
Non-elitist Selection Can Improve
the Performance of Irace

Furong Ye1(B) , Diederick Vermetten1 , Carola Doerr2 ,
and Thomas Bäck1

1 LIACS, Leiden University, Leiden, The Netherlands
{f.ye,d.l.vermetten,t.h.w.baeck}@liacs.leidenuniv.nl

2 Sorbonne Université, CNRS, LIP6, Paris, France
carola.doerr@lip6.fr

Abstract. Modern optimization strategies such as evolutionary algo-
rithms, ant colony algorithms, Bayesian optimization techniques,
etc. come with several parameters that steer their behavior during the
optimization process. To obtain high-performing algorithm instances,
automated algorithm configuration techniques have been developed. One
of the most popular tools is irace, which evaluates configurations in
sequential races, making use of iterated statistical tests to discard poorly
performing configurations. At the end of the race, a set of elite config-
urations are selected from those survivor configurations that were not
discarded, using greedy truncation selection. We study two alternative
selection methods: one keeps the best survivor and selects the remaining
configurations uniformly at random from the set of survivors, while the
other applies entropy to maximize the diversity of the elites. These meth-
ods are tested for tuning ant colony optimization algorithms for traveling
salesperson problems and the quadratic assignment problem and tuning
an exact tree search solver for satisfiability problems. The experimental
results show improvement on the tested benchmarks compared to the
default selection of irace. In addition, the obtained results indicate that
non-elitist can obtain diverse algorithm configurations, which encourages
us to explore a wider range of solutions to understand the behavior of
algorithms.

Keywords: Parameter tuning · Algorithm configuration · Black-box
optimization · Evolutionary computation

1 Introduction

Algorithm configuration (AC) addresses the issue of determining a well-
performing parameter configuration for a given algorithm on a specific set of
optimization problems. Many techniques such as local search, Bayesian optimiza-
tion, and racing methods have been proposed and applied to solve the AC prob-
lem. The corresponding software packages, such as ParamILS [14], SMAC [13],
SPOT [3], MIP-EGO [29], and irace [19] have been applied to problem domains
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13398, pp. 32–45, 2022.
https://doi.org/10.1007/978-3-031-14714-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14714-2_3&domain=pdf
http://orcid.org/0000-0002-8707-4189
http://orcid.org/0000-0003-3040-7162
http://orcid.org/0000-0002-4981-3227
http://orcid.org/0000-0001-6768-1478
https://doi.org/10.1007/978-3-031-14714-2_3

Non-elitist Selection Can Improve the Performance of Irace 33

such as combinatorial optimization [19], software engineering [4], and machine
learning [15].

Irace, one of the most popular tools, has shown its ability to improve the
performance of the algorithms for various optimization problems [2,7,19,27].
However, we can still intuitively expect to improve the performance of irace
considering contemporary optimization techniques. Premature convergence is a
common problem for optimization methods resulting in being trapped into local
optima, which can also present irace from finding the optimal configurations.
For example, irace fails to find the optimal configuration of a family of genetic
algorithms (GAs) for OneMax in [30]. There exists more than one type of
competitive configuration of the GA for OneMax, which is known due to the
extensive body of theoretical work [11,28]. However, irace converges to a specific
subset of configurations that share similar algorithm characteristics. In order
to avoid issues like this, one could aim to increase the exploration capabilities
of irace. However, this does not necessarily address the concern of finding well-
performing configurations located in different parts of the space. Instead, we
would want to allow irace to automatically explore search space around a diverse
set of well-performing configurations to avoid converging on one specific type of
configuration.

A “soft-restart” mechanism has been introduced for irace to avoid prema-
ture convergence in [19], which partially reinitializes the sampling distribution
for the configurations that are almost identical to others. However, evaluations
can be wasted on testing similar configurations before the restart, and the con-
figuration may converge on the type of configurations that were found before
restarting. Therefore, we investigate alternative selection mechanisms which take
into account the diversity of the selected elite configurations. In addition, the
observations from [30] inspire a discussion on searching for various competitive
configurations with different patterns, which is addressed by our discussion that
more knowledge can be obtained by searching diverse configurations.

1.1 Our Contributions

In this paper, we show that an alternative random selection of elites can result
in performance benefits over the default selection mechanism in irace. Moreover,
we propose a selection operator maximizing the entropy of the selected elites.
These alternative selection operators are compared to default irace on the tested
scenarios.

The alternative approaches are tested on three scenarios: tuning the Ant
Colony Optimization (ACO) algorithm for the traveling salesperson problem
(TSP) and the quadratic assignment problem (QAP) and minimizing the compu-
tational cost of the SPEAR tool (an exact tree search solver for the satisfiability
(SAT) problem).

Experimental results show that (1) randomly selecting elites among config-
urations that survived the racing procedure performs better than the greedy
truncation selection, and (2) the irace variant that uses the entropy metric
obtains diverse configurations and outperforms the other approaches. Finally,

34 F. Ye et al.

the obtained configurations encourage us to (3) use such a diversity-enhancing
approach to find better configurations and understand the relationship between
parameter settings and algorithm behavior for future work.

Reproducibility: We provide the full set of logs from the experiments described
in this paper in [31]. Additionally, our implementation of the modified irace
versions described in this paper is available at https://github.com/FurongYe/
irace-1.

2 Related Work

2.1 Algorithm Configuration

Traditionally, the AC problem, as defined below, aims at finding a single optimal
configuration for solving a set of problem instances [9].

Definition 1 (Algorithm Configuration Problem). Given a set of problem
instances Π, a parametrized algorithm A with parameter configuration space Θ,
and a cost metric c : Θ × Π → R that is subject to minimization, the objective
of the AC problem is to find a configuration θ∗ ∈ arg min

θ∈Θ

∑

π∈Π

c(θ, π).

The parameter space can be continuous, integer, categorical, or mixed-
integer. In addition, some parameters can be conditional.

Many configurators have been proposed for the AC problem [3,13,14,17,19,
29], and they usually follow Definition 1 by searching for a single optimal solu-
tion, although the solvers may apply population-based methods. However, in
some cases it can be desirable to find a set of diverse, well-performing solutions to
the AC problem. For example, previous studies [21,30] found that algorithm con-
figurators can obtain different results when tuning for different objectives (i.e.,
expected running time, best-found fitness, and anytime performance), which sug-
gests that a bi- or multi-objective approach to algorithm configuration can be a
promising research direction. For such multi-objective configuration tasks, hav-
ing diverse populations of configurations is a necessity to understand the Pareto
front.

2.2 Diversity Optimization

To address the objective of obtaining a set of diverse solutions, certain evo-
lutionary algorithms have been designed specifically to converge to more than
one solution in a single run. For example, the Niching Genetic Algorithms are
applied for solving multimodular functions [6,12] and searching diverse solutions
of association rules [24], chemical structures [23], etc. Diversity optimization also
addresses the problem of searching for multiple solutions. Quality-diversity opti-
mization [8] was introduced to aim for a collection of well-performing and diverse
solutions. The method proposed in [8] measures the quality of solutions based
on their performance (i.e., quality) and distance to other solutions (i.e., novelty)

https://github.com/FurongYe/irace-1
https://github.com/FurongYe/irace-1

Non-elitist Selection Can Improve the Performance of Irace 35

dynamically. The novelty score of solutions is measured by the average distance
of the k-nearest neighbors [16]. Also, to better understand the algorithm’s behav-
ior and possible solutions, feature-based diversity optimization was introduced
for problem instance classification [10]. A discrepancy-based diversity optimiza-
tion was studied on evolving diverse sets of images and TSP instances [25]. The
approaches in both studies measure the solutions regarding their features instead
of performance. Unfortunately, the AC problem usually deals with a mixed-
integer search space, which is often not considered in the methods described in
this section.

3 Irace

In this section, we describe the outline of irace. Irace is an iterated racing
method that has been applied for hyperparameter optimization problems in
many domains. It samples configurations (i.e., hyperparameter values) from dis-
tributions that evolve along the configuration process. Iteratively, the generated
configurations are tested across a set of instances and are selected based on a
racing method. The racing is based on statistical tests on configurations’ per-
formance for each instance, and elite configurations are selected from the con-
figurations surviving from the racing. The sampling distributions are updated
after selection. The distributions from sampling hyperparameter values are inde-
pendent unless specific conditions are defined. As a result, irace returns one or
several elite configurations at the end of the configuration process.

Algorithm 1: Algorithm Outline of irace
1 Input: Problem instances Π = {π1, π2, . . .}, parameter configuration space X,

cost metric c, and tuning budget B;
2 Generate a set of Θ1 sampling from X uniformly at random;

3 Θelite = Race(Θ1, B1);
4 while The budget B is not used out do
5 j = j + 1;

6 Θj = Sample(X, Θelite);

7 Θelite = Race(Θj ∪ Θelite, Bj);

8 Output: Θelite

Algorithm 1 presents the outline of irace [19]. Irace determines the number
of racing iterations N iter = �2+ log2(Nparam)� before performing the race steps,
where Nparam is the number of parameters. For each Race(Θj , Bj) step, the bud-
get of the number of configuration evaluations Bj = (B −Bused)/(N iter − j +1),
where Bused is the used budget, and j = {1, . . . , N iter}. After sampling a set of
new configurations in each iteration, Race(Θ,B) selects a set of elite configura-
tions Θelite (elites). New configurations are sampled based on the parent selected

36 F. Ye et al.

from elites Θelite and the corresponding self-adaptive distributions of hyperpa-
rameters. Specific strategies have been designed for different types (numerical
and categorical) of parameters.

Each race starts with a set of configurations Θj and performs with a lim-
ited computation budget Bj . Precisely, each candidate configuration of Θj is
evaluated on a single instance πi, and the configurations that perform statisti-
cally worse than at least another one will be discarded after being evaluated on
a number of instances. Note that the irace package provides multiple statisti-
cal test options for eliminating worse configurations such as the F-test and the
t-test. The race terminates when the remaining budget is not enough for eval-
uating the surviving configurations on a new problem instance, or when Nmin

or fewer configurations survived after the test. At the end of the race, N surv
j

configurations survive and are ranked based on their performance. Irace selects
min{Nmin, N surv

j } configurations with the best ranks to form Θelite for the next
iteration. Note that irace applies here a greedy elitist mechanism, and this is the
essential step where our irace variants alter in this paper.

To avoid confusion, we note that an “elitist iterated racing” is described in the
paper introducing the irace package [19]. The “elitist” there indicates preserving
the best configurations found so far. The idea is to prevent “elite” configurations
from being eliminated due to poor performance on specific problem instances
during racing, and the best surviving “elite” configurations are selected to form
Θelite. We apply this “elitist racing” for our experiments in this paper, while the
alternative methods select diverse surviving “elite” configurations instead of the
best ones.

4 Random Survivor Selection

To investigate the efficacy of the greedy truncation selection mechanism used
by default within irace, we compare the baseline version of irace to a version of
irace that uses a random selection process. In particular, we adopt the selection
of elites by taking the best-performing configuration and randomly selecting the
remaining N surv

j − Nmin − 1 distinct ones from the best σNmin surviving con-
figurations when N surv ≥ σNmin, for some σ ≥ 1. The implementation of our
variants is built on the default irace package [20].

4.1 Tuning Scenario: ACOTSP

ACOTSP [27] is a package implementing ACO for the symmetric TSP. We apply
irace variants in this paper to configure 11 parameters (three categorical, four
continuous, and four integer variables) of ACO for lower solution costs (fitness).
The experimental results reported in the following are from 20 independent
runs of each irace variant. Each run is assigned with a budget of 5, 000 runs
of ACOTSP, and ACOTSP executes 20s of CPU-time per run following the
suggestion in [19]. We set σNmin = N surv indicating that the irace variant,
irace-rand, randomly selects survivor configurations to form elites. Other settings

Non-elitist Selection Can Improve the Performance of Irace 37

remain as default: the “elitist iterated racing” is applied, and Nmin = 5. We apply
the benchmark set of Euclidean TSP instances of size 2, 000 with 200 train and
200 test instances.

Figure 1 plots the deviations of the best configurations, which are obtained
by each run, from the best-found (optimum) configuration obtained by 20 (60
in total) runs of the irace variants. The results are averaged across 200 TSP
instances. We observe that the median and mean of irace-rand results are smaller
than those of irace, but the performance variance among these 20 irace-rand runs
is significantly larger.

Though irace is initially proposed for searching configurations that generally
perform well across a whole set of problem instances, we are nevertheless inter-
ested in the performance of the obtained configurations on individual instances.
Therefore, we plot in Fig. 2 the performance of all obtained configurations on
nine instances. Still, we observe comparable performance between irace and irace-
rand. It is not surprising that the performance of irace-rand presents larger vari-
ance because the configurations that do not perform the best get a chance to be
selected. Moreover, we spot significant improvement on instances “2000-6” and
“2000-9”, on which the configurations obtained by irace-rand generally perform
closer to the optima, compared to irace.

Fig. 1. Average deviation from the optimum of the best obtained configurations. Each
dot corresponds to the best final elite obtained by a run of irace, which plots the
average deviation from the best-found fitness across 200 TSP instances. Configurations
are measured by the average result of 10 validation runs per instance. The “optimum”
for each instance is the best-found configuration obtained by 20 (60 in total) runs of
the plotted methods.

4.2 Tuning Scenario: ACOQAP

We apply the same ACO implementation in [19] for solving QAP [22]. ACOQAP
executes 60s CPU-time per run following the default setting of the package, and
we apply the benchmark set of 50 train and test instances, respectively. The
other settings remain the same with the ACOTSP scenario.

Unfortunately, we do not observe similar improvement of using irace-rand
for ACOQAP. Irace-rand present worse performance than irace, comparing the

38 F. Ye et al.

Fig. 2. Boxplots of the deviation from the optimum of the obtained configurations
for TSP instances. Results are from the average fitness of 10 validation runs for each
obtained configuration.

Fig. 3. Average deviation from the optimum of the best obtained configurations. Each
dot corresponds to the best final elite obtained by a run of irace, which plots the
average deviation from the best-found fitness across 50 QAP instances. Configurations
are measured by the average result of 10 validation runs per instance. The “optimum”
is the best-found configuration obtained by 20 (60 in total) runs of the plotted methods.

average results across 50 instances in Fig. 3. While looking at Fig. 4, which plots
the results on ten randomly picked instances, we do not observe improvement
using irace-rand on ACOQAP, either. These observations indicate that using
this random selection to select elite configurations may deteriorate the perfor-
mance of irace for ACOQAP, though it does not necessarily mean that diverse
configurations are not helpful for the configuring process. We will discuss this
topic in more detail in Sect. 5.

4.3 Tuning Scenario: SPEAR

SPEAR [2] is a custom-made SAT solver configurable with 26 categorical param-
eters, of which nine are conditional, i.e., their activation depends on the values of
one or several of the other parameters. Our goal here is to minimize the runtime
of SPEAR. We run each irace variant 20 independent times. Each run of irace

Non-elitist Selection Can Improve the Performance of Irace 39

Fig. 4. Boxplots of the deviation from the optimum of the obtained configurations for
ACOQAP instances. Results are from the average fitness of 10 validation runs for each
obtained configuration.

is assigned with a budget of 10 000 runs of SPEAR, and the maximal runtime
of SPEAR is 30 s CPU-time per run. Other irace settings remain default: the
“elitist iterated racing” is applied, and Nmin = 6. The training and test set are
302 different SAT instances, respectively [1]. Note that the number of survivor
configurations is large (∼250) during racing, and experimental results show that
randomly selecting with such a large population deteriorates the performance
of irace. Therefore, for this scenario, we cap the size of survivor candidates by
2Nmin(σ = 2) to select from a relatively well-performing population.

Overall, we observe that the performance difference between the two methods
is tiny for most instances, though irace-rand can not obtain better average results
of runtime across all tested instances than irace. Note that the obtained configu-
rations may use much runtime (∼30 s) for a few instances, resulting in the com-
parison among the average runtime (∼3 s) across all instances can be significantly
affected by the results on those particular instances. Therefore, we plot only the
runtime for the first two instances of each class of instances in Fig. 5. Compared
to irace, though the performance of irace-rand deteriorates on “itox” instances,
significant improvements using irace-rand can be observed on more instances
such as “dspam vc9400”, “winedump” instances, and “xinetd vc56633”.

5 Selecting Diverse Elites

The optimistic results of ACOTSP and SPEAR scenarios introduced in Sect. 4
indicate that, while keeping the best configuration, randomly selecting from
well-performing survivor configurations to form elites can have positive impacts
on the performance of irace. An intuitive explanation is that irace-rand allows
exploring search space around those non-elitist configurations to avoid prema-
ture convergence on specific types of configurations, which matches our expec-
tation following the motivation introduced in Sect. 1. However, the failure to

40 F. Ye et al.

Fig. 5. Boxplots of the deviation from the optimum of the obtained configurations
for SPEAR instances. Results are from the average fitness of 10 validation runs for
each obtained configuration. Results of “gzip” class is omitted because runtime of all
obtained configurations are identical.

achieve improvements for ACOQAP requires us to consider explicitly controlling
the selected elite configurations’ diversity. To this end, we study an alternative
selection strategy based on entropy [5] as a diversity measure.

5.1 Maximizing Population Entropy

In information theory, entropy represents random variables’ information and
uncertainty level [26]. The larger the entropy, the more information the variables
deliver, e.g., the more diverse the solutions are. Our irace-entropy configurator
makes use of this idea, by using the Shannon entropy as criterion for selecting
survivor configurations to form elites.

For a random variable X with distribution P (X), the normalized entropy of
X is defined as:

H(X) =
n∑

i=1

P (Xi) log P (Xi)/ log(n),

In this paper, we estimate the entropy of integer and categorical variables
from the probability of each value. For continuous variables, the values are dis-
cretized into bins, and entropy is estimated based on the counts of each bin.
Precisely, the domain of a continuous variable is equally divided into n bins,
where n is the number of observations (i.e., configurations). Finally, we calcu-
late the diversity level D(Θ) of a set of configuration Θ using the mean entropy
across p variables (i.e., parameters), which is defined as:

D(Θ) =

∑p
j=1 H(Θj)

p
, Θj = {θj

1, θ
j
2, . . . , θ

j
n}

We introduce a variant of irace (irace-entropy) maximizing D(Θelite) for each
race step. Recall that N surv configurations survive at the end of race, and the

Non-elitist Selection Can Improve the Performance of Irace 41

Nmin best-ranked configurations are selected to form Θelite in Algorithm 1 (line
7). Irace-entropy adapts this step by selecting a subset of configurations Θ with
the maximal D∗(Θ), where |Θ| = Nmin and the best-ranked configuration θ∗ ∈
Θ. In practice, we replace the greedy truncation selection in Algorithm 1 (line 7)
with Algorithm 2. Note that we do not explicitly handle conditional parameters.

Algorithm 2: Entropy-maximization selection
1 Input: A set of ranked configurations Θsurv, the maximal size Nmin of Θelite ;

2 if |Θsurv| ≤ Nmin then

3 Θelite = Θsurv

4 else

5 Θelite = {θ∗}, Θsurv = Θsurv\{θ∗}, where θ∗ ∈ Θsurv is the best-ranked;

6 Θelite = Θelite ∪ S∗, where S∗ = arg max
S⊂Θsurv,|S|=Nmin−1

D(Θelite ∪ S)

7 Output: Θelite

5.2 Experimental Results

We present the results of irace-entropy in this section. All the settings remain the
same as reported in Sect. 4 while applying the introduced alternative selection
method.

For ACOTSP, we observe in Fig. 1 that irace-entropy performs better than
irace and irace-rand, obtaining significantly smaller deviations from the optimum
than those of irace for 19 out of 20 runs. Regarding the results on individual prob-
lem instances, irace-entropy also shows in Fig. 2 significant advantages against
irace and irace-rand across all the plotted instances.

Recall that, for ACOQAP, the performance of irace-rand deteriorates com-
pared to irace by randomly selecting survivor configurations to form elites. How-
ever, through using entropy as the metric to control the diversity explicitly,
irace-entropy shows comparable results to irace in Fig. 3, obtaining a smaller
median of deviations from the optimum for 20 runs. We also observe that the
performance of irace-entropy is comparable to irace for individual instances in
Fig. 4. In addition, irace-entropy can obtain the best-found configurations for
some instances such as “1220973202” and “1220973265”.

For SPEAR, we observe in Fig. 5 that irace-entropy outperforms irace. For
12 out of the 14 plotted instances, irace-entropy obtains better median results
than irace. Moreover, irace-entropy achieves improvements compared to irace-
rand for most instances. Especially for the “itox” instances, in which irace-rand
does not perform as well as irace, irace-entropy obtains better results while also
keeping the advantages over irace on other instances.

According to these results, we conclude that non-elitist selection can help
improve the performance of irace. By using entropy as the metric to maximize the

42 F. Ye et al.

diversity of the selected elite configurations, irace-entropy achieves improvements
compared to irace. However, irace-entropy does not obtain significant advantages
against irace for ACOQAP and performs worse than irace-rand on some SPEAR
instances, indicating potential improvements for non-elitist selection through
further enhancements in regards to controlling the diversity of elites for specific
problem instances.

Fig. 6. Parameter values and deviations from the optimum of the ACOTSP configu-
rations obtained by the irace variants. Each configuration is represented as a polyline
with vertices on the parallel axes. The point of the vertex on each x-axis corresponds to
the parameter value. We process “Null” values of the conditional parameter as 0. The
color of the lines indicates the deviation of their average solution costs across all tested
instances from that of the best-found one. Darker lines indicate better configurations.

5.3 Benefits from Diverse Configurations

While the irace variants, i.e., irace-rand and irace-entropy, achieve improvements
by using non-elitist selection, significant variances are noticeable in Figs. 2, 4,
and 5 for results of the obtained configurations. Recall that AC techniques have
been applied in [30] for exploring promising configurations of the GA on diverse
problems. Apart from analyzing a single optimal configuration, such benchmark-
ing studies can also benefit from diverse configurations to investigate algorithms’
performance with specific parameter settings. Therefore, we illustrate in this

Non-elitist Selection Can Improve the Performance of Irace 43

section that non-elitist selection can not only improve the performance of irace
but also help understand the behavior of algorithms.

Using ACOTSP as an example, we show the configurations obtained by each
irace variant in Fig. 6. The color of the configuration lines are scaled by the
deviation f−f∗

f∗ % from the optimum, where f is the average solution cost across
200 problem instances.

We observe that irace-entropy obtains most of the competitive configurations
while covering a wider range of performance with deviations from 0 to 0.25.
However, the performance of the configurations obtained by the irace cluster
in a range of deviations from 0.1 to 0.2. Moreover, regarding the parameters
of the obtained configurations, the range of beta and q0 are narrower for irace
compared to the other methods. However, the configurations with beta > 8 and
q0 > 0.9, outside the range obtained by irace, generally perform well.

We will not investigate how the parameter values practically affect the per-
formance of ACOTSP since it is beyond the scope of this paper. Nonetheless,
Fig. 6 provides evidence that irace-entropy can provide more knowledge concern-
ing the distribution of obtained performance (i.e., fitness) and parameter values,
which is helpful for understanding algorithms’ behavior.

6 Conclusions and Discussions

In this paper, we have demonstrated that randomly selecting survivor configura-
tions can improve the performance of irace, as illustrated on the cases of tuning
ACO on TSP and tuning SPEAR to minimize the runtime of a SAT solver.
Moreover, we have proposed an alternative selection method to form diverse
elite configurations, using Shannon entropy as the diversity metric. Experimen-
tal results show significant advantages of maximizing entropy in this way.

While the irace-entropy presents improvement in the performance of irace
via exploring diverse configurations in all the tested scenarios, irace-rand obtain
better configurations for specific SPEAR instances. Therefore, there is still room
for further study of incorporating diversity into the selection operators. More in-
depth analysis on a wider set of algorithm configuration problems can help us
better understand the benefits of considering diversity in selection. In addition,
we did not modify the procedure of sampling new configurations. Nevertheless,
we believe effectively generating diverse configurations can be beneficial and shall
be studied for future work.

Apart from boosting the performance of irace via focusing more on diversity,
we can find a diverse portfolio of well-performing algorithm configurations while
keeping the benefits of the iterated racing approach, by changing the objective
of the tuning from finding the best performing configuration to find a diverse
portfolio of well-performing algorithm configurations. In the context of algorithm
selection, such approaches are studied under the notion of algorithm portfolio
selection [18].

44 F. Ye et al.

References

1. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 41

2. Babic, D., Hutter, F.: Spear theorem prover. Solver description, SAT competition
2007 (2007)

3. Bartz-Beielstein, T.: SPOT: an R package for automatic and interactive tun-
ing of optimization algorithms by sequential parameter optimization. CoRR
abs/1006.4645 (2010)

4. Basmer, M., Kehrer, T.: Encoding adaptability of software engineering tools as
algorithm configuration problem: a case study. In: Proceedings of International
Conference on Automated Software Engineering Workshop (ASEW 2019), pp. 86–
89. IEEE (2019)

5. Bromiley, P., Thacker, N., Bouhova-Thacker, E.: Shannon entropy, Renyi entropy,
and information. In: Statistics and Information Series, pp. 1–8 (2004)

6. Cavicchio, D.: Adaptive search using simulated evolution. Ph.D. thesis, University
of Michigan (1970)

7. Cintrano, C., Ferrer, J., López-Ibáñez, M., Alba, E.: Hybridization of racing meth-
ods with evolutionary operators for simulation optimization of traffic lights pro-
grams. In: Zarges, C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp. 17–33.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72904-2 2

8. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular
framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2017)

9. Eggensperger, K., Lindauer, M., Hutter, F.: Pitfalls and best practices in algorithm
configuration. J. Artif. Intell. Res. 64, 861–893 (2019)

10. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for
problem instance classification. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez,
M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 869–879.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 81

11. Gießen, C., Witt, C.: The interplay of population size and mutation probability in
the (1 + λ) EA on OneMax. Algorithmica 78(2), 587–609 (2017)

12. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for mul-
timodal function optimization. In: Proceedings of International Conference on
Genetic Algorithms (ICGA 1987), vol. 4149 (1987)

13. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

14. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

15. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-
WEKA: automatic model selection and hyperparameter optimization in WEKA.
In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning.
TSSCML, pp. 81–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05318-5 4

16. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

17. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

https://doi.org/10.1007/978-3-540-73368-3_41
https://doi.org/10.1007/978-3-030-72904-2_2
https://doi.org/10.1007/978-3-319-45823-6_81
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-030-05318-5_4

Non-elitist Selection Can Improve the Performance of Irace 45

18. Lindauer, M., Hoos, H., Hutter, F., Leyton-Brown, K.: Selection and Configuration
of Parallel Portfolios. In: Handbook of Parallel Constraint Reasoning, pp. 583–615.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3 15

19. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
Irace package: iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58 (2016)

20. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
Irace: iterated racing for automatic algorithm configuration. github.com/cran/irace
(2020). commit: bae6ae86f2ee0fab9e3270801343482600f095e7

21. López-Ibánez, M., Stützle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. Eur. J. Oper. Res. 235(3), 569–582 (2014)

22. López-Ibáñez, M., Stützle, T., Dorigo, M.: Ant colony optimization: a component-
wise overview. In: Marti, R., Panos, P., Resende, M. (eds.) Handbook of
Heuristics, pp. 1–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
07153-4 21-1

23. de Magalhães, C.S., Almeida, D.M., Barbosa, H.J.C., Dardenne, L.E.: A dynamic
niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 289,
206–224 (2014)

24. Mart́ın, D., Alcalá-Fdez, J., Rosete, A., Herrera, F.: NICGAR: a niching genetic
algorithm to mine a diverse set of interesting quantitative association rules. Inf.
Sci. 355–356, 208–228 (2016)

25. Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based
evolutionary diversity optimization. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2018), pp. 991–998. ACM (2018)

26. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE:
Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

27. Stützle, T.: ACOTSP: a software package of various ant colony optimization algo-
rithms applied to the symmetric traveling salesman problem (2002). www.aco-
metaheuristic.org/aco-code

28. Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of
Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 689–702.
ACM (2012)

29. Wang, H., van Stein, B., Emmerich, M., Bäck, T.: A new acquisition function for
bayesian optimization based on the moment-generating function. In: Proceedings
of International Conference on Systems, Man, and Cybernetics (SMC 2017), pp.
507–512. IEEE (2017)

30. Ye, F., Doerr, C., Wang, H., Bäck, T.: Automated configuration of genetic algo-
rithms by tuning for anytime performance. IEEE Trans. Evol. Comput. (2022).
https://doi.org/10.1109/TEVC.2022.3159087

31. Ye, F., Vermetten, D., Doerr, C., Bäck, T.: Data Sets for the study “Non-Elitist
Selection Can Improve the Performance of Irace” (2022). https://doi.org/10.5281/
zenodo.6457959

https://doi.org/10.1007/978-3-319-63516-3_15
http://github.com/cran/irace
https://doi.org/10.1007/978-3-319-07153-4_21-1
https://doi.org/10.1007/978-3-319-07153-4_21-1
www.aco-metaheuristic.org/aco-code
www.aco-metaheuristic.org/aco-code
https://doi.org/10.1109/TEVC.2022.3159087
https://doi.org/10.5281/zenodo.6457959
https://doi.org/10.5281/zenodo.6457959

	Non-elitist Selection Can Improve the Performance of Irace
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	2.1 Algorithm Configuration
	2.2 Diversity Optimization

	3 Irace
	4 Random Survivor Selection
	4.1 Tuning Scenario: ACOTSP
	4.2 Tuning Scenario: ACOQAP
	4.3 Tuning Scenario: SPEAR

	5 Selecting Diverse Elites
	5.1 Maximizing Population Entropy
	5.2 Experimental Results
	5.3 Benefits from Diverse Configurations

	6 Conclusions and Discussions
	References

