Netherlands

Tutorial Chair

Heike Trautmann University of Münster, Germany

Workshop Chair

Christian Grimme University of Münster, Germany

Publicity Chairs

Nicolas Fischöder TU Dortmund University, Germany
Peter Svoboda TU Dortmund University, Germany

Social Media Chair

Roman Kalkreuth TU Dortmund University, Germany

viii Organization

Digital Fallback Chair

Hestia Tamboer Leiden University, The Netherlands

Steering Committee

Thomas Bäck Leiden University, The Netherlands
David W. Corne Heriot-Watt University, UK
Carlos Cotta Universidad de Málaga, Spain
Kenneth De Jong George Mason University, USA
Gusz E. Eiben Vrije Universiteit Amsterdam, The Netherlands
Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós Universida de Granada, Spain
Günter Rudolph TU Dortmund University, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birmingham, UK

Program Committee

Jason Adair University of Stirling, UK
Michael Affenzeller University of Applied Sciences Upper Austria,

Austria
Hernán Aguirre Shinshu University, Japan
Brad Alexander University of Adelaide, Australia
Richard Allmendinger University of Manchester, UK
Marie Anastacio Leiden University, The Netherlands
Denis Antipov ITMO University, Russia
Claus Aranha University of Tsukuba, Japan
Rolando Armas Yachay Tech University, Ecuador
Dirk Arnold Dalhousie University, Canada
Anne Auger Inria, France
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit Newcastle University, UK
Thomas Bäck Leiden University, The Netherlands
Helio Barbosa Laboratório Nacional de Computação Científica,

Brazil
Andreas Beham University of Applied Sciences Upper Austria,

Austria
Heder Bernardino Universidade Federal de Juiz de Fora, Brazil
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria

Organization ix

Julian Blank Michigan State University, USA
Aymeric Blot University College London, UK
Christian Blum Spanish National Research Council, Spain
Peter Bosman Centrum Wiskunde & Informatica,

The Netherlands
Jakob Bossek University of Münster, Germany
Jürgen Branke University of Warwick, UK
Dimo Brockhoff Inria, France
Alexander Brownlee University of Stirling, UK
Larry Bull University of the West of England, UK
Maxim Buzdalov ITMO University, Russia
Arina Buzdalova ITMO University, Russia
Stefano Cagnoni University of Parma, Italy
Fabio Caraffini De Montfort University, UK
Ying-Ping Chen National Chiao Tung University, Taiwan
Francisco Chicano University of Málaga, Spain
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Tinkle Chugh University of Exeter, UK
Carlos Coello Coello CINVESTAV-IPN, Mexico
Ernesto Costa University of Coimbra, Portugal
Carlos Cotta Universidad de Málaga, Spain
Nguyen Dang St Andrews University, UK
Kenneth De Jong George Mason University, USA
Bilel Derbel University of Lille, France
André Deutz Leiden University, The Netherlands
Benjamin Doerr Ecole Polytechnique, France
Carola Doerr Sorbonne University, France
John Drake University of Leicester, UK
Rafal Drezewski AGH University of Science and Technology,

Poland
Paul Dufossé Inria, France
Gusz Eiben Vrije Universiteit Amsterdam, The Netherlands
Mohamed El Yafrani Aalborg University, Denmark
Michael Emmerich Leiden University, The Netherlands
Andries Engelbrecht University of Stellenbosch, South Africa
Anton Eremeev Omsk Branch of Sobolev Institute of

Mathematics, Russia
Richard Everson University of Exeter, UK
Pedro Ferreira Universidade de Lisboa, Portugal
Jonathan Fieldsend University of Exeter, UK
Bogdan Filipič Jožef Stefan Institute, Slovenia

x Organization

Steffen Finck Vorarlberg University of Applied Sciences,
Austria

Andreas Fischbach TH Köln, Germany
Marcus Gallagher University of Queensland, Australia
José García-Nieto University of Málaga, Spain
Mario Giacobini University of Turin, Italy
Kyriakos Giannakoglou National Technical University of Athens, Greece
Tobias Glasmachers Ruhr-Universität Bochum, Germany
Christian Grimme University of Münster, Germany
Andreia Guerreiro University of Coimbra, Portugal
Alexander Hagg Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Julia Handl University of Manchester, UK
Jin-Kao Hao University of Angers, France
Emma Hart Napier University, UK
Verena Heidrich-Meisner University Kiel, Germany
Jonathan Heins TU Dresden, Germany
Carlos Henggeler Antunes University of Coimbra, Portugal
Martin Holena Institute of Computer Science, Czech Republic
Daniel Horn TU Dortmund University, Germany
Christian Igel University of Copenhagen, Denmark
Hisao Ishibuchi Osaka Prefecture University, Japan
Domagoj Jakobović University of Zagreb, Croatia
Thomas Jansen Aberystwyth University, UK
Laetitia Jourdan Inria, CNRS, CRIStAL, Université de Lille,

France
George Karakostas McMaster University, Canada
Pascal Kerschke TU Dresden, Germany
Marie-Eleonore Kessaci Université de Lille, France
Ahmed Kheiri Lancaster University, UK
Wolfgang Konen TH Köln, Germany
Lars Kotthoff University of Wyoming, USA
Oliver Kramer Universität Oldenburg, Germany
Oswin Krause University of Copenhagen, Germany
Krzysztof Krawiec Poznan University of Technology, Poland
Martin S. Krejca Hasso Plattner Institute, Germany
Timo Kötzing Hasso Plattner Institute, Germany
William La Cava University of Pennsylvania, USA
William B. Langdon University College London, UK
Frederic Lardeux University of Angers, France
Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland

Organization xi

Ke Li University of Exeter, UK
Arnaud Liefooghe University of Lille, France
Giosuè Lo Bosco Università di Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Daniele Loiacono Politecnico di Milano, Italy
Nuno Lourenço University of Coimbra, Portugal
Jose A. Lozano University of the Basque Country, Spain
Rodica Ioana Lung Babes-Bolyai University, Romania
Chuan Luo Peking University, China
Gabriel Luque University of Málaga, Spain
Evelyne Lutton INRAE, France
Manuel López-Ibáñez University of Málaga, Spain
Penousal Machado University of Coimbra, Portugal
Kaitlin Maile ISAE-SUPAERO, France
Katherine Malan University of South Africa, South Africa
Vittorio Maniezzo University of Bologna, Italy
Elena Marchiori Radboud University, The Netherlands
Asep Maulana Tilburg University, The Netherlands
Giancarlo Mauri University of Milano-Bicocca, Italy
Jacek Mańdziuk Warsaw University of Technology, Poland
James McDermott National University of Ireland, Galway, Ireland
Jörn Mehnen University of Strathclyde, UK
Marjan Mernik University of Maribor, Slovenia
Olaf Mersmann TH Köln, Germany
Silja Meyer-Nieberg Bundeswehr University Munich, Germany
Efrén Mezura-Montes University of Veracruz, Mexico
Krzysztof Michalak Wroclaw University of Economics, Poland
Kaisa Miettinen University of Jyväskylä, Finland
Edmondo Minisci University of Strathclyde, UK
Gara Miranda University of La Laguna, Spain
Mustafa Misir Istinye University, Turkey
Hugo Monzón RIKEN, Japan
Sanaz Mostaghim Fraunhofer IWS, Germany
Mario Andres Muñoz Acosta University of Melbourne, Australia
Boris Naujoks TH Köln, Germany
Antonio J. Nebro University of Málaga, Spain
Aneta Neumann University of Adelaide, Australia
Frank Neumann University of Adelaide, Australia
Michael O’Neill University College Dublin, Ireland
Pietro S. Oliveto University of Sheffield, UK
Una-May O’Reilly MIT, USA
José Carlos Ortiz-Bayliss Tecnológico de Monterrey, Mexico

xii Organization

Patryk Orzechowski University of Pennsylvania, USA
Ender Özcan University of Nottingham, UK
Gregor Papa Jožef Stefan Institute, Slovenia
Gisele Pappa Universidade Federal de Minas Gerais, Brazil
Luis Paquete University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
David Pelta University of Granada, Spain
Leslie Perez-Caceres Pontificia Universidad Católica de Valparaíso,

Chile
Stjepan Picek Delft University of Technology, The Netherlands
Martin Pilat Charles University, Czech Republic
Nelishia Pillay University of KwaZulu-Natal, South Africa
Petr Pošík Czech Technical University in Prague,

Czech Republic
Raphael Prager University of Münster, Germany
Michał Przewoźniczek Wroclaw University of Science and Technology,

Poland
Chao Qian University of Science and Technology of China,

China
Xiaoyu Qin University of Birmingham, UK
Alma Rahat Swansea University, UK
Khaled Rasheed University of Georgia, USA
Frederik Rehbach TH Köln, Germany
Lucas Ribeiro Universidade Federal de Goiás, Brazil
Eduardo Rodriguez-Tello CINVESTAV, Tamaulipas, Mexico
Andrea Roli University of Bologna, Italy
Jonathan Rowe University of Birmingham, UK
Günter Rudolph TU Dortmund University, Germany
Thomas A. Runkler Siemens Corporate Technology, Germany
Conor Ryan University of Limerick, Ireland
Frédéric Saubion University of Angers, France
Robert Schaefer AGH University of Science and Technology,

Poland
Andrea Schaerf University of Udine, Italy
David Schaffer Binghamton University, USA
Lennart Schäpermeier TU Dresden, Germany
Marc Schoenauer Inria Saclay Île-de-France, France
Oliver Schütze CINVESTAV-IPN, Mexico
Michele Sebag CNRS, Université Paris-Saclay, France
Moritz Seiler University of Münster, Germany
Bernhard Sendhoff Honda Research Institute Europe GmbH,

Germany

Organization xiii

Marc Sevaux Université de Bretagne Sud, France
Shinichi Shirakawa Yokohama National University, Japan
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, UK
Jorge Alberto Soria-Alcaraz Universidad de Guanajuato, Mexico
Patrick Spettel FH Vorarlberg, Austria
Giovanni Squillero Politecnico di Torino, Italy
Catalin Stoean University of Craiova, Romania
Thomas Stützle Université Libre de Bruxelles, Belgium
Mihai Suciu Babes-Bolyai University, Romania
Dirk Sudholt University of Sheffield, UK
Andrew Sutton University of Minnesota, USA
Ricardo H. C. Takahashi Universidade Federal de Minas Gerais, Brazil
Sara Tari Université du Littoral Côte d’Opale, France
Daniel Tauritz Auburn University, USA
Dirk Thierens Utrecht University, The Netherlands
Sarah Thomson University of Stirling, UK
Kevin Tierney Bielefeld University, Germany
Renato Tinós University of São Paulo, Brazil
Alberto Tonda INRAE, France
Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico
Tea Tušar Jožef Stefan Institute, Slovenia
Ryan J. Urbanowicz University of Pennsylvania, USA
Koen van der Blom Leiden University, The Netherlands
Bas van Stein Leiden University, The Netherlands
Nadarajen Veerapen University of Lille, France
Sébastien Verel Université du Littoral Côte d’Opale, France
Diederick Vermetten Leiden University, The Netherlands
Marco Virgolin Centrum Wiskunde & Informatica,

The Netherlands
Aljoša Vodopija Jožef Stefan Institute, Slovenia
Markus Wagner University of Adelaide, Australia
Stefan Wagner University of Applied Sciences Upper Austria,

Austria
Hao Wang Leiden University, The Netherlands
Hui Wang Leiden University, The Netherlands
Elizabeth Wanner CEFET, Brazil
Marcel Wever LMU Munich, Germany
Dennis Wilson ISAE-SUPAERO, France
Carsten Witt Technical University of Denmark, Denmark
Man Leung Wong Lingnan University, Hong Kong
Bing Xue Victoria University of Wellington, New Zealand

xiv Organization

Kaifeng Yang University of Applied Sciences Upper Austria,
Austria

Shengxiang Yang De Montfort University, UK
Estefania Yap University of Melbourne, Australia
Furong Ye Leiden University, The Netherlands
Martin Zaefferer TH Köln, Germany
Aleš Zamuda University of Maribor, Slovenia
Saúl Zapotecas Instituto Nacional de Astrofísica, Óptica y

Electrónica, Mexico
Christine Zarges Aberystwyth University, UK
Mengjie Zhang Victoria University of Wellington, New Zealand

Keynote Speakers

Doina Bucur University of Twente, The Netherlands
Claudio Semini IIT, Genoa, Italy
Travis Waller TU Dresden, Germany

Contents – Part II

Genetic Programming

Digging into Semantics: Where Do Search-Based Software Repair
Methods Search? . 3

Hammad Ahmad, Padriac Cashin, Stephanie Forrest, and Westley Weimer

Gene-pool Optimal Mixing in Cartesian Genetic Programming 19
Joe Harrison, Tanja Alderliesten, and Peter A. N. Bosman

Genetic Programming for Combining Directional Changes Indicators
in International Stock Markets . 33

Xinpeng Long, Michael Kampouridis, and Panagiotis Kanellopoulos

Importance-Aware Genetic Programming for Automated Scheduling
Heuristics Learning in Dynamic Flexible Job Shop Scheduling 48

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang

Towards Discrete Phenotypic Recombination in Cartesian Genetic
Programming . 63

Roman Kalkreuth

Multi-Objective Optimization

A General Architecture for Generating Interactive Decomposition-Based
MOEAs . 81

Giomara Lárraga and Kaisa Miettinen

An Exact Inverted Generational Distance for Continuous Pareto Front 96
Zihan Wang, Chunyun Xiao, and Aimin Zhou

Direction Vector Selection for R2-Based Hypervolume Contribution
Approximation . 110

Tianye Shu, Ke Shang, Yang Nan, and Hisao Ishibuchi

Do We Really Need to Use Constraint Violation in Constrained
Evolutionary Multi-objective Optimization? . 124

Shuang Li, Ke Li, and Wei Li

Dynamic Multi-modal Multi-objective Optimization: A Preliminary Study 138
Yiming Peng and Hisao Ishibuchi

xvi Contents – Part II

Fair Feature Selection with a Lexicographic Multi-objective Genetic
Algorithm . 151

James Brookhouse and Alex Freitas

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 164
Andrzej Jaszkiewicz and Piotr Zielniewicz

Hybridizing Hypervolume-Based Evolutionary Algorithms and Gradient
Descent by Dynamic Resource Allocation . 179

Damy M. F. Ha, Timo M. Deist, and Peter A. N. Bosman

Identifying Stochastically Non-dominated Solutions Using Evolutionary
Computation . 193

Hemant Kumar Singh and Juergen Branke

Large-Scale Multi-objective Influence Maximisation with Network
Downscaling . 207

Elia Cunegatti, Giovanni Iacca, and Doina Bucur

Multi-Objective Evolutionary Algorithm Based on the Linear Assignment
Problem and the Hypervolume Approximation Using Polar Coordinates
(MOEA-LAPCO) . 221

Diana Cristina Valencia-Rodríguez and Carlos Artemio Coello Coello

New Solution Creation Operator in MOEA/D for Faster Convergence 234
Longcan Chen, Lie Meng Pang, and Hisao Ishibuchi

Obtaining Smoothly Navigable Approximation Sets in Bi-objective
Multi-modal Optimization . 247

Renzo J. Scholman, Anton Bouter, Leah R. M. Dickhoff,
Tanja Alderliesten, and Peter A. N. Bosman

T-DominO: Exploring Multiple Criteria with Quality-Diversity
and the Tournament Dominance Objective . 263

Adam Gaier, James Stoddart, Lorenzo Villaggi, and Peter J. Bentley

Numerical Optimizaiton

Collective Learning of Low-Memory Matrix Adaptation for Large-Scale
Black-Box Optimization . 281

Qiqi Duan, Guochen Zhou, Chang Shao, Yijun Yang, and Yuhui Shi

Recombination Weight Based Selection in the DTS-CMA-ES 295
Oswin Krause

Contents – Part II xvii

The (1+1)-ES Reliably Overcomes Saddle Points . 309
Tobias Glasmachers

Real-World Applications

Evolutionary Time-Use Optimization for Improving Children’s Health
Outcomes . 323

Yue Xie, Aneta Neumann, Ty Stanford, Charlotte Lund Rasmussen,
Dorothea Dumuid, and Frank Neumann

Iterated Local Search for the eBuses Charging Location Problem 338
César Loaiza Quintana, Laura Climent, and Alejandro Arbelaez

Multi-view Clustering of Heterogeneous Health Data: Application
to Systemic Sclerosis . 352

Adán José-García, Julie Jacques, Alexandre Filiot, Julia Handl,
David Launay, Vincent Sobanski, and Clarisse Dhaenens

Specification-Driven Evolution of Floor Plan Design . 368
Katarzyna Grzesiak-Kopeć, Barbara Strug, and Grażyna Ślusarczyk

Surrogate-Assisted Multi-objective Optimization for Compiler
Optimization Sequence Selection . 382

Guojun Gao, Lei Qiao, Dong Liu, Shifei Chen, and He Jiang

Theoretical Aspects of Nature-Inspired Optimization

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 399
Benjamin Doerr and Zhongdi Qu

Analysis of Quality Diversity Algorithms for the Knapsack Problem 413
Adel Nikfarjam, Anh Viet Do, and Frank Neumann

Better Running Time of the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) by Using Stochastic Tournament Selection . 428

Chao Bian and Chao Qian

Escaping Local Optima with Local Search: A Theory-Driven Discussion 442
Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Amirhossein Rajabi

Evolutionary Algorithms for Cardinality-Constrained Ising Models 456
Vijay Dhanjibhai Bhuva, Duc-Cuong Dang, Liam Huber,
and Dirk Sudholt

xviii Contents – Part II

General Univariate Estimation-of-Distribution Algorithms 470
Benjamin Doerr and Marc Dufay

Population Diversity Leads to Short Running Times of Lexicase Selection 485
Thomas Helmuth, Johannes Lengler, and William La Cava

Progress Rate Analysis of Evolution Strategies on the Rastrigin Function:
First Results . 499

Amir Omeradzic and Hans-Georg Beyer

Running Time Analysis of the (1+1)-EA Using Surrogate Models
on OneMax and LeadingOnes . 512

Zi-An Zhang, Chao Bian, and Chao Qian

Runtime Analysis of Simple Evolutionary Algorithms
for the Chance-Constrained Makespan Scheduling Problem 526

Feng Shi, Xiankun Yan, and Frank Neumann

Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed
Linear Functions . 542

Frank Neumann and Carsten Witt

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 555
Brahim Aboutaib and Andrew M. Sutton

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 569
Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou

Theoretical Study of Optimizing Rugged Landscapes with the cGA 586
Tobias Friedrich, Timo Kötzing, Frank Neumann,
and Aishwarya Radhakrishnan

Towards Fixed-Target Black-Box Complexity Analysis . 600
Dmitry Vinokurov and Maxim Buzdalov

Two-Dimensional Drift Analysis: Optimizing Two Functions
Simultaneously Can Be Hard . 612

Duri Janett and Johannes Lengler

Author Index . 627

Contents – Part I

Automated Algorithm Selection and Configuration

Automated Algorithm Selection in Single-Objective Continuous
Optimization: A Comparative Study of Deep Learning and Landscape
Analysis Methods . 3

Raphael Patrick Prager, Moritz Vinzent Seiler, Heike Trautmann,
and Pascal Kerschke

Improving Nevergrad’s Algorithm Selection Wizard NGOpt Through
Automated Algorithm Configuration . 18

Risto Trajanov, Ana Nikolikj, Gjorgjina Cenikj, Fabien Teytaud,
Mathurin Videau, Olivier Teytaud, Tome Eftimov, Manuel López-Ibáñez,
and Carola Doerr

Non-elitist Selection Can Improve the Performance of Irace 32
Furong Ye, Diederick Vermetten, Carola Doerr, and Thomas Bäck

Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based
Features . 46

Ana Kostovska, Anja Jankovic, Diederick Vermetten, Jacob de Nobel,
Hao Wang, Tome Eftimov, and Carola Doerr

Bayesian- and Surrogate-Assisted Optimization

A Systematic Approach to Analyze the Computational Cost of Robustness
in Model-Assisted Robust Optimization . 63

Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff,
and Thomas Bäck

Adaptive Function Value Warping for Surrogate Model Assisted
Evolutionary Optimization . 76

Amir Abbasnejad and Dirk V. Arnold

Efficient Approximation of Expected Hypervolume Improvement Using
Gauss-Hermite Quadrature . 90

Alma Rahat, Tinkle Chugh, Jonathan Fieldsend, Richard Allmendinger,
and Kaisa Miettinen

Finding Knees in Bayesian Multi-objective Optimization . 104
Arash Heidari, Jixiang Qing, Sebastian Rojas Gonzalez, Jürgen Branke,
Tom Dhaene, and Ivo Couckuyt

xx Contents – Part I

High Dimensional Bayesian Optimization with Kernel Principal
Component Analysis . 118

Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

Single Interaction Multi-Objective Bayesian Optimization 132
Juan Ungredda, Juergen Branke, Mariapia Marchi, and Teresa Montrone

Surrogate-Assisted LSHADE Algorithm Utilizing Recursive Least
Squares Filter . 146

Mateusz Zaborski and Jacek Mańdziuk

Towards Efficient Multiobjective Hyperparameter Optimization:
A Multiobjective Multi-fidelity Bayesian Optimization and Hyperband
Algorithm . 160

Zefeng Chen, Yuren Zhou, Zhengxin Huang, and Xiaoyun Xia

Benchmarking and Performance Measures

A Continuous Optimisation Benchmark Suite from Neural Network
Regression . 177

Katherine M. Malan and Christopher W. Cleghorn

BBE: Basin-Based Evaluation ofMultimodalMulti-objectiveOptimization
Problems . 192

Jonathan Heins, Jeroen Rook, Lennart Schäpermeier, Pascal Kerschke,
Jakob Bossek, and Heike Trautmann

Evolutionary Approaches to Improving the Layouts of Instance-Spaces 207
Kevin Sim and Emma Hart

Combinatorial Optimization

A Novelty-Search Approach to Filling an Instance-Space with Diverse
and Discriminatory Instances for the Knapsack Problem . 223

Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart

Co-evolutionary Diversity Optimisation for the Traveling Thief Problem 237
Adel Nikfarjam, Aneta Neumann, Jakob Bossek, and Frank Neumann

Computing High-Quality Solutions for the Patient Admission Scheduling
Problem Using Evolutionary Diversity Optimisation . 250

Adel Nikfarjam, Amirhossein Moosavi, Aneta Neumann,
and Frank Neumann

Contents – Part I xxi

Cooperative Multi-agent Search on Endogenously-Changing Fitness
Landscapes . 265

Chin Woei Lim, Richard Allmendinger, Joshua Knowles,
Ayesha Alhosani, and Mercedes Bleda

Evolutionary Algorithm for Vehicle Routing with Diversity Oscillation
Mechanism . 279

Piotr Cybula, Andrzej Jaszkiewicz, Przemysław Pełka, Marek Rogalski,
and Piotr Sielski

Evolutionary Algorithms for Limiting the Effect of Uncertainty
for the Knapsack Problem with Stochastic Profits . 294

Aneta Neumann, Yue Xie, and Frank Neumann

Self-adaptation via Multi-objectivisation: An Empirical Study 308
Xiaoyu Qin and Per Kristian Lehre

The Combined Critical Node and Edge Detection Problem.
An Evolutionary Approach . 324

Tamás Képes, Noémi Gaskó, and Géza Vekov

(Evolutionary) Machine Learning and Neuroevolution

Attention-Based Genetic Algorithm for Adversarial Attack in Natural
Language Processing . 341

Shasha Zhou, Ke Li, and Geyong Min

Deep Reinforcement Learning with Two-Stage Training Strategy
for Practical Electric Vehicle Routing Problem with Time Windows 356

Jinbiao Chen, Huanhuan Huang, Zizhen Zhang, and Jiahai Wang

Evolving Through the Looking Glass: Learning Improved Search Spaces
with Variational Autoencoders . 371

Peter J. Bentley, Soo Ling Lim, Adam Gaier, and Linh Tran

Generalization and Computation for Policy Classes of Generative
Adversarial Imitation Learning . 385

Yirui Zhou, Yangchun Zhang, Xiaowei Liu, Wanying Wang,
Zhengping Che, Zhiyuan Xu, Jian Tang, and Yaxin Peng

Generative Models over Neural Controllers for Transfer Learning 400
James Butterworth, Rahul Savani, and Karl Tuyls

xxii Contents – Part I

HVC-Net: Deep Learning Based Hypervolume Contribution
Approximation . 414

Ke Shang, Weiduo Liao, and Hisao Ishibuchi

Multi-objective Evolutionary Ensemble Pruning Guided by Margin
Distribution . 427

Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou

Revisiting Attention-Based Graph Neural Networks for Graph
Classification . 442

Ye Tao, Ying Li, and Zhonghai Wu

Robust Neural Network Pruning by Cooperative Coevolution 459
Jia-Liang Wu, Haopu Shang, Wenjing Hong, and Chao Qian

SemiGraphFL: Semi-supervised Graph Federated Learning for Graph
Classification . 474

Ye Tao, Ying Li, and Zhonghai Wu

Evolvable Hardware and Evolutionary Robotics

Evolutionary Design of Reduced Precision Preprocessor
for Levodopa-Induced Dyskinesia Classifier . 491

Martin Hurta, Michaela Drahosova, and Vojtech Mrazek

In-Materio Extreme Learning Machines . 505
Benedict. A. H. Jones, Noura Al Moubayed, Dagou A. Zeze,
and Chris Groves

On the Impact of the Duration of Evaluation Episodes on the Evolution
of Adaptive Robots . 520

Larissa Gremelmaier Rosa, Vitor Hugo Homem, Stefano Nolfi,
and Jônata Tyska Carvalho

Fitness Landscape Modeling and Analysis

Analysing the Fitness Landscape Rotation for Combinatorial Optimisation 533
Joan Alza, Mark Bartlett, Josu Ceberio, and John McCall

Analysis of Search Landscape Samplers for Solver Performance Prediction
on a University Timetabling Problem . 548

Thomas Feutrier, Marie-Éléonore Kessaci, and Nadarajen Veerapen

Contents – Part I xxiii

Fractal Dimension and Perturbation Strength: A Local Optima Networks
View . 562

Sarah L. Thomson, Gabriela Ochoa, and Sébastien Verel

HPO × ELA: Investigating Hyperparameter Optimization Landscapes
by Means of Exploratory Landscape Analysis . 575

Lennart Schneider, Lennart Schäpermeier, Raphael Patrick Prager,
Bernd Bischl, Heike Trautmann, and Pascal Kerschke

Increasing the Diversity of Benchmark Function Sets Through Affine
Recombination . 590

Konstantin Dietrich and Olaf Mersmann

Neural Architecture Search: A Visual Analysis . 603
Gabriela Ochoa and Nadarajen Veerapen

Author Index . 617

Genetic Programming

Digging into Semantics: Where Do
Search-Based Software Repair Methods

Search?

Hammad Ahmad1(B), Padriac Cashin2, Stephanie Forrest2,
and Westley Weimer1

1 University of Michigan, Ann Arbor, MI 48109, USA
{hammada,weimerw}@umich.edu

2 Arizona State University, Tempe, AZ 85281, USA
{pcashin,steph}@asu.edu

Abstract. Search-based methods are a popular approach for automati-
cally repairing software bugs, a field known as automated program repair
(APR). There is increasing interest in empirical evaluation and compari-
son of different APR methods, typically measured as the rate of successful
repairs on benchmark sets of buggy programs. Such evaluations, however,
fail to explain why some approaches succeed and others fail. Because
these methods typically use syntactic representations, i.e., source code,
we know little about how the different methods explore their semantic
spaces, which is relevant for assessing repair quality and understanding
search dynamics. We propose an automated method based on program
semantics, which provides quantitative and qualitative information about
different APR search-based techniques. Our approach requires no manual
annotation and produces both mathematical and human-understandable
insights. In an empirical evaluation of 4 APR tools and 34 defects, we
investigate the relationship between search-space exploration, semantic
diversity and repair success, examining both the overall picture and how
the tools’ search unfolds. Our results suggest that population diversity
alone is not sufficient for finding repairs, and that searching in the right
place is more important than searching broadly, highlighting future direc-
tions for the research community.

Keywords: Semantic search spaces · Program repair · Patch diversity

1 Introduction

Early works on automatically repairing defects in software demonstrated that
evolutionary computation (EC) and related search-based approaches can be sur-
prisingly successful in this domain [1,2,20,35,54]. Since then, there has been
an explosion of research into what is now called the automated program repair
(APR) problem. This research has produced a wide variety of techniques and
tools aimed at reducing the manual effort required to repair software bugs or
otherwise improve software [23,31]. These tools typically operate on source code
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-14721-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_1

4 H. Ahmad et al.

containing one or more bugs, or defects, together with a test suite that encodes
required functionality and at least one test that exposes the defect. Multiple can-
didate patches are often generated, which both repair the defect and pass the
test suite [1,20,37,38]. The field has standardized on a small number of bench-
mark test suites to compare the performance of different tools and techniques,
often by measuring the fraction of successful repairs [12,21]. However, we still
have little insight into fundamental questions such as: Why do some algorithms
outperform others? Which components of an algorithm are most responsible
for its success (or failure)? How different are the patches produced by different
techniques? What kinds of bugs is APR better or worse at solving?

Traditional evaluation approaches are not always helpful for these questions.
For example, it can be difficult to determine from a pseudocode description of
a new repair algorithm whether it will find a more diverse set of repairs than
existing ones, or which parts of a search space it will visit [26]. Importantly,
today’s search-based APR methods use a syntactic representation, i.e., source
code, even though repairing bugs involves changing semantics.

Earlier research tackled some of these questions by considering the extent to
which proposed repairs are overfit to a test suite [19,30,34,43,46], non-functional
properties such as repair readability and maintainability [11,50], and repair
diversity [6,18,30,33,36,49,56]. Within the context of diversity, previous studies
examined the search space of a single tool to better understand patch construc-
tion [14,55] and compared the search spaces explored by different tools with
respect to high-level program characteristics [30,32,52]. However, to the best
of our knowledge, this previous work considers only program variants that are
test-suite adequate [38], or plausible, meaning that they repair the bug and pass
all required tests. This approach ignores how the search process discovers plau-
sible repairs. In this paper, we propose a method for comparing the semantic
search spaces of different APR algorithms, and characterize the program variants
generated during the search in addition to the end product.

Insight and Approach. Generating candidate variants through syntactic pro-
gram manipulation is central to search-based APR tools, yet their ultimate
value depends on inducing meaningful semantic change. We hypothesize that
the effective search spaces (the sets of candidate program variants considered
or potentially constructed) of different APR tools for a given software defect
are distinct but not disjoint. We further hypothesize that lightweight analysis of
the run-time semantics of each variant generated, regardless of correctness, can
shed light on how different APR tools search for repairs. To analyze the effective
search space of a particular tool, we propose to embed its generated variants in a
semantic invariant space, admitting an approximate notion of similarity. Because
many individual variants generated during a search are syntactically distinct but
semantically equivalent [53], we focus on source-level formal invariants. Since
test suites are generally available in this domain, we propose leveraging them
for efficient dynamic invariant detection [8], rather than resorting to expensive
static or manual approaches. Once each individual variant is characterized by its
set of detected invariants, we propose to use a form of weighted vector distance

Digging into Semantics: Search-Based Software Repair 5

(Canberra distance [17]) to assess differences. Because most programs have many
invariants, our vector distance approach has a significant scalability advantage
over other approaches, such as checking logical implications between invariant
sets with a theorem prover. Ultimately, our approach allows both mathematical
(i.e., via principal component analysis) and human-understandable (i.e., two-
dimensional visualization) analysis of search spaces.

Contributions. The main contributions of this work are as follows:

– A framework for comparing the effective semantic search spaces of APR algo-
rithms.

– An automated analysis of individual program variants to produce a two-
dimensional visualization of their semantic diversity.

– An empirical analysis on four established search-based APR tools.
– A discussion of the relationship between syntactic and semantic diversity and

implications for APR algorithm design.

2 Background and Contextual Motivation

Automated Program Repair. Automated program repair (APR) methods seek
to locate and repair software defects without introducing side effects. Typically,
this involves modifying the program’s source code to produce a patched version.
Most methods rely on a test suite to certify the repaired program’s correctness.

Over the past decade, many search-based methods for APR have been pro-
posed, with some more recognizable as Genetic Programming (GP) solutions
than others (see Monperrus [31] or Le Goues et al. [23] for comprehensive
reviews). In this paper, we evaluate on four established tools that represent
different search-based APR techniques. GenProg implements a form of GP to
search for repairs [22,54]. CapGen uses the same mutation operators as Gen-
Prog, but allows more granular mutations to sub-elements of statements and
mines contextual information to select effective mutations [55]. SimFix mines
prior patches, both to construct particular mutations and to guide the selection
of operations based on code similarity measurements [14]. TBar is a recent app-
roach that uses 35 different “fix patterns”, or templates, to modify the buggy pro-
gram [25]. Over time these tools have incorporated heuristic information about
the software-repair domain to what was originally a pure GP-based approach.

Dynamic Invariant Detection. To capture semantics, we use dynamic invariants
(i.e., logical predicates that always hold during the execution of the program)
to approximate code functionality. Dynamic invariant detection [8] algorithms
trace program state during execution to construct such invariants. These traces
contain the state of in-scope variables at specific points in execution, usually
before and after function calls. Because they do not rely on program source code
to construct invariants (cf. static invariant detection), dynamic approaches are
modular and scalable to our problem. However, a finite set of dynamic traces
may not capture all possible or relevant future executions and can overfit to the

6 H. Ahmad et al.

observed traces. Because we are interested in how small regions of code (patches)
differ from one another, this issue is less of a concern for our task.

Semantic Search Space. Earlier studies have investigated how well different APR
methods explore the search space created by their mutation operators. Typically,
the search space is defined as the union of the mutants that can be created by
applying n mutations to the original program [18,30,36]. For instance, if an APR
tool can only insert one statement before another, then its first-order search space
consists of all programs that can be constructed by applying that insert operator
a single time to the original. This approach has been used to characterize the
search space by measuring the density of programs with specific characteristics,
such as the number of passing tests or the number of correct patches [36]. By
contrast, we define the semantic search space of an APR algorithm in terms
of the set of reachable program invariants (via any of its generated mutants)
when applying its mutation operations to the original program. Since the goal of
the APR process is to construct a semantically correct program, understanding
what functionality a given algorithm can construct is crucial to understanding
its behavior. Similar to the syntactic search space, the semantic search space
is effectively infinite, even with simple operators. Rather than enforcing an n-
mutation restriction, as the aforementioned approaches do, we rely on the normal
operation of each APR tool, unchanged, to define its semantic search space. This
allows us to describe the search spaces of APR tools as they apply in practice.

Contextual Motivation: Does Diversity Lead to More Repairs? Some researchers
have suggested that higher population diversity (syntactic or semantic) leads to
higher repair rates and better repairs [7,10,39,44], and some tools (e.g., Mar-
riagent [16]) favor high-diversity edits. Other results suggest that high semantic
diversity does not necessarily improve repair rates [5,6,51]. If the latter is true, it
suggests that researchers should focus less on high diversity mutants, and more
on other properties of repair algorithms. If exploring widely in the search space
predicts high repair rates, we would expect to observe a correlation between how
much of the semantic search space is sampled and an ability to discover repairs.
Across the board, however, as we perform quantitative and qualitative analyses
to investigate the relationship between semantic diversity and repair rates for
APR tools, we find little evidence that this is true (see Sect. 5). This finding
challenges the conventional hypothesis that generating diverse mutants is the
key to improving repair rates, and supports recent results arguing otherwise.

3 Technical Approach

Even though most of today’s search-based APR methods inherit the concept of
mutation from evolutionary computation, such tools do not significantly rely on
crossover [24,37,38,53]. We thus focus on the mutation operators of APR tools.
We begin with a set of mutants for each APR method. These are mutated vari-
ants of the original program, which pass all of the positive (regression) tests and

Digging into Semantics: Search-Based Software Repair 7

may or may not pass the negative (bug inducing) tests. Given a set of mutants,
or candidate patches, we next use Daikon [9] (the state-of-the-art for dynamic
invariant detection) to generate a set of invariants, one set for each individual
variant, regardless of correctness (Sect. 3.1), and then apply an efficient heuris-
tic to measure semantic similarity between invariant sets (Sect. 3.2). Since large
invariant sets are challenging to interpret and compare, we also present two
visualizations of induced APR search spaces (Sect. 3.3).

3.1 Sampling APR Search Spaces

We aim to reason qualitatively about the search spaces induced by different
APR tools and the techniques they employ (e.g., genetic operator-based vs.
template-based mutation). Schulte et al. have previously treated the syntactic
representation of each variant generated by an APR tool as a sample of the
tool’s search space [42]. We hypothesize, however, semantic diversity may be a
more relevant consideration for understanding tool effectiveness. Our approach
is motivated in part by the fact that syntactic variants often leave functionality
unchanged (neutral) [41,42,53]. Ultimately, an APR tool’s utility relates to its
ability to find new functionality that addresses the defect.

We sample the semantic search space in two ways. First, we consider the
early phase of a search by selecting the first x variants generated by each tool,
reflecting real-world scenarios with scarce computational resources. Our second
sampling method provides a broader picture. Some tools might initially search
less widely, but focus in later. Thus, we evaluate y mutants selected uniformly
at random after each tool completes its search.

We next consider how to capture the behavior of a mutant. Since our bench-
marks total 357,000 lines of code and have over 20,000 test cases [15], static anal-
ysis methods will not scale for our experiments. Instead, we use dynamic analysis
and restrict attention to a subset of the test cases. Because we are interested
in repairing bugs, we assume that the greatest variation in mutant functionality
will be along faulty execution paths, represented by the failing test. Intuitively,
since repair algorithms aim to retain required functionality, they are much more
likely to agree semantically on regression (positive) tests. We thus collect only
traces associated with negative tests, one set for each distinct mutant. The set of
invariants represents the most relevant program behavior. To compare variants,
we then compute the difference between each pair of invariant sets across all tools
in our study using a computational shortcut, which is surprisingly effective.

3.2 Computing Mutant Similarity

Earlier work defined a metric for computing semantic distance between two pro-
grams, based on logical implication between their sets of invariants [4]. This
metric reflects the content of individual invariants, and as such quantifies differ-
ence precisely. Unfortunately, implementations of this approach have O(n!) time
complexity in the worst case. Invariant detectors (e.g., Daikon) often report
thousands of invariants for a single complex program. Thus, implication-based
distance approaches are too expensive for use in our setting.

8 H. Ahmad et al.

Instead, we use an efficient approximation of the semantic distance between
two mutants. By treating invariant sets as bit vectors (one dimension for each
invariant), we can compute the Canberra distance [17], a numerical measure of
the distance between pairs of points in a vector space, between two invariant
sets. To do this, we define a canonical ordering of the union of all invariants
found across all mutants, and then associate one bit vector with each mutant,
where the nth bit is set if and only if the nth invariant was detected for that
program. We then compute the Canberra distance between the bit vectors, and
use these distances to embed each mutant in an implied semantic vector space.
In our setting, candidate patches are mostly identical except for a small number
of mutations, and thus, Canberra distance provides a scalable approach that
captures invariant differences between programs effectively.

3.3 Visualizing Search Spaces

Simply presenting a raw set of invariants, or even a string difference between two
sets of invariants, is not informative to humans [45]. As such, for each defect, we
compute the pairwise distance between invariant sets for every mutant, produc-
ing one number per pair, regardless of the APR tool that generated it. We use
this information to visualize the semantic subspaces generated by each tool by
embedding it in a single two-dimensional plot. Since our metric is relative (i.e.,
we compute the relative distance between the inferred invariant sets for two
mutants), we anchor the measurements to two key points: the invariant set for
the original defect, and the invariant set for the human-generated repair. Once
the distance measurements are computed, our vector distance metric embeds
mutants into a human-friendly two-dimensional visualization.

To complement the distance information, we also consider the number of
unique semantic invariants introduced by each new mutant. For each tool, we
examine the number of new unique invariants inferred for each mutant produced
and evaluated. While the 2D embeddings show where each tool is sampling in
semantic space, the rate at which unique invariants accumulate shows how much
time the tool spends generating mutants with new semantics (and thus new
functionality) compared to rediscovering old functionality with new syntax.

These two visualizations decompose our analysis into a spatial and temporal
component, both of which are key to understanding the APR search for solutions.

4 Experimental Setup

We now describe our experimental setup for comparing the search spaces of
various APR tools. We also make our replication materials publicly available.

Candidate Patch Collection. We gather candidate variants (mutants) from four
established tools: CapGen [55], GenProg [22], SimFix [14], and TBar [25]. All four
tools use search-based techniques, but each tool uses different mutation operators
and search methods. We ran each tool on 34 representative Java defects from
Defects4J [15] that all of the tools we consider operate on (see Table 1).

https://drive.google.com/drive/folders/1ckjFy2S2pIFcwbG_EdWpqxRNVDaFlQhn?usp=sharing

Digging into Semantics: Search-Based Software Repair 9

Table 1. Experimental Benchmarks: 34 Java defects selected from Defects4J. � means
that the tool produced a repair. Defects not repaired by any tool (omitted for space)
comprise Math 7, 9, 12, 16, 17, 18, 19.

Chart Lang Math

8 11 24 6 26 57 59 1 2 3 4 5 8 11 15 20 30 33 53 57 59 63 65 70 75 80 85

CapGen � � � � � � � � � � � � � � � � � � �
GenProg � � � � � �
SimFix � � � � � � � � � � � � �
TBar �

CapGen reports each generated variant in numeric order, regardless of its
correctness. We instrumented the other tools to collect similar information. We
note that GenProg caches fitness to increase efficiency, so we record only the
variants that would be independently evaluated against the test suite, ignoring
duplicates. For all tools, we timestamp and store each variant that is evaluated
against the test suite to record how the search proceeds. These modifications
account for fewer than 20 lines of code and do not affect search logic.

Invariant Detection. For each program variant in our dataset, we apply the
mutations to a clean instance of the Defects4J bug and record a trace of a driver
program. Each driver is a small Java program that executes the failing test cases
for the mutant. A trace is a series of program state observations used to infer
program semantics. For each such trace, we then use Daikon to obtain a set of
invariants, representing the pre- and post-conditions of executed functions.

We use the invariant sets of the first x = 600 mutants generated by each
tool to construct a view of the early stages of its search process. We find that
the number of semantically unique invariants tapers off at around 300 mutants
(Fig. 2a, Sect. 5.1), so we conservatively chose 600 as our cutoff point. We also
sample y = 1000 mutants uniformly at random from all generated variants (per
tool) to provide an overview of the space searched by each tool.

5 Experimental Results

This section presents our results which address the following research questions:

– RQ1. Do searches that explore more of semantic space find more repairs?
– RQ2. Do different APR tools generate semantically-distinct mutants for a

given defect?
– RQ3. How does the syntactic diversity of mutants produced by different APR

tools relate to their semantic diversity?

5.1 RQ1. APR Search Space Exploration and Repair Rates

We hypothesize that some APR methods sample more widely, that these dif-
ferences arise from algorithmic decisions, and that these differences lead to dif-
ferential repair rates for each tool depending on the search budget. We studied

10 H. Ahmad et al.

Fig. 1. Search space visualization of the Math 80 defect. Invariant sets for to generated
mutants are embedded in 2D space using multidimensional scaling. Green square is the
correct repair, while red diamond is the defect. GenProg and CapGen explore more of
the search space than TBar and SimFix. (Color figure online)

each tool’s search progress on a representative defect from Defects4J, Math 80
(which relates to integer multiplication and Eigen decomposition).

Figure 1 visualizes our results using the two-dimensional embedding, for both
the resource-limited early sampling and the final sampling. In the resource-
limited cases (panel (a)), GenProg and CapGen explore more broadly (i.e.,
enclose the largest area) than either SimFix or TBar, which spend most of their
evaluations in localized regions, and rarely test radically-different functionality.
We conjecture that the heuristics used to order the mutated programs for testing
in CapGen lead to a wider range of functionality being explored with relatively
few samples. Panel (b), however, shows substantial differences. GenProg samples
more broadly than the others, followed by CapGen, even though both use the
same insert, delete, and swap mutation operators. TBar and SimFix, by contrast,
are more clustered, with jumps between clusters from different repair templates.

The visualizations in Fig. 1 show the relative scope of each tool’s search,
but they do not show the search trajectory. To address this issue, we treat
the number of unique invariants as a countable proxy for unique functionality
and ask how many unique invariants are explored by each additional individual
program mutant that the tool evaluates (Fig. 2a). This allows us to visualize
both the number of unique invariants that are considered and approximately
when they are discovered. The results, shown in Fig. 2, indicate that CapGen
and GenProg explore more unique functionality early in the search than TBar
and SimFix. Both TBar and SimFix plateau early and remain relatively flat for
the remainder of the search. We observed similar trends across the 1000-sample
datasets (Fig. 2b) and across all the defects we studied (data not shown).

These results support the hypothesis that APR searches that explore more
widely also sample more semantically unique variants. However, the results do

Digging into Semantics: Search-Based Software Repair 11

Fig. 2. Unique invariants from each APR tool for Math 80 over time. x-axis is % of
traces evaluated, y-axis is the number of unique invariants. Tools that explore more of
the search space also find more unique functionality over time.

Table 2. Semantic overlaps among APR tools. Each row reports the % of mutants
that are semantically equivalent to at least one mutant from another tool.

CapGen GenProg SimFix TBar

CapGen – 29.0% 25.2% 23.8%

GenProg 31.5% – 10.8% 37.4%

SimFix 20.2% 86.0% – 81.9%

TBar 38.0% 59.5% 52.6% –

not predict relative repair rates. Remarkably, the tools that sample the largest
extent of semantic space have lower reported repair rates across the entire
Defects4J database, and vice versa. For instance, TBar has the best reported
repair rates despite having the lowest exploration reach. Similarly, GenProg,
which searched most broadly, reports the lowest repair rate. To summarize, we
find that the targeted repair operations used by SimFix and TBar appear to out-
weigh the advantage of a high-diversity search. This surprising result highlights
the key role of representation, since the implementation of mutation encodes a
choice about representation—although we acknowledge that this result could also
be related to the nature of the bug scenarios we studied. What remains unknown
is how repairs are distributed throughout the search space: when repairs are
close to the original program (e.g., defects in popular APR datasets that can
be repaired with only one or two code edits), a thorough search of the nearby
region will likely succeed more often than an extensive search of a wider region.

12 H. Ahmad et al.

5.2 RQ2. Similarity of Semantic Search Spaces

The success of TBar suggests that combining multiple operators into a single
tool increases the repair rate [25]. To test this, we examined the overlap between
variants produced by the different tools in our study. We define overlap to be
the total number of times each tool generates a mutant that is identical to one
generated by another tool. The degree of overlap between two tools is a proxy
for their similarity: we hypothesize that tools with high overlap will also repair
a similar set of defects. Table 2 reports these results. CapGen and GenProg have
low overlap, ≈26% average, with other tools. SimFix and TBar, on the other
hand, are much more similar, as expected. TBar uses repair templates taken
from several APR tools, often corresponding directly to the mutation operators
of other tools in our study. It is thus unsurprising that TBar has the highest
minimum overlap (38%). SimFix uses learned templates mined from human-
generated repairs, but these also contain fix patterns [25] that mirror approaches
found in the other tools.

On our dataset, SimFix and TBar have average repair overlap comparable to
their semantic overlap rates (raw data not shown for brevity): 63% for SimFix
and 50% for TBar. GenProg, however, has a much higher repair overlap (83%)
compared to its semantic overlap (26%). Of the GenProg repairs, 67% are shared
with CapGen and all are shared with TBar. This result can be explained: TBar
incorporates all of GenProg’s mutation operators. On average, CapGen has 52%
repair overlap, ranging from 21% with GenProg to 84% with TBar.

This experiment reveals similarities among tools that may not be evident
from their formal descriptions. It also suggests that the strategy of incorpo-
rating methods from earlier tools into a composite approach (e.g., TBar [25],
Repairnator [47], and ARJA-p [57]) often succeeds. However, each such addition
increases system complexity. An ideal combination would maximize performance
and minimize cost and complexity. Search space visualizations (such as Fig. 1)
support making semantically-guided choices. Finally, focusing only on muta-
tion operators may be misleading, as the tools we studied lack a powerful search
heuristic. Even the GenProg family of tools, based on evolutionary computation,
searches only in a limited way and relies primarily on mutation.

5.3 RQ3. Syntactic and Semantic Diversity of Mutants

To investigate the relationship between syntactic and semantic diversity for
the mutants generated by different APR tools, we compared the rate at which
semantically-distinct variants are discovered against the rate of at which unique
syntactic variants are discovered. We find that syntactic variants are discov-
ered much more frequently than semantic variants, e.g., between 4 and 20 times
greater for Math80, depending on the tool. We observed similar trends for all
other defects in our dataset. One explanation for this finding is that many syn-
tactically distinct programs can compile to the same functionality.

Given this disparity, it is natural to ask if a higher semantic discovery ratio
(i.e., techniques that find more semantically unique variants per syntactically

Digging into Semantics: Search-Based Software Repair 13

unique variant) leads to higher overall performance. Our experiments do not
support this hypothesis. Instead, we find that high semantic discovery ratios
correlate with repair success only 30% of the time. GenProg had the highest
ratio (approximately 38%) and the lowest repair rate. Conversely, SimFix had
the lowest ratio across 30 of the defects while maintaining a high repair rate. For
different defects, TBar and CapGen are typically intermediate between GenProg
and Simfix in terms of this ratio, with TBar having the higher ratio of the two.

These results show that repairs are sparse in the search space and that tar-
geting regions of the space where repairs are likely to be found is more effective
than randomly sampling a large area of the semantic space. Although each tool
finds many more syntactically-unique mutants than semantically-unique ones, it
is unclear that this is problematic, given the apparent inverse correlation between
semantic reach and repair rates. The success of the search algorithm depends
heavily on problem representation, as is well-known in evolutionary computation.

6 Limitations and Threats to Validity

Soundness of Invariant Detection. Despite being the gold standard for dynamic
invariant detection, Daikon can infer invariants that may not hold in some parts
of the program. To combat this limitation, we consider only invariants marked
“high confidence.” Additionally, since our approach is based on relative distances
between detected invariants, any consistent detection errors are factored out by
the difference operation and are unlikely to affect our results.

Syntactically-Invalid Patches. Some mutants produced by APR tools fail syntax
or type checks, and cannot be analyzed by our approach. We note that other
analysis methods also often fail on ill-formed patches [20], and a majority of the
patches produced by the tools we consider are included in our analysis.

Generality. The results from our experimental study may not generalize to other
APR tools beyond the four tools we examined, posing a threat to external valid-
ity. To mitigate this threat, we chose two tools from each of the main sub-
categories of APR tools that fall under the search-based paradigm (i.e., atomic
change operators and template-based change operators [12, Sect. 6.1]).

7 Related Work

Earlier APR and Genetic Improvement work also considers the search space,
typically characterizing it with respect to a specific characteristic, such as
patch correctness, energy efficiency, or neutrality [13,18,27,30,36,40,42,48,49].
Researchers have characterized neutral mutations [13,42] (mutations do not dis-
cernibly change program behavior—also called sosies or safe) and developed
methods to combine them effectively [40]. Similar to neutral mutation work,
Veerapen et al. visualized search spaces by considering local searches of the

14 H. Ahmad et al.

mutation graph [48,49]. Langdon et al. also completed an exhaustive experi-
ment on the triangle problem [18], concluding that the number of programs that
pass all tests is much smaller than the overall search space.

Long et al. [30] characterized the effect on the search space of different config-
urations of the SPR and Prophet APR tools [28,29], and found that increasing
the search space generally increased the number of reachable repairs but also
made it harder to find repairs. Similarly, we found that increasing the size of
the semantic search space was not sufficient to find more repairs. This trade-
off regarding choosing the best representation for a repair problem was explic-
itly addressed by the Genesis tool, which attempted to manage the size of the
search space [27]. This prior work, however, does not consider the semantics
of the underlying program beyond measuring how many tests passed. In the
end, program behavior determines whether a patch correctly repairs a defect.
This motivated us to consider mutant semantic similarity based on invariant set
similarity.

Population-based repair tools have used semantics to increase initial popula-
tion diversity [3] or guide exploration [5,6]. In both cases, the authors failed to
find conclusive evidence that increasing population diversity leads to better APR
performance. Similarly, we find no correlation between methods that consider a
semantically-diverse set of programs and their ability to find repairs. However,
our approach enables quantitative and qualitative analysis to investigate this
relationship in greater detail than any of the previous works.

8 Conclusion

Many APR algorithms have been proposed, but relatively few ways have been
proposed to compare them beyond empirical measurements of success at passing
test cases or human assessment of patch quality. We add a new dimension to
this work by proposing to assess how these methods explore semantic search
spaces, extending earlier syntax-based analyses. Our automated, scalable app-
roach leverages dynamic invariant detection and an efficient distance calculation
to highlight the semantic differences between program variants. Further, our
approach can be easily visualized in 2D space, admitting human interpretability.

Our empirical evaluation of four different search-based tools showed that,
contrary to expectation, those methods that search most broadly can experi-
ence relatively low repair rates. This surprising result suggests that increasing
semantic diversity in the search may not be as helpful as is generally believed.
Second, tools that explore semantic mutants that are shared with other tools
tend to have higher repair rates, providing an explanation for the success of
modern composite tools like TBar or ARJA-p. Finally, tools that search exten-
sively for novel semantics do not necessarily find more repairs, suggesting that
tools with targeted repair mechanisms may explore important subsets of the
search space. Our results suggest several new research directions. For instance,
a deeper understanding of how repairs are distributed throughout syntactic and
semantic search spaces would refine our understanding of these results. We hope

Digging into Semantics: Search-Based Software Repair 15

that results like these will lead to a deeper re-examination of how APR tools
are studied and compared, ultimately leading to even more improvements in the
future.

Acknowledgements. We gratefully acknowledge the partial support of the NSF (CCF
2211749, 2141300, 1763674, 1908633, and CICI 2115075), DARPA (N6600120C4020,
FA8750-19C-0003, HR001119S0089-AMP-FP-029), and AFRL (FA8750-19-1-0501).

References

1. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In:
GECCO 2011, Dublin, Ireland, pp. 1427–1434. ACM (2011). https://doi.org/10.
1145/2001576.2001768

2. Arcuri, A.: Evolutionary repair of faulty software. Appl. Soft Comput. 11(4), 3494–
3514 (2011)

3. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in
genetic programming. Genet. Program. Evolvable Mach. 10(3), 307–337 (2009).
https://doi.org/10.1007/s10710-009-9082-5. https://link.springer.com/article/10.
1007/s10710-009-9082-5

4. Cashin, P., Martinez, C., Weimer, W., Forrest, S.: Understanding automatically-
generated patches through symbolic invariant differences. In: ASE 2019, San Diego,
USA, pp. 411–414. IEEE (November 2019). https://doi.org/10.1109/ASE.2019.
00046

5. Ding, Z.Y.: Patch quality and diversity of invariant-guided search-based program
repair. arXiv (March 2020). https://arxiv.org/abs/2003.11667v1

6. Ding, Z.Y., Lyu, Y., Timperley, C., Le Goues, C.: Leveraging program invariants to
promote population diversity in search-based automatic program repair. In: 2019
IEEE/ACM International Workshop on Genetic Improvement (GI), pp. 2–9. IEEE
(2019)

7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series, vol. 53. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
662-05094-1

8. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant
program invariants. In: Proceedings of the 22nd International Conference on Soft-
ware Engineering, pp. 449–458 (2000)

9. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invari-
ants. Sci. Comput. Program. 69(1–3), 35–45 (2007). https://doi.org/10.1016/j.
scico.2007.01.015

10. Feldt, R.: Generating diverse software versions with genetic programming: an
experimental study. IEE Proc. Softw. 145(6), 228–236 (1998)

11. Fry, Z.P., Landau, B., Weimer, W.: A human study of patch maintainability. In:
ISSTA 2012, Minneapolis, USA, p. 177. ACM (2012). https://doi.org/10.1145/
2338965.2336775. http://dl.acm.org/citation.cfm?doid=2338965.2336775

12. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey.
IEEE Trans. Softw. Eng. 45(1), 34–67 (2017). https://doi.org/10.1109/TSE.2017.
2755013

13. Harrand, N., Allier, S., Rodriguez-Cancio, M., Monperrus, M., Baudry, B.: A jour-
ney among Java neutral program variants. Genet. Program Evolvable Mach. 20(4),
531–580 (2019). https://doi.org/10.1007/s10710-019-09355-3

https://doi.org/10.1145/2001576.2001768
https://doi.org/10.1145/2001576.2001768
https://doi.org/10.1007/s10710-009-9082-5
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10710-009-9082-5
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10710-009-9082-5
https://doi.org/10.1109/ASE.2019.00046
https://doi.org/10.1109/ASE.2019.00046
https://arxiv.org/abs/2003.11667v1
https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/2338965.2336775
https://doi.org/10.1145/2338965.2336775
http://dl.acm.org/citation.cfm?doid=2338965.2336775
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1007/s10710-019-09355-3

16 H. Ahmad et al.

14. Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen, X.: Shaping program repair space
with existing patches and similar code. In: ISSTA 2018, Amsterdam, Netherlands,
vol. 18, pp. 298–309. ACM (July 2018). https://doi.org/10.1145/3213846.3213871.
https://dl.acm.org/doi/10.1145/3213846.3213871

15. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: ISSTA 2014, San Jose, USA, pp.
437–440. ACM (July 2014). https://doi.org/10.1145/2610384.2628055. http://dl.
acm.org/citation.cfm?doid=2610384.2628055

16. Kou, R., Higo, Y., Kusumoto, S.: A capable crossover technique on automatic
program repair. In: IWESEP 2016, Osaka, Japan, pp. 45–50. IEEE (2016). https://
doi.org/10.1109/IWESEP.2016.15

17. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies:
1. Hierarchical systems. Comput. J. 9(4), 373–380 (1967)

18. Langdon, W.B., Veerapen, N., Ochoa, G.: Visualising the search landscape of the
triangle program. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E.,
Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 96–113. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 7

19. Le, X.B.D., Thung, F., Lo, D., Goues, C.L.: Overfitting in semantics-based auto-
mated program repair. Empir. Softw. Eng. 23(5), 3007–3033 (2018)

20. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: ICSE 2012,
Zürich, Switzerland, pp. 3–13. IEEE (2012). https://doi.org/10.1109/ICSE.2012.
6227211

21. Le Goues, C., et al.: The ManyBugs and IntroClass benchmarks for automated
repair of C programs. IEEE Trans. Softw. Eng. 41(12), 1236–1256 (2015)

22. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a genetic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012). https://
doi.org/10.1109/TSE.2011.104

23. Le Goues, C., Pradel, M., Roychoudhury, A.: Automated program repair
(December 2019). https://doi.org/10.1145/3318162. https://dl.acm.org/doi/10.
1145/3318162

24. Le Goues, C., Weimer, W., Forrest, S.: Representations and operators for improving
evolutionary software repair. In: Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation, pp. 959–966 (2012)

25. Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBAR: revisiting template-based
automated program repair. In: ISSTA 2019, Beijing, China, pp. 43–54. ACM (July
2019). https://doi.org/10.1145/3293882.3330577. https://dl.acm.org/doi/10.1145/
3293882.3330577

26. Liu, K., et al.: A critical review on the evaluation of automated program repair
systems. J. Syst. Softw. 171, 110817 (2021)

27. Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for
patch generation. In: ESEC/FSE 2017, Paderborn, Germany, vol. Part F1301, pp.
727–739. ACM (August 2017). https://doi.org/10.1145/3106237.3106253. https://
dl.acm.org/doi/10.1145/3106237.3106253

28. Long, F., Rinard, M.: Prophet: automatic patch generation via learning from suc-
cessful patches. Technical report, MIT-CSAIL (July 2015). www.csail.mit.edu

29. Long, F., Rinard, M.: Staged program repair with condition synthesis. In:
ESEC/FSE 2015, Bergamo, Italy, pp. 166–178. ACM (August 2015). https://doi.
org/10.1145/2786805.2786811. https://dl.acm.org/doi/10.1145/2786805.2786811

https://doi.org/10.1145/3213846.3213871
https://dl.acm.org/doi/10.1145/3213846.3213871
https://doi.org/10.1145/2610384.2628055
http://dl.acm.org/citation.cfm?doid=2610384.2628055
http://dl.acm.org/citation.cfm?doid=2610384.2628055
https://doi.org/10.1109/IWESEP.2016.15
https://doi.org/10.1109/IWESEP.2016.15
https://doi.org/10.1007/978-3-319-55696-3_7
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3318162
https://dl.acm.org/doi/10.1145/3318162
https://dl.acm.org/doi/10.1145/3318162
https://doi.org/10.1145/3293882.3330577
https://dl.acm.org/doi/10.1145/3293882.3330577
https://dl.acm.org/doi/10.1145/3293882.3330577
https://doi.org/10.1145/3106237.3106253
https://dl.acm.org/doi/10.1145/3106237.3106253
https://dl.acm.org/doi/10.1145/3106237.3106253
www.csail.mit.edu
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2786805.2786811
https://dl.acm.org/doi/10.1145/2786805.2786811

Digging into Semantics: Search-Based Software Repair 17

30. Long, F., Rinard, M.: An analysis of the search spaces for generate and validate
patch generation systems. In: ICSE 2016, Austin, Texas, May, vol. 14–22, pp.
702–713. IEEE Computer Society (May 2016). https://doi.org/10.1145/2884781.
2884872

31. Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv.
(CSUR) 51(1), 17 (2018)

32. Motwani, M., Sankaranarayanan, S., Just, R., Brun, Y.: Do automated pro-
gram repair techniques repair hard and important bugs? Empir. Softw. Eng.
23(5), 2901–2947 (2018). https://doi.org/10.1007/s10664-017-9550-0. https://
link.springer.com/article/10.1007/s10664-017-9550-0

33. Motwani, M., Soto, M., Brun, Y., Just, R., Le Goues, C.: Quality of automated
program repair on real-world defects. IEEE Trans. Softw. Eng. 48, 637–661 (2020)

34. Nilizadeh, A., Leavens, G.T., Le, X.B.D., Păsăreanu, C.S., Cok, D.R.: Exploring
true test overfitting in dynamic automated program repair using formal methods.
In: 2021 14th IEEE Conference on Software Testing, Verification and Validation
(ICST), pp. 229–240. IEEE (2021)

35. Orlov, M., Sipper, M.: Genetic programming in the wild: evolving unrestricted
bytecode. In: Proceedings of the 11th Annual Conference on Genetic and Evolu-
tionary Computation, pp. 1043–1050 (2009)

36. Petke, J., Brownlee, A.E.I., Alexander, B., Wagner, M., Barr, E.T., White, D.R.:
A survey of genetic improvement search spaces. In: GECCO 2019, Prague, Czech
Republic, pp. 1715–1721. ACM (July 2019). https://doi.org/10.1145/3319619.
3326870. https://dl.acm.org/doi/10.1145/3319619.3326870

37. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on
automated program repair. In: ICSE 2014, Hyderabad, India, pp. 254–265. ACM
(2014). https://doi.org/10.1145/2568225.2568254

38. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and cor-
rectness for generate-and-validate patch generation systems. In: ISSTA 2015, Bal-
timore, USA, pp. 24–36. ACM (2015). https://doi.org/10.1145/2771783.2771791

39. Renzullo, J., Weimer, W., Forrest, S.: Multiplicative weights algorithms for parallel
automated software repair. In: 35th IEEE International Parallel and Distributed
Processing Symposium (2021)

40. Renzullo, J., Weimer, W., Moses, M., Forrest, S.: Neutrality and epistasis in pro-
gram space. In: ICSE 2018, Gothenburg, Sweden, vol. 18, pp. 1–8. IEEE Com-
puter Society (June 2018). https://doi.org/10.1145/3194810.3194812. https://dl.
acm.org/doi/10.1145/3194810.3194812

41. Schulte, E., Forrest, S., Weimer, W.: Automated program repair through the evo-
lution of assembly code. In: ASE 2010, Antwerp, Belgium, pp. 313–316. ACM
(2010). https://doi.org/10.1145/1858996.1859059. http://portal.acm.org/citation.
cfm?doid=1858996.1859059

42. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software muta-
tional robustness. Genet. Program. Evolvable Mach. 15(3), 281–312 (2014).
https://doi.org/10.1007/s10710-013-9195-8. https://link.springer.com/article/10.
1007/s10710-013-9195-8

43. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse than the disease?
Overfitting in automated program repair. In: ESEC/FSE 2015, Bergamo, Italy, pp.
532–543. ACM (2015). https://doi.org/10.1145/2786805.2786825

44. Soto, M.: Improving patch quality by enhancing key components of automatic
program repair. In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1230–1233. IEEE (2019)

https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1007/s10664-017-9550-0
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10664-017-9550-0
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10664-017-9550-0
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3319619.3326870
https://dl.acm.org/doi/10.1145/3319619.3326870
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/3194810.3194812
https://dl.acm.org/doi/10.1145/3194810.3194812
https://dl.acm.org/doi/10.1145/3194810.3194812
https://doi.org/10.1145/1858996.1859059
http://portal.acm.org/citation.cfm?doid=1858996.1859059
http://portal.acm.org/citation.cfm?doid=1858996.1859059
https://doi.org/10.1007/s10710-013-9195-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10710-013-9195-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10710-013-9195-8
https://doi.org/10.1145/2786805.2786825

18 H. Ahmad et al.

45. Staats, M., Hong, S., Kim, M., Rothermel, G.: Understanding user understand-
ing: determining correctness of generated program invariants. In: ISSTA 2012,
Minneapolis, MN, p. 188. ACM (2012). https://doi.org/10.1145/2338965.2336776.
http://dl.acm.org/citation.cfm?doid=2338965.2336776

46. Tan, S.H., Yoshida, H., Prasad, M.R., Roychoudhury, A.: Anti-patterns in search-
based program repair. In: ESEC/FSE 2016, November, vol. 13–18, pp. 727–
738. ACM, New York (November 2016). https://doi.org/10.1145/2950290.2950295.
https://dl.acm.org/doi/10.1145/2950290.2950295

47. Urli, S., Yu, Z., Seinturier, L., Monperrus, M., Monperrus, M.: How to design a
program repair bot? Insights from the repairnator project. In: ICSE-SEIP 2018,
vol. 10 (2018). https://doi.org/10.1145/3183519

48. Veerapen, N., Daolio, F., Ochoa, G.: Modelling genetic improvement landscapes
with local optima networks. In: GECCO 2017, vol. 6, pp. 1543–1548. ACM, New
York (July 2017). https://doi.org/10.1145/3067695.3082518. https://dl.acm.org/
doi/10.1145/3067695.3082518

49. Veerapen, N., Ochoa, G.: Visualising the global structure of search landscapes:
genetic improvement as a case study. Genet. Program. Evolvable Mach. 19(3),
317–349 (September 2018). https://doi.org/10.1007/s10710-018-9328-1

50. Vessey, I., Weber, R.: Some factors affecting program repair maintenance: an empir-
ical study. Commun. ACM 26(2), 128–134 (1983)

51. Villanueva, O.M., Trujillo, L., Hernandez, D.E.: Novelty search for auto-
matic bug repair. In: GECCO 2020, Cancun, Mexico, pp. 1021–1028.
ACM (2020). https://doi.org/10.1145/3377930.3389845. https://dl.acm.org/doi/
10.1145/3377930.3389845

52. Wang, S., et al.: Automated patch correctness assessment: how far are we? ASE
2020, 968–980 (2020). https://doi.org/10.1145/3324884.3416590

53. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: models and first results. In: ASE 2013, Silicon Valley, USA, pp.
356–366. IEEE (2013). https://doi.org/10.1109/ASE.2013.6693094

54. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: ICSE 2009, Vancouver, Canada, pp. 364–367. IEEE
(2009). https://doi.org/10.1109/ICSE.2009.5070536

55. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.C.: Context-aware patch generation
for better automated program repair. In: ICSE 2018, Pittsburgh, Pennsylvania,
January, vol. 2018, pp. 1–11. IEEE Computer Society (2018). https://doi.org/10.
1145/3180155.3180233

56. Yang, D., Qi, Y., Mao, X.: Evaluating the strategies of statement selection in auto-
mated program repair. In: Bu, L., Xiong, Y. (eds.) SATE 2018. LNCS, vol. 11293,
pp. 33–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04272-1 3

57. Yuan, Y., Banzhaf, W.: Making better use of repair templates in automated pro-
gram repair: a multi-objective approach. In: Evolution in Action: Past, Present
and Future. GEC, pp. 385–407. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39831-6 26

https://doi.org/10.1145/2338965.2336776
http://dl.acm.org/citation.cfm?doid=2338965.2336776
https://doi.org/10.1145/2950290.2950295
https://dl.acm.org/doi/10.1145/2950290.2950295
https://doi.org/10.1145/3183519
https://doi.org/10.1145/3067695.3082518
https://dl.acm.org/doi/10.1145/3067695.3082518
https://dl.acm.org/doi/10.1145/3067695.3082518
https://doi.org/10.1007/s10710-018-9328-1
https://doi.org/10.1145/3377930.3389845
https://dl.acm.org/doi/10.1145/3377930.3389845
https://dl.acm.org/doi/10.1145/3377930.3389845
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1007/978-3-030-04272-1_3
https://doi.org/10.1007/978-3-030-39831-6_26
https://doi.org/10.1007/978-3-030-39831-6_26

Gene-pool Optimal Mixing in Cartesian
Genetic Programming

Joe Harrison1,2(B), Tanja Alderliesten3 , and Peter A. N. Bosman1,2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{Joe,Peter.Bosman}@cwi.nl

2 Delft University of Technology, Delft, The Netherlands
3 Leiden University Medical Center, Leiden, The Netherlands

T.Alderliesten@lumc.nl

Abstract. Genetic Programming (GP) can make an important contri-
bution to explainable artificial intelligence because it can create symbolic
expressions as machine learning models. Nevertheless, to be explain-
able, the expressions must not become too large. This may, however,
limit their potential to be accurate. The re-use of subexpressions has
the unique potential to mitigate this issue. The Genetic Programming
Gene-pool Optimal Mixing Evolutionary Algorithm (GP-GOMEA) is a
recent model-based GP approach that has been found particularly capa-
ble of evolving small expressions. However, its tree representation offers
no explicit mechanisms to re-use subexpressions. By contrast, the graph
representation in Cartesian GP (CGP) is natively capable of re-use. For
this reason, we introduce CGP-GOMEA, a variant of GP-GOMEA that
uses graphs instead of trees. We experimentally compare various configu-
rations of CGP-GOMEA with GP-GOMEA and find that CGP-GOMEA
performs on par with GP-GOMEA on three common datasets. Moreover,
CGP-GOMEA is found to produce models that re-use subexpressions
more often than GP-GOMEA uses duplicate subexpressions. This indi-
cates that CGP-GOMEA has unique added potential, allowing to find
even smaller expressions than GP-GOMEA with similar accuracy.

Keywords: Cartesian genetic programming · Gene-pool Optimal
Mixing · Subexpression re-use · Evolutionary computation · Symbolic
regression

1 Introduction

Automated decision-making using Machine Learning (ML) is becoming more
prevalent in domains where interpretability is critical such as medicine or law [9].
Unfortunately, many common ML techniques currently used are based on opaque
black-box models. Interpretable models are increasingly desired and sometimes
even required by law [15].

Symbolic Regression (SR) is the task of finding an expression of a function
that fits the samples of a dataset. Typically, SR techniques are used in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 19–32, 2022.
https://doi.org/10.1007/978-3-031-14721-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_2&domain=pdf
http://orcid.org/0000-0003-4261-7511
http://orcid.org/0000-0002-4186-6666
https://doi.org/10.1007/978-3-031-14721-0_2

20 J. Harrison et al.

hope of obtaining an interpretable expression. Expressions consists of operators,
variables, and constants. Genetic Programming (GP) [7] is a popular tree-based
technique used for SR. The resulting expressions from the classic version of GP
are, however, often too large to comprehend [18], even when its subexpressions
are easy to understand by themselves. This is due to a phenomenon called bloat
[8]. Generally, the smaller the expression, the higher the likelihood that it will
be interpretable. However, smaller expressions may also be less accurate.

A key reason why classic GP results in large expressions, is because it is easier
to represent accurate function estimates with larger trees. One way to combat
bloat, is to use a fixed-size tree template. However, enforcing a small tree this
way makes the search for high quality solutions more difficult, necessitating more
sophisticated evolutionary search. One such approach is the Gene-pool Optimal
Mixing Evolutionary Algorithm [2] (GOMEA), of which several variants have
been developed for different domains, including tree-based GP (GP-GOMEA)
[17,18]. GP-GOMEA is particularly adept at finding small expressions while
retaining high accuracy. GOMEA attempts to leverage linkage among prob-
lem variables to prevent important building blocks from being disrupted during
variation while mixing them well. Linkage information can be prespecified if
the optimisation problem is sufficiently understood or can be attempted to be
learned during evolution by analysing emerging patterns in the population.

It was suggested that GP-GOMEA may benefit from including repeating
subexpressions [18]. In GP-trees subexpression re-use only occurs when the same
subexpression is evolved multiple times independently. In Cartesian GP (CGP)
[10] expressions are represented by an acyclic feedforward graph rather than
a tree. This opens up the opportunity for subexpression re-use. The re-use of
subexpressions is interesting because it contributes to the decomposability and
interpretability of an expression. Subexpression re-use does not directly decrease
the expression length, but rather decreases the number of subexpressions that
need to be independently understood. In CGP, these subexpressions can be
automatically found during the evolutionary process. However, these subexpres-
sions are not considered Automatically Defined Functions (ADFs) [8], but rather
Automatic Re-used Outputs (AROs). AROs require the function in its entirety
to remain the same whereas ADFs have dummy arguments where different inputs
can be instantiated [12,20]. Nevertheless, the two are closely related. Given that
the problem is of sufficient complexity, GP can find smaller expressions using
ADFs for some problems [8].

CGP has the ability to produce expressions that re-use subexpressions
natively without the need to evolve the same subexpression multiple times. Given
the observed advantages brought by GOMEA for GP, it is therefore interesting
and potentially of added value to see whether CGP can also benefit from an inte-
gration with concepts from GOMEA. Vertices in subexpressions that are re-used
can possibly benefit from the simultaneous swaps of genes that happen during
linkage-based variation in GOMEA as to not disrupt the salient subexpression.

Gene-pool Optimal Mixing in Cartesian Genetic Programming 21

Fig. 1. Illustration of how GOM works in CGP-GOMEA. Operator vertices in the 2×2
grid have a problem variable index on the right diagonally above the operator vertex
and two underlined problem variable indices to the left representing the location of the
incoming vertex. Problem variables in the orange rectangle are an example of variables
with high linkage and appear together in the FOS. Problem variables in the blue
rectangle are swapped simultaneously from donor to recipient (i.e. clone). Above each
graph is a corresponding string representation. Intron vertices and arcs are indicated
by dashed lines, and the active graph by filled lines. (Color figure online)

The main contribution of this paper is realising and studying the integration
of GOMEA principles in CGP, which we will call CGP-GOMEA1. We will com-
pare and contrast CGP-GOMEA with GP-GOMEA and CGP and investigate
performance in terms of accuracy, expression length, and subexpression re-use.

2 Methods

Below we outline the relevant details on GOMEA, CGP, and their integration.
Special attention is brought to the differences between GP-GOMEA and CGP-
GOMEA since these are both GP variants combined with GOMEA. When dis-
cussing CGP, the terms vertices and arcs are used, while for GP-trees and GP
and CGP in general, the terms nodes and connections are used.

2.1 GOMEA

GOMEA operates on a fixed-length string representation of the problem vari-
ables in a genotype. Any mapping from genotype to string can be used as long
as the mapping is unique. For instance in GP-GOMEA, nodes in fixed height
trees are mapped to a fixed-length string using the pre-order traversal of the tree
[17]. Once a mapping is defined, a model describing the linkage between string
indices is learned in the form of a Family Of Subsets (FOS), which is a set of
subsets of all string indices. Alternatively, the FOS can be provided exogenously.
1 Code and data can be found at https://github.com/matigekunstintelligentie/CGP-

GOMEA.

https://github.com/matigekunstintelligentie/CGP-GOMEA
https://github.com/matigekunstintelligentie/CGP-GOMEA

22 J. Harrison et al.

The FOS in this paper is learned each generation and is a hierarchical clus-
ter tree, called a Linkage Tree (LT), where string indices with strong linkage are
grouped together in a hierarchical fashion. We used Normalised Mutual Informa-
tion (NMI) as a proxy for linkage. NMI is used because it is a measure of mutual
dependence among variables (in this case string indices). For indices with strong
mutual dependence it might be beneficial if the genetic material associated with
these indices, is varied in a joint fashion. The algorithm Unweighted Pair Group
Method with Arithmetic mean (UPGMA) [5] is used to build the LT. UPGMA
only needs the NMI between pairs of problem variables as input, represented by
an NMI matrix, to build an LT. The application of UPGMA results in an FOS
of size 2l − 1, where l is the number of string indices. The subset containing all
string indices is removed as to not swap entire individuals. The effective FOS
size is 2l − 2. A randomly initialised population is expected to have no linkage,
but due to the NMI matrix being estimated using finite samples some linkage is
measured, especially in the case of GP [18]. To combat this, [18] introduced a
linear bias correction measured from the initial population such that the NMI
matrix is identity at the start of the evolutionary process. This correction is
measured once and used throughout the evolutionary process.

Variation in GOMEA happens by means of Gene-pool Optimal Mixing
(GOM). Each generation, each individual of the population is first cloned and
then undergoes GOM. For each subset in the FOS, a random donor is sampled
and then each problem variable instantiation indicated by the subset is copied
from the donor to the clone. If the expression of the clone has changed, its fitness
is evaluated. If the fitness is equal or better than its original, the change is kept
and otherwise it is discarded. The clones replace the entire original population.

2.2 CGP

In CGP, an expression is encoded using a Cartesian grid. Each vertex in the
grid has incoming arcs that can potentially come from any preceding column in
the grid, making it an acylic feedforward graph. Note that this makes skip con-
nections and vertex re-use possible (see Fig. 1). By limiting to which preceding
column in the grid a vertex can connect, the number of subexpression re-uses
can be influenced. This parameter is called Levels-Back (LB). A CGP graph
consists of four types of vertices:

1. Ephemeral Random Constants (ERCs) - vertices that output a constant value
sampled at the start of the evolutionary process.

2. Inputs (Ii) - vertices that return an input feature of a dataset.
3. Outputs (Oj) - vertices that return the output of an expression.
4. Operators - vertices that apply operations to its incoming arcs.

Only operator vertices are part of the CGP grid. For each operator vertex,
the number of incoming arcs is equal to the maximum arity of all operators
used. Unary operators only use the first input and ignore other inputs. For the
remainder of the paper, the maximum input arity of each operator is two (as

Gene-pool Optimal Mixing in Cartesian Genetic Programming 23

in [18]). A vertex in the CGP grid can always connect to an input or ERC
vertex regardless of what the value of the LB parameter is. The grid size and
number of ERC vertices are (manually) determined a priori and highly depend
on the problem and desired shape of the resulting expressions. The number of
input vertices depends on the number of inputs in the dataset. Note that even
though a vertex appears in the grid it might not be connected to an output
vertex, see for example the vertex with string index 3 in Fig. 1. The part of the
graph consisting of all vertices and arcs that are connected to a particular output
vertex will be referred to as the active graph for that output. Other vertices are
considered introns. In CGP it is possible to have multiple outputs or recurrent
connections, which enables interesting use-cases. However, in this paper, only
feedforward graphs are used for the CGP experiments and only problems with
a single output are experimented with in order to compare with GP-GOMEA.

In classic CGP variation happens by means of point mutation [11]. An indi-
vidual is mutated through point mutation of the operators and arcs until the
active graph has changed. A notable difference in our implementation is that
ERCs are not mutated in order to be able to fairly compare to the GOMEA
algorithms. Originally, selection happens in a 1+λ scheme [10]. However, tour-
nament selection is also common for larger population sizes [11].

2.3 Adapting GOMEA for CGP

In trees, the location of a problem variable explicitly encodes the location of the
incoming child nodes and arcs too, whereas this is not the case in feedforward
graphs. To adapt GOMEA for CGP, the incoming arcs in the graph must be
added as problem variables in addition to the operator problem variables in the
grid. Additionally, a string index is needed for the arc from the grid to the output
vertex. When an LT is used, the number of problem variables, and consequently
the FOS size, required for a template that can accommodate a similar tree as
in GP-GOMEA, is larger. The formula for the number of problem variables in
CGP used to build the LT is 3rc + 1 (for maximum arity of two), where r and c
are the number of rows and columns in the CGP grid respectively. An important
distinction is that the ERCs and input vertices, as opposed to the original GP-
GOMEA implementation [19], are not part of the LT FOS because they are
encoded at a fixed position in the grid in CGP-GOMEA. This also means that
there is no need for converting continuous ERCs to discrete values (bins) as is
needed in GP-GOMEA [18]. To mix ERCs in the population, ERCs are added
as unary subsets to the FOS after building the LT. Note that this means that
the FOS size increases by the number of ERCs used.

Any unique mapping from vertex and arc to problem variable index can be
used. Here, a mapping is used where, starting from the nodes in the first column,
each vertex is given three problem variable indices, one for the operator and two
for the incoming arcs. The mapping used in this paper is illustrated in Fig. 1.

A larger population size positively impacts the accuracy of the NMI esti-
mation [18]. Typically, there are more inputs and ERCs than operators. This

24 J. Harrison et al.

means that there are more possible arcs than operators, especially for the out-
put which can connect to any of the grid vertices. This makes the NMI estimate
less accurate for the same population size compared to GP-GOMEA because
the cardinality of the variables is higher. Hence, for small population sizes, GP-
GOMEA is expected to lead to better results. This, together with the larger FOS
size, increases the run-time of GOM as it depends on both factors. GOM is the
most costly part for both GP- and CGP-GOMEA due to the many fitness eval-
uations performed inside GOM. One way to make CGP-GOMEA more efficient
is by shrinking the FOS size. We here consider two ways to do this: truncate the
FOS or trade expressivity for speed by making the grid smaller.

Table 1. Information about the datasets used in the experiments.

Dataset #Features #Samples Variance y

Boston Housing 13 506 84.59

Yacht Hydrodynamics 6 308 229.84

Tower 25 4999 7703.36

3 Experimental Setup

3.1 General Setup

Each experiment is repeated 30 times using a different random seed for each
repetition, but equal random seeds across different experiments to create identi-
cal dataset splits for each experiment. Significance is tested using the Wilcoxon
signed-rank test using the Pratt tie handling procedure [13] with α = 0.05/β,
where β is the Bonferroni correction coefficient [3,18].

Initialisation. In GP-GOMEA, ERC and input nodes are sampled with prob-
abilities 1

1+#inputs and #inputs
1+#inputs respectively. ERC nodes, therefore, occur much

less often as a terminal node, especially when there are many inputs. In CGP-
GOMEA and CGP-Classic, the number of ERCs needs to be defined beforehand.
The number of ERCs is set to half the number of terminal locations in a full
GP tree. For example, a GP tree of height 4 has 16 terminal nodes, in this case,
8 ERCs are instantiated for CGP. The probability of connecting to an ERC
or input vertex in CGP is equal. The values for ERCs are sampled uniformly
between the minimum and maximum target value in the training set.

In this paper, we focus on small expressions with a total number of symbols
smaller than or equal to 32, a limitation posed on the expression length based on
findings by [18]. This corresponds with a GP tree of height 4 and arity of 2 with
an additional output node. In GP-GOMEA trees are initialised half-and-half as
in [16,18]. For CGP models with a grid with many columns, the full initialisation
method [12] often creates large graphs that exceed the 32 node limit. Therefore,

Gene-pool Optimal Mixing in Cartesian Genetic Programming 25

only the grow method will be used for all CGP algorithms. Graphs that exceed
32 nodes are penalized in their fitness with a fitness penalty of 10e6, severely
limiting the chance of selection in the tournament selection of CGP-classic. In
GP-GOMEA and CGP-GOMEA, changes due to subset swaps during GOM
resulting in a penalty are likely to be discarded.

Operators. The following operators are used: {+,−,÷,×,min,max, exp, pow,
log, sqrt, sin, cos, asin, acos}. Note that no protected operators are used. This is
done to enhance interpretability as protected operators add complexity to each
operator. Expressions that return an error on samples in the training set are
penalised with a high fitness offset of 10e6.

Linear Scaling. To improve performance while keeping an expression small,
Linear Scaling (LS) [4,6] is applied to each solution during fitness evaluation
unless stated otherwise. LS effectively adds four symbols to each expression.
These symbols are however not counted towards the total expression length.

Grid Sizes. For the CGP-GOMEA experiments, four different grid sizes are
experimented with: 16× 4 (rows× columns), 8× 8, 1× 10, and 1× 64. The 16× 4
grid serves as a comparison to trees of height 4. This grid size is chosen because
it is the minimum size that can accommodate any tree of height 4 evolved by
GP-GOMEA. An 8× 8 grid is used to test what happens if the grid is more
flexible in terms of graph depth. A 1× 64 grid, which can represent more graph
configurations than the 16× 4 grid, is tested as a suggestion from literature
[11]. A 16× 4 grid with LB = 1 is also tried. All other experiments have the LB
parameter set equal to the number of columns of their respective grid. The 16× 4,
8× 8, and 1× 64 grids all have an FOS size of 384. A grid of 1× 10 is tested
because it has the same FOS size as a tree of height 4 in GP-GOMEA. Further,
truncation of the FOS of a 16× 4 CGP grid is investigated. After shuffling the
FOS during GOM, only the first k subsets of the FOS are considered, where k
is the truncation value. With a truncation of 61, the same FOS size as a tree of
height 4 is reached.

Performance Metrics. The training and test coefficients of determination
(R2) and expression length are reported. The expression length is counted as
the total number of nodes used in the active graph including the output node.
The mean squared error of the training set is optimised instead of optimising the
R2 directly. In particular, we are interested in the re-use of nodes. GP trees can
evolve the same subexpression multiple times, whereas CGP has the native abil-
ity to re-use vertices. Subexpressions can have the same semantic outcome while
differing syntactically. To test whether CGP-Classic and CGP-GOMEA re-use
subexpressions more often than that GP-GOMEA evolves duplicate subexpres-
sions, we therefore count the number of re-uses by comparing the output of
each connection in the graph or tree with all other connection outputs, except

26 J. Harrison et al.

connections to terminal-nodes. Outputs are generated by using the training set
augmented with 1000 samples from a normal distribution as input. The re-use
count is incremented when two outputs are within a 10e−6 range of each other.

Computational Budget. The number of evaluations made in GOM is the
most time-consuming part of GOMEA [18]. Since CGP-GOMEA has a larger
FOS size, the number of evaluations per generation is also much higher. We
have therefore opted for a time-based comparison where each run gets a budget
of 5000 s. We empirically found that 5000 s leaves enough time for populations
of most sizes to converge. A run is terminated when one or more of the following
conditions is met: the run reaches 5000 s, the mean fitness and best fitness are
equal, the best fitness remains unchanged for 100 generations, or, the mean
fitness remains unchanged for 5 generations.

3.2 Setup Main Experiment

Three commonly used datasets will be used in our main experiment: Boston
Housing, Yacht Hydrodynamics, and Tower (see Table 1) [1]. The datasets are
split into a training and test set of 75% and 25% of the samples respectively.
Two sets of experiments are done. One where only inputs are used as terminal
nodes and one where both inputs and ERCs can appear as terminal nodes.
These sets of experiments are done because there is a difference in how ERCs
are handled between CGP- and GP-GOMEA. GP-GOMEA needs to convert
continuous ERCs to discrete problem variables. This is done in GP-GOMEA by
binning ERCs into 100 bins, the most successful method from [18].

Due to the relatively large size of populations used in this paper, tournament
selection is used with a tournament size of 4 for classic CGP to select the parents
of the new population that will be mutated to create offspring. The individual
with the best fitness is directly copied into the new population.

3.3 Population Size Study

The grid size influences the population size that is needed to ensure the variety
of subexpressions in the initial population is large enough, which is important
for the success of GOMEA variants. For the main experiments we chose a fixed
population size of 1000 as in [15], but this choice is not necessarily optimal. To
show the influence of choosing a population size, we do a study to find the optimal
population size for GP-GOMEA, CGP-GOMEA 16× 4, and CGP-Classic on the
Boston Housing dataset without ERCs under the time constraint of 5000 s. In
Table 4 experimental results are reported using the found optimal population
sizes for the Boston Housing dataset on the Yacht and Tower dataset.

3.4 Setup Known Ground Truth Experiment

The optimal formula for the three datasets in Table 1 and the required grid size
or tree height is unknown. It is equally unknown whether the datasets have a

Gene-pool Optimal Mixing in Cartesian Genetic Programming 27

bias for solutions with less or no subexpression re-use. We want to know whether
a known expression with multiple re-used subexpressions is more easily found
by CGP-GOMEA compared to GP-GOMEA and CGP-Classic. To this end,
we devised a synthetic dataset with a specific known expression that re-uses
subexpressions: I40−I41+ I4

2
I4
3
. To search for this expression, we only allow operators

{+,−,÷,×} to be used. The 4th powers in the expression can thus only be
created by re-using sub-expressions with the × operator multiple times. The
synthetic dataset has 1000 samples each with 4 input variables, each sampled
from a normal distribution with σ = 0.25 and μ = {0, 1, 2, 3} respectively as to
generate slightly overlapping yet mostly distinct input samples. The grid size was
chosen so that it is possible to evolve the formula exactly. Only GP-GOMEA,
CGP-GOMEA 16× 4, 8× 8, 16× 4 LB = 1, and CGP-Classic are tested. In this
experiment, LS is not used, because finding the formula rather than optimising
for accuracy is what matters here. Nor are ERCs used.

Fig. 2. Results population size study. Shaded area between 10th and 90th percentile.

4 Results

Main Experiment. The results of the main experiment are shown in Table 2.
The best training R2 on the experiments both with and without the use of ERCs
is achieved with the CGP-GOMEA 8× 8 configuration on Boston Housing and
Yacht, and with GP-GOMEA on Tower. The Tower dataset has more variables
than available terminal-nodes, which makes it difficult to re-use subexpressions.
This is because subexpression re-use means that fewer variables can be used,
since re-used subexpressions still count towards the 32 node expression limit.
The Yacht Hydrodynamics dataset has a much smaller number of variables and
much more re-use is observed for this dataset. A notable difference between the
experiments with and without ERCs is that less subexpressions are re-used when
ERCs are used, with some CGP configurations even re-using zero subexpressions.

28 J. Harrison et al.

ERCs are used in favour of repeating subexpressions. This could be due to the
way ERCs are mixed. In an experiment where ERCs are not added to the FOS
and therefore remain unmixed, the re-use of subexpressions was higher for each
experiment with similar training R2.

Truncation, as described earlier, is not a viable method of reducing the FOS
size. It consistently ranks among the worst R2 for all experiments. Trading
expressivity for speed is also detrimental to the R2. A small grid such as 10× 1
forces re-use, while as mentioned re-use may not be part of the optimal expres-
sion. The configuration from literature, one row with multiple columns, similarly
results in low R2. This is because many individuals in the initial population are
penalised for having an expression over 32 nodes, which makes it difficult to
create better offspring during GOM without a dedicated constraint handling
mechanism in GOMEA, which is currently lacking.

Table 2. Experiment results of various algorithms with and without ERCs as terminal
nodes. Median R2 values are reported due to high variance in test and train R2. Num-
bers in bold are best performing for the respective parameter and dataset. Underlined
numbers significantly outperform all other algorithms. tr is short for truncation. Test
R2 values filtered from outliers due to unprotected functions are indicated with *.

Algorithm Without ERCs With ERCs

Median
train R2

Median
test R2

Mean
expression
length

Mean
subexpression
re-use

Median
train R2

Median
test R2

Mean
expression
length

Mean
subexpression
re-use

Boston Housing

GP-G 0.803 ± 1.71e−2 0.761 ± 5.67e−2 19.1 ± 3.53 0.1 ± 3.00e−1 0.83± 1.77e−2 0.758 ± 1.15e−1 21.6 ± 3.90 0.1 ± 3.00e−1

CGP-G 16 × 4 0.81 ± 2.24e−2 0.756 ± 5.60e−2∗ 18.1 ± 4.13 0.1 ± 3.00e−1 0.806 ± 2.67e−2 0.783 ± 4.79e−2 18.3 ± 5.46 0.0

CGP-G tr 0.768 ± 2.29e−2 0.729 ± 5.81e−2 11.5± 4.54 0.133 ± 5.62e−1 0.788 ± 2.23e−2 0.733 ± 5.60e−2 12.2 ± 3.90 0.0

CGP-G 8 × 8 0.846± 2.05e−2 0.807± 4.53e−2 27.7 ± 4.64 0.433 ± 6.16e−1 0.830 ± 2.94e−2 0.787 ± 7.45e−2 25.0 ± 6.42 0.333± 6.50e−1

CGP-G 1 × 10 0.785 ± 2.29e−2 0.743 ± 4.48e−2 15.7 ± 5.63 1.03± 2.12 0.772 ± 2.96e−2 0.75 ± 6.30e−2 11.1± 3.90 0.1 ± 3.96e−1

CGP-G LB = 1 0.824 ± 2.01e−2 0.779 ± 4.43e−2 21.3 ± 4.08 0.133 ± 4.27e−1 0.824 ± 2.25e−2 0.789± 5.56e−2∗ 19.6 ± 4.38 0.0333 ± 1.80e−1

CGP-G 1 × 64 0.807 ± 2.01e−2 0.78 ± 6.91e−2 15.7 ± 4.58e−1 0.133 ± 3.40e−1 0.810 ± 1.90e−2 0.767 ± 2.08e−1 15.4 ± 9.12e−1 0.0333 ± 1.80e−1

CGP-C 0.789 ± 2.88e−2 0.767 ± 7.35e−2 16.9 ± 4.94 0.367 ± 7.06e−1 0.801 ± 2.26e−2 0.762 ± 4.50e−2 18.1 ± 4.29 0.0333 ± 1.80e−1

Yacht Hydrodynamics

GP-G 0.995 ± 7.52e−4 0.992 ± 1.71e−3 17.7 ± 4.30 0.367 ± 1.28 0.995 ± 7.59e−4 0.994 ± 1.78e−3 17.5 ± 4.30 0.1 ± 3.00e−1

CGP-G 16 × 4 0.995 ± 8.75e−4 0.994 ± 2.08e−3 21.2 ± 6.05 1.2 ± 1.56 0.995 ± 7.61e−4 0.993 ± 2.07e−3 18.5 ± 4.51 0.3 ± 7.37e−1

CGP-G tr 0.994 ± 1.02e−3 0.992 ± 2.20e−3 18.7 ± 5.05 1.53 ± 2.26 0.995 ± 9.51e−4 0.993 ± 1.91e−3 15.0± 3.81 0.167 ± 5.82e−1

CGP-G 8 × 8 0.996± 8.89e−4 0.994± 1.62e−3 28.7 ± 3.38 1.83 ± 2.25 0.997± 8.66e−4 0.995± 1.71e−3 26.6 ± 4.92 0.667 ± 1.07

CGP-G 1 × 10 0.994 ± 6.85e−4 0.992 ± 1.80e−3 26.4 ± 4.07 12.6± 1.11e1 0.995 ± 6.21e−4 0.993 ± 2.10e−3 18.2 ± 3.90 0.733± 1.46

CGP-G LB = 1 0.995 ± 5.24e−4 0.994 ± 1.81e−3 25.1 ± 3.72 1.77 ± 1.91 0.996 ± 6.38e−4 0.994 ± 2.25e−3 21.0 ± 4.31 0.467 ± 1.98

CGP-G 1 × 64 0.995 ± 4.92e−4 0.994 ± 1.63e−3 15.4± 9.87e−1 0.1 ± 3.00e−1 0.995 ± 5.79e−4 0.994 ± 1.88e−3 15.8 ± 4.96e−1 0.1 ± 3.00e−1

CGP-C 0.994 ± 1.21e−3 0.992 ± 2.19e−3 22.7 ± 3.96 0.967 ± 1.43 0.995 ± 9.49e−4 0.994 ± 2.08e−3 19.1 ± 3.87 0.433 ± 8.44e−1

Tower

GP-G 0.873±8.08e−3 0.878± 1.10e−2 28.2 ± 3.91 0.0667±2.49e−1 0.877± 6.43e−3 0.874± 1.09e−2 29.3 ± 2.58 0.0667 ± 2.49e−1

CGP-G 16 × 4 0.846 ± 1.29e−2 0.853 ± 1.52e−2 17.2 ± 3.89 0.0667 ± 2.49e−1 0.84 ± 3.14e−2 0.847 ± 3.26e−2 16.0 ± 4.01 0.0333 ± 1.80e−1

CGP-G tr 0.817 ± 3.78e−2 0.821 ± 3.99e−2 13.0± 4.45 0.1 ± 3.00e−1 0.764 ± 4.15e−2 0.789 ± 4.55e−2 11.2 ± 2.86 0.0

CGP-G 8 × 8 0.868 ± 1.09e−2 0.872 ± 1.67e−2 22.6 ± 6.28 0.2 ± 6.00e−1 0.864 ± 1.50e−2 0.866 ± 1.31e−2 21.7 ± 6.05 0.233± 6.16e−1

CGP-G 1 × 10 0.816 ± 3.34e−2 0.827 ± 3.63e−2 13.9 ± 3.97 0.3 ± 9.00e−1 0.769 ± 3.39e−2 0.767 ± 3.57e−2 9.7± 2.79 0.0

CGP-G LB = 1 0.861 ± 1.81e−2 0.861 ± 1.87e−2 21.0 ± 3.89 0.167 ± 3.73e−1 0.85 ± 2.33e−2 0.851 ± 2.51e−2 17.0 ± 3.62 0.0667 ± 3.59e−1

CGP-G 1 × 64 0.851 ± 1.46e−2 0.845 ± 1.58e−2 15.9 ± 3.00e−1 0.1 ± 3.00e−1 0.847 ± 1.59e−2 0.85 ± 1.70e−2 15.9 ± 3.40e−1 0.0333 ± 1.80e−1

CGP-C 0.844 ± 2.69e−2 0.837 ± 2.84e−2 19.3 ± 3.70 0.333± 5.96e−1 0.823 ± 3.35e−2 0.835 ± 3.38e−2 16.1 ± 4.75 0.1 ± 3.00e−1

Population Sizing Study. The results of the population sizing study (see
Fig. 2) show that all three algorithms initially have a positive trend upwards
in terms of R2 as the population size increases. For CGP-GOMEA 16× 4 this
trend declines for population sizes above 8000, a smaller population size than

Gene-pool Optimal Mixing in Cartesian Genetic Programming 29

observed for the onset of decline in GP-GOMEA and CGP-Classic. This is
because although the larger population size positively impacts the quality of
the linkage information it also severely limits the number of generations that
can be achieved within the maximum time budget, because the run-time of the
GOM procedure depends on the FOS size which is larger for CGP-GOMEA.

This exemplifies the importance of using the right parameters in population-
based search such as GP. Moreover, what is key to notice from the graph is that
the best performance of GP-GOMEA is equal to that of CGP-GOMEA. As these
algorithms can represent similar solutions, this was to be expected. However, this
search-space-based expectation only holds if the search algorithm is capable of
finding high-quality solutions in that space effectively. CGP using classic point-
based mutation is not capable of performing equally well. This reconfirms the
potential of GOMEA for the GP domain and also confirms that our integration
of GOMEA to CGP is essentially successful.

This result also shows that the population size of 1000 used in the main exper-
iment, while congruent with much of literature, can potentially lead to wrong
conclusions about the maximum performance of the algorithms tested. Still, the
conclusions are valid within the assumed limits. Moreover, the most important
comparison, between CGP-GOMEA and GP-GOMEA holds, as from the popu-
lation sizing experiment we expect these algorithms to perform similarly.

Known Ground Truth Experiment. As mentioned, the expressions found
for some datasets have more subexpression re-use than others. If re-use can be
found then CGP-GOMEA is a good option. In Table 3 it can be seen that CGP-
GOMEA algorithms have a better training R2 and re-use more subexpressions
than GP-GOMEA and CGP-Classic. The CGP-GOMEA 16× 4 LB = 1 config-
uration is the only algorithm that can find the exact expression (twice).

Table 3. Results on synthetic dataset. Numbers marked in bold are best performing for
the respective parameter. GP-G, CGP-G and CGP-C are short for GP-GOMEA, CGP-
GOMEA and CGP-Classic respectively. The value after ± is the standard deviation.

Algorithm Median
train R2

Median
test R2

Mean
expression
length

Times
expression
found

GP-G 0.995 ± 3.33e−3 0.995 ± 4.65e−3 0.63 ± 7.52e−1 0

CGP-G 16 × 4 0.997 ± 2.88e−3 0.997 ± 3.01e−3 1.77 ± 1.36 0

CGP-G 8 × 8 0.999 ± 2.15e−3 0.999 ± 2.44e−3 3.27 ± 2.43 0

CGP-G LB= 1 0.999 ± 6.98e−4 0.998 ± 1.30e−3 3.87 ± 3.19 2

CGP-C 0.998 ± 4.27e−3 0.998 ± 4.08−3 2.0 ± 1.37 0

30 J. Harrison et al.

5 Discussion

In CGP-GOMEA a grid size still needs to be defined a priori. A large enough
grid could be defined such that it could accommodate any possible tree with
32 nodes, but this would lead to a very large FOS size and subsequently very
long run-times. This effectively means that the expressions in CGP-GOMEA
are always bounded by a predefined grid size. Potentially a technique akin to
NeuroEvolution of Augmenting Topologies (NEAT) [14] could be used to evolve
unbounded graphs while still being able to swap homologous blocks using a
GOMEA-like approach.

Table 4. Training R2 of various algorithms trained on Yacht and Tower dataset with
population size found in population sizing study for the Boston Housing dataset.
Median R2 values are reported due to the high variance in test and train R2 val-
ues. Numbers marked in bold are best performing for the respective parameter and
dataset. Underlined numbers significantly outperform all other algorithms.

Boston
Housing

Yacht
Hydrodynamics

Tower

GP-G 0.803 ± 1.27e−2 0.994 ± 5.85e−4 0.769 ± 1.60e−2

CGP-G 0.791 ± 2.80e−2 0.994 ± 3.93e−4 0.844 ± 2.66e−2

CGP-C 0.788 ± 1.70e−2 0.993 ± 9.49e−4 0.780 ± 1.98e−2

The R2, expression length, and potentially the number of re-used subexpres-
sions are of interest to optimise. In this paper, however, only the training R2 is
optimised. No pressure is applied on evolving short expressions or expressions
with subexpression re-use. Instead, these are just attributes that resulted from
single-objective training. As a result, less re-use may have been observed than
what is possible. A multi-objective setting may overcome this as well as give
more insight into just how much re-use is possible.

Further, a potentially interesting line of research is using the subgraphs with
multiple re-uses found by CGP-GOMEA as building blocks for other algorithms.
Since these re-uses clearly have value [7,17]. Re-used subexpressions are easily
found in CGP graphs without using exogenous processes.

Limitations of this work are the use of only one population size in the
main experiment, a restricted number of datasets, and a fixed runtime. Ide-
ally, the optimal population size is used for each configuration and dataset. This
would however quickly exceed our computational budget. Of high interest are
approaches that adaptively set the population size, increasing resources over
time so that an anytime algorithm is obtained. More research is needed to iden-
tify in more detail what datasets can benefit from models with native re-use.
Finally, only one configuration of CGP-Classic is compared against. While we

Gene-pool Optimal Mixing in Cartesian Genetic Programming 31

believe the comparison was fair, showcasing the potential of GOMEA within a
basic representation space of CGP, more versions of CGP exist [11] and should
be compared against in future work, with similar augmentations on the GOMEA
side.

6 Conclusion

In this paper, we showed how GOMEA principles can be applied to CGP and we
thereby introduced CGP-GOMEA. We find that CGP-GOMEA with a grid-size
of 8× 8 strikes a good balance between CGP grid depth and breath and obtains
similar training R2 compared to GP-GOMEA and superior training R2 compared
CGP-Classic on three common datasets while re-using more subexpressions. On
a synthetic dataset, where the expression to regress to is known, that has multi-
ple subexpression re-uses, CGP-GOMEA is better able to find expressions that
are close to optimal compared to GP-GOMEA and CGP-Classic. We therefore
conclude that CGP-GOMEA can successfully leverage the advantageous prop-
erties of GOMEA within the CGP representation, enabling re-use integrated
within the search procedure, opening up interesting avenues of research.

Acknowledgement. This research is part of the research programme Open Com-
petition Domain Science-KLEIN with project number OCENW.KLEIN.111, which is
financed by the Dutch Research Council (NWO). We further thank the Maurits en
Anna de Kock Foundation for financing a high-performance computing system. We
also thank Marco Virgolin aiding in implementing GP-GOMEA, and Dazhuang Liu
and Evi Sijben for their fruitful discussions and reviews.

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
2. Bosman, P.A.N., Thierens, D.: On measures to build linkage trees in LTGA. In:

Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012. LNCS, vol. 7491, pp. 276–285. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32937-1 28

3. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

4. Dick, G., Owen, C.A., Whigham, P.A.: Feature standardisation and coefficient
optimisation for effective symbolic regression. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 306–314 (2020)

5. Gronau, I., Moran, S.: Optimal implementations of UPGMA and other common
clustering algorithms. Inf. Process. Lett. 104(6), 205–210 (2007)

6. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.)
EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36599-0 7

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

https://doi.org/10.1007/978-3-642-32937-1_28
https://doi.org/10.1007/978-3-642-32937-1_28
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1007/3-540-36599-0_7

32 J. Harrison et al.

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs,
vol. 17. MIT Press, Cambridge (1994)

9. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

10. Miller, J.F., et al.: An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In: Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 2, pp. 1135–1142 (1999)

11. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program
Evolvable Mach. 21, 1–40 (2019). https://doi.org/10.1007/s10710-019-09360-6

12. Poli, R., Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C.:
Genetic Programming. Springer (2004)

13. Pratt, J.W.: Remarks on zeros and ties in the Wilcoxon signed rank procedures.
J. Am. Stat. Assoc. 54(287), 655–667 (1959)

14. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

15. Vilone, G., Longo, L.: Explainable artificial intelligence: a systematic review. arXiv
preprint arXiv:2006.00093 (2020)

16. Virgolin, M., Alderliesten, T., Bel, A., Witteveen, C., Bosman, P.A.: Symbolic
regression and feature construction with GP-GOMEA applied to radiotherapy dose
reconstruction of childhood cancer survivors. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1395–1402 (2018)

17. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Scalable genetic pro-
gramming by gene-pool optimal mixing and input-space entropy-based building-
block learning. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 1041–1048 (2017)

18. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Improving model-
based genetic programming for symbolic regression of small expressions. Evol.
Comput. 29(2), 211–237 (2021)

19. Virgolin, M., De Lorenzo, A., Medvet, E., Randone, F.: Learning a formula of
interpretability to learn interpretable formulas. In: Bäck, T., et al. (eds.) PPSN
2020. LNCS, vol. 12270, pp. 79–93. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58115-2 6

20. Woodward, J.R.: Complexity and cartesian genetic programming. In: Collet, P.,
Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 260–269. Springer, Heidelberg (2006). https://doi.org/10.1007/
11729976 23

https://doi.org/10.1007/s10710-019-09360-6
http://arxiv.org/abs/2006.00093
https://doi.org/10.1007/978-3-030-58115-2_6
https://doi.org/10.1007/978-3-030-58115-2_6
https://doi.org/10.1007/11729976_23
https://doi.org/10.1007/11729976_23

Genetic Programming for Combining
Directional Changes Indicators
in International Stock Markets

Xinpeng Long(B) , Michael Kampouridis , and Panagiotis Kanellopoulos

School of Computer Science and Electronic Engineering,
University of Essex, Wivenhoe Park, UK

{xl19586,mkampo,panagiotis.kanellopoulos}@essex.ac.uk

Abstract. The majority of algorithmic trading studies use data under
fixed physical time intervals, such as daily closing prices, which makes the
flow of time discontinuous. An alternative approach, namely directional
changes (DC), is able to convert physical time interval series into event-
based series and allows traders to analyse price movement in a novel way.
Previous work on DC has focused on proposing new DC-based indica-
tors, similar to indicators derived from technical analysis. However, very
little work has been done in combining these indicators under a trading
strategy. Meanwhile, genetic programming (GP) has also demonstrated
competitiveness in algorithmic trading, but the performance of GP under
the DC framework remains largely unexplored.

In this paper, we present a novel GP that uses DC-based indicators
to form trading strategies, namely GP-DC. We evaluate the cumula-
tive return, rate of return, risk, and Sharpe ratio of the GP-DC trading
strategies under 33 datasets from 3 international stock markets, and we
compare the GP’s performance to strategies derived under physical time,
namely GP-PT, and also to a buy and hold trading strategy. Our results
show that the GP-DC is able to outperform both GP-PT and the buy
and hold strategy, making DC-based trading strategies a powerful com-
plementary approach for algorithmic trading.

Keywords: Directional changes · Genetic programming · Algorithmic
trading

1 Introduction

Algorithmic trading has always been a vibrant research topic of paramount
importance within the finance domain [8]. The majority of algorithmic trading
research takes place on physical time scale, e.g. using hourly, daily, and weekly
data. However, using such fixed time scales has the drawback of making data
discontinuous and omitting important information between two data points, e.g.
daily data would not have captured the flash crash that occurred across US stock
indices on 6 May 2010 from 2:32 pm to 3:08 pm, as prices rebounded shortly
afterwards [2].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 33–47, 2022.
https://doi.org/10.1007/978-3-031-14721-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_3&domain=pdf
http://orcid.org/0000-0002-7506-8371
http://orcid.org/0000-0003-0047-7565
http://orcid.org/0000-0002-8093-1379
https://doi.org/10.1007/978-3-031-14721-0_3

34 X. Long et al.

An alternative approach is to summarise prices as events. The rationale is to
record key events in the market representing significant movements in price, such
as a change of, for instance, 5%. Directional changes (DC) is a relatively recent
event-based technique, which relies on a threshold θ to detect significant price
movements. It was first proposed in [12] and formally defined in [19]. In the DC
framework, a physical time series is divided into upward and downward trends,
where each such trend marks a DC event at the moment the price change exceeds
θ; the DC event is usually followed by an overshoot (OS) event representing the
time interval of price movement along the trend beyond the DC event.

In this work, we are interested in using DC-based indicators to perform algo-
rithmic trading. Indicators are mathematical patterns derived from past data
and are used to predict future price trends. They are commonly used in techni-
cal analysis, e.g., in the form of moving averages, and trade breakout rules. With
the evolution of DC research, new DC-based indicators have been proposed, see
e.g. [3,20,21]. Therefore, in this paper we will combine 28 different DC indicators
under a genetic programming (GP) algorithm [18], namely GP-DC. We apply
the derived trading strategies to 33 different datasets from three international
markets, namely the DAX performance index, Nikkei 225, and the Russell 2000
index. Our goal is to show that the DC paradigm is not only competitive com-
pared to the physical time paradigm, but has even the potential to outperform
it. To achieve this goal, we benchmark GP-DC with another GP-based physical
time trading strategy, namely GP-PT, that uses technical analysis indicators
under physical time. We compare the GP-DC’s results to results obtained by
GP-PT. We compare the two GPs’ performance on different financial metrics,
such as cumulative returns, average rate of return per trade, risk, and Sharpe
ratio. We also compare the GPs’ performance against the buy-and-hold strategy,
which is a common financial benchmark.

The remainder of this paper is organized as follows. In Sect. 2, we present
background information and discuss the DC-related literature. Section 3 intro-
duces the methodology of our experiments, and then Sect. 4 presents the exper-
imental set up, as well as the datasets, benchmarks, and parameter tuning pro-
cess. Section 5 presents the experimental results and finally, Sect. 6 concludes the
paper and discusses future work.

2 Background and Literature Review

2.1 Overview of Directional Changes

Directional Changes form an event-based approach for summarising market price
movements, as opposed to a fixed-interval-based approach. A DC event is identi-
fied only when the price movement of the objective financial instrument exceeds
a threshold predefined by the trader. Depending on the direction of price move-
ment, such DC events could be either upturn events or downturn events. Fre-
quently, after the confirmation of a DC event, an overshoot (OS) event follows;
the OS event ends when a new price movement starts in an opposite trend,

GP for Directional Changes 35

Fig. 1. An example for DC. The grey line indicates the physical time series, the red
line denotes a series of DC and OS events as defined by a threshold of 0.01%, while the
blue line denotes a series of DC and OS events as defined by a threshold of 0.018%. DC
events are depicted with solid lines, while dotted lines denote the OS events. (Color
figure online)

eventually leading to a new DC event. Recent studies, however, have pointed
out that a DC event is not necessarily followed by an OS one [1].

Figure 1 presents an example of how to convert physical time series to DC
and OS events using two different thresholds (see the red and blue lines). Note
that thresholds may in principle vary, as traders need not necessarily agree on
which price movement constitutes a significant event; each such threshold leads
to a different event series. A smaller threshold leads to the identification of more
events and increases the opportunity of trade, while a larger threshold leads
to fewer events with greater price movement. Thus, selecting an appropriate
threshold is a key challenge.

By looking at the historical daily price movement (grey line) and the events
created by the threshold of 0.01% (red lines), there are plenty of price movements
that are not classified as events under the DC framework, as these do not exceed
the threshold. Only when a price change is larger than the threshold is the time
series divided into DC events (solid lines) and OS events (dotted lines). For
example, the solid red line from A to B is considered a DC event on a downturn,
while an OS event follows (from B to C). Then, a new DC event (in the opposite
direction) is detected from C to D and this is followed by an OS event from D
to E in an upturn, and so on.

It is worth noting that the change of trend can be confirmed only when the
price movement exceeds the threshold. In other words, we do not know when the
OS event ends until the next DC event (in the opposite direction) is confirmed.
For example, in Fig. 1, the point D is a DC event confirmation point. Before point

36 X. Long et al.

D, the last OS event is considered to be still active, while the trader considers
it to have been in a downward event. This leads to a paradox that on the one
hand, in order to maximise returns, trades should be closed as near as possible
to the endpoint of the OS event, and on the other hand, when the endpoint of
the OS event is detected, it is already well beyond that point. Therefore, figuring
out the extreme point where direction is reversed, such as point C in Fig. 1, is
an active research topic on the DC domain. In particular, several scaling laws
have been suggested to identify the OS event length.

The advantage of DC is that it offer traders a new perspective on price move-
ments; it allows them to focus on significant events and ignore other price move-
ments that could be considered as noise. Therefore, DC leads to new research
directions and challenges that are not relevant under physical time periods; in
the following section, we present existing work on DC.

2.2 Related Work

DC was first proposed by Guillaume et al. [12] and was formally defined by
Tsang [19] as an alternative, event-based method to the traditional physical
time model. Since DC is appropriate to handle non-fixed time intervals and
high-frequency data, a series of papers applies it on tick data from the Forex
market, see e.g. [7,14,15]. There exist two key issues in DC. The first is when
do the OS events end; clearly, this has impact on profit maximisation. In other
words, we are interested in figuring out the relationship between DC events and
OS events. In this direction, Glattfelder et al. [11] introduced 12 new empirical
scaling laws to establish quantitative relationships between price movements and
transactions in the foreign exchange market. Following along this path, Aloud
and Fasli [5] considered four new scaling laws under the DC framework and
concluded that these perform successfully on the foreign exchange market. To
name an example, one of the most prominent scaling laws states that OS takes,
on average, twice as long to reach the same amount of price change as the DC
event length. Recently, Adegboye and Kampouridis [1] proposed a novel DC
trading strategy which does not assume that a DC event is always followed by
an OS event; their results suggest that this strategy outperforms other DC-based
trading strategies, as well as the buy and hold strategy, when tested on 20 Forex
currency pairs.

The second key issue is the application of technical analysis under a DC
framework; technical analysis has been frequently used on physical time by
capturing features of markets, namely technical indicators. Aloud [3] converted
physical time data into event-based data and introduced a first set of indica-
tors tailored for the DC framework. Further DC indicators were suggested in
[20] and [21]. These DC indicators were applied to summarise price changes in
the Saudi Stock Market with the aim to help investors discover and capture
valuable information. Furthermore, Ao and Tsang [6] proposed two DC-based

GP for Directional Changes 37

trading strategies, namely TA1 and TA2, derived from the Average Overshoot
Length scaling law. Their results indicated a positive return for most cases in
FTSE 100, Hang Seng, NASDAQ 100, Nikkei 225, and S&P 500 stock market
indices. Very recently, a combination of DC with reinforcement learning, trained
by the Q-learning algorithm, was proposed by Aloud and Alkhamees [4] on S&P
500, NASDAQ, and Dow Jones stock market. Their results showcase substantial
return and an increase in the Sharpe ratio.

The above discussion reveals a relative scarcity of DC studies on the stock
market. Moreover, using DC-based indicators to derive trading strategies is still
in its infancy compared to the, well-established, technical analysis under physical
time. We remark that GP has been very effective in the past in combining
different (technical) indicators to derive profitable trading strategies, see e.g.
[9,10,13]. This naturally begs the question of how effective GP would be when
combined with DC-based indicators, and, hence, motivates us to compare such
an approach with a physical time model. Next, we introduce the GP methodology
while also presenting the GP-DC trading strategy we used.

3 Methodology

This section presents GP-DC, a genetic programming approach using indicators
suggested for the DC framework.

3.1 Genetic Programming Model

Terminal Set. After obtaining the daily closing prices for a dataset, we apply
the DC framework to summarise the prices as events. Then, from the event
series, we calculate the values of 28 indicators specific to the DC framework,
much alike technical indicators being derived from technical analysis in physical
time [16]. These 28 DC indicators have been introduced and discussed in [3]
and, together with an Ephemeral Random Constant (ERC), form the terminal
set. Whenever ERC is called, it returns a random number following the uniform
distribution and ranging between −1 and 1. In order to fit the range of ERC,
the DC indicators have been normalised.

Table 1 lists the DC indicators. In particular, there is a collection of 11 indi-
cators, some of which are calculated over a certain period (e.g. the total number
of DC events NDC can be calculated over a period of 10, 20, 30, 40, or 50 days),
thus leading to a total of 28 indicators. The third column in Table 1 takes the
value N/A for indicators not requiring a period length (namely OSV, TMV,
TDC , and RDC).

38 X. Long et al.

Table 1. DC indicators

Indicator Description Periods (days)

TMV TMV is the price movement between the
extreme point at the beginning and end of a
trend, normalised by the threshold θ

N/A

OSV OSV is calculated by the percentage
difference between the current price with
the last directional change confirmation
price divided by the threshold θ

N/A

Average OSV This is the average value of the OSV over
the selected period

3, 5, 10

RDC RDC represents the time-adjusted return of
DC. It could be calculated by the TMV
times threshold θ divided by the time
intervals between each extreme point

N/A

Average RDC This is the average value of the RDC over
the selected period

3, 5, 10

TDC This is the time spent on a trend N/A

Average TDC This is the average value of TDC over the
selected period

3, 5, 10

NDC NDC is the total number of DC events over
the selected period

10, 20, 30, 40, 50

CDC CDC is defined as the sum of the absolute
value of the TMV over the selected period

10, 20, 30, 40, 50

AT AT represents the difference between the
time DC spends on the up trends and down
trends over the selected period

10, 20, 30, 40, 50

Function Set. The function set includes two logical operators, namely AND
and OR, and two logical expressions, namely less than (<) and greater than (>).

Model Representation. The GP evolves logical expressions, where the root
is one of AND, OR, <, or >. These expressions are then integrated as the first
branch of an If-Then-Else (ITE) statement; see Part 1 of Fig. 2. The rest of the
ITE tree contains a ‘Then’ and an ‘Else’ branch; the former represents a buy
action, and always returns a leaf node with a value of 1. The latter represents
a hold action, and always returns a leaf node with a value of 0. Note that there
is no sell action during this structure; we will discuss the part of sell action in
Sect. 3.2. We did not include Part 2 in the GP is as its values are constants,
either 0 or 1; there was thus no need to evolve them.

GP for Directional Changes 39

Fig. 2. An example of the GP tree and the If-Then-Else structures. If OSV is greater
than 0.22 and NDC for 10 days is greater than −0.68, then we get a signal for a buy
action; otherwise, we hold.

Fitness Function. We use the Sharpe ratio as the fitness function of the GP
trading strategies. The advantage of using the Sharpe ratio is that it takes into
account both returns and risk:

SharpeRatio =
E(R) − Rf√

Var(R)
, (1)

whereE andVar stand for the sample mean value and the sample variance,R stands
for the rate of returns and Rf is the risk-free rate. The data used, i.e., the returns,
for computing the Sharpe ratio were obtained by the trading algorithm outlined
in Sect. 3.2, which indicates when the selling of the stocks will take place.

Selection Method and Operators. We use elitism, sub-tree crossover and
point mutation. We also use tournament selection to choose individuals as par-
ents for the above operators.

A summary of the GP configuration is presented in Table 2.

Table 2. Configuration of the GP algorithm

Configuration Value

Function set AND, OR, >, <

Terminal set 28 DC indicators and ERC

Genetic operators Elitism, subtree crossover and point mutation

Selection Tournament

40 X. Long et al.

3.2 Trading Strategy

The goal of the GP tree, which corresponds to our trading strategy, is to answer
the question: “Is the stock price going to increase by r% within the next n
days?”. If the GP tree returns True, we buy one amount of stock, unless we
already own the stock. If the GP tree returns False, we take no action (hold).
When we already own a stock, and the price increases by r% within the next
n days, we sell the stock on the given day this happens. If the price does not
increase by r% within the next n days, we sell the stock on the n-th day. Note
that short-selling is not allowed in this trading strategy. At the end of each sell
action, we calculate and record the resulting profit. All positions take transaction
costs into account; the transaction cost is 0.025% per trade. The above trading
strategy is summarised in Algorithm 1.

Algorithm 1. Our trading strategy given threshold r% and duration n days
Require: Initialise variables (O represents the prediction of the GP tree, while index

indicates whether the stock is held)
1: if O = 1 and index = 0 then
2: Buy one amount of stock
3: index ← 1
4: N ← i //Starting time for trade: i is always the current time
5: K ← p //Stock price when buying: p is always the current price
6: else
7: if (index = 1 and p > (1 + r/100) × K) OR (i − K) > n then
8: Sell the stock
9: index ← 0

10: Calculate and record profit
11: end if
12: end if

The rate of return from each trade is computed based on the price Pb we
bought and the price P we sold the stock; see Eq. (2). These returns are saved
as a list and, eventually, we compute the sample mean of that list, which gives
the overall rate of return; this is the input to Eq. (1) to determine the Sharpe
ratio. The risk, as seen in Eq. 3, is the standard deviation of that list.

R =
{

0.99975 · P − 1.00025 · Pb

1.00025 · Pb

}
· 100% (2)

Risk =
√

Var(R) (3)

4 Experimental Set up

4.1 Data

Recall that, as discussed in Sect. 1, our goal is to evaluate GP-DC algorithm
on the stock market. We use data from three international markets, namely the

GP for Directional Changes 41

DAX performance index, Nikkei 225, and the Russell 2000 index. From each
index, we downloaded 10 stocks from Yahoo! Finance, as well as the data for the
index themselves. Therefore in total, we use 33 datasets (3 markets × 10 stocks
+ 3 indices). Each dataset consists of daily closing prices for the period 2015 to
2020 and was split into three parts, namely training (2015 to 2018), validation
(2019), and test (2020), as follows: 60%:20%:20%. All data were then converted
into DC indicators (see Table 1), and normalised, as explained in Sect. 3.1.

4.2 Benchmarks

We compare the performance of the GP-DC trading strategy against GP-PT as
well as buy-and-hold, a typical financial benchmark. For the GP-PT algorithm,
we use the same GP as the one described above in Sect. 3. The only difference
is that its terminals are now based on technical analysis (physical time), rather
than directional changes. To make the comparison fairer, the number of technical
indicators in the GP-PT algorithm is equal to that of the DC indicators in the
GP-DC algorithm. We select the indicators which are prevalent in the finance
field [17]. These indicators are: each of Moving Average, Commodity Channel
Index, Relative Strength Index, and William’s %R with periods of 10, 20, 30,
40, and 50 days, each of Average True Range, and Exponential Moving Average
with periods of 3, 5, 10 days, and finally, On Balance Volume and parabolic SAR
without periods; hence, we obtain 28 technical indicators.

4.3 Parameter Tuning for GP

We performed a grid search to decide on the optimal GP parameters for both
the GP-DC and GP-PT algorithms, and tuning took place by using the valida-
tion set. Based on [18], we adopted the most common values for each parameter,
namely 4, 6, 8 (max depth); 100, 300, 500 (population size); 0.75, 0.85, 0.95
(crossover probability); 2, 4, 6 (tournament size); and 25, 35, 50 (number of gen-
erations). Mutation probability is equal to (1-crossover probability), so we did
not need to separately tune this parameter. Table 3 shows the selected parame-
ters and their value after tuning.

Table 3. Parameters of the GP algorithm

Parameters Value

Max depth 6

Population size 500

Crossover probability 0.95

Tournament size 2

Numbers of generation 50

42 X. Long et al.

4.4 Parameter Tuning for Trading Strategy

Recall that there are 3 parameters on our trading strategy, 2 parameters derived
for the question “whether the stock price will increase by r% during the next n
days?” and one parameter is the threshold on DC. Rather than tuning the above
parameters and then selecting the best set across all datasets (which is what we
did for the GP), we decided to allow for tailored values for each dataset. The
configuration space for these three parameters is presented in Table 4.

Buy and hold is also a useful benchmark, as it compares the GPs’ performance
against the market performance. We will thus also report the buy and hold
performance of each dataset.

Table 4. Configuration space for the trading strategy

Parameters Configuration space

n (days-ahead of prediction) 1, 5, 15

r (percentage of price movement) 1%, 5%, 10%, 20%

Threshold of DC 0.001, 0.002, 0.005, 0.01, 0.02

5 Result and Analysis

In this section, we present our results for the DC model, the physical time
model and the traditional benchmark of buy and hold. Our aim is to study the
competitiveness of the DC-based indicators and whether the resulting trading
strategies can outperform the traditional technical analysis (GP-PT) trading
strategies.

5.1 Comparison Between GP-DC and GP-PT

Table 5 presents summary statistics across all 33 datasets under rate of return
(ROR), risk, and Sharpe ratio (SR). As we can observe, the GP-DC algorithm
outperformed GP-PT algorithm in terms of average, median, and maximum
results for ROR and SR. On the other hand, GP-PT algorithm did better in
terms of average, median, and maximum risk.

Figure 3 presents the box plots of the above results, and we can reach similar
conclusions as from Table 5. Furthermore, not only the values but also the overall
box plot of GP-DC algorithm is higher in terms of ROR and SR, when compared
to the GP-PT algorithm. When arguing about risk, the GP-DC’s plot is higher
than the GP-PT’s one, indicating more risky behavior by GP-DC. Furthermore,
the ROR for each trade of DC is concentrated above zero. In contrast, the results
of the GP-PT algorithm have many negative values, which indicate that GP-DC
algorithm is more competitive than the GP-PT algorithm in terms of rate of
return.

GP for Directional Changes 43

To confirm the above results, we performed the non-parametric Kolmogorov-
Smirnov test between the GP-DC and GP-PT results distributions. We ran
the test for each metric (ROR, risk, and SR). The p-value for each test was
0.0082, 0.8107, and 0.6015, respectively. As the p-value for ROR was below 0.05,
it denotes that the null hypothesis is rejected at the 5% significance level, thus
making the differences in rate of return between GP-DC and GP-PT statistically
significant. On the other hand, even though GP-PT algorithm had a lower risk,
the differences were not statistically significant. Similarly, even though GP-DC
algorithm outperformed GP-PT algorithm in terms of SR, their difference was
not statistically significant.

Table 5. Summary statistics of the GP-DC and GP-PT algorithm. The best values
per metric appear in boldface.

Measurement Rate of return Risk Sharpe ratio (SR)

Algorithms GP-DC GP-PT GP-DC GP-PT GP-DC GP-PT

Average 1.4949% −0.0566% 0.1062 0.0898 0.3403 0.2919

Median 1.7943% −0.2495% 0.0814 0.0757 0.2985 0.1207

Maximum 9.7798% 7.9318% 0.3273 0.2340 1.3688 1.3382

Minimum −7.5580% −4.7622% 0.0280 0.0280 −0.5037 −0.2604

These results show the potential of the DC approach to act as a comple-
mentary approach to the physical time one, as it can yield statistically higher
returns than physical time technical analysis indicators. However, it should also
be noted that this happened at the expense of a slightly higher risk. Therefore,
it deserves further study whether more fine-tuned DC strategies can also lead to
lower risk, or, perhaps, whether a mix of DC and physical time strategies is to
be suggested.

5.2 Buy and Hold

We now compare the performance of the GP-DC and GP-PT algorithms with
the buy-and-hold strategy, where one unit of stock is bought on the first day
of trading and sold on the last day. Because of the nature of buy-and-hold,
the standard deviation cannot be calculated since there is only a single buy-
sell action and thus a single profit value; similarly, we cannot calculate risk and
SR. Besides, rate of return is not a very meaningful metric for comparison, as
both GP-DC and GP-PT algorithms have a high number of trades, while buy-
and-hold has a single trade. To make a fairer comparison, we instead use the
cumulative returns over the test set.

As we can observe in Table 6, the GP-DC algorithm has a significantly higher
average and median values compared to the GP-PT algorithm and buy-and-hold

44 X. Long et al.

Fig. 3. Box plot of DC and physical time

(GP-DC average: 13.85%; median: 11.94%. GP-PT average: −1.53%; median:
−2.73%. Buy-and-hold average: −4.08%; median: −10.81%). On the other hand,
the highest cumulative returns is observed for buy-and-hold (around 135%),
and the lowest for GP-DC (around −33%). It is also worth noting that the
markets tested in this article are predominately bear markets, as it is also evident
by the negative average and median cumulative returns of the buy and hold
strategy. Since we use 2020 data as our test data, the occurrence of COVID 19
in 2020 significantly affects the stock market explaining the negative cumulative
returns. Therefore the fact that GP-DC algorithm has achieved strong average
and median cumulative return performance indicates its high potential as a
profitable trading paradigm.

The above results are also confirmed by looking at the distribution of results
presented in Fig. 4. The majority of the values presented in the box plot for
GP-DC algorithm have higher values (i.e. cumulative returns) than the other
two approaches. These results are supported by the Kolmogorov-Smirnov tests,
which returned a p-value of 0.0082 in the comparison of GP-DC and GP-PT
algorithms, and a p-value of 4.83E−04 for the comparison of DC and buy-and-
hold. It should be noted that statistical significance in this case at the 5% level

GP for Directional Changes 45

Table 6. Cumulative returns of GP-DC, GP-PT, and buy and hold. Best values
denoted in boldface.

Model Average Median Maximum Minimum

GP-DC 13.8498% 11.9383% 83.2537% −33.0880%

GP-PT −1.5341% −2.7340% 59.4906% −33.5400%

Buy and hold −4.0821% −10.8100% 135.9218% −42.7290%

Fig. 4. Box plot of cumulative returns for GP-DC, GP-PT, and buy-and-hold

is for p-values below 0.025, after taking into account the Bonferroni correction
for the (two) multiple comparisons.

6 Conclusion

We have explored the benefit of combining genetic programming with indicators
tailored for a directional changes framework. Our main contribution is to pro-
vide evidence for the effectiveness of this approach in the stock market. To do
so, we conducted experiments on 33 datasets from 3 different international stock
markets. Over these datasets, our approach (GP-DC) statistically outperformed
the GP-PT algorithm, that combines genetic programming with technical indi-
cators based on physical time, as well as the buy and hold strategy, in terms of
cumulative return, rate of return, and Sharpe ratio. On the other hand, GP-PT
algorithm had lower risk than GP-DC, although this finding is not statistically
significant. The above results demonstrate that GP-DC is competitive against

46 X. Long et al.

these two benchmarks in the stock market and can also be considered as a com-
plementary technique to physical time.

Future work will thus focus on creating new trading strategies that com-
bine technical analysis (physical time) and DC indicators. We believe that such
strategies have the potential to bring in further improvements in profitability
and risk and outperform the standalone strategies from technical analysis and
directional changes.

References

1. Adegboye, A., Kampouridis, M.: Machine learning classification and regression
models for predicting directional changes trend reversal in FX markets. Exp. Syst.
Appl. 173, 114645 (2021)

2. Adegboye, A., Kampouridis, M., Johnson, C.G.: Regression genetic programming
for estimating trend end in foreign exchange market. In: 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

3. Aloud, M.E.: Time series analysis indicators under directional changes: the case of
Saudi stock market. Int. J. Econ. Financ. Issues 6(1), 55–64 (2016)

4. Aloud, M.E., Alkhamees, N.: Intelligent algorithmic trading strategy using rein-
forcement learning and directional change. IEEE Access 9, 114659–114671 (2021)

5. Aloud, M., Fasli, M.: Exploring trading strategies and their effects in the for-
eign exchange market: exploring trading strategies. Comput. Intell. 33(2), 280–307
(2016)

6. Ao, H., Tsang, E.: Trading algorithms built with directional changes. In: 2019 IEEE
Conference on Computational Intelligence for Financial Engineering & Economics
(CIFEr), pp. 1–7. IEEE (2019)

7. Bakhach, A., Tsang, E., Ng, W.L., Chinthalapati, V.R.: Backlash agent: a trading
strategy based on directional change. In: 2016 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 1–9. IEEE (2016)

8. Brabazon, A., Kampouridis, M., O’Neill, M.: Applications of genetic programming
to finance and economics: past, present, future. Genet. Program Evolvable Mach.
21(1), 33–53 (2020)

9. Christodoulaki, E., Kampouridis, M., Kanellopoulos, P.: Technical and sentiment
analysis in financial forecasting with genetic programming. In: IEEE Symposium
on Computational Intelligence for Financial Engineering and Economics (CIFEr)
(2022)

10. Claveria, O., Monte, E., Torra, S.: Evolutionary computation for macroeconomic
forecasting. Comput. Econ. 53(2), 833–849 (2019)

11. Glattfelder, J.B., Dupuis, A., Olsen, R.B.: Patterns in high-frequency FX data:
discovery of 12 empirical scaling laws. Quant. Financ. 11(4), 599–614 (2011)

12. Guillaume, D.M., Dacorogna, M.M., Davé, R.R., Müller, U.A., Olsen, R.B., Pictet,
O.V.: From the bird’s eye to the microscope: a survey of new stylized facts of the
intra-daily foreign exchange markets. Financ. Stochast. 1(2), 95–129 (1997)

13. Hamida, S.B., Abdelmalek, W., Abid, F.: Applying dynamic training-subset selec-
tion methods using genetic programming for forecasting implied volatility. arXiv
preprint arXiv:2007.07207 (2020)

14. Hussein, S.M.: Event-based microscopic analysis of the FX market. Ph.D. thesis,
University of Essex (2013)

http://arxiv.org/abs/2007.07207

GP for Directional Changes 47

15. Kampouridis, M., Adegboye, A., Johnson, C.: Evolving directional changes trading
strategies with a new event-based indicator. In: Shi, Y., et al. (eds.) SEAL 2017.
LNCS, vol. 10593, pp. 727–738. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68759-9 59

16. Kampouridis, M., Tsang, E.: Investment opportunities forecasting: extending the
grammar of a GP-based tool. Int. J. Comput. Intell. Syst. 5(3), 530–541 (2012)

17. Kelotra, A., Pandey, P.: Stock market prediction using optimized Deep-ConvLSTM
model. Big Data 8(1), 5–24 (2020)

18. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008). Published via http://lulu.com and freely available at http://www.gp-field-
guide.org.uk. (With contributions by JR Koza)

19. Tsang, E.: Directional changes, definitions. Working Paper WP050-10 Centre
for Computational Finance and Economic Agents (CCFEA), University of Essex
Revised 1, Technical report (2010)

20. Tsang, E. P. K., Tao, R., Ma, S.: Profiling financial market dynamics under direc-
tional changes. Quantit. Finan. (2016). https://doi.org/10.1080/14697688.2016.
1164887

21. Tsang, E.P., Tao, R., Serguieva, A., Ma, S.: Profiling high-frequency equity price
movements in directional changes. Quant. Financ. 17(2), 217–225 (2017)

https://doi.org/10.1007/978-3-319-68759-9_59
https://doi.org/10.1007/978-3-319-68759-9_59
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
https://doi.org/10.1080/14697688.2016.1164887
https://doi.org/10.1080/14697688.2016.1164887

Importance-Aware Genetic Programming
for Automated Scheduling Heuristics

Learning in Dynamic Flexible Job Shop
Scheduling

Fangfang Zhang1(B) , Yi Mei1 , Su Nguyen2 , and Mengjie Zhang1

1 School of Engineering and Computer Science, Victoria University of Wellington,
PO BOX 600, Wellington 6140, New Zealand

{fangfang.zhang,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz
2 Centre for Data Analytics and Cognition, La Trobe University, Bundoora, Australia

P.Nguyen4@latrobe.edu.au

Abstract. Dynamic flexible job shop scheduling (DFJSS) is a critical
and challenging problem in production scheduling such as order picking
in the warehouse. Given a set of machines and a number of jobs with a
sequence of operations, DFJSS aims to generate schedules for completing
jobs to minimise total costs while reacting effectively to dynamic changes.
Genetic programming, as a hyper-heuristic approach, has been widely
used to learn scheduling heuristics for DFJSS automatically. A schedul-
ing heuristic in DFJSS includes a routing rule for machine assignment
and a sequencing rule for operation sequencing. However, existing stud-
ies assume that the routing and sequencing are equally important, which
may not be true in real-world applications. This paper aims to propose
an importance-aware GP algorithm for automated scheduling heuristics
learning in DFJSS. Specifically, we first design a rule importance mea-
sure based on the fitness improvement achieved by the routing rule and
the sequencing rule across generations. Then, we develop an adaptive
resource allocation strategy to give more resources for learning the more
important rules. The results show that the proposed importance-aware
GP algorithm can learn significantly better scheduling heuristics than
the compared algorithms. The effectiveness of the proposed algorithm
is realised by the proposed strategies for detecting rule importance and
allocating resources. Particularly, the routing rules play a more impor-
tant role than the sequencing rules in the examined DFJSS scenarios.

Keywords: Importance-aware scheduling heuristics learning · Genetic
programming · Hyper-heuristic · Dynamic flexible job shop scheduling

1 Introduction

Dynamic flexible job shop scheduling (DFJSS) [1,2] is an important com-
binatorial optimisation problem which is valuable in real-world applications
such as production scheduling in manufacturing and processing industries [3,4].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 48–62, 2022.
https://doi.org/10.1007/978-3-031-14721-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_4&domain=pdf
http://orcid.org/0000-0001-5516-3972
http://orcid.org/0000-0003-0682-1363
http://orcid.org/0000-0002-1153-5022
http://orcid.org/0000-0003-4463-9538
https://doi.org/10.1007/978-3-031-14721-0_4

Importance-Aware GP for Automated SHs Learning in DFJSS 49

The goal of DFJSS is to find effective schedules to process a number of jobs by a
set of machines [5]. In DFJSS, each job consists of a number of operations, and
each operation can be processed by more than one machine. Two decisions, i.e.,
machine assignment to allocate operations to machines and operation sequenc-
ing to select an operation to be processed next by an idle machine, need to be
made simultaneously. In addition, the decision marking has to be made under
dynamic environments such as continuously job arrival [6,7].

Genetic programming (GP) [8], as a hyper-heuristic approach [9–12], has been
successfully used to learn scheduling heuristics for DFJSS [13,14]. For GP in
DFJSS, a scheduling heuristic consists of a routing rule and a sequencing rule
which are used to make decisions on machine assignment and operation sequenc-
ing, respectively. The quality of schedules depends on the interaction of the rout-
ing rule and the sequencing rule. These two rules in previous studies are normally
regarded as being equally important, and are given the same amount of computa-
tional resources to evolve. However, this is not necessarily the case in real world
applications, and giving too many computational resources to less important rules
may lead to a waste of resources and negatively affect the quality of schedules.

To this end, this paper aims to propose an effective importance-aware
scheduling heuristics learning GP approach for DFJSS. The developed rule
importance measure reflects the significance of the routing rule and the sequenc-
ing rule in DFJSS. Inspired by the computation resource allocation strategy
that is widely used to allocate resources to sub-problems [15–19], an adaptive
computational resource allocation strategy is designed to give more resources for
learning the more important rules. In this paper, we use the number of individu-
als to represent the magnitude of the resources. The proposed algorithm aims to
help GP find better scheduling heuristics by allocating proper number of individ-
uals between learning the routing and sequencing rules in DFJSS. Specifically,
this paper has the following research objectives.

– Develop an effective strategy to measure the importance of the routing rule
and the sequencing rule in the decision making of DFJSS.

– Propose an adaptive computational resource allocation strategy based on the
rule importance.

– Analyse the effectiveness of the proposed algorithm in terms of the perfor-
mance of learned rules.

– Analyse how the proposed algorithm affects GP’s behaviour in terms of the
number and the ratio of individuals assigned, and the reward for each rule.

– Analyse the effect of the proposed algorithm on the sizes of the learned
scheduling heuristics.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In DFJSS, m machines M = {M1,M2, ...,Mm} are required to process n jobs J =
{J1, J2, ..., Jn}. Each job Jj has a sequence of operations Oj = {Oj1, Oj2, ..., Ojlj}
that need to be processed one by one, where lj is the number of operations of job Jj .

50 F. Zhang et al.

Fig. 1. An example of the routing rule learned by GP.

Each operation Oji can be processed on more than one machine M(Oji) ⊆ π(Oji)
[20]. Thus, the machine that processes an operation determines its processing time
δ(Oji,M(Oji)). This paper focuses on one of the most common dynamic events in
real life, i.e., new jobs arrive dynamically [21,22]. The information about a new job
is unknown until it arrives on the shop floor. Below are the main constraints of the
DFJSS problems.

– A machine can only process one operation at a time.
– Each operation can be handled by only one of its candidate machines.
– An operation cannot be handled until its precedents have been processed.
– Once started, the processing of an operation cannot be stopped.

We consider three commonly used objectives in this paper. The calculations
of them are shown as follows.

– Mean-flowtime (Fmean):
∑n

j=1 (Cj−rj)

n

– Mean-tardiness (Tmean):
∑n

j=1 max{0,Cj−dj}
n

– Mean-weighted-tardiness (WTmean):
∑n

j=1 wj∗max{0,Cj−dj}
n

where Cj represents the completion time of a job Jj , rj represents the release
time of Jj , dj represents the due date of Jj , and n represents the number of jobs.

2.2 GP for DFJSS

GP starts with a randomly initialised population that contains a number of
individuals (i.e., initialisation). GP programs consist of terminals and functions,
which are naturally priority functions for prioritising machines and operations in
DFJSS. Figure 1 shows an example of the routing rule which is a priority function
of WIQ+ NIQ * MWT where WIQ and NIQ are the workload and the number of
operations in the queue of a machine, MWT is the needed time of a machine to
finish its current processing operation. The quality of individuals is evaluated by
measuring the decision marking performance of applying individuals on DFJSS
simulations (i.e., evaluation). New offspring are generated by genetic operators,
i.e., crossover, mutation, and reproduction, with selected parents (i.e., evolution).
New offspring will be put into and evaluated in the next generation. GP improves
the quality of individuals generation by generation until the stopping criterion
is met. The best learned scheduling heuristic at the last generation is reported
as the output of the GP algorithm [23,24].

Importance-Aware GP for Automated SHs Learning in DFJSS 51

Subpop1 for Rouitng

Population Initialisation

g < maxGen

Rule Importance Calculation

Subpop2 for Sequencing

Individual Evaluation

 with training instance at generation g

crossover, mutation and reproduction

Evolution
Sequencing

g = g +1

Computational Resource
Allocation

Subpop1 for Routing Subpop2 for Sequencing

Routing
Yes

No

Fig. 2. The flowchart of the proposed algorithm.

3 Importance-Aware Scheduling Heuristic Learning

3.1 An Overview of the Proposed Algorithm

Figure 2 shows the flowchart of the proposed algorithm, and the newly devel-
oped components are highlighted in red. We use cooperative coevolution strat-
egy to learn the routing rule and the sequencing rule simultaneously [25,26].
The population consists of two subpopulations, and the first (second) subpop-
ulation Subpop1 (Subpop2) is used to learn the routing (sequencing) rule. The
evolutionary processes of the two subpopulations are independent except for the
individual evaluation. Since a routing rule and a sequencing rule have to work
together to make decisions in DFJSS, for individual evaluation, the individu-
als in Subpop1 (Subpop2) at the current generation are evaluated with the best
individual in Subpop2 (Subpop1) at the previous generation. The best scheduling
heuristic obtained from the whole population is reported as the best at the cur-
rent generation, i.e., can either be from Subpop1 or from Subpop2. Since there
is no previous generation for the first generation, for individual evaluation in
Subpop1 (Subpop2), we randomly select one individual in Subpop2 (Subpop1).

Before evolution, we first measure the importance of the routing rule and
the sequencing rule. Then, we use the rule importance information to allocate
computational resources, i.e., individuals, for learning different rules. More com-
putational resources will be allocated to the important rule, which is expected
to improve the overall scheduling effectiveness in DFJSS. The number of indi-
viduals in Subpop1 and Subpop2 is adaptive. As the example shown in Fig. 2, at
the beginning, there are two individuals in each subpopulation for learning each
rule. After the computational resources allocation, three individuals are used to
learn the routing rule and one individual is utilised for the sequencing rule. The
details of the developed new components are shown in the following subsections.

3.2 Measure the Importance of the Routing and Sequencing Rules

This paper measures the importance of rules based on their contributions to the
fitness improvement which is calculated according to consecutive generations.

52 F. Zhang et al.

Algorithm 1: Reward Calculation of the Routing and Sequencing Rule

1: rewardRouting = 0, rewardSequencing = 0, counter = 3
2: while counter � g do
3: if fitness1 < fitness′

1 and fitness2 < fitness′
2, or fitness1 > fitness′

1

and fitness2 > fitness′
2 then

4: if �1 < �2 then
5: rewardRouting = rewardRouting + 1
6: end
7: if �1 > �2 then
8: rewardSequencing = rewardSequencing + 1
9: end

10: if �1 = �2 then
11: rewardRouting = rewardRouting + 0
12: rewardSequencing = rewardSequencing + 0

13: end

14: else
15: rewardRouting = rewardRouting + 0
16: rewardSequencing = rewardSequencing + 0

17: end
18: counter = counter + 1

19: end
20: return rewardRouting, rewardSequencing

We assume the best fitness of Subpop1 and Subpop2 are fitness1 and fitness2
at the current generation, and fitness′

1 and fitness′
2 at the previous generation.

We calculate the fitness improvement of Subpop1 for learning routing rules and
Subpop2 for learning sequencing rules as �1 = (fitness1 − fitness′

1)/fitness′
1

and �2 = (fitness2 − fitness′
2)/fitness′

2, respectively. In the general min-
imisation problems, we can compare �1 and �2 directly (i.e., �1 � 0 and
�2 � 0), and treat the one with smaller � (i.e., larger |�|) as the important
one. However, it is not always the case in this paper due to the used instance
rotation strategy, i.e., different generations use different training instances, which
has been successfully used to train scheduling heuristics with GP [27,28]. This
indicates that the fitness scales are different across generations due to the differ-
ence of training instances, and we are not sure whether the fitness will increase
or decrease across consecutive generations. Thus, this paper defines that the
routing rule will be more important than the sequencing rule when �1 < �2
under the conditions of either fitness1 > fitness′

1 and fitness2 > fitness′
2

or fitness1 < fitness′
1 and fitness2 < fitness′

2 (lines 3–13). The rewards for
the routing rule rewardRouting and the sequencing rule rewardSequencing are
calculated as shown in Algorithm 1, where g is the current generation number. It
is noted that we do not measure the rule importance at the generations in either
of the following two cases, i.e., If fitness1 > fitness′

1 and fitness2 < fitness′
2,

or If fitness1 < fitness′
1 and fitness2 > fitness′

2 (lines 14–17), due to the
unknown fitness change information. How to measure rule importance in these
two cases will be studied in our future work.

Importance-Aware GP for Automated SHs Learning in DFJSS 53

3.3 Adaptive Computational Resource Allocation Strategy

We start to measure the rule importance from generation three (i.e., g � 3,
population at generation 1 is randomly initialised, and we do not consider it
for avoiding randomness). At a generation, we use the reward obtained by rules
so far to decide the number of individuals for learning each rule. The ratios for
deciding the number of individuals for the routing rule is shown as below:

ratioRouting =
rewardRouting

rewardRouting + rewardSequencing
(1)

Thus, the number of offspring generated per generation for learning the rout-
ing rule and sequencing rule is popsize ∗ ratioRouting and popsize ∗ (1 −
ratioRouting), respectively. The number of individuals for learning the rout-
ing and sequencing rule is adaptive over generations, which are highly related to
the rule importance.

4 Experiment Design

Simulation Model: This paper considers to process 6000 jobs including 1000
warm-up jobs with ten machines. The importance of jobs varies which are repre-
sented by weight, i.e., 20%, 60%, 20% jobs are with weights 1, 2, and 4, respec-
tively [29]. Each job has a certain number of operations which follows a uniform
discrete distribution between one and ten. Each operation can be processed by
more than one machine, where the number of options follows a uniform discrete
distribution between one and ten. The processing time of each operation follows
a uniform discrete distribution with the range [1, 99]. Utilisation level (P) is a
factor to simulate different DFJSS scenarios, and a higher utilisation level indi-
cates a busier DFJSS. The utilisation is calculated as P = μ ∗ PM/λ, where μ is
the average processing time of machines, PM is the probability of a job visiting
a machine, λ is the rate of the Poisson process for simulating job arrival.

Design of Comparisons: GP, which has an equal number of individuals for learn-
ing the routing and sequencing rules, is selected as a baseline for comparison.
The algorithm that gives the important rule more individuals is named IGP.
To measure the performance of IGP, IGP will be compared with GP. To fur-
ther verify the effectiveness of IGP, we compare with a reverse algorithm named
UNIGP that gives unimportant rule more individuals by swapping the number of
individuals for routing and sequencing rules obtained by the proposed individual
allocation strategy. The scenarios with utilisation levels of 0.75, 0.85 and 0.95 are
used to measure the performance of algorithms. The scenarios are represented
as <objective, utilisation level> such as <Fmean, 0.75>.

Parameter Settings: All the algorithms have 1000 individuals with two sub-
populations. Each subpopulation is 500 individuals. IGP and UNIGP have an
adaptive number of individuals across generations. Each individual of the algo-
rithm consists of terminals, i.e., shown in Table 1 [21], and functions, i.e., +,

54 F. Zhang et al.

Table 1. The terminal and function sets.

Terminals Description

Machine-related NIQ The number of operations in the queue

WIQ Current work in the queue

MWT Waiting time of a machine

Operation-related PT Processing time of an operation

NPT Median processing time for next operation

OWT Waiting time of an operation

Job-related WKR Median amount of work remaining of a job

NOR The number of operations remaining of a job

W Weight of a job

TIS Time in system

Table 2. The mean (standard deviation) of objective values on test instances of GP,
IGP, and UNIGP according to 30 independent runs in nine scenarios.

Scenarios GP IGP UNIGP

<Fmean, 0.75> 336.23(1.26) 335.63(1.07)(↑) 335.94(1.19)(≈)(≈)

<Fmean, 0.85> 384.69(1.63) 383.79(1.50)(↑) 386.97(4.06)(↓)(↓)
<Fmean, 0.95> 550.94(5.79) 549.69(2.95)(≈) 558.08(9.64)(↓)(↓)
<Tmean, 0.75> 13.28(0.40) 13.09(0.29)(↑) 13.76(0.77)(↓)(↓)
<Tmean, 0.85> 40.27(1.85) 39.56(0.82)(≈) 42.15(2.92)(↓)(↓)
<Tmean, 0.95> 175.49(2.85) 174.25(2.43)(↑) 182.88(6.94)(↓)(↓)
<WTmean, 0.75> 27.04(1.05) 26.66(1.02)(↑) 27.71(2.22)(≈)(↓)
<WTmean, 0.85> 75.82(3.83) 74.46(1.90)(↑) 76.57(4.37)(≈)(↓)
<WTmean, 0.95> 294.58(9.65) 290.45(6.10)(↑) 303.93(15.40)(↓)(↓)
Average rank 2 1.51 2.49

* An algorithm is compared with its left algorithm(s) one by one if has.

−, ∗, protected /, max, min. The initialised GP programs are generated by the
ramp-half-and-half method with a minimal (maximal) depth of 2 (6). The depths
of all programs are no more than 8. Tournament selection with size 7 is used to
select parents for producing offspring. The new offspring are generated by elites
of a value of 10, and crossover, mutation and reproduction with rates 80%, 15%,
and 5%, respectively. The maximal number of generations of algorithms is 51.

5 Results and Discussions

We use the results from 30 independent runs to verify the performance of the
proposed algorithm. We apply the Friedman test to see whether there is a signif-
icant difference among algorithms. If yes, then Wilcoxon test with a significance
level of 0.05. is used to compare two algorithms, and “↑”, “↓”, “≈” indicate an
algorithm is better, worse or similar with the compared algorithm.

Importance-Aware GP for Automated SHs Learning in DFJSS 55

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

550
560
570

170
180
190
200

290
300
310
320
330
340

380
384
388
392
396

40.0
42.5
45.0
47.5

75
80
85
90

334
336
338
340

13
14
15

27.5
30.0
32.5

Algorithm

Te
st

 P
er

fo
rm

an
ce

GP IGP UNIGP

Fig. 3. Violin plots of the obtained objective values on test instances of GP, IGP and
UNIGP according to 30 independent runs in nine scenarios.

Quality of Learned Scheduling Heuristics: Table 2 shows the mean and
standard deviations of objective values on unseen instances of GP, IGP and
UNIGP over 30 independent runs in nine scenarios. The results show that IGP is
significantly better than GP in most of the examined scenarios. This verifies the
effectiveness of the proposed algorithm with adaptive computational resources
allocation strategy. In addition, UNIGP is much worse than baseline GP and
IGP which is as expected, since UNIGP applies the opposite idea from IGP.
This verifies the proposed algorithm from a reverse point of view. Overall, we
can see that IGP is the best algorithm among them with the smallest rank value
of 1.51. Figure 3 shows the violin plots of obtained test objective values of GP,
IGP, and UNIGP based on 30 independent runs in nine scenarios. We can see
that the proposed algorithm IGP shows its superiority and achieves the best
performance with a lower objective distribution.

Accumulated Rewards for Routing and Sequencing Rules: Figure 4
shows the curves of average accumulated reward values of IGP-Routing and
IGP-Sequencing based on 30 independent runs in nine scenarios. It is clear that
the reward values for the routing rule are increasing steadily along with the
generations. However, there is only a small increase on the reward values of the
sequencing rules in most of the scenarios. The results show that the routing rule
plays a more important role than the sequencing rule in DFJSS. The proposed
algorithm is expected to give more individuals for learning the routing rules.

56 F. Zhang et al.

Fig. 4. Curves of average accumulated reward values of IGP-Routing and IGP-
Sequencing according to 30 independent runs in nine scenarios.

Fig. 5. Scatter plots of the number of individuals for learning the routing rule and the
sequencing rule across all generations of GP, IGP, and UNIGP.

The Number of Individuals for Learning Rules: Figure 5 shows the scat-
ter plots of individuals for learning the routing and sequencing rule across all
generations of GP, IGP and UNIGP in scenario <Fmean, 0.75>. For GP, a
fixed number of individuals are equally set for learning the routing rule (i.e., 500
individuals) and the sequencing rule (i.e., 500 individuals). IGP gives more indi-
viduals for learning the routing rule, which UNIGP biases more on the learning
on the sequencing rule. The results show that the routing rule is more important
than the sequencing rule in DFJSS. Furthermore, the proposed algorithm IGP
can adaptively allocate more individuals for learning the routing rule. Similar
pattern is also found in other scenarios.

Ratios of Number of Individuals for Learning the Routing Rule:
Figure 6 shows the curves of average ratios of the number of individuals for
learning the routing rule along with generations of IGP and UNIGP. At the
first two generations, the ratios of the number of individuals for learning routing

Importance-Aware GP for Automated SHs Learning in DFJSS 57

Fig. 6. Curves of the average ratios of the number of individuals for learning the routing
rule along with generations of IGP and UNIGP according to 30 independent runs.

and sequencing rules are the same, which are 0.5 in all scenarios (computational
resource allocation starts at generation three). From generation three, IGP starts
to increase the ratios of the number of individuals for learning routing rules. After
generation 20, the ratios arrive at a relatively steady state, which are around
0.85 in most scenarios. UNIGP has shown the opposite trend, where the ratios of
the number of individuals for learning the routing rule keep decreasing to about
0.15 at generation 20 and stay at a relatively constant number after that.

Comparison with Algorithms with Fixed Number of Individuals: Based
on the discussion in the previous section, we can see that the found ratios of
individuals for the routing rule are around 0.85. In other words, about 850 (i.e.,
1000 * 0.85) individuals are used by IGP for learning the routing rule. It is inter-
esting to know whether fixing the number of individuals for learning rules can
get the same performance as IGP or not. To investigate this, we compare IGP
with GP500, GP650 and GP850, where 500 (500), 650 (350), and 850 (150)
are the number of individuals for learning the routing (sequencing) rule. We
choose the most complex scenarios (i.e., <WTmean, 0.75>, <WTmean, 0.85>,
and <WTmean, 0.95>) that consider the job importance for this investigation.
Figure 7 shows the curves of the average objective values of GP500, GP650,
GP850 and IGP on test instances in mean-weighted-tardiness related scenarios
over 30 independent runs. The results show that GP850 performs better than
GP500 and GP650 in most cases. This indicates that finding a good threshold
for the number of individuals for learning rules can improve the performance.
In addition, the results also show that IGP shows its superiority compared with
all other algorithms in terms of the convergence speeds and final performance.

58 F. Zhang et al.

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

20 30 40 50 20 30 40 50 20 30 40 50
290

295

300

305

310

76

78

80

26.5
27.0
27.5
28.0
28.5
29.0

Generation

Te
st

 P
er

fo
rm

an
ce

GP500 GP650 GP850 IGP

Fig. 7. Curves of average objective values of GP500, GP650, GP850 and IGP on test
instances in mean-weighted-tardiness related scenarios based on 30 independent runs.

We can see that simply fixing the number of individuals for learning rules is not
effective as an adaptive computational resource allocation strategy. One possible
reason is that the importance of the routing rule and sequencing rules’ impor-
tance may differ on different instances at different generations. Another possible
reason is that although the routing rule and the sequencing rule differ in impor-
tance to the schedule, it is still necessary to allocate enough resources to learn
the less important rule to get a good enough rule before generation 20 as shown
in Fig. 6 (i.e., the schedule quality in DFJSS depends on two rules). The supe-
rior performance of IGP verifies the effectiveness of the proposed algorithm to
detect rule importance and allocate computational resources automatically and
adaptively.

Sizes of the Learned Scheduling Heuristics: To verify the effect of the
proposed IGP on learned scheduling heuristics, this section investigates rule
size. We use the number of nodes for measuring the rule sizes [30]. Since the
routing rule and the sequencing rule work together in DFJSS, it is reasonable to
look at the sum of their rule sizes. We find that there is no significant difference
between the rule sizes (routing rule plus sequencing rule) of GP and IGP, such
as with the mean and standard deviation of 98.53(23.93) and 101.87(21.83)(≈)
in <Fmean, 0.75>. Figure 8 shows the violin plots of the average sizes of routing
rules and sequencing rules over population in nine scenarios. Overall, the results
show that the routing rules are larger than the sequencing rules for both GP and
IGP. This also demonstrates that the routing rule is more important than the
sequencing rule. We can also see that there is an increase on the routing rule sizes
of IGP compared with GP, especially in the three scenarios with Tmean (i.e.,
<Tmean, 0.75>, <Tmean, 0.85> and <Tmean, 0.95>). This trend is clearer
in the scenarios with higher utilisation levels. In contrast with the increase of
the routing rule size, the sequencing rule size becomes smaller in most of the
scenarios. This indicates that using more (less) resources on learning the rule
can increase (decrease) the corresponding rule size.

Importance-Aware GP for Automated SHs Learning in DFJSS 59

<WTmean, 0.75> <WTmean, 0.85> <WTmean, 0.95>

<Tmean, 0.75> <Tmean, 0.85> <Tmean, 0.95>

<Fmean, 0.75> <Fmean, 0.85> <Fmean, 0.95>

25
50
75

20
40
60
80

20
40
60
80

100

30
50
70

20
40
60
80

20
40
60
80

20
40
60
80

100

30
50
70

25
50
75

Algorithm

Av
er

ag
e

R
ul

e
Si

ze
 O

ve
r P

op
ul

at
io

n

GP −Rou IGP −Rou GP −Seq IGP −Seq

Fig. 8. Violin plots of the sizes of average routing rules and sequencing rules over
population of GP and IGP in nine scenarios.

6 Conclusions and Future Work

The goal of this paper is to develop an effective importance-aware scheduling
heuristics learning GP approach to automatically learn the routing and sequenc-
ing rules for DFJSS. The goal has been achieved by proposing a novel rule impor-
tance measure, and an adaptive strategy to allocate computational resources, i.e.,
GP individuals, for learning the routing rule and the sequencing rule.

The results show that the importance of the routing rule and the sequencing
rule differs, and the routing rule is more important than the sequencing rule in
the examined DFJSS scenarios. The proposed rule importance strategy based on
the improvement of fitness across generations can detect the rule importance in
DFJSS properly. Furthermore, the developed adaptive computational resources
allocation strategy based on the rule importance measure has successfully opti-
mised the learning process for the routing rule and the sequencing rule. The
effectiveness of the proposed IGP has also been verified by the analyses in terms
of the exact number and the ratios of allocated individuals for rules, the accu-
mulated reward for rules, and the comparison with the algorithms with a fixed
number of individuals for learning rules. Further analyses show that there is
no significant difference between the rule size of the pairs of routing rule and
sequencing rule, however, the routing (sequencing) rule obtained by the proposed
algorithm is larger (smaller) than compared algorithms. In addition, we observe
that the routing rule is normally larger than the sequencing rule learned by GP
algorithms, which can also be an indicator of the importance of the routing rule.

60 F. Zhang et al.

Some interesting directions can be further investigated in the near future.
The rule importance in different DFJSS scenarios may differ. For example, the
sequencing rule might be more important than the routing rule if there are a
small number of machines. More comprehensive analyses are needed. Moreover,
this paper confirms that the importance of the routing rule and the sequencing
rule can differ. A more advanced strategy to improve the overall decision marking
in DFJSS by recognising such differences is worth investigating.

References

1. Nie, L., Gao, L., Li, P., Li, X.: A GEP-based reactive scheduling policies construct-
ing approach for dynamic flexible job shop scheduling problem with job release
dates. J. Intell. Manuf. 24(4), 763–774 (2013)

2. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Guided subtree selection for genetic
operators in genetic programming for dynamic flexible job shop scheduling. In:
Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) EuroGP 2020. LNCS, vol.
12101, pp. 262–278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44094-7 17

3. Zhang, F., Nguyen, S., Mei, Y., Zhang, M.: Genetic Programming for Produc-
tion Scheduling. MLFMA, Springer, Singapore (2021). https://doi.org/10.1007/
978-981-16-4859-5

4. Nguyen, S., Zhang, M., Johnston, M., Chen Tan, K.: Hybrid evolutionary compu-
tation methods for quay crane scheduling problems. Comput. Oper. Res. 40(8),
2083–2093 (2013)

5. Hart, E., Ross, P., Corne, D.: Evolutionary scheduling: a review. Genet. Program
Evolvable Mach. 6(2), 191–220 (2005)

6. Jaklinović, K., Durasević, M., Jakobović, D.: Designing dispatching rules with
genetic programming for the unrelated machines environment with constraints.
Exp. Syst. Appl. 172, 114548 (2021)

7. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Correlation coefficient-based recombi-
native guidance for genetic programming hyperheuristics in dynamic flexible job
shop scheduling. IEEE Trans. Evol. Comput. 25(3), 552–566 (2021). https://doi.
org/10.1109/TEVC.2021.3056143

8. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4(2), 87–112 (1994)

9. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res.
Soc. 64(12), 1695–1724 (2013)

10. Braune, R., Benda, F., Doerner, K.F., Hartl, R.F.: A genetic programming learning
approach to generate dispatching rules for flexible shop scheduling problems. Int.
J. Prod. Econ. 243, 108342 (2022)

11. Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96514-7

12. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Collaborative multifidelity-based sur-
rogate models for genetic programming in dynamic flexible job shop scheduling.
IEEE Trans. Cybern. 52(8), 8142–8156 (2022). https://doi.org/10.1109/TCYB.
2021.3050141

https://doi.org/10.1007/978-3-030-44094-7_17
https://doi.org/10.1007/978-3-030-44094-7_17
https://doi.org/10.1007/978-981-16-4859-5
https://doi.org/10.1007/978-981-16-4859-5
https://doi.org/10.1109/TEVC.2021.3056143
https://doi.org/10.1109/TEVC.2021.3056143
https://doi.org/10.1007/978-3-319-96514-7
https://doi.org/10.1109/TCYB.2021.3050141
https://doi.org/10.1109/TCYB.2021.3050141

Importance-Aware GP for Automated SHs Learning in DFJSS 61

13. Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolu-
tionary multitask genetic programming for dynamic flexible job shop scheduling.
IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)

14. Zhang, F., Mei, Y., Nguyen, S., Tan, K.C., Zhang, M.: Multitask genetic
programming-based generative hyper-heuristics: a case study in dynamic schedul-
ing. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3065340

15. Shen, X., Guo, Y., Li, A.: Cooperative coevolution with an improved resource
allocation for large-scale multi-objective software project scheduling. Appl. Soft
Comput. 88, 106059 (2020)

16. Ren, Z., Liang, Y., Zhang, A., Yang, Y., Feng, Z., Wang, L.: Boosting cooperative
coevolution for large scale optimization with a fine-grained computation resource
allocation strategy. IEEE Trans. Cybern. 49(12), 4180–4193 (2018)

17. Yang, M., et al.: Efficient resource allocation in cooperative co-evolution for large-
scale global optimization. IEEE Trans. Evol. Comput. 21(4), 493–505 (2017).
https://doi.org/10.1109/TEVC.2016.2627581

18. Jia, Y.-H., Mei, Y., Zhang, M.: Contribution-based cooperative co-evolution for
nonseparable large-scale problems with overlapping subcomponents. IEEE Trans.
Cybern. 52(6), 4246–4259 (2020). https://doi.org/10.1109/TCYB.2020.3025577

19. Zhang, X.-Y., Gong, Y.-J., Lin, Y., Zhang, J., Kwong, S., Zhang, J.: Dynamic
cooperative coevolution for large scale optimization. IEEE Trans. Evol. Comput.
23(6), 935–948 (2019)

20. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990)

21. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: A preliminary approach to evolutionary
multitasking for dynamic flexible job shop scheduling via genetic programming. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 107–
108. ACM (2020)

22. Durasevic, M., Jakobovic, D.: A survey of dispatching rules for the dynamic unre-
lated machines environment. Exp. Syst. Appl. 113, 555–569 (2018)

23. Hart, E., Sim, K.: A hyper-heuristic ensemble method for static job-shop schedul-
ing. Evol. Comput. 24(4), 609–635 (2016)

24. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Genetic programming with adaptive
search based on the frequency of features for dynamic flexible job shop scheduling.
In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 214–230.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3 14

25. Yska, D., Mei, Y., Zhang, M.: Genetic programming hyper-heuristic with coopera-
tive coevolution for dynamic flexible job shop scheduling. In: Castelli, M., Sekanina,
L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol.
10781, pp. 306–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77553-1 19

26. Zhang, F., Mei, Y., Zhang, M.: A two-stage genetic programming hyper-heuristic
approach with feature selection for dynamic flexible job shop scheduling. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 347–355.
ACM (2019)

27. Hildebrandt, T., Heger, J., Reiter, B.S.: Towards improved dispatching rules for
complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the Conference on Genetic and Evolutionary Computation, pp. 257–264. ACM
(2010)

https://doi.org/10.1109/TCYB.2021.3065340
https://doi.org/10.1109/TEVC.2016.2627581
https://doi.org/10.1109/TCYB.2020.3025577
https://doi.org/10.1007/978-3-030-43680-3_14
https://doi.org/10.1007/978-3-319-77553-1_19
https://doi.org/10.1007/978-3-319-77553-1_19

62 F. Zhang et al.

28. Zhang, F., Mei, Y., Nguyen, S., Tan, K.C., Zhang, M.: Instance rotation based
surrogate in genetic programming with brood recombination for dynamic job shop
scheduling. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.
2022.3180693

29. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

30. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via
genetic programming with feature selection in dynamic flexible job-shop schedul-
ing. IEEE Trans. Cybern. 51(4), 1797–1811 (2021)

https://doi.org/10.1109/TEVC.2022.3180693
https://doi.org/10.1109/TEVC.2022.3180693

Towards Discrete Phenotypic
Recombination in Cartesian Genetic

Programming

Roman Kalkreuth(B)

Computational Intelligence Research Group, Chair XI Algorithm Engineering,
Department of Computer Science, TU Dortmund University,

Dortmund, North Rhine-Westphalia, Germany
roman.kalkreuth@tu-dortmund.de

https://ls11-www.cs.tu-dortmund.de/

Abstract. The tree-based representation model of Genetic Program-
ming (GP) is largely used with subtree crossover for genetic variation.
Unlike Cartesian Genetic Programming (CGP) which is commonly used
merely with mutation. Compared to comprehensive knowledge about
recombination in the field of tree-based GP, the state of knowledge in
CGP appears to be comparatively poor. Even if CGP was officially intro-
duced over twenty years ago, the role of recombination in CGP has been
recently considered an open issue. Several promising steps have been
taken in recent years, but more research is needed to develop towards a
more comprehensive and holistic perspective on crossover in CGP. In this
work, we propose a phenotypic variation method for discrete recombina-
tion in CGP. We compare our method to the traditional mutation-only
CGP approach on a set of well-known symbolic regression problems. The
initial results presented in this work demonstrate that the use of our pro-
posed discrete recombination method performs significantly better than
the traditional mutation-only approach.

Keywords: Cartesian Genetic Programming · Crossover · Phenotypic
variation

1 Introduction

Cartesian Genetic Programming can be considered a well-established graph-based
GP variant. Initial work towards CGP was done by Miller, Thompson, Kalganova,
and Fogarty [8,14,15] by the introduction of a two-dimensional graph encoding
model of functional nodes. CGP can be seen as an extension to the traditional
tree-based GP representation model since its representation allows many graph-
based applications such as digital circuit design [26], evolution of neural network
topologies [16,28] and synthesis of cryptographic Boolean functions [5,7]. CGP
has introduced over two decades ago but is still predominantly used only with a
probabilistic point mutation operator. The reason for this is that various standard
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 63–77, 2022.
https://doi.org/10.1007/978-3-031-14721-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_5&domain=pdf
http://orcid.org/0000-0003-1449-5131
https://doi.org/10.1007/978-3-031-14721-0_5

64 R. Kalkreuth

genotypic crossover operators failed to improve the search performance of stan-
dard CGP in the past [3,15]. Overall, the state of knowledge about recombination
in CGP appears to be weak when compared to the number of publications in tree-
based GP. The role of recombination in CGP was recently surveyed by Miller [17]
and is still considered to be an open issue. Even if some progress has been made
in recent years, comprehensive and advanced knowledge about recombination in
CGP is still missing [17]. In the field of evolutionary computation (EC), discrete
recombination is a well-established form of recombination in various subfields. Dis-
crete recombination typically selects each gene from one of the two parents with
equal probability. According to Rudolph [22], this method can be therefore con-
sidered as a dynamic n-point crossover since each gene for the chromosome of the
offspring is selected from the first or second parent with equal probability. In this
work, we take a step forward on the issue of crossover and introduce a method for
the adaption of discrete recombination in CGP. We initially evaluate our method
on a set of well-known symbolic regression benchmarks. Our results demonstrate
the effectiveness of our approach for these problems.

Section 2 of this work describes CGP. Related work on crossover in CGP
is surveyed in Sect. 3. This section also gives a brief historical overview of dis-
crete recombination in the field of EC. In Sect. 4, we introduce our new method.
Section 5 is devoted to the description of our experiments and the presentation
of our results. Our findings are discussed in Sect. 6. Finally, Sect. 7 gives a con-
clusion and outlines our future work.

2 Cartesian Genetic Programming

In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic, and directed graph. In this way, CGP
can be seen as an extension of the traditional tree-based GP approach. The
CGP representation model is based on a rectangular grid or row of nodes. Each
genetic program is encoded in the genotype of an individual and is decoded to its
corresponding phenotype. A definition of a cartesian genetic program P is given
in Definition 1. Let φ : P �→ Ψ be a decode function which maps P to a phenotype
Ψ . Originally, the structure of the graph was represented by a rectangular grid
of nr rows and nc columns, but later work focused on a representation with one
row. The CGP decoding procedure processes groups of genes, and each group
refers to a node of the graph, except the last one, which represents the outputs
of the phenotype. Each node is represented by two types of genes that index the
function number in the GP function set and the node inputs. These nodes are
called function nodes and execute functions on the input values. The number of
input genes depends on the maximum arity na of the function set.

Definition 1 (Cartesian Genetic Program). A cartesian genetic program
P is an element of the Cartesian product Ni × Nf × No × F :

– Ni is a finite non-empty set of input nodes
– Nf is a finite set of function nodes

Phenotypic Uniform Crossover in Cartesian Genetic Programming 65

– No is a finite non-empty set of output nodes
– F is a finite non-empty set of functions

A backward search is conducted to decode the corresponding phenotype.
The decoding itself starts at the output nodes and continues until the inputs
nodes are reached. The decoding procedure is done for all output genes. The
result of the decoding procedure can be described as a set of directed paths
Ω. Given the input set I and the output set O, let ω = I × Ω �→ O be an
output function. An example of the backward search of the most popular one-row
integer representation is illustrated in Fig. 1. The backward search starts from
the program output and processes all nodes which are linked in the genotype.
In this way, only active nodes are processed during evaluation. The genotype
in Fig. 1 is grouped by its function nodes. The first (underlined) gene of each
group refers to the function number in the corresponding function set. The non-
underlined genes represent the input connections of the node. Inactive function
nodes are shown in gray color and with dashed lines.

Fig. 1. Example of the decoding procedure of a CGP genotype to its corresponding
phenotype. The identifiers IP1 and IP2 stand for the two input nodes with node index
0 and 1. The identifier OP stands for the output node of the graph.

The number of inputs ni, outputs no, and the length of the genotype is fixed.
Every candidate program is represented with nr∗nc∗(na+1)+no integers. Even
if the length of the genotype is fixed for each candidate program, the length
of the corresponding phenotype in CGP is variable, which can be considered
as an advantage of the CGP representation. CGP is traditionally used with a
(1+λ) evolutionary algorithm (EA). The (1+λ)-EA is often used with a selection
strategy called neutrality, which is based on the idea that genetic drift yields
to diverse individuals having equal fitness. The genetic drift is implemented
into the selection mechanism in a way that individuals which have the same
fitness as the normally selected parent are determined, and one of these same-
fitness individuals is returned uniformly at random. The new population in each
generation consists of the best individual of the previous population and the λ
created offspring. The breeding procedure is mostly done by a point mutation
that swaps genes in the genotype of an individual in the valid range by chance.

66 R. Kalkreuth

Another point mutation is the flip of the functional gene, which changes the
functional behavior of the corresponding function node.

3 Related Work

3.1 Recombination in CGP

According to the reports of Clegg et al. [3], the first attempts of recombination
in standard CGP included testing of various genotypic crossover techniques.
For instance, the genetic material was recombined by swapping parts of the
genotypes of the parent individuals or randomly exchanging selected nodes.
Clegg et al. reported that all techniques failed to improve the convergence of
CGP and that merely swapping the integers disrupts the search performance.
In comparison to mutation only CGP, the addition of genotypic crossover tech-
niques hindered the performance. In one of the first empirical studies about CGP,
Miller [15] analyzed its computational efficiency on Boolean function problems.
More precisely, Miller analyzed and studied the influence of population size on
the efficiency of CGP. The key finding of his study was that extremely low pop-
ulations perform most effectively for the tested problems. The experiments of
this study also demonstrated that the addition of a genotypic crossover reduces
the computational effort only marginally.

This was the motivation for the introduction of a real-valued representa-
tion and intermediate recombination for CGP by Clegg et al. The real-valued
representation of CGP represents the directed graph as a fixed-length list of real-
valued numbers in the interval [0, 1]. The genes are decoded to the integer-based
representation by their normalization values (number of functions or maximum
input range). The recombination of two CGP genotypes is performed by interme-
diate recombination with a random weighting factor. Clegg et al. demonstrated
that the new representation in combination with crossover improves the conver-
gence behavior of CGP on one of the two tested symbolic regression problems.
However, for the later generations, Clegg et al. found that the use of crossover
in real-valued CGP disrupts the convergence on one problem. Later work by
Turner [30] presented results with intermediate recombination on three addi-
tional classes of computational problems, digital circuit synthesis, function opti-
mization, and agent-based wall avoidance. On these problems, it was found that
the real-valued representation together with the crossover operation performed
worse than mutation-only CGP.

Kalkreuth et al. [10] introduced and investigated subgraph crossover in CGP
which exchanges and links subgraphs of active function nodes between two
selected parents and the block crossover exchanges blocks of active function
genes. In recent comparative studies, its use has been found beneficial for sev-
eral symbolic regression benchmarks since it led to a significant decrease in the
number of fitness evaluations needed to find the ideal solution [9,11]. Contrarily,
the gain of the search performance was considerably lower for the tested Boolean
function problems [9,11]. Moreover, the results of the experiments clearly showed
that the subgraph crossover failed to improve the search performance on some of

Phenotypic Uniform Crossover in Cartesian Genetic Programming 67

the tested Boolean benchmarks when compared to the results of the traditional
1 + λ selection strategy.

Husa and Kalkreuth [6] proposed block crossover which selects active function
nodes by chance in accordance with a predefined block size but without any
order. The function genes of the selected active nodes are then swapped. The
block crossover has been compared to mutation-only CGP on a suite of Boolean
functions and symbolic regression problems. The outcome of the study gave
significant evidence that the (1+λ)-CGP cannot be considered the most efficient
CGP algorithm in the Boolean function domain, although it seems to be often a
good choice. The outcome of the study gave the first evidence, that it is possible
for crossover operators to outperform the standard 1 + λ selection strategy.

Sivla et al. [27] introduced a form of crossover for multiple output prob-
lems. The proposed method combines the subgraphs of the best outputs of the
parent individuals produce an offspring. The proposed crossover technique was
applied to the synthesis of combinational logic circuits with multiple outputs.
The so-called X-CGP obtained the best results when compared to single chro-
mosome CGP representations and performed better than the multi-chromosome
representation for some of the tested problems. The experiments of Siliva et al.
indicate that the proposed method is promising. On the other hand, the authors
concluded that more studies are needed since X-CGP performed no better than
the mutation-only multi-chromosome techniques on the majority of the tested
problems.

3.2 Historical Background of Discrete Recombination

Discrete recombination in EC was first described by Rechenberg [20,21] for the
simulation of the first type of a multimembered evolutionary strategy (ES) called
(μ + 1) or steady-state ES. Rechenberg demonstrated that recombination can
improve the speed of the evolutionary process if the measure is taken per gen-
eration rather than per function evaluation [2]. Schwefel [23,24] later utilized
discrete recombination among five types of recombination for two further ver-
sions of the multimembered ES, called (μ + λ)- and (μ, λ)-ES [1]. Schwefel [24]
performed an empirical study with 50 uni- and multimodal test functions and
compared ESs to the most traditional direct optimization strategies and the
outcome showed good results for ESs. According to Bäck et al. [1], the best
results were achieved with the use of several types of recombination. In the field
of GAs, discrete recombination is commonly referred to as uniform crossover
and has been found to be a useful search operator [4]. Uniform crossover was
first proposed for the binary encoding model of GA by Syswerda [29] and its
search performance was found superior to the one- and two-point crossover in
the most cases. Uniform recombination in GA inspired the adaption in tree-based
GP [18,19] where function nodes and subtrees are exchanged between two parent
individuals in accordance with a uniform rate. If the uniform rate is set to 50%,
this method represents the tree-based GP equivalent of the uniform crossover
for binary strings.

68 R. Kalkreuth

4 The Proposed Method

We adapt discrete recombination in CGP by means of phenotypic functional
variation which is performed through the exchange of function genes of active
function nodes. The phenotype of a CGP individual is represented by its active
function nodes which are determined before the crossover procedure. After select-
ing two individuals, the minimum and a maximum number of active function
nodes of the two individuals is determined. The reason for this is that the size of
the phenotype in CGP is not fixed and can vary among individuals. To perform
the exchange of active function genes, the crossover procedure iterates over the
minimum number of active nodes. A binary decision is made by chance in each
iteration whether the function genes are swapped or kept. In the case that both
phenotypes differ in size, our method performs a special step in the last iter-
ation called boundary extension which extends the selection of active function
genes. The idea behind this step is to include active function genes of the larger
phenotype into the selection which would not be considered if the lists of active
function nodes are merely interated in order. Just like the uniform crossover in
GA, our method produces two offspring. The algorithmic implementation of our
method is described in Algorithm 1. Exemplifications of the procedure on geno-
typic and phenotypic level are illustrated in Fig. 2 and 3. An implementation
for the CGP extension package of the Java Evolutionary Computation Research
System (ECJ) [25] is provided in the ECJ GitHub repository1.

2 0 0 1 0 1 0 2 3 2 2 3 0 4 5 4

3 0 0 3 1 1 0 0 2 2 2 3 1 2 5 6

2 3 4 5 6 OP1

2 3 4 5 6 OP2

Node number

N1 = {2, 3, 4} N2 = {2, 3, 5, 6}
Active function nodes

F1 = {2, 1, 0}
Active function genes

F2 = {3, 3, 2, 1}

Boundary extension

3 0 0 1 0 1 1 2 3 2 2 3 0 4 5 4

2 0 0 3 1 1 0 0 2 2 2 3 0 2 5 6

2 3 4 5 6 OP1

2 3 4 5 6 OP2

Gene swap

Parent P1

Parent P2

Offspring O1

Offspring O2

Function gene swaps
S1 = 2 <--> 3 S2 = 0 <--> 1

Node 2 Node 4, 6

Fig. 2. Exemplification of discrete recombination in CGP: Active function genes of two
CGP genotypes are recombined by means of discrete recombination. Function genes,
which have been randomly selected for the exchange, are connected with a double-sided
arrow in the figure. The active function nodes and genes of the respective parent and
offspring individuals are highlighted in red and blue color. (Color figure online)

1 https://github.com/GMUEClab/ecj.

https://github.com/GMUEClab/ecj

Phenotypic Uniform Crossover in Cartesian Genetic Programming 69

Fig. 3. Illustration of discrete recombination in CGP on the phenotypic level based on
the genotypic exemplification presented in Fig. 2. Active function nodes of the respec-
tive parent and offspring individuals are highlighted in red and blue color. (Color figure
online)

5 Experiments

5.1 Experimental Setup

We performed experiments with symbolic regression problems. We compared the
traditional (1 + λ)-CGP to a canonical EA equipped with our proposed discrete
recombination and tournament selection. The algorithms which we used in our
experiments are listed in Table 1. To evaluate the search performance, we mea-
sured the number of fitness evaluations until the CGP algorithm terminated suc-
cessfully as recommended by McDermott et al. [13]. Termination was triggered
when an ideal solution was found or a predefined budget of fitness evaluation
was exceeded. We defined a maximum number of 108 fitness evaluations for our
experiments and calculated the success rate (SR). In addition to the mean values
of the measurements, we also calculated the standard deviation (SD), median
(Q2) as well as lower and upper quartile (Q1 and Q3). Meta-optimization experi-
ments have been performed to compare the algorithms fairly and are described in
more detail in the following subsection. All tested algorithms were compared on
the same number of function nodes to exclude conditions, which can distort the
search performance comparison. Our method was tested against the traditional
(1 + λ)-CGP which we declared as the baseline algorithm for our experiments.
In our experiments, we exclusively used the single-row standard integer-based
representation of CGP. Since we cannot guarantee normally distributed values
in our samples, we used the nonparametric two-tailed Mann-Whitney U test to
evaluate statistical significance. More precisely, we tested the null hypothesis
that two samples come from the same population (i.e. have the same median).
We performed 100 independent runs with different random seeds. The levels
back parameter l was set to ∞.

70 R. Kalkreuth

Algorithm 1. Discrete phenotypic crossover
Arguments
G1, G2: Genomes of the first parent individuals
N1, N2: List of active function node numbers of the first parent inidividuals
Return
˜G1, ˜G2: Genomes of the offspring

1: function DiscreteCrossover(G1, G2, N1, N2)
2: l1 ← |N1| � Number of active nodes of the first parent

3: l2 ← |N2| � Number of active nodes of the second parent

4: min ← Min(l1, l2) � Determine the minimum

5: max ← Max(l1, l2) � Determine the maximum

6: i ← 0
7: while i < min do � Iterate over the minimum number of active nodes

8: if RandomBoolean() = true then � Decision by chance to keep or swap genes

9: � Check if conditions for boundary extension are satisfied

10: if i = min − 1 and l1 �= l2 then
11: r ← RandomInteger(0, max - i) � Determine a random offset

12: if l1 < l2 then � If the first parent has the minimum of active nodes

13: n1 ← N1[i]
14: � Extend node selection for the second, phenotypically larger, parent

15: n2 ← N2[i + r]
16: else � Otherwise, extend the selection for the first parent

17: n1 ← N1[i + r]
18: n2 ← N2[i]
19: end if
20: else � Without boundary extension, just select the nodes in order

21: n1 ← N1[i]
22: n2 ← N2[i]
23: end if
24: p1 ← PositionFromNodeNumber(n1) � Function gene position of n1

25: p2 ← PositionFromNodeNumber(n2) � Function gene position of n2

26: ˜G1, ˜G2 ← SwapGenes(G1, G2, p1, p2) � Swap the function genes

27: end if
28: i ← i + 1 � Loop counter increment

29: end while

30: return ˜G1, ˜G2

31: end function

Table 1. Identifiers for the tested CGP algorithms.

Identifier Description

1 + λ 1 + λ selection strategy with neutral genetic drift

Canonical Canonical EA with phenotypic uniform crossover and tournament selection

Phenotypic Uniform Crossover in Cartesian Genetic Programming 71

5.2 Benchmarks

We chose eleven symbolic regression problems from the work of McDermott et
al. [13] for better GP benchmarks. The reason for our choice of these problems
is the fact that we can find an ideal solution more likely on average and evaluate
the search performance of the whole evolutionary process. Our set of bench-
marks covers uni- as well as bivariate polynomial, trigonometric, logarithmic,
and power functions. The functions of the problems are shown in Table 2. A
training data set U[a, b, c] refers to c uniform random samples drawn from a to b
inclusive. We used the extended Koza function set as recommended by McDer-
mott et al. The function set is shown in Table 3. The fitness of the individuals
was represented by a cost function value. The cost function was defined by the
sum of the absolute difference between the real function values and the values
of an evaluated individual. Let T =

{
xp

}P
p=1

be a training dataset of P random
points and find(xp) the value of an evaluated individual and fref(xp) the true
function value. Let

C :=
P∑

p=1

|find(xp) − fref(xp)|

be the cost function. When the difference of all absolute values becomes less
than 0.01, the algorithm is classified as converged.

5.3 Meta-optimization

We tuned relevant parameters for all tested CGP algorithms on the set of bench-
mark problems. Moreover, we used the meta-optimization toolkit of ECJ. The
parameter space for the respective algorithms, explored by meta-optimization,
is presented in Table 4. For the meta-level, we used a canonical GA equipped
with intermediate recombination and point mutation. Since GP benchmark prob-
lems can be very noisy in terms of finding the ideal solution, we oriented the
meta-optimization with a common approach that has been used in previous
studies [6,11,12]. The meta-evolution process at the base level was repeated
multiple times for each candidate setting and the most effective settings were
compared to find the best setting. For the problems Koza 1–3 and Nguyen 4–7,
we selected effective settings of certain parameters for the (1 + λ)-CGP from
previous parametrization studies [11,12].

72 R. Kalkreuth

Table 2. List of symbolic regression benchmarks.

Problem Objective function Vars Training set Function set

Koza-1 x4 + x3 + x2 + x 1 U[−1, 1, 20] Koza

Koza-2 x5 − 2x3 + x 1 U[−1, 1, 20] Koza

Koza-3 x6 − 2x4 + x2 1 U[−1, 1, 20] Koza

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U[−1, 1, 20] Koza

Nguyen-5 sin(x2) cos(x) − 1 1 U[−1, 1, 20] Koza

Nguyen-6 sin(x) + sin(x + x2) 1 U[−1, 1, 20] Koza

Nguyen-7 ln(x + 1) + ln(x2 + 1) 1 U[0, 2, 20] Koza

Nguyen-8
√

x 1 U[0, 4, 20] Koza

Nguyen-9 sin(x2) + sin(y2) 2 U[0, 2, 20] Koza

Nguyen-10 2 ∗ sin(x) ∗ cos(x) 2 U[0, 2, 20] Koza

Nguyen-11 xy 2 U[0, 2, 20] Koza

Table 3. Function set used for the experiments.

Name Functions Constants

Koza + − ∗ / sin cos en ln(|n|) Constant input with a value of 1

Table 4. Parameter space explored by meta-optimization for the 1 + λ and canonical
CGP algorithm.

Algorithm Parameter Description Range

1 + λ λ Number of offspring [1, 1024]

N Number of function nodes [10, 1000]

M Point mutation rate [%] [1.0, 30.0]

Canonical N Number of function nodes [10, 1000]

M Point mutation rate [%] [1.0, 30.0]

C Crossover rate [%] [10, 100]

P Population size [10, 500]

T Tournament size [2, 20]

5.4 Results

The results of our meta-optimization and search performance evaluation are
presented in Table 5 and it is clearly visible that the Canonical-CGP with dis-
crete recombination reduces the number of fitness evaluations to termination
significantly on all tested problems. Moreover, on the more complex problems,
the Canonical-CGP achieves higher success rates. Violin plots are provided in
Fig. 4.

Phenotypic Uniform Crossover in Cartesian Genetic Programming 73

Table 5. Results of the meta-optimization and search performance evaluation.

Problem Algorithm Parametrization Search performance evaluation p

N λ M [%] C [%] P T MFE SD 1Q 2Q 3Q SR

Koza-1 1 + λ 10 4 20 – – – 3,285,238 8,974,193 518,516 1,408,326 3,460,391 1.0

Canonical 10 – 20 70 50 4 532,957 652,332 76,868 311,983 724,563 1.0 10−9

Koza-2 1 + λ 10 4 20 – – – 2,325,581 7,830,950 340,608 1,260,496 2,463,527 1.0

Canonical 10 – 10 50 50 4 733,925 934,455 67,387 394,075 982,325 1.0 10−6

Koza-3 1 + λ 10 4 20 – – – 428,778 663,576 26,527 159,290 502,686 1.0

Canonical 10 – 20 50 50 4 122,629 264,791 17,113 41,282 113,324 1.0 10−4

Nguyen-4 1 + λ 100 16 10 – – – 91,228,744 24,303,588 100,000,000 100,000,000 100,000,000 0.16

Canonical 100 – 8 50 50 4 59,767,376 38,075,889 23,060,887 59,816,675 100,000,000 0.62 10−10

Nguyen-5 1 + λ 60 16 7 – – – 64,092,121 42,126,017 14,078,020 96,894,232 100,000,000 0.50

Canonical 60 – 7 70 50 4 9,758,166 23,157,856 190,312 833,400 6,072,437 0.96 10−13

Nguyen-6 1 + λ 100 16 10 – – – 16,757,903 18,877,924 2,980,764 10,508,376 23,852,124 0.95

Canonical 100 – 8 70 50 4 1,634,090 4,399,397 21,962 132,575 888,900 1.0 10−15

Nguyen-7 1 + λ 200 16 7 – – – 64,033,983 35,411,800 30,458,912 67,583,400 100,000,000 0.67

Canonical 200 – 7 50 50 7 23,424,276 32,155,768 2,622,975 7,966,750 26,935,237 0.93 10−13

Nguyen-8 1 + λ 150 16 15 – – – 1,554,341 1,745,877 93,096 911,720 2,386,644 1.0

Canonical 150 – 15 50 50 7 764,404 890,860 149,262 415,800 1,028,275 1.0 0.02

Nguyen-9 1 + λ 150 16 15 – – – 1,141,109 1,681,517 32,288 560,416 1,572,280 1.0

Canonical 150 – 15 50 50 4 291,008 613,343 14,350 50,975 255,450 1.0 10−5

Nguyen-10 1 + λ 60 128 20 – – – 905,799 1,659,653 26,144 130,176 1,201,152 1.0

Canonical 60 – 15 70 50 4 139,754 178,352 22,837 76,375 185,050 1.0 0.002

Nguyen-11 1 + λ 50 64 10 – – – 155,608 165,428 14,944 111,488 224,784 1.0

Canonical 50 – 10 70 50 4 56,685 65,100 111,62 37,175 75,225 1.0 10−4

Fig. 4. Violin plots for all tested problems and algorithms of our experiments.

74 R. Kalkreuth

6 Discussion

The experiments presented in this work allow certain points that are worthy of
discussion. Even if the initial results of our proposed method are promising we
have to emphasize that more experiments are needed to achieve insight into how
our method performs in other problem domains. Since former work [10] on recom-
bination in CGP presented promising results with symbolic regression problems,
we initially tested our proposed method in this problem domain. However, we
have to evaluate our method in problem domains where the search space differs
from the continuous search spaces of our tested symbolic regression problems.
Recent work [9,11] led to more insight into the antagonism between continuous
and discrete search spaces and its implications for the success of crossover-based
algorithms in CGP. For our experiments, we also did not include the comparison
to other crossover operators that have been proposed for CGP. For our initial
evaluation and generally as a first step we concentrated on comparisons to the
most commonly used algorithm in CGP and ensuring fair conditions with meta-
optimization. But since several crossover operators have been proposed in recent
years, more comparative studies are needed in the field of CGP and should be
addressed by future work.

Another point that should be discussed is the parametrization of our method.
Based on our meta-optimization experiments, we can derive some essential gen-
eralizations for our tested problems. In our experiments, moderate to high
crossover rates performed best in combination with mid-size populations. We
also tested low and very high rates of crossover but obtained no further improve-
ment in the search performance. Likewise, we also experimented with bigger and
smaller populations but the size of 50 individuals turned out to be the best
choice. Overall, our results give more evidence that mid-size populations can be
used effectively in CGP which depicts a significant shift from the popular dogma
that only very small populations can perform effectively in CGP. Moreover, our
results are coherent with the work of Kalkreuth [11] on population sizes in CGP
and reinforce his findings. Nevertheless, we again, have to point out that our
findings are based on results that have been obtained in merely one problem
category.

7 Conclusions and Future Work

In this work, we presented initial results of a method for phenotypic discrete
recombination in CGP. The effectiveness of our approach has been evaluated on
a diverse set of well-known symbolic regression benchmarks, covering uni- and
bivariate functions. Overall, our results indicate that the use of our proposed
methods can be beneficial for symbolic regression. This work primarily focused
on an initial evaluation of the search performance and ensuring fair conditions
through meta-optimization. The next natural following step is the evaluation
of our method in other problem domains and in comparison to other crossover

Phenotypic Uniform Crossover in Cartesian Genetic Programming 75

operators. Therefore, our future work will primarily focus on comparative stud-
ies. Another part of our future work will be devoted to analytical experiments
to study the effects caused by the phenotypic discrete crossover.

References

1. Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Belew,
R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on
Genetic Algorithms, San Diego, CA, USA, July 1991, pp. 2–9. Morgan Kaufmann
(1991)

2. Beyer, H., Schwefel, H.: Evolution strategies - a comprehensive introduction. Nat.
Comput. 1(1), 3–52 (2002). https://doi.org/10.1023/A:1015059928466

3. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic
programming. In: Thierens, D., et al. (eds.) Proceedings of the 9th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO 2007, London, 7–11 July
2007, vol. 2, pp. 1580–1587. ACM Press (2017). https://doi.org/10.1145/1276958.
1277276. http://www.cs.bham.ac.uk/∼wbl/biblio/gecco2007/docs/p1580.pdf

4. De Jong, K., Spears, W.: On the virtues of parameterized uniform crossover. In:
Proceedings of the 4th International Conference on Genetic Algorithms, pp. 230–
236. Morgan Kaufmann Publishers, San Mateo (1991)

5. Hrbacek, R., Dvorak, V.: Bent function synthesis by means of cartesian genetic
programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
PPSN 2014. LNCS, vol. 8672, pp. 414–423. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10762-2 41

6. Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic pro-
gramming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez,
P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-77553-1 13

7. Husa, J., Sekanina, L.: Evolving cryptographic boolean functions with minimal
multiplicative complexity. In: IEEE Congress on Evolutionary Computation, CEC
2020, Glasgow, United Kingdom, 19–24 July 2020, pp. 1–8. IEEE (2020). https://
doi.org/10.1109/CEC48606.2020.9185517.

8. Kalganova, T.: Evolutionary approach to design multiple-valued combinational
circuits. In: Proceedings of the 4th International Conference on Applications of
Computer Systems, ACS 1997, Szczecin, Poland, pp. 333–339 (1997)

9. Kalkreuth, R.: A comprehensive study on subgraph crossover in cartesian genetic
programming. In: Guervós, J.J.M., Garibaldi, J.M., Wagner, C., Bäck, T., Madani,
K., Warwick, K. (eds.) Proceedings of the 12th International Joint Conference on
Computational Intelligence, IJCCI 2020, Budapest, Hungary, 2–4 November 2020,
pp. 59–70. SCITEPRESS (2020). https://doi.org/10.5220/0010110700590070.

10. Kalkreuth, R., Rudolph, G., Droschinsky, A.: A new subgraph crossover for carte-
sian genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haas-
dijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 294–310.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 19

11. Kalkreuth, R.T.: Reconsideration and Extension of Cartesian Genetic Program-
ming. Ph.D. thesis (2021). https://doi.org/10.17877/DE290R-22504. http://dx.
doi.org/10.17877/DE290R-22504

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1145/1276958.1277276
https://doi.org/10.1145/1276958.1277276
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1580.pdf
https://doi.org/10.1007/978-3-319-10762-2_41
https://doi.org/10.1007/978-3-319-10762-2_41
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1109/CEC48606.2020.9185517
https://doi.org/10.1109/CEC48606.2020.9185517
https://doi.org/10.5220/0010110700590070
https://doi.org/10.1007/978-3-319-55696-3_19
https://doi.org/10.17877/DE290R-22504
http://dx.doi.org/10.17877/DE290R-22504
http://dx.doi.org/10.17877/DE290R-22504

76 R. Kalkreuth

12. Kaufmann, P., Kalkreuth, R.: An empirical study on the parametrization of
cartesian genetic programming. In: Proceedings of the Genetic and Evolution-
ary Computation Conference Companion, GECCO 2017, pp. 231–232. ACM,
New York (2017). https://doi.org/10.1145/3067695.3075980. http://doi.acm.org/
10.1145/3067695.3075980

13. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Pro-
ceedings of the 14th International Conference on Genetic and Evolutionary Com-
putation Conference, GECCO 2012, Philadelphia, Pennsylvania, USA, 7–11 July
2012, pp. 791–798. ACM (2012). https://doi.org/10.1145/2330163.2330273

14. Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolu-
tionary algorithms. arithmetic circuits: a case study. In: Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science, pp. 105–131. Wiley
(1997)

15. Miller, J.F.: An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In: Banzhaf, W., et al. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference, Orlando,
Florida, USA, 13–17 July 1999, vol. 2, pp. 1135–1142. Morgan Kaufmann (1999).
http://citeseer.ist.psu.edu/153431.html

16. Miller, J.F., Wilson, D.G., Cussat-Blanc, S.: Evolving programs to build artifi-
cial neural networks. In: Adamatzky, A., Kendon, V. (eds.) From Astrophysics to
Unconventional Computation. ECC, vol. 35, pp. 23–71. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-15792-0 2

17. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Pro-
gram. Evolvable Mach. 21(1), 129–168 (2020). https://doi.org/10.1007/s10710-
019-09360-6

18. Poli, R., Langdon, W.B.: On the ability to search the space of programs of standard,
one-point and uniform crossover in genetic programming. Technical report CSRP-
98-7, University of Birmingham, School of Computer Science (January 1998). ftp://
ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz. Presented at GP-98

19. Poli, R., Langdon, W.B.: On the search properties of different crossover opera-
tors in genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming
1998: Proceedings of the 3rd Annual Conference, University of Wisconsin, Madi-
son, Wisconsin, USA, 22–25 July 1998, pp. 293–301. Morgan Kaufmann (1998).
http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf

20. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Dr.-Ing. Ph.D. thesis, Thesis, Technical Uni-
versity of Berlin, Department of Process Engineering (1971)

21. Rechenberg, I.: Evolutionsstrategie Optimierung technischer Systeme nach Prinzip-
ien der biologishen Evolution. Frommann Holzboog Verlag, Stuttgart (1973)

22. Rudolph, G.: Global optimization by means of distributed evolution strategies.
In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 209–213.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029754

23. Schwefel, H.P.: Evolutionsstrategien für die numerische Optimierung, pp. 123–176.
Birkhäuser Basel, Basel (1977). https://doi.org/10.1007/978-3-0348-5927-1 5

24. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, USA (1981)
25. Scott, E.O., Luke, S.: ECJ at 20: toward a general metaheuristics toolkit. In:

López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech
Republic, 13–17 July 2019, pp. 1391–1398. ACM (2019). https://doi.org/10.1145/
3319619.3326865

https://doi.org/10.1145/3067695.3075980
http://doi.acm.org/10.1145/3067695.3075980
http://doi.acm.org/10.1145/3067695.3075980
https://doi.org/10.1145/2330163.2330273
http://citeseer.ist.psu.edu/153431.html
https://doi.org/10.1007/978-3-030-15792-0_2
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/s10710-019-09360-6
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-07.ps.gz
http://www.cs.essex.ac.uk/staff/poli/papers/Poli-GP1998.pdf
https://doi.org/10.1007/BFb0029754
https://doi.org/10.1007/978-3-0348-5927-1_5
https://doi.org/10.1145/3319619.3326865
https://doi.org/10.1145/3319619.3326865

Phenotypic Uniform Crossover in Cartesian Genetic Programming 77

26. Sekanina, L., Walker, J.A., Kaufmann, P., Platzner, M.: Evolution of electronic
circuits. In: Miller, J.F. (ed.) Cartesian Genetic Programming. Natural Computing
Series, pp. 125–179. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-17310-3 5

27. da Silva, J.E.H., Bernardino, H.: Cartesian genetic programming with crossover for
designing combinational logic circuits. In: 7th Brazilian Conference on Intelligent
Systems, BRACIS 2018, São Paulo, Brazil, 22–25 October 2018, pp. 145–150. IEEE
Computer Society (2018). https://doi.org/10.1109/BRACIS.2018.00033

28. Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep con-
volutional neural networks using cartesian genetic programming. Evol. Comput.
28(1), 141–163 (2020). https://doi.org/10.1162/evco a 00253

29. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.)
Proceedings of the 3rd International Conference on Genetic Algorithms, George
Mason University, Fairfax, Virginia, USA, June 1989, pp. 2–9. Morgan Kaufmann
(1989)

30. Turner, A.J.: Improving crossover techniques in a genetic program. Master’s thesis,
Department of Electronics, University of York (2012)

https://doi.org/10.1007/978-3-642-17310-3_5
https://doi.org/10.1007/978-3-642-17310-3_5
https://doi.org/10.1109/BRACIS.2018.00033
https://doi.org/10.1162/evco_a_00253

Multi-Objective Optimization

A General Architecture for Generating
Interactive Decomposition-Based MOEAs

Giomara Lárraga(B) and Kaisa Miettinen

Faculty of Information Technology, University of Jyvaskyla, 40014 Jyvaskyla, Finland
{giomara.g.larraga-maldonado,kaisa.miettinen}@jyu.fi

Abstract. Evolutionary algorithms have been widely applied for solving
multiobjective optimization problems. Such methods can approximate
many Pareto optimal solutions in a population. However, when solving
real-world problems, a decision maker is usually involved, who may only
be interested in a subset of solutions that meet their preferences. Several
methods have been proposed to consider preference information dur-
ing the solution process. Among them, interactive methods support the
decision maker in learning about the trade-offs among objectives and the
feasibility of solutions. Also, such methods allow the decision maker to
provide preference information iteratively. Typically, interactive multiob-
jective evolutionary algorithms are modifications of existing a priori or a
posteriori algorithms. However, they mainly focus on finding a region of
interest and do not support the decision maker finding the most preferred
solution. In addition, the cognitive load imposed on the decision maker
is usually not considered. This article proposes an architecture for devel-
oping interactive decomposition-based evolutionary algorithms that can
support the decision maker during the solution process. The proposed
architecture aims to improve the applicability of interactive methods
in solving real-world problems by considering the needs of a decision
maker. We apply our proposal to generate an interactive decomposition-
based algorithm utilizing a reference vector re-arrangement procedure
and MOEA/D. We demonstrate the performance of our proposal with a
real-world problem and multiple benchmark problems.

Keywords: Multiobjective optimization · Evolutionary algorithms ·
Preference information · Decision making · Interactive methods ·
Interactive preference incorporation

1 Introduction

Multiobjective optimization problems involve multiple conflicting objective func-
tions that must be optimized simultaneously. Because of the conflict among the
objective functions, these problems do not have a single optimal solution, but
a set of trade-off solutions named a Pareto optimal set. The goal of solving a
multiobjective optimization problem is to help a decision maker (DM) find the
most preferred trade-offs among objectives. A DM is a person with expertise

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 81–95, 2022.
https://doi.org/10.1007/978-3-031-14721-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_6&domain=pdf
http://orcid.org/0000-0001-8280-7040
http://orcid.org/0000-0003-1013-4689
https://doi.org/10.1007/978-3-031-14721-0_6

82 G. Lárraga and K. Miettinen

about the problem and is usually interested in a subset of solutions that meets
their preferences, known as a region of interest.

Methods for solving multiobjective optimization problems can be classified
according to the role of the DM in the solution process into no preference, a
priori, interactive, and a posteriori methods [22]. No preference methods are
utilized when no DM is available and the problem is solved without considering
any preference information. A priori methods ask for preference information once
at the beginning of the solution process. On the other hand, a posteriori methods
generate multiple solutions representing Pareto optimal ones and consider the
preference information afterward. In interactive methods, the DM can provide
preference information iteratively, allowing them to direct the solution process
progressively. When studying interactive solution processes of DMs, one can
often observe two phases: learning and decision phases, as stated in [21]. The
DM explores different solutions during the learning phase until they find a region
of interest. Then, in the decision phase, the DM fine-tunes the search to find the
most preferred solution in that region.

Several scalarization-based methods [22] and evolutionary algorithms [7] have
been proposed to solve multiobjective optimization problems. Multiobjective
evolutionary algorithms (MOEAs) are population-based metaheuristics capable
of representing the Pareto optimal set with approximated solutions. MOEAs
can be divided into three main classes [29]: dominance-based, indicator-based,
and decomposition-based algorithms. Decomposition-based MOEAs [14] have
recently gained researchers’ attention because of their scalability in terms of
the number of objectives. These MOEAs decompose the original multiobjec-
tive optimization problem into multiple single-objective optimization problems
or simpler multiobjective optimization problems to be solved collaboratively
with the use of a scalarizing function and a set of so-called reference vectors.
Decomposition-based MOEAs are suitable for preference incorporation as they
can easily focus on certain parts of the Pareto optimal set by modifying the
decomposition. MOEAs have been typically utilized as a posteriori methods.
Although some interactive decomposition-based MOEAs are available in the
literature (e.g. [3,11,12]), most of them focus only on the learning phase and
identifying the region of interest. In other words, they do not consider a decision
phase to help the DM find the most preferred solution.

In this article, we propose a general architecture for developing interactive
decomposition-based MOEAs that address the needs of a decision maker. Our pro-
posal consists of multiple modules that can be utilized to convert a priori and
a posteriori methods into interactive ones. Each module contains different pro-
cedures that some interactive MOEAs have employed in the literature. In addi-
tion, new procedures can be incorporated into each one of the modules. The
rest of the article is structured as follows. Section 2 presents background infor-
mation on the main concepts used in the article. Then, a brief review of the
existing interactive decomposition-based MOEAs is presented in Sect. 3. Section 4
describes some desirable properties of an interactive solution process. Then, we
present the proposed architecture to meet the desirable properties of interactive

A General Architecture for Interactive Decomposition 83

decomposition-based MOEAs in Sect. 5. As a proof of concept, we present some
results and an algorithmic comparison in Sect. 6. We conclude the article in Sect. 7.

2 Background

A multiobjective optimization problem minimizing k (with k ≥ 2) conflicting
objective functions fi (i = 1, . . . , k) can be mathematically formulated as follows:

minimize F(x) = (f1(x), . . . , fk(x))
subject to x ∈ S,

(1)

where S ⊂ R
n is the feasible set of decision vectors x = (x1, ..., xn)T with n deci-

sion variables. There is a corresponding objective vector F(x) for every feasible
decision vector x. The problem can involve equality and inequality constraints
that must be satisfied by the feasible decision vectors. Because of the conflict
among the objective functions in (1), not all of them can achieve their optimal
values simultaneously. A solution x1 ∈ S dominates a solution x2 ∈ S if and
only if fi(x1) ≤ fi(x2) for all i = 1, . . . k, and fj(x1) < fj(x2) for at least one
index j = 1, . . . , k. Then, a solution x∗ ∈ S is Pareto optimal if and only if there
is no solution x ∈ S that dominates it. A Pareto optimal set is then formed by
all Pareto optimal solutions, and the corresponding objective vectors compose a
Pareto front.

An ideal z∗ and a nadir znad point represent the best and worst objective
function values in the Pareto front, respectively. The ideal point can be calculated
by minimizing each objective function separately. Calculating the nadir point
is usually difficult since it requires computing the entire Pareto optimal set.
However, it can be approximated using a pay-off table [22] or other means [9].

Decomposition-based MOEAs [14] utilize a set of reference vectors (which
are also known as reference points or weight vectors)1 to decompose the original
multiobjective optimization problem into a set of single-objective optimization
problems or simpler multiobjective optimization problems to be solved collabo-
ratively. Usually, in the initialization of decomposition-based MOEAs, a set of
reference vectors uniformly distributed in the objective space is generated utiliz-
ing e.g. a simplex lattice design [6]. This method requires a parameter p to control
the density of the reference vectors. Then, the total amount of reference vectors
is given by

(
p+k−1
k−1

)
. A scalarizing function is utilized to evaluate the solutions

belonging to a part of the objective space. The solutions then evolve in the direc-
tion of the reference vector associated with such a part. Scalarizing functions
map an objective vector to a real-valued scalar. Examples of decomposition-
based MOEAs are MOEA/D [30], RVEA [5], and NSGA-III [8] which utilize
dominance in combination with decomposition.

1 For simplicity, we will utilize the term reference vectors throughout this article.

84 G. Lárraga and K. Miettinen

In interactive methods, the DM provides preference information iteratively.
Iterations are intervals during which MOEAs ask for preference information
from the DM. They typically occur every GEN generations, where GEN is a
parameter set before the method start. It is worth noting that a DM can provide
preference information in multiple ways [4,20]. Reference points are a common
way of representing preference information in MOEAs [4]. A reference point
zref is a k-dimensional vector consisting of a desirable value for each objective
function.

3 Related Works

Some interactive decomposition-based MOEAs have been proposed in the litera-
ture. As stated in [4], most of the preference-based MOEAs are modifications of
an existing a posteriori MOEA. We can classify interactive decomposition-based
MOEAs according to how they accomplish interactivity. Although different types
of preference information have been utilized in these methods, we consider here
only the ones employing reference points.

The simplest way of imitating interactivity in MOEAs is by performing a
series of a priori steps. However, the applicability of such methods in real-world
problems is often not considered in the papers where they have been proposed,
as some of their properties would significantly increase the DM’s workload. For
example, they usually do not let the DM decide when to interact with the
method. In addition, they typically display an extensive set of solutions to be
compared at each iteration. The interactive version of R-MOEA/D [25] is an
example of an algorithm utilizing this structure.

Some methods modify the decomposition without altering the structure of
the decomposition-based MOEA. Each iteration uses the preferences to update
the decomposition and guide the search toward the region of interest. The most
common modification to the decomposition involves rearranging the reference
vectors according to the preference information [3,12,15,19]. Some other meth-
ods utilize the preference information to modify the approximation of the ideal
point required by the decomposition-based MOEA [23,24]. The IOPIS frame-
work [27] is another example in this category, as it creates a new (typically
lower-dimensional) preference incorporated space (consisting of a set of scalar-
ization functions) to reformulate the problem. It is worth noting that IOPIS can
also be applied to other types of MOEAs (e.g., dominance-based and indicator-
based); however, it has only been tested with decomposition-based methods.
Although the structure of the methods in this category is similar to the methods
in the previous category, these methods typically include mechanisms to ensure
their applicability to real-world problems (e.g., considering a limited number of
solutions to be shown to the DM at each iteration, controlling the frequency of
iterations and the size of the region of interest).

Finally, some methods add additional steps for each generation of the
decomposition-based algorithm for managing the preference information. Such
steps are commonly intended to update the reference vectors inside the evolu-
tionary process (and not before running the method as in the previous category).

A General Architecture for Interactive Decomposition 85

MOEA/D-a [31], MOEA/D-b [31], and MOEA/D-c [31] are examples of methods
in this category. Interactive WASF-GA [26] is another example, as it replaces the
dominance relation of NSGA-II by utilizing an achievement scalarizing function,
which directs the search toward the region of interest.

4 Properties of an Interactive Solution Process

In an interactive solution process, a DM iterates by providing preference informa-
tion to the method and studying the received solutions until the most preferred
one is found. A DM learns about the trade-offs among the objective functions
as well as the feasibility of the preferences after each iteration. As a result,
the DM may change the preference information during the solution process. To
ensure the practical usability of the method, it should limit the level of cognitive
burden and provide solutions that help the DM gain insight into the problem.
Thus, we can summarize the main desirable properties of an interactive method
as follows [2,28]:

1. The method provides accurate information about possible solutions.
2. The DM and the method can communicate quite easily.
3. The method identifies and produces Pareto optimal solutions.
4. The method provides the DM with a clear overview of the Pareto optimal

set/Pareto front.
5. The method enables the DM to find a region of interest in a learning phase.
6. The method has a decision phase to enable the DM to fine-tune the solutions

in the region of interest.
7. The method gives the DM confidence that the final solution is the most

preferred one, or at least close enough to it.

These properties are directly applicable to scalarization-based methods.
Although MOEAs have to meet these properties, they have somewhat differ-
ent needs and characteristics. Instead of producing Pareto optimal solutions,
MOEAs can provide a set of non-dominated solutions, as they are metaheuris-
tics and cannot guarantee optimality. In addition, most interactive MOEAs focus
only on the learning phase, representing a region of interest without helping the
DM select the most preferred solution. In the next section, we present an archi-
tecture for developing interactive decomposition-based MOEAs that meet the
above-mentioned properties.

5 Proposed Architecture

We propose an architecture consisting of multiple modules that can be utilized to
generate interactive decomposition-based MOEAs that meet the properties dis-
cussed in the previous section. Also, a posteriori or a priori decomposition-based
algorithms can be converted to interactive ones with the help of the architecture.

86 G. Lárraga and K. Miettinen

The architecture has two types of modules: static and dynamic. Static mod-
ules consist of multiple steps that must be considered during the solution process.
On the other hand, dynamic modules allow us to personalize the method accord-
ing to our needs. Such modules present multiple alternatives from which we can
select one or multiple. This architecture aims to provide a guideline for devel-
oping new interactive decomposition-based MOEAs that consider the structure
and properties of an interactive solution process. The alternatives presented in
the dynamic modules have been selected after analyzing the structure of mul-
tiple interactive MOEAs. This means that the interested user can incorporate
new options that accomplish the main aim of each module. The architecture is
illustrated in Fig. 1. The static modules have a red marker in the upper right cor-
ner of the corresponding box, while the dynamic modules have a green marker.
The architecture has seven modules: initialization, preference elicitation, com-
ponent adaptation, optimization, spread adjustment, selection of solutions, and
iteration. Below, we give details of each module.

Fig. 1. Proposed architecture for developing interactive decomposition-based MOEAs.

Initialization Module: This module provides a DM information for learn-
ing about feasible solutions to the problem before starting the solution process
(property 1). The alternatives in this module are: computing the ideal point,
estimating the nadir point, and running an MOEA for a fixed number of gener-
ations. Usually, showing the ideal and nadir points to the DM may help them
provide more realistic preference information within the lower and upper bounds
of the objective functions. If we want to show some feasible solutions to the DM
before starting the solution process, running an a posteriori MOEA would be a
good alternative. However, only a representative set of solutions should be dis-
played to the DM. E.g., a clustering method can be utilized to limit the number
of solutions to display.

Preference Elicitation Module: This module retrieves the DM’s preference
information and the maximum number of solutions (Ns) they want to see at each
iteration (property 2). Here, we utilize reference points to represent the DM’s

A General Architecture for Interactive Decomposition 87

preferences. However, we can extend the architecture to support more types of
preference information. If an a priori method is employed in the optimization
module, then the type of preference information is the same utilized by such a
method. However, if the optimization module uses an a posteriori method, the
preference information is selected according to the mechanism employed in the
component adaptation module. The preference information provided during all
the iterations is stored for further use.

Component Adaptation Module: This module is needed only when an a
posteriori MOEA is utilized in the optimization module. It aims to modify some
elements used by the decomposition-based MOEA to consider preference infor-
mation. For example, modifying the distribution of the reference vectors, chang-
ing the problem formulation, or using the preferences information to replace the
approximation of the ideal point required by some MOEAs (e.g., MOEA/D).

Optimization Module: In this module, an MOEA is utilized to solve a multi-
objective optimization problem considering the preference information provided
by the DM (property 3). There are two alternatives for this module: utilizing an
a priori MOEA or an a posteriori one. In both cases, the methods do not need
to be modified.

Spread Adjustment Module: This module controls the size of the region of
interest depending on the phase of the interactive solution process (properties 5
and 6). A higher spread value is utilized during the learning phase, as the aim
is to learn and eventually find the region of interest. The value will be reduced
during the decision phase to help the DM find the most preferred solution in the
region of interest. The preference information stored in the preference elicitation
module is used to identify the decision phase. If the preference information starts
to be similar among multiple iterations, the decision phase has begun. Some a
priori methods utilize a spread parameter. When using some of those methods
in the optimization module, no additional procedures are needed to control the
size of the region of interest, and the parameter is updated iteratively. On the
other hand, if the optimization module employs an a posteriori method or a
priori method that does not consider a spread parameter, a mechanism to select
a subset of solutions from the region of interest is needed (e.g., the trimming
procedure of the R-metric [13]).

Solution Selection Module: This module filters the solutions on the region
of interest to show only a reduced set of Ns representative solutions to the
DM (property 4). The solutions can be selected in multiple ways: randomly,
dividing the solution set into Ns clusters and selecting the solutions closest to
each centroid, or selecting the Ns solutions with the best values of a scalarizing
function. In addition, this module stores the best solutions in an archive to avoid
losing them. A scalarizing function can be utilized to determine which solutions
to keep. These solutions can be used when the DM provides a reference point
close to another one from a previous iteration.

Iteration Module: In this module, the DM can decide whether or not to
provide new preference information. When no new preference information is

88 G. Lárraga and K. Miettinen

available, the same values as in the previous iteration are utilized. The DM can
also select the final solution among the ones displayed, in which case the solution
process is finished (property 7).

We create an interactive decomposition-based MOEA in the following section
to demonstrate how the proposed architecture can be used. In addition, we
compare it with a method consisting of multiple a priori steps.

6 Example Method and Experiments

In this section, as a proof of concept, we demonstrate how a method created
with the proposed architecture can support a DM during an interactive solution
process. The method considered has the following configuration of modules:
Initialization: MOEA/D is run 200 generations. Then, the ideal and nadir points
are estimated from the resulting population.
Preference Elicitation: Reference points are utilized to represent the preferences
of the DM. All the reference points provided during the solution process will be
stored. A maximum of five solutions (Ns = 5) will be shown to the DM during
each iteration.
Component Adaptation: The reference vectors are rearranged utilizing the NUMS
procedure [15]. It is worth noting that the adaptation is performed based on the
initial values of the reference vectors (which are generated utilizing a simplex
lattice design [6]).
Optimization: MOEA/D is utilized with 200 generations per each iteration.
Spread Adjustment: We adapt the spread parameter of the NUMS procedure
based on the differences among the reference points. Initially, the spread param-
eter is set as 0.5. If the DM utilizes a reference point close to another one provided
in a previous iteration, the spread parameter is divided by two.
Selection of Solutions: The five most representative solutions are shown to the
DM. These are obtained by clustering the solution set utilizing the k-means
method [18]. These solutions will be stored in the solution pool if other solutions
do not dominate them. In addition, the dominated solutions are removed from
the pool every time a new solution is incorporated.
Iteration: When a new reference point is provided, the solutions in the pool
are included in the initial population of MOEA/D. If the DM does not provide
new preferences, the optimization module is run again without modifying the
population or the reference point. The process only stops if the DM has found
a preferred solution.

6.1 Interactive Solution Process

In what follows, we refer to the method created with our architecture as
MOEA/D-NUMS+, while the one consisting of multiple a priori steps is called
MOEA/D-NUMS. We conduct an experiment with the crash-worthiness design
of vehicles problem [17]. It is a real-world engineering problem whose goal is to
make vehicles crash-safe. During a collision, the frontal structure of the vehicle

A General Architecture for Interactive Decomposition 89

absorbs energy, which increases passenger safety. Increasing the mass of the vehi-
cle generally improves its energy absorption capacity. By contrast, lightweight
materials are necessary for a vehicle’s mass to be reduced and, therefore, its fuel
consumption. To achieve a proper design, we must find a compromise between
higher energy absorption and lightweight construction. In this problem, five deci-
sion variables are used to represent the thickness of five reinforced components
surrounding the frontal structure of the vehicle. Specifically, three objective func-
tions need to be minimized: 1) the mass of a vehicle; 2) deceleration during full-
frontal crashes (which influence passenger injuries); and 3) toe board intrusion
during offset-frontal crashes (which affect the structural integrity of the vehicle).
It is worth noting that we will take the role of the DM in this experiment, as its
main aim is to exemplify how the method works. Experiments with real DMs
will be considered as future work.

Now, we can describe the iterations of the solution process. At the begin-
ning, the ideal and nadir points were shown to the DM, whose values are
z∗ = (1661.708, 6.986, 0.0708) and znad = (1666.211, 8.304, 0.106).

Iteration 1. First, the DM set the ideal point as the reference point to see how
difficult it is to achieve these promising values. The five solutions (obtained after
applying the clustering method) displayed to the DM are shown in Table 1. It is
worth noting that the solutions are sorted in increasing order of f1. However, the
DM should be able to decide how to see the solutions displayed by the method
(e.g., in an increasing or decreasing order of some of the objectives).

Table 1. Results of the first iteration

Mass Deceleration Intrusion

(kg) (m/s) (m)

1 1662.032 8.209 0.078

2 1662.420 8.095 0.086

3 1663.010 7.923 0.096

4 1663.839 7.680 0.104

5 1665.229 7.273 0.104

Table 2. Results of the second iteration

Mass Deceleration Intrusion

(kg) (m/s) (m)

1 1662.007 8.216 0.078

2 1662.077 8.196 0.079

3 1662.152 8.174 0.081

4 1662.233 8.150 0.082

5 1662.342 8.118 0.085

Iteration 2. Since the reference point had been too optimistic, the DM adjusted
its components to be more realistic but focused on improving the value of the
first objective. The new reference point was (1661.9, 8.0, 1.0), and the obtained
five solutions are shown in Table 2.

Iteration 3. Based on the solutions shown, the DM realized the trade-off
between f1 and f2 and provided a new reference point (1665, 7.4, 0.1) with the
aim of obtaining better values for f2. The results obtained are shown in Table 3.
There was a good improvement on f2, but f1 and f3 impaired.

90 G. Lárraga and K. Miettinen

Table 3. Results of the third iteration

Mass Deceleration Intrusion

(kg) (m/s) (m)

1 1663.181 7.873 0.098

2 1663.584 7.755 0.102

3 1664.070 7.612 0.105

4 1664.581 7.463 0.107

5 1664.999 7.340 0.106

Table 4. Results of the fourth iteration

Mass Deceleration Intrusion

(kg) (m/s) (m)

1 1662.016 8.214 0.078

2 1662.060 8.201 0.079

3 1662.106 8.187 0.080

4 1662.163 8.171 0.081

5 1662.221 8.154 0.082

Iteration 4. After noticing the impairment in f1 and f3, the DM decided to get
similar results to the ones of Iteration 2. For this, the DM did not need to provide
a new reference point, but it was taken from the list of reference points utilized
during the solution process. In addition, the spread of the region of interest was
reduced automatically. The results obtained are shown in Table 4.

Iteration 5. The DM was satisfied with the improvement on f1 and f3 and
wanted to find more solutions in the same region. Thus, the DM kept the
same reference point as the previous iteration, and the algorithm automatically
reduced the spread of the region of interest. The results are shown in Table 5.

Iteration 6. The DM noticed that the solutions were refined and was satisfied
with the fifth one. The DM selected it as the final solution, as its value on f2
was better than the rest without losing too much on f1 and f3.

Table 5. Results of the fifth iteration

Mass Deceleration Intrusion

(kg) (m/s) (m)

1 1662.034 8.208 0.078

2 1662.054 8.203 0.079

3 1662.074 8.197 0.079

4 1662.097 8.190 0.080

5 1662.123 8.182 0.080

Now we summarize the advantages of our method compared to another one
consisting of multiple a priori steps. Providing the ideal and nadir points before
starting the solution process can help the DM give a reference point when the
DM does not have a clear idea of the feasibility of the solutions, as was shown
in iteration 1. The solutions provided in each iteration can be easily compared
to identify trade-offs between objectives, as there is only a reduced number of
representative solutions. We took advantage of this property on iterations 3
and 4. This reduces the cognitive burden of the DM compared with a method
consisting of multiple a priori steps. As we stored the preferences provided during

A General Architecture for Interactive Decomposition 91

the solution process, the DM can easily re-utilize a previous reference point, as
was shown in iteration 4. Then, the spread adjustment allowed us to refine the
solutions when reaching the decision phase in iterations 5 and 6. If we had used
a method consisting of a priori steps, the support during the solution process
would not be enough for allowing the DM to learn about the problem trade-offs
and the feasibility of solutions.

6.2 Algorithmic Comparison

In the previous section, we showed how MOEA/D-NUMS+ could support a DM
during an interactive solution process. In this section, we compare the perfor-
mance of MOEA/D-NUMS+ and MOEA/D-NUMS utilizing the artificial deci-
sion maker (ADM) proposed in [1] (to replace the DM), and the R-IGD perfor-
mance indicator [16]. The ADM adjusts the preference information according to
the insight gained during each iteration, producing reference points differently
depending on the phase of the solution process. The generated reference points
simulate the exploration in the Pareto optimal set during the learning phase.
On the other hand, the reference points mimic a progressive convergence on the
region of interest obtained from the learning phase during the decision phase.
We considered 4 iterations for the learning phase (L = 4) and 3 for the decision
phase (D = 3) in this experiment. For each iteration, ADM computes the R-IGD
for the results obtained by each method. After the run, the cumulative R-IGD
for the learning phase is obtained by adding the R-IGD values of the first L
iterations. The cumulative R-IGD for the decision phase is obtained by adding
the R-IGD values of the last D iterations. The methods were tested utilizing the
same parameters for both of them: 50 generations per iteration, a lattice reso-
lution of 5, 0.7 as a spread parameter during the learning phase, and 0.3 during
the decision phase. We did not employ the spread adjustment procedure in this
experiment, as the ADM controls the value of the spread parameter according
to the phase of the solution process. We considered two benchmark problems:
DTLZ1 and DTLZ3 [10] with 4, 7, and 9 objectives, resulting in six different
problems. The number of variables was set as 10+k−1 [10]. We made ten inde-
pendent runs for each problem. The median R-IGD values of MOEA/D-NUMS
and MOEA/D-NUMS+ are shown in Table 6. The best results are highlighted
in boldface.

For DTLZ1, MOEA/D-NUMS+ outperformed MOEA/D-NUMS in most of
the cases, except during the decision phase when four objectives were considered.
In the DTLZ3 problem, MOEA/D-NUMS had a better performance than the
proposed method only in the learning phase with seven objectives and the deci-
sion phase with four objectives. This experiment showed us that the proposed
architecture can help in improving the quality of the solutions obtained dur-
ing the learning and decision phase. However, more extensive experimentation
considering different types of problems is needed.

92 G. Lárraga and K. Miettinen

Table 6. R-IGD values for DTLZ1 and DTLZ3 with 7, 5, and 9 objectives.

Problem k Phase MOEA/D-NUMS MOEA/D-NUMS+

Median Std. dev. Median Std. dev.

DTLZ1 4 Learning 2.804056 0.174749 2.671504 0.236763

Decision 2.722246 0.283701 2.74031 0.269508

7 Learning 4.663774 0.126492 3.523776 0.16947

Decision 3.317874 0.210076 3.046718 0.515918

9 Learning 4.332031 0.195637 3.011431 0.268385

Decision 3.36567 0.21437 3.113235 0.658471

DTLZ3 4 Learning 0.451812 0.039745 0.377324 0.031323

Decision 1.472565 0.019187 1.497671 0.000519

7 Learning 0.803064 0.922071 1.958682 1.522243

Decision 0.383067 0.429625 0.234077 0.122247

9 Learning 1.182198 0.448281 0.754516 0.908085

Decision 0.81725 0.299627 0.377474 0.111261

6.3 Discussion

We utilized the proposed architecture to create an interactive version of
MOEA/D. To this aim, we employed a procedure for re-arranging the refer-
ence vectors utilized in the optimization method. However, our proposal can
also be applied to a priori methods. We do not need to use the component
adaptation module in such a case, as the a priori method internally modifies the
decomposition-based MOEA to handle the preference information. It is worth
noting that although we only utilized reference points in this article, our proposal
can be extended to other types of preference information. The type of prefer-
ence information in the current architecture is related to the one required by the
component adaptation and/or optimization modules. To handle more types of
preferences, we would need an additional module for preference unification. Such
a module should allow the DM to use any kind of preference information and
then transform it into the one required by the rest of the modules. In addition,
there are some methods that do not consider a spread parameter to control the
size of the region of interest. In this case, we can utilize an external method like
the one considered in the R-metric [16]. In this article, we did not consider the
case where the same value of the spread parameter can be utilized in multiple
iterations. Such behavior can be useful when the MOEA needs more generations
to converge to the Pareto optimal set. However, the DM is usually not aware
of the technical details of the method. Finally, the selection of the solutions to
be shown to the DM can be performed in multiple ways, for example, through
different clustering techniques or scalarizing functions.

A General Architecture for Interactive Decomposition 93

7 Conclusions

Multiple interactive versions of decomposition-based MOEAs have been pro-
posed in the literature, but they typically do not consider the DM’s needs
and cognitive load. We have introduced an architecture to create interactive
decomposition-based MOEAs by integrating multiple modules with existing a
priori or a posteriori methods. To demonstrate how our architecture can be
employed, we created an interactive MOEA utilizing NUMS, a method for rear-
ranging the reference vectors which has been mainly to convert an a posteriori
method into an a priori one. We solved a real-world problem to demonstrate the
advantages of using our proposal for improving the applicability of the methods
and reducing the cognitive load of the DM. In addition, we compared the pro-
posed method with another one (which does not include the properties of the
architecture) consisting of multiple a priori steps. According to the results, uti-
lizing the proposed architecture improves the performance in most test problems
utilized. This is the first step toward improving the performance of interactive
decomposition-based MOEAs. The proposed architecture can be improved in
multiple directions, for example, by including a preference unification module to
consider different types of preference information and also developing different
methods for adapting the spread parameter. In addition, it can be extended to
other types of MOEAs (e.g., dominance- and indicator-based MOEAs).

References

1. Afsar, B., Miettinen, K., Ruiz, A.B.: An artificial decision maker for comparing ref-
erence point based interactive evolutionary multiobjective optimization methods.
In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 619–631. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72062-9 49

2. Afsar, B., Miettinen, K., Ruiz, F.: Assessing the performance of interactive multi-
objective optimization methods: a survey. ACM Comput. Surv. 54(4), 1–27 (2021).
https://doi.org/10.1145/3448301

3. Aghaei Pour, P., Rodemann, T., Hakanen, J., Miettinen, K.: Surrogate assisted
interactive multiobjective optimization in energy system design of buildings.
Optim. Eng. 23, 303–327 (2022). https://doi.org/10.1007/s11081-020-09587-8

4. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four - pref-
erence incorporation in evolutionary multiobjective optimization: a survey
of the state-of-the-art. Adv. Comput. 98, 141–207 (2015). https://doi.org/
10.1016/bs.adcom.2015.03.001. http://www.sciencedirect.com/science/article/pii/
S0065245815000273

5. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016). https://doi.org/10.1109/TEVC.2016.2519378

6. Cornell, J.A.: Experiments with Mixtures: Designs, Models, and the Analysis of
Mixture Data. Wiley (2011)

7. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

https://doi.org/10.1007/978-3-030-72062-9_49
https://doi.org/10.1145/3448301
https://doi.org/10.1007/s11081-020-09587-8
https://doi.org/10.1016/bs.adcom.2015.03.001
https://doi.org/10.1016/bs.adcom.2015.03.001
http://www.sciencedirect.com/science/article/pii/S0065245815000273
http://www.sciencedirect.com/science/article/pii/S0065245815000273
https://doi.org/10.1109/TEVC.2016.2519378

94 G. Lárraga and K. Miettinen

8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://
doi.org/10.1109/TEVC.2013.2281535

9. Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective
vector using a hybrid of evolutionary and local search approaches. IEEE Trans.
Evol. Comput. 14(6), 821–841 (2010)

10. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R.
(eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Appli-
cations, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-
137-7 6

11. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for
multi-objective decision making. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary computation, GECCO 2011. ACM, New York (2011)

12. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of refer-
ence vectors and different types of preference information in interactive multiobjec-
tive evolutionary algorithms. In: 2016 IEEE Symposium Series on Computational
Intelligence, SSCI 2016, pp. 1–8. Institute of Electrical and Electronics Engineers
Inc. (2017). https://doi.org/10.1109/SSCI.2016.7850220

13. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based
evolutionary multiobjective optimization using reference points. IEEE Trans. Evol.
Comput. 22(6), 821–835 (2018)

14. Li, K.: Decomposition multi-objective evolutionary optimization: from state-of-
the-art to future opportunities. CoRR abs/2108.09588 (2021). https://arxiv.org/
abs/2108.09588

15. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition mul-
tiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018). https://
doi.org/10.1109/TCYB.2018.2859363

16. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based
evolutionary multiobjective optimization using reference points. IEEE Trans. Evol.
Comput. 22(6), 821–835 (2018). https://doi.org/10.1109/TEVC.2017.2737781

17. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash
safety design of vehicles using stepwise regression model. Struct. Multi. Optim.
35(6), 561–569 (2008). https://doi.org/10.1007/s00158-007-0163-x

18. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

19. Mazumdar, A., Chugh, T., Hakanen, J., Miettinen, K.: An interactive framework
for offline data-driven multiobjective optimization. In: Filipič, B., Minisci, E.,
Vasile, M. (eds.) BIOMA 2020. LNCS, vol. 12438, pp. 97–109. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63710-1 8

20. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective
optimization methods. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multiple Crite-
ria Decision Analysis. ISORMS, vol. 233, pp. 927–976. Springer, New York (2016).
https://doi.org/10.1007/978-1-4939-3094-4 22

21. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimiza-
tion: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., S�lowiński, R.
(eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88908-3 2

https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1109/SSCI.2016.7850220
https://arxiv.org/abs/2108.09588
https://arxiv.org/abs/2108.09588
https://doi.org/10.1109/TCYB.2018.2859363
https://doi.org/10.1109/TCYB.2018.2859363
https://doi.org/10.1109/TEVC.2017.2737781
https://doi.org/10.1007/s00158-007-0163-x
https://doi.org/10.1007/978-3-030-63710-1_8
https://doi.org/10.1007/978-1-4939-3094-4_22
https://doi.org/10.1007/978-3-540-88908-3_2

A General Architecture for Interactive Decomposition 95

22. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

23. Nguyen, L., Bui, L.T.: A multi-point interactive method for multi-objective evolu-
tionary algorithms. In: Proceedings of the 4th International Conference on Knowl-
edge and Systems Engineering, KSE 2012, pp. 107–112 (2012). https://doi.org/10.
1109/KSE.2012.30

24. Nguyen, L., Duc, D.N., Thanh, H.N.: An enhanced multi-point interactive method
for multi-objective evolutionary algorithms. In: Satapathy, S.C., Bhateja, V.,
Nguyen, B.L., Nguyen, N.G., Le, D.-N. (eds.) Frontiers in Intelligent Computing:
Theory and Applications. AISC, vol. 1013, pp. 42–49. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-32-9186-7 5

25. Qi, Y., Li, X., Yu, J., Miao, Q.: User-preference based decomposition in MOEA/D
without using an ideal point. Swarm Evol. Comput. 44, 597–611 (2019). https://
doi.org/10.1016/j.swevo.2018.08.002

26. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary
multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 17

27. Saini, B.S., Hakanen, J., Miettinen, K.: A new paradigm in interactive evolutionary
multiobjective optimization. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol.
12270, pp. 243–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58115-2 17

28. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolu-
tionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436
(2009). https://doi.org/10.1162/evco.2009.17.3.411

29. Zhang, J., Xing, L.: A survey of multiobjective evolutionary algorithms. In: 2017
IEEE International Conference on Computational Science and Engineering (CSE)
and IEEE International Conference on Embedded and Ubiquitous Computing
(EUC), vol. 1, pp. 93–100 (2017). https://doi.org/10.1109/CSE-EUC.2017.27

30. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.
org/10.1109/TEVC.2007.892759

31. Zheng, J., Yu, G., Zhu, Q., Li, X., Zou, J.: On decomposition methods in interactive
user-preference based optimization. Appl. Soft Comput. J. 52, 952–973 (2017).
https://doi.org/10.1016/j.asoc.2016.09.032

https://doi.org/10.1109/KSE.2012.30
https://doi.org/10.1109/KSE.2012.30
https://doi.org/10.1007/978-981-32-9186-7_5
https://doi.org/10.1016/j.swevo.2018.08.002
https://doi.org/10.1016/j.swevo.2018.08.002
https://doi.org/10.1007/978-3-319-15892-1_17
https://doi.org/10.1007/978-3-030-58115-2_17
https://doi.org/10.1007/978-3-030-58115-2_17
https://doi.org/10.1162/evco.2009.17.3.411
https://doi.org/10.1109/CSE-EUC.2017.27
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1016/j.asoc.2016.09.032

An Exact Inverted Generational Distance
for Continuous Pareto Front

Zihan Wang , Chunyun Xiao(B), and Aimin Zhou(B)

Shanghai Institute of AI for Education, School of Computer Science and Technology,
East China Normal University, Shanghai 200062, China

zhwang@stu.ecnu.edu.cn, {cyxiao,amzhou}@cs.ecnu.edu.cn

Abstract. So far, many performance indicators have been proposed to
compare different evolutionary multiobjective optimization algorithms
(MOEAs). Among them, the inverted generational distance (IGD) is one
of the most commonly used, mainly because it can measure a popula-
tion’s convergence, diversity, and evenness. However, the effectiveness of
IGD highly depends on the quality of the reference set. That is to say,
all the reference points should be as close to the Pareto front (PF) as
possible and evenly distributed to become ready for a fair performance
evaluation. Currently, it is still challenging to generate well-configured
reference sets, even if the PF can be given analytically. Therefore, biased
reference sets might be a significant source of systematic error. However,
in most MOEA literature, biased reference sets are utilized in experi-
ments without an error estimation, which may make the experimental
results unconvincing. In this paper, we propose an exact IGD (eIGD) for
continuous PF, which is derived from the original IGD under an addi-
tional assumption that the reference set is perfect, i.e., the PF itself is
directly utilized as an infinite-sized reference set. Therefore, the IGD
values produced by biased reference sets can be compared with eIGD so
that systematic error can be quantitatively evaluated and analyzed.

Keywords: Multiobjective optimization · Evolutionary computation ·
Performance indicator · Reference set · Differential geometry

1 Introduction

In recent years, many evolutionary multiobjective optimization algorithms
(MOEAs) have established themselves in a leading position in dealing with mul-
tiobjective optimization problems (MOPs) [17]. In order to compare the perfor-
mance of MOEAs, several carefully constructed test suites containing various
MOPs have been proposed, such as ZDT [19], DTLZ [5], and WFG [7], to name
a few.

An MOP usually contains several conflict objectives, which can not be min-
imized simultaneously. Consequently, a set of optimal solutions, called Pareto
optimal solutions, exist such that each solution is equally preferable. The set of
all Pareto optimal solutions is called Pareto front (PF) and Pareto set (PS) in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 96–109, 2022.
https://doi.org/10.1007/978-3-031-14721-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_7&domain=pdf
http://orcid.org/0000-0003-4730-8312
http://orcid.org/0000-0002-4768-5946
https://doi.org/10.1007/978-3-031-14721-0_7

An Exact Inverted Generational Distance 97

the objective space and the decision space respectively. In practice, an MOEA
maintains a population with limited size to approximate the PF of an MOP.
Convergence and diversity are two important aspects regarding the quality of
PF approximations. A good PF approximation should contain solutions as close
to the PF as possible and as evenly distributed as possible. Therefore, some
performance metrics have been proposed to quantitatively evaluate the quality
of the PF approximations produced by MOEAs from specific perspectives, such
as generational distance (GD) [15], inverted generational distance (IGD) [2,16],
hypervolume (HV) [13], and averaged Hausdorff distance (Δp) [12].

Some performance metrics require a set of reference points taken from the
PF to evaluate the PF approximations. Inverted generational distance (IGD) is
such kind of metric. It is one of the most commonly used metrics, mainly because
it can measure both convergence, diversity, and evenness of an approximation.
However, there are still some difficulties in applying it in practice, although it
has been widely adopted.

1. It is challenging to generate proper reference sets. The accuracy of IGD highly
depends on the quality of the reference set as studied in [8,10,11]. It is sug-
gested that the size of a reference set should be large enough to represent
PF very well in [18]. It further highlighted the necessity of many uniformly
sampled reference points on the entire PF through empirical studies in [8,9].
So far, however, there has been little discussion about how to construct such
a large enough and uniform enough reference set, even if the PF is given
analytically. Most related work focuses only on some simple situations like
linear PF [1,3,4,8]. Although some recent research turned to a little more
complicated PF [6,14], there are still very few effective methods toward even
distribution.

2. Very few objective approaches are available to evaluate the quality of reference
sets. Currently, there some intuitive standards such as

– the size of the reference set should be big enough,
– the reference points should be close enough to the PF, better if they are

accurately located on PF, and
– the reference points should be evenly distributed.

But how large should the reference set be to give a fair comparison? And how
to measure evenness? There are only some empirical conventions on these
issues, and it is not enough for more precise MOEA studies.

3. The effect of a biased reference set is not clear. Usually, the currently widely-
used reference sets may not be so perfect. For a lower computational cost,
the reference sets can not be oversized. For PF with complicated shapes, the
points may not be uniformly distributed. If a biased reference set is used,
are the results still convincing? In most existing work, no error estimation is
conducted. More seriously, it is possible to construct reference sets to make
some results more satisfactory.

To solve the difficulties mentioned above, we will derive the exact value of
IGD, which is defined on a real PF. With the exact value, the quality of reference

98 Z. Wang et al.

sets can be evaluated, and the systematic error caused by biased reference sets
can be quantitatively estimated. This paper aims to present such an exact IGD,
and the major contributions are summarized as follows.

1. The exact IGD value, named as eIGD, is derived from the original IGD using
a real PF rather than discrete reference sets.

2. The effect of biased reference sets is empirically studied. By using eIGD, the
relative errors caused by different methods can be calculated.

The rest of the paper is organized as follows. Section 2 presents some related
work. In Sect. 3, the exact IGD is introduced, and in Sect. 4, an experiment is
conducted to study the effect of biased reference sets. Finally, Sect. 5 concludes
the paper with some remarks for future work.

2 Related Work

This paper considers the following multiobjective optimization problem (MOP).

minimize F (x) = (f1(x), f2(x), . . . , fm(x)) (1)
s.t. x ∈ Ω (2)

where x = (x1, . . . , xn) is an n-D decision variable vector, Ω ⊂ IRn defines
the feasible region of the search space, and F (x) is a vector containing m ≥ 2
objective functions such that fi : Ω → IR for i ∈ {1, 2, . . . ,m}.

For assessing algorithm performance, many metrics or indicators have been
proposed, among which GD and IGD are representative ones. In the following,
we present some definitions and notations required to analyze GD and IGD.

Let u,v ∈ IRn, A ⊂ IRn, and ‖ · ‖ be L2-norm, the distance between two
vectors u,v is defined as

dis(u,v) = ‖u − v‖, (3)

and the distance between vector u and vector set A is defined as

dis(u, A) = inf
a∈A

‖u − a‖. (4)

For an objective vector set A = {a1,a2, . . . ,a|A|} and a reference point set
Z = {z1,z2, . . . ,z|Z|}, we define the generational distance (GD) and inverted
generational distance (IGD) as

GD(A,Z) =
1

|A|
∑

a∈A

dis(a, Z) (5)

IGD(A,Z) =
1

|Z|
∑

z∈Z

dis(z, A). (6)

Consequently, it is clear that

GD(A,Z) = IGD(Z,A). (7)

An Exact Inverted Generational Distance 99

In the literature, there exist different definitions for GD and IGD such as

GD′
p(A,Z) =

1
|A| p

√∑

a∈A

dis(a, Z)p (8)

IGD′
p(A,Z) =

1
|Z| p

√∑

z∈Z

dis(z, A)p. (9)

Schütze et al. [12] reported that such a definition may lead to misleading
results. Considering such a situation that A consists n copies of the same element
a, dis(a, Z) = 1, and p > 1, then we have

lim
n→∞ GD(A,Z) = lim

n→∞

p
√

n

n
= 0. (10)

Such a result is counterintuitive since the indicator value becomes better with
the increase of n, while the convergence of A remains the same. Therefore, they
proposed a modified definition as

GD′′
p(A,Z) = p

√
1

|A|
∑

a∈A

dis(a, Z)p (11)

IGD′′
p(A,Z) = p

√
1

|Z|
∑

z∈Z

dis(z, A)p. (12)

This definition can be seen as the power mean of dis(a, Z) or dis(z, A) with
power p. When p = 1, the above definition becomes the same as Eqs. (5) and
(6), i.e., the arithmetic mean of dis(·, ·). Moreover, if p ≤ q, we have

min
z∈Z

dis(z, A) ≤ IGD′′
p(A,Z) ≤ IGD′′

q (A,Z) ≤ max
z∈Z

dis(z, A), (13)

and this idea also works for GD. This property makes Eqs. (11) and (12) a more
reasonable choice than Eqs. (8) and (9). However, in this paper, we use the most
simple form, i.e., p = 1, because (i) it makes the definition more clear along with
better mathematical properties, (ii) no reported evidence suggests that some
p > 1 works more reasonably, and (iii) such a definition is more widely used in
the literature.

Although the mathematical expressions of GD and IGD are similar, their
behaviors are quite different. GD measures the mean distance from the obtained
solutions to PF. So as long as the solutions are close enough to PF, the GD
value could converge to 0, regardless of the distribution. IGD measures the mean
distance from reference points to the closest obtained solutions. In order to have
a lower IGD, the solutions must be very close to the PF and cannot miss any
part of the whole PF. Consequently, GD is only a convergence indicator, while
IGD is able to measure both convergence and diversity. This is why IGD is more
commonly used than GD in the literature.

100 Z. Wang et al.

3 Exact Inverted Generational Distance

IGD intends to evaluate how well the solutions approximate a PF. A reference
set is fundamentally a discrete approximation of a PF. Based on reference sets,
indicators can be calculated more efficiently. However, such a reference-set-based
performance indicator, e.g., IGD, is a kind of indirect indicator, which means that
it actually measures the approximation to reference points rather than to the
real PF. If a biased reference set is used, inaccurate results may be produced.
Thus, to guide the generation of reference sets, it is reasonable to derive the
exact value of IGD, which is defined on the real PF rather than another discrete
approximation, as a standard.

The exact IGD value can be defined by extending the original discrete model
to a continuous one, technically by replacing sum with integral. Here we assume
that the PF is continuous and smooth. For better understanding, we first con-
sider a bi-objective case, where the PF is a curve L and can be expressed1 as
y = f(x), x ∈ [x0, x1]. Due to optimality of PF, f(x) is a monotone decreasing
function, so its inverse function x = f−1(y), y ∈ [y0, y1] also exists. Schütze et
al. [12] suggested that the exact value should be

eIGD′(A,L) ≡ 1
x1 − x0

∫ x1

x0

dis[(x, y), A] dx. (14)

However, this calculation has a critical defect. Apparently, the exact value
is not related to which integral variable we choose. That is to say, since the PF
is a monotone function, its inverse function also exists. So we can both use x
and y to calculate eIGD, and the result should be the same. Consider an MOP,
in which the PF is part of a hyperbola, writing y = (x − 2)−1 + 1, x ∈ [0, 1],
and a solution located on (2, 1). Now we calculate eIGD using Eq. (14). First,
we choose x as the integral variable, so we have

eIGD′(A,L) =
1

x1 − x0

∫ x1

x0

dis [(x, y) , A] dx (15)

=
1

1 − 0

∫ 1

0

dis [(x, y) , (2, 1)] dx (16)

=
∫ 1

0

√
(x − 2)2 + (y − 1)2 dx (17)

=
∫ 2

1

√
u2 +

1
u2

du (18)

=
u
√

u2 + u−2
(√

u4 + 1 − tanh−1
√

u4 + 1
)

2
√

u4 + 1

∣∣∣∣∣

2

u=1

(19)

≈ 1.6714. (20)

1 In Sect. 3 and below, the variable x is not related to the x mentioned in Eq. (1),
i.e., the solutions in the decision space. Here, since we are discussing performance
evaluation, all the points or coordinates are in the objective space.

An Exact Inverted Generational Distance 101

Then we choose y as the integral variable, and we have

eIGD′(A,L) =
1

y1 − y0

∫ y1

y0

dis [(x, y) , A] dy (21)

=
1

1/2 − 0

∫ 1
2

0

dis [(x, y) , (2, 1)] dy (22)

= 2
∫ 1

2

0

√
(x − 2)2 + (y − 1)2 dy (23)

= 2
∫ 1

1
2

√
1
u2

+ u2 du (24)

=
u
√

u2 + u−2
(√

u4 + 1 − tanh−1
√

u4 + 1
)

√
u4 + 1

∣∣∣∣∣

1

u= 1
2

(25)

≈ 1.5968. (26)

In this case, the eIGD′(A,L) values are different by using y and x as the
integral variable. The reason is that in Eq. (14), the calculus is not proper. More
specifically, in a bi-objective situation, the integral on a PF is conducted on a 1-
D curve in a 2-D space. Therefore, we should select the curve element ds, rather
than dx. Thus, in this paper, the exact IGD, denoted as eIGD, is defined as

eIGD(A,L) ≡

∫

L

dis[(x, y), A] ds
∫

L

1 ds

. (27)

Consider a generalized form where the curve L is expressed in a parametric
equation form, i.e.,

L :

{
x = x(t)
y = y(t)

, t0 ≤ t ≤ t1. (28)

Then we have

ds =

√(
dx

dt

)2

+
(

dy

dt

)2

. (29)

Consequently, Eq. (27) can be written as

eIGD(A,L) =

∫

L

dis [(x, y) , A] ds
∫

L

1 ds

(30)

=

∫ t1

t0

dis [(x(t), y(t)) , A]

√(
dx

dt

)2

+
(

dy

dt

)2

dt

∫ t1

t0

√(
dx

dt

)2

+
(

dy

dt

)2

dt

. (31)

102 Z. Wang et al.

Apparently, a specific curve L might have different parametric expressions,
and it is easy to prove that different parametric expressions will all result in
the same eIGD value. Consider the above example. If x is chosen to be the
parameter, the PF can be written as L : y = (x − 2)−1 + 1, x ∈ [0, 1], and we
have

ds =

√

1 +
(

dy

dx

)2

dx (32)

=

√
1 +

1
(x − 2)4

dx. (33)

Therefore,

eIGD(A,L) =

∫

L

dis [(x, y) , A] ds
∫

L

1 ds

(34)

=

∫ 1

0

dis
[(

x,
1

x − 2
+ 1

)
, A

] √
1 +

1
(x − 2)4

dx

∫ 1

0

√
1 +

1
(x − 2)4

dx

(35)

=

∫ 2

1

√
x2 +

1
x2

√
1 +

1
x4

dx

∫ 2

1

√
1 +

1
x4

dx

(36)

=

x4 − 1
2x2

∣∣∣∣
2

x=1∫ 2

1

√
1 +

1
x4

dx

(37)

≈ 1.6562, (38)

and if y is chosen to be the parameter, the PF can be written as L : x =
(y − 1)−1 + 2, y ∈ [0, 1/2], and we have

eIGD(A,L) =

∫
L

dis [(x, y) , A] ds∫
L

1 ds
(39)

=

∫ 1/2

0
dis

[(
(y − 1)−1 + 2, y

)
, (2, 1)

] √
1 + (y − 1)−4 dy

∫ 1/2

0

√
1 + (y − 1)−4 dy

(40)

=

∫ 1

1/2
y + y−3 dy

∫ 1

1/2

√
1 + y−4 dy

(41)

≈ 1.6562. (42)

An Exact Inverted Generational Distance 103

The two eIGD values are the same when we choose different parametric expres-
sions.

Moreover, our conclusion can be extended to higher dimensional situations.
Consider a 2-D PF in a 3-D space, i.e., Σ : T ⊂ IR2 → S ⊂ IR3, which exists in
MOPs with 3 objectives. Due to the optimality of PF, it can be expressed by
Σ : z = z(x, y), (x, y) ∈ T ⊂ IR2. Therefore, the eIGD is

eIGD(A,Σ) ≡

∫∫

S

dis [(x, y, z), A] dσ
∫∫

S

1 dσ

. (43)

Since

dσ =

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy, (44)

we have

eIGD(A,Σ) =

∫∫

S

dis [(x, y, z), A] dσ
∫∫

S

1 dσ

(45)

=

∫∫

T

dis [(x, y, z), A]

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy

∫∫

T

√

1 +
(

∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy

. (46)

Similarly, both x and y can be used as the major variable as well, and the eIGD
shall remain the same. More generally, if the PF is parameterized as

Σ :

⎧
⎪⎨

⎪⎩

x = x(u, v)
y = y(u, v)
z = z(u, v)

, (u, v) ∈ T ⊂ IR2, (47)

then according to first fundamental form, we have

eIGD(A,Σ) (48)

=

∫∫

S

dis[(x, y, z), A] dσ
∫∫

S

1 dσ

(49)

=

∫∫

T

dis[(x, y, z), A]

√[
∂(y, z)
∂(u, v)

]2

+
[
∂(z, x)
∂(u, v)

]2

+
[
∂(x, y)
∂(u, v)

]2

du dv

∫∫

T

√[
∂(y, z)
∂(u, v)

]2

+
[
∂(z, x)
∂(u, v)

]2

+
[
∂(x, y)
∂(u, v)

]2

du dv

, (50)

104 Z. Wang et al.

where

∂(x, y)
∂(u, v)

=
∣∣∣∣
xu xv

yu yv

∣∣∣∣ = xuyv − xvyu. (51)

In a more generalized situation, consider an m-D PF in an n-D space, i.e.,
Σ : T ⊂ IRm → S ⊂ IRn (m < n) with a parametrization form of

Σ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = x1(t1, t2, . . . , tm)
x2 = x2(t1, t2, . . . , tm)

. . .

xn = xn(t1, t2, . . . , tm)

(52)

x = (x1, x2, . . . , xn) ∈ S ⊂ IRn,

t = (t1, t2, . . . , tm) ∈ T ⊂ IRm,
(53)

we have

eIGD(A,Σ) ≡

∫

S

dis(x, A) dσ
∫

S

1 dσ

(54)

=

∫

T

dis[x(t), A]
√

det(J�J) dt1 dt2 . . . dtm
∫

T

√
det(J�J) dt1 dt2 . . . dtm

, (55)

where J denotes the Jacobian matrix, i.e.,

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1

∂t1

∂x1

∂t2
· · · ∂x1

∂tm
∂x2

∂t1

∂x2

∂t2
· · · ∂x2

∂tm
...

...
. . .

...

∂xn

∂t1

∂xn

∂t2
· · · ∂xn

∂tm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (56)

4 Evaluating Discretization Error Using eIGD

This part is devoted to evaluating discretization error, i.e., the systematic error
caused by a biased reference set, using eIGD. In this section, we will generate ref-
erence sets using four different methods and compare the IGD value with eIGD.
In this way, the discretization error can be evaluated and analyzed quantitatively.

An Exact Inverted Generational Distance 105

Let us consider a bi-objective optimization problem in which the PF is a 1/4
circle, and one solution is located at (2, 1). Formally,

L = {(x, y) | x2 + y2 = 1, 0 ≤ x, y ≤ 1}, (57)

A = {(2, 1)}. (58)

Then, we can calculate eIGD as

eIGD(A,L) =

∫

L

dis [(x, y) , A] ds
∫

L

1 ds

(59)

=
2
π

∫ 1

0

√
(x − 2)2 + (

√
1 − x2 − 1)2

√
1 − x2

dx (60)

≈ 1.459083233376. (61)

We consider the following four reference generation methods.

x-uniform. Points are uniformly sampled from the x-axis and projected to the
PF, i.e.,

Z =

{
x = i/k

y =
√

1 − i2/k2
, i ∈ {0, 1, . . . , k}. (62)

y-uniform. Points are uniformly sampled from the y-axis and projected to the
PF, i.e.,

Z =

{
x =

√
1 − i2/k2

y = i/k
, i ∈ {0, 1, . . . , k}. (63)

Simplex-uniform. Points are uniformly sampled from a unit simplex, i.e., y =
1 − x (0 ≤ x ≤ 1) for bi-objective situation, and projected to the curve.
Usually, the Das-Dennis algorithm [3] is used for uniform sampling on a unit
simplex, i.e.,

Z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x =
i/k√

i2/k2 + (1 − i/k)2

y =
1 − i/k√

i2/k2 + (1 − i/k)2

, i ∈ {0, 1, . . . , k}. (64)

Curve-uniform. Since the PF is part of a circle in this experiment, we can
divide the angle into equal parts and then project them to the PF, i.e.,

Z =

⎧
⎪⎨

⎪⎩

x = cos(
iπ

2k
)

y = sin(
iπ

2k
)

, i ∈ {0, 1, . . . , k}. (65)

106 Z. Wang et al.

Fig. 1. Illustrations of reference points generated by (a) x-uniform, (b) y-uniform, (c)
simplex-uniform, (d) curve-uniform.

The reference points generated by the four approaches are plotted in Fig. 1.
Apparently, both x-uniform, y-uniform, and simplex-uniform can not generate
evenly distributed reference points. For x-uniform, more points are located on
the top of the curve and fewer on the bottom; and on the contrary, for y-uniform,
more points are located on the bottom. For simplex-uniform, more points are
on the two sides of the curve and fewer in the mid. Because the PF is precisely
part of a circle, curve-uniform can generate evenly distributed points, and equal
parts of the curve will always contain the same number of points.

Fig. 2. Statistical results for four reference set generation methods, (a) IGD value
versus set size, (b) relative error versus set size.

The four approaches are used to generate reference sets of different sizes,
and the IGD values are calculated and plotted in Fig. 2(a). Then, the results
are compared with the exact value, and the relative error, which is defined in
Eq. (66), is plotted in Fig. 2(b).

Relative Error =
|IGD(A,Z) − eIGD(A,L)|

eIGD(A,L)
(66)

From the results, we can draw some conclusions.

An Exact Inverted Generational Distance 107

1. With the increase of the set size, the IGD values produced by four methods
converge to four different values. This evidence indicates that simply increas-
ing the number of reference points will not necessarily make the IGD more
accurate. Not only the set size but also the distribution is a critical factor.

2. The reference sets produced by y-uniform result in the lowest IGD value.
The main reason is that, in such reference sets, more points are located on
the bottom, and the solution is located in (2, 1). Consequently, the solution
set in this experiment may benefit from the distribution from y-uniform.
This phenomenon may imply that biased reference sets could have specific
preferences, which may result in tendentious experimental results.

3. The relative errors of the first three methods are larger than 10−2, which
shows that biased reference sets may significantly influence the experimental
results. Thus, this issue deserves to be further studied.

4. The relative error of curve-uniform is nearly in inverse proportion to the size,
indicating that discretization error could be limited with properly configured
reference sets.

5. Convergence of the relative error of the curve-uniform approach also reflects
that our derivation of eIGD is correct.

5 Conclusion and Future Work

In this paper, an exact IGD, named eIGD, is proposed. Exact IGD is derived
from the original IGD under an additional assumption that there are infinite
reference points evenly distributed on PF. The analytical form of eIGD from
2-D to higher dimensional continuous situations is presented. Moreover, with
eIGD, it is possible to evaluate the discretization error, i.e., the error caused by
reference sets. An experiment is conducted in which four reference generation
methods are studied. The result indicates that the discretization error could be
limited with a proper reference set. In contrast, with a biased reference set, the
error might be out of control and may cause unconvincing experimental results.

As for future work, there are some possible issues. (i) In this paper, the
discretization error is calculated using a fixed population. For practical use, an
estimation for the upper bound of the discretization error for a specific reference
set is expected. (ii) Since we have derived the integral form of eIGD in detail,
it can be used as a practical indicator because the accurate eIGD value can be
calculated using numerical integral algorithms. (iii) Similar derivation can be
easily extended to other performance indicators, such as GD, IGD+, and Δp.

Acknowledgements. This work is supported by the Scientific and Technological
Innovation 2030 Major Projects under Grant No. 2018AAA0100902, the Science and
Technology Commission of Shanghai Municipality under Grant No. 19511120601,
the National Natural Science Foundation of China under Grant No. 61731009 and
61907015, and the Fundamental Research Funds for the Central Universities.

108 Z. Wang et al.

References

1. Blank, J., Deb, K., Dhebar, Y.D., Bandaru, S., Seada, H.: Generating well-spaced
points on a unit simplex for evolutionary many-objective optimization. IEEE
Trans. Evol. Comput. 25(1), 48–60 (2021). https://doi.org/10.1109/TEVC.2020.
2992387

2. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

3. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generat-
ing the pareto surface in nonlinear multicriteria optimization problems. SIAM J.
Optim. 8(3), 631–657 (1998). https://doi.org/10.1137/S1052623496307510

4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://
doi.org/10.1109/TEVC.2013.2281535

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolution-
ary multiobjective optimization. In: Abraham, A., Jain, L.C., Goldberg, R.R. (eds.)
Evolutionary Multiobjective Optimization. Advanced Information and Knowledge
Processing, pp. 105–145. Springer, Heidelberg (2005). https://doi.org/10.1007/1-
84628-137-7 6

6. He, C., Pan, L., Xu, H., Tian, Y., Zhang, X.: An improved reference point sampling
method on pareto optimal front. In: IEEE Congress on Evolutionary Computation,
CEC 2016, Vancouver, BC, Canada, 24–29 July 2016, pp. 5230–5237. IEEE (2016).
https://doi.org/10.1109/CEC.2016.7748353

7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006). https://doi.org/10.1109/TEVC.2005.861417

8. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in
inverted generational distance for triangular linear pareto front. IEEE Trans. Evol.
Comput. 22(6), 961–975 (2018). https://doi.org/10.1109/TEVC.2017.2776226

9. Ishibuchi, H., Masuda, H., Nojima, Y.: Sensitivity of performance evaluation results
by inverted generational distance to reference points. In: IEEE Congress on Evo-
lutionary Computation, CEC 2016, Vancouver, BC, Canada, 24–29 July 2016, pp.
1107–1114. IEEE (2016). https://doi.org/10.1109/CEC.2016.7743912

10. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

11. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. 52(2), 26:1–26:38 (2019). https://doi.org/10.1145/
3300148

12. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Haus-
dorff distance as a performance measure in evolutionary multiobjective optimiza-
tion. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012). https://doi.org/10.1109/
TEVC.2011.2161872

13. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator
in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–
20 (2021). https://doi.org/10.1109/TEVC.2020.3013290

https://doi.org/10.1109/TEVC.2020.2992387
https://doi.org/10.1109/TEVC.2020.2992387
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1109/CEC.2016.7748353
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1109/TEVC.2017.2776226
https://doi.org/10.1109/CEC.2016.7743912
https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1145/3300148
https://doi.org/10.1145/3300148
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.1109/TEVC.2020.3013290

An Exact Inverted Generational Distance 109

14. Tian, Y., Xiang, X., Zhang, X., Cheng, R., Jin, Y.: Sampling reference points on
the pareto fronts of benchmark multi-objective optimization problems. In: 2018
IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil,
8–13 July 2018, pp. 1–6. IEEE (2018). https://doi.org/10.1109/CEC.2018.8477730

15. Valenzuela-Rendón, M., Uresti-Charre, E.: A non-generational genetic algorithm
for multiobjective optimization. In: Bäck, T. (ed.) Proceedings of the 7th Inter-
national Conference on Genetic Algorithms, East Lansing, MI, USA, 19–23 July
1997, pp. 658–665. Morgan Kaufmann (1997)

16. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.P.K.: Combining model-based
and genetics-based offspring generation for multi-objective optimization using a
convergence criterion. In: IEEE International Conference on Evolutionary Compu-
tation, CEC 2006, part of WCCI 2006, Vancouver, BC, Canada, 16–21 July 2006,
pp. 892–899. IEEE (2006). https://doi.org/10.1109/CEC.2006.1688406

17. Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput.
1(1), 32–49 (2011). https://doi.org/10.1016/j.swevo.2011.03.001

18. Zhou, A., Zhang, Q., Jin, Y., Sendhoff, B.: Adaptive modelling strategy for contin-
uous multi-objective optimization. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC 2007, Singapore, 25–28 September 2007, pp. 431–437.
IEEE (2007). https://doi.org/10.1109/CEC.2007.4424503

19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.
1162/106365600568202

https://doi.org/10.1109/CEC.2018.8477730
https://doi.org/10.1109/CEC.2006.1688406
https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1109/CEC.2007.4424503
https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202

Direction Vector Selection for R2-Based
Hypervolume Contribution

Approximation

Tianye Shu, Ke Shang(B), Yang Nan, and Hisao Ishibuchi(B)

Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China
{12132356,shangk,nany,hisao}@sustech.edu.cn, kshang@foxmail.com

Abstract. Recently, an R2-based hypervolume contribution approxima-
tion (i.e., RHV C

2 indicator) has been proposed and applied to evolution-
ary multi-objective algorithms and subset selection. The RHV C

2 indicator
approximates the hypervolume contribution using a set of line segments
determined by a direction vector set. Although the RHV C

2 indicator is
computationally efficient compared with the exact hypervolume contri-
bution calculation, its approximation error is large if an inappropriate
direction vector set is used. In this paper, we propose a method to gen-
erate a direction vector set for reducing the approximation error of the
RHV C

2 indicator. The method generates a set of direction vectors by
selecting a small direction vector set from a large candidate direction
vector set in a greedy manner. Experimental results show that the pro-
posed method outperforms six existing direction vector set generation
methods. The direction vector set generated by the proposed method
can be further used to improve the performance of hypervolume-based
algorithms which rely on the RHV C

2 indicator.

Keywords: Evolutionary multi-objective optimization · Hypervolume
contribution · Hypervolume contribution approximation

1 Introduction

In evolutionary multi-objective optimization (EMO), convergence and diversity
are two desired properties of a solution set. To address the conflicting nature of
the two properties, many indicators are proposed such as hypervolume (HV) [25,
31], generational distance (GD) [28], inverted generational distance (IGD) [5],
and R2 [13]. These indicators are used not only for evaluating the performance
of evolutionary multi-objective optimization algorithms (EMOAs) but also for
designing EMOAs.

Hypervolume is one of the most widely used indicators in EMO since hyper-
volume is Pareto compliant [30]. Many EMOAs are based on the hypervolume
indicator such as SMS-EMOA [1,11] and FV-EMOA [18]. In these algorithms,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 110–123, 2022.
https://doi.org/10.1007/978-3-031-14721-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_8

Direction Vector Selection for R2-Based HVC Approximation 111

hypervolume contribution plays an important role, which is the increment (or
decrement) of the hypervolume of a solution set when a solution is added (or
removed). For example, SMS-EMOA discards the solution with the least hyper-
volume contribution from the population in each generation, so that the hyper-
volume of the remaining population is maximized. Hypervolume contribution
is also crucial in hypervolume subset selection (HSS), which aims to select a
subset with the maximum hypervolume from a candidate solution set. Greedy
HSS methods [2,3,12] usually select (or remove) the solution with the largest
(or least) hypervolume contribution iteratively.

One drawback of hypervolume-based algorithms is their expensive compu-
tational cost, especially in high-dimensional spaces. This is because the exact
calculation of hypervolume and hypervolume contribution is #P-hard [4]. To
decrease the computational cost, an R2-based hypervolume contribution approx-
imation method (i.e., RHV C

2 indicator) was proposed in [26]. Benefiting from the
RHV C

2 indicator, an efficient hypervolume-based algorithm R2HCA-EMOA was
proposed, which outperforms many state-of-the-art EMOAs on many-objective
problems [23]. The RHV C

2 indicator was also applied in a greedy approximate
HSS algorithm (i.e., GAHSS) whose computational cost is much lower than that
of greedy exact HSS algorithms [24].

The basic idea of the RHV C
2 indicator is to use different line segments to

approximate the hypervolume contribution. Therefore, a set of vectors is needed
to determine the directions of these line segments. Nan et al. [21] reported that
the performance of the RHV C

2 indicator highly depends on the distribution of
the used direction vectors, and uniformly distributed direction vectors are not
useful for the RHV C

2 indicator. However, currently available methods for direc-
tion vector set generation are not specially designed for the RHV C

2 indicator,
and some of them aim to obtain uniformly distributed direction vectors. As a
result, these methods are not suitable for the RHV C

2 indicator.
In this paper, we propose a direction vector set generation method called

the greedy approximation error selection (GAES). Specifically, we formulate the
direction vector set generation for the RHV C

2 indicator as a subset selection prob-
lem. The target is to minimize the approximation error of the RHV C

2 indicator,
which is defined by the average distance between the ranking of solutions based
on the hypervolume contribution and their ranking based on the RHV C

2 indica-
tor in a set of training solution sets. The proposed algorithm selects direction
vectors one by one from a large candidate direction vector set in a greedy man-
ner. Our experimental results show that the proposed method can achieve the
smallest approximation error and the highest correct identification rate among
seven direction vector set generation methods. The direction vector set gener-
ated by the proposed method can be further used to improve the performance of
hypervolume-based algorithms (e.g., GAHSS) which rely on the RHV C

2 indicator.
The rest of the paper is organized as follows: In Sect. 2, we briefly review the

hypervolume, the hypervolume contribution, the R2-based hypervolume contri-
bution, six direction vector set generation methods, and subset selection. We
propose a direction vector set generation method for the RHV C

2 indicator in
Sect. 3. The performance of the proposed method is tested in Sect. 4. Finally, in
Sect. 5, the conclusion is given.

112 T. Shu et al.

2 Background

2.1 Hypervolume and Hypervolume Contribution

Mathematically, the hypervolume indicator is defined as follows.

Definition 1. In the objective space Rm with a reference point r ∈ Rm, the
hypervolume of a solution set S ⊂ Rm is defined as

HV (S, r) = L
(⋃

s∈S

{a|s � a � r}
)

, (1)

where L(·) is the Lebesgue measure of a set, and s � a denotes s dominates a
(i.e., si ≤ ai ∀i ∈ {1, 2, ..,m} and sj < aj ∃j ∈ {1, 2, ...,m} in the minimization
case).

Based on the definition of the hypervolume, the hypervolume contribution is
defined as follows.

Definition 2. In the objective space Rm with a reference point r ∈ Rm, the
hypervolume contribution of a solution s ∈ Rm to a solution set S ⊂ Rm is
defined as

HV C(s, S, r) =

{
HV (S, r) − HV (S \ {s}, r), if s ∈ S,

HV (S ∪ {s}, r) − HV (S, r), if s /∈ S.
(2)

Figure 1(a) and (b) illustrate the hypervolume and the hypervolume contri-
bution in the two-objective space.

2.2 R2-Based Hypervolume Contribution Approximation

In [26], an R2-based indicator (i.e., RHV C
2 indicator) was proposed to approx-

imate the hypervolume contribution. Suppose we have a solution set S in the
m-dimensional objective space. To approximate the hypervolume contribution
of the solution s to S with the reference point r, the lengths of a set of line
segments are used. The length L of each line segment is determined by each
direction vector λ in a given direction vector set V , the solution set S \ {s} and
the reference point r. Mathematically,

RHV C
2 (s, S, r, V) =

1
|V |

∑
λ∈V

L(s, S \ {s}, r,λ)m

=
1

|V |
∑
λ∈V

min

{
min

s′∈S\{s}
{g∗2tch(s′|λ, s)}, gmtch(r|λ, s)

}m

.

(3)
For minimization problems, the g∗2tch(s′|λ, s) function in Eq. (3) is defined as

g∗2tch(s′|λ, s) = max
j∈{1,2,...,m}

{
s

′
j−sj

λj

}
, and the gmtch(r|λ, s) function in Eq. (3)

is defined as gmtch(r|λ, s) = min
j∈{1,2,...,m}

{ |rj−sj |
λj

}
. The mechanism of the R2-

based hypervolume contribution approximation is illustrated in Fig. 1(c).

Direction Vector Selection for R2-Based HVC Approximation 113

Fig. 1. Illustration of the hypervolume, the hypervolume contribution and the R2-
based hypervolume contribution approximation. The grey area in (a) is the hypervol-
ume of the solution set {s1, s2, s3}. Each grey area (1, 2 and 3) in (b) is the hyper-
volume contribution of the corresponding solution (s1, s2 and s3) to the solution set
{s1, s2, s3}, respectively. The red lines in (c) illustrate the mechanism of the R2-based
hypervolume contribution approximation. (Color figure online)

2.3 Direction Vector Set Generation Methods

Six existing direction vector set generation methods are briefly explained. The
first three methods are space filling methods. Every generated weight vector w
is normalized to obtain the direction vector λ (i.e., λ = w

||w ||2).

– Das and Dennis (DAS) method [6]: In the m-dimensional space, the DAS
method generates a weight vector w = (w1, w2, ..., wm) by uniformly dividing
each dimension into H parts. The value of wj is selected from {0, 1

H , 2
H , ..., 1−∑j−1

i=1 wi}. Totally, Cm−1
H+m−1 weight vectors are generated.

– Unit normal vector (UNV) method [10]: In the UNV method, a set of
weight vectors is randomly sampled from the m-dimensional normal distri-
bution (i.e., w ∼ Nm(0, Im)).

– JAS method [17]: The JAS method randomly generates a weight vector
w = (w1, w2, ..., wm) with the uniform probability distribution [17]. For k <

m, wk is sampled by wk = (1 − ∑k−1
j=1 wj)(1 − m−k

√
μ) where μ is randomly

sampled from [0, 1]. For the last dimension, wm = 1 − ∑m−1
j=1 wj .

The other three methods select the desired direction vector set from a large
candidate direction vector set generated by one of the first three methods.

– Maximally spare selection method with DAS (MSS-D [7]): A large
candidate direction vector set U is generated by the DAS method. Then, m
extreme direction vectors (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1) are selected as
the initial direction vector set V . The direction vector λ ∈ U with the largest
distance to the vector set V is selected (i.e., moved from U to V). This step
repeats until V reaches the desired size.

– Maximally spare selection method with UNV (MSS-U [7]): The only
difference between MSS-U and MSS-D is that the candidate direction vector
set U in MSS-U is generated by UNV instead of DAS.

114 T. Shu et al.

– Kmeans-U [15]: The method starts with a large candidate direction vector
set U generated by the UNV method. Then the k-means clustering [20] is
used to obtain a direction vector subset V from U .

In Fig. 2, a direction vector set of size 91 is generated by each method, and the
size of the candidate direction vector set is 49,770 for the MSS-D, MSS-U and
Kmeans-U methods. In Fig. 2, the direction vector sets generated by the DAS,
MSS-D, MSS-U and Kmeans-U methods are more uniform than those generated
by the UNV and JAS methods.

Fig. 2. Illustration of the direction vector sets generated by the six methods outlined
in Sect. 2.3. Each direction vector set contains 91 direction vectors.

2.4 Subset Selection

Subset selection is to select a subset from a large candidate set to optimize
a given metric [22]. Formally, given a set U = {e1, e2, ..., eN}, a metric f (to
be maximized) and a positive integer k, subset selection aims to find a subset
V ⊆ U with |V | = k for maximizing f(V). That is, V ∗ = argmaxV ⊆U,|V |=kf(V).
When the target is to minimize f(V), the problem can be written as V ∗ =
argminV ⊆U,|V |=kf(V). To solve the subset selection problem, the greedy inclu-
sion is a simple yet widely used method. For example, hypervolume subset selec-
tion (HSS) aims to maximize the hypervolume of the selected solution subset.
The greedy inclusion for the HSS [3,12] selects the solution with the largest
hypervolume contribution iteratively.

Direction Vector Selection for R2-Based HVC Approximation 115

3 Proposed Method for Selecting Direction Vector Set

Since the performance of the RHV C
2 indicator strongly depends on the used

direction vector set, we propose a simple greedy inclusion algorithm called the
greedy approximation error selection (GAES) for obtaining a high-quality direc-
tion vector set for the RHV C

2 indicator, and analyze its time complexity.

3.1 Approximation Error

Equipped with a good direction vector set, the RHV C
2 indicator is supposed to

be consistent with the hypervolume contribution. That is, the approximation
error should be small. Usually, we are interested in the ranking of solutions
based on the hypervolume contribution values in hypervolume-based algorithms.
Therefore, we define the approximation error between the ranking based on the
hypervolume contribution and the ranking based on the RHV C

2 indicator. The
hypervolume contribution is calculated by the WFG algorithm [29], and the
RHV C

2 indicator is calculated by Eq. (3). Suppose we have a solution set Si =
{s1, s2, ..., st}. We denote the ranking based on the hypervolume contribution by
σH(s1), σH(s2), ..., σH(st), where σH(si) is the rank of the solution si among
the t solutions in Si. In the same manner, we denote the ranking based on the
RHV C

2 indicator by σR(s1), σR(s2), ..., σR(st). Spearman’s footrule is one of
the most well-known distances between rankings [19], which can be described as
follows:

D(Si, σH , σR) =
t∑

j=1

|σH(sj) − σR(sj)|. (4)

Small approximation error means that the distance between the two rankings
is small. Based on the distance in Eq. (4), we can measure the approximation
error. For a set of solution sets S = {S1, S2, ...ST }, the approximation error is
defined as follows:

AE(S, V, r) =
1
T

T∑
i=1

D(Si, σH , σR), (5)

where r is the reference point, σH is the ranking of the solutions in Si based on
the hypervolume contribution, and σR is the ranking of these solutions based on
the RHV C

2 indicator with the direction vector set V .

3.2 Problem Formulation

Now we can formulate the problem of generating a good direction vector set
for the RHV C

2 indicator as a subset selection problem. Given a large candidate
direction vector set U = {λ1,λ2, ...,λN }, a set of training solution sets S, and
a reference point r, the problem is to find a direction vector subset V ⊂ U with
|V | = n (n < N) to minimize the approximation error AE(S, V, r) in Eq. (5).

116 T. Shu et al.

3.3 Greedy Inclusion Algorithm

To solve the above problem, a simple greedy inclusion algorithm called the greedy
approximation error selection (GAES) is proposed (Algorithm1). Firstly, a set of
training solution sets S should be prepared in advance. Then, a large candidate
direction vector set U is generated by some methods. The direction vector set
V is empty initially. Iteratively, the direction vector λ∗ ∈ U which minimizes
AE(S, V ∪ {λ}, r) is selected (i.e., moved from U to V) until V reaches the
desired size.

We analyze the time complexity of Algorithm 1. The most time-consuming
step is to calculate the approximation error AE. Let us consider a single training
solution set Si with size t. In Eq. (4) and (5), we have to obtain two rankings of
the solutions in Si: One is based on the hypervolume contribution and the other
is based on the RHV C

2 indicator. The hypervolume contribution can be calculated
in advance. Therefore, we only need to calculate the RHV C

2 indicator with the
direction vector set V ∪ {λ} for every λ ∈ U . It is worth noting in Eq. (3) that
the RHV C

2 indicator with a direction vector set V is basically the average length
of the line segment determined by the direction vector λ for every λ ∈ V . Thus,
we can calculate the length L for each solution in Si with each direction vector in
U in advance, which requires O(Nt2m) time. With these lengths, we can update
the RHV C

2 indicator for each solution in Si in O(t) time. Sorting these solutions
requires O(t log t) time, which is performed for each λ in U in each iteration in
Algorithm 1. The total time complexity is O(T (nNt log t + Nt2m)).

Algorithm 1. Greedy Approximation Error Selection
Input: S (a set of training solution sets), N (size of a candidate direction vector set),
n (size of a desired direction vector set), r (reference point)
Output: V (desired direction vector set)
Generate a candidate direction vector set U of size N by some methods.
V ← ∅
while |V | < n

λ∗ = argmin
λ∈U

AE(S, V ∪ {λ}, r)

Move λ∗ from U to V
end while

4 Experiments and Discussions

4.1 Direction Vector Selection

Experimental Settings. The first experiment is to illustrate the direction vector
selection process of the GAES algorithm (Algorithm1). We generate 100 training
solution sets of size 100, and the hypervolume contribution of each solution in each
training solution set is calculated in advance. More specifically, to generate each
training solution set Si with size 100, we first determine the shape (triangular or
inverted triangular) and the curvature (linear, convex or concave) of the Pareto

Direction Vector Selection for R2-Based HVC Approximation 117

front. Then, 100 solutions in Si are randomly sampled from this Pareto front. The
triangular Pareto front

∑m
i=1 fp

i = 1, fi ≥ 0 for i = 1, 2, ...,m is used in the first
50 training solution sets. The remaining 50 training solution sets use the inverted
triangular Pareto front

∑m
i=1(1 − fi)p = 1, 0 ≤ fi ≤ 1 for i = 1, 2, ...,m. The

p value in the two formulas controls the curvature. To make the curvature more
diverse, the p value is determined by p = 2x where x is uniformly sampled from
[−1, 1] (i.e., the range of p value is [0.5, 2]). The candidate direction vector set of
size 10,000 is generated by the UNV method in Sect. 2.3. The size of the desired
direction vector set is set as 91, 105 and 120 for 3, 5 and 8-objective cases, respec-
tively. The reference point r is set as (1.2, 1.2, ..., 1.2). The proposed method with
UNV is denoted as GAES-U in our experiments.

The six direction vector set generation methods in Sect. 2.3 are used as the
baselines. For the MSS-U, MSS-D, and Kmeans-U methods, the size of the can-
didate direction vector set is set as 49,770, 46,376 and 31,824 for 3, 5 and
8-objective cases, respectively. For each of the six methods and the GAES-U
method, 21 direction vector sets are generated from 21 independent runs. We
conduct the experiments on a virtual machine equipped with two ADM EPYC
7702 64-Core CUP@2.4 GHz, 256 GB RAM and Ubuntu Operating System. All
codes are implemented in MATLAB R2021b and available from https://github.
com/HisaoLabSUSTC/GAES.

Results and Discussions. The performance of the selected direction vectors by
GEAS-U is shown in Fig. 3 at each iteration (i.e., after selecting a single direction
vector, two direction vectors, ..., n direction vectors). The blue curve shows that
the approximation error of the RHV C

2 indicator on the training solution sets
decreases monotonically as more direction vectors are selected by the GAES-
U method. The GAES-U method (i.e., the rightmost point of the blue curve)
has a better approximation error than the other six methods. With the same
number of direction vectors, the approximation error by each method increases
as the number of objectives increases. This is because more direction vectors are
needed for the RHV C

2 indicator to approximate the hypervolume contribution
precisely in a higher-dimensional space. The advantage of the GAES-U method
is clear in the 8-objective case. Only one direction vector selected by the GAES-
U method (i.e., the leftmost point of the blue curve) has a similar approximation
error as 120 direction vectors generated by the DAS method (i.e., the top dash
line). The 40 direction vectors selected by the GAES-U method have a better
approximation error than 120 direction vectors generated by the other methods.

The direction vector sets generated by the GAES-U method are shown in
Fig. 4. In the 3-objective case, the direction vector set generated by the GAES-
U method in Fig. 4(a) is less uniform than those generated by the DAS, MSS-D,
MSS-U and Kmean-U methods in Fig. 2(a), (d), (e) and (f), and is more uniform
than those generated by the UNV and JAS methods in Fig. 2(b) and (c).

Figure 5(a) shows the computational time for the training solution sets gen-
eration including the hypervolume contribution calculation, which increases
severely as the number of the objectives increases. However, this part only needs

https://github.com/HisaoLabSUSTC/GAES
https://github.com/HisaoLabSUSTC/GAES

118 T. Shu et al.

to be performed once, and the generated training solution sets and the calcu-
lated hypervolume contribution can be used for multiple runs of the GAES-U
method. The runtime of the GAES-U method increases slightly as the number
of the objectives increases as shown in Fig. 5(b).

Fig. 3. Approximation errors of the RHV C
2 indicator with different direction vector set

generation methods on the training solution sets (average results over 21 runs). (Color
figure online)

Fig. 4. The direction vector sets generated by the GAES-U method.

Fig. 5. Runtime (a) for generating the training solution sets and pre-calculating the
hypervolume contribution of each solution in each training solution set. Runtime (b)
for selecting direction vectors by the GAES-U method averaged over 21 runs.

Direction Vector Selection for R2-Based HVC Approximation 119

4.2 Test on Six Regular Pareto Fronts

Experimental Settings. In the previous experiment, we have obtained differ-
ent direction vector sets. Then, in this experiment, we compare the performance
of the RHV C

2 indicator with these direction vector sets on testing solution sets.
To generate testing solution sets, six regular Pareto fronts are considered, which
are linear triangular, concave triangular and convex triangular Pareto fronts and
their corresponding inverted Pareto fronts. For each type of the front, 100 testing
solution sets of size 100 are randomly sampled from the front. Firstly, we calculate
the approximation error defined in Eq. (4) on the testing solution sets using differ-
ent direction vector sets. Then, the correct identification rate (CIR) of the RHV C

2

indicator with different direction vector set generation methods is calculated. For
a testing solution set, the correct identification means that the solution with the
least hypervolume contribution is correctly identified by the RHV C

2 indicator, and
the CIR implies how many testing solution sets are correctly handled.

Results and Discussions. Figure 6 shows the approximation error of the
RHV C

2 indicator with different direction vector set generation methods on the
testing solution sets. The GAES-U method (i.e., the rightmost point of the blue
curve in each figure in Fig. 6) has the smallest approximation error on the test-
ing solution sets. This observation shows the good generalization ability of the
GAES-U method. The CIR of the RHV C

2 indicator is shown in Table 1. The best
CIR (i.e., 58.5%) is obtained by the GAES-U method in Table 1. The UNV and
JAS method obtain 51.1% and 50.4% CIR, respectively. The worst one is the
Kmeans-U method with the CIR of 33.7%. From these CIR results of the RHV C

2

indicator, we can see that the proposed GAES-U method is clearly better than
the other six methods.

(a) 3-objective (b) 5-objective (c) 8-objective

Fig. 6. Approximation errors of the RHV C
2 indicator with different direction vector set

generation methods on the testing solution sets (average results over 21 runs). (Color
figure online)

4.3 Application: GAHSS

Experimental Settings. The direction vector sets generated by the GAES-
U method are tested by the greedy approximate hypervolume subset selection

120 T. Shu et al.

Table 1. Correct identification rate (CIR) of the RHV C
2 indicator with different direc-

tion vector set generation methods on different solution sets. The rank of each method
is in the parenthesis, and a small value means a better rank.

Solution set GAES-U DAS UNV JAS MSS-D MSS-U Kmeans-U

Linear triangular 3 76.4%(1) 59.0%(7) 66.8%(4) 67.0%(3) 68.0%(2) 66.2%(5) 63.4%(6)

5 55.4%(1) 15.0%(7) 46.5%(2) 46.0%(3) 17.0%(6) 18.7%(5) 27.6%(4)

8 29.6%(5) 23.0%(6) 36.4%(2) 34.9%(3) 42.0%(1) 30.0%(4) 14.3%(7)

Linear inverted triangular 3 73.4%(1) 53.0%(6) 64.0%(3) 63.2%(5) 67.0%(2) 63.5%(4) 50.0%(7)

5 62.1%(1) 14.0%(7) 51.8%(2) 49.2%(3) 27.0%(6) 30.9%(4) 28.6%(5)

8 51.0%(1) 0.0%(6.5) 37.0%(2) 24.4%(4) 0.0%(6.5) 6.9%(5) 28.1%(3)

Concave triangular 3 67.4%(1) 32.0%(7) 57.0%(3) 58.8%(2) 38.0%(5) 36.8%(6) 49.4%(4)

5 61.4%(1) 16.0%(6) 50.7%(2) 49.8%(3) 21.0%(5) 26.7%(4) 13.3%(7)

8 65.9%(1) 53.0%(6) 64.8%(3) 61.7%(4) 56.0%(5) 65.3%(2) 42.3%(7)

Concave inverted triangular 3 73.8%(1) 41.0%(7) 59.6%(3) 60.7%(2) 50.0%(5) 50.7%(4) 46.9%(6)

5 40.1%(3) 26.0%(4) 42.7%(1) 42.1%(2) 23.0%(5) 15.9%(6) 12.1%(7)

8 55.5%(1) 0.0%(7) 38.6%(3) 36.4%(4) 10.0%(6) 43.9%(2) 33.0%(5)

Convex triangular 3 66.5%(1) 55.0%(6) 55.1%(5) 57.2%(4) 60.0%(3) 60.3%(2) 36.0%(7)

5 26.2%(2) 17.0%(6) 25.0%(3) 30.4%(1) 19.0%(4) 18.8%(5) 4.5%(7)

8 7.0%(5) 33.0%(1) 14.2%(4) 18.8%(3) 30.0%(2) 4.0%(6) 1.3%(7)

Convex inverted triangular 3 65.5%(1) 32.0%(6) 50.0%(2) 49.5%(3) 38.0%(4) 35.1%(5) 27.9%(7)

5 88.5%(2) 90.0%(1) 76.6%(5) 79.3%(4) 66.0%(6) 80.8%(3) 42.6%(7)

8 87.7%(2) 100.0%(1) 83.1%(4) 77.6%(6) 61.0%(7) 81.7%(5) 84.8%(3)

Avg. rank 1.72 5.42 2.94 3.28 4.47 4.28 5.89

Avg. CIR 58.5% 36.6% 51.1% 50.4% 38.5% 40.9% 33.7%

(GAHSS) algorithm [24]. The difference between the GAHSS algorithm and the
greedy HSS algorithm mentioned in Sect. 2.4 is that the RHV C

2 indicator is used
to approximate the hypervolume contribution in GAHSS. A part of the subset
selection benchmark test suite proposed in [27] is used to test the performance of
the GAHSS algorithm equipped with the direction vector sets generated by the
GAES-U method and the other six methods. Specifically, the candidate solution
sets consist of the nondominated solutions after 100,000 function evaluations
when NSGA-III [8] is run on DTLZ1 [9], DTLZ2 [9], Minus-DTLZ1 [16], Minus-
DTLZ2 [16], DTLZ7 [9] and WFG3 [14] problems for 3, 5 and 8-objective cases.
Thus, 18 candidate solution sets are used. We select 91, 210 and 156 solutions
from the candidate solution sets for 3, 5 and 8-objective cases, respectively. The
hypervolume of the selected solution subset is used as the performance metric.
The reference point is set as 1.2 times the nadir point of the true Pareto front
for each candidate solution set. GAHSS is performed 21 runs with each direction
vector set generation method, and the Wilcoxon rank sum test is used to compare
the hypervolume performance.

Results and Discussions. Table 2 shows the hypervolume of the solution sub-
set selected by the GAHSS algorithm with different direction vector set genera-
tion methods. The best result is obtained by the proposed GAES-U method. One

Direction Vector Selection for R2-Based HVC Approximation 121

Table 2. Hypervolume of the solution subset selected by GAHSS with different direc-
tion vector set generation methods on different candidate solution sets. The rank of
each method is in the parenthesis, and a small value means a better rank. The Wilcoxon
rank sum test is used to compare the performance. The symbols “+”, “−” and “≈”
mean the GAES-U method “is significantly better than”, “is significantly worse than”
and “has no significant difference with” the corresponding method, respectively.

Candidate solution set GAES-U DAS UNV JAS MSS-D MSS-U Kmeans-U

DTLZ1 3 1.90E−1(1) 1.89E-1(7,+) 1.90E-1(4,+) 1.89E-1(6,+) 1.90E-1(3,+) 1.90E-1(5,+) 1.90E−1(2,≈)

5 7.68E−2(1) 7.56E−2(5,+) 7.67E−2(3,+) 7.67E−2(4,+) 7.54E−2(6,+) 7.53E−2(7,+) 7.67E−2(2,+)

8 1.67E−2(1) 1.20E−2(7,+) 1.67E−2(2,+) 1.67E−2(4,+) 1.46E−2(6,+) 1.67E−2(5,+) 1.67E−2(3,+)

DTLZ2 3 1.15E+0(1) 9.30E−1(7,+) 1.15E+0(3,+) 1.15E+0(4,+) 1.01E+0(6,+) 1.05E+0(5,+) 1.15E+0(2,≈)

5 2.21E+0(1) 1.59E+0(7,+) 2.20E+0(3,+) 2.20E+0(4,+) 1.62E+0(6,+) 2.09E+0(5,+) 2.21E+0(2,≈)

8 4.16E+0(2) 2.21E+0(6,+) 4.15E+0(3,+) 4.14E+0(4,+) 2.08E+0(7,+) 4.12E+0(5,+) 4.16E + 0(1,−)

Minus-DTLZ1 3 8.87E+7(2) 8.74E+7(7,+) 8.85E+7(3,+) 8.84E+7(5,+) 8.81E+7(6,+) 8.84E+7(4,+) 8.88E+7(1,−)

5 4.48E+12(2) 4.07E+12(7,+) 4.46E+12(3,+) 4.40E+12(4,+) 4.11E+12(6,+) 4.23E+12(5,+) 4.48E+12(1,≈)

8 1.36E+19(1) 8.23E+18(7,+) 1.27E+19(3,+) 1.11E+19(4,+) 8.41E+18(6,+) 9.05E+18(5,+) 1.35E+19(2,+)

Minus-DTLZ2 3 4.47E+1(2) 4.00E+1(7,+) 4.45E+1(3,+) 4.44E+1(4,+) 4.31E+1(5,+) 4.31E+1(6,+) 4.47E+1(1,≈)

5 2.51E+2(1) 2.31E+2(7,+) 2.47E+2(3,+) 2.45E+2(4,+) 2.31E+2(6,+) 2.40E+2(5,+) 2.50E+2(2,+)

8 1.15E+3(1) 6.55E+2(7,+) 1.10E+3(3,+) 1.08E+3(4,+) 8.17E+2(6,+) 1.04E+3(5,+) 1.14E+3(2,+)

DTLZ7 3 2.81E+0(2) 2.54E+0(7,+) 2.80E+0(3,+) 2.79E+0(4,+) 2.72E+0(6,+) 2.73E+0(5,+) 2.81E+0(1,≈)

5 5.08E+0(1) 4.56E+0(7,+) 5.04E+0(3,+) 5.03E+0(4,+) 4.79E+0(6,+) 4.87E+0(5,+) 5.07E+0(2,+)

8 7.56E+0(1) 6.05E+0(6,+) 7.40E+0(5,+) 7.41E+0(3,+) 5.50E+0(7,+) 7.40E+0(4,+) 7.55E+0(2,≈)

WFG3 3 3.85E+1(2) 3.55E+1(5,+) 3.84E+1(3,≈) 3.83E+1(4,≈) 3.55E+1(6,+) 3.54E+1(7,+) 3.85E+1(1,−)

5 1.47E+4(1) 1.37E+4(7,+) 1.46E+4(3,+) 1.47E+4(2,+) 1.37E+4(6,+) 1.46E+4(4,+) 1.46E+4(5,+)

8 1.01E+8(3) 6.42E+7(7,+) 1.01E+8(4,≈) 1.01E + 8(1,−) 9.09E+7(6,+) 1.01E+8(2,−) 9.90E+7(5,+)

Avg. rank 1.44 6.67 3.17 3.83 5.89 4.94 2.06

+/−/≈ 18/0/0 16/0/2 16/1/1 18/0/0 17/1/0 8/3/7

interesting observation is that the Kmeans-U method, which has poor perfor-
mance in the CIR experiment in Table 1, shows competitive performance in the
GAHSS experiment in Table 2. Future examinations on this interesting observa-
tion is needed.

5 Conclusion

In this paper, we formulated the problem of generating a good direction vec-
tor set for the RHV C

2 indicator as a subset selection problem to minimize the
approximation error. A greedy inclusion method called the greedy approxima-
tion error selection (GAES) was proposed to solve this problem. Experimental
results showed that the GAES method outperforms other available methods for
direction vector set generation for the RHV C

2 indicator. The direction vector set
generated by the GAES method was applied to the greedy approximate hyper-
volume subset selection, and good performance was demonstrated in comparison
with the other direction vector set generation methods. One future research topic
is to examine the performance of the GAES method in hypervolme-based evo-
lutionary multi-objective algorithms.

Acknowledgements. This work was supported by National Natural Science Founda-
tion of China (Grant No. 62002152, 61876075), Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and
Enterpreneurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program

122 T. Shu et al.

of Shenzhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science
and Technology Program (Grant No. KQTD2016112514355531).

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

2. Bradstreet, L., Barone, L., While, L.: Maximising hypervolume for selection in
multi-objective evolutionary algorithms. In: Proceedings of IEEE Congress on Evo-
lutionary Computation (CEC), pp. 1744–1751 (2006)

3. Bradstreet, L., While, L., Barone, L.: Incrementally maximising hypervolume
for selection in multi-objective evolutionary algorithms. In: Proceedings of IEEE
Congress on Evolutionary Computation (CEC), pp. 3203–3210 (2007)

4. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersec-
tions of high-dimensional geometric objects. Comput. Geom. Theor. Appl. 43(6),
601–610 (2010)

5. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

6. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generat-
ing the Pareto surface in nonlinear multicriteria optimization problems. SIAM J.
Optim. 8(3), 631–657 (1998)

7. Deb, K., Bandaru, S., Seada, H.: Generating uniformly distributed points on a unit
simplex for evolutionary many-objective optimization. In: Deb, K., et al. (eds.)
EMO 2019. LNCS, vol. 11411, pp. 179–190. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12598-1 15

8. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R.
(eds.) EMO 2005, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/
1-84628-137-7 6

10. Deng, J., Zhang, Q.: Approximating hypervolume and hypervolume contributions
using polar coordinate. IEEE Trans. Evol. Comput. 23(5), 913–918 (2019)

11. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume
measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A.,
Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31880-4 5

12. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: Greedy hypervolume subset selection
in low dimensions. Evol. Comput. 24(3), 521–544 (2016)

13. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the
non-dominated set. IMM Technical report, Institute of Mathematical Modelling,
Technical University of Denmark (1998)

14. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/978-3-030-12598-1_15
https://doi.org/10.1007/978-3-030-12598-1_15
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1007/978-3-540-31880-4_5

Direction Vector Selection for R2-Based HVC Approximation 123

15. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification
in inverted generational distance for triangular linear Pareto front. IEEE Trans.
Evol. Comput. 22(6), 961–975 (2018)

16. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of
decomposition-based many-objective algorithms strongly depends on Pareto front
shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

17. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on
the 0/1 knapsack problem - a comparative experiment. IEEE Trans. Evol. Comput.
6(4), 402–412 (2002)

18. Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervol-
ume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern.
45(10), 2202–2213 (2015)

19. Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proceed-
ings of the 19th International Conference on World Wide Web, pp. 571–580 (2010)

20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297 (1967)

21. Nan, Y., Shang, K., Ishibuchi, H.: What is a good direction vector set for the R2-
based hypervolume contribution approximation. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), pp. 524–532 (2020)

22. Qian, C.: Distributed Pareto optimization for large-scale noisy subset selection.
IEEE Trans. Evol. Comput. 24(4), 694–707 (2020)

23. Shang, K., Ishibuchi, H.: A new hypervolume-based evolutionary algorithm for
many-objective optimization. IEEE Trans. Evol. Comput. 24(5), 839–852 (2020)

24. Shang, K., Ishibuchi, H., Chen, W.: Greedy approximated hypervolume subset
selection for many-objective optimization. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO), pp. 448–456 (2021)

25. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator
in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–
20 (2021)

26. Shang, K., Ishibuchi, H., Ni, X.: R2-based hypervolume contribution approxima-
tion. IEEE Trans. Evol. Comput. 24(1), 185–192 (2020)

27. Shang, K., Shu, T., Ishibuchi, H., Nan, Y., Pang, L.M.: Benchmarking subset
selection from large candidate solution sets in evolutionary multi-objective opti-
mization. arXiv preprint arXiv:2201.06700 (2022)

28. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, anal-
yses, and new innovations. Ph.D. Dissertation, Air Force Institute of Technology
(1999)

29. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes.
IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

30. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on
the design of pareto-compliant indicators via weighted integration. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol.
4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70928-2 64

31. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

http://arxiv.org/abs/2201.06700
https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64

Do We Really Need to Use Constraint
Violation in Constrained Evolutionary

Multi-objective Optimization?

Shuang Li1 , Ke Li2 , and Wei Li1(B)

1 Control and Simulation Center, Harbin Institute of Technology, Harbin, China
fleehit@163.com

2 Department of Computer Science, University of Exeter, Exeter EX4 5DS, UK

k.li@exeter.ac.uk

Abstract. Constraint violation has been a building block to design evo-
lutionary multi-objective optimization algorithms for solving constrained
multi-objective optimization problems. However, it is not uncommon
that the constraint violation is hardly approachable in real-world black-
box optimization scenarios. It is unclear that whether the existing con-
strained evolutionary multi-objective optimization algorithms, whose
environmental selection mechanism are built upon the constraint viola-
tion, can still work or not when the formulations of the constraint func-
tions are unknown. Bearing this consideration in mind, this paper picks
up four widely used constrained evolutionary multi-objective optimiza-
tion algorithms as the baseline and develop the corresponding variants
that replace the constraint violation by a crisp value. From our exper-
iments on both synthetic and real-world benchmark test problems, we
find that the performance of the selected algorithms have not been sig-
nificantly influenced when the constraint violation is not used to guide
the environmental selection. The supplementary material of this paper
can be found in https://tinyurl.com/23dtdne8.

Keywords: Constrained multi-objective optimization · Constraint
handling techniques · Evolutionary multi-objective optimization

1 Introduction

Real-world optimization problems in science [36], engineering [1] and eco-
nomics [30] usually involve multiple conflicting objectives under a number of
equality and inequality constraints, a.k.a. constrained multi-objective optimiza-
tion problems (CMOPs). In this paper, we consider the CMOP defined as follows:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to g(x) ≤ 0
h(x) = 0
x = (x1, · · · , xn)T ∈ Ω

, (1)

This work was supported by UKRI Future Leaders Fellowship (MR/S017062/1),
EPSRC (2404317), NSFC (62076056), Royal Society (IES/R2/212077) and Amazon
Research Award.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 124–137, 2022.
https://doi.org/10.1007/978-3-031-14721-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_9&domain=pdf
http://orcid.org/0000-0001-6261-177X
http://orcid.org/0000-0001-7200-4244
https://tinyurl.com/23dtdne8
https://doi.org/10.1007/978-3-031-14721-0_9

Do We Really Need to Use Constraint Violation? 125

where Ω = [xL
i , xU

i]ni=1 ⊆ R
n defines the search (or decision variable) space and x

is an n-dimensional vector therein. F : Ω → R
m constitutes m conflicting objec-

tive functions, and R
m is the objective space. g(x) = (g1(x), · · · , gp(x))T and

h(x) = (h1(x), · · · , hq(x))T are vectors of inequality and equality constraints
respectively. Given a CMOP, the degree of constraint violation of a solution x
at the i-th constraint is calculated as:

ci(x) =

{
〈1 − gj(x)/aj〉, j = 1, · · · , q, i = j,

〈ε − |hk(x)/bk − 1|〉, k = 1, · · · , p, i = k + q,
(2)

where ε is a small tolerance term (e.g., ε = 10−6) that relaxes the equality
constraints to the inequality constraints. aj and bk where j ∈ {1, · · · , q} and
k ∈ {1, · · · , p} are normalization factors of the corresponding constraints. 〈α〉
returns 0 if α ≥ 0 otherwise it returns the negative of α. Given a CMOP, the
constraint violation (CV) value of a solution x is calculated as:

CV (x) =
�∑

i=1

ci(x), (3)

where � = p+ q. x is feasible in case CV (x) = 0; otherwise x is infeasible. Given
two feasible solutions x1 and x2, x1 is said to Pareto dominate x2 (denoted as
x1 	 x2) if and only if fi(x1) ≤ fi(x2), ∀i ∈ {1, · · · ,m} and ∃j ∈ {1, · · · ,m}
such that fj(x1) < fj(x2). A solution x∗ ∈ Ω is Pareto-optimal with respect to
(1) if ∃x ∈ Ω such that x 	 x∗. The set of all Pareto-optimal solutions is called
the Pareto-optimal set (PS). Accordingly, PF = {F(x)|x ∈ PS} is called the
Pareto-optimal front (PF).

Due to the population-based property, evolutionary algorithms (EAs) have
been widely recognized as an effective approach for multi-objective optimiza-
tion. Over the past three decades, much effort have been devoted to devel-
oping evolutionary multi-objective optimization (EMO) algorithms, e.g. elitist
non-dominated sorting genetic algorithm (NSGA-II) [8], indicator-based EA
(IBEA) [44] and multi-objective EA based on decomposition (MOEA/D) [43].
However, they cannot be directly applied to CMOPs without the assistance of
a constraint handling technique (CHT), which can be seen as a selection mech-
anism to deal with constraints. In the 90s, some early endeavors to the devel-
opment of EAs for solving CMOPs (e.g., [11] and [7]) are simply driven by a
prioritization of the search for feasible solutions over the ‘optimal’ one. How-
ever, such methods are notorious for the loss of selection pressure in the case
where the population is filled with infeasible solutions.

After the development of the constrained dominance relation [8], most, if
not all, prevalent CHTs in the EMO community directly or indirectly depend
on the CV defined in Eq. (3). Specifically, a solution x1 is said to constraint-
dominate x2, if: 1) x1 is feasible while x2 is not; 2) both of them are infeasible and
CV (x1) < CV (x2); or 3) both of them are feasible and x1 ≺ x2. By replacing the
Pareto dominance relation with this constrained dominance relation, the state-
of-the-art NSGA-II and NSGA-III [16] can be readily used to tackle CMOPs.

126 S. Li et al.

Borrowing this idea, several MOEA/D variants (e.g., [6,16,17,24]) use the CV
as an alternative criterion in the subproblem update procedure. Moreover, the
constrained dominance relation is augmented with terms such as the number of
violated constraints [28], ε-constraint [4,25,35] and angle between each other [10]
to provide an additional selection pressure to infeasible solutions whose CV
values have a marginal difference.

In addition to the above feasibility-driven CHTs, the second category aims
at balancing the trade-off between convergence and feasibility during the search
process. For example, Jiménez et al. [19] proposed a min-max formulation that
drives feasible and infeasible solutions to evolve towards optimality and feasibil-
ity, respectively. In [31], a Ray-Tai-Seow algorithm was proposed to simultane-
ously take the objective values, the CV along with the combination of them into
consideration to compare and rank non-dominated solutions. Based on the sim-
ilar rigour, some modified ranking mechanisms (e.g., [2,41,42]) were developed
by leveraging the information from both the objective and constraint spaces.
Instead of prioritizing feasible solutions, some researchers (e.g., [22,29,34]) pro-
posed to exploit information from infeasible solutions in case they can provide
additional diversity to the current evolutionary population.

As a step further, the third category seeks to strike a balance among con-
vergence, diversity and feasibility simultaneously. As a pioneer along this line,
Li et al. proposed a two-archive EA that maintains two co-evolving and comple-
mentary populations to solve CMOPs [21]. Specifically, one archive, denoted as
the convergence-oriented archive (CA), pushes the population towards the PF;
while the other one, denoted as the diversity-oriented archive, provides additional
diversity. To complement the behavior of the CA, the DA explores the areas
under-exploited by the CA including the infeasible region(s). In addition, to take
advantage of the complementary effects of both CA and DA, a restricted mating
selection mechanism was proposed to adaptively choose appropriate mating par-
ents according to the evolution status of the CA and DA respectively. After [21],
there has been a spike of efforts on the development of multi-population strate-
gies (e.g., [23,26,27,32,37,39]) to leverage some complementary effects of both
feasible and infeasible solutions simultaneously for solving CMOPs.

Instead of the environmental selection, the last category tries to repair the
infeasible solutions in order to drive them towards the feasible region(s). For
example, a so-called Pareto descent repair operator [13] was proposed to explore
possible feasible solutions along the gradient information around infeasible solu-
tions in the constraint space. In [18], a feasible-guided strategy was developed
to guide infeasible solutions towards the feasible region along the ‘feasible direc-
tion’, i.e., a vector starting from an infeasible solution and ending up with its
nearest feasible solution. In [33], a simulated annealing algorithm was applied
to accelerate the progress of movements from infeasible solutions toward feasible
ones.

Remark 1. As discussed at the outset of this subsection, all these prevalent CHTs
require the access of the CV. This applies to the last category, since it needs to
access the gradient information of the CV. The implicit assumption behind the

Do We Really Need to Use Constraint Violation? 127

prevalent CHTs is the access of the closed form of the constraint function(s).
However, this is not practical in the real world, such problems are usually a
black box (e.g., [3,12,14]). In other words, we can only know whether a solution
is feasible or not.

Bearing this consideration in mind, we come up with the overarching research
question of this paper: do the prevalent CHTs in the EMO literature still work
when we do not have an access to the CV?

The rest of this paper is organized as follows. The experimental settings are
summarized in Sect. 2 and the results are presented and analyzed in Sect. 3.
Finally, Sect. 4 concludes this paper and sheds some light on future directions.

2 Experimental Settings

In this section, we introduce the experimental settings of our empirical study
including the benchmark test problems, the peer algorithms, the performance
metrics and statistical tests.

2.1 Benchmark Test Problems

In our empirical study, we use 45 benchmark test problems widely studied in the
literature to constitute our benchmark suite. More specifically, it consists of C1-
DTLZ1, C1-DTLZ3, C2-DTLZ2 and C3-DTLZ4 from the C-DTLZ benchmark
suite [16]; DC1-DTLZ1, DC1-DTLZ3, DC2-DTLZ1, DC2-DTLZ3, DC3-DTLZ1,
DC3-DTLZ3 chosen from the DC-DTLZ benchmark suite [21]; and other 35
problems picked up from the real-world constrained multi-objective problems
(RWCMOPs) benchmark suite [20]. In particular, the RWCMOPs are derived
from the mechanical design problems (denoted as RCM1 to RCM21), the chem-
ical engineering problems (denoted as RCM22 to RCM24), the process design
and synthesis problems (denoted as RCM25 to RCM29), and the power elec-
tronics problems (denoted as RCM30 to RCM35), respectively. All these bench-
mark test problems are scalable to any number of objectives while we consider
m ∈ {2, 3, 5, 10} for C-DTLZ, DC-DTLZ problems and m ∈ {2, 3, 4, 5} for RWC-
MOPs in our experiments. The mathematical definitions of these benchmark test
problems along with settings of the number of variables and the number of con-
straints can be found in the supplemental document of this paper.1

2.2 Peer Algorithms and Parameter Settings

In our empirical study, we choose to investigate the performance of four widely
studied EMO algorithms for CMOPs, including C-NSGA-II [8], C-NSGA-III [16],
C-MOEA/D [16], and C-TAEA [21]. To address our overarching research question
stated at the end of Sect. 1, we design a variant for each of these peer algorithms
(dubbed vC-NSGA-II, vC-NSGA-III, vC-MOEA/D, and vC-TAEA, respectively) by
1 The supplemental document can be downloaded from here.

https://tinyurl.com/23dtdne8

128 S. Li et al.

replacing the CV with a crisp value. Specifically, if a solution x is feasible, we have
CV (x) = 1; otherwise we set CV (x) = −1. The settings of population size and
the maximum number of function evaluations are detailed in the supplemental
document of this paper.

2.3 Performance Metrics and Statistical Tests

This paper applies the widely used inverted generational distance (IGD) [5],
IGD+ [15], and hypervolume (HV) [45] as the performance metrics to evaluate
the performance of different peer algorithms. In our empirical study, each exper-
iment is independently repeated 31 times with a different random seed. To have
a statistical interpretation of the significance of comparison results, we use the
following two statistical measures in our empirical study.

– Wilcoxon signed-rank test [40]: This is a non-parametric statistical test that
makes no assumption about the underlying distribution of the data and has
been recommended in many empirical studies in the EA community [9]. In
particular, the significance level is set to p = 0.05 in our experiments.

– A12 effect size [38]: To ensure the resulted differences are not generated from
a trivial effect, we apply A12 as the effect size measure to evaluate the prob-
ability that one algorithm is better than another. Specifically, given a pair of
peer algorithms, A12 = 0.5 means they are equal. A12 > 0.5 denotes that one
is better for more than 50% of the times. 0.56 ≤ A12 < 0.64 indicates a small
effect size while 0.64 ≤ A12 < 0.71 and A12 ≥ 0.71 mean a medium and a
large effect size, respectively.

3 Experimental Results

The PFs and the feasible regions of the synthetic problems are relatively simple
whereas those of RWCMOPs are complex. In this section, we plan to separate
the discussion on the synthetic problems (i.e., C-DTLZ and DC-DTLZ) from the
RWCMOPs in view of their distinctive characteristics.

3.1 Performance Analysis on Synthetic Benchmark Test Problems

Due to page limit, we leave the complete comparison results of IGD, IGD+,
and HV in Table 3 to Table 8 of supplemental document. Instead, we summarize
the Wilcoxon signed-rank test results in the Table 1. From this table, it is clear
to see that most comparison results (at least 62.5% and it even goes to 100%
for the HV comparisons between C-TAEA and vC-TAEA) do not have any
statistical significance. In other words, replacing the CV with a crisp value does
not significantly influence the performance on C-DTLZ and DC-DTLZ problems.
In addition to the pairwise comparisons, we apply the A12 effect size to have a
better understanding of the performance difference between the selected EMO
algorithm and its corresponding variant. From the collected comparison results

Do We Really Need to Use Constraint Violation? 129

Table 1. Summary of the Wilcoxon signed-rank test results of four selected EMO
algorithms against their corresponding variants on IGD, IGD+, and HV.

Problems Metrics C-NSGA-II C-NSGA-III C-MOEA/D C-TAEA

+/ − / = +/ − / = +/ − / = +/ − / =

C-DTLZ and DC-DTLZ IGD 1/7/32 1/13/26 3/1/36 2/0/38

IGD+ 1/7/32 0/15/25 3/7/36 1/0/39

HV 0/8/32 0/15/25 4/1/35 0/0/40

RWCMOPs HV 0/8/27 0/11/24 4/7/24 1/4/30

+, −, and = denote the performance of the selected algorithm is significantly better,
worse, and equivalent to the corresponding variant, respectively.

Fig. 1. Percentage of the large, medium, small, and equal A12 effect size of metrics
for C-DTLZ and DC-DTLZ problems. + means that the variant that replaces the CV
with a crisp value can obtain a better result; − means the opposite case.

130 S. Li et al.

(50 × 2 = 100 in total) shown in Fig. 1, we can see that most of the comparison
results are classified as equal (ranging from 38% to 58%). As reflected in Table 1,
it is surprising to see that the corresponding variants (i.e., without using the CV
to guide the evolutionary search process) have achieved better performance in
many cases. In particular, up to 32% comparison results are classified to be
large. In the following paragraphs, we plan to analyse some remarkable findings
collected from the results.

– Let us first look into the performance of C-NSGA-II and C-NSGA-III w.r.t.
their variants vC-NSGA-II and vC-NSGA-III. As shown in Table 1, the perfor-
mance of C-NSGA-II and C-NSGA-III have been deteriorated (ranging from
17.5% to 37.5%) when replacing the CV with a crisp value in their corre-
sponding CHTs, especially on C1-DTLZ1 and C2-DTLZ2.

• As the illustrative example shown in Fig. 2, the feasible region of C1-
DTLZ1 is a narrow wedge arrow right above the PF. Without the guid-
ance of the CV, both C-NSGA-II and C-NSGA-III struggle in the large
infeasible region. In particular, there is no sufficient selection pressure to
guide the population to move forward.

• C2-DTLZ2 has several disparately distributed feasible regions as the illus-
trative example shown in Fig. 3. Since the CHTs of both C-NSGA-II and
C-NSGA-III do not have a dedicated diversity maintenance mechanism,
the evolutionary population can be guided towards some, but not all,
local feasible region(s) as the examples shown in Fig. 3(c).

• As for the other test problems, we find that the replacement of CV with
a crisp value dose not make a significant impact to the performance of
both C-NSGA-II and C-NSGA-III. This can be explained as a large feasi-
ble region that makes the Pareto dominance alone can provide sufficient
selection pressure towards the PF.

– It is interesting to note that C-MOEA/D uses the same CHT as C-NSGA-II
and C-NSGA-III, but its performance does not deteriorate significantly when
replacing the CV with a crisp value as shown in Table 1. This can be under-
stood as the baseline MOEA/D that provides a better mechanism to preserve
the population diversity during the environmental selection. Thus, the evolu-
tionary population can overcome the infeasible regions towards the PF.

– As for C-TAEA, it is surprising to note that the consideration of the CV does
not pose any impact to its performance as evidenced in Table 1 (nearly all
comparison results have no statistical significance). This can be explained as
the use of the diversity-oriented archive in C-TAEA which does not consider the
CV but just relies on the Pareto dominance alone to drive the evolutionary
population.

3.2 Performance Analysis on Real-World Benchmark Test Problems

Since the PFs of the RWCMOPs are unknown a priori, we only apply the HV as
the performance metric in this study. As in Sect. 3.1, the complete comparison

Do We Really Need to Use Constraint Violation? 131

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

f1

f 2
PF
Feasible boundary
Feasible region

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

f1

f 2

0 100 200 300 400 500 600
0

100

200

300

400

500

600

f1

f 2

(a) (b) (c)

Fig. 2. (a) The illustration of the feasible region of C1-DTLZ1; (b) and (c) are the
scatter plots of the non-dominated solutions (with the median IGD value) obtained by
C-NSGA-II and vC-NSGA-II, respectively.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

PF
Feasible boundary
Feasible region

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f 2

(a) (b) (c)

Fig. 3. (a) The illustration of the feasible region of C2-DTLZ2; (b) and (c) are the
scatter plots of the non-dominated solutions (with the median IGD value) obtained by
C-NSGA-II and vC-NSGA-II, respectively.

results of HV are given in Tables 9 and 10 of the supplemental document while
the Wilcoxon signed-rank test results are summarized in Table 1. From these
results, we can see that most of the comparisons (around 68.5% to 85.7%) do
not have statistical significance. In other words, there is a marginal difference
when replacing the CV with a crisp value. To have a better understanding of
the difference, we again apply the A12 effect size to complement the results of
the Wilcoxon signed-rank test. From the bar charts shown in Fig. 4, it is clear
to see that most comparison results (ranging from 46% to 69%) are classified
to be equal while only up to 14% comparison results are classified to have a
large difference. In the following paragraphs, we plan to elaborate some selected
results on problems with an equal and a large effect size, respectively.

As for the RWCMOPs whose A12 effect size comparison results are classified
as equal, we consider the following four test problems in our analysis.

– Let us start from the RCM5 problem. As shown in Fig. 5(a), the feasible and
infeasible regions have almost the same size while the PF is located in the
intersection between them. In this case, it is natural that the environmental
selection can provide necessary selection pressure without using the CV.

132 S. Li et al.

Fig. 4. Percentage of the large, medium, small, and equal A12 effect size of metrics
for RWCMOPs. + means that the variant that replaces the CV with a crisp value can
obtain a better result; − means the opposite case.

0 2 4 6 8
1

2

3

4

5

6

f1

f 2

3,000 4,000 5,000 6,000

800

1,000

1,200

1,400

1,600

f1

f 2

0 2 4 6 8

20

30

40

50

60

f1

f 2

1,400 1,800 2,200 2,600 3,000

1

2

3

4

·10−2

f1

f 2

(a) RCM5 (b) RCM6 (c) RCM7 (d) RCM9

Fig. 5. Distribution of feasible solutions (denoted as the blue circle), infeasible solutions
(denoted as the black square), and non-dominated solutions (denoted as red triangle)
obtained by C-NSGA-II on RCM5, RCM6, RCM7 and RCM9. (Color figure online)

– As for the RCM6 problem shown in Fig. 5(b), the feasible and infeasible
regions are intertwined with each other. Therefore, the infeasible region does
not really provide an obstacle to the evolutionary population. Accordingly,
the CV plays a marginal role for constraint handling.

– Similar to the RCM5 problem, the RCM7 problem has a large and opening
feasible region as shown in Fig. 5(c). In addition, the feasible and infeasible
regions are hardly overlapped with each. In this case, the evolutionary pop-
ulation can have a large chance to explore in the feasible region without any
interference from the infeasible solutions.

– At the end, as shown in Fig. 5(d), the RCM9 problem can hardly be treated
as a CMOP since the feasible region is overtaking the infeasible region. In
other words, the feasible region is too large to find an infeasible solution.
Accordingly, it is not difficult to understand that the CV becomes useless.

As for the other RWCMOPs, of which the comparison results are classified
to be large according to the A12 effect size, we pick up two remarkable cases and
make some analysis as follows.

– Let us first consider the RCM30 problem. As shown in Fig. 6(a), the feasible
region of the RCM30 problem is very narrow and is squeezed towards the

Do We Really Need to Use Constraint Violation? 133

Fig. 6. (a) Distribution of feasible solutions (denoted as the blue circle), infeasible
solutions (denoted as the black square), and non-dominated solutions (denoted as red
triangle) obtained by C-NSGA-II on RCM30. (b) Distribution of infeasible solutions
(denoted as the black square) and non-dominated solutions (denoted as red triangle)
obtained by vC-NSGA-II on RCM30. (Color figure online)

Fig. 7. (a) Distribution of feasible solutions (denoted as the blue circle), infeasible
solutions (denoted as the black square), and non-dominated solutions (denoted as red
triangle) obtained by C-NSGA-II on RCM35. (b) Distribution of infeasible solutions
(denoted as the black square) and non-dominated solutions (denoted as red triangle)
obtained by vC-NSGA-II on RCM35. (Color figure online)

PF. Therefore, it is not difficult to understand that the evolutionary popu-
lation can hardly be navigated without the guidance of the CV. As shown
in Fig. 6(b), the solutions obtained by vC-NSGA-II are far away from the PF.

– As shown in Fig. 7(a), comparing to the RCM30 problem, the size of the
feasible region of the RCM35 problem is much wider. However, it is still
largely surrounded by the infeasible region. In this case, as shown in Fig. 7(b),
without the guidance of the CV, the evolutionary population can not only
have sufficient selection pressure to move forward, but also can be mislead to
the infeasible region that dominates the feasible region.

4 Conclusion

Most, if not all, existing CHT in EMO implicitly assume that the formulation
of the constraint function(s) of a CMOP is well defined a priori. Therefore, the

134 S. Li et al.

CV has been widely used as the building block for designing CHTs to provide an
extra selection pressure in the environmental selection. However, this assumption
is arguably viable for real-world optimization scenarios of which the problems are
treated as a black box. In this case, the CV cannot usually be derived in practice.
Bearing this consideration in mind, this paper empirically investigate the impact
of replacing the CV with a crisp value in the CHTs of four prevalent EMO
algorithms for CMOPs. From our empirical results on both synthetic and real-
world benchmark test problems, it is surprising to see that the performance is
not significantly deteriorated when the CV is not used to guide the evolutionary
population. One of the potential reasons is that the feasible region is large enough
to attract the evolutionary population thus leading to a marginal obstacle for an
EMO algorithm to overcome the infeasible region. This directly comes up to the
requirement of new benchmark test problems with more challenging infeasible
regions. In addition, this also inspires new research opportunity to develop new
CHT(s) to handle the CMOP with unknown constraint in the near future.

References

1. Andersson, J.: Applications of a multi-objective genetic algorithm to engineering
design problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb,
K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 737–751. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36970-8 52

2. Angantyr, A., Andersson, J., Aidanpaa, J.O.: Constrained optimization based on
a multiobjective evolutionary algorithm. In: CEC 2003: Proceedings of the 2003
IEEE Congress on Evolutionary Computation, pp. 1560–1567 (2003)

3. Ariafar, S., Coll-Font, J., Brooks, D.H., Dy, J.G.: ADMMBO: Bayesian optimiza-
tion with unknown constraints using ADMM. J. Mach. Learn. Res. 20, 123:1–
123:26 (2019)

4. Asafuddoula, M., Ray, T., Sarker, R.A.: A decomposition-based evolutionary algo-
rithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460
(2015)

5. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in
multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188
(2003)

6. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolution-
ary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5),
773–791 (2016)

7. Coello, C.A.C., Christiansen, A.D.: MOSES: a multiobjective optimization tool for
engineering design. Eng. Opt. 31(3), 337–368 (1999)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

10. Fan, Z., Li, W., Cai, X., Hu, K., Lin, H., Li, H.: Angle-based constrained dominance
principle in MOEA/D for constrained multi-objective optimization problems. In:
CEC 2016: Proceedings of the 2016 IEEE Congress on Evolutionary Computation,
pp. 460–467. IEEE (2016)

https://doi.org/10.1007/3-540-36970-8_52

Do We Really Need to Use Constraint Violation? 135

11. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint
handling with evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst.
Man Cybern., Part A 28(1), 26–37 (1998)

12. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown con-
straints. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial
Intelligence, UAI 2014, Quebec City, Quebec, Canada, 23–27 July 2014, pp. 250–
259. AUAI (2014)

13. Harada, K., Sakuma, J., Ono, I., Kobayashi, S.: Constraint-handling method
for multi-objective function optimization: Pareto descent repair operator. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007.
LNCS, vol. 4403, pp. 156–170. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-70928-2 15

14. Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahra-
mani, Z.: Predictive entropy search for Bayesian optimization with unknown con-
straints. In: Proceedings of the 32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6–11 July 2015, vol. 37, pp. 1699–1707. JMLR
(2015)

15. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1 8

16. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part II: handling constraints
and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–
622 (2014)

17. Jan, M.A., Zhang, Q.: MOEA/D for constrained multiobjective optimization: some
preliminary experimental results. In: UKCI 2010: Proceedings of the 2010 UK
Workshop on Computational Intelligence, pp. 1–6 (2010)

18. Jiao, L., Luo, J., Shang, R., Liu, F.: A modified objective function method with
feasible-guiding strategy to solve constrained multi-objective optimization prob-
lems. Appl. Soft Comput. 14, 363–380 (2014)

19. Jiménez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algo-
rithm for constrained multi-objective optimization. In: CEC 2002: Proceedings of
the 2002 IEEE Congress on Evolutionary Computation, pp. 1133–1138 (2002)

20. Kumar, A., et al.: A benchmark-suite of real-world constrained multi-objective
optimization problems and some baseline results. Swarm Evol. Comput. 67, 100961
(2021)

21. Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for con-
strained multiobjective optimization. IEEE Trans. Evol. Comput. 23(2), 303–315
(2019)

22. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimiza-
tion algorithm based on dominance and decomposition. IEEE Trans. Evol. Com-
put. 19(5), 694–716 (2015)

23. Liu, Z.Z., Wang, B.C., Tang, K.: Handling constrained multiobjective optimization
problems via bidirectional coevolution. IEEE Trans. Cybern., 1–14 (2021, early
access)

24. Liu, Z., Wang, Y., Huang, P.: AnD: a many-objective evolutionary algorithm with
angle-based selection and shift-based density estimation. Inf. Sci. 509, 400–419
(2020)

https://doi.org/10.1007/978-3-540-70928-2_15
https://doi.org/10.1007/978-3-540-70928-2_15
https://doi.org/10.1007/978-3-319-15892-1_8

136 S. Li et al.

25. Mart́ınez, S.Z., Coello, C.A.C.: A multi-objective evolutionary algorithm based on
decomposition for constrained multi-objective optimization. In: CEC 2014: Pro-
ceedings of the 2014 IEEE Congress on Evolutionary Computation, pp. 429–436
(2014)

26. Ming, F., Gong, W., Wang, L., Gao, L.: A constrained many-objective optimization
evolutionary algorithm with enhanced mating and environmental selections. IEEE
Trans. Cybern., 1–13 (2022, early access)

27. Ming, F., Gong, W., Wang, L., Lu, C.: A tri-population based co-evolutionary
framework for constrained multi-objective optimization problems. Swarm Evol.
Comput. 70, 101055 (2022)

28. Oyama, A., Shimoyama, K., Fujii, K.: New constraint-handling method for multi-
objective and multi-constraint evolutionary optimization. Jpn. Soc. Aeronaut.
Space Sci. Trans. 50, 56–62 (2007)

29. Peng, C., Liu, H., Gu, F.: An evolutionary algorithm with directed weights for
constrained multi-objective optimization. Appl. Soft Comput. 60, 613–622 (2017)

30. Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary
algorithms for the solution of the portfolio optimization problem and other finance
and economics applications. IEEE Trans. Evol. Comput. 17(3), 321–344 (2013)

31. Ray, T., Tai, K., Seow, K.C.: Multiobjective design optimization by an evolutionary
algorithm. Eng. Opt. 33(4), 399–424 (2001)

32. Shan, X., Li, K.: An improved two-archive evolutionary algorithm for constrained
multi-objective optimization. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol.
12654, pp. 235–247. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72062-9 19

33. Singh, H.K., Ray, T., Smith, W.: C-PSA: Constrained Pareto simulated annealing
for constrained multi-objective optimization. Inf. Sci. 180(13), 2499–2513 (2010)

34. Ebrahim Sorkhabi, A., Deljavan Amiri, M., Khanteymoori, A.R.: Duality evolu-
tion: an efficient approach to constraint handling in multi-objective particle swarm
optimization. Soft. Comput. 21(24), 7251–7267 (2016). https://doi.org/10.1007/
s00500-016-2422-5

35. Takahama, T., Sakai, S.: Efficient constrained optimization by the ε constrained
rank-based differential evolution. In: CEC 2012: Proceedings of the 2012 IEEE
Congress on Evolutionary Computation, pp. 1–8 (2012)

36. Thurston, D.L., Srinivasan, S.: Constrained optimization for green engineering
decision-making. Environ. Sci. Technol. 37(23), 5389–5397 (2003)

37. Tian, Y., Zhang, T., Xiao, J., Zhang, X., Jin, Y.: A coevolutionary framework
for constrained multiobjective optimization problems. IEEE Trans. Evol. Comput.
25(1), 102–116 (2021)

38. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

39. Wang, J., Li, Y., Zhang, Q., Zhang, Z., Gao, S.: Cooperative multiobjective evolu-
tionary algorithm with propulsive population for constrained multiobjective opti-
mization. IEEE Trans. Syst. Man Cybern.: Syst. 52, 3476–3491 (2021)

40. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson,
N.L. (eds.) Breakthroughs in Statistics. Springer, New York (1945). https://doi.
org/10.1007/978-1-4612-4380-9 16

41. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjec-
tive evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)

https://doi.org/10.1007/978-3-030-72062-9_19
https://doi.org/10.1007/978-3-030-72062-9_19
https://doi.org/10.1007/s00500-016-2422-5
https://doi.org/10.1007/s00500-016-2422-5
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16

Do We Really Need to Use Constraint Violation? 137

42. Young, N.: Blended ranking to cross infeasible regions in constrained multi-
objective problems. In: CIMCA 2005: Proceedings of the 2005 International Con-
ference on Computational Intelligence Modeling, Control and Automation, pp.
191–196 (2005)

43. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

44. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

45. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1007/978-3-540-30217-9_84

Dynamic Multi-modal Multi-objective
Optimization: A Preliminary Study

Yiming Peng and Hisao Ishibuchi(B)

Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China

11510035@mail.sustech.edu.cn, hisao@sustech.edu.cn

Abstract. Many real-world multi-modal multi-objective optimization
problems are subject to continuously changing environments, which
requires the optimizer to track multiple equivalent Pareto sets in the
decision space. To the best of our knowledge, this type of optimization
problems has not been studied in the literature. To fill the research gap in
this area, we provide a preliminary study on dynamic multi-modal multi-
objective optimization. We give a formal definition of dynamic multi-
modal multi-objective optimization problems and point out some key
challenges in solving them. To facilitate algorithm development, we sug-
gest a systematic approach to construct benchmark problems. Further-
more, we provide a feature-rich test suite containing 10 novel dynamic
multi-modal multi-objective test problems.

Keywords: Evolutionary multi-objective optimization · Multi-modal
multi-objective optimization · Dynamic multi-objective optimization ·
Benchmark problems

1 Introduction

O ver the past few years, multi-modal multi-objective optimization problems
(MMOPs) have received increasing attention from researchers and rapidly

become a popular research area. This special class of multi-objective optimiza-
tion problems is characterized by having multiple equivalent Pareto sets in the
decision space. As pointed out in [4], equivalent Pareto sets are useful in practical
applications since they can provide extra flexibility in the decision-making proce-
dure. Thus, in addition to ensuring a good solution distribution over the Pareto
front, a multi-modal multi-objective optimization algorithm is also required to
ensure the diversity in the decision space to cover as many equivalent Pareto
sets as possible. Various real-world optimization problems such as the rocket

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-14721-0 10.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 138–150, 2022.
https://doi.org/10.1007/978-3-031-14721-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_10&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_10
https://doi.org/10.1007/978-3-031-14721-0_10

Dynamic Multi-modal Multi-objective Optimization 139

engine design problems [24], the neural architecture search problems [26], and
the multi-objective knapsack problems [13] can be formulated as MMOPs.

Recently, many efficient algorithms have emerged to solve MMOPs efficiently,
e.g., algorithms in [7,16,18,27]. However, up to now, the algorithm research on
multi-modal multi-objective optimization has tended to focus on solving MMOPs
in static environments. This greatly limits the value of these algorithms in real-
world applications, where the environment in which the optimization problem
is posed is often dynamically changing. Due to the dynamic environment, the
Pareto front and/or the Pareto set of an MMOP may change over time. For
example, it is not uncommon that a rocket engine design obtained by the above-
mentioned approach [24] is no longer viable due to the change of some physical
constraints. In this case, instead of simply restarting the algorithm to search
for a new solution, it would be more efficient to utilize the original Pareto opti-
mal solutions (i.e., the Pareto optimal solutions obtained before the change of
the environment). In this paper, we refer to this type of optimization prob-
lems as dynamic MMOPs (dMMOPs). From the previous example, we can see
that dMMOPs are essentially equivalent to solving a series of MMOPs, which
can be viewed as an extension of dynamic multi-objective optimization problems
(dMOPs) [8]. Therefore, existing techniques for handling dMOPs are also helpful
for dMMOPs.

This paper provides a preliminary study on dMMOPs. We first give a formal
definition of dMMOPs and analyze some key challenges in solving them. Being
a novel type of optimization problems, dMMOPs pose unprecedented challenges
to algorithm designers. To facilitate algorithm development, we provide a sys-
tematic approach for constructing dMMOPs for benchmarking the algorithm
performance. Furthermore, we suggest an easy-to-use test suite containing 10
novel test problems based on the proposed approach.

2 Related Work

2.1 Multi-modal Multi-objective Optimization

In Sect. 1, we explained that MMOPs have multiple equivalent Pareto sets in the
decision space. In our previous work [21], we provided a more precise definition
for MMOPs. Furthermore, we pointed out that the main challenge in solving
MMOPs comes from the need for the algorithm to maintain the diversity of
populations in both the decision and objective spaces. One strategy is to select
solutions with good diversity in both the decision and objective spaces in environ-
mental selection. For example, both Omni-optimizer [7] and MO Ring PSO SCD
[27] use modified crowding distance [5] metrics which consider the diversity in
both spaces. Another popular approach is to use niching [25] mechanisms to
“divide” the population into several niches, each of which evolves independently.
In this manner, solutions in different niches can converge to different Pareto sets.
For example, MMOEA-DC [16] partitions the population into several clusters,
DNEA [17] adopts the fitness sharing strategy [10], MOEA/D-MM [20] uses the
clearing strategy [22].

140 Y. Peng and H. Ishibuchi

2.2 Dynamic Multi-objective Optimization

A basic dMOP can be defined by introducing a time variable t into a standard
multi-objective optimization problem as follows:

minF (x) = (f1(x, t), f2(x, t), . . . , fM (x, t))T ,

s. t. g(x, t) ≤ 0,h(x, t) = 0,
(1)

where F , g, and h are dynamic (i.e., time-dependent) objective functions,
inequality constraints, and equality constraints, respectively.

As shown in (1), both the objective functions and the constraints may change
over time, which can lead to certain Pareto optimal solutions becoming subopti-
mal or infeasible. Therefore, the key to efficiently solving dMOPs is to sensitively
detect changes in the environment and quickly converge to the new Pareto set.

As suggested by Raquel et al. [23], dynamic multi-objective optimization
evolutionary algorithms (dMOEAs) for solving dMOPs can be broadly classified
into the following categories:

1. Diversity-based dMOEAs. This approach attempts to maintain and/or
enhance the diversity of the population in order to quickly detect and react
to environmental changes. In [6], Deb et al. proposed two NSGA-II [5] variants
called DNSGA-II-A and DNSGA-II-B based on this approach.

2. Memory-based dMOEAs. This approach attempts to store (i.e., memo-
rize) historical Pareto optimal solutions for reusing them in the future. This
type of algorithms is particularly efficient for dMOPs with periodical changes.
Representatives in this category include the algorithms proposed in [1,14].

3. Prediction-based dMOEAs. This approach aims to train a model to pre-
dict the movement of the Pareto set of a dMOP based on historical data.
The main advantage of this approach is that the algorithm can react to the
change proactively (i.e., it can take action in advance). This enables the algo-
rithm to swiftly converge to the new Pareto set. However, the performance
of prediction-based algorithms largely depends on the accuracy of prediction
models. State-of-the-art prediction-based algorithms include MOEA/D-SVR
[2] and PPS [15].

4. Multi-population dMOEAs. Multi-population-based algorithms explore
the search space with multiple subpopulations. Ideally, multiple subpopula-
tions can explore different regions of the search space simultaneously. In this
manner, the algorithm can be more sensitive to environmental changes and
locate new promising regions in the search space quickly. dCOEA [9] and
VEPSO [11] are two well-known multiple-population algorithms for solving
dMOPs.

3 Dynamic Multi-modal Multi-objective Optimization

In order to define dMMOPs, we first need to introduce the multi-modal property.
Suppose that an objective function vector F defines a multi-objective optimiza-
tion problem whose Pareto set is S, we say that F is a multi-modal function if
and only if the following condition is met:

Dynamic Multi-modal Multi-objective Optimization 141

∃x∗
1,x

∗
2 ∈ S, s. t. x∗

1 �= x∗
2 and F (x∗

1) = F (x∗
2), (2)

where x∗
1 and x∗

2 are called equivalent Pareto optimal solutions [20].
Now we can formally define dMMOPs as follows:

Definition 1 (dMMOP). A dMMOP is a dMOP with multi-modal objective
functions.

Due to the multi-modal property, the optimization goal of dMMOPs is to
track all the equivalent Pareto sets in the decision space. Compared to dMOPs,
which require the optimizer to track only one Pareto set, dMMOPs pose more
difficult challenges to algorithm designers.

First, dMMOPs require the optimizer to manage multiple “subpopulations”
for tracking multiple equivalent Pareto sets which may locate in different regions
in the decision space. This strategy improves the diversification ability of the
optimizer at the cost of reducing its convergence ability. Thus, balancing this
trade-off is essential for solving dMMOPs. Second, the time series of multiple
equivalent Pareto sets may interfere with each other, making it very difficult for
the optimizer to identify them correctly. Figure 1 gives an example showing a
dMMOP with two equivalent Pareto sets whose centers are denoted by A and B,
respectively. Suppose that at time t, A and B move to A′ and B′, respectively.
As shown in Fig. 1 (a), the actual time series from t − 1 to t are A → A′ and
B → B′. However, as shown in Fig. 1 (b), an optimizer (e.g., a prediction-based
dMOEA) may obtain incorrect time series, i.e., A → B′ and B → A′. In this
case, the algorithm may have a very poor performance.

Fig. 1. Illustration of the difficulty of time series identification when handling
dMMOPs.

Furthermore, detecting environmental changes when handling dMMOPs can
also be a difficult task. Most existing dynamic multi-objective optimization algo-
rithms detect changes by re-evaluating solutions. However, this strategy may fail
when handling dMMOPs. For example, suppose that there is a dMMOP with
three equivalent Pareto sets. If a population obtained by an algorithm is only

142 Y. Peng and H. Ishibuchi

distributed on two of the three Pareto sets, then the algorithm cannot detect
the change of the remaining Pareto set by simply re-evaluating the population.

Based on the above discussions, we can see that dMMOPs are very dif-
ferent from standard the dMOPs. Aside from addressing the above-mentioned
issues, we also need novel test problems with various characteristics to facilitate
the development of efficient algorithms for solving dMMOPs. Thus, in the next
section, we suggest a systematic approach for constructing benchmark dMMOPs.

4 A Systematic Approach for Constructing dMMOPs

In this section, we propose a general approach for constructing dMMOPs. Our
proposed approach is capable of constructing scalable and flexible test problems
with various dynamics.

To construct a dMMOP, we first define a basic dMOP denoted by G as
follows:

Minimize G(x, t) = {g1(x, t), g2(x, t), . . . , gM (x, t)}, (3)

where M is the number of objectives, x = (x1, x2, . . . , xp)T is the decision vari-
able vector with p dimensions, and gj ≥ 0 (j = 1, 2, . . . ,M) are M objective
functions to be minimized.

By carefully specifying the objective functions, we can ensure that the Pareto
front of the problem G changes dynamically whereas its Pareto set is stationary.
The reason for this is explained later. We denote the Pareto front and Pareto
set PF (G, t) and PS(G), respectively.

Now we construct the desired dMMOP denoted by F as follows:

Minimize F (x,y, t) = (f1, f2, . . . , fM)T ,

fj = gj(x, t) · [1 + h(x,y, t)], j = 1, 2, . . . ,M,
(4)

where y = (y1, y2, . . . , yq)T is a decision variable vector with q dimensions, and
h(x,y, t) ≥ 0 is a dynamic scalar function regarding two decision variable vectors
x and y which satisfy the following constraint at any time t:

∀x∗ ∈ PS(G),∃y = y∗,
s. t. h(x∗,y∗, t) = 0.

(5)

With the above formulations, we can describe the Pareto set of the problem
F as follows:

PS(F, t) = {x = x∗,y = y∗ | x∗ ∈ PS(G), h(x∗,y∗, t) = 0}. (6)

Notice that when h = 0, the problem F is equivalent to G, i.e., their Pareto
fronts are the same. This means that the geometry and dynamics of the Pareto
front of the problem F only depend on gj (j = 1, 2, . . . ,M). Recall that when we
constructed G, we purposefully made its Pareto set stationary over time. From
(6), we can see that the dynamics of the Pareto set can only be controlled by h.
Thus, the dynamics for the Pareto front and the Pareto set of the constructed

Dynamic Multi-modal Multi-objective Optimization 143

dMMOP can be controlled independently (i.e., by specifying gj and h functions,
respectively). This enables researchers to construct various new test problems by
composing different dynamics for the Pareto front and Pareto set. Furthermore,
according to (6), F has multiple equivalent Pareto sets when h is a multi-modal
function at time t (i.e., h(x,y, t) = 0 holds for different values of x and y). Thus,
by altering the number and positions of the global and local optima of h, we can
easily specify the number and distribution of the global and local Pareto sets of
F , respectively.

To conclude, the proposed approach can construct scalable dMMOPs with
an arbitrary number of decision variables and objective functions. The number
of equivalent Pareto sets is also scalable. The proposed approach also allows us
to set different dynamics for the Pareto front and Pareto set, thus making it
possible to build flexible and sophisticated test problems according to the needs
of algorithm designers.

4.1 Case Study on an Example Test Problem

In this section, we use a simple example with only two decision variables x and
y to demonstrate how to create a novel dMMOP using our proposed framework.
The first step is to define the base dMOP denoted by Ge. We use the

x = (x), x ∈ [0.1, 1],
⎧
⎨

⎩

g1(x, t) = x,

g2(x, t) =
1
x

+ 5 cos2(0.5πt).

(7)

Then we can construct a dMMOP denoted by dMMOP1 based on G. In our
current example, we use the following function h to control the dynamics and
geometry of the Pareto set:

y = (y), y ∈ [0, 10],

h(x,y, t) =
√

|y − 1| · |y − D(t)|,
D(t) = 1 + 2 sin2(0.2πt).

(8)

Since h has two optima (i.e., y = 1 and y = D(t)), dMMOP1 has two equivalent
Pareto sets, one of which varies dynamically over time while the other remains
stationary. Notice that when D(t) = 1, the two equivalent Pareto sets are over-
lapping. The Pareto set and Pareto front of dMMOP1 are described in (9) and
illustrated in Fig. 2.

PS : x ∈ [0.1, 1.1], y ∈ {1,D(t)},

PF : g2 =
1
g1

+ 5 cos2(0.5πt), g1 ∈ [0.1, 1.1].
(9)

144 Y. Peng and H. Ishibuchi

Fig. 2. The Pareto front and Pareto set of dMMOP1. (a) shows the Pareto front
sampled from ten t values vary from 0 to 1. (b) shows the corresponding Pareto sets,
where PS(1) and PS(2) denote the first and second equivalent Pareto sets, respectively.

To the best of our knowledge, there are no test problems similar to dMMOP1
in the literature. We further investigate the performance of two algorithms,
namely, DNSGA-II-A [6] and MMO-MOES [29] on this test problem. DNSGA-
II-A is a diversity-based algorithm for solving dMOPs. It randomly selects and
re-evaluates 10% of the population in each generation. If the objective values
of any of the solutions have changed, 30% of the population are randomly re-
initialized. However, since DNSGA-II-A does not take into account the multi-
modal property, we expect it to obtain only one of the two equivalent Pareto
sets of dMMOP1. In contrast, MMO-MOES is an algorithm designed for solving
MMOPs in static environments. To make it possible to handle dMMOPs, we
incorporate the same change detection and change response mechanisms used in
DNSGA-II-A into MMO-MOES. We call the resulting algorithm dMMO-MOES.

We use the mean values of the IGD [3] and IGDX [30] indicators (denoted by
MIGD and MIGDX, respectively) to measure the performance in tracking the
moving Pareto front and Pareto set, respectively. Smaller IGD and IGDX values
mean that the obtained solutions can better approximate the Pareto front and
the Pareto set, respectively.

The time unit t for dMMOP1 can be calculated with (10), which is modified
from [19].

t = max
{

1
nt

	1 +
τ − τ0

τt

, 0

}

, (10)

where:

– τ is the current generation counter,
– τ0 is the number of generations that the optimization problem remains sta-

tionary before the first change,
– nt is the number of distinct time steps in one time unit, which controls the

severity of the dynamic change, and

Dynamic Multi-modal Multi-objective Optimization 145

– τt is the number of generations where t remains unchanged, which controls
the frequency of the dynamic change.

For each algorithm, the population size is 200, and other parameters are set
as the suggested values in the corresponding papers [6,29]. For dMMOP1, τ0,
τt, and nt are specified as 50, 20, and 10, respectively. Each algorithm is tested
on dMMOP1 for 31 runs with the maximum number of generations being set to
τ0 + 100τt (i.e., each run comprises 100 environmental changes).

Figures 3 and 4 report the results obtained from a single run with the median
MIGD value among 31 runs of each algorithm. From Fig. 3 (a), we can observe
that both DNSGA-II-A and dMMO-MOES can track the moving Pareto front.
Although these two algorithms use exactly the same change detection and change
response mechanisms, DNSGA-II-A clearly outperforms dMMO-MOES regard-
ing the IGD indicator (i.e., the IGD values obtained by DNSGA-II are smaller).
DNSGA-II-A not only has more stable performance but also converges faster to
the new Pareto front when environmental changes occur.

Fig. 3. The change of IGD and IGDX values obtained by DNSGA-II-A and dMMO-
MOES on dMMOP1 over 100 environmental changes.

However, in Fig. 3 (b), dMMO-MOES significantly outperforms DNSGA-II-
A in terms of IGDX. This is because DNSGA-II can obtain solutions only in
one of the two equivalent Pareto subsets. Therefore, as the distance between the
two equivalent Pareto sets increases (e.g., t increases from 0 to 2.5), the IGDX
value obtained by DNSGA-II-A also increases. Similarly, when t = 0, 5, 10, the
IGDX values obtained by DNSGA-II-A are the best since the two equivalent
Pareto sets of dMMOP1 are overlapping. As shown in Fig. 3 (b), the IGDX
values of dMMO-MOES are much smaller than that of DNSGA-II-A over the
100 environmental changes. These observations indicate that dMMO-MOES is
more capable of tracking multiple Pareto sets than DNSGA-II-A.

Figure 4 shows the populations obtained by DNSGA-II-A and dMMO-MOES
when t equals to 2.5, 3.5 and 5 in the decision space. From this figure, we can
verify that DNSGA-II-A obtained solutions only in one of the two equivalent

146 Y. Peng and H. Ishibuchi

Pareto sets, whereas dMMO-MOES can track both of them. It is worth noting
that Fig. 4 (e) and Fig. 4 (f) also reveal that the convergence ability of dMMO-
MOES is noticeably weaker than DNSGA-II-A since many solutions are not on
the Pareto sets.

(a) t = 2.5. (b) t = 3.5. (c) t = 5.

(d) t = 2.5. (e) t = 3.5. (f) t = 5.

Fig. 4. The populations obtained by DNSGA-II-A (i.e., (a)–(c)) and dMMO-MOES
(i.e., (d)–(f)) on dMMOP1 when t equals to 2.5, 3.5 and 5.

From these experimental results, we can see that existing algorithms do not
perform well on dMMOPs. Novel algorithms are needed in order to efficiently
solve this novel type of optimization problems.

5 A Suggested Test Suite

In this section, we provide a novel test suite 10 dMMOPs with various dynamics.
All test problems are constructed based on the proposed approach presented in
Sect. 4. Definitions of the proposed dMMOPs are summarized in Table 1. Notice
that we omit the definition of dMMOP1 in Table 1 since it has already been
defined in Sect. 4.1.

Here we briefly describe some main characteristics of each test problem.
Details of each test problem are shown in the supplementary file1. First,
dMMOP2 features a Pareto front whose shape changes periodically from convex
to linear and then to concave. It has two stationary equivalent Pareto sets in the
decision space. dMMOP3 is the same as dMMOP2 except that its h function is

1 The supplementary file can be found at https://github.com/Yiming-Peng-Official/
dMMOP.

https://github.com/Yiming-Peng-Official/dMMOP
https://github.com/Yiming-Peng-Official/dMMOP

Dynamic Multi-modal Multi-objective Optimization 147

Table 1. The proposed dMMOP test suite.

Problem Definition Pareto Set

dMMOP1 – –

dMMOP2 x = (x1, x2)
T , x1:2 ∈ [0, 1],

⎧
⎪⎨

⎪⎩

g1(x, t) = [cos (π/2x1) cos (π/2x2)]
1/D(t),

g2(x, t) = [cos (π/2x1) sin (π/2x2)]
1/D(t),

g3(x, t) = [sin(π/2x1)]
1/D(t),

y = (y), y1 ∈ [0, 1],

h(x,y, t) = 1 − sin2(2πy),

D(t) = 0.25 + 0.75 sin2(π/12t).

x1:2 ∈ [0, 1],

y = {1

4
,
3

4
}.

dMMOP3 Same as dMMOP2, except that h is defined as follows:
h(x,y, t) = 1 − exp

[− (y−0.2
0.03

)2
] − 0.8 exp

[− (y−0.6
0.4

)2
]
.

x1:2 ∈ [0, 1],

y = 0.2.

dMMOP4 Add a minus sign to all objectives of dMMOP2. Same as dMMOP2.

dMMOP5 x = (x), x ∈ [0, 1],
{

g1(x, t) = x,

g2(x, t) = 1 − x cos2(D(t)xπ),

y = (y), y ∈ [−1, 1],

h(x,y, t) = 1 − exp

[

−
(

(y + x) · (y − x)

0.4

)2
]

,

D(t) = 5 sin2(0.2πt).

All non-dominated
solutions satisfying:
g2 = 1 − g1 cos2(D(t)g1π),

g1 ∈ [0, 1].

dMMOP6 x = (x), x ∈ [0, 1],
{

g1(x, t) = x,

g2(x, t) = 1 − x − cos(2D(t)πx+π/2)
2D(t)π

,

y = (y), y ∈ [0, 9],

h(x,y, t) =

{
2(y − sin |2πx − π| + |2πx − π|)2, y ∈ [0, 4]

2(y − 4 − sin |2πx − π| + |2πx − π|), y ∈ (4, 9]

D(t) = 0.1 + 5 sin2(0.2πt).

x ∈ [0, 1], y ∈ [0, 4],

y = sin |2πx − π| + |2πx − π|.
and

x ∈ [0, 1], y ∈ (4, 9],

y = sin |2πx − π| + |2πx − π| + 4.

dMMOP7 x = (x1, x2)
T , x1:2 ∈ [0, 1],

⎧
⎪⎨

⎪⎩

g1 = 0.5 + D(t) · (x1 − 0.5),

g2 = (1 − x2)(1 − g1),

g3 = x2(1 − g1),

D(t) = cos2(0.2πt),

y = (y), y ∈ [0, 1],

h(x,y, t) = 1 − sin2

(

2π(y − S(t) sin(πx1) +
1

4
)

)

,

S(t) = 0.5 cos2(0.2πt).

y = S(t) sin(πx1), x1:2 ∈ [0, 1].

and

y = S(t) sin(πx1) +
1

2
, x1:2 ∈ [0, 1].

dMMOP8 x = (x), x ∈ [0, 1],
{

g1(x, t) = x,

g2(x, t) = 1 − √
x,

y = (y), y ∈ [0, 1],

h(x,y, t) = 1 − sin(D(t)πy),

D(t) = 1 + 9 sin2(0.2πt).

x ∈ [0, 1], y =
0.5 + 2i

D(t)
,

i = 0, 1, 2, . . .

dMMOP9 x = (x), x ∈ [1, 3],
{

g1(x, t) = |x − 2|,
g2(x, t) = 1 − √|x − 2|,

y = (y), y ∈ [−1, 1].

h(x,y, t) =

{
2(y − sin(2D(t)π|y − 2| + π))2, y ∈ [1, 2)

2(y − sin(2π|y − 2| + π))2, y ∈ [2, 3]

D(t) = 1 + 4 sin2(π/2t)

y ∈ [1, 2),

y = sin(2D(t)π|x − 2| + π)

and

y ∈ [2, 3],

y = sin(2π|x − 2| + π).

dMMOP10 x = (x), x ∈ [−0.5, 0.5],

y = (y), y ∈ [−0.5, 0.5],
[

xr

yr

]

=

[
x

y

] [
cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

]

{
g1 = xr,

g2 = 1/xr,

h(x,y, t) = 1 − cos6(2πyr),

θ(t) = 2π sin2(0.2πt).

xr ∈ [−0.5, 0.5],

yr = {−1

2
,
1

2
}.

148 Y. Peng and H. Ishibuchi

modified to have a locally optimal Pareto front. dMMOP4 is another variant of
dMMOP2 which is constructed based on the idea proposed in [12]. By adding a
minus sign to all objective functions of dMMOP2, the Pareto front of dMMOP4
changes from a triangular shape to an inverted triangular shape. As pointed
out in [12], such a Pareto front shape is difficult for decomposition-based multi-
objective optimization algorithms. dMMOP5 is a test problem whose Pareto
set and Pareto front change from a continuous curve to multiple disconnected
segments over time. Furthermore, the number of disconnected Pareto set and
Pareto front segments also change dynamically. The dMMOP6 test problem has
two equivalent Pareto sets which are the same as the MMF8 test problem in
[28]. However, its Pareto front changes dynamically from a regular curve to a
mixed convex/concave curve. The number of knee points on the Pareto front
also changes dynamically over time. dMMOP7 has two equivalent Pareto sets,
each of which is a time-varying manifold with two dimensions. Its Pareto front is
a 2-dimensional plane that can degenerate into a line over time. The dMMOP8
test problem has a time-varying number of equivalent Pareto sets. dMMOP9 has
two equivalent Pareto sets, one of which changes its geometry over time, while
the other is always stationary. In dMMOP10, the equivalent Pareto sets rotate
clockwise around the origin as time changes. Since the centroid of the Pareto set
is always the origin, dMMOP10 is challenging for some dMOEAs that rely on
centroid-based prediction models (e.g., [15]).

In conclusion, the proposed dMMOP test suite provides test problems with
various characteristics, thus allowing researchers to evaluate the performance of
an algorithm with respect to a wide variety of aspects.

6 Concluding Remarks

In this paper, we introduced a novel type of optimization problem, namely,
dMMOPs by extending MMOPs into dynamic environments. Furthermore, we
gave a formal definition for dMMOPs and analyzed some key challenges in solv-
ing them. Since test problems are essential for algorithm development, we pro-
posed a general approach for constructing dMMOPs for benchmarks. In addition,
we provided a novel test suite containing 10 novel dMMOPs. We believe that
these test problems can help researchers to develop more efficient algorithms for
solving real-world dMMOPs.

This paper only provides a preliminary study on dynamic multi-modal multi-
objective optimization, many potential research topics are left for future work.
For example, experimental results in Sect. 4.1 show that simply incorporating an
existing change response mechanism to multi-modal multi-objective optimization
algorithms (e.g., MMO-MOES in our experiments) does not yield satisfactory
results, and we still need more efficient algorithms to handle dMMOPs in the
future.

Dynamic Multi-modal Multi-objective Optimization 149

Acknowledgements. This work was supported by National Natural Science Founda-
tion of China (Grant No. 61876075), Guangdong Provincial Key Laboratory (Grant No.
2020B121201001), the Program for Guangdong Introducing Innovative and Entrepre-
neurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program of Shen-
zhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science and
Technology Program (Grant No. KQTD2016112514355531).

References

1. Azzouz, R., Bechikh, S., Said, L.B.: A dynamic multi-objective evolutionary algo-
rithm using a change severity-based adaptive population management strategy.
Soft Comput. 21(4), 885–906 (2015). https://doi.org/10.1007/s00500-015-1820-4

2. Cao, L., Xu, L., Goodman, E.D., Bao, C., Zhu, S.: Evolutionary dynamic multiob-
jective optimization assisted by a support vector regression predictor. IEEE Trans.
Evol. Comput. 24(2), 305–309 (2020)

3. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New
York (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and
decision-making using modified NSGA-II: a case study on hydro-thermal power
scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70928-2 60

7. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single
and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008)

8. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems:
test cases, approximations, and applications. IEEE Trans. Evol. Comput. 5(8),
425–442 (2004)

9. Goh, C., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for
dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127
(2008)

10. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of the Second International Conference on
Genetic Algorithms and Their Application, pp. 41–49 (1987)

11. Greeff, M., Engelbrecht, A.P.: Solving dynamic multi-objective problems with vec-
tor evaluated particle swarm optimisation. In: IEEE Congress on Evolutionary
Computation, pp. 2917–2924 (2008)

12. Ishibuchi, H., Matsumoto, T., Masuyama, N., Nojima, Y.: Many-objective prob-
lems are not always difficult for Pareto dominance-based evolutionary algorithms.
In: Proceedings of the 24th European Conference on Artificial Intelligence (2020)

13. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on
the 0/1 knapsack problem - a comparative experiment. IEEE Trans. Evol. Comput.
6(4), 402–412 (2002)

https://doi.org/10.1007/s00500-015-1820-4
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/978-3-540-70928-2_60
https://doi.org/10.1007/978-3-540-70928-2_60

150 Y. Peng and H. Ishibuchi

14. Jiang, S., Yang, S.: A steady-state and generational evolutionary algorithm for
dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 21(1), 65–82
(2016)

15. Li, Q., Zou, J., Yang, S., Zheng, J., Ruan, G.: A predictive strategy based on
special points for evolutionary dynamic multi-objective optimization. Soft Comput.
23(11), 3723–3739 (2018). https://doi.org/10.1007/s00500-018-3033-0

16. Lin, Q., Lin, W., Zhu, Z., Gong, M., Li, J., Coello, C.A.C.: Multimodal multi-
objective evolutionary optimization with dual clustering in decision and objective
spaces. IEEE Trans. Evol. Comput. 25(1), 130–144 (2021)

17. Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., Shang, K.: A double-niched evo-
lutionary algorithm and its behavior on polygon-based problems. In: Proceedings
of the Parallel Problem Solving from Nature - PPSN XV, pp. 262–273 (2018)

18. Liu, Y., Yen, G.G., Gong, D.: A multimodal multiobjective evolutionary algorithm
using two-archive and recombination strategies. IEEE Trans. Evol. Comput. 23(4),
660–674 (2019)

19. Nguyen, T.T.: Continuous Dynamic Optimization Using Evolutionary Algorithms.
Ph.D. thesis, The University of Birmingham (2010)

20. Peng, Y., Ishibuchi, H.: A decomposition-based multi-modal multi-objective opti-
mization algorithm. In: Proceedings of the 2020 IEEE Congress on Evolutionary
Computation, pp. 1–8 (2020)

21. Peng, Y., Ishibuchi, H., Shang, K.: Multi-modal multi-objective optimization: prob-
lem analysis and case studies. In: Proceedings of the IEEE Symposium Series on
Computational Intelligence, pp. 1865–1872 (2019)

22. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In:
Proceedings of the IEEE International Conference on Evolutionary Computation,
pp. 798–803 (1996)

23. Raquel, C., Yao, X.: Dynamic multi-objective optimization: a survey of the state-
of-the-art. In: Evolutionary Computation for Dynamic Optimization Problems, pp.
85–106. Springer, Heidelberg(2013). https://doi.org/10.1007/978-3-642-38416-5 4

24. Schütze, O., Vasile, M., Coello, C.A.C.: Computing the set of epsilon-efficient solu-
tions in multiobjective space mission design. J. Aerosp. Comput. Inf. Commun.
8(3), 53–70 (2011)

25. Shir, O.M.: Niching in evolutionary algorithms. In: Handbook of Natural Com-
puting, pp. 1035–1069. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-540-92910-9 32

26. Tian, Y., Liu, R., Zhang, X., Ma, H., Tan, K.C., Jin, Y.: A multi-population evolu-
tionary algorithm for solving large-scale multi-modal multi-objective optimization
problems. IEEE Tran. Evol. Comput. 25(3), 405–418 (2020)

27. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring
topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Com-
put. 22(5), 805–817 (2018)

28. Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A novel scalable test problem suite for
multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)

29. Zhang, K., Chen, M., Xu, X., Yen, G.G.: Multi-objective evolution strategy for
multi-modal multi-objective optimization. Appl. Soft Comput. 101, 107004 (2021)

30. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of Pareto-optimal solutions in
both the decision and objective spaces by an estimation of distribution algorithm.
IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

https://doi.org/10.1007/s00500-018-3033-0
https://doi.org/10.1007/978-3-642-38416-5_4
https://doi.org/10.1007/978-3-540-92910-9_32
https://doi.org/10.1007/978-3-540-92910-9_32

Fair Feature Selection
with a Lexicographic Multi-objective

Genetic Algorithm

James Brookhouse(B) and Alex Freitas

School of Computing, University of Kent, Canterbury, UK

james@brookhou.se, A.A.Freitas@kent.ac.uk

Abstract. There is growing interest in learning from data classifiers
whose predictions are both accurate and fair, avoiding discrimination
against sub-groups of people based e.g. on gender or race. This paper
proposes a new Lexicographic multi-objective Genetic Algorithm for
Fair Feature Selection (LGAFFS). LGAFFS selects a subset of rele-
vant features which is optimised for a given classification algorithm, by
simultaneously optimising one measure of accuracy and four measures
of fairness. This is achieved by using a lexicographic multi-objective
optimisation approach where the objective of optimising accuracy has
higher priority over the objective of optimising the four fairness mea-
sures. LGAFFS was used to select features in a pre-processing phase
for a random forest algorithm. The experiments compared LGAFFS’
performance against two feature selection approaches: (a) the baseline
approach of letting the random forest algorithm use all features, i.e. no
feature selection in a pre-processing phase; and (b) a Sequential For-
ward Selection method. The results showed that LGAFFS significantly
improved fairness measures in several cases, with no significant difference
regarding predictive accuracy, across all experiments.

1 Introduction

Recently, there has been an increased focus on the fairness of the decisions made
by automated processes [1,17]; since algorithms that learn from biased data often
produce biased predictive models. We address fairness in the classification task
of machine learning, where a predictive feature (e.g. gender or race) is set as a
sensitive feature. The values of a sensitive feature are used to split individuals
(instances in a dataset) into protected and unprotected groups. The protected
group contains individuals likely to be victims of discrimination, who are more
likely to obtain a negative outcome (class label) than the unprotected group.

A large number of fairness measures have been proposed to capture some
notion of fairness in a model learned from data [14,21]. These fairness measures
can be categorised into group-level and individual-level fairness measures.

An example of a group-level fairness metrics is the discrimination score [2],
which measures the difference between the predicted positive-class probabilities
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 151–163, 2022.
https://doi.org/10.1007/978-3-031-14721-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_11&domain=pdf
http://orcid.org/0000-0002-9802-7070
http://orcid.org/0000-0001-9825-4700
https://doi.org/10.1007/978-3-031-14721-0_11

152 J. Brookhouse and A. Freitas

of the protected and unprotected groups. Some group-level metrics of fairness
measure the difference between the false positive error rate and/or the false neg-
ative error rate between the protected and unprotected groups [3]. Group-level
fairness measures have the limitation of not considering fairness at the individual
level; i.e., they do not penalise models where two very similar individuals within
the same group unfairly receive different outcomes (class labels).

An individual-level fairness metric avoids this limitation, by measuring sim-
ilarities among individuals. Consistency is an individual fairness metric which
compares an individual to its k-nearest neighbours; if all of an individual’s neigh-
bours have the same class as the current individual, this test is considered max-
imally satisfied for that individual, this is then repeated for each individual and
an average taken [22]. However, as the number of features grows, the notion of
“nearest neighbours” become increasingly meaningless, as the distances between
individuals tend to increase, leading to comparisons being made between increas-
ingly different individuals.

In practice, no single fairness measure can be deemed the best in general,
and it has also been proved that there is a clear trade-off among some fairness
measures, which cannot be simultaneously optimised [3,10].

Hence, intuitively it makes sense to use multiple fairness measures, with dif-
ferent pros and cons, and try to optimise those multiple measures at the same
time, in order to achieve more robust fairness results. This is precisely the focus
of this paper, where we propose a new multi-objective Genetic Algorithm (GA)
for fair feature selection, The GA uses the lexicographic approach to optimise
two objectives in decreasing priority order: predictive accuracy and fairness. The
accuracy objective involves one measure, but the fairness objective is more com-
plex and involves four measures. Hence, we propose a new procedure for aggre-
gating four fairness measures into a single fairness objective by systematically
considering all permutations of lexicographic ordering of those four measures, as
described in detail later.

The GA selects a subset of relevant features for a given classification algorithm
in a data pre-processing phase [13]. This is a difficult task for two reasons. First, the
search space’s size is exponential in the number of features, with 2n – 1 candidate
solutions (feature subsets), where n is the number of features in the dataset (the
“– 1” discounts the empty feature subset). Second, intuitively the search space
is rugged (highly non-convex) with many local optima, even in a single-objective
scenario, with the problem being aggravated in the multi-objective scenario.

We focus on GAs for two mains reasons. First, they are robust global search
methods, being less likely to get trapped into local optima in the search space,
by comparison with conventional local search methods [7,18], and so they tend
to cope better with feature interaction (a key issue in feature selection). Second,
the fact that they evolve a population of candidate solutions facilitates multi-
objective optimisation [5,19], as proposed in this work.

This paper is organised as follows. Section 2 describes the proposed multi-
objective genetic algorithm for fair feature selection. Section 3 describes the
datasets used in the experiments and the experimental setup. Section 4 reports
experimental results and Sect. 5 presents the conclusions and future work.

Fair Feature Selection with a Lexicographic GA 153

Algorithm 1: Ramped Population Initialisation
Data: population size, MIN P, MAX P
Result: Population of Individuals

1 Function initialise population():
2 step size = (MAX P – MIN P) / population size
3 for i to population size do
4 p = MIN P + (i * step size)

5 population += Individual.initialise(p)
6 return population

2 A Lexicographic-Optimisation Genetic Algorithm
for Fair Feature Selection

This section describes our new Lexicographic-optimisation Genetic Algorithm
for Fair Feature Selection (LGAFFS), which selects a subset of relevant features
for a classification algorithm in a data pre-processing phase. LGAFFS selects
individuals for reproduction based on the principle of lexicographic optimisation
to combine predictive accuracy and fairness measures, as described later.

In LGAFFS, each individual of the population represents a candidate feature
subset. More precisely, each individual consists of a string of N bits (genes),
where N is the number of features in the dataset, and the i-th gene takes the
value 1 or 0 to indicate whether or not (respectively) the i-th feature is selected.

LGAFFS follows a wrapper approach to feature selection [13], where a base
classification algorithm is used to learn a classification model based on the feature
subset selected by an individual, and that model’s quality (in terms of accuracy
and fairness) is used to compute that individual’s fitness. Hence, the GA aims
at finding the best subset of features for the base classification algorithm. Fit-
ness computation is performed by using a well-known internal cross-validation
procedure, which uses only the training set (i.e. not using the test set).

LGAFFS uses uniform crossover and bit-flip mutation as genetic operators
to generate new individuals in each generation. However, the population initial-
isation, tournament selection and elitism selection are non-standard procedures,
and hence these are described in detail in the next subsections.

2.1 Population Initialisation

When creating the initial population, each individual has a different probability
that each gene (feature) will be selected or not. This ramping initialisation is
described in Algorithm 1. As shown in line 4, each individual has the probability
(p) that a gene (feature) will be switched on increased by step_size compared
to the previous individual, where step_size is defined in line 2 as a function of
the maximum and minimum probabilities for a feature to be selected – denoted
MAX_P and MIN_P, which are input arguments for Algorithm 1.

The motivation for this ramped population initialisation procedure is to pro-
mote diversity in the population. If all individuals had the same probability p

154 J. Brookhouse and A. Freitas

Algorithm 2: Pseudo-code of Lexicographic Tournament selection.
Data: Instances, Population, ε, fair win ε

1 Function tournament selection():
2 i1, i2 = select random individuals()
3 if not |i1.accuracy – i2.accuracy| > ε then
4 i1 win, i2 win = fairness aggregation(i1,i2) // See Algorithm 3

5 if |i1 win – i2 win| > fair win ε then
6 return fairest individual

7 return best accuracy individual

that a single gene is switched on or off, then, as the number of genes (features)
in an individual increases, the number of features selected (switched on genes) in
each individual would tend to converge to p×Ngenes, the mean of a binomial dis-
tribution, where p is the probability of each gene being switched on and Ngenes is
the number of genes. Hence, all individuals would tend to have a similar number
of selected features, and individuals with low or high numbers of selected fea-
tures in the initial population would be rare, limiting the search of these areas.
The ramped population initialisation avoids this problem, giving each individual
a different probability p of switching a gene, sweeping from MIN_P to MAX_P.

2.2 Lexicographic Tournament Selection

Lexicographic tournament selection, with tournament size of two, is used to
select individuals for reproduction. In the lexicographic-optimisation approach
[8], we compare the two individuals in a tournament considering the objectives
in decreasing order of priority. Let V1 and V2 denote the values of the current
objective for individuals 1 and 2. When those two individuals are compared based
on the first objective, if |V1−V2| > ε (where ε is a very small value), then the best
individual is the tournament winner. Otherwise, the two individuals’ objective
values are deemed equivalent (negligible difference) based on that objective; then
the next objective is considered in the same way, and so on. This is repeated until
a significant (greater than ε) difference is observed and a best individual selected.
If there is no significant difference between two individuals for all objectives, then
the individual with the best value of the highest priority objective is selected.

The pseudo-code for this is shown in Algorithm 2. When comparing two
individuals, the lexicographic approach requires the objectives to be ordered.
LGAFFS considers accuracy as the highest-priority objective to be optimised,
followed by a lower-priority set of fairness measures which are aggregated into a
single fairness objective to be optimised as described in Sect. 2.4.

Note that the lexicographic method avoids the specification of ad-hoc weights
to each objective, which would be the case if using a weighted sum of objectives
[8]. The lexicographic approach simply requires that an order of priority for the
objectives be defined; and intuitively it is easier for users to specify a priority

Fair Feature Selection with a Lexicographic GA 155

order of objectives than ad-hoc numerical weights. The lexicographic approach
requires a small threshold parameter (ε); but again, it is intuitively easier for
users to specify this parameter than to specify ad-hoc weights for each objective.

Note that an alternative to the lexicographic approach would be the well-
known Pareto dominance approach [5]. However, the Pareto approach is not
suitable for our feature selection task where the objective of accuracy has higher
priority than the objective of fairness, since the Pareto approach ignores this
objective prioritisation. In particular, if we used the Pareto approach, once the
fairest model is found it would tend to be preserved by the selection operator
and remain in the Pareto front along the GA run even if its accuracy was very
low; but that model would be a bad solution, given the objectives’ priority order.
In this case, the GA would waste computational resources searching on areas of
the Pareto front around bad solutions (like areas with maximal fairness but low
accuracy). In contrast, a lexicographic approach would never select that fairest
model due to its very low accuracy (as the highest-priority objective).

2.3 The Four Fairness Measures and the Accuracy Measure

No single fairness measure captures all nuances of a fair model, so LGAFFS
optimises four fairness measures to get more robust fairness results. To define
these measures we use the following nomenclature:

– S: Protected/sensitive feature: 0 → unprotected group, 1 → protected group
– Ŷ : the predicted class; Y : the actual class; taking class labels 1 or 0
– TP , FP , TN , FN : Number of True Positives, False Positives, True Negatives

and False Negatives, respectively

The first measure is the discrimination score (DS) [2], which is defined as:

DS = 1 −
∣
∣
∣P (Ŷ = 1|S = 0) − P (Ŷ = 1|S = 1)

∣
∣
∣ (1)

DS is a group-level fairness measure that takes the optimal value of 1 if both
protected and unprotected groups have an equal probability of being assigned to
the positive class by the classifier. If DS is used on unbalanced datasets, those
where the data shows a large difference between the probability of a positive
outcome for both groups, to satisfy DS will require a reduction in accuracy. In
this case the lexicographic approach is robust to such selective pressures as the
ordering of the objectives prioritises accuracy over the fairness measures.

The second measure used is consistency [22], defined as:

C = 1 − 1
Nk

∑

i

∑

j∈kNN(xn)

|ŷi − ŷj | (2)

Consistency is an individual-level similarity metric that compares the class pre-
dicted by a classifier to each instance in the dataset to the class predicted by
the classifier to that instance’s k nearest instances (neighbours) in the dataset.
If all these neighbours have the same predicted class as the current instance,

156 J. Brookhouse and A. Freitas

then that instance is considered consistent. The measure computes the average
degree of consistency over all instances in the dataset. A fully consistent model
has a consistency of 1 and an inconsistent model has a value of 0.

Thirdly, the False Positive Error Rate Balance Score (FPERBS) [3,4] is:

FPERBS = 1 −
∣
∣
∣

FPS=0

FPS=0 + TNS=0
− FPS=1

FPS=1 + TNS=1

∣
∣
∣ (3)

FPERBS measures the difference in the probability that a truly negative instance
is incorrectly predicted as positive between protected and unprotected groups.
Fourthly, the False Negative Error Rate Balance Score (FNERBS) [3,9,11] mea-
sures the difference in the probability that a truly positive instance is incorrectly
predicted as negative between protected and unprotected groups:

FNERBS = 1 −
∣
∣
∣

FNS=0

FNS=0 + TPS=0
− FNS=1

FNS=1 + TPS=1

∣
∣
∣ (4)

A score of 1 indicates an optimally fair result for both FPERBS and FNERBS.
As the accuracy measure to be optimised, LGAFFS uses the geometric

mean of Sensitivity and Specificity (Eq. 5). This measure was chosen because
it incentivises the correct classification of both positive-class and negative-class
instances, to counteract pressure from the fairness measures to produce maxi-
mally fair models that trivially predict the same class for all instances.

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
,

GMSen×Spec =
√

Sensitivity · Specificity

(5)

2.4 Aggregating Fairness Measures

As discussed earlier, LGAFFS optimises one accuracy measure and four fairness
measures. We consider accuracy as the highest-priority objective (as usual in
machine learning), and the four fairness measures as lower-priority objectives.
Among those fairness measures, there is no consensus in the literature about
what is the best one, and so it would be “unfair” to prioritise one fairness measure
over the others. Hence, we aggregate the four fairness measures into a single
objective to be optimised by the GA (in addition to the accuracy objective), by
computing all possible 24 (4!) permutations of the four fairness measures.

Algorithm 3 shows how two individuals are compared regarding fairness.
Each permutation defines a lexicographic order for the fairness measures which
can be evaluated to find the first significant difference between the individuals,
at which point the best individual is given a win. A significant difference is one
greater than the very small ε. After all permutations have been evaluated, the
individual with the higher number of wins is declared the best individual overall.

Fair Feature Selection with a Lexicographic GA 157

Algorithm 3: Aggregating fairness measures.
Data: Ind 1, Ind 2, ε
Result: Number of wins for each individual

1 Function fairness aggregation():
2 i1 win = i2 win = 0
3 permutations = generate permutations(measures)
4 forall permutations do
5 forall permutation.measures do
6 i1, i2 = compute fairness measure(measure, Ind 1, Ind 2)
7 if |i1 - i2| > ε then
8 if i1 > i2 then
9 i1 win++

10 break // Exit inner forall

11 else
12 i2 win++
13 break // Exit inner forall

14 return i1 win, i2 win

2.5 Lexicographic Elitism

Recall that the lexicographic approach requires the ranking of objectives, and
our GA prioritises the accuracy objective (the geometric mean of Sensitivity and
Specificity) over the four fairness measures. The fairness measures are aggregated
into a single objective (see Sect. 2.4). To find the best individual the procedure
in Algorithm 4 is used for implementing elitism.

First the population is sorted by accuracy (line 2 of Algorithm 4), where any
individuals with accuracy within ε of the most accurate individual are shortlisted
for fairness comparison (line 4). These shortlisted individuals have their average

Algorithm 4: Lexicographic Selection of the Best Individual
Data: population, ε, fair rank ε
Result: Best individual

1 Function get best individual():
2 accuracy rank = sort population by accuracy(population)
3 best accur indiv = accuracy rank.head()
4 individuals = select all individuals within accuracy ε(accuracy rank)
5 avg fair rank = average rank of fairness permutations(individuals)
6 if (avg fair rank.head().average rank – best accur indiv.average rank) >

fair rank ε then
7 return avg fair rank.head()
8 else
9 return best accur indiv

158 J. Brookhouse and A. Freitas

Table 1. Datasets used in all experiments, detailing the number of instances, features
and the sensitive features for each dataset.

Data set Instances Features Sensitive features

Adult Income (US Census) 48842 14 Race, Gender, Age

German Credit 1000 20 Age, Gender

Credit Card Default 30000 24 Gender

Communities and Crime 1994 128 Race

Student Performance (Portuguese) 650 30 Age, Gender, Relationship

Student Performance (Maths) 396 30 Age, Gender, Relationship

ProPublica recidivism 6167 52 Race, Gender

rank of fairness computed across all 24 permutations generated as described in
Sect. 2.4. For each permutation of the four fairness measures, the set of shortlisted
individuals is arranged by its lexicographic order, where the first (last) measure
in the permutation is considered the most (least) important. Fairness values
within the threshold ε are considered equivalent and the less important metrics
are considered until a significant difference is found.

If the fairest shortlisted individual (with the lowest average rank) has a sig-
nificantly better rank than the most accurate shortlisted individual (i.e. the
difference between their average ranks is greater than fair rank ε), the former is
selected by elitism as the best individual in preference over the most accurate
individual – since the difference in accuracy between those two shortlisted indi-
viduals is considered non-significant, i.e., within ε. Otherwise, the most accurate
shortlisted individual is selected by elitism.

LGAFFS’ Python code is available at https://github.com/bunu/LGAFFS.

2.6 Related Work

Quadrianto et al. [16] and Valvidia et al. [20] proposed a GA for fair classification.
Both GAs were designed for optimising (hyper)-parameters of a classification
algorithm, rather than feature selection; and both GAs use Pareto dominance
rather than the lexicographic approach used here. The Pareto approach is sound
in general, but as noted earlier, it is not suitable for our feature selection task
prioritising accuracy over fairness. La Cava and Moore [12] proposed genetic pro-
gramming (GP) for feature construction, which can implicitly perform feature
selection, but feature construction has a much larger search space than feature
selection. Their GP uses lexicase selection, a broadly lexicographic approach.
However, instead of ordering the objectives based on user-defined priorities like
in LGAFFS; their GP uses randomised lexicographic orderings of different sub-
groups of instances (with different sensitive feature values). The GP evaluates
multiple fairness-violation events, each for a different subgroup of instances; but
each event is evaluated by the same fairness formula: the difference of error rates
(either FP or FN error rates) between all instances and a sub-group of instances.
In addition, unlike those three algorithms, LGAFFS combines group-level and
individual-level fairness measures, increasing fairness robustness.

https://github.com/bunu/LGAFFS

Fair Feature Selection with a Lexicographic GA 159

T
a
b
le

2
.
R

es
u
lt

s
fo

r
R

es
ea

rc
h

Q
u
es

ti
o
n

1
:
C

o
m

p
a
ri

n
g

th
e

p
er

fo
rm

a
n
ce

o
f
ra

n
d
o
m

fo
re

st
tr

a
in

ed
w

it
h

th
e

fe
a
tu

re
s

se
le

ct
ed

b
y

L
G

A
F
F
S

in
a

p
re

-p
ro

ce
ss

in
g

p
h
a
se

a
g
a
in

st
th

e
p
er

fo
rm

a
n
ce

o
f

ra
n
d
o
m

fo
re

st
tr

a
in

ed
w

it
h

a
ll

fe
a
tu

re
s.

S
h
ow

in
g

th
e

va
lu

es
fo

r
a
ll

fi
v
e

m
ea

su
re

s
b
ei

n
g

o
p
ti

m
is

ed
b
y

L
G

A
F
F
S
.

S
en

si
ti
v
e

G
M

S
e
n
×
S
p
e
c

D
is
cr
im

in
a
ti
o
n
sc
o
re

C
o
n
si
st
en

cy
F
P
E
R
B
S

F
N
E
R
B
S

D
a
ta
se
t

fe
a
tu

re
L
G
A
F
F
S

A
ll
fe
a
ts

L
G
A
F
F
S

A
ll
fe
a
ts

L
G
A
F
F
S

A
ll
fe
a
ts

L
G
A
F
F
S

A
ll
fe
a
ts

L
G
A
F
F
S

A
ll
fe
a
ts

A
d
u
lt

A
g
e

0
.6
4
7
5

0
.7
6
0
2

0
.8
4
8
5

0
.7
5
5
7

0
.8
6
5
6

0
.7
8
8
7

0
.9
5
2
2

0
.9
0
8
4

0
.9
1
8
9

0
.6
4
1
6

A
d
u
lt

R
a
ce

0
.7
4
0
9

0
.7
6
3
2

0
.9
3
5
6

0
.8
9
5
5

0
.8
2
0
1

0
.7
8
8
9

0
.9
8
6
2

0
.9
5
8
9

0
.9
9
0
2

0
.9
0
0
4

A
d
u
lt

S
ex

0
.7
4
2
0

0
.7
6
2
3

0
.8
4
9
8

0
.8
1
5
2

0
.8
1
6
3

0
.7
8
7
7

0
.9
4
9
0

0
.9
2
1
7

0
.9
4
1
6

0
.9
1
1
0

G
er
m
a
n
C
re
d
it

A
g
e

0
.5
9
0
1

0
.5
7
7
4

0
.9
3
6
1

0
.8
3
9
4

0
.7
6
4
2

0
.8
0
3
2

0
.8
6
3
3

0
.7
6
2
6

0
.8
9
1
1

0
.8
9
6
8

G
er
m
a
n
C
re
d
it

G
en

d
er

0
.6
0
3
6

0
.5
6
3
7

0
.9
3
9
9

0
.9
0
8
7

0
.7
5
1
0

0
.8
1
1
4

0
.8
9
9
3

0
.8
4
8
9

0
.9
2
3
0

0
.9
3
4
9

S
tu

d
en

t
M
a
th

s
A
g
e

0
.9
2
0
8

0
.9
0
4
6

0
.7
9
6
4

0
.8
1
6
9

0
.8
4
4
4

0
.8
4
8
3

0
.9
0
2
2

0
.8
7
8
1

0
.8
9
5
1

0
.8
9
7
4

S
tu

d
en

t
M
a
th

s
D
a
lc

0
.8
9
5
1

0
.9
0
7
2

0
.7
5
6
3

0
.7
2
1
4

0
.8
3
7
7

0
.8
4
4
7

0
.8
0
5
1

0
.8
3
1
2

0
.8
1
5
7

0
.8
1
6
0

S
tu

d
en

t
M
a
th

s
F
a
m
re
l

0
.9
0
5
2

0
.8
9
1
4

0
.7
0
3
9

0
.7
1
4
8

0
.8
3
6
1

0
.8
4
1
2

0
.8
7
6
0

0
.8
4
8
0

0
.9
2
2
2

0
.9
1
8
9

S
tu

d
en

t
M
a
th

s
R
o
m
a
n
ti
c

0
.8
9
8
4

0
.9
0
0
8

0
.9
0
7
6

0
.9
0
5
5

0
.8
4
6
8

0
.8
4
4
3

0
.9
1
5
1

0
.9
0
9
0

0
.9
1
0
6

0
.8
9
8
9

S
tu

d
en

t
M
a
th

s
S
ex

0
.9
0
2
7

0
.8
9
7
7

0
.8
3
9
7

0
.8
6
5
2

0
.8
3
8
7

0
.8
4
8
8

0
.7
6
4
6

0
.8
2
3
3

0
.9
0
1
2

0
.9
2
5
1

S
tu

d
en

t
M
a
th

s
W

a
lc

0
.9
0
0
0

0
.9
0
1
2

0
.8
3
6
4

0
.8
0
2
3

0
.8
3
7
6

0
.8
5
0
3

0
.8
2
0
6

0
.8
3
6
2

0
.9
1
9
6

0
.8
7
4
1

S
tu

d
en

t
P
o
rt
u
g
u
es
e

A
g
e

0
.8
1
9
6

0
.7
8
6
4

0
.8
6
3
8

0
.8
5
3
6

0
.9
1
0
6

0
.9
1
9
2

0
.7
0
3
8

0
.6
6
8
6

0
.9
5
7
8

0
.9
4
2
8

S
tu

d
en

t
P
o
rt
u
g
u
es
e

D
a
lc

0
.7
8
6
7

0
.7
8
3
4

0
.8
4
7
0

0
.8
7
5
8

0
.9
1
2
8

0
.9
2
5
1

0
.6
2
3
0

0
.5
5
1
1

0
.9
0
8
8

0
.9
3
7
6

S
tu

d
en

t
P
o
rt
u
g
u
es
e

F
a
m
re
l

0
.8
0
3
1

0
.8
0
3
5

0
.8
0
1
9

0
.8
3
0
5

0
.9
0
9
7

0
.9
1
7
7

0
.6
4
5
0

0
.6
2
8
6

0
.9
2
0
5

0
.9
5
8
3

S
tu

d
en

t
P
o
rt
u
g
u
es
e

R
o
m
a
n
ti
c

0
.7
8
4
6

0
.7
8
2
5

0
.9
3
7
0

0
.9
4
5
2

0
.9
2
1
1

0
.9
1
8
9

0
.7
6
0
8

0
.7
7
7
5

0
.9
6
8
6

0
.9
7
9
6

S
tu

d
en

t
P
o
rt
u
g
u
es
e

S
ex

0
.8
1
1
0

0
.7
9
9
4

0
.9
2
0
0

0
.9
3
1
3

0
.9
1
3
4

0
.9
2
3
9

0
.7
6
4
6

0
.7
0
2
9

0
.9
7
0
8

0
.9
6
5
0

S
tu

d
en

t
P
o
rt
u
g
u
es
e

W
a
lc

0
.8
0
3
5

0
.7
8
3
1

0
.9
2
7
1

0
.9
3
8
0

0
.9
1
8
6

0
.9
2
0
5

0
.7
2
1
4

0
.7
2
4
8

0
.9
6
7
9

0
.9
6
7
1

C
o
m
m
u
n
it
ie
s
a
n
d
C
ri
m
e

R
a
ce

0
.8
3
0
3

0
.8
4
1
9

0
.6
6
2
3

0
.5
9
5
7

0
.6
0
5
6

0
.6
1
2
6

0
.9
1
8
2

0
.8
5
5
3

0
.8
3
1
3

0
.7
7
6
2

D
ef
a
u
lt

o
f
C
re
d
it

S
ex

0
.5
8
9
6

0
.5
9
1
0

0
.9
7
5
5

0
.9
7
2
4

0
.8
3
5
4

0
.8
3
9
5

0
.9
7
3
9

0
.9
7
7
6

0
.9
8
5
2

0
.9
8
3
2

P
ro
p
u
b
li
ca

R
ec
id
iv
is
im

R
a
ce

0
.7
3
0
6

0
.7
5
1
5

0
.8
3
2
4

0
.7
7
4
4

0
.6
8
4
9

0
.6
8
3
6

0
.9
0
2
2

0
.8
1
6
9

0
.9
1
0
5

0
.8
8
3
4

P
ro
p
u
b
li
ca

R
ec
id
iv
is
im

S
ex

0
.7
1
1
3

0
.7
5
1
8

0
.9
4
0
8

0
.9
1
8
9

0
.6
7
5
6

0
.6
8
7
6

0
.9
2
5
4

0
.9
1
2
5

0
.9
4
5
1

0
.9
4
0
0

N
u
m
b
er

o
f
w
in
s

1
0

1
1

1
3

8
6

1
5

1
5

6
1
3

8

W
il
co
x
o
n
si
g
n
ed

-r
a
n
k
te
st

0
.9
4
4
2

0
.0
6
2
8
8

0
.0
7
3
4
6

0
.0
0
8
8

0
.1
8
0
2
4

160 J. Brookhouse and A. Freitas

3 Datasets and Experimental Setup

Table 1 describes the 7 binary classification datasets used. When a dataset has
multiple sensitive features – a sensitive feature is one which represents a pro-
tected characteristic and/or a group that is unfairly treated – the algorithm is
ran multiple times using a different sensitive feature each time. 6 datasets are
from the UCI Machine Learning repository [6]. The 7th dataset is from ProP-
ublica, investigating biases in predicting if criminals would re-offend [1].

For all datasets, except Adult Income, the experiments use a well-known 10-
fold cross-validation procedure. Adult Income is already partitioned into a train-
ing and test set, so this partition is used instead of cross validation. LGAFFS’
parameters were not optimised and were set as follows: ε: 0.01 (threshold for signif-
icant differences in Algorithms 2, 3 and 4), fair rank ε: 1 (threshold for significant
fairness-rank differences in Algorithm 4), fair win ε: 1 (threshold for significant
difference in the number of wins among 24 permutations of fairness measures in
Algorithm 2); population size: 100, MAX P: 0.5 and MIN P: 0.1 (for population
initialisation in Algorithm 1), internal cross validation folds: 3, max iterations: 50,
tournament size: 2, crossover probability: 0.9, mutation probability: 0.05.

4 Experimental Results

We addresses two research questions. First, we compare the use of LGAFFS
to select features in a pre-processing phase against the baseline of no feature
selection in that phase. Second, we compare LGAFFS to the popular Sequen-
tial Forward Selection (SFS) method. Both LGAFFS and SFS use the wrapper
approach to feature selection; i.e., they repeatedly use a base classification algo-
rithm to evaluate feature subsets. The base algorithm was Random Forest from
scikit-learn [15], with default parameter settings; which was chosen because it
is a very popular and powerful classification algorithm. Note that the Random
Forest algorithm performs embedded feature selection (during its run), but that
feature selection considers only accuracy; whilst using LGAFFS to perform fea-
ture selection in a pre-processing phase we optimise both accuracy and fairness.

We also calculated the Pearson’s linear correlation coefficient for each of
the 6 pairs of fairness measures for LGAFFS, the coefficients were: 0.71 for
(DS,FNERBS), −0.59 for (C,FPERBS), 0.42 for (C,FNERBS), 0.24 for (DS,C),
0.08 for (DS,FPERBS) and 0.02 for (FPERBS,FNERBS). So, 4 pairs of fairness
measures have an absolute value of correlation smaller than 0.5.

4.1 RQ1: Does LGAFFS Select a Better Subset than the Full Set?

The first research question asks whether using LGAFFS to select features in a
pre-processing phase leads to better results than the baseline approach of not
performing any feature selection. That is, does the random forest algorithm
perform better (regarding accuracy and fairness) when it is trained with the
features selected by LGAFFS or when it is trained with the full feature set?

Fair Feature Selection with a Lexicographic GA 161

T
a
b
le

3
.
R

es
u
lt

s
fo

r
R

es
ea

rc
h

Q
u
es

ti
o
n

2
:
C

o
m

p
a
ri

n
g

th
e

p
er

fo
rm

a
n
ce

o
f
ra

n
d
o
m

fo
re

st
tr

a
in

ed
w

it
h

th
e

fe
a
tu

re
s

se
le

ct
ed

b
y

L
G

A
F
F
S

v
s.

S
eq

u
en

ti
a
l

F
o
rw

a
rd

S
el

ec
ti

o
n

(b
o
th

se
le

ct
in

g
fe

a
tu

re
s

in
a

p
re

-p
ro

ce
ss

in
g

p
h
a
se

).
S
h
ow

in
g

th
e

va
lu

es
fo

r
a
ll

fi
v
e

m
ea

su
re

s
b
ei

n
g

o
p
ti

m
is

ed
b
y

L
G

A
F
F
S
.

S
en

si
ti
v
e

G
M

S
e
n
×
S
p
e
c

D
is
cr
im

in
a
ti
o
n
sc
o
re

C
o
n
si
st
en

cy
F
P
E
R
B
S

F
N
E
R
B
S

D
a
ta
se
t

fe
a
tu

re
L
G
A
F
F
S

S
F
S

L
G
A
F
F
S

S
F
S

L
G
A
F
F
S

S
F
S

L
G
A
F
F
S

S
F
S

L
G
A
F
F
S

S
F
S

A
d
u
lt

A
g
e

0
.6
4
7
5

0
.7
4
8
2

0
.8
4
8
5

0
.7
9
6
8

0
.8
6
5
6

0
.8
1
4
2

0
.9
5
2
2

0
.9
4
3
7

0
.9
1
8
9

0
.8
3
0
6

A
d
u
lt

R
a
ce

0
.7
4
0
9

0
.7
4
6
5

0
.9
3
5
6

0
.9
3
5
8

0
.8
2
0
1

0
.8
1
4
9

0
.9
8
6
2

0
.9
8
8
7

0
.9
9
0
2

0
.9
4
4
4

A
d
u
lt

S
ex

0
.7
4
2
0

0
.7
4
8
0

0
.8
4
9
8

0
.8
3
3
1

0
.8
1
6
3

0
.8
1
4
5

0
.9
4
9
0

0
.9
3
9
6

0
.9
4
1
6

0
.9
0
5
7

G
er
m
a
n
C
re
d
it

A
g
e

0
.5
9
0
1

0
.4
6
5
3

0
.9
3
6
1

0
.8
8
7
2

0
.7
6
4
2

0
.8
1
1
0

0
.8
6
3
3

0
.8
0
9
5

0
.8
9
1
1

0
.8
8
9
0

G
er
m
a
n
C
re
d
it

G
en

d
er

0
.6
0
3
6

0
.4
8
5
1

0
.9
3
9
9

0
.9
2
3
7

0
.7
5
1
0

0
.8
2
1
2

0
.8
9
9
3

0
.8
4
5
7

0
.9
2
3
0

0
.9
2
0
2

S
tu

d
en

t
M
a
th

s
A
g
e

0
.9
2
0
8

0
.9
0
4
1

0
.7
9
6
4

0
.7
9
5
4

0
.8
4
4
4

0
.8
4
0
7

0
.9
0
2
2

0
.8
4
6
8

0
.8
9
5
1

0
.8
6
1
9

S
tu

d
en

t
M
a
th

s
D
a
lc

0
.8
9
5
1

0
.8
9
2
1

0
.7
5
6
3

0
.6
8
9
3

0
.8
3
7
7

0
.8
3
9
2

0
.8
0
5
1

0
.7
9
4
0

0
.8
1
5
7

0
.8
1
7
7

S
tu

d
en

t
M
a
th

s
F
a
m
re
l

0
.9
0
5
2

0
.9
0
6
9

0
.7
0
3
9

0
.6
7
0
7

0
.8
3
6
1

0
.8
3
6
7

0
.8
7
6
0

0
.7
9
9
3

0
.9
2
2
2

0
.9
0
9
6

S
tu

d
en

t
M
a
th

s
R
o
m
a
n
ti
c

0
.8
9
8
4

0
.9
0
3
3

0
.9
0
7
6

0
.9
0
0
8

0
.8
4
6
8

0
.8
3
1
1

0
.9
1
5
1

0
.8
9
0
6

0
.9
1
0
6

0
.9
1
7
0

S
tu

d
en

t
M
a
th

s
S
ex

0
.9
0
2
7

0
.9
2
6
5

0
.8
3
9
7

0
.8
4
6
8

0
.8
3
8
7

0
.8
3
6
1

0
.7
6
4
6

0
.8
6
0
2

0
.9
0
1
2

0
.9
5
2
1

S
tu

d
en

t
M
a
th

s
W

a
lc

0
.9
0
0
0

0
.9
0
8
4

0
.8
3
6
4

0
.8
1
5
1

0
.8
3
7
6

0
.8
3
4
7

0
.8
2
0
6

0
.8
7
9
6

0
.9
1
9
6

0
.9
0
2
6

S
tu

d
en

t
P
o
rt
u
g
u
es
e

A
g
e

0
.8
1
9
6

0
.7
8
1
2

0
.8
6
3
8

0
.8
9
0
9

0
.9
1
0
6

0
.9
0
5
0

0
.7
0
3
8

0
.7
4
4
5

0
.9
5
7
8

0
.9
5
7
6

S
tu

d
en

t
P
o
rt
u
g
u
es
e

D
a
lc

0
.7
8
6
7

0
.7
9
1
7

0
.8
4
7
0

0
.8
5
8
0

0
.9
1
2
8

0
.9
0
9
0

0
.6
2
3
0

0
.6
1
3
8

0
.9
0
8
8

0
.9
4
6
0

S
tu

d
en

t
P
o
rt
u
g
u
es
e

F
a
m
re
l

0
.8
0
3
1

0
.7
9
4
6

0
.8
0
1
9

0
.7
3
9
2

0
.9
0
9
7

0
.9
0
5
0

0
.6
4
5
0

0
.5
9
1
1

0
.9
2
0
5

0
.8
5
3
8

S
tu

d
en

t
P
o
rt
u
g
u
es
e

R
o
m
a
n
ti
c

0
.7
8
4
6

0
.7
8
3
3

0
.9
3
7
0

0
.9
3
7
8

0
.9
2
1
1

0
.9
0
6
2

0
.7
6
0
8

0
.7
2
7
3

0
.9
6
8
6

0
.9
7
1
6

S
tu

d
en

t
P
o
rt
u
g
u
es
e

S
ex

0
.8
1
1
0

0
.8
0
1
7

0
.9
2
0
0

0
.9
1
4
8

0
.9
1
3
4

0
.9
0
3
2

0
.7
6
4
6

0
.7
5
0
4

0
.9
7
0
8

0
.9
5
5
4

S
tu

d
en

t
P
o
rt
u
g
u
es
e

W
a
lc

0
.8
0
3
5

0
.7
8
4
5

0
.9
2
7
1

0
.9
1
7
9

0
.9
1
8
6

0
.9
0
8
7

0
.7
2
1
4

0
.7
3
9
3

0
.9
6
7
9

0
.9
5
4
1

C
o
m
m
u
n
it
ie
s
a
n
d
C
ri
m
e

R
a
ce

0
.8
3
0
3

0
.7
9
2
3

0
.6
6
2
3

0
.5
7
4
0

0
.6
0
5
6

0
.6
0
4
9

0
.9
1
8
2

0
.7
9
3
5

0
.8
3
1
3

0
.6
9
9
2

D
ef
a
u
lt

o
f
C
re
d
it

S
ex

0
.5
8
9
6

0
.5
6
3
9

0
.9
7
5
5

0
.9
8
1
6

0
.8
3
5
4

0
.8
5
8
0

0
.9
7
3
9

0
.9
8
0
7

0
.9
8
5
2

0
.9
8
8
9

P
ro
p
u
b
li
ca

R
ec
id
iv
is
im

R
a
ce

0
.7
3
0
6

0
.7
2
0
0

0
.8
3
2
4

0
.7
7
6
3

0
.6
8
4
9

0
.6
6
1
7

0
.9
0
2
2

0
.8
0
2
6

0
.9
1
0
5

0
.8
7
6
9

P
ro
p
u
b
li
ca

R
ec
id
iv
is
im

S
ex

0
.7
1
1
3

0
.7
1
9
9

0
.9
4
0
8

0
.8
6
6
0

0
.6
7
5
6

0
.6
6
6
1

0
.9
2
5
4

0
.8
4
9
2

0
.9
4
5
1

0
.9
0
5
8

N
u
m
b
er

o
f
w
in
s

1
2

9
1
5

6
1
6

5
1
5

6
1
5

6

W
il
co
x
o
n
si
g
n
ed

-r
a
n
k
te
st

0
.1
7
0
6
8

0
.0
0
6
3
4

0
.0
5
8
7
6

0
.0
4
2
3
6

0
.0
3
0

162 J. Brookhouse and A. Freitas

Table 2 show the experimental results for this research question. In this table,
the first two columns show the dataset and the sensitive feature. The following
ten columns show the accuracy and fairness results of training the Random
Forest algorithm with features selected by LGAFFS or with the full feature set.

In each row of this table (i.e. for each pair of a dataset and a sensitive feature),
for each pair of columns comparing the accuracy or fairness of LGAFFS against
the full feature set, the best result is shown in boldface. The last but one row
of the table shows the number of wins for each approach for each of the five
measures of performance, whilst the last row shows the p-value obtained by the
Wilcoxon signed-rank statistical significance test. Statistically significant results,
at the conventional significance level of α = 0.05, are marked with a red triangle.
In Table 2, there was no substantial difference in the number of wins regarding
accuracy. LGAFFS achieved substantially more wins in three of the four fairness
measures, with statistical significance in one measure: FPERBS.

4.2 RQ2: Does LGAFFS Perform Better than SFS?

The second question involves the comparison of LGAFFS to a popular local
search-based feature selection method, viz. Sequential Forward Selection (SFS).
The SFS method is not aware of the 4 fairness measures; it is just optimising
the accuracy measure, i.e., the geometric mean of sensitivity and specificity.

Table 3 presents the results for the Random Forest algorithm when using
LGAFFS or SFS to select features. LGAFFS achieved more wins in all 5 mea-
sures, with statistical significance shown in 3 of the 4 fairness measures.

5 Conclusions

We have proposed a new lexicographic-optimisation Genetic Algorithm for fair
feature selection, which selects a feature subset optimised for a classification
algorithm based on both predictive accuracy and 4 fairness measures captur-
ing different aspects of fairness, including both group-level and individual-level
fairness. No single fairness measure reflects all the nuances of fairness; LGAFFS
optimises multiple fairness measures to obtain more robust fairness results.

LGAFFS was compared with 2 other feature selection approaches (no feature
selection and Sequential Forward Selection) using Random Forest as the classifi-
cation algorithm. There was no significant difference in the predictive accuracies
of models learned when using LGAFFS versus the 2 other approaches. Regard-
ing fairness, when comparing LGAFFS against the 2 other approaches across
the 4 fairness measures, LGAFFS achieved significantly better results in 4 of the
8 comparisons, and there was no significant differences between LGAFFS and
the 2 other approaches in the other 4 comparisons.

Future work could include extending SFS to make it a fairness-aware method.

Acknowledgements. This work was funded by a research grant from The Leverhulme
Trust, UK, reference number RPG-2020-145.

Fair Feature Selection with a Lexicographic GA 163

References

1. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s soft-
ware used across the country to predict future criminals, and it’s biased
against blacks (2016). https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing

2. Calders, T., Verwer, S.: Three Naive Bayes approaches for discrimination-free clas-
sification. Data Min. Knowl. Discov. 21(2), 277–292 (2010)

3. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidi-
vism prediction instruments. Big Data 5(2), 153–163 (2017)

4. Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical
review of fair machine learning. arXiv preprint arXiv:1808.00023 (2018)

5. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New
York (2002)

6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

7. Freitas, A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04923-5

8. Freitas, A.A.: A critical review of multi-objective optimization in data mining: a
position paper. ACM SIGKDD Explorat. Newslett. 6(2), 77–86 (2004)

9. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Advances in Neural Information Processing Systems, pp. 3315–3323 (2016)

10. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair deter-
mination of risk scores. arXiv preprint arXiv:1609.05807 (2016)

11. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In:
Advances in Neural Information Processing Systems, pp. 4066–4076 (2017)

12. La Cava, W., Moore, J.: Genetic programming approaches to learning fair clas-
sifiers. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2020), pp. 967–975 (2020)

13. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6),
94:1–94:45 (2017)

14. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. arXiv preprint arXiv:1908.09635 (2019)

15. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

16. Quadrianto, N., Sharmanska, V.: Recycling privileged learning and distributed
matching for fairness. In: Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017), pp. 677–688 (2017)

17. Skeem, J.L., Lowenkamp, C.T.: Risk, race, & recidivism: predictive bias and dis-
parate impact. Criminology 54, 680 (2016)

18. Telikani, A., Tahmassebi, A., Banzhaf, W., Gandomi, A.: Evolutionary machine
learning: a survey. ACM Comput. Surv. 54(8), 161:1–161:35 (2021)

19. Tian, Y., et al.: Evolutionary large-scale multi-objective optimization: a survey.
ACM Comput. Surv. 54(8), 174:1–174:34 (2021)

20. Valdivia, A., Sanchez-Monedero, J., Casillas, J.: How fair can we go in machine
learning? Assessing the boundaries of accuracy and fairness. Int. J. Intell. Syst.
36(4), 1619–1643 (2021)

21. Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM Interna-
tional Workshop on Software Fairness (FairWare), pp. 1–7. IEEE (2018)

22. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: International Conference on Machine Learning, pp. 325–333 (2013)

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://arxiv.org/abs/1808.00023
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-662-04923-5
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1908.09635

Greedy Decremental Quick Hypervolume
Subset Selection Algorithms

Andrzej Jaszkiewicz and Piotr Zielniewicz(B)

Faculty of Computing and Telecommunications, Poznan University of Technology,
Piotrowo 3, 60-965 Poznan, Poland

jaszkiewicz@cs.put.poznan.pl, piotr.zielniewicz@put.poznan.pl

https://cat.put.poznan.pl/

Abstract. The contribution of this paper is fourfold. First, we present
an updated implementation of the Improved Quick Hypervolume algo-
rithm which is several times faster than the original implementation and
according to the presented computational experiment it is at least com-
petitive to other state-of-the-art codes for hypervolume computation.
Second, we present a Greedy Decremental Lazy Quick Hypervolume Sub-
set Selection algorithm. Third, we propose a modified Quick Hypervol-
ume Extreme Contributor/Contribution algorithm using bounds from
previous iterations of a greedy hypervolume subset selection algorithm.
According to our experiments these two methods perform the best for
greedy decremental hypervolume subset selection. Finally, we systemat-
ically compare performance of the fastest algorithms for greedy incre-
mental and decremental hypervolume subset selection using two criteria:
CPU time and the quality of the selected subset.

Keywords: Multiobjective optimization · Hypervolume · Greedy
algorithms

1 Introduction

Hypervolume is one of the most often used set-quality indicators in multiob-
jective optimization [24,36]. This indicator measures the hypervolume of the
region dominated by a set of points in the objective space. This set of points
may for example correspond to solutions generated by a multiobjective evolu-
tionary algorithm. Hypervolume indicator has the advantage of being compatible
with the Pareto dominance relation [38]. In the context of evolutionary multi-
objective optimization (EMO) hypervolume may be used for evaluation of EMO
Algorithms [9], for bounding Pareto archives [20], or for fitness assignment in,
so called, indicator-based Algorithms [2,5,19,35,37], which constitute one of the
main classes of EMO Algorithms [23].

The potential drawback of the hypervolume indicator is high computational
complexity of exact algorithms. Efficient algorithms exist only for the number

This research was funded by the Polish Ministry of Education and Science.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 164–178, 2022.
https://doi.org/10.1007/978-3-031-14721-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_12&domain=pdf
http://orcid.org/0000-0002-8337-888X
http://orcid.org/0000-0001-6996-3671
https://doi.org/10.1007/978-3-031-14721-0_12

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 165

of objectives, m = 2, m = 3 [4], and m = 4 [14]. For the general case, the best
known algorithm has O(nm/3 polylog n) time complexity [10].

Because of the wide use of the hypervolume indicator in the context of
EMO, beside the basic problem of hypervolume calculation, a number of other
hypervolume-related problems has been defined in the literature [16,24,30]. One
of them is the hypervolume subset selection problem (HSSP), the goal of which is
to select a predefined number of points from a larger set to maximize the hypervol-
ume. HSSP may be used to guide EMO algorithms [1,2], to bound a Pareto archive
[20], or to select a reduced set of the most representative solutions of a multiobjec-
tive problem for further analysis by the decision maker [8]. HSSP is NP-hard for
three and more objectives [7], however, since HSSP consists of maximizing a sub-
modular function subject to a cardinality constraint [13], HSSP may be approxi-
mated using a greedy approach with approximation guarantee [26]. Thus, several
authors proposed greedy algorithms for HSSP [6,14,15]. Some of these approaches
are limited, however, to two and three [15], or four objectives [14].

HSSP may be solved in a greedy manner either starting with an empty subset
and adding the point with the maximum contribution in each step (incremental
approach), or starting with the whole set and removing the point with the min-
imum contribution in each step (decremental approach), until the desired size
of the subset is obtained [3,6]. The relative efficiency of incremental and decre-
mental aproaches may depend on the required size of the subsset. Intuitively, if
a small subset is to be selected from a large set, the incremental approach may
perform better, while the decremental approach may be better if only relatively
few points need to be removed from the original set.

In this paper:

– We report an updated implementation of the improved quick hypervolume
algorithm (QHV-II) which is several times faster than the original implemen-
tation reported in [17] and according to the presented computational experi-
ment it is at least competitive to other state-of-the-art codes for hypervolume
computation.

– We present the Greedy Decremental Lazy Quick HSS algorithm motivated
by previously proposed Greedy Incremental Lazy HSS Algorithm [11].

– We propose a modified Quick Hypervolume Extreme Contributor/
Contribution (QEHC) Algorithm [18] and use it within greedy hypervolume
subset selection algorithms. The modified version of QEHC (QEHC-B) uses
bounds from previous iterations to improve its efficiency.

– We present a computational experiment indicating that the two proposed
methods perform the best for greedy decremental HSS.

– We systematically compare performance of the fastest algorithms for greedy
incremental and decremental HSS using two criteria: CPU time and the qual-
ity of the selected subset. According to our knowledge it is one of the first
such systematic study reported in the literature.

The paper is organized in the following way. In the next section we provide
basic definition. In Sect. 3, we shortly describe the QHV-II Algorithm used as
the basic algorithm for hypervolume calculation. Then, we describe the Greedy

166 A. Jaszkiewicz and P. Zielniewicz

Decremental Lazy Quick HSS algorithm introduced in this paper. In Sect. 5, we
describe the modified Quick Hypervolume Extreme Contributor/Contribution
algorithm. Results of computational experiment are presented in Sect. 6. Finally
we present conclusions and directions for further research.

2 Basic Definitions

Definition 1. (Weak Pareto dominance) Consider two points r, p ∈ R
m, where

R
m is the space of m objectives to be maximized. We say that p weakly dominates

r, also written as r � p, if and only if ∀j pj ≥ rj.

Definition 2. (Hypercuboid) Hypercuboid delimited by points r, p ∈ R
m, r �

p is:
[r, p] = {q ∈ R

m | q � p ∧ r � q} (1)

Definition 3. (Hypervolume indicator) Given a set of points S in the objective
space R

m and a reference point r∗ such that ∀p∈S r∗ � p, the hypervolume indi-
cator of S is the measure of the region weakly dominated by S and dominating
r∗, i.e.:

H(S, r∗) = Λ({q ∈ R
m | r∗ � q ∧ ∃p ∈ S : q � p}) (2)

where Λ(.) denotes the Lebesgue measure. Alternatively, it may be interpreted as
the measure of the union of hypercuboids:

H(S, r∗) = Λ
(⋃

p∈S

[r∗, p]
)

(3)

Definition 4. (Hypercuboid-bounded hypervolume indicator) Given a set of
points S in the objective space R

m and a hypercuboid [r∗, r∗] such that ∀p∈S r∗ �
p, the hypercuboid-bounded hypervolume indicator of S is the measure of the
region weakly dominated by S within [r∗, r∗], i.e.:

H(S, [r∗, r∗]) = Λ({q ∈ [r∗, r∗] | ∃p ∈ S : q � p}) (4)

where Λ(.) denotes the Lebesgue measure.
Note that

H(S, [r∗, r∗]) = H(nd-worse(S, r∗), r∗) (5)

where nd-worse(S, r∗) = {q ∈ R
m | ∃q′ ∈ S : ∀j qj = min(q′

j , r
∗
j)} may be

interpreted as projection of S onto [r∗, r∗].

Definition 5. (Hypervolume contribution) Hypervolume contribution of a point
s to H(S ∪ {s}, r∗) (allowing both s ∈ S or s /∈ S) is the difference between
hypervolume of S ∪ {s} and hypervolume of S \ {s}, i.e.:

HC(s, S, r∗) = H(S ∪ {s}, r∗) − H(S \ {s}, r∗) (6)

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 167

Hypervolume contribution of a point s defined by Eq. (6) could alternatively
be calculated as the difference of hypervolume of {s} and hypercuboid-bounded
hypervolume of S \ {s} within [r∗, s], i.e.:

HC(s, S, r∗) = Λ([r∗, s]) − H(S \ {s}, [r∗, s]) (7)

where Λ([r∗, s]) is the hypervolume of hypercuboid [r∗, s]. In practice, the use of
Eq. (7) allows for a faster calculation of hypervolume contribution than Eq. (6),
since hypervolume is calculated just once (the time of calculation of Λ([r∗, s]) is
negligible) and many points in S may become dominated after projection onto
[r∗, s].

3 Improved Quick Hypervolume Algorithm Scheme

In this paper we propose to use the Improved Quick Hypervolume (QHV-II)
Algorithm [17] as the basic algorithm for hypervolume calculation. It is one of
the fastest exact algorithms improving previously proposed Quick Hypervolume
Algorithm [27,28]. QHV-II calculates the hypervolume in a divide and conquer
manner. In each iterations, it selects the point with the maximum individual
hypervolume as the pivot point, adds the hypervolume of the region dominated
by the pivot point, and then splits the remaining problem (corresponding to the
remaining region and the remaining points) into m sub-problems corresponding
to non-overlapping hypercuboids. If the number of points is sufficiently small,
it uses simple geometric properties to calculate the hypervolume. For further
details the reader is referred to [17].

4 Greedy Decremental Lazy Quick HSS Algorithm

HSSP may be approximated in a greedy way using either incremental or decre-
mental approach [6]. The incremental approach starts with an empty subset and
then the point with the highest contribution is added to the selected subset
in each iteration (see Algorithm 1). The decremental approach starts with the
original set of points and then the point with the lowest contribution is removed
from the selected subset in each iteration (see Algorithm 2). Both, incremental
and decremental approaches provide some approximation guaranties [22,26,29].

In [11] Chen et al. proposed the Greedy Incremental Lazy HSS algorithm
which exploits the fact that hypervolume is non-decreasing submodular function,
i.e. it is monotone in adding points [32]:

H(S ∪ {p}, r∗) ≥ H(S, r∗),∀S,∀p /∈ S (8)

The same obviously applies to hypercuboid-bounded hypervolume. As a direct
consequence of (7), hypervolume contribution is non-increasing submodular
function:

HC(s, S ∪ {p}, r∗) ≤ HC(s, S, r∗),∀S,∀p /∈ S (9)

168 A. Jaszkiewicz and P. Zielniewicz

Algorithm 1. Greedy Incremental HSS algorithm

Input: Sall - the original set of points, k ≤ |Sall| - the number of points to be selected
Output: S the subset of points selected from Sall

S = ∅
while |S| < k do

for all s ∈ Sall do
calculate HC(s, S, r∗)

end for
select s∗ ∈ Sall with the highest HC(s∗, S, r∗)
S = S ∪ {s∗}, Sall = Sall \ {s∗}

end while

Algorithm 2. Greedy Decremental HSS algorithm

Input: Sall - the original set of points, k ≤ |Sall| - the number of points to be selected
Output: S the subset of points selected from Sall

S = Sall

while |S| > k do
for all s ∈ S do

calculate HC(s, S, r∗)
end for
select s∗ ∈ S with the lowest HC(s∗, S, r∗)
S = S \ {s∗}

end while

Thus, the hypervolume contribution of s calculated in a previous iteration could
be treated as the upper bound for the contribution in the current iteration of the
greedy incremental algorithm, denoted by HCUB(s, S, r∗). If this upper bound
for point s is lower than the hypervolume contribution for another points p,
then there is no need to recalculate HC(s, S, r∗) in the current iteration [25].
In many cases, the recalculation of the hypervolume contribution of a point
results in the same value or only a slightly smaller value than the current upper
bound since the inclusion of a single point changes the hypervolume contributions
of only its neighbors in the objective space. Thus, the point with the largest
hypervolume contribution is often found after examining very few points. The
full description of this algorithm may be found in [11]. The algorithm returns
exactly the same subset as the original incremental approach with the same
tie-breaking mechanism. According to the experiments reported in [11] it is the
fastest greedy incremental HSS algorithm for m ≥ 5 and relatively small subset
sizes.

Chen et al. [11] considered only greedy incremental lazy approach, however,
the same reasoning may be applied to the decremental approach. In this case,
Eq. (9) means that the hypervolume contribution of a point s ∈ S to the selected
subset S never decreases when a point is removed from S. Thus, the hypervol-
ume contribution of s to S calculated in a previous iteration could be treated
as the lower bound for the contribution in the current iteration of the greedy

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 169

decremental algorithm. If the lower bound for point s, denoted by
HCLB(s, S, r∗), is greater than the hypervolume contribution for another points
p, then there is no need to recalculate HC(s, S, r∗) in the current iteration. The
Greedy Decremental Lazy HSS algorithm introduced in this paper is summarized
in Algorithm 3.

Algorithm 3. Greedy Decremental Lazy HSS algorithm

Input: Sall - the original set of points, k ≤ |Sall| - the number of points to be selected
Output: S the subset of points selected from Sall

S = Sall, HCLB = ∅
while |S| > k do

if the first iteration then
for all s ∈ S do

calculate HC(s, S, r∗) and add it to HCLB

end for
select s∗ ∈ S with the lowest HC(s∗, S, r∗)
S = S \ {s∗}

else
while HCLB �= ∅ do

s∗ = point with the lowest upper bound in HCLB

calculate of HC(s∗, S, r∗)
update HCLB with HC(s∗, S, r∗)
if s∗ has the largest upper bound in HCUB then

S = S \ {s∗}
HCLB = HCLB \ HCUB(s∗, S, r∗)
break

end if
end while

end if
end while

5 The Modified Quick Hypervolume Extreme
Contributor/Contribution Algorithm

Greedy HSS algorithms select a point with either the lowest or the highest hyper-
volume contribution in each iteration. In Algorithms 1 and 2 we assumed that
this selection is made by calculating each contribution. There are, however, ded-
icated methods for selection of the point with the extreme contribution. In [18]
we proposed Quick Extreme Hypervolume Contributor/Contribution (QEHC)
algorithm that could be used to this end. The idea of this algorithm is to run
concurrently processes calculating contributions of each point using an algorithm
that provides lower and upper bounds for the contribution in each step. These
bounds are then used to stop processes that cannot yield the extreme contribu-
tor. Within a greedy HSS algorithm we can further improve QEHC by exploiting
contribution bounds from previous iterations.

170 A. Jaszkiewicz and P. Zielniewicz

Let HCi−1(s, S, r∗) and HCi(s, S, r∗) be the hypervolume contributions of
point s in the consecutive iterations i − 1 and i of the incremental greedy HSS
algorithm and let HCi−1

UB (s, S, r∗) be the upper bound for contribution obtained
in the previous iteration i−1. Since a point was added to S after iteration i−1,
exploiting (9) we have:

HCi−1
UB (s, S, r∗) ≥ HCi−1(s, S, r∗) ≥ HCi(s, S, r∗) (10)

In other words the upper bound obtained in the previous iteration remains valid
in the subsequent iteration.

Analogously, the lower bound obtained in the previous iteration remains valid
in the subsequent iteration for the greedy decremental algorithm:

HCi−1
LB (s, S, r∗) ≤ HCi−1(s, S, r∗) ≤ HCi(s, S, r∗) (11)

Thus, the effective lower bound in the greedy decremental algorithm in i-th
iteration is:

HCie
LB(s, S, r∗) = max{HCi−1e

LB (s, S, r∗),HCi
LB(s, S, r∗)} (12)

and the effective upper bound in the greedy incremental algorithm in i-th iter-
ation is:

HCie
UB(s, S, r∗) = min{HCi−1e

UB (s, S, r∗),HCi
UB(s, S, r∗)} (13)

The proposed modified QEHC (QEHC-B) algorithm takes advantage of the
effective bounds to obtain a better speed-up. Within the greedy decremental
approach the process P (s) of computation of contribution of points s could be
stopped if:

HCie
LB(s, S, r∗) > min

p∈S
HCi

UB(p, S, r∗) (14)

Within the greedy incremental approach the process P (s) could be stopped if:

HCie
UB(s, S, r∗) < max

p∈Sall

HCi
LB(p, S, r∗) (15)

Note that this use of contribution bounds is in fact very similar to that of
greedy lazy algorithms.

For further details about QEHC the reader is referred to [18].

6 Computational Experiment

In the computational experiment we use the data sets proposed in [21] (concave,
convex, linear) with 5 to 10 objectives and 1000 points1. We did not include
data sets m ≤ 4 since dedicated methods exist for such case [14,15]. Of course,

1 All data sets used in this experiment, source code and the detailed results are avail-
able at https://chmura.put.poznan.pl/s/DxsmP72OS65Glce.

https://chmura.put.poznan.pl/s/DxsmP72OS65Glce

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 171

formally speaking, linear data sets are also convex, but we use the original ter-
minology of the authors of these sets.

To calculate the hypervolume contribution, which according to Eq. (7) boils
down to calculating hypervolume, we use either WFG [34] (using the code
obtained from the authors of this method) or QHV-II algorithm [17]. Both codes
were compiled under Visual Studio C++ with the same settings.

For the purpose of this experiment we have improved the C++ implementa-
tion of QHV-II. The new implementation is several times faster than the original
one reported in [17] (see Fig. 1). All improvements are technical, like the use of
more efficient data structures, improved memory allocation, removing redun-
dant code that was used only for the purpose of the computational experiment
reported in [17], and they do not modify the algorithm of QHV-II. To show
efficiency of this new implementation we compare it to WFG implementation,
which is considered to be among state-of-the-art codes for this task. In Fig. 1 we
present running times of full hypervolume computation averaged over 10 data
sets of a given type and number of objectives for randomly selected sets of 100,
200, . . . , 1000 points, and 6, 8, and 10 objectives. These results indicate that
QHV-II was on average faster in all cases except of linear data sets with 10 objec-
tives for which the results were very similar, but with advantage of WFG. We
note, however, that the relative performance of WFG improves with the growing
number of objectives. To confirm these observations we used the Wilcoxon signed
rank tests with the significance level α = 0.05. QHV-II was significantly faster
in most cases. The main exception are linear data sets with 10 objectives where
WFG was significantly faster up to 800 points and then the two methods were
not significantly different. Few other exceptions where observed for the smallest
subset size (100 and 200). In addition, the new implementation of QHV-II was
significantly faster than the old implementation in all cases except one case with
the smallest subset size.

As it was mentioned above the greedy decremental HSS algorithm selects
a point with the lowest hypervolume contribution in each iteration and there
exist dedicated methods for selection of such points like the described above
QEHC. Another algorithm that could be used to this end is IWFG [12,33].
Thus, we test also versions of Greedy Decremental HSS algorithm with the use
of IWFG, QEHC and QEHC-B. QEHC and QEHC-B may also be used for
selection of the point with the maximum contribution, so they may also be used
in the incremental approach.

We compare the following greedy decremental methods:

– Greedy Decremental HSS algorithm with the use of QHV-II – GD QHV-II
– Greedy Decremental HSS algorithm with the use of WFG – GD WFG
– Update-based Greedy Decremental HSS algorithm with the use of QHV-II –

UGD QHV-II. This algorithm has been proposed in [14] and it takes advan-
tage of the fact that the hypervolume contribution could be obtained by
efficiently updating the contribution from the previous iteration after a single
new point has been removed from the selected subset.

– Greedy Decremental HSS algorithm with the use of QEHC – GD QEHC

172 A. Jaszkiewicz and P. Zielniewicz

Fig. 1. Full hypervolume computation with the new QHV-II implementation, old QHV-
II implementation, and WFG

– Greedy Decremental HSS algorithm with the use of QEHC-B – GD QEHC-B
– Greedy Decremental HSS algorithm with the use of IWFG – GD IWFG
– Greedy Decremental Lazy HSS algorithm with the use of QHV-II –

GDL QHV-II
– Greedy Decremental Lazy HSS algorithm with the use of WFG – GDL WFG

We compare also the following greedy incremental methods:

– Greedy Incremental HSS algorithm with the use of QEHC – GI QEHC
– Greedy Incremental HSS algorithm with the use of QEHC-B – GI QEHC-B
– Greedy Incremental Lazy HSS algorithm with the use of QHV-II –

GIL QHV-II
– Greedy Incremental Lazy HSS algorithm with the use of WFG – GIL WFG

In this case, we do not include other non-lazy algorithms, since they were
already evaluated and outperformed by the lazy Algorithm in [11].

In Fig. 2 we present exemplary running times of greedy HSS methods needed
to select a subset with a given number of points out of 1000 points for m = 5, 7, 9.
Since such experiments are time consuming we were not able to complete these
calculations for m = 10 before the submission of this paper. These results will be

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 173

Fig. 2. CPU times of Greedy Decremental and Incremental methods (the legend placed
in the top right corner is common to all charts)

presented at the conference and made available at the web page. Note, that some
methods were stopped when their running time became much larger than the
maximum running time of the best methods. The results, in general, confirm the
intuition that the incremental approach is faster when a lower number of points
needs to be selected, while the decremental approach is faster when relatively
few points needs to be removed. Depending on the number of objectives and
the number of points the fastest method is either GIL QHV-II, GDL QHV-II,
or GD QEHC-B. The general pattern is that GIL QHV-II is the fastest method
up to a given number of points to be selected (e.g. up to 690 points for linear
data sets with m = 9) and then, GDL QHV-II becomes the fastest. For data sets
with m = 9, GD QEHC-B becomes the fastest method for the highest number
of points to be selected (e.g. from 960 points for linear data sets with m = 9).
We confirmed the statistical significance of these observations comparing the
best and the second best method with the Wilcoxon signed rank tests with the
significance level α = 0.05.

174 A. Jaszkiewicz and P. Zielniewicz

Fig. 3. Differences of the quality of subsets selected with the incremental and the
decremental approaches

GD QEHC-B outperforms GDL QHV-II only for data sets with the highest
number of objectives and when a relatively small number of points need to be
removed. This is because GDL QHV-II needs to calculate all contributions in
the first iteration, however then further iterations are very short due to the
use of the bounds in the lazy approach. In GD QEHC-B the first iteration is
shorter, however, because many processes calculating contributions are stopped
before the final contribution has been obtained, the bounds from the previous
iterations are, in general, worse than the bounds used in the lazy approach.
Another observation is that methods based on QHV-II perform better than
methods based on WFG. Furthermore, the Greedy Decremental HSS algorithm
with the use of IWFG – GD IWFG – performs relatively poorly. Already in
[18] we observed that IWFG performs poorly for linear and concave data sets
(similar observations have been made for linear data sets in [31]). Furthermore,
IWFG does not use any information from the previous iterations of the greedy
algorithm like the bounds used in the QEHC-B.

Finally, in Fig. 3 we present the difference of the quality of the subsets selected
with the incremental and the decremental approach. Since we use logarithmic

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 175

scale in this figure, it is not possible to show both positive and negative dif-
ferences in a single series. Thus, we present two separate series for cases when
either the decremental or the incremental approach was better. In some cases
the hypervolume of the selected subsets was exactly the same and these points
are not shown in this figure since value 0 cannot be shown with logarithmic
scale. The decremental approach is almost always better for linear data sets and
other types of data sets with m = 5. To verify statistical significance of the
observed differences we again used the Wilcoxon signed rank tests with the sig-
nificance level α = 0.05. The decremental approach was significantly better in
majority of cases for linear data sets and convex/concave data sets with m = 5
(for example, for concave data sets with m = 5 the decremental approach was
significantly better in 64, 8% cases while the incremental approach never was
significantly better). Thus, for such data sets the decremental approach may be
preferred over the incremental approach even when a relatively small number of
points is to be selected, if the quality of the selected subset is more important
than the CPU time. For convex/concave data sets with m = 7, 9 in majority of
cases no significant differences were observed.

7 Conclusions

In this paper we have shown that both the incremental and the decremental
greedy hypervolume selection methods are more efficient with the use of the
updated implementation of QHV-II than with WFG which is often considered
to be the state-of-the-art code for hypervolume computation. We have also pro-
posed two new methods for the decremental greedy hypervolume selection, i.e.
Greedy Decremental Lazy HSS algorithm and Greedy Decremental HSS algo-
rithm with the use of QEHC and bounds from the previous iterations. We have
also compared the best greedy incremental and decremental methods in terms
of the efficiency and the quality of the selected subset. This comparison shows
that different methods are the best choices depending on the number of points
to be selected, the type of data sets, and the relative importance of the subset
quality and running time.

In both lazy algorithms and algorithms using QEHC we regularly recalculate
hypervolume contribution of a given point with some other points added or
removed from set S. In the future we would like to investigate if, instead of
re-running such processes from the scratch, we could save some intermediate
states of such processes and then update/continue computations resulting from
the added/removed points. In fact already in QEHC we explicitly use a stack
of subproblems remaining to be processed and we envision that a similar data
structure could be used to store the status of already performed computations.
It is not clear, however, if the overhead related to the management of such data
structure will not annihilate potential savings.

176 A. Jaszkiewicz and P. Zielniewicz

References

1. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using monte carlo
sampling. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple
Criteria Decision Making for Sustainable Energy and Transportation Systems, pp.
313–326. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-04045-0 27

2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

3. Basseur, M., Derbel, B., Goëffon, A., Liefooghe, A.: Experiments on greedy and
local search heuristics for dimensional hypervolume subset selection. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO 2016, pp.
541–548. Association for Computing Machinery, New York (2016). https://doi.org/
10.1145/2908812.2908949

4. Beume, N., Fonseca, C.M., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the
complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput.
13(5), 1075–1082 (2009)

5. Beume, N., Naujoks, B., Emmerich, M.: Sms-emoa: multiobjective selection based
on dominated hypervolume. Euro. J. Operat. Res. 181, 1653–1669 (2007). https://
doi.org/10.1016/j.ejor.2006.08.008

6. Bradstreet, L., While, L., Barone, L.: Incrementally maximising hypervolume for
selection in multi-objective evolutionary algorithms. In: 2007 IEEE Congress on
Evolutionary Computation, pp. 3203–3210. IEEE (2007)

7. Bringmann, K., Cabello, S., Emmerich, M.T.M.: Maximum Volume Subset Selec-
tion for Anchored Boxes. In: Aronov, B., Katz, M.J. (eds.) 33rd International
Symposium on Computational Geometry (SoCG 2017). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 77, pp. 22:1–22:15. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl (2017)

8. Bringmann, K., Friedrich, T., Klitzke, P.: Generic postprocessing via subset selec-
tion for hypervolume and epsilon-indicator. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 518–527. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 51

9. Brockhoff, D., Tran, T., Hansen, N.: Benchmarking numerical multiobjective opti-
mizers revisited. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pp. 639–646. GECCO 2015. Association for Comput-
ing Machinery, New York (2015)

10. Chan, T.M.: Klee’s measure problem made easy. In: 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science, pp. 410–419 (2013)

11. Chen, W., Ishibuchi, H., Shang, K.: Lazy greedy hypervolume subset selection from
large candidate solution sets. In: 2020 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1–8 (2020)

12. Cox, W., While, L.: Improving the iwfg algorithm for calculating incremental
hypervolume. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp.
3969–3976 (2016)

13. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid
constraints by multi-objective evolutionary algorithms. In: Bartz-Beielstein, T.,
Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 922–931.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 91

14. Guerreiro, A.P., Fonseca, C.M.: Computing and updating hypervolume contribu-
tions in up to four dimensions. IEEE Trans. Evol. Comput. 22(3), 449–463 (2018)

https://doi.org/10.1007/978-3-642-04045-0_27
https://doi.org/10.1145/2908812.2908949
https://doi.org/10.1145/2908812.2908949
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1007/978-3-319-10762-2_51
https://doi.org/10.1007/978-3-319-10762-2_91

Greedy Decremental Quick Hypervolume Subset Selection Algorithms 177

15. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: Greedy hypervolume subset selection
in low dimensions. Evol. Comput. 24(3), 521–544 (2016)

16. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: The hypervolume indicator: Problems
and algorithms (2020)

17. Jaszkiewicz, A.: Improved quick hypervolume algorithm. Comput. Oper. Res. 90,
72–83 (2018)

18. Jaszkiewicz, A., Zielniewicz, P.: Quick Extreme Hypervolume Contribution Algo-
rithm, pp. 412–420. Association for Computing Machinery, New York (2021).
https://doi.org/10.1145/3449639.3459394

19. Jiang, S., Zhang, J., Ong, Y., Zhang, A.N., Tan, P.S.: A simple and fast hypervol-
ume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern.
45(10), 2202–2213 (2015). https://doi.org/10.1109/TCYB.2014.2367526

20. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the lebesgue
measure. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 4,
pp. 2490–2497 (2003)

21. Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to com-
pute the hypervolume indicator. Comput. Oper. Res. 79, 347–360 (2017)

22. Laitila, J., Moilanen, A.: New performance guarantees for the greedy maximization
of submodular set functions. Optimization Letters 11(4), 655–665 (2016). https://
doi.org/10.1007/s11590-016-1039-z

23. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey.
ACM Comput. Surv. 48(1), 1–35 (2015)

24. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. 52(2), 1–38 (2019)

25. Minoux, M.: Accelerated greedy algorithms for maximizing submodular set func-
tions. In: Stoer, J. (ed.) Optimization Techniques, pp. 234–243. Springer, Berlin
(1978). https://doi.org/10.1007/BFb0006528

26. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

27. Russo, L.M.S., Francisco, A.P.: Quick Hypervolume. IEEE Trans. Evol. Comput.
18(4), 481–502 (2014)

28. Russo, L.M.S., Francisco, A.P.: Extending quick hypervolume. J. Heuristics 22(3),
245–271 (2016). https://doi.org/10.1007/s10732-016-9309-6

29. Seo, M.G., Shin, H.S.: Greedily excluding algorithm for submodular maximization.
In: 2018 IEEE Conference on Control Technology and Applications (CCTA), pp.
1680–1685 (2018). https://doi.org/10.1109/CCTA.2018.8511628

30. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator
in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–
20 (2021)

31. Shang, K., Ishibuchi, H., Ni, X.: R2-based hypervolume contribution approxima-
tion. IEEE Trans. Evol. Comput. 24(1), 185–192 (2020)

32. Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (μ + λ)-
archiving algorithms. In: Proceedings of the 6th International Conference on Learn-
ing and Intelligent Optimization, LION 2012, pp. 235–249. Springer, Berlin (2012)

33. While, L., Bradstreet, L.: Applying the wfg algorithm to calculate incremental
hypervolumes. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8
(2012)

34. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes.
IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

https://doi.org/10.1145/3449639.3459394
https://doi.org/10.1109/TCYB.2014.2367526
https://doi.org/10.1007/s11590-016-1039-z
https://doi.org/10.1007/s11590-016-1039-z
https://doi.org/10.1007/BFb0006528
https://doi.org/10.1007/s10732-016-9309-6
https://doi.org/10.1109/CCTA.2018.8511628

178 A. Jaszkiewicz and P. Zielniewicz

35. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

36. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

37. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE
Trans. Evol. Comput. 14(1), 58–79 (2010)

38. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/978-3-540-30217-9_84

Hybridizing Hypervolume-Based
Evolutionary Algorithms and Gradient

Descent by Dynamic Resource Allocation

Damy M. F. Ha1,2(B) , Timo M. Deist2 , and Peter A. N. Bosman1,2

1 Delft University of Technology, Delft, The Netherlands
d.m.f.ha@student.tudelft.nl, P.A.N.Bosman@tudelft.nl

2 Centrum Wiskunde and Informatica, Life Sciences and Health Research Group,
Amsterdam, The Netherlands

{dmfh,timo.deist,peter.bosman}@cwi.nl

Abstract. Evolutionary algorithms (EAs) are well-known to be well
suited for multi-objective (MO) optimization. However, especially in
the case of real-valued variables, classic domination-based approaches
are known to lose selection pressure when approaching the Pareto set.
Indicator-based approaches, such as optimizing the uncrowded hypervol-
ume (UHV), can overcome this issue and ensure that individual solutions
converge to the Pareto set. Recently, a gradient-based UHV algorithm,
known as UHV-ADAM, was shown to be more efficient than (UHV-
based) EAs if few local optima are present. Combining the two tech-
niques could exploit synergies, i.e., the EA could be leveraged to avoid
local optima while the efficiency of gradient algorithms could speed up
convergence to the Pareto set. It is a priori however not clear what would
be the best way to make such a combination. In this work, therefore, we
study the use of a dynamic resource allocation scheme to create hybrid
UHV-based algorithms. On several bi-objective benchmarks, we find that
the hybrid algorithms produce similar or better results than the EA or
gradient-based algorithm alone, even when finite differences are used to
approximate gradients. The implementation of the hybrid algorithm is
available at https://github.com/damyha/uncrowded-hypervolume.

Keywords: Real-valued optimization · Multi-objective · Hybrid
algorithm

1 Introduction

In real-valued multi-objective (MO) optimization, multiple conflicting objectives
need to be optimized. The goal of MO optimization often is to find a diverse set

Supported by Open Technology Programme (nr. 15586) financed by Dutch Research
Council (NWO), Elekta, and Xomnia. Cofunding by Ministry of Economic Affairs:
public-private partnership allowance for top consortia for knowledge and innovation
(TKIs).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 179–192, 2022.
https://doi.org/10.1007/978-3-031-14721-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_13&domain=pdf
http://orcid.org/0000-0003-2495-9681
http://orcid.org/0000-0003-0057-1535
http://orcid.org/0000-0002-4186-6666
https://github.com/damyha/uncrowded-hypervolume
https://doi.org/10.1007/978-3-031-14721-0_13

180 D. M. F. Ha et al.

of (near-)Pareto optimal solutions, and usually to do so as efficiently as possible.
Evolutionary algorithms (EAs) (e.g. [6,9]) are known to be well suited for MO
optimization [8]. However, in real-valued MO optimization, classic domination-
based approaches lose selection pressure when approaching the Pareto set [2].
Indicator-based approaches, such as optimizing the hypervolume (HV) [21] or the
uncrowded hypervolume (UHV) [12,17,19] can overcome this issue and ensure
that individual solutions converge to the Pareto set. Recently, a gradient-based
UHV algorithm known as UHV-ADAM [10] was shown to be more efficient than
(UHV-based) EAs if few local optima are present. EAs generally remain more
efficient if many local optima are present. Combining the two techniques could
exploit synergies, especially in problems with many local optima, i.e., the EA
could be leveraged to avoid local optima while the gradient algorithms could
be leveraged to efficiently converge to the Pareto set. It is however unknown a
priori, how the techniques should be combined to get the best results.

Attempts in the literature have been successful at creating efficient MO hybrid
algorithms (also known as memetic algorithms). In [18] a hybrid algorithm was
proposed that probabilistically executes different variation operators of EAs.
Gradient algorithms however have not been integrated into their work. In [3] a
domination-based EA was combined with gradient-based algorithms that exploit
either the gradient of a single-objective or a combination thereof that corresponds
to maximum improvement in a multi-objective sense. In [3], resources are further-
more dynamically assigned to the gradient algorithms via a resource allocation
scheme (RAS). A HV-based hybrid algorithm was introduced in [13], which com-
bines both an EA and gradient algorithm that aim to maximize the HV. In contrast
to [3] however, [13] executes the gradient algorithm after the EA is finished. Sup-
plementing the EA during evolution however might be of key value.

In this work, we study the potential of unifying the convergence properties
of UHV-based MO algorithms with a hybrid interleaving optimization scheme.
Specifically, we formulate a new UHV-based hybrid algorithm and show that the
hybrid algorithm is capable of performing better than the worst of the original
algorithms or in some cases better than both algorithms. For this, we combine a
UHV-based EA called UHV-GOMEA [17] with UHV-ADAM [10] by extending
the RAS of [3]. The resulting hybrid algorithm is consequently UHV-based. The
UHV distinguishes itself in that a set of solutions is optimized instead of indi-
vidual solutions. Concretely, this means that the UHV-based hybrid (and EA)
employ a population of solution sets, not a population of individual solutions.
Each solution set is optimized towards the Pareto set. In this work, we empirically
determine the hybrid’s architecture using a similar set of benchmarks as in [17]
and [10]. We then compare the final algorithm with its component algorithms,
UHV-GOMEA and UHV-ADAM, and another UHV-based gradient algorithm
on the Walking Fish Group (WFG) benchmark set [15]. The remainder of this
document is organized as follows: In Sects. 2 and 3 we introduce the UHV indi-
cator and existing UHV algorithms. In Sect. 4 we introduce the hybrid algorithm
with its RAS. The experiments follow in Sect. 5, with a discussion and conclusion
in Sects. 6 and 7 respectively.

Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 181

2 Uncrowded Hypervolume Optimization

We consider an MO optimization problem to be a problem where m objective
functions need to be minimized. Let f : X → R

m, with f = [f0, ..., fm−1], be an
m-dimensional vector of objective functions, where X ⊆ R

n is an n-dimensional
search space. In this work we focus on bi-objective problems (m = 2). A solution
x ∈ X , where x = [x0, ..., xn−1], will be called an MO-solution. The goal of MO
optimization is to find a set S of diverse and (near-)Pareto-optimal MO-solutions.
To achieve this, we assess the quality of S via the UHV indicator function in
Eq. 1. The UHV measures the hypervolume (HV), i.e. the area in objective space
enclosed by the non-dominated solutions of S and reference point r = (r0, r1),
and penalizes the dominated solutions of S via the uncrowded distance (ud). We
refer the reader to [17] for the reasons behind scaling and exponentiation opera-
tions on the ud. To calculate the HV, let A be the approximation set that con-
tains all non-dominated solutions of S. A then forms an approximation boundary
∂f(S) in objective space. The reader is referred to [21] on how ∂f(S) is calculated.
The HV is the region encapsulated between approximation boundary ∂f(S) and
reference point r, as shown in Fig. 1. The aforementioned uncrowded distance
ud(x,S) is the closest Euclidean distance between MO-solution x’s objective
values f(x) and the approximation boundary ∂f(S). By definition, ud(x,S) is
zero for a non-dominated solution. Using the UHV indicator, an MO problem is
effectively reformulated as a single-objective problem. The goal of UHV-based
algorithms is to maximize the UHV, as maximization leads directly to the min-
imization of the original objective functions as well improving the diversity [1].

UHV(S) = HV(S) − 1
|S|

∑

x∈S

ud(x,S)m (1)

f0

f1

Uncrowded distance ud(x,)

Reference point r
Approximation set ()
Dominated solution of
Hypervolume HV()
Approximation boundary ∂f()

Objective space

Fig. 1. Illustration of the UHV of S for an arbitrary bi-objective problem.

3 UHV-Based Algorithms

3.1 UHV-ADAM

UHV-ADAM [10] is based on the single objective stochastic gradient algorithm
ADAM [16]. UHV-ADAM parameterizes a single solution set S of p number of

182 D. M. F. Ha et al.

MO-solutions as φ0, such that φ0 = [x0, ...,xp−1] ∈ R
p·n. Let F(φ0) be the

operator that assesses the objective functions for every MO-solution in φ0, as
displayed in Eq. 2. UHV-ADAM starts by randomly initializing the MO-solutions
of φ0 and evaluates the objective values (f0(xi), f1(xi)) and objective gradients
(∇f0(xi), ∇f1(xi)) for every MO-solution xi of solution set φ0. Using the objec-
tive values and objective function gradients, the gradient of the UHV indicator
∇UHV(φ0) is calculated. ∇UHV(φ0) indicates how MO-solutions in the search
space must move to (locally) obtain the most UHV gain. The reader is referred to
[10,11] on how ∇UHV(φ0) is exactly calculated. UHV-ADAM then determines
the direction in which solutions are moved in the next iteration via a variance-
corrected weighted average of ∇UHV(φ0). How far the solutions are moved is
determined by step size factor γ and the variance correction. γ is determined by
a shrinking scheme which reduces γ by 1% if no UHV improvement is found.
The initial γ is computed by taking 1% of the average initialization range. This
initialization method will be used later to reinitialize UHV-ADAM within the
hybrid algorithm. UHV-ADAM repeats the process of calculating the UHV gra-
dient and moving the solutions until all computation resources, e.g., a time or
function evaluation budget, have been spent or a desired UHV value has been
reached.

φ0 =

⎡

⎣
x0

...
xp−1

⎤

⎦ → F(φ0) =

⎡

⎣
f(x0)

...
f(xp−1)

⎤

⎦ =

⎡

⎢⎣
f0(x0) ... fm−1(x0)

...
. . .

...
f0(xp−1) ... fm−1(xp−1)

⎤

⎥⎦ (2)

3.2 UHV-GOMEA

The Uncrowded Hypervolume Gene-pool Optimal Mixing Evolutionary Algo-
rithm (UHV-GOMEA) [17] is a recently introduced UHV-based EA that lever-
ages strengths of the single-objective model-based EA known as RV-GOMEA [6].
UHV-GOMEA starts off by randomly initializing and evaluating a population of
N solution sets: φ =

[
φ0, · · · , φN−1

]
, where each individual φi (i = 0, · · · , N −1)

has p MO-solutions. Gradient information is not used nor calculated. UHV-
GOMEA then selects the best 35% of the solution sets with the highest UHV
value as parents. A variation operator is applied on the parents to create new off-
spring solution sets. This process is repeated until termination. UHV-GOMEA’s
variation operator makes use of linkage models. In this work, only the marginal
product linkage model (Lm) is used. Lm greedily rearranges the MO-solutions
of each solution set such that all i’th MO-solution xi (i = 0, . . . , p − 1) of each
solution set is in the same region of the approximation front. It then groups all
variables pertaining to xi into sets. These sets together compromise a FOS (Fam-
ily Of Subsets) denoted as F . For each F , a Gaussian distribution is estimated.
These Gaussians are used to create offspring by sampling MO-solutions from
this marginal product distribution and to inject the new MO-solutions into each
individual of the population. If the UHV improves, changes are kept. Otherwise,

Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 183

they are rejected. For more details, including how the Gaussians are estimated
and adapted during evolution, the reader is referred to [6,17].

4 Hybridization

4.1 Changes Made to UHV-ADAM

In this work UHV-ADAM has been extended such that the single-solution set
solving algorithm is compatible with population-based UHV-GOMEA. To this
end, UHV-ADAM steps are applied to population members after a run of UHV-
GOMEA. UHV-ADAM instances are assigned to each solution set of the pop-
ulation, allowing the weighted moving average and γ to be tuned accurately
and differently to the environment of each solution set in the population. UHV-
ADAM instances are reset every time the variation operator of UHV-GOMEA
is applied to prevent γ and the moving averages of UHV-ADAM instances to
become inaccurate if UHV-GOMEA makes big leaps in the search space. Reset-
ting the UHV-ADAM instances comes at the cost of warming up the moving
averages again as well as redetermining γ. γ is re-estimated by creating the
tightest box that contains all MO-solutions of the population and to take 1% of
the average box width. Finally, a RAS will be used to adaptively determine which
algorithm (ADAM or GOMEA) should be used more during a run. After deter-
mining the resource distribution, the resources assigned to UHV-ADAM must
be distributed over the population members. Early experiments have shown that
distributing among the 3 solutions with the highest UHV works the best, but
this will be further investigated in Sect. 5.3.

4.2 Resource Allocation Scheme

The hybrid created in this work is based on [3], where a resource allocation
scheme (RAS) is used. In this work, only UHV-GOMEA and the modified
UHV-ADAM are hybridized. The hybrid algorithm executes UHV-GOMEA and
UHV-ADAM sequentially. UHV-GOMEA is always executed once per genera-
tion, while the RAS determines the number of UHV-ADAM steps. The RAS
of [3] is extended to accommodate the modified UHV-ADAM and works as fol-
lows: let the actual number of evaluations and improvements found in gener-
ation t by optimizer o ∈ {GOMEA,ADAM} be Eo(t) and Io(t) respectively.
An evaluation occurs when one MO-solution xi is evaluated. What entails an
improvement will be discussed later in Experiment 1. Let the number of evalu-
ations and improvements to be considered for redistribution be Eo(t) and Io(t)
respectively. For UHV-ADAM, only the values of the current generation are of
interest, that is: EADAM(t) = EADAM(t) and IADAM(t) = IADAM(t). The number
of evaluations and improvements to be considered for UHV-GOMEA is a sum of
values of previous generations, that is: EGOMEA(t) =

∑t
t′=tmin

EGOMEA(t) and
IGOMEA(t) =

∑t
t′=tmin

IGOMEA(t), where tmin ≥ 0 and tmin is chosen as large
as possible such that EGOMEA(t) ≥ EADAM(t) still holds. UHV-GOMEA includes

184 D. M. F. Ha et al.

past values for two reasons: it makes the comparison between the gradient algo-
rithm and EA fairer and also allows the number of gradient algorithm calls to
grow [4]. Following [4], the EA’s variation operator is executed once per genera-
tion while the number of executions of the gradient algorithms are related to the
respective reward they receive. The reward, displayed in Eq. 3, is the efficiency
of finding improvements. The reward is 0 if Eo(t) = 0.

Ro(t) =
Io(t)
Eo(t)

(3)

Let the evaluations to be redistributed to UHV-ADAM be ERed
ADAM(t).

ERed
ADAM(t) is the ratio of UHV-ADAM’s contribution to the total reward times

the total sum of evaluations to be considered in generation t as shown in Eq. 4.

ERed
ADAM(t) =

RADAM(t)∑
o′ Ro′(t)

∑

o′
Eo′(t) (4)

To calculate the number of iterations UHV-ADAM can execute with budget
ERed
ADAM(t), let the number of calls be CRed

ADAM(t), where CRed
ADAM(t) can be calcu-

lated by dividing the resources assigned to UHV-ADAM by the average number
of evaluations required per call. The average evaluations per call are estimated
using the resources and calls of generation t, resulting in Eq. 5.

CRed
ADAM(t) =

ERed
ADAM(t)
EADAM(t)
CADAM(t)

=
CADAM(t)
EADAM(t)

ERed
ADAM(t) (5)

To ensure a smooth decrease in the number of gradient calls, memory decay
is implemented in Eq. 6. If the number of calls after redistribution is smaller
than the number of calls executed in the current generation, a running average
is used to decrease the number of calls. If the number of calls increases, memory
decay is not applied in order to stimulate the use of gradient Algorithms [4]. The
(memory) decay factor η is kept at the original value of 0.75 [4].

CRun
ADAM(t + 1) =

{
CRed
ADAM(t), if CRed

ADAM(t) ≥ CRun
ADAM(t)

ηCRun
ADAM(t) + (1 − η)CRed

ADAM(t), otherwise
(6)

The number of UHV-ADAM calls to execute next generation could be set
to CADAM(t + 1) =

⌊CRun
ADAM(t + 1)

⌋
, However, if at some point CADAM(t) =

0 holds, UHV-ADAM cannot be activated any more. As UHV-ADAM could
become useful again in the future, a waiting scheme is used that makes UHV-
ADAM wait WADAM(t) generations. In [4], gradient algorithms are only allowed
to be executed at most once per individual per generation. Furthermore, at most
(population size) N number of total calls can be executed per generation. Early
experiments have shown that executing one UHV-ADAM call per individual does
not substantially affect convergence. For this reason, multiple gradient calls can
be applied to the same individual. Furthermore, a lower bound is introduced
such that if UHV-ADAM is to be executed, it executes at least Cmin

ADAM calls.

Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 185

This ensures that the performance of UHV-ADAM is assessed after it warms up
its internal parameters. Cmin

ADAM is set to 10 and has not been further optimized.
The cap on total gradient calls is kept and set to N . The modified waiting
scheme is shown in Eq. 7. UHV-ADAM is forced to wait for some generations
when CRun

ADAM(t + 1) ≤ Cmin
ADAM. Because the extended UHV-ADAM executes a

minimum number of calls, Cmin
ADAM has been added to prevent the waiting scheme

from triggering too early. The actual number of calls to be executed is shown in
Eq. 8, where Cmin

ADAM has also been added to the original Equation.

WADAM(t + 1) =

{⌊ Cmin
ADAM

CRun
ADAM(t+1)

⌋
, if WADAM(t) = 0

WADAM(t) − 1, otherwise
(7)

CADAM(t) =

{
Cmin
ADAM, if WADAM(t − 1) = 1

min(
⌊CRun

ADAM(t)
⌋
, N), otherwise

(8)

5 Experiments

5.1 Experimental Setup

The problems used in the experiments are given in Table 1, where n is the prob-
lem dimensionality. Problem 0 is uni-modal, objective-wise decomposable [17]
and can be quickly solved with gradient Algorithms [10]. Problem 1 is a low
multi-modal problem based on the Rosenbrock function which has pair-wise
dependencies [5]. It is known for pulling algorithms towards the optimum of the
more easily solvable Sphere function while potentially getting solutions stuck in
a local optimum of the Rosenbrock function. Problem 2 contains the multi-modal
Rastrigin [14] problem, where many local optima are evenly scattered around the
solution space. Problem 3 is multi-modal in both objectives where the Pareto
set is enveloped by basins. The Pareto sets of all problems lie on a line between
the respective optima.

Table 1. The bi-objective benchmark problems selected for the experiments.

Problem name Objectives Properties

0 Convex
bi-sphere

f0 = fsphere(x), with fsphere(x) =
∑n−1

i=0 (xi)
2 Uni-modal,

decomposablef1 = fsphere(x− c0)

c0 = [1, 0, · · · , 0]

1 Convex sphere
Rosenbrock

f0 = 1
n
fsphere(x) Multi-modal,

attraction to f0f1 = 1
n−1

fros(x), with fros(x) =
∑n−1

i=0 (100(xi − x2
i−1)

2 + (1 − xi−1)
2)

2 Convex sphere
Rastrigin

f0 = fsphere(x) Multi-modal

f1 = frast(x− c2), with frast(x) = An +
∑n−1

i=0 x2
i − Acos(2πxi)

A = 10, c2 = [0.5, 0, · · · , 0]

3 Bi-cosine
sphere

f0 = fcos(x), with fcos(x) = fsphere(x)(1 − βcos(2πf |x|)) Multi-modal in
f0 and f1f1 = fcos(x− c0)

β = 0.6, f = 0.1

186 D. M. F. Ha et al.

5.2 Experiment 1: The Effect of the Improvement Metric

In experiment 1, the problems from Table 1 are used to assess the effects of
different improvement metrics Io(t). Problem 0 is excluded from this experi-
ment as tuning the hybrid algorithm on this easily solvable problem is undesir-
able. Metrics ΔBestUHV and ΔAverageUHV are the difference between the best
found UHV and average population UHV respectively in subsequent generations.
CountUHVImproved and CountBestUHVImproved count the number of times
the UHV of a solution and that of the best solution have improved respectively.
In [3], the number of MO-solutions added to an elitist archive is counted. We
will identify that metric with Bosman2012. Here, we use an infinitely large elitist
archive to encourage counting MO-solutions that improve the UHV, which oth-
erwise are potentially rejected by a (nearly) full, finite sized elitist archive. For
clarity, the elitist archive is not used for anything but the improvement metric.

Gradient calls are applied to the best 3 solutions of the population that have
the highest UHV. The solution set size is set to p = 9. As we do not know the HV of
Pareto set A� analytically, HV(A�) is set to the maximum HV obtained from run-
ning all algorithms 30 times, while initializing the algorithms near the Pareto set.
In experiment 1 we run each improvement metric on problems P = [1, 2, 3] for the
following problem dimensionalities D = [2, 5, 10, 20, 40, 80]. For each dimension,
we determine the best population N by running the following population sizes
N = [40, 80, 160, 320, 640, 1280] 30 times and select the most efficient population
size that reaches a target HV accuracy of ΔHVp < 10−6 with a success rate of at
least 29 out of 30 runs. We consider runs that need more than 107 MO-evaluations
to have failed in finding the target HV. We then compute a performance score,
which sums the relative performance of improvement metric imp with respect to
the best performing improvement metric amongst all improvement metrics I, over
all problems P and problem dimensionalities D in Eq. 9.

score(imp) =
∑

pr∈P

∑

d∈D

median(MO-Evaluations(pr,d, imp))
minimp′∈I(median(MO-Evaluations(pr,d, imp′)))

(9)

Table 2 shows the results. Using ΔBestUHV obtains the best score in all
problems except Problem 1. ΔAverageUHV is consistently performing the worst.
ΔAverageUHV is generally biased towards rewarding UHV-GOMEA as UHV-
ADAM is not designed to efficiently optimize an entire population. Experiment 1
shows that it is not trivial to select an improvement metric that is superior for all
problems. Instead, improvement metrics appear to be problem specific. However,
as ΔBestUHV has the best average score, it will be used in further experiments.

5.3 Experiment 2: The Effect of the Choice of Method to Distribute
Gradient Resources

The effect of the choice of method to distribute the resources assigned to the
modified UHV-ADAM, on the required number of MO-evaluations to reach a
target HV accuracy of ΔHVp < 10−6 and the corresponding success rate (SR)

Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 187

Table 2. The scores assigned to each improvement metric. The lower the score, the
better. The numbers in bold are the lowest scores of a category.

Problem ΔBestUHV ΔAverage
UHV

Count
UHVImproved

CountBestUHV
improved

Bosman
2012

Convex sphere &
Rosenbrock (1)

9.0 9.0 8.3 9.2 9.0

Convex sphere &
Rastrigin (2)

6.1 9.8 7.9 6.4 7.1

Bi-cosine sphere (3) 6.1 8.6 7.1 6.4 6.4

Average 7.1 9.1 7.8 7.3 7.5

is shown in Fig. 2. UHV-GOMEA and UHV-ADAM have also been added as a
reference. Table 3 shows the scores obtained by the distribution methods using
Eq. 9. Following experiment 1, Problem 0 is excluded from Table 3. Distribution
methods that are unable to find a population size that meets the SR thresh-
old of 29 out of 30 runs are disqualified and denoted as “DQ”. The evaluation
budget, population optimization method and solution set size are the same as
in experiment 1. The hybrid uses the ΔBestUHV improvement metric. Among
the distribution methods, Best-m-Solutions and Best-m%Population apply gra-
dient calls on the best solutions of the population. The former applies calls to
a fixed number of solutions sets and the latter to a percentage of the popu-
lation. ALL applies calls on all solution sets, starting from φ0, φ1, · · · until all
calls have been distributed. RANDOM applies calls randomly with replacement.
In Fig. 2, UHV-GOMEA is generally amongst the worst performing implementa-
tions along with UHV-ADAM, which fails to reach the target SR threshold in all
problems except Problem 0. In Problem 1 of Fig. 2, the statistics of the successful
runs of UHV-ADAM have been displayed despite not meeting the SR threshold.
Interestingly, in [10], UHV-ADAM is able to solve Problem 1 when initialized
near the global optima ([0, 2]n). In this experiment however, UHV-ADAM gets
stuck on local optima due to a larger initialization range. Among the distribution
methods, Best3Solutions and BestSolution are on average among the best per-
forming distribution methods according to Table 3. Distribution methods: ALL,
RANDOM, Best5%Population and Best10%Population are disqualified for not
reaching the target SR. Interestingly, analysis shows that for Problem 3 the
improvement metric chosen generally remains in the waiting state until most
local optima are no longer within the scope of the population, after which it
maximizes the number of UHV-ADAM calls, resulting in similar performance
amongst the Best-m-Solutions and Best-m%Population distribution methods.
Table 3 clearly shows that concentrating gradient calls on the best solutions is
more efficient than diluting gradient calls over the population.

5.4 Experiment 3: The WFG Benchmark

We use the WFG suite [15] as an independent method to benchmark the results of
the hybrid algorithm. For detailed characteristics of these 9 benchmark functions,

188 D. M. F. Ha et al.

Fig. 2. The effect of different distribution methods on the required number of MO-
evaluations to reach a target accuracy of ΔHVp < 10−6 for various problems. The
success rate (SR) measures the fraction of runs that reach the target accuracy out of
30 runs, where the target threshold (TH) is 29/30 runs.

Table 3. The scores assigned to each distribution method. The lower the score, the
better. Numbers in bold are the lowest scores of a category. “DQ” denotes distribution
methods that fail one or more success rate thresholds.

Problem All Random Best

solution

Best3

solutions

Best5

solutions

Best2.5%

population

Best5%

population

Best10%

population

Convex sphere &

Rosenbrock(1)

DQ DQ 6.6 18.3 17.4 19.7 DQ DQ

Convex sphere &

Rastrigin(2)

DQ 13.4 7.1 6.7 7.7 8.1 8.2 9.4

Bi-Cosine sphere(3) 11.6 11.9 17.8 6.3 7.1 6.7 7.1 7.2

Average DQ DQ 10.5 10.4 10.7 11.5 DQ DQ

the reader is referred to [15]. WFG1 is a separable problem, with a flat region
which can stagnate the search. WFG2 has a uni-modal disconnected convex
front. WFG3 is multi-modal and has a linear front. WFG4-9 all have concave
fronts, where WFG4 and WFG9 are multi-modal. Following [17], the benchmark
is used in a bi-objective setting with kWFG = 4 position variables and lWFG = 20
distance variables, resulting in n = 24 decision variables. The HV reference point
r is set to r = (11, 11). The computation budget is set to 107 MO-evaluations
for each algorithm. For the solution set size, we use p = 9.

The algorithms we consider in this experiment include the base algo-
rithms: UHV-GOMEA(Lm), UHV-ADAM, the constructed hybrid algorithms:
ΔBestUHV with distribution methods BestSolution and Best3Solutions, as well

Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 189

as another UHV-based gradient algorithm called UHV-GA-MO [10]. UHV-GA-
MO is based on the GA-MO scheme [20]. We refer the reader to [10] for the exact
details of UHV-GA-MO. Each algorithm is executed 30 times. Algorithms that
use populations have their population sizes set to 200 following [10,17]. Gradient-
based algorithms use finite difference gradient approximations (indicated by the
suffix “-FD” in Table 4). Finite difference approximations come at the cost of
(1 + n) · p MO-evaluations [10]. Per problem, outcomes are compared to the
result with the highest mean value and tested for statistical significance up to 4
decimals by a Wilcoxon two-sided rank-sum test where the initial α′ = 0.05. α′

is Bonferroni corrected by a factor of 36, making the final α to be α = 0.05/36.
Table 4 shows that, on average, the best results were obtained with

Hybrid-Best3Solutions-FD, followed by Hybrid-BestSolution-FD. Interestingly,
the hybrids never obtain a rank worse than 2, indicating that in this experiment,
the hybrids on average perform better than the original component algorithms.
Furthermore, for problems: WFG1, WFG2, WFG4, WFG6 and WFG8, at least
one of the hybrids obtains statistically better HVs than the original component
algorithms. Interestingly, in WFG 4, Hybrid-Best3Solutions-FD preforms better
than the UHV-GOMEA (Lm) despite WFG 4 being a multi-modal problem.

Table 4. The WFG benchmark for 107 MO-evaluations. Hypervolume values are shown
(mean, ± standard deviation(rank)). Finite differences (FD) are used for the gradient-
based algorithms. Scores in bold are the best or not statistically different from the
other bold scores, indicated per problem.

Problem UHV-

GOMEA(Lm)

UHV-

ADAM-FD

UHV-

GA-MO-FD

Hybrid-

BestSolution-FD

Hybrid-

Best3Solutions-FD

WFG1 94.63±1.73(5) 97.32±0.60(3) 96.74±0.60(4) 98.90±0.29(2) 101.57±0.49(1)

WFG2 110.13±0.03(3) 106.26±5.09(5) 109.60±6.68(4) 110.36±1.20(2) 110.84±2.04(1)

WFG3 116.50±0.00(4) 116.50±0.00 (1) 114.78±0.33(5) 116.50±0.00(1) 116.50±0.00(1)

WFG4 112.75±0.58(3) 103.34±3.61(5) 107.21±0.97(4) 113.46±0.35(2) 114.02±0.13(1)

WFG5 112.19±0.10(4) 112.21±0.03(3) 111.32±0.68(5) 112.22±0.00(1) 112.22±0.00(2)

WFG6 114.38±0.03(3) 113.79±0.10(4) 110.52±2.00(5) 114.40±0.00(1) 114.40±0.00(2)

WFG7 114.40±0.01(3) 114.37±0.03(4) 113.88±0.16(5) 114.40±0.00(2) 114.40±0.00(1)

WFG8 111.43±0.28(3) 110.57±0.81(4) 109.48±1.06(5) 111.70±0.23(2) 111.82±0.01(1)

WFG9 111.46±0.16(3) 107.54±1.10(4) 103.18±5.31(5) 111.49±0.03(2) 111.51±0.02(1)

Rank 3.44(3) 3.67(4) 4.67(5) 1.67(2) 1.22(1)

6 Discussion

A real-valued multi-objective (MO) hybrid algorithm was created by combining
two uncrowded hypervolume (UHV) indicator-based algorithms via a dynamic
resource allocation scheme. In Experiment 1 it was shown that for UHV opti-
mization, picking an improvement metric is not trivial, as problem dependency
has been observed. The results of experiment 1 however, also showed that if the
hybrid is tasked to do UHV optimization, on average it benefits most from using
the ΔBestUHV improvement metric, followed by CountBestUHVImproved. Both

190 D. M. F. Ha et al.

metrics quantify the improvement of the best UHV, while the remaining metrics
(Bosman2012, CountUHVImproved, ΔAverageUHV) measure the improvement
over all solution sets. This opens the question why resource allocation towards
the algorithms which improve fewer solution sets with higher UHV is preferable
over the full runtime of the hybrid.

Experiment 2 has shown that concentrating gradient calls on a select number
of solutions is preferred over diluting calls over the entire population. Distribut-
ing resources to the solutions with the top 3 highest UHV performed the best
on average. Analysis on this distribution method however, has shown that dur-
ing convergence, the hybrid frequently stalls due to an inaccurately estimated
γ. Substantial improvement in convergence could be obtained by improving γ
estimates at reinitialization of UHV-ADAM after executing UHV-GOMEA.

Experiment 2 also provided additional insight in the properties of UHV-
ADAM. Figure 2 confirms that problems with few local optima (e.g. Convex
sphere & Rosenbrock) can be solved by UHV-ADAM, while problems with many
local optima (e.g. Convex sphere & Rastrigin) are not solvable.

One of the limitations of this work is that the problems that were used to
tune the hybrid, all share the commonality of having a connected Pareto set. A
connected Pareto set simplifies finding all other Pareto optimal solutions as soon
as one solution has been determined. If one of the objectives then happens to
be easily solvable (e.g. Sphere), it potentially creates situations where even algo-
rithms that are not suited to solve multi-modal problems can still find the Pareto
set by first solving the easy objective before moving over to the other objective,
bypassing any local optimum. Future work should thus consider disconnected
Pareto sets. Another limitation of this work, is that only a single EA, i.e. UHV-
GOMEA, has been selected for hybridization. In [17], it was already observed
that domination-based EA MO-RV-GOMEA [7] initially performs better than
UHV-GOMEA. An even more efficient hybrid algorithm could potentially be
created with MO-RV-GOMEA. However, as MO-RV-GOMEA is a domination-
based EA, compatibility issues are likely to occur with UHV-based algorithms.
Introducing a different EA could furthermore test the robustness of the RAS.

7 Conclusion

In this work, for the first time, a multi-objective optimization algorithm was
introduced that hybridizes an uncrowded hypervolume-based (UHV) evolution-
ary algorithm with a UHV-based gradient algorithm via a dynamic resource allo-
cation scheme (RAS). Experiments used to study the RAS showed that selecting
a reward metric for the RAS is not trivial as it was observed that the best met-
ric is problem-dependent. Experiments also showed that concentrating gradient
steps on a select number of solutions of the population, outweighs dispersing gra-
dient steps over the entire population. Implementations of the hybrid algorithm
have also been compared to other UHV-based algorithms. It was shown that
even if finite difference approximations are used to calculate gradients, it is still
able to obtain competitive or better results than the original component algo-
rithms as well as other UHV-based algorithms. We conclude that the resulting

Hybridizing HV Based EAs and Gradient Descent by Dynamic RA 191

hybrid is therefore a promising addition to the existing spectrum of evolutionary
algorithms for multi-objective optimization.

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: optimal μ-distributions and the choice of the reference point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp.
87–102 (2009)

2. Berghammer, R., Friedrich, T., Neumann, F.: Convergence of set-based multi-
objective optimization, indicators and deteriorative cycles. Theoret. Comput. Sci.
456, 2–17 (2012)

3. Bosman, P.A.: On gradients and hybrid evolutionary algorithms for real-valued
multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 51–69 (2011)

4. Bosman, P.A., De Jong, E.D.: Combining gradient techniques for numerical multi-
objective evolutionary optimization. In: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, pp. 627–634 (2006)

5. Bosman, P.A., Grahl, J., Thierens, D.: Benchmarking parameter-free amalgam on
functions with and without noise. Evol. Comput. 21(3), 445–469 (2013)

6. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.: Exploiting linkage infor-
mation in real-valued optimization with the real-valued gene-pool optimal mixing
evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 705–712 (2017)

7. Bouter, A., Luong, N.H., Witteveen, C., Alderliesten, T., Bosman, P.A.: The multi-
objective real-valued gene-pool optimal mixing evolutionary algorithm. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 537–544
(2017)

8. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algo-
rithms. John Wiley & Sons Inc., USA (2001)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

10. Deist, T.M., Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Multi-objective opti-
mization by uncrowded hypervolume gradient ascent. In: Bäck, T., et al. (eds.)
PPSN 2020. LNCS, vol. 12270, pp. 186–200. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58115-2 13

11. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indicator
gradient field. In: EVOLVE-a Bridge Between Probability, Set Oriented Numerics,
And Evolutionary Computation III, pp. 169–193. Springer (2014). https://doi.org/
10.1007/978-3-319-01460-9 8

12. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid
for computing pareto front approximations maximizing the S-metric. In: Bartz-
Beielstein, T., et al. (eds.) HM 2007. LNCS, vol. 4771, pp. 140–156. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2 11

13. Hernández, V.A.S., Schütze, O., Wang, H., Deutz, A., Emmerich, M.: The set-based
hypervolume newton method for bi-objective optimization. IEEE Trans. Cybern.
50(5), 2186–2196 (2018)

14. Hoffmeister, F., Bäck, T.: Genetic algorithms and evolution strategies: similarities
and differences. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496,
pp. 455–469. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029787

https://doi.org/10.1007/978-3-030-58115-2_13
https://doi.org/10.1007/978-3-030-58115-2_13
https://doi.org/10.1007/978-3-319-01460-9_8
https://doi.org/10.1007/978-3-319-01460-9_8
https://doi.org/10.1007/978-3-540-75514-2_11
https://doi.org/10.1007/BFb0029787

192 D. M. F. Ha et al.

15. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Maree, S.C., Alderliesten, T., Bosman, P.A.: Uncrowded hypervolume-based multi-
objective optimization with gene-pool optimal mixing. Evolutionary Comput. 1–24
(2021)

18. Sharma, S., Blank, J., Deb, K., Panigrahi, B.K.: Ensembled crossover based evo-
lutionary algorithm for single and multi-objective optimization. In: 2021 IEEE
Congress on Evolutionary Computation (CEC), pp. 1439–1446. IEEE (2021)

19. Touré, C., Hansen, N., Auger, A., Brockhoff, D.: Uncrowded hypervolume improve-
ment: Como-cma-es and the sofomore framework. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 638–646 (2019)

20. Wang, H., Deutz, A., Bäck, T., Emmerich, M.: Hypervolume indicator gradient
ascent multi-objective optimization. In: Trautmann, H., et al. (eds.) EMO 2017.
LNCS, vol. 10173, pp. 654–669. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54157-0 44

21. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-54157-0_44
https://doi.org/10.1007/978-3-319-54157-0_44

Identifying Stochastically Non-dominated
Solutions Using Evolutionary

Computation

Hemant Kumar Singh1(B) and Juergen Branke2

1 The University of New South Wales, Canberra, Australia
h.singh@adfa.edu.au

2 University of Warwick, Coventry, UK

juergen.branke@wbs.ac.uk

Abstract. We consider the problem of finding a solution robust to
disturbances of its decision variables, and explain why this should be
framed as problem to identify all stochastically non-dominated solutions.
Then we show how this can be formulated as an unconventional multi-
objective optimization problem and solved using evolutionary computa-
tion. Because evaluating stochastic dominance in a black-box setting is
computationally very expensive, we also propose more efficient algorithm
variants that utilize surrogate models and re-use historical data. Empir-
ical results on several test problems demonstrate that the algorithm
indeed finds the stochastically non-dominated solutions, and that the
proposed efficiency enhancements are able to drastically cut the number
of required function evaluations while maintaining good solution quality.

Keywords: Robust optimization · Stochastic dominance ·
Evolutionary algorithm

1 Background and Motivation

In some real-world environments, the decision variables are subject to distur-
bances before implementation, e.g., due to manufacturing tolerances [2]. In such
cases, it is desirable that the solution is not only good, but also robust. Different
definitions of robustness have been proposed in the previous literature:

1. the solution with the best expected performance despite the disturbances.
This corresponds to a risk neutral decision maker [13].

2. the solution with the best worst-case performance given the possible range
of disturbances. This corresponds to a highly risk sensitive decision maker,
willing to sacrifice expected performance for protection from risk [2,12].

3. the solution with the best weighted combination of expected performance plus
w times the standard deviation σ. The larger the weight w on the standard
deviation, the more risk averse this choice becomes. It has also been suggested
to treat this as a multi-objective problem [1,10,14].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 193–206, 2022.
https://doi.org/10.1007/978-3-031-14721-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_14

194 H. K. Singh and J. Branke

0 0.2 0.4 0.6 0.8 1
x

-1

-0.5

0

0.5

1
f

A B C D E

f

f+4 f

worst f
Neighborhood x

(a)

0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

f

f

f

f

ND(f, f)

(b)

Fig. 1. Illustration of the existing robustness measures. The image of the points A−E
in the fitness landscape of deterministic, 4σ robustness and worst-case robustness are
marked in red, magenta and green dots, respectively. (Color figure online)

The above definitions can be intuitively understood by the illustration of a
single-variable function shown in Fig. 1(a). The objective function is that of the
TP3 problem in [13]. The deterministic function is shown with a solid black line.
It is assumed that any given design x has an uncertainty uniformly distributed
in xΔ = [x − Δ,x + Δ] with Δ = 0.025. Five points of interest (local optima)
A,B,C,D and E have been marked in the design space. For each of these points,
we show the region xΔ by 51 uniformly sampled points, shown as blue dots. The
resulting landscape of the robust formulation based on the worst case is shown
as dotted line, the landscape for a mean plus 4σ robust formulation is shown as
dashed line. Both robust formulations result in the solution C being identified
as the robust optimum design. However, it can be seen that the distribution of
objective values around design A yields (significantly) better performance under
the given variations for some values of x ∈ xΔ. Even though the μ+4σ value and
the worst value obtained by the design C is better than that of A, design A yields
a better or equal performance compared to C with an 88.23% probability (based
on the uniform sampling shown)1.

Moreover, the formulation based on mean plus variance may distort the fit-
ness landscape in undesirable ways. If the uncertain region is slightly larger, say
Δ = 0.05, the fitness of solution A becomes even worse than the design x = 0.2,
whereas the objective value around design A is never worse than the latter.
Increasing the value of w would magnify the penalty associated with the stan-
dard deviation and a solution with extremely poor value but very low standard
deviation (e.g. x = 0.2, 0.8) is considered equivalent to a solution with much
better expected values but higher standard deviation (e.g., A,B,C). To remove
the sensitivity of the results to the choice of w, some works have suggested opti-
mizing the expected value and standard deviation as a bi-objective problem [10].

1 Note that these probabilities will change if the uncertainty does not follow a uniform
random distribution; a scenario excluded from the scope of this work.

Identifying Stochastically ND-Solutions Using Evolutionary Computation 195

However, as shown in Fig. 1(b), the non-domination sorting based on μ and σ (of
951 uniform samples in [xmin+Δ,xmax−Δ]) would also yield several undesirable
solutions that have poor objective value, on account of their low/zero variations.
Also to note is that some of these solutions (e.g., again x = 0.2, 0.8) which have
the worst possible objective value of f = 0, are preferred over the local minima
D,E since the latter get dominated by another point (C) in the search space.
The worst case formulation also masks the information regarding the better per-
formance achieved within the variable uncertainties, as seen between the designs
A and C. It also renders many of the designs indistinguishable in terms of their
fitness (flat regions in Fig. 1). Optimizing the worst case performance is also a
bilevel optimization which entails other characteristic challenges [9].

In order to overcome some of the shortcomings above, we propose a new way
of defining robustness that does not depend only on expected or extreme values,
but rather takes into consideration the distribution of the design performance
more comprehensively. In particular, we propose to identify all solutions that
are stochastically non-dominated. The concept of stochastic dominance is often
used to compare or rank probability distributions [11]. For two probability dis-
tributions gA(x) and gB(x), the corresponding cumulative distribution GA(x)
is said to first-order stochastically dominate GB(x) (GA(x) �sd GB(x)) if and
only if the following inequality holds:

GA(x) ≤ GB(x) ∀x. (1)

For any utility function u(x) that is strictly increasing and piece-wise differen-
tiable (which should be true for any rational DM), if GA(x) �sd GB(x)

GA(x) �sd GB(x) ⇔ EA(u(X)) ≤ EB(u(X), (2)

where EA and EB are the expectations over the probability distributions gA

and gb, respectively. In other words, if we are able to identify all first-order
stochastically non-dominated solutions, then we would be sure that among the
identified solutions would be the most preferred solution for any rational decision
maker, irrespective of their risk preferences.

Our paper is structured as follows. After formulating the problem in Sect. 2,
we explain our baseline algorithm and strategies to reduce the number of func-
tion evaluations in Sect. 3. Empirical results are reported in Sect. 4. The paper
concludes with a summary and some ideas for future work.

2 Proposed Problem Formulation

The proposed definition for robustness is based on the quantile function (QF)
of the objective computed within the given uncertain region xΔ. This function
defines, for each possible probability p ∈ [0, 1] the fitness value that is obtained
at least with that probability. More formally,

QF (x, p) = inf{y ∈ R : p ≤ G(f(x))} (3)

196 H. K. Singh and J. Branke

where G(f(x)) is the cumulative probability density function of the fitness value
f(x) of solution x given the uncertainty of the disturbance.

To identify all first-order stochastically non-dominated solutions, we are then
solving the following optimization problem.

min QF (x, p) ∀p (4)
s.t. xL

i ≤ xi ≤ xU
i , i = 1, . . . nx. (5)

Under the proposed definition, a solution xA is considered better than
another solution xB if QF (xA) yields a lower or equal value than QF (xB) (for
minimization) for all values of p ∈ [0, 1]. This is equivalent to xA first-order
stochastically dominating xB.

To understand the proposed measure intuitively, let us consider the QF func-
tions of the solutions A − E previously discussed, as shown in Fig. 2. A given
point on the curve, say (0.5,−0.4043) of curve D can be interpreted as: 50%
of the designs within the xΔ region of solution D have a better (lower) per-
formance value than −0.4043. From the observed QF curves, it can be inferred
that A dominates B,D,E, which means that for any quantile of fitness values
A yields a lower fitness than either B,D or E. On the other hand, (A,C) and
(B,C) are first order stochastically non-dominated pairs, implying that for each
of the pair, there exists a monotonic utility function that would lead to this being
the preferred solution. Thus, the set of first-order stochastically non-dominated
solutions out of these points is identified as A and C.

0 0.2 0.4 0.6 0.8 1
p

-1

-0.8

-0.6

-0.4

-0.2

0

Q
F

(0.5,-0.4043)

A

B

C

D

E

Fig. 2. QF function of solutions A, B,
C, D, E in Fig. 1

0 10 20 30 40
Objective(quantile)#

-1

-0.8

-0.6

-0.4

-0.2

0

Q
F

 b
as

ed
 o

n
sa

m
pl

in
g

A

B

C

D

E

Fig. 3. Evaluating the quantiles (objec-
tives) (Color figure online)

Interestingly, the above formulation can be regarded as a multi-objective
problem with infinite number of objectives. Regardless of the nature of the
objective function f(x), QF is mathematically a continuous function. Thus, first-
order stochastic non-dominance is simply the non-domination criterion applied
to compare two continuous functions. For practical implementation of the idea,
we approximate QF by a finite (but large) set of objectives M , see below for
more details. At the same time, it should also be noted that QF is a strictly

Identifying Stochastically ND-Solutions Using Evolutionary Computation 197

non-decreasing function. This characteristic can be used to circumvent some of
the scalability issues normally associated with non-domination based sorting for
problems with large number of objectives [8].

3 Solution Using an Evolutionary Algorithm

The basic framework of our proposed algorithm is quite similar to a canonical EA
used to solve deterministic problems, but its components have been customized
to deal with the proposed robust problem formulation. The algorithm assumes no
prior information about the nature of the function, considering it as a black-box.
For brevity, we refer to the first-order stochastic domination as FOS-domination
in the following.

3.1 Discretization and Evaluation of Objectives

In many practical problems, the analytical form of the objective function is
unknown. A viable method to approximate the quantile function would then
be by sampling a finite number (say Ns) of designs within the uncertain region.
Furthermore, to practically compare between different solutions and to represent
them in a way that can be handled by EAs, a discretization of the quantile
function itself is needed. We propose to do so by using M uniformly sampled
values of p between 0 and 1. In order to evaluate a solution’s performance, the
quantile function value corresponding to the ith value of p is assigned as its ith

quantile, where i ∈ [1,M]. This is illustrated in Fig. 3, where we chose M = 40
objectives and Ns = 1000 samples to construct the quantile function. Each
vertical dotted line in the figure corresponds to an objective (denoted on the
x-axis), and the red dots represent the corresponding robust objective values for
a solution (read from the y-axis).

3.2 Parent Selection and Evolution Operators

For evolving offspring, the widely used crossover and mutation operators, simu-
lated binary crossover (SBX) and polynomial mutation (PM) [5] are used. Par-
ents are selected from the current population by pairwise tournament selection.
These mechanisms have been selected due to their widespread use in literature,
but can be easily substituted with other evolutionary operators.

3.3 Dominance Calculation and Ranking

The process of FOS-domination ranking for a given set S containing N solutions
and M objectives (quantiles) is outlined in Algorithm 1 and the key steps are
briefly described below.

Firstly, a distance matrix d is computed. Each element of the matrix dij

denotes the minimum amount that needs to be added to all QF values of the
solution i for it to be dominated by solution j (Line 3 in Algorithm 1).

198 H. K. Singh and J. Branke

dij = max{max
q

{fq(j) − fq(i)}, 0} (6)

This quantity will correspond to the quantile in which solution i is better
than j by the maximum amount. For example when comparing solution A with
B in Fig. 3, dAB = f1(B) − f1(A). When comparing C and D, the maximum
difference occurs in the 40th objective, so dCD = f40(D) − f40(C). Note that
this measure is structurally similar to additive ε indicator [16], but applied in
quantile space instead of objective space.

Next, for each solution, dMin, the minimum of its distance values w.r.t.
all other solutions is identified (Line 5). This is the minimum value that needs
to be added to each objective of this solution to get dominated by any other
solution in the set S, i.e., dMin(i) = minj∈S dij . Thus, in the example above,
dMin(A) = dAB and dMin(C) = dCA. Note that dMin will be 0 for any solution
that is dominated by another solution (B, D, E in this case).

The sequence of elimination is then determined in the Lines 7–17. The solu-
tion with the lowest dMin represents the solution that can be dominated most
easily, and is therefore added first to the elimination set. Then, the solution is
removed, and all corresponding d values (row and column) are set to ∞. There-
after, dMin is updated, based on the updated d matrix. The solution with the
lowest dMin is again identified as the next solution to be added to the elimina-
tion list, and so on. Once all solutions have been added to the list, the order is
reversed (Line 18), so as to rank the solutions from best to worst.

Note in the above ranking process that the dominated solutions are indis-
tinguishable from each other, since all of them will have a dMin = 0. In order
to obtain a full ordering, the FOS-domination ranking can be repeated only
on solutions that achieved dMin = 0 in the first pass. The solutions that get
dMin = 0 in the second pass can then be further segregated and ranked; until all
solutions have obtained a distinct ranking. Equivalently, one can first do a non-
domination sorting of the given solution set, and then apply FOS-domination
ranking front-by-front.

3.4 Strategies to Reduce Computational Effort

For the above algorithm, an adequate number of samples needs to be sampled in
xΔ to replicate the quantile function accurately. If the population size is N , the
number of generations NG and the number of samples evaluated in the vicinity
of each solution x is Ns, then the total number of function evaluations (calls to
the original function f(x)) can be calculated as NFE = N × NG × Ns. In order
to reduce the NFE, we propose two strategies below.

Use of Approximation Models: The use of surrogate models is prevalent
in the literature for solving computationally expensive problems with stringent
limits on NFE [15]. The basic idea is that based on a few available or prudently
sampled designs, a surrogate model can be built and used to partially guide the
search in lieu of true evaluations. The true evaluation is then evoked only for

Identifying Stochastically ND-Solutions Using Evolutionary Computation 199

Algorithm 1. FOS-domination ranking
Input: Solution set S = N × M matrix, where N = No. of solutions to be ranked,
M = No. of quantiles considered

1: for i = 1 to N do
2: for j = 1 to N do
3: Compute dij according to Eq. 6
4: end for
5: dMini = min(di,j ; j = 1 : N)
6: end for
7: Initialize ranklist = ∅;
8: for i = 1 to N do
9: if i �= N then

10: j = argmin(dMinj)
11: else
12: j = 1 : N − ranklist {Set difference}
13: end if
14: ranklist = [ranklist j];
15: d(:, j) = ∞; d(j, :) = infty
16: dMini = min(dij ; j = 1 : N)
17: end for
18: Return final ranks R = reverse(ranklist)

relatively few solutions during the search that have been identified as promising
based on the predictions from the surrogate model.

We use the Kriging model [4] to approximate the function f(x), and by
extension, the quantile function and associated quantiles in the neighborhood
of any candidate solution x. Instead of using a large sample size, say Ns = 100
points in xΔ, we use much fewer samples, say Nss = 10. A Kriging model is
built using the set of data (x, f(x)) such that for any unknown x, the value of
f(x) can be predicted. The required number of samples (Ns = 100) are then
extracted using this surrogate model to construct the quantile function based on
predicted f(x) values.

Re-using Samples from Neighboring Solutions: Another way to reduce
the computation is to reuse the previously evaluated samples that fall under
the xΔ of the solution currently under consideration. The sample and its fit-
ness value can be inherited in such cases in lieu of evaluating a new sample.
However, the number of available solutions could be unevenly distributed, and
have larger or smaller size than the required number of samples Ns. This would
adversely affect the quality of the surrogate built in the region, as consequently
the quantile function and objectives. To counter this, we propose a simple strat-
egy that augments the existing points (if any), with new samples required to
reach the required number Ns, while maintaining relative uniformity between

200 H. K. Singh and J. Branke

the samples. The process is illustrated in Fig. 4. Suppose that the point cur-
rently under consideration is x = 5.5, let Ns = 10, and Δ = 0.5. This implies
that 11 points (including x = 5.5) need to be sampled uniformly in [5.0,6.0] to
estimate the quantile values of the point. These are labeled as ‘Ideal’ points,
shown with black dots. If two other points, x = 5.18 and 6.354 have previously
undergone robustness evaluation, this means that 11 uniformly sampled solu-
tions (each) are available in x ∈ [4.68, 5.68] and x ∈ [5.854, 6.854], respectively,
shown as blue dots. We examine each of the uniformly distributed samples (black
dots) and check if its closest existing sample (blue dot) is ≤ 2Δ

Ns
away. If so, this

original sample and its f value are directly used. If not, then the sample is eval-
uated instead. Moreover, the point under the robustness evaluation, i.e., x = 5.5
is evaluated unless an exact copy of it exists already. Thus, in this case only 2
samples needed to be evaluated (shown in red circles), whereas the remaining 9
samples are picked from an archive. It is also possible to use more sophisticated
mechanisms to select the new sample locations, e.g., the one proposed in [6].

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2

x

Ideal
Available
Used as is
New samples

Fig. 4. Re-using the samples to reduce NFE (Color figure online)

4 Numerical Experiments

In this section, we evaluate the proposed approach on a range of benchmark
problems. Please note that due to the space limitations, the results for the full
set of problems are included in supplementary online material (SOM), which
is available at http://www.mdolab.net/Hemant/Research-Data/ppsn22sup.zip;
while only a few representative figures are included in this main manuscript.

4.1 Test Problems

We demonstrate the proposed approach on the set of problems (TP1-9) formu-
lated in [13]. Moreover, one problem, TP10, is additionally created for this study,
and defined as f = x sin(2πx − π) with x ∈ [0, 10] and Δ = 0.5. The interesting
feature of the problem is that (by design) the set of stochastically non-dominated
solutions can be readily inferred from observation as x = {1, 2, . . . 9}.

http://www.mdolab.net/Hemant/Research-Data/ppsn22sup.zip

Identifying Stochastically ND-Solutions Using Evolutionary Computation 201

4.2 Experimental Setup

The algorithmic parameters used for solving the problems considered are given in
Table 1. Four versions of the algorithm are used to solve each problem, configured
by setting the use of surrogates and re-use of the previous samples as ON/OFF.

– V1: This is the baseline version, where both the surrogates and re-use of
previous points is set to OFF.

– V2: Surrogates ON, re-use previous points OFF
– V3: Surrogates OFF, re-use previous points ON
– V4: Surrogates ON, re-use previous points ON

For each problem, 21 independent runs are conducted using each algorithm
variant. The quality of the resulting solutions are assessed visually as well as
via unary metrics (discussed in next sub-section). In addition to the quality of
solutions, the savings incurred in the cheaper versions (V2–V4) compared to the
baseline (V1) version are also observed.

Table 1. Parameters used for the EA

Parameter Value

Number of quantiles (M) 11

Population size (N) 20

No. of generations (G) 50

Crossover probability (pc) 0.9

Mutation probability (pm) 0.1

SBX crossover index (ηc) 10

Polynomial mutation index (ηm) 20

Neighborhood sampling points (Ns) 100 (1000
for TP10)

Reduced sampling size for surrogate-based
versions (V3/V4) (Nss)

10

4.3 Performance Measurement

In order to quantify the performance of the proposed algorithm and its variants,
we resort to the inverted generational distance (IGD) metric [3]. IGD is com-
monly used in evolutionary multi-objective optimization for benchmarking the
performance of algorithms. IGD compares the Pareto front (PF) approximation
P obtained by an algorithm with a given reference set Q, which is the best esti-
mate of the PF. Both sets P and Q refer to a set of points in the objective space.
To compute the IGD, for each point in Q, the nearest point in P is identified
and the corresponding Euclidean distance is recorded. Then, IGD is calculated
as the mean of these distances; with a lower IGD indicating better performance.

For many of the standard benchmark problems, the true PF is known analyt-
ically, so a given number of points can be sampled on it to generate the reference
set. If the true optimum of the problem under consideration may not be exactly

202 H. K. Singh and J. Branke

known, a reference set is constructed e.g. by accumulating a large set of non-
dominated solutions by combining solutions examined in multiple runs of all
compared algorithms. Among the problems considered in this study, the theo-
retical optimum can be readily inferred only for three problems - TP1, TP7, and
TP10. For TP1 and TP7, the function is monotonically decreasing in the range
of x = [2, 8]. The only deterministic (global) optimum lies at x = 8, and the
function value then steps up to 0 (its maximum value) thereafter. Therefore, in
terms of stochastic non-dominance, x = 8−Δ = 7.5 is the true optimum solution
for the problem. As for TP10, it is defined in a way as to have multiple peaks
with the same periodicity but different, monotonically increasing, amplitudes.
The Δ value chosen for the problem is 0.5, which is half the cycle of the function,
thereby making 2Δ the full cycle. By observation, the points at the middle of the
cycles, i.e., x = {1, 2, 3, . . . 9} therefore form the true optimum (stochastically
non-dominated) solutions to the problem.

For the remainder of the problems, approximate reference sets have been
generated by considering a set of uniformly sampled 1001 solutions within
±0.5Δ of their local and global optimum solutions. Then, the stochastically
non-dominated solutions among these are considered to be the reference set.

4.4 Results

The median IGD values obtained using all variants of the proposed algo-
rithms (V1–V4) are listed in Table 2, while the corresponding median function
evaluations across 21 runs are listed in Table 3. Moreover, the convergence plots
for the median runs for some representative problems are visualized in Fig. 5.
Shown in Fig. 6 are the solutions obtained for TP3 in both x and quantile space;
with the full set of problems included in the SOM Figs. 2, 3, 4 and 5.

Table 2. Median IGD values obtained by the proposed algorithm. The numbers in
parenthesis denote the ratio of IGD compared to baseline (V*/V1), with ↑ or ↓ indi-
cating the ratio to be higher or lower than 1, respectively.

Problem V1 V2 V3 V4

TP1 0.0002 0.0006 (2.45× ↑) 0.0021 (9.23× ↑) 0.0054 (23.59× ↑)

TP2 0.0002 0.0004 (2.82× ↑) 0.0006 (3.93× ↑) 0.0006 (3.54× ↑)

TP3 0.0012 0.0012 (1.05× ↑) 0.0019 (1.62× ↑) 0.0012 (1.05× ↑)

TP4 0.0004 0.0004 (1.21× ↑) 0.0007 (1.90× ↑) 0.0004 (1.16× ↑)

TP5 0.0012 0.0022 (1.78× ↑) 0.0019 (1.61× ↑) 0.0023 (1.89× ↑)

TP6 0.0072 0.0065 (0.91× ↓) 0.0083 (1.15× ↑) 0.0061 (0.85× ↓)

TP7 0.1421 0.5141 (3.62× ↑) 1.3860 (9.75× ↑) 6.6902 (47.09× ↑)

TP8 0.0384 0.0395 (1.03× ↑) 0.0450 (1.17× ↑) 0.0436 (1.13× ↑)

TP9 0.0051 0.0051 (1.01× ↑) 0.0088 (1.73× ↑) 0.0055 (1.08× ↑)

TP10 0.0117 0.0124 (1.06× ↑) 0.0137 (1.17× ↑) 0.0124 (1.06× ↑)

Identifying Stochastically ND-Solutions Using Evolutionary Computation 203

Table 3. Median function evaluations used by the proposed algorithm. The numbers
in parenthesis denote the ratio of evaluations compared to baseline (V1/V*).

Problem V1 V2 V3 V4

TP1 1.01e+05 13020 (7.76× ↓) 3721 (27.14× ↓) 2824 (35.76× ↓)
TP2 1.01e+05 13020 (7.76× ↓) 3958 (25.52× ↓) 2845 (35.5× ↓)
TP3 1.01e+05 13020 (7.76× ↓) 4000 (25.25× ↓) 2845 (35.5× ↓)
TP4 1.01e+05 13020 (7.76× ↓) 3241 (31.16× ↓) 2341 (43.14× ↓)
TP5 1.01e+05 13020 (7.76× ↓) 3984 (25.35× ↓) 2892 (34.92× ↓)
TP6 1.01e+05 13020 (7.76× ↓) 4869 (20.74× ↓) 3180 (31.76× ↓)
TP7 1.01e+05 13020 (7.76× ↓) 3742 (26.99× ↓) 2776 (36.38× ↓)
TP8 1.01e+05 13020 (7.76× ↓) 5315 (19.00× ↓) 3217 (31.4× ↓)
TP9 1.01e+05 13020 (7.76× ↓) 3927 (25.72× ↓) 2949 (34.25× ↓)
TP10 1.001e+06 31020 (32.27× ↓) 30849 (32.45× ↓) 21031 (47.6× ↓)

102 103 104 105

Evaluations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

IG
D

V1
V2
V3
V4

(a) TP1

102 103 104 105

Evaluations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

IG
D

V1
V2
V3
V4

(b) TP2

102 103 104 105

Evaluations

0

0.02

0.04

0.06

0.08

0.1

IG
D

V1
V2
V3
V4

(c) TP3

Fig. 5. Convergence plots corresponding to the median IGD run (Color figure online)

0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

f

tp3r
ND pop
ND(selected)

(a) TP3 solu-
tions (V1)

0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

f

tp3r
ND pop
ND(selected)

(b) TP3 solu-
tions (V2)

0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

f

tp3r
ND pop
ND(selected)

(c) TP3 solu-
tions (V3)

0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

f

tp3r
ND pop
ND(selected)

(d) TP3 solu-
tions (V4)

1 2 3 4 5 6 7 8 9 10 11

Objective #

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

O
b

je
ct

iv
e

 v
a

lu
e

ND pop
ND(selected)

(e) TP3 ND-
pop (V1)

1 2 3 4 5 6 7 8 9 10 11

Objective #

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

O
b

je
ct

iv
e

 v
a

lu
e

ND pop
ND(selected)

(f) TP3 ND-
pop (V2)

1 2 3 4 5 6 7 8 9 10 11

Objective #

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

O
b

je
ct

iv
e

 v
a

lu
e

ND pop
ND(selected)

(g) TP3 ND-
pop (V3)

1 2 3 4 5 6 7 8 9 10 11

Objective #

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

O
b

je
ct

iv
e

 v
a

lu
e

ND pop
ND(selected)

(h) TP3 ND-
pop (V4)

Fig. 6. Representative median IGD results obtained for TP3 using all versions (V1–
V4) of the proposed algorithm. Results for all problems included in the SOM. (Color
figure online)

204 H. K. Singh and J. Branke

To provide context to Fig. 6, please note that there are two types of solutions
shown. Those in blue represent the non-dominated solutions (based on quantiles)
in the final population obtained after executing the EA run. However, some of
these solutions are what is referred to in the literature as dominance resistant
solutions (DRS) [7]. DRS are those that are significantly poor on one/some objec-
tive(s), but are non-dominated in the population due to a marginal improvement
over another solution in one/some of the objectives. This particularly comes into
play when the number of objectives is high, such as is the case here. To elimi-
nate the DRS, we first normalise all objective values between the maximum and
minimum values obtained among all objectives. Then, any differences between
the normalized objective values that are less than 1% of the range are eliminated
by rounding the values to two digits. These subsets of non-dominated solutions
are shown in red color in the figures, and used for computation of the metrics.

From Table 2, it can be observed that the median IGD values are gener-
ally small, indicating that all four versions of the proposed algorithm were able
to locate the correct regions of stochastically non-dominated solutions. The
overall accuracy decreases successively when moving from V1 to V4. The %
increase (V*/V1) in the IGD value is listed alongside the median IGD for each
of the variants. The factors lie in the range of ≈ [1, 4]. The notable exception
to this are TP1 and TP7, for the versions V3 and V4, i.e. those that operate
with surrogate-assistance. These two functions have their optimum exactly at
x = 7.5, and at the edge of xΔ, i.e., at x = 8 there is a significant discontinuity,
stepping from the lowest to the highest value of the function instantaneously.
However, given that the surrogate models assume a continuous function, the
predicted step by the model at x = 8.0 will not be exactly vertical, leading to an
overestimation of some quantile values. This also implies that any solution right
of x = 7.5, even slightly, i.e., x = 7.5 + Δ;Δ → 0 will have at least one quantile
value as 0 (the highest value taken by the objective function). Note this, for
example, for the population members (marked blue) in SOM Figs. 2, 3, 4 and 5
for TP7. The results for V3 and V4 of TP7 are also affected by the fact that the
range of function values is very large ([−216,0]), so small errors will lead to large
IGD values. A closer look at SOM Figs. 2, 3, 4 and 5 reveal that the solutions
from the median run obtained by V3 and V4 are quite close to those obtained
using V1 and V2. The same observations apply to TP1, as evident from SOM
Figs. 2, 3, 4 and 5.

For other problems with multiple stochastically nondominated solutions, such
as TP3, TP6 shown in Fig. 6 and SOM, respectively. The algorithm shows com-
mendable performance by identifying solutions in all the relevant regions. The
same extends to other problems (shown in the SOM), with possible exception
of TP8 where the solutions were found typically in 4 out of 5 regions in the
median run. Reflecting back on Figs. 2, 3, 4 and 5, it can be seen that the algo-
rithm converged to the two correct regions near points A and C - those with
the non-dominated quantile functions among the multiple optima. Notably, the
above solutions were obtained with significantly reduced number of evaluations
compared to the baseline algorithm (V1/V*). The reduction in function evalu-

Identifying Stochastically ND-Solutions Using Evolutionary Computation 205

ations is typically about 8-fold for V2 in the range of 20–40 folds for V3 and
V4 to obtain solutions that are only marginally worse in quality compared to
V1. Figure 5 further provides a visualization of how quickly the computationally
efficient variants of the proposed algorithm are able to converge relative to the
baseline version.

5 Conclusions and Future Work

We proposed a new paradigm for black-box robust optimization, providing first
order stochastically non-dominated solutions to a decision-maker. Towards this
end, we formulated an underlying multi-objective optimization problem with dis-
cretized quantile functions and proposed an evolutionary approach to solve the
problem. Since the process is computationally expensive in terms of NFEs con-
sumed, strategies to reduce the NFEs substantially were also proposed, including
the use of surrogate approximation and re-use of historical data. The results are
encouraging and demonstrate the capability of the proposed algorithm in achiev-
ing the targeted solutions, as well as reducing the computational effort in doing
so with relatively small compromise in solution quality.

In the future, we would like to make the proposed technique scalable for
higher numbers of variables by using more efficient sampling methods, and
extend the approach to deal with second order stochastic dominance. Also, the
impact of the number of quantiles used for discretization and the density of sam-
ples used for performance estimation also needs further investigation to assess
the proposed approach more comprehensively.

Acknowledgments. The first author would like to acknowledge the support from
Discovery Project DP190102591 from Australian Research Council.

References

1. Asafuddoula, M., Singh, H.K., Ray, T.: Six-sigma robust design optimization using
a many-objective decomposition-based evolutionary algorithm. IEEE Trans. Evol.
Comput. 19(4), 490–507 (2014)

2. Beyer, H.G., Sendhoff, B.: Robust optimization - a comprehensive survey. Comput.
Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

3. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

4. Couckuyt, I., Dhaene, T., Demeester, P.: ooDACE toolbox: a flexible object-
oriented kriging implementation. J. Mach. Learn. Res. 15, 3183–3186 (2014)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Fei, X., Branke, J., Gülpınar, N.: New sampling strategies when searching for
robust solutions. IEEE Trans. Evol. Comput. 23(2), 273–287 (2018)

https://doi.org/10.1007/978-3-540-24694-7_71

206 H. K. Singh and J. Branke

7. Ishibuchi, H., Matsumoto, T., Masuyama, N., Nojima, Y.: Effects of dominance
resistant solutions on the performance of evolutionary multi-objective and many-
objective algorithms. In: Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference, pp. 507–515 (2020)

8. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence), pp. 2419–2426. IEEE (2008)

9. Islam, M.M., Singh, H.K., Ray, T.: A surrogate assisted approach for single-
objective bilevel optimization. IEEE Trans. Evol. Comput. 21(5), 681–696 (2017)

10. Jin, Y., Sendhoff, B.: Trade-off between performance and robustness: an evolution-
ary multiobjective approach. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele,
L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 237–251. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36970-8 17

11. Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manage.
Sci. 38(4), 555–593 (1992)

12. Lu, K., Branke, J., Ray, T.: Improving efficiency of bi-level worst case optimization.
In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B.
(eds.) PPSN 2016. LNCS, vol. 9921, pp. 410–420. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45823-6 38

13. Paenke, I., Branke, J., Jin, Y.: Efficient search for robust solutions by means of
evolutionary algorithms and fitness approximation. IEEE Trans. Evol. Comput.
10(4), 405–420 (2006)

14. Sun, G., Li, G., Zhou, S., Li, H., Hou, S., Li, Q.: Crashworthiness design of vehicle
by using multiobjective robust optimization. Struct. Multidiscip. Optim. 44(1),
99–110 (2011)

15. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineer-
ing design optimization. ASME J. Mech. Des. 129(4), 370–380 (2006)

16. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30217-9 84

https://doi.org/10.1007/3-540-36970-8_17
https://doi.org/10.1007/978-3-319-45823-6_38
https://doi.org/10.1007/978-3-319-45823-6_38
https://doi.org/10.1007/978-3-540-30217-9_84

Large-Scale Multi-objective Influence
Maximisation with Network Downscaling

Elia Cunegatti1,2 , Giovanni Iacca1(B) , and Doina Bucur2

1 University of Trento, Trento, Italy
elia.cunegatti@studenti.unitn.it, giovanni.iacca@unitn.it

2 University of Twente, Enschede, The Netherlands

d.bucur@utwente.nl

Abstract. Finding the most influential nodes in a network is a com-
putationally hard problem with several possible applications in various
kinds of network-based problems. While several methods have been pro-
posed for tackling the influence maximisation (IM) problem, their run-
time typically scales poorly when the network size increases. Here, we
propose an original method, based on network downscaling, that allows
a multi-objective evolutionary algorithm (MOEA) to solve the IM prob-
lem on a reduced scale network, while preserving the relevant properties
of the original network. The downscaled solution is then upscaled to the
original network, using a mechanism based on centrality metrics such
as PageRank. Our results on eight large networks (including two with
∼50k nodes) demonstrate the effectiveness of the proposed method with
a more than 10-fold runtime gain compared to the time needed on the
original network, and an up to 82% time reduction compared to CELF.

Keywords: Social network · Influence maximisation · Complex
network · Genetic algorithm · Multi-objective optimisation

1 Introduction

Given a social network for which the network structure is known and the process
of influence propagation can be modelled, the problem of influence maximisa-
tion (IM) [29] in its simplest form aims to select a certain number of participants
(nodes) in the network, such that their combined influence upon the network is
maximal. This is a combinatorial optimisation task, NP-hard for most propaga-
tion models [18]. Various metaheuristics have been proposed to solve this prob-
lem, including (but not limited to) simulated annealing [16], genetic algorithms
[4,24], memetic algorithms [11], particle swarm optimisation [12], and, more
recently, evolutionary deep reinforcement learning [25] and multi-transformation
evolutionary frameworks [33]. Multi-objective formulations of the IM problems
have also been tackled, for instance in [5,6]. In all cases, the drawback of these
methods is their long runtime, which makes them infeasible to use on large social
networks with more than 105 nodes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 207–220, 2022.
https://doi.org/10.1007/978-3-031-14721-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_15&domain=pdf
http://orcid.org/0000-0002-1048-0373
http://orcid.org/0000-0001-9723-1830
http://orcid.org/0000-0002-4830-7162
https://doi.org/10.1007/978-3-031-14721-0_15

208 E. Cunegatti et al.

Here, aim to address precisely this computational issue. As in [5,6], we con-
sider a multi-objective formulation of the IM problem, where the two competing
objectives are the number of selected nodes (to be minimised), and the com-
bined influence (to be maximised). With respect to the previous literature, we
contribute a scalable method for the multi-objective IM problem, which allows
to tackle the problem for social networks orders of magnitude larger than before.
The method is built around a multi-objective evolutionary algorithm (MOEA),
but additionally employs a first step of graph summarisation [23] which down-
scales the network (by a configurable factor) while preserving its important struc-
tural properties, and a last step which upscales the solutions from the downscaled
network to the original one. This approach allows the MOEA to run in feasible
time, since it is executed on a smaller instance of the problem.

The runtime has always been a key issue in the literature on the IM problem.
Some previous works have tried to overcome this limitation by improving directly
the effectiveness of the algorithm, see [22] for a survey on this topic. Some recent
works have tried to minimise the runtime in billion-scale networks [13,21,35].
Yet, to the best of our knowledge no previous work has attempted to tackle the
problem by focusing on the input (i.e., the network), instead of the algorithm.

We tested our method on six different networks, using two propagation mod-
els. For the downscaling process, we used three different values of scaling factor,
to analyse how this affects the performance of our method. For the upscaling pro-
cess, we evaluated different centrality metrics. Finally, we tested our method on
two large networks with high scaling factor values and compared the results with
a classical heuristic algorithm. The results show that our method can achieve
near-optimal or even better results, compared to the MOEA on the correspond-
ing unscaled networks, while drastically reduce the runtime required.

The rest of the paper is structured as follows. In the next section, we describe
our method. In Sect. 3, we present the numerical results. Finally, we give the
conclusions in Sect. 4.

2 Method

We provide a first overview of the method in Fig. 1. For the MOEA, we use
Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [8], which has shown
good results on this problem in prior work [5,6,15], but whose runtime made
it prohibitive on large networks. This computationally heavy method is marked
in Fig. 1 on the left with a heavy red arrow. Instead of attempting to further
improve the algorithm (with likely minor gains in efficiency), here we design an
alternative which fundamentally changes the way we treat the problem input.

Given a large social network (top left in Fig. 1), in step (1) we synthesise a
downscaled version of the network, for which the scaling factor is configurable. A
network scaled by a factor s = 2 would contain half of the nodes of the original,
but otherwise preserve all the important properties of the original network: the
number of communities is maintained constant, and the node degree distribution
is scaled proportionally with the network size. In step (2), we apply the MOEA

Large-Scale Multi-objective Influence Maximisation 209

Fig. 1. The method. The larger the original network (top left), the less feasible IM is
(bottom left). Our efficient three-step method scales down the network, does IM on
the scaled network, then upscales the solutions (right). (Color figure online)

on this downscaled network, obtaining a number of non-dominated solutions
(where each solution is a seed set, i.e., the set of nodes from which influence is
propagated). Only one such seed set is shown in Fig. 1, with the corresponding
nodes marked in red. Finally, for step (3) we devise a method based on node
centrality metrics to select the seed set in the original network, such that its
nodes correspond (in terms of position in the network) to the ones found in step
(2). Steps (1–3) output a Pareto front (PF) of solutions. To evaluate how accurate
this method is, we also execute the MOEA on the original network, and compare
the two PFs. In the rest of this section, we detail the three aforementioned steps1.

2.1 Step (1): Community-Based Downscaling

The output of the downscaling process is a completely synthetic network, not
identical to any part of the original network, but which appears very similar, yet
much smaller. The scaling factor s is the key parameter when downscaling: we
experiment with values in a geometric sequence, s ∈ {2, 4, 8}. The downscaling
process satisfies the following requirements:

1. preserves the number of communities in the network;
2. downscales the number of nodes and edges by a factor s;
3. preserves the node degree distribution.

We pose the last requirement because dynamic phenomena on a network
(such as information propagation) have outcomes which depend on the node
degrees. We use the Leiden algorithm [32], a state-of-the-art, scalable method
for community detection. The algorithm is stochastic, so variations in the number
and size of the communities are possible; because of this, we select one solution,

1 Code available at: https://github.com/eliacunegatti/Influence-Maximization.

https://github.com/eliacunegatti/Influence-Maximization

210 E. Cunegatti et al.

then filter out from the network any communities that are too small (i.e., those
that contain a number of nodes lower than the scaling factor s). We then pre-
serve this number of communities obtained on the original network, downscaling
(proportionally with s) the number of nodes and edges in each community. Per
community, the shape of the node degree distribution is also preserved, as fol-
lows. Take the number of nodes in some original community to be N . We take a
number of samples of size N/s from the original node degrees of each community,
then retain only the samples with the smallest Euclidean distance (computed in
terms of mean degree and std. dev. per community) compared to the original
ones. We thus have a desired node degree distribution for a downscaled network.

The downscaled network is then generated by the Stochastic Block Model
(SBM), a random generative network model originally proposed in [14]. This
generates random networks with a configured number of communities, number
of nodes per community, and edge density per community. Here, we used a more
fine-grained, recent SBM method [17,28] which takes also into account node
degrees, and is implemented in the Python graph-tool library2.

2.2 Step (2): MOEA on Two Objectives (cascade Size and Seed Set
Size)

Single-objective IM is the problem of finding those k nodes with maximum col-
lective influence upon the network. As mentioned above, a candidate solution
for this is a seed set (a set of node identifiers) of size k > 0. The multi-objective
formulation in this study aims to maximise the collective influence, while min-
imising the size of the seed set k. In other words, the fitness of a candidate
solution is a tuple of: (a) the estimated collective influence of the seed set,
and (b) the size of the seed set. Both values are normalised with respect to
the network size, to allow for a fair comparison between scaled and unscaled
networks, as well as between networks of different sizes. We set the maximum
possible value of k to be 2.5% of the network size.

As for the estimated collective influence, we model influence cascade using
two classic, discrete-time propagation models for social networks [18]. They sim-
ulate the dynamics of information adoption in a network modelled by graph G,
in which a set S of “seed” nodes are the initial sources of information. At any
given time, the nodes in G are in one of two states: “activated” (if they received
the information and may propagate it further) or not. Initially, only the nodes in
S are activated. The information propagates via network links probabilistically:
a probability p models the likelihood of a source node activating a neighbouring
destination node via their common link. The important quantity is the num-
ber of nodes eventually activated, also called the cascade size—for IM, this is
typically the main objective.

Algorithm 1 gives a general view of cascade propagation models: set A con-
sists of all the activated nodes, and is initially equal to the seed set S. At each
time step, recently activated source nodes try to activate their neighbours inde-
pendently. If an activation fails, it is never retried (a destination node is assumed

2 https://graph-tool.skewed.de.

https://graph-tool.skewed.de

Large-Scale Multi-objective Influence Maximisation 211

to have made its decision). If it succeeds, the propagation may continue; the pro-
cess stops when no new nodes were activated in a time step.

We use two model variants: Independent Cascade (IC) and Weighted
Cascade (WC). IC was first introduced in marketing, to model the complex
effects of word-of-mouth communication [10]. In IC, the probability p is equal
across all links (when a node has more than one neighbour, their activations are
tried in arbitrary order). WC further models the fact that a node’s attention is
limited: the probabilities of activation on links leading to a destination node m
are not uniform, but inversely proportional to the number of such links in G (in
other words, the degree of m), p = 1/deg(m) [18], where deg(m) is the in-degree
of node m, i.e., the number of edges incoming to m.

Algorithm 1 Cascade propagation models. G is the graph, S the seed set, and
p the probability that a link will be activated.
Input: G, S, p
1: A ← S � The complete set of activated nodes
2: B ← S � Nodes activated in the previous iteration
3: while B not empty do
4: C ← ∅ � Nodes activated in the current iteration
5: for n in B do
6: for m in neighbours(n) \ A do
7: C ← m with probability p � Activation attempt
8: end for
9: end for

10: B ← C and A ← A ∪ B
11: end while
12: return |A| � The final size of the cascade

Although a single execution of Algorithm 1 is polynomial in the size of
the network, the model is stochastic, and computing the expected cascade size
exactly for a given seed set S is #P-complete [34]. However, good estimates of
|A| can be obtained by Monte Carlo simulations: in our experiments, we run 100
repetitions of Algorithm 1 for each estimation.

Concerning the MOEA, we used the implementation and parameterisation of
NSGA-II adopted in prior work [5,15]. In short, the parent solutions are selected
by tournament selection; the child solutions are generated by one-point crossover
and random mutation. An archive keeps all the non-dominated solutions found,
i.e., the PF. The replacement mechanism selects non-dominated solutions by
their dominance levels, and then sorts them by crowding distance to prefer iso-
lated solutions and obtain a better coverage of the PF.

To improve the convergence of the MOEA, we apply a smart initialisation of
its initial population, as proposed in [19]. First, we apply node filtering, which
computes the influence of each node in the network separately, and then keeps
the 50% most influential nodes. Then, each of these nodes is added to a candi-
date solution with a probability proportional to its degree. We summarise the
parameters of the method in Table 1.

212 E. Cunegatti et al.

Table 1. Parameters of the method.

Network parameters

Scaling factor s {2, 4, 8}
Max. seed set size k 2.5% · network size

IC probability p 0.05

No. simulations 100

NSGA-II parameters

Population size 100

Generations 1000

Elites 2

Crossover rate 1.0

Mutation rate 0.1

Tournament size 5

2.3 Step (3): Upscaling

Once the MOEA has been run on the downscaled network, the last step is to
map the solutions back to the original network. This step takes in input two
graphs (the original G and the downscaled Gs) and a set seed on Gs, denoted
as Ss. The task is to translate Ss into an seed set S on G.

We achieve this by matching nodes between the two graphs, based on their
node centrality indicators, namely node statistics which capture the position
of the node in the network. We test the following classical centrality indica-
tors, based on them being shown to be predictive of the node’s influence [3]:
each node’s degree, eigenvector centrality and its variants PageRank with a 0.85
damping factor and Katz centrality, closeness, betweenness, and core number (see
[27] for their definitions).

For a seed set Ss in Gs, we find a matching seed set S of |Ss| × s nodes in
G. We do this per community. Each node in Ss has a rank in its community,
based on the centrality values of all nodes in that community. We then search
in G (among the nodes in the corresponding community) for s nodes with the
most similar ranks. These nodes form S.

Evaluation. We evaluate the PFs obtained, particularly to compare between
the MOEA results on the original network and those obtained with our new
method. We use the hypervolume (HV) indicator (also known as Lebesgue mea-
sure, or S metric) proposed in [36]. This is calculated as the volume (of the
fitness space) dominated by each solution in the PF with respect to a reference
point. The hyperarea (HR) [36] is the ratio of two HVs, and is used here in the
final evaluation step (bottom center in Fig. 1).

3 Results

Network Data. We test our method on six real-world social network topologies
(listed in Table 2). These range between 4 039 and 28 281 nodes, with variable
average degrees (and thus network densities), and variable number and size of
communities. Ego Fb. denotes data merged from many ego networks on Face-
book, collected from survey participants at a large university. Fb. Pol. is a
network of mutually liked, verified politicians’ pages on Facebook. Fb. Pag. is

Large-Scale Multi-objective Influence Maximisation 213

similar, but with Facebook pages from various categories. Fb. Org. is a network
of friendships among Facebook users who indicated employment at one corpora-
tion. PGP is the largest connected component in the network of PGP encryption
users. Deezer represents online friendships between users of the Deezer music
platform. All graphs are undirected and connected.

Table 2. Networks considered in the experimentation.

Network Nodes Edges Communities Node degrees

Num. Min. Max. Avg. Std. Max.

Ego Fb. [26] 4 039 88 234 17 19 548 43.90 52.41 1045

Fb. Pol. [30] 5 908 41 729 31 8 562 14.12 20.09 323

Fb. Org. [9] 5 524 94 219 13 35 1045 34.11 31.80 417

Fb. Pag. [30] 11 565 67 114 31 8 1916 11.60 21.28 326

PGP [1] 10 680 24 316 91 8 668 4.55 8.07 205

Deezer [31] 28 281 92 752 71 8 4106 6.55 7.94 172

In the remainder of this section, we experiment with and evaluate our
method. We present results for the three distinct steps of the method (as per
Fig. 1).

3.1 Community-Based Downscaling of Large Networks

This step obtains synthetic scaled networks, with the scaling factor s. These
networks have the same number of communities, a scaled number of nodes and
edges, and the same shape of the degree distribution. For s ∈ {2, 4, 8}, we show
in Fig. 2 the degree distributions (in log-log scale) for the six networks: that of
the original (unscaled) network, and that of synthetic, scaled versions. Figure 1
included plots of Fb. Org. before and after downscaling (s = 4).

The networks plausibly fit typical power-law degree distributions, in which the
fraction of nodes with a certain degree d is proportional to d−α where α is positive
(so, decreases with d), after a cutoff point dmin. In real-world networks from vari-
ous domains, the power-law parameter α is often measured between 1.5 and 3 [2],
which is mostly the case also for these six social networks. This parameter can be
seen in Fig. 2, in the linear slope of all distributions (for high enough degrees). Our
downscaling step preserves the power-law parameter α between the original and
downscaled networks, naturally while scaling down the degree frequencies with s.
We show the fitted values for α in Table 3, from which it is clear that the down-
scaling method introduced little error in the shape of the degree distribution.

In the next step, we run the MOEA on the downscaled networks (and, for
evaluation, also on the original networks).

3.2 MOEA and Solution Upscaling: The Optimality of Solutions

The optimisation process obtains a two-dimensional PF of solutions, where as
said each solution is a seed set of k nodes of the network. We show an example

214 E. Cunegatti et al.

Fig. 2. Degree distributions, before and after downscaling.

Table 3. Degree distribution preservation, power-law coefficients.

Original s = 2 s = 4 s = 8

Ego Fb 1.32 1.35 1.38 1.42

Fb. Pol 1.50 1.52 1.54 1.57

Fb. Org 1.40 1.32 1.33 1.35

Fb. Pag 1.60 1.58 1.60 1.62

PGP 2.11 1.94 1.97 1.93

Deezer 1.73 1.66 1.68 1.68

run (randomly selected out of the 10 performed) of PFs in Fig. 3, for the PGP
case and for both propagation models (IC and WC), obtained by the MOEA on
the original network and on the downscaled networks (for three values of s). The
PFs for the original and downscaled networks (top in Fig. 3) show that running
the optimisation on the downscaled networks preserves the shape of the PF, but
slightly lowers the values reached for the main objective, namely the percentage
of influenced nodes (i.e., the cascade size). The more downscaled the network
is, the more pronounced this effect appears to be. When upscaling the solutions
obtained on the downscaled networks, here using the PageRank centrality in
the upscaling process (bottom in Fig. 3), this gap closes for IC, but not for WC
propagation.

Of note, the PGP case shown in Fig. 3 is actually one of the cases where our
method performs worst (see below). One of the cases where it performs best is
Fb. Pag., whose PFs are shown in Fig. 4 (also in this case, for one run of the

Large-Scale Multi-objective Influence Maximisation 215

Fig. 3. PGP Pareto fronts: (top) for the original and downscaled networks, and (bot-
tom) for the original network and the upscaled solutions.

Fig. 4. Fb. Pag. Pareto fronts: (top) for the original and downscaled networks, and
(bottom) for the original network and the upscaled solutions.

MOEA on the original network and on the downscaled networks, using PageRank
for upscaling). On this network, the MOEA on the downscaled networks often
produces a better PF than on the original (top in Fig. 4), and the final, upscaled
PFs are comparable to the original one (bottom in Fig. 4). Thus, the method
largely preserved the quality of the solutions.

In general and quantitatively, we observe great variation among the networks
under test in terms of HR, i.e., on the ratio between (1) the HV subtended by
the PF found by the MOEA on the original network and (2) the HV subtended
by the PF obtained from the upscaled solutions.

To provide a more robust estimate of the HR values, for each network and
propagation model we executed the MOEA in 10 independent runs on the orig-

216 E. Cunegatti et al.

inal network, and in 10 runs for each value of scaling factor3. We show the
HR values (averaged across 10 runs) comparatively in Fig. 5. Each cell contains
the HR for a particular network, propagation model, and scaling factor. The
“MOEA” rows contain intermediate HR values, which compare the PF on the
downscaled networks with the PF on the original network. For three out of
six networks (Ego Fb., Fb. Pol., and PGP) the HR never reaches 1, meaning
that the HV on the downscaled networks is lower than the one on the origi-
nal network. For the other three networks, HR reaches or surpasses 1, for at
least some scaling factor and one or both propagation models, meaning that the
downscaling step by itself preserved or even raised the optimality of the PF.

Fig. 5. Hyperarea (averaged across 10 runs) for each network, propagation model,
scaling factor, and centrality metric.

The HR values in the rows labelled with the various centrality names in
Fig. 5 compare instead the PF of the upscaled solutions with the PF on the
original network, so serve as evaluation metrics for our method. These show how
accurate each centrality is at the upscaling task, and thus help choose the most
suitable centrality for any future work. We observe that it is generally easier
for all centralities to obtain a good PF of upscaled solutions when using IC.
However, three of the centralities consistently yield good upscaling results for
both IC and WC: PageRank, betweenness, and degree centralities. PageRank
3 We also compared directly the HV values. We applied the Wilcoxon Rank-Sum test

(with α = 0.05) to analyse whether the HV values calculated on the downscaled solu-
tions and the upscaled ones (with upscaling based on PageRank) were significantly
different from the HV values obtained on the original network, all on 10 runs. All
the pairwise comparisons resulted statistically significant, excluding the one related
to the downscaled solutions found on Fb. Pag. with s = 2 and WC model.

Large-Scale Multi-objective Influence Maximisation 217

is the best option overall (this is why we used it in Fig. 3 and Fig. 4). Across
networks with IC, the HR obtained by PageRank is in the interval [0.93, 1] when
s = 2, in [0.86, 0.97] when s = 4, and in [0.78, 0.96] when s = 8. Fairly similar
numbers are obtained with WC.

3.3 Runtime Analysis

The proposed method not only can preserve the quality of the solutions, but
gains drastically in runtime due to our design based on downscaling the input
data. We compute the runtime in terms of number of activation attempts (line 7
in Algorithm 1). This is a proxy metric for the actual runtime, as it counts how
many times that activation step is executed during all the simulations needed
by a MOEA run (either on the original network, or on the downscaled one). We
show these measurements in Fig. 6, from which we can see (note the log scale on
the y-axis) that the runtime needed by our method decreases by a factor from
two to five when the scaling factor is doubled.

Fig. 6. Runtime (no. activation attempts) in the comparative experiments with MOEA
on the original network (average across 10 runs, error bars indicate std. dev.).

3.4 Comparison with Heuristic Algorithm

To further prove the applicability of the proposed method, we conducted a final
set of experiments on two different networks with ∼50k nodes: soc-gemsec [30]
and soc-brightkite [7]. The goal of these experiments was to test our method
with higher scaling factors on larger networks.

Due to the large runtime required, we executed only one run of the proposed
method with the WC model for s = 16 and s = 32, and compared the results
with those obtained by the deterministic greedy CELF algorithm [20] computed
on the unscaled network.

Despite the computational limitations, the comparison is still informative.
We see in Fig. 7 that our proposed method is able to achieve better results than
CELF, even for these high scaling factors. Not only that: Fig. 8 shows that we
obtain these results with a much lower number of activation attempts compared
to CELF (with a reduction of up to 82%).

218 E. Cunegatti et al.

Fig. 7. PFs obtained with CELF and with our method for s = 16 and s = 32.

Fig. 8. Runtime (no. activation attempts) measurements in the comparative experi-
ment with CELF.

It is worth to mention that the results obtained with our method depend
on the parameters of the MOEA, which remained the same as in the previous
experiments, see Table 1. However, we have noticed that the HV reaches a plateau
after ∼300 generations. This means that with a simple implementation of a
convergence termination criteria, the gain in runtime would be even higher.

4 Discussion and Conclusions

In this paper, we proposed a novel approach to tackle the IM problem where
the focus is on the input network instead of the algorithm itself. For this reason,
while here we tested the approach on a MOEA, the same method could be
applied, in principle, to any other IM algorithm, such as the ones described in
Sect. 1.

Our method has been proven to work correctly, although with some differ-
ences in the results, with both IC and WC propagation models on all the tested
networks, regardless their sizes or properties.

The results demonstrate the effectiveness of our method in terms of quality of
the solutions obtained. Furthermore, our method is able to drastically decrease,
even for large networks, the runtime of the MOEA. The latter has the additional
advantage of providing a whole set of diverse solutions (i.e., seed sets), unlike
heuristic methods that are usually designed to return just one seed set.

Our method has proven to work properly with different scaling values. Nev-
ertheless, the results show a lower quality of the solutions as the scaling factor

Large-Scale Multi-objective Influence Maximisation 219

increases. This result is in line with expectations, as it shows a clear trade-off
between solution quality and runtime gain.

To the best of our knowledge, this is the first work where a downscaling and
upscaling process is proposed on networks to solve the IM problem. Regarding
the centrality measure used in the upscaling process, we can state the best one
to be PageRank, given the high quality of the upscaling results obtained and the
low complexity required to compute it.

References

1. Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A., Arenas, A.: Models of social
networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004)

2. Broido, A.D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10(1), 1–10
(2019)

3. Bucur, D.: Top influencers can be identified universally by combining classical
centralities. Sci. Rep. 10(1), 1–14 (2020)

4. Bucur, D., Iacca, G.: Influence maximization in social networks with genetic algo-
rithms. In: EvoApplications (2016)

5. Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A.: Improving multi-
objective evolutionary influence maximization in social networks. In: EvoAppli-
cations, pp. 117–124 (2018)

6. Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A.P.: Multi-objective evo-
lutionary algorithms for influence maximization in social networks. In: EvoAppli-
cations (2017)

7. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090.
ACM (2011)

8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

9. Fire, M., Puzis, R.: Organization mining using online social networks. Netw. Spat.
Econ. 16(2), 545–578 (2015). https://doi.org/10.1007/s11067-015-9288-4

10. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look
at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)

11. Gong, M., Song, C., Duan, C., Ma, L., Shen, B.: An efficient memetic algorithm for
influence maximization in social networks. IEEE Comput. Intell. Mag. 11, 22–33
(2016)

12. Gong, M., Yan, J., Shen, B., Ma, L., Cai, Q.: Influence maximization in social
networks based on discrete particle swarm optimization. Inf. Sci. 367–368, 600–
614 (2016)

13. Güney, E., Leitner, M., Ruthmair, M., Sinnl, M.: Large-scale influence maximiza-
tion via maximal covering location. Eur. J. Oper. Res. 289, 144–164 (2021)

14. Holland, P., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc.
Netw. 5, 109–137 (1983)

15. Iacca, G., Konotopska, K., Bucur, D., Tonda, A.: An evolutionary framework for
maximizing influence propagation in social networks. Softw. Impacts 9, 100107
(2021)

16. Jiang, Q., Song, G., Cong, G., Wang, Y., Si, W., Xie, K.: Simulated annealing
based influence maximization in social networks. In: AAAI (2011)

https://doi.org/10.1007/s11067-015-9288-4

220 E. Cunegatti et al.

17. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in
networks. Phys. Rev. E 83(1Pt2), 016107 (2011)

18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

19. Konotopska, K., Iacca, G.: Graph-aware evolutionary algorithms for influence max-
imization. In: GECCO Companion (2021)

20. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Vanbriesen, J.M., Glance,
N.S.: Cost-effective outbreak detection in networks. In: KDD (2007)

21. Li, X., Smith, J.D., Dinh, T.N., Thai, M.T.: Tiptop: (almost) exact solutions for
influence maximization in billion-scale networks. IEEE/ACM Trans. Networking
27, 649–661 (2019)

22. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a
survey. IEEE Trans. Knowl. Data Eng. 30, 1852–1872 (2018)

23. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and
applications: a survey. ACM Comput. Surv. (CSUR). 51(3), 1–34 (2018). https://
dl.acm.org/doi/abs/10.1145/3186727

24. Lotf, J.J., Azgomi, M.A., Dishabi, M.R.E.: An improved influence maximization
method for social networks based on genetic algorithm. Physica A 586, 126480
(2022)

25. Ma, L., et al.: Influence maximization in complex networks by using evolutionary
deep reinforcement learning. IEEE Trans. Emerg. Topics Comput. Intell., 1–15
(2022). https://ieeexplore.ieee.org/document/9679820

26. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In:
NIPS (2012)

27. Newman, M.: Networks. Oxford University Press, New York (2018)
28. Peixoto, T.P.: Nonparametric Bayesian inference of the microcanonical stochastic

block model. Phys. Rev. E 95(1), 012317 (2017)
29. Richardson, M., Agrawal, R., Domingos, P.M.: Trust management for the semantic

web. In: SEMWEB (2003)
30. Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: GEMSEC: graph embedding

with self clustering. In: ASONAM, pp. 65–72 (2019)
31. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather,

from statistical descriptors to parametric models. In: CIKM, pp. 1325–1334 (2020)
32. Traag, V.A., Waltman, L., van Eck, N.J.: From Louvain to Leiden: guaranteeing

well-connected communities. Sci. Rep. 9, 5233 (2019)
33. Wang, C., Zhao, J., Li, L., Jiao, L., Liu, J., Wu, K.: A multi-transformation evo-

lutionary framework for influence maximization in social networks. arXiv preprint
arXiv:2204.03297 (2022)

34. Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent
cascade model in large-scale social networks. Data Min. Knowl. Disc. 25, 545–576
(2012)

35. Wu, H.H., Küçükyavuz, S.: A two-stage stochastic programming approach for
influence maximization in social networks. Comput. Optim. Appl. 69(3), 563–595
(2017). https://doi.org/10.1007/s10589-017-9958-x

36. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-
P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

https://dl.acm.org/doi/abs/10.1145/3186727
https://dl.acm.org/doi/abs/10.1145/3186727
https://ieeexplore.ieee.org/document/9679820
http://arxiv.org/abs/2204.03297
https://doi.org/10.1007/s10589-017-9958-x
https://doi.org/10.1007/BFb0056872

Multi-Objective Evolutionary Algorithm
Based on the Linear Assignment Problem

and the Hypervolume Approximation
Using Polar Coordinates (MOEA-LAPCO)

Diana Cristina Valencia-Rodríguez(B) and Carlos Artemio Coello Coello

Department of Computer Science, CINVESTAV-IPN, Av. IPN 2508, San Pedro
Zacatenco, 07360 Mexico City, Mexico

diana.valencia@cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. Hungarian Differential Evolution (HDE) is a Multi-
Objective Evolutionary Algorithm that transforms its selection process
into a Linear Assignment Problem (LAP). In a LAP, we want to assign
n agents to n tasks, where assigning an agent to a task corresponds
to a cost. Thus, the aim is to minimize the overall assignment cost. It
has been shown that HDE is competitive with respect to state-of-the-
art algorithms. However, in this work, we identify two drawbacks in its
selection process: it sometimes selects duplicated solutions and occa-
sionally prefers weakly-dominated solutions over non-dominated ones.
In this work, we propose an algorithm that tries to fix these drawbacks
using the hypervolume indicator. However, since the computation of
the hypervolume indicator is expensive, we adopted an approximation
that uses a polar coordinates transformation. The resulting algorithm
is called “Multi-Objective Evolutionary Algorithm Based on the Linear
Assignment Problem and the Hypervolume Approximation using Polar
Coordinates (MOEA-LAPCO).” Our experimental results show that our
proposed MOEA-LAPCO outperforms the original HDE, and it is com-
petitive with state-of-the-art algorithms.

Keywords: Multi-objective optimization · Linear assignment
problem · Hypervolume approximation

1 Introduction

Multi-objective Optimization Problems (MOPs) are types of problems where we
want to optimize two or more objectives, usually in conflict (i.e., the improve-
ment of one objective causes the deterioration of another objective). Its formal
definition is the following (assuming a minimization problem):

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 221–233, 2022.
https://doi.org/10.1007/978-3-031-14721-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_16&domain=pdf
http://orcid.org/0000-0002-2351-7673
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-031-14721-0_16

222 D. C. Valencia-Rodríguez and C. A. Coello Coello

minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)
s.t. gi(x) ≤ 0 i = 1, 2, . . . ,m; hi(x) = 0 i = 1, 2, . . . , p (2)

where x = [x1, x2, . . . , xn]
T is the vector of decision variables, fi : IRn → IR,

i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions. In MOPs, we usually adopt the concept
of Pareto Dominance to give a partial order to the solutions. It is said that a
vector x ∈ IRn dominates a vector y ∈ IRn (denoted as x ≺ y), if fi(x) ≤ fi(y)
for all i = 1, . . . , k, and ∃j such that fj(x) < fj(y). Moreover, a vector x ∈ IRn

is called Pareto optimal, if there is no vector y ∈ IRn such that y ≺ x. Therefore,
we aim to find the set of Pareto optimal solutions (called Pareto Optimal set)
and its corresponding image (called Pareto Optimal Front).

An algorithm designed to solve MOPs is the so-called Hungarian Differential
Evolution (HDE). The core idea of this algorithm is to transform its selection
process into a Linear Assignment Problem (LAP). It has been shown that HDE
is very competitive with state-of-the-art algorithms [8,9]. However, we identified
two main drawbacks in its selection process: it may select duplicated solutions
and occasionally prefers weakly-dominated solutions1 over non-dominated ones.

On the other hand, the hypervolume indicator is a popular choice within
evolutionary multi-objective optimization due to its compatibility with Pareto
dominance. Nevertheless, its computation becomes expensive as the number of
objectives increases. For this purpose, Deng and Zhang [4] proposed a novel way
to approximate the hypervolume indicator using a polar coordinates transfor-
mation to reduce the computational cost.

In this work, we propose a new algorithm that tries to overcome de disadvan-
tages of the HDE’s selection process using the approximation of the hypervolume
indicator based on polar coordinates. This gives rise to the “Multi-Objective Evo-
lutionary Algorithm Based on the Linear Assignment Problem and the Hyper-
volume Approximation using Polar Coordinates” (MOEA-LAPCO). Our exper-
imental analysis shows that this algorithm outperforms the original HDE and is
competitive with respect to state-of-the-art algorithms.

The remainder of this paper is organized in the following way. First, we
explain the preliminary information in Sects. 2 and 3. Then, in Sect. 4, we intro-
duce our proposed approach. After that, we show our experimental analysis in
Sect. 5. Finally, we present our conclusions and some possible paths for future
research in Sect. 6.

2 Approximating the Hypervolume Contribution Using
Polar Coordinates

The hypervolume indicator (denoted by IH) measures the size of the objective
space covered by a set given a reference point. Let A ⊂ IRk and zu ∈ IRk be a

1 A solution x is said to weakly dominate y (denoted as x � y) if fi(x) ≤ fi(y) for
all i = 1, . . . , k.

MOEA-LAPCO 223

reference point dominated by every point in A. Therefore, the IH of A and zu

can be written as [4]:

IH(A,zu) =
∫

D

IΩ(z)dz (3)

where zl = (zl
1, ..., z

l
k)

T s.t. zl
i = min{yi | y = (y1, ..., yk)T ∈ A}, D = {z ∈

IRk | zl ≺ z ≺ zu}, Ω = {z ∈ IRk | ∃y ∈ A such that y ≺ z ≺ zu} and IΩ(z)
is the characteristic function of Ω. Moreover, the hypervolume contribution of
a vector y ∈ A considering A and zu is defined as V (y, A,zu) = IH(A,zu) −
IH(A\{y},zu).

The computational cost of the hypervolume is prohibitive when the number of
objectives is bigger than six. To deal with this problem, Deng and Zhang [4] pro-
posed a new method to approximate the hypervolume using polar coordinates.
Their idea is to express the hypervolume (displayed in (3)) as a (k − 1) − D
integral using the polar coordinate system. Deng and Zhang proposed different
methods to approximate the hypervolume contribution using the polar coordi-
nates transformation. In this work, we selected the most stable method according
to the experimental results in [4].

Let A ⊂ IRk and zu ∈ IRk be a reference point dominated by every point
in A. To compute the hypervolume contribution, this method first generates n
uniformly distributed points {θ(1), . . . ,θ(n)} on the (k−1)−D unit sphere in Rm

+

using the Unit Normal Vector Approach. Therefore, each point θi is generated
as follows:

θ(i) =
| x |

|| x ||2 where x ∼ N (0, Ik). (4)

In addition, a matrix M is constructed, whose (i,j)-entry is the jth largest
value in {lȳ (θ(i)) | ȳ ∈ A} where

lȳ (θ) = min
1≤m≤k

(1/θm)(zu
m − ȳm). (5)

Finally, the contribution V (y, A,zu) is approximated using the following
expression:

Ṽ (y, A,zu) =
Φ

2k

1
kn

n∑
i=1

{
Mk

i1 − Mk
i2 if ly (θ(i)) = Mi1

0, otherwise,
(6)

where Φ = [2π(k/2)/Γ (k/2)] is the area of the (k − 1) − D unit sphere and
Γ (x) =

∫ ∞
0

zx−1e−zdz is the analytic continuation of the factorial function.

3 Hungarian Differential Evolution

The core idea of HDE is to transform the selection process of a Multi-Objective
Evolutionary Algorithm into a LAP. In a LAP, we have to assign n agents to n

224 D. C. Valencia-Rodríguez and C. A. Coello Coello

tasks. Assigning an agent i to a task j implies a cost cij . Therefore, the aim is to
find the assignment with minimal cost. Formally, a LAP can be modeled as [1]:

min
x∈χ

n∑
i=1

n∑
j=1

cijXij (7)

s.t.

n∑
j=1

Xi,j = 1 (i = 1, 2, . . . , n), (8)

n∑
i=1

Xij = 1 (j = 1, 2, . . . , n), (9)

Xij ∈ {0, 1} (i, j = 1, 2, . . . , n) (10)

where χ = (Xij) is a binary matrix such that Xij = 1 if i is assigned to column
j; otherwise, Xij = 0. The most common way to solve the LAP is by using
the so-called Hungarian Algorithm, which has a computational complexity of
O(n3) [9].

In the case of HDE’s selection process, we have a set of individuals (the par-
ents and their offspring) and a set of weight vectors that represent the Pareto
Front. The cost of assigning an individual to a weight vector measures how
suited this individual is to the part of the Pareto Front that the vector repre-
sents. Hence, we can identify which individuals better characterize the Pareto
Front (i.e., we can identify the best individuals in the population) by finding the
assignment with minimal cost.

The assignment cost can be computed using a scalarizing function (though
other methods can also be adopted [7]). Therefore, the cost of assigning the
weight vector wi to individual xj is defined as follows:

cij = u(f̃(xj),wi) i = 1, . . . , n, j = 1, . . . , 2n (11)

where u is the scalarizing function, 2n is the size of the population consider-
ing parents and offspring, n the number of weight vectors, and f̃(xj) is the
normalized objective vector. This vector is defined as:

f̃(xj) = [f̃1(xj), . . . , f̃k(xj)] (12)

s.t. f̃i(xj) =
fi(xj) − zmin

i

zmax
i − zmin

i

, i = 1, . . . , k (13)

zmin
i = min

l=1,...,2n
fi(xl), i = 1, . . . , k (14)

zmax
i = max

l=1,...,2n
fi(xl), i = 1, . . . , k (15)

where fi(xj) is the ith function value of the jth solution. We used in this work the
Hungarian algorithm to solve the LAP in which 2n must be equal to n. Hence,
we added dummy costs (where cij = 0 for i = n + 1, . . . , 2n and j = 1, . . . , 2n)
to match the values, as recommended in [1].

MOEA-LAPCO 225

HDE works as follows. First, the algorithm generates the initial population
and evaluates it. After that, it generates n weight vectors using the Uniform
Design with Hammersley’s method (UDH) [9]. Then, during a predefined num-
ber of generations, it generates the offspring from the current population using
Differential Evolution (DE) and evaluates them. After that, the old and the
new population are normalized using Eqs. (12) to (15). Then, the assignment
costs are computed using the Tchebycheff function [11]. With these costs, the
LAP is constructed, and the best assignment is obtained employing the Hungar-
ian algorithm. Finally, the assigned individuals are selected to become the next
generation.

3.1 Drawbacks of HDE’s Selection Process

In spite of the excellent performance of HDE in comparison with other algo-
rithms, we identified two drawbacks in its selection process. The first one is that
the process sometimes can select duplicated individuals. This problem arises
because the assignment costs are the same for repeated solutions since the same
value is evaluated in the scalarizing function. Therefore, if these solutions are
the best in different weight vectors, the Hungarian Algorithm will prefer them.

For example, we want to select two elements from a set of four individu-
als such that x1 = x2, f(x1) = [1, 2]T , f(x2) = [1, 2]T , f(x3) = [4, 3]T , and
f(x4) = [2, 5]T . Moreover, suppose we have the following two weight vectors:
w1 = [1, 0]T and w2 = [0, 1]T . Accordingly, their assignment costs using the
Tchebycheff function [11] are displayed in Table 1. We can observe that individ-
uals 1 and 2 have the best assignment costs for all the weight vectors. Hence,
the Hungarian algorithm will assign either w1 to x1 and w2 to x2 or vice versa.

Table 1. Example of a case where the Hungarian algorithm selects duplicated solu-
tions. The individuals x1 and x2 have the same value and the best assignment cost
(highlighted in gray). Therefore, the solutions will be assigned and selected by HDE.

Weight Individual
1 2 3 4

1 0 0 1 1
3

2 0 0 1
3

1

The second drawback is that the HDE occasionally prefers weakly-dominated
solutions over non-dominated ones. To illustrate this fact, we executed HDE
over 100 generations with a population size of 120 individuals, using the WFG7
problem [5]. Figure 1 displays, for each generation, the number of non-dominated
solutions available in the population of parents and their offspring. Moreover, it
shows the number of weakly dominated solutions selected by the HDE. We can
see in Fig. 1 that even though, on some occasions, there are more than 120 non-
dominated solutions available, HDE still selects 20 or more weakly dominated

226 D. C. Valencia-Rodríguez and C. A. Coello Coello

solutions. Therefore, HDE, in some cases, prefers weakly-dominated solutions
over non-dominated ones. We believe that this phenomenon is produced because
the scalarizing functions generate at least weakly Pareto solutions [10].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 s

ol
ut

io
ns

Number of generations

Available non-dominated sols
Selected weakly-dominated sols

Fig. 1. Execution of the HDE during 100 generations using the WFG7 problem.
Squares represent the number of available non-dominated solutions, and circles rep-
resent the number of selected weakly-dominated solutions.

4 Our Proposed Approach

This section presents an algorithm that tries to overcome the disadvantages pre-
sented above: the Multi-Objective Evolutionary Algorithm Based on the Linear
Assignment Problem and the Hypervolume Approximation using Polar Coor-
dinates (MOEA-LAPCO). In the following sections, we will explain the main
modules of the MOEA-LAPCO.

4.1 Selection Process

The selection process of MOEA-LAPCO is summarized in Algorithm 1. Its core
idea is to split the selection process into two phases. Let p ∈ IR, such that 0 ≤ p ≤
50. The first phase is to discard the p percentage of the parents and their offspring
population using the LAP transformation. Then, the second phase is to discard
the other 50 − p percentage of the population employing the approximation of
the hypervolume using polar coordinates. The second phase aims to reduce the
number of selected weakly-dominated solutions.

We have to take some considerations before applying the mechanism above.
Let A ⊂ IRk and λ ∈ IR+, then the reference point for the hypervolume contri-
bution is defined as zu = λz, where all the solutions in A dominate zu and z is
computed in the following way:

z = [z1, . . . , zk] s.t. zj = max
i=1,...,|A|

fj(xi), j = 1, . . . , k (16)

MOEA-LAPCO 227

Algorithm 1. Select_individuals
Require: Set of weight vectors (w1), set of weight vectors (w2), population (Q), uni-

formly distributed points (θ), population size (npop), reference point factor (λ),
number of objectives (k)

1: ND ← Obtain the non-dominated solutions from Q
2: zm ax = [zmax

1 , . . . , zmax
k] s.t. zmax

j = maxx∈ND fj(x), j = {1, . . . , k}
3: zm in = [zmin

1 , . . . , zmin
k] s.t. zmin

j = minx∈ND fj(x), j = {1, . . . , k}
4: Q′ ← Normalize the objective functions of Q employing (12) and (13) using the

above zm ax and zm in limits
5: if |Q′| ≤ npop then
6: C ← Compute the assignment cost using Q′ and w1

7: I ← Obtain the best assignment in C using the Hungarian algorithm
8: else
9: C ← Compute the assignment cost using Q′ and w2

10: IH ← Obtain the best assignment in C using the Hungarian algorithm
11: IND ← Obtain the indices of the non-dominated solutions from A := {xi |

IH [i] = 1, xi ∈ Q′}
12: nd_size ← |{xi | IND[i] = 1, xi ∈ Q′}|
13: if nd_size < npop then
14: I ← Prune_population_with_polar_coordinates(Q′, IH , θ, λ, k)
15: else
16: I ← Prune_population_with_polar_coordinates(Q′, IND, θ, λ, k)
17: end if
18: end if
19: P ← {xi | I[i] = 1, xi ∈ Q}
20: return P

We observe that the approximation of the hypervolume contribution using
polar coordinates is extremely sensitive to the reference point adopted (as
pointed out by Deng and Zhang [4]). In particular, we observe that the algo-
rithm’s distribution was poor when dominated solutions were considered for
computing the point z. Therefore, in the selection process, we first compute
the non-dominated solutions on the parents and their offspring population (see
line 1). If the number of non-dominated solutions is less than npop, we only
employ the LAP transformation to select the individuals for the next generation
(see lines 5 to 7). Otherwise, we discard the p percentage of the population using
the LAP transformation and discard the remaining individuals using the polar-
coordinate approximation of the hypervolume contribution (see lines 8 to 18).

As we mentioned before, the LAP transformation occasionally prefers weakly-
dominated solutions over non-dominated ones. Hence, it could happen that
even if we have enough non-dominated solutions available, the algorithm
returns weakly-dominated solutions. Therefore, we compute the number of non-
dominated solutions returned by the LAP before initiating the polar-coordinate
discarding process (see line 11). If the number of non-dominated solutions is less
than npop, the pruning process will be carried out over the solutions provided
by the LAP. Otherwise, the pruning process will be performed over the selected

228 D. C. Valencia-Rodríguez and C. A. Coello Coello

non-dominated solutions, and the remaining solutions will be discarded. We
assume that the duplicated solutions are dominated (except for the first solution
to appear). Consequently, the algorithm also removes the duplicated solutions
in this phase, decreasing the appearance of these solutions. The last steps are
performed in lines 12 to 17.

On the other hand, we changed the normalization limits adopted in HDE (see
lines 2 to 4). Instead of obtaining the maximum and minimum values from the
whole population, we only consider the non-dominated solutions of the popula-
tion. Moreover, the normalization is performed using these limits in the original
Eqs. (12) and (13).

4.2 Population to Be Pruned

The computational cost of approximating the hypervolume contribution using
polar coordinates can be expensive if we do not make some considerations. First,
the set θ does not depend on the population to prune and, therefore, it can
be the same for all generations. Hence, we compute this set at the beginning
of the MOEA-LAPCO algorithm. Second, the values ly (θ(i)) do not change
when a solution is removed. The only information that changes is the Matrix
ranking. Therefore, at the beginning of the pruning procedure, we compute the
ly (θ(i))k values and store them in a matrix M . We raise the ly (θ(i)) values to
the power k because it does not affect the contribution order and avoids further
computational cost. Furthermore, we obtain the indices that sort in descending
order of each row of M . The above procedure is displayed in Algorithm 2.

Employing these considerations, the hypervolume contribution can be easily
computed (this procedure is displayed in Algorithm 3). First, we initialize the
array C of contributions with zeros. Then, we find the best and second-best
solution indices for each ith-point in θ. Since we have the matrix IM , we only
have to go through the list IM [i] to find the first two still selected individuals
(see lines 3 and 4). After that, we can obtain the best and second-best elements
from M and compute their difference (see lines 5 and 6). Then, we go through
the IM [i] list starting from the index of the best individual, add the difference
to the currently selected individuals, and stop when the value M [i][IM [j]] is
different from the best individual (see lines 7 to 18). At the end of the iterations,
we multiply the contributions by Φ

2k
1

kn as in Eq. (6).
Finally, the pruning procedure is displayed in Algorithm 4. The first step

is to obtain the reference point from the currently selected individuals. Then,
we compute and sort the matrix M using Algorithm 2. Then, we compute the
contribution of each individual in the population using Algorithm 3 and remove
the one with less contribution. We make the above procedure until the population
size is equal to npop.

4.3 The Final Algorithm: MOEA-LAPCO

Algorithm 5 summarizes the behavior of MOEA-LAPCO. First, the two sets of
weight vectors (w1 and w2) are generated using the UDH method. The set w1 is

MOEA-LAPCO 229

Algorithm 2. Compute_and_sort_M
Require: Normalized objective vectors (Q′), number of elements in Q′ (m), list that

handles currently selected solutions (IS), uniformly distributed points (θ), number
of points in θ (n), reference point (zu), number of objectives (k)

1: Initialize matrix M of size n × m with zeros
2: Initialize matrix IS of size n × m with zeros
3: for i = 1 to n do
4: cim ← 0
5: for j = 1 to m do
6: if IS [j] = 1 then
7: ȳ ← Q′[j]
8: lȳ(θ

(i)) ← min1≤l≤k(1/θ
(i)
l)(zu

l − ȳl)
9: M [i][j] = (lȳ(θ

(i)))k

10: cim ← cim + 1
11: IM [i][cim] = j
12: end if
13: end for
14: Sort the first cim elements of IM [i] in descending order such that

IM [i][x] is bigger than IM [i][y] when M [i][IM [i][x]] > M [i][IM [i][y]].
15: end for
16: return M , IM , cim

used when only the LAP transformation is applied, and the set w2 is used when
the two-phase selection is performed. Therefore, the size of w2 depends on the
parameter p and is calculated as |w2| = p∗npop∗2

100 . Then, the set θ of uniformly dis-
tributed points are generated using Eq. (4). Afterwards, the algorithm continues
as the usual MOEAs. The population is generated and evaluated. Then, while
a maximum number of evaluations is not reached, a new population is gener-
ated from the old one using variation operators. We decided to use the Simulated
Binary Crossover (SBX) and the Polynomial-based Mutation (PM) [2] operators.
Finally, we select the best individuals with our method adopting the population
of parents and their offspring.

5 Experimental Analysis

We evaluated the performance of MOEA-LAPCO with respect to state-of-the-
art algorithms. For this purpose, we performed 30 independent runs of HDE [9]
comparing DE, HDE with SBX and PM, MOEA/DD [6], NSGA-III [3], and our
proposed algorithm. We adopted the WFG1-WFG9 problems from the WFG
test suite using 3, 5, 8, and 10 objectives. The position-related parameters were
set to m = 2× (k − 1) where k is the number of objectives, the distance-related
parameters were set to l = 20, and the number of variables to n = m+ l. Finally,
we used the hypervolume indicator for the performance assessment.

Regarding the variation operators, SBX and PM were set to pc = 0.9,
pm = 1/(number of variables), nc = 20 and nm = 20. Furthermore, we set

230 D. C. Valencia-Rodríguez and C. A. Coello Coello

Algorithm 3. Compute_contribution
Require: matrix (M), indices that sort the solutions in M (IM), cols of IM (cIM), list

that handles currently selected solutions (IS), number of objectives (k), number of
rows in M (r), number of cols in M (c)

1: C ←Initialize array of size c with zeros
2: for i = 1 to r do
3: jbest ← minj=1,...,cIM j s.t. IS [IM [i][j]] = 1
4: jsbest ← minj=1,...,cIM j s.t. IS [IM [i][j]] = 1 ∧ j! = jbest
5: best ← M [i][IM [i][jbest]]
6: diff ← best − M [i][IM [i][jsbest]]
7: j ← jbest
8: while j < c do
9: idx ← IM [j]

10: if best = M [i][idx] then
11: if IS [idx] = 1 then
12: C[idx] = C[idx] + diff
13: end if
14: else
15: break
16: end if
17: j ← j + 1
18: end while
19: end for
20: for j = 1 to c do
21: C[j] = Φ

2k
1

kn
∗ C[j]

22: end for
23: return C

Algorithm 4. Prune_population_with_polar_coordinates
Require: Normalized objective vectors (Q′), list that handles currently selected solu-

tions (IS), uniformly distributed points (θ), reference point factor(λ), number of
objectives (k)

1: z ← Find the maximum value of each objective from A := {xi | IS [i] = 1, xi ∈ Q′}
2: zu ← λ ∗ z
3: rM ← |θ|
4: cM ← |Q′|
5: M, IM , cIM ← Compute_and_sort_M(Q′, cM , IS , θ, rM , zu , k)
6: num_sel = cIM

7: while num_sel > npop do
8: C ← Compute_contribution(M , IM , cIM , IS , k, rM , cM)
9: idx ← argmini=1,··· ,cM C[i] s.t. IS [i] = 1

10: IS [idx] = 0
11: num_sel = num_sel − 1
12: end while
13: return IS

MOEA-LAPCO 231

Algorithm 5. MOEA-LAPCO
Require: Multi-objective problem, population size (npop), number of uniformly dis-

tributed points (nhv), maximum number of evaluations, variation operators’ param-
eters, reference point factor (λ), percentage of solutions to be discarded using the
LAP transformation (p)

Ensure: P
1: w1 ← Generate npop weights vectors using UDH
2: w2 ← Generate p∗npop∗2

100
weights vectors using UDH

3: θ ← Generate nhv uniformly distributed points using Eq. (4)
4: Generate initial population P
5: Evaluate population P
6: while the maximum number of evaluations is not reached do
7: P ′ ← Generate from P the new population using variation operators
8: Evaluate population P ′

9: Q ← P ∪ P ′

10: P ← Select_individuals(w1, w2, Q, θ, npop, λ, p)
11: end while
12: return P

the parameters of DE to F = 1.0 and Cr = 0.4. In the case of the weight vectors
of the MOEA/DD and NSGA-III, we used Das and Dennis’ approach with the
two-layer technique adopted in the NSGA-III for more than five objectives [3].
Concerning the MOEA/DD’s parameters, we set T = 20, δ = 0.9, and we used
the PBI scalarizing function with θ = 5. In the case of MOEA-LAPCO, we
set nhv = 10000, δ = 1.5, and p = 50. Furthermore, we used the Augmented
Achievement Scalarizing Function (AASF) [10] with α = 0.0001 in both versions
of HDE and in the MOEA-LAPCO. Considering the parameters for all the algo-
rithms, we used a population size of 120 for three objectives, 210 for five, 156
for eight, and 276 for ten. In the case of the maximum number of evaluations,
we used the population size times 1000 in all the objectives.

Table 2 shows the average and the standard deviation of the hypervolume’s
values over 30 generations of each algorithm. The best averages are highlighted
in dark gray, and the second-bests are highlighted in light gray. Moreover, the
symbol “*” indicates that the algorithm is statistically better than the others
employing the Wilcoxon rank-sum test with a significance level of 5%. We can
observe that MOEA-LAPCO is better than HDE with DE and SBX+PM in
almost all the problems, indicating that the new mechanism improves the original
versions. On the other hand, the MOEA-LAPCO is better than all the algorithms
in 20 out of 36 problems. Remarkably, it is the best in problems WFG3, WFG5,
WFG6, WFG8, and WFG9 using 3, 5, and 8 objectives. Moreover, it is the best in
the WFG4 and WFG7 problems using 3 and 5 objectives. However, we can notice
that it is not the best in any of the problems with ten objectives, suggesting
that the algorithm’s performance degrades with more than eight objectives. We
believe that this happens because the reference point selection mechanism is not
good enough for many-objective problems.

232 D. C. Valencia-Rodríguez and C. A. Coello Coello

Table 2. Average and standard deviation of the hypervolume indicator over 30 gen-
erations of MOEA-LAPCO and state-of-the-art algorithms. The best values are high-
lighted in dark gray, and the second-best values in light gray. The symbol “*” indicates
that the algorithm is statistically better than the others.

k HDE_DE HDE_SBX+PM MOEA-LAPCO MOEA/DD NSGA-III

WFG1

3 8.031e−1 (9.0e−3) 8.963e−1 (2.2e−2) 9.214e−1 (2.5e−2) *1.218e+0 (3.2e−2) 7.749e−1 (3.7e−2)
5 9.095e−1 (9.5e−3) 1.103e+0 (1.6e−2) 1.157e+0 (1.5e−2) *1.454e+0 (5.4e−2) 8.978e−1 (3.5e−2)
8 1.245e+0 (1.7e−2) 1.691e+0 (2.7e−2) 1.746e+0 (1.8e−2) *1.915e+0 (1.1e−1) 1.384e+0 (1.1e−1)
10 1.446e+0 (1.8e−2) 2.029e+0 (2.2e−2) 2.077e+0 (2.7e−2) *2.297e+0 (1.1e−1) 1.958e+0 (1.5e−1)

WFG2

3 1.234e+0 (2.9e−3) 1.189e+0 (8.7e−2) *1.194e+0 (8.8e−2) 1.168e+0 (8.9e−2) 1.153e+0 (8.9e−2)
5 1.548e+0 (4.2e−3) 1.572e+0 (6.9e−2) *1.586e+0 (7.1e−2) 1.537e+0 (6.6e−2) 1.523e+0 (8.2e−2)
8 *2.134e+0 (1.8e−2) 1.977e+0 (1.7e−1) 2.065e+0 (1.2e−1) 1.957e+0 (9.9e−2) 1.939e+0 (1.5e−1)
10 *2.591e+0 (1.2e−3) 2.525e+0 (1.3e−1) 2.546e+0 (2.5e−2) 2.292e+0 (3.2e−2) 2.428e+0 (1.1e−1)

WFG3

3 9.105e−1 (3.9e−3) 9.387e−1 (2.1e−3) *9.466e−1 (1.5e−3) 8.932e−1 (6.0e−3) 9.014e−1 (5.4e−3)
5 1.109e+0 (5.9e−3) 1.163e+0 (6.5e−3) *1.186e+0 (6.0e−3) 1.039e+0 (9.5e−3) 1.059e+0 (1.1e−2)
8 1.426e+0 (7.7e−3) 1.457e+0 (1.2e−2) *1.494e+0 (2.3e−2) 1.16e+0 (2.2e−2) 1.263e+0 (2.6e−2)
10 1.694e+0 (8.5e−3) *1.724e+0 (1.1e−2) 1.703e+0 (3.1e−2) 1.279e+0 (2.0e−2) 1.576e+0 (2.8e−2)

WFG4

3 7.303e−1 (3.9e−3) 7.79e−1 (2.1e−3) *7.983e−1 (9.6e−4) 7.784e−1 (1.6e−3) 7.565e−1 (3.0e−3)
5 1.191e+0 (6.3e−3) 1.267e+0 (3.7e−3) *1.334e+0 (2.4e−3) 1.286e+0 (4.3e−3) 1.210e+0 (8.7e−3)
8 1.706e+0 (1.5e−2) 1.468e+0 (1.1e−1) 1.54e+0 (4.2e−2) *1.736e+0 (2.5e−2) 1.595e+0 (4.1e−2)
10 *2.180e+0 (1.6e−2) 1.972e+0 (9.3e−2) 1.893e+0 (3.6e−2) 2.097e+0 (4.1e−2) 1.959e+0 (3.8e−2)

WFG5

3 7.368e−1 (2.3e−3) 7.419e−1 (4.7e−3) *7.667e−1 (3.2e−3) 7.434e−1 (3.8e−3) 7.321e−1 (5.1e−3)
5 1.251e+0 (3.2e−3) 1.237e+0 (3.4e−3) *1.319e+0 (2.8e−3) 1.258e+0 (3.8e−3) 1.228e+0 (5.3e−3)
8 1.443e+0 (2.4e−1) 1.640e+0 (1.1e−1) *1.853e+0 (9.4e−2) 1.681e+0 (2.8e−2) 1.726e+0 (2.5e−2)
10 1.821e+0 (2.1e−2) 1.964e+0 (3.3e−2) 1.845e+0 (5.7e−2) 2.046e+0 (4.3e−2) *2.137e+0 (2.6e−2)

WFG6

3 7.056e−1 (6.9e−4) 7.59e−1 (6.4e−3) *7.783e−1 (5.7e−3) 7.541e−1 (6.2e−3) 7.377e−1 (8.4e−3)
5 1.206e+0 (1.4e−3) 1.25e+0 (9.5e−3) *1.314e+0 (8.7e−3) 1.254e+0 (1.1e−2) 1.217e+0 (1.2e−2)
8 1.802e+0 (2.6e−3) 1.790e+0 (2.5e−2) *1.934e+0 (3.1e−2) 1.765e+0 (2.8e−2) 1.737e+0 (3.5e−2)
10 *2.285e+0 (1.4e−3) 2.068e+0 (5.5e−2) 2.143e+0 (9.4e−2) 2.140e+0 (3.9e−2) 2.172e+0 (3.4e−2)

WFG7

3 7.507e−1 (2.2e−3) 7.711e−1 (1.1e−3) *7.886e−1 (5.7e−4) 7.727e−1 (1.3e−3) 7.599e−1 (2.7e−3)
5 1.207e+0 (6.1e−3) 1.266e+0 (3.3e−3) *1.336e+0 (1.3e−3) 1.299e+0 (3.6e−3) 1.245e+0 (1.1e−2)
8 1.747e+0 (1.9e−2) 1.542e+0 (9.3e−2) 1.764e+0 (1.6e−1) *1.867e+0 (1.3e−2) 1.709e+0 (3.5e−2)
10 2.242e+0 (1.6e−2) 2.08e+0 (5.4e−2) 1.95e+0 (8.e−2) *2.263e+0 (1.7e−1) 2.169e+0 (3.4e−2)

WFG8

3 8.525e−1 (4.8e−3) 8.979e−1 (2.1e−3) *9.195e−1 (1.3e−3) 9.007e−1 (2.1e−3) 8.717e−1 (5.3e−3)
5 1.140e+0 (7.1e−3) 1.33e+0 (1.2e−2) *1.375e+0 (2.e−2) 1.268e+0 (1.2e−2) 1.175e+0 (9.2e−3)
8 1.598e+0 (1.8e−2) 1.596e+0 (8.1e−2) *1.874e+0 (9.5e−2) 1.755e+0 (6.4e−2) 1.528e+0 (3.3e−2)
10 2.116e+0 (1.3e−2) 1.988e+0 (4.3e−2) 1.990e+0 (7.4e−2) *2.216e+0 (6.1e−2) 1.951e+0 (4.6e−2)

WFG9

3 8.626e−1 (1.5e−3) 8.847e−1 (3.2e−2) *9.303e−1 (3.e−2) 8.965e−1 (3.0e−2) 8.768e−1 (2.e−2)
5 1.184e+0 (2.7e−3) 1.169e+0 (4.3e−3) 1.211e+0 (2.3e−3) 1.203e+0 (2.9e−2) 1.167e+0 (1.4e−2)
8 1.804e+0 (9.9e−3) 1.782e+0 (4.4e−2) *1.844e+0 (7.0e−2) 1.634e+0 (8.9e−2) 1.68e+0 (5.9e−2)
10 *2.207e+0 (1.1e−2) 2.108e+0 (5.7e−2) 2.010e+0 (7.0e−2) 1.935e+0 (8.6e−2) 2.075e+0 (4.6e−2)

6 Conclusions and Future Work

In this work, we proposed a new algorithm called “Multi-Objective Evolution-
ary Algorithm Based on the Linear Assignment Problem and the Hypervolume
Approximation using Polar Coordinates” (MOEA-LAPCO). The core idea of the
MOEA-LAPCO is to overcome the disadvantages of the HDE selection process
by employing an approximation of the hypervolume contribution using Polar
Coordinates. Our experimental analysis showed that the algorithm improves the
performance of HDE and is competitive with respect to state-of-the-art algo-
rithms. However, the MOEA-LAPCO’s performance deteriorates when more

MOEA-LAPCO 233

than eight objectives are used. As part of our future work, we would like to
analyze the reason for the deterioration by analyzing the impact of the reference
point in the performance of the MOEA-LAPCO when the number of objectives
increases.

Acknowledgements. The first author acknowledges support from CINVESTAV-IPN
and CONACyT to pursue graduate studies in computer science. The second author
acknowledges support from CONACyT grant no. 1920.

References

1. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems, Revised
Reprint. Other Titles in Applied Mathematics, Society for Industrial and Applied
Mathematics (SIAM) (2012)

2. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9(2), 115–148 (1995)

3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://
doi.org/10.1109/TEVC.2013.2281535

4. Deng, J., Zhang, Q.: Approximating hypervolume and hypervolume contributions
using polar coordinate. IEEE Trans. Evol. Comput. 23(5), 913–918 (2019). https://
doi.org/10.1109/TEVC.2019.2895108

5. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4_20

6. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimiza-
tion algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput.
19(5), 694–716 (2015). https://doi.org/10.1109/TEVC.2014.2373386

7. Manoatl Lopez, E., Coello Coello, C.A.: IGD+-EMOA: a multi-objective evolu-
tionary algorithm based on IGD+. In: 2016 IEEE Congress on Evolutionary Com-
putation (CEC’2016), pp. 999–1006. IEEE Press, Vancouver, Canada, 24–29 July
2016. https://doi.org/10.1109/CEC.2016.7743898, ISBN 978-1-5090-0623-9

8. Miguel Antonio, L., Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary
many-objective optimization based on linear assignment problem transformations.
Soft. Comput. 22(16), 5491–5512 (2018)

9. Molinet Berenguer, J.A., Coello Coello, C.A.: Evolutionary many-objective opti-
mization based on Kuhn-Munkres’ algorithm. In: Gaspar-Cunha, A., Henggeler
Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 3–17. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_1

10. Pescador-Rojas, M., Hernández Gómez, R., Montero, E., Rojas-Morales, N., Riff,
M.C., Coello Coello, C.A.: An overview of weighted and unconstrained scalarizing
functions. In: Trautmann, H., et al. (eds.) Evolutionary Multi-criterion Optimiza-
tion, 9th International Conference, Münster, Germany, 19–22 March 2017, EMO
2017. LNCS, vol. 10173, pp. 499–513. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54157-0_34, ISBN 978-3-319-54156-3

11. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.
org/10.1109/TEVC.2007.892759

https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/TEVC.2019.2895108
https://doi.org/10.1109/TEVC.2019.2895108
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1007/978-3-540-31880-4_20
https://doi.org/10.1109/TEVC.2014.2373386
https://doi.org/10.1109/CEC.2016.7743898
https://doi.org/10.1007/978-3-319-15892-1_1
https://doi.org/10.1007/978-3-319-54157-0_34
https://doi.org/10.1007/978-3-319-54157-0_34
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759

New Solution Creation Operator
in MOEA/D for Faster Convergence

Longcan Chen, Lie Meng Pang, and Hisao Ishibuchi(B)

Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China
11813009@mail.sustech.edu.cn, {panglm,hisao}@sustech.edu.cn

Abstract. This paper introduces a novel solution generation strategy
for MOEA/D. MOEA/D decomposes a multi/many-objective optimiza-
tion problem into several single-objective sub-problems using a set of
weight vectors and a scalarizing function. When a better solution is gen-
erated for one sub-problem, it is likely that a further better solution
will appear in the improving direction. Examination of such a promising
solution may improve the convergence speed of MOEA/D. Our idea is to
use the improved directions in the current and previous populations to
generate new solutions in addition to the standard genetic operators. To
assess the usefulness of the proposed idea, we integrate it into MOEA/D-
PBI and use a distance minimization problem to visually examine its
behavior. Furthermore, the proposed idea is evaluated on some large-
scale multi-objective optimization problems. It is demonstrated that the
proposed idea drastically improves the convergence ability of MOEA/D.

Keywords: Evolutionary multi-objective optimization · Large-scale
multi-objective optimization · MOEA/D · Solution generation strategy

1 Introduction

Many real-world applications involve multi-objective optimization problems that
have conflicting objectives [1]. Without loss of generality, multi-objective opti-
mization problems can be represented as follows:

Minimize f (x) = (f1(x), f2(x), ..., fm(x))T ,

subject to x ∈ Ω
(1)

where x = (x 1,x 2, ...,x d)T is a d -dimensional vector of decision variables,
Ω is the feasible region, and fi(x) is the i -th objective to be minimized
(i = 1, 2, . . . , m). Since the objectives are conflicting with each other, there is
no solution that can optimize all objectives simultaneously. In multi-objective
optimization, the final goal is to find a set of Pareto optimal (PO) solutions.
Population-based approaches are useful for discovering a set of well-distributed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 234–246, 2022.
https://doi.org/10.1007/978-3-031-14721-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_17

New Solution Creation Operator in MOEA/D for Faster Convergence 235

and well-converged solutions [1,2], and evolutionary multi-objective optimization
(EMO) is one of the effective approaches.

MOEA/D [3] is one of the most popular decomposition-based EMO algo-
rithms. MOEA/D uses a set of weight vectors W = (w1,w2, . . . ,w |P |)T (where
|P | is the population size) and a scalarizing function to decompose a multi-
objective optimization problem into a set of single-objective sub-problems. Each
weight vector w i = (w i1 ,w i2 , . . . ,w im)T corresponds to a sub-problem. For a
given sub-problem, the scalarizing function is used to calculate the fitness value
of a solution. Each weight vector w i (i -th weight vector, i = 1, 2, ..., |P |) has
a current solution x i

Current. When an offspring solution x i
New is better than

the current solution x i
Current, x i

Current is replaced with x i
New. Let us denote

the neighborhood of w i by Si and its size by |Si|. In each generation, the cur-
rent solution x i

Current is compared with |Si| offspring solutions (one by one)
generated in the neighborhood Si. Thus, the current solution can be updated
|Si| times in each generation. The current solution is not updated if there are no
better solutions than the current solution.

In MOEA/D, when a better solution is generated for one sub-problem, it
is likely that a further better solution will appear in the improving direction.
Examination of such a promising solution may improve the convergence speed
of MOEA/D. Based on this idea, we use the solutions in the current and pre-
vious generations to generate improving directions for sub-problem. By using
the improving directions, promising solutions can be generated and used for
accelerating the convergence speed of MOEA/D.

The idea of using the information obtained from the current and previous
generations to generate new solutions is not entirely new. In the literature,
many studies focus on online innovization approaches [4–10]. Online innoviza-
tion approaches attempt to learn from the current and previous generations. By
extracting the patterns or relationships among variables in the decision space,
online innovization approaches can accelerate the convergence speed of EMO
algorithms. Mittal et al. [4] proposed a learning-based innovized progress opera-
tor for EMO algorithms. It uses a machine learning (ML) model to capture the
patterns of the variables in the decision space and uses the learned ML model to
improve offspring solutions. Ghosh et al. [5] proposed a method that combines
user-supplied and machine-learnable patterns and rules to accelerate the conver-
gence speed of EMO algorithms. Mittal et al. [6] proposed an innovized repair
operator which uses an ML model to repair the offspring solutions.

In this paper, we propose a solution creation method for MOEA/D by using
the improving move of the current and previous solutions corresponding to each
sub-problem. This paper is organized as follows. In Sect. 2, we explain the pro-
posed strategy and its implementation. Next, we use computational experiments
to demonstrate the usefulness of the proposed strategy in Sect. 3. Finally, we
conclude this paper and give some future research directions in Sect. 4.

236 L. Chen et al.

2 Proposed Strategy and Implementations

In this section, we first explain our idea using a distance minimization problem.
In this problem, as Fig. 1 shows, we need to minimize four objectives, which are
f1: Distance to P1, f2: Distance to P2, f3: Distance to P3, and f4: Distance to
P4. When a better solution (i.e., Offspring 4 in Fig. 1) is generated for a weight
vector w with the current solution x (i.e., the red point in the figure), it is
likely that we will be able to find a further better solution in the improving
direction (i.e., a candidate solution as shown by the yellow circle along the red
line). Examination of such a promising solution may improve the convergence
speed of MOEA/D.

We assume that the current solution is replaced with the candidate solu-
tion in Fig. 1. Then as Fig. 2 shows, we also assume that a better solution (i.e.,
Offspring 5) is found. In this case, we can examine a candidate solution along
the improving direction (e.g., Candidate Solution A on the red line). We can
also generate another Candidate Solution B by considering both the current
improving direction and the previous improving direction.

Fig. 1. Illustration of the proposed idea (use of the moves in the current generation).
(Color figure online)

Fig. 2. Illustration of the proposed idea (use of the moves in the current and previous
generations).

New Solution Creation Operator in MOEA/D for Faster Convergence 237

Fig. 3. Illustration of the proposed idea where the candidate is not better than the
current solution. (Color figure online)

However, the candidate solutions (e.g., the yellow circle) are not always better
than the offspring solution (e.g., the blue circle) as shown in Fig. 3. In this case,
the current solution (e.g., the red circle) is replaced with the offspring solution
(e.g., the blue circle), not with the candidate solution (the yellow circle).

In this paper, we implement this idea for MOEA/D with the penalty-based
boundary intersection (PBI) function (θ = 5) [3]. We propose three different
implementations (i.e., Type1, Type2, and Type3) to generate candidate solu-
tions. Type1 implementation uses the moves of the solution for the current sub-
problem. Type2 implementation uses the moves of the solution for the current
sub-problem and the moves of its neighboring solutions. Type3 implementation
uses the moves of all solutions in the population. Additionally, each implementa-
tion can be further subdivided into two sub-types. The first sub-type considers
only the current improving direction, and the second sub-type considers both
the current and previous improving directions.

It should be noted that in the standard MOEA/D implementation, the initial
population is randomly generated and assigned to each weight vector, which may
affect the performance of the proposed strategy. An example is shown in Fig. 4.
Figure 4 illustrates the improving moves of the current solution x 4 for the weight
vector w4. In the figure, the pink curve is the Pareto front, x 4

Initial is a randomly
generated initial solution, x 4

(2) is the current solution after the 2nd generation
(which is the best solution among the generated |Si| offspring solutions in the
neighborhood during the 2nd generation), and x 4

(3) is the current solution after
the 3rd generation. In many cases, the move from x 4

Initial to x 4
(2) is not a good

direction (the red arrow) while the move from x 4
(2) to x 4

(3) is usually a good
direction (the blue arrow).

The implementation of our strategy in each type is explained in the following.

Type1: Independent Formulation for Each Sub-problem. We denote the
current solution for the weight vector w i at the end of the tth generation by x i(t).
In Type1 implementation, when x i(t) is better than x i(t−1), a new candidate
solution is generated by the proposed strategy with a probability of 0.5. The total

238 L. Chen et al.

Fig. 4. Illustration of the improvement of the current solution x 4 for the weight vector
w4.

move during the tth generation is defined as Δx i(t) = x i(t)−x i(t−1). Since the
improving direction in the second generation is not reliable, Δx i(t) is defined as
Δx i(t) = 0 for t = 2. A new candidate solution (i.e., xCandidate

i) is generated
from x i(t) and Δx i(t) as explained latter in detail. If xCandidate

i is better than
the current solution x i(t), x i(t) is replaced with xCandidate

i . xCandidate
i is also

compared with neighboring solutions. If xCandidate
i is better than a neighboring

solution, the neighboring solution is replaced with xCandidate
i .

When no solution is improved during the tth generation (i.e.,x i(t) =
x i(t−1)), no candidate solution is generated. Even in this case, the current solu-
tion can be updated by a candidate solution generated for a neighboring weight
vector.

Type1-1: Use of the Current Move. In Type1-1 MOEA/D, we only use
the current move to generate candidates. The candidate solution is generated as
xCandidate
i = x i(t) + ηΔx i(t) where η is a non-negative constant parameter.

Type1-2: Use of the Current and Previous Moves. In Type1-2 MOEA/D,
we consider both the current and previous improving directions. The problem
is how to define the previous improving direction since the current solution
was not always improved during the (t−1)th generation. Thus, we define the
previous improving direction using the latest improved generation k before the
tth generation as Δx i(k) = x i(k) − x i(k−1), where generation k is the latest
improved generation (1 < k < t) before the tth generation. If there is no improved
generation before the tth generation, we define Δx i(k) as Δx i(k) = 0. When k =
2, we define Δx i(k) as Δx i(k) = 0 since the initial solution is randomly assigned.
Then, a candidate solution can be generated as xCandidate

i = x i(t) + ηΔx i(t) +
αΔx i(k) where η and α are non-negative constant parameters.

Type1-2*: One Variant of Type1-2. In Type1-2* MOEA/D, a simplified ver-
sion of the definition of the candidate solution is to use the current and previous
moves as xCandidate

i = x i(t) + ηΔx i(t) + αΔx i(t−1). In this variant, the move
in the (t−1)th generation is used even if Δx i(t−1) = 0. In early generations,

New Solution Creation Operator in MOEA/D for Faster Convergence 239

it is likely that the current solution is frequently improved. Thus, this variant
is similar to Type1-2 MOEA/D. However, in late generations, the current solu-
tion is not frequently improved. As a result, this variant is similar to Type1-1
MOEA/D.

Type2: Use of the Moves of Neighboring Solutions. In Type2, when at
least one solution in the neighborhood Si is improved during the tth generation,
the candidate solution is generated with a small probability (in our experiment,
the probability is set as 5/|Si|). The total move during the tth generation is
defined as Δx i(t) = x i(t)−x i(t−1), and the total move during the tth generation
in the neighborhood Si is defined as ΔSi

x i(t) =
∑

j∈Si
(x j(t) − x j(t−1)) where

x i is included in Si. Since the improving direction in the second generation is not
reliable, Δx i(t) and ΔSi

x i(t) are defined as Δx i(t) = 0 and ΔSi
x i(t) = 0 for t =

2. Then, xCandidate
i is generated as explained below. If xCandidate

i is better than
the current solution x i(t), x i(t) is replaced with xCandidate

i . xCandidate
i is also

compared with neighboring solutions. If xCandidate
i is better than a neighboring

solution, the neighboring solution is replaced with xCandidate
i .

When no solution in the neighborhood Si is improved during the tth gener-
ation (i.e., x j(t) = x j(t−1)), no candidate solution is generated. Even in this
case, the current solution can be updated by a candidate solution generated for
a neighboring weight vector.

Type2-1: Use of the Current Move. In Type2-1 MOEA/D, we use the total
move in the neighborhood Si to generate candidates. The candidate solution is
generated as xCandidate

i = x i(t) + ηΔx i(t) + ηSi
ΔSi

x i(t) where η and ηSi
are

non-negative constant parameters. In this formulation, Δx i(t) equals to 0 in
many cases. However, ΔSi

x i(t) is not zero in many cases since all the moves in
the neighborhood are summed up.

Type2-2: Use of the Current and Previous Moves. In Type2-2 MOEA/D,
we use the current and previous moves in the neighborhood Si to generate can-
didates. We define the previous improving direction using the latest improved
generation k before the tth generation as Δx i(k) and ΔSi

x i(k), where k is the
latest improved generation (1<k<t) where at least one solution in the neigh-
borhood Si is improved before the tth generation. If there is no improved
generation before the tth generation, we define Δx i(k) and ΔSi

x i(k) as 0.
We also define Δx i(k) and ΔSi

x i(k) as 0 when k = 2 since the initial solu-
tion is randomly assigned. Then, a candidate solution can be generated as
xCandidate
i = x i(t) + ηΔx i(t) + αΔx i(k) + ηSi

ΔSi
x i(t) + αSi

ΔSi
x i(k), where

η, ηSi
, α and αSi

are non-negative constant parameters.

Type3: Use of the Moves of All Solutions in the Population. In Type3,
when at least one solution in the population is improved during the tth gen-
eration, the candidate solution is generated with a small probability (in our
experiment, the probability is set as 5/|S|). The total move during the tth gen-
eration is defined as Δx i(t) = x i(t)−x i(t−1), and the total move during the tth

240 L. Chen et al.

generation in the population S is defined as ΔSx i(t) =
∑

j∈S(x j(t)− x j(t−1)).
For t = 2, Δx i(t) and ΔSx i(t) are defined as Δx i(t) = 0 and ΔSx i(t) = 0. Then,
xCandidate
i is generated. When no solution in the population S is improved during

the tth generation, no candidate solution is generated.

Type3-1: Use of the Current Move. In Type3-1 MOEA/D, we use the
total move in the population S to generate candidates. The candidate solution
is generated as xCandidate

i = x i(t) + ηΔx i(t) + ηSΔSx i(t), where η and ηS are
non-negative constant parameters. It should be noted that all solutions in the
population have the same value of ΔSx i(t).

Type3-2: Use of the Current and Previous Moves. In Type3-2 MOEA/D,
we use the current and previous moves in the population S to generate candi-
dates. We define the previous improving direction using the latest improved
generation k before the tth generation as Δx i(k) and ΔSx i(k), where k is the
latest improved generation (1<k<t) where at least one solution in the popula-
tion is improved before the tth generation. The candidate solution is defined as
xCandidate
i = x i(t)+ ηΔx i(t)+αΔx i(k)+ ηSΔSx i(t)+αSΔSx i(k), where η, ηS ,

α and αS are non-negative constant parameters.
To speed up the convergence speed, we try to find a candidate solution in

the improving direction. Parameter values decide the position of a candidate
solution in the improving direction. For simplicity, in this paper, we set η and
α as 1 since we consider that the total move of the solution during each gener-
ation has the same weight. When using the total move in the neighborhood or
population, we add all moves in the neighborhood or population together. Since
the neighborhood and population size may affect the position in the improving
direction, we set ηSi

and αSi
as 1/|Si|, and set ηS and αS as 1/|S|.

3 Experimental Study

To examine the usefulness of the proposed strategy (its seven implementations),
we use a multi-objective distance minimization problem (MDMP) in the 2-
dimensional space [11,12]. The effect can be visually examined by drawing the
trajectory of the current solutions. The distance minimization problem is gener-
ated by using the following four points in the 2-dimensional space [1, 1001]×[1,
1001]: (2, 6), (6, 2), (2, 2), (6, 6). The four points are intentionally placed in
a small region around the corner (1, 1) of the 2-dimensional space in order to
examine the effect of the proposed strategy in comparison with the standard
implementation of MOEA/D. In this problem, we need to minimize four objec-
tives, which are f1: Distance to P1, f2: Distance to P2, f3: Distance to P3, and
f4: Distance to P4.

Experimental settings for the 2-dimensional MDMP problem are as follows:

Software Platform. We use PlatEMO [13] as the experimental platform.
PlatEMO is an open-source platform based on MATLAB for evolutionary multi-
objective optimization.

New Solution Creation Operator in MOEA/D for Faster Convergence 241

Parameter Settings. Population size N is set to 56. This setting is based on
the number of weight vectors generated by the Das and Dennis method [14].
The termination condition is set to 560 solution evaluations. Each algorithm is
applied to each test problem for 31 independent runs.

Performance Metrics. The IGD [15] and IGD+ [16] indicators are used to
evaluate the performance of each algorithm.

The experimental results are shown in Table 1. The average values of IGD and
IGD+ over 31 runs are summarized in the table. Each algorithm is compared with
the standard MOEA/D using the Wilcoxon rank sum test with the significance
level of 0.05, in which the symbol “+” means that the compared algorithm is
significantly better than the standard MOEA/D, the symbol “−” means that
the compared algorithm is significantly worse than the standard MOEA/D, and
the symbol “=” means that there is no statistically significant difference between
the compared algorithm and the standard MOEA/D. The statistical test results
are summarized at the bottom of each table. The best result is highlighted by
blue font, and the worst result is highlighted by red font.

As Table 1 shows, almost all algorithms perform well on MDMP. Although
Type2-2 MOEA/D performs the worst among all algorithms, there is no statis-
tically significant difference between it and the standard MOEA/D.

To clearly show the convergence ability of MOEA/D with the proposed strat-
egy and the standard MOEA/D, we use Fig. 5 to show the relation between the
average IGD+ value (y-axis) and the number of examined solutions (x-axis) for
each algorithm.

Table 1. Average IGD+ and IGD Values on MDMP (d = 2) obtained by MOEA/D
with the proposed strategy and the standard MOEA/D.

Indicator Type1-1 Type1-2 Type1-2* Type2-1 Type2-2 Type3-1 Type3-2 MOEA/D

IGD+ 0.6962+ 0.7265= 0.6416+ 0.8352= 0.9375= 0.7526= 0.7925= 0.8004
IGD 1.0345+ 1.0950= 0.9932+ 1.2195= 1.3138= 1.1216= 1.1941= 1.2015
+/−/= 2/0/0 0/0/2 2/0/0 0/0/2 0/0/2 0/0/2 0/0/2

Fig. 5. Average IGD+ value of the current population at each generation over 31 runs
on MDMP (d = 2).

242 L. Chen et al.

Fig. 6. The current population in the decision space of each algorithm at the first six
generations on MDMP (d = 2). (Color figure online)

As shown in Fig. 5, MOEA/D with the proposed strategy clearly converges faster
than the standard MOEA/D before 300 solution evaluations.

To show the convergence trajectory of each algorithm, we choose a single run
with the median IGD+ value among the 31 runs and plot the population in the
decision space at each of the first 6 generations in Fig. 6 (a)–(h). The blue square
frame represents the Pareto set. The triangles, squares and dots represent the
solutions in the decision space. In Fig. 6, more red dots in the blue square means
faster convergence of the algorithm. In Fig. 6 (a), only a small number of red
dots are in the blue square frame. However, in Fig. 6 (b)–(h), more red dots are
in the blue square frame, which indicates that the proposed strategy can clearly
speed up the convergence of MOEA/D in MDMP (d = 2).

To further examine the usefulness of the proposed strategy, we use four large-
scale MDMPs [17,18] to test the performance of the MOEA/D with the proposed
strategy (its seven implementations). Their decision spaces are 10-, 100-, 500-,
and 1000-dimensional, respectively. The decision space of each problem is [0,
100]×[0, 100]× ... ×[0, 100]. Each problem uses the following four points P1 (1,
1, 0, ..., 0), P2 (5, 1, 0, ..., 0), P3 (1, 5, 0, ..., 0), P4 (5, 5, 0, ..., 0). The four
points are intentionally placed in a small region around the corner (0, 0, ...,
0) in order to examine the effect of the proposed strategy in comparison with
the standard implementation of MOEA/D. Furthermore, the usefulness of the
proposed strategy is also examined on the large-scale three-objective DTLZ1-4
test problems with d = 500 and 1000 where d is the number of decision variables.

Our experimental settings are as follow. Population size N is set to 120 on
MDMP (d = 10, 100, 500, 1000) and 91 on DTLZ1-4 (d = 500, 1000). This
setting is based on the number of weight vectors generated by the Das and
Dennis method [14]. The termination condition is set to 6000, 12000, 60000,
and 120000 solution evaluations for MDMP with d = 10, 100, 500 and 1000,

New Solution Creation Operator in MOEA/D for Faster Convergence 243

Table 2. Average IGD+ and IGD Values on MDMP (d = 10, 100, 500, 1000) obtained
by the MOEA/D with the proposed strategy and the standard MOEA/D.

Problem Indicator Type1-1 Type1-2 Type1-2* Type2-1 Type2-2 Type3-1 Type3-2 MOEA/D

MDMP IGD+ 0.1965+ 0.1932+ 0.1935+ 0.1997+ 0.1974+ 0.2032+ 0.1989+ 0.2199
d = 10 IGD 0.3250+ 0.3174+ 0.3175+ 0.3350+ 0.3255+ 0.3407+ 0.3325+ 0.3710
MDMP IGD+ 80.770+ 6.1398+ 16.572+ 61.579+ 3.4040+ 13.828+ 2.8008+ 262.49
d = 100 IGD 80.770+ 6.2429+ 16.639+ 61.579+ 3.6002+ 13.840+ 2.9816+ 262.49
MDMP IGD+ 245.75+ 23.197+ 70.410+ 194.20+ 24.354+ 85.562+ 14.220+ 782.03
d = 500 IGD 245.75+ 23.247+ 70.419+ 194.20+ 24.397+ 85.562+ 14.221+ 782.03
MDMP IGD+ 371.12+ 59.208+ 139.32+ 295.12+ 43.213+ 136.03+ 24.485+ 1159.9
d = 1000 IGD 371.12+ 59.219+ 139.32+ 295.12+ 43.230+ 136.03+ 24.485+ 1159.9
+/−/= 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0

respectively, and 10000 solution evaluations for DTLZ1-4 with d = 500 and d =
1000. Each algorithm is applied to each test problem for 31 independent runs.

Experimental results on MDMP (d = 10, 100, 500, 1000) and DTLZ1-4 (d =
500, 1000) are summarized in Tables 2 and 3, respectively.

In Table 2, MOEA/D with any implementation of the proposed strategy per-
forms clearly better than the standard MOEA/D on the large-scale MDMP.
Especially, Type3-2 MOEA/D performs clearly the best among all algorithms.
In Table 3, the proposed strategy performs clearly better than the standard
MOEA/D on the large-scale DTLZ1 and DTLZ3. However, Type1 and Type2
MOEA/D are slightly worse than the standard MOEA/D on DTLZ2 and
DTLZ4.

Table 3. Average IGD+ and IGD Values on DTLZ1-4 (d = 500, 1000) obtained by
the MOEA/D with proposed strategy and the standard MOEA/D.

Problem Indicator Type1-1 Type1-2 Type1-2* Type2-1 Type2-2 Type3-1 Type3-2 MOEA/D

DTLZ1 IGD+ 3993.6+ 4116.7+ 4018.8+ 4125.4+ 4100.9+ 6099.7+ 5383.6+ 8888.8
d = 500 IGD 3993.6+ 4116.7+ 4018.8+ 4125.4+ 4100.9+ 6099.7+ 5383.6+ 8888.8
DTLZ1 IGD+ 8398.8+ 8528.4+ 8341.2+ 8562.4+ 8458.0+ 13750+ 12297+ 22017
d = 1000 IGD 8398.8+ 8528.4+ 8341.2+ 8562.4+ 8458.0+ 13750+ 12297+ 22017
DTLZ2 IGD+ 17.238− 17.315− 17.948− 19.439− 20.212− 15.447= 15.937− 14.910
d = 500 IGD 17.238− 17.316− 17.949− 19.440− 20.213− 15.448= 15.937− 14.911
DTLZ2 IGD+ 48.929− 49.394− 48.678− 51.909− 52.703− 45.575− 45.847− 44.273
d = 1000 IGD 48.929− 49.395− 48.678− 51.910− 52.703− 45.575− 45.848− 44.274
DTLZ3 IGD+ 12993+ 13134+ 12957+ 13304+ 13051+ 20050+ 18446+ 29554
d = 500 IGD 12993+ 13134+ 12957+ 13304+ 13051+ 20050+ 18446+ 29554
DTLZ3 IGD+ 27139+ 27667+ 26864+ 27382+ 27132+ 45599+ 39454+ 74475
d = 1000 IGD 27139+ 27667+ 26864+ 27382+ 27132+ 45599+ 39454+ 74475
DTLZ4 IGD+ 21.359− 19.885− 20.306− 20.505− 22.361− 16.608= 16.949= 17.311
d = 500 IGD 21.366− 19.894− 20.314− 20.513− 22.367− 16.622= 16.960= 17.324
DTLZ4 IGD+ 54.717− 56.761− 57.274− 58.057− 57.015− 52.648− 53.349− 50.683
d = 1000 IGD 54.720− 56.764− 57.276− 58.060− 57.018− 52.651− 53.352− 50.687
+/−/= 8/8/0 8/8/0 8/8/0 8/8/0 8/8/0 8/4/4 8/6/2

244 L. Chen et al.

Fig. 7. Average IGD+ value of the current population at each generation over 31 runs
on MDMP (d = 1000).

Fig. 8. Average IGD+ value of the current population at each generation over 31 runs
on DTLZ3 (d = 1000).

Figures 7 and 8 show the relation between the average IGD+ value (y-
axis) and the number of examined solutions (x-axis) obtained by the standard
MOEA/D and MOEA/D with the proposed strategy on MDMP (d = 1000) and
DTLZ3 (d = 1000).

As shown in Figs. 7 and 8, MOEA/D with any implementation of the pro-
posed strategy converges much faster than the standard MOEA/D. Type3-2
MOEA/D clearly converges the fastest on MDMP (d = 1000). However, on
DTLZ3 (d = 1000), Type3 MOEA/D performs not as well as the MOEA/D with
the other implementations (whereas Type3 MOEA/D is much faster than the
standard MOEA/D). By comparing between Type1-1 and Type1-2 (and com-
paring between Type2-1 and Type2-2, and between Type3-1 and Type3-2), we
can conclude that the use of the current and previous moves can help MOEA/D
converge faster than the use of only the current move. By comparing Type1-2

New Solution Creation Operator in MOEA/D for Faster Convergence 245

with Type1-2*, we can conclude that using the move in the (t-1)th generation
even if Δxi(t−1) = 0 is not as efficient as using the move in the latest improved
generation before the tth generation.

4 Conclusion and Future Work

In this paper, we proposed a novel solution generation operator for MOEA/D.
By using the moves of solutions in the current and previous generations, we can
generate promising candidate solutions. The experimental studies showed that
the proposed strategy significantly speeds up the convergence speed of MOEA/D.
In the future, we will compare our proposed algorithms with some state-of-the-
art large-scale multi-objective evolutionary algorithms.

One future research topic is to investigate the sensitivity of the performance
of the proposed strategy to parameter settings. It is also possible to use a ran-
dom parameter value instead of a fixed parameter value in the proposed strategy.
Another future research topic is to examine the use of information from unsuc-
cessful move attempts where the current solution is not updated.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China (Grant No. 61876075), Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001), the Program for Guangdong Introducing Innovative and Enter-
preneurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program of
Shenzhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science
and Technology Program (Grant No. KQTD2016112514355531).

References

1. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

2. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for
Solving Multi-objective Problems. Springer, New York (2007). https://doi.org/10.
1007/978-0-387-36797-2

3. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

4. Mittal, S., Saxena, D.K., Deb, K., Goodman, E.D.: A learning-based innovized
progress operator for faster convergence in evolutionary multi-objective optimiza-
tion. ACM Trans. Evol. Learn. Optim. 2(1), 1–29 (2021)

5. Ghosh, A., Deb, K., Averill, R., Goodman, E.: Combining user knowledge and
online innovization for faster solution to multi-objective design optimization prob-
lems. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 102–114.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_9

6. Mittal, S., Saxena, D.K., Deb, K., Goodman, E.D.: Enhanced innovized repair
operator for evolutionary multi- and many-objective optimization. arXiv preprint
arXiv:2011.10760 (2020)

7. Ghosh, A., Goodman, E.D., Deb, K., Averill, R., Diaz, A.: A large-scale bi-objective
optimization of solid rocket motors using innovization. In: 2020 IEEE Congress on
Evolutionary Computation (CEC 2020), pp. 1–8 (2020)

https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-030-72062-9_9
http://arxiv.org/abs/2011.10760

246 L. Chen et al.

8. Mittal, S., Saxena, D.K., Deb, K.: A unified automated innovization framework
using threshold-based clustering. In: 2020 IEEE Congress on Evolutionary Com-
putation (CEC 2020), pp. 1–8 (2020)

9. Mittal, S., Saxena, D.K., Deb, K.: Learning-based multi-objective optimization
through ANN-assisted online innovization. In: Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion (GECCO 2020), pp. 171–
172 (2020)

10. Garg, K., Mukherjee, A., Mittal, S., Saxena, D.K., Deb, K.: A generic and com-
putationally efficient automated innovization method for power-law design rules.
In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion (GECCO 2020), pp. 161–162 (2020)

11. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test
problems to visually examine the behavior of multiobjective evolution in a decision
space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010.
LNCS, vol. 6239, pp. 91–100. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15871-1_10

12. Ishibuchi, H., Akedo, N., Nojima, Y.: A many-objective test problem for visually
examining diversity maintenance behavior in a decision space. In: Proceedings of
the 2011 Genetic and Evolutionary Computation Conference Companion (GECCO
2011), pp. 649–656 (2011)

13. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization [Educational Forum]. IEEE Comput. Intell.
Mag. 12(4), 73–87 (2017)

14. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generat-
ing the pareto surface in nonlinear multicriteria optimization problems. SIAM J.
Optim. 8(3), 631–657 (1998)

15. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using
an artificial immune system. Genet. Program Evolvable Mach. 6(2), 163–190 (2015)

16. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

17. Ishibuchi, H., Yamane, M., Akedo, N., Nojima, Y.: Many-objective and many-
variable test problems for visual examination of multiobjective search. In: 2013
IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1491–1498 (2013)

18. Masuda, H., Nojima, Y., Ishibuchi, H.: Visual examination of the behavior of EMO
algorithms for many-objective optimization with many decision variables. In: 2014
IEEE Congress on Evolutionary Computation (CEC 2014), pp. 2633–2640 (2014)

https://doi.org/10.1007/978-3-642-15871-1_10
https://doi.org/10.1007/978-3-642-15871-1_10
https://doi.org/10.1007/978-3-319-15892-1_8

Obtaining Smoothly Navigable
Approximation Sets in Bi-objective

Multi-modal Optimization

Renzo J. Scholman1,3(B) , Anton Bouter1 , Leah R. M. Dickhoff2 ,
Tanja Alderliesten2 , and Peter A. N. Bosman1,3

1 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
{Renzo.Scholman,Anton.Bouter,Peter.Bosman}@cwi.nl

2 Leiden University Medical Center, Leiden, The Netherlands
{L.R.M.Dickhoff,T.Alderliesten}@lumc.nl

3 Delft University of Technology, Delft, The Netherlands

Abstract. Even if a Multi-modal Multi-Objective Evolutionary Algo-
rithm (MMOEA) is designed to find solutions well spread over all locally
optimal approximation sets of a Multi-modal Multi-objective Optimiza-
tion Problem (MMOP), there is a risk that the found set of solutions is
not smoothly navigable because the solutions belong to various niches,
reducing the insight for decision makers. To tackle this issue, a new
MMOEAs is proposed: the Multi-Modal Bézier Evolutionary Algorithm
(MM-BezEA), which produces approximation sets that cover individual
niches and exhibit inherent decision-space smoothness as they are param-
eterized by Bézier curves. MM-BezEA combines the concepts behind
the recently introduced BezEA and MO-HillVallEA to find all locally
optimal approximation sets. When benchmarked against the MMOEAs
MO Ring PSO SCD and MO-HillVallEA on MMOPs with linear Pareto
sets, MM-BezEA was found to perform best in terms of best hypervolume.

Keywords: Evolutionary algorithms · Multi-modal multi-objective
optimization · Niching · Bézier curve estimation

1 Introduction

Many real-world optimization problems have multiple conflicting objectives,
whereby improvement in one objective often results in the deterioration of
another. Multi-Objective Evolutionary Algorithms (MOEAs), like NSGA-II [9],
MOEA/D [36], and MO-CMA-ES [17], are widely accepted to be well-suited to
solve such Multi-objective Optimization Problems (MOPs) [11]. The aim is to
obtain a set of solutions, called the approximation set, such that all solutions are
non-dominated and the set itself is close to the set of Pareto-optimal solutions.

Leah R.M. Dickhoff was supported by the Dutch Cancer Society (KWF Kankerbestri-
jding, Project N.12183) and Elekta.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 247–262, 2022.
https://doi.org/10.1007/978-3-031-14721-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_18&domain=pdf
http://orcid.org/0000-0003-2813-015X
http://orcid.org/0000-0003-4599-0733
http://orcid.org/0000-0001-6720-4380
http://orcid.org/0000-0003-4261-7511
http://orcid.org/0000-0002-4186-6666
https://doi.org/10.1007/978-3-031-14721-0_18

248 R. J. Scholman et al.

Here, a solution x0 dominates x1 (x0 � x1) in an MOP with m objectives if
∀i ∈ {0, 1, ...,m−1} : fi(x0) ≤ fi(x1) and ∃i ∈ {0, 1, ...,m−1} : fi(x0) < fi(x1).
The Pareto Set (PS) is PS = {xi|¬∃xj : xj � xi} and the Pareto Front (PF) is
PF = {(f0(x), · · · , fm−1(x)) |x ∈ PS}.

A more complex type of MOPs is that of Multi-modal MOPs (MMOPs),
where the goal is not to find one, but multiple, if not all, (local) PSs. In MMOPs,
each of the PSs pertains to a niche, a subset of the search space, where a single
mode resides, i.e., with one local PS. The PSs may, however, map to the same
PF in objective space, similar to having multiple (locally) optimal solutions of
the same quality in a single-objective problem, e.g., the sine function. Here we
consider MMOPs in the case of real-valued parameters, or continuous optimiza-
tion. This field has recently gotten more traction, with reviews [31], proposed
formal definitions [14] and new visualization techniques [30].

In order to have MOEAs solve MMOPs, they need additional tools that pre-
vent their convergence to a single niche in the landscape [22]. Niching [19] is one
of such diversity-preserving tools used by Multi-modal MOEAs (MMOEAs) to
effectively and simultaneously search for solutions near the (local) PS in each
niche. Niching has been successfully applied to established MMOEAs in the form
of the multi-objective particle swarm optimization using ring topology and spe-
cial crowding distance (MO Ring PSO SCD) algorithm [35] and Omni-optimizer
[12] among others.

Fig. 1. Approximation set and front with parallel coordinates plot as produced by
MO-RV-GOMEA on the MinDist problem: f0(x) = min(||x − [1, −1]||, ||x − [−1, 1]||)
and f1(x) = min(||x− [1, 1]||, ||x− [−1, −1]||). Shaded blue and red regions correspond
to niches with global PSs. (Color figure online)

Most MMOEAs do not explicitly model multiple approximation sets, but
include diversity preserving techniques to ensure that solutions from multiple
niches are maintained. The result of these MMOEAs is usually given in the
form of a single approximation front, often derived from (a subset of) the elitist
archive. A decision maker can then investigate this front by traversing the solu-
tions for desired trade-offs. However, the underlying solutions are taken from
several distinct niches, which could result in observing a counterintuitive change
in decision variable values when navigating the approximation front. Decision
makers then might have to investigate all solutions before a correct choice can
be made [21,24]. Figure 1 shows such an approximation front and set that con-
tains solutions from both modes on the MinDist problem [23] and demonstrates

Bi-objective Multi-modal Bézier Curve Parameterizations 249

the counterintuitive changes in decision variable values in the parallel coordi-
nates plot (i.e., if one were to navigate the front by traversing and inspecting
the solutions from one extreme to the other). It shows that in objective space
a front is found that looks to have approximated the PF to (near) optimality,
but the solutions jump around throughout decision space as seen in the parallel
coordinates plot.

The issue of counterintuitive navigation along the approximation front has
also been explored in recent work, which introduced a new indicator-based
MOEA for bi-objective optimization called BezEA [24]. A new problem formula-
tion for population-based MOEAs was introduced whereby they parameterized
approximation sets as Bézier curves. This formulation ensures the navigational
smoothness of an approximation set, whilst still being able to find good approxi-
mation sets when using the HyperVolume indicator (HV) [37]. By design, BezEA
disallowes curves to dominate parts of themselves to ensure that the approxima-
tion set constitutes a single niche in the landscape.

Recent work that included the concept of niching showed promising results in
maintaining multiple approximation sets in a population-based MMOEA called
the MO-HillVallEA [23]. The authors extended the concept of Hill-Valley Clus-
tering (HVC) [26] for MOPs to Multi-Objective HVC (MO-HVC) for MMOPs.
MO-HillVallEA was found to be capable of finding and preserving approximation
sets, one for each niche, in parallel over time by considering Pareto domination
per niche. However, MO-HillVallEA produces approximation sets that are not
inherently smooth due to slight oscillations around the PS.

In this work, the notions of niching through HVC and Bézier curve parame-
terizations are combined. The use of niching allows to effectively search the multi-
modal landscape. The use of Bézier curve parameterizations not only enforces
the smooth and intuitive navigability that is desired by decision makers, but also
enforces each approximation set to be within a single niche. Furthermore, the
use of the HV indicator allows closer convergence to the PS as compared to the
Pareto dominance-based algorithms [4]. The new algorithm that we propose is
called Multi-Modal Bézier Evolutionary Algorithm (MM-BezEA). The purpose
of MM-BezEA is to find all approximation sets for a given MMOP, where each
approximation set consists of solutions from a single mode.

In order to combine the techniques of Bézier curve parameterizations and
HVC into the proposed algorithm, several contributions are made. First, the
problem of how to niche approximation sets in the form of Bézier curve parame-
terizations is resolved. Second, initialization of approximation sets within a single
niche is enabled, as otherwise, clustering becomes ambiguous if these approxi-
mation sets span multiple niches.

2 Bézier parameterizations

One of the key features of the newly proposed algorithm is that Bézier param-
eterizations are used as approximation sets for bi-objective optimization [24].
This allows the algorithm to model the approximation set as a smooth curve in
decision space.

250 R. J. Scholman et al.

2.1 Definition of Solution Set

An �-dimensional Bézier curve B(t;Cq) can be defined using q ≥ 2 control points
ci in an ordered set Cq = {c1, ..., cq}, where � is the problem dimensionality and
ci ∈ R

�. The full notation is:

B(t; Cq) =

q∑

i=1

(
q − 1

i − 1

)
(1 − t)q−i−1ti−1ci for 0 ≤ t ≤ 1 (1)

The endpoints of the Bézier curve are always defined by the first and last control
points, whilst the other control points are normally not located on the curve. A
solution set of given size p, Sp,q(Cq) = {x1, ...,xp} with xi ∈ R

�, can now be
parameterized by a Bézier curve by selecting an evenly spread set of p points xi.
Figure 2 visualizes two solution sets Sp,q(Cq) parameterized by Bézier curves.
The solution set Sp,q(Cq) is formally defined as:

Sp,q (Cq) =

{
B

(
0

p − 1
; Cq

)
,B

(
1

p − 1
; Cq

)
, ...,B

(
p − 1

p − 1
; Cq

)}
(2)

Sp,q(Cq) is parameterized for (M)MOEAs by taking the concatenation of the
decision variables in the set of control points Cq as a solution [5,24]. This results
in a solution being of the form [c1, ..., cq] ∈ R

q×�.

Fig. 2. Bézier curves with q ∈ {2, 3} control points in black. Interpolated curve in red
with the p = 11 points in blue evenly spread in the domain of t along the curve [24].
(Color figure online)

2.2 Evaluation

To evaluate a solution set Sp,q(Cq), a number of new functions were previously
introduced [24]. These functions are briefly explained in the following para-
graphs. Figure 3 illustrates these functions to give the reader a more graphical
indication.

A new function Anb (Sp,q) has been introduced that calculates a navigational
Bézier (nb) order onb. This order is defined as starting from the best solution for
objective f0 to the best solution in f1. All solutions that are dominated by other
solutions on the curve, are omitted from the subset that defines the navigational
order. An approximation set Ap,q,onb

is the resulting subset of Sp,q(Cq), with
only the solution indices as specified in onb. The quality of the approximation
set Ap,q,onb

can now be evaluated, e.g., with the HV indicator [37].

Bi-objective Multi-modal Bézier Curve Parameterizations 251

Fig. 3. Evaluation of Bézier parameterizations [24]
(Color figure online)

A new constraint func-
tion C (Sp,q, onb) was also
introduced. It is employed
in order to not only push
all dominated solutions
on the curve towards
the undominated region
of the search space, but
also to prevent the curve
from intersecting itself in
objective space. This may
for instance happen if a
curve stretches across two local PSs, which is not preferential. The constraint
function uses the uncrowded distance metric udf (xi,A) [33], which measures
the Euclidean distance from a dominated point xi to the approximation bound-
ary ∂f(Ap,q,onb

) in objective space. Furthermore, to further increase pressure
towards the unfolding of Bézier curves in objective space, all dominated solu-
tions and those not in Ap,q,onb

are pulled towards their neighbouring solutions
on the Bézier curve by taking the Euclidean distance in objective space between
these solution and their neighbours as an additional constraint value. All dom-
inated solutions from Sp,q(Cq) now have their uncrowded distance values and
the Euclidean distances in objective space to neighbours of those not in Ap,q,onb

summed up as a constraint for the total solution set. In combination with con-
straint domination [10], this constraint pushes all solutions along the Bézier
curve towards the undominated region.

3 Niching Methods

To enable the algorithm proposed in this paper, i.e., MM-BezEA, to effectively
search the multi-modal landscape, several previously introduced niching methods
are used and combined. These are employed in order to extend the uni-modal
search that is originally performed by BezEA. As the number of modes is usually
unidentified beforehand, the algorithm needs to be able to adapt to the number
of modes present in an MMOP.

3.1 HVC and MO HVC

HVC is a so-called two-stage niching approach that clusters and evolves the
population for multi-modal single-objective optimization problems. In each gen-
eration, the first stage is used to locate each of the distinct niches, for each of
which a core search algorithm is initialized in the second stage.

At the heart of the HVC approach is the Hill-Valley Test (HVT) [34], which
can be utilized to determine whether two solutions reside in the same niche. It
first determines an edge between two solutions xi and xj in the search space.
Along this edge, Nt evenly spread points are evaluated, determined by the dis-
tance between the two solutions divided by the expected edge length. If any of

252 R. J. Scholman et al.

these Nt test points have a fitness that is worse than that of xi and xj , the test
detects that there is a hill in between them. Consequently, the two solutions are
to be put in separate clusters. On the other hand, if all Nt points have equal
or better fitness values than both xi and xj , these two solutions belong to the
same valley and are to be clustered together. In order to determine in which
order the solutions are to be clustered (i.e., undergo the HVT), the concept of
the nearest better tree [27] is employed.

The MO-HillVallEA algorithm [23] expands on the previous HVC approach
in the form of MO-HVC. It uses the same concept of the HVT, but now performs
clustering for each of the m objective functions separately, which results in m
cluster sets. To obtain a single cluster set, the intersection of each pair of clusters
from all m clustering sets is taken, similar to the colored regions of Fig. 1.

3.2 Restart Scheme with Elitist Archive

Various algorithms implemented a form of a restart scheme whereby the popu-
lation size is increased over time. Examples of such schemes are the interleaved
multistart scheme [8,16] and the restart-Covariance Matrix Adaptation Evo-
lution Strategy with Increased Population (IPOP-CMA-ES) algorithm [3]. In
HillVallEA [26], an elitist archive is combined with a restart scheme, where the
population size is doubled after each restart as in IPOP-CMA-ES [3]. By employ-
ing the HVT to check if a solution resides in another niche, the elitist archive
of HillVallEA is capable of holding the elites for each of the modes, despite it
being developed for single objective problems.

To prevent HillVallEA from revisiting already searched modes, it makes use
of the elitist archive, which is inspired by the repelling subpopulations (RS-
CMSA) algorithm [1] that defines taboo regions close to elites. The steps taken
to discard the regions of the search space, for which an elite was already found
in one of the earlier populations, start with adding the elites to the population
of the current restart. Then, all solutions are clustered using HVC, followed by
discarding all clusters that have one of the elites as their best solution. As a
result of discarding these regions of the search space, more attention is given to
undiscovered parts of the search space after each restart.

4 Multi Modal-Bézier Evolutionary Algorithm

In this section MM-BezEA is described. MM-BezEA is comprised of a combi-
nation and modification of techniques described in the previous sections. The
most notable of the modifications are the adjustments implemented in HVC in
order to apply it to Bézier curve parameterizations, as well as the initialization
of approximation sets within niches.

4.1 Clustering Approximation Sets

The Bézier curves are evaluated using the uncrowded HV measure [25]. Since
this is a scalar, the HVC approach seems to intuitively allow the clustering of

Bi-objective Multi-modal Bézier Curve Parameterizations 253

single-objective problems. However, the approximation set Ap,q,onb
that is used

in the HV calculation only considers the undominated indices of the Bézier
solution set Sp,q(Cq) as defined in onb. Hence, the objective value of a solution
set Sp,q(Cq) seems highly dependant on how many dominated solutions there
are on the Bézier curve due to its orientation and length in decision space.

To enable the clustering of Bézier solution sets Sp,q(Cq), the idea behind
MO-HVC can be used on the set of control points Cq, as each of these is a single
solution as normally defined in MO optimization. Also, since a solution set is
defined to be deteriorating in f0 and improving in f1 according to onb, the order
of the control points is inverted if f0(c1) < f0(cq) does not hold [24]. Accordingly,
the i-th Bézier solution can be designated to be in the same niche as the j-th
Bézier solution if their control points ci

l ∈ Ci
q and cj

l ∈ Cj
q for l = {1, ..., q}

are in the same niche. In a general sense, the same HVC approach as used in
HillVallEA is used, but inspiration has been taken from the MO-HVC approach
to produce a new test for Bézier solution sets, which is shown in Algorithm 1.

Algorithm 1: [B] = Bezier-HillValleyTest(Si, Sj, Nt, f)
Input: Solutions sets Si, Sj, int Nt, objective functions f0, ..., fm−1

Output : Whether Si and Sj belong to the same niche
for l = 1, ..., q do

ci,l, cj,l ← control point l of Si, control point l of Sj

// Check if ci,l and cj,l are in same niche for all m objectives

for k = 0, ..., m − 1 do
if HillValleyTest(ci,l, cj,l, Nt, fk) then return false

return true

4.2 Initialization Within Niches

The original BezEA algorithm initializes all solution sets by sampling from a
uniform distribution over the search space. As it is an MOEA that was not
designed for multi-modal optimization, the uniform initialization allows solu-
tion sets to be initialized within or in between any niche(s). Clustering these
solutions with the newly introduced Bézier HVT will result in finding a large

Fig. 4. Initialization of Bézier solutions
(q = 2) for MinDist

number of separate niches as each control
point has to be in the same mode. To pre-
vent this, a new initialization method for
Bezier solution sets is proposed to enforce
their initialization within a niche. First,
an iteration of MO-HVC is run on a set
of q × N solutions, N being the popu-
lation size, that is sampled from a uni-
form distribution over the search space,
where the resulting clusters include all of
the xtest solutions resulting from apply-
ing the Hill-Valley Test. Second, selection

254 R. J. Scholman et al.

is performed for each cluster proportional to their size in order to reduce their
combined size, with test solutions, down to q × N . Lastly, Bézier solution sets
Sp,q(Cq) are initialized by randomly choosing q solutions as the control points
from one single cluster C as produced by MO-HVC if |C| ≥ q. The result can be
seen in Fig. 4 in the case of the example problem MinDist.

4.3 Algorithm Overview

Algorithm 2: [E] = MM-BezEA(...)
Input: MO function f , popsize N , test points

p, control points q, budget
Output : Elitist archive E = [E0, E1, ...]
E = {}
while budget remaining do

Pmo = UniformSampling(q × N , f)
Cmo = MO-HillValleyClustering(Pmo, f)
C = InitializeBezierSolutions(Cmo, q, p, f)
C = RemoveElitesFrom(C)
while budget remaining do

P = E

for Ci ∈ C do
Oi = core search algorithm(Ci)
P = P ∪ Oi

Cprev = C

C = BezierHillValleyClustering(P, f)
E = ConstructElitistArchive(C,E)
C = RemoveElitesFrom(C)
C = ClusterRegistration(C,Cprev)

MM-BezEA has a simi-
lar structure as the restart
scheme in HillVallEA [26]
that is described in Sect. 3.2.
Every iteration, the com-
bination of initialization of
Bézier curves and dismissal
of previously optimized clus-
ters with an elite as their
best solution takes place.
For each of the resulting
niches, a core search algo-
rithm is run for one gen-
eration, which in the case
of MM-BezEA is the RV-
GOMEA algorithm [7] that
is also used in BezEA. At
the end of each generation,
the Bézier HVT of Algo-
rithm 1 is used in the HVC
step. This step takes all solutions originating from all clusters and clusters them
again for the next generation. In between generations, the notion of cluster reg-
istration [6] is used on the cluster mean closest in decision space to transfer
the parameters for RV-GOMEA between the clusters of each generation. An
overview of the algorithm in the form of pseudocode is given in Algorithm 2.

5 Experiments

MM-BezEA is empirically benchmarked on several test problems. The
results are compared to MO-HillVallEA [23], MO-RV-GOMEA [8], and
MO Ring PSO SCD [35]. MO Ring PSO SCD is implemented through the
PlatEMO framework [32], together with a manual implementation of the used
metrics and problems. For the other algorithms, original C++ implementations
are used.

Bi-objective Multi-modal Bézier Curve Parameterizations 255

5.1 Test Problems

Several test problems are employed. First of these is the MinDist problem [23]
that was described in the introduction, where linear PSs are to be found. The
other employed functions are frequently used in literature, namely OmniTest [12],
Two on One [28], and Sympart {1,2,3} [29]. Lastly, several problems are taken
from the Multi-modal Multi-objective test Function (MMF) benchmark suite [20]
in the form of MMF {1, 2, 12, 14, 15}. A mix of PS and PF shapes have been
chosen to determine the capabilities of MM-BezEA on different problem types.
Table 1 shows some of the important characteristics for each of the problems.

Table 1. Bi-objective problem characteristics.

Problem � PS PS Shape PF Shape

MinDist [2, ∞) ∈ Z n Linear Convex

Omni Test [2, ∞) ∈ Z 3� Linear Convex

Two on One 2 2 Linear Convex

Sympart 1, 2 2 9 Linear Convex

Sympart 3 2 9 Non-linear Convex

MMF 1, 2 2 2 Non-linear Convex

MMF 12 [2, ∞) ∈ Z n Linear Disconnected

MMF 14, 15 [2, ∞) ∈ Z n Linear Concave

For all problems with a con-
figurable number of PSs n, it
is set to 2, likewise the prob-
lem dimension � is fixed to 2.
In order to determine the val-
ues of the performance indi-
cators, the reference PSs will
be made using 5000 points
that adhere to the analytical
formulas describing the PSs.
In the case of Two on One,
a very close approximation is
used [28].

5.2 Benchmark Setup

In order to get a fair comparison, each of the algorithms will be given an equally
sized budget of 200, 000 function evaluations for each of the problems. This
removes the influence of the used programming languages, as the computation
time is not limited. The parameters of MO-RV-GOMEA, MO Ring PSO SCD,
and MO-HillVallEA are set to the values reported in relevant literature. Fur-
thermore, for each problem and metric, the average over 31 runs will be taken.

The elitist archives sizes NE are set to be 1250 for MO-RV-GOMEA and MO-
HillVallEA. The population size N is set to 96 for MO-RV-GOMEA and 250 for
MO-HillVallEA [23]. MO-RV-GOMEA uses a linkage tree as its linkage model,
with a total of 5 clusters. For MO Ring PSO SCD the population size is 800 [35].
For the MM-BezEA algorithm, the number of control points q for each approxi-
mation set is set to 2. Just like for the original BezEA algorithm, MM-BezEA is
given population sizes of 76 [24]. The number of test points p is set to 7.

5.3 Performance Indicators

The HV indicator [37] is used to see how well the algorithms perform in getting
close the PF. As a result of the use of test points in MM-BezEA, the Bézier
solutions sets will have a limited amount of points in the approximation set that
can be used to calculate the HV values. Therefore, a subset of the approximation

256 R. J. Scholman et al.

set will be taken for the other algorithms to allow a fair comparison based on
the HV indicator. Specifically, the same number of test points is selected for a
fair comparison by means of greedy Hypervolume Subset Selection (gHSS) [15].

We further use a relatively new performance indicator for multi-modal multi
objective optimization, named Pareto Set Proximity (PSP) [35]. It is an indicator
that determines how well all PSs are approximated by taking the Cover Rate
(CR), that shows how well the extremes of all PSs are captured, divided by the
Inverted Generational Distance in decision space (IGDX) [36], which can be used
to determine how close the approximation sets are to the PSs. For the IGDX
measure, the approximation sets as produced by MM-BezEA are interpolated by
taking 1000 intermediate points before determining the IGDX value. This can
be performed relatively easily as interpolating these parameterizations does not
require any extra fitness evaluations.

Finally, we use a performance indicator regarding smoothness, for which we
follow the definition as introduced in the work on BezEA [24]. It captures how
smooth an approximation set can be navigated in terms of decision variables by
measuring the detour length in decision space when traversing the approximation
set from one solution to the next via an intermediate solution, as compared to
going to the next solution directly. The smoothness approaches its maximum
value of 1 if all solutions would be colinear in decision space, where the lowest
possible value is 0. In cases where multiple approximation sets are explicitely
determined, like in MO-HillVallEA and MM-BezEA, the average smoothness
over all clusters will be taken. In the other cases the smoothness over the entire
approximation set is taken.

5.4 Results

Table 2 shows the results for all problems and algorithms per indicator.
The HV results clearly show that all algorithms are capable of performing

nearly equally in obtaining a good approximation front. However, MM-BezEA
with q = 2 does deteriorate in performance on the MMF1 and 2 problems that have
non-linear PSs. The deterioration is inherently caused by the chosen parameteri-
zations that create approximation sets which are linear in shape. Another problem
instance where a smaller HV for the new algorithm is obtained, is that of MMF12.
Here, despite MM-BezEA obtaining the best PSP values, the approximation sets
did not fully approximate the actual PSs and did not cover the endpoints.

The PSP indicator shows similar results, except that MO-RV-GOMEA per-
forms worse as it is not an MMOEA and therefore does not explicitly search
for multiple niches. Again promising results for MM-BezEA are shown in cases
where linear PSs can be found, as seen in Fig. 5a where MM-BezEA approximates
all 9 Pareto sets very well. In the problems with non-linear PSs, MO-HillVallEA
and MO Ring PSO SCD manage to find better approximations.

The smoothness results show, as intended, that the chosen parameterizations
inherently cause smooth approximation sets with a perfect smoothness of 1.0 for
MM-BezEA. Other algorithms do not obtain this, except for MO-RV-GOMEA
on 2 of the 11 problems. A visualization of the results of MM-BezEA on the

Bi-objective Multi-modal Bézier Curve Parameterizations 257

Table 2. Results (avg. (± st.dev.)) per problem and algorithm over 31 runs, bold
identifies best result with statistical significance (Wilcoxon rank-sum test with α = 0.05
and Holm-Bonferroni correction).

Problem MM-BezEA MO-HillVallEA MO Ring PSO SCD MO-RV-GOMEA

HV MinDist 1.17e+2 (±9.43e-5) 1.17e+2 (±1.62e-2) 1.17e+2 (±5.95e-3) 1.17e+2 (±1.36e-3)

OmniTest 8.48e+0 (±2.18e-6) 8.47e+0 (±1.96e-3) 8.47e+0 (±7.34e-4) 8.47e+0 (±4.82e-4)

Sympart 1 1.17e+2 (±2.16e-5) 1.17e+2 (±1.42e-2) 1.17e+2 (±7.64e-3) 1.17e+2 (±1.30e-3)

Sympart 2 1.17e+2 (±2.91e-5) 1.17e+2 (±7.77e-3) 1.17e+2 (±8.75e-3) 1.17e+2 (±4.47e-3)

Sympart 3 1.17e+2 (±9.61e-5) 1.17e+2 (±1.61e-2) 1.17e+2 (±9.21e-3) 1.17e+2 (±4.91e-3)

TwoOnOne 1.13e+2 (±1.33e-4) 1.13e+2 (±2.39e-4) 1.13e+2 (±1.82e-4) 1.13e+2 (±1.10e-4)

MMF 1 6.04e-1 (±3.86e-2) 8.05e-1 (±2.37e-4) 8.05e-1 (±8.69e-5) 8.05e-1 (±6.60e-5)

MMF 2 6.34e-1 (±2.01e-4) 8.04e-1 (±6.90e-4) 8.04e-1 (±9.59e-4) 8.05e-1 (±1.75e-4)

MMF 12 1.78e+0 (±2.02e-6) 2.06e+0 (±2.57e-3) 2.06e+0 (±2.05e-3) 2.06e+0 (±1.49e-4)

MMF 14 5.63e+0 (±1.33e-5) 5.63e+0 (±7.26e-4) 5.63e+0 (±1.92e-3) 5.63e+0 (±2.23e-4)

MMF 15 5.56e+0 (±2.03e-2) 5.57e+0 (±6.52e-4) 5.56e+0 (±1.54e-3) 5.57e+0 (±1.79e-4)

PSP MinDist 3.26e+2 (±7.31e+1) 5.02e+1 (±2.74e+0) 6.97e+1 (±6.73e+0) 1.21e+0 (±1.65e+0)

OmniTest 2.36e+2 (±8.81e+1) 7.13e+1 (±2.76e+0) 6.90e+1 (±9.56e+0) 1.36e-1 (±2.43e-1)

Sympart 1 2.67e+2 (±1.21e+2) 3.56e+1 (±1.57e+0) 2.79e+1 (±3.69e+0) 1.16e-2 (±2.70e-2)

Sympart 2 3.09e+2 (±8.46e+1) 3.60e+1 (±7.42e-1) 2.38e+1 (±2.46e+0) 1.02e-2 (±1.71e-2)

Sympart 3 6.41e+1 (±7.77e+1) 4.33e+1 (±2.10e+0) 2.64e+1 (±5.62e+0) 8.09e-3 (±1.33e-2)

TwoOnOne 3.04e+2 (±2.18e+2) 4.50e+1 (±7.21e-1) 2.45e+1 (±1.03e+1) 2.68e+0 (±1.11e+0)

MMF 1 7.22e+0 (±2.41e+0) 3.17e+1 (±6.84e-1) 3.80e+1 (±6.79e+0) 1.02e+0 (±2.89e-1)

MMF 2 4.00e+0 (±2.49e+0) 1.17e+2 (±1.21e+1) 5.04e+1 (±1.51e+1) 2.18e+0 (±1.41e+0)

MMF 12 2.42e+1 (±7.72e+0) 1.94e+1 (±6.46e+0) 1.53e+1 (±1.46e-1) 8.67e+0 (±1.36e+0)

MMF 14 2.68e+3 (±4.82e+2) 3.70e+2 (±1.03e+1) 2.31e+2 (±2.16e+1) 1.08e+0 (±2.84e+0)

MMF 15 2.73e+2 (±4.17e+1) 2.65e+2 (±4.58e+0) 2.44e+2 (±7.25e+0) 2.24e+1 (±1.40e-2)

Smoothness MinDist 1.00e+0 (±0.00e+0) 8.09e-1 (±3.70e-2) 7.63e-1 (±5.91e-3) 8.94e-1 (±1.81e-1)

OmniTest 1.00e+0 (±0.00e+0) 9.23e-1 (±5.65e-3) 7.28e-1 (±9.76e-3) 7.16e-1 (±1.96e-1)

Sympart 1 1.00e+0 (±0.00e+0) 8.76e-1 (±2.52e-2) 6.84e-1 (±9.76e-3) 7.01e-1 (±2.09e-1)

Sympart 2 1.00e+0 (±0.00e+0) 8.78e-1 (±2.14e-2) 5.73e-1 (±9.30e-3) 7.87e-1 (±1.68e-1)

Sympart 3 1.00e+0 (±0.00e+0) 8.70e-1 (±3.10e-2) 5.29e-1 (±1.18e-2) 8.30e-1 (±1.92e-1)

TwoOnOne 1.00e+0 (±0.00e+0) 7.77e-1 (±1.21e-2) 7.47e-1 (±9.36e-3) 7.51e-1 (±1.59e-1)

MMF 1 1.00e+0 (±0.00e+0) 9.01e-1 (±3.98e-2) 7.82e-1 (±8.49e-3) 5.86e-1 (±9.13e-2)

MMF 2 1.00e+0 (±0.00e+0) 9.38e-1 (±1.26e-2) 5.01e-1 (±8.92e-3) 8.46e-1 (±1.60e-1)

MMF 12 1.00e+0 (±0.00e+0) 8.35e-1 (±2.73e-2) 6.35e-1 (±9.86e-3) 1.00e+0 (±0.00e+0)

MMF 14 1.00e+0 (±0.00e+0) 9.31e-1 (±1.17e-2) 8.71e-1 (±1.11e-2) 9.62e-1 (±1.05e-1)

MMF 15 1.00e+0 (±0.00e+0) 9.19e-1 (±1.43e-2) 8.63e-1 (±8.54e-3) 1.00e+0 (±0.00e+0)

MinDist problem is given in Fig. 5b. This figure depicts the smooth progression
of the decision variables values in the parallel coordinates plot for the rightmost
approximation set in decision space. It contrasts sharply to the parallel coordi-
nates plot of Fig. 1 when navigating the approximation set as it now shows a
smooth course of the decision variable values.

6 Discussion

MM-BezEA did not cover the endpoints of the PSs in the case of MMF12. This
can be caused by the fact that the Bézier fitness function will constrain a solution
when one of its control points is dominated in objective space by one of the test
points. As the endpoints of each part of the discontinuous PF are close to being
dominated, i.e., close to the constraint space, it can lead to not entirely capturing
the discontinuous pieces of the PF and thus resulting in a lower HV.

258 R. J. Scholman et al.

Fig. 5. Visualization of results

The HV indicator is a Pareto compliant indicator [13,38], but it does suffer
from a downside. In some situations the endpoints of the approximation sets
cannot reach the endpoints of the Pareto set because the distribution of points
that maximizes the hypervolume does not include the extreme solutions. Even
when the number of test points will be set to infinity, the reference point can
never be set so that the extremes are captured [2].

Even though the smoothness indicator tries to determine whether an approxi-
mation set is smooth by measuring the detour length, it comes down to determin-
ing the angle between neighboring solutions. This implies that it only considers
linear curves to be perfectly smooth, where there is a straight angle between
solutions. When the number of solutions in an approximation set increases, the
average distance between the solutions in objective space decreases. As a result
of the lower distances and ever so slight oscillations around the PF, the angle
between solutions decreases due to which the smoothness indicator will report
low smoothness values. In cases where the niches can be separated in a good
manner, another definition of smoothness that considers the oscillation around
the PS might be more useful.

Future work could investigate the further use of the Bézier parameterizations
with more control points to approximate non-linear Pareto sets. Note that the
definitions given in this paper already allow for this. Furthermore, no limit on the
number of approximation sets can currently be set, which degrades the quality
of the approximation sets in highly multi-modal problems as the population is
then divided over all niches through HVC [23]. Finally, Bézier simplexes [18]
might be usable for problems with more than two objectives.

Bi-objective Multi-modal Bézier Curve Parameterizations 259

7 Conclusion

We proposed the algorithm MM-BezEA to search for multiple parameterized
approximation sets that define smooth curves in the decision space for bi-
objective multi-modal optimization problems. The results show that MM-BezEA
is competently capable of locating all modes in a multi-modal landscape as
exemplified in various benchmark problems and that the smoothness is indeed
enforced by the Bézier parameterizations. Furthermore, MM-BezEA significantly
outperformed other algorithms in problems with linear Pareto sets, but was out-
performed in problems with non-linear Pareto sets. However, only low-order
Bézier curves were used in our experiments, and these results may well be differ-
ent if higher order curves were used, which the definitions in this paper readily
allow.

References

1. Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix
self-adaptation evolution strategy with repelling subpopulations. Evol. Comput.
25(3), 439–471 (2017). https://doi.org/10.1162/evco a 00182

2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: Optimal μ-distributions and the choice of the reference point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genertic Algorithms
(FOGA 2009), pp. 87–102. Association for Computing Machinery, New York, NY,
USA (2009). https://doi.org/10.1145/1527125.1527138

3. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing pop-
ulation size. In: 2005 IEEE Congress on Evolutionary Computation. vol. 2, pp.
1769–1776. IEEE, New York, NY, USA (2005). https://doi.org/10.1109/CEC.2005.
1554902

4. Berghammer, R., Friedrich, T., Neumann, F.: Convergence of set-based multi-
objective optimization, indicators and deteriorative cycles. Theor. Comput. Sci.
456, 2–17 (2012). https://doi.org/10.1016/J.TCS.2012.05.036

5. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007).
https://doi.org/10.1016/j.ejor.2006.08.008

6. Bosman, P.A.N.: The anticipated mean shift and cluster registration in mixture-
based EDAs for multi-objective optimization. In: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (GECCO 2010), pp. 351–
358. Association for Computing Machinery, New York, NY, USA (2010). https://
doi.org/10.1145/1830483.1830549

7. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Exploiting linkage
information in real-valued optimization with the real-valued gene-pool optimal
mixing evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2017), pp. 705–712. Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071272

8. Bouter, A., Luong, N.H., Witteveen, C., Alderliesten, T., Bosman, P.A.N.: The
multi-objective real-valued gene-pool optimal mixing evolutionary algorithm. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2017). pp. 537–544. Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3071178.3071274

https://doi.org/10.1162/evco_a_00182
https://doi.org/10.1145/1527125.1527138
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1016/J.TCS.2012.05.036
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1145/1830483.1830549
https://doi.org/10.1145/1830483.1830549
https://doi.org/10.1145/3071178.3071272
https://doi.org/10.1145/3071178.3071274

260 R. J. Scholman et al.

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002).
https://doi.org/10.1109/4235.996017

10. Deb, K.: An efficient constraint handling method for genetic algorithms. Com-
put. Methods Appl. Mech. Eng. 186(2), 311–338 (2000). https://doi.org/10.1016/
S0045-7825(99)00389-8

11. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons Inc, USA (2001)

12. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single
and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008).
https://doi.org/10.1016/j.ejor.2006.06.042

13. Fleischer, M.: The measure of pareto optima applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

14. Grimme, C., et al.: Peeking beyond peaks: challenges and research potentials of con-
tinuous multimodal multi-objective optimization. Comput. Oper. Res. 136, 105489
(2021). https://doi.org/10.1016/j.cor.2021.105489

15. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: Greedy hypervolume subset selection
in low dimensions. Evol. Comput. 24, 521–544 (2016). https://doi.org/10.1162/
EVCO a 00188

16. Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Proceedings of
the 1st Annual Conference on Genetic and Evolutionary Computation (GECCO
1999), vol. 1, pp. 258–265. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (1999)

17. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15, 1–28 (2007). https://doi.org/10.1162/evco.2007.
15.1.1

18. Kobayashi, K., Hamada, N., Sannai, A., Tanaka, A., Bannai, K., Sugiyama, M.:
Bézier simplex fitting: describing Pareto fronts of simplicial problems with small
samples in multi-objective optimization. In: Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence, AAAI 2019, the 31st Innovative Applications of
Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, pp. 2304–2313. AAAI
press, Palo Alto, CA, USA (Jan 2019)

19. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions:
an updated survey on niching methods and their applications. IEEE Trans. Evol.
Comput. 21(4), 518–538 (2017). https://doi.org/10.1109/TEVC.2016.2638437

20. Liang, J., Qu, B., Gong, D., Yue, C.: Problem definitions and evaluation criteria for
the CEC 2019 special session on multimodal multiobjective optimization. Technical
Report (Nov 2018)

21. Luong, N.H., Alderliesten, T., Bel, A., Niatsetski, Y., Bosman, P.A.N.: Application
and benchmarking of multi-objective evolutionary algorithms on high-dose-rate
brachytherapy planning for prostate cancer treatment. Swarm Evol. Comput. 40,
37–52 (2018). https://doi.org/10.1016/j.swevo.2017.12.003

22. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. Ph.D. Thesis, University
of Illinois at Urbana-Champaign, USA (1996), uMI Order No. GAX95-43663

https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1016/j.cor.2021.105489
https://doi.org/10.1162/EVCO_a_00188
https://doi.org/10.1162/EVCO_a_00188
https://doi.org/10.1162/evco.2007.15.1.1
https://doi.org/10.1162/evco.2007.15.1.1
https://doi.org/10.1109/TEVC.2016.2638437
https://doi.org/10.1016/j.swevo.2017.12.003

Bi-objective Multi-modal Bézier Curve Parameterizations 261

23. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Real-valued evolutionary multi-
modal multi-objective optimization by hill-valley clustering. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 568–576.
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3321707.3321759

24. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Ensuring smoothly navigable
approximation sets by Bézier curve parameterizations in evolutionary bi-objective
optimization. In: Parallel Problem Solving from Nature - PPSN XVI. pp. 215–228.
Springer, Cham (2020)

25. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Uncrowded hypervolume-based
multi-objective optimization with gene-pool optimal mixing. Evol. Comput. 1–24
(2021). https://doi.org/10.1162/evco a 00303

26. Maree, S.C., Alderliesten, T., Thierens, D., Bosman, P.A.N.: Real-valued evolu-
tionary multi-modal optimization driven by hill-valley clustering. In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2018), pp.
857–864. Association for Computing Machinery, New York, NY, USA (Jul 2018).
https://doi.org/10.1145/3205455.3205477

27. Preuss, M.: Niching the CMA-ES via nearest-better clustering. In: Proceedings of
the 12th Annual Conference Companion on Genetic and Evolutionary Computa-
tion (GECCO 2010), pp. 1711–1718. Association for Computing Machinery, New
York, NY, USA (2010). https://doi.org/10.1145/1830761.1830793

28. Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple
multimodal multiobjective functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E.,
Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193,
pp. 513–522. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297 52

29. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve
equivalent pareto subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T.,
Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70928-2 7

30. Schäpermeier, L., Grimme, C., Kerschke, P.: To boldly show what no one has
seen before: a dashboard for visualizing multi-objective landscapes. In: Ishibuchi,
H., Zhang, Q., Ishibuchi, H. (eds.) Evolutionary Multi-Criterion Optimization, pp.
632–644. Springer, Cham (2021)

31. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective
optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2020). https://doi.org/
10.1109/TEVC.2019.2909744

32. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: a MATLAB platform for evo-
lutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87
(2017)

33. Touré, C., Hansen, N., Auger, A., Brockhoff, D.: Uncrowded hypervolume improve-
ment: COMO-CMA-ES and the sofomore framework. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 638–646.
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3321707.3321852

34. Ursem, R.: Multinational evolutionary algorithms. In: Proceedings of the 1999
Congress on Evolutionary Computation-CEC99. vol. 3, pp. 1633–1640. IEEE, New
York, NY, USA (1999). https://doi.org/10.1109/CEC.1999.785470

35. Yue, C., Qu, B., Liang, J.: A multi-objective particle swarm optimizer using ring
topology for solving multimodal multi-objective problems. IEEE Trans. Evol. Com-
put. 22, 805–817 (2017). https://doi.org/10.1109/TEVC.2017.2754271

https://doi.org/10.1145/3321707.3321759
https://doi.org/10.1145/3321707.3321759
https://doi.org/10.1162/evco_a_00303
https://doi.org/10.1145/3205455.3205477
https://doi.org/10.1145/1830761.1830793
https://doi.org/10.1007/11844297_52
https://doi.org/10.1007/978-3-540-70928-2_7
https://doi.org/10.1109/TEVC.2019.2909744
https://doi.org/10.1109/TEVC.2019.2909744
https://doi.org/10.1145/3321707.3321852
https://doi.org/10.1145/3321707.3321852
https://doi.org/10.1109/CEC.1999.785470
https://doi.org/10.1109/TEVC.2017.2754271

262 R. J. Scholman et al.

36. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007). https://doi.org/
10.1109/TEVC.2007.892759

37. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Evolutionary Methods for
Design Optimization and Control with Applications to Industrial Problems, pp. 95–
100. International Center for Numerical Methods in Engineering, Athens, Greece
(Sep 2001)

38. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.
810758

https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2003.810758

T-DominO
Exploring Multiple Criteria with Quality-Diversity

and the Tournament Dominance Objective

Adam Gaier1(B), James Stoddart2, Lorenzo Villaggi2, and Peter J. Bentley1,3

1 Autodesk Research, Bonn, Germany
adam.gaier@autodesk.com

2 Autodesk Research, New York, USA
3 University College London, London, UK

Abstract. Real-world design problems are a messy combination of con-
straints, objectives, and features. Exploring these problem spaces can
be defined as a Multi-Criteria Exploration (MCX) problem, whose goals
are to produce a set of diverse solutions with high performance across
many objectives, while avoiding low performance across any objectives.
Quality-Diversity algorithms produce the needed design variation, but
typically consider only a single objective. We present a new ranking,
T-DominO, specifically designed to handle multiple objectives in MCX
problems. T-DominO ranks individuals relative to other solutions in the
archive, favoring individuals with balanced performance over those which
excel at a few objectives at the cost of the others. Keeping only a single
balanced solution in each MAP-Elites bin maintains the visual accessi-
bility of the archive – a strong asset for design exploration. We illustrate
our approach on a set of easily understood benchmarks, and showcase
its potential in a many-objective real-world architecture case study.

Keywords: Quality-diversity · Generative design · Multi-objective

1 Introduction

Architecture projects must balance a dizzying array of objectives: daylight,
views, noise, wind, cost, open spaces, carbon footprint, and ease of construc-
tion, to name a few – along with less easily optimized subjective considerations
like aesthetics and comfort. In generative design (GD), where algorithms aid
design exploration by producing candidate designs, the desired result is not a
single solution, but a variety of high performing options [4]. A variety of options
is required because the problem has more than one objective, which means there
may be many possible solutions. Perhaps more importantly, a varied choice high-
lights design concepts to stakeholders and decision makers who then select and
modify them according to messy human compromises.

c© The Author(s) 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 263–277, 2022.
https://doi.org/10.1007/978-3-031-14721-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_19&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_19

264 A. Gaier et al.

Fig. 1. Calculating the Tournament Dominance Objective (T-DominO)

Though it may resemble multi-objective optimization (MOO) [10], the prob-
lem this work focuses on for GD and similar domains is different. We define the
problem as a Multi-Criteria Exploration (MCX) problem, whose goals are to:

1. Produce a catalog of diverse solutions
2. with high performance across many objectives
3. while avoiding low performance across any objectives

MCX can be considered an exploratory form of MOO, just as Quality-
Diversity (QD) [8,39], is an exploratory form of single-objective optimization. In
contrast to MOO, in MCX we do not strive for either uniform coverage of the
Pareto front, nor precise proximity to it. Uniform coverage of the front implies
coverage of the extremes of the objective space – where solutions earn their place
in the Pareto front by dominating on only a subset of objectives. These solu-
tions are uninteresting for MCX, as solutions which disregard user preferences
by ignoring some objectives are not useful in practice. Proximity to the front is
also less important for exploration – the goal is to generate starting points, not
end points. Generated solutions are rarely used without modification, reducing
the effort of finding the precise front to an expensive distraction.

The QD approach seems, at first, ideal for solving MCX problems. QD algo-
rithms provide a way of explicitly searching for diversity as defined at a high
level by users. Whereas MOO strives for a maximum spread in the objective
space, QD searches for spread in a user-defined ‘feature’1 space. As opposed to
objectives, these features correspond to different ways of solving the problem,
not quantities to be minimized. In architecture the number of buildings in a
building complex or the distance between them can be explicitly explored with
QD in a way that is not possible with MOO.

But QD is designed to explore several features, not to optimize multiple
objectives. MAP-Elites [7,33], the most widely used QD algorithm, divides the
feature space and searches for the best solution in each partition. The result is
a set of optimized designs organized by high level features; the performance of
this collection can then be viewed as heat map projected on to the feature space,
illuminating the relationship between features and performance.
1 Also referred to in the QD literature as a behavior, descriptor, outcome, or measure.

T-DominO 265

Recent work has proposed combining MOO and QD by computing a Pareto
front in every partition [38]. In the MCX case this ‘all of the above’ approach
is not satisfying – MAP-Elites’ intuitive way of organizing, summarizing, and
presenting the results depends on finding a single best solution for each partition.
An alternate method of reconciling the approaches must be found.

In this work we leverage the insight that the diversity in objective space
produced by MOO mechanisms such as crowding distance [12], or reference vec-
tors [11] are unneeded when diversity is enforced by QD. In QD, users can choose
the type of variety to explore, and trade-offs in objectives will naturally arise
from those choices. When exploration of the objective space is no longer pri-
oritized, non-domination – which favors the extremes of the front to the same
degree as the center – ceases to be the most desirable attribute of a solution.
In MCX, balanced solutions which perform well on all objectives are preferred.
Our second insight is that the ‘balance’ of a solution can be defined in relation
to a population, and that the solutions contained in the MAP-Elites archive can
act as that population.

Our approach extends MAP-Elites to the exploration of problems with
multiple objectives by introducing the Tournament Dominance Objective (T-
DominO), which ranks individuals in a population according to an approxima-
tion of their distance to the center of the Pareto front. T-DominO awards poor
scores to non-dominated solutions at the extremes of the objective space – those
which excel at one objective while doing very poorly at the other – while those
at the center of the front receive the highest scores (Fig. 1).

Optimizing MAP-Elites according to T-Domino provides an elegant approach
to tackle MCX problems. A simple alternate ranking causes minimal disruption
to the core algorithmic machinery while allowing MAP-Elites to discover varied
design concepts which balance multiple objectives. Approaches which assume a
single objective and single solution in each bin, such as CMA-ME [14], can still
be used. Crucially, T-DominO tackles multiple objectives without sacrificing
MAP-Elites’ intuitive visualization and analysis of solutions, features, and their
interaction with objectives – the true goal of the algorithm when used for design.

2 Background

2.1 Generative Design

In design and architecture, experiments with human-machine collaboration are
common [2,4,18,26,35,41]. Recent work has demonstrated the viability of GD
in real-world applications, from office retrofits [35], large scale trade-shows [36],
to neighborhood scale planning [34]. The number of conflicting constraints, pref-
erences, and objectives in these projects makes ‘solving’ them an ill-defined and
impossible task. Optimization tools are typically used at the beginning of the
design process rather than the end. Optimization algorithms are not used solve
problems, but to explore them [4,31].

The purpose of GD is less optimization and more communication. Search
algorithms are used to understand the possibilities and potential of a problem

266 A. Gaier et al.

space. Objectives serve as proxies for preferences, goals, and features of interest
that are often difficult or impossible to define mathematically. These objectives
signify criteria of a good design or ways of counter-balancing those criteria to
prevent extreme solutions which are not aligned with designers intent.

Results are then filtered and categorized in an effort to find qualitatively
different design concepts. Typically designs are judged visually first, and only
once a set of interesting and varied designs identified is their performance exam-
ined. This can be a clumsy process, and for GD to have real success accessibility
must be a consideration at every step of the process, including optimization. An
intuitive GD approach would not only find a set of solutions which balance per-
formance over several objectives, but explicitly search for the high level diversity
that sets solutions apart from each other. This is the goal of MCX.

2.2 Exploration and Optimization with Non-objective Criteria

MOO approaches strive to produce a set of non-dominated solutions that is
diverse in the objective space, and as near to the Pareto optimal front as possi-
ble [37], but the diversity that interests designers is often not in objective space.
Other qualities can be induced with ‘helper’ objectives in a process known as
multiobjectivization [25,27,30]. Helper objectives can optimize quantities unre-
lated to performance, such as the type of cross sections in a structural frame [21],
or the similarity to previous solutions [32], but are still performing minimization.
Maximizing or minimizing the number of buildings on a site makes little sense,
but understanding the effect of the number of buildings is a valuable insight.

QD approaches such as MAP-Elites [7,33] search for solutions along a contin-
uum of user-defined features, making them ideal for exploration. MAP-Elites has
been used for design exploration in domains such as aerodynamics [15–17,23,24],
and game design [1,5,19,20], but has been restricted to consideration of a sin-
gle objective. MAP-Elites operates by first discretizing the feature space into
bins, collectively known as a map or archive. Each bin contains a single solu-
tion and its corresponding fitness value. New solutions are created by selecting
and varying solutions from the map. These new solutions are evaluated and two
values produced: a performance measure and a set of coordinates in the feature
space. These coordinates indicate the bin to which the solution belongs. The
solution is placed in the bin if it is empty, or if the candidate solution has higher
performance than the current occupant of the bin, it replaces it.

The elitist nature of MAP-Elites, with only one solution per bin, puts it at
odds with the idea of the Pareto front. A concurrent work [38] bridges this gap
by introducing a Pareto front in each bin, and replacing fitness tournaments
with non-domination. Though this technique is able to find a large set of Pareto
fronts, it sacrifices the elegant method of communicating the results. Rather than
viewing individual designs and correlations between features and objectives, we
are left with a mass of summary statistics – useful for MOO, but not for MCX. In
our work we maintain the the elitist nature of MAP-Elites, and instead replace
the Pareto front with an alternate formulation of multi-objective performance.

T-DominO 267

Fig. 2. Using anchor points to calculate T-DominO.

3 Method

When tackling MCX problems, our interest lies in finding solutions which per-
form well on all objectives in each region of a QD feature space. The Tournament
Dominance Objective (T-DominO), introduced here, ranks solutions according
to an approximation of their distance to the center of the front, with the most
balanced solutions ranking highest. This approximation is calculated through a
series of tournaments between a solution and a set of existing points in objective
space, or anchor points (Fig. 2). An individual is compared to each anchor point
on a single objective, and for every anchor point with a lesser or equal objective
value one point is awarded. This count is made for every objective, and these
counts multiplied.

The T-DominO score of solution with objective values x, compared to a set
of anchor points with objective values A is more precisely defined as:

T-DominO(x,A) =
objs∏

n=1

anchors∑

m=1

f(xn, Amn), f(x, a) =

{
1, x ≥ a

0, else
(1)

where objs and anchors is the number of objectives and anchor points.2

The integration of T-DominO into MAP-Elites can be summarized as follows:

1. a new individual, based on its feature coordinates, is assigned a bin.
2. a set of anchor points are collected from the history of elites in that bin, the

k neighboring bins, and the new individual itself.
3. the T-DominO of the current elite and the challenger are computed based on

these anchor points.
4. if the challenger has a greater T-DominO score it replaces the current elite,

and the objective values of the replaced elite are stored in the bin to serve as
a future anchor point.

2 Or in python: numpy.prod(numpy.sum(objs >= anchors,axis=0)).

268 A. Gaier et al.

When individuals in a population are ranked according to T-DominO the
result is a ranking from the center of the front outwards (Fig. 2, right). This
ranking allows the combination of multiple objectives into a single score which
rewards solutions with the highest balanced performance, without the need for
penalty functions or arbitrary weighting of objectives.

T-DominO is based around comparisons to anchor points, and the MAP-
Elites archive provides a ready source. Existing elites in the archive can be used
as a sampling of the objective space, and act as anchor points distributed across
both objective and feature space. Selection pressure toward improved T-DominO
scores creates high performing solutions which in turn act as anchor points, in
a virtuous cycle that leads to ever higher performance.

However, when selection pressure is organized around only the current pop-
ulation, cycling can occur. In some circumstances a challenger solution which
is better on one objective can replace the current elite, which can in turn be
replaced by the original. To prevent this behavior and ensure progress towards
better solutions we track the objective values of the previous elites. While each
bin continues to contain only a single elite, the objective values of previous elites
are maintained to act as anchor points, preventing cycling and creating further
refinement of the T-DominO landscape. A simple FIFO buffer of the objective
values of a handful of past elites is sufficient.

Neighboring partitions typically have similar performance potential, and so
are necessary for creating more fine-grained landscapes, but bins with solutions
that dominate all or none of the solutions in the a bin provide no signal to
inform selection pressure, and so we can safely limit the anchor points to those
contained in the k nearest neighboring bins.

T-Domino allows the simultaneous optimization of several objectives with a
single measure, relying on QD diversity mechanisms to prevent convergence on a
single point. The output of T-Domino MAP-Elites is ideal for MCX – an archive
with a single best balanced solution in each bin. Having a single solution in each
bin allows the effects of solution features on that balance to be easily understood
and visualized and so contribute to the understanding of the underlying problem,
such as the correlation of features and objectives. The creation of a library of
designs organized by high level features of the users choosing provides an ideal
set of starting points for further refinement.

4 Benchmarks

4.1 Setup

We validate the expected behavior of MAP-Elites with T-DominO on a series of
established multi-objective benchmark problems. The purpose of these tests is
to validate our claims that T-Domino will:

1. Discover high performing, if not optimal, solutions
2. Produce balanced solutions whose performance does not come at the cost of

large trade-offs in a subset of objectives

T-DominO 269

Benchmark Functions
RastriginMOO. To judge the performance of T-DominO on Multi-Objective QD
problems, we test on a version of RastriginMOO as introduced in [38]. The
Rastrigin function is a classic optimization benchmark, often used to test QD
algorithms because it contains many local minima [6,14]. Here it is converted
into a multiobjective benchmark by optimizing a pair of Rastrigin functions
with shifted centers. We use a 10-D version with constants added so that every
discovered bin has a positive effect on the aggregate QD Score. These objectives
can be explicitly defined as:

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) = 200 − (
n∑

i=1

[(xi − λ1)2 − 10 cos(2π(xi − λ1))])

f2(x) = 200 − (
n∑

i=1

[(xi − λ2)2 − 10 cos(2π(xi − λ2))])
(2)

where λ1 = 0.0 and λ2 = 2.2 for f1 and f2. All parameters are limited to the
range [−2, 2], with the feature space defined by the first two parameters.

ZDT3. When spread across the objective space is desired, objectives themselves
could be used as features. This use case is demonstrated with the ZDT3 bench-
mark, a 30 variable problem from the ZDT MOO benchmark problem suite [42]
whose hallmark is a set of disconnected Pareto-optimal fronts, and whose first
parameter is value of the first objective. Parameter ranges span 0–1 with the
first two parameters used as features, enforcing a spread of solutions across the
range of the first objective.

DTLZ3. To illustrate T-DominO’s bias toward balanced solutions we analyze its
performance on DTLZ3, a many-objective benchmark with a tunable number of
objectives and variables[13]. We test with 10 parameters and 5 objectives, with
the 6th and 7th parameters use as features.3.

Baseline Approaches
ME Single. MAP-Elites [33] optimizing only a single objective is used to estab-
lish an upper and lower bound of performance we can expect from MAP-Elites.
Blind to the second objective we can expect it to find the top performing solu-
tions for the first. Equally important, the exploration of all bins without regard
to the performance on the second objective establishes a floor for performance
– the performance we could expect for having any solution in the bin.

ME Sum. We compare using the T-Domino objective with MAP-Elites [33] using
the most naive way of combining multiple objective – simply adding them. Our
benchmarks all have well-scaled objectives, but this is typically not the case. To
simulate this difficulty we use a weighted sum, with each additional objective
values increased by an order of magnitude (e.g. ×1, ×10, ×100...).

3 The first n parameters are explicitly linked to the first n objectives as in ZDT3 –
later parameters are used to avoid explicitly exploring the objective space.

270 A. Gaier et al.

NSGA-II. NSGA-II [12] is used as a benchmark for conventional multi-objective
optimization without feature space exploration, reaching near the Pareto front
on these simple benchmarks. Though it is not our goal to compete with MOO
algorithms, they provide a useful metric to contextualize the difference between
exploratory approaches and pure optimizers.

Settings. In all MAP-Elites approaches the feature space is partitioned a
20× 20 grid, with 2 CMA-ME improvement emitters [14] performing optimiza-
tion. T-Domino was computed using the neighbors from 4 bins away, using a
history of the 10 most recent elites in each bin. Hyperparameters for NSGA-II
were kept comparable, a population of 400 matched the 400 bins of the MAP-
Elites grids, with the same number of new solutions generated per generation
for the same number of generations. A standard implementation of NSGA-II
from the PyMoo library [3] is used, as well as the library’s formulations for the
ZDT3 and DTLZ benchmarks whose the exact formulation is included in the
online supplemental. The PyRibs [40] library was used as a basis for all MAP-
Elites experiments, with T-DominO implemented as a specialized archive type.
All experiments were replicated 30 times, additional plots are provided in the
Supplemental.

4.2 Result

Figure 3 illustrates the explored regions of objective and feature space in a sin-
gle run. Using the NSGA-II solutions to outline the true Pareto front we can
see where each MAP-Elites approach concentrates. In the RastriginMOO case,
though each version of MAP-Elites explores identical areas of the feature space,
the range of possible values in objective space is large. T-Domino produces solu-
tions in the middle of the front, with solutions that strike a balance between
the two objectives. In the ZDT3 case we see that by explicitly exploring one of
the objectives we can force spread over the objective space, and provide high
performing solutions in the other objective.

With more than two objectives the balance seeking property of T-DominO
becomes even more pronounced. Parallel coordinate plots (Fig. 3, top right),
which plot each solution as a line with one vertex per objective, make clear the
differing selection pressure of T-DominO and non-dominated sorting. In contrast
to the spiky lines denoting high performance on some objectives and low perfor-
mance on others, T-DominO’s solutions form a flat band of even performance.

The difference of balance is critical when approaching MCX problems. To
spread across the five dimensional front, solutions found by NSGA-II must span
many areas with solutions that perform poorly on some objectives. If we divide
the range of objective values found by NSGA-II into quartiles, only 25% of the
solutions found by NSGA-II perform over the bottom quartile on all objectives.
If all of these objectives are valued by the user, that means that three quarters
of solutions may be discarded immediately – and this will only worsen as the
number of objectives grows. In contrast, when T-DominO MAP-Elites’ results

T-DominO 271

Fig. 3. Benchmark results. Top: Objective space as explored by each approach. Bot-
tom: Feature space as explored by T-DominO MAP-Elites and NSGA-II. T-DominO
points are colored by T-DominO score compute with the entire archive as anchor points.

are judged on the same scale, 99% of the solutions found by T-DominO MAP-
Elites perform over the bottom quartile on all objectives.

Visualizing the distribution of found solutions in feature space (Fig. 3, bot-
tom) gives a stark illustration of the main motivation for using a QD approach.
The solutions produced by NSGA-II cluster in a tiny portion of the feature space.
This region may be Pareto optimal, but QD gives us the ability to explore areas
of our choosing.

5 Case Study

5.1 Setup

As a study of the applicability of T-DominO MAP-Elites to MCX problems we
explore its use in optimizing building layouts for real-world residential complex.
Solutions are produced using wave function collapse (WFC) [22], a popular tool
for tile-based procedural content generation in games. WFC is a constraint sat-
isfaction approach which extracts local patterns from a small set of samples, and
transforms them into a set of local constraints. The constraints drive generation,

272 A. Gaier et al.

Fig. 4. Objectives, Features, and Constraints of building layout study. Shaded
regions indicate portion of building site which cannot be built on. For details on com-
putation of each metric see the online supplemental.

ensuring that every local patch of the output also exists in the set of input exam-
ples. We adapt the implementation here [28,29]. Constrained generation systems
like WFC are particularly appropriate for the semi-constrained design systems
often used in residential building, such as modular or prefabricated units, and
do not require the extensive curated datasets of valid designs.

WFC, though constrained, is a stochastic process. At every iteration a tile
is ‘collapsed’, or fixed, with the type chosen stochastically from a list of valid
tiles, and new constraints applied to its neighbors. To make this encoding more
amenable to optimization we have introduced an evolvable genotype of tiles
which are fixed at the beginning of this collapsing process. Children inherit
these fixed tiles from parents, in addition to fixing an additional tile from the
design produced by the parent or removing one of the tiles that were fixed by the
parent. Fixing tiles freezes key portions of the parent design and saves progress
toward interesting designs - while still allowing substantial deviation from the
parent, as the remainder of the tiles are generated stochastically with WFC. See
the supplemental material for set of used tiles and example designs.

The resulting designs are evaluated according to 4 objectives, 1 constraint,
and explored along 3 features (illustrated in Fig. 4, more details in the online
supplemental). The constraint was handled in a tournament fashion as in [9] –
in any tournament where one solution follows the constraint and the other does
not, the solution which follows the constraint wins regardless.

T-DominO 273

Fig. 5. Exploring building layouts generated with T-DominO MAP-Elites.
Top: 2D views of 3D feature space, solutions in groups of four are identical, colored in
each view by each objective (darker is better). Bottom: A walk through designs that
vary along one feature dimension, with accompanying objective values. Petal plots are
scaled to the final min/max objective value found in the archive. (Color figure online)

5.2 Result

Once a set of designs has been produced, we can extend on MAP-Elites’ intuitive
way of optimizing, organizing, and displaying solutions to multiple objectives.
To better understand our 3D feature space we ‘flatten’ it into a set of 2D views
by creating a set of new 2D archives with the desired feature axes and inserting
all of the solutions from the 3D archive, forcing competition based on only two
features. The result is one map for each pair of the three features (Fig. 5, top).

Each of these views can in turn be split into one map for each objective,
collectively allowing correlations along feature axes and objectives to all be seen
at a glance. Obvious relationships such as an increase in open area resulting
in more units are clear, along with less appreciated connections: with fewer
buildings ventilation is worse – unless buildings have longer facades.

Clear organized grids of solutions open up many avenues for intuitive nav-
igation of the produced solutions. Here we show one possibility, browsing rows

274 A. Gaier et al.

or columns of designs. An area of the map can be selected, and the individual
designs displayed along with their performance across objectives. Drilling down
on a subset we can see the qualitative differences between large and small open
areas (Fig. 5, Center), and the kinds of layouts they each represent. A combined
view allows us to see large difference in objective values that may not have been
apparent from a qualitative glance: even with the same amount of open area
we can see there is huge amount of variation in the number of units that can
fit on a site, that increasing this amount of units comes at the cost of natural
ventilation, and that qualitatively this trade-off is between a few thick buildings,
or several small ones (Fig. 5, Bottom).

6 Discussion

In this work we have defined a new class of problem, the MCX problem, tailored
specifically to the needs of generative design. A chief aim of the generative design
is to spark ideas and explore concepts, and results are typically explored by
browsing designs not objectives. The measure space of MAP-Elites provides
an intuitive way of creating and exploring sets of solutions with varied and
understandable high level features.

T-DominO allows MAP-Elites to maintain these visual and organizational
capabilities in the complex multi-criteria scenarios where they are most useful.
Keeping a single solution in each bin rather than a front is about more than
computational cost, it is about maintaining visual accessibility. Having a single
solution in each bin simplifies browsing and selecting interesting designs. When
objectives and features are correlated, the possible objectives values for each
feature combination is constrained to a range – so though balanced solutions are
found, the larger pattern of objective/feature relations are still clear.

T-DominO allows us to optimize for multiple objectives in a QD setting
without making any other fundamental changes to the algorithm. Simple to
implement, without adding any appreciable computational burden, T-DominO
can be easily integrated into existing approaches. By leaving its elitist character
untouched, T-Domino allows MAP-Elites to handle multiple objectives while
maintaining its core visualization and presentation strengths. Equipping MAP-
Elites with T-DominO allows us to generate diverse sets of well-rounded high
performing solutions, creating a powerful tool for tackling MCX problems.

Acknowledgements. The authors would like to thank Renaud Danhaive, Jeffrey
Landes, and the entire Spacemaker team for their invaluable site analysis tool and
expertise as well as Mark Davis and David Benjamin for their guidance and support.

Supplemental Material and Code. Supplemental material and code available at:

https://github.com/agaier/tdomino ppsn.

https://github.com/agaier/tdomino_ppsn

T-DominO 275

References

1. Alvarez, A., Dahlskog, S., Font, J., Togelius, J.: Empowering quality diversity in
dungeon design with interactive constrained map-elites. In: 2019 IEEE Conference
on Games (CoG), pp. 1–8. IEEE (2019)

2. Arieff, A.: New forms that function better. Technol. Rev. 116(5), 94–98 (2013).
TECHNOL REV 1 MAIN ST, 13 FLR, CAMBRIDGE, MA 02142 USA

3. Blank, J., Deb, K.: pymoo: multi-objective optimization in python. IEEE Access
8, 89497–89509 (2020)

4. Bradner, E., Iorio, F., Davis, M.: Parameters tell the design story: ideation and
abstraction in design optimization. In: Proceedings of the Symposium on Simula-
tion for Architecture & Urban Design, vol. 26. Society for Computer Simulation
International (2014)

5. Charity, M., Green, M.C., Khalifa, A., Togelius, J.: Mech-elites: illuminating the
mechanic space of gvg-ai. In: International Conference on the Foundations of Dig-
ital Games, pp. 1–10 (2020)

6. Cully, A.: Multi-emitter map-elites: improving quality, diversity and data efficiency
with heterogeneous sets of emitters. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, pp. 84–92 (2021)

7. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503–507 (2015)

8. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular
framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2017)

9. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput.
Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

10. Deb, K.: Multi-objective optimization. In: Search methodologies, pp. 403–449.
Springer, Boston (2014). https://doi.org/10.1007/978-1-4614-6940-7 15

11. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings of the 2002 Congress on Evolutionary Compu-
tation, CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 825–830. IEEE (2002)

14. Fontaine, M.C., Togelius, J., Nikolaidis, S., Hoover, A.K.: Covariance matrix adap-
tation for the rapid illumination of behavior space. In: Proceedings of the 2020
Genetic And Evolutionary Computation Conference, pp. 94–102 (2020)

15. Gaier, A., Asteroth, A., Mouret, J.B.: Aerodynamic design exploration through
surrogate-assisted illumination. In: 18th AIAA/ISSMO Multidisciplinary Analysis
And Optimization Conference, p. 3330 (2017)

16. Gaier, A., Asteroth, A., Mouret, J.B.: Data-efficient exploration, optimization, and
modeling of diverse designs through surrogate-assisted illumination. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 99–106 (2017)

17. Gaier, A., Asteroth, A., Mouret, J.B.: Data-efficient design exploration through
surrogate-assisted illumination. Evol. Comput. 26(3), 381–410 (2018)

18. Gerber, D.J., Lin, S.H., Pan, B., Solmaz, A.S.: Design optioneering: multi-
disciplinary design optimization through parameterization, domain integration and
automation of a genetic algorithm. In: Proceedings of the 2012 Symposium on Sim-
ulation for Architecture and Urban Design, pp. 1–8 (2012)

https://doi.org/10.1007/978-1-4614-6940-7_15

276 A. Gaier et al.

19. González-Duque, M., Palm, R.B., Ha, D., Risi, S.: Finding game levels with the
right difficulty in a few trials through intelligent trial-and-error. In: 2020 IEEE
Conference on Games (CoG), pp. 503–510. IEEE (2020)

20. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural
content generation through quality diversity. In: 2019 IEEE Conference on Games
(CoG), pp. 1–8. IEEE (2019)

21. Greiner, D., Emperador, J.M., Winter, G., Galván, B.: Improving computational
mechanics optimum design using helper objectives: an application in frame bar
structures. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.)
EMO 2007. LNCS, vol. 4403, pp. 575–589. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70928-2 44

22. Gumin, M.: Bitmap and tilemap generation from a single example by collapsing a
wave function. GitHub (2016)

23. Hagg, A., Asteroth, A., Bäck, T.: Prototype discovery using quality-diversity. In:
Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D.
(eds.) PPSN 2018. LNCS, vol. 11101, pp. 500–511. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99253-2 40

24. Hagg, A., Wilde, D., Asteroth, A., Bäck, T.: Designing air flow with surrogate-
assisted phenotypic niching. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol.
12269, pp. 140–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58112-1 10

25. Handl, J., Lovell, S.C., Knowles, J.: Multiobjectivization by decomposition of scalar
cost functions. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.)
PPSN 2008. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87700-4 4

26. Holzer, D., Hough, R., Burry, M.: Parametric design and structural optimisation
for early design exploration. Int. J. Archit. Comput. 5(4), 625–643 (2007)

27. Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary algorithms for
single-objective optimisation. J. Math. Modell. Algo. 3(4), 323–347 (2004)

28. Karth, I.: wfc2019f (2021). https://github.com/ikarth/wfc-2019f
29. Karth, I., Smith, A.M.: Addressing the fundamental tension of pcgml with dis-

criminative learning. In: Proceedings of the 14th International Conference on the
Foundations of Digital Games, pp. 1–9 (2019)

30. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K.,
Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9 19

31. Matejka, J., Glueck, M., Bradner, E., Hashemi, A., Grossman, T., Fitzmaurice, G.:
Dream lens: exploration and visualization of large-scale generative design datasets.
In: Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pp. 1–12 (2018)

32. Mouret, J.B.: Novelty-based multiobjectivization. In: New horizons in evolutionary
robotics, pp. 139–154. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-
18272-3 10

33. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 (2015)

34. Nagy, D., Villaggi, L., Benjamin, D.: Generative urban design: integration of finan-
cial and energy design goals in a generative design workflow for residential neigh-
borhood layout. In: Symposium on Simulation for Architecture and Urban Design
(2018)

https://doi.org/10.1007/978-3-540-70928-2_44
https://doi.org/10.1007/978-3-540-70928-2_44
https://doi.org/10.1007/978-3-319-99253-2_40
https://doi.org/10.1007/978-3-319-99253-2_40
https://doi.org/10.1007/978-3-030-58112-1_10
https://doi.org/10.1007/978-3-030-58112-1_10
https://doi.org/10.1007/978-3-540-87700-4_4
https://doi.org/10.1007/978-3-540-87700-4_4
https://github.com/ikarth/wfc-2019f
https://doi.org/10.1007/3-540-44719-9_19
https://doi.org/10.1007/978-3-642-18272-3_10
https://doi.org/10.1007/978-3-642-18272-3_10
http://arxiv.org/abs/1504.04909

T-DominO 277

35. Nagy, D., et al.: Project discover: an application of generative design for architec-
tural space planning. In: Proceedings of the Symposium on Simulation for Archi-
tecture and Urban Design, p. 7. Society for Computer Simulation International
(2017)

36. Nagy, D., Villaggi, L., Zhao, D., Benjamin, D.: Beyond heuristics: a novel design
space model for generative space planning in architecture (2017)

37. Panichella, A.: An adaptive evolutionary algorithm based on non-euclidean geom-
etry for many-objective optimization. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 595–603 (2019)

38. Pierrot, T., Richard, G., Beguir, K., Cully, A.: Multi-objective quality diversity
optimization. arXiv preprint arXiv:2202.03057 (2022)

39. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Frontiers Robot. AI 3, 40 (2016)

40. Tjanaka, B., Fontaine, M.C., Zhang, Y., Sommerer, S., Dennler, N., Nikolaidis,
S.: pyribs: a bare-bones python library for quality diversity optimization (2021).
https://github.com/icaros-usc/pyribs

41. Turrin, M., Von Buelow, P., Stouffs, R.: Design explorations of performance driven
geometry in architectural design using parametric modeling and genetic algorithms.
Adv. Eng. Inform. 25(4), 656–675 (2011)

42. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2202.03057
https://github.com/icaros-usc/pyribs
http://creativecommons.org/licenses/by/4.0/

Numerical Optimizaiton

Collective Learning of Low-Memory Matrix
Adaptation for Large-Scale Black-Box

Optimization

Qiqi Duan1,3(B), Guochen Zhou3, Chang Shao2,3, Yijun Yang2,3, and Yuhui Shi3(B)

1 Harbin Institute of Technology, Harbin, China
11749325@mail.sustech.edu.cn

2 University of Technology Sydney, Sydney, Australia
3 Southern University of Science and Technology, Shenzhen, China

shiyh@sustech.edu.cn

Abstract. The increase of computing power can be continuously driven by par-
allelism, despite of the end of Moore’s law. To cater to this trend, we propose
to parallelize the low-memory matrix adaptation evolution strategy (LM-MA-
ES) recently proposed for large-scale black-box optimization, aiming at further
improving its scalability (w.r.t. CPU cores) in the modern distributed computing
platform. To achieve this aim, three key design choices are carefully made and
naturally combined within the multilevel learning framework. First, to fit into the
memory hierarchy and reduce communication cost, which is critical for parallel
performance onmodernmulti-core computer architectures, the well-known island
model with a star interaction network is employed to run multiple concurrent LM-
MA-ES instances, each of which can be effectively and serially executed in each
separate island owing to its low computational complexity. Second, to support
fast convergence under the multilevel learning framework, we adopt Meta-ES to
hierarchically exploit the spatial-nonlocal information for global step-size adapta-
tion at the outer-ES level, combined with cumulative step-size adaptation, which
exploits the temporal-nonlocal information in the inner-ES (i.e., serial LM-MA-
ES) level. Third, a set of fitter individuals at the outer-ES level, represented as
(distribution mean, evolution path, transformation matrix)-tuples, are collectively
recombined to utilize the desirable genetic repair effect for statisticallymore stable
online learning. Experiments in a clustering computing environment empirically
validate the parallel performance of our approach on high-dimensional memory-
costly test functions. Its Python code is available at https://github.com/Evolution
ary-Intelligence/D-LM-MA.

Keywords: Collective learning · Distributed computing · Evolution strategy

1 Introduction

In the contemporary era, the growth in computing performance can be further driven by
software engineering, algorithm advance, and hardware streamlining, though the end of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 281–294, 2022.
https://doi.org/10.1007/978-3-031-14721-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_20&domain=pdf
https://github.com/Evolutionary-Intelligence/D-LM-MA
https://doi.org/10.1007/978-3-031-14721-0_20

282 Q. Duan et al.

Moore’s law [1].Refer to the latestScience review [1] for a comprehensive introduction to
the improving room of computer power in the post-Moore era. To cater to this computing
trend, in this paper we concentrate on application-level parallelism of covariance matrix
adaptation evolution strategies (CMA-ES) [5, 8], one of the state-of-the-art randomized
search algorithms for black-box optimization (BBO) (see the latest Nature review [3]).
The increasing popularity of CMA-ES may be attributed to its practical generalizability
from invariance against affine transformation and its theoretical foundation recently built
on information geometry [9, 24].

More specifically, we focus on parallelism of its latest low-memory version called
LM-MA-ES [10] for non-separable large-scale optimization (LSO), according to the
following three reasons. First, due to its O(nlog(n)) computational complexity1 (n is
the problem dimension), it provides a very effective alternative to the computationally
expensive CMA-ES (with O(n2) complexity) on LSO problems. Second, it is better
suitable for modern multi-core computer architectures than CMA-ES, since it can well
exploit thememoryhierarchy,which is typically critical for parallel performance. Finally,
parallel/distributed algorithms [11] are playing an increasingly significant role inmodern
large-scale machine learning [1].

The main goal of this paper is to increase the scalability (w.r.t. CPU cores) and
efficiency of LM-MA-ES for LSO in the modern distributed/clustering computing
environment. To reach such a goal, three contributions are made herein:

(1) We analyze the possible opportunities and challenges regarding parallelism ofMA-
ES, a simplified version of CMA-ES with little performance loss [12], and its LSO
version called LM-MA-ES, both quantitatively and qualitatively. And we further
point out the drawbacks of two existing solutions in the LSO context. (See Sect. 2
and Fig. 1 for details.)

(2) For LSBBO, we propose a distributed version of LM-MA-ES [10] (D-LM-MA
for short) targeted to the modern cloud/clustering computing environment and also
provide its open-sourcePython implementation2 as a baseline for further parallelism
benchmarking. (See Sect. 3 for details.)

First, to fit into memory hierarchy and control communication cost, we use the
well-known island model [13, 14] (with a star interaction topology) to concurrently
execute multiple serial instances of LM-MA-ES for each generation.

Second, to supportmultilevel learning [15] and fast convergence, the less-known
Meta-ES (also called Nested-ES) [2] is utilized to hierarchically exploit the space-
nonlocal information for global step-size adaptation in the outer-ES, which works
together with the popular cumulative step-size adaptation (CSA) [8] which exploits
the temporal-nonlocal information in the inner-ESs.

Finally, to employ the desirable genetic repair effect [16] at the outer-ES level,
a set of fitter individuals from different islands (from the inner-ESs), represented as
(distribution mean, evolution path, transformation matrix)-tuples, are collectively
recombined after each isolation period to generate one statistically more stable
(often better) parent for the next generation of the outer-ES.

1 In this paper, the computational complexity is defined w.r.t. one sample per generation.
2 The code is freely available at https://github.com/Evolutionary-Intelligence/D-LM-MA.

https://github.com/Evolutionary-Intelligence/D-LM-MA

Collective Learning of Low-Memory Matrix Adaptation 283

In principle, these simple yet often effective design choices should be naturally
extended to parallelize other LSO variants such as rank-one ES [17].

(3) Simulation experiments on a large set of 2000-d test functions with rotated and
shifted transformations empirically investigate the parallel advantages (and also
cost) of the proposed D-LM-MAwhen compared with its serial implementation. To
the best of our knowledge, it is the first time in the distributed computing platform to
scale LM-MA-ES to such memory-costly (from rotation operators) benchmarking
cases. (See Sect. 4 for details.)

2 Related Work on Distributed ES

Since there have been some well-written introductions to ES (e.g. [19–23, 29]) up to
now, in this section we will review only the work related to distributed ES3 due to the
page limit.

Parallelism is an often-claimed advantage of ES [5], since its invention (see e.g.
[4, 18]). Recently, its most successful application is direct policy search of deep neural
networks (with millions of weights) for episodic reinforcement learning (see [25–27]
for examples). Among them, the simplest master-slave model was used to parallelize
computationally expensive function evaluations (run on complex simulators). When the
task of function evaluations is light-weighted as shown in many real-world applications,
however, themaster-slavemodel will suffer from the excessive communication overhead
(see Fig. 1 for quantitative analysis on ten test functions). Furthermore, they considered
only a highly-customizedESversion based on natural ES (NES)without general-purpose
strategy parameter adaptation mechanisms, which may result in very slow convergence
on other challenging LSO problems (e.g., ill-conditioned) [12]. To alleviate these two
problems, another popular island model [13, 14] will be considered in the following,
which has a long (more than 20 years) history in the evolutionary computation field [28].

During the past two decades, there have been several open-source software (e.g.,
DEAP [30], pagmo [13], pCMALib [31]), which provide distributed implementations
based on the island model for CMA-ES. However, to our knowledge, all of them only
considered the low-dimensional (most < 100) cases and there is still no report about
their applications for LSO. It is because the parallelism of CMA-ES for LSO easily
suffers from slow convergence rate (typically O(n2) adaptation time), excessive time
occupancy from eigen-decomposition, high communication overhead, and poor usage
of memory hierarchy. Instead, its LSO variants (e.g., R1-ES, LM-MA-ES) should be
chosen as a baseline for parallelism, as they can better exploit memory hierarchy and
control communication cost under their much lower computational complexity.

It is worthwhile noting that there are still two other interesting models (i.e., cellular
and hierarchical models) for distributed evolutionary algorithms. However, they have
been rarely used for distributed ES till now, and therefore we will not consider them in
the following sections.

3 For the latest survey regarding parallel and distributed evolutionary algorithms, please refer
to https://github.com/Evolutionary-Intelligence/DistributedEvolutionaryComputation, which
is continuously updated in the near future (at least to 2024).

https://github.com/Evolutionary-Intelligence/DistributedEvolutionaryComputation

284 Q. Duan et al.

Fig. 1. Ratio of function evaluation time on total runtime (bar, left y-axis) and theoretically
maximal speedup of master-slave model (line, right y-axis) obtained by MA-ES and LM-MA-
ES on 10 rotated-shifted functions with 2000 dimension. For both MA-ES and LM-MA-ES, even
given an infinite parallel resource, a very limited speedup (<5) is obtained on all functions except
LM-MA-ES on Schwefel12 (with a much higher time complexity than other functions). The
calculation of theoretically maximal speedup is based upon the Amdahl’s law [32] under the limit
condition.

3 Distributed LM-MA-ES Within Multilevel Learning

In this section, we present the proposed distributed ES framework based on LM-MA-
ES (D-LM-MA for brevity), inspired by the latest multilevel learning framework for
evolution [15]. Owing to the complexity of distributed algorithms, we focus on three
design choices critical for parallel performance and the rationales behind them, while
omitting other tedious details. To ensure repeatability and benchmarking, its software
implementation using Python [33] is openly available at GitHub.

3.1 Combining Island Model with Meta-eS for Multilevel Learning

In their latest PNAS paper, Vanchurin et al. [15] mathematically formulated biological
evolution as multilevel learning. According to their ambitious theory, seven principles of
evolution underlies evolvability, arguably a desirable property for any evolving system.
Roughly speaking, “evolving systems encompassmultiple dynamic variables that change
on different temporal scales” [15] and “slower-changing levels absorb information from
faster-changing levels during learning and pass information down to the faster levels
for prediction of the state of the environment and the system itself” [15]. In our opinion,
such a hierarchy of scales observed in evolution can provide both the philosophical and
algorithmic viewpoints regarding the design of distributed evolutionary algorithms, as
presented below.

Some evolutionary algorithms (such as Meta-ES, island model, and coevolutionary
algorithms) could be seen as concrete algorithmic instances of multilevel learning, as
they explicitly exploit the evolution hierarchy of time and/or space scales. Therefore, we
can naturally combine the island (aka coarse-grained) model with Meta-ES, resulting in
a general-purpose distributed ES framework with online hierarchical learning of strategy
parameters, as shown in Fig. 2.

Collective Learning of Low-Memory Matrix Adaptation 285

Fig. 2. A simplified diagram of combining the islandmodel withMeta-ES for multilevel learning,
where the outer-ES controls online learning of (global step size and learning rate) and collective
learning of (distribution mean, evolution path, and transformation matrix) at a slower-changing
timescale while a set of independent inner-ESs (each of which runs the serial LM-MA-ES for
every isolation period) concurrently learn these above strategy parameters at a faster-changing
timescale.

In this paper, we use the simplest star communication topology (with central con-
trol) for the island model, which can be regarded as one efficient implementation of
the fully-connected topology somewhat. In principle, other more complex topologies
can be also employed. Here, an obvious benefit of the star topology against others is
the relatively easy understanding and analysis of the resulting distributed algorithm (if
properly designed), owing to its simplicity.

For each separate island (often corresponding to one CPU core), a serial LM-MA-ES
instance is run in every isolation interval. We prefer to use LM-MA-ES, as presented in
Algorithm 1, based on its twomost important advantages for LSO: that is, itsO(nlog(n))
time and space complexity makes it easily exploit thememory hierarchy critical for par-
allel performance and it can efficiently approximate the powerful invariance against
affine transformation, an essential feature of CMA-ES. Refer to [10] for detailed math-
ematical derivations and empirical evidences regarding invariance, owing to the limit of
space.

After deciding the interaction topology (star) and the computing unit (LM-MA-ES),
we need to solve one key design issue for the island model: what, when, and how to
communicate among these islands (i.e., inner-ESs), in order to accelerate convergence
and maintain diversity. Here we answer the first two questions (what and when) right
now and postpone the last (how) in the following subsection.

286 Q. Duan et al.

* Refer to [10] for detailed explanations of the above algorithmic flow.

For LM-MA-ES, the settings of the following parameters have a significant impact
on its convergence rate: such as, mean of search distribution, global step-size, evolution-
path learning rate, evolution path, and transformation matrix. In this paper, we choose
these parameters as the basic information source for communication. Note that these
parameters4 are adapted online in the inner-ES at a faster-changing timescale, which
can support the construction of multilevel learning in a hierarchical manner.

For the island model, too frequent communications can lead to excessive network
overhead and significantly reduce the parallelism level particularly in the distributed
computing platform based on commodity servers. On the contrary, too few communica-
tions may delay the effect of online learning and result in slow convergence. Therefore,
we need to carefully balance the isolation time between a reasonable interval, in order
to maximize the parallelism level and obtain fast convergence. We need to tune it for the
best performance when solving real-world applications.

3.2 Online and Hierarchical Learning of Strategy Parameters via Meta-eS

It is widely accepted that typically the optimal settings of strategy parameters differ at
different evolution stages [2]. As pointed out in [5], the only solution of global step-size
control for large populations might be to use a hierarchical method (also referred to
as Meta-ES). For optimality, Meta-ES [34–36] maintains and evolves multiple parallel

4 Except the learning rate of evolution path (cσ), which is fixed during run and often seen as one
hyper-parameter for offline tuning.

Collective Learning of Low-Memory Matrix Adaptation 287

subpopulations (each corresponding to one inner-ES) with different strategy parameter
settings at each isolation period.

In theEShistory, twodifferentnonlocal self-adaptationmethods havebeen suggested
till now, in order to enhance the efficiency of online learning5 [2]. The first is cumulative
step-size adaptation (CSA [8]), which utilizes (possible) correlation between successive
promising directions in an exponential smoothingway. The second is the so-calledMeta-
ES (aka Nested-ES) which employs multiple subpopulations in parallel to hierarchically
explore the strategy parameter space.

In this subsection, we try to enjoy the best of both worlds: learning by both hier-
archical use of parallel subpopulations (Meta-ES) and online adaptation of strategy
parameters in inner-ESs (CSA). Note that previous Meta-ESs ([34–36]) keep strategy
parameters fixed for inner-ESs.

3.3 Collective Learning of Fitness Topology via Multi-recombination

The most essential feature of CMA-ES is the invariance against affine transformation,
resembling the topology learning ability of second-order optimizers. When its paral-
lelism is considered for LSO, such a highly desirable feature is expected to be kept.
Generally, a large population size may be preferred for LSO owing to its three advan-
tages: 1) better global search ability, 2) less random effect, and 3) massive paralleliza-
tion [5]. However, in their seminal paper, Hansen et al. [5] has shown that increasing
λ alone [6] cannot further promote the efficiency of CMA-ES with only the rank-one
update. Their solution is to use a large population size with the extra rank-μ update [7]
to increase the parallelism level and exploit more information with fewer generations.
However, LM-MA-ES models only the rank-one update (i.e., a small population) and
does not consider the rank-μ update (i.e., a large population). Instead, here we use the
structured populations, well-suitable for the island model.

After each isolation period, the outer-ES collects all necessary information (i.e.,
distribution mean, evolution path, and transformation matrix6, all of which are learned
in each inner-ES at faster-frequency scales). For updating the distribution mean of the
outer-ES yet at lower-frequency scales, we use the weighted multi-recombination of its
counterparts from all fitter inner-ESs to utilize the well-understood genetic repair effect
for accelerating convergence. The same operator is also applied to the update of both
evolution path and transformation matrix of the outer-ES, in order to obtain statistically
more stable estimates even at low-frequency scales. Furthermore, to enhance diversity,
the learnt transformation matrix can be abandoned (e.g., reinitialized to zero) for some
islands (inner-ESs). We find that such a very simple strategy is beneficial for searching
in complex landscapes with multiple promising search directions.

3.4 A Distributed ES Framework for Multilevel Learning

In this subsection, we combine the above key design choices (involving island model,
Meta-ES, and LM-MA-ES) together to generate a distributed ES framework on multi-
level learning for LSBBO, as outlined in Algorithm 2. For validating its scalability, we

5 In this paper, informally, adaptation and learning are used interchangeably.
6 It is a low-memory approximation to the full covariance matrix.

288 Q. Duan et al.

choose the latest distributed computing framework called Ray7 as the execution engine.
Perhaps its biggest advantage is that it provides an industry-level unified distributed
computing framework for emerging AI applications (e.g., deep learning, reinforcement
learning, and hyperparameter tuning [26]) with the excellent fault-tolerance and schedul-
ing abilities. Our preliminary studies [37] as well as some other highly- influenced
studies [26, 27] have showed its attractive engineering value for implementing scalable
evolutionary algorithms.

7 https://docs.ray.io/en/latest/.

https://docs.ray.io/en/latest/

Collective Learning of Low-Memory Matrix Adaptation 289

Fig. 3. Parallelism speedup of D-LM-MA versus LM-MA-ES on a set of 2000-d test functions.

4 Numerical Experiments on Clustering Computing Platforms

In this section,wewill conduct a series of comparison experiments to study its advantages
(and also possible cost) of the proposed D-LM-MA against its serial version (LM-MA-
ES) on the contemporary clustering computing platforms. To ensure repeatability and
also promote benchmarking, all involved data and source code are freely available at
https://github.com/Evolutionary-Intelligence/D-LM-MA.

4.1 Experimental Settings for Large-Scale Black-Box Optimization

BenchmarkingFunctions. Wechoose 10 scalable test functions, commonly used in the
literature. To validate the invariance against translation and rotation and avoid a biased
search (e.g., separability [39]), all of them are shifted and rotated according to [8]. Since
here LSO is of our interest, their dimensionality is set to 2000. However, the involved
[2000*2000] rotation matrix will result in the memory-costly matrix-vector operator
when evaluating, arguably representing manymodern black-box LSO applications more
or less. To accelerate the fitness evaluation, we utilize the shared-memory trick (see
[37] for details). Note that recently Varelas et al. [40] proposed a test suite named
bbob-largescale, but they did not consider the distributed computing scenario. To our
knowledge, there are few literatures (except e.g. [37]) to run distributed ESs on such
high-dimensional, memory-costly benchmarking cases.

Hardware and Software Configurations. A private clustering computing platform
with a total of 140 physical cores is used in our simulation experiments, consisting of 7
slightly heterogeneous commodity servers: the first five equip with Intel Xeon CPU E5-
2650v3 (2.30GHz)while the rest two equipwith IntelXeonCPUE5-2640v4 (2.40GHz).
Each of them runs an Ubuntu 16.04 OS with a 62 GB RAM and 20 physical cores.
We select the Python language and its NumPy library highly optimized for numerical
computing to program all the involved code. Clearly, the programming quality heavily

https://github.com/Evolutionary-Intelligence/D-LM-MA

290 Q. Duan et al.

influences the running speed. To avoid the potential threat to fair comparisons, we use the
same base code [44] for both the serial and distributed LM-MA-ES versions. Therefore,
the performance differences pertaining to runtimewill come from the extra parallel code,
to make fair comparisons possible.

Fig. 4. Convergence curve of D-LM-MA versus LM-MA-ES (in part).

Benchmarking Algorithms. Three ES-based optimizers are compared: MA-ES [12],
LM-MA-ES [10], and our proposed D-LM-MA. For hyperparameter settings, we adopt
the default values according to their corresponding papers, if not stated otherwise. Since
MA-ES shows the worst results on nearly all functions, we will not report them in the
following subsections. The reason behind such inferior performance lies at that generally
MA-ES needs quadratic adaptation time before convergence and the runtime of CMA
severely dominates the total runtime.

For D-LM-MA, we set the isolation time to 3 min based on our first intuition,
though the ablation study showed that better values exist. To avoid possible scheduling
congestion while maximizing the parallelism level, we set the number of islands (inner-
ESs) to 250 (larger than 140 physical cores but smaller than 280 logical cores).

Collective Learning of Low-Memory Matrix Adaptation 291

Fig. 5. Convergence curve of D-LM-MA versus LM-MA-ES (continued).

PerformanceCriteria. Though now there has been a relativelymaturemethodology for
benchmarking serial evolutionary algorithms (such as COCO [41] and NeverGrad [42]),
it is still a challenging task to benchmark distributed evolutionary algorithms. For serial
optimizers, the number of used function evaluations to reach a preassigned threshold is a
good approximator of the needed runtime if it dominates the latter.However, such an indi-
cator does not work well for distributed optimizers, as it can significantly increase with
the rapid growth of used computing units under the same runtime.We set the upper bound
of runtime (=2 h) as one stopping criterion. As a result, we can easily compare the qual-
ity of results given the same runtime.We also set the fitness threshold (=1e-10) as another
stopping criterion. We execute each optimizer on every function for 7 independent runs.

4.2 Parallel Speedup w.r.t. Total Number of Function Evaluations

For distributed evolutionary algorithms, we always expect to run more function evalua-
tions given the same runtime, in order to maximize parallelism. Here we first calculate
the parallel speedup (w.r.t. total number of function evaluations) obtained by D-LM-
MA, as compared with its serial version. As seen in Fig. 3, the overall (normalized)
parallel efficiency is near 75%, that is, it can concurrently run 105 independent function
evaluations on 140 CPU cores. However, a high parallelism level does not necessarily
indicate the good rate of convergence, since the poor algorithm design can result in even
a worse result than its serial version. In the next subsection we will focus on the more
critical performance indicator.

4.3 Performance Comparisons W.R.T. Final Convergence Quality

When compared with its serial version, D-LM-MA obtained much faster convergence
rates on 6 of 10 functions (DiffPowers, Discus, Ellipsoid, Schwefel12, Schwefel221, and
Step), as in part shown in Fig. 4. See the online material for complete data, owing to
the page limit. For the first four test functions, the main challenge lies that the fact there
are multiple promising search directions in their fitness topology. Luckily, D-LM-MA
can maintain much more diversity for transform matrices during the multilevel learning

292 Q. Duan et al.

process. Take Discus as an example. Surprisingly, D-LM-MA achieved a convergence
speedupwith four orders ofmagnitude on averagewhen the allowable runtime exhausted.
For the last two test functions, themain challenge is that there exists a series of flat plateau,
which needs more advanced techniques of global step-size adaptation to pass them.
Our hierarchical learning approach can gracefully alleviate this issue, since it always
encourages the positive exploration in the much large space of strategy parameters. For
Step, D-LM-MA spent about half of time to reach the optimal solution than LM-MA-ES.

The performance improvement on one class of problems is at the cost of the per-
formance degradation on another [43]. We observed such a phenomenon on other four
functions (Cigar, CigarDiscus, Rosenbrock, and Sphere), as shown in part in Fig. 5. For
the last function, the extra cost from parallelism slightly delays convergence rate, which
is very like the early finding [18]. On the first three functions, there is one dominated
direction vector. At the outer-ES level, regress results in degradation [6].

5 Conclusions

In this paper, we present a novel approach based on multilevel learning [15] to paral-
lelize LM-MA-ES, one of the latest CMA-ES variants for large-scale black-box opti-
mization. Within the multilevel learning framework, three critical design choices (i.e.,
islandmodel formemory-hierarchy usage,Meta-ES for parameter control, and collective
learning via multi-recombination) can be naturally combined to generate a scalable dis-
tributed/parallel ES framework inmodern industry-level clustering computing platforms.
Experiments in a private clustering computing platform demonstrate the effectiveness
(and cost) of the proposed approach for memory-costly LSO.

Acknowledgments. This work is partially supported by the Shenzhen Fundamental Research
Program under Grant No. JCYJ20200109141235597, the Shenzhen Peacock Plan under
Grant No. KQTD2016112514355531, the Program for Guangdong Introducing Innovative and
Entrepreneurial Teams under Grant No. 2017ZT07X386, the National Science Foundation of
China under Grant No. 61761136008, and the Special Funds for the Cultivation of Guangdong
College Students Scientific and Technological Innovation (Climbing Program Special Funds,
pdjh2022c0061). Yuhui Shi is the Corresponding Author.

References

1. Leiserson, C.E., et al.: There’s plenty of roomat the top:whatwill drive computer performance
after Moore’s law? Science 368(6495), p.eaam9744 (2020)

2. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction. Nat.
Comput. 1(1), 3–52 (2002)

3. Eiben, A.E., Smith, J.: From evolutionary computation to the evolution of things. Nature
521(7553), 476–482 (2015)

4. Schwefel, H.P.: Evolutionary learning optimum-seeking on parallel computer architectures.
Sydow, A., Tzafestas, S.G., Vichnevetsky, R. (eds.) Systems Analysis and Simulation I.
Advances in Simulation, vol. 1, pp. 217–225. Springer, New York (1988). https://doi.org/
10.1007/978-1-4684-6389-7_46

https://doi.org/10.1007/978-1-4684-6389-7_46

Collective Learning of Low-Memory Matrix Adaptation 293

5. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1),
1–18 (2003)

6. Schwefel, H.P.: Collective intelligence in evolving systems. In: Wolff, W., Soeder, C.J., Drep-
per, F.R. (eds.) Ecodynamics. Research Reports in Physics. Springer, Heidelberg, pp. 95–100
(1988). https://doi.org/10.1007/978-3-642-73953-8_8

7. Müller, S.D., Hansen,N.,Koumoutsakos, P.: Increasing the serial and the parallel performance
of the CMA-evolution strategy with large populations. In: Guervós, J.J.M., Adamidis, P.,
Beyer, H.G., Schwefel, H.P., Fernández-Villacañas, J.L. (eds.) Parallel Problem Solving from
Nature—PPSNVII. PPSN2002. LectureNotes inComputer Science, vol. 2439, pp. 422–431.
Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_41

8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

9. Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., Schmidhuber, J.: Natural
evolution strategies. J. Mach. Learn. Res. 15(1), 949–980 (2014)

10. Loshchilov, I., Glasmachers, T., Beyer, H.G.: Large scale black-box optimization by limited-
memory matrix adaptation. IEEE Trans. Evol. Comput. 23(2), 353–358 (2019)

11. Bertsekas, D., Tsitsiklis, J.: Parallel and distributed computation: Numerical methods. Athena
Scientific (1997)

12. Beyer, H.G., Sendhoff, B.: Simplify your covariance matrix adaptation evolution strategy.
IEEE Trans. Evol. Comput. 21(5), 746–759 (2017)

13. Biscani, F., Izzo, D.: A parallel global multiobjective framework for optimization: pagmo. J.
Open Source Softw. 5(53), 2338 (2020)

14. Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the island
model. Parallel Comput. 36(10–11), 555–571 (2010)

15. Vanchurin, V., Wolf, Y.I., Katsnelson, M.I., Koonin, E.V.: Toward a theory of evolution as
multilevel learning. Proc. Natl. Acad. Sci. 119(6), e2120037119 (2022)

16. Beyer, H.G.: An alternative explanation for the manner in which genetic algorithms operate.
BioSystems 41(1), 1–15 (1997)

17. Li, Z., Zhang, Q.: A simple yet efficient evolution strategy for large-scale black box
optimization. IEEE Trans. Evol. Comput. 22(5), 637–646 (2018)

18. Rudolph, G.: Global optimization by means of distributed evolution strategies. In: Schwefel,
H.P., Männer, R. (eds.) Parallel Problem Solving from Nature. PPSN 1990. Lecture Notes
in Computer Science, vol. 496, pp. 209–213. Springer, Heidelberg (1990). https://doi.org/10.
1007/BFb0029754

19. Bäck, T., Hoffmeister, F. and Schwefel, H.P.: A survey of evolution strategies. In Proceedings
of International Conference on Genetic Algorithms, pp. 2–9 (1991)

20. Schwefel, H.P., de Brito Mendes, M.A.: 45 years of evolution strategies: Hans-Paul Schwefel
interviewed for the genetic argonaut blog. ACM SIGEVOlution 4(2), 2–8 (2010)

21. Rudolph, G.: Evolutionary strategies. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook
of Natural Computing, pp. 673–698. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-540-92910-9_22

22. Bäck, T., Foussette, C., Krause, P.: Contemporary Evolution Strategies, vol. 86. Springer,
Berlin (2013)

23. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J., Pedrycz, W.
(eds.) Springer Handbook of Computational Intelligence. Springer Handbooks, pp. 871–898.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_44

24. Yi, S., Wierstra, D., Schaul, T., Schmidhuber, J.: Stochastic search using the natural gradient.
In Proceedings of International Conference on Machine Learning, pp. 1161–1168 (2009)

25. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864 (2017)

https://doi.org/10.1007/978-3-642-73953-8_8
https://doi.org/10.1007/3-540-45712-7_41
https://doi.org/10.1007/BFb0029754
https://doi.org/10.1007/978-3-540-92910-9_22
https://doi.org/10.1007/978-3-662-43505-2_44
http://arxiv.org/abs/1703.03864

294 Q. Duan et al.

26. Moritz, P., et al.: Ray: A distributed framework for emerging AI applications. In USENIX
Symposium on Operating Systems Design and Implementation, pp. 561–577 (2018)

27. Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is competitive for
reinforcement learning. In: Proceedings ofNeural Information Processing Systems, pp. 1805–
1814 (2018)

28. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput.
6(5), 443–462 (2002)

29. Auger, A., Hansen, N., López-Ibáñez, M., Rudolph, G.: Tributes to Ingo Rechenberg (1934–
2021). ACM SIGEVOlution 14(4), 1–4 (2022)

30. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

31. Müller, C.L., Baumgartner, B., Ofenbeck, G., Schrader, B., Sbalzarini, I.F.: pCMALib: a
parallel fortran 90 library for the evolution strategy with covariance matrix adaptation. In:
Proceedings of Genetic and Evolutionary Computation Conference, pp. 1411–1418 (2009)

32. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533 (1988)
33. Harris, C.R., Millman, K.J., Van Der Walt, S.J., et al.: Array programming with NumPy.

Nature 585(7825), 357–362 (2020)
34. Arnold, D.V., MacLeod, A.: Hierarchically organised evolution strategies on the parabolic

ridge. In: Proceedings of Annual Conference on Genetic and Evolutionary Computation,
pp. 437–444 (2006)

35. Beyer,H.G.,Dobler,M.,Hämmerle,C.,Masser, P.:On strategyparameter control byMeta-ES.
In: Proceedings of Annual Conference on Genetic and Evolutionary Computation, pp. 499–
506 (2009)

36. Beyer, H.G., Hellwig, M.: Mutation strength control by Meta-ES on the sharp ridge. In:
Proceedings of Annual Conference on Genetic and Evolutionary Computation, pp. 305–312
(2012)

37. Duan, Q.Q., Zhou, G.C., Shao, C., Yang, Y.J., Shi, Y.H.: Distributed evolution strategies
for large scale optimization. In: Proceedings of Genetic and Evolutionary Computation
Conference Companion (2022, Accepted)

38. Moritz, P.C.: Ray: a distributed execution engine for themachine learning ecosystemDoctoral
dissertation, UC Berkeley (2019)

39. Whitley, D., Rana, S., Dzubera, J., Mathias, K.E.: Evaluating evolutionary algorithms. Artif.
Intell. 85(1–2), 245–276 (1996)

40. Varelas, K., et al.: Benchmarking large-scale continuous optimizers: the bbob-largescale
testbed, a COCO software guide and beyond. Appl. Soft Comput. 97, 106737 (2020)

41. Auger, A., Hansen, N.: Benchmarking: State-of-the-art and beyond. In: Proceedings of
Genetic and Evolutionary Computation Conference Companion, pp. 339–340 (2021)

42. Meunier, L., et al.: Black-box optimization revisited: improving algorithm selection wizards
through massive benchmarking. IEEE Trans. Evol. Comput. Early Access (2021)

43. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67–82 (1997)

44. https://github.com/Evolutionary-Intelligence/pypop

https://github.com/Evolutionary-Intelligence/pypop

Recombination Weight Based Selection
in the DTS-CMA-ES

Oswin Krause(B)

University of Copenhagen, 2300 Copenhagen, Denmark

oswin.krause@di.ku.dk

Abstract. Surrogate model based Evolution Strategies (like the dou-
bly trained surrogate model CMA-ES, DTS-CMA-ES) use a model of
the objective function to reduce the number of function evaluations dur-
ing optimization. This work investigates to use the expected selection
weights averaged over the GP posterior distribution as replacement of
the fitness and to guide point-selection for evaluation via the variance of
the weights. Results obtained on BBOB show that the proposed tech-
nique performs on par with current strategies and allows the usage of
surrogate models that are invariant to strictly increasing transformations
of the function values. However, initial experiments showed that simple
modeling of ranks in the GP does lead to worse results than current GP
models of the function values.

Keywords: CMA-ES · DTS-CMA-ES · Gaussian process · Surrogate
models · Recombination

1 Introduction

In this paper I consider minimizing a black-box function fopt : Rd → R. I assume
that fopt is expensive to evaluate, but noise-free and unconstrained. For this
setting, surrogate models are an efficient way to speed up evolution strategies.
Recently, there have been many important contributions that combine surrogate
models with evolution strategies (ES), especially the CMA-ES [10].

While there are a number of different approaches for surrogate models, for
example approaches based on ranking [16,17] or quadratic models [1,4,5,7,12],
many algorithms [2,3,13,20,22,23] tend to use Gaussian Processes (GPs) for
directly predicting the function values. This is because GPs allow a perfect fit
to the observed function values in the noiseless regime, while also providing an
estimate of model uncertainty for points that have not been observed. More-
over, since GPs are likelihood based, hyper parameters of the model can be
optimized to obtain a better fit to the data. Finally, the use of GPs or other
well-understood probabilistic models makes it easy to adopt the successful prior
work from Bayesian Optimization (BO [11,21]), especially point-selection crite-
ria for evaluation. The downside is, that GPs are not invariant or equivariant to
monotonous transformations of the fitness function.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 295–308, 2022.
https://doi.org/10.1007/978-3-031-14721-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_21&domain=pdf
http://orcid.org/0000-0002-0990-559X
https://doi.org/10.1007/978-3-031-14721-0_21

296 O. Krause

(a) Surrogate Model (b) Samples from Model

(c) Recombination Weights (d) Point Selection Criteria

Fig. 1. Visualisation of the idea presented in this work. a) Posterior Mean E[fx|A]
(black) and confidence intervals (25%–75%, grey dashed lines) of a Gaussian process
fitted to the points in A (red points) evaluated on the target function fopt (orange line),
as well as current search distribution (red line). b) Samples from the Gaussian Process
(grey). c) Expected recombination weights E[Wx|E[fx|A]] (orange), when imputing
the mean function, compared to weights from a single sampled function E[Wx|f]. The
expectation over all functions from the posterior E[Wx|A] (black) with confidence inter-
vals (grey) is very different from E[Wx|E[fx|A]]. d) Comparison of selection criteria.
Variance of prediction (blue) and Probability of improvement (black) compared to the
proposed weight variance (red). All criteria are scaled to lie between zero and one.
(Color figure online)

One of the most successful surrogate-based algorithms for small budgets,
the DTS-CMA-ES [19] combines GPs with the CMA-ES by first using BO-
based point selection criteria to select which points to evaluate on the objective
function, and then use the GP to impute the remaining function-values with the
mean-value predicted by the GP.

In this work, I take the DTS-CMA-ES as a starting point to investigate
a so-far underexplored area in combining surrogate-based models with evolu-
tion strategies: the interplay between surrogate model prediction and weighted
selection. Currently, in the DTS-CMA-ES, neither the point selection criteria
for evaluation of points, nor prediction of fitness values of unevaluated points
takes selection and recombination weights of the underlying ES into account.
I hypothesize that this under-utilizes the information captured by the GP, as
functions drawn from a GP (see Figs. 1a and 1b) will locate the optimum at
different locations (see Fig. 1c), reflecting the uncertainty of the shape of the

Recombination Weight Based Selection in the DTS-CMA-ES 297

function after observing the evaluated samples. This uncertainty is missing in
the modeled mean.

I propose a novel point-selection criterion, by computing the variance of
the selection weights of the CMA-ES (Fig. 1d) and propose to impute the
expected recombination weights for all points, instead of the fitness values. For
this, I investigate two approaches: 1) a complete replacement of fitness values
by the expected recombination weights, and 2) replacement of the recombina-
tion weights in the update of the strategy parameters of the CMA-ES. Both
approaches effectively decouple the underlying ES from the modeled fitness val-
ues. A result of this is that instead of modeling the fitness function, a GP can now
be used to model the ranks of evaluated points, which re-introduces invariance
to monotonic transformations of the fitness function.

This article is structured as follows. First, the background on GPs, BO, CMA-
ES, DTS-CMA-ES and fitting of GP-surrogate models is introduced in Sect. 2.
The reader unfamiliar with GPs should read Sect. 2.1 as it also introduces some
notation used in the remainder of the article. The main contribution of this
article is presented in Sect. 3. Experiments are described in Sect. 4 and results
are discussed in Sect. 5. Finally, the article concludes in Sect. 6.

2 Background

2.1 Gaussian Processes

From a birds-eye view, a Gaussian Process (GP) can be seen as a distribution on
a Hilbert-space of functions f : X d → R, X ⊆ R

d. A GP can be fully described
by the choice of a mean function mGP : X → R and a positive definite kernel
k : X × X → R. If we take f as a random function with distribution following
that of a GP, it is common to write

f ∼ GP(mGP(·), k(·, ·)) . (1)

In general, f cannot be sampled and instead it is only possible to compute the
probabilities of function values of f at a finite set of points X = {x1, . . . , x�},
xi ∈ X . We write for the observation of f at points in X

fX = (fx1 , . . . , fx�
)T = (f(x1), . . . , f(x�))T .

The probability distribution of fX , p(fX) = p(fx1 , . . . , fx�
) in a GP follows a

multivariate normal distribution

fX ∼ N (mGP(X),K(X)) ,

where K(X) is a symmetric positive definite �× � matrix with element i, j given
by k(xi, xj). In the following, we denote for sets X and X ′ the matrix K(X,X ′)
as the matrix with elements k(xi, x

′
j) and identify K(X) = K(X,X).

The fact that all marginal distributions are normal allows efficient inference
in GPs. For example, if we are given two sets of points X and X ′, where we have

298 O. Krause

observed the function values of fX′ , we can compute the conditional distribution
of fX |fX′ easily, via

fX |fX′ ∼ N (m(X|X ′),K(X|X ′)) (2)

with

m(X|X ′) = mGP(X) + K(X,X ′)K(X ′)−1(fX′ − mGP (X ′))

K(X|X ′) = K(X) − K(X,X ′)K(X ′)−1K(X,X ′)T .

An example of a GP is given in Fig. 1a, which shows mean and confidence
intervals of the marginal distribution fx ∈ R, conditioned on the archive A. In
this Figure, we can see that close to a point in the archive the variance shrinks
to zero, while points that are far away from points in the archive have a fairly
large variance. However, this depiction alone is misleading, as it only shows
the variances but ignores the complex covariance structure between points. A
way to visualize this structure is by sampling from the conditional distribution
for points sampled on a grid, as is visualized in Fig. 1b. Now it becomes clear
that the samples drawn from this distribution are not very similar to the mean
function. Indeed, while the mean function only implies a single local optimum,
the samples drawn have multiple local optima with global optima at both sides
of the current best points in the archive.

2.2 Bayesian Optimization

Bayesian optimization (BO) is a branch of optimization that is devoted to opti-
mizing expensive black-box functions and is quite successful on low-dimensional
problems [14,15,21]. Most of the basic BO methodology has not changed since
the introduction of the EGO algorithm [11]. In EGO, the function fopt is replaced
by a probabilistic surrogate model p(fx|A), derived using Bayes’ theorem. Once
an archive of known function values A = {(x1, y1), . . . }, yi = fopt(xi) is avail-
able, Bayes theorem can be used to derive the posterior distribution based on a
chosen prior p(f). The GP in Sect. 2.1 is an example for this with posterior given
by equation (2). A BO algorithm can then use this posterior distribution to select
the next point to evaluate. This is done by maximizing an acquisition function,
or selection criterion CA(x). Then, after the algorithm selected the next point,
it is evaluated and added to the model. This process repeats until a solution is
found that is good enough, or the evaluation budget is exceeded.

There is a large number of potential selection functions that balance the
trade-off between selecting a point that likely improves the function value and
selecting a point that improves the model. Three classical functions are

– Upper Confidence Bound (UCB): CA(x) = −E[fx|A] + α
√

Var[fx|A],
– Probability of Improvement (PoI): CA(x) = P (fx ≤ mini yi − ε|A),
– Expected Improvement (EI): CA(x) = − ∫ mini yi

−∞ P (fx|A)fxdfx,
– Model variance CA(x) = Var[fx|A].

Recombination Weight Based Selection in the DTS-CMA-ES 299

Both PoI and UCB have a hyper parameter α or ε, that each govern the explo-
ration/exploitation trade-off. In both cases, the larger the parameter, the more
the model explores. In UCB this is driven by giving more weight to the model
uncertainty, while in PoI ε governs the minimum amount of improvement over
the best function value in the archive. As an extreme example on the other
end, the model variance just minimizes the model uncertainty. See Fig. 1d for an
example of PoI and model variance.

2.3 CMA-ES

The CMA-ES [10] is an evolution strategy that in each iteration t represents its
search distribution by a normal distribution N (mt, σ

2
t Ct), where σt > 0 is called

the step-size and Ct is a covariance matrix. Further, the algorithm keeps track
of two evolution paths pC,t and pσ,t that are meant to learn long term trends in
step direction and length. In each iteration, the steps are:

1. Sample Population. The algorithm samples a population

x1, . . . , xλ ∼ N (mt, σ
2
t Ct)

2. Ranked weights. The sampled population is evaluated to obtain yi = f(xi).
Then the points/function-value pairs are reordered such that y1 ≤ y2 ≤ · · · ≤
yλ. Finally, each point is assigned a weight according to its rank, wi. The
weights are chosen such, that the best μ = �λ

2 � points are assigned a non-zero

weight. To be more precise, wi = w′
i∑λ

i=1 w′ and

w′
i =

{
log

(
λ+1

2

) − log(i), if i ≤ μ

0, otherwise
.

3. Update of Strategy parameters The algorithm now updates the strategy
parameters.1 The update of the mean is simply the weighted mean of sampled
points mt+1 =

∑λ
i=1 wixi. Then, two evolution paths are updated. For this,

first a normalized step is computed

yt =
√

μeff
mt+1 − mt

σt
(3)

This normalization ensures that if samples are ranked randomly, then yt ∼
N (0, Ct). Especially, the normalization with μeff = 1/

∑λ
i=1 w2

i corrects for
the loss in variance due to the weighted mean. With this normalized value,
the update of the paths then reads

pσ,t+1 = (1 − cσ)pσ,t +
√

cσ(2 − cσ)C−1/2
t yt

pC,t+1 = (1 − cc)pC,t +
√

cc(2 − cc)yt .

1 The description of the hσ ∈ {0, 1} mechanism is missing for brevity.

300 O. Krause

Next the step-size is updated via the Cumulative Step-Size adaptation [18]

σt+1 = σt exp
(

cσ

dσ

(‖pσ,t+1‖
E[χ(d)]

− 1
))

,

where E[χ(d)] is the expectation of a χ variable with d degrees of freedom.
Finally, Ct is updated via:

Ct+1 = (1 − c1 − cμ)Ct +
cμ

σ2
t

μ∑

i=1

wi(xi − mt)(xi − mt)T + c1pC,t+1p
T
C,t+1

The parameters cσ, dσ, cc, c1, cμ > 0 are learning rates. Further, the default pop-
ulation size λ is chosen as λ = 4 + �3 log(d)�.

2.4 DTS-CMA-ES

The doubly trained surrogate CMA-ES, DTS-CMA-ES is an extension of the
CMA-ES in the area of expensive optimization [3,19]. It changes the evalua-
tion of sampled points in the CMA-ES, while keeping the sampling and update
mechanism unchanged. It stores all evaluated points and function-values in an
archive A = {(x1, y1), . . . } and uses them to fit a GP to model of fopt around
the current mean mt of the search distribution. The DTS-CMA-ES performs the
following steps:

1. Fit a Gaussian Process using points in A
2. Query the current population x1, . . . , xλ from the CMA-ES
3. Select norig points with indices I = {I1, . . . , Inorig} ⊂ {1, . . . , λ} from the

population that maximize the selection criterion CA(xi)
4. Evaluate fIk

= f(xIk
) for the selected points and add pairs (xIk

, fIk
), k =

1, . . . , norig to A
5. Fit the surrogate model with the updated A, and set fi = E[fxi

] for i /∈ I.
6. Update the CMA-ES using the computed values of fi

In a larger study [3] the authors compared many selection criteria CA commonly
used in BO (including EI) and concluded that both model variance and PoI
performed best, where PoI performed better on uni-modal functions and model
variance performed better on multi-modal functions. For PoI ε was chosen as
ε = 0.05(maxi yi − mini yi). Another selection criterion that investigated the
change of ranking uncertainty of the model was deemed to not be superior to
these two approaches.

Further, the authors investigated the hyper parameters of the algorithm As
selection threshold rmax the authors chose a multiple of the 99th percentile of
a χ(d) distributed variable, rmax = 4χ(0.99, d). For the population size λ, the
authors concluded that doubling the population to λ = 8 + �6 log(d)� greatly
improved performance. The number of evaluated points should scale with the
population size and here it was found that norig = �0.05λ performed best, which
for dimensions d < 20 is one.

Recombination Weight Based Selection in the DTS-CMA-ES 301

2.5 Model Fitting

In this section, I expand on Sect. 2.1 and explain how the GP is fit as part of
the DTS-CMA-ES. The fitting procedure closely follows the strategy described
in [19] with all selected hyper parameters. As kernel, the Matern-5/2 kernel is
used

k(x, y) = α2
k

21−ν

Γ (ν)
zνKν(z), z =

√
2ν

‖x − y‖
σk

,

where lengthscale parameter σk and variance scale αk are parameters, ν = 5/2
is fixed and Kν is the modified Bessel function. This kernel leads to a prior in
the Hilbert-space of functions that are twice continuously differentiable. Further,
the mean function is constant zero, mGP(x) = 0.

Fitting and evaluating a population X on the GP in the DTS-CMA-ES con-
sists of the following steps:

1. Select and normalize points

Afit =
{

(T (x),
y − my

σy
) | ‖T (x)‖ ≤ rmax, (x, y) ∈ A

}
,

where T (x) = C
−1/2
t

σt
(x − mt) and my, σy are selected such, that the function

values in Afit have mean zero and unit variance.
2. Find the optimal parameters σk, αk for the Matern kernel by maximizing the

marginal likelihood of the GP using Afit.
3. For a new population of sampled points X, first apply T to all points in

X, then compute the conditional distribution of fX according to Eq. (2) and
correct by adding my to each entry of the mean of the conditional distribution.

The main idea of the first step is that fitting a Gaussian process on a function
with high conditioning is difficult, since this would require learning a kernel
with full covariance matrix. Instead, we use the fact that the CMA-ES tends
to learn a covariance σ2

t Ct which is some approximation of the inverse hessian
matrix. The transformation T (x) normalizes the coordinate system such, that
the search distribution becomes N (0, I), which then simplifies the local shape of
the function in the transformed coordinate system.

Further, as in this coordinate system the current population is standard
normally distributed, we can use the norm of a point in the archive ‖T (x)‖ to
assess whether it is relevant for fitting. This turns the global GP model into a
local model, as when maximizing the likelihood, points that are further away
than rmax do not affect the fit. As a consequence, the fitting procedure in Step
2 will focus on points in the archive that are likely candidates for sampling,
instead of being affected of areas far away that might require very different
kernel parameters to be fit correctly.

3 Fully Weight-Based DTS-CMA-ES

The DTS-CMA-ES as described in Sect. 2.4 has two disadvantages. First, it is not
invariant to monotonous transformations of the objective function. Even though

302 O. Krause

the underlying CMA-ES uses ranking, the GP used to model the function-values
is neither invariant, nor equivariant to monotonous increasing transformations
of the function values. Thus, the choice of points of the selection criteria and
even the relative ranking of the selected mean values will differ.

Second, the way the GP is used to select and impute fitness values does not
take the selection mechanism of the CMA-ES into account. To see this, let W :
R

λ → R
λ, be the function that for the vector of function values of the population

fX = (fx1 , . . . , fxλ) computes the rank-based recombination weights, WX =
W(fX) of the CMA-ES. Further, let p(x) be the current search distribution and
let X be the current population.

The GP conditioned on the archive of previously observed function evalua-
tions A gives rise to a random variable fX |A, the distribution of function values
at X when drawing a function from the posterior distribution of the GP. Then,
WX |A = W(fX |A) also becomes a random variable: each function drawn from
the GP can result in different ranks, and thus weights, even when the population
is kept fixed. The differences can be large, as can be seen from the samples drawn
in Fig. 1c and the expected weight assigned to a point for a single function f
drawn from the GP shown in Fig. 1c (blue line). As a result, the expectation
of function values E[WX |A] can differ a lot from W(E[fx|A]), the rank-weights
using the mean of the posterior distribution of the GP. Again, this is visual-
ized in Fig. 1c (orange and black lines), where also the average is taken over all
populations to obtain the average weight of a sampled point x.

As a result, imputing the mean as fitness value for the CMA-ES in the DTS-
CMA-ES loses variance information learned by the GP and using Var[fX |A]
or PoI does only incompletely reflect the actual uncertainty in the weighting
process—for example it will over-estimate the variance of points that are likely
assigned weight zero and under-estimate the variance of points that are assigned
large weights.

I therefore propose the following changes: instead of using PoI or GP pos-
terior variance as selection criterion in step 3 of the algorithm (Sect. 2.4), use
Var[WX |A] (see Fig. 1d), and instead of imputing the mean in step 5 for all
unevaluated points, either impute the expected rank weight E[WX |A] for all
points, including the evaluated points, or directly replace the weights used by
the CMA-ES by E[WX |A]. Since these weights can not be computed analyti-
cally, Monte-Carlo sampling can be used by directly sampling function values
from the posterior distribution of the GP and computing the rank weights for
each sample.

If the weights of the CMA-ES are replaced, one must also change Eq. (3) to
compute μeff from the imputed weights, as otherwise the expected lengths of the
evolution paths will change. The result is a close approximation to taking the
expected step, when sampling over all possible samples f |A from the GP.

Replacing the predicted and evaluated fitness by the weight also allow us to
re-introduce invariance to monotonous transformations: when replacing the GP
by a model that is invariant to monotonous transformations, then no further
changes are needed if the algorithm uses rank-weights instead of fitness values.

Recombination Weight Based Selection in the DTS-CMA-ES 303

4 Experiments

I compare seven variants of the DTS-CMA-ES (see Sect. 2.4) with each other and
the CMA-ES on the BBOB single-objective benchmark suite of 24 functions [9]
on dimensions d ∈ {2, 3, 5, 10, 20}. To compare the effect of invariance, I further
compare the algorithms on functions fα

1 (x) = (x2)α, α ∈ {1/4, 1/2, 1, 3/2, 2} for
d = 5.

The variants of the DTS-CMA-ES include the previously evaluated ver-
sions [3], using either PoI (DTS-PoI-CMA-ES) or GP variance (DTS-Var-CMA-
ES). The new variants are: DTSV-CMA-ES that just changes the selection
criterion to the newly proposed criterion, DTSVE-CMA-ES, that additionally
imputes the expected rank-weight for all points and DTSW-CMA-ES that uses
the new criterion and replaces the rank weights in the CMA-ES by the computed
mean. For the last two algorithms, I also add two invariant versions, I-DTSW-
CMA-ES and I-DTSVE-CMA-ES. Invariance is introduced by fitting the GP to
the numerical ranks of the points in the archive, instead of using the function val-
ues. All variants use the same model and fitting process as described in Sect. 2.5
and I use GPy for implementing the GP [6]. For the CMA-ES, I adapted the
pycma package [8] version 3.2.2 without active-learning or mirrored sampling,
thus following Sect. 2.3.

For number of evaluations, I picked norig = 1 for d < 10 and norig = 2 for
d ∈ {10, 20}. Estimates for E[WX |A] and Var[WX |A] are based on 100 samples
from the GP posterior. In all variants, the full population is evaluated in the
first evaluation. This empirically led to more stability of all variants of the DTS-
CMA-ES.

The initial mean m0 is taken from the proposed starting point of the BBOB
functions and the initial variance is taken as σ0 = 8/3, following [3]. Restarts are
performed whenever the largest eigenvalue of σtCt is smaller than 10−7 or the
largest eigenvalue is larger than 1010. In that case, the search distribution is reset
to the initial values and the population size is doubled as is norig. Further, the
archive is sub-sampled to ensure that no points are closer than σ0/4 to each other.
This prevents numerical instabilities due to very close points, while informing
the model of the previous evaluations. As budget, 50d function evaluations were
used. Restarts therefore only happened rarely.

5 Results and Discussion

The results of the algorithm on BBOB are given in Fig. 2. For space-reasons I only
show results for d =∈ {3, 5, 20}, but results for d = 2 and d = 10 are qualitatively
similar to d = 3 and d = 20, respectively. Comparing the average results on all
functions (Figs. 2a and 2c and 2e), there are three groups of algorithms: the
non-invariant DTS-CMA-ES variants (DTS-PoI-CMA-ES, DTS-Var-CMA-ES,
DTSV-CMA-ES, DTSV-CMA-ES, DTSVE-CMA-ES and DTSW-CMA-ES) all
showed comparable performance, with no clear winner. The invariant algorithms
(I-DTSVE-CMA-ES and I-DTSW-CMA-ES) performed clearly worse, but still
better than the CMA-ES without a surrogate model.

304 O. Krause

Fig. 2. Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension #fevals/d for 51 targets with target precision
in 10[−8..2] for d ∈ {3, 5, 20}. As reference algorithm, the best algorithm from BBOB
2009 is shown as light thick line with diamond markers. Left, a)c)e) results averaged
over all 24 functions, Right, b)d)e) results of the functions with high condition number
(f10–f14). Not shown are results for d = 2 and d = 10, which are visually similar to
d = 3 and d = 20, respectively.

The function group with the largest difference over BBOB was the group of
functions with high conditioning, f10 − f14, shown in Figs. 2b and 2d and 2f.
Here the invariant algorithms performed markedly worse, especially for d = 5.

Recombination Weight Based Selection in the DTS-CMA-ES 305

This is probably because optimizing problems with high conditioning requires
the CMA-ES to adapt the covariance matrix to the right shape before being
able to make any progress. Thus, at this small budget even small differences
in the adaptation speed can lead to large differences in the evaluation. This
is supported by the results shown in Fig. 3. Figure 3a shows that all algorithms
obtained similar convergence speeds on Sphere, however the invariant algorithms
and DTS-Var-CMA-ES were slightly slower. Thus the relative slow progress on
f10, Fig. 3b, was likely a result of slower learning of the covariance matrix. But
in general, learning the covariance matrix worked as is illustrated by f14, Fig. 3c,
where the covariance matrix becomes more ill-conditioned the closer the points
are to the optimum. Here, the algorithms performed more similar.

For the other function groups (not shown), especially multi-modal functions,
there were no significant differences, as none of the algorithms showed a better
capability to discover better local optima at this budget. However, for multi-
modal functions, all DTS-CMA-ES algorithms performed on par or better than
the best 2009 baseline.

Fig. 3. Selected results. a)b)c) Bootstrapped empirical cumulative distribution of the
number of objective function evaluations divided by dimension #fevals/d for 51 targets
with target precision in 10[−8..2] for d = 5 and functions f1, f10 and f14. As reference
algorithm, the best algorithm from BBOB 2009 is shown as light thick line with dia-
mond markers. d) Test for invariance to monotonic transformations in d = 5. Shown
are the smallest function value achieved for the different algorithms on fα

1 = (x2)α for
α ∈ {1/4, 1/2, 1, 1.5, 2}. For α = 1 the ECDF graph is shown in a).

306 O. Krause

Finally, the results for invariance to monotonous transformations are shown
in Fig. 3d. Here, it can be seen that when moving away from the simple quadratic
function, performance of the non-invariant algorithm varied, and for α = 2 the
algorithms failed to make any progress. For the invariant algorithms, perfor-
mance is expected to be the same as for α = 1.

6 Conclusion

In this work, I investigated the combination of the recombination weights of
the CMA-ES with the variance estimates provided by the GP surrogate model.
I proposed to use the weight variance as criterion for deciding which point to
evaluate, and proposed to use their mean as replacement for the function values
(or direct replacement of the recombination weights) in the underlying CMA-
ES. I finally used this to develop a variant of the DTS-CMA-ES that is fully
invariant to monotonous transformations of the function values.

The results showed that using statistics on the recombination weights instead
of function values has negligible effects on the performance. This shows that it is
possible to completely avoid using function values from surrogate models. More
importantly, the new approach has no exploration parameter that needs tuning.

This opens up interesting directions in future work: since GP-inference can
take noise into account and gives an estimate of the posterior distribution of the
noise-free function, the techniques in this work open the way to use rank-based
statistics on noisy function evaluations. Further, even though the invariant GP
used in this work is rather simple and performed poorly, future work might find
better models that close the performance gap in the noiseless case.

References

1. Auger, A., Brockhoff, D., Hansen, N.: Benchmarking the local metamodel CMA-
ES on the noiseless BBOB’2013 test bed. In: Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation, pp. 1225–1232
(2013)

2. Bajer, L., Pitra, Z., Holeňa, M.: Benchmarking gaussian processes and random
forests surrogate models on the BBOB noiseless testbed. In: Proceedings of the
Companion Publication of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, pp. 1143–1150 (2015)

3. Bajer, L., Pitra, Z., Repickỳ, J., Holeňa, M.: Gaussian process surrogate models
for the CMA evolution strategy. Evol. Comput. 27(4), 665–697 (2019)

4. Bouzarkouna, Z., Auger, A., Ding, D.Y.: Investigating the local-meta-model CMA-
ES for large population sizes. In: Di Chio, C., et al. (eds.) EvoApplications 2010.
LNCS, vol. 6024, pp. 402–411. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12239-2 42

5. Bouzarkouna, Z., Auger, A., Ding, D.Y.: Local-meta-model CMA-ES for partially
separable functions. In: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, pp. 869–876 (2011)

6. GPy: A Gaussian process framework in Python. http://github.com/SheffieldML/
GPy (Since 2012)

https://doi.org/10.1007/978-3-642-12239-2_42
https://doi.org/10.1007/978-3-642-12239-2_42
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Recombination Weight Based Selection in the DTS-CMA-ES 307

7. Hansen, N.: A global surrogate assisted CMA-ES. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 664–672 (2019)

8. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on Github, February 2019.
https://doi.org/10.5281/zenodo.2559634

9. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO:
a platform for comparing continuous optimizers in a black-box setting. Optim.
Methods Softw. 36(1), 114–144 (2021)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

12. Kern, S., Hansen, N., Koumoutsakos, P.: Local meta-models for optimization using
evolution strategies. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós,
J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 939–948.
Springer, Heidelberg (2006). https://doi.org/10.1007/11844297 95

13. Koza, J., Tumpach, J., Pitra, Z., Holeňa, M.: Using past experience for configura-
tion of Gaussian processes in Black-Box Optimization. In: Simos, D.E., Pardalos,
P.M., Kotsireas, I.S. (eds.) LION 2021. LNCS, vol. 12931, pp. 167–182. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92121-7 15

14. Le Riche, R., Picheny, V.: Revisiting Bayesian optimization in the light of the
COCO benchmark. Struct. Multidiscip. Optim. 64(5), 3063–3087 (2021)

15. Liu, Z., et al.: Towards automated deep learning: analysis of the AutoDL challenge
series 2019. In: NeurIPS 2019 Competition and Demonstration Track, pp. 242–252.
PMLR (2020)

16. Loshchilov, I., Schoenauer, M., Sebag, M.: Comparison-based optimizers need
comparison-based surrogates. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 364–373. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 37

17. Loshchilov, I., Schoenauer, M., Sebag, M.: Self-adaptive surrogate-assisted covari-
ance matrix adaptation evolution strategy. In: Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation, pp. 321–328 (2012)

18. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on non-local
use of selection information. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 189–198. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58484-6 263

19. Pitra, Z., Bajer, L., Holeňa, M.: Doubly trained evolution control for the sur-
rogate CMA-ES. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa,
G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 59–68. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 6

20. Pitra, Z., Hanuš, M., Koza, J., Tumpach, J., Holeňa, M.: Interaction between
model and its evolution control in surrogate-assisted CMA evolution strategy. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 528–
536 (2021)

21. Turner, R., et al.: Bayesian optimization is superior to random search for machine
learning hyperparameter tuning: analysis of the black-box optimization challenge
2020. In: NeurIPS 2020 Competition and Demonstration Track, pp. 3–26. PMLR
(2021)

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.1007/11844297_95
https://doi.org/10.1007/978-3-030-92121-7_15
https://doi.org/10.1007/978-3-642-15844-5_37
https://doi.org/10.1007/3-540-58484-6_263
https://doi.org/10.1007/3-540-58484-6_263
https://doi.org/10.1007/978-3-319-45823-6_6

308 O. Krause

22. Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by Gaussian pro-
cesses with improved preselection criterion. In: The 2003 Congress on Evolutionary
Computation, 2003, CEC 2003, vol. 1, pp. 692–699. IEEE (2003)

23. Yang, J., Arnold, D.V.: A surrogate model assisted (1+1)-es with increased
exploitation of the model. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 727–735 (2019)

The (1+1)-ES Reliably Overcomes Saddle
Points

Tobias Glasmachers(B)

Department for Computer Science, Institute for Neural Computation,
Ruhr-University Bochum, Bochum, Germany

tobias.glasmachers@ini.rub.de

Abstract. It is known that step size adaptive evolution strategies (ES)
do not converge (prematurely) to regular points of continuously differen-
tiable objective functions. Among critical points, convergence to minima
is desired, and convergence to maxima is easy to exclude. However, sur-
prisingly little is known on whether ES can get stuck at a saddle point. In
this work we establish that even the simple (1+1)-ES reliably overcomes
most saddle points under quite mild regularity conditions. Our analysis
is based on drift with tail bounds. It is non-standard in that we do not
even aim to estimate hitting times based on drift. Rather, in our case it
suffices to show that the relevant time is finite with full probability.

1 Introduction

Fig. 1. Graph of a difficult saddle
point.

The question how optimization algo-
rithms handle saddle points is a clas-
sic subject. In the standard analysis of
gradient-based optimization, it is easy to
rule out premature convergence to a reg-
ular point. In contrast, excluding conver-
gence to saddle points requires consider-
able effort [4].

In evolutionary computation, the sit-
uation is no different. Akimoto et al.
[3] established that many optimizers can-
not converge to a regular point of the
objective function under the rather basic
assumption that they successfully diverge
on a linear slope.

Prior work on the behavior of evolu-
tion strategies in the presence of a saddle
point seems to be sparse. We need to highlight that usually in optimization the
goal is not to get stuck at a saddle point, but rather to proceed to a (local)
optimum. This is different from the goal of locating saddle points by means of
optimization techniques, in cases where these saddles are of interest by them-
selves [1]. That line of work on “saddle point optimization”, also called min-
max-problems, is unrelated to our research question.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 309–319, 2022.
https://doi.org/10.1007/978-3-031-14721-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_22&domain=pdf
http://orcid.org/0000-0003-1886-1696
https://doi.org/10.1007/978-3-031-14721-0_22

310 T. Glasmachers

In our own prior work [5], we conducted a detailed analysis of conditions
under which convergence of the (1+1)-ES to the global optimum can be guar-
anteed, on an extremely wide class of functions. In that work, premature con-
vergence to saddle points can only be excluded if the success probability in the
saddle point exceeds the target success rate of 1/5 in the limit of small step sizes.
On the other hand, for some extremely deceptive saddle points of sharp ridges,
a positive probability for premature convergence is proven.

There is a considerable gap between the two cases. While existing guarantees
do not apply to these cases, empirical evidence indicates—maybe surprisingly—
that already the simple (1+1)-ES reliably overcomes even extremely ill-
conditioned saddle points. In the present paper we close this gap by cementing
the empirical evidence with a proof.

Algorithm 1: (1+1)-ES with 1/5-success rule

1: input m0 ∈ R
d, σ0 > 0, f : Rd → R, parameter α > 1

2: for t = 1, 2, . . . , until stopping criterion is met do
3: sample xt ∼ N (mt, σ

2
t I)

4: if f
(
xt

) ≤ f
(
mt

)
then

5: mt+1 ← xt � move to the better solution
6: σt+1 ← σt · α � increase the step size
7: else
8: mt+1 ← mt � stay where we are
9: σt+1 ← σt · α−1/4 � decrease the step size

We consider the (1+1)-ES as specified in Algorithm 1. This version of the
method can be attributed to Kern et al. [8]. It was used in the recent anal-
ysis [2]. For a given algorithm state (m,σ), we define the success probability
psucc(m,σ) = Pr

(
f(x) ≤ f(m)

)
. It plays a key role for analyzing step size adap-

tation in the (1+1)-ES.

2 Saddle Points

In the following, we define various types of critical points of a continuously
differentiable objective function f : R

d → R. A point x∗ ∈ R
d is called crit-

ical if ∇f(x∗) = 0, and regular otherwise. A critical point is a local mini-
mum/maximum if there exists r > 0 such that it is minimal/maximal within
an open ball B(x∗, r). If x∗ is critical but neither (locally) minimal nor maxi-
mal, then it is a saddle point.

If f is twice continuously differentiable then most critical points are well
characterized by their second order Taylor expansion

f(x) = f(x∗) + (x − x∗)T H(x − x∗) + o(‖x − x∗‖2) .

The eigenvalues of the Hessian H determine its type: if all eigenvalues are pos-
itive/negative then it is a minimum/maximum. If both positive and negative

The (1+1)-ES Reliably Overcomes Saddle Points 311

eigenvalues exist then it is a saddle point. Zero eigenvalues are not informative,
since the behavior of the function in the corresponding eigenspaces is governed
by higher order terms.1

Therefore, a prototypical problem exhibiting a saddle point is the family of
objective functions

fa(x) =
d∑

i=1

aix
2
i

with parameter a ∈ R
d. We assume that there exists b ∈ {1, . . . , d − 1} such

that ai < 0 for all i ≤ b and ai > 0 for all i > b. In all cases, the origin
x∗ = 0 is a saddle point. The eigenvalues of the Hessian are the parameters
ai. Therefore, every saddle point of a twice continuously differentiable function
with non-zero eigen values of the Hessian is well approximated by an instance of
fa after applying translation and rotation operations, to which the (1+1)-ES is
invariant. This is why analyzing the (1+1)-ES on fa covers an extremely general
case.

We observe that fa is scale invariant, see also Fig. 2: fa(c · x) = c2 · fa(x)
holds, and hence fa(x) < fa(x′) ⇔ fa(c · x) < f(c · x′) for all x, x′ ∈ R

d and
c > 0. This means that level sets look the same on all scales, i.e., they are scaled
versions of each other. Also, the f -ranking of two points x, x′ ∈ R

d agrees with
the ranking of the c · x versus c · x′.

Related to the structure of fa we define the following notation. For x ∈ R
d

we define x−, x+ ∈ R
d as the projections of x onto the first b components and

onto the last d − b components, respectively. To be precise, we have (x−)i = xi

for i ∈ {1, . . . , b} and (x+)i = xi for i ∈ {b + 1, . . . , d}, while the remaining
components of both vectors are zero. We obtain x = x− + x+.

For the two-dimensional case, three instances are plotted in Fig. 2. The
parameter a controls the difficulty of the problem. The success probability of
the (1+1)-ES at the saddle point m = 0 equals psucc(0, σ) = cot−1(

√|a2/a1|),
which decays to zero for |a2|
 |a1|. This is a potentially fatal problem for the
(1+1)-ES, since it may keep shrinking its step size and converge prematurely [5].

The contribution of this paper is to prove that we do not need to worry
about this problem. More technically precise, we aim to establish the following
theorem:

Theorem 1. Consider the sequence of states (mt, σt)t∈N of the (1+1)-ES on
the function fa. Then, with full probability, there exists T ∈ N such that for all
t ≥ T it holds fa(mt) < 0.

It ensures that the (1+1)-ES surpasses the saddle point with full probability
in finite time (iteration T). This implies in particular that the saddle point is
not a limit point of the sequence (mt)t∈N (see also Lemma 1 below).

1 It should be noted that a few interesting cases exist for zero eigenvalues (which
should be improbable in practice), like the “Monkey saddle” f(x) = x3

1 − 3x1x
2
2. We

believe that this case can be analyzed with the same techniques as developed below,
but it is outside the scope of this paper.

312 T. Glasmachers

Fig. 2. Level sets of different instances of fa for a = (−4, 1) (left), a = (−1, 1) (middle),
and a = (−1, 20) (right), centered onto the saddle point. The scale of the axes is
irrelevant since the problem is scale-invariant. The shaded areas correspond to positive
function values. Problem difficulty increases from left to right, since the probability of
sampling a “white” point (negative function value) in the vicinity of the saddle point
shrinks.

3 Preliminaries

In this section, we prepare definitions and establish auxiliary results. We start
by defining the following sets: D−

a = f−1
a (R<0), D0

a = f−1
a ({0}), and D+

a =
f−1

a (R>0). They form a partition of the search space R
d.

For a vector x ∈ R
d we define the semi-norms

‖x‖− =

√√
√
√−

b∑

i=1

aix2
i and ‖x‖+ =

√√
√
√

d∑

i=b+1

aix2
i .

The two semi-norms are Mahalanobis norms in the subspaces spanned by eigen-
vectors with negative and positive eigenvalues of the Hessian of fa, respectively,
when interpreting the Hessian with negative eigenvalues flipped to positive as
an inverse covariance matrix. In other words, fa(x) = ‖x‖2+ − ‖x‖2− holds. Fur-
thermore, we have ‖x+‖+ = ‖x‖+, ‖x−‖− = ‖x‖−, ‖x−‖+ = 0, and ‖x+‖− = 0.

In the following, we exploit scale invariance of fa by analyzing the stochastic
process (mt, σt) in a normalized state space. We map a state to the corresponding
normalized state by

(m,σ) �→
(

m

‖m‖+ ,
σ

‖m‖+

)
= (m̃, σ̃) .

This normalization is different from the normalizations m/σ and m/(dσ), which
give rise to a scale-invariant process when minimizing the Sphere function [2].
The different normalization reflects the quite different dynamics of the (1+1)-ES
on fa.

We are particularly interested in the case m ∈ D+
a , since we need to exclude

the case that the (1+1)-ES stays in that set indefinitely. Due to scale invariance,
this condition is equivalent to m̃ ∈ D+

a . We define the set

The (1+1)-ES Reliably Overcomes Saddle Points 313

M =
{
x ∈ R

d
∣
∣ ‖x‖+ = 1

}
.

The state space for the normalized states (m̃, σ̃) takes the form M × R>0. We
also define the subset M+

0 = M ∩ (D+
a ∪ D0

a). The reason to include the zero
level set is that closing the set makes it compact. Its boundedness can be seen
from the reformulation M+

0 =
{
m ∈ R

d
∣
∣ ‖m‖+ = 1 and ‖m‖− ≤ 1

}
. In the

following, compactness will turn out to be very useful, exploiting the fact that
on a compact set, every lower semi-continuous function attains its infimum.

The success probability psucc(m,σ) is scale invariant, and hence it is well-
defined as a function of the normalized state (m̃, σ̃). It is everywhere posi-
tive. Indeed, it is uniformly lower bounded by pmin = min(p∗, 1

2) > 0, where
p∗ = psucc(0, 1) denotes the success probability in the saddle point (which is
independent of the step size, and depends only on a). The following two lemmas
deal with the success rate in more detail.

Lemma 1. If there exists T ∈ N such that mT ∈ D0
a ∪ D−

a then with full proba-
bility, the saddle point 0 ∈ R

d of fa is not a limit point of the sequence (mt)t∈N.

Proof. Due to elitism, the sequence mt can jump from D+
a to D0

a and then to
D−

a , but not the other way round. In case of mT ∈ D−
a all function values for

t > T are uniformly bounded away from zero by f(mt) ≤ f(mT) < 0. Therefore
f(mt) cannot converge to zero, and mt cannot converge to the saddle point.

Now consider the case mT ∈ D0
a. For all m ∈ D0

a and all σ > 0, the probability
of sampling an offspring in D−

a is positive, and it is lower bounded by pmin,
which is positive and independent of σ. Not sampling an offspring mt ∈ D−

a for
n iterations in a row has a probability of at most (1 − pmin)n, which decays to
zero exponentially quickly. Therefore, with full probability, we obtain mt ∈ D−

a

eventually. ��
However, pmin being positive is not necessarily enough for the (1+1)-ES to

escape the saddle point, since for pmin < 1/5 it may stay inside of D+
a , keep

shrinking its step size, and converge prematurely [5]. In fact, based on the choice
of the parameter a of fa, pmin can be arbitrarily small. In the following lemma,
we therefore prepare a drift argument, ensuring that the normalized step size
remains in or at least always returns to a not too small value.

Lemma 2. There exists a constant 0 < σ̃40% ≤ ∞ such that psucc(m̃, σ̃) ≥ 2/5
holds for all states fulfilling m̃ ∈ M+

0 and σ̃ ≤ σ̃40%.

Proof. It follows immediately from the geometry of the level sets (see also Fig. 2)
that for each fixed m̃ ∈ M+

0 (actually for m �= 0), it holds

lim
σ̃→0

psucc(m̃, σ̃) =
1
2

and lim
σ̃→∞

psucc(m̃, σ̃) = p∗ .

Noting that psucc(m̃, σ̃) is continuous between these extremes, we define a point-
wise critical step size as

σ̃40%(m̃) = arg min
σ̃>0

{
psucc(m̃, σ̃) ≤ 2/5

}
.

314 T. Glasmachers

With the convention that arg min over an empty set is ∞, this definition makes
σ̃40% : M+

0 → R ∪ {∞} a lower semi-continuous function. Due to compactness
of M+

0 it attains its minimum σ̃40% > 0. ��

4 Drift of the Normalized State

In this section we establish two drift arguments. They apply to the following
drift potential functions:

V (m̃, σ̃) = log(σ̃)
W (m̃, σ̃) = ‖m̃‖−
Φ(m̃, σ̃) = β · V (m̃, σ̃) + W (m̃, σ̃)

The potentials govern the dynamics of the step size σ̃, of the mean m̃, and of
the combined process, namely the (1+1)-ES. The trade-off parameter β > 0 will
be determined later. Where necessary we extend the definitions to the original
state by plugging in the normalization, e.g., resulting in W (m,σ) = ‖m‖−

‖m‖+
.

For a normalized state (m̃, σ̃) let (m̃′, σ̃′) denote the normalized successor
state. We measure the drift of all three potentials as follows:

ΔV (m̃, σ̃) = E
[
V (σ̃′) − V (σ̃)

]

ΔW (m̃, σ̃) = E
[
min{W (m̃′) − W (m̃), 1}]

ΔΦ(m̃, σ̃) = β · ΔV (m̃, σ̃) + ΔW (m̃, σ̃)

As soon as W (m̃) > 1, m̃ ∈ D−
a holds and the (1+1)-ES has successfully

passed the saddle point according to Lemma 1. Therefore we aim to show that
the sequence W (m̃t) keeps growing, and that is passes the threshold of one. To
this end, we will lower bound the progress ΔW of the truncated process.

Truncation of particularly large progress in the definition of ΔW , i.e., W -
progress larger than one, serves the purely technical purpose of making drift
theorems applicable. This sounds somewhat ironic, since a progress of more than
one on W immediately jumps into the set D−

a and hence passes the saddle. On
the technical side, an upper bound on single steps is a convenient prerequisite.
Its role is to avoid that the expected progress is achieved by very few large steps
while most steps make no or very litte progress, which would make it impossible
to bound the runtime based on expected progress. Less strict conditions allowing
for rare large steps are possible [6,9]. The technique of bounding the single-step
progress instead of the domain of the stochastic process was introduced in [2].

The speed of the growth of W turns out to depend on σ̃. In order to guar-
antee growth at a sufficient pace, we need to keep the normalized step size from
decaying to zero too quickly. Indeed, we will show that the normalized step size
drifts away from zero by analyzing the step-size progress ΔV .

The following two lemmas establish the drift of mean m̃ and step size σ̃.

The (1+1)-ES Reliably Overcomes Saddle Points 315

Lemma 3. Assume m̃ ∈ M+
0 . There exists a constant B1 such that ΔV (m̃, σ̃) ≥

B1 holds. Furthermore, there exist constants B2 > 0 and σ̃∗ ∈ (0, σ̃40%] such that
for all σ̃ ≤ σ̃∗ it holds ΔV (m̃, σ̃) ≥ B2.

Lemma 4. Assume m̃ ∈ M+
0 . The W -progress ΔW (m̃, σ̃) is everywhere posi-

tive. Furthermore, for each σ̃∗ ∈ (0, σ̃40%] there exists a constant C > 0 depend-
ing on σ̃∗ such that it holds ΔW (m̃, σ̃) ≥ C if σ̃ ≥ σ̃∗.

The proofs of these lemmas contain the main technical work.

Proof (of Lemma 3). From the definition of σ̃40%, for σ̃ ≤ σ̃40%, we conclude
that the probability of sampling a successful offspring is at least 2/5. In case
of an unsuccessful offspring, σ̃ shrinks by the factor α−1/4. For a successful
offspring it is multiplied by α · ‖m‖+

‖m′‖+
, where the factor α > 1 comes from step

size adaptation, and the fraction is due to the definition of the normalized state.
The dependency on m and m′ is inconvenient. However, for small step size

σ̃ we have ‖m′‖ ≈ ‖m‖, simply because modifying m with a small step results
in a similar offspring, which is then accepted as the new mean m′. In the limit
we have

lim
σ̃→0

E

[
log

(‖m‖+
‖m′‖+

)]
= 0 .

This allows us to apply the same technique as in the proof of Lemma 2. The
function (m̃, σ̃) �→ E

[
log

(
‖m‖+
‖m′‖+

)]
is continuous. We define a pointwise lower

bound through the lower semi-continuous function

m̃ �→ arg min
0<σ̃≤σ̃40%

{
E

[
log

(‖m‖+
‖m′‖+

)]
≤ 1√

α

}
,

where the arg min over the empty set shall take the value σ40%. We define σ̃∗ as
its infimum. It is attained, since M+

0 is compact, and hence positive.
For σ̃ ≤ σ̃∗ we obtain the following drift condition:

ΔV (m̃, σ̃) ≥ 2
5

·
[
log(α− 1

2) + log(α)
]

−
(

1 − 2
5

)
· 1
4

· log(α)

=
1
5

· log(α) − 3
20

· log(α) =
1
20

· log(α) > 0

For σ̃ > σ̃∗ we consider the worst case of a success rate of zero. Then we obtain

ΔV (m̃, σ̃) ≥ −1
4

· log(α) .

Hence, the statement holds with B1 = − 1
4 · log(α) and B2 = 1

20 · log(α). ��

Proof (of Lemma 4). We start by showing that ΔW is always positive. We decom-
pose the domain of the sampling distribution (which is all of Rd) into spheres of
fixed radius r = ‖m̃′ − m̃‖ and show that the property holds, conditioned to the
success region within each sphere. Within each sphere, the distribution is uniform.

316 T. Glasmachers

mMM

MM

ZZZ

ZZZ

Fig. 3. Geometric illustration of the proof of Lemma 4. The figure shows the saddle
point (center), level sets of fa (thin lines), the point m, and the set M (two horizontal
lines), the thick part of which is M+

0 . The area D−
a has a white background, while

D+
a is the gray area. The dark gray area is the set Z. The figure displays spheres of

different radii into which the sampling distribution is decomposed. The spheres are
drawn as dotted circles, and as bold solid arcs in the region of successful offspring,
outperforming m. The thickened arcs indicate sets of corresponding points. Ten pairs
of corresponding points are shown, five each for two different spheres.

Each sphere makes positive and negative contributions to W (x) − W (m̃) =
‖x‖−
‖x‖+

− ‖m̃‖−. Within the set

Z =
{

z ∈ R
d

∣
∣
∣
∣
‖z‖−
‖z‖+ < ‖m̃‖−

}

the contributions are negative. The set is illustrated in Fig. 3. Outside of Z,
contributions are positive. We aim to show that overall, for each sphere, the

The (1+1)-ES Reliably Overcomes Saddle Points 317

expectation is positive. To this end, we define pairs of corresponding points such
that the negative contribution of one point is (more than) compensated by the
positive contribution of the other. For our argument, it is important that the
Lebesgue measure of each subset S ⊂ Z is at most as large the Lebesgue measure
of the set of corresponding points outside of Z. This property will be fulfilled by
construction, and with equality.

For each successful offspring in Z we define a corresponding point outside of
Z on the same sphere. Corresponding points are mirrored at the symmetry axis
through m. More precisely, for z ∈ Z we define z′

− = 2m− − z− and z′
+ = z+. It

holds m̃− − z− = z′
− − m̃−, and we call this difference δ = m̃− − z−.

By projecting both points onto the normalized state space M we obtain their
contributions to the expectation. This amounts to following the dashed lines in
Fig. 3. Adding the contributions of z and z′ yields

W (z) + W (z′) − 2W (m̃) =
‖z‖−
‖z‖+ +

‖z′‖−
‖z′‖+ − 2‖m̃‖−

=
‖m̃ − δ‖− + ‖m̃ + δ‖−

‖z‖+ − 2‖m̃‖−

≥ ‖m̃ − δ‖− + ‖m̃ + δ‖− − 2‖m̃‖− ≥ 0 .

The first inequality holds because of ‖z‖+ = ‖z′‖+ ≤ 1 (note that the set
M corresponds to ‖ · ‖+ = 1, see also Fig. 3). The second step is the triangle
inequality of the semi-norm ‖ · ‖−. Both inequalities are strict outside of a set of
measure zero.

Truncating progress W (z′)−W (m̃) larger than one does not pose a problem.
This is because W (m̃) − W (z) < 1 is obtained from the fact that m̃ and z are
both contained in D+

a , and this is where W takes values in the range [0, 1). We
obtain W (z) − W (m̃) + 1 > 0 in the truncated case.

Integrating the sum over all corresponding pairs on the sphere, and noting
that there are successful points outside of Z which do not have a successful cor-
responding point inside but not the other way round, we see that the expectation
of W (m̃′) − W (m̃) over the success region of each sphere is positive.

Integration over all radii r > 0 completes the construction. In the integration,
the weights of different values of r depend on σ̃ (by means of the pdf of a χ-
distribution scaled by σ̃). Since the integrand is non-negative, we conclude that
ΔW (m̃, σ̃) > 0 holds for all σ̃ > 0.

In the limit σ̃ → ∞, the expected progress in case of success converges to
one (due to truncation), and hence the expected progress converges to p∗. This
allows us to exploit compactness once more. The expectation of the truncated
progress ΔW (m̃, σ̃) is continuous as a function of the normalized state. We define
a pointwise lower bound as

C(m̃) = min
σ̃≥σ̃40%

{
ΔW (m̃, σ̃)

}
.

C(m̃) is a continuous function, and (under slight misuse of notation) we define
C as its infimum over the compact set M+

0 . Since the infimum is attained, it is
positive. ��

318 T. Glasmachers

Now we are in the position to prove the theorem.

Proof (of Theorem 1). Combining the statements of Lemma 3 and 4 we obtain

ΔΦ(m̃, σ̃) ≥ θ := min{βB2, C + βB1}

for all m̃ ∈ M+
0 and σ̃ > 0. The choice β = −C

2B1
results in θ = min{B2, C/2} > 0.

The constant θ is a bound on the additive drift of Φ, hence we can apply additive
drift with tail bound (e.g., Theorem 2 in [9] with additive drift as a special case,
or alternatively inequality (2.9) in Theorem 2.3 in [6]) to obtain the following:
Let

T = min
{

t ∈ N

∣
∣
∣ Φ(m̃t, σ̃t) > 1

}

denote the waiting time for the event that Φ reaches or exceeds one (called
the first hitting time). Then the probability of T exceeding T0 ∈ N decays
exponentially in T0. Therefore, with full probability, the hitting time T is finite.
Φ(m̃T , σ̃T) > 1 is equivalent to f(mT) < 0. For all t > T , the function value
stays negative, due to elitism. ��

5 Discussion and Conclusion

We have established that the (1+1)-ES does not get stuck at a (quadratic)
saddle point, irrespective of its conditioning (spectrum of its Hessian), with full
probability. This is all but a trivial result since the algorithm is suspectable
to premature convergence if the success rate is smaller than 1/5. For badly
conditioned problems, close to the saddle point, the success rate can indeed
be arbitrarily low. Yet, the algorithm passes the saddle point by avoiding it
“sideways”: While approaching the level set containing the saddle point, there
is a systematic sidewards drift away from the saddle. This keeps the step size
from decaying to zero, and the saddle is circumvented.

In this work we are only concerned with quadratic functions. Realistic objec-
tive functions to be tackled by evolution strategies are hardly ever so simple.
Yet, we believe that our analysis is of quite general value. The reason is that the
negative case, namely premature convergence to a saddle point, is an inherently
local process, which is dominated by a local approximation like the second order
Taylor polynomial around the saddle point. Our analysis makes clear that as long
as the saddle is well described by a second order Taylor approximation with a
full-rank Hessian matrix, then the (1+1)-ES will not converge prematurely to the
saddle point. We believe that our result covers the most common types of saddle
points. Notable exceptions are sharp ridges, plateaus, and Monkey saddles.

The main limitation of this work is not the covered class of functions, but
the covered algorithms. The analysis sticks closely to the (1+1)-ES with its
success-bases step size adaptation mechanism. There is no reason to believe that
a fully fledged algorithm like the covariance matrix adaptation evolution strategy
(CMA-ES) [7] would face more problems with a saddle than the simple (1+1)-
ES, and to the best of our knowledge, there is no empirical indication thereof.

The (1+1)-ES Reliably Overcomes Saddle Points 319

In fact, our intuition is that most algorithms should profit from the sidewards
drift, as long as they manage to break the symmetry of the problem, e.g., through
randomized sampling. Yet, it should be noted that our analysis does not easily
extend to non-elitist algorithms and step size adaptation methods other than
success-based rules.

References

1. Akimoto, Y.: Saddle point optimization with approximate minimization oracle.
Tech. Rep. 2103.15985 (2021). arXiv.org

2. Akimoto, Y., Auger, A., Glasmachers, T.: Drift theory in continuous search spaces:
expected hitting time of the (1+1)-es with 1/5 success rule. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO). ACM (2018)

3. Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Theoretical analysis of evolutionary
computation on continuously differentiable functions. In: Genetic and Evolutionary
Computation Conference, pp. 1401–1408. ACM (2010)

4. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identi-
fying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2933–
2941 (2014)

5. Glasmachers, T.: Global convergence of the (1+1) evolution strategy. Evol. Comput.
J. (ECJ) 28(1), 27–53 (2020)

6. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Adv. Appli. Prob. 14(3), 502–525 (1982)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

8. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms-a compar-
ative review. Nat. Comput. 3(1), 77–112 (2004)

9. Lehre, P.K., Witt, C.: General drift analysis with tail bounds. Tech. Rep. 1307.2559
(2013). arXiv.org

http://arxiv.org/abs/org
http://arxiv.org/abs/org

Real-World Applications

Evolutionary Time-Use Optimization
for Improving Children’s Health

Outcomes

Yue Xie1(B), Aneta Neumann1, Ty Stanford2, Charlotte Lund Rasmussen3,4,
Dorothea Dumuid2, and Frank Neumann1

1 The University of Adelaide, Adelaide, SA, Australia
yue.xie@adelaide.edu.au

2 Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human
Performance, University of South Australia, Adelaide, SA, Australia

3 Norwegian University of Science and Technology, Trondheim, Norway
4 Department of Physical Education and Sport Sciences, University of Limerick,

Limerick, Ireland

Abstract. How someone allocates their time is important to their health
and well-being. In this paper, we show how evolutionary algorithms can
be used to promote health and well-being by optimizing time usage.
Based on data from a large population-based child cohort, we design fit-
ness functions to explain health outcomes and introduce constraints for
viable time plans. We then investigate the performance of evolutionary
algorithms to optimize time use for four individual health outcomes with
hypothetical children with different day structures. As the four health
outcomes are competing for time allocations, we study how to optimize
multiple health outcomes simultaneously in the form of a multi-objective
optimization problem. We optimize one-week time-use plans using evolu-
tionary multi-objective algorithms and point out the trade-offs achievable
with respect to different health outcomes.

Keywords: Real-world application · Time-use optimization ·
Single-objective optimization · Multi-objective optimization

1 Introduction

Evolutionary algorithms (EAs) are bio-inspired randomized optimization tech-
niques and have been very successfully applied to various real-world combinato-
rial optimization problems [21,25,28]. Evolutionary algorithms use a population
of search points in the decision space of a given optimization problem to solve
the problem. Moreover, many real-world optimization problems consist of several
conflicting objectives that must be optimized simultaneously. No single solution
can optimize multiple objectives, instead a set of trade-off optimal solutions is
obtained. EAs can approximate multiple optimal solutions in a single run, which
make EAs popular in solving multi-objective optimization problems [12,15].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 323–337, 2022.
https://doi.org/10.1007/978-3-031-14721-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_23

324 Y. Xie et al.

A real-world multi-objective optimization problem is “How should children
spend their time (i.e. sleeping, sedentary behaviour and physical activity) to opti-
mize their health, well-being, and cognitive development?” [9,10]. The impor-
tance of this problem has led governing bodies and health authorities such as
the World Health Organization (WHO) to provide guidelines for daily dura-
tions of sleep, screen time, and physical activity [31]. Such guidelines for school-
aged children (5–12 years) currently recommend 9–11 h of sleep, no more than
2 h of sedentary screen time, and at least 1 h of moderate-to-vigorous physical
activity (MVPA) per day [31]. However, these guidelines are primarily under-
pinned by systematic reviews collating evidence of how the duration of a single
behaviour, such as MVPA, is associated with a single measure of health or well-
being [31]. These studies show whether more or less of behaviour is beneficially
associated with the outcome [9,10,31], rather than identifying optimal dura-
tions, which would be required to support recommendations for daily durations
of the behaviour. Almost no studies have attempted to define optimal durations
for these activity behaviours for a single health outcome, let alone for multiple
health and well-being outcomes.

To address the lack of evidence for optimal time-use allocations, a recent
study [17] used compositional linear regression [18] to model the relationship
between how children allocated their daily time to four activities (sleep, seden-
tary behaviour, light physical activity (LPA) and MVPA) and twelve outcomes
spanning physical, mental and cognitive health domains. Compositional data
analysis enabled all four activities to be included in a single model whilst ensur-
ing their constant-sum constraint to 24 h was respected [1]. Using published com-
positional data methods, the raw activity data of minutes per day were expressed
as a set of isometric log-ratios [29]. With these compositional regression models,
[19] estimated values of the outcomes for every possible and feasible combination
of sleep, sedentary behaviour, LPA and MVPA duration were calculated. Opti-
mal daily duration of the activities were derived for each of the twelve health
outcomes from the average “time-use composition” associated with the best 5%
of estimated values for the respective health outcomes.

It remains unknown how to perform the best multi-objective optimisation
of time use for overall health and well-being. The method developed by [19] is
computationally intensive for four activities requiring almost 4 million iterations
of different possible time-use scenarios. This method becomes unfeasible with a
large number of daily activities (e.g., activities such as chores, sport, transport,
school, sleep, quiet time, social time, screen time, etc.) routinely collected by
time-use recalls [34]. Additionally, varying constraints to daily time use, which
may limit application to the real world, were not considered.

The research described in this paper extends previous work proposed in [17]
by considering four decision variables: daily time allocation to sleep, sedentary
behaviour, LPA and MVPA, and four health objectives for children: body mass
index (BMI), cognition, life satisfaction and fitness. Firstly, we formulate the
one-day time-use optimization problem as a single-objective problem in contin-
uous space by optimizing one of the four presented health outcomes. Then, we
extend the one-day time-use schedule to one week and present multi-objective
optimization models for the time-use optimization problem.

Evolutionary Time-Use Optimization 325

EAs are introduced to develop time-use optimization approaches that incor-
porate daily and weekly time constraint schedules and provide decision-making
tools for trading off multiple health outcomes against each other. For single-
objective time-use optimization, we evaluate the performance of the differen-
tial evolution (DE) algorithm [37] with different operators, particle swarm opti-
mization (PSO) [26] and covariance matrix adaptation evolutionary strategy
(CMA-ES) [22,23] to optimize health outcomes in different day structures. For
multi-objective time-use optimization, we investigate the performance of the
multi-objective evolutionary algorithm based on decomposition (MOEA/D) [40],
Non-dominated sorting genetic algorithm (NSGA-II) [16] and Strong Pareto evo-
lutionary algorithm 2 (SPEA2) [42].

The paper is organized as follows. We introduce the data set used in Sect. 1.1.
Section 2 describes application of our time-use optimization models for different
health outcomes, and to different day constraints. The proposed optimization
methods are described in Sect. 3. The results of the optimization experiments
are described in Sect. 4. Conclusions and avenues for future work are presented
in Sect. 5.

1.1 Data Description

This study uses data from a large population-based child cohort to illustrate the
real-world application of a novel time-use optimisation procedure. Data were
from the Child Health CheckPoint study [11], a cross-sectional module nested
between waves 6 and 7 of the Longitudinal Study of Australian Children (LSAC)
[20]. Child participants of the LSAC birth cohort (commenced in 2004 with n
= 5107) that were retained to Wave 6 (n = 3764) were invited to take part
in Child Health CheckPoint (2015–16) when they were 11–12 years old. Of
these, n = 1874 (50%) consented to participate via written informed consent
from their parent/guardian. Ethical approval for CheckPoint was granted by
The Royal Children’s Hospital (Melbourne) Human Research Ethics Committee
(HREC33225D) and the Australian Institute of Family Studies Ethics Commit-
tee (AIFS14-26).

Participants were fitted with a wrist-worn accelerometer (GENEActive,
Activinsights Ltd, UK) by a trained researcher, with instructions to wear the
device 24 h a day for eight days. Following the return of the device, activity data
were downloaded and processed following published procedures [17,20] to deter-
mine the average daily minutes spent in sleep, sedentary time, LPA and MVPA.

BMI was derived from the child participant’s measured height (Invicta 10955
stadiometer) and weight (2-limb Tanita BC-351 or 4-limb InBody 230). BMI was
calculated as weight (kg)/height (m)2 and expressed as age- and sex-specific z-
scores [32]. The cognition score was derived from the NIH Picture Vocab test,
which asks the child to select on an iPad a picture that best represents the mean-
ing of words they hear through headphones [39]. A higher score indicates better
receptive vocabulary, which represents cognition. Life satisfaction was obtained
from the 5-item Brief Multi-Dimensional Students’ Life Satisfaction Scale, with
a higher score indicating higher satisfaction with their family life, friendships,

326 Y. Xie et al.

school experience and themselves, where they live, and their overall life [36]. Fit-
ness was obtained from a cycle ergometer test which was used to determine the
estimated maximal work rate from which VO2max (predicted maximal aerobic
power) was estimated. A higher VO2max indicates better aerobic fitness [7].

2 The Time-Use Optimization Models

In this section, we first list the notations and descriptions of health outcomes and
decision variables in Table 1(a). Column Optimal lists the definition of optimal
value of each objective. Then, we introduce a general model for the one-day
time-use optimization problem without considering any specific day structure or
health outcome.

obj: f(x) = β̂0 + β̂1z1 + β̂2z2 + β̂3z3 + β̂4z1z1 + β̂5z1z2

+ β̂6z1z3 + β̂7z2z2 + β̂8z2z3 + β̂9z3z3 (1)

s.t. z1 =

√
3
4

ln
(

x1

3
√

x2x3x4

)
, z2 =

√
2
3

ln
(

x2√
x3x4

)
, z3 =

√
1
2

ln
(

x3

x4

)

4∑
i=1

xi = 1440 (2)

xl
i ≤ xi ≤ xu

i ∀i = {1, . . . , 4} (3)

The decision vector of this model can be expressed as x = {x1, x2, x3, x4}
which consists of four activity variables (sleep, sedentary time, LPA, MVPA).
The objective function (1) shows how to calculate health outcomes based on val-
ues of the decision variables and parameters. Where β0, β1, . . . , β9 are unknown
regression coefficients to be estimated, they are different in the objective function
of each health outcome. Here, those regression coefficients are estimated using
the data described in Sect. 1.1. We list the estimated values β̂i, i = {1, . . . , 9}
for different health outcomes in Table 1 (b) and introduce how to obtain those
values in Sect. 2.1. Constraint (2) forces the sum of decision variables of the
problem equal to the total minutes (1440 min min) per day. We introduce a clo-
sure operation (see Algorithm 1) to tackle this constraint and make the working
progress of any search algorithm fast to achieve a feasible solution. Upper and
lower bounds on each decision variables are enforced by constraint (3), where xl

i

denotes the lower bound of xi and xu
i denotes the upper bound of xi. The upper

and lower bounds are different according to the day structure considered.
Without loss of generality, we study six different hypothetical day structures.

We label these day structures to reflect real-world scenarios: Studious day (STD),
Sporty day (SPD), After-School Job day (ASJD), Sporty Weekend day (SPWD),
Studious/screen weekend day (STWD) and Working weekend day (WWD). The
lower and upper bounds of the decision variables are set to suit the day-above-
day structures, as advised by an external child behavioural epidemiologist, and
by considering the empirical activity durations found in the underlying data
(please refer to Table 2). These replace the 24-h constraint (3) which is present
in a general model.

Evolutionary Time-Use Optimization 327

Table 1. Notation and values of parameters

(a) Description of notation (b) Estimated regression coefficients

Notation Description Optimal Notation f1 f2 f3 f4

f1 Body mass index (BMI) min |f1| β0 0.23307 2.3508268 12395.053 68.85903

f2 Cognition (vocab) objective max f2 β1 −0.59691 −0.032037 2255.008 −17.84326

f3 Life satisfaction objective max f3 β2 0.05029 0.0670568 −885.351 −1.77607

f4 Fitness (VO2max) objective max f4 β3 0.68497 −0.003155 −1264.635 −11.25996

β4 0 0 0 3.15694

x1 Minutes of sleeping β5 0 0 0 13.88458

x2 Minutes of sedentary behaviour β6 0 0 0 −5.12788

x3 Minutes of LPA β7 0 0 0 −6.85649

x4 Minutes of MVPA β8 0 0 0 2.69689

β9 0 0 0 2.52276

Table 2. Values of lower bounds and upper bounds

Studious
day

Sporty
day

After-school
job day

Sporty
weekend day

Studious/screen
weekend day

Working
weekend day

Sleep LB 360 360 360 420 420 360

UB 720 720 720 720 720 720

Sedentary LB 690 480 480 210 270 210

UB 900 900 900 900 900 900

LPA LB 150 210 220 210 150 390

UB 480 480 480 480 480 480

MVPA LB 1 61 1 61 1 1

UB 210 210 210 210 210 210

2.1 Model Parameter Estimation

Estimates of the model parameters (β̂i, i = 1, . . . , 9) in Eq. (1) are calculated
using least-squares multiple linear regression on the CheckPoint data. It is not
possible to use all the untransformed time-use predictors simultaneously in the
linear model as they are linearly dependent which in turn prohibits the matrix
inverse calculation in estimating the parameter estimates. The isometric log ratio
(ilr) transformation is a widely used transformation of the predictors to remove
the linear dependence in the predictors [18].

For each outcome variable, f1, f2, f3, f4, the Box-Cox transformation is
applied after removing predictor effects for variance stabilisation, and improve-
ment in the normality of the residuals [8]. Quadratic terms of the time-use ilr
predictors are considered for each outcome model which correspond to the model
terms associated with the parameters β4, . . . , β9 in Eq. (1). If the quadratic terms
do not significantly improve the model fit statistically at the α = 0.05 level
(ANOVA F -test), the model parameters β4, . . . , β9 are set to 0 (i.e., only linear
ilr terms remain). For more information about fitting quadratic compositional
terms in linear regression, we refer to Chapter 5 of [6].

328 Y. Xie et al.

Algorithm 1: Closure Operation
Input: Decision vector {x1, x2, x3, x4}
a =

∑4
i=1 xi;

for i = 1 to 4 do

xi = 1440xi
a

;
return the decision variables.

Table 3. Different mixture of one-week plan

Index Studious
day

Sporty
day

After-school
job day

Sporty
weekend day

Studious/screen
weekend day

Working
weekend day

1 3 1 0 1 1 1

2 3 0 2 0 1 1

3 3 2 0 0 1 1

4 2 2 1 0 2 0

5 2 2 0 1 0 2

6 2 2 1 1 1 0

The full fit of the linear model also includes covariates of age, sex and puberty
status and their associated coefficients. The sample average covariates are then
used (age = 12, female/male = 1:1 and puberty status = “Midpubertal”). The
estimated effects of these covariates, and the intercept term of the model, are
included as the β0 term in Eq. (1). The objective functions therefore become the
prediction for the theoretical average child in the sample. A sample with missing
values in either the outcome or the predictors is removed in each model fit as
data are reasonably assumed to be missing at random [35]. Diagnostic plots of
each model are observed to ensure the model assumptions are reasonable. All
analysis is performed in R version 4.0.3 [33].

2.2 One Week Plan

We extend the one-day problem to a one-week problem by mixing different day
structures, given seven days where each day has four decision variables xd =
{xd1, xd2, xd3, xd4}. Different mixtures shown in Table 3 were used to make the
one-week plans more realistic. The number listed in each column shows how
many of each day type are planned for the week. The objective function for a
one-week plan is F (x) =

∑7
d=1 f(xd) which is subject to the constraints of each

included day.

2.3 Multi-objectives Problem

Now, we introduce a multi-objective model for time-use optimization. A multi-
objective model involves finding solutions to optimize the problem defined by at

Evolutionary Time-Use Optimization 329

least two conflicting objectives. The multi-objective model of time-use optimiza-
tion can be defined as follows.

Objs: M(x) = [f1(x), f2(x), f3(x), f4(x)] (4)

s.t.

4∑
i=1

xi = 1440 (5)

xl
i ≤ xi ≤ xu

i ∀i = {1, . . . , 4} (6)

where x denotes a solution, fi(x) → R denotes the ith objective function to
be optimized. Since there are four single objectives studied in this paper, we
investigate all combinatorial objectives as multi-objective problems.

2.4 Fitness Function

We investigate the performance of different evolutionary algorithms for single-
objective and multi-objective time-use optimization problems. The fitness of a
solution x considers all constraints of one-day time-use optimization and one-
week time-use optimization h(x) and H(x) separately.

h(x) = (u(x), f(x)) (7)
H(x) = (U(x), F (x)), (8)

where u(x) =
∑4

i=1 max{0, xi−xu
i , xl

i−xi} and U(x) =
∑7

d=1

∑4
i=1 max{0, xdi−

xu
di, x

l
di − xdi}. We optimize h and H with respect to lexicographic order, i.e.

h(x) ≥ h(y) holds iff u(x) < u(y) ∨ (u(x) = u(y) ∧ f(x) ≥ f(y)) for objective
f2, f3 and f4, u(x) < u(y) ∨ (u(x) = u(y) ∧ |f(x)| ≤ |f(y)|) for objective f1.
Therefore, for the time-use optimization problem, any infeasible solution that
violates the boundary constraints is worse than any feasible solution. Among
solutions that meet all constraints, we aim to optimize the objective function.

3 Evolutionary Algorithms for the Time-Use
Optimisation Problem

The algorithms that follow are classified into two classes. The first one contains
single-objective evolutionary algorithms (Sect. 3.1), and the second has multi-
objective evolutionary algorithms (Sect. 3.2). In this section, we only list the
algorithms implemented in this study without detailed descriptions. Moreover,
when implementing the presented algorithm for solving time-use optimization,
Algorithm 1 is conducted before evaluating a generated solution.

3.1 Single-objective Evolutionary Algorithms

For the single-objective time-use optimization, we compare three evolutionary
algorithms to optimize all health outcomes in different day structures.

330 Y. Xie et al.

Differential Evolution (DE) [14,37] is a well known global search heuristic
using a binomial crossover and a mutation operator. We evaluate two mutation
operators DE/rand/1 and DE/current-to-rand/1 for the single-objective time
-use optimization problem. The population size is set to 50, and other control
parameters are F = 0.5, Cr = 0.5.

Particle Swarm Optimization (PSO) [2,27], is a type of swarm intelli-
gence evolutionary algorithm, with population size 50, c1 = 1, c2 = 1. For more
understanding the working processes of PSO, we refer to [4,5,24,26,38,41].

Covariance matrix adaptation evolutionary strategy (CMA-ES)
[22,23] is a self-adaptive evolution strategy that solves non-linear non-convex
optimization problems in continuous domains. We implement the CMA-ES using
λ = 10 and σ = 0.3.

3.2 Multi-objective Evolutionary Algorithms

For multi-objective time-use optimization, three multi-objective evolutionary
algorithms are considered here.

Multi-objective evolutionary algorithm based on decomposition
(MOEA/D) is a decomposition based algorithm commonly used to solve multi-
objective optimisation problems [40]. We use the standard version of MOEA/D
with the Tchebycheff approach, and population size is set to 100.

Non-dominated sorting genetic algorithm (NSGA-II) [16] is a fast
non-dominated sorting procedure for ranking solutions in its selection step. It
has been shown to be efficient when dealing with two objective optimization
problems. We apply the NSGA-II with SBX operator and set the population
size to 100.

Strong pareto evolutionary algorithm 2 (SPEA2) [42] is one of the
most popular evolutionary multiple objective algorithms for dealing with opti-
mization problems. We apply the SPEA2 with binary tournament selection and
population size 100.

4 Experiments

This section shows detailed optimization results comparing the different evolu-
tionary algorithms. Firstly, to evaluate the performance of the single-objective
algorithms we investigate one-day instances of six different day structures with
boundary constraints (Table 2) against four single objectives. Secondly, we eval-
uate the performance of the multi-objective algorithms on six different mixtures
of one-week instances (Table 3), taking Sporty day as an exemplar with all the
combinations of objectives for bio-objective optimization.

For each optimization algorithm with the configurations above, we execute
30 runs and report the statistic results using the Kruskal-Wallis test with 95%
confidence intervals and follow-up with Bonferroni adjustments to account for
multiple comparisons [13]. All experiments are performed using Jmetal of version
5.11, which is based on the description included in [30], and carried out on a
MacBook Pro with an M1 chip.

Evolutionary Time-Use Optimization 331

Table 4. Mean (mean) and standard deviation (std) of 30 runs (print four decimal

places). Best mean values are highlighted in Best mean by comparing results one-
day single-objective time-use optimization problem

Day struct Health outcomes DE/rand/1 (1) DE/current-to-rand/1 (2) PSO (3) CMA-ES (4) Best results

Mean Std Stat Mean Std Stat Mean Std Stat Mean Std Stat x1 x2 x3 x4

Studious day BMI 1.8343E−09 4.04E−09 2,4 4.6657E−05 5.21E−05 4 1.1039E−13 5.82E−13 2,4 0.0012 4.41E−19 392 713 150 185

Congnition 2.5187 4.52E−16 2,4 2.5187 1.15E−05 4 2.5187 4.52E−16 2,4 2.5155 2.26E−15 389 900 150 1

Life satisfaction 12445.2233 1.85E−12 2,4 12445.1461 0.21 4 12445.2233 1.85E−12 2,4 12331.6566 1.85E−12 465 690 150 136

Fitness 60.4817 4.34E−14 4 60.4817 6.34E−14 4 60.4817 4.34E−14 4 60.1741 2.17E−14 390 690 150 210

Sporty day BMI 2.4089E−08 2.97E−08 2,4 4.6941E−05 7.06E−05 4 3.8719E−16 1.40E−15 1,2,4 0.0191 3.53E−18 597 489 210 144

Congnition 2.4423 3.62E−04 2,4 2.4418 1.36E−15 2.4426 8.72E−05 1,2,4 2.4419 9.03E−16 2 360 819 210 61

Life satisfaction 13116.2140 9.25E−12 2,4 13116.1700 0.09 4 13118.2140 9.25E−12 1,2,4 13044.5263 0 573 480 210 178

Fitness 62.2440 2.17E−14 2,4 62.2343 8.68E−03 4 62.2440 2.17E−14 2,4 61.0977 2.17E−14 360 480 390 210

After-school
job day

BMI 0.3387 0 4 0.3388 4.84E−04 4 0.3387 0 4 0.4325 2.82E−16 420 480 330 210

Congnition 2.4942 4.14E−04 2.4932 4.39E−04 2.4964 8.56E−05 1,2 2.4964 9.03E−16 1,2 360 790 330 1

Life satisfaction 12135.2479 3.70E−12 2,4 12135.1980 0.07 4 12135.2479 3.70E−12 2,4 12026.5782 1.85E−12 481 480 330 149

Fitness 62.2440 2.17E−14 2,4 62.2392 3.58E−03 4 62.2440 2.17E−14 2,4 61.6931 4.34E−14 360 480 390 210

Sporty
weekend day

BMI 3.4636E−07 3.32E−07 2,4 1.0618E−04 7.15E−05 4 9.2353E−14 3.28E−13 2,4 0.0202 3.53E−18 718 279 297 146

Congnition 2.4338 6.71E−04 2 2.4327 4.21E−04 2.4356 0 1,2, 2.4356 0 1,2 420 784 210 61

Life satisfaction 14453.8050 6.57 14459.7788 3.70E−12 1,3 14442.1353 1.82E+01 14459.7788 3.70E−12 1,3 720 240 240 210

Fitness 60.8883 3.49E−03 3,4 60.8928 1.07E−05 1,3,4 60.8739 5.79E−04 4 55.8222 7.23E−15 441 558 221 210

Studious
weekend day

BMI 1.5481E−09 1.98E−09 2,4 4.2805E−05 5.09E−05 4 5.9270E−19 2.24E−18 2,4 0.0012 4.41E−19 458 690 150 142

Congnition 2.5187 4.52E−16 2,4 2.5187 1.54E-05 4 2.5187 4.52E−16 2,4 2.5155 2.26E−15 389 900 150 1

Life satisfaction 12445.2233 1.85E−12 2,4 12445.1818 0.08 4 12445.2233 1.85E−12 2,4 12331.6566 1.85E−12 458 690 150 142

Fitness 60.4817 4.34E−14 4 60.4817 3.80E−14 4 60.4817 4.34E−14 4 60.1741 2.17E−14 390 690 150 210

Working
weekend day

BMI 0.0589 4.14E−17 4 0.0589 2.12E−17 4 0.0589 4.53E−17 4 0.1068 7.06E−17 630 210 390 210

Congnition 2.4876 8.97E−04 2.4858 1.40E−03 2.4900 5.45E−05 1,2 2.4900 9.03E−16 1,2 360 753 390 1

Life satisfaction 13809.0070 5.55E−12 2,4 13808.9369 0.10 4 13809.0070 5.55E−12 2,4 13794.5028 1.85E−12 641 210 390 199

Fitness 62.2804 2.17E−14 2,4 62.2804 0 4 62.2804 2.17E−14 2,4 55.7913 2.17E−14 360 454 416 210

4.1 Results of Single-objective Time-Use Optimization

Table 4 and Table 5 list the results obtained of one-day instances and one-week
instances separately. We provide the results from 30 independent runs with
25, 000 generation for all instances. The mean denotes the average objective
value of the 30 runs and std denotes standard deviation. Since we aim to mini-
mize the absolute value of BMI, the results listed in the BMI rows are absolute
values. The best solutions are bold and shadowed in each row. We also report the
decision variables (rounded to minutes) of the optimal solution for each health
outcome of each day structure in Table 4.

Column stat lists the results of statistical comparisons between the algo-
rithms. If two algorithms can be compared significantly, then the index of algo-
rithms that list in each column is significantly worse than the current algo-
rithm. For example, the first row in Table 4 shows that PSO and DE/rand/1 are
significantly better than DE/current-to-rand/1 and CMA-ES when optimizing
the BMI of Studious day, and DE/current-to-rand/1 is significantly better than
CMA-ES. However, there is no significant difference between the performance of
DE/rand/1 and PSO. As can be seen from the table of one-day instances, the
results obtained by the PSO are better than other algorithms in nearly all cases.
DE algorithm with DE/rand/1 operator is the second best algorithm, outper-
forming the DE algorithm with DE/current-to-rand/1 operator and CMA-ES
in many instances, while CMA-ES shows an advantage when aiming to optimize
Cognition for many day structures. Moreover, as observed in the std columns, the
standard deviation of 30 runs of all the evaluated algorithms in most instances is
close to zero. Therefore, we can argue that for the single-objective optimization,
the results obtained by the investigated algorithms, especially the DE/rand/1
and PSO, are close to optimal.

332 Y. Xie et al.

Table 5. Mean (mean) and standard deviation (std) of 30 runs (print four decimal

places). Best mean values are highlighted in Best mean by comparing results one-
week single-objective time-use optimization problem

Day struct Health outcomes DE/rand/1 (1) DE/current-to-rand/1 (2) PSO (3) CMA-ES (4)

Mean Std Stat Mean Std Stat Mean Std Stat Mean Std Stat

1 BMI 0.0780 3.86E−03 2,4 1.3504 0.1327 0.0657 0.0171 1,2,4 0.8056 0.1326 2

Cognition 17.4336 7.12E−06 2,3,4 17.4133 0.0045 3,4 17.3504 0.0184 4 17.2625 0.0268

Life satisfaction 91084.2750 0.3571 2,4 86871.4104 565.3453 91065.6882 55.3775 2,4 86950.4715 475.0648

Fitness 427.1767 0.0260 2,4 383.2675 3.7084 426.1141 3.1869 2,4 406.9240 3.5495 2

2 BMI 0.7480 0.0022 2,4 2.3733 0.2167 0.7368 0.0016 1,2,4 1.3006 0.0251 2

Cognition 17.5453 6.34E−06 2,3,4 17.5230 0.0043 3,4 17.4626 0.0196 4 17.3739 0.0239

Life satisfaction 87860.0591 0.3618 2,4 83699.4248 609.0356 87857.4099 13.1646 2,4 84854.7392 48.1036 2

Fitness 428.5592 0.0260 2,3,4 378.0875 4.7320 423.9175 7.3229 2,4 419.0847 0.0000 2

3 BMI 0.0742 0.0036 2,4 1.5243 0.1372 0.0802 0.0530 2,4 1.0385 0.1753 2

Cognition 17.4428 5.70E−06 2,3,4 17.4222 0.0038 3,4 17.3614 0.0244 4 17.2726 0.0220

Life satisfaction 89821.7778 0.5145 2,3,4 85591.7374 509.1520 89780.8014 97.5659 2,4 85694.0353 540.8402 2

Fitness 428.5469 0.0356 2,3,4 385.2941 4.2711 425.9137 4.6540 2,4 410.7629 4.9936 2

4 BMI 0.3538 0.0032 2,4 1.7570 0.1912 0.3525 0.0393 2,4 0.9861 0.1783 2

Cognition 17.4516 5.87E−06 2,3,4 17.4326 0.0042 3,4 17.3689 0.0199 4 17.3010 0.0118

Life satisfaction 88148.1600 0.2810 3,4 88148.1600 0.2810 3,4 88144.4983 12.2982 4 84944.1618 533.3457

Fitness 428.5187 0.0274 2,3,4 387.9432 3.4146 426.5169 3.4843 2,4 419.7527 5.2723 2

5 BMI 0.1364 0.0041 2,4 1.4189 0.1520 4 0.1190 0.0035 1,2,4 1.5034 0.1565

Cognition 17.3224 2.92E−06 2,3,4 17.3016 0.0052 3,4 17.2863 0.0169 4 17.1519 0.0205

Life satisfaction 93118.9359 0.5341 2,3,4 88787.2339 309.6765 4 93081.6400 86.8573 2,4 87702.1107 661.4579

Fitness 430.6356 0.0405 2,3,4 392.2353 4.3508 429.6756 2.2065 2,4 402.4828 4.8568 2

6 BMI 0.3587 0.0036 2,4 1.5370 0.1611 0.3422 0.0097 1,2,4 1.0645 0.1762 2

Cognition 17.3655 4.15E−06 2,3,4 17.3466 0.0041 3,4 17.3085 0.0220 4 17.1923 0.0238

Life satisfaction 90081.1467 0.6989 2,3,4 86438.6857 477.3889 4 90075.1480 20.6442 2,4 86225.2387 628.1738

Fitness 428.8659 0.0321 2,3,4 390.9420 4.6767 426.5522 4.5375 2,4 413.3007 4.2733 2

Table 5 presents the summary statistic for the results of one-week single-
objective instances. A closer inspection of the table shows that DE/rand/1
outperforms the other algorithms in most instances, and PSO outperforms the
last two algorithms. Therefore, these results suggest that for solving the single-
objective optimization problem, DE algorithm with DE/rand/1 operator and
PSO both perform well. PSO is preferred for one-day instances, and the DE
algorithm with DE/rand/1 operator is preferred for solving one-week instances.

4.2 Results of Multi-objective Time-Use Optimization

To compare the difference between evolutionary multi-objective optimization
algorithms, we analyze the experimental results of two, three and four objectives,
respectively. For performance evaluation, we use hypervolume [3,43] as the met-
ric. The hypervolume statistics are provided in Table 6. The best hypervolume
is highlighted and bold for each combination of objectives in each row. It can be
seen from the stat results in the table that SPEA significantly outperforms the
other algorithms for two-objective optimization instances, and NSGA-II out-
performs the other two algorithms for three- and four-objective optimization
instances.

Evolutionary Time-Use Optimization 333

Table 6. Multi-objective optimization hypervolume statistics

Combine of health
outcomes

MOEA/D (1) NSGA-II (2) SPEA2 (3)

Best Worst Median Std Stat Best Worst Median Std Stat Best Worst Median Std Stat

BMI & Cognition 0.9895 0.9894 0.9895 7.87E−06 0.9898 0.9897 0.9898 8.67E−06 1 0.9898 0.9898 0.9898 9.13E−06 1,2

BMI & Life satisfaction 0.9747 0.9382 0.9451 7.34E−03 0.9985 0.9984 0.9985 1.98E−05 1 0.9988 0.9986 0.9987 2.58E−05 1,2

BMI & Fitness 0.9841 0.9837 0.9839 1.04E−04 0.9841 0.9780 0.9840 1.46E−03 1 0.9841 0.9841 0.9841 6.00E−06 1,2

Cognition & Life
satisfaction

0.9794 0.9780 0.9788 4.10E−04 0.9975 0.9967 0.9969 1.59E−04 1 0.9978 0.9970 0.9972 2.08E−04 1,2

Cognition & Fitness 0.9959 0.9956 0.9958 6.48E−05 0.9976 0.9891 0.9952 2.48E−03 0.9977 0.9976 0.9976 1.85E−05 1,2

Life satisfaction &
Fitness

0.9961 0.9770 0.9926 7.98E−03 0.9974 0.9774 0.9970 7.07E−03 1 0.9976 0.9971 0.9973 1.53E−04 1,2

BMI & Cognition &
Life satisfaction

0.9745 0.9712 0.9714 7.58E−04 0.9874 0.9866 0.9870 2.27E−04 1,3 0.9869 0.9671 0.9816 5.16E−03 1

BMI & Cognition &
Fitness

0.9708 0.9690 0.9701 4.81E−04 0.9751 0.9724 0.9738 7.03E−04 1,3 0.9750 0.9396 0.9725 9.90E−03

Cognition & Life
satisfaction & Fitness

0.9759 0.9572 0.9726 4.43E−03 0.9925 0.9780 0.9864 4.12E−03 1,3 0.9769 0.9607 0.9735 3.31E−03

BMI & Cognition &
Life satisfaction &
Fitness

0.9613 0.9556 0.9569 1.33E−03 0.9706 0.9653 0.9683 1.27E−03 1,3 0.9677 0.9463 0.9601 5.07E−03

(a) Median HV Run of optimizing BMI
and Cognition

(b) Median HV Run of optimizing Life
satisfaction and Fitness

(c) Median HV Run of optimizing BMI,
Cognition and Life satisfaction

(d) Median HV Run of optimizing Cog-
nition, Life satisfaction and Fitness

Fig. 1. Results obtained for multi-objective model of sporty day

The bio-objective results obtained in a median hypervolume run for each
algorithm are plotted in Fig. 1. Figure 1 (a) shows that the trade-off fronts
of optimizing the first two objectives achieved by SPEA2 are more generally

334 Y. Xie et al.

distributed in the Pareto front than MOEA/D and NSGA-II. Similarly, Fig. 1
(b) indicates that the trade-off solutions obtained by MOEA/D and NSGA-II
are clustered in a small area of the solution space. Moreover, for three-objective
optimization (Fig. 1 (c) and (d)), NSGA-II and SPEA2 generate better Pareto
solutions in comparison with MOEA/D. On Fig. 1 (a) and (b), selected optimized
solutions are shown to reflect optimal daily activity durations if one individual
outcome is preferred above another (near to the respective axes) or if the out-
comes are equally preferred (near the mid-point of the Pareto front).

5 Conclusion

The way children spend their time on sleep, sedentary behaviour and physical
activity (LPA and MVPA) affects their health and well-being. The main goal
of the current study is to implement evolutionary algorithms on daily alloca-
tions to optimize children’s health outcomes. Based on a real-world data set,
we introduce single- and multi-objective optimization models and design fitness
functions of one-day and one-week problems. Our experimental results show that
when tackling the single-objective problem, DE algorithm with DE/rand/1 and
PSO outperforms other proposed algorithms on both one-day instances and one-
week instances. Moreover, the SPEA2 has a higher hypervolume than NSGA-II
and MOEA/D in two-objective optimization instances for the multi-objective
problem. In comparison, NSGA-II has a higher hypervolume than the other algo-
rithms in three and four objectives instances. Overall, this study strengthens the
idea that evolutionary algorithms can be used to enhance our understanding of
how children can allocate their daily time to optimize their health and well-
being. Parents are concerned about their children’s sleep, screen time and physi-
cal activity, and they want evidence-based guidance on how much time should be
spent in these behaviours. However, it is unlikely to be feasible to expect fami-
lies to follow strict daily time allocation schedules. The evidence generated from
the application of optimization algorithms may be better understood as gen-
eral advice, and primarily serve to inform public health guidelines for children’s
time-use behaviours. Population-level surveillance of guideline compliance can
help inform public health policy, track secular trends overtime and to evaluate
the effectiveness of public health interventions.

Acknowledgements. This work has been supported by NHMRC Ideas grant
1186123, by ARC grant FT200100536, and by the South Australian Government
through the Research Consortium “Unlocking Complex Resources through Lean Pro-
cessing”. Dorothea Dumuid is supported by NHMRC Fellowship 1162166 and by the
Centre of Research Excellence in Driving Global Investment in Adolescent Health
funded by NHMRC 1171981. The CheckPoint study was supported by the NHMRC
[1041352; 1109355]; the National Heart Foundation of Australia [100660]; The Royal
Children’s Hospital Foundation [2014-241]; the Murdoch Children’s Research Institute
(MCRI); The University of Melbourne; the Financial Markets Foundation for Children
[2014-055, 2016-310]; and the Australian Department of Social Services (DSS). Research
at the MCRI is supported by the Victorian Government’s Operational Infrastructure

Evolutionary Time-Use Optimization 335

Support Program. The funders played no role in the study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

References

1. Aitchison, J.: The statistical analysis of compositional data. J. Roy. Stat. Soc.: Ser.
B (Methodol.) 44(2), 139–160 (1982)

2. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization appli-
cations in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918
(2009)

3. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective
optimization: theoretical foundations and practical implications. Theor. Comput.
Sci. 425, 75–103 (2012)

4. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization.
Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

5. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization.
Part II: hybridisation, combinatorial, multicriteria and constrained optimization,
and indicative applications. Nat. Comput. 7(1), 109–124 (2008)

6. Van den Boogaart, K.G., Tolosana-Delgado, R.: Analyzing Compositional Data
with R, vol. 122. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-
36809-7

7. Boreham, C., Paliczka, V., Nichols, A.: A comparison of the PWC170 and 20-MST
tests of aerobic fitness in adolescent schoolchildren. J. Sports Med. Phys. Fitness
30(1), 19–23 (1990)

8. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B
(Methodol.) 26(2), 211–252 (1964)

9. Carson, V., et al.: Systematic review of sedentary behaviour and health indicators
in school-aged children and youth: an update. Appl. Physiol. Nutr. Metab. 41(6),
S240–S265 (2016)

10. Chaput, J.P., et al.: Systematic review of the relationships between sleep dura-
tion and health indicators in school-aged children and youth. Appl. Physiol. Nutr.
Metab. 41(6), S266–S282 (2016)

11. Clifford, S.A., Davies, S., Wake, M.: Child health checkpoint: cohort summary and
methodology of a physical health and biospecimen module for the longitudinal
study of Australian children. BMJ Open 9(Suppl. 3) (2019)

12. Coello, C.A.C., van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-objective Problems, Genetic Algorithms and Evolutionary Compu-
tation, vol. 5. Kluwer (2002)

13. Corder, G.W., Foreman, D.I.: Nonparametric Statistics: A Step-by-Step Approach.
Wiley, Hoboken (2014)

14. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)

15. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. Wiley (2001)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

17. Dumuid, D., et al.: Goldilocks days: optimising children’s time use for health and
well-being. J. Epidemiol. Community Health 76, 301–308 (2021)

18. Dumuid, D., et al.: Compositional data analysis for physical activity, sedentary
time and sleep research. Stat. Methods Med. Res. 27(12), 3726–3738 (2018)

https://doi.org/10.1007/978-3-642-36809-7
https://doi.org/10.1007/978-3-642-36809-7

336 Y. Xie et al.

19. Dumuid, D., et al.: Balancing time use for children’s fitness and adiposity: evidence
to inform 24-hour guidelines for sleep, sedentary time and physical activity. PLoS
ONE 16(1), e0245501 (2021)

20. Gray, M., Smart, D.: Growing up in Australia: the longitudinal study of Australian
children is now walking and talking. Fam. Matters 79, 5–13 (2008)

21. Han, L., Wang, H.: A random forest assisted evolutionary algorithm using
competitive neighborhood search for expensive constrained combinatorial opti-
mization. Memet. Comput. 13(1), 19–30 (2021). https://doi.org/10.1007/s12293-
021-00326-9

22. Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New
Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol. 192, pp.
75–102. Springer, Cham (2006). https://doi.org/10.1007/3-540-32494-1 4

23. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

24. Houssein, E.H., Gad, A.G., Hussain, K., Suganthan, P.N.: Major advances in par-
ticle swarm optimization: theory, analysis, and application. Swarm Evol. Comput.
63, 100868 (2021)

25. Jakob, W.: Applying evolutionary algorithms successfully: a guide gained from
real-world applications. CoRR arXiv:2107.11300 (2021)

26. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948.
IEEE (1995)

27. Lee, K., Kim, J.: Multiobjective particle swarm optimization with preference-based
sort and its application to path following footstep optimization for humanoid
robots. IEEE Trans. Evol. Comput. 17(6), 755–766 (2013)

28. Li, X., Bonyadi, M.R., Michalewicz, Z., Barone, L.: Solving a real-world wheat
blending problem using a hybrid evolutionary algorithm. In: IEEE Congress on
Evolutionary Computation, pp. 2665–2671. IEEE (2013)

29. Mateu-Figueras, G.: The principle of working on coordinates. In: Pawlowsky-
Glahn, V., Buccianti, A. (eds.) compositional Data Analysis: Theory and Applica-
tions (2011)

30. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective opti-
mization framework. In: GECCO (Companion), pp. 1093–1100. ACM (2015)

31. Okely, A.D., et al.: A collaborative approach to adopting/adapting guidelines. The
Australian 24-hour movement guidelines for children (5–12 years) and young people
(13–17 years): an integration of physical activity, sedentary behaviour, and sleep.
Int. J. Behav. Nutr. Phys. Act. 19(1), 1–21 (2022)

32. Onis, M.D., Onyango, A.W., Borghi, E., Siyam, A., Nishida, C., Siekmann, J.:
Development of a WHO growth reference for school-aged children and adolescents.
Bull. World Health Organ. 85, 660–667 (2007)

33. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.
org/

34. Ridley, K., Olds, T.S., Hill, A.: The multimedia activity recall for children and
adolescents (MARCA): development and evaluation. Int. J. Behav. Nutr. Phys.
Act. 3(1), 1–11 (2006)

35. Saha, C., Jones, M.P.: Asymptotic bias in the linear mixed effects model under
non-ignorable missing data mechanisms. J. R. Stat. Soc. Ser. B (Stat. Methodol.)
67(1), 167–182 (2005)

https://doi.org/10.1007/s12293-021-00326-9
https://doi.org/10.1007/s12293-021-00326-9
https://doi.org/10.1007/3-540-32494-1_4
http://arxiv.org/abs/2107.11300
https://www.R-project.org/
https://www.R-project.org/

Evolutionary Time-Use Optimization 337

36. Seligson, J.L., Huebner, E.S., Valois, R.F.: Preliminary validation of the brief mul-
tidimensional students’ life satisfaction scale (BMSLSS). Soc. Indic. Res. 61(2),
121–145 (2003)

37. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

38. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview.
Soft. Comput. 22(2), 387–408 (2017). https://doi.org/10.1007/s00500-016-2474-6

39. Weintraub, S., et al.: Cognition assessment using the NIH Toolbox. Neurology
80(11 Supplement 3), S54–S64 (2013)

40. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

41. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Math. Probl. Eng. 2015 (2015)

42. Zitzler, E., Laumanns, M., Thiele, L.: SPEA 2: improving the strength pareto
evolutionary algorithm. TIK-report 103 (2001)

43. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1007/s00500-016-2474-6

Iterated Local Search for the eBuses
Charging Location Problem

César Loaiza Quintana1(B) , Laura Climent2 , and Alejandro Arbelaez2

1 University College Cork, Cork, Ireland
c.loaizaquintana@cs.ucc.ie

2 Universidad Autónoma de Madrid, Madrid, Spain
{laura.climent,alejandro.arbelaez}@uam.es

Abstract. Electric buses (eBuses) will be the mainstream in mass urban
transportation in the near future. Thus, installing the charging infras-
tructure in convenient locations will play a critical role in the transition
to eBuses. Taking this into account, in this paper we propose an iterated
local search algorithm to optimize the location of charging stations while
satisfying certain properties of the transportation system, e.g., satisfy-
ing the demand and ensuring that the limited driving range of the buses
will not impact the service. The effectiveness of our approach is demon-
strated by experimenting with a set of problem instances with real data
from 3 Irish cities, i.e., Limerick, Cork, and Dublin. We compare our
approach against a MIP-based solution. Results show that our approach
is superior in terms of scalability and its anytime behavior.

Keywords: Local search · Charging location problem · Electric buses

1 Introduction

The transition to a fleet of eBuses will require a considerable up-front invest-
ment in the charging infrastructure. The actual cost of a charging station varies
depending on the desired charging infrastructure. The starting cost is now esti-
mated at e10K with additional fees proportional to the required power, e.g.,
e10K for a fast charging point with approximately 600 kW capacity as well as
substantial upgrades and cabling costs that can certainly increase the total cost
[9]. The daily power consumption of an eBus depends on multiple factors, such as
bus type, weight, weather, and road conditions. A standard double-decker work-
ing 12 h daily consumes approx. 1.5 kWh per kilometer. However, the power
consumption might increase or decrease due to multiple factors.

Range anxiety is one of the main concerns for transitioning to a clean and
sustainable bus transportation network. Nowadays, eBuses can travel approx.
up to 200–300 KM on a full charge and the charging time varies depending on the
technology from a couple of minutes (e.g., with fast-charging stations) to hours
(e.g., with slow overnight charging). Therefore, the charging infrastructure must
be implemented in a way that the charging time and limited driving range will
not impact the quality of service of the transportation system. In this paper,
c© The Author(s) 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 338–351, 2022.
https://doi.org/10.1007/978-3-031-14721-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_24&domain=pdf
http://orcid.org/0000-0002-0677-4117
http://orcid.org/0000-0001-9453-5150
http://orcid.org/0000-0003-1622-5645
https://doi.org/10.1007/978-3-031-14721-0_24

Iterated Local Search for the eBuses Charging Location Problem 339

we propose an iterated local search to efficiently tackle the charging location
problem, i.e., finding the optimal location of charging stations while satisfying
certain properties of the transportation system.

This paper is organized as follows: Sect. 2 describes previous work on the
charging location problem for electric vehicles. Section 3 formally describes the
charging location problem. Section 4 presents our new meta-heuristic solution.
Section 5 presents our empirical evaluation. Finally, Sect. 6 presents some con-
cluding remarks.

2 Related Work

A considerable amount of work has been devoted to the charging location prob-
lem for light-duty vehicles (e.g., personal use cars) rather than heavy-duty vehi-
cles (e.g., buses). We remark that public buses operate daily schedules for a given
set of routes and buses consume more energy than cars. In this line, in [4,5,14] the
authors propose a set of heuristic solutions to identify suitable charging stations
for electric vehicles, so that the vehicles can reach their destinations without run-
ning out of power. [15] takes into account a cost model for the charging location
problem by considering different technologies, bio-diesel, bio-gas, and electric to
assign a type of bus to each route.

In another line of work, the Green Vehicle Routing Problem (Green VRP)
is an extension of the traditional VRP [3]. This extension aims at finding the
optimal routes traveled by the fleet of vehicles to visit a set of customers while
taking into account certain refueling constraints. We recall that we aim at tran-
sitioning to eBuses while maintaining the same service. [2] outlines numerous
variations of the VRP for electric vehicles.

Closer to our research, [12] considered a fleet of vehicles, each one with well-
defined routes within a network. This work proposes a MIP model whose objec-
tive was to minimize the cost of the charging stations, which had to be located
into a subset of the stops. As the author suggests this work could be adapted
to a bus transportation system by considering timetables, however, he neglects
them in his validation carried out over random-generated networks.

[13] proposes a MIP model for the eBus charging location problem with fixed
routes but without taking into consideration certain operational constraints,
e.g., fixed timetables or overlapping constraints to prevent multiple buses using
the same charging unit at the same time. In [10] the authors take into account
the impact of timetables of the original routes by allowing charging when the
buses are not moving (dwelling times), e.g., during the rest time of the drivers,
therefore, the authors keep the original timetables. Instead, in this paper, we
propose a more flexible approach to allow small enough deviations in the original
timetable leading to a more general version of the problem. [1] provides more
details of the described behavior of the charging location problem.

340 C. Loaiza Quintana et al.

3 The Charging Location Problem

Conceived in the context of a transition to eBuses, the charging location prob-
lem aims to identify, within the set of stations, the locations for installing the
minimum number of electrical chargers. These electrical chargers must allow a
fleet of eBuses to keep the operation of the system with minimal disruptions
(deviations) from the original timetables. In this context, we assume that the
charging stations are able to recharge the buses during their normal operation,
i.e., in the time between the arrival and departure of the buses in the stations.

Figure 1 outlines an instance of the system for a single bus. In this exam-
ple, we assume that the bus visits 12 stations. For each station we have three
timestamps, i.e., actual arrival time (left), expected arrival time (middle), and
departure time (right). In order to reduce the disruptions in the transition from
regular diesel buses to eBuses, we fix a maximum deviation time μ from the
original timetables (2 min in this example). Therefore, eBuses are not allowed
to arrive more than μ minutes after (or before) the timetabled stop. We also
associate each trip between two stations with the required time and power to
complete the trip. The number of points sitting below each charging station
denotes the amount of power (in kWh) gained at the charging station (yellow
stations in this example), e.g., in station 5 the bus gains 2 kWh units of power.

Fig. 1. Example of a solution to the problem for a single bus

Hereafter, we formally describe the charging location problem. Table 1 out-
lines terms and variables commonly used through the paper.

A public bus transportation system is composed of a set of buses B traveling
across a set of stations ST , where each bus follows a sequence of ordered stops
Sb visited in a workday. Thus, each stop sbi ∈ Sb has associated a station and a
timetable that the bus should comply with (stbi and Tbi).

We build our formulation of the charging location problem on top of a pre-
vious MIP model [1]. The objective function (1) is to minimize the number of
installed chargers. Constraints 2–5 ensure buses are not running out of energy
during their trips, by maintaining the battery within safe levels. Furthermore,
Constraints 6–9 are in charge of the scheduling of the buses, which must stay
within a reasonable deviation time Δt of μ with respect to the original timeta-
bles. Constraint 10 enforces a minimum reasonable charging time.

Iterated Local Search for the eBuses Charging Location Problem 341

Table 1. Description of variables and constants.

Constants

B, ST, SM set of buses, set of stations, and security margin between chargers

Sb sequence of ordered stops visited by bus b in a workday,

Sb = {sb1, . . . , sbn}, where n is the number of stops

stbi i-th station in the path of a bus b in a workday

τbj timetabled arrival time of the bus b at its j-th stop

μ max. time disruption allowed (considering the scheduled times)

Tji, Dji time and energy needed to complete the trip between stations j and i

Cmin, Cmax min. and max. capacity battery levels of the buses

ψ, μ, β, α min. charging time, max. deviation time from original timetable, max.
charging time per cycle, and charging rate in kWh per minute.

Variables

tbj actual arrival time of bus b at the arrival to its j-th stop

Δtbj time difference between the arrival and scheduled times

cbj current battery level of bus b at the arrival to its j-th stop

ebj energy re-charged of bus b at its j-th stop

ctbj recharging time of bus b at its j-th stop

xbj Boolean var. denoting whether we recharge bus b at its j-th stop

xi Boolean var. denoting whether we install a charging unit at station i

Zbdij Boolean var. denoting whether buses b and d are using the same charging
station (i = j) or not

zbdi Boolean var. indicating if bus b charges after the bus d at station i

min
∑

c∈ST

xc (1)

Cmin ≤ cbi ∀b∈B∀si∈Sb\{s0} (2)
cbi + ebi ≤ Cmax ∀b∈B∀si∈Sb\{s0} (3)
cbi ≤ cbj + ebj − Dji ∀b∈B∀si∈Sb\{s0},j = i−1 (4)
α · ctbi ≥ ebi ∀b∈B∀si∈Sb\{s0},j = i−1 (5)
tbi ≥ tbj + ctbj − Tji ∀b∈B∀si∈Sb\{s0},j = i−1 (6)
Δtbi ≥ tbi − τbi ∀b∈B∀si∈Sb\{s0} (7)
Δtbi ≥ τbi − tbi ∀b∈B∀si∈Sb\{s0} (8)
Δtbi ≤ μ ∀b∈B∀si∈Sb\{s0} (9)
ctbi ≥ ψ · xbi ∀b∈B∀si∈Sb\{s0} (10)
xstbi ≥ xbi ∀b∈B∀si∈Sb\{s0} (11)
β · xbi ≥ ctbi ∀b∈B∀si∈Sb\{s0} (12)
Zbdij ≤ xbi ∀b,d∈B|b�=d∀si∈Sb

,∀sj∈Sd|stbi = st (13)

Zbdij ≤ xdj ∀b,d∈B|b�=d∀si∈Sb
,∀sj∈Sd|stbi = st (14)

xbi + xdj ≤ Zbdij + 1 ∀b,d∈B|b�=d∀si∈Sb
,∀sj∈Sd|stbi = st (15)

342 C. Loaiza Quintana et al.

tbi ≥ tdj + ctdj − Mzbdi ∀b,d∈B|b�=d∀si∈Sb
,∀sj∈Sd|stbi = st (16)

tdj ≥ tbi + ctbi − Mzdbj ∀b,d∈B|b�=d∀si∈Sb
,∀sj∈Sd|stbi = st (17)

zbdi + zdbj − (1 − Zbdij) ≤ 1 ∀b,d∈B|b�=d∀si∈Sb
,∀sj∈Sd|stbi = st (18)

Constraint 11 determines the selected charging stations. Constraint 12 pre-
vents overheating by limiting charging time. Finally, Constraints 13–18 prevent
multiple buses from using the same charger at the same time. We refer the reader
to [1] for more details of the MIP formulation.

4 The Iterated Local Search

Iterated Local Search (ILS) is a popular meta-heursitic technique to solve
complex combinatorial optimization problems [7,11]. Generally speaking, the
algorithm produces a single-transformation chain of solutions that iteratively
improves the objective function. First, in a local search phase, the algorithm
tries to improve an initial solution by performing small changes, until a local
minimum (s∗) is reached. Then, in a perturbation phase, the algorithm per-
forms random changes to the current incumbent solution (s∗) to escape difficult
regions of the search (e.g., a plateau), and to produce a perturbed solution (s′).
Next, the perturbed solution (s′) is given as an input for a new local search
phase that generates a new local minimum (s′′). Finally, an acceptance criterion
decides which will be the new incumbent solution (s∗) to continually repeat the
process from the perturbation phase. The idea is that the algorithm will primar-
ily prefer the best solution between s∗ and s′′. However, in order to diversify the
search, the algorithm selects the most recent local minimum (s′′) with a certain
probability. In this paper, unless stated otherwise, we use a 5% probability to
update the incumbent solution.

In the context of the charging location problem, we define an open station
as a location (i.e., bus station) with an installed charging unit iff at least one
bus is relying on the station to recharge the battery. Therefore, during the local
search phase, we aim at closing as many open stations as possible. Alternatively,
during the perturbation phase, we aim at diversifying the search by randomly
opening stations.

Initial Solution

We propose a simple greedy algorithm to compute an initial solution. We assume
that the fleet of eBuses start operations with full capacity. The algorithm com-
mands a given bus b to recharge the battery at a given stop sbj ∈ Sb if there is
not enough power to reach the next stop sbj+1. Furthermore, b will recharge the
battery of the bus with, at least, the minimum required power to reach sbj+1.
We note that considering that b starts with full capacity, all the stations on the
path of the bus might be open once the bus depletes its initial charge.

Furthermore, if b is expected to arrive at sbj+1 before the allowed sched-
uled time (see Constraints 7–9), then b uses this additional time (dwell time)

Iterated Local Search for the eBuses Charging Location Problem 343

to recharge the battery and get additional power. The algorithm repeats this
process for each bus b ∈ B in lexicographical order. Additionally, whenever we
get an overlapping conflict (i.e., two buses are attempting to use the charging
station at the same time, see Constraints 13–18), we delay the arrival time of
the current bus until the charging station is available.

Let us illustrate the process to compute the initial solution with Fig. 1. We
assume that the initial capacity of the bus is enough to reach station 5, at this
point the bus needs to recharge the battery with at least 2 kWh; otherwise, the
eBus runs out of battery before reaching station 6. Therefore, the bus arrives
at station 5 at 8:43 and recharges the battery for 2 min to leave the station at
8:45. Then, the bus arrives at station 6 at 8:47 to recharge the battery again for
1 min. The algorithm repeats the same process until arriving at station 9 at 8:55.
Here, our greedy algorithm initially recharges the bus for 3 min (enough to reach
station 10), however, by doing so, the bus would arrive at the next station at
9:02, 3 min ahead of the earliest allowed time. We recall the bus is constrained to
arrive at station 10 at 9:05. This additional time is known as dwell. Therefore,
our greedy construction of the initial solution uses this time to provide extra
power (6 kWh). Consequently, station 10 remains closed as the bus does not
need to use the station to reach station 11.

Local Search

The main purpose of the local search (Algorithm 1), given a solution s with a
set of opened stations (stations - line 1), is to close as many as it can. Thus,
the algorithm repeatedly attempts close open stations in a certain order. The
selection of an open station (SelectStation), which is a function itself, is passed as
a parameter. In particular, we explore two different selection strategies: Random
selects a station uniformly at random and MinActivity selects the station with
the fewest number of scheduled recharges.

Lines 4–15 form the core of the local search algorithm. Lines 5–8 select and
attempt to close the station. Line 9 removes the selected station from the candi-
date set. After exhausting the list of candidate open stations we verify whether
the algorithm reached a local minimum (Lines 10–12). Otherwise, we repeat the
process with the remaining open stations in the solution. Let us recall that sta-
tions that could not be closed at a certain point of the execution may become
closable after modifying the schedule of nearby stations.

The amount of charged energy remains constant during the whole process,
and it is set to the minimum required amount. Therefore, when the algorithm
closes or opens a charging station, it redistributes or borrows energy to/from the
neighboring stations. The proportion of energy going/coming to/from previous
and following stations is random.

The CloseStation operator (Algorithm 2) attempts to stop all charging activ-
ity of the buses in a given installed charging station. Therefore, in order to ensure
the operation of the system, we redistribute the energy provided by the closing
station towards adjacent open stations. We refer to these adjacent stations as
previous and next open charging stations.

344 C. Loaiza Quintana et al.

Algorithm 1. LocalSearch(s, SelectStation)
1: stations ← {c|c ∈ ST ∧ xc = 1}
2: bestObj, obj ← |stations|
3: isLocalMin ← false
4: while not isLocalMin do
5: c ← SelectStation(stations)
6: if CloseStation(c) then
7: obj ← obj − 1
8: xc ← 0

9: stations ← stations − {c}
10: if |stations| = 0 then
11: if obj ≥ bestObj then
12: isLocalMin ← true
13: else
14: bestObj ← obj
15: stations ← {c|c ∈ ST ∧ xc = 1}

For instance, Fig. 2 represents two different bus routes (the blue and the green
one). Both routes are sharing two locations but only one charging station in loca-
tion 6. Thus, the charging stations are highlighted in yellow. Furthermore, the
small points near the charging stations depict units of energy delivered to each
bus. Figure 2a shows the green bus recharging three units of energy at charging
station 6 while the blue bus gets one unit of energy at charging station 2. In
Fig. 2b, when closing the charging station 6, the three units of energy provided
by the charging station 6 to the green bus are redistributed as follows: two-
thirds to the next station and one-third to the previous station where the bus
was recharging in the original solution. This proportion is decided uniformly at
randomly for each stop. In this particular example, the energy is evenly reallo-
cated for the blue bus. Figure 2c outlines the resulting state of the solution after
completing the close operation.

Algorithm 2. CloseStation(selectedStation)
1: openStopsPerStation ← {sbi|∀b∈B∀sbi∈Sb , stbi = selectedStation ∧ xbi = 1}
2: for sbi in openStopsPerStation do
3: if FeasibleCloseStop(sbi) then CloseStop(sbi) else return false

4: return true

Algorithm 2 (CloseStation) checks whether a charging station can be closed
or not under certain circumstances and apply the operation. To this end, Feasi-
bleCloseStop verifies if a given bus b can keep operating once the power gotten
from recharging at sbi is moved to the Previous and the Next open stations in
the path of b. CloseStop completes the close operations and updates the arrival
times, charging times, and the capacity of the batteries of the buses as prescribed

Iterated Local Search for the eBuses Charging Location Problem 345

(a) Solution state before closing (b) Energy transfer during close operation

(c) Solution state after closing

Fig. 2. Example of the close operation applied to station 6 (Color figure online)

by the FeasibleCloseStop algorithm. Taking this into account, CloseStation indi-
cates whether the operation is successful for the entire fleet of buses relying
on the input charging station, i.e., the system is capable of redistributing the
power provided by the station without violating the operational constraints. We
remark that the close operation might be performed partially as once the algo-
rithm finds a non-closable stop, it might have already closed multiple stops for
certain buses. We decided not to undo partial closes as it increases the complexity
of the operation.

FeasibileCloseStop (Algorithm 3) verifies if the power provided by the m-th
station in the path of b can be redistributed to adjacent stations. To this end,
Line 1 calculates an ordered set with the open stations in the path of b. Line
2 calculates ρ the proportion of energy that goes to the next open stop (1-ρ
goes to the previous one). Lines 3 and 4 define some variables that verify the
feasibility of the constraints. Lines 5 and 6 calculate the index of the next (n)
and previous (k) charging stations in the path of the bus. We remark that the
next and previous charging stations are not always the same as we constantly
open and close stations.

Lines 7–15 verify the feasibility of re-distributing energy to n. ne denotes
the actual amount of power that b gains at n. nct denotes the additional time
that the bus needs to gain the extra power at n. Lines 10–11 check whether the
current capacity of the battery is enough to reach n and the new charging time
is within the limits. Lines 12–15 check the overlapping constraints and prevent
multiple buses of using the same charging station at the same time. We mark
that in this scenario there is no need to check for potential time delays as the
bus arrives at n earlier than expected.

Lines 16–26 verify the feasibility of re-distributing energy backwards to k.
Whereas the risk of running out of power is inexistent the bus could experiment
delays in the timetable. The new extra charging time at k could potential delay

346 C. Loaiza Quintana et al.

Algorithm 3. FeasibleCloseStop(selectedStopbm)
1: openStopsb ← {sbi|∀sbi∈Sb , xbi = 1}
2: ρ ← Random(0, 1)
3: notOverflow, notDelay, notDeplete ← true
4: notExtraPCt, notExtraNCt, notOverlap ← true
5: n ← NextIndex(openStopsb, selectedStopbm)
6: k ← PreviousIndex(openStopsb, selectedStopbm)
7: if n is not nil then
8: ne ← if k is not nil then (1 − ρ) · ebm else ebm

9: nct ← ne
α

10: notDeplete ← cbn − ne ≥ Cmin

11: notExtraNCt ← ctbn + nct ≤ β
12: for d in B |d �= b do
13: for sdi in Sd |stbi = stbn ∧ xdi = 1 do
14: notOverlapTmp ← tbn + ctbn + nct ≤ tdi ∨ tbn + ctbn + nct ≥ tdi + ctdi

15: notOverlap ← notOverlap ∧ notOverlapTmp

16: if k is not nil then
17: pe ← if n is not nil then ρ · ebm else ebm

18: pct ← pe
α

19: maxΔtbm ← max({Δtbk+1...Δtbm})
20: notDelay ← μ ≥ maxΔtbm + pct
21: notOverflow ← cbk + ebk + pe ≤ Cmax

22: notExtraPCt ← ctbk + pct ≤ β
23: for d in B |d �= b do
24: for sdi in Sd |stbi = stbk ∧ xdi = 1 do
25: notOverlapTmp ← tbk + ctbk + pct ≤ tdi ∨ tbk + ctbk + pct ≥ tdi + ctdi

26: notOverlap ← notOverlap ∧ notOverlapTmp

27: notExtraCt ← notExtraPCt ∧ notExtraNCt
28: isFeasible ← notExtraCt ∧ notOverflow ∧ notDelay ∧ notDeplete ∧ notOverlap
29: return isFeasible

all the arrival times of the bus in the stations between the closing station and the
previous charger. Let us define pct and maxΔbi (Lines 18 and 19). pct denotes the
additional time that the bus needs to gain the power at k and maxΔbi denotes
the maximum delay a bus is currently experiencing during the trip between the
previous station and the closing one. Line 20 ensures that the extra time spent
in the previous charger is not disrupting the timetables beyond the threshold
μ. Besides checking a battery overflow in Line 21, there is no need to further
inspect that the energy is within the limits. Line 22 checks that the charging
time is within the limit. Lines 23–26 check for overlapping charging events.

Let us illustrate the verification process with Fig. 2, and let us assume that
the bus recharges one unit of power per minute. Firstly, we recall that the close
operation acts on a single bus stop at a time. Thus, the sequence of open stops
of the green bus (Algorithm 3 - line 1) includes the stops of the bus at stations 3,
6, and 7. Furthermore, since the selected stop corresponds to the stop at station

Iterated Local Search for the eBuses Charging Location Problem 347

6 in that new sequence, the previous and next functions return the stops at
stations 3 and 7 respectively.

Now, let us consider the first case to transfer energy towards the previous
open stop at stop 3. In the current solution (before the operation) the bus departs
from station 3 with at least 1 unit of power. After the close operation, the bus
departs with an additional unit of power (we depict this behavior in Fig. 2c).
Thus, it is impossible to run out of power during the trip between stations 3
and 6. On the other hand, in the new solution, the bus is spending more time
recharging at station 3. This extra time introduces a delay when arriving at
station 4, 5, and 6. Therefore, it is paramount to check that the delay of a
minute is not violating the maximum allowed disruption time (in the timetable)
in any of those stops (checking the most delayed timetable is enough).

Similarly, it can be seen graphically that the amount of power available for
traveling between stations 6 and 7 is reduced after applying the operation. There-
fore, we must ensure that the trip can be completed. Lastly, since the bus is
saving two recharging minutes before departing from station 6, there is no way
the bus is delayed when arriving at 7.

Perturbation

The perturbation phase aims at escaping from difficult regions (i.e., local min-
imum) while maintaining an appropriate balance between diversification and
intensification. The operator iteratively tries to open a given station st by
attempting to recharge the battery of certain buses while stopping at the station.
To this end, we randomly redistribute the gained power at adjacent charging sta-
tions of st (i.e., Next and Previous). Thus, we label st as open iff at least one
bus relies on the station to recharge the bus. We attempt to open an additional
percentage of the opened stations of the incumbent solution, which determines
the level of perturbation.

Let us illustrate the process of opening a station with Fig. 2 by looking at
the example the other way around. Then Fig. 2c denotes the incumbent solution
and attempting to open station 6. Furthermore, let us assume that the yellow
arrows in Fig. 2b are pointing in the opposite direction. In this context, the blue
bus will attempt to transfer a random portion of the gained power at stations
9 and 2 into station 6. Therefore, in order to open station 6 (blue bus), it is
important to verify that the redistribution of the power lost at station 2 leaves
the bus with enough power to complete the trip between stations 2 and 6 and
that any potential delay (derived from charging at station 6) is not impacting
the quality of service.

5 Evaluation

In this paper we use a real dataset with the operations of three Irish cities, i.e.,
Limerick, Cork, and Dublin.1 We implemented the MIP model with CPLEX
1 The GPS location of the bus stations and timetables are available at https://

buseireann.ie/ and http://www.dublinbus.ie/.

https://buseireann.ie/
https://buseireann.ie/
http://www.dublinbus.ie/

348 C. Loaiza Quintana et al.

12.10 and conducted our experiments on a 2.5 GHz Intel Xeon W-2175 processor
with 64 GB of memory running Ubuntu 18.04.5. We used CPLEX with its default
parameters, including the parallel optimizer with 12 threads and two time limits
(10 and 120 min). Furthermore, we executed our ILS algorithm on each instance
10 times (each time with a different random seed) and reported the median
number of open stations (out of the 10 executions) with a 10-minute timeout.
All series of experiments had a standard deviation of less than 1.

Table 2 outlines the performance of our ILS algorithm with two selection
strategies (i.e., Random and MinActivity). We recall that MinActivity attempts
to close the open station with the fewest number of charging events. The first
column displays the number of buses and the total number of bus stops per city.
We simulate multiple scenarios varying the Cmax value and timetable disruptions
(i.e., max μ). Moreover, in all our experiments, we establish that the charging
rate is 1 kWh per minute (i.e., α = 1), and the buses consume 1 kWh per km.
Additionally, we limit the charging time per cycle of the buses (β) to the time
needed to recharge the batteries to up to 80% of the max. capacity. Furthermore,
we set the level of perturbation to 20% after trying other values (10% and 40%)
that did not suggest a significant difference. Bold numbers indicate the method
was able to find the optimal solution, whereas the highlighted cells point out the
method with the best performance. Lastly, it is worth noticing that we generate
initial solutions for Cork and Limerick with up to 455 charging stations, whereas
for Dublin we need 1666 stations. Also, the number of local minima found during
an execution varies in the order of tens of thousands for Dublin, hundreds of
thousands for Cork, and millions for Limerick.

In these experiments we observe that our ILS algorithm finds the optimal
solution for small-size (i.e., Limerick) and mid-size instances (i.e., Cork) with
Cmax = 180 kWh and 200 kWh. Notably, ILS dominates the performance for
the remaining instances with at least the same performance as CPLEX with 12
times more computational resources.

Furthermore, it is remarkable that CPLEX is unable to find reasonable solu-
tions, within 10 min, for 6 instances (out of 10) for our Cork and Dublin datasets.
Interestingly, CPLEX with 120 min recommends the installation of more than
two hundred of charging units for one of the most constrained instances (i.e.,
Cork with 120 kWh and max μ = 4), whereas our ILS algorithm quickly com-
putes a solution with only 6 charging units, Similarly, our ILS algorithm finds
a solution with approx. 40% fewer stations (15 vs. 28 charging stations) for the
most constrained Dublin dataset, i.e., 200 kWh with max μ = 6. Finally, in gen-
eral our MinActivity selection strategy performs slightly better than Random.
We attribute this to the fact that this heuristic favors stations where the close
operator is more likely to succeed.

Iterated Local Search for the eBuses Charging Location Problem 349

Table 2. Empirical evaluation for Limerick, Cork, and Dublin. Bold numbers denote
the optimal solution and highlighted cells outline the best performance.

City

μ CPLEX ILS (10 mins)

Cmax (mins) 10 mins 120 mins Random MinActivity

120 4 5 4 4 4

150 4 4 4 4

Limerick 180 2 2 2 2

23 buses 200 2 2 2 2

8,417 stops 120 6 4 4 4 4

150 4 4 4 4

180 2 2 2 2

200 2 2 2 2

120 4 565 220 7 6

150 - 5 5 4

Cork 180 5 3 3 3

65 buses 200 3 3 3 3

29,724 stops 120 6 - 8 7 6

150 567 6 5 4

180 4 3 3 3

200 3 3 3 3

Dublin 163 buses 200 6 2636 28 17 15

36,609 stops 200 10 - 17 17 15

6 Conclusions

In this paper we have proposed an efficient ILS algorithm to tackle the Charg-
ing Location Problem for eBuses. Our proposed algorithm relies on two simple
operations, i.e., opening and closing charging stations in a given solution. Fur-
thermore, our approach assumes that the eBuses recharge a constant amount
of energy during a workday, therefore, the energy is locally distributed (e.g.,
when closing a station), among the adjacent stations of the ones affected by
the operators. The effectiveness is demonstrated by experimenting with a set
of real instances from three Irish cities (i.e., Limerick, Cork, and Dublin). We
compared our algorithm against a MIP-based solution and our ILS solution is
notably better than CPLEX in terms of the number of installed charging sta-
tions, generating results with up to 40% fewer stations in less than 10% of the
time for some of the most difficult instances.

In the future, we plan to extend our ILS with robustness to tackle the Charg-
ing Location Problem, so that the system is resilient to failures in the transporta-
tion network. Also, we plan to perform an extensive parameter tuning using tools
like ParamILS [8] or Calibra [6].

350 C. Loaiza Quintana et al.

Acknowledgements. This work received funding from the Sustainable Energy
Authority of Ireland (SEAI) under the RDD 2019 programme - Grant No 19/RDD/519.
The authors would like to thank the anonymous reviewers for their comments and sug-
gestions which helped to improve the paper.

References

1. Arbelaez, A., Climent, L.: Transition to eBuses with minimal timetable disruptions.
In: International Symposium on Combinatorial Search (SoCS). Association for the
Advancement of Artificial Intelligence (2020)

2. Erdelić, T., Carić, T.: A survey on the electric vehicle routing problem: variants
and solution approaches. J. Adv. Transp. 2019(54), 1–48 (2019)

3. Erdoğan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part
E Logistics Transp. Rev. 48(1), 100–114 (2012)

4. Funke, S., Nusser, A., Storandt, S.: Placement of loading stations for electric vehi-
cles: no detours necessary! In: AAAI, pp. 417–423. AAAI Press (2014)

5. Funke, S., Nusser, A., Storandt, S.: Placement of loading stations for electric vehi-
cles: allowing small detours. In: ICAPS 2016, pp. 131–139. AAAI Press (2016)

6. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 3

7. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, Amsterdam (2004)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

9. Karlsson, E.: Charging infrastructure for electric city buses: an analysis of grid
impact and costs (2016)

10. Kunith, A., Mendelevitch, R., Goehlich, D.: Electrification of a city bus network-an
optimization model for cost-effective placing of charging infrastructure and battery
sizing of fast-charging electric bus systems. Int. J. Sustain. Transp. 11(10), 707–720
(2017)

11. Stützle, T., Ruiz, R.: Iterated local search. In: Mart́ı, R., Pardalos, P.M., Resende,
M.G.C. (eds.) Handbook of Heuristics, pp. 579–605. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-07124-4 8

12. Wang, I.L., Wang, Y., Lin, P.C.: Optimal recharging strategies for electric vehicle
fleets with duration constraints. Transp. Res. Part C Emerg. Technol. 69, 242–254
(2016)

13. Wang, X., Yuen, C., Hassan, N.U., An, N., Wu, W.: Electric vehicle charging
station placement for urban public bus systems. IEEE Trans. Intell. Transp. Syst.
18(1), 128–139 (2016)

14. Wang, Y.W., Lin, C.C.: Locating road-vehicle refueling stations. Transp. Res. Part
E Logistics Transp. Rev. 45(5), 821–829 (2009)

15. Xylia, M., Leduc, S., Patrizio, P., Kraxner, F., Silveira, S.: Locating charging infras-
tructure for electric buses in Stockholm. Transp. Res. Part C Emerg. Technol. 78,
183–200 (2017)

https://doi.org/10.1007/978-3-642-21434-9_3
https://doi.org/10.1007/978-3-319-07124-4_8

Iterated Local Search for the eBuses Charging Location Problem 351

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Multi-view Clustering of Heterogeneous
Health Data: Application to Systemic

Sclerosis

Adán José-Garćıa1(B), Julie Jacques1,2, Alexandre Filiot3, Julia Handl6,
David Launay4, Vincent Sobanski3,5, and Clarisse Dhaenens1

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
adan.josegarcia@univ.lille.fr

2 FGES, Université Catholique de Lille, 59000 Lille, France
3 Univ. Lille, Inserm, CHU Lille, U1286, INFINITE, 59000 Lille, France
4 Univ. Lille, Inserm, CHU Lille, Service de Médecine Interne et Immunologie

Clinique, CeRAINO, U1286, INFINITE, 59000 Lille, France
5 Institut Universitaire de France (IUF), Paris, France

6 Alliance Manchester Business School, University of Manchester, Manchester, UK

Abstract. Electronic health records (EHRs) involve heterogeneous data
types such as binary, numeric and categorical attributes. As traditional
clustering approaches require the definition of a single proximity mea-
sure, different data types are typically transformed into a common for-
mat or amalgamated through a single distance function. Unfortunately,
this early transformation step largely pre-determines the cluster analysis
results and can cause information loss, as the relative importance of dif-
ferent attributes is not considered. This exploratory work aims to avoid
this premature integration of attribute types prior to cluster analysis
through a multi-objective evolutionary algorithm called MVMC. This app-
roach allows multiple data types to be integrated into the clustering pro-
cess, explore trade-offs between them, and determine consensus clusters
that are supported across these data views. We evaluate our approach in
a case study focusing on systemic sclerosis (SSc), a highly heterogeneous
auto-immune disease that can be considered a representative example of
an EHRs data problem. Our results highlight the potential benefits of
multi-view learning in an EHR context. Furthermore, this comprehensive
classification integrating multiple and various data sources will help to
understand better disease complications and treatment goals.

Keywords: Clustering · Multi-view clustering · Systemic sclerosis ·
Multi-objective optimization

1 Introduction

Many real-world applications consist of heterogeneous datasets comprising mul-
tiple attribute types, including binary, numerical, and categorical features. For
example, electronic health records (EHRs) in medicine consist of heterogeneous

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 352–367, 2022.
https://doi.org/10.1007/978-3-031-14721-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_25&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_25

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 353

structured and unstructured data elements, including demographic information,
diagnoses, laboratory results, medication prescriptions, and free-text clinical
notes [28,37]. In this regard, unsupervised machine learning methods are often
used to discover homogeneous groups from unlabeled data because limited infor-
mation is known about the classes’ distribution in these heterogeneous datasets.
However, most clustering algorithms are limited to working on a single specific
attribute type (i.e. numerical or nominal).

Two approaches are mainly used to address this heterogeneous data cluster-
ing problem: (i) methods based on features transformation such as discretiza-
tion and (ii) methods that directly use a proximity measure designed to handle
mixed-attribute types such as the Gower distance. Despite their popularity, those
approaches either yield substantial information loss (i) or require the selection
of the “best” proximity measure beforehand (ii).

This work explores multi-view clustering to integrate multiple attribute types
(data views) into the clustering process. First, specialized dissimilarity measures
are used to create views, each characterized by a specific attribute type in the
heterogeneous dataset. Then, the multi-view clustering algorithm explores trade-
offs between the views to discover consensus clusters supported across all views.
This approach was applied and evaluated in a case study of systemic sclerosis
(SSc), a highly heterogeneous disease that can be considered a representative
example of an EHRs data problem.

2 Background and Related Work

With the advent of so-called big-data, most real-world problems now involve
multiple, heterogeneous data sources. Dealing with mixed types of attributes
remains challenging for the clustering and clinical communities as conventional
clustering algorithms require a single common data format (e.g. numerical or
categorical). In the present section, we look at this heterogeneous data clus-
tering problem through the lens of distance-based methods. A more complete,
exhaustive review of other research fields, e.g., hierarchical [13,19], model-based
[6,16,22] and neural network-based clusterings [5], will be addressed in future
work. With this in mind, we recall that no single best clustering method exists
in a general sense [15,17,36], but rather a wide variety of clustering techniques
that must be carefully selected depending on the data at hand, especially in a
clinical setting.

2.1 Distance-Based Clustering on Heterogeneous Data

Most conventional, e.g., distance-based clustering algorithms work with
numerical-only or categorical-only data. Two main approaches are usually fol-
lowed to deal with mixed-type data [3,15,38,40]: (i) methods based on features
transformation [7,8,41] and (ii) methods that cluster the heterogeneous data
types directly [2,9,10,18,21,29,39].

354 A. José-Garćıa et al.

Data transformation-based methods aim to first unify the data format and
then apply a distance-based clustering method, such as K-means [38]. It con-
sists in either discretizing numerical variables into nominal ones (needed for
K-modes clustering) or reciprocally encoding nominal attributes into continuous
ones (needed for K-means clustering). Although those transformations are com-
monly used for clustering, it involves a potentially substantial information loss, as
the clustering results strongly rely on either the cut-points (which may be inap-
propriate) or the coding mechanism and its underlying assumptions. Alternative
approaches have been proposed to address this limitation. Wei et al. [41] pro-
posed a mutual information-based unsupervised feature transformation (UFT)
for non-numerical variables, avoiding the need for manual coding. Another popu-
lar approach is to use dimensionality reduction techniques, such as Factor Anal-
ysis of Mixed Data [8], in complement to some clustering techniques.

On the other hand, most distance-based clustering methods use a single
proximity measure designed to handle mixed-data types [2,9,10,18,21,29]. The
Gower distance is a widespread example of such a measure, which may be best
suited depending on the data clustering structure [9]. Ahmad et al. [2] proposed
a K-means algorithm based on a weighted combination of the Euclidean distance
and the co-occurrence of discrete values, addressing some limitations of previous
K-prototypes algorithm from Huang et al. [21]. Further work has been published
by Ahmad et al. [4] on a novel K-means initialization technique for mixed data,
called initKmix, which may outperform random initialization methods on several
heterogeneous datasets. Recently, Budiaji et al. [10] proposed a simple and fast
K-medoids algorithm (SFKM) combined with a generalized distance function
(GDF), allowing more flexible trade-offs between numerical, binary, and cate-
gorical variables. Similarly, Harikumar and Surya [18] proposed a K-medoids
approach based on a similarity measure in the form of a triplet. Among the wide
range of mixed-types-based proximity measures, one can also cite the work of
Li et al. [29] focusing on similarity-based agglomerative clustering (SBAC), an
algorithm based on the Goodall dissimilarity.

For a given dataset, most of the above methods require the selection of the
“best” proximity measure (or “best” weighting of distinct proximity measures)
in advance. Therefore, finding more generic, adaptive trade-offs between the
contributions of the different data types remains challenging. Multi-view clus-
tering [1,27] potentially addresses these limitations by dividing the dataset into
subsets, called views, each characterized by a given data type, and then treats
them simultaneously. In this work, we explore the use of multi-view clustering
to integrate multiple data views during the clustering process.

2.2 From Single to Multi-objective Clustering

In view of the complementarity between different distance functions, the optimal
cluster structures could be better identified using multiple proximity measures
simultaneously [11,14,25–27,30,31]. As said, traditional clustering algorithms
require the choice of a single proximity measure such as the Euclidean, Ham-
ming or Cosine distance. One approach is to assign weights to the different

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 355

proximity measures [6,12,20,21]. However, the appropriate weighting is hard to
determine without any prior knowledge of the data itself, and the reliability of
the information provided by the distance measures.

Multi-view clustering algorithms can integrate multiple dissimilarity matrices
simultaneously in order to find consensus clusters that are consistent across
the different data views [14,27], and yield high-quality clustering results that
optimally balance the contribution of each data source [26]. Recent research has
reported some first steps to exploit the intrinsic multi-criterion nature of the
multi-view problems [25–27,30,31].

Liu et al. [31] presented a multi-objective evolutionary algorithm (based on
NSGA-II [30]) that simultaneously considers two different distance measures
(Euclidean and Path distances). Each individual is represented using a label-
based encoding of size N (number of data points) which is then evaluated using
the intra-cluster variance with respect to both distance measures. Afterward,
Liu et al. [30] extended this work by proposing a fuzzy clustering approach
based on a multi-objective differential evolution algorithm. In this approach, a
centroid-based codification is used to represent the candidate clustering solu-
tions. However, these methods are currently limited to two views due to the
lack of generality of the Pareto dominance-based approaches. In this regard,
Jose-Garcia et al. [25,27] proposed a many-objective approach to multi-view
data clustering that exploits the benefits of complementary information sources
taken from multiple dissimilarity matrices. Additionally, this multi-view cluster-
ing algorithm allows scaling with respect to the number of data views.

3 Multi-view Clustering Approach

The proposed methodology aims to provide a solution in the context of cluster
analysis to deal with heterogeneous data characterized by multiple attribute
types. First, the data is decomposed into several subsets according to the
attribute types. Subsequently, a suitable proximity measure is chosen for each
data subset generating a dissimilarity matrix. Finally, a multi-objective evolu-
tionary clustering algorithm uses all dissimilarity matrices as data views to find
consensus clusters across the data views. This approach is illustrated in a general
way in Fig. 1 and described in detail in the following sections.

3.1 Construction of the Data Views

Multi-view clustering algorithms use multiple feature spaces (data views) simul-
taneously. The construction and selection of data views is an important step for
the accurate functioning of the algorithm. In this setting, each view represents a
given data source that describes a specific perspective of a phenomenon. In this
regard, in the presence of a heterogeneous dataset, we propose to create differ-
ent views for different types of attributes, e.g. binary, numerical and categorical.
Therefore, the database is decomposed into subsets of attributes according to

356 A. José-Garćıa et al.

Heterogeneous
Database

Multi-view
approach

Multi-view ClusteringData-view Construction

Clustering
Selection

Data Preprocessing

Heterogeneous
features

Hamming
distance

Cosine
dissimilarity

Euclidean
distance

Categorical
attributes

Binary
attributes

Numerical
attributes

Dissimilarity
matrices

Silhouette indexMVMC algorithm

Fig. 1. Main stages and components of the proposed multi-view clustering methodology
for a heterogeneous dataset (Color figure online).

their data types, resulting in many feature spaces. Then, for each data-type fea-
ture space, an appropriate proximity measure is used to generate a dissimilarity
matrix representing a particular data view of the overall heterogeneous problem.
To the best of our knowledge, this is the first time an unsupervised multi-view
approach for clustering a heterogeneous database has been proposed and evalu-
ated. This is because such approaches usually work on homogeneous data spliced
across several datasets.

3.2 Multi-view Clustering Algorithm: MVMC

The MVMC algorithm is a multi-objective evolutionary approach to multi-view
clustering that was developed to identify all optimal trade-offs between available
data views [27]. It allows scalability to a significant number of views through the
use of a many-objective optimizer. Specifically, MVMC uses a decomposition-based
optimizer, MOEA/D [34], as the underlying search engine for its clustering app-
roach. Furthermore, it employs a medoid-based representation, a representation
that is more general than centroids, as it can be used both for problems defined
in terms of feature spaces or dissimilarity matrices. In its current implementa-
tion, MVMC uses a fixed number of medoids, so requires the desired number of
clusters as input.

MVMC focuses on a single cluster-quality criterion, but aims to optimize it
concerning each view, resulting in a multi-objective optimization problem with
as many clustering criteria as data views. Let Cr and wr be the partition
and weight vector, respectively, corresponding to the r -th subproblem. Also,
let {D1, . . . , DM} denote M dissimilarity matrices, which represent M different
data views and are each considered by a separate objective. MVMC then uses the
within-cluster scatter as the optimization criterion, which, for the m-th objective
of the r -th subproblem, is computed as:

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 357

fm(Cr) =
∑

ck∈Cr

∑

i,j∈ck

dm(i, j) , (1)

where dm(i, j) is the dissimilarity between the points i and j as defined in Dm.
MVMC overcomes one major dilemma of previous attempts at designing rep-

resentations for multi-view clustering: how to ensure that these are scalable
without biasing the representation or decoding step toward one particular dis-
similarity space. Specifically, the limitations of other representations are:

– For representations that are dissimilarity space agnostic, with each gene
directly encoding cluster membership for each data point, the search space
increases exponentially with the dataset size, affecting their scalability to
large data.

– Representations that employ cluster prototypes in the form of centroids
require the centroid to be represented in one or a concatenation of the feature
spaces, which implies a single fixed weighting between views.

– Representations employing cluster prototypes (whether centroids or medoids)
require a decoding step involving the assignment of data points to clusters.
This step relies on using one or a sum of several dissimilarity functions, imply-
ing a single fixed weighting between views.

MVMC overcomes this issue by exploiting the availability of an explicit weight
vector for each sub-problem in decomposition-based optimizers. Furthermore,
employing a medoid-based encoding and accessing subproblem-specific weights
in the decoding step avoids any prior bias towards one particular dissimilarity
space whilst benefiting from a compact representation.

3.3 Selection of Clustering Solutions

The Silhouette index is often considered to be a more effective measure of cluster
validity, as it combines both within and between-cluster variation of a partition.
Unlike within-cluster scatter, maximizing the Silhouette index is potentially suit-
able for solution selection across a range of different numbers of clusters. For a
given clustering solution C with N data points, the Silhouette index Sil(C) can
be defined as the sum of individual Silhouette indexes {SW(i) | i = 1, ..., N} [35]:

Sil(C) =
1

N

N∑

i=1

SW(i) =
1

N

N∑

i=1

bi − ai

max{ai, bi}
(2)

where ai represents the average distance from i to all other data points in its
cluster. bi represents the minimum distance of i to another cluster, where the
distance between i and another cluster is calculated as the average distance from
i to all data points in that cluster.

MVMC generates a set of non-dominated clustering solutions, but a single solu-
tion is usually required in practice. For this purpose, a model selection approach
based on the Silhouette index is used [27]. This approach computes the index
from a weighted dissimilarity matrix obtained from the weights assigned to the
different data views during the clustering task.

358 A. José-Garćıa et al.

4 Experimental Study

4.1 CHUL Database and Data-View Configurations

In this work, the different clustering methods were assessed and compared using
the SSc patient database of the Centre Hospitalier Universitaire de Lille (herein
referred to as CHUL1 database). The CHUL database was created in 2014 and held
clinical information of 550 SSc patients with regular, detailed follow-up visits
recorded on a standardized case-report form. Currently, the database contains
more than 1500 patterns (patient visits) and nearly 400 attributes (e.g. demo-
graphic information, physical examination, laboratory exams, medical analyses).
Two experienced clinicians (VS and DL authors) selected 39 relevant attributes,
of which 22 are binary, 16 are numerical, and three are categorical (or nominal).
In addition, data from the most recent visit of each patient were considered, lim-
iting the analysis to 530 patterns. As a result, the clustering task was performed
on 530 patterns described by 39 attributes with heterogeneous types. Three
data views were generated from the CHUL database and used in the multi-view
clustering algorithm:

– Binary view, {Bin}. This view is based on the binary dissimilarity data matrix
computed with the Hamming distance on the 22 binary attributes.

– Numerical view, {Num}. This view is based on the numeric dissimilarity data
matrix computed with the Euclidean distance on the 16 numerical attributes
(integer and double data types) of the CHUL database.

– Categorical view, {Str}. This view is based on the categorical dissimilarity
data matrix computed with the Cosine similarity measure on the 3 categorical
attributes of the CHUL database.

For the MVMC algorithm, different view combinations of those data views were
considered: {Bin,Num}, {Bin,Str}, {Num,Str}, and {Bin,Num,Str}. In addi-
tion, the {Num,Gower} configuration was considered, where the {Gower} view is
a dissimilarity matrix created using the Gower distance from the union of the
binary and categorical attributes in the CHUL dataset.

4.2 Reference Methods

To indicate baseline performance for the studied SSc data problem, we compare
MVMC against two well-known and conceptually different clustering algorithms:
K-medoids [33] and WARD hierarchical clustering method [38]. Our experiments
apply K-medoids and WARD methods on four dissimilarity matrices, {HAM}, {EUC},
{COS}, and {GOWER}, using Hamming, Euclidean, Cosine, and Gower distances,
respectively. These matrices were obtained from the entire CHUL dataset by trans-
forming all attributes into numerical values.

1 SSc patients in the Internal Medicine Department of University Hospital of Lille,
France, between October 2014 and December 2021 as part of the FHU PRECISE
project (PREcision health in Complex Immune-mediated inflammatory diseaSEs);
sample collection and usage authorization, CPP 2019-A01083-54.

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 359

The Silhouette scores obtained by WARD and K-medoids methods on each
dissimilarity matrix were also computed, giving rise to possible comparisons
between single-view and multi-view algorithms2.

4.3 Parameter Settings

The settings for MVMC adopted in our experiments are as follows [27]. The pop-
ulation size is NP = 100, the number of generations is Gmax = 100, the recom-
bination probability is Pr = 0.5, the mutation probability is Pm = 0.03, and the
neighborhood size is T = 10.

For the stochastic clustering methods analyzed and compared in this study,
MVMC and K-medoids, a total of 31 independent executions were performed. In
all cases, statistical significance is evaluated using the Kruskal–Wallis test, con-
sidering a significance level of α = 0.05 and Bonferroni correction.

5 Results and Discussions

This section presents a series of experiments conducted on the CHUL dataset (530
patterns, 39 attributes) where different views and corresponding dissimilarity

S
ilh

ou
et

te
 in

de
x

WARD K-medoids

S
ilh

ou
et

te
 in

de
x

Number of clusters (k)

Number of clusters (k) Number of clusters (k)

Data-view configurations

S
ilh

ou
et

te
 in

de
x

MVMC

Fig. 2. Illustration of the clustering performance obtained by the different algorithm
configurations when varying the number of clusters, K = {k |2 � k � 10 }. (Color figure
online)

2 Note that the Silhouette score is intended to compare different partitions produced
by a single method. Usually, the Rand index is preferred to the Silhouette score to
compare two solutions when a ground-truth partition is available [35].

360 A. José-Garćıa et al.

measures are considered according to attribute types. As described in Sect. 4.1,
four dissimilarity matrices and five data-view configurations are used by two
single-view, WARD and K-medoids algorithms, and the multi-view approach MVMC.

5.1 Clustering Performance

This first experiment aims to analyze the clustering performance of the clustering
algorithms with the number of clusters. Thus, the results obtained by WARD
and K-medoids will serve as a reference (baseline) when compared with those
obtained by the multi-view approach, MVMC. The WARD and K-medoids algorithms
were used to separately cluster the four dissimilarity matrices {HAM}, {EUC},
{COS}, and {GOWER}, whereas MVMC used five different data-views combinations.

Table 1. Clustering performance in terms of the Silhouette index obtained by the dif-
ferent algorithm configurations when varying k, K = {k |2 � k � 10 }. The best Silhouette
value scored for each algorithm configuration has been shaded and highlighted in bold
and, additionally, the statistically best (α = 0.05) results are highlighted in boldface.

Alg. Data views Number of clusters (k)

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

W
A
R
D

{HAM} 0.095 0.060 0.048 0.025 0.031 0.006 0.006 0.010 0.013

{EUC} 0.937 0.861 0.840 0.703 0.703 0.698 0.701 0.452 0.451

{COS} 0.657 0.405 0.433 0.364 0.219 0.190 0.227 0.256 0.182

{GOWER} 0.175 0.196 0.090 0.100 0.094 0.079 0.017 0.026 0.026

K
-
m
e
d
o
i
d
s {HAM} 0.043 0.036 0.030 0.029 0.025 0.025 0.025 0.021 0.019

{EUC} 0.861 0.851 0.656 0.465 0.362 0.327 0.255 0.242 0.227

{COS} 0.644 0.440 0.457 0.397 0.369 0.362 0.342 0.347 0.349

{GOWER} 0.208 0.178 0.112 0.098 0.098 0.103 0.094 0.092 0.091

M
V
M
C

{Bin,Num} 0.894 0.922 0.787 0.506 0.461 0.352 0.321 0.308 0.271

{Bin,Str} 0.770 0.674 0.643 0.751 0.811 0.842 0.857 0.867 0.895

{Num,Str} 0.898 0.933 0.797 0.793 0.860 0.863 0.876 0.876 0.886

{Num,Gower} 0.895 0.925 0.819 0.533 0.499 0.369 0.316 0.302 0.310

{Bin,Num,Str} 0.892 0.891 0.785 0.753 0.803 0.815 0.833 0.849 0.815

The experiment was conducted as follows. First, for each clustering algorithm
and each data view, a collection of C partitions were generated by varying the
number of clusters k in the range K = {k |2 � k � 10 }. Then, in a second step,
each clustering solution in collection C was evaluated using the Silhouette index.
Usually, the partition(s) with the best index values are considered the final solu-
tions that best fit the data problem. This procedure is commonly used when
the number of clusters is unknown and needs to be determined using a cluster

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 361

validity index. For this purpose, the Silhouette index is well known and has per-
formed satisfactorily in practice [24]. The results of this analysis are summarized
in Fig. 2, with more detailed results, and their statistical significance, presented
in Table 1.

The average Silhouette index values tend to decrease as the number of clus-
ters increases from two to ten for traditional single-view algorithms, i.e., the
Silhouette index suggests that the most appropriate number of clusters is at the
beginning of the range of explored clusters. Then, it is observed that the index
quickly loses its discriminative ability to find other suitable underlying structures
in this highly heterogeneous dataset. Moreover, this monotonous decreasing con-
vergence behavior is observed in both single-view algorithms and is independent
of the type of proximity measure used in the experiments.

On the other hand, regarding the clustering performance obtained by the
multi-view clustering algorithm MVMC using the five data-view configurations, it
is observed that in general, (i) the algorithm obtained higher average Silhouette
values than traditional clustering approaches and (ii) that the Silhouette values are
changing as the number of clusters increases (i.e. the values increase and decrease).
In addition, two types of Silhouette convergences are observed concerning the
performance of the different data configurations. First, configurations {Bin,Num}

Number of clusters (k)

S
ilh

ou
et

te
 in

de
x

S
ilh

ou
et

te
 in

de
x

S
ilh

ou
et

te
 in

de
x

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

-40 -20 0 20 40
-40

-20

0

20

40

-40 -20 0 20
-60

-40

-20

0

20

40

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

-20 -10 0 10 20
-40

-20

0

20

40

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

H
am

m
in

g
sp

ac
e

 E
uc

lid
ea

n
sp

ac
e

 C
os

in
e

sp
ac

e

-20 -10 0 10 20
-30

-20

-10

0

10

20

30

 G
ow

er
 s

pa
ce

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

S
ilh

ou
et

te
 in

de
x

k=2

k=2

k=3

k=2

0 2 4 6 8 10
0

0.02

0.04

0.06

-40 -20 0 20 40
-40

-20

0

20

40
k=3

H
am

m
in

g
sp

ac
e

 E
uc

lid
ea

n
sp

ac
e

 C
os

in
e

sp
ac

e
 G

ow
er

 s
pa

ce

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

-40 -20 0 20
-60

-40

-20

0

20

40

k=2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

-20 -10 0 10 20
-40

-20

0

20

40

k=2

-20 -10 0 10 20
-30

-20

-10

0

10

20

30

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Number of clusters (k)

WARD K-medoids

k=2

Estimated
k=2

Estimated
k=2

Estimated
k=2

Estimated
k=3

Estimated
k=2

Estimated
k=2

Estimated
k=2

Estimated
k=3

Fig. 3. Best clustering solutions obtained by WARD (left) and K-medoids (right) algo-
rithms using the Silhouette index. For each subfigure, the median convergence plot is
shown in blue. The best solution is marked in red. The corresponding clustering solu-
tion is visualized in the embedding space associated with a proximity measure. (Color
figure online)

362 A. José-Garćıa et al.

and {Num,Gower} obtained very similar convergence results: they start by slightly
increasing, up to a certain k, and then start to decrease as the number of clus-
ters increases further. Second, for data configurations {Bin,Str}, {Num,Str}, and
{Bin,Num,Str} the Silhouette values increase, decrease, increase again to a cer-
tain threshold, and then remain constant. These Silhouette index fluctuations indi-
cate that multiple suitable cluster structures are encountered across the range of
explored clusters. Thus, in the following subsection, we investigate the selection of
the most appropriate clustering solutions.

5.2 Selection of Clustering Solutions

An important problem in cluster analysis is to determine the number of clus-
ters from the inherent information in a clustering structure [23]. Thus, the fol-
lowing experiment aims to find both the most appropriate number of clusters
and its corresponding clustering solution from a collection of solutions using
the Silhouette index. This experiment was conducted as follows. First, the solu-
tions(s) with the highest Silhouette value(s) are selected among the collection
of solutions generated by a clustering algorithm. Subsequently, the chosen solu-
tion(s) is visualized in an embedded two-dimensional feature space, obtained
from a dissimilarity matrix using the t-SNE [32] projection technique (param-
eters: n components = 2, n iter = 100, perplexity = 30). The resulting clustering
solutions of this analysis are presented in Figs. 3–4.

Figure 3 presents the selected solutions for the two single-view algorithms. In
general, we can observe that the choice of the distance function over the original
heterogeneous dataset considerably influences the two-dimensional distribution
of t-SNE projections. Furthermore, there is a clear tendency for the Silhou-
ette index to discover two clusters in most scenarios, except for configurations
WARD{GOWER} and K-medoids{EUC}, where the number of groups is three.

Regarding the clustering solutions generated by the multi-view approach
MVMC, from Fig. 5 (Appendix), it is clear that the determined number of clusters
is three as the Silhouette index obtained its highest point value at this point,
k = 3. Figure 4 illustrates the generated clustering solutions for the data-view
configurations, {Bin,Str}, {Num,Str}, and {Bin,Num,Str}. Two solutions with
the best Silhouette values were chosen for each configuration in this scenario.
Firstly, we observe that the best clustering solutions tend to be found at the
knee of the Pareto front approximations (PFAs), red box in the PFA, repre-
senting trade-offs between the views involved. These compromise points suggest
that the consensus clustering solution exploits pieces of information from all the
multiple data views in a complementary manner. As a result, the multi-view
clustering setting reveals three and six clusters (inflection points in convergence
plots). Interestingly, the combination of the (mixed) data-view contributions
produces embedded feature spaces with observable groups, particularly for the
six-cluster solutions, as illustrated in Fig. 4.

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 363

PFA solution

Pareto front

Best solution

PFA solution

Pareto front

Best solution

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1 PFA solution

Pareto front

Best solution
S
ilh

ou
et

te
 in

de
x

{Bin,Str}

{Bin}

{
S
tr
}

{Num}
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

S
ilh

ou
et

te
 in

de
x

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

S
ilh

ou
et

te
 in

de
x

{Num,Str}

{Bin,Num,Str}

Estimated
k=2,6

Estimated
k=3,6

Estimated
k=3,6

PFA solution

Pareto front

Best solution

{Bin}

{
S
tr
}

k=6

k=2
Clustering

Clustering

{
S
tr
}

{Num}

{
S
tr
}

k=3
Clustering

k=6
Clustering

{Num}

{
S
tr
}

Number of clusters (k)
{Bin

}
{Num}

{
S
tr
}

{Bin
}

k=6
Clustering

k=3
Clustering

Fig. 4. MVMC clustering solutions for the configurations, {Bin,Str}, {Num,Str}, and
{Bin,Num,Str}. Each configuration includes the convergence plots shown in blue and
gray, with the two best solutions marked red. Then, for each selected solution, (i) the
Pareto front approximation (PFAs) and (ii) the clustering solution, which is visualized
in a weighted embedding space associated with the data views in the configuration.
(Color figure online)

Finally, Table 2 presents two clustering solutions (P and G) obtained by the
MVMC algorithm with the data-view configuration {Bin,Num,Str}. The first clus-
tering solution contains two clusters and is shown in the first two columns in
gray. In contrast, the second solution involves six groups and is described in the
last six columns in light blue. Regarding clinical relevance, solution P exhibits
two groups of patients separated on the basis of the presence of ILD, and interest-
ingly not regarding the cutaneous involvement (historical subclassification [37]).
The six-cluster solution provided a better delineation of six homogeneous groups,
which best captured the patients’ variability in terms of the disease severity as
expressed by the EUSTAR and Medsger scores. G1 included the majority of
patients with mild disease. G4 and G6 were mostly patients with diffuse cuta-
neous involvement. G2, G3, and G4 were patients with ILD and different degrees
of severity as shown by the FVC and DLCO values. PH was found with a high
prevalence in G2, G3, G4 and G6, but DLCO values unveiled that G2 and G4 were
the most severe regarding gas exchange capacity.

364 A. José-Garćıa et al.

Table 2. Two final clustering solutions obtained by MVMC with {Bin,Num,Str}.

Descriptive Atts.a P(k = 2) G(k = 6)

P1 P2 G1 G2 G3 G4 G5 G6

Cluster Size 177 353 255 70 68 50 50 37

Sex (m,f) (25,75) (12,88) (10,90) (29,71) (13,87) (38,62) (18,82) (14,86)

SSc Type (dc,lc,sc) (40,59,1) (10,72,18) (0,82,18) (29,69,3) (13,87,0) (92,8,0) (0,66,34) (81,19,0)

Active DU (y,n) (60,40) (42,58) (41,59) (54,46) (53,47) (68,32) (36,64) (65,35)

Active SRC (y,n) (3,97) (0,100) (0,100) (4,96) (0,100) (4,96) (0,100) (0,100)

ILD (y,n) (98,2) (6,94) (1,99) (100,0) (85,15) (100,0) (24,76) (3,97)

PH (y,n) (12,88) (8,92) (7,93) (11,89) (15,85) (16,84) (6,94) (11,89)

Calcinosis (y,n) (10,90) (13,87) (14,86) (6,94) (18,82) (6,94) (4,96) (19,81)

Joint Sx (y,n) (34,66) (41,59) (40,60) (31,69) (37,63) (34,66) (42,58) (43,57)

Intestinal Sx (y,n) (27,73) (30,70) (31,69) (23,77) (32,68) (28,72) (16,84) (43,57)

mRSS 8.78±7.6 5.73±4.8 4.30±3.3 8.58±8.2 7.05±6.0 11.28±7.4 5.63±5.7 10.47±6.2

LVEF 63.44±28.6 64.74±23.3 63.91±5.5 60.85±4.4 65.05±4.5 62.84±6.9 61.20±6.5 65.06±5.4

FVC 87.41±27.1 102.13±29.4 107.83±19.1 83.49±23.6 101.95±16.3 85.54±24.1 106.07±20.4 103.57±21.9

DLCO 55.54±16.5 69.38±21.9 74.21±22.0 54.78±18.8 68.08±18.0 56.07±19.4 73.84±19.1 70.92±17.1

Score EUSTAR 1.70±1.5 1.55±1.3 1.42±1.1 1.59±1.3 1.77±1.5 2.38±1.8 1.61±1.3 2.32±1.6

Score Medsger 1.41±0.8 1.25±0.7 1.46±0.8 1.67±0.9 1.77±0.9 1.67±0.8 1.71±1.0 2.17±1.2
aSex: m (male), f (female); SSC Type: dc / lc (diffuse / limited cutaneous), sc (sine scleroderma); DU: digital
ulceration; SRC: scleroderma renal crisis; ILD: interstitial lung disease; PH: pulmonary hypertension; Sx:
symptoms; mRSS: mean Rodnan skin score; LVEF: left ventricular injection fraction; FVC: forced vital capacity;
DLCO: diffusion lung capacity for carbon monoxide; EUSTAR: european scleroderma trials and research.

6 Conclusion

This work explores the benefits of multi-view clustering to identify groups of
systemic sclerosis (SSc) patients, a highly heterogeneous auto-immune disease,
within electronic health records (EHRs) capturing several types of attributes.
Our approach avoids the premature integration of attribute types before cluster
analysis through a multi-objective evolutionary algorithm called MVMC. MVMC inte-
grates multiple data types into the clustering process in the form of data views,
explores trade-offs between them, and determines consensus clusters supported
across these views. This comprehensive classification integration of multiple and
various data sources helped to discover meaningful clustering solutions (Pk=2

and Gk=6) that will help to better understand disease complications and treat-
ment goals.

Acknowledgments. The authors are grateful to the University of Lille, CHU Lille,
and INSERM, founded by the MEL through the I-Site cluster humAIn@Lille.

Appendix

This Appendix includes figures complementing the results of the experiments
presented in Sect. 5. From Fig. 5 (Appendix), it is clear that the determined
number of clusters is three as the Silhouette index obtained its highest point
value at this point, k = 3. Also, from the Pareto front approximations obtained
by these configurations, a substantial inference of the {Num} view is observed over
the {Bin} and {Gower} views, respectively. Accordingly, the clustering solutions
and the weighted embedding space are remarkably similar between these two
data-view configurations.

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 365

0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

PFA solution

Pareto front

Best solution

S
ilh

ou
et

te
 in

de
x

{Bin,Num}

{Num,Gower}

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Estimated
k=3

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

S
ilh

ou
et

te
 in

de
x

0.8 0.85 0.9 0.95 1
0.5

0.6

0.7

0.8

0.9

1
PFA solution

Pareto front

Best solution

{Bin}

Clustering

{
N
u
m

}

{Num}

{
G
o
w
e
r}

ClusteringEstimated
k=3

k=3

k=3

Number of clusters (k)

Fig. 5. MVMC clustering solutions for two data-view configurations, {Bin,Num} and
{Num,Gower}. Each configuration includes (i) the convergence plots shown in blue and
gray, with the best solution marked red; (ii) the Pareto front approximation corre-
sponding to the estimated k value; (iii) the clustering solution, which is visualized in a
weighted embedding space associated with the data views in the configuration. (Color
figure online)

References

1. Abdullin, A., Nasraoui, O.: Clustering heterogeneous data sets. In: American Web
Congress, pp. 1–8. IEEE (2012)

2. Ahmad, A., Dey, L.: A k-mean clustering algorithm for mixed numeric and cate-
gorical data. Data Knowl. Eng. 63(2), 503–527 (2007)

3. Ahmad, A., Khan, S.S.: Survey of state-of-the-art mixed data clustering algorithms.
IEEE Access 7, 31883–31902 (2019)

4. Ahmad, A., Khan, S.S.: initKmix-a novel initial partition generation algorithm
for clustering mixed data using k-means-based clustering. Expert Syst. Appl. 167,
114149 (2021)

5. Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D.: Clustering with
deep learning: taxonomy and new methods (2018). arXiv:1801.07648

6. Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering.
Biometrics 49(3), 803–821 (1993)

7. Basel, A.J., Rui, F., Nandi, K.A.: Integrative cluster analysis in bioinformatics.
John Wiley & Sons, USA (2015)

8. Bécue-Bertaut, M., Pagés, J.: Multiple factor analysis and clustering of a mixture
of quantitative, categorical and frequency data. Comput. Stat. Data Anal. 52(6),
3255–3268 (2008)

9. Ben Ali, B., Massmoudi, Y.: K-means clustering based on gower similarity coeffi-
cient: a comparative study. In: International Conference on Modeling, Simulation
and Applied Optimization (ICMSAO), pp. 1–5. IEEE (2013)

10. Budiaji, W., Leisch, F.: Simple k-medoids partitioning algorithm for mixed variable
data. Algorithms 12(9), 177 (2019)

http://arxiv.org/abs/1801.07648

366 A. José-Garćıa et al.

11. de Carvalho, F., Lechevallier, Y., de Melo, F.M.: Partitioning hard clustering algo-
rithms based on multiple dissimilarity matrices. Pattern Recogn. 45(1), 447–464
(2012)

12. de Carvalho, F.D.A., Lechevallier, Y., de Melo, F.M.: Partitioning hard clustering
algorithms based on multiple dissimilarity matrices. Pattern Recogn. 45(1), 447–
464 (2012)

13. Chiu, T., Fang, D., Chen, J., Wang, Y., Jeris, C.: A robust and scalable clustering
algorithm for mixed type attributes in large database environment. In: Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 2001), pp. 263–268. Association for Computing Machinery,
New York, NY, USA (2001)

14. de Carvalho, F., Lechevallier, Y., Despeyroux, T., de Melo, F.M.: Advances in
knowledge discovery and management. In: Zighed, F., Abdelkader, G., Gilles,
P., Venturini, B.D. (eds.) Multi-view Clustering on Relational Data, pp. 37–51.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02999-3 3

15. Foss, A.H., Markatou, M., Ray, B.: Distance metrics and clustering methods for
mixed-type data. Int. Stat. Rev. 87(1), 80–109 (2019)

16. Fraley, C., Raftery, A.E.: How many clusters? which clustering method? answers
via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)

17. Green, P.E., Rao, V.R.: A note on proximity measures and cluster analysis. J.
Mark. Res. 3(6), 359–364 (1969)

18. Harikumar, S., Surya, P.V.: K-medoid clustering for heterogeneous datasets. Pro-
cedia Comput. Sci. 70, 226–237 (2015)

19. Hsu, C.C., Chen, C.L., Su, Y.W.: Hierarchical clustering of mixed data based on
distance hierarchy. Inf. Sci. 177(20), 4474–4492 (2007)

20. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type
clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

21. Huang, Z.: Clustering large data sets with mixed numeric and categorical values.
In: The Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
21–34 (1997)

22. Hunt, L., Jorgensen, M.: Clustering mixed data. WIREs Data Min. Knowl. Disc.
1(4), 352–361 (2011)

23. José-Garćıa, A., Gómez-Flores, W.: Automatic clustering using nature-inspired
metaheuristics: a survey. Appl. Soft Comput. 41, 192–213 (2016)

24. José-Garćıa, A., Gómez-Flores, W.: A survey of cluster validity indices for auto-
matic data clustering using differential evolution. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 314–322. ACM Press (2021).
https://doi.org/10.1145/3449639.3459341

25. José-Garćıa, A., Handl, J.: On the interaction between distance functions and
clustering criteria in multi-objective clustering. In: Ishibuchi, H., Zhang, Q., Cheng,
R., Li, K., Li, H., Wang, H., Zhou, A. (eds.) EMO 2021. LNCS, vol. 12654, pp.
504–515. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9 40

26. José-Garćıa, A., Handl, J., Gómez-Flores, W., Garza-Fabre, M.: Many-view clus-
tering: an illustration using multiple dissimilarity measures. In: Genetic and Evolu-
tionary Computation Conference - GECCO 2019, pp. 213–214. ACM Press, Prague,
Czech Republic (2019)

27. José-Garćıa, A., Handl, J., Gómez-Flores, W., Garza-Fabre, M.: An evolutionary
many-objective approach to multiview clustering using feature and relational data.
Appl. Soft Comput. 108, 107425 (2021)

28. Landi, I., et al.: Deep representation learning of electronic health records to unlock
patient stratification at scale. NPJ Digital Med. 3(1), 96 (2020)

https://doi.org/10.1007/978-3-319-02999-3_3
https://doi.org/10.1145/3449639.3459341
https://doi.org/10.1007/978-3-030-72062-9_40

Multi-view Clustering of Heterogeneous Health Data: Application to SSc 367

29. Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data.
IEEE Trans. Knowl. Data Eng. 14(4), 673–690 (2002)

30. Liu, C., Chen, Q., Chen, Y., Liu, J.: A fast multiobjective fuzzy clustering with
multimeasures combination. Math. Prob. Eng. 2019, 1–21 (2019)

31. Liu, C., Liu, J., Peng, D., Wu, C.: A general multiobjective clustering approach
based on multiple distance measures. IEEE Access 6, 41706–41719 (2018)

32. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(11), 2579–2605 (2008)

33. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297. University of California Press (1967)

34. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

35. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

36. Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y.: A comparison study on similar-
ity and dissimilarity measures in clustering continuous data. PLOS ONE 10(12),
e0144059 (2015)

37. Sobanski, V., Giovannelli, J., Allanore, Y., et al.: Phenotypes determined by clus-
ter analysis and their survival in the prospective european scleroderma trials and
research cohort of patients with systemic sclerosis. Arthritis Rheumatol. 71(9),
1553–1570 (2019)

38. Theodoridis, S., Koutrumbas, K.: Pattern Recognition. Elsevier Inc., Amsterdam
(2009)

39. Vandromme, M., Jacques, J., Taillard, J., Jourdan, L., Dhaenens, C.: A biclustering
method for heterogeneous and temporal medical data. IEEE Trans. Knowl. Data
Eng. 34(2), 506–518 (2022)

40. van de Velden, M., Iodice D’Enza, A., Markos, A.: Distance-based clustering of
mixed data. WIREs Comput. Stat. 11(3), e1456 (2019)

41. Wei, M., Chow, T., Chan, R.: Clustering heterogeneous data with k-means by
mutual information-based unsupervised feature transformation. Entropy 17(3),
1535–1548 (2015)

Specification-Driven Evolution of Floor
Plan Design

Katarzyna Grzesiak-Kopeć , Barbara Strug(B) , and Grażyna Ślusarczyk

Institute of Applied Computer Science, Jagiellonian University,
ul. �Lojasiewicza 11, Kraków, Poland

{katarzyna.grzesiak-kopec,barbara.strug,grazyna.slusarczyk}@uj.edu.pl

Abstract. Generating floor plan designs is a challenging task that
requires from an architect both engineering knowledge and creativity.
Various computer-aided design tools are used to improve the efficiency of
the design process, the most promising of which are intelligent computa-
tional models. In this paper a human-computer interaction based frame-
work for multi-storey houses floor plan design is proposed, where the gen-
eration of possible solutions is driven by the evolutionary search directed
by the user-defined criteria. The constraints and requirements speci-
fied by the user provide the basis for the definition of the requirement-
weighted fitness function and can be modified during the evolution pro-
cess. In the first stage of evolution the layouts for one floor are generated.
Floor plans for other floors are generated in the next stage, which allows
for introducing additional constraints regarding the position of structural
elements (such as load-bearing walls or stairs) that cannot be mutated,
and thus adjust these plans to the ones generated earlier. The geno-
types of individuals are represented by the vectors of numerical values
of points representing endpoints of room walls. This structure allows for
representing any rectilinear rooms. A case study of the floor plan design
for a two-storey house is presented.

Keywords: Evolutionary design · Floor plan optimization · Design
constraints and requirements

1 Introduction

Creating house floor plan designs is a challenging task as the architect has to
take into account many constraints and requirements, and determine the loca-
tion of rooms, their sizes, accessibility and adjacency relations among them.
House design is a time-consuming iterative process, requiring multiple rounds
of refinements. The ability to automatically generate feasible floor plans could
significantly reduce design costs in the real estate industry. Therefore, there is a
growing interest in advanced generative and optimization models by architects
and building engineers. Computer-aided tools for floor plan design should sup-
port the designer in decision making on the basis of the initial visualization of
constraints and users requirements and provide design knowledge required for
reasoning about design solutions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 368–381, 2022.
https://doi.org/10.1007/978-3-031-14721-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_26&domain=pdf
http://orcid.org/0000-0001-5736-7661
http://orcid.org/0000-0002-2204-507X
http://orcid.org/0000-0003-1032-1644
https://doi.org/10.1007/978-3-031-14721-0_26

Evolution of Floor Plan Design 369

Over the past 50 years, a great deal of research has been done in the field of
computer-aided architectural design with the main goal of automatically gener-
ating floor plans, which would be treated by designers as preliminary layouts to
be further modified and adapted by them [31,33]. In most existing approaches
the graph-based representation of floor layouts is used [8,29,33]. In [30] an evo-
lutionary technique based on a graph representation of genotypes was proposed.
Generating floor plans for given adjacency graphs is computationally demand-
ing as it requires specifying a geometric interpretation. Moreover, the proper
arrangement of rooms may not exist, or the generation can result in layouts
which may not be architecturally and aesthetically meaningful.

Early methods formulated the problem as iterative optimization [20,21]. In
[5,9,23] the generation of floor plans is based on shape grammars which define
iterative generation processes. In [7], an agent system combined with shape
grammars was used to support floor layout designs. However, shape grammar
interpreters are difficult to implement, as matching parametric shapes is still a
challenging problem [3,16].

In recent years, many approaches to the automation of floor plan design
based on artificial intelligence and machine learning methods have been devel-
oped. In [21], stochastic optimization and a supervised learning algorithm based
on Bayesian networks trained to learn distributions of architectural components
is presented. In [14] a graph neural network generating floor plans is presented,
in [26,32] convolutional neural networks (CNNs) are used for indoor scene gen-
eration while in [4,25] the ability of Generative Adversarial Networks (GANs)
to floor plan generation is described. In [34] deep learning approach to generate
floor plans without specifying any constraints is presented. Deep learning frame-
works for interior design are also used in [18,27,35]. The construction of floor
plans using simulated annealing is discussed in [2]. Most of the above-mentioned
methods are not suitable for complex layouts design, as their time complexity
is very high due to the stochastic nature of the algorithms used. In methods,
where graphs describing layouts are represented within deep networks, a large
amount of training data is needed to attain good accuracy.

Other methods applied for floor plan generation are based on evolutionary
algorithms. In [28] a hybrid evolutionary algorithm is developed to generate a set
of floor plans in the early design stages, while in [1] an evolutionary approach
to design an interactive layout solver is used. A non-data-driven approach is
based on neuroevolution of augmenting network topologies (NEAT) [15]. NEAT
involves the use of genetic algorithms to find the most fitting topology of a
floor plan in a given initial configuration. However, its performance significantly
depends on the initially chosen topology [13] and the control of complexity within
inner networks [17]. In [22] simulated annealing and genetic algorithms are used
to optimize mathematically defined design objectives and constraints. The ability
of the model is dependent on the predefined mathematical functions.

In order to create floor plans using small and more controlled data sets,
which allow for generating an incremental level of spatial quality, in this paper,
an evolutionary approach is proposed. The evolutionary technique is an efficient

370 K. Grzesiak-Kopeć et al.

method for creating a variety of topologically distinct, but still valid, design
solutions for a given floor layout problem. It allows for visual exploration of
the designer preliminary ideas which is necessary in the conceptual phase of
design. In our approach the crossover operation is not used, while the mutation
mechanism is constructed in such a way to control the scope of the introduced
changes. More radical changes may be expected at the beginning of the evolution,
while with time weak changes are preferred. In the evaluation module the domain
knowledge is required to decide which generated potential solutions are to be kept
in future evolution cycles. In this manner, a gradual improvement in the overall
quality of the proposed solutions is obtained.

It should be noted that while the most of the above mentioned papers deal
with single floor layouts, the design of plans for a multi-storey building involves
more than just the repetition of single floor generation. Design of many floors is
a more complex problem as it requires additional knowledge and constraints in
order to make the whole construction structurally matched.

In the proposed framework for multi-story house floor plan generation, the
evolutionary search for new solutions consists of two stages. In the first stage of
evolution, the best floor plans for one floor are generated according to the speci-
fied constraints and requirements. Then the constraints regarding the position of
structural elements (like load-bearing walls or columns, walls with sewer lines)
and the placement of certain room types (like stairs or lifts) are determined by
the user for the selected solutions. In the second stage of evolution, in which
room layouts for remaining floors are generated, these constraints are taken into
account. They determine walls that cannot be mutated, which means that the
generation in this stage of evolution is additionally driven by the required place-
ment of the specified elements.

The house floor plans are generated so as to comply with specifications
based on building code constraints, the designers knowledge, and the require-
ments determined in collaboration with the customer. In these specifications, the
required number of rooms, their areas and functions as well as the rules of their
arrangement can be determined. Design constraints and many requirements are
to be fully satisfied. There are also requirements which are to be fulfilled to
some degree, and the ones the fulfillment of which would be desirable but is not
absolutely necessary [27]. Therefore, the weights determining the importance of
requirements are defined. Then, the quality of the generated solutions and the
degree to which they meet the design specifications can be properly assessed.

In our approach, the initial population of floor plans is created by the designer
based on the given specification of the problem. The genotypes corresponding
to these solutions are represented in the form of numerical vectors consisting of
numbers of nodes representing points where the walls of the rooms meet. Such a
representation makes the description of evolutionary operators very simple and
allows for fast computing of all mutation types. It is also efficient as the visualiza-
tion of the obtained floor plans is straightforward. This type of a structure allows
for representing not only rectangular spaces but any rectilinear rooms as well
and implements the actual dimensions of the designed floor layout. During the

Evolution of Floor Plan Design 371

process of evolution, the genotype vectors are modified by mutation. After each
evolutionary step, a new generation of phenotypes being floor plans correspond-
ing to the obtained population is rendered. The fitness function, which evaluates
generated floor plans, takes into account the specified design constraints and
requirements. By using optimization techniques, the proposed framework gener-
ates floor plans together with an assessment that determines the degree of their
compliance with the design task specifications.

The paper is organized as follows. In Sect. 2 the proposed framework for
visual floor plan generation is described. The details concerning the floor plan
representation and the elements of the used evolution algorithm are presented.
The case study illustrating the proposed approach is considered in Sect. 3. The
conclusions are drawn in Sect. 4.

2 Visual Floor Plan Generation Framework

Usually during the conceptual stage of design an architect expresses ideas graph-
ically, evaluates them, and adjust through an iterative revision process cooper-
ating with a customer. During this time- and cost-consuming process the design
diagram itself is being explored as an essential stage of the design process and
the design thinking [19]. Considering that it is usually difficult to pinpoint clear
objective metrics to optimize solutions, many trials are the key to find a sat-
isfactory layout. Computer-aided design reducing the amount of human time
involvement would significantly speed up the whole process and drastically cut
the costs. In [11], the Visual Floor Plan Generation Framework (VFPGF) for
quick, efficient and effective one-story floor layouts generation was proposed. It
benefits from the dynamic character of the design context modified by a designer
and the evolutionary programming generation engine. The human-machine coop-
eration process not only allows to find the personalized final solution faster but
also facilitates the definition of design rules thanks to the use of the evolution-
driven machine learning approach.

In this paper, we present the adaptation of the previous solution to the design
of multi-storey buildings (see Fig. 1). The designer, together with the customer,
starts the design process with the initial definition of the requirements (and
their importance coefficients) and the constraints. Then, the designer, based on
his/her own professional experience, indicates a set of initial floor plan solutions
constituting the starting population for the evolutionary programming genera-
tion engine. The domain knowledge base is an important part of the system and
influences the direction of evolution. It can contain both the information derived
from design standards (for example from the building code) and any additional
information from the design domain, like availability of infrastructure specific
information for the area where the building is going to be located. During the
ongoing generation of possible solutions, the designer explores various layouts
and can modify the machine learning parameters to change the course of evo-
lution and achieve better results. At the same time, the evolutionary process

372 K. Grzesiak-Kopeć et al.

Fig. 1. Visual Floor Plan Generation Framework (VFPGF).

stimulates the creativity of the designer who can experiment with many poten-
tial design ideas simultaneously. The bidirectional human-machine collaboration
is crucial for the quality of the finally generated solutions.

Floor layout planning does not have measure and optimize evaluation met-
rics, which would be easy to define. Nevertheless, it is always accompanied by
in-depth study of the customer utility zones. The specific customer environmen-
tal conditions are basic guidelines to architectural design inspection. Therefore,
floor layout planning can be defined as the search process of the best floor plan
behavior that adapts to the given requirements and constraints context. Given
such an optimization problem, evolutionary programming (EP) can be applied
to solve it. Instead of focusing on the genotypic evolution, EP emphasizes the
phenotypic one and explores a space of possible behaviors. It finds the best solu-
tion by adapting a set of semi-optimal behaviors where the search process is
driven solely by the mutation and the selection. Recombination operators are
not used and the individual representation is strictly problem dependent. The
fitness function is relative and evaluates individual behavior with respect to some
chosen subgroup of the current population and calculates their behavioral error.
Also, selection is based on competition and those individuals that exhibit the
best behavior compared to the competing group have the highest probability of
entering the next generation. This competition for survival applies to both the
parents and the offspring [6].

Evolution of Floor Plan Design 373

The proposed approach has been pretested using Python in the Jupyter Note-
book, which was selected for the possibility of visual and interactive verification
of the ongoing evolutionary design process.

2.1 Floor Plan Representation

The aim of the authors of the proposed approach was to indicate the simplest
possible representation for the room layouts, which could be easily mutated and
assessed by the fitness function. Taking into account the assumption that all
rooms are polygons, a real-valued sequence of points was adopted. A room is
uniquely defined by a set of points P = {p1, . . . , pn} where pi = (x, y) ∈ R2, 1 ≤
i ≤ N . Each point represents the place where the walls of the rooms meet. Rooms
are identified by a flood fill algorithm [12] application. The individual floor plan
I = {′R1′ : [p11, p12, . . . , p1j1],

′ R2′ : [p21, . . . , p2j2], . . . ,
′ Rk′ : [pk1, . . . , pkjk]}

where R1, . . . , Rk denote recognized rooms and [pm1, . . . , pmjm] is a sequence of
points of all walls’ connections in a room Rm.

Both, selected points, and whole rooms may be labelled as immobile. When a
room is immobile then all points in this room are immobile too. This special tag
indicates those elements of the layout that cannot be changed during evolution.
In this way, the designer can mark not only structural elements, such as load-
bearing walls, but also fragments of solutions preferred by the customer (e.g. the
location of the living room or the mezzanine).

2.2 Population Initialization

Generating the initial population for a floor plan design task is not trivial. It
would be very desirable to uniformly cover the given domain of the layout opti-
mization problem, but it is unlikely to ever happen in the case of design tasks
which, in the course of a creative process, allow for obtaining surprising and at
the same time functional solutions. Therefore, the designer domain knowledge
is irreplaceable, and she/he arbitrary points out a set of startup solutions from
a floor plan solutions database.

2.3 Fitness Function

The evolutionary process is directed by the fitness function which determines
the quality of the obtained solution. The fitness function F (I) for an individual
I provides an absolute measure of how well the individual fulfills all the con-
straints and the degree to which it achieves the objectives of the design task. In
other words, how well it behaves in a given environment and solves the design
problem. The constraints can be handled either by penalty functions or by prob-
lem reformulation to unconstrained one [10,24]. In our case, they are defined as
binary functions, with value of 0 meaning that the design is to be rejected and
the value of 1 meaning that a given design may be further evaluated. The con-
straints may have different origin i.e. they may refer to the building code, local

374 K. Grzesiak-Kopeć et al.

area regulations, fire protection code or other rules that must be followed with-
out any exceptions. They may also originate from technological requirements,
for example the design must be made of predefined types of material or has a
predefined external area. Finally, constraints may be provided by the customer
in the form of unchangeable requirements, for example a house must have two
storeys or it must have a garage.

The requirements, on the other hand, are assigned an importance coefficient.
They may originate from the designer body of knowledge accumulated over the
time or be provided by the customer. They define elements that should/can be
present in the floor layout. Such requirements include customer expectations
such as: the floor should have at least four bedrooms, it should have a living
room on the first floor, all bedrooms should be on the same floor etc. They
define measurable plan properties like a number of spaces, minimal and maximal
dimensions, areas orientations and their relative positions etc.

Each requirement is defined as Rqi = (namei, valuei, storeyi), where namei
is the requirement name, valuei is its required value and storeyi specifies the
floor that this requirement concerns. To make this formalism flexible additional
symbols are used, i.e. >,< denote more than and less than, respectively. For
example Rq1 = (spaces,<> 10, 0) represents the requirement that there are
about 10 spaces on the ground floor. Moreover to each requirement a weight wi

ranging from 0 to 1, and an evaluation function Reqi are assigned (see Fig. 2).
If all the constraint Conj(I) ∈ {0, 1}(j = 1, . . . ,m) are met by the individual,

its final fitness score is computed as the weighted sum of the degrees to which
the requirements are fulfilled, which can be summarized as follows:

F (I) =
{−∞ ,∃j ≤ m : Conj = 0∑n

i=1 wiReqi(I) , otherwise
(1)

2.4 Mutation

The main objective of a mutation operator is to introduce variation (noise) in the
population and produce new candidate solutions. It may be applied one or more
times to each parent and produce one or more offspring. In the early stages of
evolution, it should introduce great diversity to the population and dynamically
explore the search space. Unlike in the last phase of evolution, where major
changes are not desired, and the aim of the mutation is to exploit the obtained
results to fine tune them. The exploration exploitation trade-off in EP is modified
by strategy parameters.

In the proposed approach three mutation operators are defined: a new point
can be added, a point can be deleted, and a point can be moved. The operators
may be applied individually or in a randomly selected sequence. In order to
achieve only feasible solutions, some remedial steps must be taken. A new point
may be added on the existing wall or inside a room. In both cases some extra
points have to be added to produce valid floor plan solution. On the other hand,
deleting a point requires indication of another point connected to it by a wall

Evolution of Floor Plan Design 375

Fig. 2. Requirements evaluation functions.

and these two points are deleted together. Applying a mutation operator, which
moves a point can require the greatest number of additional changes (for detail
see [11]).

Since the proposed mutation operators introduce great diversity to the pop-
ulation, the following scheme was adopted:

1. The Gaussian distribution, where mutation operators are weaker in explo-
ration (due to narrow tail) but facilitate the fine-tuning of the final solutions,
is selected.

2. The mutation operators are applied individually.
3. The dynamic strategy that over time reduces the probability of a mutation

occurring is implemented.

2.5 Selection

The survival in EP is usually based on a relative fitness measure. Both parents
and offspring take part in this competition where the goal is to enter the next
generation. It expresses how well an individual performs in a population or in
its subset. Such a subset may be selected with a use of various selection opera-
tors: random, proportional, tournament, rank-based, elitism, hall of fame etc. To
preserve the high diversity in the population a low selective pressure operator,
in our approach a roulette-wheel proportional selection is applied. The relative
fitness is calculated as the number of competitors that are worse adapted and
have a lower fitness result.

3 Case Study

Let us consider an example of designing a two storey house. The customer gives
the following requirements: a double garage, a kitchen with a pantry, a dinning
room, a living room, a boiler, an extra room on the ground floor, and at least
three bedrooms on the first floor. She/he also gives the upper boundary of the
building area which is 24×24m2 and emphasizes that a garage is essential. Based
on these demands, the building code and further designer inquiry, the following
constraints and requirements have been distinguished:

Con1 = (storeys, 2,*): two floors in the house,

376 K. Grzesiak-Kopeć et al.

Con2: the ordinate and abscissa are within the range <0, 17> (the building
area),
Con3 = (border spaces > 35, 1, 0): one space larger than 35m2 adjacent to
the external wall of the building on the ground floor with one wall 6m long
(a garage),
Con4 = (wall < 1, 0,*): no wall shorter than 1.0m.
Rq1 = (spaces,<> 10, 0): there should be about 10 spaces on the ground
floor, w1 = 0.5,
Rq2 = (border spaces > 35, N, 0): the space from Con3 should be oriented to
the north, w2 = 0.6,
Rq3 = (adj spaces,≥ 40, 0): there should be two adjacent rooms (dining,
living) together at least 40m2 on the ground floor (the bigger the better); it
is not applied to space from Con3, w3 = 0.95,
Rq4 = (spaces area,≥ 10, 0): there should be additional two spaces at least
10m2 on the ground floor (kitchen, room), w4 = 0.8,
Rq5 = (bigger space, S, 0): the bigger room from Rq3 should be oriented to
the south, w5 = 0.7,
Rq6 = (spaces ≥ 15, 3, 1): there should be three spaces on the first floor each
at least 15m2 (the bigger the better), w6 = 0.8,
Rq7 = (spaces <> 9, 1, 1): there should be additional space having around
9m2 on the first floor (bathroom), w7 = 0.7.

It should be noted that we assume that constraints and requirements are
checked in a specified order, so later defined requirements can relate to the
entities which fulfil earlier defined ones. In order to evaluate requirements ful-
fillment appropriate rating functions must be provided (see Fig. 2). Taking
into account the importance coefficients agreed with the customer, the high-
est possible fitness value for an individual I would be calculated as follows:
F (I1) = 0.5 · 1 + 0.6 · 1 + 0.95 · 1 + 0.8 · 1 + 0.7 · 1 = 3.55 for the ground floor
and F (I2) = 0.8 · 1 + 0.7 · 1 = 1.5 for the first floor. The lowest fitness value
for individuals in our example is 0 (for layouts with many spaces but relatively
small ones) when none of the requirements is fulfilled.

Since the case of a two-storey house is considered, the solution generation
is carried out in two steps, two evolutionary searches, one for each floor. First,
considering all the above-mentioned criteria, designer selects a subset of his/her
floor plan solutions for the ground floor which is the basis for the startup popu-
lation. In our example this core subset consists of eight elements. Then the full
initial population of 100 individuals is generated by applying all three possible
mutations to core elements.

When the evolutionary generation stops, the designer presents to the cus-
tomer a bunch of the most promising individuals, i.e., the ones with the highest
evaluation values. The customer indicates the floor plans that suit him best
and become the basis for creating the initial population for the next stage of
evolution.

The evolution process runs only once to get different solutions for a particular
floor layout. The termination condition is defined as the number of epochs which

Evolution of Floor Plan Design 377

is specified by the designer (in this study - 50). If there is no satisfying floor
layout among the best evaluated solutions, the user can continue the process
of generating next populations or change some design requirements. Different
requirements for our case study as well as different case studies need other runs
starting from the beginning.

The fitness function evaluates individuals behavior with respect to the sub-
group of 30 elements selected by a roulette-wheel from the current population.
The “behavioral error” decreases in subsequent generations, so the average fit-
ness increases. However, in this case, fitness is a relative matter, and it should
be noted that in designing floor layouts there is no optimal solution, as differ-
ent customers can have different preferences and tastes, and thus may choose
the individuals with lower evaluation values as the best fit for them. Therefore
the performance of different runs is not comparable and the statistic analysis of
them can be misleading.

In our example, the floor plans depicted in Fig. 3 denoted by A.0 and B.0
were selected as the best ones for the customer. The fitness value of these indi-
viduals equals F (A.0) = 3.3 and F (B.0) = 3.36, respectively. The lowest rated
requirement for the individual A.0 is Rq1 = 0.5 since the number of generated
spaces is 16 while <> 10 is expected. For the individual B.0 the lowest value has
Rq3 = 0.8 as the total area of possible dining and living rooms is not as large as
desired.

For the selected ground floor layouts additional constraints regarding the
position of structural elements that cannot be mutated must be provided. There
are three types of elements to be marked by the designer as immutable. The
first one concerns all the load bearing walls that have to remain unchanged on
the subsequent floors. Such a wall is marked with a wide yellow line in Fig. 3.
The second type of the restricted elements are all walls containing water pipes
- while the customer may choose any available space as a kitchen or bathroom
it is expected that all spaces that need access to water would be located in such
a way that the number of vertical water pipes is limited. Such elements are
depicted in Fig. 3 as blue lines. Moreover, in the case of a multi-storey building,
a vertical communication must be provided and it must occupy the same space
on adjacent levels. When a space for vertical communication is decided, (e.g.
stairs) it must be carried over to adjacent levels without changes. In Fig. 3 the
walls surrounding such a space are denoted by red lines.

Having decided on the placement of all the required immutable elements
the evolutionary process for the first floor can be started in the same way as
for the ground floor. In order to facilitate making decisions on the additional
constraints, the labels determining the functions of spaces have been assigned.
The example labeling for this case study is presented in Fig. 3, where the shaded
areas represent balconies or terraces. Figures 3.A.1 and 3.A.2, and Figs. 3.B.1 and
3.B.2 present two different first floor layouts generated for the earlier selected
ground floors A.0 and B.0, respectively. Even though the first floor solutions for
each ground floor are significantly different, they all have the highest possible
fitness value equal to 1.5.

378 K. Grzesiak-Kopeć et al.

Fig. 3. Two example floor plans A.0 and B.0 for the ground floor and corresponding
plans for the first floor: A1 and A2, B1 and B2 respectively. (Color figure online)

4 Conclusions

This paper presents a new model of human-computer interaction in specification-
driven evolution of floor plan designs. The main goal of the research is to pro-
pose a computer-aided design framework that not only generates a single floor
plan but floor layouts for multi-storey buildings as well. The proposed approach
has been successfully applied to two-storey house layout generation. In order
to address the search for a design solution better, the evolutionary process is

Evolution of Floor Plan Design 379

driven by the requirements and constraints agreed by the designer and the cus-
tomer. It is performed semi-automatically in incremental stages: one stage for
one floor. After generating each floor, the elements which are to be immutable in
next generation steps are marked by a human. In this way it is possible to avoid
generating numerous unfeasible solutions i.e. such that have load carrying walls
moved or inconsistent vertical communication and water connections. Moreover,
the sequential evaluation of the requirements results in high quality solutions
which are more promising for the customer.

In future we plan several improvements. In the first step the formalism used
to define requirements and constraints is to be extended by adding wildcards to
denote conditions for all floors to allow expressing conditions like “there should
be about 20 spaces in the building”.

References

1. Bahrehmand, A., Batard, T., Marques, R., Evans, A., Blat, J.: Optimizing layout
using spatial quality metrics and user preferences. Graph. Models 93(C), 2538
(2017). https://doi.org/10.1016/j.gmod.2017.08.003

2. Bao, F., Yan, D.M., Mitra, N.J., Wonka, P.: Generating and exploring good build-
ing layouts. ACM Trans. Graph. 32(4), 1–10 (2013). https://doi.org/10.1145/
2461912.2461977

3. Beirao, J.N.: CityMaker: designing grammars for urban design, Doctoral thesis
(2012). https://doi.org/10.4233/uuid:16322ba7-6c37-4c31-836b-bc42037ea14c

4. Chaillou, S.: ArchiGAN: a generative stack for apartment building design
(2019). https://developer.nvidia.com/blog/archigan-generative-stack-apartment-
building-design/

5. Duarte, J.: A discursive grammar for customizing mass housing: the case of Siza’s
houses at Malagueira. Autom. Constr. 14(2 SPEC.ISS.), 265–275 (2005). https://
doi.org/10.1016/j.autcon.2004.07.013

6. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley,
New York (2007)

7. Grabska, E., Grzesiak-Kopeć, K., Ślusarczyk, G.: Designing floor-layouts with
the assistance of curious agents. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 883–886. Springer,
Heidelberg (2006). https://doi.org/10.1007/11758532 115

8. Grabska, E., Achwa, A., Lusarczyk, G.: New visual languages supporting design of
multi-storey buildings. Adv. Eng. Informatics 26, 681–690 (2012)

9. Grzesiak-Kope, K., Ogorzaek, M.: Intelligent 3D layout design with shape gram-
mars. In: Proceedings of the 2013 6th International Conference on Human System
Interactions (HSI), pp. 265–270, Sopot, Poland, June 2013

10. Grzesiak-Kope, K., Oramus, P., Ogorzaek, M.: Hypergraphs and extremal opti-
mization in 3D integrated circuit design automation. Adv. Eng. Inform. 33(C),
491501 (2017). https://doi.org/10.1016/j.aei.2017.06.004

11. Grzesiak-Kopeć, K., Strug, B., Ślusarczyk, G.: Evolutionary methods in house floor
plan design. Appl. Sci. 11(17), 8229 (2021). https://doi.org/10.3390/app11178229,
https://www.mdpi.com/2076-3417/11/17/8229

12. Henrich, D.: Space-efficient region filling in raster graphics. Vis. Comput. 10, 205–
215 (2005)

https://doi.org/10.1016/j.gmod.2017.08.003
https://doi.org/10.1145/2461912.2461977
https://doi.org/10.1145/2461912.2461977
https://doi.org/10.4233/uuid:16322ba7-6c37-4c31-836b-bc42037ea14c
https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/
https://developer.nvidia.com/blog/archigan-generative-stack-apartment-building-design/
https://doi.org/10.1016/j.autcon.2004.07.013
https://doi.org/10.1016/j.autcon.2004.07.013
https://doi.org/10.1007/11758532_115
https://doi.org/10.1016/j.aei.2017.06.004
https://doi.org/10.3390/app11178229
https://www.mdpi.com/2076-3417/11/17/8229

380 K. Grzesiak-Kopeć et al.

13. Hohenheim, J., Fischler, M., Zarubica, S., Stucki, J.: Combining neuro-evolution
of augmenting topologies with convolutional neural networks, January 2017

14. Hu, R., Huang, Z., Tang, Y., Van Kaick, O., Zhang, H., Huang, H.: Graph2Plan:
learning floorplan generation from layout graphs. ACM Trans. Graph. 39(4),
118:1–118:14 (2020). https://doi.org/10.1145/3386569.3392391

15. Ibrahim, M.Y., Sridhar, R., Geetha, T.V., Deepika, S.S.: Advances in neuroevo-
lution through augmenting topologies a case study. In: 2019 11th International
Conference on Advanced Computing (ICoAC), pp. 111–116 (2019)

16. Krishnamurti, R.: Explicit design space? AI EDAM 20, 95–103 (2006). https://
doi.org/10.1017/S0890060406060082

17. Le Goff, L.K., Hart, E., Coninx, A., Doncieux, S.: On Pros and Cons of evolving
topologies with novelty search. In: ALIFE 2021: The 2021 Conference on Artificial
Life, ALIFE 2020: The 2020 Conference on Artificial Life, pp. 423–431, July 2020.
https://doi.org/10.1162/isal a 00291

18. Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: LayoutGAN: generating graphic
layouts with wireframe discriminators. CoRR arXiv: abs/1901.06767 (2019)

19. Liu, H., Tang, M.: Evolutionary design in a multi-agent design environment. Appl.
Soft Comput. 6, 207–220 (2006). https://doi.org/10.1016/j.asoc.2005.01.003

20. Martin, J.: Procedural house generation: a method for dynamically generating floor
plans. In: Symposium on Interactive 3D Graphics and Games (2006)

21. Merrell, P., Schkufza, E., Koltun, V.: Computer-generated residential building
layouts. ACM Trans. Graph. 29, 1–12 (2010). https://doi.org/10.1145/1866158.
1866203

22. Michalek, J., Choudhary, R., Papalambros, P.: Architectural layout design
optimization. Eng. Optim. 34, 461–484 (2002). https://doi.org/10.1080/
03052150214016

23. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling
of buildings. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH 2006, p. 614623.
Association for Computing Machinery, New York, NY, USA (2006). https://doi.
org/10.1145/1179352.1141931

24. Myung, H., Kim, J.-H.: Lagrangian-based evolutionary programming for con-
strained optimization. In: Yao, X., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1996.
LNCS, vol. 1285, pp. 35–44. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0028519

25. Nauata, N., Chang, K., Cheng, C., Mori, G., Furukawa, Y.: House-GAN: rela-
tional generative adversarial networks for graph-constrained house layout genera-
tion. CoRR arXiv: abs/2003.06988 (2020)

26. Ritchie, D., Wang, K., Lin, Y.: Fast and flexible indoor scene synthesis via deep
convolutional generative models. CoRR arXiv: abs/1811.12463 (2018)

27. Ritchie, D., Wang, K., Lin, Y.A.: Fast and flexible indoor scene synthesis via deep
convolutional generative models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019

28. Rodrigues, E., Gaspar, A.R., Gomes, Á.: An approach to the multi-level space allo-
cation problem in architecture using a hybrid evolutionary technique. Autom. Con-
str. 35, 482–498 (2013). https://doi.org/10.1016/j.autcon.2013.06.005, https://
www.sciencedirect.com/science/article/pii/S0926580513001027

29. Ślusarczyk, G.: Graph-based representation of design properties in creating build-
ing floorplans. Comput. Aided Des. 95(C), 2439 (2018). https://doi.org/10.1016/
j.cad.2017.09.004

https://doi.org/10.1145/3386569.3392391
https://doi.org/10.1017/S0890060406060082
https://doi.org/10.1017/S0890060406060082
https://doi.org/10.1162/isal_a_00291
http://arxiv.org/1901.06767
https://doi.org/10.1016/j.asoc.2005.01.003
https://doi.org/10.1145/1866158.1866203
https://doi.org/10.1145/1866158.1866203
https://doi.org/10.1080/03052150214016
https://doi.org/10.1080/03052150214016
https://doi.org/10.1145/1179352.1141931
https://doi.org/10.1145/1179352.1141931
https://doi.org/10.1007/BFb0028519
https://doi.org/10.1007/BFb0028519
http://arxiv.org/2003.06988
http://arxiv.org/1811.12463
https://doi.org/10.1016/j.autcon.2013.06.005
https://www.sciencedirect.com/science/article/pii/S0926580513001027
https://www.sciencedirect.com/science/article/pii/S0926580513001027
https://doi.org/10.1016/j.cad.2017.09.004
https://doi.org/10.1016/j.cad.2017.09.004

Evolution of Floor Plan Design 381

30. Strug, B., Grabska, E., Ślusarczyk, G.: Supporting the design process with hyper-
graph genetic operators. Adv. Eng. Inform. 28(1), 1127 (2014). https://doi.org/
10.1016/j.aei.2013.10.002

31. Upasani, N., Shekhawat, K., Sachdeva, G.: Automated generation of dimensioned
rectangular floorplans. CoRR arXiv: abs/1910.00081 (2019)

32. Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for
indoor scene synthesis. ACM Trans. Graph. 37(4), 1–14 (2018). https://doi.org/
10.1145/3197517.3201362

33. Wang, X.Y., Yang, Y., Zhang, K.: Customization and generation of floor plans
based on graph transformations. Autom. Constr 94(C), 405–416 (2018). https://
doi.org/10.1016/j.autcon.2018.07.017

34. Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H., Liu, L.: Data-driven interior
plan generation for residential buildings. ACM Trans. Graph. (SIGGRAPH Asia)
38(6), 1–12 (2019)

35. Zou, C., Colburn, A., Shan, Q., Hoiem, D.: LayoutNet: reconstructing the 3D
room layout from a single RGB image. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018

https://doi.org/10.1016/j.aei.2013.10.002
https://doi.org/10.1016/j.aei.2013.10.002
http://arxiv.org/1910.00081
https://doi.org/10.1145/3197517.3201362
https://doi.org/10.1145/3197517.3201362
https://doi.org/10.1016/j.autcon.2018.07.017
https://doi.org/10.1016/j.autcon.2018.07.017

Surrogate-Assisted Multi-objective
Optimization for Compiler Optimization

Sequence Selection

Guojun Gao1,2, Lei Qiao3(B), Dong Liu1,2, Shifei Chen1,2, and He Jiang1,2(B)

1 School of Software, Dalian University of Technology, Dalian, China
{ggj gao,chenshifei}@mail.dlut.edu.cn, {dongliu,jianghe}@dlut.edu.cn

2 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province,
Dalian, China

3 Beijing Institute of Control Engineering, Beijing, China
fly2moon@aliyun.com

Abstract. Compiler developers typically design various optimization
options to produce optimized programs. Generally, it is a challenging
task to identify a reasonable set of optimization options (i.e., compiler
optimization sequence) in modern compilers. Optimization objectives, in
addition to the target architecture and source code of the program, influ-
ence the selection of optimization sequences. Current applications are
often required to optimize two or more conflicting objectives simultane-
ously, such as execution time and code size. Existing approaches employ
evolutionary algorithms to find appropriate optimization sequences to
trade off the above two objectives. However, since program compilation
and execution are time-consuming, and the two objectives are inherently
conflicting, applying evolutionary algorithms faces the diverse objec-
tives influence and computationally expensive problem. In this study, we
present a surrogate-assisted multi-objective optimization approach. To
speed up the convergence, it employs a fast global search based on non-
dominated sorting. The approach then uses two surrogate models for each
objective to generate approximate fitness evaluations rather than using
actual expensive evaluations. Extensive experiments on the benchmark
suite cBench show that our approach outperforms the baseline NSGA-II
on hypervolume by an average of 11.7%. Furthermore, experiments ver-
ify that the surrogate model contributes to solving the computationally
expensive problem and taking fewer actual fitness evaluations.

Keywords: Multi-objective · Compiler optimization sequence
selection · Surrogate model

1 Introduction

Today, the compiler is one of the most important foundations of the complex
software infrastructure, and it has been used to generate optimized executable
binaries for several decades [4,14]. Modern compilers provide numerous compiler
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 382–395, 2022.
https://doi.org/10.1007/978-3-031-14721-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_27&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_27

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 383

optimization options to satisfy a wide range of complex optimization require-
ments (e.g., code size and execution time). GCC, for example, offers hundreds
of optimization options. As a result, it is impractical to select the best compiler
optimization sequence from massive optimization options to optimize programs
by hand. Despite the fact that compilers provide some predefined standard opti-
mization levels (-O1,-O2,-O3,-Os, etc.) with a fixed optimization sequence, they
fail to achieve the best performance on every program [3,4,9].

Besides, when selecting an appropriate compiler optimization sequence, the
selection is indeed influenced not only by the program source code and the target
architecture but also by the optimization objectives [8]. For the compiled object
code, however, the code size and execution time are two conflicting objectives.
The program will be expanded if you pursue the program’s execution time.
On the contrary, pursuing smaller executable code frequently results in slower
program execution speed [21].

In previous studies, multi-objective optimization algorithms were used to
select optimization sequences to make a trade-off between code size and execu-
tion time. Lokuciejewski et al. [16,17] applied SPEA2, NSGA-II, and IBEA to
select optimization sequences that reduced execution time and code size. Exper-
iments show that the performance of these algorithms is significantly improved
compared with standard optimization levels. Chebolu and Wankar [8] used a
novel genetic algorithm based on weighted value functions to obtain a faster
execution time than the binary code generated by “-Ofast”, while the code
size does not exceed “-OS”. Ansel et al. [2] introduced “OpenTuner”, an open-
source framework for constructing multi-objective optimized compiler optimiza-
tion sequences. The framework supports the user-defined setting of multiple
search methods to search for the appropriate optimization sequence.

However, the key issue in applying the multi-objective optimization algorithm
in selecting compiler optimization sequences is its efficiency. On the one hand,
multi-objective optimization needs to search the whole objective space, and the
conflicting objectives may influence the convergence rate to some extent [15]. On
the other hand, because compiling and executing a program is time-consuming,
the computational cost of fitness function evaluations is high, and the number of
evaluations required to obtain Pareto-optimal solutions is restricted. This brings
up the computationally expensive problem.

To address the above two challenges, we propose a novel surrogate-assisted
multi-objective optimization approach that efficiently selects promising opti-
mization sequences. The approach contains two key components: a fast global
search and surrogate models. Firstly, a fast global search based on non-dominated
sorting is adopted to deliberate the overall performance on different objectives.
Secondly, surrogate models are employed to approximate the expensive fitness
functions to avoid a lot of actual compilation and execution. In the iterative
process, two surrogate models for execution time and code size are used to deter-
mine which individuals can be incorporated into the non-dominated solution set.
These individuals are then compiled and executed to obtain fitness values. Our
goal is to develop an efficient approach for the computationally expensive multi-
objective problem with over one hundred variables. Here, we use random forest
surrogate models to approximate the expensive compilation.

384 G. Gao et al.

Furthermore, we study our approach experimentally on the compiler GCC
and the benchmark suite cBench [11]. Experimental results demonstrate that our
approach performs averagely better than NSGA-II by 11.7% on hypervolume.
Besides, the impact of the parameters: crossover rate and mutation rate, is inves-
tigated. It shows that configuring the two parameters has no noticeable effect on
our approach. Additionally, a comparison between the convergence rate of our
approach and a variant without surrogate models indicates that the surrogate
models contribute to the efficiency of compiler optimization sequence selection.
The contributions of this paper are summarized as follows:

– A novel approach is proposed for efficiently selecting optimization sequences
to reduce program code size and speed up execution.

– Surrogate models and a fast global based on non-dominated sorting are devel-
oped to overcome the challenges of the computationally expensive problem
and the influence of diverse objectives.

– Experimental studies conducted on the compiler GCC and the benchmark
suite cBench show that our approach not only identifies better compiler opti-
mization sequences, but also involves fewer expensive fitness evaluations.

The remainder of this paper is organized as follows. Section 2 describes the
background of the compiler optimization sequence selection. Section 3 provides a
detailed description of the proposed approach. Studies comparing the proposed
approach with NSGA-II and the experimental results are presented in Sect. 4.
Finally, Sect. 5 concludes the paper with a summary and some ideas for future
work.

2 Background

In this section, we introduce the background knowledge of compiler optimization
sequence selection as well as the multi-objective optimization for the compiler
optimization sequence selection.

2.1 Compiler Optimization Sequence Selection

The compiler provides plentiful optimization options to satisfy different perfor-
mance requirements. A set of compiler optimization options forms an optimiza-
tion sequence. We define the problem as compiler optimization sequence
selection if we disregard the order of the compiler optimization options and
instead focus on whether an optimization option is applied. Many previous stud-
ies [1,5] have shown that the interactions among optimization options are so
complicated that they have a significant impact on program performance.

The problem of compiler optimization sequence selection can be formalized
as follows:

Let a Boolean vector seq = {o1, o2, o3, ..., on} be a compiler optimization
sequence, and n is the number of optimization options under analysis. The ith

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 385

element oi in seq represents the ith optimization option used. Besides, the value
of an optimization option oi is oi = 1 or oi = 0, indicating whether the opti-
mization option is turned on or off.

Given a program P that is being optimized, one or more of the effective opti-
mization sequences seq will be found and provided to the compiler to generate
smaller or faster machine object code.

Furthermore, the search space S = {0, 1}n of the problem has an exponential
space. For instance, if we only analyze n = 10 optimization options and select the
right optimization sequence, we need to explore a total state space of 2n = 1024.
In practice, there are far more than ten, even hundreds of optimization options
available when using the compiler to optimize the program. Thus, developers
face a significant challenge in manually selecting an appropriate optimization
sequence. Automatic methods are necessary to be introduced.

2.2 Multi-objective Optimization for Compiler Optimization
Sequence Selection

This study focuses on the optimization of execution time and code size of the
machine object code. The program’s execution time should be as short as possi-
ble during the process of compiler optimization sequence selection using multi-
objective optimization. Additionally, to save storage space, the code size should
be as small as possible. For easy understanding and unified representation, we
design two fitness functions to calculate execution speedup and code size reduc-
tion, respectively (as shown in Eqs. 2 and 3 in Sect. 3). In summary, we set the
maximum execution speedup and the maximum code size reduction as two opti-
mization objectives in our study.

The multi-objective optimization problem of compiler optimization sequence
selection is formulated in Eq. 1 as follows:

max
seq∈S

(Fitnesss(seq), F itnesst(seq)) (1)

where Fitnesss(seq) is the fitness functions for code size and Fitnesst(seq) is
the fitness functions for execution time. The compiler optimization sequence
is denoted by seq, and the search space is denoted by the set S. Finding a
feasible compiler optimization sequence that maximizes code size reduction and
execution speedup at the same time is unthinkable. As a result, we seek to
investigate and identify Pareto optimal solutions that cannot be improved in
any objective without degrading others.

3 The Proposed Approach

This paper proposes a surrogate-assisted multi-objective optimization algorithm
for optimization sequence selection to enhance the performance in terms of exe-
cution time and code size. In this section, we will first present the solution repre-
sentation and the fitness function in our approach. Following that, our approach
is described in detail. Finally, we introduce the surrogate model that we used in
our approach.

386 G. Gao et al.

Fig. 1. The solution representation

3.1 Representation

For the current study of selecting the best optimization sequences, a candidate
solution represents an optimization sequence that is composed of optimization
options from the four standard optimization levels (-O1,-O2,-O3, and -Os). The
solution representation in this paper is shown in Fig. 1.

Here, we use a vector to represent a solution, with the first two dimensions
representing the encoding of four standard optimization levels and the remain-
ing dimensions representing compiler options. For example, we set the first two
dimensions to ‘00’, ‘01’, ‘10’, and ‘11’ to represent -O1, -O2, -O3, and -Os, respec-
tively. The rest dimensions’ values are Boolean values that are represented as
genes on a chromosome. We set the value to 1 or 0, where 1 indicates that we
select the optimization option to optimize the program and 0 indicates that the
optimization option is disabled. As illustrated in Fig. 1, the compiler is then
informed of the optimization selection information via -f〈optimization option〉
and -fno-〈optimization option〉, which indicate the selection or non-selection of
the optimization option.

Besides, a solution has a fixed size, which includes two label bits (the first
two dimensions) and all optimization options used in this study. Because the
compiler GCC has its own logic when invoking the optimization option, the
order of the optimization options that we provided has no effect on the results.
We keep the same order of the optimization options that the compiler is given.

3.2 Fitness Function

The fitness function is intended to assess the quality of a candidate solution. In
our study, we look at two objectives: execution time and code size. To measure
the code size reduction and execution time speedup of a candidate optimization
sequence seq, two fitness functions Fitnesss(seq) and Fitnesst(seq) are defined.
As shown in Eqs. 2 and 3, the two fitness functions use the default -O0 and -O3
as bases, respectively. The optimization level -O0 does not optimize the program
at all, while -O3 provides the most aggressive optimization on execution time.

Fitnesss(seq) = code size(-O0) − code size(seq) (2)

where code size(seq) represents the code size of the executable file when the
optimization sequence seq is applied to the program. We apply the ‘size’ com-
mand to the generated executable file, which yields the code size corresponding
to the optimization sequence.

Fitnesst(seq) = execution time(-O3)/execution time(seq) (3)

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 387

where execution time(seq) represents the execution time of the executable file.
Similarly, we use the ‘time’ command to get the execution time while the exe-
cutable file is running.

3.3 Surrogate-Assisted Multi-objective Optimization Algorithm

We develop a novel surrogate-assisted multi-objective optimization algorithm
to address the challenges of diverse objectives influence and the computation-
ally expensive problem mentioned in Sect. 1. The pseudo-code of the proposed
approach is presented in Algorithm 1.

First of all, the approach generates some parameters and functions, such as
population size pnum, crossover rate pα, mutation rate pβ , optimization sequence
seq, program P , and the fitness functions for execution time Fitnesst(seq) and
code size Fitnesss(seq). A set of solutions in population is randomly initialized
before the iteration begins (line 2). These solutions are then evaluated using the
actual expensive fitness functions (i.e., Fitnesst(seq) and Fitnesss(seq)). The
non-dominated solutions are archived in Archive (lines 3–5). Meanwhile, two
surrogate models for execution time and code size are constructed in line 6 to
predict the fitness values of optimization sequences.

In the main loop (lines 7–22), we apply crossover, mutation, and selection to
generate a new population in the evolutionary process. Concretely, the crossover
operator and mutation operator are utilized to produce offspring (lines 8–9).
Here, we use the traditional single-point crossover [10] to generate child solutions
and bit flip mutation to mutate the solution. Then, using two surrogate models,
Surrogatet() and Surrogates(), we evaluate all solutions in the offspring and
obtain their approximate execution time and code size (line 10).

Afterward, the new population is reproduced by combining the parent and
offspring populations using nondominated sorting(population) and selection
(population, pnum) (lines 11–13). Before applying the selection mechanism, a
fast non-dominated sorting procedure is used in population to divide the pop-
ulation into non-dominated fronts F = {F1, F2, ..., Fn}. The non-dominated
solutions in population belong to the front F1. The solutions in F1 are then
discounted temporarily, and the non-dominated solutions in the remaining pop-
ulation form the next front F2. Repeating the above procedure until all solu-
tions in population are assigned to a front. During the selection process, solu-
tions are chosen from the front F1 to Fn, which can help maintain the elitism
while also generating good solutions. Furthermore, for solutions along the same
front, crowding distance is used to select suitable solutions until the number of
population reaches pnum.

Following that, all solutions in the new population that are offspring are
reevaluated using Fitnesst(seq) and Fitnesss(seq) to get their actual fitness
values (lines 14–18). In lines 19–20, the new population is sorted again, and
the non-dominated solutions are saved in Archive. Next, two surrogate models,
Surrogatet() and Surrogates() are updated until they achieve a high level of
accuracy. When the program reaches the stopping criterion, the evolutionary
process is terminated.

388 G. Gao et al.

Finally, the achieved solutions in Archive are regarded as Pareto optimal
solutions.

Algorithm 1: Surrogate-assisted Multi-objective optimization algorithm
Input: population size pnum, crossover rate pα, mutation rate pβ , optimization sequence

seq, program P , the fitness function of the objective execution time Fitness t(seq),
the fitness function of the objective code size Fitness s(seq)

Output: pareto optimal solutions Archive
1 begin
2 population ←− Initialize(pnum)
3 Evaluate population using Fitnesst(seq) and Fitnesss(seq)
4 population ←− nondominated sorting(population)
5 Archive ←− the non-dominated solutions in population
6 Construct two surrogate models for each objective, Surrogatet() and Surrogates()

// Generating the next population in the evolutionary process
7 while Stopping criterion is not met do
8 offspring ←− crossover(population, pα)
9 offspring ←− mutation(offspring, pβ)

10 Evaluate offspring using two surrogate models Surrogatet() and Surrogates()
11 population ←− population ∪ offspring
12 population ←− no − ndominated sorting(population)
13 population ←− selection(population, pnum)
14 for seqi ∈ population do
15 if seqi in offspring then
16 Evaluate seqi using Fitnesst(seq) and Fitnesss(seq)

17 end

18 end
19 population ←− nondominated sorting(population)
20 Archive ←− the non-dominated solutions in population
21 Update two surrogate models Surrogatet() and Surrogates()

22 end
23 return pareto optimal solutions Archive

24 end

3.4 Surrogate Model

Random Forest. The random forest [6] is an ensemble learning algorithm
based on the bootstrap sampling technique that consists of several decision trees
to solve classification or regression tasks. It is one of the most commonly used
methods in numerous studies as the surrogate model [7,13,19]. For classification
or regression tasks, the random forest constructs a multitude of decision trees
and uses the result of most trees selected or the mean value of all trees returned
to make the prediction. Therefore, the random forest outperforms any individual
tree in terms of performance.

In this study, we also utilize the random forest as a surrogate model. Because
we are concentrating on the compiler optimization options, and their values are
Boolean values. Besides, the current study has demonstrated that the random
forest as a surrogate model is very suitable for approximating such problems with
discrete decision variables [13]. Additionally, the random forest has advantages in
dealing with high-dimensional problems and can avoid over-fitting problems [12,
20]. Since over one hundred optimization options are considered in optimization
sequence selection, we use the random forest in our work to approximate two
objectives: the execution time and code size.

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 389

Surrogate Model Managing. As shown in Algorithm 1, two random for-
est models, Surrogatet() and Surrogates(), are constructed to approximate the
execution time and code size rather than using expensive fitness evaluations. In
the iterative procedure, we evaluate the solutions in offspring using two random
forest models to obtain the predicted values of the two objectives. It should
be noted that because the fitness values of all offspring solutions are approxi-
mated using surrogate models, the approximation error and prediction accuracy
of surrogate models should be considered. We estimate two random forest mod-
els using the root mean square error (RMSE) and record RMSE = {R1, R2}. It
is the square root of the difference between the predicted and actual value. The
formula for calculation is shown below:

Ri =

√
√
√
√

1
N

N∑

j=1

(̂
yj

i − yj
i)2 (4)

where Ri is the root mean square error of the ith objective (i = 1 or 2), yj
i

represents the actual value of the ith objective of the jth solution, ̂
yj

i represents
the predicted value of the ith objective of the jth solution obtained by the
surrogate model, and N is the number of solutions in the current population.
The lower the RSME, the better the predictive accuracy of the surrogate model.

Based on the mechanism of new population production, some solutions are
introduced into the newly reproduced population by merging the parent popu-
lation and the offspring, and then their actual fitness values are obtained using
the actual compilation. These new reevaluated solutions with actual fitness val-
ues are employed to update two surrogate models until the RMSE threshold is
satisfied. Hench, we train the surrogate models using the solutions in the ini-
tial population and these reevaluated solutions using fitness functions during
iteration.

4 Experimental Results

4.1 Experimental Setup

In this section, we empirically evaluate the performance of our proposed app-
roach and its ability to select promising compiler optimization sequences. Here,
we investigate and answer the following Research Questions (RQs):

RQ1: How does our approach stack up against the baseline?
RQ2: How do parameters impact the outcome of our approach?
RQ3: How do surrogate models help our approach be more efficient?

For the above three RQs, RQ1 investigates the effectiveness of our approach
and the quality of the selected compiler optimization sequences. RQ2 intends
to analyze the impact of the choice of the crossover and mutation rate to set
competitive parameters. RQ3 seeks to determine whether the surrogate models
improve the efficiency of our approach.

390 G. Gao et al.

Table 1. The programs in cBench benchmark suite

No. Program No. Program No. Program

1 automotive bitcount 12 consumer tiff2bw 23 security blowfish e

2 automotive qsort1 13 consumer tiff2rgba 24 security pgp d

3 automotive susan c 14 consumer tiffdither 25 security pgp e

4 automotive susan e 15 consumer tiffmedian 26 security rijndael d

5 automotive susan s 16 network dijkstra 27 security rijndael e

6 bzip2d 17 network patricia 28 security sha

7 bzip2e 18 office ispell 29 telecom adpcm c

8 consumer jpeg c 19 office ghostscript 30 telecom adpcm d

9 consumer jpeg d 20 office rsynth 31 telecom CRC32

10 consumer lame 21 office stringsearch1 32 telecom gsm

11 consumer mad 22 security blowfish d

In this study, we conduct experiments on the benchmark suite cBench with
the compiler GCC 9.4.0. cBench, which is commonly used in compiler auto-
tuning involving various programs such as embedding functions and desktop
programs. The 32 programs in cBench are listed in Table 1. Similarly, the employ-
ment of GCC is due to its popularity and provision of plenty of optimization
options. The complete list of 107 optimization options is available at the GCC
official website1. The experiments are then run 15 times with different random
seeds to reduce the impact of their stochastic nature and produce reasonable
results. In addition, all experiments are carried out on a machine equipped with
an Intel Core i9 2.8 GHz CPU and 32 GB of memory running Ubuntu 20.04.

4.2 Experimental Results

Performance Metric. We use the popular hypervolume (HV) [22] to assess
the quality of the Pareto front in the comparisons between our approach and the
baseline. This metric measures the volume of the objective space between the
Pareto front and the reference point. Before computing HV, we use the min-max
normalization to normalize the objective values and choose the point [1,1] as the
reference point to maintain the accuracy of HV. Due to the aim of maximizing
both objectives, a lower HV value indicates higher quality.

Investigation of RQ1. To investigate whether our approach can effectively
generate suitable optimization sequences in RQ1. We adopt the HV values to
compare the Pareto set explored by our approach with the baseline NSGA-II.
Besides, the Wilcoxon rank sum test with a significance level of 0.05 is used to
assess the statistical significance of the difference between the two algorithms.

1 https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/Optimize-Options.html#Optimize-
Options.

https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/Optimize-Options.html#Optimize-Options

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 391

Table 2. The statistical results of our approach and NSGA-II on cBench

No. HV(NSGA-II) HV(Our) p-value No. HV(NSGA-II) HV(Our) p-value

1 0.5817 0.5148 1.16E−02 17 0.9092 0.8214 1.69E−05

2 0.4578 0.3994 4.89E−01 18 0.6261 0.5385 1.12E−04

3 0.1246 0.1075 3.48E−03 19 0.5737 0.4764 3.97E−04

4 0.2266 0.2042 1.58E−01 20 0.7986 0.7384 5.12E−05

5 0.2129 0.1898 2.18E−03 21 0.0341 0.0300 3.55E−04

6 0.5088 0.4699 7.48E−05 22 0.4466 0.3877 6.28E−03

7 0.4928 0.4413 4.57E−02 23 0.4358 0.3868 7.91E−06

8 0.5613 0.4736 1.91E−04 24 0.6511 0.5897 4.63E−06

9 0.3729 0.3384 7.36E−03 25 0.5632 0.5224 1.14E−04

10 0.6700 0.5732 7.16E−05 26 0.8474 0.7556 1.77E−01

11 0.5790 0.5301 3.21E−01 27 0.9125 0.8421 8.65E−06

12 0.8182 0.7040 6.66E−05 28 0.2798 0.2408 3.61E−05

13 0.7371 0.6694 7.85E−05 29 0.4991 0.4476 8.91E−06

14 0.6443 0.5462 2.01E−05 30 0.5113 0.4335 3.68E−05

15 0.5396 0.4827 2.50E−03 31 0.6537 0.5449 1.34E−05

16 0.0654 0.0554 3.17E−03 32 0.7065 0.5919 2.19E−05

Average 0.5325 0.4702

In our experiments, the population size pnum is set to 100. Then, the crossover
rate and mutation rate are set to 0.9 and 0.01, respectively, as the recommended
parameter settings in RQ2 (the impact of crossover and mutation rate will be
investigated later). Table 2 shows the HV values and p-values obtained using our
approach and NSGA-II. The first and fifth columns represent the numerical order
of the programs. The second and sixth columns are the HV values of NSGA-II.
The HV values of our approach are then listed in columns three and seven. The
p-values are shown in columns four and eight. Finally, the average HV values of
the two algorithms are provided at the bottom of the table.

It can be seen from the table, our approach can explore a better Pareto set
and achieve better performance in the majority of programs. On average, our
approach achieves 0.4702, while NSGA-II achieves 0.5325. When compared to
NSGA-II, our approach improves by 11.7% and performs reasonably well on HV
values. There are two major reasons for this result. One is the utilization of
random forest, as a surrogate model, which is appropriate for high-dimensional
discrete problems and reduces the actual solution evaluations. Another is that
the surrogate model management mechanism adds potential solutions to the
training set to update the surrogate model, thus improving the search procedure
and quality. Besides, as shown in Table 2, the p-values on 28 programs are less
than 0.05, implying that there is a significant difference between our approach
and NSGA-II for the majority of programs (28/32). In summary, these results
reveal that our approach outperforms NSGA-II in terms of finding optimization
sequences.

392 G. Gao et al.

Fig. 2. The boxplot of HV values for two algorithms

In addition, to visually compare the performance of the two algorithms, Fig. 2
plots the HV values of the two algorithms in a box plot. A similar conclusion
can be drawn from Fig. 2 that our approach performs better than NSGA-II (the
box of our approach is lower, which indicates better results).

Answer to RQ1. By comparing our approach to NSGA-II, we demonstrate
that our approach outperforms NSGA-II, which can achieve a 11.7% improve-
ment in HV values. As a result, our approach can effectively explore the Pareto
set and select better optimization sequences.

Investigation of RQ2. In this RQ, we attempt to investigate the impact of two
parameters: crossover rate and mutation rate. A feasible set of parameters may
result in preferable results with improved performance. To examine the impact
of the crossover rate, we change its values while keeping the mutation rate fixed
values, and vice-versa. Besides, the two parameters with varying probabilities
are as follows: crossover rate = {0.5, 0.7, 0.9}, mutation rate = {0.01, 0.05, 0.1}.
Similar to RQ1, the experiments are carried out on cBench and GCC.

Figure 3 depicts the impact results of these two parameters. We make the fol-
lowing three observations based on Fig. 3(a) and Fig. 3(b). First, our approach
converges faster as the crossover rate increases. Second, we find that the con-
vergence of our approach becomes slower when the mutation rate ranges from
0.01 to 0.1. As expected, the higher the crossover rate and the lower the muta-
tion rate, the faster convergence occurs. Third, in terms of convergence rate, the
experimental results of different parameter settings show no noticeable difference
in crossover and mutation rates.

Answer to RQ2. The findings of the parameters impact analysis show that
our approach is not very sensitive to the crossover and mutation rates that are
set. In our experiment, we set the crossover rate to 0.9, and the mutation rate
to 0.01.

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 393

(a) (b)

Fig. 3. The impact of crossover rate and mutation rate

Investigation of RQ3. To gain a better understanding of our approach, we
investigate whether the two surrogate models can effectively improve the effi-
ciency of our approach in RQ3. The number of actual fitness evaluations is
applied as in [18] to investigate the value of surrogate models. By comparing the
number of actual fitness evaluations required using our approach and a variant
without surrogate models to reach convergence and stop the iteration, the results
show that our approach converges when the number of actual fitness evaluations
is 4400, while the variant requires 5600, i.e., more fitness evaluations. Besides,
based on the conclusion of RQ1, we can conclude that our approach performs
better and can find more suitable compiler optimization sequences while requir-
ing fewer actual fitness evaluations.

Answer to RQ3. Taking into account the actual fitness evaluation of our
approach and a variant without surrogate models, we conclude that the two
surrogate models aid in improving the efficiency of our approach and make a
contribution to solving the computationally expensive problem.

5 Conclusion and Future Work

In this paper, we present a novel surrogate-assisted multi-objective optimization
algorithm to improve the efficiency of evolutionary algorithms for compiler opti-
mization sequence selection. To address the diverse objectives influence and the
computationally expensive problem, the proposed approach combines a fast global
search based on non-dominated sorting with two random forests as surrogate mod-
els. The experimental results on cBench show that our proposed approach achieves
better performance than NSGA-II and requires fewer actual fitness evaluations.

Despite the promising results, this work is still preliminary. Because of the
complexity and variety of programs, different appropriate surrogate models will
be designed for different programs in the future to improve efficiency. In addition,
the dimensionality reduction method will be considered on account of the high-
dimensional problem with a large number of compiler optimization options.

394 G. Gao et al.

References

1. Agakov, F., et al.: Using machine learning to focus iterative optimization. In: Pro-
ceedings of the International Symposium on Code Generation and Optimization,
pp. 295–305 (2006)

2. Ansel, J., et al.: OpenTuner: an extensible framework for program autotuning. In:
Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, pp. 303–316 (2014)

3. Ashouri, A.H., Bignoli, A., Palermo, G., Silvano, C., Kulkarni, S., Cavazos, J.:
MICOMP: mitigating the compiler phase-ordering problem using optimization sub-
sequences and machine learning. ACM Trans. Archit. Code Optim. 14(3), 29 (2017)

4. Ashouri, A.H., Killian, W., Cavazos, J., Palermo, G., Silvano, C.: A survey on
compiler autotuning using machine learning. ACM Comput. Surv. 51(5), 1–42
(2018)

5. Ashouri, A.H., Mariani, G., Palermo, G., Park, E., Cavazos, J., Silvano, C.:
COBAYN: compiler autotuning framework using Bayesian networks. ACM Trans.
Archit. Code Optim. (TACO) 13(2), 1–25 (2016)

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
7. Cáceres, L.P., Bischl, B., Stützle, T.: Evaluating random forest models for irace. In:

Proceedings of the Genetic and Evolutionary Computation Conference Companion,
pp. 1146–1153 (2017)

8. Chebolu, N.A.B.S., Wankar, R.: Multi-objective exploration for compiler optimiza-
tions and parameters. In: Murty, M.N., He, X., Chillarige, R.R., Weng, P. (eds.)
MIWAI 2014. LNCS (LNAI), vol. 8875, pp. 23–34. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-13365-2 3

9. Chen, J., Xu, N., Chen, P., Zhang, H.: Efficient compiler autotuning via Bayesian
optimization. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 1198–1209. IEEE (2021)

10. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Syst. 9(2), 115–148 (1995)

11. Fursin, G.: Collective benchmark (cBench), a collection of open-source programs
with multiple datasets assembled by the community to enable realistic benchmark-
ing and research on program and architecture optimization (2010). http://cTuning.
org/cbench

12. Gu, Q., Wang, D., Jiang, S., Xiong, N., Jin, Y.: An improved assisted evolutionary
algorithm for data-driven mixed integer optimization based on Two Arch. Comput.
Ind. Eng. 159, 107463 (2021)

13. Gu, Q., Wang, Q., Li, X., Li, X.: A surrogate-assisted multi-objective particle
swarm optimization of expensive constrained combinatorial optimization problems.
Knowl.-Based Syst. 223, 107049 (2021)

14. Hall, M., Padua, D., Pingali, K.: Compiler research: the next 50 years. Commun.
ACM 52(2), 60–67 (2009)

15. Hong, W., Yang, P., Wang, Y., Tang, K.: Multi-objective magnitude-based pruning
for latency-aware deep neural network compression. In: Bäck, T., et al. (eds.) PPSN
2020. LNCS, vol. 12269, pp. 470–483. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58112-1 32

16. Lokuciejewski, P., Plazar, S., Falk, H., Marwedel, P., Thiele, L.: Multi-objective
exploration of compiler optimizations for real-time systems. In: 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pp. 115–122. IEEE (2010)

https://doi.org/10.1007/978-3-319-13365-2_3
https://doi.org/10.1007/978-3-319-13365-2_3
http://cTuning.org/cbench
http://cTuning.org/cbench
https://doi.org/10.1007/978-3-030-58112-1_32
https://doi.org/10.1007/978-3-030-58112-1_32

Surrogate-Assisted Multi-objective Optimization for Compiler Auto-tuning 395

17. Lokuciejewski, P., Plazar, S., Falk, H., Marwedel, P., Thiele, L.: Approximating
pareto optimal compiler optimization sequences-a trade-off between WCET, ACET
and code size. Softw. Pract. Experience 41(12), 1437–1458 (2011)

18. Sun, C., Ding, J., Zeng, J., Jin, Y.: A fitness approximation assisted competitive
swarm optimizer for large scale expensive optimization problems. Memetic Com-
put. 10(2), 123–134 (2018)

19. Sun, Y., Wang, H., Xue, B., Jin, Y., Yen, G.G., Zhang, M.: Surrogate-assisted
evolutionary deep learning using an end-to-end random forest-based performance
predictor. IEEE Trans. Evol. Comput. 24(2), 350–364 (2019)

20. Valdiviezo, H.C., Van Aelst, S.: Tree-based prediction on incomplete data using
imputation or surrogate decisions. Inf. Sci. 311, 163–181 (2015)

21. Zhou, Y.Q., Lin, N.W.: A study on optimizing execution time and code size in
iterative compilation. In: 2012 Third International Conference on Innovations in
Bio-Inspired Computing and Applications, pp. 104–109. IEEE (2012)

22. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-
P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

https://doi.org/10.1007/BFb0056872

Theoretical Aspects of Nature-Inspired
Optimization

A First Runtime Analysis of the NSGA-II
on a Multimodal Problem

Benjamin Doerr and Zhongdi Qu(B)

Laboratoire d’Informatique (LIX), Ecole Polytechnique, CNRS, Institut
Polytechnique de Paris, Palaiseau, France

doerr@lix.polytechnique.fr, d.q.1124@gmail.com

Abstract. Very recently, the first mathematical runtime analyses of the
multi-objective evolutionary optimizer NSGA-II have been conducted.
We continue this line of research with a first runtime analysis of this
algorithm on a benchmark problem consisting of two multimodal objec-
tives. We prove that if the population size N is at least four times the
size of the Pareto front, then the NSGA-II with four different ways to
select parents and bit-wise mutation optimizes the OneJumpZeroJump
benchmark with jump size 2 ≤ k ≤ n/4 in time O(Nnk). When using
fast mutation, a recently proposed heavy-tailed mutation operator, this
guarantee improves by a factor of kΩ(k). Overall, this work shows that the
NSGA-II copes with the local optima of the OneJumpZeroJump problem
at least as well as the global SEMO algorithm.

Keywords: NSGA-II · Multimodal problem · Runtime analysis

1 Introduction

The mathematical runtime analysis of evolutionary algorithms (EAs) has con-
tributed significantly to our understanding of these algorithms, given advice on
how to set their parameters, and even proposed new algorithms [6,14,20,23].
Most of the insights, however, have been obtained by regarding artificially sim-
ple algorithms such as the (1 + 1) EA, the fruit fly of EA research.

In contrast, the recent work [31] succeeded in analyzing the non-dominated
sorting genetic algorithm II (NSGA-II) [12], the multi-objective EA (MOEA)
most used in practice [32]. This line of research was almost immediately followed
up in [7] and [30]. These three works, just like the majority of the theoretical
works on MOEAs, only regard multi-objective problems composed of unimodal
objectives (see Sect. 2 for more details).

In this work, we continue the runtime analysis of the NSGA-II with a
first analysis on a problem composed of two multi-modal objectives, namely
the OneJumpZeroJump problem proposed in [17]. This problem, defined on
bit strings of length n, is a natural multi-objective analogue of the single-
objective Jump problem, which might be the multimodal problem most studied

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 399–412, 2022.
https://doi.org/10.1007/978-3-031-14721-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_28&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_28

400 B. Doerr and Z. Qu

in single-objective runtime analysis. The Jump problem (and the two objec-
tives of the OneJumpZeroJump problem) come with a difficulty parame-
ter k ∈ [1..n] := {1, . . . , n}, which is the width of the valley of low fitness around
the global optimum. Consequently, typical hillclimbers at some point need to
flip the right k bits, which is difficult already for moderate sizes of k. For the
multi-objective OneJumpZeroJump problem the situation is similar. Here the
Pareto front is not a connected set in the search space {0, 1}n, but there are
solutions which can only be reached from other points on the Pareto front by
flipping k bits, which creates a challenge similar to the single-objective case.

Our Results: We conduct a mathematical runtime analysis of the NSGA-II algo-
rithm on the OneJumpZeroJump problem with jump sizes k ∈ [2..14n]. We
allow that k is functionally dependent on n and let all asymptotic notation
be with respect to n. Since the runtimes we observe are at least exponential
in k, the restriction of k ≤ 1

4n, done mostly to avoid some not very interesting
technicalities, is not a harsh restriction. As runtime, we consider the number of
fitness evaluations until the full Pareto front (that is, at least one individual for
each Pareto-optimal objective value) is contained in the parent population of
the NSGA-II. As in [31], we assume that the population size N of the NSGA-II
is sufficiently large, here at least four times the size of the Pareto front (since a
population size equal to the Pareto front size does not suffice to find the Pareto
front even of the simple OneMinMax problem [31], this assumption appears
justified). We regard the NSGA-II with four different ways to select the parents
(each individual once (“fair selection”), uniform, N independent binary tourna-
ments, and N binary tournaments from two random permutations of the pop-
ulation (“two-permutation tournament scheme”)), with bit-wise mutation with
mutation rate 1

n , and, for the theoretical analyses, without crossover. We prove
that this algorithm on the OneJumpZeroJump problem with jump size k has
an expected runtime of at most (1 + o(1))KNnk, where K is a small constant
depending on the selection method. Hence for N = Θ(n), the NSGA-II satisfies
the same asymptotic runtime guarantee of O(nk+1) as the (mostly relevant in
theory) algorithm global SEMO (GSEMO), for which a runtime guarantee of
(1 + o(1))1.5e(n − 2k + 3)nk was shown in [17].

Since it has been observed many times that a heavy-tailed mutation operator
called fast mutation can significantly speed up leaving local optima [1–3,5,9,13,
16–19,25,29], we also regard the NSGA-II with this mutation operator. Similar
to previous works, we manage to show a runtime guarantee which is lower by a
factor of kΩ(k) (see Theorem 3 for a precise statement of this result). This result
suggests that the NSGA-II, similar to many other algorithms, profits from fast
mutation when local optima need to be left.

2 Previous Works

For reasons of space, we only briefly mention the most relevant previous works.
For a more detailed account of the literature, we refer to these works or the
survey [8].

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 401

The first mathematical runtime analysis of the NSGA-II [31] showed that this
algorithm can efficiently find the Pareto front of the OneMinMax and LOTZ
bi-objective problems when the population size N is at least some constant factor
larger than the size of the Pareto front (which is n+1 for these problems). In this
case, once an objective value of the Pareto front is covered by the population,
it remains so for the remaining run of the algorithm. This is different when the
population size is only equal to the size of the Pareto front. Then such values
can be lost, and this effect is strong enough that for an exponential number of
iterations a constant fraction of the Pareto front is not covered [31]. Nevertheless,
also in this case the NSGA-II computes good approximations of the Pareto front
as the first experiments in [31] and a deeper analysis in [30] show.

The most recent work [7] extends [31] in several directions. (i) For the NSGA-
II using crossover, runtime guarantees for the OneMinMax, COCZ, and LOTZ
problems are shown which agree with those in [31]. (ii) By assuming that indi-
viduals with identical objective value appear in the same or inverse order in the
sortings used to compute the crowding distance, the minimum required popula-
tion size is lowered to 2(n+1). (iii) A stochastic tournament selection is proposed
that reduces the runtimes by a factor of Θ(n) on LOTZ and Θ(log n) on the
other two benchmarks.

The OneMinMax, COCZ, and LOTZ benchmarks are all composed of two
unimodal objectives, namely functions isomorphic to the benchmarks OneMax
and LeadingOnes from single-objective EA theory. The theory of MOEA has
strongly focused on such benchmarks, a benchmark composed of multimodal
objectives was only proposed and analyzed in [17].

Besides the definition of the OneJumpZeroJump problem, the main results
in that work are that the SEMO algorithm cannot optimize this benchmark, that
the GSEMO takes time O((n − 2k + 3)nk) (where the implicit constants can be
chosen independent of n and k), and that the GSEMO with fast mutation with
power-law exponent β > 1 succeeds in time O((n−2k+3)k−k+β−0.5nk(n

n−k)n−k)
(where the implicit constant can be chosen depending on β only). A slightly
weaker, but still much better bound than for bit-wise mutation was shown for
the GSEMO with the stagnation detection mechanism of Rajabi and Witt [26]
(we omit the details for reasons of space).

3 Preliminaries

3.1 The NSGA-II Algorithm

We only give a brief overview of the algorithm here due to space constraints,
and refer to [12] for a more detailed description of the general algorithm and to
[31] for more details on the particular version of the NSGA-II we regard.

The algorithm starts with a random initialization of a parent population of
size N . At each iteration, N children are generated from the parent population
via a mutation method, and N individuals among the combined parent and
children population survive to the next generation based on their ranks in the
non-dominated sorting and, as tie-breaker, the crowding distance.

402 B. Doerr and Z. Qu

Ranks are determined recursively. All individuals that are not strictly domi-
nated by any other individual have rank 1. Given that individuals of rank 1, . . . , i
are defined, individuals of rank i + 1 are those only strictly dominated by indi-
viduals of rank i or smaller. Clearly, individuals of lower ranks are preferred.

The crowding distance, denoted by cDis(x) for an individual x, is used to
compare individuals of the same rank. To compute the crowding distances of
individuals of rank i with respect to a given objective function fj , we first sort the
individuals in ascending order according to their fj objective values. The first and
last individuals in the sorted list have infinite crowding distance. For the other
individuals, their crowding distance is the difference between the objective values
of its left and right neighbors in the sorted list, normalized by the difference of
the minimum and maximum values. The final crowding distance of an individual
is the sum of its crowding distances with respect to each objective function.

At each iteration, the critical rank i∗ is the rank such that if we take all
individuals of ranks smaller than i∗, the total number of individuals will be
less than or equal to N , but if we also take all individuals of rank i∗, the total
number of individuals will be over N . Thus, all individuals of rank smaller than
i∗ survive to the next generation, and for individuals of rank i∗, we take the
individuals with the highest crowding distance, breaking ties randomly, so that
in total exactly N individuals are kept.

3.2 The ONEJUMPZEROJUMP Benchmark

Let n ∈ N and k = [2..n/4]. The bi-objective function OneJumpZeroJumpn,k =
(f1, f2) : {0, 1}n → R

2 is defined by

f1(x) =

{
k + |x|1, if |x|1 ≤ n − k or x = 1n,

n − |x|1, else;

f2(x) =

{
k + |x|0, if |x|0 ≤ n − k or x = 0n,

n − |x|0, else.

The aim is to maximize both f1 and f2. The first objective is the classical
Jumpn,k function. It has a valley of low fitness around its optimum, which can
be crossed only by flipping the k correct bits, if no solutions of lower fitness
are accepted. The second objective is isomorphic to the first, with the roles of
zeroes and ones exchanged. According to Theorem 2 of [17], the Pareto set of the
OneJumpZeroJumpn,k function is S∗ = {x ∈ {0, 1}n | |x|1 = [k..n−k]∪{0, n}},
and the Pareto front F ∗ is {(a, 2k + n − a) | a ∈ [2k..n] ∪ {k, n + k}}, making
the size of the front is n − 2k + 3. We define the inner part of the Pareto set by
S∗

I = {x | |x|1 ∈ [k..n−k]}, the outer part by S∗
O = {x | |x|1 ∈ {0, n}}, the inner

part of the Pareto front by F ∗
I = f(S∗

I) = {(a, 2k + n − a) | a ∈ [2k..n]}, and the
outer part by F ∗

O = f(S∗
O) = {(a, 2k + n − a) | a ∈ {k, n + k}}.

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 403

4 Runtime Analysis for the NSGA-II

In this section, we prove our runtime guarantees for the NSGA-II, first with
bit-wise mutation with mutation rate 1

n (Subsect. 4.1), then with fast mutation
(Subsect. 4.2). For reasons of space, most mathematical proofs had to be omitted
from this extended abstract. They can be found in the preprint [15].

The obvious difference to the analysis for OneMinMax in [31] is that with
OneJumpZeroJump, individuals with between one and k − 1 zeroes or ones
are not optimal. Moreover, all these individuals have a very low fitness in both
objectives. Consequently, such individuals usually will not survive into the next
generation, which means that the NSGA-II at some point will have to generate
the all-ones string from a solution with at least k zeroes (unless we are extremely
lucky in the initialization of the population). This difference is the reason for
the larger runtimes and the advantage of the fast mutation operator.

A second, smaller difference which however cannot be ignored in the mathe-
matical proofs is that the very early populations of a run of the algorithm may
contain zero individual on the Pareto front. This problem had to be solved also in
the analysis of LOTZ in [31], but the solution developed there required that the
population size is at least 5 times the size of the Pareto front (when tournament
selection was used). For OneJumpZeroJump, we found a different argument
to cope with this situation that, as all the rest of the proof, only requires a
population size of at least 4 times the Pareto front size.

We start with a few general observations that apply to both cases. A cru-
cial observation, analogous to a similar statement in [31], is that with sufficient
population size, objective values of rank-1 individuals always survive to the next
generation.

Lemma 1. Consider one iteration of the NSGA-II algorithm optimizing the
OneJumpZeroJumpn,k benchmark, with population size N ≥ 4(n − 2k + 3).
If in some iteration t the combined parent and offspring population Rt contains
an individual x of rank 1, then the next parent population Pt+1 contains an
individual y such that f(y) = f(x). Moreover, if an objective value on the Pareto
front appears in Rt, it will be kept in all future iterations.

Proof. Let F1 be the set of rank-1 individuals in Rt. To prove the first claim, we
need to show that for each x ∈ F1, there is a y ∈ Pt+1 such that f(x) = f(y). Let
S1.1, . . . , S1.|F1| be the list of individuals in F1 sorted by ascending f1 values and
S2.1, . . . , S2.|F1| be the list of individuals sorted by ascending f2 values, which
were used to compute the crowding distances. Then there exist a ≤ b and a′ ≤ b′

such that [a..b] = {i | f1(S1.i) = f1(x)} and [a′..b′] = {i | f2(S2.i) = f2(x)}. If
any one of a = 1, a′ = 1, b = |F1|, or b′ = |F1| is true, then there is an individual
y ∈ F1 satisfying f(y) = f(x) of infinite crowding distance. Since there are
at most 4 < N individuals of infinite crowding distance, y is kept in Pt+1. So
consider the case that a, a′ > 1 and b, b′ < |F1|. By the definition of the crowding
distance, we have that cDis(S1.a) ≥ f1(S1.a+1)−f1(S1.a−1)

f1(S1.|F1|)−f1(S1.1)
≥ f1(S1.a)−f1(S1.a−1)

f1(S1.|F1|)−f1(S1.1)
.

Since f1(S1.a) − f1(S1.a−1) > 0 by the definition of a, we have cDis(S1.a) > 0.

404 B. Doerr and Z. Qu

Similarly, we have cDis(S1.a′), cDis(S1.b), cDis(S1.b′) > 0. For i ∈ [a + 1..b − 1]
and S1.i = S2.j for some j ∈ [a′ + 1..b′ − 1], we have that f1(S1.i−1) = f1(x) =
f1(S1.i+1) and f2(S2.j−1) = f2(x) = f2(S2.j+1). So cDis(S1.i) = 0. Therefore, for
each f(x) value, there are at most 4 individuals with the same objective value
and positive crowding distances. By Corollary 6 in [17], |F1| ≤ n − 2k + 3. So
the number of rank-1 individuals with positive crowding distances is at most
4(n − 2k + 3) ≤ N and therefore they will all be kept in Pt+1.

The second claim then follows since if x ∈ Rt and f(x) is on the Pareto front,
we have x ∈ F1. By the first claim, x ∈ Pt+1 and therefore x ∈ Rt+1. The same
reasoning applies for all future iterations. ��

For our analysis, we divide a run of the NSGA-II algorithm optimizing the
OneJumpZeroJumpn,k benchmark into the following stages.

– Stage 1 : Pt ∩ S∗
I = ∅. In this stage, the algorithm tries to find the first

individual with objective value in F ∗
I .

– Stage 2 : There exists a v ∈ F ∗
I such that v /∈ f(Pt). In this stage, the

algorithm tries to cover the entire set F ∗
I .

– Stage 3 : F ∗
I ⊆ f(Pt), but F ∗

O � f(Pt). In this stage, the algorithm tries to
find the extremal values of the Pareto front.

By Lemma 1, once the algorithm has entered a later stage, it will not go back to
an earlier stage. Thus, we can estimate the expected number of iterations needed
by the NSGA-II algorithm by separately analyzing each stage.

A mutation method studied in [31] is to flip one bit selected uniformly at ran-
dom. For reasons of completeness, we prove in the following lemma the natural
result that the NSGA-II with this mutation operator with high probability is not
able to cover the full Pareto front of the OneJumpZeroJumpn,k benchmark.

Lemma 2. With probability 1 − N exp(−Ω(n)), the NSGA-II algorithm using
one-bit flips as mutation operator does not find the full Pareto front of the
OneJumpZeroJumpn,k benchmark, regardless of the runtime.

Proof. Since k ≤ n/4, a simple Chernoff bound argument shows that a random
initial individual is in S∗

I with probability 1 − exp(−Ω(n)). By a union bound,
we have P0 ⊆ S∗

I with probability 1−N exp(−Ω(n)). We argue that in this case,
the algorithm can never find an individual in S∗

O.
We observe that any individual in S∗

I strictly dominates any individual in
the gap regions of the two objectives, that is, with between 1 and k − 1 zeroes
or ones. Consequently, in any population containing at least one individual from
S∗

I , such a gap individual can never have rank 1, and the only rank 1 individuals
are those on the Pareto front. Hence if Pt for some iteration t contains only
individuals on the Pareto front, Pt+1 will do so as well.

By induction and our assumption P0 ⊆ S∗
I , we see that the parent population

will never contain an individual with exactly one one-bit. Since only from such
a parent the all-zeroes string can be generated (via one-bit mutation), we will
never have the all-zeroes string in the population. ��

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 405

In the light of Lemma 2, the one-bit flip mutation operator is not suitable
for the optimization of OneJumpZeroJump. We therefore do not consider this
operator in the following runtime analyses.

4.1 Runtime Analysis for the NSGA-II Using Bit-Wise Mutation

In this section, we analyze the complexity of the NSGA-II algorithm when mutat-
ing each bit of each selected parent with probability 1

n . We consider four different
ways of selecting the parents for mutation: (i) fair selection (selecting each par-
ent once), (ii) uniform selection (selecting one parent uniformly at random for N
times), (iii) via N independent tournaments (for N times, uniformly at random
sample 2 different parents and conduct a binary tournament between the two,
i.e., select the one with the lower rank and, in case of tie, select the one with the
larger crowding distance, and, in case of tie, select one randomly), and (iv) via
a two-permutation tournament scheme (generate two random permutations π1

and π2 of Pt and conduct a binary tournament between πj(2i − 1) and πj(2i)
for all i ∈ [1..N/2] and j ∈ {1, 2}; this is the selection method used in Deb’s
implementation of the NSGA-II when ignoring crossover [12]).

Lemma 3. Using population size N ≥ 4(n − 2k + 3), bit-wise mutation for
variation, and any parent selection method, stage 1 needs in expectation at most
e(4k

3)k iterations.

Proof. Suppose x is selected for mutation during one iteration of stage 1 and
|x|1 = i. Then i < k or i > n − k. If i < k, then the probability of obtaining an
individual with k 1-bits is at least

(
n−i
k−i

)
(1

n)k−i(1 − 1
n)n−(k−i) ≥ (n−i

n(k−i))
k−i(1 −

1
n)n−1 > 1

e (3
4(k−i))

k−i ≥ 1
e (3

4k)k (where the second to last inequality uses the
assumption that i < k ≤ n

4). If i > n − k, then the probability of obtaining
an individual with n − k 1-bits is at least

(
i

i−(n−k)

)
(1

n)i−(n−k)(1 − 1
n)2n−i−k ≥

(i
n(i−n+k))

i−n+k(1 − 1
n)n−1 > 1

e (3
4(i−n+k))

i−n+k ≥ 1
e (3

4k)k (where the second to
last inequality uses the assumption that i > n − k ≥ 3

4n). Hence each iteration
with probability at least 1

e (3
4k)k marks the end of stage 1. Consequently, stage

1 ends after in expectation at most (1e (3
4k)k)−1 = e(4k

3)k iterations. ��
For the remaining two stages, we first regard the technically easier fair and

uniform selection methods.

Lemma 4. Using population size N ≥ 4(n−2k+3), selecting parents using fair
or uniform selection, and using bit-wise mutation for variation, stage 2 needs in
expectation O(n log n) iterations.

For reasons of space, we omit the proof, which is very similar to the corre-
sponding part of the analysis on OneMinMax [31]. Different arguments, natu-
rally, are needed in the following analysis of stage 3.

Lemma 5. Using population size N ≥ 4(n − 2k + 3) and bit-wise mutation for
variation, stage 3 needs in expectation at most 2enk iterations if selecting parents
using fair selection, and 2 e2

e−1nk iterations if using uniform selection.

406 B. Doerr and Z. Qu

Proof. Consider one iteration t of stage 3. We know that there is an x ∈ Pt

such that |x|1 = k. Denote the probability that x is selected at least once to be
mutated in this iteration by p1. Conditioning on x being selected, denote the
probability that all k 1-bits of x are flipped in this iteration by p2. Then the
probability of generating 0n in this iteration is at least p1p2. Since by Lemma 1,
x is kept for all future generations, we need at most 1

p1p2
iterations to obtain

0n. With fair selection, we have p1 = 1 and with uniform selection, p1 = 1 −
(1 − 1

N)N ≥ 1 − 1
e . On the other hand, p2 = (1

n)k(1 − 1
n)n−k ≥ 1

enk . So the
expected number 1

p1p2
of iterations to obtain 0n is bounded by enk if using fair

selection, and by e2

e−1nk if using uniform selection. The case for obtaining 1n is
symmetrical. Therefore, the expected total number of iterations needed to cover
the extremal values of the Pareto front is at most 2enk if using fair selection,
and 2 e2

e−1nk if using uniform selection. ��
Combining the lemmas, we immediately obtain the runtime guarantee.

Theorem 1. Using population size N ≥ 4(n − 2k + 3), selecting parents using
fair or uniform selection, and mutating using bit-wise mutation, the NSGA-II
needs in expectation at most (1 + o(1))KNnk fitness evaluations to cover the
entire Pareto front of the OneJumpZeroJumpn,k benchmark, where K = 2e

for fair selection and K = 2 e2

e−1 for uniform selection.

In the above result, we have given explicit values for the leading constant K
to show that it is not excessively large, but we have not tried to optimize this
constant. In fact, it is easy to see that the 2 could be replaced by 1.5 by taking
into account that the expected time to find the first extremal point is only half
the time to find a particular extremal point. Since we have no non-trivial lower
bounds at the moment, we find it too early to optimize the constants.

We now turn to the case where the mutating parents are chosen using one of
two ways of binary tournaments, namely, via N independent tournaments and
the two-permutation tournament scheme.

Theorem 2. Using population size N ≥ 4(n − 2k + 3), selecting parents using
N independent tournaments or the two-permutation tournament scheme, and
mutating using bit-wise mutation, the NSGA-II takes in expectation at most
(1 + o(1))KNnk fitness evaluations to cover the entire Pareto front of the
OneJumpZeroJumpn,k benchmark, where K = 2 e2

e−1 if using N independent
tournaments, and K = 8

3e if using the two-permutation tournament scheme.

The proof of this result follows the outline of the proof of Theorem 1, but
needs some technical arguments from [31] on the probability that an individual
next to an uncovered spot on the Pareto front is chosen to be mutated.

4.2 Runtime Analysis for the NSGA-II Using Fast Mutation

We now consider the NSGA-II with heavy-tailed mutation, i.e., the mutation
operator proposed in [13] and denoted by MUTβ(·) in [17], a work from which
we shall heavily profit in the following.

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 407

Let β > 1 be a constant (typically below 3). Let Dβ
n/2 be the distribution

such that if a random variable X follows the distribution, then Pr[X = α] =
(Cβ

n/2)
−1α−β for all α ∈ [1..n/2], where n is the size of the problem and Cβ

n/2 :=∑n/2
i=1 i−β . In an application of the mutation operator MUTβ(·), first an α is

chosen according to the distribution Dβ
n/2 (independent from all other random

choices of the algorithm) and then each bit of the parent is flipped independently
with probability α/n. Let x ∈ {0, 1}n, y ∼ MUTβ(x), and H(x, y) denote the
Hamming distance between x and y. Then, by Lemma 13 of [17], we have

P β
j := Pr[H(x, y) = j] =

{
(Cβ

n/2)
−1Θ(1) for j = 1;

(Cβ
n/2)

−1Ω(j−β) for j ∈ [2..n/2].

Theorem 3. Using population size N ≥ 4(n − 2k + 3), selecting parents using
fair or uniform selection, and mutating with the MUTβ(·) operator, the NSGA-II
takes at most (1+ o(1)) 1

P β
k

NK
(
n
k

)
fitness evaluations in expectation to cover the

entire Pareto front of the OneJumpZeroJumpn,k benchmark, where K = 2 for
fair selection, K = 2e

e−1 for uniform selection and selection via N independent
binary tournaments, and K = 8

3 for the two-permutation binary tournament
scheme.

Noting that
(
n
k

)
is by a factor of kΩ(k) smaller than nk, whereas 1/P β

k is only
O(kβ), we see that the runtime guarantee for the heavy-tailed operator is by
a factor of kΩ(k) stronger than our guarantee for bit-wise mutation. Without a
lower bound on the runtime in the bit-wise setting, we cannot claim that the
heavy-tailed algorithm is truly better, but we strongly believe so (we do not see
a reason why the NSGA-II with bit-wise mutation should be much faster than
what our upper bound guarantees).

We note that it is easy to prove a lower bound of Ω(nk) for the runtime of the
NSGA-II with bit-wise mutation (this is a factor of N below our upper bound,
which stems from pessimistically assuming that in each iteration, N times a
parent is selected that has a Θ(n−k) chance of generating an extremal point of
the Pareto front). For k larger than, say, log(N), this weak lower bound would
suffice to show that the heavy-tailed NSGA-II is asymptotically faster. We spare
the details and hope that at some time, we will be able to prove tight lower
bounds for the NSGA-II.

We omit the formal proof of Theorem 3, which is not too different from the
proofs of Theorems 1 and 2, for reasons of space.

When k ≤ √
n, the runtime estimates above can be estimated further as

follows. In [17], it was shown that

P β
i ≥

{
β−1
eβ for i = 1;

β−1

4
√
2πe8

√
2+13β

i−β for i ∈ [2..�√n�].

Also, for k ≤ √
n, a good estimate for the binomial coefficient is

(
n
k

) ≤ nk

k! (losing
at most a constant factor of e, and at most a (1 + o(1))-factor when k = o(

√
n).

408 B. Doerr and Z. Qu

Hence the runtime estimate from Theorem 3 for k ≤ √
n becomes

(1 + o(1))K
4
√

2πe8
√
2+13β

β − 1
Nkβ nk

k!
,

which is a tight estimate of the runtime guarantee of Theorem 3 apart from
constants independent of n and k. In any case, this estimate shows that for
moderate values of k, our runtime guarantee for the heavy-tailed NSGA-II is
better by a factor of Θ(k!k−β), which is substantial already for small values
of k.

5 Experiments

To complement our theoretical results, we also experimentally evaluate the run-
time of the NSGA-II algorithm on the OneJumpZeroJump benchmark.

Settings: We implemented the algorithm as described in Sect. 3 in Python (the
code can be found at https://github.com/deliaqu/NSGA-II). We use the follow-
ing settings.

– Problem size n: 20 and 30.
– Jump size k: 3.
– Population size N : In our theoretical analysis, we have shown that with N =

4(n − 2k + 3), the algorithm is able to recover the entire Pareto front. To
further explore the effect of the population size, we conduct experiments with
this population size, with half this size, and with twice this size, that is, for
N ∈ {2(n − 2k + 3), 4(n − 2k + 3), 8(n − 2k + 3)}.

– Parent selection: For simplicity, we only experiment with using N independent
binary tournaments.

– Mutation operator: Following our theoretical analysis, we consider two muta-
tion operators, namely bit-wise mutation (flipping each bit with proba-
bility 1

n) and fast mutation, that is, the heavy-tailed mutation operator
MUTβ(·).

– Number of independent repetitions per setting: 50. This number is a compro-
mise between the longer runtimes observed on a benchmark like OneJumpZe-
roJump and the not very concentrated runtimes (for most of our experiments,
we observed a corrected sample standard deviation between 50% and 80% of
the mean, which fits to our intuition that the runtimes are dominated by the
time to find the two extremal points of the Pareto front).

Experimental Results: Table 1 contains the average runtime (number of fit-
ness evaluations done until the full Pareto front is covered) of the NSGA-II
algorithm when using bit-wise mutation and the heavy-tailed mutation opera-
tor. The most obvious finding is that the heavy-tailed mutation operator already
for these small problem and jump sizes gives significant speed-ups.

While our theoretical results are valid only for N ≥ 4(n−2k+3), our experi-
mental data suggests that also with the smaller population size N = 2(n−2k+3)

https://github.com/deliaqu/NSGA-II

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 409

Table 1. Average runtime of the NSGA-II with bit-wise mutation and heavy-tailed
mutation operator on the OneJumpZeroJump benchmark with k = 3.

n = 20 n = 30

Bit-wise Heavy-tailed Bit-wise Heavy-tailed

N = 2(n − 2k + 3) 264932 178682 1602552 785564

N = 4(n − 2k + 3) 366224 188213 1777546 1080458

N = 8(n − 2k + 3) 529894 285823 2836974 1804394

Table 2. Average runtime of the NSGA-II with bit-wise mutation and crossover on
the OneJumpZeroJump benchmark with k = 3

n = 20 n = 30 n = 40

N = 2(n − 2k + 3) 68598 265993 773605

N = 4(n − 2k + 3) 45538 205684 510650

N = 8(n − 2k + 3) 68356 316500 635701

the algorithm is able to cover the entire Pareto front of the OneJumpZero-
Jump benchmark. We suspect that this is because even though theoretically
there could be 4 individuals in each generation with the same objective value
and positive crowding distances, empirically this happens relatively rarely and
the expected number of individuals with the same objective value and positive
crowding distances is closer to 2. We also note that with a larger population,
e.g., N = 8(n − 2k + 3), naturally, the runtime increases, but usually by signifi-
cantly less than a factor of two. This shows that the algorithm is able to profit
somewhat from the larger population size.

Crossover: Besides fast mutation, two further mechanisms were found that
can speed up the runtime of evolutionary algorithms on (single-objective) jump
functions, namely the stagnation-detection mechanism of Rajabi and Witt [16,
26–28] and crossover [4,10,11,21]. We are relatively optimistic that stagnation
detection, as together with the global SEMO algorithm [17], can provably lead
to runtime improvements, but we recall from [17] that the implementation of
stagnation detection is less obvious for MOEAs. For that reason, we ignore this
approach here and immediately turn to crossover, given that no results proving
a performance gain from crossover for the NSGA-II exist, and there are clear
suggestions on how to use it in [11].

Inspired by [11], we propose and experimentally analyze the following vari-
ant of the NSGA-II. The basic algorithm is as above. In particular, we also
select N parents via independent tournaments. We partition these into pairs.
For each pair, with probability 90%, we generate two intermediate offspring via
a 2-offspring uniform crossover (that is, for each position independently, with
probability 0.5, the first child inherits the bit from the first parent, and other-
wise from the second parent; the bits from the two parents that are not inherited

410 B. Doerr and Z. Qu

by the first child make up the second child). We then perform bit-wise muta-
tion on these two intermediate offspring. With the remaining 10% probability,
mutation is performed directly on the two parents.

Table 2 contains the average runtimes for this algorithm. We observe that
crossover leads to massive speed-ups (which allows us to also conduct experi-
ments for problem size n = 40). More detailedly, comparing the runtimes for
n = 30 and bit-wise mutation (which is fair since the crossover version also uses
this mutation operator), the crossover-based algorithm only uses between 8%
and 15% percent of the runtime of the mutation-only algorithm.

We note that different from the case without crossover, with N = 2(n−2k+3),
the algorithm consistently takes more time than with N = 4(n − 2k + 3). We
suspect that the smaller population size makes it less likely that the population
contains two parents from which crossover can create a profitable offspring.

6 Conclusions and Future Works

In this first mathematical runtime analysis of the NSGA-II on a bi-objective
multimodal problem, we have shown that the NSGA-II with a sufficient pop-
ulation size performs well on the OneJumpZeroJump benchmark and profits
from heavy-tailed mutation, all comparable to what was shown before for the
GSEMO algorithm.

Due to the more complicated population dynamics of the NSGA-II, we could
not prove an interesting lower bound. For this, it would be necessary to under-
stand how many individuals with a particular objective value are in the popu-
lation – note that this number is trivially one for the GSEMO, which explains
why for this algorithm lower bounds could be proven [17]. Understanding better
the population dynamics of the NSGA-II and then possibly proving good lower
bounds is an interesting and challenging direction for future research.

A second interesting direction is to analyze how the NSGA-II with crossover
optimizes the OneJumpZeroJump benchmark. Our experiments show clearly
that crossover can lead to significant speed-ups here. Again, we currently do not
have the methods to analyze this algorithm, and we speculate that a very good
understanding of the population dynamics is necessary to solve this problem. We
note that the only previous work [7] regarding the NSGA-II with crossover does
not obtain faster runtimes from crossover. Besides that work, we are only aware of
two other runtime analyses for crossover-based MOEAs, one for the multi-criteria
all-pairs shortest path problem [22], the other also for classic benchmarks, but
with an initialization that immediately puts the extremal points of the Pareto
front into the population [24]. So it is unlikely that previous works can be used to
analyze the runtime of the crossover-based NSGA-II on OneJumpZeroJump.

Acknowledgment. This work was supported by a public grant as part of the
Investissements d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

A First Runtime Analysis of the NSGA-II on a Multimodal Problem 411

References

1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1268–
1276. ACM (2020)

2. Antipov, D., Buzdalov, M., Doerr, B.: First steps towards a runtime analysis when
starting with a good solution. In: Bäck, T., et al. (eds.) PPSN 2020, Part II.
LNCS, vol. 12270, pp. 560–573. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58115-2 39

3. Antipov, D., Buzdalov, M., Doerr, B.: Lazy parameter tuning and control: choosing
all parameters randomly from a power-law distribution. In: Genetic and Evolution-
ary Computation Conference, GECCO 2021, pp. 1115–1123. ACM (2021)

4. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms.
Algorithmica 84, 1724–1761 (2022)

5. Antipov, D., Doerr, B.: Runtime analysis of a heavy-tailed (1 + (λ, λ)) genetic
algorithm on jump functions. In: Bäck, T., et al. (eds.) PPSN 2020, Part II. LNCS,
vol. 12270, pp. 545–559. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58115-2 38

6. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing, Hackensack (2011)

7. Bian, C., Qian, C.: Running time analysis of the non-dominated sorting genetic
algorithm II (NSGA-II) using binary or stochastic tournament selection. In:
Rudolph, G., et al. (eds.) PPSN 2022. LNCS, vol. 13399, pp. xx-yy. Springer,
Cham (2022)

8. Brockhoff, D.: Theoretical aspects of evolutionary multiobjective optimization. In:
Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 101–140.
World Scientific Publishing (2011)

9. Corus, D., Oliveto, P.S., Yazdani, D.: Automatic adaptation of hypermutation
rates for multimodal optimisation. In: Foundations of Genetic Algorithms, FOGA
2021, pp. 4:1–4:12. ACM (2021)

10. Dang, D., et al.: Escaping local optima with diversity mechanisms and crossover.
In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 645–
652. ACM (2016)

11. Dang, D., et al.: Escaping local optima using crossover with emergent diversity.
IEEE Trans. Evol. Comput. 22, 484–497 (2018)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

13. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784.
ACM (2017)

14. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Devel-
opments in Discrete Optimization. Springer, Cham (2020). cs.adelaide.edu.au/
˜frank/papers/TheoryBook2019-selfarchived.pdf

15. Doerr, B., Qu, Z.: A first runtime analysis of the NSGA-II on a multimodal prob-
lem. CoRR abs/2204.07637 (2022)

16. Doerr, B., Rajabi, A.: Stagnation detection meets fast mutation. In: Pérez Cáceres,
L., Verel, S. (eds.) Evolutionary Computation in Combinatorial Optimization, Evo-
COP 2022. LNCS, vol. 13222, pp. 191–207. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-04148-8 13

https://doi.org/10.1007/978-3-030-58115-2_39
https://doi.org/10.1007/978-3-030-58115-2_39
https://doi.org/10.1007/978-3-030-58115-2_38
https://doi.org/10.1007/978-3-030-58115-2_38
https://cs.adelaide.edu.au/{~}frank/papers/TheoryBook2019-selfarchived.pdf
https://cs.adelaide.edu.au/~frank/papers/TheoryBook2019-selfarchived.pdf
https://doi.org/10.1007/978-3-031-04148-8_13
https://doi.org/10.1007/978-3-031-04148-8_13

412 B. Doerr and Z. Qu

17. Doerr, B., Zheng, W.: Theoretical analyses of multi-objective evolutionary algo-
rithms on multi-modal objectives. In: Conference on Artificial Intelligence, AAAI
2021, pp. 12293–12301. AAAI Press (2021)

18. Friedrich, T., Göbel, A., Quinzan, F., Wagner, M.: Heavy-tailed mutation opera-
tors in single-objective combinatorial optimization. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018, Part I.
LNCS, vol. 11101, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99253-2 11

19. Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attrac-
tion with heavy-tailed mutation operators. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2018, pp. 293–300. ACM (2018)

20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

21. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

22. Neumann, F., Theile, M.: How crossover speeds up evolutionary algorithms for
the multi-criteria all-pairs-shortest-path problem. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010, Part I. LNCS, vol. 6238, pp. 667–676.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5 67

23. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
- Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

24. Qian, C., Yu, Y., Zhou, Z.: An analysis on recombination in multi-objective evo-
lutionary optimization. Artif. Intell. 204, 99–119 (2013)

25. Quinzan, F., Göbel, A., Wagner, M., Friedrich, T.: Evolutionary algorithms and
submodular functions: benefits of heavy-tailed mutations. Nat. Comput. 20(3),
561–575 (2021). https://doi.org/10.1007/s11047-021-09841-7

26. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal opti-
mization. In: Genetic and Evolutionary Computation Conference, GECCO 2020,
pp. 1314–1322. ACM (2020)

27. Rajabi, A., Witt, C.: Stagnation detection in highly multimodal fitness landscapes.
In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 1178–
1186. ACM (2021)

28. Rajabi, A., Witt, C.: Stagnation detection with randomized local search. In: Zarges,
C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp. 152–168. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72904-2 10

29. Wu, M., Qian, C., Tang, K.: Dynamic mutation based pareto optimization for
subset selection. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.)
ICIC 2018, Part III. LNCS (LNAI), vol. 10956, pp. 25–35. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95957-3 4

30. Zheng, W., Doerr, B.: Better approximation guarantees for the NSGA-II by using
the current crowding distance. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2022. ACM (2022). arxiv.org/abs/2203.02693

31. Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). In: Conference on Artificial
Intelligence, AAAI 2022. AAAI Press (2022). arxiv.org/abs/2112.08581

32. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1,
32–49 (2011)

https://doi.org/10.1007/978-3-319-99253-2_11
https://doi.org/10.1007/978-3-319-99253-2_11
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-642-15844-5_67
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/s11047-021-09841-7
https://doi.org/10.1007/978-3-030-72904-2_10
https://doi.org/10.1007/978-3-319-95957-3_4
http://arxiv.org/2203.02693
http://arxiv.org/2112.08581

Analysis of Quality Diversity Algorithms
for the Knapsack Problem

Adel Nikfarjam(B), Anh Viet Do, and Frank Neumann

Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

adel.nikfarjam@adelaide.edu.au

Abstract. Quality diversity (QD) algorithms have been shown to be
very successful when dealing with problems in areas such as robotics,
games and combinatorial optimization. They aim to maximize the qual-
ity of solutions for different regions of the so-called behavioural space of
the underlying problem. In this paper, we apply the QD paradigm to
simulate dynamic programming behaviours on knapsack problem, and
provide a first runtime analysis of QD algorithms. We show that they are
able to compute an optimal solution within expected pseudo-polynomial
time, and reveal parameter settings that lead to a fully polynomial ran-
domised approximation scheme (FPRAS). Our experimental investiga-
tions evaluate the different approaches on classical benchmark sets in
terms of solutions constructed in the behavioural space as well as the
runtime needed to obtain an optimal solution.

Keywords: Quality diversity · Runtime analysis · Dynamic
programming

1 Introduction

Computing diverse sets of high quality solutions has recently gained significant
interest in the evolutionary computation community under the terms Evolution-
ary Diversity Optimisation (EDO) and Quality Diversity (QD). With this paper,
we contribute to the theoretical understanding of such approaches algorithms by
providing a first runtime analysis of QD algorithms. We provide rigorous results
for the classical knapsack problem and carry out additional experimental inves-
tigations on the search process in the behavioral space.

Diversity is traditionally seen as a mechanism to explore niches in a fitness land-
scape and prevent premature convergence during evolutionary searches. On the
other hand, the aim of EDO is to explicitly maximise the structural diversity of a
set of solutions, which usually have to fulfill some quality criteria. The concept was
first introduced in [29] in a continuous domain. Later, EDO has been adopted to
evolve a set of images [1] and benchmark instances for traveling salesperson prob-
lem (TSP) [12]. The star-discrepancy and the indicators from multi-objective evo-
lutionary algorithms have been incorporated in EDO for the same purpose as the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 413–427, 2022.
https://doi.org/10.1007/978-3-031-14721-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_29&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_29

414 A. Nikfarjam et al.

previous studies in [16] and [17], respectively. More recently, EDO has been inves-
tigated in context of computing a diverse set of solutions for several combinato-
rial problems such as TSP in [7,18,19], the quadratic assignment problem [8], the
minimum spanning tree problem [3], the knapsack problem [2], the optimisation
of monotone sub-modular functions [15], and traveling thief problem [21].

On the other hand, QD explores a predefined behavioural space to find niches.
It recently has gained increasing attention among the researchers in evolution-
ary computation. The optimisation paradigm first emerged in the form of nov-
elty search, in which the goal is to find solutions with unique behaviours aside
from the quality of solutions [14]. Later, a mechanism is introduced in [6] to
solely retain best-performing solutions while exploring new behaviours. An algo-
rithm, named MAP-Elite is introduced in [5] to plot the distribution of high-
performing solutions in a behavioural space. MAP-Elite is shown efficient in devel-
oping behavioural repertoire. QD was coined as a term, and defined as a concept in
[23,24]. The paradigm has been widely applied in the context of robotic and gam-
ing [10,11,25,26,31]. More recently, QD has been adopted for a multi-component
combinatorial problem, namely traveling thief problem [20]. Bossek and Neumann
[4] generated diverse sets of TSP instances by the use of QD. To the best of our
knowledge, the use of QD in solving a combinatorial optimisation problem is lim-
ited to an empirical study [20]. Although the QD-based algorithm has been shown
to yield very decent results, theoretical understandings of its performance have not
yet been established.

In this work, we contribute to this line of research by theoretically and empiri-
cally studying QD for the knapsack problem (KP), with a focus on connections
between populating behavioural spaces and constructing solutions in dynamic
programming (DP) manner. The use of evolutionary algorithms building popu-
lations of specific structure to carry out dynamic programming has been studied
in [9,13,27]. We consider a more natural way of enabling dynamic programming
behavior by using QD algorithms with appropriately defined behavioural spaces.
To this end, we define two behavioural spaces based on weights, profits and the
subset of the first i items, as inspired by dynamic programming (DP) [28] and the
classic fully polynomial-time approximation scheme (FPTAS) [30]. Here, the scal-
ing factor used in the FPTAS adjusts the niche size along the weight/profit dimen-
sion. We formulate two simple mutation-only algorithms based on MAP-Elite to
populate these spaces. We show that both algorithms mimic DP and find an opti-
mum within pseudo-polynomial expected runtime. Moreover, we show that in the
profit-based space, the algorithm can be made into a fully polynomial-time ran-
domised approximation scheme (FPRAS) with an appropriate choice of the scal-
ing value. Our experimental investigation on various instances suggests that these
algorithms significantly outperforms (1 + 1)EA and (μ + 1)EA, especially in hard
cases. With this, we demonstrate the ability of QD-based mechanisms to imitate
DP-like behaviours in KP, and thus its potential value in black-box optimisers for
problem with recursive subproblem structures.

The remainder of the paper is structured as follows. We formally define the
knapsack problem, the behavioural spaces, and the algorithms in Sect. 2. Next,

Analysis of Quality Diversity Algorithms for the Knapsack Problem 415

(a) Weight-based (b) Profit-based

Fig. 1. The representation of the empty maps in the behavioral spaces.

we provide a runtime analysis for the algorithms in Sect. 3. In Sect. 4, we examine
the distribution of high-quality knapsack solutions in the behavioural spaces
and compare QD-based algorithms to other EAs. Finally, we finish with some
concluding remarks.

2 Quality-Diversity for the Knapsack Problem

The knapsack problem is defined on a set of items I, where |I| = n and each item
i corresponds to a weight wi and a profit pi. Here, the goal is to find a selection
of item x = (x1, x2, . . . , xn) that maximise the profit while the weight of selected
items is constrained to a capacity C. Here, x is the characteristic vector of the
selection of items. Technically, KP is a binary linear programming problem: let
w = (w1, . . . , wn) and p = (p1, . . . , pn), find arg maxx∈{0,1}n

{
pTx | wTx ≤ C

}
.

We assume that all items have weights in (0, C], since any item violating this
can be removed from the problem instance.

In this section, we introduce two MAP-Elite based algorithms exploring two
different behavioral spaces. To determine behaviour of a solution in a particular
space, a behaviour descriptor (BD) is required. MAP-Elite is an EA, where a
solution competes with other solutions with a similar BD. MAP-Elites discretizes
a behavioural space into a grid to define the similarity and acceptable tolerance
of difference in two descriptors. Each cell in the grid corresponds with a BD
type, and only best solution with that particular BD is kept in the cell.

For KP, we formulate the behavioral spaces based on the two ways in which
the classic dynamic programming approach is implemented [28], i.e. profit-based
and weight-based sub-problem divisions. Let v(x) be the function returning the
index of the last item in solution x: v(x) = maxi{i | xi = 1}.

2.1 Weight-Based Space

For the weight-based approach, w(x) and v(x) serve as the BD, where w(x) =
wTx. Figure 1a outlines an empty map in the weight-based behavioural space.
To exclude infeasible solutions, the weight dimension is restricted to [0, C].

416 A. Nikfarjam et al.

As depicted, the behavioural space consists of (�C/γ� + 1) × (n + 1) cells, in
which cell (i, j) includes the best solution x (i.e. maximizing p(x) = pTx) with
v(x) = j − 1 and w(x) ∈ [(i − 1)γ, iγ). Here, γ is a factor to determine the size
of each cell. The algorithm is initiated with a zero string 0n. Having a parent is
selected uniformly at random from the population, we generate a single offspring
by standard flip mutation. If w(x) ≤ C, we find the cell corresponding with the
solution BD. We check the cells one by one. If the cells are empty, x is store in
the cell; otherwise, the solution with highest profit remains in the corresponding
cell. These steps are continued until a termination criterion is met.

2.2 Profit-Based Space

For the profit-based approach, p(x) and v(x) serve as the BD. Figure 1b depicts
the profit-based behavioural space with (�Q/γ� + 1) × (n + 1) cells where Q =∑

i∈I pi. Here, the selection in each cell minimizes the weight, and cell (i, j)
includes a solution x with v(x) = j − 1 and p(x) ∈ [(i − 1)γ, iγ). Otherwise, the
parent selection and the operator are the same as in weight-based MAP-Elite.
After generating the offspring, we determine the cell associating with the BD
((v(x), p(x))). If the cell are empty the solution is stored in the cells; otherwise,
the solution with the lower weight w(x) is kept in the cell. The steps are continued
until a termination criterion is met.

2.3 DP-Based Filtering Scheme

In classical MAP-Elites, the competition between solutions is confined within
each cell. However, in this context, the mapping from solution space to behaviour
space is transparent enough in both cases that a dominance relation between
solutions in different cells can be determined; a property exploited by the DP
approach. Therefore, in order to reduce the population size and speed up the
search for the optimum, we incorporate a filtering scheme that forms the core of
the DP approach. Given solutions x1 and x2 with v(x1) ≥ v(x2) and w(x1) =
w(x2); then, x1 dominates x2 in the weight-based space if p(x1) > p(x2). To filter
out the dominated solutions, we relax the restriction that each BD corresponds
to only one cell and redefine acceptable solutions for Cell (i, j) in the weight-
based space: v(x) ≤ j − 1 and w(x) ∈ [(i − 1)γ, iγ). This means a particular
BD is acceptable for multiple cells, and MAP-Elite algorithms must check all
the cells accepting the offspring. Algorithm 1 outlines the MAP-Elite algorithm
exploring this space; this is referred to as weight-based MAP-Elites.

The same scheme can be applied to the profit-based space, where cell (i, j)
accepts solution x with v(x) ≤ j − 1 and p(x) ∈ [(i − 1)γ, iγ). In this case, the
dominance relation is formulated to minimise weight. Algorithm 2 sketches the
profit-based MAP-Elites.

3 Theoretical Analysis

In this section, we give some runtime results for Algorithm 1 and 2 based on
expected time, as typically done in runtime analyses. Here, we use “time” as

Analysis of Quality Diversity Algorithms for the Knapsack Problem 417

Algorithm 1. weight-based MAP-Elites
Input: weights {wi}n

i=1, C, profits {pi}n
i=1, γ

1: P ← {0n} // P is indexed from 1, 0n is an all-zero string
2: A ← 0n+1×�C/γ�+1 // 0n+1×�C/γ�+1 is an all-zero matrix
3: B ← 0,
4: while Termination criteria are not met do
5: i ← Uniform({1, . . . , |P |})
6: Get x from flipping each bit in P (i) independently with probability 1/n
7: if w(x) ≤ C then
8: W ′ ← �w(x)/γ� + 1
9: if Av(x)+1,W ′ = 0 then

10: P ← P ∪ {x} // x is indexed last in P
11: Av(x)+1,W ′ ← |P |
12: else if p(x) > p(P (Av(x)+1,W ′)) then
13: P (Av(x)+1,W ′) ← x
14: for j from v(x) + 2 to n + 1 do // DP-based filtering scheme
15: if Aj,W ′ = 0 Or p(x) > p(P (Aj,W ′)) then
16: Aj,W ′ ← Av(x)+1,W ′

17: if p(x) > B then
18: B ← p(x)
19: return B

Algorithm 2. profit-based MAP-Elites
Input: Weights {wi}n

i=1, C, profits {pi}n
i=1, γ

1: P ← {0n} // P is indexed from 1, 0n is an all-zero string
2: A ← 0n+1×∑n

i=1 pi+1 // 0n+1×�C/γ�+1 is an all-zero matrix
3: B ← 0,
4: while Termination criteria are not met do
5: i ← Uniform({1, . . . , |P |})
6: Get x from flipping each bit in P (i) independently with probability 1/n
7: G ← �p(x)/γ� + 1
8: if Av(x)+1,G = 0 then
9: P ← P ∪ {x} // x is indexed last in P

10: Av(x)+1,G ← |P |
11: else if w(x) < w(P (Av(x)+1,G)) then
12: P (Av(x)+1,G) ← x
13: for j from v(x) + 2 to n + 1 do // DP-based filtering scheme
14: if Aj,G = 0 Or w(x) < w(P (Aj,G)) then
15: Aj,G ← Av(x)+1,G

16: if w(x) ≤ C then
17: if p(x) > B then
18: B ← p(x)
19: return B

a shorthand for “number of fitness evaluations”, which in this case equals the
number of generated solutions during a run of the algorithm. We define a ∧ b
and a ∨ b to be the bit-wise AND and bit-wise OR, respectively, between two

418 A. Nikfarjam et al.

equal length bit-strings a and b. Also, we denote k-length all-zero and all-one bit-
strings by 0k and 1k, respectively. For convenience, we denote the k-size prefix of
a ∈ {0, 1}n with a(k) = a ∧ 1k0n−k, and the k-size suffix with a(k) = a ∧ 0n−k1k.

It is important to note that in all our proofs, we consider solution y replacing
solution x during a run to imply v(y) ≤ v(x). Since this holds regardless of
whether filtering scheme outlined in Sect. 2.3 is used, our results should apply to
both cases, as we use the largest possible upper bound of population size. Note
that this filtering scheme may not reduce the population size in some cases.

We first show that with γ = 1 (no scaling), Algorithm 1 ensures that prefixes
of optimal solutions remain in the population throughout the run, and that these
increase in sizes within a pseudo-polynomial expected time. For this result, we
assume all weights are integers.

Theorem 1. Given γ = 1 and k ∈ [0, n], within expected time e(C + 1)n2k,
Algorithm 1 achieves a population P such that for any j ∈ [0, k], there is an
optimal solution x∗ where x∗(j) ∈ P .

Proof. Let Pt be the population at iteration t ≥ 0, S be the set of optimal
solutions, Sj = {s(j) | s ∈ S}, Xt = max{h | ∀j ∈ [0, h], Sj∩Pt �= ∅}, and H(x, y)
be the Hamming distance between x and y, we have Sn = S. We see that for any
j ∈ [0,Xt], any x ∈ Sj ∩Pt must be in P>t, since otherwise, let y be the solution
replacing it, and y∗ = y ∨ x∗

(n−j) for any x∗ ∈ S where x = x∗(j), we would
have p(y∗) − p(x∗) = p(y) − p(x) > 0 and w(y∗) = w(x∗) ≤ B, a contradiction.
Additionally, if x ∈ Si ∩ Sj for any 0 ≤ i < j ≤ n, then x ∈ ⋂j

h=i Sh. Thus, if
Xt < n, then SXt

∩ S ∩ Pt = ∅, so for all x ∈ SXt
∩ Pt, there is y ∈ S>Xt

such
that H(x, y) = 1. We can then imply from the algorithm’s behaviour that for
any j ∈ [0, n − 1], Pr[Xt+1 < j | Xt = j] = 0 and

Pr[Xt+1 > j | Xt = j] ≥ 1
n

(
1 − 1

n

)n−1 |SXt
∩ Pt|

|Pt| ≥ 1
enmaxh |Ph| .

Let T be the minimum integer such that Xt+T > Xt, then the expected
waiting time in a binomial process gives E[T | Xt < j] ≤ enmaxh |Ph| for any
j ∈ [1, n]. Let Tk be the minimum integer such that XTk

≥ k, we have for any
k ∈ [0, n], E[Tk] ≤ ∑k

i=1 E[T | Xt < i] ≤ enmaxh |Ph|k, given that 0n ∈ S0∩P0.
Applying the bound maxh |Ph| ≤ (C + 1)n yields the claim. �

We remark that with γ > 1, Algorithm 1 may fail to maintain prefixes of
optimal solutions during a run, due to rounding error. That is, assuming there
is x = x∗(j) ∈ Pt at step t and for some j ∈ [0, n] and optimal solution x∗, a
solution y may replace x if p(y) > p(x) and w(y) < w(x) + γ. It is possible
that y∗ = y ∨ x∗

(n−j) is infeasible (i.e. when C < w(x∗) + γ), in which case the
algorithm may need to “fix” y with multiple bit-flips in one step. The expected
runtime till optimality can be derived directly from Theorem 1 by setting k = n.

Analysis of Quality Diversity Algorithms for the Knapsack Problem 419

Corollary 1. Algorithm 1, run with γ = 1, finds an optimum within expected
time e(C + 1)n3.

Using the notation Q =
∑n

i=1 pi, we have the following result for Algorithm2,
which is analogous to Theorem 1 for Algorithm 1.

Theorem 2. Given k ∈ [0, n], and let z be an optimal solution, within expected
time e (�Q/γ� + 1) n2k, Algorithm 2 achieves a population P such that, if γ > 0
is such that pi/γ is integer for every item i in z, then for any j ∈ [0, k], there is
a feasible solution x where

– there is an integer m such that p(x(j)), p(z(j)) ∈ [mγ, (m + 1)γ),
– x(n−j) = z(n−j),
– x(j) ∈ P .

Moreover, for other γ values, the first property becomes p(x(j)), p(z(j)) ∈
[mγ, (m + j + 1)γ).

Proof. The proof proceeds similarly as that of Theorem 1. We have the claim
holds for k = 0 since the empty set satisfies the properties for j = 0 (i.e. x and
z would be the same). For other k values, it suffices to show that if there is such
a solution x for some j ∈ [0, k]: 1) any solution y replacing x(j) in a future step
must be the j-size prefix of another solution with the same properties, and 2) at
most one bit-flip is necessary to have it also hold for j + 1.

1) Let y be the solution replacing x(j), we have p(y), p(x(j)) ∈ [mγ, (m +
1)γ) for some integer m, and w(y) < w(x(j)). Let y∗ = y ∨ z(n−j), we have
p(y), p(z(j)) ∈ [mγ, (m+1)γ), and w(y∗)−w(x) = w(y)−w(x(j)) < 0, implying
y∗ is feasible. Therefore, y∗ possess the same properties as x. Note that this
also holds for the case where p(x(j)), p(z(j)) ∈ [mγ, (m + j + 1)γ). In this case,
p(y) ∈ [mγ, (m + j + 1)γ).

2) If this also holds for j+1, no further step is necessary. Assuming otherwise,
then z contains item j + 1, the algorithm only needs to flip the position j + 1
in x(j), since x and z shares (n − j − 1)-size suffix, and the pj+1 is a multiple
of γ. Since this occurs with probability at least 1/enmaxh |Ph|, the rest follows
identically, save for maxh |Ph| ≤ (�Q/γ� + 1) n. If pj+1 is a not multiple of
γ, then p(x(j+1)) may be mapped to a different profit range from p(z(j+1)).
The difference is increased by at most 1 since p(x(j+1)) − p(x(j)) = p(z(j+1)) −
p(z(j)), i.e. if p(x(j)), p(z(j)) ∈ [mγ, (m + j + 1)γ) for some integer m, then
p(x(j+1)), p(z(j+1)) ∈ [m′γ, (m′ + j + 2)γ) for some integer m′ ≥ m. Since x can
be replaced in a future step by another solution with a smaller profit due to
rounding error, the difference can still increase, so the claim holds non-trivially.

�
Theorem 2 gives us the following profit guarantees of Algorithm 2 when k = n.
Here OPT denotes the optimal profit.

Corollary 2. Algorithm 2, run with γ > 0, within expected time
e (�Q/γ� + 1) n3 obtains a feasible solution x where p(x) = OPT if pi/γ is inte-
ger for all i = 1, . . . , n, and p(x) > OPT − γn otherwise.

420 A. Nikfarjam et al.

Proof. If pi/γ is integer for all i = 1, . . . , n, then |p(a) − p(b)| is a multiple
of γ for any solutions a and b. Since by Theorem 1, x is feasible and p(x) >
OPT − γ, it must be that p(x) = OPT . For the other case, Theorem 1 implies
that p(x), OPT ∈ [mγ, (m + n + 1)γ) for some integer m. This means p(x) >
OPT − γn. �

Using this property, we can set up a FPRAS with an appropriate choice of γ,
which is reminiscent of the classic FPTAS for KP based on DP. As a reminder, x
is a (1−ε)-approximation for some ε ∈ (0, 1) if p(x) ≥ (1−ε)OPT . The following
corollary is obtained from the fact that Q ≤ nmaxi{pi}, and maxi{pi} ≤ OPT .

Corollary 3. For some ε ∈ (0, 1), Algorithm 2, run with γ = εmaxi{pi}/n,
obtains a (1 − ε)-approximation within expected time e

(⌊
n2/ε

⌋
+ 1

)
n3.

For comparison, the asymptotic runtime of the classic FPTAS achieving the
same approximation guarantee is O(n2�n/ε�) [30].

4 Experimental Investigations

In this section, we experimentally examine the two MAP-Elite based algorithms.
The experiments can be categorised in three sections. First, we illustrate the
distribution of high-performing solutions in the two behavioural spaces. Second,
we compare Algorithm 1 and 2 in terms of population size and ratio in achieving
the optimums over 30 independent runs. Finally, we compare between the best
MAP-Elite algorithm and two baseline EAs, namely (1 + 1)EA and (μ + 1)EA.
These baselines are selected due the same size of offspring in each iteration. For
the first round of experiments, three instances from [22] are considered. There
is a strong correlation between the weight and profit of each items in the first
instance. The second and third instances are not correlated, while the items
have similar weights in third instance. The termination criterion is set to the
maximum fitness evaluations of Cn2. We also set γ ∈ {1, 5, 25}. For the second
and third rounds of experiments, we run algorithms on 18 test instances from
[22], and change the termination criterion to either achieving the optimal value
or the maximum CPU-time of 7200 s.

Figure 2 illustrates the high-performing solutions obtained by Algorithm 1 in
the weight-based space. As shown on the figure, the best solutions can be found
the right top of the space. One can expected it since in that area of the space,
solutions get to involve most items and the most of the knapsack’s capacity,
whereby on the left bottom of the space a few items and a small proportion of
C can be used. Algorithm 1 can successfully populates the most of the space
in instance 1, 2, while we can see most of the space is empty in instance 3.
This is because the weights are uniformly distributed within [1000, 1010], while
C is set to 4567. As shown on the figure, the feasible solutions can only pick 4
items. Figure 2 also shows that the DP-based filtering removes many dominated
solutions that contribute to convergence rate and pace of the algorithm.

Analysis of Quality Diversity Algorithms for the Knapsack Problem 421

Fig. 2. The distribution of high-performing solutions in the weight-based behavioral
space. The title of sub-figures show (Ints. No, γ). Colors are scaled to OPT.

Figure 3 shows the best-performing solutions obtained by Algorithm 2 in the
profit-based space. It can be observed that we can only populate the half of space
by Algorithm 2 or any other algorithm. To have a solution with profit of Q, the
solutions needs to pick all items. This means that it is impossible to populate any
other cells except cell (n+1), (Q+1). On the contrary of the weight-based space,
we can have both feasible and infeasible solutions in the profit-based space. For
example, the map is well populated in instance 3, but mostly contains infeasi-
ble solution. Figure 4 depicts the trajectories of population size of Algorithm 1
and 2. The figure shows Algorithm 1 results in significantly smaller |P | than
Algorithm 2. For example, the final population size of Algorithm 1 is equal to
37 in instance 3, where γ = 25, while it is around 9000 for Algorithm 2. This
is because we can limit the first space to the promising part of it (w(x) ≤ W),
but we do not have the similar advantage for the profit-based space; the space
accept the full range of possible profits (p(x) ≤ Q). We believe this issue can
cause an adverse effect on the efficiency of MAP-Elites in reaching optimality,
based on theoretical observations. This is explored further in our second exper-
iment, where we look at the actual run-time to achieve the optimum.

Table 1 and 2 show the ratio of Algorithm 1 and Algorithm 2 in achieving the
optimum for each instances in 30 independent runs, respectively. The tables also
presents the mean of fitness evaluations for the algorithms to hit the optimal

422 A. Nikfarjam et al.

Fig. 3. The distribution of high-performing solutions in the profit-based behavioral
space. Analogous to Fig. 2.

Table 1. Number of fitness evaluations needed by Algorithm 1 to obtain the optimal
solutions.

Inst. n C U γ = 1 γ = 5 γ = 25

Mean Time Mean Time Mean Time

1 50 4029 1.37e+09 1.53e+06 2.74e+01 3.76e+05 4.35e+00 1.61e+05 1.96e+00

2 50 2226 7.57e+08 5.32e+05 8.14e+00 1.74e+05 2.32e+00 5.86e+04 9.75e−01

3 50 4567 1.55e+09 2.43e+04 3.48e−01 1.12e+04 1.81e−01 5.82e+03 1.08e−01

4 75 5780 6.63e+09 5.30e+06 8.28e+01 1.45e+06 2.07e+01 4.12e+05 5.60e+00

5 75 3520 4.04e+09 3.63e+06 7.11e+01 1.15e+06 2.44e+01 3.49e+05 5.96e+00

6 75 6850 7.86e+09 1.17e+05 2.21e+00 4.09e+04 5.91e−01 1.44e+04 2.32e−01

7 100 8375 2.28e+10 2.42e+07 4.75e+02 6.57e+06 1.33e+02 6.60e+07 1.34e+03

8 100 4815 1.31e+10 9.56e+06 2.02e+02 2.73e+06 5.07e+01 8.66e+05 1.30e+01

9 100 9133 2.48e+10 6.18e+05 1.06e+01 1.78e+05 3.26e+00 5.79e+04 1.34e+00

10 123 10074 5.10e+10 3.56e+07 6.65e+02 9.90e+06 1.77e+02 2.55e+07 4.71e+02

11 123 5737 2.90e+10 2.05e+07 5.40e+02 5.12e+06 9.38e+01 1.47e+06 3.54e+01

12 123 11235 5.68e+10 1.45e+06 3.74e+01 3.38e+05 5.27e+00 1.21e+05 1.90e+00

13 151 12422 1.16e+11 5.04e+07 9.15e+02 1.48e+07 2.73e+02 7.51e+06 1.86e+02

14 151 6924 6.48e+10 4.27e+07 9.75e+02 1.24e+07 2.73e+02 3.35e+06 5.71e+01

15 151 13790 1.29e+11 3.18e+06 9.87e+01 6.73e+05 1.70e+01 2.35e+05 3.94e+00

Analysis of Quality Diversity Algorithms for the Knapsack Problem 423

0 5 10

105

0

5

10

104 (In. 1, 1)

0 5 10

105

0

1

2

3

4

104 (In. 1, 2)

0 5 10

105

0

2

4

6

8

|P
|

104 (In. 2, 1)

0 5 10

105

0

1

2

3
104 (In. 2, 2)

0 5 10

105

0

5000

10000
(In. 2, 3)

0 5 10

105

0

2

4

6

104 (In. 3, 1)

0 5 10
No. Evaluations 105

0

1

2

3
104 (In. 3, 2)

0 5 10

105

0

5000

10000
(In. 3, 3)

0 5 10

105

0

5000

10000

15000
(In. 1, 3)

weight-based
deviation
profit-based
deviation

|P| = 37.7|P| = 104.8|P| = 416

Fig. 4. Means and standard deviations of population sizes over fitness evaluations (the
filtering scheme is used).

Table 2. Number of fitness evaluations needed by Algorithm 2 to obtain the optimal
solutions

Inst. n Q γ = 1 γ = 5 γ = 25

Mean Ratio U Mean Ratio U Mean Ratio U

1 50 53928 1.15e+07 100 1.83e+10 3.68e+06 100 e.66e+09 1.21e+06 100 7.33e+08

2 50 23825 5.36e+06 100 8.10e+09 1.34e+06 100 1.62e+09 4.00e+05 100 3.24e+08

3 50 24491 3.86e+06 100 8.32e+09 1.27e+06 100 1.66e+09 1.27e+06 100 3.33e+08

4 75 78483 5.07e+07 100 9.00e+10 1.50e+07 100 1.8e+10 4.03e+06 100 3.6e+09

5 75 37237 2.74e+07 100 4.27e+10 7.36e+06 100 8.54e+09 2.32e+06 100 1.71e+09

6 75 38724 1.93e+07 100 4.44e+10 5.63e+06 100 8.88e+09 2.95e+06 100 1.78e+09

7 100 112635 2.24e+08 97 3.06e+11 6.67e+07 100 6.12e+10 1.72e+07 100 1.22e+10

8 100 48042 6.76e+07 100 1.31e+11 1.82e+07 100 2.61e+10 5.03e+06 100 5.22e+09

9 100 52967 7.99e+07 100 1.44e+11 2.86e+07 100 2.88e+10 1.18e+08 87 5.76e+09

10 123 135522 3.35e+08 87 6.86e+11 1.05e+08 100 1.37e+11 7.34e+07 100 2.74e+10

11 123 57554 1.47e+08 100 2.91e+11 3.58e+07 100 5.82e+10 8.87e+06 100 1.16e+10

12 123 63116 1.71e+08 97 3.19e+11 8.45e+07 100 5.38e+10 2.66e+07 100 1.28e+10

13 151 166842 3.81e+08 13 1.56e+12 1.39e+08 100 3.12e+11 5.69e+07 100 6.25e+10

14 151 70276 3.15e+08 77 6.58e+11 8.86e+07 100 1.32e+11 1.96e+07 100 2.63e+10

15 151 76171 2.64e+08 90 7.13e+11 9.58e+07 100 1.42e+11 3.16e+07 100 2.85e+10

16 194 227046 2.94e+08 0 4.51e+12 3.33e+08 23 9.01e+11 1.30e+08 100 1.8e+11

17 194 92610 3.43e+08 0 1.84e+12 2.22e+08 97 3.68e+11 5.80e+07 100 7.35e+10

18 194 97037 3.55e+08 0 1.93e+12 2.13e+08 87 3.85e+11 9.98e+07 100 7.7e+10

424 A. Nikfarjam et al.

Table 3. Comparison in ratio, number of required fitness evaluations and required
CPU time for hitting the optimal value in 30 independent runs.

Inst. n QD (1 + 1)EA (μ + 1)EA

Ratio Mean Time Stat Ratio Mean Time Stat Ratio Mean Time Stat

1 50 100 1.53e+06 2.74e+01 2−3− 40 1.32e+09 4.49e+03 1+3∗ 40 4.59e+08 4.92e+03 1+2∗

2 50 100 5.32e+05 8.14e+00 2∗3∗ 100 5.30e+05 2.02e+00 1∗3∗ 100 6.10e+05 6.21e+00 1∗2∗

3 50 100 2.43e+04 3.48e−01 2+3+ 100 1.01e+04 4.38e−02 1−3∗ 100 1.21e+04 1.50e−01 1−2∗

4 75 100 5.30e+06 8.28e+01 2∗3∗ 97 1.20e+08 5.70e+02 1∗3∗ 100 3.46e+07 6.90e+02 1∗2∗

5 75 100 3.63e+06 7.11e+01 2∗3∗ 100 6.34e+07 3.44e+02 1∗3∗ 100 3.16e+07 4.44e+02 1∗2∗

6 75 100 1.17e+05 2.21e+00 2+3+ 100 1.30e+04 8.98e−02 1−3− 100 2.14e+04 3.20e−01 1−2+

7 100 100 2.42e+07 4.75e+02 2−3− 63 5.72e+08 3.26e+03 1+3∗ 43 2.51e+08 4.92e+03 1+2∗

8 100 100 9.56e+06 2.02e+02 2+3+ 100 2.33e+06 1.46e+01 1−3∗ 100 3.56e+06 5.81e+01 1−2∗

9 100 100 6.18e+05 1.06e+01 2+3+ 100 3.72e+04 2.24e−01 1−3∗ 100 5.03e+04 8.84e−01 1−2∗

10 123 100 3.56e+07 6.65e+02 2−3− 77 3.90e+08 2.44e+03 1+3∗ 47 2.34e+08 4.70e+03 1+2∗

11 123 100 2.05e+07 5.40e+02 2∗3+ 97 1.38e+08 1.13e+03 1∗3∗ 87 6.10e+07 1.41e+03 1−2∗

12 123 100 1.45e+06 3.74e+01 2+3+ 100 6.55e+04 5.24e−01 1−3∗ 100 6.71e+04 1.34e+00 1−2∗

13 151 100 5.04e+07 9.15e+02 2∗3∗ 97 1.25e+08 1.07e+03 1∗3∗ 87 8.65e+07 2.14e+03 1∗2∗

14 151 100 4.27e+07 9.75e+02 2+3+ 100 1.20e+07 1.06e+02 1−3∗ 100 1.10e+07 3.33e+02 1−2∗

15 151 100 3.18e+06 9.87e+01 2+3+ 100 1.17e+05 1.09e+00 1−3∗ 100 1.09e+05 2.59e+00 1−2∗

16 194 100 1.58e+08 4.22e+03 2−3− 57 4.99e+08 4.21e+03 1+3∗ 47 2.34e+08 5.47e+03 1+2∗

17 194 100 1.18e+08 2.25e+03 2−3∗ 57 4.29e+08 3.91e+03 1+3∗ 40 2.07e+08 4.87e+03 1∗2∗

18 194 100 7.76e+06 1.50e+02 2+3+ 100 1.17e+05 1.42e+00 1−3∗ 100 1.37e+05 4.71e+00 1−2∗

value or reach the limitation of CPU time. Table 1 shows that the ratio is 100%
for Algorithm 1 on all instances and all γ ∈ {1, 5, 25}. On the other hand,
Algorithm 2 cannot achieve the optimums in all 30 runs, especially in large
instances when γ = 1. However, increasing γ to 25 enables the algorithm to
obtain the optimum in the most instances with exception of instance 9. Moreover,
the number of fitness evaluations required for Algorithm 2 is considerably higher
than that of Algorithm 1. We can conclude that Algorithm 1 is more time-
efficient than Algorithm 2, confirming our theoretical findings. This also suggests
that the rounding errors are not detrimental to these algorithms’ performances.

For the last round of the experiments, we compare Algorithm 1 to two well-
known EAs in the literature, (1 + 1)EA and (μ + 1)EA. Table 3 presents the
ratio of the three algorithms in achieving the optimum and the mean of fitness
evaluations required for them to reach the optimum. As shown on the table, the
performances of (1+1)EA and (μ+1)EA deteriorate on the strongly correlated
instances. It seems that (1+1)EA and (μ+1)EA are prone to get stuck in local
optima, especially in instances with a strong weights-profits correlation. On the
other hand, the MAP-Elite algorithm performs equally good in all instances
through the diversity of solutions. Moreover, the mean of its runtime is signifi-
cantly less in the half of instances although the population size of Algorithm 1
can be significantly higher that the other two EAs.

Analysis of Quality Diversity Algorithms for the Knapsack Problem 425

5 Conclusions

In this study, we examined the capability of QD approaches and in particular,
MAP-Elite in solving knapsack problem. We defined two behavioural spaces
inspired by the classic DP approaches, and two corresponding MAP-Elite-based
algorithms operating on these spaces. We established that they imitate the exact
DP approach, and one of them behaves similarly to the classic FPTAS for KP
under a specific parameter setting, making it a FPRAS. We then compared the
runtime of the algorithms empirically on instances of various properties related to
their hardness, and found that the MAP-Elite selection mechanism significantly
boosts efficiency of EAs in solving KP in terms of convergence ratio, especially
in hard instances. Inspecting the behavioural spaces and population sizes reveals
that smaller populations correlate to faster optimisation, demonstrating a well-
known trade-off between optimisation and exploring behavioural spaces.

It is an open question to which extent MAP-Elites can simulate DP-like
behaviours in other problems with recursive subproblem structures. Moreover, it
might be possible to make such approaches outperform DP via better controls of
behavioural space exploration, combined with more powerful variation operators.

Acknowledgements. This work was supported by the Australian Research Council
through grants DP190103894 and FT200100536.

References

1. Alexander, B., Kortman, J., Neumann, A.: Evolution of artistic image variants
through feature based diversity optimisation. In: GECCO, pp. 171–178. ACM
(2017)

2. Bossek, J., Neumann, A., Neumann, F.: Breeding diverse packings for the knapsack
problem by means of diversity-tailored evolutionary algorithms. In: GECCO, pp.
556–564. ACM (2021)

3. Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum
spanning tree problem. In: GECCO, pp. 198–206. ACM (2021)

4. Bossek, J., Neumann, F.: Exploring the feature space of TSP instances using qual-
ity diversity. CoRR abs/2202.02077 (2022)

5. Clune, J., Mouret, J., Lipson, H.: Summary of “the evolutionary origins of modu-
larity”. In: GECCO (Companion), pp. 23–24. ACM (2013)

6. Cully, A., Mouret, J.: Behavioral repertoire learning in robotics. In: GECCO, pp.
175–182. ACM (2013)

7. Do, A.V., Bossek, J., Neumann, A., Neumann, F.: Evolving diverse sets of tours
for the travelling salesperson problem. In: GECCO, pp. 681–689. ACM (2020)

8. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity
optimisation for permutation problems. In: GECCO, pp. 574–582. ACM (2021)

9. Doerr, B., Eremeev, A.V., Neumann, F., Theile, M., Thyssen, C.: Evolutionary
algorithms and dynamic programming. Theor. Comput. Sci. 412(43), 6020–6035
(2011)

10. Fontaine, M.C., et al.: Illuminating Mario scenes in the latent space of a generative
adversarial network. In: AAAI, pp. 5922–5930. AAAI Press (2021)

426 A. Nikfarjam et al.

11. Fontaine, M.C., Togelius, J., Nikolaidis, S., Hoover, A.K.: Covariance matrix adap-
tation for the rapid illumination of behavior space. In: GECCO, pp. 94–102. ACM
(2020)

12. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for
problem instance classification. Evol. Comput. 29(1), 107–128 (2021)

13. Horoba, C.: Analysis of a simple evolutionary algorithm for the multiobjective
shortest path problem. In: FOGA, pp. 113–120. ACM (2009)

14. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

15. Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolu-
tionary diversity optimisation for constrained monotone submodular functions. In:
GECCO, pp. 261–269. ACM (2021)

16. Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based
evolutionary diversity optimization. In: GECCO, pp. 991–998. ACM (2018)

17. Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity opti-
mization using multi-objective indicators. In: GECCO, pp. 837–845. ACM (2019)

18. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Computing diverse sets
of high quality TSP tours by EAX-based evolutionary diversity optimisation. In:
FOGA, pp. 9:1–9:11. ACM (2021)

19. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolutionary
diversity optimisation for the traveling salesperson problem. In: GECCO, pp. 600–
608. ACM (2021)

20. Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algo-
rithms for the traveling thief problem. CoRR abs/2112.08627 (2021)

21. Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation
for the traveling thief problem. CoRR abs/2204.02709 (2022)

22. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A
comprehensive benchmark set and heuristics for the traveling thief problem. In:
GECCO, pp. 477–484. ACM (2014)

23. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Front. Robot. AI 3, 40 (2016)

24. Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of
quality diversity. In: GECCO, pp. 967–974. ACM (2015)

25. Rakicevic, N., Cully, A., Kormushev, P.: Policy manifold search: exploring the
manifold hypothesis for diversity-based neuroevolution. In: GECCO, pp. 901–909.
ACM (2021)

26. Steckel, K., Schrum, J.: Illuminating the space of beatable lode runner levels pro-
duced by various generative adversarial networks. In: GECCO Companion, pp.
111–112. ACM (2021)

27. Theile, M.: Exact solutions to the traveling salesperson problem by a population-
based evolutionary algorithm. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009.
LNCS, vol. 5482, pp. 145–155. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01009-5 13

28. Toth, P.: Dynamic programming algorithms for the zero-one knapsack problem.
Computing 25(1), 29–45 (1980)

29. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective opti-
mization. In: GECCO, pp. 641–648. ACM (2011)

https://doi.org/10.1007/978-3-642-01009-5_13
https://doi.org/10.1007/978-3-642-01009-5_13

Analysis of Quality Diversity Algorithms for the Knapsack Problem 427

30. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

31. Zardini, E., Zappetti, D., Zambrano, D., Iacca, G., Floreano, D.: Seeking quality
diversity in evolutionary co-design of morphology and control of soft tensegrity
modular robots. In: GECCO, pp. 189–197. ACM (2021)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Better Running Time
of the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) by Using
Stochastic Tournament Selection

Chao Bian and Chao Qian(B)

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{bianc,qianc}@lamda.nju.edu.cn

Abstract. Evolutionary algorithms (EAs) have been widely used to
solve multi-objective optimization problems, and have become the most
popular tool. However, the theoretical foundation of multi-objective
EAs (MOEAs), especially the essential theoretical aspect, i.e., running
time analysis, is still largely underdeveloped. The few existing theoret-
ical works mainly considered simple MOEAs, while the non-dominated
sorting genetic algorithm II (NSGA-II), probably the most influential
MOEA, has not been analyzed except for a very recent work consider-
ing a simplified variant without crossover. In this paper, we present a
running time analysis of the standard NSGA-II for solving LOTZ, the
commonly used bi-objective optimization problem. Specifically, we prove
that the expected running time (i.e., number of fitness evaluations) is
O(n3) for LOTZ, which is the same as that of the previously analyzed
simple MOEAs, GSEMO and SEMO, as well as the NSGA-II without
crossover. Next, we introduce a new parent selection strategy, stochastic
tournament selection (i.e., k tournament selection where k is uniformly
sampled at random), to replace the binary tournament selection strategy
of NSGA-II, decreasing the upper bound on the required expected run-
ning time to O(n2). Experiments are also conducted, suggesting that the
derived running time upper bounds are tight. We also empirically com-
pare the performance of the NSGA-II using the two selection strategies
on the widely used benchmark problem ZDT1, and the results show that
stochastic tournament selection can help the NSGA-II converge faster.

1 Introduction

Multi-objective optimization, which requires optimizing several objective func-
tions simultaneously, arises in many areas. Since the objectives are usually con-
flicting, there does not exist a single solution that can perform well on all these
objectives. Thus, the goal of multi-objective optimization is to find a set of

This work was supported by the NSFC (62022039) and the Jiangsu NSF (BK20201247).
Chao Qian is the corresponding author. Due to space limitation, proof details are
available at https://arxiv.org/abs/2203.11550.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 428–441, 2022.
https://doi.org/10.1007/978-3-031-14721-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_30&domain=pdf
https://arxiv.org/abs/2203.11550
https://doi.org/10.1007/978-3-031-14721-0_30

Better Running Time of the NSGA-II 429

Pareto optimal solutions (or the Pareto front, i.e., the set of objective vectors of
the Pareto optimal solutions), representing different optimal trade-offs between
these objectives. Evolutionary algorithms (EAs) [2] are a kind of randomized
heuristic optimization algorithms, inspired by natural evolution. They maintain
a set of solutions, i.e., a population, and iteratively improve the population by
reproducing new solutions and selecting better ones. Due to the population-based
nature, EAs are very popular for solving multi-objective optimization problems,
and have been widely used in many real-world applications [4].

Compared with practical applications, the theoretical foundation of EAs is
still underdeveloped, which is mainly because the sophisticated behaviors of EAs
make theoretical analysis quite difficult. Though much effort has been devoted
to the essential theoretical aspect, i.e., running time analysis, leading to a lot
of progress [1,10,28,34] in the past 25 years, most of them focused on single-
objective optimization, while only a few considered the more complicated sce-
nario of multi-objective optimization. In the following, we briefly review the
results of running time analyses on multi-objective EAs (MOEAs).

The running time analysis of MOEAs started from GSEMO, a simple MOEA
which employs the bit-wise mutation operator to generate an offspring solution
in each iteration and keeps the non-dominated solutions generated-so-far in the
population. For GSEMO solving the bi-objective optimization problems LOTZ
and COCZ, the expected running time has been proved to be O(n3) [16] and
O(n2 log n) [3,30], respectively, where n is the problem size. SEMO is a counter-
part of GSEMO, which employs the local mutation operator, one-bit mutation,
instead of the global bit-wise mutation operator. Laumanns et al. [21] proved
that the expected running time of SEMO solving LOTZ and COCZ are Θ(n3)
and O(n2 log n), respectively. Giel and Lehre [17] considered another bi-objective
problem OneMinMax, and proved that both GSEMO and SEMO can solve it in
O(n2 log n) expected running time. Doerr et al. [9] also proved a lower bound
Ω(n2/p) for GSEMO solving LOTZ, where p < n−7/4 is the mutation rate, i.e.,
the probability of flipping each bit when performing bit-wise mutation.

Later, the analyses of GSEMO were conducted on multi-objective combina-
torial optimization problems. For bi-objective minimum spanning trees (MST),
GSEMO was proved to be able to find a 2-approximation of the Pareto front
in expected pseudo-polynomial time [24]. For multi-objective shortest paths, a
variant of GSEMO can achieve an (1 + ε)-approximation in expected pseudo-
polynomial time [18,26], where ε > 0. Laumanns et al. [20] considered GSEMO
and its variant for solving a special case of the multi-objective knapsack problem,
and proved that the expected running time of the two algorithms for finding all
the Pareto optimal solutions are O(n6) and O(n5), respectively.

There are also studies that analyze GSEMO for solving single-objective con-
strained optimization problems. By optimizing a reformulated bi-objective opti-
mization problem that optimizes the original objective and a constraint-related
objective simultaneously, GSEMO can reduce the expected running time signif-
icantly for achieving a desired approximation ratio. For example, by reformu-
lating the set cover problem into a bi-objective problem, Friedrich et al. [12]
proved that GSEMO and SEMO can solve a class of set cover instances in

430 C. Bian and C. Qian

O(mn(log cmax + log n)) expected running time, which is better than the expo-
nential expected running time of (1+1)-EA, i.e., the single-objective counterpart
to GSEMO, where m,n and cmax denote the size of the ground set, the size of
the collection of subsets, and the maximum cost of a subset, respectively. More
evidence has been proved on the problems of minimum cuts [25], minimum cost
coverage [31], MST [27] and submodular optimization [15]. Note that we concern
inherently multi-objective optimization problems in this paper.

Based on GSEMO and SEMO, the effectiveness of some strategies for multi-
objective evolutionary optimization has been analyzed. For example, Laumanns
et al. [21] showed the effectiveness of greedy selection by proving that using this
strategy can reduce the expected running time of SEMO from O(n2 log n) to
Θ(n2) for solving the COCZ problem. Qian et al. [30] showed that crossover can
accelerate filling the Pareto front by comparing the expected running time of
GSEMO with and without crossover for solving the artificial problems COCZ
and weighted LPTNO (a generalization of LOTZ), as well as the combinatorial
problem multi-objective MST. The effectiveness of some other mechanisms, e.g.,
heuristic selection [29], diversity [13], fairness [14,21], and diversity-based parent
selection [6] have also been examined.

Though GSEMO and SEMO share the general structure of MOEAs, they
have been much simplified. To characterize the behavior of practical MOEAs,
some efforts have been devoted to analyzing MOEA/D, which is a popular
MOEA based on decomposition [32]. Li et al. [23] analyzed a simplified vari-
ant of MOEA/D without crossover for solving COCZ and weighted LPTNO,
and proved that the expected running time is Θ(n log n) and Θ(n2), respec-
tively. Huang et al. [19] also considered a simplified MOEA/D, and examined
the effectiveness of different decomposition approaches by comparing the run-
ning time for solving two many-objective problems mLOTZ and mCOCZ, where
m denotes the number of objectives.

Surprisingly, the running time analysis of the non-dominated sorting genetic
Algorithm II (NSGA-II) [8], the probably most influential MOEA, has been
rarely touched. The NSGA-II enables to find well-spread Pareto-optimal solu-
tions by incorporating two substantial features, i.e., non-dominated sorting and
crowding distance, and has become the most popular MOEA for solving multi-
objective optimization problems [7]. To the best of our knowledge, the only
attempt is a very recent work, which, however, considered a simplified version
of NSGA-II without crossover, and proved that the expected running time is
O(n2 log n) for OneMinMax and O(n3) for LOTZ [33].

In this paper, we present a running time analysis for the standard NSGA-II.
We prove that the expected running time of NSGA-II is O(n3) for solving LOTZ.
Note that the running time upper bound is the same as that of GSEMO and
SEMO [16,17,21,30], implying that the NSGA-II does not have an advantage
over simplified MOEAs on LOTZ if the derived upper bound is tight.

Next, we introduce a new parent selection strategy, i.e., stochastic tour-
nament selection, which samples a number k uniformly at random and then
performs k tournament selection. By replacing the original binary tournament

Better Running Time of the NSGA-II 431

selection of NSGA-II with stochastic tournament selection, we prove that the
expected running time of NSGA-II can be improved to O(n2) for LOTZ. We
also conduct experiments, suggesting that the derived upper bounds are tight.
Furthermore, we empirically examine the performance of the NSGA-II using the
two selection strategies on the widely used benchmark problem ZDT1 [35]. The
results show that stochastic tournament selection can help the NSGA-II converge
faster, disclosing its potential in practical applications.

2 Preliminaries

In this section, we first introduce multi-objective optimization, and then intro-
duce the procedure of NSGA-II.

2.1 Multi-objective Optimization

Multi-objective optimization requires to simultaneously optimize two or more
objective functions, as shown in Definition 1. We consider maximization here,
while minimization can be defined similarly. The objectives are usually conflict-
ing, and thus there is no canonical complete order in the solution space X . The
comparison between solutions relies on the domination relationship, as presented
in Definition 2. A solution is Pareto optimal if there is no other solution in X
that dominates it. The set of objective vectors of all the Pareto optimal solutions
constitutes the Pareto front. The goal of multi-objective optimization is to find
the Pareto front, that is, to find at least one corresponding solution for each
objective vector in the Pareto front.

Definition 1 (Multi-objective Optimization). Given a feasible solution
space X and objective functions f1, f2, . . . , fm, multi-objective optimization can
be formulated as maxx∈X

(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X → R
m be the objec-

tive vector. For two solutions x and y ∈ X :

– x weakly dominates y (denoted as x � y) if ∀1 ≤ i ≤ m, fi(x) ≥ fi(y);
– x dominates y (denoted as x � y) if x � y and fi(x) > fi(y) for some i;
– x and y are incomparable if neither x � y nor y � x.

2.2 NSGA-II

The NSGA-II Algorithm [8] as presented in Algorithm 1 is a popular MOEA,
which incorporates two substantial features, i.e., non-dominated sorting and
crowding distance. NSGA-II starts from an initial population of N random solu-
tions (line 1). In each generation, it employs binary tournament selection N times
to generate a parent population P ′ (line 4), and then applies one-point crossover
and bit-wise mutation on the N/2 pairs of parent solutions to generate N off-
spring solutions (lines 5–9). Note that the two adjacent selected solutions form a

432 C. Bian and C. Qian

Algorithm 1. NSGA-II Algorithm [8]
Input: objective functions f1, f2 . . . , fm, population size N
Output: N solutions from {0, 1}n

1: P ← N solutions uniformly and randomly selected from {0,1}n;
2: while criterion is not met do
3: Q = ∅;
4: apply binary tournament selection N times to generate a parent population P ′

of size N ;
5: for each consecutive pair of the parent solutions x and y in P ′ do
6: apply one-point crossover on x and y to generate two solutions x′ and y′,

with probability 0.9;
7: apply bit-wise mutation on x′ and y′ to generate x′′ and y′′, respectively;
8: add x′′ and y′′ into Q
9: end for

10: partition P ∪ Q into non-dominated sets F1, F2, . . .;
11: let P = ∅, i = 1;
12: while |P ∪ Fi| < N do
13: P = P ∪ Fi, i = i + 1
14: end while
15: assign each solution in Fi with a crowding distance;
16: sort the solutions in Fi by crowding distance in descending order, and add the

first N − |P | solutions into P
17: end while
18: return P

pair, and thus the N selected solutions form N/2 pairs. The one-point crossover
operator first selects a crossover point i ∈ {1, 2, . . . , n} uniformly at random,
where n is the problem size, and then exchanges the first i bits of two solutions.
The bit-wise mutation operator flips each bit of a solution independently with
probability 1/n. Note that for real-coded solutions (which, however, are not con-
sidered in this paper), the one-point crossover operator and bit-wise mutation
operator can be replaced by other operators, e.g., the simulated binary crossover
(SBX) operator and polynomial mutation operator [8]. The binary tournament
selection presented in Definition 3 picks two solutions randomly from the popu-
lation P with or without replacement, and then selects a better one (ties broken
uniformly). Note that we consider the strategy with replacement in this paper.

Definition 3 (Binary Tournament Selection). The binary tournament
selection strategy first picks two solutions from the population P uniformly at
random, and then selects a better one with ties broken uniformly.

After generating N offspring solutions, the best N solutions in the current pop-
ulation P and the offspring population Q are selected as the population in the
next generation (lines 10–16). In particular, the solutions in the current and off-
spring populations are partitioned into non-dominated sets F1, F2, . . . (line 10),
where F1 contains all the non-dominated solutions in P ∪ Q, and Fi (i ≥ 2)
contains all the non-dominated solutions in (P ∪ Q) \ ∪i−1

j=1Fj . Note that we use

Better Running Time of the NSGA-II 433

the notion rank(x) = i to denote that x belongs to Fi. Then, the solutions in
F1, F2, . . . are added into the next population (lines 12–14), until the population
size exceeds N . For the critical set Fi whose inclusion makes the population
size larger than N , the crowding distance is computed for each of the contained
solutions (line 15). Finally, the solutions in Fi with large crowding distance are
selected to fill the remaining population slots (line 16).

When using binary tournament selection (line 4), the selection criterion is
based on the crowded-comparison, i.e., x is superior to y (denoted as x �c y) if

rank(x) < rank(y) OR rank(x) = rank(y) ∧ dist(x) > dist(y). (1)

Intuitively, the crowding distance of a solution means the distance between its
closest neighbour solutions, and a solution with larger crowding distance is pre-
ferred so that the diversity of the population can be preserved as much as pos-
sible. Note that when computing the crowding distance, we assume that the
relative positions of the solutions with the same objective vector are unchanged
or totally reversed when the solutions are sorted w.r.t. some objective function.
Such requirement can be met by any stable sorting algorithm, e.g., the bub-
ble sort or merge sort, which maintains the relative order of items with equal
keys (i.e., values). What’s more, the built-in sorting functions in MATLAB, e.g.,
sortrows() and sort(), can also satisfy the requirement. Under such assumption,
the population size needed to find the Pareto front can be reduced (a detailed
discussion is provided after Theorem 1).

In line 6 of Algorithm 1, the probability of using crossover has been set to 0.9,
which is the same as the original setting and also commonly used [8]. However,
the theoretical results derived in this paper can be directly generalized to the
scenario where the probability of using crossover belongs to [Ω(1), 1 − Ω(1)].

3 Running Time Analysis of NSGA-II

In this section, we analyze the expected running time of the standard NSGA-II
in Algorithm 1 solving the bi-objective pseudo-Boolean problem LOTZ, which
is widely used in MOEAs’ theoretical analyses [9,21,30].

The LOTZ problem presented in Definition 4 aims to maximize the number
of leading 1-bits and the number of trailing 0-bits of a binary bit string. The
Pareto front of LOTZ is F = {(0, n), (1, n−1), . . . , (n, 0)}, and the corresponding
Pareto optimal solutions are 0n, 10n−1, . . . , 1n.

Definition 4 (LOTZ [21]). The LOTZ problem of size n is to find n bits binary
strings which maximize f(x) =

(∑n
i=1

∏i
j=1 xj ,

∑n
i=1

∏n
j=i(1 − xj)

)
, where xj

denotes the j-th bit of x ∈ {0, 1}n.
We prove in Theorem 1 that the NSGA-II can find the Pareto front in O(n2)
expected number of generations, i.e., O(n3) expected number of fitness evalua-
tions, because the generated N offspring solutions need to be evaluated in each

434 C. Bian and C. Qian

iteration. Note that the running time of an EA is usually measured by the num-
ber of fitness evaluations, because evaluating the fitness of a solution is often the
most time-consuming step in practice. The main proof idea can be summarized
as follows. The NSGA-II first employs the mutation operator to find the two
solutions with the largest number of leading 1-bits and the largest number of
trailing 0-bits, i.e., 1n and 0n, respectively; then employs the crossover operator
to find the whole Pareto front.

Theorem 1. For the NSGA-II solving LOTZ, if using binary tournament selec-
tion and a population size N such that 2n + 2 ≤ N = O(n), then the expected
number of generations for finding the Pareto front is O(n2).

Note that Zheng et al. [33] proved that for NSGA-II using bit-wise mutation
(without crossover), the expected running time is O(Nn2) if the population size
N is at least 5n + 5. Thus, the requirement for the population size N is relaxed
from 5n + 5 to 2n + 2. The main reason for the relaxation is that under the
assumption in Sect. 2.2 (i.e., the order of the solutions with the same objective
vector is unchanged or totally reversed when the solutions are sorted according
to some fj), there exist at most two solutions with i leading 1-bits such that
their ranks are equal to 1 and crowding distances are larger than 0, for each
i ∈ {0, 1, . . . , n}. Meanwhile, for any objective vector in the Pareto front that
has been obtained by the algorithm, there is at least one corresponding solution
in the population such that its rank is equal to 1 and crowding distance is larger
than 0, implying that the solution will occupy one of the 2n+2 slots, and thus be
maintained in the population. Without such assumption, there may exist more
solutions with crowding distance larger than 0 for each objective vector in the
Pareto front, thus requiring a larger population size.

4 NSGA-II Using Stochastic Tournament Selection

In the previous section, we have proved that the expected running time of the
standard NSGA-II is O(n3) for LOTZ, which is the same as that of the previously
analyzed simple MOEAs, GSEMO and SEMO [21,30]. Next, we introduce a
new parent selection strategy, i.e., the stochastic tournament selection, into the
NSGA-II, and show that the expected running time needed to find the whole
Pareto front can be reduced to O(n2).

4.1 Stochastic Tournament Selection

As the crowded-comparison �c in Eq. (1) actually gives a total order of the
solutions in the population P , binary tournament selection can be naturally
extended to k tournament selection [11], as presented in Definition 5, where k is
a parameter such that 1 ≤ k ≤ N . That is, k solutions are first picked from P
uniformly at random, and then the solution with the smallest rank is selected. If
several solutions have the same smallest rank, the one with the largest crowding
distance is selected, with ties broken uniformly.

Better Running Time of the NSGA-II 435

Definition 5 (k Tournament Selection). The k tournament selection strat-
egy first picks k solutions from the population P uniformly at random, and then
selects the best one with ties broken uniformly.

Note that a larger k implies a larger selection pressure, i.e., a larger probability
of selecting a good solution, and thus the value of k can be used to control the
selection pressure of EAs [11]. However, this also brings about a new issue, i.e.,
how to set k properly. In order to reduce the risk of setting improper values
of k as well as the overhead of tuning k, we introduce a natural strategy, i.e.,
stochastic tournament selection in Definition 6, which first selects a number
k randomly, and then performs the k tournament selection. In this paper, we
consider that the tournament candidates are picked with replacement.

Definition 6 (Stochastic Tournament Selection). The stochastic tourna-
ment selection strategy first selects a number k from {1, 2, . . . , N} uniformly at
random, where N is the size of the population P , and then employs the k tour-
nament selection to select a solution from the population P .

In each generation of NSGA-II, we need to select N parent solutions indepen-
dently, and each selection may involve the comparison of several solutions, which
may lead to a large number of comparisons. To improve the efficiency of stochas-
tic tournament selection, we can first sort the solutions in the population P , and
then perform the parent selection procedure. Specifically, each solution xi (1 ≤
i ≤ N) in P is assigned a number π(i), where π : {1, 2, . . . , N} → {1, 2, . . . , N}
is a bijection such that

∀1 ≤ i, j ≤ N, i �= j : xi �c xj ⇒ π(i) < π(j). (2)

That is, a solution with a smaller number is better. Note that the number π(·)
is assigned randomly if several solutions have the same rank and crowding dis-
tance. Then, we sample a number k randomly from {1, 2, . . . , N} and pick k
solutions from P at random, where the solution with the lowest π(·) value is
finally selected.

Lemma 1 presents the property of stochastic tournament selection, which will
be used in the following theoretical analysis. It shows that any solution (even
the worst solution) in P can be selected with probability at least 1/N2, and any
solution belonging to the best O(1) solutions in P (with respect to �c) can be
selected with probability at least Ω(1). Note that for binary tournament selec-
tion, the probability of selecting the worst solution (denoted as xw) is 1/N2,
because xw is selected if and only if the two solutions picked for competition
are both xw; the probability of selecting the best solution (denoted as xb) is
1 − (1 − 1/N)2 = 2/N − 1/N2, because xb is selected if and only if xb is picked
at least once. Thus, compared with binary tournament selection, stochastic tour-
nament selection can increase the probability of selecting the top solutions, and
meanwhile maintain the probability of selecting the bottom solutions. Note that
such probability is similar to the power law distribution in [6].

436 C. Bian and C. Qian

Lemma 1. If using stochastic tournament selection, any solution in P can be
selected with prob. at least 1/N2. Furthermore, a solution xi ∈ P with π(i)=O(1)
can be selected with prob. Ω(1), where π : {1, 2, . . . , N} → {1, 2, . . . , N} is a
bijection satisfying Eq. (2).

4.2 Running Time Analysis

We prove that the expected number of generations of the NSGA-II using stochas-
tic tournament selection is O(n) (implying O(n2) expected running time) for
solving LOTZ, in Theorem 2. The proof idea of Theorem 2 is similar to that
of Theorem 1. That is, the NSGA-II first employs the mutation operator to
find the solutions that maximize each objective function, and then employs the
crossover operator to quickly find the remaining objective vectors in the Pareto
front. However, the utilization of stochastic tournament selection can make the
NSGA-II select prominent solutions, i.e., solutions maximizing each objective
function, with larger probability, making the crossover operator easier fill in the
remaining Pareto front and thus reducing the total running time.
Theorem 2. For the NSGA-II solving LOTZ, if using stochastic tournament
selection and a population size N such that 2n + 2 ≤ N = O(n), then the
expected number of generations for finding the Pareto front is O(n).

5 Experiments

In the previous sections, we have proved that when binary tournament selec-
tion is used in the NSGA-II, the expected number of generations is O(n2) for
LOTZ; when stochastic tournament selection is used, the expected number of
generations can be improved to O(n). But as the lower bounds on the running
time have not been derived, the comparison may be not strict. Thus, we conduct
experiments to examine the tightness of these upper bounds. We also conduct
experiments on the widely used benchmark problem ZDT1 [35], to examine the
performance of the stochastic tournament selection in more realistic scenarios.

5.1 LOTZ Problem

For the LOTZ problem, we examine the performance of NSGA-II when the
problem size n changes from 10 to 100, with a step of 10. On each problem
size n, we run the NSGA-II 1000 times independently, and record the number
of generations until the Pareto front is found. Then, the average number of
generations and the standard deviation of the 1000 runs are reported in Fig. 1(a).
To show the relationship between the average number of generations and the
problem size n clearly, we also plot the estimated ratio, i.e., the average number
of generations divided by the problem size n, in Fig. 1(b).

From the left subfigures of Fig. 1(a) and 1(b), we can observe that the average
number of generations is approximately Θ(n2), suggesting that the upper bound
O(n2) derived in Theorem 1 is tight. By the right subfigures of Fig. 1(a) and 1(b),
the average number of generations is clearly a linear function of n, which suggests
that the upper bound O(n) derived in Theorem 2 is also tight.

Better Running Time of the NSGA-II 437

20 40 60 80 100
0

1000

2000

3000

4000

A
ve

ra
ge

 #
ge

ne
ra

tio
ns

20 40 60 80 100
0

100

200

300

400

A
ve

ra
ge

 #
ge

ne
ra

tio
ns

(a) Average #generations

0 20 40 60 80 100
0

10

20

30

40

0 20 40 60 80 100
2

2.2

2.4

2.6

2.8

3

(b) Average #generations divided by the problem size n

Fig. 1. Average #generations and the estimated ratio of the NSGA-II using binary
tournament selection or stochastic tournament selection for solving the LOTZ problem.
Left subfigure: the NSGA-II using binary tournament selection; right subfigure: the
NSGA-II using stochastic tournament selection.

5.2 ZDT1 Problem

The ZDT1 problem presented in Definition 7 is a widely used benchmark to
test the practical performance of MOEAs [35]. It has 30 continuous decision
variables with each variable taking value from [0, 1]. As suggested in [8], we use
30 bits (i.e., a binary string of length 30) to code each decision variable. The
Pareto front of ZDT1 is F = {(f1, 1 − √

f1) | f1 ∈ [0, 1]}. Note that ZDT1 is a
minimization problem, and thus we need to change the domination relationship
in Definition 2 from “fi(x) ≥ (or>)fi(y)” to “fi(x) ≤ (or<)fi(y)” accordingly.

Definition 7 (ZDT1 [35]). The ZDT1 problem is to find a 30-dimensional
decision vector x = (x1, x2, . . . , x30) which minimizes f(x) =

(
x1, g(x)

(
1 −√

x1/g(x)
))
, where ∀1 ≤ i ≤ 30 : xi ∈ [0, 1], and g(x) = 1 + 9 · ∑30

i=2 xi/29.

Different from the LOTZ problem, the Pareto front of the ZDT1 problem
is an uncountable set. Thus, instead of examining the running time for finding
the whole Pareto front, we run NSGA-II for a fixed number of generations,
i.e., 300, and examine the quality of the obtained population. To measure the
quality of a set of solutions, we use the inverted generational distance (IGD)
indicator, which has been widely used in multi-objective optimization [5,22]. As
presented in Definition 8, IGD(R,A) intuitively means the average distance of

438 C. Bian and C. Qian

50 100 150 200 250 300
#generations

0

0.5

1

1.5

A
ve

ra
ge

 I
G

D
 v

al
ue

Binary
Stochastic

50 100 150 200 250 300
#generations

0.4

0.6

0.8

1

R
at

io
 o

f
IG

D
 v

al
ue

Fig. 2. Average IGD value of the NSGA-II using binary or stochastic tournament
selection for solving the ZDT1 problem. Left subfigure: average IGD value of the NSGA-
II vs. #generations; right subfigure: average IGD value of the NSGA-II using stochastic
tournament selection divided by that of the NSGA-II using binary tournament selection
vs. #generations.

the reference points in R to the objective vectors in A, where the reference points
are usually sampled from the Pareto front in advance, and the set A consists of
objective vectors of the solutions in the population. It is straightforward to see
that a smaller IGD value implies a better approximation of the population to
the Pareto front, in terms of both convergence and diversity.

Definition 8 (IGD [5]). Given a set R = {r1, r2, . . . , rl} of reference points
and a set A of objective vectors, the IGD value of the set A with respect to R
is defined as IGD(R,A) = 1

l

∑l
i=1 mina∈A d2(ri,a), where d2(ri,a) denotes the

Euclidean distance between ri and a.

In our experiments, we sample 200 points uniformly from the Pareto front as
the reference set R, and set the population size N to 100. We run the NSGA-II
1000 times independently, and report the average IGD value of the 1000 runs
every 10 generations. From Fig. 2(a), we can observe that (i) initially, the two
selection strategies achieve similar performance; (ii) in the intermediate stage,
the NSGA-II using stochastic tournament selection converges to the Pareto front
faster than the NSGA-II using binary tournament selection; (iii) finally, the two
selection strategies both achieve IGD value very close to 0, implying a good
approximation ability of the two strategies. We also plot the ratio of the average
IGD value obtained by the NSGA-II using stochastic tournament selection and
binary tournament selection in Fig. 2(b). We can observe that the ratio is always
at most 1, and decreases rapidly in the initial optimization procedure, implying
that stochastic tournament selection is always better, and can help the NSGA-
II converge faster. As time goes by, the advantage of stochastic tournament
selection diminishes, because the NSGA-II using the two strategies have both
found objective vectors which approximate the Pareto front well.

To better visualize the performance of the NSGA-II using the two selection
strategies, we also plot the objective vectors obtained by the NSGA-II every
50 generations in one of the runs. Figure 3 shows that the objective vectors

Better Running Time of the NSGA-II 439

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Binary
Stochastic
Pareto front

0.2 0.4 0.6 0.8 1
0

0.5

1
Binary
Stochastic
Pareto front

0.2 0.4 0.6 0.8 1
0

0.5

1
Binary
Stochastic
Pareto front

(a) 50-th generation (b) 100-th generation (c) 150-th generation

0.2 0.4 0.6 0.8 1
0

0.5

1
Binary
Stochastic
Pareto front

0.2 0.4 0.6 0.8 1
0

0.5

1
Binary
Stochastic
Pareto front

0.2 0.4 0.6 0.8 1
0

0.5

1
Binary
Stochastic
Pareto front

(d) 200-th generation (e) 250-th generation (f) 300-th generation

Fig. 3. Objective vectors obtained by the NSGA-II using binary or stochastic tourna-
ment selection for solving the ZDT1 problem.

obtained by the NSGA-II using stochastic tournament selection are always evenly
distributed along the Pareto front, and gradually converge, suggesting the good
spread ability of stochastic tournament selection.

In summary, the two selection strategies can achieve similar performance
when given long enough time, but stochastic tournament selection can help the
NSGA-II converge faster. The reason may be that the second objective value
of the ZDT1 problem can be consecutively decreased by decreasing the value
of x2, x3, . . . , x30, i.e., a currently good solution is helpful in the subsequent
optimization process; and stochastic tournament selection can take advantage of
these good solutions more efficiently.

6 Conclusion

In this paper, we theoretically analyze the running time of the NSGA-II solving
the bi-objective problem LOTZ, and derive the upper bound that is the same
as that of the previously analyzed simple MOEAs, GSEMO and SEMO. Then,
we propose a new parent selection strategy, stochastic tournament selection, to
replace the binary tournament selection strategy of the NSGA-II, and prove
that the NSGA-II using the new strategy can find the Pareto front of LOTZ
with a much smaller running time upper bound. Experimental results suggest
that the derived upper bounds on LOTZ are tight, and also show the superior
performance of stochastic tournament selection on the widely used benchmark
problem ZDT1. In the future, we will analyze the lower bounds on the running
time to make the comparison strict, and it is also interesting to examine the
effectiveness of stochastic tournament selection on more problems.

440 C. Bian and C. Qian

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, Singapore (2011)

2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

3. Bian, C., Qian, C., Tang, K.: A general approach to running time analysis of
multi-objective evolutionary algorithms. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, pp.
1405–1411 (2018)

4. Coello Coello, C.A., Lamont, G.B.: Applications of Multi-Objective Evolutionary
Algorithms. World Scientific, Singapore (2004)

5. Coello Coello, C.A., Sierra, M.R.: A general approach to running time analysis of
multi-objective evolutionary algorithms. In: Proceedings of the Mexican Interna-
tional Conference on Artificial Intelligence (MICAI 2004), Mexico City, Mexico,
pp. 688–697 (2004)

6. Covantes Osuna, E., Gao, W., Neumann, F., Sudholt, D.: Design and analysis
of diversity-based parent selection schemes for speeding up evolutionary multi-
objective optimisation. Theoret. Comput. Sci. 832, 123–142 (2020)

7. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an intro-
duction. In: Multi-objective Evolutionary Optimisation for Product Design and
Manufacturing, pp. 3–34. Springer, London (2011). https://doi.org/10.1007/978-
0-85729-652-8 1

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a global multi-
objective evolutionary algorithm. In: Proceedings of the 2013 IEEE Congress on
Evolutionary Computation (CEC 2013), Cancun, Mexico, pp. 432–439 (2013)

10. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, Natural Computing Series, Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-29414-4

11. E. Eiben, A., E. Smith, J.: Introduction to Evolutionary Computing. Springer-
Verlag, Berlin (2015). https://doi.org/10.1007/978-3-662-05094-1

12. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

13. Friedrich, T., Hebbinghaus, N., Neumann, F.: Plateaus can be harder in multi-
objective optimization. Theoret. Comput. Sci. 411(6), 854–864 (2010)

14. Friedrich, T., Horoba, C., Neumann, F.: Illustration of fairness in evolutionary
multi-objective optimization. Theoret. Comput. Sci. 412(17), 1546–1556 (2011)

15. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

16. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC
2003), Canberra, Australia, pp. 1918–1925 (2003)

17. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18(3), 335–356 (2010)

18. Horoba, C.: Analysis of a simple evolutionary algorithm for the multiobjective
shortest path problem. In: Proceedings of the 10th International Workshop on
Foundations of Genetic Algorithms (FOGA 2009), Orlando, FL, pp. 113–120 (2009)

https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-662-05094-1

Better Running Time of the NSGA-II 441

19. Huang, Z., Zhou, Y., Luo, C., Lin, Q.: A runtime analysis of typical decomposition
approaches in MOEA/D framework for many-objective optimization problems. In:
Proceedings of the 30th International Joint Conference on Artificial Intelligence
(IJCAI 2021), Virtual, pp. 1682–1688 (2021)

20. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algo-
rithms on a simplified multiobjective knapsack problem. Nat. Comput. 3, 37–51
(2004)

21. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

22. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
a survey. ACM Comput. Surv. 52(2), 26:1–38 (2020)

23. Li, Y., Zhou, Y., Zhan, Z., Zhang, J.: A primary theoretical study on
decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol.
Comput. 20(4), 563–576 (2016)

24. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-
objective minimum spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629
(2007)

25. Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized
search heuristics. Algorithmica 59, 323–342 (2011)

26. Neumann, F., Theile, M.: How crossover speeds up evolutionary algorithms for the
multi-criteria all-pairs-shortest-path problem. In: Proceedings of the 11th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN 2010), Krakow,
Poland, pp. 667–676 (2010)

27. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5, 305–319 (2006)

28. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer-Verlag, Berlin (2010).
https://doi.org/10.1007/978-3-642-16544-3

29. Qian, C., Tang, K., Zhou, Z.H.: Selection hyper-heuristics can provably be helpful
in evolutionary multi-objective optimization. In: Proceedings of the 14th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN 2016), Edin-
burgh, Scotland, pp. 835–846 (2016)

30. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective
evolutionary optimization. Artif. Intell. 204, 99–119 (2013)

31. Qian, C., Yu, Y., Zhou, Z.H.: On constrained Boolean Parto optimization. In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI 2015), Buenos Aires, Argentina, pp. 389–395 (2015)

32. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

33. Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the non-
dominated sorting genetic algorithm II (NSGA-II). In: Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI 2022), Virtual (to appear 2022)

34. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories
and Algorithms. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-
5956-9

35. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-981-13-5956-9
https://doi.org/10.1007/978-981-13-5956-9

Escaping Local Optima with Local
Search: A Theory-Driven Discussion

Tobias Friedrich1, Timo Kötzing1(B), Martin S. Krejca2,
and Amirhossein Rajabi3

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{Tobias.Friedrich,Timo.Koetzing}@hpi.de

2 Sorbonne University, CNRS, LIP6, Paris, France
Martin.Krejca@lip6.fr

3 Technical University of Denmark, Kgs. Lyngby, Denmark
amraj@dtu.dk

Abstract. Local search is the most basic strategy in optimization set-
tings when no specific problem knowledge is employed. While this strat-
egy finds good solutions for certain optimization problems, it generally
suffers from getting stuck in local optima. This stagnation can be avoided
if local search is modified. Depending on the optimization landscape, dif-
ferent modifications vary in their success.

We discuss several features of optimization landscapes and give anal-
yses as examples for how they affect the performance of modifications of
local search. We consider modifying random local search by restarting it
and by considering larger search radii. The landscape features we ana-
lyze include the number of local optima, the distance between different
optima, as well as the local landscape around a local optimum. For each
feature, we show which modifications of local search handle them well
and which do not.

Keywords: Local search · Theory · Run time analysis

1 Introduction

For optimizing a given objective function, the following strategy is widely used.
Start with any, possibly randomly generated, solution. Check neighboring solu-
tions, where just a few defining properties of the solution are altered, for having
better quality. Whenever you find a better solution, let it replace the previous
solution and continue from there. This is the general concept of local search.

Basic local search already finds good solutions for a variety of problems [1,15,
16,25] by hillclimbing, i.e., going up the gradient until a peak in objective value
is found. This simple greedy behavior can be very beneficial, e.g., in settings
where no additional knowledge about the problem to be optimized is available,
so-called black box optimization. The main drawback is when local search gets
stuck in a local optimum where all nearby solutions do not have better quality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 442–455, 2022.
https://doi.org/10.1007/978-3-031-14721-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_31&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_31

Escaping Local Optima with Local Search 443

than the local optimum, while the quality of solutions in other parts of the
search space is significantly better. Overcoming the issue of local optima is a
long-standing and frequently addressed problem.

One common way to escape local optima is to introduce randomness into how
many local changes are performed when modifying a single solution. Prominent
examples of this strategy are evolutionary algorithms (EAs [24]), which typically
allow to modify solutions to vast extents, larger modifications commonly hav-
ing a lower probability of occurring. Although this approach potentially allows
to escape local optima, it also has some drawbacks. As an example, if better
solutions require larger modifications to the current solution, the probability
of making such a change may be very small [5]. Moreover, defining a mecha-
nism that allows to change solutions in a manner such that each solution can
be produced (a global operator) requires greater knowledge of the search space,
e.g., when defining the probabilities for each possible change. In contrast, local
changes are usually well understood and easy to implement.

In this article, we study random local search (RLS), a very basic local-search
variant that maintains a single solution. In an iterative manner, it modifies this
solution only slightly, i.e., locally. If the new solution is at least as good as the
current, the current solution is updated to the new one, otherwise not. It is clear
that RLS ceases improving the maintained solution once a search point is found
whose direct neighbors have strictly worse objective-function value.

In order to overcome local optima, we consider two simple, different modifi-
cations to RLS: restarts and larger search radii. Restarts modify the way that
the maintained solution is selected by always accepting the new solution when a
restart is triggered. In addition, the distribution from which the new solution is
drawn may be changed. Larger search radii modify the way that a new solution
is created by considering solutions that are not direct neighbors of the current
solution. This can be done by considering a local operator (i.e., creating solutions
in a certain distance) or a global operator (i.e., creating any solution).

We study RLS and its modifications on various functions (see Fig. 1), con-
taining different types of local optima. Our goal is to understand how the mod-
ifications of RLS cope with these local optima. We are particularly interested
in an overview of which different characteristics of the optimization landscape
favor which modifications and which not.

We aim to raise awareness about the usefulness of modifications to RLS in
various settings. To this end, our analyzes do not aim for depth (i.e., giving a
narrow but sophisticated analysis of a single setting), as is frequent in theory
research, but instead for breadth. We note that we consider a local optimum to
be points in the search space such that all directly neighboring points are worse
in objective-function value. Allowing for neighboring points to have equal values
results in plateaus and in completely different discussions. For recent results on
plateaus, we refer the interested reader to the literature [2,4].

Contributions. Our results concern four landscape characteristics. We give an
intuitive description as well as key insights for each characteristic below.

444 T. Friedrich et al.

(1) Section 3: A basin of attraction of a local optimum x is the part of the
landscape from where local search can find the local optimum x.

Key Insight: Restarts are beneficial and better than larger search radii if the
basin of attraction of the global optimum is large.

(a) The function Two-
Max from Section 3.

(b) The function f4 as a
special case of fd, defined
in Section 6.

Jumpd

Cliffd

(c) The two fitness func-
tions defined in Section 4.

ShiftedJumpd

ShiftedCliffd

(d) Jump and Cliff with
shifted valleys (Section 5).

Fig. 1. Most of the fitness functions that we analyze in Sects. 3 to 6.

(2) Section 4: Between a local optimum and the global optimum is a valley of
worse objective-function values that needs to be crossed. Depending on the
values within the valley, this is a deceptive valley (leading back to the
local optimum) or it provides guiding information.

Key Insight: Restarts are very beneficial for exploiting guiding information.
However, they fail in the case of deception, where larger search radii prove useful
and comparable to global operators.

(3) Section 5: The difficulty in crossing valleys depends on whether on the other
side of the valley there is a single or multiple targets to transition to.

Key Insight: Both modifications of RLS are unaffected by the number of tar-
gets. In contrast, a global operator improves the performance drastically.

(4) Section 6: An algorithm might encounter iterated local optima, i.e., it has
to cross multiple, consecutive valleys to find the global optimum.

Key Insight: The structure of each local optimum is essential. Warm restarts
may help majorly if the local structure has guiding information (i.e., is well
suited) but fail in case of deceptive information. When using larger search radii,
the performance is unaffected by the shape of the valley. It is far slower in case
of guiding information but better in case of deception.

Escaping Local Optima with Local Search 445

Paper Outline. In Sect. 2, we give the details of all algorithms considered, fol-
lowed by the technical sections considering the four mentioned landscape charac-
teristics in turn. Last, we provide a discussion and conclusions in Sect. 7, where
we go into more detail about the general learnings from the analyzes.

Algorithm 1: The framework for trajectory-based heuristics, requiring
the potentially parametrized subroutines mutate and select as well as a
fitness function f .
1 x(0) ← individual drawn uniformly at random from {0, 1}n;
2 for t ∈ N do

3 y ← mutate(x(t));

4 x(t+1) ← selectf (x(t), y);

2 Definitions and Algorithms

We let N denote the set of all natural numbers, including 0, and let R denote
the set of all reals. For all a, b ∈ R, let [a..b] := [a, b]∩N denote the set of natural
numbers from at least a to at most b. Further, for all a ∈ R, let [a] := [1..a].

We consider the maximization of pseudo-Boolean functions of dimension n ∈
N≥1, that is, functions {0, 1}n→ R. Throughout this article, let n always denote
the dimension of the objective function under consideration. All asymptotics
(that is, big-Oh notation) are with respect to this n.

We call a pseudo-Boolean function f a fitness function, and we refer to bit
strings as individuals. For each x ∈ {0, 1}n, let |x|1 denote the number of 1s in x,
and let |x|0 denote its number of 0s. Further, for each i ∈ [n], let xi denote the
bit at position i in x. We say that we flip bit i when we refer to the value 1−xi.
We call f(x) the fitness of x. For x, y ∈ {0, 1}n, we call dH(x, y) := |{i ∈ [n] |
xi �= yi}| the Hamming distance of x and y. Last, for all i ∈ [n], we call the set
of all individuals with distance i to x the i-neighborhood of x.

Given an algorithm A and a fitness function f , we call the number of fitness
function evaluations (number of calls to f) that A performs until is finds a global
maximum of f for the first time the run time of A.

2.1 Algorithms

We consider modifications to RLS. All of these algorithms follow the framework
of a trajectory-based heuristic for optimizing a fitness function f (Algorithm 1).
Each such heuristic evolves iteratively a trajectory (x(t))t∈N of individuals (the
current individuals). The initial individual (x(0)) is drawn uniformly at random
from the search space {0, 1}n. For all t ∈ N, the individual x(t+1) is determined
via two, potentially parametrized, subroutines: mutate and select. The sub-
routine mutate : {0, 1}n → {0, 1}n gets x(t) as input (the parent) and returns a
modified copy of x(t), denoted by y (the offspring). We call this process muta-
tion, and we say that x(t) is mutated. After mutation, utilizing f , the subroutine

446 T. Friedrich et al.

select : ({0, 1}n)2 → {0, 1}n selects either x(t) or y as a starting point for the
next iteration, and the result is assigned to x(t+1). We refer to this process as
selection. We allow mutation and selection to take into account additional infor-
mation, such as the number of iterations since the last improvement was found.

RLS employs elitist selection, i.e., if the fitness of the offspring is at least
that of the parent, the offspring is selected. During mutation, RLS flips exactly
one bit in its parent, which it chooses uniformly at random. Since this approach
leads RLS to getting stuck in local optima where the 1-neighborhood is strictly
worse, we consider the following modifications of RLS, each of which adjusts
selection and/or mutation: restarts and larger search radii.

Restarts. This approach refers to changing selection after a certain amount of
non-improving iterations such that it always accepts the offspring. In addition,
a restart strategy may change how the offspring is generated (i.e., mutation).
There are two straightforward ways that we consider: (1) create an individual
sampled uniformly at random, that is, start a new run of RLS (cold restart),
or (2) create offspring normally but always accept it (warm restart). We refer
to RLS with cold restarts as cr-RLS and to the variant with warm restart as
wr-RLS. Both variants have a parameter R ∈ R>0. If there are more than n ln R
non-improving iterations, the restart is initiated. The parameter R bounds the
probability of failing to find the possible improvement. The probability of not
finding an improvement in such a situation is at most 1/R [22, Lemma 2].

Larger Search Radii. This approach refers to employing mutations that search
beyond the 1-neighborhood. One modification following this pattern is variable
neighborhood search (VNS [10]), for which many different versions exist. We
consider the one displayed in Algorithm 2, which creates offspring with increasing
distance from the current individual, exploiting each neighborhood fully before
going to the next. Each neighborhood is explored randomly, stopping at the
first improvement, and each individual in the neighborhood is created at most
once. This guarantees to explore all neighborhoods eventually. However, as the
neighborhood sizes grow exponentially until distance n/2 to the parent, it takes
a considerable amount of time to get to larger distances.

Adding Global Mutations. Last, we further add a global mutation to RLS in
order to see how much the previous algorithms are hampered by relying on local
mutations. Since global mutation serves the same purpose as VNS, we remove
the VNS modification. The resulting algorithm is effectively an evolutionary
algorithm that uses a local search as mutation. This algorithm is called the
(1 + 1) memetic algorithm ((1 + 1) MA [17]; Algorithm 4). After creating its
offspring by flipping each of the n bits independently with probability 1/n, it then
aims at improving it via the first-improvement local search (FILS; Algorithm 3).
FILS creates a random permutation π over [n] and flips each bit of its input in
the order they appear in π, keeping those and only those flips that improve the
individual. Note that FILS flips bits in potentially improved individuals.

Escaping Local Optima with Local Search 447

Algorithm 2: VNS maximizing fitness function f .
1 x(0) ← individual drawn uniformly at random from {0, 1}n;
2 s ← 1;
3 for t ∈ N do

4 y ← x(t);

5 Γ ← the ordered s-neighborhood of x(t), where the order is chosen
uniformly at random;

6 for i ∈ [|Γ |] do
7 y ← Γ (i);

8 if f(y) > f(x(t)) then break the loop iterating over i;

9 if f(y) > f(x(t)) then

10 x(t+1) ← y;
11 s ← 1;

12 else

13 x(t+1) ← x(t);
14 s ← min{s + 1, n};

Algorithm 3: First-Improvement Local Search (FILS) of an individual x,
maximizing fitness function f .
1 π ← permutation over [n] chosen uniformly at random;
2 for i ∈ [n] do
3 y ← copy of x with bit π(i) flipped;
4 if f(y) > f(x) then x ← y;

5 return x;

3 Basins of Attraction

A basin of attraction [11] is, intuitively, the area of the search space around a
local optimum x such that a local-search algorithm ends up in x (in this sense,
the local optimum “attracts” the search points in the basin). Note that some
search points might lead to different local optima depending on the random
choices of the local-search algorithm (in which case they would be counted to all
reachable local optima with the probability to reach the local optimum).

A large basin of attraction around a global optimum x∗ is good, as it makes
it more likely for the local search to find x∗. For the same reason, a large basin
of attraction around a local but not global optimum y is bad, as the local search
cannot escape y once it gets to its basin of attraction. Thus, the amount and
shape of basins of attraction drastically influence how well local search performs.

We briefly discuss this property of search spaces by considering the case of
only two local maxima – one being the global maximum. We model this problem
via the function TwoMax : {0, 1}n → R defined in [9], where one local maximum
is the all-0s string 0n, and the other one is the all-1s string 1n, which is also the

448 T. Friedrich et al.

Algorithm 4: (1 + 1) MA maximizing fitness function f .

1 x(0) ← individual drawn uniformly at random from {0, 1}n;
2 for t ∈ N do

3 y ← flip each bit in a copy of x(t) with probability 1
n
;

4 z ← apply FILS to y;

5 if f(z) ≥ f(x(t)) then x(t+1) ← z;

6 else x(t+1) ← x(t);

Table 1. Results for run times on TwoMax for different algorithms. Highlights show
good run times.

Algorithm Run time

RLS ∞ with prob. at least 0.5 [14]

cr-RLS, R = ω(n) Expected O(n log(nR))

wr-RLS, R = ω(n) nΩ(n) with prob. at least (1 − o(1))0.5

VNS Ω(2n) with prob. at least 0.5

(1 + 1) MA nΩ(n) with prob. at least 0.5

unique global maximum.1 Both maxima have a basin of attraction that consists
of an easy slope toward it, and both basins have the same size. More formally,
for all x ∈ {0, 1}n we define

TwoMax(x) =

{
n + 1, x = 1n;
max{|x|0, |x|1}, otherwise;

which we aim to maximize; see Fig. 1a for a depiction. Note that a slightly
different version of TwoMax, containing both 0n and 1n as global maxima,
was already defined and analyzed in [18,26].

For this setting we get the following theorem about the performance of various
local search algorithms.

Theorem 1. Regarding run times of RLS, cr-RLS, wr-RLS, VNS, and (1 +
1) MA on TwoMax, we get Table 1.

Intuitively, since the basin of 0n in TwoMax consists of half the search space,
RLS gets stuck at a non-global maximum with probability 1/2 (by symmetry);
1 The optimum of all test functions in this paper is given by the all-1 string, which

leads to the observation that the optimum can be found in constant time by just
conjecturing this string. Still theoretical research analyzes such functions, because (a)
we can nonetheless observe the behavior of different algorithms on these functions,
giving insights into the algorithms; and (b) these functions are representatives of
much wider classes of functions with either isomorphic or at least similar properties,
but for a theoretical analysis we restrict ourselves to the clean case where the rule
“more 1 s means closer to the optimum” holds.

Escaping Local Optima with Local Search 449

this was noted by [14]. For wr-RLS, VNS and the (1 + 1) MA, the same reasoning
applies, with the potential to leave again once stuck at the non-global optimum,
but at a stiff price.

Since both basins of TwoMax are large, a cheap way of escaping 0n is to
restart RLS. Choosing a reasonable restart parameter R, the expected run time
is not only finite but also very efficient.

Table 2. Results for run times on Jumpd and Cliffd, where d = O(1), d ≥ 2, for
different algorithms. Highlights show good run times.

Algorithm Run time on Jumpd Run time on Cliffd

RLS ∞ with prob. 1 − o(1) ∞ with prob. 1 − o(1)

cr-RLS Expected Ω(2n) Expected Ω(2n/nd)

wr-RLS, R = Ω(n) nω(n) Expected Θ(n3 log R)

VNS Expected Θ(nd) Expected Θ(nd)

(1 + 1) MA Expected Θ(nd+1) Expected Θ(n3)

Note that the constant 0.5 is essentially due to the basin of the non-global
optimum being a 0.5 portion of the search space. The observation about RLS
getting stuck and cr-RLS being efficient can thus be generalized in dependence
of how large the basin of the global optimum is. We omit this generalization.

4 Deceptive Valleys vs. Guiding Information

Given a local optimum, a valley is the area of the search space that has lower
fitness than the local optimum but that has to be crossed to arrive at the global
optimum. We consider crossing two kinds of valleys. Two well-established fitness
functions to model this setting are Jump [8] and Cliff [12], parametrized by d ∈
N, determining the width of the valley. The two functions model two extremes
regarding the shape of the valley: In Jump, the valley contains deceptive fitness
signals, guiding the search back to the local optimum, while in Cliff the fitness
signal points to the global optimum. Formally, for all x ∈ {0, 1}n, let

Jumpd(x) =

{
|x|1 + d, if |x|1 ≤ n − d ∨ |x|1 = n;
|x|0, otherwise;

Cliffd(x) =

{
|x|1, if |x|1 ≤ n − d;
|x|1 − d + 1/2, otherwise.

Both functions are functions of unitation, i.e., the fitness only depends on the
number of 1 s of the evaluated solution (see Fig. 1c). Note that there are far more
search points with about n/2 0 s than with just a few 0 s (where the valley is),
so any local search starts, with high probability, somewhere in the middle and

450 T. Friedrich et al.

encounters the valley on the way to the global optimum. As a result, with high
probability, RLS ends up in a local optimum without chance of escaping. Thus,
cold restarts do not lead to successful optimization in polynomial time.

One way to overcome the valley is by finding a local optimum (in distance d
of the global optimum) and then creating the global optimum with a single
mutation. This is what VNS does. Note that, in this case, the exact layout of
the valley is of no importance. This is very different for algorithms which can
explore valleys. The (1 + 1) MA and wr-RLS both suffer from the presence of
deceptive information, while making good use of guiding information.

Theorem 2. Regarding run times of RLS, cr-RLS, wr-RLS, VNS, and (1 +
1) MA on Jump and Cliff, we get Table 2.

The idea of the proof for the (1 + 1) MA is as follows. When currently in
a local optimum, with probability Θ(1/n), samples a search point in the valley
just one step closer to the optimum and then, with probability Θ(1/n) runs up
the slope to the global optimum (an otherwise returns to the local optimum).

5 Single Target vs. Multiple Targets

In Sect. 4, we discuss crossing a valley to reach one specific point. In this section,
we address the question of what changes if there is not just one point on the
other side of the valley, but multiple. To this end, we consider again two fitness
functions; they are variants of Jump and Cliff from Sect. 4 but suitably shifted
into an area of the search space with more than one point after the valley.
The case of Jump was first considered in [3,21]. We make the following formal
definitions. Let d ∈ N. For all x ∈ {0, 1}n,

ShiftedJumpd(x) =

{
|x|1 + d, if |x|1 ≤ 3n/4 or |x|1 ≥ 3n/4 + d;
|x|0, otherwise;

ShiftedCliffd(x) =

{
|x|1, if |x|1 ≤ 3n/4;
|x|1 − d + 1/2, otherwise.

Note that the depictions of the functions in Fig. 1d are somewhat misleading: It
looks like there is still only one solution directly after the valley. However, since
the search space is not the integers from 0 to n, but rather all bit strings {0, 1}n,
there are indeed a lot of points on the other side of the valley at a distance of d
to any local optimum: A local optimum has exactly n/4 many 0s, and flipping
any d of those 0s gives a solution on the other side of the valley (i.e., a point with
a fitness higher than that of the local optimum). Thus, for constant d, there are
indeed Θ(nd) search points just on the other side of the valley.

In Sect. 4, we show that the VNS and the (1 + 1) MA behave basically the
same for crossing a deceptive valley: they need to make the jump to the other
side of the valley in one go. In this section, we show a major difference. For
VNS, after finding a local optimum, this algorithm first searches neighborhoods

Escaping Local Optima with Local Search 451

of distance less than d before finally picking a distance of d for the search. This
implies that a lot of time is wasted searching through unrewarding parts of the
search space. In contrast to this, the global mutation of the (1 + 1) MA enables
stepping over the valley in one jump of constant probability. This is also the
behavior exhibited by the (1 + 1) EA (see [3]).

Theorem 3. Regarding run times of RLS, cr-RLS, wr-RLS, VNS, and (1 +
1) MA on ShiftedJump and ShiftedCliff, we get Table 3.

Table 3. Results for run times on ShiftedJumpd and ShiftedCliffd, where d = O(1),
d ≥ 2, for different algorithms. Highlights show good run times.

Algorithm ShiftedJumpd ShiftedCliffd

RLS ∞ with prob. 1 − o(1) ∞ with prob. 1 − o(1)

cr-RLS Expected 2Ω(n) Expected Ω(2n
(

n
n/4−1

)−1
)

wr-RLS, R = Ω(n) nω(n) Θ(n log(R))

VNS Expected Θ(nd−1) Expected Θ(nd−1)

(1 + 1) MA Expected Θ(n) Expected Θ(n)

6 Iterated Local Optima

In Sect. 4, we show that non-elitist algorithms can have a big advantage in cross-
ing fitness valleys. In this section, we point out one drawback of such algorithms,
namely that they can fail and essentially have to restart optimization from a
bad part of the search space. Let us suppose, e.g., that the valley is crossed
successfully with probability p and otherwise a complete reoptimization has to
be made. If only a single valley has to be crossed, this success probability gives
1/p attempts and reoptimizations in expectation, which might still be accept-
able. However, the success probability decreases exponentially with the number
of optima to be crossed in approaching the global optimum.

This is modeled by the following fitness functions inspired by combining
the Hurdle fitness function [19] and the Ridge fitness function [20]. Hurdle

consists of multiple Cliff-like structures, leading to a sequence of local optima.
Ridge is a fitness function where the algorithm has a path of “width 1” to climb
to go up to the global optimum. In order to make comparisons with only one
local optimum on a ridge, we also define a version of Cliff on a ridge. For any

452 T. Friedrich et al.

d ∈ N (denoting the length of the valley) and for all i ∈ [0..n] and x ∈ {0, 1}n,

fd(i) =

⎧⎪⎨
⎪⎩

2n, if i = n;
fd(i + 1) + 2d − 3, if d divides n − i;
fd(i + 1) − 2, otherwise;

HurdleRidged(x) =

{
n + fd(|x|1), if x = 1|x|10n−|x|1 ;
|x|0, otherwise.

CliffRidged(x) =

⎧⎪⎨
⎪⎩

|x|0, if x �= 1|x|10n−|x|1 ;
n + |x|1, if |x|1 ≤ n − d;
n + |x|1 − d + 1/2, otherwise.

Note that, for i ∈ [0..n], (see also Fig. 1b for a depiction)

fd(i) = 2i − (2d + 1)|{j ∈ [i..n − 1] | d divides n − i}|.
Most search points in HurdleRidge point to the solution 0n; this is the

starting point of the path to the global optimum 1n. Along this path the fitness
is steadily increasing, but once every d steps it goes down d − 1, leading to
Θ(n/d) valleys of width d to be crossed.

Table 4. Results for run times on HurdleRidged and CliffRidged, where d = O(1),
d ≥ 2, for different algorithms. Highlights show good run times.

Algorithm HurdleRidged CliffRidged

RLS ∞ with prob. 1 − o(1) ∞ with prob. 1 − o(1)

cr-RLS Expected 2Ω(n) Expected 2Ω(n)

wr-RLS, R = Ω(n log n) O(n3 + n2 log R) ∀c : Ω(nc) with prob. 1 − o(1)

VNS Expected Θ(nd+1) Expected Θ(nd)

(1 + 1) MA Expected Θ(n3) Expected Θ(n3)

For elitist algorithms, optimization proceeds by crossing each of the Θ(n)
many local optima one after the other. In contrast to this result, non-elitist
algorithms have a chance to fail crossing a fitness valley. This is not a big problem
if there is only one valley to be crossed, resulting in an acceptable optimization
time on CliffRidge. But on HurdleRidge there are linearly many valleys to
cross, so even some small failure probability per crossing leads almost surely to
failing to optimize. This happens for warm restarts for HurdleRidged. Note
that this result does not generalize to the (1 + 1) MA, since it can recover from
a failure when trying to cross a valley by reverting to the best-so-far solution.

Theorem 4. Regarding run times of RLS, cr-RLS, wr-RLS, VNS and (1 +
1) MA on HurdleRidge and CliffRidge, we get Table 4.

Escaping Local Optima with Local Search 453

7 Discussion and Conclusion

We have seen many different strategies for overcoming local optima. The first
strategy, applicable to any randomized algorithm, is to just run the algorithm
multiple times (cr-RLS). This leads to a very diverse set of starting points for
local search and can boost the success probability of any algorithm which starts
off with a reasonable success probability. One problem in this area is to decide
when to restart. For RLS, this decision is somewhat easily made, since after about
n log n iterations without improvements, all neighbors have been considered at
least once with high probability, so no further improvement occurs. In practice,
also small improvements might be a sign of stagnation and can be used as a signal
to restart the algorithm. An extreme version of searching with restarts is random
search, where no local optimization is employed. This strategy is popular when
the fitness landscape is extremely rugged (which blocks local optimization) and
different parts of the landscape are very different. Simple grid search optimization
also falls into this category.

In Sect. 4, we have seen that giving up elitism in favor of being able to make
use of guiding information in the valley might be valuable. Some of the first algo-
rithms that made use of this idea were the Metropolis algorithm and Simulated
Annealing, which in turn suffer in their ability to climb simple gradients; for a
theoretical comparison with elitist search heuristics, see [13]. Both the Metropo-
lis Algorithm and Simulated Annealing behave like RLS, but they accept worse
offspring with a certain probability depending on the fitness difference to the
parent. This makes the algorithms sensitive to the fitness values, in contrast to
the non-elitist (and elitist) algorithms considered in this paper based on restarts
(accepting worse moves only rarely). The advantage of rare (warm) restarts is
that other moves can be elitist and thus able to find local optima. Since there
are typically more potential worsening moves than improving moves, it is vital
to reject worsening moves most of the time.

Another strategy for overcoming local optima is to look further than just the
direct neighborhood. This is the idea behind VNS. However, sometimes a lot of
samples are wasted locally before attempting a larger jump as, for example, (1 +
1) MA does, see Sect. 5. This is the principle domain of global search heuristics,
such as the well-studied (1 + 1) EA. Taking this idea one step further gives the
so-called fast (1 + 1) EA [6], sampling offspring at far distances significantly
more frequently than the (1 + 1) EA, while still sampling search points at a
distance of 1 with constant probability. Another idea is to adjust the search
distance distribution whenever progress stagnates; this idea, so-called stagnation
detection, was analyzed in [7,21–23]. Note that it is typically fruitful to spend a
lot of time searching the local neighborhood in order to exploit local structure.

The different test functions considered are abstractions of what real-world
optimization problems look like. In particular, they study the different features in
isolation. In Sect. 6, we discussed a test function where a complex test function is
constructed by iterating the setting of a local optimum. We saw that in this more
complex setting, an algorithm that is successful without this iterated setting is
now unsuccessful. Iterated obstacles are generally no bigger problem for elitist

454 T. Friedrich et al.

algorithms than non-iterated obstacles, but non-elitism has to be applied more
carefully. The (1 + 1) MA provides a hybrid, where non-elitism is allowed, but
the algorithm might revert to the best-so-far search point.

In conclusion, we see that there is no universally best strategy to do so
(which is known for a long time), but properties of the fitness landscape can
inform about what algorithms could be efficient. In this paper, we studied the
connections between the properties of the fitness landscape and the success of
various strategies. In general, since most of the variants do not hamper the
ability of local search to find local optima, it is advisable to use some variant
that can escape local optima. However, the choice of which variant to choose
depends on the fitness landscape of the problem to optimize. Thus, if one has
some knowledge about the optimization problem, that is, one faces a gray-box
and not a black -box scenario, incorporating this knowledge into the choice of
how to escape local optima is a very useful or even crucial step in order to get
best possible results.

Acknowledgments. This work was supported by a grant by the Independent
Research Fund Denmark (DFF-FNU 8021-00260B), and by the Paris Île-de-France
Region via the European Union’s Horizon 2020 research and innovation program under
the Marie Sk�lodowska-Curie grant agreement No. 945298-ParisRegionFP.

References

1. Aarts, E., Aarts, E.H., Lenstra, J.K.: Local Search in Combinatorial Optimization.
Princeton University Press, Princeton (2003)

2. Antipov, D., Doerr, B.: Precise runtime analysis for plateau functions. ACM Trans.
Evol. Learn. Optim. 1(4), 13:1–13:28 (2021). https://doi.org/10.1145/3469800

3. Bambury, H., Bultel, A., Doerr, B.: Generalized jump functions. In: Proceedings
of GECCO 2021, pp. 1124–1132. ACM (2021). https://doi.org/10.1145/3449639.
3459367

4. Bian, C., Qian, C., Tang, K., Yu, Y.: Running time analysis of the (1+1)-EA for
robust linear optimization. Theor. Comput. Sci. 843, 57–72 (2020). https://doi.
org/10.1016/j.tcs.2020.07.001

5. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of GECCO 2017, pp. 777–784. ACM Press (2017)

6. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Bosman, P.A.N. (ed.) Proceedings of GECCO 2017, pp. 777–784. ACM (2017).
https://doi.org/10.1145/3071178.3071301

7. Doerr, B., Rajabi, A.: Stagnation detection meets fast mutation. In: Proceedings
of EvoCOP 2022, pp. 191–207. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-04148-8 13

8. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

9. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

10. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Mart́ı, R., Parda-
los, P.M., Resende, M.G.C. (eds.) Handbook of Heuristics, pp. 759–787. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-07124-4 19

https://doi.org/10.1145/3469800
https://doi.org/10.1145/3449639.3459367
https://doi.org/10.1145/3449639.3459367
https://doi.org/10.1016/j.tcs.2020.07.001
https://doi.org/10.1016/j.tcs.2020.07.001
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1007/978-3-031-04148-8_13
https://doi.org/10.1007/978-3-031-04148-8_13
https://doi.org/10.1007/978-3-319-07124-4_19

Escaping Local Optima with Local Search 455

11. Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of fitness
landscapes. In: Proceedings of FOGA 1995, vol. 3, pp. 243–269. Elsevier (1995)

12. Jagerskupper, J., Storch, T.: When the plus strategy outperforms the comma strat-
egy and when not. In: 2007 IEEE Symposium on Foundations of Computational
Intelligence, pp. 25–32. IEEE (2007)

13. Jansen, T., Wegener, I.: A comparison of simulated annealing with a simple
evolutionary algorithm on pseudo-Boolean functions of unitation. Theor. Com-
put. Sci. 386(1), 73–93 (2007). https://doi.org/10.1016/j.tcs.2007.06.003, https://
www.sciencedirect.com/science/article/pii/S0304397507004811

14. Jansen, T., Zarges, C.: Example landscapes to support analysis of multimodal
optimisation. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G.,
Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 792–802. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 74

15. Johnson, D.S.: Local optimization and the Traveling Salesman Problem. In: Pater-
son, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 446–461. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0032050

16. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization -
Algorithms and Their Computational Complexity. Springer, Cham (2010). https://
doi.org/10.1007/978-3-642-16544-3

17. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms outperform evolutionary algo-
rithms in multimodal optimisation. Artif. Intell. 287, 103345 (2020). https://doi.
org/10.1016/j.artint.2020.103345

18. Pelikan, M., Goldberg, D.E.: Genetic algorithms, clustering, and the breaking of
symmetry. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 385–
394. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3 38

19. Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theoret.
Comput. Sci. 320(1), 135–153 (2004)

20. Quick, R.J., Rayward-Smith, V.J., Smith, G.D.: Fitness distance correlation and
Ridge functions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 77–86. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0056851

21. Rajabi, A., Witt, C.: Stagnation detection in highly multimodal fitness landscapes.
In: Proceedings of GECCO 2021. ACM Press (2021)

22. Rajabi, A., Witt, C.: Stagnation detection with randomized local search. In: Zarges,
C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp. 152–168. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72904-2 10

23. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal opti-
mization. Algorithmica 84, 1694–1723 (2022). https://doi.org/10.1007/s00453-
022-00933-z. Preliminary version in GECCO 2020

24. Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)
25. Stützle, T.: Applying iterated local search to the permutation flow shop problem.

Technical report, Citeseer (1998)
26. Van Hoyweghen, C., Goldberg, D.E., Naudts, B.: From TwoMax to the Ising model:

easy and hard symmetrical problems. Generations 11(01), 10 (2001)

https://doi.org/10.1016/j.tcs.2007.06.003
https://www.sciencedirect.com/science/article/pii/S0304397507004811
https://www.sciencedirect.com/science/article/pii/S0304397507004811
https://doi.org/10.1007/978-3-319-45823-6_74
https://doi.org/10.1007/BFb0032050
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1016/j.artint.2020.103345
https://doi.org/10.1016/j.artint.2020.103345
https://doi.org/10.1007/3-540-45356-3_38
https://doi.org/10.1007/BFb0056851
https://doi.org/10.1007/BFb0056851
https://doi.org/10.1007/978-3-030-72904-2_10
https://doi.org/10.1007/s00453-022-00933-z
https://doi.org/10.1007/s00453-022-00933-z

Evolutionary Algorithms
for Cardinality-Constrained Ising Models

Vijay Dhanjibhai Bhuva1,2, Duc-Cuong Dang2(B) , Liam Huber1,
and Dirk Sudholt2

1 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
2 University of Passau, Passau, Germany

duccuong.dang@uni-passau.de

Abstract. The Ising model is a famous model of ferromagnetism, in
which atoms can have one of two spins and atoms that are neighboured
prefer to have the same spin. Ising models have been studied in evolution-
ary computation due to their inherent symmetry that poses a challenge
for evolutionary algorithms.

Here we study the performance of evolutionary algorithms on a variant
of the Ising model in which the number of atoms with a specific spin is
fixed. These cardinality constraints are motivated by problems in mate-
rials science in which the Ising model represents chemical species of the
atom and the frequency of spins is constrained by the chemical composi-
tion of the alloy being modelled. Under cardinality constraints, mutating
spins independently becomes infeasible, thus we design and analyse dif-
ferent mutation operators of increasing complexity that swap different
atoms to maintain feasibility. We prove that randomised local search with
a naive swap operator finds an optimal configuration in Θ(n4) expected
worst case time. This time is drastically reduced by using more sophisti-
cated operators such as identifying and swapping clusters of atoms with
the same spin. We show that the most effective operator only requires
O(n) iterations to find an optimal configuration.

Keywords: Ising model · Randomised local search · Constrained
optimisation · Runtime analysis · Graph bisection

1 Introduction

Introduced in 1925 [14] by Ernst Ising, the Ising model is a model of ferromag-
netism that consists of an undirected weighted graph whose vertices represent
atoms typically arranged in a lattice structure. (We will use the terms vertex
and atom interchangeably.) Each atom has a spin from {+1,−1} and, for a fer-
romagnetic material, atoms prefer to have the same spin as their neighbours. On
finite lattices, edges are often considered “wrapping around” at the boundaries
so that each vertex has the same number of neighbours and this local property
is repeated in all directions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 456–469, 2022.
https://doi.org/10.1007/978-3-031-14721-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_32&domain=pdf
http://orcid.org/0000-0002-6660-6625
http://orcid.org/0000-0001-6020-1646
https://doi.org/10.1007/978-3-031-14721-0_32

Evolutionary Algorithms for Cardinality-Constrained Ising Models 457

At 0 Kelvin, entropy of mixing among the spins has no benefit and the
system is driven towards a ground state that minimises the potential energy of
the system. We can view this as an optimisation problem, where the goal is to
find an optimal configuration of spins and the fitness is the number of edges for
which both end points have the same spin. This means that all configurations
where all atoms have the same spin are optimal. While these solutions are easy
to write down, finding one with evolutionary algorithms (EAs) can be difficult.

This is because the problem has the inherent property of spin-flip symme-
try: inverting all spins yields a solution with the same fitness. This symmetry
also applies to smaller parts of the graph and it gives rise to synchronisation
problems [12]: if different parts of a graph evolve clusters of atoms with the
same spin, these clusters may use different spins. Then it might be necessary to
alter large parts of a cluster to escape from local optima. The Ising model has
attracted some interest from the EA community. It was shown empirically that
adding niching techniques was particular effective for EAs on Ising models [12].
Fischer and Wegener [9] confirmed this in theoretical runtime analyses for the
one-dimensional Ising model on n vertices, for which EAs using crossover and
fitness sharing can outperform mutation-only EAs by a factor of Θ(n). Sudholt
[24] considered the Ising model on binary trees and showed that crossover and
fitness sharing provide an exponential speedup over mutation-only EAs. Fis-
cher [8] further analysed the Metropolis algorithm on the two-dimensional Ising
model and proved that, despite the existence of many hard local optima, it can
find global optima in expected polynomial time. More recently, the 2-colouring
problem, which is equivalent to the Ising model on bipartite graphs, has been
studied theoretically in the context of dynamic optimisation, where the graph
may change over time [5,6]. Ising models can also be found as benchmarks in
modern software packages for EAs such as the IOHprofiler software [7].

We consider a variant of this model where a cardinality constraint is imposed,
that is, the only permitted configurations are those that contain the same num-
ber of −1 spins and +1 spins. The motivation for this cardinality constraint
stems from materials science. Instead of considering the Ising spin to represent
magnetic spin on the atoms of a crystalline solid, we can instead use the spin
to represent chemical species of the atom. Unlike magnetic moments, the fre-
quency of each Ising spin is then constrained in the grand canonical ensemble
by the chemical composition of the alloy being modeled. In this work we restrict
ourselves to systems with only two spins and a ferromagnetic Ising interaction
matrix, and always accept fitness-improving swaps (which is equivalent to a phys-
ical temperature of 0 K in Monte Carlo schemes used to capture thermodynamic
averages). These restrictions drive the system to perfect phase separation of
the two spins, but are not intrinsically necessary for the cardinality-constrained
spin swaps discussed here – in principle we are free to use an arbitrary number
of spins with arbitrary interaction matrices, or even to evaluate the fitness by
some other means, e.g. with a cluster expansion description [18]. Thus, although
we treat simple binary systems here, we hope that these tools may be a useful
addition to the existing toolbox for modern materials science problems, such as
exploring short range ordering in high entropy alloys [13,26].

458 V. D. Bhuva et al.

From a computer science perspective, although here we only consider lat-
tice graphs, the cardinality constraint significantly increases the difficulty of
the problem of finding the Ising model’s ground state on general graphs. Opti-
mal configurations of the unconstrained Ising model are easy to state (identical
spins), however adding the cardinality constraints further requires that: (i) all
spins must be present in the configuration and (ii) they must be present in
equal quantity. Imposing only (i) while minimising the number of edges with
end points of different spins yields the MinCut problem [17], which is in P and
well-studied, but the solution is non-trivial. Requiring both (i) and (ii) implies a
graph bisection problem: partitioning the vertices of a graph in two equal-sized
sets such that the number of cut edges is minimised. This problem is NP-hard
and hard to approximate unless P = NP [1]. Thus we also hope that having a
solid understanding of the behaviours of operators on simple instances can help
the design of better algorithms for graph bisection and related problems (e. g.
[16]) in the future. The problem of finding the ground state for the generalisa-
tion known as the Ising spin glass model, in which a subset of the edges may
prefer the interactions of opposite spins on its vertices, is already NP-hard on
non-planar lattices [2], however such systems are out of the scope of our study.

The cardinality constraint has a major impact on EA design. While previous
studies on unconstrained Ising models used operators inverting individual spins
(e. g. one-bit flips or standard bit mutation, encoding spins −1 or 1 as bit values
0 and 1), these operators may easily create infeasible solutions. Thus, we use
operators that maintain feasibility by swapping individual spins.

We provide a theoretical runtime analysis for the constrained Ising model
in one dimension, i. e. on n-vertex cycle graphs and show that the choice of
operators plays a key role for the performance of a simple EA, randomised local
search. While a naive swap operator swapping the spins of two randomly chosen
atoms uses Θ(n4) expected steps in the worst case, designing swap operators
using a Gray Box Optimisation approach yields much better results. Restricting
swaps to atoms that are neighboured to atoms of the opposite spins, so-called
boundary swaps, yields an improved runtime bound of O(n2 log n). We then
introduce a new operator that identifies clusters of atoms with identical spins
and tries to swap whole clusters instead of individual spins. This again speeds up
optimisation, reflected in an upper bound of O(n4/3) expected generations, at
the expense of an increased execution time. Combining clustering with boundary
swaps even gives a bound of O(n) generations, which is optimal. Experiments
show that our new operators also have significant advantages for 2D and 3D
Ising models with varying neighbourhoods and for more than two types of spins.

Our work addresses a hot topic: analysing EAs on problems with constraints
[3,4,10,11,21,22]. It aims to advance our understanding of EAs for problems with
permutation representations, for which rigorous theoretical studies are scarce [19,
20,23,25]. Finally, we showcase using the Ising model how insights from runtime
analyses can inspire new operators with improved performance.

In this extended abstract, many proofs are omitted or sketched.

Evolutionary Algorithms for Cardinality-Constrained Ising Models 459

2 Preliminaries

The natural logarithm is denoted ln(·) and that of base 2 is denoted log(·). The
n-th harmonic number is Hn :=

∑n
i=1

1
i and Hn ≤ 1 + ln n = O(log n).

We consider an Ising model given as a graph G = (V,E) where the n := |V |
vertices represent spins and edges connect two neighbouring spins. In our model,
the choices of spin labels, e. g. {−1, 1} versus {0, 1}, do not matter, thus we
consider half of the spins are 0 and half the spins are 1; and n is always even. A
configuration is an assignment of spins to the vertices, and it is only feasible if
the aforementioned condition is respected. The fitness f(x) of a configuration x
is the number of monochromatic edges, i. e. edges where both end points have
the same spin. The goal is to maximise this fitness or, equivalently, to minimise
the number of dichromatic edges.

Randomised Local Search (RLS) is a simple EA that repeatedly applies a
mutation operator Op to produce new solutions, and those that do not worsen
the current fitness replace their parent.

Algorithm 1. RLS(x) using elementary mutation operator Op

1: while optimum not found do
2: Generate y by applying Op on x, denoted y := Op(x).
3: If f(y) ≥ f(x), let x := y.

Concrete instantiations of Op will be defined later. RLS can be generalised
towards an EA with a global search operator by executing a random number of
operations in sequence. However, we will show that one operation is sufficient
for the one-dimensional Ising model and focus on RLS for simplicity.

3 Runtime Analyses for One-Dimensional Ising Model

In the one-dimensional cardinality-constrained Ising model, the graph G consists
of a cycle with an even number n of vertices. We use theoretical runtime analysis
to provide rigorous bounds on the expected optimisation time, i.e., the expected
number of generations until a global optimum is found.

The current configuration can be seen as a sequence of blocks, a maximal
sequence of atoms with the same spin (i. e. a sequence that cannot be extended
by adding adjacent atoms). Blocks may wrap around the boundaries. Since blocks
have maximal length, subsequent blocks have alternating spins. This means that
the number of blocks i is always an even number and the fitness is f(x) = n − i
since every block has a unique dichromatic edge to the following block.

Mutations increasing the number of blocks are always rejected as then the
fitness decreases. We call a vertex v a boundary vertex if it has at least one
neighbour of the opposite spin.

3.1 Results for Single Swaps

We start with a simple swap operator, denoted Swap, which picks a pair of
atoms of opposite spins uniformly at random and then swaps their spins.

460 V. D. Bhuva et al.

Algorithm 2. Swap (x) mutation operator
1: Choose an atom i of x with spin 0 uniformly at random and choose an atom j of

x with spin 1 uniformly at random.
2: Return y as a copy of x but with the spins of i and j are swapped.

The following result shows that an optimal configuration is found in expected
time bounded by O(n4), for every initial configuration. Despite the high degree 4
of this polynomial, this bound is asymptotically tight as there are configurations
for which RLS indeed requires Θ(n4) iterations in expectation.

Theorem 1. From any initial configuration, RLS using Swap optimises the
cardinality-constrained 1D Ising model in expected time at most

4 ln(2) − π2/6 − 1
64

· n4 +
5(ln(2) − 1/2) n3

16
= O(n4).

There exists an initial configuration from which the above upper bound is asymp-
totically tight and RLS needs Ω(n4) expected time.

Proof Sketch. We follow and refine the analysis of RLS on the unconstrained 1D
Ising model by Fischer and Wegener [9]. Note that a block of length 1, i. e. a
single vertex v, can be removed by swapping v with a boundary vertex of the
opposite spin that is not adjacent to v. This improves the fitness by at least 2.

If all blocks contain at least two atoms, it is not possible to eliminate a block
in one swap. Following [9], we argue that the lengths of blocks can change over
time until a block is reduced to a length of 1, enabling improving swaps.

Let �t denote the length of a shortest block at time t. If the current config-
uration has i blocks, by the pigeon hole principle, the size of the smallest block
is at most �t ≤ �n/i�. We consider the expected time for a smallest block to
disappear and model the process as a Markov chain with states {0, 1, . . . , �n/i�}
that reflect the length of the shortest block.

If �t ≥ 2, all blocks have length at least 2 and all blocks have two boundary
vertices. Hence, there are exactly i boundary vertices for each spin. W. l. o. g.
assume that the vertices are labelled in ascending order from 0 to n − 1 and
assume that there is a smallest block involving vertices 1, . . . , �t with spins of 1.
Now, if mutation swaps the spins of position 1 with that of a boundary vertex
with spin 0, other than the vertex at position 0, the block is shortened by 1 and
we have �t+1 = �t − 1. If we swap position 0 (which has spin 0) with that of a
boundary vertex of spin 1 other than that at position 1, the block is lengthened
by 1 and �t+1 = �t + 1 (unless there is another block of length �t; in that
case �t+1 = �t). The same arguments apply symmetrically for swaps concerning
positions �t and �t + 1. Note that �t can also be decreased by 1 in case another
block of length �t is shortened. Hence, P(�t+1 = �t − 1) ≥ 2(i − 1)/(n/2)2 =: p
and P(�t+1 = �t + 1) ≤ 2(i − 1)/(n/2)2 = p. The full proof shows that with the
remaining probability mass, �t+1 = �t (i. e. there are no other transitions).

Evolutionary Algorithms for Cardinality-Constrained Ising Models 461

From the largest state �t = �n/i� we may shorten the block with probability p.
If the block lengthens, another block becomes the shortest block and its length
is at most �n/i�. Roughly speaking, the time until a shortest block disappears is
dominated by a fair random walk with transition probabilities p = 2(i−1)/(n/2)2

to neighbouring states for all states in {2, . . . , �n/i�−1}, a reflecting state �n/i�
and an absorbing state 0. (Transition probabilities from state 1 differ slightly.)
The expected waiting time for a transition to another state is O(1/p) = O(n2/i)
and the expected number of transitions to absorption in a fair random walk on
states {0, . . . , �n/i�} is O(n2/i2). Together, the expected time for reaching an
improvement, starting with any configuration with i blocks is at most O(n4/i3).
Summing up these times for all values of i yields an upper bound of O(n4) since∑n

i=1 1/i3 = O(1). The full proof uses a rigorous and precise analysis of the
Markov chain and works out leading constants from the statement.

For the second statement, assume that the initial configuration has i = 4
blocks, each of length n/4. Then for each block, while no block has decreased
its length to 1, the probability of lengthening it is p = 2(i − 1)/(n/2)2 = 24/n2

and the probability of shortening it is p = 24/n2 as well. By standard Chernoff
bounds, the probability that after εn4 steps a fixed block has decreased its length
to at most 1 is at most 1/8, if ε > 0 is chosen as a sufficiently small constant. By
a union bound, the probability that there is a block whose length has reduced to
at most 1 within this time is at most 1/2. Hence, with probability at least 1/2,
εn4 generations are not sufficient. This establishes a lower bound of ε/2 · n4. �

3.2 Swapping only Boundary Atoms

The worst-case expected optimisation time of RLS with Swap of Θ(n4) shows
that performance scales poorly with the number of vertices, n. A main reason
is that swapping spins of vertices that are not boundary vertices locally worsens
the fitness by 2. Hence, the fitness can only worsen, or remain neutral, in such
a step. In a typical run, blocks will reduce in number and grow in size and then
the chances of choosing to swap boundary vertices are slim.

We argue that this can be easily remedied by adapting the mutation oper-
ator. If we use a Gray Box approach and exploit knowledge about the current
configuration, we can redefine the operator to only swap boundary vertices. That
is, in step 1 of Algorithm 2, we only pick a pair of boundary vertices of opposite
spins uniformly at random, and we refer to this operator as Boundary.

The following result shows that Boundary eliminates many idle steps and
the expected optimisation time significantly improves to O(n2 log n). This can be
proven similarly to Theorem 1 since all beneficial swaps considered in the proof
of Theorem 1 are also possible with Boundary. While Swap chose a pair i, j
of atoms to swap uniformly at random from (n/2)2 possible pairs, Boundary

chooses from at most i2 possible pairs since there are at most i boundary vertices
of any spin. Thus, the associated random walk has better transition probabilities.

462 V. D. Bhuva et al.

Theorem 2. From any initial configuration, RLS using Boundary optimises
the cardinality-constrained 1D Ising model in expected time at most

n2Hn

8
+

n2

2
+

5n (Hn − 1)
8

= O(n2 log n).

3.3 Swapping Clusters of Atoms

Swapping boundary vertices improves performance; however, progress is still
slow since only single atoms are swapped. We now design an operator able to
find clusters of identical spins, to swap whole clusters instead of individual spins.

We first pick two atoms i and j with different spins uniformly at random.
Then a Breadth-First-Search (BFS) starting from vertex i and exploring the
vertices that have the same spin as i is performed. We do the same in parallel
for j, starting a BFS on all vertices that have the same spin as j. We make sure
that these two BFSs are synchronised, thus they explore the same depth at each
time step. As soon as one BFS call is finished (say the one at i) we also stop the
other BFS call (then this one is at j). At that point, we have identified a cluster
of vertices with the same spin as i that are all connected to i, let this vertex set
be denoted as Vi. Similarly, the other BFS gives another cluster Vj of vertices
of the opposite spin, and we have |Vi| = |Vj | due to the synchronisation. We
swap the spins in these two vertex sets and maintain the cardinality constraint.
We refer to this operator as Cluster. Its execution time on 1D, 2D and 3D
lattices is proportional to the size of the smaller cluster and Θ(n) in the worst
case; while clusters are small, the average execution time may be much smaller.
It is no larger than the execution time for a fitness evaluation.

Algorithm 3. Cluster(x) operator
1: Choose an atom i of x with spin 0 and an atom j of x with spin 1 uniformly at

random.
2: Run two parallel Breadth-First-Searches (BFS), starting in i and j, respectively,

and restricted to the subgraph induced by vertices of the same spin. Stop after
one of the BFSs has explored its whole subgraph. Let Vi := BFS(x, i) and Vj :=
BFS(x, j) be the vertex sets of vertices explored during these BFSs.

3: Return y by swapping the spins in Vi and Vj of x.

We show that RLS with Cluster only needs O(n4/3) expected iterations.

Theorem 3. For any initial configuration, RLS using Cluster optimises the
cardinality/constrained 1D Ising model in an expected number of iterations of at
most

3 · 41/3n4/3

8
+

21/3 n2/3

4
= O(n4/3).

Proof. Let Bi be the block of atoms with spin 0 that contains atom i and let Bj

be the block of atoms with spin 1 that contains atom j. BFS starting at atom i
will return a set Vi ⊆ Bi and BFS starting at atom j will return a set Vj ⊆ Bj .

Evolutionary Algorithms for Cardinality-Constrained Ising Models 463

We also know that |Vi| = |Vj | = min{|Bi|, |Bj |} since the two BFS calls run
synchronously and stop when one of the BFS calls has explored a whole block.

Now, if |Bi| = |Bj | then Vi = Bi and Vj = Bj and swapping the spins in Bi

and Bj will erase both blocks, improving the fitness by 4.
Assume |Bi| �= |Bj | and w. l. o. g. |Bi| < |Bj |. Then Vi = Bi and Vj � Bj .

Swapping the spins in Vi and Vj will erase Bi. If Vj does not contain a boundary
atom in Bj , a new block of 0-spins will be created inside of Bj , and the fitness
will be unchanged. Otherwise, Vj contains exactly one boundary vertex of Bj .
Bj will be shortened to a length of |Bj |− |Vj | > 0 and the fitness increases by 2.

We give a lower bound on the probability of improving the fitness in a cluster
swap, when two blocks have been fixed.

Lemma 4. Assume the indices i, j used in BFS are chosen uniformly at random
within a block of 0-spins of size a and a block of 1-spins of size b. Then the
probability that the sets Vi and Vj returned by the BFS calls will both contain a
boundary vertex is at most

min{a, b}
max{a, b} .

Proof. Let Bi and Bj denote the respective blocks of 0-spins and 1-spins. When
a = b, the sets Vi, Vj will contain the whole blocks, that is, Vi = Bi and Vj = Bj ,
and both sets will contain boundary vertices with probability 1 as claimed.

If a < b then Vj contains a boundary vertex if and only if a boundary vertex is
found during the first a vertices visited by BFS on Bj , starting at index j. Within
a iterations of BFS, j and all vertices within a graph distance of �(a − 1)/2� are
reached. This implies that, if j is chosen as one of the leftmost 1 + �(a − 1)/2�
vertices, the left boundary will be reached. Likewise, if j is chosen as one of
the rightmost 1 + �(a − 1)/2� vertices, the right boundary will be reached. Note
that these two sets are disjoint since |Bj | = b ≥ a + 1 = 2(1 + (a − 1)/2) ≥
2(1 + �(a − 1)/2�). Thus, there are 2(1 + �(a − 1)/2�) ≥ 2(1 + (a − 2)/2) = a
possible choices of j that lead to the discovery of a boundary vertex.

Since by assumption j is chosen uniformly at random from b positions, the
sought probability is at least a

b = min{a,b}
max{a,b} . The case a > b is symmetric and

yields a term of b
a = min{a,b}

max{a,b} . �

We now bound the probability of choosing indices i and j such that a bound-
ary atom is included in the bigger block. Recall that the number of 0-blocks is
equal to the number of 1-blocks as spins are alternating from block to block.
Denote the sizes of all 0-blocks as a1, . . . , ar and the sizes of all 1-blocks as
b1, . . . , br and note that a1 + · · · + ar = n/2 and b1 + · · · + br = n/2. The index
i is chosen uniformly at random from all 0-spins. Alternatively, we may imagine
that in order to choose i, we first choose a 0-block ak with probability ak/(n/2)
and then choose i uniformly at random within said block. It is easy to see that
the latter approach also creates a uniform distribution over all 0-spins.

Imagining the same two-step procedure for choosing i and j, two blocks ak

and bm are chosen with probability ak/(n/2) · bm/(n/2). Applying Lemma 4 for

464 V. D. Bhuva et al.

all combinations of blocks yields that the probability of choosing a block with a
boundary vertex is at least

∑

k,m∈[r]

ak

n/2
· bm
n/2

· min{ak, bm}
max{ak, bm} =

1
(n/2)2

⎛

⎝
∑

k,m∈[r],ak≤bm

a2
k +

∑

k,m∈[r],ak>bm

b2m

⎞

⎠

where the equality follows since all summands with ak ≤ bm simplify to akbm ·
ak/bm = a2

k and all summands with ak > bm simplify to akbm ·bm/ak = b2m. The
following lemma, whose proof is omitted, bounds this sum from below.

Lemma 5. For any two sequences of natural numbers, a1, . . . , ar ∈ N and
b1, . . . , br ∈ N, with a1 + · · · + ar = n/2 and b1 + · · · + br = n/2,

1
(n/2)2

⎛

⎝
∑

k,m∈[r],ak≤bm

a2
k +

∑

k,m∈[r],ak>bm

b2m

⎞

⎠ ≥ max
{

1
r
,

r2

(n/2)2

}

.

The maximum from the statement of Lemma 5 is 1/r for r ≤ (n/2)2/3 and
r2

(n/2)2 for r > (n/2)2/3. The expected waiting time to increase the fitness is thus

at most r for r ≤ (n/2)2/3 and at most (n/2)2

r2 for r > (n/2)2/3.
Note that the fitness is n − 2r since there are 2r blocks. Since the algorithm

does not accept any fitness decreases, r is non-increasing over time. Summing
over all values of r, the expected optimisation time is at most

(n/2)2/3∑

r=1

r +
n/2∑

r=(n/2)2/3+1

(n/2)2

r2
.

The first sum is (n/2)2/3((n/2)2/3+1)
2 = 41/3 n4/3

8 + 21/3 n2/3

4 and the second sum is
at most (n/2)2

∫ ∞
(n/2)2/3

1
r2 dr = (n/2)2 · 1

(n/2)2/3
= 41/3 n4/3

4 , proving the claim.
�

Finally, we combine our previous ideas of focusing on boundary vertices and
swapping clusters of atoms. This means in line 1 of Algorithm 3, instead of
picking i and j uniformly from all atoms with the respective spin, we pick them
uniformly from all boundary atoms with the respective spin. We refer to this
mutation operator as BCluster. RLS with this operator improves the fitness
in every iteration by at least 2, thus at most n/2 iterations are required.

Theorem 6. For any initial configuration, RLS with BCluster optimises the
cardinality/constrained 1D Ising model in at most n/2 iterations.

4 Numerical Experiments

To accompany these theoretical results, we have performed numerical experi-
ments. All our code and the workflows necessary to reproduce the figures shown

Evolutionary Algorithms for Cardinality-Constrained Ising Models 465

Fig. 1. Median number of iterations using Swap (blue triangles), Boundary (green cir-
cles), Cluster (red squares), and BCluster (brown hexagons). (Color figure online)

Fig. 2. Evolution of fitness for Boundary (blue) and BCluster (orange) for the (a)
body-centered cubic (BCC) and (b) face-centered cubic (FCC) lattices for both two-
(solid) and three-spin (dashed) systems. (Color figure online)

here can be found at https://github.com/liamhuber/pyiron ising and are built
on top of the open-source pyiron IDE [15]. For each of the four operators (Swap,
Boundary, Cluster, BCluster), we performed 100 independent simulations
and measured the median optimisation time for 1D chains of length 64 through
1024. These results are shown on a logarithmic scale in Fig. 1, where it is clear
that the more sophisticated swapping routines outperform the simple Swap oper-
ator by many orders of magnitude and have better scaling behaviour, and that
cluster-based approaches significantly outperform the approaches which only use
single pairs (at the expense of a larger execution time).

We can also take advantage of our numerical infrastructure to explore more
complex situations, namely higher dimensions and more spins. In Fig. 3 we look
at the first 200 steps of the Boundary and BCluster algorithms applied to
two- and three-spins on a 2D square lattice with dimension 32 × 32, which has
four neighbours – one in each Cartesian direction. The fitness is normalised to
[−1,+1] and follows a common presentation in physics. (This does not affect
the performance of RLS.) The fitness function takes an average over all spin-
spin interactions: f = 1

n·nneigh

∑
ij sTi Mijsj , where s is the one-hot spin vector,

https://github.com/liamhuber/pyiron_ising

466 V. D. Bhuva et al.

Fig. 3. Fitness as a function of steps for Boundary (blue) and BCluster (orange)
operators with two (solid) and three (dashed) spins, along with accompanying snap-
shots for the square-lattice 2D system. (Color figure online)

nneigh is the number of neighbours (e.g. 4 in the square 2D case), and M is a
square matrix with 1’s on the diagonal and −1’s elsewhere. With this formu-
lation, the initial fitness for the three-spin system is sub-zero since there is a
smaller fraction of like-spin vertices available. For both systems the performance
of the cluster-based BCluster operator is significantly better. A more intuitive
representation of these results is shown below the fitness curve, where snapshots

Evolutionary Algorithms for Cardinality-Constrained Ising Models 467

of the system are shown through time with spins distinguished by both colour
and shape. Although Boundary does provide some conglomeration of like spins,
which is especially obvious to the eye for the two-spin case, the BCluster oper-
ator actually achieves reasonable phase separation, and in the two-spin case has
already made good progress in minimising the interfacial area.

We also performed these computations for 8 × 8 × 8 3D lattices (see Fig. 2):
a body-centered cubic lattice (BCC – formed from two interpenetrating simple
cubic lattices, giving 8 neighbours) and a face-centered cubic lattice (FCC –
formed by close packing spheres with a three-layer ABCABC repetition, giving
12 neighbours). These topologies occur frequently in nature, e.g. the structures
of iron and aluminium, respectively, at standard temperature and pressure. Here
too we see the superiority of the cluster-based algorithm.

To facilitate the use of BCluster in higher dimensions we have added one
additional step: the truncation of the clusters. Without this, the increased con-
nectivity of the graph in higher dimensions quickly leads to the formation of two
super-clusters in which all like spins are connected. Under these conditions a
cluster swap leads to a simple spin inversion and no further progress is possible.
Here we have chosen a maximum cluster size uniformly from the interval [1, n/10]
before beginning the BFS and stopped BFS prematurely if this size is reached.
The details of this constraint are arbitrarily chosen, although from Fig. 2 it is
clear that our choices do not destroy the advantage that the BCluster operator
holds over Boundary.

5 Conclusions

We have shown that a Gray Box approach and a careful design of swap operators
can lead to a significant speed up in the expected optimisation time of RLS on
the Ising model on n-vertex cycle graphs. Swapping vertices chosen uniformly at
random requires Θ(n4) expected time in the worst case. Focusing on boundary
vertices in this operator speeds this up by a factor of Ω(n2/ log n). Swapping
clusters of vertices reduces the expected optimisation time to at most O(n4/3),
and combining the two ideas gives O(n) expected time. However, cluster swaps
have a possibly larger execution time that depends on the size of clusters.

The increased effectiveness of improved operators can be clearly observed in
the experiments as well. The data suggests that our upper bound of O(n4/3)
for RLS with the Cluster operator might not be tight as the median runtime
appears to be Θ(n). Further theoretical investigation is required to get tight
bounds and to quantify the precise overhead incurred by cluster swaps. We also
demonstrated empirically that swapping clusters of vertices performs exception-
ally well on high dimension lattices.

468 V. D. Bhuva et al.

References

1. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006)

2. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys.
A Math. Gen. 15(10), 3241–3253 (1982)

3. Bian, C., Feng, C., Qian, C., Yu, Y.: An efficient evolutionary algorithm for subset
selection with general cost constraints. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, pp. 3267–3274. AAAI Press (2020)

4. Bian, C., Qian, C., Neumann, F., Yu, Y.: Fast pareto optimization for subset selec-
tion with dynamic cost constraints. In: Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, pp. 2191–2197 (2021)

5. Bossek, J., Neumann, F., Peng, P., Sudholt, D.: More effective randomized search
heuristics for graph coloring through dynamic optimization. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 1277–
1285. ACM (2020)

6. Bossek, J., Neumann, F., Peng, P., Sudholt, D.: Time complexity analysis of ran-
domized search heuristics for the dynamic graph coloring problem. Algorithmica
83(10), 3148–3179 (2021)

7. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking
discrete optimization heuristics with IOH profiler. Appl. Soft Comput. 88, 106027
(2020)

8. Fischer, S.: A polynomial upper bound for a mutation-based algorithm on the
two-dimensional ising model. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102,
pp. 1100–1112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24854-5 108

9. Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recom-
bination. Theoret. Comput. Sci. 344(2–3), 208–225 (2005)

10. Friedrich, T., Göbel, A., Neumann, F., Quinzan, F., Rothenberger, R.: Greedy
maximization of functions with bounded curvature under partition matroid con-
straints. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, pp. 2272–2279. AAAI Press (2019)

11. Friedrich, T., Kötzing, T., Lagodzinski, J.A.G., Neumann, F., Schirneck, M.: Anal-
ysis of the (1+1) EA on subclasses of linear functions under uniform and linear
constraints. Theoret. Comput. Sci. 832, 3–19 (2020)

12. Goldberg, D.E., Van Hoyweghen, C., Naudts, B.: From TwoMax to the Ising model:
easy and hard symmetrical problems. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2002), pp. 626–633. Morgan Kaufmann
(2002)

13. Ikeda, Y., Grabowski, B., Körmann, F.: Ab initio phase stabilities and mechanical
properties of multicomponent alloys: a comprehensive review for high entropy alloys
and compositionally complex alloys. Mater. Charact. 147, 464–511 (2019)

14. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31(1), 253–258
(1925)

15. Janssen, J., et al.: pyiron: an integrated development environment for computa-
tional materials science. Comput. Mater. Sci. 163, 24–36 (2019)

16. Jin, Y., Xiong, B., He, K., Hao, J.-K., Li, C.-M., Fu, Z.-H.: Clustering driven
iterated hybrid search for vertex bisection minimization. IEEE Trans. Comput.
(2021, Early Access)

https://doi.org/10.1007/978-3-540-24854-5_108
https://doi.org/10.1007/978-3-540-24854-5_108

Evolutionary Algorithms for Cardinality-Constrained Ising Models 469

17. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM
43(4), 601–640 (1996)

18. Laks, D.B., Ferreira, L., Froyen, S., Zunger, A.: Efficient cluster expansion for
substitutional systems. Phys. Rev. B 46(19), 12587 (1992)

19. Nallaperuma, S., Neumann, F., Sudholt, D.: Expected fitness gains of randomized
search heuristics for the traveling salesperson problem. Evol. Comput. 25, 673–705
(2017)

20. Neumann, F.: Expected runtimes of evolutionary algorithms for the Eulerian cycle
problem. Comput. Oper. Res. 35(9), 2750–2759 (2008). ISSN 0305–0548

21. Qian, C., Zhang, Y., Tang, K., Yao, X.: On multiset selection with size constraints.
In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 1395–1402. AAAI
Press (2018)

22. Roostapour, V., Neumann, A., Neumann, F., Friedrich, T.: Pareto optimization for
subset selection with dynamic cost constraints. Artif. Intell. 302, 103597 (2022)

23. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms
on sorting and shortest paths problems. J. Math. Model. Algorithms 3(4), 349–366
(2004)

24. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2005), pp. 1161–1167. ACM Press (2005)

25. Theile, M.: Exact solutions to the traveling salesperson problem by a population-
based evolutionary algorithm. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009.
LNCS, vol. 5482, pp. 145–155. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01009-5 13

26. Wu, Y., et al.: Short-range ordering and its effects on mechanical properties of
high-entropy alloys. J. Mater. Sci. Technol. 62, 214–220 (2021)

https://doi.org/10.1007/978-3-642-01009-5_13
https://doi.org/10.1007/978-3-642-01009-5_13

General Univariate
Estimation-of-Distribution Algorithms

Benjamin Doerr1(B) and Marc Dufay2

1 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

doerr@lix.polytechnique.fr
2 École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Abstract. We propose a general formulation of a univariate estimation-
of-distribution algorithm (EDA). It naturally incorporates the three clas-
sic univariate EDAs compact genetic algorithm, univariate marginal dis-
tribution algorithm and population-based incremental learning as well as
the max-min ant system with iteration-best update. Our unified descrip-
tion of the existing algorithms allows a unified analysis of these; we
demonstrate this by providing an analysis of genetic drift that immedi-
ately gives the existing results proven separately for the four algorithms
named above. Our general model also includes EDAs that are more effi-
cient than the existing ones and these may not be difficult to find as we
demonstrate for the OneMax and LeadingOnes benchmarks.

Keywords: Estimation of distribution algorithms · Genetic drift ·
Running time analysis · Theory

1 Introduction

Estimation-of-distribution algorithms (EDAs) are a class of iterated random-
ized search heuristics proposed first in the 1990s [21]. Different from genetic
algorithms (GAs), which evolve a set P (“population”) of good solutions for a
given problem, EDAs evolve a probability distribution (“probabilistic model”)
on the set of possible solutions, hopefully in the way that good solutions have
a higher probability assigned to them. Since it is clear that a set P of solutions
can be represented by a probability distribution (namely the uniform distribu-
tion on P), EDAs (with an appropriate probabilistic model) have a much richer
way of transporting information from one iteration to the next than genetic
algorithms.

Several results show that this theoretical advantage can be turned into a
true advantage when running the EDA in the right way. For example, it was
shown that the more cautious way of updating the probabilistic model of EDAs
(as opposed to the only alternatives of a GA, which are to accept or discard a
solution) can lead to a high robustness to noise [15,16]. The fact that EDAs can
sample with a larger variance was shown to be advantageous for leaving local
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 470–484, 2022.
https://doi.org/10.1007/978-3-031-14721-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_33&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_33

General Univariate Estimation-of-Distribution Algorithms 471

optima [5,8,18,38]. In [7], it was demonstrated that the probabilistic model
developed by an EDA allows to obtain much more diverse good solutions than
what can be achieved by population-based algorithms.

Due to their higher simplicity, the most studied form of EDAs are univariate
ones, which sample the variables of each solution independently. When restricting
ourselves to pseudo-Boolean optimization, that is, the solutions are bit-strings
of length n, then this means that the probabilistic model can be described by a
frequency vector p = (p1, . . . , pn) ∈ [0, 1]n such that a sample x ∈ {0, 1}n from
this model satisfies

Pr[xi = 1] = pi independently for all i ∈ [1..n] := {1, . . . , n}. (1)

The three classic univariate EDAs are population-based incremental learning
(PBIL) [2], the univariate marginal distribution algorithm (UMDA) [28], and
the compact genetic algorithm (cGA) [17]. As observed in [22], the max-min ant
system (MMAS) [35] with iteration-best pheromone update also is a univariate
EDA (when used for pseudo-Boolean optimization). We note that the UMDA
and this MMAS are special cases of PBIL. Unfortunately, with very few results
existing for the PBIL, this connection so far could not be exploited extensively.

So far, these four algorithms have mostly been discussed separately, and for
many aspects, only one or two of the four algorithms have been regarded. For
example, there are only two mathematical analysis on how EDAs cope with
Gaussian noise and these regards only the cGA [16] and the MMAS [15]. For
the question how EDAs cope with local optima, the existing runtime analyses
only regard the cGA [5,18,38] and the MMAS [3]. This leaves many questions
unanswered.

We also note that many arguments used in the past were specific to the
particular algorithm regarded. For example, the analyses in [5,18] exploit that
the cGA enjoys the property that if the sample with better fitness is closer to
the optimum, then the model update will reduce the expected distance of the
samples from the optimum. The MMAS does not have this property and conse-
quently, a different proof approach was necessary in [3].

Our Results: In this work, we try to improve this situation by proposing a
simple, yet general class of EDAs that includes the four algorithms mentioned
above. Our hope is that by thus distilling the common features of these algo-
rithms, it becomes easier to find analyses that apply simultaneously to all four
algorithms. We demonstrate that this is indeed possible by proving a quantita-
tive statement on the genetic drift effect in our EDA class. This result contains
as special cases the results (separately) proven in [12].

Our second hope is that the large class of EDAs defined by our model also
contains algorithms with better performance than the four known algorithms.
With elementary non-rigorous arguments, we design such an EDA and show via
an experimental analysis that it is at least twice as fast at the cGA and UMDA
with optimized parameters on the OneMax benchmark. We note that this new
algorithm is in no way more complicated than the known special cases of our
general model – it just profits from wider ranges of allowed parameters.

472 B. Doerr and M. Dufay

2 Previous Work

For reasons of space and since several good surveys and textbooks are available,
we describe here only the works that are really close to ours. For a general
introduction to EDAs and details on applications, we refer to the surveys [19,
25,31].

Our work, while not purely mathematical, nevertheless is regarding EDAs
more from a theoretical perspective. A very recent survey on the state of the art
of the theory of EDAs is [22], broader introductions to theoretical approaches in
evolutionary computation include [1,10,20,29]. As can easily be deduced from
this survey, the theoretical understanding of EDAs is far from complete and for
many basic questions, e.g., the runtime on the simple OneMax benchmark, a
complete answer is still missing. What can also be observed from this survey is
that essentially all previous works regard only a single univariate EDA. There
are few exceptions, e.g., in [36] both the cGA and the MMAS is analyzed, but
also in these cases the results for different algorithms are proven separately.

The only previous work we are aware of that undertakes an attempt towards
a unified treatment of univariate EDAs is [14]. There, the framework of an n-
Bernoulli-λ-EDA is defined. This framework is very general and includes not
only our EDA model, but in fact all univariate EDAs which sample a fixed num-
ber λ of offspring according to (1) and then update the probabilistic model p
via any deterministic function φ that takes as arguments the current model and
the offspring together with their fitness. Not surprisingly, in such an extremely
general model it is hard to prove meaningful results, and consequently, the par-
ticular results in [14] need non-trivial additional assumptions: To show that a
stable EDA is not balanced, in particular the additional assumption is made that
whenever the EDA optimizes a function with neutral i-th bit, then at all times t
the sampling frequency pi(t) satisfies Var[pi(t+1) | pi(t)] = −api(t)2 + bpi(t)+ c
for suitable a, b, c ∈ R with 0 < a < 1, see [14, Theorem 10] (this notion has been
relaxed to the requirement that inf{Var[pi(t + 1) + 1[pi(t) /∈ [d, 1 − d]] | pi(t)] |
t ∈ N} > 0 for some d = o(1) in [23, Theorem 6.11]). Similarly, the runtime
analysis on the LeadingOnes benchmark relies on two specific assumptions
how the frequencies behave during the optimization process [14, Theorem 12].
There is no doubt that also with these restrictions, the results in [14] are strong
and impressive, but the need for the restrictions suggests that the n-Bernoulli-
λ-EDA model is too general to admit strong results covering the whole model
(and this is where we hope that our more narrow model is more effective).

There have also been some attempts to encompass EDAs in a model even
wider. One of them is by defining these algorithms as model-based search algo-
rithms which rely on a parameterized probabilistic model as opposed to instance-
based search algorithms which rely on a population of solutions [39]. A model-
based search algorithm is described by its probabilistic model and the way it
updates its model and some parallels can be made between univariate EDAs
and gradient-based methods. Another approach described in [30] is by turning
existing EDAs into a continuous-time black-box optimization method using the
information-geometric optimization (IGO) method which can then be turned

General Univariate Estimation-of-Distribution Algorithms 473

back into algorithms using time discretization. Existing univariate algorithms
like cGA or PBIL can be retrieved using this method. However, these approaches
result in a model that is too general to obtain running time results or to obtain
ideas how to set the parameter of the algorithms.

3 Univariate EDA: Classic and New

In this section, we first describe briefly the four existing algorithms mentioned
in the introduction and then derive from these a general model encompassing
all four. We shall write x ∼ Sample(p) to denote that x ∈ {0, 1}n is sampled
according to the univariate model described by the frequency vector p ∈ [0, 1]n,
that is, that x satisfies (1). We assume that each call of this sampling procedure
is stochastically independent from all other samplings and possibly other random
decisions of the algorithm. When an algorithm optimizing a function f samples λ
individuals, we denote these by x[1], . . . , x[λ] and we denote by x̃[1], . . . , x̃[λ] the
sorting of these by decreasing (worsening) fitness f , with ties broken randomly.
All algorithms initialize the univariate model as p = (12 , . . . , 1

2), which gives the
uniform distribution on the search space {0, 1}n. In their main loop, all sample
a certain number of solutions und update the model based on the fitness of the
solutions. We first describe all algorithms in the basic version without artificial
frequency margins, then propose our general EDA model (also without frequency
margins), and finally discuss how to include such margins.

The compact genetic algorithm (cGA) [17] samples only two solutions and
modifies the frequency vector by a scalar multiple of the difference between the
better and the worse solution, that is, p ← p + 1

K (x̃[1] − x̃[2]). Here K is the
only algorithm parameter called hypothetical population size. In other words, a
frequency pi does not change if the two samples agree in the i-th bit, and it
moves by an additive term of 1

K towards the bit value of the better solution
otherwise. Usually, K is taken as an even integer since this automatically keeps
the frequencies in the range [0, 1]. For other values of K, one would need to cap
the frequencies after the update into the interval [0, 1].

The univariate marginal distribution algorithm (UMDA) [28] with parame-
ters λ, μ ∈ Z≥1 samples λ solutions and updates the model to the average of the
μ best solutions, that is, p ← 1

μ

∑μ
i=1 x̃[i].

The max-min ant system (MMAS) [35] with iteration-best update besides
the sample size λ has the learning rate ρ ∈]0, 1] (pheromone evaporation rate
in the ant colony optimization language) as second parameter. Only the best
offspring is used for the model update and it enters the model with weight ρ,
that is, the model update is p ← (1 − ρ)p + ρx̃[1].

Population-based incremental learning (PBIL) [2] selects μ out of λ solutions
and combines their average weighted by ρ with the current model: p ← (1 −
ρ)p + ρ 1

μ

∑μ
i=1 x̃[i]. Consequently, PBIL has as special cases both the UMDA

(by taking ρ = 1) and the MMAS (by taking μ = 1).
The pseudocodes for these four algorithms are given in Algorithms 1 to 4. As

can easily be seen, in all four cases the new model is a linear combination of the

474 B. Doerr and M. Dufay

samples and the old model. This suggests the following general univariate EDA
model. Let λ ∈ Z≥1 the sample size and γ0, γ1, . . . , γλ ∈ R such that

∑λ
i=0 γi = 1.

The general univariate EDA in its main loop samples λ solutions and updates the
frequency vector to p ← γ0p +

∑λ
i=1 γix̃[i], where this is to be understood that

frequencies below zero or above one are replaced by zero or one. The complete
pseudocode is given in Algorithm 5.

Algorithm 1: The cGA with parameter K > 0, maximizing a given func-
tion f : {0, 1}n → R.
1 p(0) =

(
1
2
, . . . , 1

2

) ∈ [0, 1]n

2 for t = 1, 2, . . . do
3 x[1] ∼ Sample(p(t − 1))
4 x[2] ∼ Sample(p(t − 1))
5 if f(x[1]) ≥ f(x[2]) then
6 p(t) = p(t − 1) + 1

K
(x[1] − x[2])

7 else
8 p(t) = p(t − 1) + 1

K
(x[2] − x[1])

9 p(t) = max(0, min(1, p(t)))

Algorithm 2: The UMDA with parameters λ ∈ Z≥1 and μ ∈ [1..λ].

1 p(0) =
(
1
2
, . . . , 1

2

) ∈ [0, 1]n

2 for t = 1, 2, . . . do
3 for i = 1, 2, . . . , λ do
4 x[i] ∼ Sample(p(t − 1))

5 Sort the individuals into x̃[1], . . . , x̃[λ] ordered by worsening fitness
6 %% Update the frequency
7 p(t) = 1

μ

∑μ
i=1 x̃[i]

We immediately see that the general univariate EDA contains the four algo-
rithms above as special cases. We obtain the cGA by taking λ = 2, γ0 = 1,
γ1 = 1

K , and γ2 = − 1
K . For the UMDA with parameters λ and μ, we use the

same λ and the weights γ0 = 0, γ1 = · · · = γμ = 1
μ and γμ+1 = · · · = γλ = 0.

The MMAS results from taking γ0 = 1 − ρ, γ1 = ρ, and γ2 = · · · = γλ = 0.
Finally, PBIL is the general EDA with γ0 = 1 − ρ, γ1 = · · · = γμ = ρ

μ , and
γμ+1 = · · · = γλ = 0.

General Univariate Estimation-of-Distribution Algorithms 475

Algorithm 3: The MMAS with parameters λ ∈ Z≥1 and evaporation
factor ρ ∈]0, 1].
1 p(0) =

(
1
2
, . . . , 1

2

) ∈ [0, 1]n

2 for t = 1, 2, . . . do
3 for i = 1, 2, . . . , λ do
4 x[i] ∼ Sample(p(t − 1))

5 Find an individual with the best fitness x̃[1]
6 %% Update the frequency
7 p(t) = (1 − ρ)p(t − 1) + ρx̃[1]

Algorithm 4: PBIL with parameters ρ ∈]0, 1], λ ∈ N and μ ∈ [1..λ].
1 p(0) =

(
1
2
, . . . , 1

2

) ∈ [0, 1]n

2 for t = 1, 2, . . . do
3 for i = 1, 2, . . . , λ do
4 x[i] ∼ Sample(p(t − 1))

5 Sort the individuals into x̃[1], . . . , x̃[λ] ordered by their fitness
6 %% Update the frequency
7 p(t) = (1 − ρ)p(t − 1) + ρ

μ

∑μ
i=1 x̃[i]

4 Genetic Drift

Genetic drift is the phenomenon that the sampling frequencies of the probabilis-
tic model move in some direction not because of the feedback from the fitness,
but by an unfortunate accumulation of the small random movements that occur
when there is no clear signal from the fitness. Genetic drift is problematic in
that it can move frequencies close to the boundary values 0 and 1, where they
tend to stay longer. This phenomenon and its drawbacks were first discussed in
the series of works [32–34]. After a long sequence of fundamental results such
as [4,12–14,24,27,36,37], mostly runtime analyses which only apply to a regime
with low genetic drift, we now understand this phenomenon quite well. For rea-
sons of completeness, we note that EDAs can also be successful in regimes with
genetic drift, see, e.g., the runtimes results [4,37] for the UMDA on OneMax
and LeadingOnes when the population size is logarithmic, but the general
understanding is that genetic drift is dangerous and examples like the analyses
of the UMDA on the DLB problem [9,26] show that genetic drift can lead to
drastic performance losses.

The tightest quantitative statements on genetic drift were given in [12]. They
were proven via separate analyses for the cGA and PBIL (which imply the cor-
responding results for the UMDA and MMAS). With our general model for
univariate EDAs, we can now provide a unified analysis for these classic algo-
rithms (and all algorithms that will be defined in the future that fit into this
model).

476 B. Doerr and M. Dufay

Algorithm 5: Our general EDA algorithm defined by (γi)i=0,...,n such that
∑λ

i=0 γi = 1.

1 p(0) =
(
1
2
, . . . , 1

2

) ∈ [0, 1]n

2 for t = 1, 2, . . . do
3 %%Sample the individuals
4 for i = 1, 2, . . . , λ do
5 %%Generate the i-th individual x[i]
6 xt[i] ∼ Sample(p(t − 1))

7 Sort the individuals into x̃t[1], . . . , x̃t[λ] by worsening fitness
8 %% Update the frequency

9 p(t) = max(0, min(1, γ0p(t − 1) +
∑λ

i=1 γix̃[i]))

Genetic drift is usually studied by regarding a neutral bit, that is, a bit that
has no influence on the fitness (note that such results imply similar results for
bits that are neutral only for a certain time as in the LeadingOnes benchmark
or bits that have a preference for one value as in monotonic functions, see [12]).
By symmetry, the expected value of the sampling frequency of a neutral bit
is always 1

2 (and in fact, the distribution of this frequency is also symmetric
around 1

2). Nevertheless, as discussed above, the random fluctuations stemming
from the updates of the probabilistic model will move this frequency towards the
boundary values 0 and 1, and this is the phenomenon of genetic drift. Genetic
drift can be quantified, e.g., via statements on the first time that the frequency
leaves some middle ground, e.g., the interval [13 , 2

3].
In the remainder of this section, let us assume that the first bit of our objec-

tive function f is neutral. Then this bit has no influence on the selection, and
consequently for all i ∈ [1..λ], we have x̃1[i] ∼ B (p1(t − 1)). For simplicity, we
write xi

t = x̃1[i], pt = p1(t) for all t ≥ 0, i ∈ [1..λ]. We will also assume that we
are not in a totally degenerate case, so there exists i ∈ [1..λ] such that γi �= 0.

Lemma 1. The sequence
(pt(1−pt)

(1−∑λ
i=1 γ2

i)
t

)
t≥0

with respect to the filtration (pt)t≥0

is a martingale.

We note that this result is quite beautiful because it gives a good insight on
the behavior of a neutral bit and no approximation was needed, allowing us to
obtain a martingale and not a supermartingale or a submartingale like what is
usually the case. For reasons of space, the formal proof of this and the other
results of this paper had to be omitted. They can be found in the appendix of
the preprint [6].

Using this result, we can find an upper bound on the expected time for a
neutral bit frequency to move away from 1/2.

Lemma 2. Let TL = min{t ≥ 0, pt ≤ 1/3 or pt ≥ 2/3} be the first time for a
neutral bit to leave [1/3, 2/3]. Then E[TL] = O

(
1∑λ

i=1 γ2
i

)
.

General Univariate Estimation-of-Distribution Algorithms 477

To obtain a lower bound and more precise concentration results, we can use
a Hoeffding inequality in a way similar, but more general than what was done
in [12].

Lemma 3. For all T ∈ N and δ > 0, we have

P [∀t ∈ [0..T], |pt − 1/2| < δ] ≥ 1 − 2 exp

(
−δ2

2T
∑λ

i=1 γ2
i

)

.

With T0 = (∑λ
i=1 γ2

i)
−1

4·36 log n and a union bound, we obtain the following guarantee
that neutral frequencies stay away from the boundaries.

Corollary 1. Assuming that all bits are independent and neutral, with high
probability, before iteration T0, all bits frequencies stay within the range
[1/3, 2/3].

As in [12, part VI], this result can be extended to bits with a preference.
For a fitness function f , we say that it is weakly preferring 1 in bit i if for all
(x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1}n−1 we have

f(x1, . . . , xi−1, 1, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Many common fitness functions like OneMax or LeadingOnes are weakly pre-
ferring 1 in any bit.

Corollary 2. If the fitness function is weakly preferring a 1 on all of its bits,
then we have P [∀i ∈ [1..n],∀t ∈ [0..T0], pt

i ≥ 1/3] = 1 − o(1).

5 Optimizing the (γi)i

A second advantage of our general formulation of univariate EDAs, besides giving
unified proofs, could be that this broad class of algorithms contains EDAs that
are superior to the four special cases that have been regarded in the past. To
help finding such algorithms, we now discuss the influence on the γi on the
optimization progress. Since different γi might be profitable in different stages
of the optimization progress, we analyze their effect in a single iteration, that is,
we condition on the current frequency vector. To ease the notation, let us call
this frequency vector p (without any time index). Let x̃[1], . . . , x̃[λ] denote the
λ samples taking in this iteration, sorted already by decreasing fitness. Then,
ignoring the influence of frequency boundaries, the next frequency vector p′

satisfies p′ = γ0p +
∑λ

i=1 γix̃[i].
We would like to have an idea of what the optimal (γi) with respect to

minimizing the expected convergence time to reach the optimal solution would
look like. To do so, we look during a single iteration for the OneMax function
at the best distribution of (γi) while keeping the genetic drift minimal. During
iteration t, let X(t) be a random variable following distribution (pi(t))i, we want

478 B. Doerr and M. Dufay

to maximize E[f(X(t + 1))] knowing the previous distribution. OneMax being
linear, using the linearity of expectation on all the different bits, we have

E[f(X(t + 1))] = γ0E[f(X(t))] +
λ∑

i=1

γiE[f(x̃[i])]

=

(

1 −
λ∑

i=1

γi

)

E[f(X(t))] +
λ∑

i=1

γiE[f(x̃[i])]

= E[f(X(t))] +
λ∑

i=1

γi (E[f(x̃[i])) − E[f(X(t))]) .

Let us assume that (γ̃i)i are optimal for the current iteration and let δ =
∑λ

i=1 γ̃2
i

be the genetic drift. Because this iteration maximizes the expected outcome of
the next distribution while minimizing the genetic drift, it is a solution to

Maximize: E[f(X(t))] +
λ∑

i=1

γi (E[f(x̃[i])] − E[f(X(t))])

Subject to:
λ∑

i=1

γ2
i ≤ δ

Both the function to optimize and the constraint are polynomial so differen-
tiable. Moreover the set solution to the constraint is bounded and closed, so it
is compact. Therefore an optimal solution exists and we can use the method of
Lagrange multipliers to find it: there exists a Lagrange multiplier α ≤ 0 such
that

⎡

⎢
⎢
⎣

E[f(x̃[1])] − E[f(X(t))]
E[f(x̃[2])] − E[f(X(t))]

. . .
E[f(x̃[λ])] − E[f(X(t))]

⎤

⎥
⎥
⎦ + α

⎡

⎢
⎢
⎣

2γ̃1
2γ̃2
. . .
2γ̃λ

⎤

⎥
⎥
⎦ = 0.

So (γ̃i)i are proportional to (E[f(x̃[i])] − E[f(X(t))])i. Because (x̃[i]) are sorted
according to their fitness, (E[f(x̃[i])])i is decreasing so (γ̃i)i should also be
decreasing.

6 Designing New Univariate EDAs

In this section, we propose two new univariate EDAs (that is, EDAs within our
framework with γi that do not lead to one of the four classical algorithms) and
analyze them via experimental means. Given the momentary state of the art
in mathematical runtime analysis of EDAs, it seems out of reach to conduct
a mathematical runtime analysis precise enough to make visible the influence
of the γi on the runtime. The main insight derived from this part of our work
is that with not much effort, one can find univariate EDAs which outperform

General Univariate Estimation-of-Distribution Algorithms 479

the classic univariate EDAs. We conduct this line of research for the two classic
benchmarks OneMax and LeadingOnes.

OneMax: Since univariate EDAs sample the bits independently and since in
the OneMax benchmark each bit contributes the same to the fitness, we expect
a somewhat regular behavior in a set of independent samples: Those with best
fitness will have many bits set correctly, those with lowest fitness with miss
many bit values. This, together with the considerations of the previous section,
suggests to give more weights to better samples in the frequency update, and to
do this in a somewhat continuous manner. One way of doing so is taking

γ0 = 1 − β

λ∑

i=1

(1 − i
λ/2) ≈ 1 and γi = β(1 − i

λ/2) for i ∈ [1..λ], (2)

where β is a positive number still to be determined. While not perfectly sym-
metric, essentially here x̃[i] and x̃[λ − i] have weights of opposite sign, hence γ0
is essentially one.

We compare this new EDA with the two classic ones UMDA and cGA with
optimized parameters. We do not regard the other two classic EDAs since with
their learning rate ρ they are structurally quite different and it is less understood
what are good parameter settings for these. We note that there is no indication
in the literature that the MMAS or PBIL with their slightly cautious learning
mechanism could outperform the other two algorithms on a simple unimodal
benchmark such as OneMax.

For the UMDA and cGA, we determine good parameter values as follows. For
the UMDA, we chose to fix λ as �log n

√
n since both theoretical and experimen-

tal results show that this leads to good performances [37]. We use the same value
of λ for our EDA. Still for the UMDA, we set μ = �λ/3 as this gave the best
expected runtimes in the experiments we conducted to opitmize the parameters
of the UMDA. For cGA, the only parameters that needs to be determined is
the hypthetical population size K. From [11, Fig. 1], we know that the expected
runtime of the cGA on OneMax is roughly a unimodal function in K.1 Since β
in our algorithm plays a similar role as K in the cGA (namely it regulates the
strength of the model update), we expect a similar unimodal dependence on β
for our algorithms, which we confirm in experiments. For that reason, for each
problem size n we determined the optimal values for K and β via ternary search.

Figure 1 displays the average (in 200 runs) runtime of these three algorithms
for different problems sizes. These results show that our general algorithm with
a gamma distribution that was not used in previous algorithms is about twice as
fast as the optimized UMDA and cGA. This suggest that it is not too difficult to
find in our broad class of univariate EDAs new algorithms which are significantly
faster than the classic algorithms.

1 We know that [27] proved that the runtime of the cGA on OneMax is not unimodal
in K when n is large enough, but apparently this asymptotic results becomes relevant
only for very large population sizes.

480 B. Doerr and M. Dufay

100 500 750 1,000
0

0.5

1

1.5
104

cGA
UMDA

General EDA with (γi)i

Fig. 1. Average running times (in fitness evaluations) of cGA (with optimized value of
K), UMDA (with fixed λ = �log n

√
n� and optimized value μ = λ/3), and our general

algorithm with fixed gamma as in (2) and β optimized, on the OneMax benchmark
with problem size between n = 100 and n = 1000.

LeadingOnes: We undertook a similar work for the LeadingOnes benchmark.
In this function, the bits do not contribute independently to the fitness, so our
considerations valid in the design of the EDA above are not valid anymore. More
detailedly, search points with low fitness reveal very little information how good
solutions look like. For this reason, we design our new EDA in the way that
such solutions are not taken into account for the model update. Without any
optimizing, we set the cutoff for this regime at λ/3, that is, we have γ̃i = 0 for all
i > λ/3. For the remaining samples, we expect some positive information towards
the optimum, and again we expect this to be stronger for better solutions, so we
take γ̃i proportional to �λ/3 − (i − 1). With no particular reason, we decided
to define an EDA resembling the UMDA, that is, we take γ̃0 = 0 and

γ̃i =
�λ/3 − (i − 1)

∑�λ/3�
j=1 �λ/3 − (j − 1)

(3)

for all i ∈ [1..λ/3].
In Fig. 2, we experimentally compare the EDA just designed, the EDA

designed in the previous subsection, and the UMDA with parameters optimized
(for LeadingOnes) as described in the previous subsection. As expected, the
running time of our general algorithm with the (γi)i chosen in the previous sub-
section is not very good (roughly by 25% worse that the UMDA). The EDA
just designed, however, beats the UMDA with optimized parameters by roughly
20%. This again shows that with moderately effort, one can find superior EDAs
in the class of univariate EDAs defined in this work.

We admit that the OneMax and LeadingOnes benchmarks are well-
understood, so designing a better univariate EDA for a complicated real-world
problem will require more work. Nevertheless, we are optimistic that using

General Univariate Estimation-of-Distribution Algorithms 481

intuitive ideas such as the ones above, e.g., a continuous dependence of the
γi on the rank i, together with some trial-and-error experimentation can lead to
good EDAs (better than the classic ones) also for more complex problems.

50 100 200 300 400 500
0

1

2

3

4
105

General EDA with (γi)i
UMDA

General EDA with (γ̃i)i

Fig. 2. Average running times (in fitness evaluations) over 200 runs of the classic
UMDA (with optimized parameters) and the two EDAs designed in this section, on
LeadingOnes with problem size between n = 50 and n = 500. The γ̃i chosen with
consideration of elementary properties of LeadingOnes clearly outperform the other
two algorithms.

7 Conclusion

In this work, we proposed a general formulation of a univariate EDA. It cap-
tures the three main univariate EDAs and the MMAS ant colony optimizer with
iteration-best update. Our formulation allows to phrase proofs, so far conducted
individually for the different algorithms, in a unified manner. We demonstrate
this for a recent quantitative analysis of genetic drift. We are optimistic that our
formulation also allows to conduct some of the existing runtime analyses in a
unified manner. This would be particularly interesting as here many results have
been shown only for some of the classic algorithms, e.g., the runtime analyses on
the OneMax and Jump benchmarks as well as the results on noisy optimiza-
tion. However, given the high complexity of the existing analyses for particular
algorithms, this might be a challenging task.

Our general formulation also allows to define new univariate EDAs, which
might turn out to be superior to the existing ones. With intuitive arguments,
we define such EDAs and show experimentally that they beat existing EDAs
for the OneMax and LeadingOnes benchmarks. We are optimistic that this
approach can be profitable also for other optimization problems.

Acknowledgment. This work was supported by a public grant as part of the
Investissements d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

482 B. Doerr and M. Dufay

References

1. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Sci-
entific Publishing (2011). https://doi.org/10.1142/7438

2. Baluja, S.: Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning. Tech. rep.,
Carnegie Mellon University (1994)

3. Benbaki, R., Benomar, Z., Doerr, B.: A rigorous runtime analysis of the 2-MMASib

on jump functions: ant colony optimizers can cope well with local optima. In:
Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 4–13. ACM
(2021). https://doi.org/10.1145/3449639.3459350

4. Dang, D.-C., Lehre, P.K., Nguyen, P.T.H.: Level-based analysis of the univariate
marginal distribution algorithm. Algorithmica 81(2), 668–702 (2018). https://doi.
org/10.1007/s00453-018-0507-5

5. Doerr, B.: The runtime of the compact genetic algorithm on jump functions. Algo-
rithmica 83(10), 3059–3107 (2020). https://doi.org/10.1007/s00453-020-00780-w

6. Doerr, B., Dufay, M.: General univariate estimation-of-distribution algorithms
(2022). CoRR abs/2206.11198

7. Doerr, B., Krejca, M.S.: Bivariate estimation-of-distribution algorithms can find an
exponential number of optima. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2020, pp. 796–804. ACM (2020). https://doi.org/10.1145/3377930.
3390177

8. Doerr, B., Krejca, M.S.: A simplified run time analysis of the univariate marginal
distribution algorithm on LeadingOnes. Theoret. Comput. Sci. 851, 121–128
(2021). https://doi.org/10.1016/j.tcs.2020.11.028

9. Doerr, B., Krejca, M.S.: The univariate marginal distribution algorithm copes well
with deception and epistasis. Evol. Comput. 29, 543–563 (2021). https://doi.org/
10.1162/evco a 00293

10. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent
Developments in Discrete Optimization. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-29414-4, http://www.lix.polytechnique.fr/Labo/Benjamin.
Doerr/doerr neumann book.html

11. Doerr, B., Zheng, W.: From understanding genetic drift to a smart-restart
parameter-less compact genetic algorithm. In: Genetic and Evolutionary Compu-
tation Conference, GECCO 2020, pp. 805–813. ACM (2020). https://doi.org/10.
1145/3377930.3390163

12. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation-of-distribution
algorithms. IEEE Trans. Evol. Comput. 24, 1140–1149 (2020). https://doi.org/10.
1109/TEVC.2020.2987361

13. Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions.
Nat. Comput. 5, 257–283 (2006). https://doi.org/10.1007/s11047-006-9001-0

14. Friedrich, T., Kötzing, T., Krejca, M.S.: EDAs cannot be balanced and stable. In:
Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 1139–1146.
ACM (2016). https://doi.org/10.1145/2908812.2908895

15. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony
optimization to noise. Evol. Comput. 24, 237–254 (2016). https://doi.org/10.1162/
EVCO a 00178

16. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme Gaussian noise. IEEE Trans. Evol. Comput. 21,
477–490 (2017). https://doi.org/10.1109/TEVC.2016.2613739

https://doi.org/10.1142/7438
https://doi.org/10.1145/3449639.3459350
https://doi.org/10.1007/s00453-018-0507-5
https://doi.org/10.1007/s00453-018-0507-5
https://doi.org/10.1007/s00453-020-00780-w
https://doi.org/10.1145/3377930.3390177
https://doi.org/10.1145/3377930.3390177
https://doi.org/10.1016/j.tcs.2020.11.028
https://doi.org/10.1162/evco_a_00293
https://doi.org/10.1162/evco_a_00293
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
https://doi.org/10.1145/3377930.3390163
https://doi.org/10.1145/3377930.3390163
https://doi.org/10.1109/TEVC.2020.2987361
https://doi.org/10.1109/TEVC.2020.2987361
https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1162/EVCO_a_00178
https://doi.org/10.1162/EVCO_a_00178
https://doi.org/10.1109/TEVC.2016.2613739

General Univariate Estimation-of-Distribution Algorithms 483

17. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3, 287–297 (1999). https://doi.org/10.1109/4235.797971

18. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic
algorithm on jump functions. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2018, pp. 967–974. ACM (2018). https://doi.org/10.1145/3205455.
3205608

19. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distri-
bution algorithms. Swarm Evol. Comput. 1, 111–128 (2011). https://doi.org/10.
1016/j.swevo.2011.08.003

20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspec-
tive. Springer (2013). https://doi.org/10.1007/978-3-642-17339-4

21. Juels, A., Baluja, S., Sinclair, A.: The equilibrium genetic algorithm and the role
of crossover (1993), (Unpublished)

22. Krejca, M.S., Witt, C.: Theory of estimation-of-distribution algorithms. In: The-
ory of Evolutionary Computation. LNCS, pp. 405–442. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-29414-4 9

23. Krejca, M.S.: Theoretical Analyses of Univariate Estimation-of-Distribution Algo-
rithms. Ph.D. thesis, Universität Potsdam (2019)

24. Krejca, M.S., Witt, C.: Lower bounds on the run time of the univariate marginal
distribution algorithm on OneMax. Theoret. Comput. Sci. 832, 143–165 (2020).
https://doi.org/10.1016/j.tcs.2018.06.004

25. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. Genetic
Algorithms and Evolutionary Computation. Springer, New York (2002). https://
doi.org/10.1007/978-1-4615-1539-5

26. Lehre, P.K., Nguyen, P.T.H.: On the limitations of the univariate marginal distribu-
tion algorithm to deception and where bivariate EDAs might help. In: Foundations
of Genetic Algorithms, FOGA 2019, pp. 154–168. ACM (2019). https://doi.org/
10.1145/3299904.3340316

27. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83(4), 1096–1137 (2020). https://doi.org/10.
1007/s00453-020-00778-4

28. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61723-X 982

29. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
- Algorithms and Their Computational Complexity. Springer (2010). https://doi.
org/10.1007/978-3-642-16544-3

30. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-geometric optimization
algorithms: a unifying picture via invariance principles. J. Mach. Learn. Res. 18,
1–65 (2017)

31. Pelikan, M., Hauschild, M.W., Lobo, F.G.: Estimation of distribution algorithms.
In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intel-
ligence, pp. 899–928. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-43505-2 45

32. Shapiro, J.L.: The sensitivity of PBIL to its learning rate, and how detailed balance
can remove it. In: Foundations of Genetic Algorithms, FOGA 2002, pp. 115–132.
Morgan Kaufmann (2002)

33. Shapiro, J.L.: Drift and scaling in estimation of distribution algorithms. Evol.
Comput. 13, 99–123 (2005). https://doi.org/10.1162/1063656053583414

https://doi.org/10.1109/4235.797971
https://doi.org/10.1145/3205455.3205608
https://doi.org/10.1145/3205455.3205608
https://doi.org/10.1016/j.swevo.2011.08.003
https://doi.org/10.1016/j.swevo.2011.08.003
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-030-29414-4_9
https://doi.org/10.1016/j.tcs.2018.06.004
https://doi.org/10.1007/978-1-4615-1539-5
https://doi.org/10.1007/978-1-4615-1539-5
https://doi.org/10.1145/3299904.3340316
https://doi.org/10.1145/3299904.3340316
https://doi.org/10.1007/s00453-020-00778-4
https://doi.org/10.1007/s00453-020-00778-4
https://doi.org/10.1007/3-540-61723-X_982
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1162/1063656053583414

484 B. Doerr and M. Dufay

34. Shapiro, J.L.: Diversity loss in general estimation of distribution algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 92–101. Springer, Heidelberg
(2006). https://doi.org/10.1007/11844297 10

35. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Futur. Gener. Comput. Syst. 16,
889–914 (2000). https://doi.org/10.1016/S0167-739X(00)00043-1

36. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81, 1450–1489
(2019). https://doi.org/10.1007/s00453-018-0480-z

37. Witt, C.: Upper bounds on the running time of the univariate marginal distribu-
tion algorithm on onemax. Algorithmica 81(2), 632–667 (2018). https://doi.org/
10.1007/s00453-018-0463-0

38. Witt, C.: On crossing fitness valleys with majority-vote crossover and estimation-
of-distribution algorithms. In: Foundations of Genetic Algorithms, FOGA 2021,
pp. 2:1–2:15. ACM (2021). https://doi.org/10.1145/3450218.3477303

39. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for com-
binatorial optimization: a critical survey. Ann. Oper. Res. 131, 373–395 (2004).
https://doi.org/10.1023/B:ANOR.0000039526.52305.af

https://doi.org/10.1007/11844297_10
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1007/s00453-018-0480-z
https://doi.org/10.1007/s00453-018-0463-0
https://doi.org/10.1007/s00453-018-0463-0
https://doi.org/10.1145/3450218.3477303
https://doi.org/10.1023/B:ANOR.0000039526.52305.af

Population Diversity Leads to Short
Running Times of Lexicase Selection

Thomas Helmuth1, Johannes Lengler2, and William La Cava3(B)

1 Hamilton College, Clinton, NY, USA
thelmuth@hamilton.edu

2 ETH Zürich, Zürich, Switzerland
3 Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

william.lacava@childrens.harvard.edu

Abstract. In this paper we investigate why the running time of lexicase
parent selection is empirically much lower than its worst-case bound of
O(N · C). We define a measure of population diversity and prove that
high diversity leads to low running times O(N + C) of lexicase selec-
tion. We then show empirically that genetic programming populations
evolved under lexicase selection are diverse for several program synthesis
problems, and explore the resulting differences in running time bounds.

Keywords: Lexicase selection · Population diversity · Running time
analysis

1 Introduction

Semantic selection methods have been of increased interest as of late in the
evolutionary computation community [16,22] due to the observed improvements
over more traditional selection methods (such as tournament selection) that only
consider the behavior of individuals in aggregate. One such method is lexicase
selection [10,19], a parent selection method originally proposed for genetic pro-
gramming. Since then, the original algorithm and its variants have found success
in different domains, including program synthesis [8], symbolic regression [13,18],
evolutionary robotics [17], and learning classifier systems [1].

Although an active research community has illuminated many aspects of lex-
icase selection’s behavior via experimental analyses [4,5,7,17], theoretical anal-
yses of lexicase selection have been slower to develop. Previous theoretical work
has looked at the probability of selection under lexicase, and also made connec-
tions between lexicase selection and Pareto optimization [12]. A study focusing
on ecological theory provided insights into the efficacy of lexicase selection [3].
Additionally, the running time of a simple hill climbing algorithm utilizing lexi-
case selection has been analyzed for the bi-objective leading ones trailing zeroes
benchmark problem [11]. However, the recursive nature of lexicase selection, and
its step-wise dependence on the behavior of subsets of the population, make it
difficult to analyze.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 485–498, 2022.
https://doi.org/10.1007/978-3-031-14721-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_34

486 T. Helmuth et al.

We focus this paper on a particular gap in the theory of lexicase selection,
which is an understanding of its running time. Although the worst-case complex-
ity is known to be O(N · C), where N is the population size and C is the set of
training cases, empirical data suggest the worst-case condition is extremely rare
in practice [12]. Our goal is to explain this discrepancy through a combination
of theory and experiment.

1.1 Our Contributions

We find that the observed running time of lexicase selection can be explained
with population diversity, by which we mean the phenotypic/behavioral diversity
of individuals in a population. Our contributions are threefold:

1. We introduce a new way of measuring population diversity, Definitions 2
and 3, which we call ε-Cluster Similarity, or ε-Similarity for short. Here, for
different values of the parameter ε, we obtain a measure of how similar the
population is, where small ε-Cluster Similarity corresponds to high diversity.
As we show, this measure is not directly tied to other measures of diversity like
the average phenotypical distance (Sect. 2.2) or the mean of the behavioral
covariance matrix (Fig. 3).

2. We prove mathematically that lexicase selection is fast when applied to pop-
ulations which are diverse. More precisely, we show that with low ε-Cluster
Similarity, the expected running time of lexicase selection drops from O(N ·C)
to O(N + C), where the hidden constants depend on the parameter ε and on
the quantity k that measures ε-Cluster Similarity.

3. Finally, we show empirically for several program synthesis problems [8] that
genetic programming populations are indeed diverse in our sense (have low
ε-Similarity). We investigate which parameter ε gives the best running time
guarantees for lexicase selection, and we find that the running time guarantees
are substantially better than the trivial running time bound of N · C.

Our findings apply to both discrete and continuous problems and population
behaviors. Although we restrict our analysis to vanilla lexicase selection, we note
the results generalize to other variants, including ε-lexicase selection [14]1 and
down-sampled lexicase selection [9].

2 Preliminaries

2.1 Lexicase Selection

Lexicase selection is used to select a parent for reproduction in a given popu-
lation. Unlike many common parent selection methods, lexicase selection does
not aggregate an individual’s performance into a single fitness value. Instead, it
considers the loss (errors) on different training cases (a.k.a. samples/examples)
1 Our results hold for the original variant, later dubbed “static” ε-lexicase selec-

tion [12].

Population Diversity Leads to Short Running Times of Lexicase Selection 487

Algorithm 1. Lexicase Selection applied to a population N without dupli-
cates, with discrete loss/error L(n, c) on training cases c ∈ C and individual
n ∈ N . Returns an individual selected to be a parent. Nt is the remaining
candidate pool at step t, C′ is the set of remaining training cases.
LEX(N , C, L):

C′ ← C; t ← 0; N0 ← N ;
while |Nt| > 1:

c ← random choice from C′

�∗ ← min{L(n, c) | n ∈ Nt}
Nt+1 ← {n ∈ Nt | L(n, c) = �∗}
C′ ← C′ \ {c}
t ← t + 1

return unique element from Nt

independently, never comparing (even indirectly) the results on one training case
with those on another.

Lexicase selection begins by putting the entire population into a candidate
pool. As a preprocessing step, all phenotypical duplicates are removed from the
pool, i.e., if several individuals give the same loss on all training cases, all but one
are removed in the following filtering steps. Then lexicase selection repeatedly
selects a new training case t at random, and removes all individuals from the
current candidate pool that do not achieve the best loss on case t within the
current pool. This process is repeated until the candidate pool contains only a
single individual. If the remaining individual has phenotypical duplicates, the
selected parent is taken at random from among these behavioral clones. We
formalize the algorithm in Algorithm 1.

We remark that the process is guaranteed to end up with a candidate pool of
size one: whenever the candidate pool contains at least two individuals, they are
not duplicates due to preprocessing. Hence, they differ on at least one training
case c, and one of them is filtered out when c is considered. So after all training
cases have been processed, it is not possible that the candidate pool contains
more than one individual.

Note that the described procedure selects a single individual from the popu-
lation. In order to gather enough parents for the next generation, it is typically
performed O(N) times, where N is the population size. An exception is the pre-
processing step that only needs to be performed once each generation. Moreover,
finding duplicates can be efficiently implemented via a hash map. Thus prepro-
cessing is usually not the bottleneck of the procedure, and we will focus in this
paper on the remaining part: the repeated reduction of the selection pool via
random training cases. To exclude the effect of preprocessing, we will assume
that the initial population is already free of duplicates.

In case of real-valued (non-discrete) losses, one typically uses a variant
known as ε-lexicase selection [14]. (Note this use of ε is distinct from that used
in Sect. 2.2). In the original algorithm, later dubbed “static” ε-lexicase selec-
tion [12], phenotypic behaviors are binarized prior to lexicase selection, such

488 T. Helmuth et al.

that individuals within ε of the population-wide minimal loss on c have an error
of 0, and otherwise an error of 1. Our results extend naturally to this version of
ε-lexicase selection.

In contrast, in the “dynamic” and “semi-dynamic” variants of ε-lexicase selec-
tion, lexicase selection removes those individuals whose loss is larger than �∗ + ε,
where �∗ is the minimal loss in the current candidate pool [12]. Our results may
extend to these scenarios, but the framework becomes more complicated. Here,
it is no longer possible to separate the preprocessing step (i.e., de-duplication)
from the actual selection mechanism. Of course, it is still possible to define two
individuals n1, n2 ∈ N as duplicates if they differ by at most δ on all training
cases. But this is no longer a transitive relation, i.e., it may happen that n1 and
n2 are duplicates, n2 and n3 are duplicates, but n1 and n3 are not duplicates. For
these reasons, it is necessary to handle duplicates indirectly during the execution
of the algorithm. To avoid these complications, we only present Algorithm 1 in
the case of discrete losses and without duplicates, but we do include the case of
real-valued losses in our analysis.

The worst-case running time of lexicase selection is O(N ·C), where N := |N |
is the population size and C := |C| is the number of training cases. The problem
is that in an iteration of the while-loop, it may happen that Nt+1 = Nt, i.e.,
that the candidate pool does not shrink. This is more likely for binary losses.
Then, it may happen that Nt = N for many iterations of the while-loop, and
then computing �∗ and Nt+1 needs time O(N). Since the while-loop is executed
up to C times, this leads to the worst-case runtime O(N · C). Recall that we
usually want to run the procedure O(N) times to select all parents for the next
generation, which then takes time O(N2 · C).

One might hope that the expected runtime is much better than the worst-
case runtime. This is the case for many classical algorithms like quicksort, but for
populations with an unfavorable loss profile, it is not the case here. Consider a
population of individuals which have the same losses on all training cases except
a single case c, and on case c they all have different losses. Then the candidate
pool does not shrink before this case c is found, and finding this case needs C/2
iterations in expectation. Thus the expected runtime is still of order O(N · C).2

So in order to give better bounds on the running time of lexicase selection,
it is required to have some understanding of the involved populations. This is
precisely the contribution of this paper: we define a notion of diversity that
provably leads to a small running time of lexicase selection, and we empirically
show in several genetic programming settings that populations are diverse with
respect to this measure.

2 This worst-case example does not hold if the losses are binary, but even that does
not help much. It is possible to construct a population of N individuals without
duplicates that differ only on log2 N binary training cases, and are identical on all
other training cases. In this situation, the candidate pool does not shrink before at
least one of those training cases is found, and in expectation this takes C/ log2 N
iterations. Thus the expected runtime in this situation is at least O(N · C/ log N),
which is not much better than O(N · C).

Population Diversity Leads to Short Running Times of Lexicase Selection 489

2.2 ε-Cluster Similarity

We now come to our first main contribution, a new way of measuring diversity.
The measure is in phenotype space, so it measures for a training set C how
similar the individuals perform on this training set. We first introduce a useful
notion, which is the phenotypical distance of two individuals.

Definition 1 (Phenotypical Distance). Consider two individuals m,n that
are compared on a set C of training cases. The phenotypical distance between m
and n is the number of training cases in which m and n have different losses.

If the losses are real-valued, then for δ > 0, the phenotypical δ-distance
between m and n is the number of training cases in which the losses of m and n
differ by at least δ.

We next define the ε-Cluster Similarity. To get an intuition, think of a set of
individuals such that all individuals inside this set have pairwise small pheno-
typical distance. Let us call this a cluster. Then the ε-Cluster Similarity is the
smallest k such that no cluster of size k exists. Or in other words, k − 1 is the
size of the biggest cluster. Formally, we obtain the following definition.

Definition 2 (ε-Cluster Similarity). Let N be a population of individuals,
and C be a set of training cases with discrete losses, for example binary losses.
Let ε ∈ [0, 1]. Then the ε-Cluster Similarity is defined to be the minimal k ≥ 2
such that among every set of k different individuals in N , there are at least two
individuals m,n ∈ N with phenotypical distance at least ε|C|.

If instead C is a training set with real-valued losses, then let ε ∈ [0, 1] and
δ > 0. Then the ε-Cluster Similarity for δ-distance is defined as the minimal
k ≥ 2 such that among every set of k different individuals in N , there are at
least two individuals m,n ∈ N with phenotypical δ-distance at least ε|C|.

A few remarks are in order to understand the definition better. Firstly, the
ε-Cluster Similarity k is a decreasing measure of diversity, i.e., less similarity
means more diversity and vice versa. Moreover, the value k is increasing in ε: we
are only satisfied with two individuals of distance at least ε|C|, which is harder
to achieve for larger values of ε. Therefore, we may need a larger set to ensure
that it contains a pair of individuals with such a large distance. In other words,
a larger value of ε means that we are more restrictive in counting individuals
as different, which yields larger value of k: the population is more similar with
respect to a more restrictive measure of difference. There is an important tradeoff
between ε and k: larger values of ε (which are desirable in terms of diversity,
since we search for individuals with larger distances) lead to larger values of k
(which is undesirable since we only find such individuals in larger sets).

490 T. Helmuth et al.

Second, having small ε-Cluster Similarity is a rather weak notion of diversity:
it does not require that all pairs of individuals are different from each other. For
example, if the population consists of clusters of k − 1 individuals which are
pairwise very similar, then the ε-Cluster Similarity is k as long as the clusters
have distances at least ε|C| from each other. We just forbid that there is a cluster
of size k such that every pair of individuals in the cluster has small distance.

On the other hand, the ε-Cluster Similarity may be a finer measure than,
say, the average phenotypical distance in the population. For example, consider
a population that consists only of two clusters of almost identical individuals,
but the clusters are in opposite corners of the phenotype space, i.e., they differ
on almost all training cases. Then the average phenotypical distance is extremely
large, ≈ |C|/2, which would suggest high diversity. But even for absurdly high
ε = 0.9, we would find k = |N |/2 + 1, i.e., a very low diversity according to our
definition. It is not hard to see that in this example the expected running time
of lexicase selection is Ω(|N | · |C|): in the first step one of the clusters will be
removed completely, but afterwards it is very hard to make any further progress.
Hence, this example shows that average phenotypical distance does not predict
the running time of lexicase selection well : even though the example has large
average phenotypical distance (“large diversity” in that sense), the running time
of lexicase selection is very high. The main theoretical insight of this paper is
that this discrepancy can never happen with ε-Cluster Similarity. Whenever ε-
Cluster Similarity is low (large diversity), then the expected running time of
lexicase selection is small.

To give the reader another angle to grasp the definition of ε-Cluster Similar-
ity, we give a second, equivalent definition in terms of graph theory.

Definition 3 (ε-Cluster Similarity, Equivalent Definition). Let N be a
population of search points, and C be a set of training cases with discrete losses.
Let ε ∈ [0, 1]. We define a graph G = (V,E) as follows. The vertex set V := N
is identical with the population. Between any two vertices m,n ∈ N , we draw
an edge if and only if the individuals m and n have the same loss in more than
(1 − ε)|C| training cases. Then the ε-Cluster Similarity is k := α + 1, where α is
the clique number of G, i.e., α is the size of the largest clique of the graph G.

If C is a training set with real-valued losses and δ > 0 a parameter, then we
use the same vertex set for G = G(δ), but we draw an edge between m and n if
and only if the losses of m and n differ by at most δ for more than (1 − ε)|C|
training cases. Then the ε-Cluster Similarity for δ-distance is again k := α + 1,
where α is the clique number of G(δ).

3 Theoretical Result: Low ε-Cluster Similarity Leads to
Small Running Times

In this section, we prove mathematically, that a high diversity (i.e., a small
ε-Similarity) leads to a small expected running time for lexicase selection.

Population Diversity Leads to Short Running Times of Lexicase Selection 491

3.1 Preliminaries

To proof our main theoretical result, we will use the following theorem, known
as Multiplicative Drift Theorem [2,15], which is a standard tool in the theory of
evolutionary computation.

Theorem 1 (Multiplicative Drift). Let (Xt)t≥0 be a sequence of non-
negative random variables with a finite state space S ⊆ R

+
0 such that 0 ∈ S.

Let smin := min(S \ {0}), let T := inf{t ≥ 0 | Xt = 0}, and for t ≥ 0 and s ∈ S
let Δt(s) := E[Xt − Xt+1 | Xt = s]. Suppose there exists δ > 0 such that for all
s ∈ S \ {0} and all t ≥ 0 the drift is

Δt(s) ≥ δs. (1)

Then

E[T] ≤ 1 + E[ln(X0/smin)]
δ

. (2)

Now we can give our theoretical results. Note that the following theorems
refer to a single execution of lexicase selection, i.e., M refers to the complexity of
finding a single parent via lexicase selection. The following theorem says that the
running time is low, O(|N |+ |C|) if the population has large ε-Cluster Similarity.
As common in theoretical running time analysis, we give the running time in
terms of evaluations, where an evaluation is an execution (or lookup) of L(n, c)
for an individual n and a training case c. The running time is proportional to
the number of evaluations.

Theorem 2. Let 0 < ε < 1. Consider lexicase selection on a population N
without duplicates and with ε-Cluster Similarity of k ∈ N. Let M be the number
of evaluations until the population pool is reduced to size 1. Then

E[M] ≤ 4|N |
ε

+ 2k|C|.

Proof. Consider any two individuals m,n ∈ N . Assume that both m,n are still
in the candidate pool after some selection steps (i.e., after some iterations of
the while-loop have been processed). Then m and n can not differ in any of the
processed cases C \ C′, because otherwise one of them would have been removed
from the population. Therefore, the ε|C| cases in which m and n differ are all
still contained in C′. In particular, if we choose a new case from C′ at random,
then the probability that m and n differ in this case is at least ε|C|/|C′| ≥ ε.
Note that this holds throughout the algorithm and for any two individuals m,n
that are still candidates.

Now we turn to the computation. Let Xt be the number of remaining indi-
viduals after t executions of the while-loop. We define Yt := Xt if Xt ≥ 2k and
Yt := 0 if Xt < 2k. Let T ′ be the first point in time when YT ′ = 0 (and thus,
XT ′ < 2k).

492 T. Helmuth et al.

If Xt ≥ 2k, then we split the population before the t + 1-st step into pairs as
follows. Since Xt ≥ k, there are at least two individuals which differ in at least
ε|C| cases, so we pick two such individuals and pair them up. We can iterate this
until there are less than k unpaired individuals left. Therefore, we are able to
pair up at least Xt − (k − 1) > Xt − Xt/2 = Xt/2 individuals, forming at least
Xt/4 pairs. For each pair, there is a chance of ε that the two differ in the case
of the t + 1-st step, in which case at least one of them is eliminated. Hence, for
every x ≥ 2k,

E[Xt+1 | Xt = x] ≤ x − εx
4 = x(1 − ε

4).

Now let us assume that Yt = y > 0 (and thus y ≥ 2k). Since Yt+1 ≤ Xt+1 by
definition, we obtain

E[Yt+1 | Yt = y] ≤ E[Xt+1 | Xt = y] ≤ y(1 − ε
4). (3)

The advantage of Yt is that the above bound holds for all y ≥ 0 (it is trivial for
y = 0), whereas the corresponding bound for Xt may not hold for 0 < x < 2k.

Now we bound M by splitting it into the running time M1 before step T ′,
and the running time M2 after and including step T ′. For M1, we proceed as
follows.

M1 =
∑T ′−1

t=0
Xt =

∑T ′−1

t=0
Yt =

∑∞
t=0

Yt,

because Yt = 0 for t ≥ T ′. Applying (3) iteratively to Yt, we obtain

E[Yt] ≤ (1 − ε
4)tY0,

where Y0 = |N |. Plugging this in, we get

E[M1] =
∑∞

t=0
E[Yt] ≤

∑∞
t=0

(1 − ε
4)t(|N | − 1) ≤ 4|N |

ε ,

where in the last step we have used the formula
∑∞

t=0 qt = 1/(1−q) for geometric
series with q = 1 − ε/4. It remains to bound M2, and we use a simple bound.
Since every case occurs at most once, and since the population size is at most
2k, we have deterministically M2 ≤ 2k · |C|.

4 Empirical Evaluation in Program Synthesis

We evaluated the theoretical bounds given by Theorem 2 on examples using
genetic programming to solve program synthesis benchmark problems. The pur-
pose of this evaluation is to 1) find out how diverse the populations are according
to ε-Cluster Similarity; 2) measure the extent to which the new bounds shrink our
estimates of the running time of lexicase selection, relative to the known worst-
case bounds; 3) evaluate the sensitivity of ε-Cluster Similarity to the parameter,
ε, across several problems; and 4) determine how ε-Cluster Similarity compares
to a more standard diversity metric in real data.3

3 Experiment code: https://github.com/cavalab/lexicase runtime.

https://github.com/cavalab/lexicase_runtime

Population Diversity Leads to Short Running Times of Lexicase Selection 493

4.1 Experimental Setup

We investigate these aims using 8 program synthesis problems taken from the
General Program Synthesis Benchmark Suite [8]. These problems require solu-
tion programs to manipulate multiple data types and exhibit different control
structures, similar to the types of programs we expect humans to write. Among
the 8 problems there are 5 different expected output types (Boolean, integer,
float, vector of integers, and string), allowing us to test against multiple data
types. In particular, we note that two problems (compare-string-lengths and
mirror-image) have Boolean outputs, which we expect to have higher ε-Cluster
Similarity values due to having fewer possible output values.

Our experiments were conducted using PushGP, which evolves programs in
the Push programming language [20,21]. PushGP is expressive in the data types
and control structures it allows, and has been used previously with these prob-
lems [8]. We use Clojush, the Clojure implementation of Push, in our experi-
ments.4 Each run evolves a population of 1000 individuals for a maximum of 300
generations using lexicase selection and UMAD mutation (without crossover) [6].
We conduct 100 runs of genetic programming per problem.

For each problem, trial, generation, and selection event, we calculated the
ε-Cluster Similarity for ε ∈ [0.05, 0.6] in increments of 0.05. Using these val-
ues, we calculated the bound on the expected running time of lexicase selection
according to Theorem 2. For comparison, we also calculated 1) the worst-case
complexity of lexicase selection at those operating points and 2) the average
pair-wise covariance of the population error vectors. We calculated worst-case
running time as N ·C, neglecting constants, in order to make our comparison to
the new running time calculation conservative.

4.2 Results

Figure 1 visualizes the new running time bound as a fraction of the bound given
by the worst-case complexity, N · C. Across problems, the running time bound
given by Theorem 2 ranges from approximately 10–70% of the worst-case com-
plexity bound, indicating much lower expected running times. On average over
all problems, the bound given by Theorem 2 is 24.7% of the worst-case bound
on running time.

Figure 2 shows the components of Theorem 2 as a function of ε, as well as
the total expected running time bound. For small values of ε, the 4|N |/ε term
dominates, whereas for larger values of ε, the 2k|C| term dominates. The observed
behavior agrees with our intuition, since larger values of ε lead to larger values
of k. The value of ε corresponding to the lowest bound on running time varies
by problem, with an average value of 0.29.

Figure 3 compares the new diversity metric (Definition 3) to a more typical
definition of behavioral diversity: the mean of the covariance matrix given by

4 https://github.com/lspector/Clojush.

https://github.com/lspector/Clojush

494 T. Helmuth et al.

population errors. In general, we observe that ε-Cluster Similarity does not cor-
relate strongly with mean covariance, suggesting that it does indeed measure a
different aspect of phenotypic diversity as suggested in Sect. 2.2.

Fig. 1. New running time bound divided by the previously known worst-case bound, as
a function of evolutionary generations. The y-axis shows the ratio of both bounds using
measurements of relevant parameters. The filled region represents confidence interval
of the estimates over all trials.

5 Discussion

We see in Fig. 1 that the new running time bound is below the old bound, and
sometimes substantially lower by a factor of 5–10. Thus a substantial part of the
discrepancy between the (old) worst-case running time bound and the empiri-
cally observed fast running times can be explained by the fact that populations
in real-world data are diverse according to our new measure. Since the theo-
retical analysis is still a worst-case analysis (over all populations), we do not
expect that the new bound can explain the whole gap in all situations, but it
does explain a substantial factor.

In Fig. 2, we investigate which choice of ε gives the best running time bound.
Note that ε is a parameter that can be chosen freely. Every choice of ε gives a value
k for the ε-Cluster Similarity, which in turn gives a running time bound. While in
Fig. 1 we plotted the best bound that can be achieved with any ε, Fig. 2 shows for
each ε the bound that can be obtained with this ε. It is theoretically clear that the
term 4N/ε (yellow) is decreasing in ε and 2kC (red) is increasing (since k increases
with ε). The bound (blue) is the sum of these two terms, and we observe that very
small and very large choices of ε often give worse bounds. However, often the blue
curve shows some range in which it is rather flat, indicating that there is a large
range of ε that gives comparable bounds. In particular, it seems that the range
0.15 ≤ ε ≤ 0.25 often gives reasonable bounds.

Population Diversity Leads to Short Running Times of Lexicase Selection 495

Fig. 2. The ratio of new running time bound and previous known worst-case bound
as a function of ε. Optimal values vary by problem but we note flat regions for many
problems suggesting a broad range of possible ε values that give similar running time
bounds. (Color figure online)

Fig. 3. A comparison of ε-Cluster Similarity (x-axis) and the mean of the covariance
matrix of population error (y-axis), colored by ε. ε-Cluster Similarity (k) is plotted as a
percent of the population size, N . In most cases (6/8), we observe little relation between
the two measures, suggesting ε-Cluster Similarity is indeed measuring a distinct aspect
of population diversity, one that is particularly relevant to the running time of lexicase
selection.

In Fig. 3 we compare the ε-Cluster Similarity (k normalized as a percent of N)
with another diversity measure: the mean of the covariance matrix of population
error. If both measures of diversity were highly correlated, we would expect that
for any fixed ε (points of the same color), points with larger x-value would
consistently have smaller y-value (since k is an inverse measure of diversity).
However, in many plots this correlation is spurious at best. It even appears

496 T. Helmuth et al.

to have opposite signs in some cases. We conclude that ε-Cluster Similarity
measures a different aspect of diversity than the mean of the covariance matrix.
We also note that, interestingly, the two problems for which there does appear
to be a relation between the two measures (compare-string-lengths and mirror-
image) are the two problems with boolean error vectors.

6 Conclusions

We have introduced and investigated a new measure of population diversity, the
ε-Cluster Similarity. We have theoretically proven that large population diver-
sity makes lexicase selection fast, and empirically confirmed that populations
are diverse in real-world examples of genetic programming. Thus we have con-
cluded that diverse populations can explain a substantial part of the discrepancy
between the general worst-case bound for lexicase selection, and the fast running
time in practice.

Naturally, the question arises whether populations in other areas than genetic
programming are also diverse with respect to this measure. Moreover, what other
consequences does a diverse population have? For example, does it lead to good
crossover results? Does it help against getting trapped in local optima? While
the intuitive answer to these questions seems to be Yes, it is not easy to pinpoint
such statements with rigorous experimental or theoretical results. We hope that
our new notion of population diversity can be a means to better understand such
questions.

Acknowledgements. William La Cava was supported by the National Library of
Medicine and National Institutes of Health under award R00LM012926. We would like
to thank Darren Strash for discussions that contributed to the development of this
work.

References

1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 356–364
(2019)

2. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

3. Dolson, E., Ofria, C.: Ecological theory provides insights about evolutionary com-
putation. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO 2018, pp. 105–106. Association for Computing Machin-
ery, New York, NY, USA (2018). https://doi.org/10.1145/3205651.3205780

4. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selec-
tion on diversity recovery and maintenance. In: Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference Companion, pp. 983–990. ACM (2016).
http://dl.acm.org/citation.cfm?id=2931657

5. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lex-
icase selection. In: Proceedings of the 2016 on Genetic and Evolutionary Com-
putation Conference, pp. 717–724. ACM (2016). http://dl.acm.org/citation.cfm?
id=2908851

https://doi.org/10.1145/3205651.3205780
http://dl.acm.org/citation.cfm?id=2931657
http://dl.acm.org/citation.cfm?id=2908851
http://dl.acm.org/citation.cfm?id=2908851

Population Diversity Leads to Short Running Times of Lexicase Selection 497

6. Helmuth, T., McPhee, N.F., Spector, L.: Program synthesis using uniform muta-
tion by addition and deletion. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2018, pp. 1127–1134. ACM, Kyoto, Japan, 15–
19 July 2018. https://doi.org/10.1145/3205455.3205603

7. Helmuth, T., Pantridge, E., Spector, L.: On the importance of specialists for lex-
icase selection. Genet. Program. Evolvable Mach. 21(3), 349–373 (2020). https://
doi.org/10.1007/s10710-020-09377-2

8. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: GECCO
2015: Proceedings of the 2015 conference on Genetic and Evolutionary Computa-
tion Conference, Madrid, Spain, pp. 1039–1046. ACM, 11–15 July 2015. https://
doi.org/10.1145/2739480.2754769

9. Helmuth, T., Spector, L.: Explaining and exploiting the advantages of down-
sampled lexicase selection. In: Artificial Life Conference Proceedings, pp. 341–349.
MIT Press, 13–18 July 2020. https://doi.org/10.1162/isal a 00334, https://www.
mitpressjournals.org/doi/abs/10.1162/isal a 00334

10. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015). https://doi.
org/10.1109/TEVC.2014.2362729

11. Jansen, T., Zarges, C.: Theoretical analysis of lexicase selection in multi-objective
optimization. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete,
L., Whitley, D. (eds.) Parallel Problem Solving from Nature - PPSN XV, pp. 153–
164. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 13

12. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of lexicase selection and epsilon-lexicase selection. Evol. Comput.
27(3), 377–402 (2019). https://doi.org/10.1162/evco a 00224, https://arxiv.org/
pdf/1709.05394

13. La Cava, W., et al.: Contemporary symbolic regression methods and their relative
performance. In: Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks, vol. 1, December 2021

14. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression.
In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO 2016, New York, NY, USA, pp. 741–748. ACM (2016). https://doi.org/
10.1145/2908812.2908898

15. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp.
89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

16. Liskowski, P., Krawiec, K., Helmuth, T., Spector, L.: Comparison of semantic-
aware selection methods in genetic programming. In: Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO Companion 2015, New York, NY, USA, pp. 1301–1307.
ACM (2015). https://doi.org/10.1145/2739482.2768505

17. Moore, J.M., Stanton, A.: Tiebreaks and diversity: isolating effects in lexicase
selection. In: The 2018 Conference on Artificial Life, pp. 590–597 (2018). https://
doi.org/10.1162/isal a 00109

18. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? A large bench-
mark study of recent symbolic regression methods. In: Proceedings of the 2018
Genetic and Evolutionary Computation Conference, GECCO 2018, April 2018.
https://doi.org/10.1145/3205455.3205539, tex.ids: orzechowskiWhereAreWe2018a
arXiv: 1804.09331

https://doi.org/10.1145/3205455.3205603
https://doi.org/10.1007/s10710-020-09377-2
https://doi.org/10.1007/s10710-020-09377-2
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1162/isal_a_00334
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00334
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00334
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1007/978-3-319-99259-4_13
https://doi.org/10.1162/evco_a_00224
https://arxiv.org/pdf/1709.05394
https://arxiv.org/pdf/1709.05394
https://doi.org/10.1145/2908812.2908898
https://doi.org/10.1145/2908812.2908898
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1145/2739482.2768505
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1162/isal_a_00109
https://doi.org/10.1145/3205455.3205539
http://arxiv.org/abs/1804.09331

498 T. Helmuth et al.

19. Spector, L.: Assessment of problem modality by differential performance of lex-
icase selection in genetic programming: a preliminary report. In: Proceedings of
the Fourteenth International Conference on Genetic and Evolutionary Computa-
tion Conference Companion, pp. 401–408 (2012). http://dl.acm.org/citation.cfm?
id=2330846

20. Spector, L., Klein, J., Keijzer, M.: The Push3 execution stack and the evolution
of control. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and
Evolutionary Computation, Washington DC, USA, vol. 2, pp. 1689–1696. ACM
Press, 25–29 June 2005. https://doi.org/10.1145/1068009.1068292

21. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genet. Program. Evolvable Mach. 3(1), 7–
40 (2002). http://hampshire.edu/lspector/pubs/push-gpem-final.pdf, https://doi.
org/10.1023/A:1014538503543

22. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). https://
doi.org/10.1007/s10710-013-9210-0

http://dl.acm.org/citation.cfm?id=2330846
http://dl.acm.org/citation.cfm?id=2330846
https://doi.org/10.1145/1068009.1068292
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/s10710-013-9210-0

Progress Rate Analysis of Evolution
Strategies on the Rastrigin Function:

First Results

Amir Omeradzic(B) and Hans-Georg Beyer

Research Center Business Informatics, Vorarlberg University of Applied Sciences,
Hochschulstraße 1, 6850 Dornbirn, Austria

{amir.omeradzic,hans-georg.beyer}@fhv.at
http://homepages.fhv.at/hgb

Abstract. A first order progress rate is derived for the intermediate
multi-recombinative Evolution Strategy (μ/μI , λ)-ES on the highly mul-
timodal Rastrigin test function. The progress is derived within a lin-
earized model applying the method of so-called noisy order statistics. To
this end, the mutation-induced variance of the Rastrigin function is deter-
mined. The obtained progress approximation is compared to simulations
and yields strengths and limitations depending on mutation strength
and distance to the optimizer. Furthermore, the progress is iterated using
the dynamical systems approach and compared to averaged optimization
runs. The property of global convergence within given approximation is
discussed. As an outlook, the need of an improved first order progress
rate as well as the extension to higher order progress including positional
fluctuations is explained.

Keywords: Evolution Strategies · Rastrigin function · Progress rate
analysis · Global optimization

1 Introduction

Evolution Strategies (ES) [12,13] are well-recognized Evolutionary Algorithms
suited for real-valued non-linear optimization. State-of-the-art ES such as the
CMA-ES [8] or its simplification [5] are also well-suited for locating global
optimizers in highly multimodal fitness landscapes. While the CMA-ES was
originally mainly intended for non-differentiable optimization problems, but yet
regarded as a locally acting strategy, it was already in [7] observed that using a
large population size can make the ES a strategy that is able to locate the global
optimizer among a huge number of local optima. This is a surprising observa-
tion when considering the ES as a strategy that acts mainly local in the search
space following some kind of gradient or natural gradient [3,6,11]. As one can
easily check using standard (highly) multimodal test functions such as Rastrigin,
Ackley, and Griewank to name a few, this ES property is not intimately related
to the covariance matrix adaptation (CMA) ES which generates non-isotropic
c© The Author(s) 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 499–511, 2022.
https://doi.org/10.1007/978-3-031-14721-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_35&domain=pdf
http://orcid.org/0000-0003-1979-8916
http://orcid.org/0000-0002-7455-8686
https://doi.org/10.1007/978-3-031-14721-0_35

500 A. Omeradzic and H.-G. Beyer

correlated mutations, but can also be found in (μ/μI , λ)-ES with isotropic muta-
tions. Therefore, if one wants to understand the underlying working principles
how the ES locates the global optimizer, the analysis of the (μ/μI , λ)-ES should
be the starting point.

The question regarding why and when optimization algorithms – originally
designed for local search – are able to locate global optima has gained attention
in the last few years. A recurring idea comes from relaxation procedures that
transform the original multimodal optimization problem into a convex optimiza-
tion problem called Gaussian continuation [9]. Gaussian continuation is nothing
else but a convolution of the original optimization problem with a Gaussian
kernel. As has been shown in [10], using the right Gaussian, Rastrigin-like func-
tions can be transformed into a convex optimization problem, thus making it
accessible to gradient following strategies. However, this raises the question how
to perform the convolution efficiently. One road followed in [14] uses high-order
Gauss-Hermite integration in conjunction with a gradient descent strategy yield-
ing surprisingly good results. The other road coming to mind is approximating
the convolution by Gaussian sampling. This resembles the procedure ES do:
starting from a parental state, offspring are generated by Gaussian mutations.
The problem is, however, that in order to get a reliable gradient, a huge number
of samples, i.e. offspring in ES must be generated in order to get reliable convolu-
tion results. The number of offspring needed to get reliable estimates seems much
larger than the offspring population size needed in ES experiments conducted
in [7] showing approximately a linear relation between problem dimension N
and population size for the Rastrigin function. Therefore, understanding the ES
performance from viewpoint of Gaussian relaxation does not seem to help much.

The approach followed in this paper will incorporate two main concepts,
namely a progress rate analysis as well as its application within the so-called
evolution equations modeling the transition dynamics of the ES [2]. The progress
rate measure yields the expected positional change in search space between two
generations depending on location, strategy and test function parameters. Aim-
ing to investigate and understand the dynamics of globally converging ES runs,
the progress rate is an essential quantity to model the expected evolution dynam-
ics over many generations.

This paper provides first results of a scientific program that aims at an ana-
lysis of the performance of the (μ/μI , λ)-ES on Rastrigin’s test function based
on a first order progress rate. After a short introduction of the (μ/μI , λ)-ES, the
N -dimensional first order progress will be defined and an approximation will be
derived resulting in a closed form expression. The predictive power and its lim-
itations will be checked by one-generation experiments. The progress rate will
then be used to simulate the ES dynamics on Rastrigin using difference equa-
tions. This simulation will be compared with real runs of the (μ/μI , λ)-ES. In a
concluding section a summary of the results and outlook of the future research
will be given.

Progress Rate of (μ/μI , λ)-ES on Rastrigin Function 501

2 Rastrigin Function and Local Quality Change

The real-valued minimization problem defined for an N -dimensional search vec-
tor y = (y1, ..., yN) is performed on the Rastrigin test function f given by

f(y) =
N∑

i=1

fi(yi) =
N∑

i=1

y2
i + A − A cos(αyi), (1)

with A denoting the oscillation amplitude and α = 2π the corresponding fre-
quency. The quadratic term with superimposed oscillations yields a finite number
of local minima M for each dimension i, such that the overall number of minima
scales exponentially as MN posing a highly multimodal minimization problem.
The global optimizer is at ŷ = 0.

For the progress rate analysis in Sect. 4 the local quality function Qy(x) at
y due to mutation vector x = (x1, ..., xN) is needed. In order to reuse results
from noisy progress rate theory it will be formulated for the maximization case
of F (y) = −f(y) with Fi(yi) = −fi(yi), such that local quality change yields

Qy(x) = F (y + x) − F (y) = f(y) − f(y + x). (2)

Qy(x) can be evaluated for each component i independently giving

Qy(x) =
N∑

i=1

Qi(xi) =
N∑

i=1

fi(yi) − fi(yi + xi) (3)

=
N∑

i=1

− (
x2

i + 2yixi + A cos (αyi)(1 − cos (αxi)) + A sin (αyi) sin (αxi)
)
. (4)

A closed form solution of the progress rate appears to be obtainable only for a
linearized expression of Qi(xi). A first approach taken in this paper is based on
a Taylor expansion for the mutation xi and discarding higher order terms

Qi(xi) = Fi(yi + xi) − Fi(yi) =
∂Fi

∂yi
xi + O(x2

i) (5)

≈ (−2yi − αA sin (αyi)) xi =: −f ′
ixi, (6)

using the following derivative terms

ki = 2yi and di = αA sin(αyi), such that
∂fi

∂yi
= f ′

i = ki + di. (7)

A second approach is to consider only the linear term of Eq. (4) and neglect all
non-linear terms denoted by δ(xi) according to

Qi(xi) = −2yixi − x2
i − A cos (αyi)(1 − cos (αxi)) − A sin (αyi) sin (αxi) (8)

= −2yixi + δ(xi) ≈ −2yixi = −kixi. (9)

The linearization using f ′
i is a local approximation of the function incorporating

oscillation parameters A and α. Using only ki (setting di = 0) discards oscil-
lations by approximating the quadratic term via ki = ∂(y2

i)/∂yi = 2yi with
negative sign due to maximization. Both approximations will be evaluated later.

502 A. Omeradzic and H.-G. Beyer

3 The (μ/μI, λ)-ES with Normalized Mutations

The Evolution Strategy under investigation consists of a population of μ parents
and λ offspring (μ < λ) per generation g. Algorithm 1 is presented below and
offspring variables are denoted with overset “∼”.

Population variation is achieved by applying an isotropic normally dis-
tributed mutation x ∼ σN (0,1) with strength σ to the parent recombinant
in Lines 6 and 7. The recombinant is obtained using intermediate recombination
of all μ parents equally weighted in Line 11. Selection of the m = 1, ..., μ best
search vectors ym;λ (out of λ) according to their fitness is performed in Line 10.

Note that the ES in Algorithm 1 operates under constant normalized muta-
tion σ∗ in Lines 3 and 12 using the spherical normalization

σ∗ =
σ(g)N∥∥y(g)

∥∥ =
σ(g)N

R(g)
. (10)

This property ensures global convergence of the algorithm as the muta-
tion strength σ(g) decreases if and only if the residual distance

∥∥y(g)
∥∥ = R(g)

decreases. While σ∗ is not known during black-box optimizations, it is used here
to investigate the dynamical behavior of the ES using the first order progress
rate approach to be developed in this paper. Incorporating self-adaptation of σ
or cumulative step-size adaptation remains for future research.

Algorithm 1. (μ/μI , λ)-ES with constant σ∗

1: g ← 0
2: y(0) ← y(init)

3: σ(0) ← σ∗
∥
∥
∥y(0)

∥
∥
∥/N

4: repeat
5: for l = 1, ..., λ do
6: x̃l ← σ(g)Nl(0,1)
7: ỹl ← y(g) + x̃l

8: f̃l ← f(ỹl)
9: end for

10: (ỹ1;λ, . . . , ỹμ;λ) ← sort
(

ỹ w.r.t. ascending f̃
)

11: y(g+1) ← 1
μ

∑μ
m=1 ỹm;λ

12: σ(g+1) ← σ∗
∥
∥
∥y(g+1)

∥
∥
∥/N

13: g ← g + 1
14: until termination criterion

Progress Rate of (μ/μI , λ)-ES on Rastrigin Function 503

4 Progress Rate

4.1 Definition

Having introduced the Evolution Strategy, we are interested in the expected
one-generation progress of the optimization on the Rastrigin function (1) before
investigating the dynamics over multiple generations.

A first order progress rate ϕi for the i-th component between two generations
g → g + 1 can be defined as the expectation value over the positional difference
of the parental components

ϕi = E
[
y
(g)
i − y

(g+1)
i

∣∣ σ(g),y(g)
]

= y
(g)
i − E

[
y
(g+1)
i

∣∣ σ(g),y(g)
]
, (11)

given mutation strength σ(g) and the position y(g). First, an expression for y(g+1)

is needed, see Algorithm 1, Line 11. It is the result of mutation, selection and
recombination of the m = 1, ..., μ offspring vectors yielding the highest fitness,
such that y(g+1) = 1

μ

∑μ
m=1 ỹm;λ = 1

μ

∑μ
m=1(y

(g) + x)m;λ. Considering the i-th
component, noting that y(g) is the same for all offspring and setting (xm;λ)i =
xm;λ one has

y
(g+1)
i =

1
μ

μ∑

m=1

(y(g)
i + xm;λ) = y

(g)
i +

1
μ

μ∑

m=1

xm;λ. (12)

Taking the expectation E
[
y
(g+1)
i

]
, setting x = σz = σN (0, 1) and inserting the

expression back into (11) yields

ϕi = − 1
μ

E

[
μ∑

m=1

xm;λ

∣∣∣∣σ
(g),y(g)

]
= −σ

μ
E

[
μ∑

m=1

zm;λ

∣∣∣∣σ
(g),y(g)

]
. (13)

Therefore progress can be evaluated by averaging over the expectations of μ
selected mutation contributions. In principle this task can be solved by deriv-
ing the induced order statistic density pm;λ for the m-th best individual and
subsequently solving the integration over the i-th component

ϕi = − 1
μ

μ∑

m=1

∫ ∞

−∞
xi pm;λ(xi|σ(g),y(g))dxi. (14)

However, the task of computing expectations of sums of order statistics under
noise disturbance has already been discussed and solved by Arnold in [1]. There-
fore the problem of Eq. (13) will be reformulated in order to apply the solutions
provided by Arnold.

504 A. Omeradzic and H.-G. Beyer

4.2 Expectations of Sums of Noisy Order Statistics

Let z be a random variate with density pz(z) and zero mean. The density is
expanded into a Gram-Charlier series by means of its cumulants κi (i ≥ 1)
according to [1, p. 138, D.15]

pz(z) =
1√

2πκ2
e− z2

2κ2

(
1 +

γ1
6

He3

(
z√
κ2

)
+

γ2
24

He4

(
z√
κ2

)
+ ...

)
, (15)

with expectation κ1 = 0, variance κ2, skewness γ1 = κ3/κ
3/2
2 , excess γ2 = κ4/κ2

2

(higher order terms not shown) and Hek denoting the k-th order probabilist’s
Hermite polynomials. For the problem at hand, see Eq. (13), the mutation variate
z ∼ N (0, 1) with κ2 = 1 and κi = 0 for i �= 2 yielding a standard normal density.

Furthermore, let ε ∼ N (0, σ2
ε) model additive noise disturbance, such that

resulting observed values are v = z + ε. Selection of the m-th largest out of λ
values yields

vm;λ = (z + N (0, σ2
ε))m;λ, (16)

and the distribution of selected source terms zm;λ follows a noisy order statistic
with density pm;λ. Given this definition and a linear relation between zm;λ and
vm;λ the method of Arnold is applicable.

In our case the i-th mutation component xm;λ of Eq. (13) is related to selec-
tion via the quality change defined in Eq. (3). Maximizing the fitness Fi(yi +xi)
conforms to maximizing quality Qi(xi) with Fi(yi) being a constant offset.

Aiming at an expression of form (16) and starting with (3), we first isolate
component Qi from the remaining N−1 components denoted by

∑
j �=i Qj . Then,

approximations are applied to both terms yielding

Qy(x) = Qi(xi) +
∑

j �=i

Qj(xj) (17)

≈ −f ′
ixi + N (Ei,D

2
i), (18)

with linearization (6) applied to Qi(xi). Additionally,
∑

j �=i Qj � N (Ei,D
2
i),

as the sum of independent random variables asymptotically approaches a nor-
mal distribution in the limit N → ∞ due to the Central Limit Theorem. This
is ensured by Lyapunov’s condition provided that there are no dominating
components within the sum due to largely different values of yj . The corre-
sponding Rastrigin quality variance D2

i = Var
[∑

j �=i Qj(xj)
]

is calculated in
the supplementary material (https://github.com/omam-evo/paper/blob/main/
ppsn22/PPSN22 OB22.pdf). As the expectation Ei = E

[∑
j �=i Qj(xj)

]
is only

an offset to Qy(x) it has no influence on the selection and its calculation can be
dropped.

Using xi = σzi and f ′
i = sgn (f ′

i) |f ′
i |, expression (18) is reformulated as

Qy(x) = − sgn (f ′
i) |f ′

i |σzi + Ei + N (0,D2
i) (19)

Qy(x) − Ei

|f ′
i |σ

= sgn (−f ′
i) zi + N

(
0,

D2
i

(f ′
iσ)2

)
. (20)

https://github.com/omam-evo/paper/blob/main/ppsn22/PPSN22_OB22.pdf
https://github.com/omam-evo/paper/blob/main/ppsn22/PPSN22_OB22.pdf

Progress Rate of (μ/μI , λ)-ES on Rastrigin Function 505

The decomposition using sign function and absolute value is needed for correct
ordering of selected values w.r.t. zi in (20).

Given result (20), one can define the linearly transformed quality measure
vi := (Qy(x) − Ei)/|f ′

i |σ and noise variance σ2
ε := (Di/f ′

iσ)2, such that the
selection of mutation component sgn (−f ′

i) zi is disturbed by a noise term due
to the remaining N − 1 components. A relation of the form (16) is obtained up
to the sign function.

In [1] Arnold calculated the expected value of arbitrary sums SP of products
of noisy ordered variates containing ν factors per summand

SP =
∑

{n1,...,nν}
zp1
n1;λ

· · · zpν

nν ;λ
, (21)

with random variate z introduced in Eqs. (15) and (16). The vector P =
(p1, ..., pν) denotes the positive exponents and distinct summation indices are
denoted by the set {n1, ..., nν}. The generic result for the expectation of (21)
is provided in [1, p. 142, D.28] and was adapted to account for the sign differ-
ence between (16) and (20) resulting in possible exchanged ordering. Performing
simple substitutions in Arnold’s calculations in [1] and recalling that in our case
γ1 = γ2 = 0, the expected value yields

E [SP] = sgn (−f ′
i)

‖P1‖ √
κ2

‖P1‖ μ!
(μ − ν)!

ν∑

n=0

∑

k≥0

ζ
(P)
n,0 (k)hν−n,k

μ,λ . (22)

Note that expression (22) deviates from Arnold’s formula only in the sign in
front of

√
κ2. The coefficients ζ

(P)
n,0 (k) are defined in terms of a noise coefficient

a according to

a =
√

κ2

κ2 + σ2
ε

with ζ
(P)
n,0 (k) = Polynomial(a), (23)

for which tabulated results are presented in [1, p. 141]. The coefficients hi,k
μ,λ are

numerically obtainable solving

hi,k
μ,λ =

λ − μ√
2π

(
λ

μ

)∫ ∞

−∞
Hek (x) e− 1

2x2
[φ(x)]i[Φ(x)]λ−μ−1[1 − Φ(x)]μ−idx. (24)

Now we are in the position to calculate expectation (13) using (22). Since
z ∼ N (0, 1), it holds κ2 = 1. Identifying P = (1),

∥∥P
∥∥
1

= 1 and ν = 1 yields

E

[
μ∑

m=1

zm;λ

]
= sgn (−f ′

i)
μ!

(μ − 1)!

1∑

n=0

∑

k≥0

ζ
(1)
n,0(k)h1−n,k

μ,λ

= sgn (−f ′
i) μζ

(1)
0,0(0)h1,0

μ,λ = − sgn (f ′
i) μacμ/μ,λ,

(25)

with ζ
(1)
1,0(k) = 0 for any k, and ζ

(1)
0,0(k) �= 0 only for k = 0 yielding a.

The expression h1,0
μ,λ is equivalent to the progress coefficient definition cμ/μ,λ

506 A. Omeradzic and H.-G. Beyer

[2, p. 216]. Inserting (25) back into (13), using a =
√

1/(1 + (Di/f ′
iσ)2) =

|f ′
i |σ/

√
(f ′

iσ)2 + D2
i with the requirement a > 0, and noting that f ′

i =
sgn (f ′

i) |f ′
i | one finally obtains for the i-th component first order progress rate

ϕi(σ,y) = cμ/μ,λ
f ′

i(yi)σ2

√
(f ′

i(yi)σ)2 + D2
i (σ, (y)j �=i)

. (26)

The population dependency is given by progress coefficient cμ/μ,λ. The fitness
dependent parameters are contained in f ′

i , see (7), and in D2
i calculated in

the supplementary material (https://github.com/omam-evo/paper/blob/main/
ppsn22/PPSN22 OB22.pdf). For better readability the derivative f ′

i and vari-
ance D2

i are not inserted into (26). An exemplary evaluation of D2
i as a function

of the residual distance R using normalization (10) is also shown in the supple-
mentary material.

4.3 Comparison of Simulation and Approximation

Figure 1 shows an experimentally obtained progress rate compared to the result
of (26). Due to large N one exemplary ϕi-graph is shown on the left, and corre-
sponding i = 1, ..., N errors are shown on the right.

The left plot shows the progress rate over a σ-range of [0, 1]. This magnitude
was chosen in order to study the oscillation, as the frequency α = 2π. The initial
position was chosen randomly to be on the sphere surface R = 10.

The red dashed curve uses f ′
i as linearization, while the blue dash-dotted

curve assumes f ′
i = ki (with di = 0), see also (7). As f ′

i approximates the
quality change locally, agreement for the progress is given only for very small
mutations σ. For larger σ very large deviation may occur, depending on the local
derivative.

The blue curve ϕi(ki) neglects the oscillation (di = 0) and therefore follows
the progress of the quadratic function f(y) =

∑
i y2

i for large σ with very good
agreement. Due to a linearized form of Qi(xi) in (6) neither approximation can
reproduce the oscillation for moderately large σ.

To verify the approximation quality, the error between (26) and simulation
is displayed on the right side of Fig. 1 for all i = 1, ..., N . It was done for small
σ = 0.1 and large σ = 1. The deviations are very similar in magnitude for all i,
given randomly chosen yi. Note that for σ = 1 the red points show very large
errors compared to blue, which was expected.

Figure 2 shows the progress rate ϕi over σ∗, for i = 2 as in Fig. 1, with y
randomly on the surface radii R = {100, 10, 1, 0.1}. Using σ∗ the mutation σ
is normalized by the residual distance R with spherical normalization (10). Far
from the origin with R = {100, 10} the quadratic terms are dominating giving
better results using ϕi(ki). Reaching R = 1 local minima are more relevant and
mixed results are obtained with ϕi(f ′

i) better for smaller σ∗ and ϕi(ki) for larger
σ∗. Within the global attractor R = 0.1 the local structure dominates and ϕi(f ′

i)
yields better results. These observations will be relevant analyzing the dynamics
in Fig. 3 where both approximations show strengths and weaknesses.

https://github.com/omam-evo/paper/blob/main/ppsn22/PPSN22_OB22.pdf
https://github.com/omam-evo/paper/blob/main/ppsn22/PPSN22_OB22.pdf

Progress Rate of (μ/μI , λ)-ES on Rastrigin Function 507

Fig. 1. One-generation experiments with (150/150, 300)-ES, N = 100, A = 10 are
performed and quantity (11) is measured averaging over 105 runs. Left: ϕi over σ for
i = 2 at position y2 ≈ 1.19, where y was chosen randomly such that ‖y‖ = R = 10.
Right: error measure ϕi −ϕi,sim between (26) and simulation for i = 1, ..., N evaluated
at σ = {0.1, 1}. The colors are set according to the legend. (Color figure online)

Fig. 2. One-generation progress ϕi (i = 2) over normalized mutation σ∗ for
(150/150, 300)-ES, N = 100, A = 1 and R = {100, 10, 1, 0.1}. Simulations are averaged
over 105 runs. These experiments are preliminary investigations related to the dynam-
ics shown in Fig. 3 with σ∗ = 30. Given a constant σ∗ the approximation quality varies
over different magnitudes of R.

5 Evolution Dynamics

As we are interested in the dynamical behavior of the ES, averaged real opti-
mization runs from Algorithm 1 will be compared to the iterated dynamics using
progress result (26) by applying the dynamical systems approach [2]. Neglecting
fluctuations, i.e., y

(g+1)
i = E

[
y
(g+1)
i

∣∣σ(g),y(g)
]

the mean value dynamics for the

508 A. Omeradzic and H.-G. Beyer

mapping y
(g)
i → y

(g+1)
i immediately follows from (11) giving

y
(g+1)
i = y

(g)
i − ϕi(σ(g),y(g)). (27)

The control scheme of σ(g) was introduced in Eq. (10) and yields simply

σ(g) = σ∗
∥∥∥y(g)

∥∥∥/N. (28)

Equations (27) and (28) describe a deterministic iteration in search space and
rescaling of mutations according to the residual distance. For a convergence
analysis, we are interested in the dynamics of R(g) =

∥∥y(g)
∥∥ rather than the

actual position values y(g). Hence in Fig. 3 the R(g)-dynamics of the conducted
experiments is shown.

Fig. 3. Comparing average of 100 optimization runs of Algorithm 1 (black, solid) with
iterated dynamics from Eq. (27) under constant σ∗ = 30 for A = 1 and N = 100.
Large populations sizes are chosen to ensure global convergence (left: μ = 150; right:
μ = 1500; constant μ/λ = 0.5). Iteration using progress (26) is performed for both f ′

i =
ki+di (red/orange dashed) and f ′

i(di =0) = ki (blue dash-dotted) using Equations (27)
and (28). The orange dashed iteration was initialized with R(0) = 0.1 and translated to
the corresponding position of the simulation for easier comparison. The evaluation of
quality variance D2

i (R) is shown in the supplementary material (https://github.com/
omam-evo/paper/blob/main/ppsn22/PPSN22 OB22.pdf). (Color figure online)

In Fig. 3, all runs of Algorithm 1 exhibit global convergence with the black line
showing the average. The left and right plots differ by population size. Iteration
ϕi(ki), blue dash-dotted curve, also converges globally, though very slowly and
therefore not shown entirely. The convergence behavior of iteration ϕi(f ′

i), red
and orange dashed curves, strongly depends on the initialization and is discussed
below.

Three phases can be observed for the simulation. It shows linear convergence
at first being followed by a slow-down due to local attractors. Reaching the

https://github.com/omam-evo/paper/blob/main/ppsn22/PPSN22_OB22.pdf
https://github.com/omam-evo/paper/blob/main/ppsn22/PPSN22_OB22.pdf

Progress Rate of (μ/μI , λ)-ES on Rastrigin Function 509

global attractor the convergence speed increases again. Iteration ϕi(ki) is able
to model the first two phases to some degree. Within the global attractor the
slope information di is missing such that the progress is largely underestimated.

Iteration ϕi(f ′
i) converges first, but yields a stationary state with Rst ≈ 20

when the progress ϕi becomes dominated by derivative term di. Starting from
R(0) = 102 the stationary yst

i are either fixed or alternating between coordinates
depending on σ, Di, ki, and di. This effect is due to attraction of local minima
and due to the deterministic iteration disregarding fluctuations. It occurs also
with varying initial positions. Initialized at R(0) = 10−1 orange iteration ϕi(f ′

i)
is globally converging.

It turns out that the splitting point of the two approximations in Fig. 3 occurs
at a distance R to the global optimizer where the ES approaches the attractor
region of the “first” local minima. For the model parameters considered in the
experiment this is at about R ≈ 28.2 – the distance of the farest local minimizer
to the global optimizer (obtained by numerical analysis).

Plots in Fig. 3 differ by population size. The convergence speed, i.e. the slopes,
show better agreement for large populations, which can be attributed to the
fluctuations neglected in (27). Investigations on unimodal funtions Sphere [2]
and Ellipsoid [4] have shown that progress is decreased by fluctuations due to
a loss-term scaling with 1/μ, which agrees with Fig. 3. On the left the iterated
progress is faster due to neglected but present fluctuations, while on the right
better agreement is observed due to insignificant fluctuations. These observations
will be investigated in future research.

6 Summary and Outlook

A first order progress rate ϕi was derived for the (μ/μI , λ)-ES by means of noisy
order statistics in (26) on the Rastrigin function (1). To this end, the muta-
tion induced variance of the quality change D2

i is needed. Starting from (4) a
derivation yielding D2

i has been presented in the supplementary material. Fur-
thermore, the approximation quality of ϕi was investigated using Rastrigin and
quadratic derivatives f ′

i and ki, respectively, by comparing with one-generation
experiments.

Linearization f ′
i shows good agreement for small-scale mutations, but very

large deviations for large mutations. Conversely, linearization ki yields signifi-
cantly better results for large mutations as the quadratic fitness term dominates.
A progress rate modeling the transition between the regimes is yet to be deter-
mined. First numerical investigations of (14) including all terms of (4) indicate
that nonlinear terms are needed for a better progress rate model, which is an
open challenge and part of future research.

The obtained progress rate was used to investigate the dynamics by iterat-
ing (27) using (28) and comparing with ES runs. Iteration via f ′

i only converges
globally if initialized close to the optimizer, since local attraction is strongly dom-
inating. Dynamics via ki converges globally independent of initialization, but the
observed rate matches only for the initial phase and for very large populations.

510 A. Omeradzic and H.-G. Beyer

This confirms the need for a higher order progress rate modeling the effect of
fluctuations, especially when function evaluations are expensive and small popu-
lations must be used. Additionally, an advanced progress rate formula is needed
combining effects of global and local attraction to model all three phases of the
dynamics correctly.

The investigations done so far are a first step towards a full dynamical ana-
lysis of the ES on the multimodal Rastrigin function. Future investigations must
also include the complete dynamical modeling of the mutation strength control.
One aim is the tuning of mutation control parameters such that the global con-
vergence probability is increased while still maintaining search efficiency. Our
final goal will be the theoretical analysis of the full evolutionary process yield-
ing also recommendations regarding the choice of the minimal population size
needed to converge to the global optimizer with high probability.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF)
under grant P33702-N. Special thanks goes to Lisa Schönenberger for providing valu-
able feedback and helpful discussions.

References

1. Arnold, D.: Noisy Optimization with Evolution Strategies. Kluwer Academic Pub-
lishers, Dordrecht (2002)

2. Beyer, H.G.: The Theory of Evolution Strategies. Natural Computing Series.
Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04378-3

3. Beyer, H.G.: Convergence analysis of evolutionary algorithms that are based on the
paradigm of information geometry. Evol. Comput. 22(4), 679–709 (2014). https://
doi.org/10.1162/EVCO a 00132

4. Beyer, H.G., Melkozerov, A.: The dynamics of self-adaptive multi-recombinant
evolution strategies on the general ellipsoid model. IEEE Trans. Evol. Comput.
18(5), 764–778 (2014). https://doi.org/10.1109/TEVC.2013.2283968

5. Beyer, H.G., Sendhoff, B.: Simplify your covariance matrix adaptation evolution
strategy. IEEE Trans. Evol. Comput. 21(5), 746–759 (2017). https://doi.org/10.
1109/TEVC.2017.2680320

6. Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D., Schmidhuber, J.: Exponential
natural evolution strategies. In: Branke, J., et al., (ed.) GECCO 2010: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 393–400. ACM,
New York (2010)

7. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 29

8. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

9. Mobahi, H., Fisher, J.: A theoretical analysis of optimization by Gaussian con-
tinuation. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, pp. 1205–1211. AAAI Press (2015)

10. Müller, N., Glasmachers, T.: Non-local optimization: imposing structure on opti-
mization problems by relaxation. In: Foundations of Genetic Algorithms, vol. 16,
pp. 1–10. ACM (2021). https://doi.org/10.1145/3450218.3477307

https://doi.org/10.1007/978-3-662-04378-3
https://doi.org/10.1162/EVCO_a_00132
https://doi.org/10.1162/EVCO_a_00132
https://doi.org/10.1109/TEVC.2013.2283968
https://doi.org/10.1109/TEVC.2017.2680320
https://doi.org/10.1109/TEVC.2017.2680320
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1145/3450218.3477307

Progress Rate of (μ/μI , λ)-ES on Rastrigin Function 511

11. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-geometric optimiza-
tion algorithms: a unifying picture via invariance principles. J. Mach. Learn. Res.
18(18), 1–65 (2017)

12. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart
(1973)

13. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester
(1981)

14. Zhang, J., Bi, S., Zhang, G.: A directional Gaussian smoothing optimization
method for computational inverse design in nanophotonics. Mater. Des. 197,
109213 (2021). https://doi.org/10.1016/j.matdes.2020.109213

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.matdes.2020.109213
http://creativecommons.org/licenses/by/4.0/

Running Time Analysis of the (1+1)-EA
Using Surrogate Models on OneMax

and LeadingOnes

Zi-An Zhang, Chao Bian, and Chao Qian(B)

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{zhangza,bianc,qianc}@lamda.nju.edu.cn

Abstract. Evolutionary algorithms (EAs) have been widely applied to
solve real-world optimization problems. However, for problems where fit-
ness evaluation is time-consuming, the efficiency of EAs is usually unsat-
isfactory. One common approach is to utilize surrogate models, which
apply machine learning techniques to approximate the real fitness func-
tion. Though introducing noise, using surrogate models can reduce the
time of fitness evaluation significantly, and has been shown useful in many
applications. However, the theoretical analysis (especially the essential
theoretical aspect, running time analysis) of surrogate-assisted EAs has
not been studied. In this paper, we make a preliminary attempt by ana-
lyzing the running time of the (1+1)-EA using two typical kinds of pre-
selection surrogate for solving the OneMax and LeadingOnes problems.
The results imply that the running time can be significantly reduced
when the surrogate model is accurate enough and properly used.

Keywords: Evolutionary algorithm · Surrogate model · Running time
analysis

1 Introduction

EAs, a kind of randomized heuristic optimization algorithm [2], have been widely
used in real-world applications. However, the fitness (i.e., objective) evaluation
for real-world problems is often very time-consuming. For example, in aerody-
namic design [15], it is often necessary to carry out computational fluid dynamics
simulations to evaluate the performance of a given structure, which is compu-
tationally expensive. Other examples include protein design, drug design, and
material design [15]. The expensive fitness evaluation has limited the efficiency
of EAs largely.

Much effort thus has been devoted to reducing the computational time in
both the design and application of EAs. One popular idea is using machine
learning models, called surrogate models, to approximate the real objective func-
tions [15]. Specifically, it first samples some solutions from the solution space and

This work was supported by the National Science Foundation of China (62022039).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 512–525, 2022.
https://doi.org/10.1007/978-3-031-14721-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_36&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_36

Running Time Analysis of the (1+1)-EA Using Surrogate Models 513

evaluates their true fitness, and then uses them to train a learning model, which
will be used to evaluate the newly generated solutions during the evolution-
ary process. Surrogate-assisted EAs have been widely used to solve real-world
problems, e.g., the design of turbine blades, airfoils, forging, and vehicle crash
tests [13]. Note that the idea of surrogate model also appears in other optimiza-
tion methods, e.g., in Bayesian optimization where Gaussian processes are used
as surrogate models [16,19].

However, it has been found that if only the surrogate model is used for fitness
evaluation, EAs are very likely to converge to a false optimum [14]. Therefore, the
surrogate model should be used together with the original fitness function in a
proper way, leading to the issue of surrogate management [12,13,15]. Preselection
is a widely used surrogate management strategy, which first expands the number
of candidate offspring solutions and then uses the surrogate model to filter out
some unpromising ones before the real fitness evaluation. Typical preselection
mechanisms include the Regression model-based PreSelection (RPS) [10] which
predicts the fitness of a solution, the Classification model-based PreSelection
(CPS) [24] which predicts the probability of a solution being good, and the binary
Relation Classification-based PreSelection (RCPS) [9] which predicts whether a
solution is better than another one.

In contrast to the wide application of EAs, the theoretical foundation of EAs
is underdeveloped due to their sophisticated behaviors. Much effort has been
devoted to analyzing the essential theoretical aspect, i.e., running time com-
plexity, of EAs [1,7,17,25]. The running time analysis starts from simple EAs
solving synthetic problems. For example, one classical result is that the expected
running time of the (1+1)-EA on OneMax and LeadingOnes is Θ(n log n) and
Θ(n2), respectively [8]. Meanwhile, general running time analysis approaches,
e.g., drift analysis [5,6,11,18], fitness-level methods [4,20,21], and switch anal-
ysis [3,22,23], have also been proposed. However, to the best of our knowledge,
running time analysis of surrogate-assisted EAs has not been touched.

This paper aims at moving the first step towards running time analysis of
surrogate-assisted EAs by considering the (1+1)-EA using the RPS and RCPS
surrogates. Specifically, we first introduce a concept of (k, δ)-RPS surrogate,
which generates k candidate offspring solutions in each iteration and predicts
the fitness of a candidate solution wrong with probability δ, and then prove that
the (1+1)-EA using the (k, δ)-RPS surrogate with k = c/δ (where c is a positive
constant) and δ < 1/2 can solve OneMax and LeadingOnes in O(n + δn log n)
and O(max{n, δn2}) expected running time, respectively. The results show that
the performance of EAs can be significantly improved, as long as δ is given
appropriate values, e.g., δ = O(1/n). We also prove that the above upper bounds
on the expected running time hold for the (1+1)-EA using the (k, δ)-RCPS
surrogate, where δ denotes the probability of predicting the relation between
any two offspring solutions wrong.

The rest of this paper starts with some preliminaries. Then, the running time
analysis of the (1+1)-EA using the RPS and RCPS surrogates is presented in
Sects. 3 and 4, respectively. Section 5 concludes the paper.

514 Z.-A. Zhang et al.

2 Preliminaries

In this section, we first introduce EAs, surrogate models and problems stud-
ied in this paper, respectively, and then present the analysis tools that we use
throughout this paper.

2.1 (1+1)-EA

The (1+1)-EA as described in Algorithm 1 is a simple EA for maximizing pseudo-
Boolean functions over {0, 1}n. It reflects the common structure of EAs, and
has been widely used in the running time analysis of EAs [1,17]. The (1+1)-
EA maintains only one solution during the optimization procedure (i.e., the
population size is 1), and repeatedly improves the current solution by using
bit-wise mutation (i.e., line 3) and selection (i.e., lines 4–6).

Algorithm 1. (1+1)-EA
Given a function f : {0, 1}n → R to be maximized:
1: x := uniformly randomly selected from {0, 1}n;
2: repeat
3: x′ := flip each bit of x independently with probability 1/n;
4: if f(x′) ≥ f(x) then
5: x := x′

6: end if
7: until the termination condition is met

2.2 Surrogate Models

In this paper, we incorporate the widely used preselection surrogate model [9,10]
into the (1+1)-EA. As described in Algorithm 2, the (1+1)-EA using preselection
has the same general procedure as the original (1+1)-EA, i.e., it randomly gen-
erates an initial solution and improves it repeatedly. However, it inserts two key
subprocedures: surrogate training (i.e., lines 1–2) and preselection (i.e., lines 5–
8), which aim to train the surrogate model using the sampled data and use the
surrogate model to select a promising solution, respectively. In the following, we
present two specific preselection surrogates, i.e., RPS and RCPS surrogates, that
will be studied in this paper.

RPS Surrogate tries to learn a mapping from the solution space to the objec-
tive space, based on a training set P = {〈xi, f(xi)〉 |i = 1, ..., N}, and then
employs the mapping to predict the fitness value of newly generated candidate
solutions. Note that f(x) denotes the true fitness value of a solution. Specifically,
we first sample a set of solutions from the solution space, and then employ a
regression learning method, e.g., regression tree, to learn the mapping M. That
is, line 2 of Algorithm 2 changes to

M = RegressorTrain({〈xi, f(xi)〉 |i = 1, ..., N}).

Running Time Analysis of the (1+1)-EA Using Surrogate Models 515

Algorithm 2. (1+1)-EA with Preselection
1: Conduct a training data set P ;
2: M = SurrogateTrain(P);
3: x := uniformly randomly selected from {0, 1}n;
4: repeat
5: for i = 1 to k do
6: ui := flip each bit of x independently with probability 1/n
7: end for
8: u∗ = PreSelection({u1, ...,uk},M);
9: if f(u∗) ≥ f(x) then

10: x := u∗

11: end if
12: until the termination condition is met

In the preselection procedure, we first generate k candidate offspring solutions,
and then select a solution u∗ which has the maximal predicted fitness value.
That is, line 8 of Algorithm 2 changes to

u∗ = arg maxu∈{u1,u2,...,uk} Predict(u,M),

where Predict(u,M) denotes the fitness of the candidate solution u predicted
by regression model M.

We introduce a concept of (k, δ)-RPS surrogate as presented in Definition 1,
which will be used in our analysis. It specifies the number of solutions generated
in lines 5–7 of Algorithm 2, as well as the accuracy of the surrogate model. That
is, we omit the specific training methods, and only assume that the obtained
preselection model can predict the fitness of a solution approximately correctly
with some probability. Note that for the pseudo-Boolean functions considered in
this paper, the acceptable threshold is set to 0.5, while for general problems, 0.5
can be replaced by a parameter ε.

Definition 1. A (k, δ)-RPS surrogate is a regression model-based preselection
surrogate such that

(1) k offspring solutions are generated before the real fitness evaluation,
(2) the prediction error exceeds the acceptable threshold 0.5 with probability

δ, i.e., P(|f(x) − f ′(x)| ≥ 0.5) = δ, where f ′(x) denotes the predicted fitness of
x by the surrogate.

RCPS Surrogate tries to learn a classifier which predicts whether a solution
is better than another. Specifically, we first sample a set {x1,x2, ...,xN} of
solutions from the solution space, and then employ Algorithm 3 to assign a
label for each pair of solutions. That is, a pair (x,y) of solutions will be assigned
a label 1 if x is better than y (i.e., x wins), and a label −1 otherwise. After
that, we employ a classification learning method, e.g., decision tree, to learn the
classifier M. That is, line 2 of Algorithm 2 changes to

M = ClassifierTrain({〈(xi,xj), l〉 |1 ≤ i, j ≤ N, i �= j}).

516 Z.-A. Zhang et al.

Algorithm 3. Training Data Preparation
1: for i = 1 to N do
2: for j = 1 to i − 1 do
3: if f(xi) ≥ f(xj) then
4: assign the pair (xi,xj) a label l = 1
5: else
6: assign the pair (xi,xj) a label l = −1
7: end if
8: assign the pair (xj ,xi) a label −l
9: end for

10: end for

In the preselection procedure, we first generate k candidate offspring solutions,
and then select a solution u∗ which wins the most times in the pairwise com-
petition, with ties broken uniformly. Note that for each pair of candidate off-
spring solutions, only one of them can win, i.e., ∀i, j, Predict ((xi,xj) ,M) =
−Predict ((xj ,xi) ,M). That is, line 8 of Algorithm 2 changes to

u∗ = arg maxu∈{u1,...,uk}
∑

ui∈{u1,...,uk}\{u} Predict((u,ui) ,M),

where Predict ((u,ui) ,M) denotes the label of the pair (u,ui) of solutions pre-
dicted by classification model M.

Similar to the (k, δ)-RPS surrogate, in our analysis, we will omit the specific
training methods, and only assume that the obtained classification model can
predict the relation between two solutions correctly with some probability, as
presented in Definition 2.

Definition 2. A (k, δ)-RCPS surrogate is a binary relation classification-based
preselection surrogate such that

(1) k offspring solutions are generated before the real fitness evaluation,
(2) the relation between any two solutions is predicted wrong with probability δ.

2.3 OneMax and LeadingOnes

In this section, we introduce two well-known pseudo-Boolean functions OneMax
and LeadingOnes, which will be used in this paper. The OneMax problem as
presented in Definition 3 aims to maximize the number of 1-bits of a solution.
Its optimal solution is 11...1 (briefly denoted as 1n) with the function value n.
It has been shown that the expected running time of the (1+1)-EA on OneMax
is Θ(n log n) [8]. For a Boolean solution x, let xi denote its i-th bit.

Definition 3 (Onemax). The OneMax Problem of size n is to find an n bits
binary string x∗ such that x∗ = arg maxx∈{0,1}n

∑n
i=1 xi.

The LeadingOnes problem as presented in Definition 4 aims to maximize the
number of consecutive 1-bits counting from the left of a solution. Its optimal
solution is 1n with the function value n. It has been proved that the expected
running time of the (1+1)-EA on LeadingOnes is Θ(n2) [8].

Running Time Analysis of the (1+1)-EA Using Surrogate Models 517

Definition 4 (LeadingOnes). The LeadingOnes Problem of size n is to find
an n bits binary string x∗ such that x∗ = arg maxx∈{0,1}n

∑n
i=1

∏i
j=1 xi.

2.4 Analysis Tools

Because an evolution process usually goes forward only based on the current
population, an EA can be modeled as a Markov chain {ξt}+∞

t=0 [11,25]. The state
space of the chain (denote as X) is exactly the population space of the EA. The
target state space X ∗ is the set of all optimal populations, where an “optimal”
population implies containing an optimal solution. Note that we consider the
discrete state space (i.e., X is discrete) in this paper.

Given a Markov chain {ξt}+∞
t=0 and ξ0 = x, we define its first hitting time

(FHT) as a random variable τ such that τ = min{t|ξt ∈ X ∗, t ≥ 0}. That is, τ
is the number of generations required to reach the optimal state space X ∗ from
ξ0 = x for the first time. Then, we define the chain’s expected first hitting time
(EFHT) as the mathematical expectation of τ , i.e., E[τ |ξ0] =

∑+∞
i=0 i · P(τ = i).

In the following, we introduce two drift theorems which will be used to derive
the EFHT of Markov chains in the paper. Drift analysis was first introduced to
the running time analysis of EAs by He and Yao [11], and has become a popular
tool with many variants [5,6]. We will use its additive (i.e., Lemma 1) as well
as multiplicative (i.e., Lemma 2) version. To use drift analysis, we first need
to construct a distance function V (x) to measure the distance of a state x to
the optimal state space X ∗, where V (x) satisfies that V (x ∈ X ∗) = 0 and
V (x /∈ X ∗) > 0. Then, we need to investigate the progress on the distance to X ∗

in each step, i.e., E[V (ξt)−V (ξt+1)|ξt]. For additive drift analysis in Lemma 1, an
upper bound on the EFHT can be derived through dividing the initial distance
by a lower bound on the progress. Multiplicative drift analysis in Lemma 2 is
much easier to use when the progress is roughly proportional to the current
distance to the optimum.

Lemma 1 (Additive Drift [11]). Given a Markov chain {ξt}+∞
t=0 and a dis-

tance function V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there exists a
real number c > 0 such that E[V (ξt) − V (ξt+1)|ξt] ≥ c, then the EFHT satisfies
that E[τ |ξ0] ≤ V (ξ0)/c.

Lemma 2 (Multiplicative Drift [6]). Given a Markov chain {ξt}+∞
t=0 and

a distance function V (x), if for any t ≥ 0 and any ξt with V (ξt) > 0, there
exists a real number c > 0 such that E[V (ξt) − V (ξt+1)|ξt] ≥ c · V (ξt), then the
EFHT satisfies that E[τ |ξ0] ≤ (1 + ln(V (ξ0)/Vmin)) /c, where Vmin denotes the
minimum among all possible positive values of V .

3 Analysis of the (1+1)-EA Using the RPS Surrogate

In this section, we analyze the expected running time of the (1+1)-EA using the
(k, δ)-RPS surrogate on OneMax and LeadingOnes, respectively. Note that the

518 Z.-A. Zhang et al.

acceptable threshold in Definition 1 is set to 0.5 on OneMax and LeadingOnes.
Under such setting, the condition (2) in Definition 1 implies that for any two
solutions x and y with f(x) ≥ f(y), x will be predicted better than y if the
prediction error doesn’t exceed the acceptable threshold.

We prove in Theorem 1 that when δ < 1/2 and k = c/δ, the expected running
time of the (1+1)-EA using the (k, δ)-RPS surrogate on the OneMax problem
is O(n + δn log n). Note that without surrogate model, the expected running
time of the (1+1)-EA on the OneMax problem is Θ(n log n) [8]. Therefore, if
δ = O(1/ log n), the expected running time can be improved from Θ(n log n)
to O(n). Intuitively, the results show that the running time can be significantly
improved when the surrogate model is accurate enough and properly used.

The main proof idea can be summarized as follows. Since the comparison of
the parent solution x and the preselected offspring solution u∗ is under the real
fitness, the distance function used in drift analysis does not increase. Further-
more, when at least one of the k offspring solutions is better than the parent,
and all the k offspring solutions are “correctly” evaluated by the surrogate model,
i.e., the prediction error doesn’t exceed the acceptable threshold, there will be a
positive progress on the distance function.

Theorem 1. For the (1+1)-EA using the (k, δ)-RPS surrogate on the OneMax
problem, the expected running time is O(n + δn log n) if δ < 1/2 and k = c/δ
(where c is a positive constant). Particularly, it is O(n) if δ = O(1/ log n).

Proof. We use additive and multiplicative drift analysis to prove this theorem.
Let the distance function V (x) = |x|0 be the number of 0-bits of a solution x.
It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈ X ∗) > 0.

Suppose that the current solution x has i 0-bits, i.e., |x|0 = i. Then, we
examine the expected progress E[V (ξt) − V (ξt+1)|ξt = x]. We decompose the
progress into two parts, i.e., E[V (ξt) − V (ξt+1)|ξt = x] = E+ − E−, where

E+ =
∑

ξt+1:V (ξt+1)<i
P(ξt+1|ξt = x)(i − V (ξt+1)),

E− =
∑

ξt+1:V (ξt+1)>i
P(ξt+1|ξt = x)(V (ξt+1) − i).

That is, E+ and E− denote the positive and negative drift towards the optimal
state, respectively. Since the comparison of the parent solution and the prese-
lected offspring solution is under the real fitness, the fitness of the solution will
never decrease. Thus, the distance function will not increase, implying E− = 0.
To analyze the positive drift E+, we consider the probability that one offspring
solution x′ is better than the parent solution x. We have

P(f(x′) > f(x)) ≥ (i/n) · (1 − 1/n)n−1 ≥ i/(en), (1)

where the first inequality holds because it is sufficient to flip one of the i 0-bits
of x by mutation and keep the other bits unchanged, and the second inequality
is by (1 − 1/n)n−1 ≥ 1/e. Then, we can derive a lower bound on the probability

Running Time Analysis of the (1+1)-EA Using Surrogate Models 519

of generating at least one offspring solution which is better than the parent
solution, i.e.,

P(∃u∗ ∈ {uj}k
j=1, f(u∗) > f(x)) ≥ 1 − (1 − i/(en))k ≥ 1 − e−ki/(en)

≥ 1 − 1
1 + ki/(en)

= ki/(ki + en),

where the last two inequalities are both by 1 + a ≤ ea. When all the k offspring
solutions are correctly evaluated by the surrogate model, whose probability is
(1 − δ)k, the best one will be chosen. Thus, we have

P(V (ξt+1) < i|ξt = x) ≥ (ki/(ki + en)) · (1 − δ)k
,

implying that

E[V (ξt) − V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1

≥ (ki/(ki + en)) · (1 − δ)k
.

(2)

To derive the expected running time for finding the optimal solution, we
divide the evolution process into two phases. The first phase starts from the
initial solution and ends when |x|0 ≤ en/k, and the second phase starts after
the first phase finishes and ends when the optimal solution is found. Let τ1 and
τ2 denote the running time of these two phases, respectively. For the first phase,
i.e., en/k ≤ i ≤ n, because ki/(ki + en) ≥ ki/(ki + ki) = 1/2, we have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ (1 − δ)k/2.

Thus, by Lemma 1, we get

E[τ1|ξ0] ≤ 2n/(1 − δ)k.

For the second phase, i.e., i < en/k, because ki/(ki + en) ≥ ki/(en + en) =
ki/(2en), we have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ ki (1 − δ)k
/(2en),

Thus, by Lemma 2, we get

E[τ2|ξ0] ≤ 1 + ln en
k

k(1−δ)k

2en

=
2e (2 − ln k)

k (1 − δ)k
n +

2e

k (1 − δ)k
n ln n.

Combining the analysis of the two phases, we have

E [τ |ξ0] = E [τ1|ξ0] + E [τ2|ξ0] ≤ 1(
(1 − δ)

1
δ

)c ·
(

2n +
4e

c
δn +

2e

c
δn ln n

)
,

520 Z.-A. Zhang et al.

where the last inequality is by k = c/δ. Note that

1(
(1 − δ)

1
δ

)c =

((
1 +

δ

1 − δ

) 1
δ −1

)c

· 1
(1 − δ)c

≤ e
δ

1−δ ·(1
δ −1)·c · 1

(1 − δ)c =
(

e

1 − δ

)c

< (2e)c
,

(3)

where the first inequality is by 1 + a ≤ ea, and the second inequality is by
δ < 1/2. Furthermore, as c is a constant, we get E [τ |ξ0] = O(n + δn log n).
Thus, the theorem holds.
�

We prove in Theorem 2 that when δ < 1/2 and k = c/δ, the expected run-
ning time of the (1+1)-EA using the (k, δ)-RPS surrogate on the LeadingOnes
problem is O(max{n, δn2}). Note that without surrogate model, the expected
running time of the (1+1)-EA on the LeadingOnes problem is Θ(n2) [8]. There-
fore, if δ = O(1/n), the expected running time can be improved from Θ(n2) to
O(n). The main proof idea is similar to that of Theorem 1. That is, the distance
function used in drift analysis does not increase; meanwhile, it can decrease if
at least one of the offspring solutions is better than the parent solution and all
the offspring solutions are correctly evaluated by the surrogate model.

Theorem 2. For the (1+1)-EA using the (k, δ)-RPS surrogate on the Leadin-
gOnes problem, the expected running time is O(max{n, δn2}) if δ < 1/2 and
k = c/δ (where c is a positive constant). Particularly, it is O(n) if δ = O(1/n).

Proof. We use additive drift analysis to prove this theorem. Let the distance
function V (x) = n − LO(x), where LO(x) is the number of leading 1-bits of x.
It is easy to verify that V (x ∈ X ∗ = {1n}) = 0 and V (x /∈ X ∗) > 0. Suppose
that the current solution x has i leading 1-bits, i.e., LO(x) = i < n . Then,
Eq. (1) becomes

P(f(x′) > f(x)) ≥ (1/n) · (1 − 1/n)i ≥ 1/(en), (4)

since it is sufficient to flip the first 0-bit and keep the i leading 1-bits unchanged.
Equation (2) becomes

E[V (ξt) − V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1 ≥ (k/(k + en)) · (1 − δ)k.

We consider two cases for k. If k ≥ en, we have k/(k + en) ≥ 1/2. Then, we get
E[V (ξt) − V (ξt+1)|ξt = x] ≥ (1 − δ)k/2. By Lemma 1, we get

E[τ |ξ0] ≤ 2n

(1 − δ)k
=

1(
(1 − δ)

1
δ

)c · 2n = O(n),

where the first equality is by k = c/δ, and the second inequality holds by Eq. (3).
If k < en, we have k/(k + en) ≥ k/(2en). Then, we get E[V (ξt) − V (ξt+1)|ξt =
x] ≥ k(1 − δ)k/(2en). By Lemma 1, we get

E[τ |ξ0] ≤ 2en2

k (1 − δ)k
= O(δn2),

Running Time Analysis of the (1+1)-EA Using Surrogate Models 521

Thus, the analysis of the above two cases leads to E[τ |ξ0] = O
(
max{n, δn2})

,
implying that the theorem holds.
�

4 Analysis of the (1+1)-EA Using the RCPS Surrogate

In this section, we analyze the expected running time of the (1+1)-EA using the
(k, δ)-RCPS surrogate on OneMax and LeadingOnes, respectively.

We prove in Theorem 3 that when δ < 1/2 and k = c/δ, the expected
running time of the (1+1)-EA using the (k, δ) RCPS surrogate on the OneMax
problem is O(n + δn log n). Thus, the expected running time can be reduced by
a factor of O(log n) if δ = O(1/ log n), which also suggests the effectiveness of
the surrogate model. The main proof idea can be summarized as follows. Similar
to the proof of Theorem 1, the distance function does not increase. When some
offspring solutions are better than the parent solution and one of these offspring
solutions wins the competition with the other offspring solutions, the preselected
offspring solution can be better than the parent solution, leading to a positive
drift towards the optimal solution.

Theorem 3. For the (1+1)-EA using the (k, δ)-RCPS surrogate on the OneMax
problem, the expected running time is O(n + δn log n) if δ < 1/2 and k = c/δ
(where c is a positive constant). Particularly, it is O(n) if δ = O(1/ log n).

Proof. We use additive and multiplicative drift analysis to prove this theorem.
Let the distance function V (x) = |x|0 be the number of 0-bits of a solution x.
Suppose that the current solution x has i 0-bits, i.e., |x|0 = i.

Suppose that the offspring solutions x1, ...,xm are better the parent solution
x and xm+1, ...,xk are worse than the parent solution (or have the same fitness
as the parent solution). If ∃j ∈ {1, ...,m}, xj wins the competitions with all the
other offspring solutions, then xj will be chosen and will bring progress as it is
better than the parent solution. The probability of this event is

m∑

j=1

δj−1(1 − δ)k−j =
(1 − δ)k

1 − 2δ

(
1 −

(
δ

1 − δ

)m)
.

Let p denote the probability that a better individual is produced by mutation,
which is at least i/(en) by Eq. (1). Then, we have

P(V (ξt+1) < i|ξt = x) ≥
k∑

m=1

(
k

m

)
pm(1 − p)k−m (1 − δ)k

1 − 2δ

(
1 −

(
δ

1 − δ

)m)

=
(1 − δ)k

1 − 2δ

(
1 −

(
1 − 1 − 2δ

1 − δ
p

)k
)

≥ (1 − δ)k

1 − 2δ

(
1 − 1

1 + 1−2δ
1−δ

ki
en

)
.

522 Z.-A. Zhang et al.

Similar to the analysis of Theorem 1, we have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1

≥ (1 − δ)k

1 − 2δ

(
1 − 1

1 + 1−2δ
1−δ

ki
en

)
.

To derive the expected running time for finding the optimal solution, we
divide the evolutionary process into two phases. The first phase starts from the
initial solution and ends when |x|0 ≤ 1−δ

1−2δ
en
k , and the second phase starts after

the first phase finishes and ends when the optimal solution is found. Let τ1 and
τ2 denote the running time of these two phases, respectively. For the first phase,
i.e., 1−δ

1−2δ
en
k ≤ i ≤ n, we have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ (1 − δ)k/(2 − 4δ),

By Lemma 1, we get

E[τ1|ξ0] ≤ n(2 − 4δ)/(1 − δ)k ≤ 2n/(1 − δ)k.

For the second phase, i.e., i < 1−δ
1−2δ

en
k ≤ n, we have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ ki(1 − δ)k−1/(2en).

By Lemma 2, we get

E[τ2|ξ0] ≤
1 + ln

(
1−δ
1−2δ

en
k

)

k(1−δ)k−1

2en

≤ 2en(1 + ln n)

k (1 − δ)k
.

Combining the analysis of the two cases, we have

E [τ |ξ0] = E [τ1|ξ0] + E [τ2|ξ0] ≤ 2n

(1 − δ)k
+

2en(1 + ln n)
k(1 − δ)k

= O(n + δn log n),

where the last equality is by k = c/δ and Eq. (3). Thus, the theorem holds.
�
We prove in Theorem 4 that when δ < 1/2 and k = c/δ, the expected run-

ning time of the (1+1)-EA using the (k, δ)-RCPS surrogate on the LeadingOnes
problem is O(max{n, δn2}). The results show that the expected running time
can be reduced by a factor of O(n) if δ = O(1/n). The main proof idea is similar
to that of Theorem 3.

Theorem 4. For the (1+1)-EA using the (k, δ)-RCPS surrogate on the Leadin-
gOnes problem, the expected running time is O(max{n, δn2}) if δ < 1/2 and
k = c/δ (where c is a positive constant). Particularly, it is O(n) if δ = O(1/n).

Running Time Analysis of the (1+1)-EA Using Surrogate Models 523

Proof. We use additive drift analysis to prove this theorem. Let the distance
function V (x) = n − LO(x). Suppose that the current solution x has i leading
1-bits, i.e., LO(x) = i < n.

Similar to the analysis in Theorem 3, we have

P(V (ξt+1) < i|ξt = x) ≥ (1 − δ)k

1 − 2δ

(
1 − 1

1 + 1−2δ
1−δ pk

)

≥ (1 − δ)
c
δ

1 − 2δ

(
1 − 1

1 +
(
1
δ − 2

)
c

en

)
,

where the second inequality holds by p ≥ 1/(en) as shown in Eq. (4), k = c/δ,
and δ < 1/2. We consider two cases for δ. If

(
1
δ − 2

) · c
en ≥ 1, i.e., δ ≤ c

en+2c , we
have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ P(V (ξt+1) < i|ξt = x) · 1 ≥ (1 − δ)c/δ/2.

By Lemma 1, we get

E[τ |ξ0] ≤ 2n/(1 − δ)c/δ = O(n).

If
(
1
δ − 2

) · c
en < 1, i.e., δ > c

en+2c , we have

E[V (ξt) − V (ξt+1)|ξt = x] ≥ c (1 − δ)c/δ
/(2eδn).

By Lemma 1, we get

E[τ |ξ0] ≤ 2eδn2

c (1 − δ)c/δ
= O(δn2).

Thus, E[τ |ξ0] = O
(
max{n, δn2})

, implying that the theorem holds.
�

5 Conclusion and Discussion

In this paper, we conduct a preliminary study on the running time analysis of
surrogate-assisted EAs, by considering the (1+1)-EA using the RPS and RCPS
surrogates solving OneMax and LeadingOnes. We introduce the concept of the
(k, δ)-RPS and (k, δ)-RCPS surrogates, and derive the parameter values that can
make using the surrogate model accelerate the evolution process. The results
imply that if the surrogate model is accurate enough and used properly, the
running time can be significantly improved.

We hope this work can encourage more work on the running time analysis
of EAs using surrogate models. In the future, the following two directions can
be considered. On one hand, in this paper, we simply assume that the surrogate
model is trained in advance before optimization, while in practical applications,
the surrogate model is usually updated along with the optimization process.

524 Z.-A. Zhang et al.

It is interesting to theoretically study the impact of updating the surrogate
model with newly obtained data. On the other hand, when analyzing the running
time, we only consider the cost of true fitness evaluation during the evolutionary
process, which is somewhat unfair. It is interesting to examine the total cost of
surrogate-assisted EAs, i.e., the cost of training before evolution and the cost
during the evolutionary process.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, Singapore (2011)

2. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

3. Bian, C., Qian, C., Tang, K.: A general approach to running time analysis of
multi-objective evolutionary algorithms. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, pp.
1405–1411 (2018)

4. Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic
algorithms and other search processes. IEEE Trans. Evol. Comput. 22(5), 707–719
(2017)

5. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250
(2013)

6. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

7. Doerr, B., Neumann, F.: Theory of Evolutionary Computation: Recent Develop-
ments in Discrete Optimization. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-29414-4

8. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

9. Hao, H., Zhang, J., Lu, X., Zhou, A.: Binary relation learning and classifying for
preselection in evolutionary algorithms. IEEE Trans. Evol. Comput. 24(6), 1125–
1139 (2020)

10. Hao, H., Zhang, J., Zhou, A.: A comparison study of surrogate model based pre-
selection in evolutionary optimization. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L.
(eds.) ICIC 2018. LNCS, vol. 10955, pp. 717–728. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-95933-7_80

11. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

12. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft. Comput. 9(1), 3–12 (2005)

13. Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future
challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)

14. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

15. Jin, Y., Wang, H., Sun, C.: Data-Driven Evolutionary Optimization. SCI, vol. 975.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74640-7

16. Mockus, J.: Application of Bayesian approach to numerical methods of global and
stochastic optimization. J. Global Optim. 4(4), 347–365 (1994)

https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-319-95933-7_80
https://doi.org/10.1007/978-3-319-95933-7_80
https://doi.org/10.1007/978-3-030-74640-7

Running Time Analysis of the (1+1)-EA Using Surrogate Models 525

17. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

18. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59(3), 369–386 (2011)

19. Qian, C., Xiong, H., Xue, K.: Bayesian optimization using pseudo-points. In: Pro-
ceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI
2020), Yokohama, Japan, pp. 3044–3050 (2020)

20. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2012)

21. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In: Evolutionary Optimization, pp. 349–369. Kluwer, Norwell (2002)

22. Yu, Y., Qian, C.: Running time analysis: convergence-based analysis reduces to
switch analysis. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion (CEC), Sendai, Japan, pp. 2603–2610 (2015)

23. Yu, Y., Qian, C., Zhou, Z.H.: Switch analysis for running time analysis of evolu-
tionary algorithms. IEEE Trans. Evol. Comput. 19(6), 777–792 (2014)

24. Zhang, J., Zhou, A., Tang, K., Zhang, G.: Preselection via classification: a case
study on evolutionary multiobjective optimization. Inf. Sci. 465, 388–403 (2018)

25. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories
and Algorithms. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-
5956-9

https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-981-13-5956-9
https://doi.org/10.1007/978-981-13-5956-9

Runtime Analysis of Simple Evolutionary
Algorithms for the Chance-Constrained

Makespan Scheduling Problem

Feng Shi1(B) , Xiankun Yan2 , and Frank Neumann2

1 School of Computer Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

fengshi@csu.edu.cn
2 Optimisation and Logistics, School of Computer Science,

The University of Adelaide, Adelaide, Australia

Abstract. The Makespan Scheduling problem is an extensively studied
NP-hard problem, and its simplest version looks for an allocation app-
roach for a set of jobs with deterministic processing times to two identical
machines such that the makespan is minimized. However, in real life sce-
narios, the actual processing time of each job may be stochastic around
an expected value with a variance under the influence of external factors,
and these actual processing times may be correlated with covariances.
Thus within this paper, we propose a chance-constrained version of the
Makespan Scheduling problem and investigate the performance of Ran-
domized Local Search and (1 + 1) EA for it. More specifically, we study
two variants of the Chance-constrained Makespan Scheduling problem
and analyze the expected runtime of the two algorithms to obtain an
optimal or almost optimal solution to the instances of the two variants.

Keywords: Chance-constraint · Makespan scheduling problem · RLS ·
(1 + 1) EA

1 Introduction

To discover the reasons behind the successful applications of evolutionary algo-
rithms in various areas including engineering and economics, lots of researchers
made efforts to study the theoretical performance of evolutionary algorithms for
classical combinatorial optimization problems. But most of these studied prob-
lems are deterministic (such as Vertex Cover problem [4,5,13,15,24,25,27–29,40]
and Minimum Spanning Tree problem [3,14,21,22,35,37]), and the optimization
problems in real-world are often stochastic and have dynamic components. Hence
in the past few years, the related researchers paid attentions to the theoretical

This work has been supported by the National Natural Science Foundation of China
under Grants 62072476 and 61872048, the Hunan Provincial Natural Science Founda-
tion of China under Grant 2021JJ40791, and the Australian Research Council (ARC)
through grant FT200100536.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 526–541, 2022.
https://doi.org/10.1007/978-3-031-14721-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_37&domain=pdf
http://orcid.org/0000-0002-1415-0515
http://orcid.org/0000-0002-2309-8034
http://orcid.org/0000-0002-2721-3618
https://doi.org/10.1007/978-3-031-14721-0_37

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 527

performance of evolutionary algorithms for dynamic and stochastic combinato-
rial optimization problems [9,16,19,30,32,33] and obtained a series of theoretical
results that further advance the understanding of evolutionary algorithms.

Chance-constrained optimization problems is an important class of stochastic
optimization problems. They consider that the constraints may be influenced by
the noise of stochastic components, thus their goal is to optimize the given objec-
tive function under that the constraints can be violated up to certain probability
levels [2,12,17,26]. The basic technique for solving chance-constrained optimiza-
tion problems is to convert the stochastic constraints to their respective deter-
ministic equivalents according to the predetermined confidence level. Recently,
researchers began to focus on the chance-constrained optimization problems and
analyze the theoretical performance of evolutionary algorithms for them.

The classical Makespan Scheduling problem (abbr. MSP) [1] considers two
identical machines and a set of jobs with deterministic processing times, and its
aim is to allocate the jobs to the machines such that the makespan is minimized
(we only consider its simplest version, please refer to [6,11,31] for its approx-
imation algorithms). In real life scenarios, the actual processing time of each
job may be stochastic around an expected value with a variance, and the actual
processing times of the jobs may be correlated with covariances. Thus a chance-
constrained version of MSP, named Chance-constrained Makespan Scheduling
Problem (abbr. CCMSP), is proposed in the paper. CCMSP considers two iden-
tical machines and several groups of jobs, where the jobs have the same expected
processing time and variance if they are in the same group, and their actual pro-
cessing times are correlated by a covariance if they are in the same group and
allocated to the same machine. The goal of CCMSP is to minimize a determin-
istic makespan value and subject to the probability that the actual makespan
exceeds the deterministic makespan is no more than an acceptable threshold.

A few theoretical results have been obtained about the performance of evolu-
tionary algorithms for MSP and chance-constrained problems. Witt [36] carried
out the runtime analysis of evolutionary algorithms for MSP with two machines.
Later Gunia [7] extended the results to MSP with a constant number of machines.
Sutton et al. [34] gave the parameterized runtime analysis of RLS and (1 + 1) EA
for MSP with two machines. Neumann et al. [23] proposed the dynamic version of
MSP with two machines and analyzed the performance of RLS and (1 + 1) EA.
Xie et al. [38] studied the single- and multi-objective evolutionary algorithms
for the Chance-constrained Knapsack problem, where they used the Chebyshev
inequality and Chernoff bounds to estimate the constraint violation probability
of a given solution. Then Neumann et al. [20] followed the work of Xie et al. [38]
and analyzed special cases of this problem. Note that the Chance-constrained
Knapsack problem studied in the above two work does not consider the correla-
tionship among the weights of items. Thus recently Xie et al. [39] analyzed the
expected optimization time of RLS and (1 + 1) EA for the Chance-constrained
Knapsack Problem with correlated uniform weights. Neumann et al. [18] pre-
sented the first runtime analysis of multi-objective evolutionary algorithms for
chance-constrained submodular functions.

528 F. Shi et al.

Within this paper, we investigate the expected runtime of RLS and (1 +
1) EA for CCMSP. More specifically, we consider two special variants of CCMSP:
(1). CCMSP-1, all jobs have the same expected processing time and variance,
and all groups have the same covariance and even size; (2). CCMSP-2, the dif-
ference from CCMSP-1 is that the groups have different sizes. For CCMSP-1,
we prove that CCMSP-1 is polynomial-time solvable by showing that RLS and
(1 + 1) EA can obtain an optimal solution to any instance I1 of it in expected
runtime O(n2/m) and O((k + m)n2), respectively, where n and k are the num-
bers of jobs and groups considered in I1, and m = n/k. For CCMSP-2, the
size difference among groups makes the discussion complicated, thus a simplified
variant of CCMSP-2 named CCMSP-2+ is proposed: The sum of the variances
and covariances of the jobs allocated to the same machine cannot be over the
expected processing time of a job, no matter how many jobs are allocated to the
machine. We prove that CCMSP-2+ is NP-hard and that RLS can get an opti-
mal solution to the instance I+2 of CCMSP-2+ in expected polynomial-runtime
if the total number of jobs is odd; otherwise, an almost optimal solution to I+2 .

2 Preliminaries

Consider two identical machines M0 and M1, and k groups of jobs, where each
group Gi has mi many jobs (i.e., there are n =

∑k
i=1 mi many jobs in total).

W.l.o.g., assume m1 ≤ m2 ≤ . . . ≤ mk. The j-th job in group Gi (j ∈ [1,mi],
where the notation [x, y] denotes the set containing all integers ranging from x
to y), denoted by bij , has actual processing time pij with expect value E[pij] =
aij > 0 and variance σ2

ij > 0. Additionally, for any two jobs of the same group
Gi, if they are allocated to the same machine, then their actual processing times
are correlated with each other by a covariance ci > 0; otherwise, independent.

The Chance-constrained Makespan Scheduling Problem (abbr. CCMSP) stud-
ied in the paper looks for an allocation of the n jobs to the two machines that
minimizes the makespan M such that the probabilities of the loads on M0 and
M1 exceeding M are no more than a threshold 0 < γ < 1, where the load on Mt

(t ∈ [0, 1]) is the sum of the actual processing times of the jobs allocated to Mt.
An allocation (or simply called solution) x to an instance of CCMSP, is

represented as a bit-string with length n, x = x11 · · · xij · · · xkmk
∈ {0, 1}n, where

the job bij is allocated to M0 if xij = 0; otherwise, M1 (in the remaining text, we
simply say that a bit is of Gi if its corresponding job is of Gi). Denote by M0(x)
and M1(x) the sets of jobs allocated to M0 and M1, respectively, w.r.t. x. Denote
by lt(x) =

∑
bij∈Mt(x)

pij the load on Mt (t ∈ [0, 1]). Let αi(x) = |M0(x) ∩ Gi|
and βi(x) = |M1(x) ∩ Gi| for all i ∈ [1, k]. The CCMSP can be formulated as:

Minimize M

Subject to Pr(lt(x) > M) ≤ γ for all t ∈ [0, 1].

Observe that the expected value of lt(x) is E[lt(x)] =
∑

bij∈Mt(x)
aij . Con-

sidering the variance σ2
ij of each job bij and the covariance among the jobs of

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 529

the same group that are allocated to the same machine, the variance of lt(x) is
V ar[lt(x)] =

∑
bij∈Mt(x)

σ2
ij+cov[lt(x)], where cov[lt(x)] =

∑k
i=1 2ci

(|Mt(x)∩Gi|
2

)
.

Note that
(|Mt(x)∩Gi|

2

)
= 0 if 0 ≤ |Mt(x) ∩ Gi| ≤ 1. For the probability

Pr(lt(x) > M) with t ∈ [0, 1], as the work [38,39], we use the one-sided Cheby-
shev’s inequality (cf. Theorem 1) to construct a usable surrogate of the chance-
constraint.

Theorem 1. (One-sided Chebyshev’s inequality). Let X be a random variable
with expected value E[X] and variance V ar[X]. Then for any Δ ∈ R

+, Pr(X >

E[X] + Δ) ≤ V ar[X]
V ar[X]+Δ2 .

By the One-sided Chebyshev’s inequality, upper bounding the probability of
the actual makespan exceeding M by γ indicates that for all t ∈ [0, 1],

Pr(lt(x) > M) ≤ V ar[lt(x)]

V ar[lt(x)] + (M − E[lt(x)])2
≤ γ

⇐⇒
√

(1 − γ)

γ
V ar[lt(x)] + E[lt(x)] = l′t(x) ≤ M.

Thus max{Pr(l0(x) > M),Pr(l1(x) > M)} ≤ γ hold iff L(x) =
max{l′0(x), l

′
1(x)} ≤ M . In other words, L(x) is the tight lower bound for the

value of M , if using the surrogate of the chance-constraint by the One-sided
Chebyshev’s inequality. Therefore, l′t(x) can be treated as a new measure for
the load on Mt, and the goal of CCMSP is simplified to minimize L(x). Let
t(x) = argmaxt{l′0(x), l

′
1(x)}.

It is not hard to derive that CCMSP is NP-hard as MSP is NP-hard. Within
the paper, we study the two specific variants of CCMSP given below.

CCMSP-1. All the n jobs have the same expected processing time aij = a > 0
and variance σ2

ij = d > 0, and the k groups have the same covariance c > 0 and
size m > 0. Moreover, m is even.

CCMSP-2. All the n jobs have the same expected processing time aij = a > 0
and variance σ2

ij = d > 0, and the k groups have the same covariances c > 0.
However, the k groups may have different sizes (may be even or odd).

Given an instance I of CCMSP-1 or CCMSP-2 and a solution x to I, if
||M0(x)| − |M1(x)|| ≤ 1 (i.e., |M0(x)| = |M1(x)| if n is even), then x is an equal-
solution; if ||M0(x)| − |M1(x)|| ≤ 1, and |αi(x)− βi(x)| ≤ 1 for all i ∈ [1, k] (i.e.,
αi = βi if mi is even), then x is a balanced-solution.

3 Algorithms

We study the performance of Randomized Local Search (abbr. RLS, given as
Algorithm 1) and (1 + 1) EA (given as Algorithm 2) for the two variants of

530 F. Shi et al.

CCMSP. The two algorithms run in a similar way, randomly generating an
offspring based on the maintained solution and replacing it if the offspring is
not worse than it regarding their fitness. The difference between the two algo-
rithms is the way to generate offspring: With probability 1/2, RLS chooses
one bit of the maintained solution uniformly at random and flips it, and 1/2
chooses two bits of the maintained solution uniformly at random and flips
them; (1 + 1) EA flips each bit of the maintained solution with probability
1/n. The fitness function considered in the two algorithms is the natural one,
f(x) = L(x) = max{l′0(x), l

′
1(x)}.

Algorithm 1: RLS
1 choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 choose b ∈ {0, 1} uniformly at random;
4 if b = 0 then
5 y ← flip one bit of x chosen uniformly at random;

6 else
7 choose (i, j) ∈ {(k, l)|1 ≤ k < l ≤ n} uniformly at random;
8 y ← flip the i-th and j-th bits of x;

9 if f(y) ≤ f(x) then
10 x ← y;

Algorithm 2: (1+1) EA
1 choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability 1/n;
4 if f(y) ≤ f(x) then
5 x ← y;

4 Performance for CCMSP-1

The section starts with an observation that will be used throughout the paper.

Observation 1.
(� x+y

2 �
2

)
+

(� x+y
2 	
2

) ≤ (
x
2

)
+

(
y
2

) ≤ (
x+y
2

)
holds for any two natural

numbers x and y.

Consider an instance I1 = (a, c, d, γ, k,m) of CCMSP-1 and a solution x to
I1. As the groups considered in I1 have the same size m, there is a variable δi(x)
such that αi(x) = m

2 + δi(x) and βi(x) = m
2 − δi(x) for any i ∈ [1, k]. Thus,

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 531

cov[l0(x)]− cov[l1(x)] = 2c

k∑

i=1

((αi

2

)
−

(βi

2

))
= 2c(m − 1)

k∑

i=1

δi

= c(m − 1)

(
k∑

i=1

αi(x)−
k∑

i=1

βi(x)

)
= c(m − 1) (|M0(x)| − |M1(x)|) .

Based on the conclusion, it is not hard to derive the following two lemmata.

Lemma 1. For any solution x to the instance I1 = (a, c, d, γ, k,m) of CCMSP-
1, if |M0(x)| > |M1(x)| (resp., |M1(x)| > |M0(x)|) then l′0(x) > l′1(x) (resp.,
l′1(x) > l′0(x)); if |M0(x)| = |M1(x)| then l′0(x) = l′1(x).

Lemma 2. For any solution x to the instance I1 = (a, c, d, γ, k,m) of CCMSP-
1, if x is a balanced-solution then L(x) = l′0(x) = l′1(x) gets the minimum value;
more specifically, x is an optimal solution to I1 iff x is a balanced-solution to I1.

Theorem 2. The expected runtime of RLS to obtain an optimal solution to the
instance I1 = (a, c, d, γ, k,m) of CCMSP-1 is O(n2/m) = O(kn).

Proof. Let x0 be the initial solution maintained by RLS. Assume that |M0(x0)| >
|M1(x0)|. Thus L(x) = l′0(x0) > l′1(x0) by Lemma 1 and |M0(x0)|−|M1(x0)| ≥ 2
as n = mk is even. The following discussion first analyzes the process of RLS
to obtain the first equal-solution x1 based on x0. Five possible cases for the
mutation of RLS on x0 are listed as follows, obtaining an offspring x′

0 of x0.

Case (1). Flipping a 0-bit in x0 (i.e., |M0(x′
0)| = |M0(x0)| − 1). Observe that

L(x0) = l′0(x0) > l′0(x
′
0). As |M0(x0)| − |M1(x0)| ≥ 2, |M0(x′

0)| ≥ |M1(x′
0)| and

L(x′
0) = l′0(x

′
0) by Lemma 1. Thus L(x′

0) < L(x0) and x′
0 can be accepted.

Case (2). Flipping a 1-bit in x0 (i.e., |M0(x′
0)| = |M0(x0)| + 1). Observe that

L(x′
0) = l′0(x

′
0) > l′0(x0) = L(x0), thus x′

0 cannot be accepted.

Case (3). Flipping two 0-bits in x0 (i.e., |M0(x′
0)| = |M0(x0)|−2). If |M0(x′

0)| ≥
|M1(x′

0)|, then using the reasoning for Case (1) gets that L(x′
0) ≤ L(x0) and

x′
0 can be accepted. If |M0(x′

0)| < |M1(x′
0)| then |M0(x0)| = |M1(x′

0)| as n is
even. By Lemma 1, L(x0)−L(x′

0) =
√

1−γ
γ

(√
V ar[l0(x0)] −

√
V ar[l1(x′

0)]
)
. As

V ar[l0(x0)] ≥ V ar[l1(x′
0)] ⇐⇒ cov[l0(x0)] ≥ cov[l1(x′

0)], x′
0 can be accepted iff

cov[l0(x0)] ≥ cov[l1(x′
0)].

Case (4). Flipping a 0-bit and a 1-bit in x (i.e., |M0(x′
0)| = |M0(x0)|). Using

the reasoning similar to that for Case (3), we have that x′
0 can be accepted iff

cov[l0(x0)] ≥ cov[l0(x′
0)].

532 F. Shi et al.

Case (5). Flipping two 1-bits in x0 (i.e., |M0(x′
0)| = |M0(x0)| + 2). Using the

reasoning similar to that for Case (2), we have that L(x′
0) > L(x0) and x′

0 cannot
be accepted.

Summarizing the above analysis gets that if x′
0 is accepted by RLS, then it

satisfies one of the following two conditions: (1). |Mt(x′
0)
(x′

0)| < |M0(x0)| and
cov[lt(x′

0)
(x′

0)] < cov[l0(x0)]; (2). |Mt(x′
0)
(x′

0)| = |M0(x0)| and cov[lt(x′
0)
(x′

0)] ≤
cov[l0(x0)]. That is, the gap between the numbers of jobs in the two machines
cannot increase during the optimization process. The mutation considered in
Case (1) can be generated by RLS with probability Ω(1/4) that decreases the gap
between the numbers of jobs in the two machines by 2. As ||M0(x0)|−|M1(x0)|| ≤
n, using the Additive Drift analysis [10] gets that RLS takes expected runtime
O(n) to obtain the first equal-solution x1 based on x0.

Now we consider the expected runtime of RLS to obtain an optimal solution
x∗ based on x1. Let p(x) =

∑k
i=1 |αi(x) − βi(x)| =

∑k
i=1 |2αi(x) − m| be the

potential of the solution x maintained during the process, and we show that dur-
ing the optimization process the potential value cannot increase. Note that once
the first equal-solution x1 is obtained, then all solutions subsequently accepted
by RLS are equal-ones, thus only the mutations flipping a 0-bit and a 1-bit of x1

are considered below. Assume that the mutation flips a 0-bit of Gi and a 1-bit
of Gj in x1, and denoted by x′

1 the solution obtained. The potential change is

Δp = p(x1)− p(x′
1) = |2αi(x1)− m|+ |2αj(x1)− m| − (|2αi(x

′
1)− m|+ |2αj(x

′
1)− m|) ,

where αi(x′
1) = αi(x1)−1 and αj(x′

1) = αj(x1)+1. The above discussion shows
that x′

1 can be accepted by RLS iff Δcov = cov[l0(x1)]− cov[l0(x′
1)] ≥ 0, where

Δcov/2c = (cov[l0(x1)] − cov[l0(x
′
1)])/2c = αi(x1) − 1 − αj(x1).

We divide the analysis for the values of Δp and ΔV ar into four cases.

Case (I). αi(x1) > m
2 and αj(x1) ≥ m

2 . Observe that Δp = 0, but the value of
ΔV ar depends on the relationship between αi(x1) and αj(x1).

Case (II). αi(x1) ≤ m
2 and αj(x1) ≥ m

2 . Observe that Δp = −4, but ΔV ar < 0,
implying that x′

1 cannot be accepted by RLS.

Case (III). αi(x1) > m
2 and αj(x1) < m

2 . Observe that Δp = 4 and ΔV ar > 0,
implying that x′

1 can be accepted by RLS.

Case (IV). αi(x1) ≤ m
2 and αj(x1) < m

2 . Observe that Δp = 0, but the value
of ΔV ar depends on the relationship between αi(x1) and αj(x1).

Summarizing the analysis of the four cases gets that during the optimization
process, the potential value cannot increase. Observe that there exist i, j ∈ [1, k]
such that αi(x1) = |M0(x1) ∩ Gi| > m

2 and αj(x1) = |M0(x1) ∩ Gj | < m
2 (i.e.,

Case (III) holds), and the offspring obtained by the mutation flipping a 0-bit of

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 533

Gi and a 1-bit of Gj in x1 can be accepted. Now we consider the probability to
generate such a mutation. Let S0 ⊂ [1, k] (resp., S1 ⊂ [1, k]) such that for any
i ∈ S0, αi(x1) > βi(x1) (resp., αi(x1) < βi(x1)). Since x1 is an equal-solution,∑

i∈S0

αi(x1) − βi(x1) =
∑
i∈S1

βi(x1) − αi(x1) = p(x1)/2. (1)

Combining Equality (1) with
∑

i∈S0
αi(x1)+βi(x1) = |S0|m and

∑
i∈S1

αi(x1)+
βi(x1) = |S1|m gets

∑
i∈S0

αi(x1) = p(x1)
4 + |S0|m

2 ≥ p(x1)
4 + m

2 and
∑

i∈S1
βi(x1) = p(x1)

4 + |S1|m
2 ≥ p(x1)

4 + m
2 . Thus there are p(x1)

4 + m
2 0-bits,

each of which is in a group Gu with αu(x1) > m
2 , and p(x1)

4 + m
2 1-bits, each of

which is in a group Gv with αv(x1) < m
2 . That is, RLS generates such a mutation

with probability Ω((2m+p(x1)
4n)2) and takes expected runtime O((n

2m+p(x1)
)2) to

obtain an offspring x′
1 with p(x′

1) = p(x1) − 4. Considering all possible values
for the potential of the maintained solution (note that 1 ≤ p(x1) ≤ n), the total
expected runtime of RLS to obtain x∗ based on x1 can be upper bounded by

n∑
t=1

O(
n2

(t + 2m)2
) = O(n2)

n∑
t=1

(t + 2m)−2 = O(n2)

∫ n

1

(t + 2m)−2dt = O(n2/m).

In summary, RLS takes expected runtime O(n2/m) = O(kn) to obtain an
optimal solution to I1 based on the initial solution x0. 	

Theorem 3. The expected runtime of (1 + 1) EA to obtain an optimal solution
to the instance I1 = (a, c, d, γ, k,m) of CCMSP-1 is O((k + m)n2).

Proof. As the mutation of (1 + 1) EA may flip more than two bits simultane-
ously, the reasoning given in Theorem 2 cannot be directly applied for the perfor-
mance of (1 + 1) EA. We first consider the expected runtime of (1 + 1) EA to get
the first equal-solution x1 based on the initial solution x0 that is assumed to have
|M0(x0)| > |M1(x0)|. A vector function v(x) = (|Mt(x)(x)|, b(x)) is designed for
the solutions x obtained during the process, where b(x) =

∑k
i=1

(|Mt(x)(x)∩Gi|
2

)
.

For ease of notation, let |Mt(x)(x)| = 	, where 	 ∈ [n2 , n] (as Mt(x)(x) is the
fuller machine by Lemma 1). Then 0 < b(x) ≤ � �

m�(m
2

)
+

(
�%m
2

) ≤ (�
m + 1)

(
m
2

)
,

where the first ≤ holds by Observation 1. Hence the number of possible values of
v(x) can be upper bounded by

∑n
�=n

2 +1(
�
m +1)

(
m
2

)
= O(mn2). Observe that for

any two solutions x and x′, if v(x) = v(x′) then L(x) = L(x′). Thus the number
of possible values of L(x) can be upper bounded by O(mn2) as well.

Consider a mutation flipping a t(x)-bit on x (i.e., if t(x) = 0 then flipping
a 0-bit; otherwise, a 1-bit). By the discussion for Case (1) given in Theorem 2,
the solution x′ obtained by the mutation has L(x′) < L(x) and can be accepted.
The probability of (1 + 1) EA to generate such a mutation is Ω(1/2). Thus
combining the probability and the number of possible values of L(x) gives that
(1 + 1) EA takes expected runtime O(mn2) to get the first equal-solution x1

based on x0.
Now we consider the runtime of (1 + 1) EA to obtain an optimal solution

based on x1. As all solutions accepted subsequently are equal-ones, we take b(x)

534 F. Shi et al.

as the potential function, where the number of possible values of b(x) can be
bounded by O(km2). By the reasoning given in Theorem 2 a mutation flip-
ping a 0-bit and a 1-bit that can obtain an improved solution can be generated
with probability Ω((m

2n)
2). Consequently, (1 + 1) EA takes expected runtime

O(kn2) to obtain an optimal solution based on x1. In summary, (1 + 1) EA
takes expected runtime O((k + m)n2) to obtain an optimal solution to I1. 	

5 Performance for CCMSP-2

The section starts with a lemma to show that the discussion for CCMSP-2 would
be more complicated than that for CCMSP-1.

Lemma 3. Given a solution x to an instance I2 = (a, c, d, γ, k, {mi|i ∈ [1, k]})
of CCMSP-2, whether l′0(x) > l′1(x) holds is unknown even if |M0(x)| > |M1(x)|.
Proof. Recall that the group Gi has size mi, and there is a variable δi(x) such
that αi(x) = mi/2 + δi(x) and βi(x) = mi/2 − δi(x) for any i ∈ [1, k]. Thus

cov[l0(x)] − cov[l1(x)] = 2c

k∑
i=1

((
αi

2

)
−

(
βi

2

))
= 2c

∑k
i=1(mi − 1)δi.

Observe that 2c
∑k

i=1(mi − 1)δi can be treated as a weighted version of
∑k

i=1 δi(x), where
∑k

i=1 δi(x) > 0 due to |M0(x)| > |M1(x)|, but it is impossible
to decide whether 2c

∑k
i=1(mi − 1)δi is greater than 0. Furthermore, the rela-

tionship among the values of a, c and d are unrestricted. Consequently, it is also
impossible to decide whether or not l′0(x) > l′1(x) holds. 	

For ease of analysis, we set an extra constraint on the values of a, c and d
considered in the instances of CCMSP-2:√√√√ (1 − γ)

γ

(
nd + 2c

k∑
i=1

(
mi

2

))
< a. (2)

That is, for any solution x to any instance of CCMSP-2 and any t ∈ [0, 1],

E[lt(x)] contributes much more than
√

(1−γ)
γ V ar[lt(x)] to l′t(x) under the extra

constraint, because
√

(1−γ)
γ V ar[lt(x)] ≤

√
(1−γ)

γ

(
nd + 2c

∑k
i=1

(
mi

2

))
< a. The

new variant of CCMSP-2 is called CCMSP-2+ in the remaining text.
Due to the extra constraint of CCMSP-2+, for any solution x to I+2 , if

|M0(x)| > |M1(x)| (resp., |M0(x)| < |M1(x)|) then l′0(x) > l′1(x) (resp.,
l′0(x) < l′1(x)). Thus it is easy to derive the following lemma.

Lemma 4. Given an instance I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) of CCMSP-2+,
any optimal solution to I+2 is an equal-solution.

Lemma 5. CCMSP-2+ is NP-hard.

Proof. For the computational hardness of CCMSP-2+, the discussion is divided
based on the number of jobs considered in the instances of CCMSP-2+.

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 535

Case 1. The instances of CCMSP-2+ that consider odd many jobs.
Let I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) be an instance of CCMSP-2+, where

n =
∑k

i=1 mi is odd. We construct an optimal solution x∗ to I+2 as follows. By
Lemma 4, x∗ is an equal-solution. Assume |M0(x∗)| = |M1(x∗)|+1 = n+1

2 . By the
extra constraint of CCMSP-2+, l′0(x

∗) > l′1(x
∗). Thus we only need to analyze

the optimal allocation approach of n+1
2 many jobs on M0 w.r.t. x∗ such that

cov[l0(x∗)] is minimized. By Observation 1, k
(n+1

2k
2

) ≤ cov[l0(x∗)] (i.e., each group
allocates n+1

2k many jobs to M0), but n+1
2k may be not an integer. Fortunately,

by Observation 1, it is easy to get that the optimal allocation approach of n+1
2

many jobs on M0 w.r.t. x∗ can be obtained as: For each 1 ≤ i ≤ k (assume that
the values of αj(x∗) for all 1 ≤ j < i have been specified), if

mi < (
n + 1

2
−

i−1∑
j=1

αj(x
∗))/(k + 1 − i),

then let αi(x∗) = mi; otherwise, let αi(x∗) = (n+1
2 −∑i−1

j=1 αj(x∗))/(k+1− i)�.
Observe that once αi(x∗) is set as (n+1

2 − ∑i−1
j=1 αj(x∗))/(k + 1 − i)�, then

for all i < j ≤ k, |αj(x∗) − αi(x∗)| ≤ 1 (as m1 ≤ m2 ≤ . . . ≤ mk). In a word,
the optimal solution x∗ to I+2 satisfies the following property.
Property-Odd: For any i ∈ [1, k], either αi(x∗) = mi or 0 ≤ αmax(x∗) −
αi(x∗) ≤ 1, where αmax(x∗) = max{α1(x∗), . . . , αk(x∗)}.

Case 2. The instances of CCMSP-2+ that consider even many jobs.
The definition of the Two-way Balanced Partition problem is: Given a mul-

tiset S that contains non-negative integers such that both |S| and
∑

e∈S e are
even, can S be partitioned into two subsets S1 and S2 such that |S1| = |S2|
and

∑
a∈S1

a =
∑

b∈S2
b? The NP-hardness of the Two-way Balanced Partition

problem can be shown by reducing the well-known Partition problem [8] to it.
It can be shown that any instance of the Two-way Balanced Partition problem
can be polynomial-time reduced to an instance I+2 of CCMSP-2+ such that I+2
has even many groups and each group has odd size. Due to the page limit, the
detailed discussion will be given in a complete version. 	

Corollary 1. CCMSP-2 is NP-hard.

5.1 Performance for CCMSP-2+

Theorem 4. Given an instance I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) of CCMSP-
2+ that considers odd many jobs (i.e., n =

∑k
i=1 mi is odd), RLS takes expected

runtime O(
√

kn3) to obtain an optimal solution to I+2 .

Proof. Let x0 be the initial solution maintained by RLS. The optimization pro-
cess of RLS for x0 discussed below is divided into two phases.

536 F. Shi et al.

Phase-1. Obtaining the first equal-solution x1 based on x0.
Let p1(x) = ||M0(x)| − |M1(x)|| be the potential of the solution x main-

tained during Phase-1. Observe that 1 ≤ p1(x) ≤ n, and the extra con-
straint of CCMSP-2+ indicates that for any two solutions x′ and x′′ to I+2 ,
if p1(x′) < p1(x′′) then L(x′) < L(x′′). The mutation of RLS flipping exactly
one bit in x whose corresponding job is allocated to the fuller machine w.r.t. x,
can be generated by RLS with probability Ω(1/4), and the obtained solution x′

has potential value p1(x′) = p1(x) − 2. Combining p1(x′) = p1(x) − 2 with the
conclusion given above gets L(x′) < L(x), and x′ can be accepted by RLS. Then
using the Additive Drift analysis [10], we can derive that Phase-1 takes expected
runtime O(n). Note that after the acceptance of x1, any non-equal-solution can-
not be accepted. W.l.o.g., assume that |M0(x1)| = |M1(x1)| + 1.

Phase-2. Obtaining the first optimal solution based on x1.

Case (1). cov[l0(x1)] < cov[l1(x1)].
First of all, it is not hard to get that any mutation flipping exactly one

bit of x1 cannot get an improved solution under Case (1). Thus the following
discussion only considers the mutations flipping a 0-bit of Gi and a 1-bit of Gj

in x1 (note that the other kinds of mutations flipping two bits cannot get equal-
solutions). Denote by x′

1 the obtained solution. Hence |M0(x′
1)| = |M0(x1)| =

|M1(x′
1)|+1 = |M1(x1)|+1 and cov[l0(x1)]−cov[l0(x′

1)] = 2c(αi(x1)−1−αj(x1)).
If αi(x1) − αj(x1) ≥ 1 then cov[l0(x′

1)] ≤ cov[l0(x1)], and x′
1 can be accepted.

Assume that RLS obtains a solution x∗
1 based on x1, on which all possible

mutations flipping exactly a 0-bit and a 1-bit of x∗
1 cannot get an improved

solution, where the 0-bit and 1-bit are of Gi and Gj , respectively. Then x∗
1

satisfies the property: For any 1 ≤ i �= j ≤ k, if αi(x∗
1)−αj(x∗

1) ≥ 2, then all jobs
of Gj are allocated to M0 w.r.t. x∗

1, i.e., αj(x∗
1) = mj and βj(x∗

1) = 0. In other
words, for any 1 ≤ j ≤ k, either αj(x∗

1) = mj or 0 ≤ αmax(x∗
1) − αj(x∗

1) ≤ 1,
where αmax(x∗

1) = max{α1(x∗
1), . . . , αk(x∗

1)}. Thus x∗
1 satisfies Property-Odd

given in the proof of Lemma 5, and x∗
1 is an optimal solution to I+2 .

For the expected runtime of RLS for Phase-2, let p21(x) = cov[l0(x)]/2c be
the potential of the solution x maintained during Phase-2. The above discussion
shows that |M0(x)| = |M1(x)|+1. Let imax = argmax{α1(x), . . . , αk(x)}. Then
(
αimax (x)

2

) ≥ p21(x)
k , implying that αimax

(x) ≥ (
√

1 + 8p21(x)
k + 1)/2. Since x

does not satisfy Property-Odd, there exists a 1 ≤ j′ �= imax ≤ k such that
αimax

(x)−αj′(x) ≥ 2 but αj′(x) < mj′ . Thus βj′(x) ≥ 1. The mutation flipping
a 0-bit of Gimax

and a 1-bit of Gj′ in x can be generated by RLS with probability

Ω(αimax (x)·βj′ (x)
n2) = Ω(αimax (x)

n2) = Ω(1
n2

√
p21(x)

k), and the potential value of the
obtained solution is decreased by at least 1 compared to p21(x). Observe that
the upper bound of p21(x1) and lower bound of p21(x∗

1) are
(n+1

2
2

)
and k

(n+1
2k
2

)
,

respectively. Considering all possible potential values of x, we have that the
expected runtime of RLS for Phase-2 can be bounded by

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 537

(
n+1
2
2)∑

t=k(
n+1
2k
2)

O(

√
kn2

√
t

) = O(
√

kn2)

∫ (
n+1
2
2)

k(
n+1
2k
2)

t− 1
2 dt = O(

√
kn3).

Case (2). cov[l0(x1)] ≥ cov[l1(x1)].
The main difference between the discussion for Case (2) and that for Case

(1) is that the mutation flipping one bit may generate an improved solution,
implying that the fuller machine may be M0 or M1. However, no matter which
one is the fuller machine, the value cov[lt(x)(x)] cannot increase during Phase-2,
where x is a solution maintained by RLS during Phase-2. By the reasoning given
for Case (1), for a mutation flipping exactly one 0-bit of Gi and one 1-bit of Gj

in x, if t(x) = 0 and αi(x) − αj(x) ≥ 2, or t(x) = 1 and βj(x) − βi(x) ≥ 2, then
cov[lt(x′)(x′)] < cov[lt(x)(x)] for the obtained solution x′, and x′ can be accepted.

Let p22(x) = cov[lt(x)(x)]/2c be the potential of the solution x. Using the
reasoning similar to that given for Case (1), we can get that RLS takes expected
runtime O(

√
kn3) to obtain an optimal solution to I+2 under Case (2). 	

Theorem 5. Given an instance I+2 = (a, c, d, γ, k, {mi|i ∈ [1, k]}) of CCMSP-
2+ that considers even many jobs (i.e., n =

∑k
i=1 mi is even), RLS takes expected

runtime O(n4) to obtain an equal-solution x∗ such that either |cov[l0(x∗)] −
cov[l1(x∗)]| ≤ 2c(mk − m1 − 1) or cov[lt(x∗)(x∗)] ≤ c

4 (
n2

k − 2n + k).

Proof. Let x0 be the initial solution maintained by RLS. The proof runs in a
similar way to that of Theorem 4, dividing the optimization process into two
phases: Phase-1, obtaining the first equal-solution x1 based on x0; Phase-2,
optimizing the solution x1. Moreover, the analysis for Phase-1 is the same as
that given in the proof of Theorem 4, i.e., Phase-1 takes expected runtime O(n).
Now we consider Phase-2, where the solution x1 is assumed to have cov[l0(x1)] >
cov[l1(x1)]. Let Δ(x1) = cov[l0(x1)] − cov[l1(x1)]. The following discussion only
considers the mutations flipping a 0-bit of Gi and a 1-bit of Gj in x1. Denote by
x′
1 the obtained solution. We have

cov[l0(x
′
1)]

=cov[l0(x1)] − 2c

[((
αi(x1)

2

)
+

(
αj(x1)

2

))
−

((
αi(x1) − 1

2

)
+

(
αj(x1) + 1

2

))]

=cov[l0(x1)] + 2c(αj(x1) − αi(x1) + 1)

and cov[l1(x′
1)] = cov[l1(x1)] + 2c(βi(x1) − βj(x1) + 1) similarly.

If αj(x1) ≤ αi(x1)−1 (i.e., cov[l0(x′
1)] ≤ cov[l0(x1)]) and βi(x1)−βj(x1)+1 ≤

Δ(x1)/2c (i.e., cov[l1(x′
1)] ≤ cov[l0(x1)]), then L(x′

1) ≤ L(x1) and x′
1 can be

accepted by RLS, and cov[l0(x′
1)] − cov[l1(x′

1)] = Δ(x1) + 2c(mj − mi).
Now we assume that RLS obtains a solution x∗

1 based on x1 such that any
mutation flipping a 0-bit and a 1-bit of x∗

1 cannot get an improved solution, and
cov[l0(x∗

1)] ≥ cov[l1(x∗
1)]. Let imax = argmax{α1(x∗

1), α2(x∗
1), . . . , αk(x∗

1)}. Then
the above discussion shows that for any j ∈ [1, k], if αj(x∗

1) < αimax
(x∗

1)−1 then
βimax

(x∗
1) − βj(x∗

1) + 1 ≥ Δ(x∗
1)/2c, i.e.,

(mimax
− αimax

(x∗
1)) − (mj − αj(x∗

1)) ≥ Δ(x∗
1)/2c − 1,

538 F. Shi et al.

implying that (recall that m1 ≤ m2 ≤ . . . ≤ mk)

Δ(x∗
1)/2c+1 ≤ Δ(x∗

1)/2c − 1+ (αimax
(x∗

1)− αj(x∗
1)) ≤ mimax

− mj ≤ mk − m1.

In other words, for x∗
1, if there is a j ∈ [1, k] with αj(x∗

1) < αimax
(x∗

1) − 1,
then Δ(x∗

1)/2c ≤ mk −m1−1. If there is no j ∈ [1, k] with αj(x∗
1) < αimax

(x∗
1)−

1, then for each j ∈ [1, k], 0 ≤ αimax
(x∗

1) − αj(x∗
1) ≤ 1. Now we bound the

value of cov[l0(x∗
1)]. Let τ = |{1 ≤ j ≤ k|αj(x∗

1) = αimax
(x∗

1) − 1}|. Then
(k − τ)αimax

(x∗
1) + τ(αimax

(x∗
1) − 1) = n/2 implies that αimax

(x∗
1) = n

2k + τ
k ,

and

cov[l0(x
∗
1)]/2c = (k − τ)

(
αimax(x

∗
1)

2

)
+ τ

(
αimax(x

∗
1) − 1

2

)

=
n2

8k
− n

4
− (

τ2

2k
− τ

2
) ≤ n2

8k
− n

4
+

k

8
,

where τ2

2k − τ
2 gets its minimum value −k

8 when τ = k
2 .

For the expected runtime of RLS to get x∗
1 based on x1, let p(x) =

cov[lt(x)(x)]/2c be the potential of x that is a solution maintained by RLS during
the process. Observe that p(x) cannot increase during the process. The proba-
bility of RLS to generate such a mutation mentioned above is Ω(1/n2), and
the potential value decreases by at least 1. As p(x1) can be upper bounded by
O(n2), using the Additive Drift analysis [10] gets that RLS takes expected run-
time O(n4) to obtain x∗

1 based on x1. In summary, RLS takes expected runtime
O(n4) to obtain an equal-solution x∗

1 satisfying the claimed condition based on
x0. 	

6 Conclusion

In the paper, we studied a chance-constrained version of the Makespan Schedul-
ing problem and investigated the performance of RLS and (1 + 1) EA for it. More
specifically, we studied two simple variants of the problem (namely, CCMSP-
1 and CCMSP-2+) and obtained a series of results: CCMSP-1 was shown to
be polynomial-time solvable by giving the expected runtime of RLS and (1 +
1) EA separately to obtain an optimal solution to the given instance of CCMP-1;
CCMSP-2+ was shown to be NP-hard by reducing the Two-way Balanced Par-
tition problem to it, but any instance of CCMSP-2+ that considers odd many
jobs was shown to be polynomial-time solvable by giving the expected runtime
of RLS to obtain an optimal solution to it.

Future work on the Chance-constrained Makespan Scheduling problem or the
chance-constrained version of other classical combinatorial optimization prob-
lems would be interesting, and these related results would further advance and
broaden the understanding of evolutionary algorithms.

References

1. Blazewicz, J., Lenstra, J., Kan, A.: Scheduling subject to resource constraints:
classification and complexity. Discret. Appl. Math. 5(1), 11–24 (1983)

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 539

2. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manage. Sci. 6(1),
73–79 (1959)

3. Corus, D., Lehre, P.K., Neumann, F.: The generalized minimum spanning tree
problem: a parameterized complexity analysis of bi-level optimisation. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp.
519–526. ACM (2013)

4. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple
hybrid algorithms for the vertex cover problem. Evol. Comput. 17(1), 3–19 (2009)

5. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evol. Comput. 18(4), 617–633 (2010)

6. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

7. Gunia, C.: On the analysis of the approximation capability of simple evolutionary
algorithms for scheduling problems. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO), pp. 571–578. ACM (2005)

8. Hayes, B.: Computing science: the easiest hard problem. Am. Sci. 90(2), 113–117
(2002)

9. He, J., Mitavskiy, B., Zhou, Y.: A theoretical assessment of solution quality in
evolutionary algorithms for the knapsack problem. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pp. 141–148. IEEE (2014)

10. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Nat. Comput. 3, 21–35 (2004)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Iwamura, K., Liu, B.: A genetic algorithm for chance constrained programming. J.
Inf. Optim. Sci. 17(2), 409–422 (1996)

13. Jansen, T., Oliveto, P.S., Zarges, C.: Approximating vertex cover using edge-based
representations. In: Proceedings of the Workshop on Foundations of Genetic Algo-
rithms (FOGA), pp. 87–96. ACM (2013)

14. Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed parameter evolutionary
algorithms and maximum leaf spanning trees: a matter of mutation. In: Schaefer,
R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp.
204–213. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-
5_21

15. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex
cover problem. Algorithmica 65(4), 754–771 (2013)

16. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in
dynamic optimization. Algorithmica 78(2), 641–659 (2017)

17. Miller, B.L., Wagner, H.M.: Chance constrained programming with joint con-
straints. Oper. Res. 13(6), 930–945 (1965)

18. Neumann, A., Neumann, F.: Optimising monotone chance-constrained submodular
functions using evolutionary multi-objective algorithms. In: Bäck, T., et al. (eds.)
PPSN 2020. LNCS, vol. 12269, pp. 404–417. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58112-1_28

19. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms
in dynamic and stochastic environments. In: Theory of Evolutionary Computa-
tion. NCS, pp. 323–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-29414-4_7

https://doi.org/10.1007/978-3-642-15844-5_21
https://doi.org/10.1007/978-3-642-15844-5_21
https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.1007/978-3-030-29414-4_7
https://doi.org/10.1007/978-3-030-29414-4_7

540 F. Shi et al.

20. Neumann, F., Sutton, A.M.: Runtime analysis of the (1+1) evolutionary algorithm
for the chance-constrained knapsack problem. In: Proceedings of the Workshop on
on Foundations of Genetic Algorithms (FOGA), pp. 147–153. ACM (2019)

21. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5, 305–319 (2006)

22. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theoret. Comput. Sci. 378(1), 32–40 (2007)

23. Neumann, F., Witt, C.: On the runtime of randomized local search and simple
evolutionary algorithms for dynamic makespan scheduling. In: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pp. 3742–3748
(2015)

24. Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms
for the vertex cover problem. In: Proceedings of the IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), pp. 1563–
1570. IEEE (2008)

25. Oliveto, P.S., He, J., Yao, X.: Analysis of the (1+1) EA for finding approximate
solutions to vertex cover problems. IEEE Trans. Evol. Comput. 13(5), 1006–1029
(2009)

26. Poojari, C.A., Varghese, B.: Genetic algorithm based technique for solving chance
constrained problems. Eur. J. Oper. Res. 185(3), 1128–1154 (2008)

27. Pourhassan, M., Friedrich, T., Neumann, F.: On the use of the dual formulation
for minimum weighted vertex cover in evolutionary algorithms. In: Proceedings of
the Workshop on Foundations of Genetic Algorithms (FOGA), pp. 37–44. ACM
(2017)

28. Pourhassan, M., Gao, W., Neumann, F.: Maintaining 2-approximations for the
dynamic vertex cover problem using evolutionary algorithms. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO), pp. 513–518.
ACM (2015)

29. Pourhassan, M., Shi, F., Neumann, F.: Parameterized analysis of multi-objective
evolutionary algorithms and the weighted vertex cover problem. In: Handl, J.,
Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN
2016. LNCS, vol. 9921, pp. 729–739. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45823-6_68

30. Roostapour, V., Neumann, A., Neumann, F., Friedrich, T.: Pareto optimization for
subset selection with dynamic cost constraints. Artif. Intell. 302, 103597 (2022)

31. Sahni, S.K.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127
(1976)

32. Shi, F., Neumann, F., Wang, J.: Runtime performances of randomized search
heuristics for the dynamic weighted vertex cover problem. Algorithmica 83(4),
906–939 (2021)

33. Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., Neumann, F.: Reoptimization
time analysis of evolutionary algorithms on linear functions under dynamic uniform
constraints. Algorithmica 81(2), 828–857 (2019)

34. Sutton, A.M., Neumann, F.: A parameterized runtime analysis of simple evolu-
tionary algorithms for makespan scheduling. In: Coello, C.A.C., Cutello, V., Deb,
K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp.
52–61. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_6

35. Roostapour, V., Bossek, J., Neumann, F.: Runtime analysis of evolutionary algo-
rithms with biased mutation for the multi-objective minimum spanning tree prob-
lem. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 551–559. ACM (2020)

https://doi.org/10.1007/978-3-319-45823-6_68
https://doi.org/10.1007/978-3-319-45823-6_68
https://doi.org/10.1007/978-3-642-32937-1_6

Runtime Analysis of Simple Evolutionary Algorithms for CCMSP 541

36. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_4

37. Witt, C.: Revised analysis of the (1+1) EA for the minimum spanning tree prob-
lem. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 509–516. ACM (2014)

38. Xie, Y., Harper, O., Assimi, H., Neumann, A., Neumann, F.: Evolutionary algo-
rithms for the chance-constrained knapsack problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), pp. 338–346. ACM (2019)

39. Xie, Y., Neumann, A., Neumann, F., Sutton, A.M.: Runtime analysis of RLS and
the (1+ 1) EA for the chance-constrained knapsack problem with correlated uni-
form weights. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO), pp. 1187–1194. ACM (2021)

40. Yu, Y., Yao, X., Zhou, Z.H.: On the approximation ability of evolutionary opti-
mization with application to minimum set cover. Artif. Intell. 180, 20–33 (2012)

https://doi.org/10.1007/978-3-540-31856-9_4

Runtime Analysis of the (1+1) EA
on Weighted Sums of Transformed Linear

Functions

Frank Neumann1(B) and Carsten Witt2

1 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

frank.neumann@adelaide.edu.au
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

cawi@imm.dtu.dk

Abstract. Linear functions play a key role in the runtime analysis of
evolutionary algorithms and studies have provided a wide range of new
insights and techniques for analyzing evolutionary computation meth-
ods. Motivated by studies on separable functions and the optimization
behaviour of evolutionary algorithms as well as objective functions from
the area of chance constrained optimization, we study the class of objec-
tive functions that are weighted sums of two transformed linear functions.
Our results show that the (1+1) EA, with a mutation rate depending on
the number of overlapping bits of the functions, obtains an optimal solu-
tion for these functions in expected timeO(n logn), thereby generalizing a
well-known result for linear functions to a much wider range of problems.

1 Introduction

Runtime analysis is one of the major theoretical tools to provide rigorous insights
into the working behavior of evolutionary algorithms and other randomized
search heuristics [12,20,27]. The class of pseudo-Boolean linear functions plays
a key role in the area of runtime analysis. Starting with the simplest linear func-
tions called OneMax for which the first runtime analysis has been carried out, a
wide range of results have been obtained for the general class of linear functions.
This includes the study of Droste, Jansen and Wegener [14] who were the first
to obtain an upper bound of O(n log n) for the (1+1) EA on the general class of
pseudo-Boolean linear functions. This groundbreaking result has been based on
a very lengthy proof and subsequently a wide range of improvements have been
made in terms of the development of new techniques for the analysis as well as
the precision of the results. The proof has been simplified significantly using the
analytic framework of drift analysis [15] by He and Yao [16]. Jägersküpper [18,19]
provided the first analysis of the leading coefficient in the bound O(n log n) on
the optimisation time for the problem. Furthermore, advances to simplify proofs
and getting precise results have been made using the framework of multiplica-
tive drift [10]. Doerr, Johannsen and Winzen improved the upper bound result to
(1.39 + o(1))en ln n [9]. Finally, Witt [28] improved this bound to en ln n + O(n)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 542–554, 2022.
https://doi.org/10.1007/978-3-031-14721-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_38&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_38

Runtime Analysis of the (1+1) EA on Transformed Linear Functions 543

by using adaptive drift analysis [6,7]. We expand such investigations for the
(1+1) EA into a wider class of problems that are modelled by two transformed
linear functions. This includes classes of separable functions and chance con-
strained optimization problems.

1.1 Separable Functions

As an example, consider the separable objective function

f(x) =

⎛
⎝

n/2∑
i=1

wixi

⎞
⎠

2

+

√√√√
n∑

i=n/2+1

wixi (1)

where wi ∈ Z+, 1 ≤ i ≤ n, and x = (x1, . . . , xn) ∈ {0, 1}n. The function f
consists of two objective functions

f1(x1, . . . , xn/2) =

⎛
⎝

n/2∑
i=1

wixi

⎞
⎠

2

and f2(xn/2+1, . . . , xn) =

√√√√
n∑

i=n/2+1

wixi.

Here f1 is the square of a function linear in the first half of variables and f2
is the square root of a linear function in the remaining variables. Some investiga-
tions on how evolutionary algorithms optimize separable fitness functions have
been carried out in [13]. It has been shown that if the different functions only
have a small range, then the (1+1) EA optimizes separable functions efficiently if
the different separable functions themselves are easy to be optimized. However,
in our example above the two separable functions may take on exponentially
many values but both functions on their own are optimized by the (1+1) EA
in time O(n log n) using the results for the (1+1) EA on linear functions. This
holds as the transformation applying the square in f1 or the square root in f2
does not change the behavior of the (1+1) EA. The questions arises whether the
O(n log n) bounds also holds for the function f which combines f1 and f2. We
investigate this setting of separable functions for the more general case where
the objective function is given as a weighted sum of two separable transformed
linear functions. For technical reasons, we consider a (1+1) EA with potentially
reduced mutation probability depending on the number of overlapping bits of
the two functions.

1.2 Chance Constrained Problems

Another motivation for our work comes from problems from the area of chance
constrained optimization [2] and considers the case where the two functions are
overlapping or are even defined on the same set of variables. Recently evolution-
ary algorithms have been used for chance constrained problems which motivates
our investigations. In a chance constrained setting the input involves stochastic
components and the goal is to optimize a given objective function under the con-
dition that constraints are met with high probability or that function values are

544 F. Neumann and C. Witt

guaranteed with a high probability. Evolutionary algorithms have been designed
for the chance constrained knapsack problem [1,29,30], chance constrained stock
pile blending problems [31], and chance constrained submodular functions [24].

Runtime analysis results have been obtained for restricted settings of the
knapsack problem [26,32] where the weights are stochastic and the constraint
bound has to be met with high probability. The analysis for the case of stochas-
tic constraints and the class of submodular function [5] and the knapsack prob-
lem [29] already reveal constraint functions that are a linear combination of the
expected weight and the standard deviation of a solution when using Cheby-
shev’s inequality for constraint evaluation. Such functions are the subject of our
investigations.

To make the type of problems that we are interested in clear, we state the
following problem. Given a set of m items E = {e1, . . . , em} with random weights
wi, 1 ≤ i ≤ m. We assume that the weights are independent and each wi is
distributed according to a normal distribution N(μi, σ

2
i), 1 ≤ i ≤ m. We assume

μi ≥ 0 and σi ≥ 0, 1 ≤ i ≤ m. Our goal is to

min W subject to Pr(w(x) ≤ W) ≥ α (2)

where w(x) =
∑n

i=1 wixi, x ∈ {0, 1}m, and α ∈]0, 1[. The problem given in
Equation (2) is usually considered under additional constraints, e.g. spanning
tree constraints in [17], which we do not consider in this paper.

According to [17] the problem given in Eq. 2 is equivalent to minimizing the
fitness function

g(x) =
m∑

i=1

μixi + Kα

(
m∑

i=1

σ2
i xi

)1/2

(3)

where Kα is the α-fractile point of the standard normal distribution.
The fitness function g is a linear combination of the expected value of a

solution which is a linear function and the square root of its variance where
the variance is again a linear function. In order to understand the behaviour
of evolutionary algorithms on fitness functions obtained for chance constrained
optimization problems, our runtime analysis for the (1+1) EA covers such fitness
functions if we assume the reduced mutation probability mentioned above.

1.3 Transformed Linear Functions

In our investigations, we consider the much wider class of problems where a
given fitness function is obtained by the linear combination of two transformed
linear functions. The transformations applied to the linear functions only have
to be monotonically increasing in terms of the functions values of the linear
functions. This includes the setting of separable functions and chance constrained
problems described previously. Furthermore, we do not require that the two
linear functions are defined on the same number of bits.

The main result of our paper is an O(n log n) upper bound for the (1+1) EA
with mutation probability 1/(n + s) on the class of sums of two transformed

Runtime Analysis of the (1+1) EA on Transformed Linear Functions 545

linear functions where s is the number of bits for which the two linear functions
overlap. This directly transfers to the separable problem type given in Eq. 1 with
standard bit mutation probability 1/n and to the chance constraint formulation
given in Eq. 3 when using mutation probability 1/(2n).

The outline of the paper is as follows. In Sect. 2, we formally introduce the
problem formulation for which we analyze the (1+1) EA in this paper. We discuss
the exclusion of negative weights in our setup in Sect. 3 and present the O(n log n)
bound in Sect. 4. Finally, we finish with some discussion and conclusions.

2 Preliminaries

The (1+1) EA shown in Algorithm 1 (generalized with a parameter s discussed
below; classically s = 0 is assumed) is a simple evolutionary algorithm using
independent bit flips and elitist selection. It is very well studied in the theory of
evolutionary computation [3] and serves as a stepping stone towards the analysis
of more complicated evolutionary algorithms. As common, in the area of runtime
analysis, we measure the run time of the (1+1) EA by the number of iterations of
the repeat loop. The optimization time refers to the number of fitness evaluations
until an optimal solution has been obtained for the first time, and the expected
optimization time refers to the expectation of this value.

2.1 Sums of Two Transformed Linear Functions Without
Constraints

We will study the (1+1) EA on the scenario given in (1) and (3), assuming
no additional constraints. In fact, we will generalize the scenario to the sum
of two transformed pseudo-Boolean linear functions which may be (partially)
overlapping. Note, that in (1) there is no overlap on the domains of the two linear
functions and the transformations are the square and the square root, whereas
in (3) there is complete overlap on the domains and the transformations are the
identity function and the square root.

The crucial observation in our analysis is that the scenario considered here
extends the linear function problem [28] that is heavily investigated in the theory
of evolutionary algorithms. Despite the simple structure of the problem, there is
no clear fitness-distance correlation in the linear function problem, which makes
the analysis of the global search operator of the (1+1) EA difficult. If only local
mutations are used, leading to the well known randomized local search (RLS)
algorithm [4], then both the linear function problem and the generalized scenario
considered here are very easy to analyze using standard coupon collector argu-
ments [23], leading to O(n log n) expected optimization time. For the globally
searching (1+1) EA, we will obtain the same bound, proving that the problem is
easy to solve for it; however, we need advanced drift analysis methods to prove
this.

We note that the class of functions we consider falls within the more general
class of so-called monotone functions. Such functions can be difficult to optimize

546 F. Neumann and C. Witt

Algorithm 1: (1+1) EA for minimization of a pseudo-Boolean function
f : {0, 1}n−s → R, where s ∈ {0, . . . , n/2}
1 Choose x ∈ {0, 1}n−s uniformly at random;
2 repeat
3 Create y by flipping each bit xi of x with probability p = 1

n
;

4 if f(y) ≤ f(x) then
5 x ← y;

6 until stop;

with a (1+1) EA using mutation probabilities larger than 1/n [8]; however, it
is also known that the standard (1+1) EA with mutation probability 1/n as
considered here optimizes all monotone functions in expected time O(n log2 n)
[22]. Our bound is by an asymptotic factor of log n better if s = o(n). However, it
should be noted that for s = Ω(n), the bound O(n log n) already follows directly
from [8] since it corresponds to a mutation probability of c/n for a constant c < 1.
In fact, the fitness function g(x) arising from the chance-constrained scenario
presented in (3) above would fall into the case s = n/2.

Set-Up. We will investigate a general optimization scenario involving two lin-
ear pseudo-Boolean functions in an unconstrained search space. The objective
function is an arbitrarily weighted sum of monotone transformations of two lin-
ear functions defined on (possibly overlapping) subspaces of {0, 1}n−s for some
s ≥ 0, where s denotes the number of shared bits. Note that the introduction of
this paper mentions a search space of dimension n and a mutation probability
of p = 1/(n+ s) for the (1+1) EA. While the former perspective is more natural
to present, from now on, we consider the asymptotically equivalent setting of
search space dimension n − s and mutation probability p = 1/n, which eases
notation in the upcoming calculations.

Let α be a constant such that 1/2 ≤ α ≤ ln(2 − ε) ≈ 0.693 − ε/2 for some
constant ε > 0 and assume that αn is an integer. We allow the subfunctions to
depend on a number of bits in [(1 − α)n, αn], including the balanced case that
both subfunctions depend on exactly n/2 bits. Formally, we have

– linear functions

�1 : {0, 1}αn → R and �2 : {0, 1}(1−α)n → R,

where �1(y1, . . . , yαn) =
∑αn

i=1 w
(1)
i yi, and similarly �2(z1, . . . , z(1−α)n) =∑(1−α)n

i=1 w
(2)
i zi with non-negative weights w

(1)
i and w

(2)
i .

– B1 ⊆ {1, . . . , n} and B2 ⊆ {1, . . . , n}, denoting the bit positions that �1 resp.
�2 are defined on in the actual objective function f : {0, 1}n−s → R.

– The overlap count s := |B1 ∩B2|, where s ≤ min{(1−α)n, αn} = (1−α)n ≤
n/2

Runtime Analysis of the (1+1) EA on Transformed Linear Functions 547

– the linear functions with extended domain �∗
1(x1, . . . , xn−s) =∑

i∈B1
w

(1)

r(1)(i)
xi where r(1)(i) is the rank of i in B1 (with the small-

est number receiving rank number 1); and analogously �∗
2(x1, . . . , xn−s) =∑

i∈B2
w

(2)

r(2)(i)
xi; note that �∗

1 and �∗
2 only depend essentially on αn and

(1 − α)n bits, respectively.
– monotone increasing functions h1 : R → R and h2 : R → R.

Then the objective function f : {0, 1}n−s → R, which w. l. o. g. is to be mini-
mized, is given by

f(x1, . . . , xn−s) = h1(�∗
1(x1, . . . , xn−s)) + h2(�∗

2(x1, . . . , xn−s)).

For s = 0, h1 being the square function, and h2 being the square root func-
tion, this matches the setting of separable functions given in Eq. 1. This set-up
also includes the case that

f(x1, . . . , xm) = �1(x1, . . . , xm) + R
√

�2(x1, . . . , xm)

for two m-dimensional, completely overlapping linear functions �1 and �2 and an
arbitrary factor R ≥ 0, as motivated and given in Eq. 3. Note that this matches
our set-up with n = 2 m and s = n.

For our analysis we will make use of the multiplicative drift theorem (Theo-
rem 1) that has been introduced in [11] and was enhanced with tail bounds by
[7]. We use a slightly generalised presentation that can be found in [21].

Theorem 1 (Multiplicative Drift, cf. [7,11,21]). Let (Xt)t≥0, be a stochas-
tic process, adapted to a filtration Ft, over some state space S ⊆ {0}∪[smin, smax],
where 0 ∈ S and smin > 0. Suppose that there exists a δ > 0 such that for all
t ≥ 0

E(Xt − Xt+1 | Ft) ≥ δXt.

Then it holds for the first hitting time T := min{t | Xt = 0} that

E(T | F0) ≤ ln(X0/smin) + 1
δ

.

Moreover, Pr(T > (ln(X0/smin) + r)/δ) ≤ e−r for any r > 0.

3 Negative Weights Allow for Multimodal Functions

We will now justify that the inclusion of negative weights in the underlying linear
functions, along with overlapping domains, can lead to multimodal problems that
cannot be optimized in expected time O(n log n) any longer. In the following
example, the two linear functions depend essentially on all n bits.

Let

f(x1, . . . , xn) =

(
x1

2
+

n∑
i=2

xi

)

︸ ︷︷ ︸
h1(�1(x))

+
(∑n

i=1(1 − xi)
n − 0.5

)n2

︸ ︷︷ ︸
h2(�2(x))

548 F. Neumann and C. Witt

Basically, the first linear function �1(x) = x1/2+
∑n

i=2 xi is a OneMax function
except for the first bit that has a smaller weight than the rest. The second linear
function �2(x) is linear in the number of zeros, i. e., corresponds to the ZeroMax
function that is equivalent to OneMax for the (1+1) EA due to symmetry
reasons. The transformation h2 that is applied to ZeroMax divides the number
of zero-bits by n−0.5 and raises the result to a large power. Essentially, the value
of h2(z) is eΘ(n) if z = n and e−Θ(n) otherwise. This puts a constraint on the
number of zero-bits. If |x|1 ≥ 1, then f is monotone increasing in �1, i. e., search
points decreasing the �1-value also decrease the f -value. However, the all-zeros
string has the largest f -value, i. e., is worst.

We can now see that all search points having one exactly one one-bit at one of
the positions 2, . . . , n are local optima. To create the global optimum from such
a point, two bits have to flip simultaneously, leading to Ω(n2) expected time to
reach the optimum from the point. The situation is similar to the optimization
of linear function under uniform constraints [25].

4 Upper Bound

The following theorem is the main result of this paper, showing that the
(1+1) EA can optimize the generalized class of functions in asymptotically the
same time as an ordinary linear function.

Theorem 2. Let f be the sum of two transformed linear functions as defined in
the set-up in Sect. 2.1. Then the expected optimization time of the (1+1) EA on
f is O(n log n).

The proof of Theorem 2 uses drift analysis with a carefully defined potential
function, explained in the following.

Potential Function. We build upon the approach from [28] to construct a poten-
tial function g(1) for �1 and a potential function g(2) for �2, resulting in a com-
bined potential function φ(x) = g(1)(x) + g(2)(x). The individual potential func-
tions are obtained in the same way as if the (1+1) EA with mutation probabil-
ity 1/n was only optimizing �1 and �2, respectively, on an αn-dimensional and
(1 − α)n-dimensional search space, respectively. The key idea is that accepted
steps of the (1+1) EA on g must improve at least one of the two functions �1
and �2. This event leads to a high enough drift of the respective potential func-
tion that is still positive after pessimistically incorporating the potential loss due
to flipping zero-bits that only the other linear function depends on.

We proceed with the definition of the potential functions g(1) and g(2) (simi-
larly to Sect. 5 in [28]). For the two underlying linear functions we assume their
arguments are reordered according to increasing weights. Note we cannot nec-
essarily sort the set of all indices 1, . . . , n − s of the function f so that both
underlying linear functions have increasing coefficients; however, as we analyze
the underlying functions separately, we can each time use the required sorting
in these separate considerations.

Runtime Analysis of the (1+1) EA on Transformed Linear Functions 549

Definition 1. Given a linear function
∑k

i=1 wixi, where w1 ≤ · · · ≤ wk, we
define the potential function g(x1, . . . , xk) =

∑k
i=1 gixi by

gi =
(

1 +
1
n

)min{j≤i | wj=wi}−1

.

In our scenario, g(1)(z) is the potential function obtained from applying this
construction to the αn-dimensional linear function �1(z), and proceeding accord-
ingly with the (1−α)n-dimensional function g(2)(y) and �2(y). Finally, we define
φ(x) = g(1)(z) + g(2)(y).

We can now give the proof of our main theorem.

Proof (Proof of Theorem 2). Using the potential function from Definition 1, we
analyze the (1+1) EA on f , assume an arbitrary, non-optimal search point xt ∈
{0, 1}n−s and consider the expected change of g from time t to time t + 1. We
consider an accepted step where the offspring differs from the parent since this
is necessary for g to change. That is, at least one 1-bit flips and f does not
grow. Let A be the event that an offspring x′
= xt is accepted. For A to occur,
it is necessary that at least one of the two functions �1 and �2 does not grow.
Since the two cases can be handled in an essentially symmetrically manner (they
become perfectly symmetrical for α = n/2), we only analyze the case that �2
does not grow and that at least one bit in B2 is flipped from 1 to 0. Hence, we
consider exactly the situation that the (1+1) EA with the linear function �2 as
(1−α)n-bit fitness function produces an offspring that is accepted and different
from the parent.

Let Yt = g(2)(yt), where yt is the restriction of the search point xt at time t
to the (1−α)n bits in B2 that g(2) depends on, assuming the indices of xt to be
reordered with respect to increasing coefficients w

(2)
1 , . . . , w

(2)
(1−α)n. To compute

the drift of g, we distinguish between several cases and events in a way similar
to the proof of Theorem 5.1 in [28]. Each of these cases first bounds the drift
of Yt sufficiently precisely and then adds a pessimistic estimate of the drift of
Zt = g(1)(zt), which corresponds to the other linear function on bits from B1, i. e.,
the function whose value may grow under the event A. Note that g(1) depends
on at least as many bits as g(2) does.

Since the estimate of the drift of Zt is always the same, we present it first.
Let Z̃t+1 denote the g(1)-value of the mutated bit string x′ (restricted to the
bits in B1). If x′ is accepted, then Zt+1 = Z̃t+1; otherwise Zt+1 = Zt. If we
pessimistically assume that each bit in zt (i. e., the restriction of xt to the bits
in B1) is a zero-bit that can flip to 1, we obtain the upper bound

E
(
Z̃t+1 − Zt | Zt

)
≤ 1

n

αn∑
i=1

(
1 +

1
n

)i−1

=
1
n

(
1 + 1

n

)αn−1 − 1
1/n

≤ eα − 1 ≤ eln(2−ε) − 1 ≤ 1 − ε, (4)

550 F. Neumann and C. Witt

where we use that α < ln(2−ε) for some constant ε > 0. Also, since Zt+1 = Zt if
the mutation is rejected and we only consider flipping zero-bits, we have under A
(the event that x′ is accepted) that

E(Zt+1 − Zt | Zt;A) ≤ E
(
Z̃t+1 − Zt | Zt

)
≤ 1 − ε. (5)

Note that the estimations (4) and (5) include the case that s of the bits in zt

are shared with the input string yt of the other linear function g(2)(yt).
We next conduct the detailed drift analysis to bound E(φ(xt) − φ(xt+1) | xt),

considering certain events necessary for A. Two different cases are considered.
Case 1: at least two one-bits in yt flip (event S1). Let Ỹt+1 denote the g(2)-

value of the mutated bit string x′, restricted to the bits in B2, under event S1

before selection. If x′ is accepted, then Yt+1 = Ỹt+1; otherwise Yt+1 = Yt. Since
gi ≥ 1 for all i, every zero-bit in yt flips to one with probability at most 1/n, and
(1 − α) ≤ α, we can re-use the estimations from (4). Bounding the contribution
of the flipping one-bits from below by 2, we obtain

E
(
Yt − Ỹt+1 | Yt;S1

)
≥ 2 − 1

n

(1−α)n∑
i=1

(
1 +

1
n

)i−1

≥ 2 − 1
n

αn∑
i=1

(
1 +

1
n

)i−1

≥ 2 − (1 − ε) = 1 + ε.

Along with (4), we have

E(φ(xt) − φ(x′) | xt;S1) ≥ E
(
Yt − Ỹt+1 | Yt;S1

)
− E

(
Zt − Z̃t+1 | Zt;S1

)

≥ 2 − (1 − ε) − (1 − ε) > ε.

Since the drift of φ is non-negative in Case 1, we estimate it from below by 0
regardless of whether A occurs or not and focus only on the event defined in the
following case.

Case 2: exactly one one-bit in yt flips (event S2). Let i∗ denote the random
index of the flipping one-bit in yt. Moreover, let the function β(i) = min{j ≤ i |
w

(2)
j = w

(2)
i } denote the smallest index at most i with the same weight as w

(2)
i ,

i. e., β(i)−1 is the largest index of a strictly smaller weight; using our assumption
that the weights are monotonically increasing with their index. If at least one
zero-bit having the same or a larger weight than bit i∗ flips, neither �2 nor g2
change (because the offspring has the same function value or is rejected); hence,
we now, without loss of generality, only consider the subevents of S2 where all
flipping zero-bits have an index of at most β(i∗). (This reasoning is similar to
the analysis of Subcase 2.2.2 in the proof of Theorem 5 from [28].)

Redefining notation, let Ỹt+1 denote the g(2)-value of the mutated bit string x′

(restricted to the bits in B2) under event S2 before selection. If x′ is accepted,
then Yt+1 = Ỹt+1; otherwise Yt+1 = Yt. Recalling that A is the event that the
mutation x′ is accepted, we have by the law of total probability

Runtime Analysis of the (1+1) EA on Transformed Linear Functions 551

E(Yt − Yt+1 | Yt;S2) = Pr(A | S2) · E
(
Yt − Ỹt+1 | Yt;A ∩ S2

)

≥ Pr(A | S2) · E
(
Yt − Ỹt+1 | Yt;S2

)
,

where the inequality holds since the our estimation of E
(
Yt − Ỹt+1 | Yt;S2

)

below will consider exactly one one-bit to flip and assume all zero-bits to flip
independently, even though already steps flipping two zero-bits right of β(i∗)
may be rejected.

Moreover, using the law of total probability and (5),

E(Zt+1 − Zt | Zt;S2) ≤ Pr(A | S2) · E
(
Z̃t+1 − Zt | Zt;S2

)

and therefore

E(φ(xt) − φ(xt+1) | xt;S2) = Pr(A | S2) · E(φ(xt) − φ(x′) | Yt;A ∩ S2)

≥ Pr(A | S2)E
(
(Yt − Ỹt+1) − (Z̃t+1 − Zt) | xt;S2

)

(6)

It holds that Pr(A | S2) ≥ (1 − 1/n)n−1 ≥ e−1 since the mutation flipping i∗

is certainly accepted if no other bits flip. To bound the drift, we use that every
zero-bit j right of β(i∗) flips with probability 1/n and contributes g

(2)
j to the

difference Yt − Ỹt+1. Moreover, the flip of i∗ contributes the term g
(2)
i∗ to the

difference. Altogether,

E
(
Yt − Ỹt+1 | Yt;S2

)
=

(
1 +

1
n

)β(i∗)−1

− 1
n

β(i∗)−1∑
j=1

(
1 +

1
n

)j−1

=
(

1 +
1
n

)β(i∗)−1

− 1
n

((
1 + 1

n

)β(i∗)−1 − 1
1/n

)
= 1.

Combining this with (5), we have

E
(
φ(xt) − φ(x′) | xt;S2

)
= E

(
(Yt − Ỹt+1) − (Z̃t+1 − Zt) | xt;S2

) ≥ 1 − (1 − ε) = ε.

Altogether, using (6) and our lower bound Pr(A | S2) ≥ e−1, we have the fol-
lowing lower bound on the drift under S2:

E(φ(xt) − φ(xt+1) | xt;S2) ≥ e−1ε.

Finally, we compute the total drift considering all possible one-bits that can
flip under S2. Let I be the set of one-bits in the whole bit string xt. Since the
analysis is analogous when considering an index i ∈ I, we still consider the
situation that the corresponding linear function decreases or stays the same if
i ∈ B2, i. e., i belongs to yt and remark that an analogous event A′ with respect
to the bits B1 and the string zt can be analyzed in the same way.

552 F. Neumann and C. Witt

Now, for i ∈ I, let Fi denote the event that bit i is the only flipping one-bit
in the considered part of the bit string and let F be the event that exactly one
bit from I flips. We have for all i ∈ I that

E(φ(xt) − φ(xt+1) | xt;Fi) ≥ e−1ε.

and therefore also E(φ(xt) − φ(xt+1) | xt;F) ≥ e−1ε. It is sufficient to flip one
of the |I| one-bits and no other bit to have an accepted mutation, which has
probability at least (|I|/n)(1− 1/n)n−1 ≥ |I|

en . We obtain the unconditional drift

E(φ(xt) − φ(xt+1) | xt) ≥ |I|
en

E(φ(xt) − φ(xt+1) | xt;Fi) ≥ |I|e−2

n
ε,

recalling that we estimated the drift from below by 0 if at least two one-bits
flip. To conclude the proof, we relate the last bound to φ(xt). Clearly, since
gi ≤ (1+1/n)n−1 ≤ e for all i ∈ {1, . . . , αn} and since each one-bit can contribute
to both g(1)(xt) and g(2)(yt), we have φ(xt) ≤ 2e|I| so that

E(φ(xt) − φ(xt+1) | xt) ≥
(

e−3ε

2n

)
φ(xt).

Hence, we have established a multiplicative drift of the potential φ with a factor
of δ = (e−3ε)/(2n) and we obtain the claimed O(n log n) bound on the expected
optimization time via the multiplicative drift theorem (Theorem 1), using X0 ≤
n(1 + 1/(n − 1))n = O(n) and smin = 1. ��

We remark that the drift factor (e−3ε)/n from the previous proof can be
improved by constant factors using a more detailed case analysis; however, since
ε can be arbitrarily small and the final bound is in O-notation, this does not
seem worth the effort.

5 Discussion and Conclusions

Motivated by studies on separable functions and objective functions for chance
constrained problems based on the expected value and variance of solutions,
we investigated the quite general setting of the sum of two transformed linear
functions and established an O(n log n) bound for the (1+1) EA.

We now would like to point out some topics for further investigations. Our
result from Theorem 2 has some limitations. First of all, the domains of the two
linear functions may not differ very much in size; more precisely they must be
within a factor of α/(1 − α) ≤ (ln(2))/(1 − ln(2)) ≈ 2.26. With the current pes-
simistic assumption that an improving mutation only improves one of the two
linear functions and simultaneously may flip any bit in the other function to 1
without the mutation being rejected, we cannot improve this to larger size differ-
ences for the domain. For the same reason, the result cannot easily be generalized
to mutation probabilities c/n for arbitrary constants c > 0 as shown for the orig-
inal case of simple linear functions in [28]. Although that paper also suggests

Runtime Analysis of the (1+1) EA on Transformed Linear Functions 553

a different, more powerful class of potential functions to handle high mutation
probabilities, it seems difficult to apply these more powerful potential functions
in the presence of our pessimistic assumptions. With stronger conditions on α,
it may be possible to extend the present results to mutation probabilities up to
(1 + ε)/(n + s) for a positive constant ε depending on α. However, it would be
more interesting to see whether the O(n log n) bound would also hold for muta-
tion probability 1/n for all s ≥ 1, which would include the function g(x) from
the chance-constrained scenario in (3) for the usual mutation probability.

Acknowledgments. This work has been supported by the Australian Research Coun-
cil (ARC) through grant FT200100536 and by the Independent Research Fund Den-
mark through grant DFF-FNU 8021-00260B.

References

1. Assimi, H., Harper, O., Xie, Y., Neumann, A., Neumann, F.: Evolutionary bi-
objective optimization for the dynamic chance-constrained knapsack problem
based on tail bound objectives. In: ECAI, vol. 325, pp. 307–314. IOS Press (2020)

2. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manage. Sci. 6(1),
73–79 (1959)

3. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Theory of Evolutionary Computation. NCS, pp. 1–87. Springer, Cham (2020)

4. Doerr, B., Doerr, C.: The impact of random initialization on the runtime of ran-
domized search heuristics. Algorithmica 75(3), 529–553 (2016)

5. Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A.M.: Optimization of
chance-constrained submodular functions. In: AAAI, pp. 1460–1467. AAAI Press
(2020)

6. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 32–41. Springer,
Heidelberg (2010)

7. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250
(2013)

8. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

9. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited.
In: Proceedings of CEC 2010, pp. 1–8. IEEE Press (2010)

10. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings
of GECCO 2010, pp. 1449–1456. ACM Press (2010)

11. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64(4), 673–697 (2012)

12. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation-Recent Devel-
opments in Discrete Optimization. Springer, Cham (2020)

13. Doerr, B., Sudholt, D., Witt, C.: When do evolutionary algorithms optimize sep-
arable functions in parallel? In: FOGA, pp. 51–64. ACM (2013)

14. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

15. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Adv. Appl. Probab. 13(3), 502–525 (1982)

554 F. Neumann and C. Witt

16. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)

17. Ishii, H., Shiode, S., Nishida, T., Namasuya, Y.: Stochastic spanning tree problem.
Discret. Appl. Math. 3(4), 263–273 (1981)

18. Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Rudolph, G.,
Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199,
pp. 41–51. Springer, Heidelberg (2008)

19. Jägersküpper, J.: Combining Markov-chain analysis and drift analysis. Algorith-
mica 59(3), 409–424 (2011)

20. Jansen, T.: Analyzing Evolutionary Algorithms - The Computer Science Perspec-
tive. Springer, Cham (2013)

21. Lehre, P.K., Witt, C.: Tail bounds on hitting times of randomized search heuris-
tics using variable drift analysis. Combinatorics Probab. Comput. 30(4), 550–569
(2021)

22. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone
functions: an entropy compression argument. In: ANALCO, pp. 94–102. SIAM
(2019)

23. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

24. Neumann, A., Neumann, F.: Optimising monotone chance-constrained submodular
functions using evolutionary multi-objective algorithms. In: Bäck, T., et al. (eds.)
PPSN 2020. LNCS, vol. 12269, pp. 404–417. Springer, Cham (2020)

25. Neumann, F., Pourhassan, M., Witt, C.: Improved runtime results for simple ran-
domised search heuristics on linear functions with a uniform constraint. Algorith-
mica 83(10), 3209–3237 (2021)

26. Neumann, F., Sutton, A.M.: Runtime analysis of the (1+1) evolutionary algorithm
for the chance-constrained knapsack problem. In: FOGA, pp. 147–153. ACM (2019)

27. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
- Algorithms and Their Computational Complexity. Springer, Cham (2010)

28. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics Probab. Comput. 22(2), 294–318 (2013)

29. Xie, Y., Harper, O., Assimi, H., Neumann, A., Neumann, F.: Evolutionary algo-
rithms for the chance-constrained knapsack problem. In: GECCO, pp. 338–346.
ACM (2019)

30. Xie, Y., Neumann, A., Neumann, F.: Specific single- and multi-objective evolu-
tionary algorithms for the chance-constrained knapsack problem. In: GECCO, pp.
271–279. ACM (2020)

31. Xie, Y., Neumann, A., Neumann, F.: Heuristic strategies for solving complex inter-
acting stockpile blending problem with chance constraints. In: GECCO, pp. 1079–
1087. ACM (2021)

32. Xie, Y., Neumann, A., Neumann, F., Sutton, A.M.: Runtime analysis of RLS and
the (1+1) EA for the chance-constrained knapsack problem with correlated uniform
weights. In: GECCO, pp. 1187–1194. ACM (2021)

Runtime Analysis of Unbalanced
Block-Parallel Evolutionary Algorithms

Brahim Aboutaib1,2 and Andrew M. Sutton3(B)

1 Université du Littoral Côte d’Opale, LISIC, 62100 Calais, France
2 Faculty of Science, LRIT, Mohammed V University in Rabat, Rabat, Morocco

3 Department of Computer Science, University of Minnesota Duluth,
55812 Duluth, MN, USA

amsutton@d.umn.edu

Abstract. We revisit the analysis of the (1+λ) EA in a parallel setting
when the offspring population size is significantly larger than the num-
ber of processors available. If the workload is not balanced across the
processors, existing runtime results do not transfer directly. We there-
fore consider two new scenarios that produce unbalanced processors: (1)
when the computation time of the fitness function is variable and depends
on the structure of the individual, and (2) when processing is interrupted
as soon as a viable offspring is found on one of the machines. We derive
parallel execution times for both these models as a function of both
the population size and the number of parallel machines. We discuss the
potential trade-off between communication overhead and execution time,
and we conduct some experiments.

Keywords: Parallel evolutionary algorithms · Runtime analysis

1 Introduction

The (1+λ) EA is a simple population-based evolutionary algorithm that main-
tains a single parent x(t) in generation t and produces an offspring population
of λ individuals using mutation. A new parent individual x(t+1) for the follow-
ing generation t + 1 is obtained by finding the fittest individual among the λ
offspring and parent x(t). In this sense, the (1+λ) EA is a mutation-only evolu-
tionary algorithm that employs elitism via truncation survival selection.

The first theoretical analysis of the (1+λ) EA considered, along with the total
number of fitness evaluations, the so-called parallel execution time [10], which
assumes there are exactly λ parallel processors available, the time to compute
the fitness is uniform for all individuals, and the master process must wait until
every worker task has finished.

The goal of this paper is to extend this analysis to broader settings in which
the number of processors might be far smaller than λ so that large blocks of
individuals must be distributed among the processors. If computational effort is
uniform across all individuals, or if the parallelism is not additionally leveraged
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 555–568, 2022.
https://doi.org/10.1007/978-3-031-14721-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_39&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_39

556 B. Aboutaib and A. M. Sutton

to balance the load, the analysis is somewhat trivial: one needs only to divide the
sequential running time by the number of processors available. However, if the
processors’ workload is unbalanced due to these factors, it becomes necessary
to carry out additional analyses. In this paper, we consider two new scenarios
for parallelizing the (1+λ) EA: (1) when the computational effort is nonuniform
and depends on the structure of the solutions generated or, (2) when the par-
allel architecture is leveraged to abort additional fitness computations as soon
as a viable offspring is found on any processor. The latter case might be espe-
cially helpful in situations where the population size is set too high. In many
optimization problems, one may have to deal with non-uniform fitness evalua-
tion time. For example, the evaluation time of the LeadingOnes function can
vary between O(1) and O(n). This can also be the case in Genetic Program-
ming where individuals represent programs of different length and complexity.
Another case is the so-called automated algorithm configuration, where different
configurations (e.g., parameters’ values) are evaluated. Besides these algorithmic
motivations, there is also a hardware motivation: when running parallel algo-
rithms on a heterogeneous cluster, it is not uncommon for processors to have
different clock speeds. This would lead to significantly different execution times.

1.1 Background

Cantú-Paz [2] remarked that the easiest way to parallelize an evolutionary algo-
rithm is to distribute fitness evaluation among a pool of worker processes, while
a single master process handles genetic operators such as mutation and selection.
This technique is especially beneficial when the evaluation of the fitness func-
tion is the main bottleneck. In this approach, which he called the “master-slave
model”1, the master process produces a population of individuals, and sends a
fraction of the population to each of the other processes to offload the effort
of fitness evaluation. Communication occurs in every generation as the master
process distributes and collects data to and from the so-called slave processes.
This process is depicted in Fig. 1.

master time

worker 1

worker 2

worker 3
λTf/m

λTf/mTc Tc Tc Tc

one generation

Fig. 1. A single generation of a parallel EA with communication time Tc and task
execution time λTf/m. Dashed arrows represent communication between tasks.

1 In this work, we will instead adopt the terminology master-worker.

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 557

This master-worker model is far simpler than other traditional parallelization
techniques such as island models, cellular EAs or hybrid models [13]. In the
absence of other factors (such as the ones we consider in this paper), runtime
analyses would directly translate to this model because the parallelized variant
visits the search space in the same way as the sequential variant [2].

Given a population size of λ and m processors, if Tf is the time to evaluate
the fitness of a single individual, then if each of the m processors evaluates a λ/m
fraction of the population, Cantú-Paz [2] estimates the elapsed time for a single
generation as mTc + λTf

m , where Tc is the inter-task communication time (see
Fig. 1). He also derives the optimal number of parallel processors that minimizes
the cost incurred from communication/parallelization trade-off, which, stated in
our notation, is m∗ =

√
λTf/Tc.

Using this estimate, one can easily translate existing results on the (1+λ) EA
(e.g., [3,4,6,7,10]) by simply multiplying by this factor once Tc and Tf are
known. Implicit in this estimate is the assumption that the cost to compute a
λ/m fraction of the population is static.

A detailed mathematical model of a concrete implementation of the master-
worker model was considered by Dubreuil, Gagné and Parizeau [5]. The authors
derived an expression for predicted speed-up as a function of the number of
processors, fitness evaluation time, communication time and latency. They also
validated this model via simulation. For a more comprehensive treatment of
parallel evolutionary algorithms, we refer the reader to the book chapter of
Sudholt [13] and the survey by Alba and Troya [1].

2 Block-Parallel (1+λ) EA

Block mapping is a simple data distribution scheme for parallel processing that
assigns contiguous blocks of data to parallel tasks [8]. In this scheme, a d-
dimensional array is distributed among m processes so that each process receives
a contiguous block of the array along a subset of array dimensions. In our setting,
a set of λ length-n binary strings can be represented by a λ×n two-dimensional
bit array. Selecting the first dimension, block mapping partitions the array into
m blocks so that the k-th block contains rows kλ/m to (k + 1)λ/m − 1.

The Block-Parallel (1+λ) parEA is listed in Algorithm 1 and is otherwise
identical to the standard (1+λ) EA, except that first an array P of λ individuals
(together with a location to store their fitness value) is computed via standard
mutation by the master process and then a one-to-many scatter communication
is executed with P so each of the m processors receive a block Plocal of λ/m
individuals. Each processor sequentially computes the fitness of its individuals,
storing its result in Plocal. The master process waits until all processes have
completed, and then executes a many-to-one gather communication to retrieve
the λ fitness values stored in P . It then finds the maximum fitness of P (breaking
ties arbitrarily) and replaces x if the fittest of P is at least as fit as x.

558 B. Aboutaib and A. M. Sutton

Runtime analysis on sequential evolutionary algorithms typically character-
ize the runtime of an algorithm A on a function f as a random variable TA,f

that corresponds to the number of fitness evaluations executed until an optimal
solution is first generated. Obviously, if fitness evaluation costs are all equal, then
the block-parallel runtime is proportional to TA,f/m on m machines, because
the workload is more or less balanced. Workload imbalance can arise when the
cost of fitness evaluation is variable, and thus some individuals may require sig-
nificantly more effort than others. Discrepancies that arise from the imbalance
may be small within a single generation, but their effects are additive, and would
likely accumulate over the entire run. We visit a simple model of this scenario
in the next section in which fitness evaluation depends on solution structure.
Later, in Sect. 4, we will investigate imbalance arising from early stopping.

3 Heterogeneous Fitness Evaluation

Workload imbalance in parallel evolutionary algorithms can arise from nonuni-
formity in the computational effort required by the fitness function. We begin
by considering the setting in which the cost of fitness evaluation of an individual
depends on the structure of the individual. Given a bit string x ∈ {0, 1}n, we
denote as cost(x) the computational cost for evaluating f(x), which is defined
as follows. Fix α1, α2 > 0, then

cost(x) = α1|x|1 + α0|x|0. (1)

In order to understand how processing a block of individuals affects the
running time of the algorithm, it is useful to characterize the moment generating
function of the random variable associated with the cost of evaluating the fitness
of an offspring. This is captured in the following lemma.

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 559

Lemma 1. Let y be an offspring generated from x by standard uniform random
mutation and let Z = cost(y) be the random variable associated with the cost of
computing f(y). Then the moment generating function of Z is

MZ(t) = n−n
(
etα0(n − 1) + etα1

)|x|1 (
etα1(n − 1) + eα0

)n−|x|1
.

Proof. To produce y, each bit of x flips independently with probability 1/n, so
we can write Z as the sum of n independent random variables Z =

∑
i:xi=1 Zi,1+∑

i:xi=0 Zi,0, where

Zi,1 =

{
α1 w/ prob. (1 − 1/n),
α0 w/ prob. 1/n,

, and, Zi,0 =

{
α0 w/ prob. (1 − 1/n),
α1 w/ prob/ 1/n.

Thus we have

MZ(t) = E[etZ] =

(
∏

i:xi=1

E[eZi,1]

) (
∏

i:xi=1

E[eZi,0]

)

=

(
∏

i:xi=1

(
1 − 1

n

)
etα1 + etα0

(
1
n

)) (
∏

i:xi=0

(
1 − 1

n

)
etα0 + etα1

(
1
n

))

= n−n
(
etα0(n − 1) + etα1

)|x|1 (
etα1(n − 1) + eα0

)n−|x|1
,

where we have used the independence of the Zi,js in the first line. ��
We now state a useful result that, ignoring delays caused by task communi-

cation, relates α0, α1, λ, m and n to the expected cost of evaluating the offspring
population of an individual.

Theorem 1. The expected time to compute the λ offspring of a parent individual
x in a single generation of the Block-Parallel (1+λ) parEA on m machines is
bounded above by

max{α0, α1}
(

ln m +
λ

m
(|x|1 ln n + n)

)

Proof. Denote the time on machine j as the random variable Bj . Assuming
negligible communication and spin-up time, the time to compute the fitness of
all offspring is bounded by the bottleneck of the largest value of Bj . Thus we
define Y = max{B1, B2, . . . , Bm} and seek to bound the expectation E[Y]. Note
that for any t > 0, we have

560 B. Aboutaib and A. M. Sutton

exp (tE[Y]) ≤ E [exp(tY)] = E

[
max

j
{exp(tBj)}

]
(2)

≤
m∑

j=1

E [exp(tBj)] (3)

=
m∑

j=1

E

⎡

⎣exp

⎛

⎝t
∑

y∈Plocal,j

cost(y)

⎞

⎠

⎤

⎦ (4)

=
m∑

j=1

∏

y∈Plocal,j

E [exp (t cost(y))] (5)

= m (MZ(t))λ/m
. (6)

The inequality in (2) is obtained by Jensen’s inequality, and the inequality in (3)
is obtained by a union bound. In (5) we use the fact that each of the λ/m offspring
in a block are generated independently.

Putting together the above with Lemma 1, we have the inequality

exp (tE[Y]) ≤ m
(
n−n

(
etα0(n − 1) + etα1

)|x|1 (
etα1(n − 1) + eα0

)n−|x|1
)λ/m

.

Taking the natural log of both sides of this inequality, we have

tE[Y] ≤ ln m + λ
m

(
|x|1 ln

(
etα0 (n−1)+etα1

etα1 (n−1)+etα0

)
+ n ln(etα1(n − 1) + etα0) − n ln n

)
,

and setting t := 1/max{α0, α1},

E[Y] ≤ max{α0, α1}
(

ln m +
λ

m
(|x|1 ln n + n)

)
,

since etα0(n − 1) + etα1 ≤ en and e ≤ etα1(n − 1) + etα0 ≤ en. ��
Lemma 2 (Jansen, De Jong and Wegener [10]). Let x ∈ {0, 1}n with
OneMax(x) = i < n, and let P = {y(1), y(2), . . . , y(λ)} be a set of λ offspring
generated independently by standard uniform mutation. The probability that there
exists a y ∈ P with OneMax(y) > OneMax(x) is at least (λ(n − i))/(λ(n −
i) + en).

Theorem 2. The expected time for the Block-Parallel (1+λ) parEA with m < λ
machines on OneMax is

O

(
max{α0, α1}

(
λn2 log n

m

))
.

Proof. For i ∈ {0, 1, . . . , n − 1}, denote as Gi the number of generations the
algorithm spends on fitness level i, that is, the number of generation in which
the parent individual has a OneMax value of i. Denote as Ti the total time spent

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 561

on fitness level i. Note that Gi is distributed geometrically, and by Lemma 2,
E[Gi] ≤ 1 + en

λ(n−i) . By Theorem 1,

E[Ti | Gi = k] ≤ k max{α0, α1}
(

ln m +
λ

m
(i ln n + n)

)
.

For visual clarity we set α := max{α0, α1} and write

E[Ti] ≤
∞∑

k=1

E[Ti | Gi = k] Pr(Gi = k)

≤ α ·
(

ln m +
λ

m
(i ln n + n)

) ∞∑

k=1

k Pr(Gi = k)

≤ α ·
(

ln m +
λ

m
(i ln n + n)

) (
1 +

en

λ(n − i)

)

= α ·
(

en2

m(n − i)
+

en ln m

λ(n − i)
+

λi ln n

m
+

ei ln n

m(n − i)
+

λn

m
+ lnm

)
.

The total expected time is bounded by

E

[
n−1∑

i=0

Ti

]

=
n−1∑

i=0

E[Ti]

≤ α ·
[(

en2

m + en lnm
λ

) ∑n
i=1

1
i + λn(n−1) lnn

2m + e lnn
m

∑n−1
i=0

i
n−i + n2λ

m + n ln m
]

≤ α ·
[(

en2

m + en lnm
λ

)
ln(en) + λn(n−1) lnn

2m + en ln2 n
m + n2λ

m + n ln m
]
,

where we have used the bound

n−1∑

i=0

i

n − i
= (n − 1) +

n−2∑

i=0

i

n − i
≤ (n − 1) +

∫ n−1

0

x

n − x
dx = n ln n.

The asymptotic bound is obtained by observing m < λ and discarding lower
order terms. ��

We can take a similar approach to bound the run time on LeadingOnes.

Theorem 3. The expected time for the Block-Parallel (1+λ) parEA with m < λ
machines on LeadingOnes is

O

(
max{α0, α1}

(
n2λ log n

m
+

n3 log n

m

))
.

Proof. Let x ∈ {0, 1}n where LeadingOnes(x) = i < n. The probability that a
strictly improving string occurs in the offspring population is at least

1 −
(

1 − 1
en

)λ

≥ 1 − e−λ/(en) ≥ 1 − en

λ + en
=

λ

λ + en
.

562 B. Aboutaib and A. M. Sutton

The number of generations on fitness level i is geometrically distributed with
probability bounded as above, and we can bound the expected number of gen-
erations on level i as (λ + en)/λ. As in the proof of Theorem 2, we bound the
total time on fitness level i as

E[Ti] ≤ max{α0, α1}
(

ln m +
λ

m
(i ln n + n)

) (
en + λ

λ

)

= max{α0, α1}
(

en2 + λn

m
+

en ln m

λ
+

i ln n(en + λ)
m

+ lnm

)

using Theorem 1. The bound on the expected total time is obtained by summing
over all fitness levels i ∈ {0, 1, . . . , n − 1}:

max{α0, α1}
(

en3 + λn2

m
+

en2 ln m

λ
+

n(n − 1) ln n(en + λ)
2m

+ n ln m

)
.

The asymptotic bound arises from the fact that m < λ and dropping lower order
terms. ��

4 First-Improving Search Using Task Abortion

The Block-Parallel (1+λ) parEA can be classified as a variant of single-walk,
single-step parallel local search [14] in which the search neighborhood of a can-
didate solution is partitioned up and processed in parallel. In such scenarios,
there can be a dramatic difference between accepting the best neighbor found
vs. accepting the first improving neighbor found. Indeed, it has been shown that
this choice has a significant impact on search behavior and landscape struc-
ture [9,11].

Roussel-Ragot and Dreyfus [12] considered a master-worker parallel imple-
mentation of simulated annealing for which, in the low temperature regime, m
worker processors attempt moves on their own asynchronously until one accepts
a move after which the entire process synchronizes and the current solution is
updated. This inspires us to modify the Block-Parallel (1+λ) parEA in a similar
way: instead of waiting until all λ offspring have been processed, we abort all
tasks as soon as one of the machines has found an acceptable offspring, effectively
transforming the process into a first-improving search.

We also change our perspective to homogeneous execution time, that is, the
fitness evaluation cost is uniform for all processors and all individuals. Algo-
rithm 2 lists the Abortive Block-Parallel (1+λ) parEA, which is identical to the
Block-Parallel (1+λ) parEA (Algorithm 1), except that a process can broadcast
a message to all parallel tasks once it finds a suitable parent for the next genera-
tion. This message interrupts all offspring processing for the current generation,
and processing for the next generation can already start.

The following lemma shows that the minimum of m geometrically distributed
random variables is geometrically distributed.

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 563

Lemma 3. Let (X1,X2, . . . , Xm) be a sequence of iid random variables with
each Xj ∼ Geom(p). Define Y = min {X1,X2, . . . , Xm}. Then Y ∼ Geom(1 −
(1 − p)m).

Proof. The event {Y = k} occurs when, for some nonempty subsequence I ⊆
[m], Xj = k for j ∈ I and Xj > k for j ∈ [m] \ I. Thus,

Pr(Y = k) =
∑

I⊆[m]:I �=∅
Pr(Xj = k : j ∈ I) Pr(Xj′ > k : j′ ∈ [m] \ I)

=
m∑

j=1

(
m

j

) (
(1 − p)k−1p

)j
(1 − p)k(m−j)

= (1 − p)m(k−1)

⎛

⎝
m∑

j=1

(
m

j

)
pj(1 − p)m−j

⎞

⎠

= (1 − (1 − (1 − p)m))k−1 (1 − (1 − p)m) .

Thus Y is distributed as Geom(1 − (1 − p)m). ��
Lemma 3 provides a mechanism to capture the running time of the first task

to find a viable offspring in its block. The following theorem uses this result
to bound above and below the execution time of the Abortive Block-Parallel
(1+λ) parEA on OneMax.

564 B. Aboutaib and A. M. Sutton

Theorem 4. Let T be the time for the Abortive Block-Parallel (1+λ) parEA
with m < λ machines to solve OneMax. Then

n

m
ln n + Ω

(n

m

)
≤ E[T] ≤ n

m
ln

(n

m

)
+

n

2e
+ O

(n

m

)
.

Proof. For simplicity, we assume m divides λ, but the proof is easily adapted to
the general case. We divide the running time of the Block-Parallel (1+λ) parEA
into segments delineated by the fitness of the search point on the master process.
In this setting, the time can be characterized a random variable T =

∑n
i=1 Xi,

where Xi denotes the total time spent in which f(x) = n− i. This is the waiting
time until the first machine processes a strictly improving offspring y of the
parent individual x where f(y) > f(x).

Suppose x is the current parent individual. A given machine continually
processes the offspring in its local block Plocal until one of the following events
occur: (1) it generates an offspring y with f(y) > f(x), (2) it generates an
offspring y with f(y) = f(x), (3) it is aborted by another machine that has
found an offspring y with f(y) > f(x), (4) it is aborted by another machine that
has found an offspring y with f(y) = f(x), or (5) it finishes processing offspring
in its local block.

The Block-Parallel (1+λ) parEA leaves fitness level n−i only when the above
events (1) or (3) occur. Otherwise, the next offspring the machine will process
is an offspring of an individual on the same fitness level as x (perhaps even x
itself, as in the case of (5)).

In the absence of abortion by another machine, the time until a machine
finds an improving offspring is distributed geometrically with success probability
i
n (1 − 1

n)n−i. Since abortion only happens when the first machine succeeds in
processing a strictly improving offspring, the waiting time for the Block-Parallel
(1+λ) parEA to leave fitness level n−i is the minimum over m geometric random
variables. By Lemma 3,

E[Xi] =
1

1 −
(
1 − i

n

(
1 − i

n

)n−i
)m ≤ 1

1 − (1 − i
en)m

≤ 1
1 − exp(− im

en)
.

We may bound E[X] from above by

E

[
n∑

i=1

Xi

]

≤
n∑

i=1

1
1 − exp

(− im
en

) ≤
∫ n

1

dx

1 − exp
(−xm

en

) +
1

1 − exp
(− m

en

)

=
en

m
ln

(
1 − e(mx)/(en)

)∣∣∣
n

1
+

em/(en)

em/(en) − 1

=
en

m
ln

(
em/e − 1

em/(en) − 1

)
+ O(n/m).

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 565

Note that ln
(

q−1
qx−1

)
= ln

(
q−1
x ln q

)
− 1

2x ln q +O(x2) as x → 0, so setting x = 1/n

we can estimate

ln
(

em/e − 1
em/(en) − 1

)
= ln

(
em/e − 1

(1/n) ln em/e

)
− 1

2n
ln em/e + O(1/n2)

≤ ln(n/m) + m/(2e) + O(1).

For the lower bound, the probability of an improving offspring is at most i/n,
thus Bernoulli’s inequality yields

E[Xi] ≥ 1
1 − (1 − i/n)m

≥ 1
1 − (1 − im/n)

=
n

im
,

and by linearity of expectation, E[T] ≥ (n/m)(ln n + Ω(1)) ��
Aside from the fact that we require m ≤ λ, the bound of Theorem 4 does not

depend on λ. One consequence is that the Abortive Block-Parallel (1+λ) parEA
can potentially overcome situations in which the offspring population is set too
large. However, our analysis so far has not taken into account communication
effort, which would indeed depend on λ. Analyzing the trade-off between these
two artifacts is a direction for future work.

5 Experimental Analysis

5.1 Experimental Settings

We consider the following experiments with the Block-Parallel EAs. We con-
sider OneMax instances of size n ∈ {128, 256, 512, 1024, 2048}, and λ ∈
{64, 128, 256, 512, 1024}. We experiment with different numbers of workers m ∈
{2, 4, 8, 16, 32, 64}. The stop condition is either finding the optimum solution,
the {1}n string, or exhausting a budget of n2 function evaluations. We report
the mean optimization time, in seconds, and its standard deviation averaged
over 100 runs, as a function of different parameters.

5.2 The Block-Parallel (1 + λ)parEA Analysis

We first start by reporting the impact of considering a number of offsprings
greater than the available number of processors. Figure 2a reports the mean
optimization time of the Block-Parallel (1+λ)parEA as a function of λ optimizing
the OneMax function of a size n = 512. This figure characterizes the overall
cost of communicating batches of larger offsprings λ

m to each worker on the
optimization time. That is the cost of sending these batches and the waiting
time they take to be evaluated by all the m workers. Though one would expect
a better runtime for larger λ values, one has also to consider the time these
solutions will take to be evaluated and that the Block-Parallel (1 + λ)parEA
algorithm is synchronous, which means that it waits until all the batches are
evaluated before considering a new generation.

566 B. Aboutaib and A. M. Sutton

2.5

5.0

7.5

27 29 211

lambda

tim
e

to
 h

it
th

e
op

tim
um

 (s
ec

)

workers 4 8 16 32 64

0.75

1.00

1.25

1.50

1.75

23 24 25 26

workers

tim
e

to
 h

it
th

e
op

tim
um

 (s
ec

)

lambda 64 128 256

0

10

20

27 28 29 210 211

n

tim
e

to
 h

it
th

e
op

tim
um

 (s
ec

)

workers 4 8 16 32 64

(a) (b) (c)

Fig. 2. Mean optimization time in seconds as a function of λ (a), number of workers
m (b), and the problem size n (c).

To assess the impact of the number of workers, we plot in Fig. 2b the mean
optimization time as a function of the m. This figure suggests that considering a
number of workers smaller than the number of offspring may be slightly better
than considering m = λ. This relative improvement could be due to the reduc-
tion of the communication overhead the algorithm incurs when the number of
workers is lower compared to a large number of workers. Notice also that this
improvement is stable relative to the number of offspring.

Figure 2c reports the wall-clock time as a function of the problem size n for
λ = 256 and reveals a faster growth of the optimization time as a function of n.

5.3 Simulations on the Abortive Block-Parallel (1+λ) parEA

For the Abortive Block-Parallel (1+λ) parEA on OneMax we simulated the
environment by dividing the offspring population into blocks of size λ/m and
measuring in each block, how many offspring were processed until a viable one

500 1,000
0

0.5

1

·104

n

ti
m
e

m = 2

m = 4

m = 8

m = 16

m = 32

m = 64

(a)

0 20 40 60 80
0

0.5

1

·104

n = 100
n = 200
n = 300
n = 400
n = 500
n = 600

n = 700
n = 800

n = 900

n = 1000

m

ti
m
e

(b)

Fig. 3. Simulated wall-clock time of Abortive Block-Parallel (1+λ) parEA on OneMax
for λ = 100 as a function of n (a) and m (b).

Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms 567

was found. The minimum of this count was added to the master clock, which
was stopped as soon as an optimal string was found. We report the results
from this simulation in Fig. 3. The advantage increases with m up to a point
(roughly around lnn) and then returns diminish, as predicted by the bounds in
Theorem 4. Note that the simulation does not account for communication costs.

6 Conclusion

In this paper, we have considered a parallel setting of the (1+λ) EA in which the
offspring population size is larger than the number of parallel processors available
and the computational effort is unbalanced due to variable fitness computation
times or early stopping when viable offspring are found. For these cases we have
derived detailed runtime bounds for OneMax and LeadingOnes. We have
also presented experiments for this scenario that help clarify the picture for
OneMax.

A promising avenue for future work is to explore the trade-offs between exe-
cution time and communication overhead by investigating the interplay between
population size and processor pool size.

References

1. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Complex.
4(4), 31–52 (1999)

2. Cantú-Paz, E.: Master-slave parallel genetic algorithms. In: Efficient and Accurate
Parallel Genetic Algorithms, pp. 33–48. Springer, Boston (2001). https://doi.org/
10.1007/978-1-4615-4369-5 3

3. Doerr, B., Künnemann, M.: How the (1+λ) evolutionary algorithm optimizes linear
functions. In: Blum, C., Alba, E. (eds.) Genetic and Evolutionary Computation
Conference, GECCO ’13, Amsterdam, The Netherlands, 6–10 July 2013, pp. 1589–
1596. ACM (2013). https://doi.org/10.1145/2463372.2463569

4. Doerr, B., Künnemann, M.: Royal road functions and the (1 + λ) evolutionary
algorithm: almost no speed-up from larger offspring populations. In: Proceedings
of the IEEE Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico,
20–23 June 2013, pp. 424–431. IEEE (2013). https://doi.org/10.1109/CEC.2013.
6557600

5. Dubreuil, M., Gagné, C., Parizeau, M.: Analysis of a master-slave architecture
for distributed evolutionary computations. IEEE Trans. Syst. Man Cybern. Part
B (Cybernetics) 36(1), 229–235 (2006). https://doi.org/10.1109/TSMCB.2005.
856724

6. Gießen, C., Witt, C.: The interplay of population size and mutation probability in
the (1 + λ) EA on OneMax. Algorithmica 78(2), 587–609 (2016). https://doi.org/
10.1007/s00453-016-0214-z

7. Gießen, C., Witt, C.: Optimal mutation rates for the (1+λ) EA on OneMax through
asymptotically tight drift analysis. Algorithmica 80(5), 1710–1731 (2017). https://
doi.org/10.1007/s00453-017-0360-y

8. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Pearson Education Limited (2003)

https://doi.org/10.1007/978-1-4615-4369-5_3
https://doi.org/10.1007/978-1-4615-4369-5_3
https://doi.org/10.1145/2463372.2463569
https://doi.org/10.1109/CEC.2013.6557600
https://doi.org/10.1109/CEC.2013.6557600
https://doi.org/10.1109/TSMCB.2005.856724
https://doi.org/10.1109/TSMCB.2005.856724
https://doi.org/10.1007/s00453-016-0214-z
https://doi.org/10.1007/s00453-016-0214-z
https://doi.org/10.1007/s00453-017-0360-y
https://doi.org/10.1007/s00453-017-0360-y

568 B. Aboutaib and A. M. Sutton

9. Hansen, P., Mladenović, N.: First vs. best improvement: an empirical study. Discr.
Appl. Math. 154(5), 802–817 (2006). https://doi.org/10.1016/j.dam.2005.05.020

10. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring popula-
tion size in evolutionary algorithms. Evolution. Comput. 13(4), 413–440 (2005).
https://doi.org/10.1162/106365605774666921

11. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local
optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 11

12. Roussel-Ragot, P., Dreyfus, G.: A problem independent parallel implementation of
simulated annealing: models and experiments. IEEE Trans. Comput. Aided Design
Integrat. Circuits Syst. 9(8), 827–835 (1990). https://doi.org/10.1109/43.57790

13. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

14. Verhoeven, M.G.A., Aarts, E.H.L.: Parallel local search. J. Heurist. 1(1), 43–65
(1995). https://doi.org/10.1007/BF02430365

https://doi.org/10.1016/j.dam.2005.05.020
https://doi.org/10.1162/106365605774666921
https://doi.org/10.1007/978-3-642-15844-5_11
https://doi.org/10.1109/43.57790
https://doi.org/10.1007/978-3-662-43505-2_46
https://doi.org/10.1007/BF02430365

Self-adjusting Population Sizes
for the (1, λ)-EA on Monotone Functions

Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland
{marc.kaufmann,larcherm,johannes.lengler,xun.zou}@inf.ethz.ch

Abstract. We study the (1, λ)-EA with mutation rate c/n for c ≤ 1,
where the population size is adaptively controlled with the (1 : s + 1)-
success rule. Recently, Hevia Fajardo and Sudholt have shown that this
setup with c = 1 is efficient on OneMax for s < 1, but inefficient if
s ≥ 18. Surprisingly, the hardest part is not close to the optimum, but
rather at linear distance. We show that this behavior is not specific to
OneMax. If s is small, then the algorithm is efficient on all monotone
functions, and if s is large, then it needs superpolynomial time on all
monotone functions. For small s and c < 1 we show a O(n) upper bound
for the number of generations and O(n log n) for the number of function
evaluations; for small s and c = 1 we show the optimum is reached
in O(n log n) generations and O(n2 log log n) evaluations. We also show
formally that optimization is always fast, regardless of s, if the algorithm
starts in proximity of the optimum. All results also hold in a dynamic
environment where the fitness function changes in each generation.

Keywords: Parameter control · Self-adaptation · (1, λ)-EA · One-fifth
rule · Monotone functions · Dynamic environments · Evolutionary
algorithm

1 Introduction

Randomized Optimization Heuristics (ROHs) like Evolutionary Algorithms (EAs)
are simple general-purpose optimizers. One of their strengths is that they can often
be applied with little adaptation to the problem at hand. However, ROHs usually
come with parameters, and their efficiency often depends on the parameter set-
tings. Therefore, parameter control is a classical topic in the design and analysis of
ROHs [23]. It aims at providing methods to automatically tune parameters over
the course of optimization. It is not the goal to remove parameters altogether, as
the parameter control mechanisms introduce new meta-parameters. However, the
following two objectives can sometimes be achieved.

Extended Abstract. The proofs and further details are available on arxiv [32].
M. Kaufmann—Supported by the Swiss National Science Foundation [grant number
192079].
X. Zou—Supported by the Swiss National Science Foundation [grant number CR-
SII5 173721].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 569–585, 2022.
https://doi.org/10.1007/978-3-031-14721-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_40&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_40

570 M. Kaufmann et al.

Firstly, some ROHs are rather sensitive to small changes in the parameters,
and inadequate setting can slow down or even prevent success. Two examples
relevant for this paper are the (1, λ)-EA, which fails to optimize even the One-

Max benchmark if λ is too small [2,28,53], and the (1 + 1)-EA, which fails
on monotone functions if the mutation rate is too large [17,18,43]. In both
cases, changing the parameters just by a constant factor makes all the differ-
ence between finding the optimum in time O(n log n), and not even finding an
ε-approximation of the optimal solution in polynomial time. So these algorithms
are extremely sensitive to small changes of parameters. In such cases, one hopes
that performance is more robust with respect to the meta-parameters, i.e., that
the parameter control mechanism finds a decent parameter setting regardless of
its meta-parameters.

Secondly, often there is no single parameter setting that is optimal through-
out the course of optimization. Instead, different phases of the optimization
process profit from different parameter settings, and the overall performance
with dynamically adapted parameters is better than for any static parame-
ters [4,5,11,15,22]. This topic, which has always been studied in continuous
optimization, has taken longer to gain traction in discrete domains [1,30] but has
attracted increasing interest over the last years [6,13,14,16,21,25,35,45–50,52].
Instead of a detailed discussion we refer the reader to the book chapter [10] for
an overview of theoretical results, and to [26] for a discussion of some recent
development.

One of the most traditional and influential methods for parameter control is
the (1 : s + 1)-success rule [33], independently developed several times [8,51,54]
and traditionally used with s = 4 as one-fifth rule in continuous domains, e.g. [3].
This rule has been transferred to the (1, λ)-EA [26,27], which yields the so-called
self-adjusting (1, λ)-EA or SA-(1, λ)-EA, also called (1, {λ/F, F 1/sλ})-EA. As in
the basic (1, λ)-EA, in each generation the algorithm produces λ offspring, and
selects the fittest of them as the unique parent for the next generation. The
difference to the basic (1, λ)-EA is that the parameter λ is replaced by λ/F if
the fittest offspring is fitter than the parent, and by λ ·F 1/s otherwise. Thus the
(1 : s + 1)-success rule replaces the parameter λ by two parameters s and F . As
outlined above, there are two hopes associated with this scheme:

(i) that the performance is more robust with respect to F and s than with
respect to λ;

(ii) that the scheme can adaptively find the locally optimal value of λ through-
out the course of optimization.

Recently, Hevia Fajardo and Sudholt have investigated both hypotheses on the
OneMax benchmark [26,27]. They found a negative result for (i), and a (par-
tial) positive result for (ii). The negative result says that performance is at
least as fragile with respect to the parameters as before: if s < 1, then the
SA-(1, λ)-EA finds the optimum of OneMax in O(n) generations, but if s ≥ 18
and F ≤ 1.5 the runtime becomes exponential with overwhelming probability.
Experimentally, they find that the range of bad parameter values even seems
to include the standard choice s = 4, which corresponds to the 1/5-rule. On

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 571

the other hand, they show that for s < 1, the algorithm successfully achieves
(ii): they show that the expected number of function evaluations is O(n log n),
which is optimal among all unary unbiased black-box algorithms [15,36]. More-
over, they show that the algorithm makes steady progress over the course of
optimization, needing O(b − a) generations to increase the fitness from a to b
whenever b−a ≥ C log n for a suitable constant C. The crucial point is that this
is independent of a and b, so independent of the current state of the algorithm.
It implies that the algorithm chooses λ = O(1) in early stages when progress
is easy, and (almost) linear values λ = Ω(n) in the end when progress is hard.
Thus it achieves (ii) conditional on having appropriate parameter settings.

Interestingly, it is shown in [26] that for s ≥ 18, the SA-(1, λ)-EA fails in a
region far away from the optimum, more precisely in the region with 85% one-
bits. Consequently, it also fails for every other function that is identical with
OneMax in the range of [0.84n, 0.85n] one-bits, which includes other classical
benchmarks like Jump, Cliff, and Ridge. It is implicit that the algorithm would
be efficient in regions that are closer to the optimum. This is remarkable, since
usually optimization is harder close to the optimum. Such a reversed failure
profile has previously only been observed in very few situations. One is the
(μ + 1)-EA with mutation rate c/n for an arbitrary constant 0 < c ≤ 1 on
certain monotone functions. This algorithm is efficient close to the optimum,
but fails to cross some region at linear distance of the optimum if μ > μ0 for
some μ0 that depends on c [44]. A similar phenomenon has been shown for μ = 2
and a specific value of c in the dynamic environment Dynamic BinVal [40,41].
These are the only examples for this phenomenon that the authors are aware of.

A limitation of [26] is that it studies only a single benchmark, the OneMax

function. Although the negative result also holds for functions that are identical
to OneMax in some range, the agreement with OneMax in this range must be
perfect, and the positive result does not extend to other functions in such a way.
This leaves the question on what happens for larger classes of benchmarks:

(a) Is there a safe choice for s that makes the algorithm efficient for a whole
class of functions?

(b) Does the positive result (ii) extend to other benchmarks beyond OneMax?

In this paper, we answer both questions with Yes for the set of all (strictly)
monotone pseudo-Boolean functions. This is a very large class; for example, it
contains all linear functions. In fact, all our results hold in an even more general
dynamic setting: the fitness function may be different in each generation, but it
is a monotone function every time and therefore shares the same global optimum
(1, . . . , 1). We show an upper bound of O(n) generations and O(n log n) function
evaluations if the mutation rate is c/n for some c < 1, which is a very natural
assumption for monotone functions as many algorithms become inefficient for
large values of c [18,37,39,43]. Those results are as strong as the positive results
in [26], except that we replace the constant “1” in the condition s < 1 by a
different constant that depends on c. For c = 1 we still show a bound of O(n log n)
generations and O(n2 log log n) evaluations. This polynomial bound is in line

572 M. Kaufmann et al.

with the general frameworks for elitist algorithms [18,29], although we believe
the true answer should be smaller; see discussion after Theorem 4 for details.

Both parts of the answer are encouraging news for the SA-(1, λ)-EA. It means
that, at least for this class of benchmarks, there is a universal parameter setting
that works in all situations. This resembles the role of the mutation rate c/n
for the (1 + 1)-EA on monotone functions: If c < 1 + ε, then the (1 + 1)-EA is
quasilinear on all monotone functions [18,39,43], and for c < 1 this is known
for many other algorithms as well [37]. On the other hand, the (μ + 1)-EA is an
example where such a safe parameter choice for c does not exist: for any c > 0
there is μ such that the (μ+1)-EA with mutation rate c/n needs superpolynomial
time to find the optimum of some monotone functions.

We do not just strengthen the positive result, but we show that the negative
result generalizes in a surprisingly strong sense, too: for an arbitrary mutation
rate c/n where c < 1, if s is sufficiently large, then the SA-(1, λ)-EA needs expo-
nential time on every monotone function. Thus the failure mode for large s is not
specific to OneMax. On the other hand, we also generalize the result (implicit
in [26]) that the only hard region is at linear distance from the optimum: for any
value of s, if the algorithm starts close enough to the optimum (but still at linear
distance), then with high probability it optimizes every monotone function effi-
ciently. Finally, we complement the theoretical analysis with simulations, which
show another interesting aspect: in a ‘middle region’ of s, it seems to depend
on F whether the algorithm is efficient or not, similarly to the SA (1 + (λ, λ))-
GA [9, Sect. 6.5]. However, there the reason was that the success probability was
universally bounded by ≈0.31 < 1, independent of λ. In our setting, the success
probability approaches one as λ grows, so the underlying reason seems different.

Our proofs re-use ideas from [26]. In particular, we use a potential function of
the form g(xt, λt) = Zm(xt) + h(λt), where Zm(xt) is the number of zero-bits in
xt and h(λt) is a penalty term for small values of λt. Similar decompositions have
been used before [12]. The exact form of h depends on the situation; sometimes it
is very similar to the choices in [26] (h1, h4 below), but some cases are completely
different (h2, h3). With these potential functions, we obtain a positive or nega-
tive drift, depending on the situation. Once the drift is established, the positive
and negative statements about generations follow from standard drift analy-
sis [34,38]. For the number of function evaluations, while some themes from [26]
reappear, the proof strategy is different, see the discussion after Corollary 6 for
the reasons.

Due to space restrictions, this extended abstract only contains the results,
and only sketches of the proofs. The complete proofs may all be found in [32].

2 Preliminaries and Definitions

The Algorithm: SA-(1, λ)-EA. We will consider the self-adjusting (1, λ)-EA
with (1 : s + 1)-success rate, with mutation rate c/n, success ratio s and update
strength F , and we denote this algorithm by SA-(1, λ)-EA. It is given by the
pseudocode in Algorithm 1. Note that the parameter λ may take non-integral

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 573

values during the execution of the algorithm, however the number of children
generated at each step is chosen as the closest integer �λ� to λ.

Let us give a short explanation of the concept of the (1 : s + 1)-success rule,
or (1 : s + 1)-rule for short. For given λ and given position x in the search
space (we omit the index t), the algorithm has some success probability p, where
success means that f(y) > f(x) for the fittest of λ offspring y of x. To keep
this explanation simple we now make a few assumptions, which we lift in the
formal analysis: we will ignore the rounding effect of λ and we will assume
p(λ) ≤ 1/(s+1) for λ = 1, and that 0 < p < 1. The success probability p = p(λ)
is an increasing function in λ, and strictly increasing due to 0 < p < 1. Hence
there is a value λ∗ such that p(λ) < 1/(s + 1) for λ < λ∗ and p(λ) > 1/(s + 1)
for λ > λ∗. Now consider the potential logF λ. This potential decreases by 1
with probability p and increases by 1/s with probability 1−p. So in expectation
it changes by −p + (1 − p)/s = (1 − (s + 1)p)/s. Hence, the expected change
is positive if λ < λ∗ and negative if λ > λ∗. Therefore, λ has a drift towards
λ∗ from both sides (in a logarithmic scaling). So the rule implicitly has a target
population size λ∗, and this population size λ∗ corresponds to the target success
rate p = 1/(s + 1).

Note that a drift towards λ∗ does not necessarily imply that λ always stays
close to λ∗. Firstly, p depends on the current state x of the algorithm, and might
vary rapidly as the algorithm progresses (though this does not seem to be a very
typical situation). In this case, the target value λ∗ also varies. Secondly, even
if λ∗ remains constant, there may be random fluctuations around this value,
see [34,38] for treatments on when drift towards a target guarantees concentra-
tion. However, we note that the (1 : s + 1)-rule for controlling λ gives stronger
guarantees than the same rule for controlling other parameters like step size or
mutation rate. The difference is that other parameters do not necessarily influ-
ence p in a monotone way, and therefore we can not generally guarantee that
there is a drift towards success probability 1/(s + 1) when the (1 : s + 1)-rule is
used to control them. Only when controlling λ we are guaranteed a drift in the
right direction.

Algorithm 1. SA-(1, λ)-EA with success rate s, update strength F and mutation
rate c/n for maximizing a fitness function f : {0, 1}n → R.
Initialization: Choose x0 ∈ {0, 1}n uniformly at random (u.a.r.) and λ0 := 1
Optimization: for t = 0, 1, . . . do

Mutation: for j ∈ {1, . . . ,
⌊
λt

⌉} do
yt,j ← mutate(xt) by flipping each bit of xt independently with prob. c/n

Selection: Choose yt = arg max{f(yt,1), . . . , f(yt,�λ�)}, breaking ties randomly
Update:
if f(yt) > f(xt) then λt+1 ← max{1, λt/F}; else λt+1 ← F 1/sλt;
xt+1 ← yt;

574 M. Kaufmann et al.

The Benchmark: Dynamic Monotone Functions. Whenever we speak of
“monotone” functions in this paper, we mean strictly monotone pseudo-Boolean
functions, defined as follows.

Definition 1. We call f : {0, 1}n → R monotone if f(x) > f(y) for every pair
x, y ∈ {0, 1}n with x 	= y and xi ≥ yi for all 1 ≤ i ≤ n.

In this paper we will consider the following set of benchmarks. For each t ∈ N,
let f t : {0, 1}n → R be a monotone function that may change at each step
depending on xt. Then the selection step in the t-th generation of Algorithm 1
is performed with respect to f t. By slight abuse of language we will still speak
of a dynamic monotone function f .

All our results (positive and negative) hold in this dynamic setup. This set of
benchmarks is quite general. Of course, it contains the static setup that we only
have a single monotone function to optimize, which includes linear functions and
OneMax as special cases. It also contains the setup of Dynamic Linear Func-
tions (originally introduced as Noisy Linear Functions in [42]) and Dynamic

BinVal [40,41]. On the other hand, all monotone functions share the same
global optimum (1 . . . 1), have no local optima, and flipping a zero-bit into a
one-bit strictly improves the fitness. In the dynamic setup, these properties still
hold “locally”, within each selection step. Thus the setup falls into the gen-
eral framework by Jansen [29], which was extended to the partially ordered EA
(PO-EA) by Colin, Doerr, Férey [7]. This implies that the (1+1)-EA with muta-
tion rate c/n finds the optimum of every such Dynamic Monotone Function in
expected time O(n log n) if c < 1, and in time O(n3/2) if c = 1.

Potential Functions and Methods. Drift analysis is a key instrument in the
theory of EAs. To apply it, we must define a potential function and compute
the expected change of this potential. A common potential for simple problems
are the OneMax and ZeroMax potentials Om(xt) =

∑
i xt

i and Zm(xt) =
n − Om(xt), which respectively count the number of one-bits and zero-bits of
the current state xt. We will write Zt := Zm(xt) throughout the paper.

As mentioned before, this potential function will not be sufficient, so as in [26]
we use a composite potential function of the form g(xt, λt) = Zm(xt) + h(λt),
where h(λt) varies from application to application. Since the potential always
contains Zt as additive term, the drift of Zt enters the drift of the potential in
all cases. Thus we compute this drift in Lemma 3 below. We omit all proofs, and
only give some key intermediate result. For all times t we define At,j as the event
that the j-th offspring at time t does not flip any one-bit of the parent, and At

is the event that such a child exists at time t. We also define Bt,j as the event
that the j-th child does flip a zero-bit of the parent and Bt the event that such
a child exists. We drop the superscript t when the time is clear from context.

Lemma 2. There exist constants b1, b2, b3 > 0 depending only on c such that at
all times t with Zt ≥ 1 we have

Pr[Ā] ≤ e−b1λ and e−b2λZt/n ≤ Pr[B̄] ≤ e−b3λZt/n.

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 575

The key ingredient in our analysis is the following lemma.

Lemma 3. Consider the SA-(1, λ)-EA with mutation rate 0 < c ≤ 1 and update
strength 1 < F . There exist constants a1, a2, b > 0 depending only on c such that
at all times t with Zt > 0 we have

E[Zt − Zt+1 | xt, λt] ≥ Pr[B] · a1

(
1 − c(1 − Zt/n)

) − a2e
−bλt

.

We give two key steps in proving Lemma 3.

Claim 1. At all times t ≥ 0 with Zt > 0 we have

E[Zt − Zt+1 | A,B] ≥ e−c(1 − c(1 − Zt/n)).

Claim 2. At all times t ≥ 0 with Zt > 0 we have

E[Zt − Zt+1 | Ā] ≥ −c/(1 − e−c).

We omit the proofs. Both claims are rather easy for λ = 1. The main part of
the proof is showing that the selection step influences the expectation in the
right direction, for which we use the FKG inequality [24]. Details can be found
in [32].

We remark that Lemma 3 and both claims also hold if we replace Zt − Zt+1

by min{1, Zt − Zt+1}, which is helpful for concentration results as the latter
term has exponentially decaying tail probabilities.

Proof (of Lemma 3). The drift of Zt = Zm(xt) may be decomposed into,

E[Zt − Zt+1] = Pr[Ā] · E[Zt − Zt+1 | Ā] + Pr[A,B] · E[Zt − Zt+1 | A,B]

+ Pr[A, B̄] · E[Zt − Zt+1 | A, B̄],

where we omitted the conditioning on x, λ for brevity. The events A,B are inde-
pendent so we get Pr[A,B] = Pr[A] Pr[B]. Also, the third conditional expecta-
tion is 0: if B̄ holds then no child is a strict improvement of the parent, but A
guarantees that some child is at least as good. Hence, if A, B̄ hold then xt = xt+1.
Combining those remarks with the bounds of Claims 1 and 2 gives

E[Zt − Zt+1 | x, λ] ≥ Pr[A] Pr[B] · 1−c(1−Zt/n)
ec − Pr[Ā] · c

1−e−c .

Lemma 2 guarantees that Pr[A] ≥ C = Ω(1) since λ ≥ 1 and that Pr[Ā] ≤ e−b1λ.
Choosing a1 = Ce−c, a2 = c/(1 − e−c) and b = b1 gives the result.
�

3 Monotone Functions Are Efficient for Large Success
Rates

In this section we give the positive results, which hold if s is small, or if s > 0 is
arbitrary and we start sufficiently close to the threshold. We show that in these
cases, for any strictly monotone fitness function the optimum is found efficiently
both in the number of generations and evaluations. For brevity, we present all
those results in a single theorem.

576 M. Kaufmann et al.

Theorem 4. Let 0 < c ≤ 1 < F and 0 < s be the parameters of the EA. There
exist constants C(c, F, s), s0(c) > 0, F0 > 1 and ε(c, F, s) ∈ (0, 1) such that the
following holds. For every dynamic monotone function and any starting values
xinit, λinit, the number of generations G (resp. number of evaluations E) of the
SA-(1, λ)-EA satisfies the following:

(i) if c < 1 and s < s0, then E[G] ≤ Cn and E[E] ≤ C(λinit + n log n);
(ii) if c = 1, s < s0 and F < F0, then E[G] ≤ Cn log n and E[E] ≤ C(λinit +

n2 log log);
(iii) if c < 1 and Zm(xinit) ≤ εn then G ≤ Cn and E ≤ C(λinit + n log n) with

high probability.

We remark that the number of evaluations is tight for c < 1 since any unary
unbiased algorithm needs at least Ω(n log n) function evaluations to optimize
OneMax [36]. For c = 1, we suspect that even the main order n2 is not tight,
since the (1 + 1)-EA with c = 1 is known to need time O(n3/2) even in the
pessimistic PO-EA model [7], which includes every dynamic monotone function.
The order n3/2 is tight for the PO-EA, but a stronger bound of O(n log2 n)
is known for all static monotone functions [39]. Thus we conjecture that the
number of function evaluations is quasi-linear even for c = 1.

The key ingredient for the proof is an appropriate potential function of the
form g(x, λ) = Zm(x) + h(λ). We will use a different h in all three cases.

Definition 5 (Potential functions for positive result). Let

h1(λ) := −K1 · min{0, logF (λ/λmax)},

h2(λ) := −K2 · min{0, 1
λmax

− 1
λ},

h3(λ) := −K3 · min {0, logF λ/λmax} + K4e
−K5λ,

where λmax := F 1/sn and the Kj > 0 are constants to be chosen later. Then for
i = 1, 2, 3, for all x ∈ {0, 1}n and λ ∈ [1,∞) we define

gi(x, λ) := Zm(x) + hi(λ),

and we denote Zt := Zm(xt), Ht
i := hi(λt) and Gt

i := gi(xt, λt).

Very roughly speaking, there are two reasons why we choose those functions:
first |h| is rather small (e.g. 0 ≤ Ht

1 ≤ K1 logF (nF 1/s)) meaning that g = z + h
is a good approximation of z. The second reason is that we want g to consistently
have negative drift towards 0 to be able to conclude with standard drift theorems.
The number of zero-bits z has negative drift when λ is large, but positive drift
when λ is small; the functions Hi above are chosen to have sufficiently large
negative drift when λ is small, and negligible drift (compared to that of z) when
λ is large. A technical, but easy computation gives the drift of Ht

i :

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 577

Claim 3. At all times t ≥ 0 with Zt > 0 we have

E[Ht
1 − Ht+1

1 | x, λ] ≥ −K1 · Pr[B] + K1
s · Pr[B̄] · 1λ<n,

E[Ht
2 − Ht+1

2 | x, λ] ≥ −K2
λ (F − 1) · Pr[B] + K2

λ (1 − F−1/s) · Pr
[
B̄

] · 1λ<n,

E[Ht
3 − Ht+1

3 | x, λ] ≥ 1λ<n Pr[B̄]
(
K3/s + K4(1 − e−K5(F

1/s−1))e−K5λ
)

− Pr[B] · (
K3 + K4e

−K5λ/F
)
.

With a bit of case distinction, Claims 1, 2 and 3 may now be combined to
obtain the following drifts of Gt

1, Gt
2, and Gt

3.

Corollary 6. There exist constants s0 > 0 and F0 > 1 such that for all 0 < s ≤
s0 there are δ, ε > 0 and a choice of K1, . . . ,K5 such that for all t with Zt > 0,

E[Gt
1 − Gt+1

1 | x, λ] ≥ δ if c < 1,

E[Gt
2 − Gt+1

2 | x, λ] ≥ δGt
2/n if c = 1 and F < F0,

E[Gt
3 − Gt+1

3 | x, λ] ≥ δ if c < 1 and Zm(x)/n ≤ 2ε.

Proof (Sketch for Gt
1). Combining Lemma 3 and Claim 3, the drift of G1 is

E[Gt
1 − Gt+1

1 | x, λ] ≥ Pr[B](α1 − K1) + 1λ<n Pr[B̄]K1/s − α2e
−βλ.

We choose K1 = α1/2 so that α1 − K1 ≥ K1, and we may assume s ≤ 1. Now
we make a case distinction. If λ < n, then one can check

E[Gt
1 − Gt+1

1 | x, λ] ≥ K1 + Pr[B̄]K1(1 − s)/s − α2e
−βλ.

There is λ0 = λ0(α2, β,K1) such that for λ ≥ λ0 the last term can be bounded
as α2e

−βλ ≤ K1/2, in which case the drift is at least K1/2. For λ < λ0, the drift
is also Ω(1) for small enough s since Pr[B̄] = Ω(1) by Lemma 2.

If λ ≥ n, the drift is E[Gt
1 −Gt+1

1 | x, λ] ≥ Pr[B]K1 −α2e
−βn. The first term

is at least Pr[B]K1 = Ω(1) since K1 is a constant and so is Pr[B] by Lemma 2,
while the second is e−Ω(n) = o(1); this implies that the drift is Ω(1).
�

From Corollary 6, it is not hard to prove the claim on the number of gener-
ations. For the number of evaluations, we use the best-so-far ZeroMax value
Zt

∗ := minτ≤t(Zτ) as in [26,27], but otherwise our proof is different. In fact, we
believe that the proof in these papers is not fully correct. In [26, Theorem 3.5],
the authors bound the number of evaluations per generation by identically dis-
tributed random variables, and use Wald’s equation to bound the total number
of evaluations. However, Wald’s equation is only true for the sum of independent
random variables (or similar conditions, e.g. [20]), and such a condition is not
satisfied in our case. Thus we need to use a different approach based on concen-
tration of hitting times. We only give the key steps for the case c < 1 without
proofs. For the following lemmas, we consider the SA-(1, λ)-EA as in Theorem 4,
with an arbitrary initial search point xinit and an initial value of λ = λinit.

578 M. Kaufmann et al.

Lemma 7 (Fajardo, Sudholt). There exists a constant C > 0 such that at
all times t ≥ 0, E

[
λt · 1Zt∗≥z

] ≤ λinit/F t + Cn/z.

Lemma 8. Let T denote the first time t at which λt ≤ 8en log n/Zt. There
exists an absolute constant C > 0 such that E[

∑T
t=1 λt] ≤ Cλinit.

Lemma 9. Let c < 1 and (a, b) be an interval of length b − a = log n. Assume
Zm(xinit) ≤ b, and let T be first time t at which Zt ≤ a. Then there exists an
absolute constant D > 0 such that T ≤ D log n with probability at least 1 − n−4.

To prove the statement about the number of evaluations, we divide a run
of the algorithm into blocks and phases as follows. A block starts with an ini-
tialisation phase which lasts until the condition λt ≤ F 1/s8en log n/Zt is met.
Once this phase is over, the block runs for n/ log n phases of length D log n, with
D the constant of Lemma 9. During the i-th such phase the process attempts
to improve Zt from n − i log n to n − (i + 1) log n. If such an improvement is
made before the D log n steps are over, then the process remains idle during the
remaining steps of that phase. If a phase fails to make the correct improvement
in D log n generations, or if λt ≥ F 1/s8en log n/Zt

∗ at any point after the initial-
isation phase is over, then the whole block is considered a failure, and the next
block starts. This trick ensures that no block starts with too large λinit. Then
the proof relies on the following two facts, stated without proof:

(i) every block finds the optimum whp;
(ii) consider a block starting with λ = λinit, then the expected number of func-

tion evaluations during this block is O(λinit + n log n).

For c = 1, we use the same idea, but we use log n/ log log n phases, where the i-th
phase attempts to improve Zt from n/ logi−1 n to n/ logi n in Dn log log n steps
for a large constant D. Then the probability that a phase fails to improve Zt is
at most 1/ log2 n, and the total number of function evaluations per block after
the initialization phase is O(

∑log n/ log log n
i=0 n log log n · logi n) = O(n2 log log n).

4 Small Success Rates Yield Exponential Runtimes

For large s, that is, for a small enough success rate, we show that the SA-(1, λ)-
EA needs super-polynomial time to find the optimum of any dynamic monotone
function. The reason is that the algorithm has negative drift in a region that
is still far away from the optimum, in linear distance. In fact, we have shown
before that the drift is positive close to the optimum. Thus the hardest region for
the SA-(1, λ)-EA is not around the optimum. This surprising phenomenon was
discovered for OneMax in [27]. We show that it is not caused by any specific
property of OneMax, but that it occurs for every dynamic monotone function.
Even in the OneMax case, our result is slightly stronger than [26], since they
show their result only for 1 < F < 1.5, while ours holds for all F > 1. On the
other hand, they give an explicit constant s1 = 18 for OneMax.

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 579

Theorem 10. Let 0 < c ≤ 1 < F . For every ε > 0, there exists s1 > 0 such
that for all s ≥ s1, for every dynamic monotone function and every initial search
point xinit satisfying Zm(xinit) ≥ εn the number of generations of the SA-(1, λ)-
EA with parameters s, F, c is eΩ(n/ log2 n) with high probability.

The proof is quite similar to the other cases, except that we prove a negative
drift. Similar to [26], we use the potential function

h4(λ) := −K6 log2F (λF) = −K6 · (logF (λ) + 1)2,

and we define g4(x, λ) = Zm(x) + h4(λ), Gt
4 := g4(xt, λt), Ht

4 := h4(λt). Then
we use the following key steps. Note the switched order of t + 1 and t.

Lemma 11. There exists a constant α1 > 0 depending only on c such that at
all times t we have E[Zt+1 − Zt | x, λ] ≥ −Pr[B]α1(1 + log λ).

Lemma 12. There exist constants ε, α2 > 0 depending only on c, F such that if
Zt ≤ εn and λ ≤ F , then E[Zt+1 − Zt | x, λ] ≥ α2.

Lemma 13. Assume that s ≥ 1. At all times t with Zt > 0 we have

E[Ht+1
4 − Ht

4 | x, λ] ≥ 1
3 Pr[B]K4(1 + logF λ)1λ≥F − 3

sK4(1 + logF λ).

Corollary 14. For all 0 < c ≤ 1 < F and every sufficiently small ε > 0 there
exists s1 > 0 such that for all s ≥ s1, the following holds. There exists a constant
δ > 0 such that if εn/2 ≤ Zt ≤ εn then E[Gt+1

4 − Gt
4 | x, λ] ≥ δ.

5 Simulations

In this section, we provide simulations that complement our theoretic analysis.
The functions that we optimize in our simulations include OneMax, Binary,
HotTopic [37], BinaryValue, and Dynamic BinVal [40], where Binary is
defined as f(x) =

∑�n/2�
i=1 xin +

∑n
i=�n/2�+1 xi, and BinaryValue is defined as

f(x) =
∑n

i=1 2i−1xi. The definition of HotTopic can be found in [37], and we
set the parameters to L = 100, α = 0.25, β = 0.05, and ε = 0.05. Dynamic

BinVal is the dynamic environment which applies the BinaryValue function
to a random permutation of the n bit positions, see [40] for its formal definition.
In all experiments, we start the SA-(1, λ)-EA with a randomly sampled search
point and an initial offspring size of λinit = 1. The algorithm terminates when
the optimum is found or after 500n generations. The code for the simulations
can be found at https://github.com/zuxu/OneLambdaEA.

Figure 1 follows the same setup with F = 1.5 as in [26], but for a larger
set of functions. We recover the same threshold s = 3.4 for OneMax. For the
other monotone functions, the threshold is smaller than s = 3.4. This opposes a
conjecture in [26], which we formally disprove in a companion paper [31].

https://github.com/zuxu/OneLambdaEA

580 M. Kaufmann et al.

Fig. 1. Average number of generations of
the self-adjusting (1, λ)-EA with F = 1.5
and c = 1 in 10 runs when optimizing
monotone functions with n = 10000, nor-
malised and capped at 500n generations.
Curves for HotTopic and Binary mostly
overlap. The evaluated values of s range
from 0.2 to 5 with a step size of 0.2 for
all functions except that Dynamic BinVal

was not evaluated for 3.2 ≤ s ≤ 5 due to
performance issues.

Effect of F. We have shown that
the SA-(1, λ)-EA with c < 1 opti-
mizes every dynamic monotone func-
tion efficiently when s is small and is
inefficient when s is too large. Both
results hold for arbitrary F . It is nat-
ural to assume that there is a thresh-
old s0 between the efficient and inef-
ficient regime. However, Fig. 2 shows
that the situation might be more com-
plex. For this plot, we have fixed s
slightly below the threshold for F =
1.5 on Dynamic BinVal (empirically
determined from Fig. 1) and system-
atically varied the value of F . For this
intermediate value of s, we see a phase
transition in terms of F .

Hence, we conjecture that there
is no threshold s0 such that the
SA-(1, λ)-EA is efficient for all s < s0
and all F > 1, and inefficient for all
s > s0 and all F > 1. Rather, we con-
jecture that there is ‘middle range’ of values of s for which it depends on F
whether the SA-(1, λ)-EA is efficient. We know from this paper that this phe-
nomenon can only occur for a ‘middle range’: both for sufficiently small s and
for sufficiently large s, the value of F does not play a role.

In general, smaller values of F seem to be beneficial. However, the correlation
is not perfect, see for example the dip for c = 0.98 and F = 5.5 in the left subplot
of Fig. 2. These dips also happen for some other combinations of s, F and c (not
shown), and they seem to be consistent, i.e., they do not disappear with a larger
number of runs or larger values of n up to n = 5000. To test whether this is due
to the rounding scheme, we checked whether the effect disappears if we round λ
in each generation stochastically to the next integer; e.g., λt = 2.6 means that
in generation t we create two offspring with probability 40% and three offspring
with probability 60%. The effect remains, and the runtime still seems to depend
on F in a non-monotone fashion, see the right subplot of Fig. 2.

The impact of F is visible for all ranges c < 1, c = 1 and c > 1. For c = 1 we
have only proven efficiency for sufficiently small F . However, we conjecture that
there is no real phase transition at c = 1, and the ‘only’ difference is that our
proof methods break down at this point. For the fixed s, with increasing c the
range of F becomes narrower and restricts to smaller values while larger values
of c admit a larger range of values for F .

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 581

Fig. 2. Average number of generations of the self-adjusting (1, λ)-EA with s = 1.8
and in 50 runs when optimizing Dynamic BinVal with n = 1000, normalised and
capped at 500n generations. The left and right subplots correspond to the deterministic
and randomized rounding schemes respectively. The vertical bars indicate standard
deviation.

6 Conclusion

We have studied the SA-(1, λ)-EA on dynamic monotone functions. Hevia
Fajardo and Sudholt had shown an extremely strong dependency of the per-
formance on the success rate s for the OneMax benchmark. We have shown
that there is nothing specific to OneMax about the situation. The same effect
happens for any (static or dynamic) monotone fitness function: for small val-
ues of s, the SA-(1, λ)-EA is efficient on all dynamic monotone functions, while
for large values of s, the SA-(1, λ)-EA is inefficient on every dynamic monotone
function. In the latter case, the bottleneck is not around the optimum, but rather
in some area of linear distance from the optimum. Thus the SA-(1, λ)-EA is one
of the surprising examples showing that some algorithms may fail in easy fitness
landscapes, but succeed in hard fitness landscapes.

Hevia Fajardo and Sudholt have conjectured that the problem becomes worse
the easier the fitness landscape is. Concretely, they conjectured that any param-
eter choice that works for OneMax should also give good result for any other
landscape [27]. In a companion paper [31], we disprove this conjecture, but for
an unexpected reason: there are different ways to measure ‘easiness’ of a fitness
landscape. While it is theoretically proven that OneMax is the easiest fitness
function with respect to decreasing the distance from the optimum [19], this is
not the aspect that matters for the SA-(1, λ)-EA. Here, the important aspect
is how easy it is to find a fitness improvement, since this may induce too small
target population sizes in the SA-(1, λ)-EA. For finding fitness improvements,
there are easier functions than OneMax, for example the Dynamic BinVal

function [40] or HotTopic functions [37], see [31] for details. It remains open
to determine the easiest dynamic monotone function feasiest with respect to

582 M. Kaufmann et al.

fitness improvements. A candidate for feasiest might be the ‘adversarial’
Dynamic BinVal, which we define as Dynamic BinVal (see Sect. 5) with
the exception that the permutation is not random but chosen so that any 0-bit
is heavier than any 1-bit. With this fitness function, any 0-bit flip gives a fitter
child, regardless of the number of 1-bit flips, so it is intuitively convincing that
it should be the easiest function with respect to fitness improvement.

Moreover, the conjecture of Hevia Fajardo and Sudholt might still hold if we
replace OneMax by feasiest. I.e., is it true that any parameter choice that works
for feasiest also works for any other dynamic monotone function, and perhaps
even in yet more general settings?

Apart from that, the most puzzling part of the picture is the experimental
finding that in a ‘middle regime’ of success rates, the update strength F seems
to play a role in a non-monotone way (for fixed success rate s). It is open to
prove theoretically that there is indeed such a ‘middle regime’ where F plays a
role at all. For why this effect is non-monotone in F , we do not even have a good
hypothesis. As outlined in Sect. 5, it does not seem to be a rounding effect. This
shows that we are still missing important parts of the overall picture.

Acknowledgements. We thank Dirk Sudholt for helpful discussions during the
Dagstuhl seminar 22081 “Theory of Randomized Optimization Heuristics”. We also
thank the reviewers for their helpful comments and suggestions.

References

1. Aleti, A., Moser, I.: A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Comput. Surv. (CSUR) 49(3), 1–35
(2016)

2. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring popula-
tion size of the (μ, λ) EA. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 1461–1469 (2019)

3. Auger, A.: Benchmarking the (1+ 1) evolution strategy with one-fifth success rule
on the BBOB-2009 function testbed. In: Genetic and Evolutionary Computation
Conference (GECCO), pp. 2447–2452 (2009)

4. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of paral-
lel search. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 892–901. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10762-2 88

5. Böttcher, S., Doerr, B., Neumann, F.: Optimal Fixed and adaptive mutation rates
for the leadingones problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 1

6. Case, B., Lehre, P.K.: Self-adaptation in nonelitist evolutionary algorithms on dis-
crete problems with unknown structure. IEEE Trans. Evol. Comput. 24(4), 650–
663 (2020)

7. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone!
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760
(2014)

https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1007/978-3-642-15844-5_1

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 583

8. Devroye, L.: The compound random search. Ph.D. dissertation, Purdue Univ.,
West Lafayette, IN (1972)

9. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) Genetic Algorithm. Algorithmica 80(5), 1658–1709 (2018)

10. Doerr, B., Doerr, C.: Theory of Parameter control for discrete black-box optimiza-
tion: provable performance gains through dynamic parameter choices. In: Theory
of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-29414-4 6

11. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

12. Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for
multi-valued decision variables. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez,
M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 782–791.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 73

13. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for
multi-valued decision variables. Algorithmica 80(5), 1732–1768 (2018)

14. Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably opti-
mal success rules. Algorithmica 83(10), 3108–3147 (2021)

15. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. Theoret. Comput. Sci. 801, 1–34 (2020)

16. Doerr, B., Gießen, C., Witt, C., Yang, J.: The (1+ λ) evolutionary algorithm with
self-adjusting mutation rate. Algorithmica 81(2), 593–631 (2019)

17. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing mono-
tone functions can be difficult. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 42–51. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15844-5 5

18. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

19. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

20. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+ λ) evolu-
tionary algorithm-different asymptotic runtimes for different instances. Theoret.
Comput. Sci. 561, 3–23 (2015)

21. Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of
selection hyper-heuristics with adaptive learning periods. In: Genetic and Evolu-
tionary Computation Conference (GECCO), pp. 1015–1022 (2018)

22. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates.
Algorithmica 83(4), 1012–1053 (2021)

23. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

24. Grimmett, G.R., et al.: Percolation, vol. 321. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-662-03981-6

25. Hevia Fajardo, M.A., Sudholt, D.: On the choice of the parameter control mecha-
nism in the (1+(λ, λ)) genetic algorithm. In: Genetic and Evolutionary Computa-
tion Conference (GECCO), pp. 832–840 (2020)

26. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-
elitist evolutionary algorithms: why success rates matter. arXiv preprint
arXiv:2104.05624 (2021)

27. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist
evolutionary algorithms: why success rates matter. In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 1151–1159 (2021)

https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1007/978-3-319-45823-6_73
https://doi.org/10.1007/978-3-642-15844-5_5
https://doi.org/10.1007/978-3-662-03981-6
https://doi.org/10.1007/978-3-662-03981-6
http://arxiv.org/abs/2104.05624

584 M. Kaufmann et al.

28. Jagerskupper, J., Storch, T.: When the plus strategy outperforms the comma strat-
egy and when not. In: 2007 IEEE Symposium on Foundations of Computational
Intelligence, pp. 25–32. IEEE (2007)

29. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Tou-
ssaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp.
54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6 4

30. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187
(2014)

31. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: OneMax is not the easiest func-
tion for fitness improvements (2022). https://arxiv.org/abs/2204.07017

32. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes
for the (1, λ)-EA on monotone functions (2022). https://arxiv.org/abs/2204.00531

33. Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.:
Learning probability distributions in continuous evolutionary algorithms-a com-
parative review. Nat. Comput. 3(1), 77–112 (2004)

34. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75(3), 490–506 (2016)

35. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and
parallel evolutionary algorithms. In: Foundations of Genetic Algorithms (FOGA),
pp. 181–192 (2011)

36. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012)

37. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

38. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp.
89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

39. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone
functions: an entropy compression argument. In: Analytic Algorithmics and Com-
binatorics (ANALCO), pp. 94–102. SIAM (2019)

40. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 42

41. Lengler, J., Riedi, S.: Runtime analysis of the (μ + 1)-EA on the dynamic BinVal
function. In: Zarges, C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp.
84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72904-2 6

42. Lengler, J., Schaller, U.: The (1 + 1)-EA on noisy linear functions with random
positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp.
712–719. IEEE (2018)

43. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb.
Probab. Comput. 27(4), 643–666 (2018)

44. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (μ + 1)-EA
on monotone functions. Theoret. Comput. Sci. 875, 28–51 (2021)

45. Lissovoi, A., Oliveto, P., Warwicker, J.A.: How the duration of the learning period
affects the performance of random gradient selection hyper-heuristics. In: AAAI
Conference on Artificial Intelligence (AAAI), vol. 34, no. 3, pp. 2376–2383 (2020)

46. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the time complexity of algorithm
selection hyper-heuristics for multimodal optimisation. In: AAAI Conference on
Artificial Intelligence (AAAI), vol. 33, no. 1, pp. 2322–2329 (2019)

https://doi.org/10.1007/978-3-540-73482-6_4
https://arxiv.org/abs/2204.07017
https://arxiv.org/abs/2204.00531
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-58112-1_42
https://doi.org/10.1007/978-3-030-72904-2_6

Self-adjusting Population Sizes for the (1, λ)-EA on Monotone Functions 585

47. Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: Simple hyper-heuristics control the
neighbourhood size of randomised local search optimally for LeadingOnes. Evol.
Comput. 28(3), 437–461 (2020)

48. Mambrini, A., Sudholt, D.: Design and analysis of schemes for adapting migration
intervals in parallel evolutionary algorithms. Evol. Comput. 23(4), 559–582 (2015)

49. Rajabi, A., Witt, C.: Evolutionary algorithms with self-adjusting asymmetric
mutation. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 664–677.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 46

50. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal opti-
mization. In: Genetic and Evolutionary Computation Conference (GECCO), pp.
1314–1322 (2020)

51. Rechenberg, I.: Evolutionsstrategien. In: Schneider, B., Ranft, U. (eds.) Simulation-
smethoden in der Medizin und Biologie, pp. 83–114. Springer, Heidelberg (1978).
https://doi.org/10.1007/978-3-642-81283-5 8

52. Rodionova, A., Antonov, K., Buzdalova, A., Doerr, C.: Offspring population size
matters when comparing evolutionary algorithms with self-adjusting mutation
rates. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 855–
863 (2019)

53. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

54. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom.
Control 13(3), 270–276 (1968)

https://doi.org/10.1007/978-3-030-58112-1_46
https://doi.org/10.1007/978-3-642-81283-5_8

Theoretical Study of Optimizing Rugged
Landscapes with the cGA

Tobias Friedrich1, Timo Kötzing1, Frank Neumann2,
and Aishwarya Radhakrishnan1(B)

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{friedrich,timo.koetzing,aishwarya.radhakrishnan}@hpi.de

2 School of Computer Science, The University of Adelaide, Adelaide, Australia
frank.neumann@adelaide.edu.au

Abstract. Estimation of distribution algorithms (EDAs) provide a
distribution-based approach for optimization which adapts its probabil-
ity distribution during the run of the algorithm. We contribute to the
theoretical understanding of EDAs and point out that their distribution
approach makes them more suitable to deal with rugged fitness land-
scapes than classical local search algorithms.

Concretely, we make the OneMax function rugged by adding noise to
each fitness value. The cGA can nevertheless find solutions with n(1−ε)
many 1s, even for high variance of noise. In contrast to this, RLS and the
(1+1) EA, with high probability, only find solutions with n(1/2 + o(1))
many 1s, even for noise with small variance.

Keywords: Estimation-of-distribution algorithms · Compact genetic
algorithm · Random local search · Evolutionary algorithms · Run time
analysis · Theory

1 Introduction

Local search [1], evolutionary algorithms [9] and other types of search heuristics
have found applications in solving classical combinatorial optimization problems
as well as challenging real-world optimization problems arising in areas such as
mine planning and scheduling [18,20] and renewable energy [19,24].

Local search techniques perform well if the algorithm can achieve improve-
ment through local steps whereas other more complex approaches such as evolu-
tionary algorithms evolving a set of search points deal with potential local optima
by diversifying their search and allowing to change the current solutions through
operators such as mutation and crossover. Other types of search heuristics, such
as estimation of distribution algorithms [21] and ant colony optimization [8],
sample their solutions in each iteration from a probability distribution that is
adapted based on the experience made during the run of the algorithm. One of
the key questions that arises is when to favour distribution-based algorithms over
search point-based methods. We will investigate this in the context of rugged
landscapes that are obtained by stochastic perturbation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 586–599, 2022.
https://doi.org/10.1007/978-3-031-14721-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_41&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_41

Theoretical Study of Optimizing Rugged Landscapes with the cGA 587

Real-world optimization problems are often rugged with many local optima
and quantifying and handling rugged landscapes is an important topic when
using search heuristics [3,17,22]. Small details about the chosen search point
can lead to a rugged fitness landscapes even if the underlying problem has a
clear fitness structure which, by itself, would allow local search techniques to
find high quality solution very quickly.

In this paper we model a rugged landscape with underlying fitness structure
via OneMax,1 where each search point is perturbed by adding an independent
sample from some given distribution D. We denote the resulting (random) fitness
function OMD.

Note that this setting of D-rugged OneMax is different from noisy OneMax
(with so-called additive posterior noise) [2,11–13,23] in that evaluating a search
point multiple times does not lead to different fitness values (which then could be
averaged, implicitly or explicitly) to get a clearer view of the underlying fitness
signal. Note that another setting without reevaluation (but on a combinatorial
path problem and for an ant colony algorithm, with underlying non-noisy ground
truth) was analyzed in [14].

In this paper we consider as distribution the normal distribution as well as
the geometric distribution. Since all search points get a sample from the same
distribution added, the mean value of the distribution is of no importance (no
algorithm we consider makes use of the absolute fitness value, only of relative
values). Mostly important is the steepness of the tail, and in this respect the two
distributions are very similar.

An important related work, [10] discusses what impact the shape of the cho-
sen noise model has on optimization of noisy OneMax. They find that steep
tails behave very differently from uniform tails, so for this first study we focus
on two distributions with steep tails, which we find to behave similarly.

As a first algorithm, which was found to perform very well under noise [2],
we consider the compact genetic algorithm (cGA), an estimation of distribution
algorithm which has been subject to a wide range of studies in the theoretical
analysis of estimation of distribution algorithms [5,6,12,16]. See Sect. 2 for an
exposition of the algorithm.

In Theorem 4 we show the cGA to be efficient on N (0, σ2)-rugged OneMax,
even for arbitrarily large values of σ2 (at the cost of a larger run time bound).
Note that, since the optimum is no longer guaranteed to be at the all-1s string
(and the global optimum will be just a rather random search point with a lot of
1s, we only consider the time until the cGA reaches n(1− ε) many 1s (similar to
[23]). The idea of the proof is to show that, with sufficiently high probability, no
search point is evaluated twice in a run of the cGA; then the setting is identical
to OneMax with additive posterior noise and we can cite the corresponding
theorem from the literature [12]. Thus, working with a distribution over the
search space and adapting it during the search process leads to a less coarse-

1 OneMax is the well-studied pseudo-Boolean test function mapping x ∈ {0, 1}n to∑n
i=1 xi.

588 T. Friedrich et al.

grained optimization process and presents a way to deal effectively with rugged
fitness landscapes.

We contrast this positive result with negative results on search point based
methods, namely random local search (RLS, maintaining a single individual and
flipping a single bit each iteration, discarding the change if it worsened the
fitness) and the so-called (1+1) EA (which operates like RLS, but instead of
flipping a single bit, each bit is flipped with probability 1/n), as well as with
Random Search (RS, choosing a uniformly random bit string each iteration).

We first consider random local search on N (0, σ2)-rugged OneMax. Theo-
rem 5 shows that, for noise in Ω(

√
log n), RLS will not make it further than half

way from the random start to the OneMax-optimum and instead get stuck in
a local optimum. The proof computes, in a rather lengthy technical lemma, the
probability that a given search point has higher fitness than all of its neighbors.

Going a bit more into detail about what happens during the search, we con-
sider the geometric distribution. In Theorem6 we prove that, even for constant
variance, with high probability the algorithm is stuck after transitioning to a
new search point at most log2(n) many times. This means that essentially no
progress is made over the initial random search point, even for small noise val-
ues! The proof proceeds by showing that successive accepted search points have
higher and higher fitness values; in fact, the fitness values grow faster than the
number of 1s in the underlying bit string. Since every new search point has to
have higher fitness than the previous, it quickly is unfeasible to find even better
search points (without going significantly higher in the 1s of the bit string).

In Theorem 7 we translate the result for RLS to the (1+1) EA. We require
small but non-constant variance of D to make up for the possibility of the (1+1)
EA to jump further, but otherwise get the result with an analogous proof. To
round off these findings, we show in Theorem 8 that Random Search has a bound
of O(

√
n log n) for the number of 1s found within a polynomial number of iter-

ations.
In Sect. 7 we give an experimental impression of the negative results. We

depict that, within n2 iterations, the proportion of 1s in the best string found is
decreasing in n for all algorithms RLS, (1+1) EA and RS, where RS is signifi-
cantly better than the (1+1) EA, RLS being the worst.

This paper proceeds with some preliminaries on the technical details regard-
ing the algorithms and problems considered. After the performance analyses of
the different algorithms in Sect. 3 through 6 and the experimental evaluation in
Sect. 7, we conclude in Sect. 8.

2 Algorithms and Problem Setting

In this section we define the D-rugged OneMax problem and describe all the
algorithms which we are analyzing in this paper. Random local search (RLS) on
a fitness function f is given in Algorithm 1. RLS samples a point uniformly at
random and at each step creates an offspring by randomly flipping a bit. At the
end of each iteration it retains the best bit string available.

Theoretical Study of Optimizing Rugged Landscapes with the cGA 589

Algorithm 1: RLS on fitness function f

1 Choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 y ← flip one bit of x chosen uniformly at random;
4 if f(y) ≥ f(x) then x ← y

The (1+1) EA on a fitness function f is given in Algorithm 2. The difference
between RLS and (1+1) EA is that (1+1) EA creates an offspring by flipping
each bit with probability 1/n.

Algorithm 2: (1+1) EA on fitness function f

1 Choose x ∈ {0, 1}n uniformly at random;
2 while stopping criterion not met do
3 y ← flip each bit of x independently with probability 1/n;
4 if f(y) ≥ f(x) then x ← y

The cGA on a fitness function f is given in Algorithm 3. This algorithm starts
with two bit strings which have the probability of 1/2 for each of their bit to
be 1. After each step this probability is updated based on the best bit string
encountered.

Algorithm 3: The compact GA on fitness function f

1 t ← 0, K ← initialize;
2 p1,t ← p2,t ← · · · ← pn,t ← 1/2;
3 while termination criterion not met do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability pi,t, xi ← 0 else;

6 for i ∈ {1, . . . , n} do
7 yi ← 1 with probability pi,t, yi ← 0 else;

8 if f(x) < f(y) then swap x and y for i ∈ {1, . . . , n} do
9 if xi > yi then pi,t+1 ← pi,t + 1/K if xi < yi then pi,t+1 ← pi,t − 1/K

if xi = yi then pi,t+1 ← pi,t

10 t ← t + 1;

2.1 D-Rugged OneMax

To give a simple model for a rugged landscape with underlying gradient, we
use a randomly perturbed version of the well-studied OneMax test function.
We fix a dimension n ∈ N and a random distribution D. Then we choose, for
every x ∈ {0, 1}n, a random distortion yx from the distribution D. We define
a D-rugged OneMax function as OMD : {0, 1}n → R := x �→ ‖x‖1 + yx where
‖x‖1 := | {i | xi = 1} | is the number of 1s in x.

590 T. Friedrich et al.

In the following sections we show that the cGA optimizes even very rugged
distortions of OMD efficiently, while RLS will get stuck in a local optimum.

3 Performance of the cGA

Let D ∼ N(0, σ2). The following is Lemma 5 from [12], which shows that, while
optimizing OMD, the probability that marginal probabilities falls a constant less
than 1/2 is superpolynomially small in n. Note that here and in all other places
in this paper, we give probabilities that range over the random choices of the
algorithm as well as the random landscape of the instance.

Lemma 1. Let ε ∈ (0, 1) and define

Mε =

{
p ∈ [0.25, 1]n

∣∣∣∣∣
n∑

i=1

pi ≤ n(1 − ε)

}
.

Then

max
p,q∈Mε

n∑
i=1

(2piqi − pi − qi) ≤ −nε/2.

Lemma 2 ([7,12]). Let D ∼ N(0, σ2). Consider the cGA optimizing OMD

with σ2 > 0. Let 0 < a < 1/2 be an arbitrary constant and T ′ = min{t ≥ 0 :
∃i ∈ [n], pi,t ≤ a}. If K = ω(σ2

√
n log n), then for every polynomial poly(n), n

sufficiently large, Pr(T ′ < poly(n)) is superpolynomially small.

Theorem 3. Let ε ∈ (0, 1) and define

Mε =

{
p ∈ [0.25, 1]n

∣∣∣∣∣
n∑

i=1

pi ≤ n(1 − ε)

}
.

Let S ⊆ {0, 1}n be a random multi set of polynomial size (in n), where each
member is drawn independently according to some marginal probabilities from
Mε. Then the probability that the multi set contains two identical bit strings is
2−Ω(nε).

Proof. Let x, y ∈ S be given, based on marginal probabilities p, q ∈ Mε, respec-
tively. Using Lemma 1 in the last step, we compute

P (x = y) =
n∏

i=1

P (xi = yi)

=
n∏

i=1

(piqi + (1 − pi)(1 − qi))

=
n∏

i=1

(1 − pi − qi + 2piqi)

Theoretical Study of Optimizing Rugged Landscapes with the cGA 591

≤
n∏

i=1

exp(−pi − qi + 2piqi)

≤ exp

(
n∑

i=1

−pi − qi + 2piqi

)

≤
Lemma 1

exp(−nε/2).

Since there are only polynomially many pairs of elements from S, we get the
claim by an application of the union bound.

�
From the preceding theorem we can now assume that the cGA always sam-

ples previously unseen search points. We can use [12, Lemma 4] which gives an
additive drift of O(

√
n/(Kσ2)) in our setting.

Now we can put all ingredients together and show the main theorem of this
section.

Theorem 4. Let D ∼ N(0, σ2), σ2 > 0 and let ε be some constant. Then the
cGA with K = ω(σ2

√
n log n) optimizes OMD up to a fitness of n(1 − ε) within

an expected number of O(K
√

nσ2) iterations.

Proof. We let Xt =
∑n

i=1 pi,t be the sum of all the marginal probabilities at
time step t of the cGA. Using Lemma 2, we can assume that (for polynomially
many time steps) the cGA has marginal probabilities of at least 0.25. Now we
can employ Lemma 3 to see that the cGA does not sample the same search point
twice in a polynomial number of steps. Thus, as mentioned, we can use [12,
Lemma 4] to get an additive drift of O(

√
n/(Kσ2)) as long as Xt does not reach

a value of n(1 − ε).
The maximal value of Xt is n, so we can use an additive drift theorem that

allows for overshooting [15, Theorem 3.7] to show the claim. �

4 Performance of RLS

In this section we show that RLS cannot optimize rugged landscapes even for
small values of ruggedness. We show that RLS will not find a solution with more
than 3n/4 ones with high probability. This implies that RLS will get stuck in
a local optimum with a high probability because there are exponentially many
points with number of ones more than 3n/4 and the probability that none of this
points have noise more than the noise associated with the best solution found
by RLS is very low.

Theorem 5. Let D ∼ N(0, σ2). Let σ2 ≥ 4
√

2 ln(n + 1). Then there is a con-
stant c < 1 such that RLS optimizing OMD will reach a solution of more than
3n/4 many 1s (within any finite time) will have a probability of at most c.

592 T. Friedrich et al.

Proof. We consider the event A0 that RLS successfully reached a fitness of 3n/4
starting from an individual with at most n/2 many 1s.

With probability at least 1/2 the initial search point of RLS has at most n/2
many 1s.

We define, for each level i ∈ {n/2, n/2 + 3, n/2 + 6, . . . , 3n/4 − 3}, the first
accepted individual xi which RLS found on that level. For the event A0 to hold,
it must be the case that all xi are not local optima. Any search points in the
neighborhood of xi sampled previous to the encounter of xi will have a value less
than xi (since xi is accepted) and the decision of whether xi is a local optimum
depends only on the k < n so far not sampled neighbors. Since two different
xi have a Hamming distance of at least 3, these neighbors are disjoint sets (for
different i) and their noises are independent.

For any point x to be a local optimum, it needs to have a higher fitness than
any of its at most n neighbors. We assume pessimistically that all neighbors
have one more 1 in the bit string and compute a lower bound on the probability
that the random fitness of x is higher than the random fitness of any neighbor
by bounding the probability that a Gaussian random variable is larger than the
largest of n Gaussian random variables plus 1. By scaling, this is the probability
that some N (0, 1)-distributed random variable is higher than the maximum of
n independent N (1/σ2, 1)-distributed random variables.

Using the symmetry of the normal distribution, this is equivalent to the
probability that some N (1/σ2, 1)-distributed random variable is less than the
minimum of n N (0, 1)-distributed random variables. This is exactly the setting
of Lemma 1, where we pick c = 1/σ2. Plugging in our bound for σ2, we get a
probability of Ω(1/n) that an arbitrary point in our landscape is a local optimum.

Thus we get with constant probability that one of the Θ(n) many xi is a local
optimum. With this constant probability, event A0 cannot occur, as desired. �

4.1 Performance of RLS – A Detailed Look

We now want to give a tighter analysis of RLS on rugged OneMax by showing
that, in expectation, the noise of new accepted search points is growing. For the
analysis, we will switch to a different noise model: We now assume our noise
to be Geo(p)-distributed, for some p ≤ 1/2. We believe that a similar analysis
is also possible for normal-distributed noise, but in particular with much more
complicated Chernoff bounds.

Theorem 6. Let p ≤ 1/2 and let D ∼ Geo(p). Then, for all c, the probability
that RLS optimizing D-rugged OneMax will transition to a better search point
more than log2(n) times is O(n−c).

In particular, in this case, RLS does not make progress of Ω(n) over the
initial solution and does not find the optimum.

Proof. We consider the run of RLS optimizing D-rugged OneMax and denote
with Xt the noise of the t-th accepted search point. We know that X0 ∼ D and
each next point has to be larger than at least the previous search point minus

Theoretical Study of Optimizing Rugged Landscapes with the cGA 593

1: in each iteration either a 0 bit or a 1 bit is flipped and RLS accepts the new
search point only if its fitness value is greater than or equal to the previous
search point.

We will show that Xt is, in expectation, growing. Furthermore we will show
that, with high probability, for t = log2(n) we have that Xt ≥ log2(n)/2. We
finish the proof by showing that, with a search point with such a noise value, it
is very unlikely to find a better search point.

Note that, for all t, we have that the distribution of Xt+1 is the distribution
of D conditional on being at least Xt − 1 if a 0 was flipped to a 1 and Xt + 1
otherwise. Pessimistically assuming the first case and since D is memory-less,
we get Xt+1 ∼ Xt − 1 + D. In particular, since E[D] = 1

p , we have E[Xt+1] ≥
E[Xt] + 1/p − 1. Inductively we get

E[Xt] ≥ E[X0] +
t

p
− t. (1)

Let the geometric random variable attached with each Xt be Dt and we have
Xt ∼ Xt−1−1+Dt, therefore Xt ∼ ∑t

i=0 Di−t. This implies P (Xt ≤ (t+1
p −t)/2)

is nothing but P (
∑t

i=0 Di ≤ (t+1
p + t)/2). By using Chernoff bounds for the sum

of independent geometric random variables [4, Theorem 1.10.32] and by letting
δ = 1

2 − tp
2(t+1) we have,

P

(
Xt ≤

(
t + 1

p
− t

)
/2

)
= P

(
t∑

i=0

Di ≤
(

t + 1
p

+ t

)
/2

)

= P

(
t∑

i=0

Di ≤ (1 − δ)
t + 1

p

)

≤ exp

(
−δ2(t + 1)

2 − 4δ
3

)
.

Since p ≤ 1
2 , we have δ ≥ 1

4 . Therefore,

P

(
Xt ≤

(
t + 1

p
− t

)
/2

)
≤ exp

(
−δ2(t + 1)

2 − 4δ
3

)
≤ exp

(
− 3t

80

)

When t = log2(n),

P (Xt ≤
(

t + 1
p

− t

)
/2) ≤ exp

(
− 3t

80

)
= n− 3

80 log(n).

Assume that we sampled a search point with noise at least m = t+1
2p − t

2 , where
t = log2(n). For a neighbor of the current search point to have higher fitness it
should have at least m− 1 or m+1 noise, depending on whether it has an extra
1 bit or an extra zero bit. The probability for this to happen is,

P (D ≥ m + 1) ≤ P (D ≥ m − 1)

594 T. Friedrich et al.

= p(1 − p)−2(1 − p)m

≤ e
1
2 n− 1

4 log(n).

Using this, we will show that once a search point with noise at least m is sam-
pled, the probability that at least one of the neighbours is of higher fitness is
O

(
n1− log(n)

4

)
. Let Dm1 , . . . , Dmn

denote the random geometric noise associated
with the neighbors of the current search point with at least noise m. Then prob-
ability that at least one of the neighbours is of higher fitness is

≤ P (Dm1 ≥ m − 1 ∪ · · · ∪ Dmn
≥ m − 1)

≤
n∑

i=1

P (Dmi
≥ m − 1)

≤ e
1
2 n1− log(n)

4 .

�
5 Performance of the (1+1) EA

In this section we extend the analysis given for RLS in Theorem6 to the (1+1)
EA.

Theorem 7. Let p ≤ 1/(2 log(n)) and let D ∼ Geo(p). Then, for all c > 0 and
k ∈ N, the probability that the (1+1) EA optimizing D-rugged OneMax will
transition to a better search point more than log2(n) times within nk steps is
O(n−c).

In particular, the probability that the (1+1) EA makes progress of Ω(n) over
the initial solution within nk steps is O(n−c) and thus does not find the optimum.

Proof. We first show that, for c > 0, in any iteration the new accepted search
point by (1+1) EA does not have more than ck log(n)−1 ones than the previous
accepted point with probability at least 1 − O(n−c). Then we assume the worst
case scenario that the new search point has ck log(n) − 1 more ones than the
previous search point to proceed with the proof similar to Theorem6 for RLS.

Let X denote the number of bit flips happened to get the current search
point. Then X ∼ Bin(n, 1/n) (which has an expectation of 1). If the current
search point has ck log(n) − 1 more ones than the previous search point then X
has to be at least ck log(n) − 1. By a multiplicative Chernoff bound for the sum
of independent Bernoulli trails, if δ = ck log(n) − 2,

P (X ≥ ck log(n) − 1) = P (X ≥ 1 + δ)

≤ exp
(

− (ck log(n) − 2)2

ck log(n)

)

≤ e4

nck
.

Theoretical Study of Optimizing Rugged Landscapes with the cGA 595

A union bound over nk iterations gives that the probability that within any of
these iterations the (1+1) EA jumps further than ck log(n) − 1 is O(n−c).

Consider now the run of the (1+1) EA optimizing D−rugged OneMax and
let Xt denote the noise associated with the t−th accepted search point. Similar
to Theorem 6, we now show the following. (1) Xt grows in expectation. (2) For
t = log2(n), with high probability Xt ≥ log2(n)/2. (3) If we have a search point
with noise greater than log2(n)/2, the probability to find a better search point
within nk steps is very low. We pessimistically assume that the t-th accepted
search point has log(n) − 1 ones more than the previous search point. Since D
is memory-less, we get Xt ∼ Xt−1 − log(n) + 1 + D. This inductively along with
the fact that X0 = D implies,

E[Xt] ≥ t + 1
p

− t log(n) + t.

Let Dt be the geometric random variable associated with Xt. Then we have
Xt ∼ Xt−1 − log(n) + 1 + Dt, which is Xt ∼ ∑t

i=0 Di − t log(n) + t. If we let

δ = 1
2 + tp

2(t+1) − tp log(n)
2(t+1) , at =

(
t+1
p − t log(n) + t

)
/2 and use Chernoff bounds

for the sum of independent geometric random variables [4, Theorem 1.10.32] we
have,

P (Xt ≤ at) = P

(
t∑

i=0

Di ≤ t + 1
2p

+
t log(n)

2
− t

2

)

= P

(
t∑

i=0

Di ≤ (1 − δ)
t + 1

p

)

≤ exp

(
−δ2(t + 1)

2 − 4δ
3

)
.

Since p ≤ 1
2 log(n) , we have δ ≥ 1

4 . Therefore,

P

(
Xt ≤

(
t + 1

p
− t log(n) + t

)
/2

)
≤ exp

(
−δ2(t + 1)

2 − 4δ
3

)
≤ exp

(
− 3t

80

)
.

When t = log2(n),

P

(
Xt ≤

(
t + 1

p
− t log(n) + t

)
/2

)
≤ exp

(
− 3t

80

)

= n− 3
80 log(n).

Now assume that we sampled a search point with noise at least m = t+1
2p −

t log(n)
2 + t

2 , where t = log2(n). As we have seen at any given iteration the
probability that the standard mutation operator flips more than ck log(n) − 1
bits is very low, we will again analyze the worst case scenario. For a neighbor

596 T. Friedrich et al.

of the current search point with at most ck log(n) − 1 to have higher fitness it
should have at least m − ck log(n) noise. The probability for this to happen is,

P (D ≥ m − ck log n + 1) = p(1 − p)m−ck log(n) ≤ e−p(m−ck log(n)) = e
ck
2 n− 1

4 log n

For a given k, let Dm1 , . . . , Dm
nk

denote the random geometric noise associated
with nk neighbors of the current search point with at least noise m. Then proba-
bility that within nk steps at least one of the neighbours will be of higher fitness
is at most

P

(
n⋃

i=1

(Dmi
≥ m − ck log(n) + 1)

)
≤

nk∑
i=1

P (Dmi
≥ m − ck log(n) + 1)

≤ e
ck
2 nk− log(n)

4 .

�

6 Performance of Random Search

For comparison with the performance of RLS and the (1+1) EA, we briefly
consider Random Search (RS) in this section. We state the theorem that Ran-
dom Search has a bound of O(

√
n log n) for the number of 1s found within a

polynomial number of iterations and can be proved by Chernoff bounds.

Theorem 8. Let c > 0 be given and t ≥ 1. Then the bit string with the most
number of 1s found by Random Search within t ≤ nk iterations, choosing a
uniformly random bit string each iteration, has at most n/2 + O(

√
n log n) 1s

with probability 1 − O(n−c).

7 Experimental Evaluation

In this section we empirically analyze the performance of the cGA, the RLS,
the (1+1) EA and the Random Search algorithms on the rugged OneMax with
two different noise models. We considered noise sampled from the normal dis-
tribution with mean zero and variance 5 and another noise model sampled from
the geometric distribution with variance 5. From the results we can see that
after n2 iterations, where n is length of the bit string, the RLS and the (1+1)
EA does not sample a search point with more than 60% of 1s but the cGA
with K =

√
n log(n) always finds the optimum. The plot in Fig. 1 is mean of

100 independent runs of each algorithm for bit string lengths 100 to 1000 with
step size 100. To have closer look at the performance of the other algorithms,
performance of the cGA(straight line at 100) is removed from the plot.

Theoretical Study of Optimizing Rugged Landscapes with the cGA 597

Fig. 1. Percentage of ones in the sampled search point after n2 iterations of Random
Search, (1+1) EA and RLS on optimizing rugged OneMax function with Normal and
Geometric noise both having variance of 5. Performance of cGA which is a straight line
at 100% is omitted.

Each time the first search point was set to have 50% of 1s. As n increases the
percentage of ones in the search point sampled by RLS and (1+1) EA after n2

iteration tends to 50% and it tends to less than 60% in case of random search.

8 Conclusion

Rugged fitness landscapes appear in many real-world problems and may lead
to algorithms getting stuck in local optima. We investigated this problem in
this paper for the rugged OneMax problem which is obtained through a noisy
OneMax fitness function where each search point is only evaluated once. We
have shown that RLS and the (1+1) EA can only achieve small improvements
on an initial solution chosen uniformly at random. In contrast to this the cGA
is able to improve solution quality significantly until it is (almost) optimal. Our
experimental investigations show this behaviour for realistic input sizes and also
point out that RLS and the (1+1) EA perform significantly worse than random
search on the rugged OneMax problem.

Acknowledgements. This work was supported by the Australian Research Council
through grant FT200100536.

598 T. Friedrich et al.

References

1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley (1997)
2. Aishwaryaprajna, Rowe, J.E.: Noisy combinatorial optimisation by evolutionary

algorithms. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO 2019, pp. 139–140 (2019). https://doi.org/10.1145/
3319619.3321955

3. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features
versus algorithm performance on rugged multiobjective combinatorial fitness land-
scapes. Evol. Comput. 25, 555–585 (2017)

4. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics.
In: Theory of Evolutionary Computation. NCS, pp. 1–87. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-29414-4 1

5. Doerr, B.: The runtime of the compact genetic algorithm on jump functions. Algo-
rithmica 83, 3059–3107 (2021). https://doi.org/10.1007/s00453-020-00780-w

6. Doerr, B., Zheng, W.: From understanding genetic drift to a smart-restart
parameter-less compact genetic algorithm. In: Coello, C.A.C. (ed.) Genetic
and Evolutionary Computation Conference, GECCO 2020, pp. 805–813 (2020).
https://doi.org/10.1145/3377930.3390163

7. Doerr, B., Zheng, W.: Sharp bounds for genetic drift in estimation of distribution
algorithms. IEEE Trans. Evol. Comput. 24(6), 1140–1149 (2020). https://doi.org/
10.1109/TEVC.2020.2987361

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
9. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Nat-

ural Computing Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-44874-8

10. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Graceful scaling on uniform
versus steep-tailed noise. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M.,
Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 761–770. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 71

11. Friedrich, T., Kötzing, T., Krejca, M., Sutton, A.M.: The benefit of sex in noisy
evolutionary search (2015)

12. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme gaussian noise. Trans. Evol. Comput. 21, 477–490
(2017). https://doi.org/10.1109/TEVC.2016.2613739

13. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75, 462–489 (2016). https://doi.org/10.1007/s00453-015-0072-0

14. Horoba, C., Sudholt, D.: Ant colony optimization for stochastic shortest path prob-
lems. In: Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2010, pp. 1465–1472 (2010). https://doi.org/10.1145/
1830483.1830750

15. Krejca, M.S.: Theoretical analyses of univariate estimation-of-distribution algo-
rithms. Doctoral thesis, Universität Potsdam (2019). https://doi.org/10.25932/
publishup-43487

16. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83, 1096–1137 (2021). https://doi.org/10.
1007/s00453-020-00778-4

17. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes
using entropy. In: IEEE Congress on Evolutionary Computation, pp. 1440–1447
(2009)

https://doi.org/10.1145/3319619.3321955
https://doi.org/10.1145/3319619.3321955
https://doi.org/10.1007/978-3-030-29414-4_1
https://doi.org/10.1007/s00453-020-00780-w
https://doi.org/10.1145/3377930.3390163
https://doi.org/10.1109/TEVC.2020.2987361
https://doi.org/10.1109/TEVC.2020.2987361
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-319-45823-6_71
https://doi.org/10.1109/TEVC.2016.2613739
https://doi.org/10.1007/s00453-015-0072-0
https://doi.org/10.1145/1830483.1830750
https://doi.org/10.1145/1830483.1830750
https://doi.org/10.25932/publishup-43487
https://doi.org/10.25932/publishup-43487
https://doi.org/10.1007/s00453-020-00778-4
https://doi.org/10.1007/s00453-020-00778-4

Theoretical Study of Optimizing Rugged Landscapes with the cGA 599

18. Myburgh, C., Deb, K.: Evolutionary algorithms in large-scale open pit mine
scheduling. In: GECCO, pp. 1155–1162. ACM (2010)

19. Neshat, M., Alexander, B., Wagner, M.: A hybrid cooperative co-evolution algo-
rithm framework for optimising power take off and placements of wave energy
converters. Inf. Sci. 534, 218–244 (2020)

20. Osada, Y., While, R.L., Barone, L., Michalewicz, Z.: Multi-mine planning using a
multi-objective evolutionary algorithm. In: IEEE Congress on Evolutionary Com-
putation, pp. 2902–2909 (2013)

21. Pelikan, M., Hauschild, M., Lobo, F.G.: Estimation of distribution algorithms. In:
Kacprzyk, J., Pedrycz, W. (eds.) Handbook of Computational Intelligence, pp.
899–928 (2015)

22. Poursoltan, S., Neumann, F.: Ruggedness quantifying for constrained continuous
fitness landscapes. In: Datta, R., Deb, K. (eds.) Evolutionary Constrained Opti-
mization. ISFS, pp. 29–50. Springer, New Delhi (2015). https://doi.org/10.1007/
978-81-322-2184-5 2

23. Prugel-Bennett, A., Rowe, J., Shapiro, J.: Run-time analysis of population-based
evolutionary algorithm in noisy environments. In: Proceedings of the 2015 8th
Conference on Foundations of Genetic Algorithms, FOGA 2015, pp. 69–75 (2015).
https://doi.org/10.1145/2725494.2725498

24. Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., Neumann, F.: Fast and
effective multi-objective optimisation of wind turbine placement. In: GECCO, pp.
1381–1388. ACM (2013)

https://doi.org/10.1007/978-81-322-2184-5_2
https://doi.org/10.1007/978-81-322-2184-5_2
https://doi.org/10.1145/2725494.2725498

Towards Fixed-Target Black-Box
Complexity Analysis

Dmitry Vinokurov and Maxim Buzdalov(B)

ITMO University, Saint Petersburg, Russia

mbuzdalov@gmail.com

Abstract. Recently, fine-grained measures of performance of random-
ized search heuristics received attention in the theoretical community. In
particular, some results were proven specifically for fixed-target runtime
analysis. However, this research domain still lacks an important counter-
part, namely, the (black-box) complexity analysis, which shall augment
runtime analyses of particular algorithms with the bounds on what can
be achieved with the best possible algorithms.

This paper makes few first steps in this direction. We prove upper and
lower bounds on the fixed-target black-box complexity of the standard
benchmark function OneMax given the problem size n and the target
fitness k that we want to achieve. On the way to these bounds, we prove
a general lower bound theorem suitable to derive bounds not only in
fixed-target settings, but also in settings where a problem instance may
have multiple optima.

Keywords: Black-box complexity · Fixed-target analysis · OneMax

1 Introduction

Fixed-target analysis, which measures how much work an evolutionary algorithm
shall perform to find a solution with the predefined quality, has been recently
put in the context of rigorous runtime analysis [4]. The discipline of fixed-target
runtime analysis studies mainly the expected running times needed for a given
evolutionary algorithm solving a given optimization problem to obtain a solution
with the fitness at least k (assuming maximization). One typically proves theo-
rems that bound these expected running times from above and from below by
certain expressions that depend on the target fitness k, as well as on the problem
size, the parameters of the algorithm and so on. By comparing these expressions
for different algorithms, one may find out which algorithm is better suited for a
particular application. By looking at how they change as k increases, one may
derive some predictions about the dynamics of the algorithms, including ques-
tions of switching from one algorithm to another one when the fitness reaches a
certain threshold.

In the classical analysis of evolutionary algorithms, the runtime analysis is
complemented by the black-box complexity analysis, which studies how well any
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 600–611, 2022.
https://doi.org/10.1007/978-3-031-14721-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_42&domain=pdf
http://orcid.org/0000-0001-9074-3884
http://orcid.org/0000-0002-7120-8824
https://doi.org/10.1007/978-3-031-14721-0_42

Towards Fixed-Target Black-Box Complexity Analysis 601

black-box search algorithm that belongs to a certain class may solve the given
problem. A similar duality exists in the classical algorithm analysis. Compar-
isons between the running times of existing evolutionary algorithms and the
corresponding black-box complexities raise and help to answer important ques-
tions [15] and also assist in designing new, more efficient algorithms [6].

The kind of black-box complexity analysis that would be a counterpart to
the fixed-target runtime analysis is currently missing. In this paper, we aim to
initiate the research on the fixed-target black-box complexity analysis that is to
answer how fast any black-box search algorithm (that belongs to a certain class)
may reach the given target fitness value of an optimization problem. Since this is
the very first paper on this topic, we limit ourselves with the unrestricted com-
plexity (that is, without any constraints on which algorithms we may consider,
e.g. whether the crossover may be used, or whether the selection shall be elitist)
and with one particular optimization problem, the famous OneMax.

Some of the presented results extend beyond the fixed-target setting. In par-
ticular, in Sect. 4 we present the first theorem suitable for proving general lower
bounds on black-box complexities without assuming that problem instances and
search space elements have a bijection on them. This theorem covers functions
with multiple optima, of which the fixed-target setting is a special case.

Other sections of this paper are as follows. Section 2 covers the closest related
work, while Sect. 3 introduces some notation, the formal problem setting, impor-
tant existing results and even the trivial cases of the claimed bounds. Section 5
proves the lower bound on the unrestricted fixed-target black-box complexity of
OneMax, whereas Sect. 6 proves the corresponding upper bound. While these
bounds do not provide an exact asymptotic match for the whole range of targets,
they do when the target is large enough.

2 Related Work

Reporting something more than just the average time required to find the opti-
mum of a problem has been well-recognized in the area of benchmarking for
quite a long time [10,13]. Apart from the fixed-target analysis, other perspectives
include the fixed-budget analysis [7,16,18] and unlimited budget analysis [14].
The particular focus on the fixed-target runtime analysis is motivated and pop-
ularized in [4], where many examples are given for when it is easy to derive
the fixed-target results based on the already existing proofs of complete running
times, and several tools are presented to ease this kind of runtime analysis.

In this paper, we focus on developing the basics for the counterpart of the
fixed-target runtime analysis, and it is natural to begin with the famous One-
Max problem. Erdős and Rényi prove what appears to be the upper and lower
bounds on OneMax [12], although under a very different name. In [2], an upper
bound has been proven independently, but not without some flaws in proofs. A
follow-up paper [8] did the accurate proof, which includes the constant factors
that are still the tightest possible ones as of now.

The seminal paper [11] introduces the notion of the black-box complexity, as
well as first upper and lower bounds. It also contains the now-classic theorem

602 D. Vinokurov and M. Buzdalov

for proving lower bounds under very few assumptions. The generality of the
latter made it hard to use to prove sharper bounds, for which reason one of
the subsequent works [5] formulates and proves the so-called matrix theorem,
which can be used to prove sharper lower bounds given more information about
the properties of the problem being analyzed. To date, these results remain
the only ones with a very wide range of applicability, although more black-box
complexity results exist for certain specific settings (e.g. [1,9] for unrestricted
and elitist complexities of a problem different from OneMax).

3 Preliminaries

Basic Notation. We use the notation [a...b] to denote a set of integers {a, a +
1, . . . , b − 1, b}, and we denote the set [1...n] as [n]. We use log n to denote the
logarithm of n to base 2. The Hamming distance H(x, y) between two bit strings
x and y of the same size n is the number of bit positions they differ at, that is,
H(x, y) := |{i ∈ [n] | xi �= yi}|.

The factorial of n is denoted by n! and is equal to n! = 1 · 2 · . . . · n, where
0! = 1 for convenience. The binomial coefficient

(
n
k

)
is the value n!/(k!(n − k)!).

We denote as V (n, k) the sum of the first k + 1 binomial coefficients with the
fixed n: V (n, k) :=

∑k
i=0

(
n
k

)
; this is the number of bit strings of length n at

a distance of at most k from the given bit string. If k ≤ n/2, one particularly
convenient upper bound is known [3, Lemma 4.7.2]:

V (n, k) =
k∑

i=0

(
n

i

)
≤ 2nH(k

n), (1)

where H(p) = −p log2 p − (1 − p) log2 (1 − p) is the binary entropy function.
Optimization Problem. The object of our research is the OneMax problem
defined on bit strings of some fixed length n, which is called the problem size.
We use n for the problem size throughout the entire paper. The problem consists
of 2n problem instances parameterized by a hidden optimum z ∈ {0, 1}n, which
are maximization problems with the following objective functions:

OMz : {0, 1}n → N; x �→ |{i ∈ [n] | xi = zi}|.

One may also note that OMz(x) = n − H(x, z).
Fixed-Target Problem Setting. When we maximize some function f(x) with
the fixed target, we aim at finding a point x∗ with fitness equal to, or exceeding,
some predefined threshold k, which is called the target. Our setting in this paper
is as follows. We are given a problem instance OMz of the known size n, but
an unknown hidden optimum z, and an integer target k ∈ [0...n]. Our aim is,
by querying search points xi for i = 1, 2, . . . , t, . . . and analyzing the answers to
these queries f(xi), to obtain an x∗ such that OMz(x∗) ≥ k. Note that if k = n,
this is the same as finding the maximum of OMz, but we investigate the general
case.

Towards Fixed-Target Black-Box Complexity Analysis 603

Black-Box Complexity. Given an algorithm A that generates the search
points xi, its running time on the OneMax problem is the maximum over all
its instances: TA(n, k) = maxz min{i | OMz(xi) ≥ k}. As A is allowed to be
randomized, TA(n, k) is a random variable, and we are interested in minimizing
its expected value E[TA(n, k)]. The fixed-target black-box complexity of OMz of
problem size n with respect to the target k is BBC(n, k) = minA E[TA(n, k)].

Since it is very hard, and not actually really needed, to determine the exact
value of BBC(n, k), we aim at proving upper and lower bounds on that value
that are reasonably close to each other, similarly to what most of the black-box
complexity papers do. The upper bound is proven by creating some algorithm A
and proving an upper bound on its running time. Since any reasonable algorithm,
including the one we propose, is unbiased in the sense of [17,19], the expression
for its running time TA(n, k) does not depend on the hidden optimum z and can
be simplified by choosing an arbitrary z, without loss of generality z = 1n. The
lower bound is proven in this paper by specialized information theory arguments
similar to those in [5,11,12].
Trivial Case. If k ≤ n/2, the target is too easy, so we can immediately formulate
and prove the following lemma.

Lemma 1. The fixed-target black-box complexity of OneMax of size n and
target k ≤ n/2 is 1 + 2−n · ∑k−1

t=0

(
n
t

) ≤ 3
2 .

Proof. The upper bound is as follows. If the first query is done by uniformly
choosing a random bitstring, it already hits the target with the probability of
p1 = 2−n ·∑n

t=k

(
n
t

) ≥ 1
2 . If it does not, the query to the opposite point, which is

performed by flipping all the bits, definitely does. The resulting expected running
time is 1 + (1 − p1), which matches the theorem statement.

The lower bound follows from the Yao’s minimax principle [21] by choosing
a uniform distribution over the problem instances and using a deterministic
algorithm that samples the all-zeros point 0n first, and the all-ones point 1n

second. Its average running time is the same as above by the same argument,
and it is easy to see that nothing better is possible. �	

For this reason, in the rest of the paper we assume that k > n/2.
More Notation. For convenience, we denote k := n−k, which will make some
of our equations shorter and symmetric. The meaning of k can be seen as the
distance between the easiest target to the true optimum. Obviously, if k > n/2
then k < k. We also frequently use a symbol δ := k − n/2. In our proofs, all
the symbols k, k and δ can be used with these relations implied. We take some
precautions, however, to remind the reader about them.

4 Generic Lower Bounds

We start with a generic theorem useful for proving lower bounds on unrestricted
fixed-target black-box complexities. It is based on [11, Theorem 2] and integrates
one of the improvements from its extension, the matrix theorem [5]. Our theorem

604 D. Vinokurov and M. Buzdalov

explicitly allows multiple optima for each function instance: more precisely, it
takes the view from the other side and considers that each query may be an
optimum of several function instances. To apply this theorem to the fixed-target
setting, one counts hitting a target as hitting one of the optima of the function
being optimized. This theorem is quite complicated, but it allows exploitation
of the problem structure to gain better precision.

Theorem 1. Let S be the finite search space of an optimization problem. Let
F be a set of problem instances {f : S → R}, where each problem instance may
have more than one optimum, and Of be the set of optima of a problem instance
f . For each f ∈ F , assume that each call to f(x), x ∈ S, results in:

– at least one answer indicating that x ∈ Of ;
– at most b ≥ 2 answers indicating that x /∈ Of .

Define a covering subset S′ ⊆ S as a subset of the search space that contains
at least one optimum of each problem instance, that is, ∀f ∈ F, Of ∩ S′ �= ∅.
Let S be the set of all covering subsets.

Let π be an ordering of a covering subset S′, such that π(S′, i) is the i-th
element of S′ in a sequence. Let Π(S′) be the set of all such orderings. Then the
black-box complexity of this optimization problem is at least:

1 +
1

|F | · min
S′∈S

min
π∈Π(S′)

∑

f∈F

min{�logb i� | 1 ≤ i ≤ |S′|, π(S′, i) ∈ Of}.

Proof. Similarly to [11, Theorem 2], we reduce our setting to the expected run-
time of the best deterministic algorithm following the Yao’s minimax princi-
ple [21]. Each deterministic algorithm is, in turn, represented as a decision tree,
where the nodes correspond to queries to the optimized function, and the edges
correspond to different answers. Similar to [5], we consider only edges corre-
sponding to receiving non-optimal answers, as otherwise the algorithm finds an
optimum and terminates. Whenever a query results in finding an optimum of
some problem instances from F , we write down these instances to the corre-
sponding node.

Let d(f) be the smallest depth of any node (the root has the depth of 1) where
the problem instance f ∈ F has been written down. The average runtime of the
algorithm is the average depth of all occurrences of f , that is, 1

|F | · ∑
f∈F d(f).

Now we need to arrange the queries in such a way that this total average
depth is not larger than the average depth of the best possible algorithm. This
arrangement need not correspond to any particular algorithm, or even to a cor-
rect algorithm at all, but it still needs to be a valid arrangement. For this reason,
we may only consider the covering subsets of queries to be assigned to nodes of
the decision tree, since otherwise some problem instances will remain unsolved.
Surely, if a node has a query assigned, then its parent node also has one. How-
ever, if a node has a query assigned but some node at a smaller depth does
not, we can move that query to the free node. The total average depth will not
decrease due to this move. Hence, similarly to [11, Theorem 2], we can limit

Towards Fixed-Target Black-Box Complexity Analysis 605

ourselves to greedy assignments, where the depth of the i-th assigned node is
1+ �logb i�. Here, it is also assumed that each node has the maximum outdegree
of b whenever possible, which again does not increase the answer.

Unlike [11, Theorem 2], the order of assigned queries matters, since each query
may have more than one associated problem instance. Without any assumptions
on how Of interact, the only safe way to obtain the minimum total average
depth is:
– to iterate over all covering subsets of the search space;
– for each of them to iterate over all possible orderings of its elements,
– to assign these elements to the nodes of the decision tree in a greedy way,
– and finally to compute the total average depth and to update the minimum.

This is precisely what the theorem statement reflects, remembering that the
depth of the i-th assigned node is 1 + �logb i�. The only difference is that the
leading 1+ is moved outside the minimum clauses. �	

Theorem 1 is arguably hard to use. The following simplified theorem may
instead be applied to trade some precision for the ease of use.

Theorem 2. Let S be the finite search space of an optimization problem. Let
F be a set of problem instances {f : S → R}, where each problem instance may
have more than one optimum, and Of be the set of optima of a problem instance
f . For each f ∈ F , assume that each call to f(x), x ∈ S, results in:
– at least one answer indicating that x ∈ Of ;
– at most b ≥ 2 answers indicating that x /∈ Of .

Assume each search point is an optimum of at most m different problem
instances, that is, ∀x ∈ S, |{f ∈ F | x ∈ Of}| ≤ m, with an obvious restriction
that |S| · m ≥ |F |. The black-box complexity of this optimization problem is at
least ⌊

logb

(
1 + (b − 1) ·

⌊ |F |
m

⌋)⌋
− 1

b − 1
· m

|F | ·
⌊ |F |

m

⌋
.

Proof. We use the ideas of Theorem 1 while safely assuming that all the sets
of problem instances assigned to nodes with depths smaller than the maximum
depth do not intersect, and at the maximum depth only at most one node may
have less than m problem instances assigned. This way, one can re-use [5, Theo-
rem 6] with the “new” search space size of � |F |

m � and obtain the following bound:
⌊
logb

(
1 + (b − 1) ·

⌊ |F |
m

⌋)⌋
− 1

b − 1
.

If |F | does not divide evenly by m, one can account for the remainder by taking
into account from [5, proof of Theorem 6] that the logarithm rounded down is
actually the depth of the remaining node. By assuming D to be this depth, one
can see that

(D − 1
b−1) · m · � |F |

m � + D · (|F | − m · � |F |
m �)

|F | = D − 1
b − 1

· m

|F | ·
⌊ |F |

m

⌋
.

If |F | divides evenly by m, this equation also holds. This proves the theorem. �	

606 D. Vinokurov and M. Buzdalov

5 Lower Bound for OneMax

We now prove the lower bound on the unrestricted fixed-target black-box com-
plexity of OneMax. We will use Theorem 2 together with one particular feature
of OneMax. When the target is k, and the answer to one of the queries is
k = n − k or smaller, we may immediately hit the target in the next query by
just inverting all the bits. For the sake of lower bounds, this one query may
be simply neglected in our bounds. As a result, we can obtain a much sharper
bound by considering only fitness values in (k, k) as non-terminating ones.

We prove two versions of the lower bound, the sharper one (Theorem3) and
the one in the closed form (Theorem 4).

Theorem 3. The unrestricted fixed-target black-box complexity of OneMax
with problem size n and target k = n/2 + δ, where δ ≥ 2, is at least:

BBC(n, k) ≥
⌊
log2δ−2

(
1 + (2δ − 3)

⌊
2n

V (n, n − k)

⌋)⌋
− 1

2δ − 3
.

Proof. The requirements of Theorem 2 are the number of possible problem
instances |F | = 2n, the number of non-terminating answers b = (k − 1) − (n −
k + 1) = 2k − n − 2 = 2δ − 2 and the upper limit m on the number of problem
instances covered by one point of the search space. The latter is equal to V (n, k)
for all points, so the bound itself can be written as follows:

BBC(n, k) =
⌊
log2δ−2

(
1 + (2δ − 3)

⌊
2n

V (n, k)

⌋)⌋
− 1

2δ − 3
V (n, k)

2n

⌊
2n

V (n, k)

⌋

≥
⌊
log2δ−2

(
1 + (2δ − 3)

⌊
2n

V (n, k)

⌋)⌋
− 1

2δ − 3
,

which proves the theorem. �	
Theorem 4. The unrestricted fixed-target black-box complexity of OneMax
with problem size n and target k = n/2 + δ, where δ ≥ 2, is at least:

BBC(n, k) ≥
(

n
2 + δ

)
log2

(
1 + 2δ

n

)
+

(
n
2 − δ

)
log2

(
1 − 2δ

n

)

log2(2δ − 2)
− 2.

Proof. We start with the result of Theorem3. Since δ ≥ 2, we simplify the
argument of the logarithm as follows:

1 + (2δ − 3)
⌊

2n

V (n, k)

⌋
≥ 1 +

⌊
2n

V (n, k)

⌋
≥ 1 +

(
2n

V (n, k)
− 1

)
=

2n

V (n, k)
.

We now use the upper bound on V (n, k) given in Eq. (1):

V (n, k) ≤ 2−n
(

k
n log2

k
n+ k

n log2
k
n

)
= 2n log2 n−k log2 k−k log2 k,

Towards Fixed-Target Black-Box Complexity Analysis 607

which allows to simplify further

log2δ−2

2n

V (n, k)
≥ k log2 k + k log2 k − n log2 n + n

log2(2δ − 2)

=

(
n
2 + δ

)
log2

(
1 + 2δ

n

)
+

(
n
2 − δ

)
log2

(
1 − 2δ

n

)

log2(2δ − 2)
.

By applying also inequalities �x� ≥ x − 1 and 2δ − 3 ≥ 1 to the result of
Theorem 3, we obtain the required bound. �	

To understand the asymptotic behaviour of the bound above, we consider
two cases, δ = o(n) and δ = Θ(n). For the first one, we use the Taylor series
ln(1 + x) = x − x2/2 + O(x3) and rewrite the bound as:

BBC(n, k) ≥
(

n
2 + δ

)
log2

(
1 + 2δ

n

)
+

(
n
2 − δ

)
log2

(
1 − 2δ

n

)

log2(2δ − 2)
− 2

=

(
n
2 + δ

)
ln

(
1 + 2δ

n

)
+

(
n
2 − δ

)
ln

(
1 − 2δ

n

)

ln(2δ − 2)
− 2

=

(
n
2 + δ

) ·
(

2δ
n − 2δ2

n2 + O
((

δ
n

)3))
+

(
n
2 − δ

) ·
(
− 2δ

n − 2δ2

n2 − O
((

δ
n

)3))

ln(2δ − 2)
− 2

≥
2δ2

n ± O

((
δ3

n3

)3
)

ln(2δ − 2)
− 2 =

(2 − O(δ
n)) · δ2

n ln(2δ − 2)
− 2.

This results in positive lower bounds for δ ≥ C1

√
n ln n with a large enough

constant C1. If δ = Θ(n), the bound amounts to Θ(n/ log n), where the leading
constant is influenced by the particular δ, e.g. if δ = C2n for a constant C2, the
result would be

n

log2 n
·
((

1
2

+ C2

)
log2(1 + 2C2) +

(
1
2

− C2

)
log2(1 − 2C2)

)
− 2.

Note that the result remains correct even if C2 = 1/2, since the second addend
tends to zero (e.g. 0 log2 0 is taken to be zero, which matches the usage pattern
common to applications of the binary entropy function in information theory). In
this respect, it preserves compatibility with the existing results on the black-box
complexity of complete optimization.

6 Upper Bound for OneMax

For an upper bound, we employ the trick similar to the one used in [5] to prove
refined bounds for the Jump functions. Namely, we reduce the problem of hitting
the target k in a OneMax problem of size n to finding the optimum of OneMax
of size k on a subset of its bits.

608 D. Vinokurov and M. Buzdalov

Theorem 5. The unrestricted fixed-target black-box complexity of OneMax
with problem size n and target k = n/2 + δ, where δ ≥ 1, is at most

(4 + oδ(1))δ
log2(2δ)

+ Θn(
√

n),

where the asymptotic notation is with respect to the variables given in subscripts.

Proof. We employ the following algorithm:

– We find a search point x1 with fitness �n/2� by repeated random sampling.
– Next, we find a search point x2 with the same fitness and H(x1, x2) = 2k, by

repeated random sampling of points at the specified Hamming distance.
– Finally, we fix the bits differing between x1 and x2 and find the optimum of
OneMax defined on the remaining bits, paying attention that the original
function returns the value that is by k larger.

The first step requires 2n/
(

n
�n/2�

)
= Θn(

√
n) queries in expectation. Similarly,

the second step needs Θk(
√

k) = On(
√

n) queries in expectation. The final step
needs (2+oδ(1))·(2δ)

log2(2δ) steps using the algorithm from [8]. The optimum returned by
that algorithm corresponds to the string with the fitness of exactly k, which hits
the target. �	

We can see that while our lower bound has an order of Θ(δ2

n log δ), our upper
bound is rather Θ(δ

log δ). Hence, as long as δ = Θ(n), the bounds match asymp-
totically, however, they actually differ by a factor of Θ(δ

n), which becomes sig-
nificant if the target is very close to n/2.

To obtain a clearer picture, in Fig. 1 we provide the plots of the bounds for
a fixed problem size n = 103 and varying targets. Here, we plot the bounds
obtained from the respective theorems, as well as the slightly sharper lower
bound given by Theorem3 that does not undergo simplifications. We also plot the
version of the upper bound that takes care of occasional hitting the target while
searching for the point with the fitness of n/2, which has a visible impact for small
targets. From Fig. 1 one can see that the simpler version of the lower bound does
not lose much compared to the more sophisticated one: the differences become
significant when the bounds approach the value of 1. However, the gap between
the lower and the upper bounds is noticeable: the ratio of the bounds reaches
approximately 50 at k ≈ 25. This comes at least partially from the asymptotic
ratio of the bounds, and can be also influenced by the additional Θ(

√
n) that is

present in the upper bound but not in the lower bound.

Towards Fixed-Target Black-Box Complexity Analysis 609

21 22 23 24 25 26 27 28 29

10−1

100

101

102

δ = k − n/2

C
om

pl
ex
it
y

Lower bound by Theorem 4 Lower bound by Theorem 3
Upper bound by Theorem 5 Improved upper bound

Fig. 1. Visual comparison of the obtained bounds for n = 103. Asymptotically lower
terms, which are positive and are present only in upper bounds, are evaluated exactly
for the purpose of these plots.

7 Conclusion

We have presented the first results that can be classified as the unrestricted
fixed-target black-box complexity bounds for the OneMax problem. Our lower
bound is Θ(δ2

n log δ) and our upper bound is Θ(δ
log δ), both terms simplified, where

n is the problem size and δ = k − n/2 is the difference between the target
fitness k and half the problem size. These bounds agree well with the existing
(complete optimization) black-box complexity of OneMax, however start to
diverge slightly for smaller targets. In particular, the lower bound is non-trivial
only for δ = Ω(

√
n log n), and the upper bound is obviously loose for δ = O(

√
n),

for which the true bound is already constant.
It is unclear as of now which of these bounds is closer to the true fixed-target

black-box complexity of OneMax. While we admit that the lower bound may
be too loose due to optimistic assumptions, we still do not know whether the
algorithm provided for the upper bound exploits the problem features, including
the requirement to reach the fitness of only at least k, strongly enough. The

610 D. Vinokurov and M. Buzdalov

alternative strategy we tried to consider, and which might be more fruitful, is to
query search points only from some “good” subset of points, such as those that
form a sphere covering of the search space. It seems to be much more difficult
to analyse, though.

The presented generic lower bound theorem may also cover problems well
outside of the fixed-target settings, including multimodal problems and probably
even multiobjective problems (in a different way from, e.g., linear multiobjective
drift [20]). It may possibly be generalized similarly to the matrix theorem [5],
however we admit that a lot of work is necessary to derive such a theorem in a
convenient and usable form.

The fixed-target black-box complexity analysis may also be conducted for
limited algorithm classes, such as mutation-only algorithms, fixed-arity algo-
rithms and elitist algorithms. Although everyone knows that complexity analysis
is hard, we nevertheless encourage the community to undertake this direction:
as the fixed-target setting is inherently more practice-oriented than searching
for the optimal solution, the obtained insights—and the way they are different
from what is recommended for complete optimization—may appear to be useful
for solving hard problems in practice.

References

1. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The
query complexity of a permutation-based variant of Mastermind. Discret. Appl.
Math. 260, 28–50 (2019)

2. Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness functions. In:
Proceedings of Foundations of Genetic Algorithms, pp. 67–78 (2009)

3. Ash, R.B.: Information Theory. Dover Publications (1990)
4. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis.

Algorithmica 84(6), 1762–1793 (2022)
5. Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box complexity of jump

functions. Evol. Comput. 24(4), 719–744 (2016)
6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic

algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)
7. Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results

from expected optimisation times. In: Proceedings of Genetic and Evolutionary
Computation Conference, pp. 1581–1588 (2013)

8. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster
black-box algorithms through higher arity operators. In: Proceedings of Founda-
tions of Genetic Algorithms, pp. 163–172 (2011)

9. Doerr, C., Lengler, J.: The (1+1) elitist black-box complexity of LeadingOnes.
Algorithmica 80(5), 1579–1603 (2018)

10. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking
discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88, 106027
(2020)

11. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theor. Comput. Syst. 39(4), 525–544 (2006)

12. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos
Akadémia Matematikai Kutató Intézet Közleményei 8, 229–243 (1963)

Towards Fixed-Target Black-Box Complexity Analysis 611

13. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a
platform for comparing continuous optimizers in a black-box setting. Optim. Meth.
Softw. 36(1), 114–144 (2021)

14. He, J., Jansen, T., Zarges, C.: Unlimited budget analysis. In: Proceedings of
Genetic and Evolutionary Computation Conference Companion, pp. 427–428
(2019)

15. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

16. Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics oper-
ating with a fixed budget. Theoret. Comput. Sci. 545, 39–58 (2014)

17. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012)

18. Lengler, J., Spooner, N.: Fixed budget performance of the (1+1) EA on linear
functions. In: Foundations of Genetic Algorithms XIII, pp. 52–61 (2015)

19. Rowe, J., Vose, M.: Unbiased black box search algorithms. In: Proceedings of
Genetic and Evolutionary Computation Conference, pp. 2035–2042 (2011)

20. Rowe, J.E.: Linear multi-objective drift analysis. Theoret. Comput. Sci. 736, 25–40
(2018)

21. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity.
In: 18th Annual Symposium on Foundations of Computer Science, pp. 222–227
(1977)

Two-Dimensional Drift Analysis:

Optimizing Two Functions Simultaneously Can Be Hard

Duri Janett and Johannes Lengler(B)

Department of Computer Science, ETH Zürich, Zürich, Switzerland

johannes.lengler@inf.ethz.ch

Abstract. In this paper we show how to use drift analysis in the case
of two random variables X1, X2, when the drift is approximatively given
by A · (X1, X2)

T for a matrix A. The non-trivial case is that X1 and
X2 impede each other’s progress, and we give a full characterization of
this case. As application, we develop and analyze a minimal example
TwoLinof a dynamic environment that can be hard. The environment
consists of two linear function f1 and f2 with positive weights 1 and n,
and in each generation selection is based on one of them at random. They
only differ in the set of positions that have weight 1 and n. We show that
the (1 + 1)-EAwith mutation rate χ/n is efficient for small constant χ
on TwoLin, but does not find the shared optimum in polynomial time
for large constant χ.

1 Introduction

1.1 The Application: TwoLin

Randomized Search Heuristics (RSHs) like Evolutionary Algorithms (EAs), are
general-purpose optimizers that are applied in a wide range of applications. To
apply them more efficiently, it is important to understand failure modes that
are specific to some EAs or some parameter settings, so that one can avoid
employing an algorithm in inadequate situations. This line of research started
with the seminal work of Doerr et al. [7], in which they showed that the (1 + 1)-
EA with mutation rate χ/n is inefficient on some monotone functions if χ >
16, while it is efficient on all strictly monotone functions if χ < 1. Note that
the transition happens for constant χ, which is the most reasonable parameter
regime. In particular, the failure mode is not related to the trivial problems
that occur for extremely large mutation rates, χ � log n, where the algorithm
fails to produce neighbours in Hamming distance one [31]. Subsequently these
results on how the mutation rate and related parameters affect optimiziation of
monotone functions have been refined [2,19,23] and extended to a large collection
of other EAs [17,25]. To highlight just one result, the (μ + 1)-EA with standard
mutation rate 1/n fails on some monotone functions if the population size μ is
too large [25]. Other algorithm-specific failure modes include

Extended Abstract. All proofs and further details are available on arxiv [11].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13399, pp. 612–625, 2022.
https://doi.org/10.1007/978-3-031-14721-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14721-0_43&domain=pdf
https://doi.org/10.1007/978-3-031-14721-0_43

Two-Dimensional Drift Analysis 613

(i) non-elitist selection strategies with too small offspring reproductive rate
(e.g., comma strategies with small offspring population size) [1,5,6,10,16];

(ii) elitist algorithms (and also some non-elitist strategies) in certain landscapes
with deceptive local optima [3,4];

(iii) the self-adjusting (1, λ)-EA if the target success probability is too large [9,
13,14];

(iv) Min-Max Ant Systems with too few ants [26]; probably the compact Genetic
Algorithm and the Univariate Marginal Distribution Algorithms have a
similar failure mode for too large step sizes [24,30].

It is important to note that all aforementioned failure modes are specific to the
algorithm, not to the problem. Of course, there are many problems which are
intrinsically hard, and where algorithms fail due to the hardness of the problem.
However, in the above examples there is a large variety of other RSHs which
can solve the problems easily. Except for (ii), the failure modes above even
happen on the OneMax problem, which is traditionally the easiest benchmark
for RSHs. Since failure modes can occur even in simple situations, it is important
to understand them in order to help practitioners avoiding them.

Unfortunately, some other benchmarks for failure modes are rather technical,
in particular in the context of monotone functions. Recently, it was discovered
that the same failure modes as for monotone functions could be observed by
studying certain dynamic environments, more concretely Dynamic Linear Func-
tions and the Dynamic Binary Value function DynBV [20–22]. These environ-
ments are very simple, so they allow to study failure modes in greater detail.
Crucially, failure in such environments is due to the algorithms, not the prob-
lems: the environments all fall within a general class of problems introduced
by Jansen [12] and called partially-ordered EA (PO-EA) by Colin, Doerr and
Ferey [2], for which the (1 + 1)-EA with mutation rate χ/n is known to have
optimization time O(n log n) for χ < 1, and O(n3/2) for χ = 1.1 Hence, they are
not intrinsically hard. Both dynamic environments define a set of linear func-
tions with positive weights, and redraw the fitness function in each generation
from this set.

A potential counterargument against these dynamic environments is that the
set of fitness functions is very large, for dynamic linear functions even infinite.
Thus, during optimization the algorithm may never encounter the same environ-
ment twice. In applications, it seems more reasonable that the setup switches
between a small set of different environments. Such as a chess engine which is
trained against several, but not arbitrarily varying number of opponents, or a
robot which is trained in a few training environments. Thus, in this paper we
propose a minimal example of a dynamic environment, TwoLin, in which EAs
may exhibit failure modes. For 0 ≤ � ≤ 1, we define two functions via

1 The statement for χ = 1 is contained in [12], but the proof was wrong. It was later
proven in [2].

614 D. Janett and J. Lengler

f1(x) := f �
1(x) :=

∑��n�
i=1

nxi +
∑n

i=��n�+1
nxi,

f2(x) := f �
2(x) :=

∑��n�
i=1

nxi +
∑n

i=��n�+1
nxi.

(1)

Then for 0 ≤ ρ ≤ 1, TwoLinρ,�is the probability distribution over {f �
1 , f

�
2} that

chooses f1 with probability ρ and f2 with probability 1−ρ. In each generation t, a
random function f t ∈ {f1, f2} is chosen according to TwoLinρ,�, and selection
of the next population is based on this fitness function f t. Note that, similar
to monotone functions, f1 and f2 share the global optimum at (1 . . . 1) (which
is crucial for benchmarks in dynamic optimization), have no local optima, and
flipping a zero-bit into a one-bit always increases the fitness. This is why it falls
into the framework of PO-EA and is hence optimized in time O(n log n) by the
(1 + 1)-EA with mutation rate c/n, for any constant c < 1.

Results. We show that even for the simple setting of TwoLinρ,�, the (1+1)-
EA has a failure mode for too large mutation rates χ/n. For all constant values
ρ, � ∈ (0, 1), we show that for sufficiently small χ the algorithm finds the opti-
mum of TwoLinρ,� in time O(n log n) if started with o(n) zero-bits, but it takes
superpolynomial time for large values of χ. For the symmetric case ρ = � = .5
the treshold between the two regimes is at χ0 ≈ 2.557, which is only slightly
larger than the best known thresholds for the (1 + 1)-EA on monotone func-
tions (χ0 ≈ 2.13 [17,23]) and for general Dynamic Linear Functions and DynBV
(χ0 ≈ 1.59 [20–22]). Thus, we successfully identify a minimal example in which
the same failure mode of the (1+1)-EAshows as for monotone functions and for
the general dynamic settings, and it shows almost as early as in those settings.

It remains open whether the positive result also holds when the algorithm
starts with Ω(n) zero-bits. However, we provide an interesting Domination
Lemma that sheds some light on this question. We call Δ1,0 the drift condi-
tional on flipping one zero-bit in the left part of the bit string and no zero-bit in
the right part, and conversely for Δ0,1. Those two terms dominate the drift close
to the optimum. We prove that (throughout the search space, not just close to
the optimum) whenever both Δ1,0 and Δ0,1 are positive, then the total drift is
also positive. This is enough to remove the starting condition for the symmet-
ric case ρ = � = 1/2. However, in general the drift close to the optimum is a
weighted sum of those two terms, which may be positive without both terms
individually being positive.

1.2 The Method: Two-Dimensional Multiplicative Drift Analysis

Although we believe that the subject and results of the paper are well-motivated,
the main contribution lies in the method. The main workhorse in the runtime
analysis of evolutionary algorithms is drift analysis. For the simple symmetric
case p = 1/2 and � = 1/2, we will see that it suffices to track the number Z of
zero-bits, which leads to a fairly standard application of common drift theorems,
in particular of multiplicative and negative drift.

Two-Dimensional Drift Analysis 615

However, the situation changes completely when we turn to the cases ρ �= 1/2
and � �= 1/2. Here we don’t have symmetry, and the drift is no longer a function
of Z. This is inherent to the problem. The state of the algorithm is insufficiently
characterized by a single quantity. Instead, a natural characterization of the
state needs to specify two quantities: the number of zero-bits in the left and
right part of the string, denoted by XL and XR, respectively. Then we obtain a
multiplicative drift in two dimensions, i.e., there is a 2 × 2-matrix A such that
the drift of the column vector X = (XL,XR) is approximatively A ·X. This can
also be called linear drift, but it is traditionally called multiplicative drift in the
one-dimensional case. Crucially, XL and XR contribute negatively to each other,
i.e., the non-diagonal entries of A are negative.2 In this case, there are values for
X for which the distance from the optimum increases in expectation.

The main contributions of the paper is that we give a general solution for two-
dimensional processes that follow such a multiplicative drift. Translated to the
algorithm, our result shows that the (1+1)-EA is efficient if and only if the matrix
A has a positive eigenvalue, except for the threshold cases. The formal statement
is in Theorem 2. The only restriction that we make is that the two random
variables XL,XR individually have positive drift (towards the optimum), but
impose a negative drift on each other. This is the non-trivial case. For example,
if XL has negative drift by itself, then it is not hard to see that the optimum will
not be reached efficiently from a situation where XL is much larger than XR.
On the other hand, if XL and XR both have positive drift individually, and XL

contributes positively to the drift of XR, then it is easy to argue that XR goes
to zero regardless of XL, and afterwards XL also goes to zero. Thus the hard
case is covered and settled by Theorem 2.

Our setting has some similarity with the breakthrough result by Jonathan
Rowe on linear multi-objective drift analysis [28], one of the most underrated
papers of the field in the last years. Our positive result overlaps with the result
of [28].3 In fact, [28] is more general in the sense that it gives a sufficient criterion
for fast convergence in arbitrary constant dimension, also in terms of the eigen-
values and eigenvectors of matrix A. (It gives a very nice collection of examples,
too!) However, it is unclear whether the criterion in [28] is also sufficient in gen-
eral, while our result contains matching positive and negative results. Moreover,
while [28] assumes that the drift is exactly given by A · X (or lower bounded
by that), we show our result even if the drift is only approximately given by
A · X. This extension is non-trivial, and indeed the largest portion of the proof
goes into showing that the result is robust under such error terms. The vast
majority of applications have minor order error terms in the drift (and so do the
applications in this paper), so we believe that this is quite valuable.

2 We follow the convention that we always call drift towards the optimum positive,
and drift away from the optimum negative. Since the optimum in our case is at 0,
this means that we consider the difference Xt − Xt+1 for the drift, not vice versa.

3 For direct comparison it is important to note that [28] works with the matrix I − A
instead of A, where I is the identity matrix.

616 D. Janett and J. Lengler

2 Preliminaries and Definitions

Throughout the paper, χ > 0 and ρ, � ∈ [0, 1] are constants, independent of n,
and all Landau notation is with respect to n → ∞. We say that an event En

holds with high probability or whp if Pr[En] → 1 for n → ∞. The environment
TwoLinρ,� is the probability distribution on {f �

1 , f
�
2}, which assigns probability

ρ and 1 − ρ to f �
1 and f �

2 , respectively, where f �
1 and f �

2 are given by (1). The
left and right part of a string x ∈ {0, 1}n, denoted by xL and xR, refers to
the first 	�n
 bits of x and to the remainder of the string, respectively. We
will consider the (1 + 1)-EAwith mutation rate χ/n for maximization on D :=
TwoLinρ,�, which is given in Algorithm 1. The runtime of an algorithm refers

Algorithm 1. The (1 + 1)-EA with mutation rate χ/n in environment D.
Sample x0 from {0, 1}n uniformly at random (or start with pre-specified x0).
for t = 0, 1, 2, 3, . . . do

Draw f t from D.
Create yt by flipping each bit of xt independently with probability χ/n.
Set xt+1 = arg max{f t(x) | x ∈ {xt, yt}}.

to the number of function evaluations before the algorithm evaluates the shared
global maximum of TwoLinρ,� for the first time. For typesetting reasons we will
write column vectors in horizontal form in inline text, e.g. (XL,XR). We denote
by ‖x‖ := maxi{|xi|} the ∞-norm of a vector x, and similarly for matrices.

3 Two-Dimensional Multiplicative Drift

This section contains our main result in terms of presenting a tool, Theorem 2
below. We first give a lemma which states some basic facts about the matrices
that we are interested in. All vectors in this section are column vectors.

Lemma 1. Let a, d > 0 and b, c < 0, and consider the real 2 × 2-matrix A =(
a b
c d

)
∈ R

2×2. Then the equation

cγ2 + dγ = aγ + b (2)

has a unique positive root γ0 > 0. The vector e1 := (γ0, 1) is an eigenvector of A
for the eigenvalue λ1 := cγ0 + d. The other eigenvalue is λ2 := a − cγ0 and has
eigenvector e2 := (b,−cγ0). The vector e1 has two positive real entries, while the
vector e2 has a positive and a negative entry. Moreover,

• if aγ0 + b > 0, or equivalently cγ0 + d > 0, then λ2 > λ1 > 0;
• if aγ0 + b < 0, or equivalently cγ0 + d < 0, then λ2 > 0 > λ1.

The values γ0, λ1, λ2 and the entries of e1 and e2 are smooth in a, b, c, d.

Two-Dimensional Drift Analysis 617

Proof. The roots of Eq. (2) are the roots of the quadratic polynomial cγ2 + (d −
a)γ − b. Its discriminant (d − a)2 + 4bc > 0 is positive, so it has two real roots.
Since the product of the roots is −b/c < 0 by Vieta’s rule, they must have
different signs. This proves existence and uniqueness of γ0.

For the eigenvalues and eigenvectors, we check:

Ae1 =
(

aγ0 + b
cγ0 + d

)
(2)
=

(
γ0(cγ0 + d)

cγ0 + d

)
= λ1e1, (3)

and

Ae2 =
(

ab − bcγ0
bc − cdγ0

)
(2)
=

(
b(a − cγ0)

c(cγ2
0 − aγ0)

)
= λ2e2. (4)

Recalling a, d > 0 and b, c < 0, it is trivial to see that λ2 > 0 in all cases,
e1 has two positive entries, and e2 has a positive and a negative entry. Since
λ1 = cγ0 + d, it has the same sign as aγ0 + b by (2). Finally, by (2), γ0λ1 =
aγ0 + b < aγ0 < aγ0 − cγ2

0 = γ0λ2, which implies λ1 < λ2.
For smoothness, it suffices to observe that γ0 can be written in the form

x+
√

y, where x, y depend smoothly on the parameters of (2), and y > 0. Hence,
γ0 is smooth, and the remaining values depend smoothly on γ0 and a, b, c, d. �

The following theorem is our main result. It is concerned with the situation
that we have two-dimensional state vectors, and the drift in state x ∈ R

2 is
approximatively given by Ax. There are a few complications that we need to
deal with. Firstly, in our application the drift does not look exactly like that,
but only approximatively, up to (1 ± o(1)) factors. Second, even in the positive
case, in our application we will only compute the drift if the number of one-bits
is o(n), since the computations would get much more complicated otherwise.
These complications are reflected in the theorem.

In fact, these complications are rather typical. At least in the negative case
aγ0 + b < 0, it is impossible for any random process on a finite domain that the
drift is given exactly by Ax everywhere. This is the same as in one dimension: it
is impossible to have a negative drift throughout the whole of a finite domain;
it can hold in a subset of the domain, but not everywhere.

Theorem 2 (Two-Dimensional Multiplicative Drift). Assume that for
each n ∈ N we have a two-dimensional real Markov chain (Xt)t≥0 = (Xt(n))t≥0

on D ⊆ [0, n]×[0, n], i.e., Xt = (Xt
1,X

t
2) as column vector, where Xt

1,X
t
2 ∈ [0, n].

Assume further that there is a (constant) real 2 × 2-matrix A =
(
a b
c d

)
∈ R

2×2

with a, d > 0 and b, c < 0, and that there are constants κ, r > 0 and a function
σ = σ(n) = ω(

√
log n/n) such that Xt satisfies the following conditions.

A. Two-dimensional linear drift. For all t ≥ 0 and all x with ‖x‖ ≤ σn, the drift
at Xt = x is (1 ± o(1))A · x/n, by which we mean

E
[
Xt − Xt+1 | Xt = x

]
=

(
(1 ± o(1))ax1

n + (1 ± o(1))bx2
n

(1 ± o(1))cx1
n + (1 ± o(1))dx2

n

)
, (5)

where the o(1) terms are uniform over all t and x.

618 D. Janett and J. Lengler

B. Tail bound on step size. For all i ≥ 1, t ≥ 0, and for all x = (x1, x2) ∈ D,

Pr[‖Xt − Xt+1‖ ≥ i | Xt = x] ≤ κ

(1 + r)i
. (6)

Let γ0 be the unique positive root of Eq. (2), and let T be the hitting time of
(0, 0), i.e., the first point in time when XT = (0, 0).

(a) If aγ0 + b > 0 and ‖X0‖ = o(σn), then T = O(n log n) with high probability.
(b) If aγ0 + b < 0 and ‖X0‖ ≥ σn, then T = eΩ(σ2n) with high probability.

Remark 3. While we have included some necessary complications in the state-
ment of Theorem 2, we have otherwise sacrificed generality to increase readabil-
ity. Firstly, we restrict ourselves to the case that the drift is (1 ± o(1))A · x/n.
The scaling factor 1/n is quite typical for applications in EAs, but the machinery
would work for other factors as well. Secondly, in many applications including
ours, the factors x1/n and x2/n reflect the probability of having any change at
all, and conditional on changing the drift is of order Θ(1). In this situation, the
Negative Drift Theorem used in the proof can be replaced by stronger versions
(see [29, Section 2.2]), and we can replace the condition σ = ω(

√
log n/n) by the

weaker condition σ = ω(1) for both parts (a) and (b). Moreover, part (b) then
holds with a stronger bound of eΩ(σn) under the weaker condition ‖X0‖ = ω(1).
Finally, the step size condition B can be replaced by other conditions [15,18].

Proof (of Theorem 2). (a). By Lemma 1, the matrix A has two positive eigenval-
ues λ1, λ2 with λ2 > λ1 > 0 with eigenvectors e1 and e2, where e1 has two posi-
tive entries, while e2 has a positive and a negative entry. In other words, the 2×2-

matrix U whose columns are given by e1 and e2 satisfies U−1AU =
(

λ1 0
0 λ2

)
.

Moreover, the eigenvalues and eigenvectors depend smoothly on a, b, c, d. Hence,
changing a, b, c, d by some additive term β changes the eigenvalues and eigenvec-
tors by O(β) if β is small.4 In particular, writing β = δ/n, for every ε > 0 there
exists δ > 0 such that every matrix Ã with ‖A − Ã‖ < δ/n is invertible and
has two different positive eigenvalues λ̃1, λ̃2 with eigenvectors ẽ1, ẽ2 respectively,
such that

i) |λ1 − λ̃1| < ε/n and |λ2 − λ̃2| < ε/n and λ̃2 > λ̃1.
ii) ‖e1 − ẽ1‖ < ε/n and ‖e2 − ẽ2‖ < ε/n.
iii) ‖U−1 − Ũ−1‖ < ε/(n max{‖U‖, ‖Ũ‖}), where Ũ is the matrix with columns

ẽ1 and ẽ2.

For the last point, note that ‖Ũ‖ is uniformly bounded by an absolute constant
(depending on a, b, c, d) if δ/n is sufficiently small.

4 This is because for any matrix M of norm 1 we can write λ1(A + βM) = λ1(A) +
βDλ1(A) · M + O(β2), where the total differential Dλ1(A) has bounded norm, and
analogously for the other eigenvalues and eigenvectors.

Two-Dimensional Drift Analysis 619

Let x ∈ R
2, and let η := (η1, η2) := U−1x and η̃ := (η̃1, η̃2) := Ũ−1x. In

other words, we write x in the basis {e1, e2} by decomposing x = η1e1 + η2e2,
and analogously for the basis {ẽ1, ẽ2}. Then we claim that iii) implies

(1 − ε
n)‖η‖ ≤ ‖η̃‖ ≤ (1 + ε

n)‖η‖. (7)

To check this, first note that for the identity matrix I ∈ R
2×2,

‖Ũ−1U − I‖ ≤ ‖U‖ · ‖Ũ−1 − U−1‖ ≤ ‖U‖ · ε
n‖U‖ = ε

n . (8)

For any vector v, this imples

‖Ũ−1Uv − v‖ = ‖(Ũ−1U − I)v‖
(8)

≤ ε
n‖v‖. (9)

With η̃ = Ũ−1x = Ũ−1Uη, this implies that

‖η̃ − η‖ ≤ ε
n‖η‖, (10)

and the right hand side of (7) follows from ‖η̃‖ ≤ ‖η‖ + ‖η̃ − η‖. Reversing the
roles of η and η̃, we also have ‖η‖ ≤ (1+ε/n)‖η̃‖, and multiplying with (1−ε/n)
yields (1 − ε/n)‖η‖ ≤ (1 − (ε/n)2)‖η̃‖ ≤ ‖η̃‖, which is the left hand side of (7).
Finally, we note for later reference that by an analogous computation, (8) and (9)
also hold with U and Ũ reversed, so for all vectors v,

‖U−1Ũv − v‖ ≤ ε
n‖v‖. (11)

Now we choose ε > 0 so small that (1 − (λ1 − ε)/n)(1 + ε/n)2 ≤ 1 − λ1/(2n)
for all n ∈ N, and a corresponding δ > 0. We consider the potential function
f : [0, n]× [0, n] → R

+
0 ; f(x) := ‖η‖ = ‖U−1x‖. In other words, the potential of a

search point x is the norm of the corresponding vector η in basis {e1, e2}. Let x
be a search point with ‖x‖ < σn, and assume that n is so large that all o(1) terms
are at most δ. Then by Condition A there is some matrix Ã with ‖A − Ã‖ < δ
such that the drift at x is Ãx/n. Using the same notation as above, in particular
λ̃1, λ̃2, ẽ1, ẽ2 for the eigenvalues and eigenvectors of Ã, we can rewrite this as

E
[
Xt+1 | Xt = x

]
= x − Ãx/n = (I − Ã/n) · (η̃1ẽ1 + η̃2e2)

=
(
1 − λ̃1

n

)
η̃1ẽ1 +

(
1 − λ̃2

n

)
η̃2ẽ2.

(12)

Recall that λ̃2 > λ̃1 > λ1 − ε (the latter by i)) and that the potential is given
by f(x) = ‖η‖. Moreover, the function x �→ η = U−1x is a linear function, so it
commutes with expectations. Thus, the expected potential of Xt+1 is

E
[
f(Xt+1) | Xt = x

]
=

∥∥U−1
((

1 − λ̃1
n

)
η̃1ẽ1 +

(
1 − λ̃2

n

)
η̃2ẽ2

)∥∥

=
∥∥U−1Ũ

((
1 − λ̃1

n

)
η̃1,

(
1 − λ̃2

n

)
η̃1

)∥∥
(11)

≤ (1 + ε
n)(1 − λ1−ε

n)‖η̃‖
(7)

≤ (1 + ε
n)2(1 − λ1−ε

n)‖η‖ ≤ (1 − λ1
2n)f(Xt).

(13)

620 D. Janett and J. Lengler

Hence, the potential has multiplicative drift towards zero, as long as ‖Xt‖ ≤ σn.
Since f(Xt) = Θ(‖Xt‖), there is a constant ν > 0 such that f(Xt) ≤ νσn implies
‖Xt‖ ≤ σn. Thus (13) is applicable whenever f(Xt) ≤ νσn. In particular, in
the interval [νσn/2, νσn], the potential has a downwards drift of order at least
Θ(σ). The starting potential is below this interval as f(X0) = Θ(‖X0‖) = o(σn),
so by the Negative Drift Theorem [27, Theorem 2], with high probability the
potential does not reach the upper boundary of this interval for at least eΩ(σ2n) =
ω(n log n) steps. Thus with high probability the random process remains in the
region where (13) holds, and by the Multiplicative Drift Theorem [8,18], with
high probability it reaches the optimum in O(n log n) steps.

(b). We only give a sketch. Here we use a different potential function. As
before, for a vector x, let η = (η1, η2) be the corresponding vector in basis
{e1, e2}. Then we define the potential of x as f(x) := η1. To convince ourselves
this choice makes sense, one first shows that

1. f(x) > 0 for all x ∈ [0, n]2 \ {(0, 0)};
2. f((0, 0)) = 0;
3. there is a constant κ > 0 such that f(x) ≥ κ‖x‖ for all x ∈ [0, n]2 \ {(0, 0)}.

For statements 1 and 3 to hold, it is crucial that we restrict x to the first
quadrant, i.e., that x does not have negative entries. It is sufficient to consider
this range because the random variable Xt is restricted to it. We omit the proof
for space reasons.

Then by a similar calculation as in (a), one can show

E
[
f(Xt+1) | Xt = x

] ≥ (1 + |λ1|
2n)f(Xt). (14)

Thus we have a drift away from the optimum. The proof is then completed by a
standard application of the Negative Drift Theorem [27, Theorem 2], which we
omit. �

3.1 Interpretation and Generalization

We give some intuition on how to interpret the equations occuring in Lemma1
and Theorem 2 in the language of TwoLin. The following approach leads to the
same equations in the case of multiplicative (linear) drift, but it is possible to
apply it also in situations where the drift is not linear.

We are interested in the case that the two random variables X1 and X2

each have positive drift by themselves, but influence each other negatively. As
outlined in the introduction, other cases are easier and thus less interesting.
This means that when X1 is much larger than X2, then the drift coming from
X1 dominates the drift coming from X2. In particular, X1 has a drift towards
zero in this case, while X2 has a drift away from zero. This means in particular
that X1 and X2 should approach each other. On the other hand, if X2 is much
larger than X1, then the situation is reversed: X1 increases in expectation, and
X2 decreases. But again, X1 and X2 approach each other. That means that, as
the ratio X1/X2 decreases, the drift of X1/X2 changes from negative to positive.

Two-Dimensional Drift Analysis 621

This suggests the following approach. Let γ := X1/X2. We search for a
value of γ that is self-stabilizing. To this end, we consider the random variable
Y := X1 − γX2, compute the drift of Y and then choose the value γ0 for which
the drift of Y at Y = 0 is zero. For multiplicative drift, this leads precisely to
Eq. (2). By the considerations above, the drift of Y is decreasing in Y . Hence, if
the drift at Y = 0 is zero, then the drift for positive Y points towards zero, and
the drift for negative Y also points towards zero.

It is possible to turn this into an analysis as follows. We divide the optimiza-
tion process in two phases. In the first phase, we only consider Y = X1 − γ0X2.
We show that Y approaches 0 quickly (with the Multiplicative Drift Theorem, in
case of multiplicative drift), and stays very close to zero for a long time (with the
Negative Drift Theorem). In the second phase, we analyze the random variable
X := X1 + X2. However, since we know that Y is close to zero, we do not need
X to have positive drift in the whole search space; it suffices that it has positive
drift in the subspace where X1 = γ0X2. This is a massive restriction, and in
the linear case the drift is just reduced to C · X for some constant C under this
restriction. (Actually, C = aγ0 + b.) Thus we can show convergence of X with
standard drift arguments.

While this approach is rather cumbersome, it works in large generality. We
do not need that the drift is linear. Essentially, we just need that the drift of X1

is increasing in X1 and decreasing in X2, and vice versa for X2. This already
guarantees a solution γ0 (which may then depend on X) for the condition that
the drift of Y := X1 −γX2 at Y = 0 is zero, and it guarantees that Y then has a
drift pushing it towards zero from both directions. Thus there is no fundamental
obstacle for the machinery described above, though the details may become quite
technical. Iterating this argument, it might even be possible to apply the process
to dimensions larger than two, see the full version for more details [11].

4 The (1 + 1)-EA on TwoLinρ,�

In this section, we analyze the runtime of the (1 + 1)-EA on TwoLinρ,�. The
main contribution of this section is Theorem6. This is an application of the
methods developed in the previous section. In Sect. 4.1 below, we will give more
precise results for the special case ρ = � = .5, as well as the Domination Lemma
that holds for arbitrary ρ and �. For readability, we will assume in the following
that �n ∈ N. We denote by Xt

L and Xt
R the number of zero bits in the left and

right part of the t-th search point xt, respectively, and let Xt := (Xt
L,Xt

R). It
only remains to compute the two-dimensional drift of Xt, for which we give the
following definition.

Definition 4. Let χ > 0 and ρ, � ∈ [0, 1]. Let A =
(

a b
c d

)
∈ R

2×2, where

a = ρχe−�χ + (1 − ρ)χe−χ, b = −(1 − ρ)�χ2e−(1−�)χ,

c = −ρ(1 − �)χ2e−�χ, d = (1 − ρ)χe−(1−�)χ + ρχe−χ.
(15)

622 D. Janett and J. Lengler

The reason for the definition of a, b, c, d and A is the following proposition,
which states that the two-dimensional drift is then given by (1 ± o(1))Ax/n.

Proposition 5. Let χ > 0 and ρ, � ∈ [0, 1]. Let xL ∈ [�n] and xR ∈ [(1 − �)n],
and x = (xL, xR) as column vector. If xL + xR = o(n), then

E[Xt − Xt+1 | Xt = x] =
1
n

(
(1 ± o(1)) · a (1 ± o(1)) · b
(1 ± o(1)) · c (1 ± o(1)) · d

)
· x =:

1 ± o(1)
n

Ax,

where a, b, c, d and A are given by Definition 4.

The proof of Proposition 5 consists mostly of rather standard calculations,
and we omit them due to space restrictions. Next we give our main result for
the (1+1)-EAon TwoLinρ,�, which now follows easily from Theorem 2. We note
that, as explained in Remark 3, the bound n1/2+Ω(1) in the second case is not
tight and could be strengthened.

Theorem 6. Let χ > 0, ρ, � ∈ [0, 1], and consider the (1 + 1)-EAwith mutation
rate χ/n on TwoLinρ,�. Let a, b, c, d as in Definition 4, and let γ0 be the unique
root of cγ2 + dγ = aγ + b as in (2). Let T be the hitting time of the optimum.

(a) Assume that aγ0+b > 0 and that the (1+1)-EAis started with o(n) zero-bits.
Then T = O(n log n) with high probability.

(b) Assume that aγ0 + b < 0 and that the (1 + 1)-EAis started with n1/2+Ω(1)

zero-bits. Then T is superpolynomial with high probability.

Proof (of Theorem 6). We need to check that Theorem 2 is applicable. For (a),
assume that the algorithm starts with x = o(n) zero-bits. We choose a function
σ = σ(n) such that x = o(σn) = o(n). Moreover, we require σ = ω(

√
log n/n).

For concreteness, we may set σ := max{n−1/4,
√

x/n}. Then condition A (two-
dimensional linear drift) holds by Proposition 5. Condition B (tail bound on
step size) holds since the number of bit flips per generation satisfies such a tail
bound for any constant χ. Thus the claim of (a) follows. For (b), we choose
σ :=

√
xn−3/4 = n−1/2+Ω(1). Since x ≤ √

xn1/2 = ω(σn), Theorem 2 applies
and gives that with high probability T = e−nΩ(1).

�
Although it is not difficult to write down an explicit formula for γ0 and for

the expression aγ0 + b, the formula is so complicated that we refrain from giving
it here. We suspect that for all ρ, � ∈ (0, 1) there is a threshold χ0 such that
aγ0 + b > 0 for all χ < χ0 and aγ0 + b < 0 for all χ > χ0, but we couldn’t
deduce it easily from the explicit formula. We will show this in Sect. 4.1 for
the symmetric case ρ = � = .5. For the general case, we instead only give the
following, slightly weaker corollary. We omit the proof due to space restrictions.

Corollary 7. Consider the setting of Theorem6. For all ρ, � ∈ (0, 1) there are
χ1, χ2 > 0 such that aγ0 + b > 0 for all χ < χ1 and aγ0 + b < 0 for all χ > χ2.

Two-Dimensional Drift Analysis 623

4.1 Domination and the Symmetric Case ρ = � = 1/2

In this section, we will give the Domination Lemma 10, and we use it to study
the symmetric case ρ = � = 1/2 in more detail. We will show two things for
the (1 + 1)-EAon TwoLin.5,.5 beyond the general statement in Theorem 6: for
the positive result, we remove the condition that the algorithm must start with
o(n) zero-bits; and we show that there is a threshold χ0 ≈ 2.557 such that the
algorithm is efficient for χ < χ0 and inefficient for χ > χ0. We start by inspecting
the threshold condition aγ0 + b > 0.

Lemma 8. Let a, b, c, d be as in Definition 4. For ρ = � = 1/2, we have

a = d = χ
2

(
e−χ/2 + e−χ

)
, b = c = −χ2

4 e−χ/2, γ0 = 1. (16)

Let χ0 ≈ 2.557 be the unique positive root of 2−χ+2e−χ/2 = 0. Then aγ0+b > 0
for χ < χ0 and aγ0 + b < 0 for χ > χ0.

Proof. The formulas for a, b, c, d are simply obtained by plugging ρ = � = 1/2
into (15). Since a = d, the defining Eq. (2) for γ0 simplifies to cγ2

0 = b, which
implies γ0 = 1. For the critical expression aγ0 + b we obtain

aγ0 + b = χ
2

(
e−χ/2 + e−χ

) − χ2

4 e−χ/2 = χe−χ/2

4

(
2 − χ + 2e−χ/2

)
. (17)

The expression in the bracket is decreasing in χ, so it is positive for χ < χ0 and
negative for χ > χ0. �
Now we are ready to prove a stronger version of Theorem6 for the case ρ = � =
.5. The main difference is that the threshold is explicit and that we may assume
that the algorithm starts with an arbitrary search point. Finally, the results also
hold in expectation.

Theorem 9. Let χ > 0, ρ = � = .5, and consider the (1 + 1)-EAwith mutation
rate χ/n on TwoLin.5,.5, with uniformly random starting point. Let χ0 ≈ 2.557
be the unique root of 2−χ+2e−χ/2 = 0. Let T be the hitting time of the optimum.

(a) If χ < χ0, then T = O(n log n) in expectation and with high probability.
(b) If χ > χ0, then T is superpolynomial in expectation and with high probability.

Proof. We only describe the key steps, without proving them. The negative
statement (b) follows immediately from Theorem 6 and Lemma 8. Note that if
the runtime is large whp, then it is also large in expectation. For (a), we consider
the one-dimensional potential Y t = Xt

L + Xt
R. Let Ei,j be the event of flipping i

zero-bits in the left part, and j zero-bits in the right part, and let Δi,j(x) be the
drift conditional on Ei,j and on Xt = x. Then it can be shown that for all x,

Δ1,0(x) ≥ (1 − o(1)) e−χ

4 (2 − χ + 2e−χ/2),

Δ0,1(x) ≥ (1 − o(1)) e−χ

4 (2 − χ + 2e−χ/2).
(18)

624 D. Janett and J. Lengler

By the Domination Lemma below, this implies that all other Δi,j are also posi-
tive (except for Δ0,0 = 0), so the total drift is at least Pr[E0,1]Δ0,1+Pr[E0,1]Δ0,1,
which is easily seen to be Ω(Y t/n). The result then follows from the Multiplica-
tive Drift Theorem [18]. �

It remains to show the Domination Lemma. Interestingly, this lemma holds
in larger generality, for arbitrary � and ρ. However, this does not suffice to
generalize Theorem 9 to arbitrary ρ and �. The point where it breaks is that it
is generally not true that Δ0,1 and Δ1,0 are both positive if Δ1 is positive. The
proof is purely algebraic, but also long and involved, and we omit it here.

Lemma 10 (Domination Lemma). Let ρ, � ∈ [0, 1], xL ∈ [�n] and xR ∈ [(1−
�)n]. With the notation from above, if Δ0,1(xL, xR) > 0 and Δ1,0(xL, xR) > 0
then Δi,j(xL, xR) > 0 for all i, j ≥ 0 with i + j > 0.

References

1. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring popula-
tion size of the (μ, λ) EA. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 1461–1469 (2019)

2. Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone!
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760
(2014)

3. Dang, D.C., Eremeev, A., Lehre, P.K.: Escaping local optima with non-elitist evo-
lutionary algorithms. In: AAAI Conference on Artificial Intelligence, vol. 35, pp.
12275–12283 (2021)

4. Dang, D.C., Eremeev, A., Lehre, P.K.: Non-elitist evolutionary algorithms excel in
fitness landscapes with sparse deceptive regions and dense valleys. In: Genetic and
Evolutionary Computation Conference (GECCO), pp. 1133–1141 (2021)

5. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist popula-
tions. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter,
B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 75

6. Doerr, B.: Lower bounds for non-elitist evolutionary algorithms via negative mul-
tiplicative drift. Evol. Comput. 29(2), 305–329 (2021)

7. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters
even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)

8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

9. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist
evolutionary algorithms: why success rates matter. In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 1151–1159 (2021)

10. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strat-
egyand when not. In: Foundations of Computational Intelligence (FOCI), pp. 25–
32. IEEE (2007)

11. Janett, D., Lengler, J.: Two-dimensional drift analysis: optimizing two functions
simultaneously can be hard (2022). https://arxiv.org/abs/2203.14547

12. Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Tou-
ssaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp.
54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6 4

https://doi.org/10.1007/978-3-319-45823-6_75
https://arxiv.org/abs/2203.14547
https://doi.org/10.1007/978-3-540-73482-6_4

Two-Dimensional Drift Analysis 625

13. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: OneMax is not the easiest func-
tion for fitness improvements (2022). https://arxiv.org/abs/2204.07017

14. Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes
for the (1, λ)-EA on monotone functions. In: Parallel Problem Solving from Nature
(PPSN). Springer (2022)

15. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica
75(3), 490–506 (2016)

16. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 25

17. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions.
IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

18. Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp.
89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4 2

19. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone
functions: An entropy compression argument. In: Analytic Algorithmics and Com-
binatorics (ANALCO), pp. 94–102. SIAM (2019)

20. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic envi-
ronments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1 42

21. Lengler, J., Riedi, S.: Runtime Analysis of the (μ + 1)-EA on the Dynamic Bin-
Val Function. In: Evolutionary Computation in Combinatorial Optimization (Evo-
Com). pp. 84–99. Springer, Heidelberg (2021)

22. Lengler, J., Schaller, U.: The (1 + 1)-EA on noisy linear functions with random
positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp.
712–719. IEEE (2018)

23. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb.
Probab. Comput. 27(4), 643–666 (2018)

24. Lengler, J., Sudholt, D., Witt, C.: The complex parameter landscape of the com-
pact genetic algorithm. Algorithmica 83(4), 1096–1137 (2021)

25. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (μ + 1)-EA
on monotone functions. Theoret. Comput. Sci. 875, 28–51 (2021)

26. Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: ACO with iteration-
best update. In: Genetic and Evolutionary Computation Conference (GECCO),
pp. 63–70 (2010)

27. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic
algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

28. Rowe, J.E.: Linear multi-objective drift analysis. Theoret. Comput. Sci. 736, 25–40
(2018)

29. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, λ)
evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

30. Sudholt, D., Witt, C.: On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica 81(4), 1450–
1489 (2019)

31. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)

https://arxiv.org/abs/2204.07017
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1007/978-3-030-58112-1_42

Author Index

Abbasnejad, Amir I-76
Aboutaib, Brahim II-555
Ahmad, Hammad II-3
Al Moubayed, Noura I-505
Alderliesten, Tanja II-19, II-247
Alhosani, Ayesha I-265
Allmendinger, Richard I-90, I-265
Alza, Joan I-533
Antonov, Kirill I-118
Arbelaez, Alejandro II-338
Arnold, Dirk V. I-76

Bäck, Thomas I-32, I-63
Bartlett, Mark I-533
Bentley, Peter J. I-371, II-263
Beyer, Hans-Georg II-499
Bhuva, Vijay Dhanjibhai II-456
Bian, Chao II-428, II-512
Bischl, Bernd I-575
Bleda, Mercedes I-265
Bosman, Peter A. N. II-19, II-179, II-247
Bossek, Jakob I-192, I-237
Bouter, Anton II-247
Branke, Juergen I-132, II-193
Branke, Jürgen I-104
Brookhouse, James II-151
Bucur, Doina II-207
Butterworth, James I-400
Buzdalov, Maxim II-600

Carvalho, Jônata Tyska I-520
Cashin, Padriac II-3
Ceberio, Josu I-533
Cenikj, Gjorgjina I-18
Che, Zhengping I-385
Chen, Jinbiao I-356
Chen, Longcan II-234
Chen, Shifei II-382
Chen, Zefeng I-160
Chugh, Tinkle I-90
Cleghorn, Christopher W. I-177
Climent, Laura II-338
Coello Coello, Carlos Artemio II-221
Couckuyt, Ivo I-104

Cunegatti, Elia II-207
Cybula, Piotr I-279

Dang, Duc-Cuong II-456
de Nobel, Jacob I-46
Deist, Timo M. II-179
Dhaene, Tom I-104
Dhaenens, Clarisse II-352
Dickhoff, Leah R. M. II-247
Dietrich, Konstantin I-590
Doerr, Benjamin II-399, II-470
Doerr, Carola I-18, I-32, I-46, I-118
Drahosova, Michaela I-491
Duan, Qiqi II-281
Dufay, Marc II-470
Dumuid, Dorothea II-323

Eftimov, Tome I-18, I-46

Feutrier, Thomas I-548
Fieldsend, Jonathan I-90
Filiot, Alexandre II-352
Forrest, Stephanie II-3
Freitas, Alex II-151
Friedrich, Tobias II-442, II-586

Gaier, Adam I-371, II-263
Gao, Guojun II-382
Gaskó, Noémi I-324
Glasmachers, Tobias II-309
Groves, Chris I-505
Grzesiak-Kopeć, Katarzyna II-368

Ha, Damy M. F. II-179
Handl, Julia II-352
Harrison, Joe II-19
Hart, Emma I-207, I-223
He, Yi-Xiao I-427
Heidari, Arash I-104
Heins, Jonathan I-192
Helmuth, Thomas II-485
Homem, Vitor Hugo I-520
Hong, Wenjing I-459
Huang, Huanhuan I-356

628 Author Index

Huang, Zhengxin I-160
Huber, Liam II-456
Hurta, Martin I-491

Iacca, Giovanni II-207
Ishibuchi, Hisao I-414, II-110, II-138, II-234

Jacques, Julie II-352
Janett, Duri II-612
Jankovic, Anja I-46
Jaszkiewicz, Andrzej I-279, II-164
Jiang, He II-382
Jones, Benedict. A. H. I-505
José-García, Adán II-352

Kalkreuth, Roman II-63
Kampouridis, Michael II-33
Kanellopoulos, Panagiotis II-33
Kaufmann, Marc II-569
Képes, Tamás I-324
Kerschke, Pascal I-3, I-192, I-575
Kessaci, Marie-Éléonore I-548
Knowles, Joshua I-265
Kostovska, Ana I-46
Kötzing, Timo II-442, II-586
Krause, Oswin II-295
Krejca, Martin S. II-442

La Cava, William II-485
Larcher, Maxime II-569
Lárraga, Giomara II-81
Launay, David II-352
Lehre, Per Kristian I-308
Lengler, Johannes II-485, II-569, II-612
León, Coromoto I-223
Li, Ke I-341, II-124
Li, Shuang II-124
Li, Wei II-124
Li, Ying I-442, I-474
Liao, Weiduo I-414
Lim, Chin Woei I-265
Lim, Soo Ling I-371
Liu, Dong II-382
Liu, Xiaowei I-385
Loaiza Quintana, César II-338
Long, Xinpeng II-33
López-Ibáñez, Manuel I-18

Malan, Katherine M. I-177
Mańdziuk, Jacek I-146

Marchi, Mariapia I-132
Marrero, Alejandro I-223
McCall, John I-533
Mei, Yi II-48
Menzel, Stefan I-63
Mersmann, Olaf I-590
Miettinen, Kaisa I-90, II-81
Min, Geyong I-341
Montrone, Teresa I-132
Moosavi, Amirhossein I-250
Mrazek, Vojtech I-491

Nan, Yang II-110
Neumann, Aneta I-237, I-250, I-294, II-323
Neumann, Frank I-237, I-250, I-294, II-323,

II-413, II-526, II-542, II-586
Nguyen, Su II-48
Nikfarjam, Adel I-237, I-250, II-413
Nikolikj, Ana I-18
Nolfi, Stefano I-520

Ochoa, Gabriela I-562, I-603
Omeradzic, Amir II-499

Pang, Lie Meng II-234
Pełka, Przemysław I-279
Peng, Yaxin I-385
Peng, Yiming II-138
Prager, Raphael Patrick I-3, I-575

Qian, Chao I-427, I-459, II-428, II-512
Qiao, Lei II-382
Qin, Xiaoyu I-308
Qing, Jixiang I-104
Qu, Zhongdi II-399

Radhakrishnan, Aishwarya II-586
Rahat, Alma I-90
Rajabi, Amirhossein II-442
Raponi, Elena I-118
Rasmussen, Charlotte Lund II-323
Rogalski, Marek I-279
Rojas Gonzalez, Sebastian I-104
Rook, Jeroen I-192
Rosa, Larissa Gremelmaier I-520

Savani, Rahul I-400
Schäpermeier, Lennart I-192, I-575
Schneider, Lennart I-575
Scholman, Renzo J. II-247

Author Index 629

Segredo, Eduardo I-223
Seiler, Moritz Vinzent I-3
Sendhoff, Bernhard I-63
Shang, Haopu I-459
Shang, Ke I-414, II-110
Shao, Chang II-281
Shi, Feng II-526
Shi, Yuhui II-281
Shu, Tianye II-110
Sielski, Piotr I-279
Sim, Kevin I-207
Singh, Hemant Kumar II-193
Ślusarczyk, Grażyna II-368
Sobanski, Vincent II-352
Stanford, Ty II-323
Stoddart, James II-263
Strug, Barbara II-368
Sudholt, Dirk II-456
Sutton, Andrew M. II-555

Tang, Jian I-385
Tao, Ye I-442, I-474
Teytaud, Fabien I-18
Teytaud, Olivier I-18
Thomson, Sarah L. I-562
Trajanov, Risto I-18
Tran, Linh I-371
Trautmann, Heike I-3, I-192, I-575
Tuyls, Karl I-400

Ullah, Sibghat I-63
Ungredda, Juan I-132

Valencia-Rodríguez, Diana Cristina II-221
Veerapen, Nadarajen I-548, I-603
Vekov, Géza I-324
Verel, Sébastien I-562
Vermetten, Diederick I-32, I-46
Videau, Mathurin I-18

Viet Do, Anh II-413
Villaggi, Lorenzo II-263
Vinokurov, Dmitry II-600

Wang, Hao I-46, I-63, I-118
Wang, Jiahai I-356
Wang, Wanying I-385
Wang, Zihan II-96
Weimer, Westley II-3
Witt, Carsten II-542
Wu, Jia-Liang I-459
Wu, Yu-Chang I-427
Wu, Zhonghai I-442, I-474

Xia, Xiaoyun I-160
Xiao, Chunyun II-96
Xie, Yue I-294, II-323
Xu, Zhiyuan I-385

Yan, Xiankun II-526
Yang, Yijun II-281
Ye, Furong I-32

Zaborski, Mateusz I-146
Zeze, Dagou A. I-505
Zhang, Fangfang II-48
Zhang, Mengjie II-48
Zhang, Yangchun I-385
Zhang, Zi-An II-512
Zhang, Zizhen I-356
Zhou, Aimin II-96
Zhou, Guochen II-281
Zhou, Shasha I-341
Zhou, Yirui I-385
Zhou, Yuren I-160
Zhou, Zhi-Hua I-427
Zielniewicz, Piotr II-164
Zou, Xun II-569

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	Genetic Programming
	Digging into Semantics: Where Do Search-Based Software Repair Methods Search?
	1 Introduction
	2 Background and Contextual Motivation
	3 Technical Approach
	3.1 Sampling APR Search Spaces
	3.2 Computing Mutant Similarity
	3.3 Visualizing Search Spaces

	4 Experimental Setup
	5 Experimental Results
	5.1 RQ1. APR Search Space Exploration and Repair Rates
	5.2 RQ2. Similarity of Semantic Search Spaces
	5.3 RQ3. Syntactic and Semantic Diversity of Mutants

	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusion
	References

	Gene-pool Optimal Mixing in Cartesian Genetic Programming
	1 Introduction
	2 Methods
	2.1 GOMEA
	2.2 CGP
	2.3 Adapting GOMEA for CGP

	3 Experimental Setup
	3.1 General Setup
	3.2 Setup Main Experiment
	3.3 Population Size Study
	3.4 Setup Known Ground Truth Experiment

	4 Results
	5 Discussion
	6 Conclusion
	References

	Genetic Programming for Combining Directional Changes Indicators in International Stock Markets
	1 Introduction
	2 Background and Literature Review
	2.1 Overview of Directional Changes
	2.2 Related Work

	3 Methodology
	3.1 Genetic Programming Model
	3.2 Trading Strategy

	4 Experimental Set up
	4.1 Data
	4.2 Benchmarks
	4.3 Parameter Tuning for GP
	4.4 Parameter Tuning for Trading Strategy

	5 Result and Analysis
	5.1 Comparison Between GP-DC and GP-PT
	5.2 Buy and Hold

	6 Conclusion
	References

	Importance-Aware Genetic Programming for Automated Scheduling Heuristics Learning in Dynamic Flexible Job Shop Scheduling
	1 Introduction
	2 Background
	2.1 Dynamic Flexible Job Shop Scheduling
	2.2 GP for DFJSS

	3 Importance-Aware Scheduling Heuristic Learning
	3.1 An Overview of the Proposed Algorithm
	3.2 Measure the Importance of the Routing and Sequencing Rules
	3.3 Adaptive Computational Resource Allocation Strategy

	4 Experiment Design
	5 Results and Discussions
	6 Conclusions and Future Work
	References

	Towards Discrete Phenotypic Recombination in Cartesian Genetic Programming
	1 Introduction
	2 Cartesian Genetic Programming
	3 Related Work
	3.1 Recombination in CGP
	3.2 Historical Background of Discrete Recombination

	4 The Proposed Method
	5 Experiments
	5.1 Experimental Setup
	5.2 Benchmarks
	5.3 Meta-optimization
	5.4 Results

	6 Discussion
	7 Conclusions and Future Work
	References

	Multi-Objective Optimization
	A General Architecture for Generating Interactive Decomposition-Based MOEAs
	1 Introduction
	2 Background
	3 Related Works
	4 Properties of an Interactive Solution Process
	5 Proposed Architecture
	6 Example Method and Experiments
	6.1 Interactive Solution Process
	6.2 Algorithmic Comparison
	6.3 Discussion

	7 Conclusions
	References

	An Exact Inverted Generational Distance for Continuous Pareto Front
	1 Introduction
	2 Related Work
	3 Exact Inverted Generational Distance
	4 Evaluating Discretization Error Using eIGD
	5 Conclusion and Future Work
	References

	Direction Vector Selection for R2-Based Hypervolume Contribution Approximation
	1 Introduction
	2 Background
	2.1 Hypervolume and Hypervolume Contribution
	2.2 R2-Based Hypervolume Contribution Approximation
	2.3 Direction Vector Set Generation Methods
	2.4 Subset Selection

	3 Proposed Method for Selecting Direction Vector Set
	3.1 Approximation Error
	3.2 Problem Formulation
	3.3 Greedy Inclusion Algorithm

	4 Experiments and Discussions
	4.1 Direction Vector Selection
	4.2 Test on Six Regular Pareto Fronts
	4.3 Application: GAHSS

	5 Conclusion
	References

	Do We Really Need to Use Constraint Violation in Constrained Evolutionary Multi-objective Optimization?
	1 Introduction
	2 Experimental Settings
	2.1 Benchmark Test Problems
	2.2 Peer Algorithms and Parameter Settings
	2.3 Performance Metrics and Statistical Tests

	3 Experimental Results
	3.1 Performance Analysis on Synthetic Benchmark Test Problems
	3.2 Performance Analysis on Real-World Benchmark Test Problems

	4 Conclusion
	References

	Dynamic Multi-modal Multi-objective Optimization: A Preliminary Study
	1 Introduction
	2 Related Work
	2.1 Multi-modal Multi-objective Optimization
	2.2 Dynamic Multi-objective Optimization

	3 Dynamic Multi-modal Multi-objective Optimization
	4 A Systematic Approach for Constructing dMMOPs
	4.1 Case Study on an Example Test Problem

	5 A Suggested Test Suite
	6 Concluding Remarks
	References

	Fair Feature Selection with a Lexicographic Multi-objective Genetic Algorithm
	1 Introduction
	2 A Lexicographic-Optimisation Genetic Algorithm for Fair Feature Selection
	2.1 Population Initialisation
	2.2 Lexicographic Tournament Selection
	2.3 The Four Fairness Measures and the Accuracy Measure
	2.4 Aggregating Fairness Measures
	2.5 Lexicographic Elitism
	2.6 Related Work

	3 Datasets and Experimental Setup
	4 Experimental Results
	4.1 RQ1: Does LGAFFS Select a Better Subset than the Full Set?
	4.2 RQ2: Does LGAFFS Perform Better than SFS?

	5 Conclusions
	References

	Greedy Decremental Quick Hypervolume Subset Selection Algorithms
	1 Introduction
	2 Basic Definitions
	3 Improved Quick Hypervolume Algorithm Scheme
	4 Greedy Decremental Lazy Quick HSS Algorithm
	5 The Modified Quick Hypervolume Extreme Contributor/Contribution Algorithm
	6 Computational Experiment
	7 Conclusions
	References

	Hybridizing Hypervolume-Based Evolutionary Algorithms and Gradient Descent by Dynamic Resource Allocation
	1 Introduction
	2 Uncrowded Hypervolume Optimization
	3 UHV-Based Algorithms
	3.1 UHV-ADAM
	3.2 UHV-GOMEA

	4 Hybridization
	4.1 Changes Made to UHV-ADAM
	4.2 Resource Allocation Scheme

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiment 1: The Effect of the Improvement Metric
	5.3 Experiment 2: The Effect of the Choice of Method to Distribute Gradient Resources
	5.4 Experiment 3: The WFG Benchmark

	6 Discussion
	7 Conclusion
	References

	Identifying Stochastically Non-dominated Solutions Using Evolutionary Computation
	1 Background and Motivation
	2 Proposed Problem Formulation
	3 Solution Using an Evolutionary Algorithm
	3.1 Discretization and Evaluation of Objectives
	3.2 Parent Selection and Evolution Operators
	3.3 Dominance Calculation and Ranking
	3.4 Strategies to Reduce Computational Effort

	4 Numerical Experiments
	4.1 Test Problems
	4.2 Experimental Setup
	4.3 Performance Measurement
	4.4 Results

	5 Conclusions and Future Work
	References

	Large-Scale Multi-objective Influence Maximisation with Network Downscaling
	1 Introduction
	2 Method
	2.1 Step (1): Community-Based Downscaling
	2.2 Step (2): MOEA on Two Objectives (cascade Size and Seed Set Size)
	2.3 Step (3): Upscaling

	3 Results
	3.1 Community-Based Downscaling of Large Networks
	3.2 MOEA and Solution Upscaling: The Optimality of Solutions
	3.3 Runtime Analysis
	3.4 Comparison with Heuristic Algorithm

	4 Discussion and Conclusions
	References

	Multi-Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the Hypervolume Approximation Using Polar Coordinates (MOEA-LAPCO)
	1 Introduction
	2 Approximating the Hypervolume Contribution Using Polar Coordinates
	3 Hungarian Differential Evolution
	3.1 Drawbacks of HDE's Selection Process

	4 Our Proposed Approach
	4.1 Selection Process
	4.2 Population to Be Pruned
	4.3 The Final Algorithm: MOEA-LAPCO

	5 Experimental Analysis
	6 Conclusions and Future Work
	References

	New Solution Creation Operator in MOEA/D for Faster Convergence
	1 Introduction
	2 Proposed Strategy and Implementations
	3 Experimental Study
	4 Conclusion and Future Work
	References

	Obtaining Smoothly Navigable Approximation Sets in Bi-objective Multi-modal Optimization
	1 Introduction
	2 Bézier parameterizations
	2.1 Definition of Solution Set
	2.2 Evaluation

	3 Niching Methods
	3.1 HVC and MO HVC
	3.2 Restart Scheme with Elitist Archive

	4 Multi Modal-Bézier Evolutionary Algorithm
	4.1 Clustering Approximation Sets
	4.2 Initialization Within Niches
	4.3 Algorithm Overview

	5 Experiments
	5.1 Test Problems
	5.2 Benchmark Setup
	5.3 Performance Indicators
	5.4 Results

	6 Discussion
	7 Conclusion
	References

	T-DominO
	1 Introduction
	2 Background
	2.1 Generative Design
	2.2 Exploration and Optimization with Non-objective Criteria

	3 Method
	4 Benchmarks
	4.1 Setup
	4.2 Result

	5 Case Study
	5.1 Setup
	5.2 Result

	6 Discussion
	References

	Numerical Optimizaiton
	Collective Learning of Low-Memory Matrix Adaptation for Large-Scale Black-Box Optimization
	1 Introduction
	2 Related Work on Distributed ES
	3 Distributed LM-MA-ES Within Multilevel Learning
	3.1 Combining Island Model with Meta-eS for Multilevel Learning
	3.2 Online and Hierarchical Learning of Strategy Parameters via Meta-eS
	3.3 Collective Learning of Fitness Topology via Multi-recombination
	3.4 A Distributed ES Framework for Multilevel Learning

	4 Numerical Experiments on Clustering Computing Platforms
	4.1 Experimental Settings for Large-Scale Black-Box Optimization
	4.2 Parallel Speedup w.r.t. Total Number of Function Evaluations
	4.3 Performance Comparisons W.R.T. Final Convergence Quality

	5 Conclusions
	References

	Recombination Weight Based Selection in the DTS-CMA-ES
	1 Introduction
	2 Background
	2.1 Gaussian Processes
	2.2 Bayesian Optimization
	2.3 CMA-ES
	2.4 DTS-CMA-ES
	2.5 Model Fitting

	3 Fully Weight-Based DTS-CMA-ES
	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

	The (1+1)-ES Reliably Overcomes Saddle Points
	1 Introduction
	2 Saddle Points
	3 Preliminaries
	4 Drift of the Normalized State
	5 Discussion and Conclusion
	References

	Real-World Applications
	Evolutionary Time-Use Optimization for Improving Children's Health Outcomes
	1 Introduction
	1.1 Data Description

	2 The Time-Use Optimization Models
	2.1 Model Parameter Estimation
	2.2 One Week Plan
	2.3 Multi-objectives Problem
	2.4 Fitness Function

	3 Evolutionary Algorithms for the Time-Use Optimisation Problem
	3.1 Single-objective Evolutionary Algorithms
	3.2 Multi-objective Evolutionary Algorithms

	4 Experiments
	4.1 Results of Single-objective Time-Use Optimization
	4.2 Results of Multi-objective Time-Use Optimization

	5 Conclusion
	References

	Iterated Local Search for the eBuses Charging Location Problem
	1 Introduction
	2 Related Work
	3 The Charging Location Problem
	4 The Iterated Local Search
	5 Evaluation
	6 Conclusions
	References

	Multi-view Clustering of Heterogeneous Health Data: Application to Systemic Sclerosis
	1 Introduction
	2 Background and Related Work
	2.1 Distance-Based Clustering on Heterogeneous Data
	2.2 From Single to Multi-objective Clustering

	3 Multi-view Clustering Approach
	3.1 Construction of the Data Views
	3.2 Multi-view Clustering Algorithm: MVMC
	3.3 Selection of Clustering Solutions

	4 Experimental Study
	4.1 CHUL Database and Data-View Configurations
	4.2 Reference Methods
	4.3 Parameter Settings

	5 Results and Discussions
	5.1 Clustering Performance
	5.2 Selection of Clustering Solutions

	6 Conclusion
	References

	Specification-Driven Evolution of Floor Plan Design
	1 Introduction
	2 Visual Floor Plan Generation Framework
	2.1 Floor Plan Representation
	2.2 Population Initialization
	2.3 Fitness Function
	2.4 Mutation
	2.5 Selection

	3 Case Study
	4 Conclusions
	References

	Surrogate-Assisted Multi-objective Optimization for Compiler Optimization Sequence Selection
	1 Introduction
	2 Background
	2.1 Compiler Optimization Sequence Selection
	2.2 Multi-objective Optimization for Compiler Optimization Sequence Selection

	3 The Proposed Approach
	3.1 Representation
	3.2 Fitness Function
	3.3 Surrogate-Assisted Multi-objective Optimization Algorithm
	3.4 Surrogate Model

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

	Theoretical Aspects of Nature-Inspired Optimization
	A First Runtime Analysis of the NSGA-II on a Multimodal Problem
	1 Introduction
	2 Previous Works
	3 Preliminaries
	3.1 The NSGA-II Algorithm
	3.2 The OneJumpZeroJump Benchmark

	4 Runtime Analysis for the NSGA-II
	4.1 Runtime Analysis for the NSGA-II Using Bit-Wise Mutation
	4.2 Runtime Analysis for the NSGA-II Using Fast Mutation

	5 Experiments
	6 Conclusions and Future Works
	References

	Analysis of Quality Diversity Algorithms for the Knapsack Problem
	1 Introduction
	2 Quality-Diversity for the Knapsack Problem
	2.1 Weight-Based Space
	2.2 Profit-Based Space
	2.3 DP-Based Filtering Scheme

	3 Theoretical Analysis
	4 Experimental Investigations
	5 Conclusions
	References

	Better Running Time of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) by Using Stochastic Tournament Selection
	1 Introduction
	2 Preliminaries
	2.1 Multi-objective Optimization
	2.2 NSGA-II

	3 Running Time Analysis of NSGA-II
	4 NSGA-II Using Stochastic Tournament Selection
	4.1 Stochastic Tournament Selection
	4.2 Running Time Analysis

	5 Experiments
	5.1 LOTZ Problem
	5.2 ZDT1 Problem

	6 Conclusion
	References

	Escaping Local Optima with Local Search: A Theory-Driven Discussion
	1 Introduction
	2 Definitions and Algorithms
	2.1 Algorithms

	3 Basins of Attraction
	4 Deceptive Valleys vs. Guiding Information
	5 Single Target vs. Multiple Targets
	6 Iterated Local Optima
	7 Discussion and Conclusion
	References

	Evolutionary Algorithms for Cardinality-Constrained Ising Models
	1 Introduction
	2 Preliminaries
	3 Runtime Analyses for One-Dimensional Ising Model
	3.1 Results for Single Swaps
	3.2 Swapping only Boundary Atoms
	3.3 Swapping Clusters of Atoms

	4 Numerical Experiments
	5 Conclusions
	References

	General Univariate Estimation-of-Distribution Algorithms
	1 Introduction
	2 Previous Work
	3 Univariate EDA: Classic and New
	4 Genetic Drift
	5 Optimizing the (i)i
	6 Designing New Univariate EDAs
	7 Conclusion
	References

	Population Diversity Leads to Short Running Times of Lexicase Selection
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Lexicase Selection
	2.2 -Cluster Similarity

	3 Theoretical Result: Low -Cluster Similarity Leads to Small Running Times
	3.1 Preliminaries

	4 Empirical Evaluation in Program Synthesis
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	6 Conclusions
	References

	Progress Rate Analysis of Evolution Strategies on the Rastrigin Function: First Results
	1 Introduction
	2 Rastrigin Function and Local Quality Change
	3 The (/I,)-ES with Normalized Mutations
	4 Progress Rate
	4.1 Definition
	4.2 Expectations of Sums of Noisy Order Statistics
	4.3 Comparison of Simulation and Approximation

	5 Evolution Dynamics
	6 Summary and Outlook
	References

	Running Time Analysis of the (1+1)-EA Using Surrogate Models on OneMax and LeadingOnes
	1 Introduction
	2 Preliminaries
	2.1 (1+1)-EA
	2.2 Surrogate Models
	2.3 OneMax and LeadingOnes
	2.4 Analysis Tools

	3 Analysis of the (1+1)-EA Using the RPS Surrogate
	4 Analysis of the (1+1)-EA Using the RCPS Surrogate
	5 Conclusion and Discussion
	References

	Runtime Analysis of Simple Evolutionary Algorithms for the Chance-Constrained Makespan Scheduling Problem
	1 Introduction
	2 Preliminaries
	3 Algorithms
	4 Performance for CCMSP-1
	5 Performance for CCMSP-2
	5.1 Performance for CCMSP-2+

	6 Conclusion
	References

	Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear Functions
	1 Introduction
	1.1 Separable Functions
	1.2 Chance Constrained Problems
	1.3 Transformed Linear Functions

	2 Preliminaries
	2.1 Sums of Two Transformed Linear Functions Without Constraints

	3 Negative Weights Allow for Multimodal Functions
	4 Upper Bound
	5 Discussion and Conclusions
	References

	Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms
	1 Introduction
	1.1 Background

	2 Block-Parallel (1+) EA
	3 Heterogeneous Fitness Evaluation
	4 First-Improving Search Using Task Abortion
	5 Experimental Analysis
	5.1 Experimental Settings
	5.2 The Block-Parallel (1+)parEA Analysis
	5.3 Simulations on the Abortive Block-Parallel (1+) parEA

	6 Conclusion
	References

	Self-adjusting Population Sizes for the (1,)-EA on Monotone Functions
	1 Introduction
	2 Preliminaries and Definitions
	3 Monotone Functions Are Efficient for Large Success Rates
	4 Small Success Rates Yield Exponential Runtimes
	5 Simulations
	6 Conclusion
	References

	Theoretical Study of Optimizing Rugged Landscapes with the cGA
	1 Introduction
	2 Algorithms and Problem Setting
	2.1 D-Rugged OneMax

	3 Performance of the cGA
	4 Performance of RLS
	4.1 Performance of RLS – A Detailed Look

	5 Performance of the (1+1) EA
	6 Performance of Random Search
	7 Experimental Evaluation
	8 Conclusion
	References

	Towards Fixed-Target Black-Box Complexity Analysis
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Generic Lower Bounds
	5 Lower Bound for OneMax
	6 Upper Bound for OneMax
	7 Conclusion
	References

	Two-Dimensional Drift Analysis:
	1 Introduction
	1.1 The Application: TwoLin
	1.2 The Method: Two-Dimensional Multiplicative Drift Analysis

	2 Preliminaries and Definitions
	3 Two-Dimensional Multiplicative Drift
	3.1 Interpretation and Generalization

	4 The (1+1)-EA on TwoLin,
	4.1 Domination and the Symmetric Case ==1/2

	References

	Author Index

