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Abstract. Studying complex networks has received a great deal of
attention in recent years. A relevant problem is detecting critical nodes
- nodes which, based on some measures, are more important than others
in a certain network. In this paper, we propose a new optimization prob-
lem: the critical node and edge detection problem, which combines two
well-known problems. A simple genetic algorithm is proposed to solve
this problem, with numerical experiments having shown the potential of
the method. As an application, we analyze several real-world networks
and use the introduced problem as a new network robustness measure.
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1 Introduction

The study of complex networks has gained increased attention in recent years
due to its applicability in different research fields (e.g. biology [1], ecology [7],
telecommunication [12]). A relevant problem in networks study is the identifica-
tion of a set of nodes, which, based on some properties, can be considered more
important than others. If this property is a network measure, the problem is
called the critical node detection problem.

The critical node detection problem (CNDP) has several application possi-
bilities in different research fields, e.g. social network analysis [8,14], network
risk management [5] and network vulnerability studies [10].

Generally, the CNDP consists of finding a set of k nodes in a given graph
G = (V,E), which, if deleted, maximally degrades the graph according to a given
measure σ (σ can be for example, betweenness centrality, closeness centrality or
page rank [18,24]).
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The definition of critical edge detection is almost the same. Given a graph
G = (V,E), the goal is to find a set of l edges in order to optimize a certain
network property.

We propose a new combinatorial optimization problem, the critical node and
edge detection problem. Although the critical node detection and the critical
edge detection problems exist separately, the unification of the two problems is
essential in some applications (e.g. road networks, computer networks, etc.) as
it can model real-world situations better. In a certain network not only nodes
but also edges can be deleted.

The next section of the paper presents related work about critical node
and edge detection variants and algorithms. The third section describes the
new proposed critical node and edge detection problem. In the fourth section,
the designed algorithms are described, while section five presents the numerical
results. The article ends with conclusions and further work.

2 Related Work

The CNDP can be considered as a special case of the node deletion problem
[22]. Based on the survey [21] the CNDP can be divided in two main classes.
The first class is the k-vertex-CNDP, where in the given graph G = (V,E) and
a connectivity metric σ and a given number k and the goal is to minimize the
objective function f(σ) of deleting k nodes. Some problems from this class are
the MaxNum problem [32] (maximizing the number of connected components),
MinMaxC (minimizing the size of the largest components) [33], and CNP (critical
node problem - minimizing pairwise connectivity) [26]. The most studied variant
is the CNP, with several algorithm proposals, for example, using integer linear
programming [4], iterated local search algorithms [23], and greedy randomized
adaptive search procedures [29]. In [3] an evolutionary framework is proposed
which can deal with several variants of the CNDP.

The other main class is the β-connectivity-CNDP, where for a given G =
(V,E) graph, a connectivity metric σ and an integer β, the main goal is to limit
the objective function f(σ) to β, while minimizing the number of deleted nodes.
Examples from this class are the Cardinality-Constrained-CNP (CC-CNP) [6]
or the Component-Cardinality-Constrained CNP (3C-CNP) [20].

In an early work [40], edge deletion was studied in the case of maximum flow
networks. In [37], the edge interdiction clique problem is introduced, where edges
need to be removed so that the size of the maximum clique in the remaining graph
is minimized and an exact algorithm is proposed to solve it for small graphs. In
[15], a branch-and-cut algorithm is proposed to solve the problem.

In the matching interdiction problem [43] the weight of the maximum match-
ing in the remaining graph after deleting edges or nodes needs to be minimized.
In the same article, a pseudo-polynomial algorithm is proposed.

A recent article [9] proposes the online node and edge detection problem,
where there are discussed and analyzed some online edge and node deletion
problems. In [27] vertex and edge protection is proposed to stop a spreading
process.
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Simultaneous deletion of nodes and links, for the best of our knowledge,
appeared only in two variants: in [39] a joint region identification is proposed
and in [11] the β-connectivity CNDP is studied where both nodes and edges can
be deleted.

3 Combined Critical Node and Edge Detection Problem

The critical node and edge detection problem (CNEDP) consists of finding a set
W ⊆ V containing k nodes and a set F ⊆ E having l edges in a given graph
G = (V,E), which deleted maximally degrades the graph according to a given
measure σ. We denote this introduced problem by (k, l)-CNEDP.

In this article we study as a network connectivity measure the pairwise con-
nectivity. The objective function, which needed to be minimized is the following:

f(A) =
∑

Ci∈G[V \A]

δi(δi − 1)
2

, (1)

where A ⊆ V , Ci is the set of connected components in the remaining graph, after
the deletion of nodes and edges, and δi is the size of the connected component
Ci.

Remark 1. It is obvious that (k, 0)-CNEDP reduces the CNDP, and (0, l)-
CNEDP reduces the critical edge detection problem (CEDP).

Example 1. Let us consider the graph presented in Fig. 1. Considering (1,1)-
CNDEP, if deleting the sixth node and the edge between node 3 and 4, A =
{1, 2, 3, 4, 5, 7}, C1 = {1, 2, 3}, C2 = {4}, C3 = {5, 7}, δ1 = {3}, δ2 = {1},
δ3 = {2},

f(A) =
3(3 − 1)

2
+

1(1 − 1)
2

+
2(2 − 1)

2
= 4
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2 3 4
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6 7

Fig. 1. A simple graph with 7 nodes

Remark 2. The complexity of the (k, l)-CNEDP is NP-complete. In [4] it is
proved that the decision variant of the CNP problem is NP-complete, CNP
is a subtask of the (k, l)-CNDEP problem.
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4 Methods

We propose two algorithms to solve the (k, l)-CNEDP presented in the following.

4.1 Greedy Algorithm

In the framework proposed in [3] three non-evolutionary greedy solutions are
presented to solve the CNDP. We adapted the second algorithm to fit the
CNEDP, using the pairwise connectivity in the greedy decision-making process.
The greedy selection is made based on the following function:

GR2(SX) = argmax{(f(SX) − f(SX ∪ {t}) : t ∈ X \ SX}
where SX is one of Snodes or Sedges, and X represents respectively the original
set of nodes or edges of the network.

The algorithm selects the best nodes and edges that minimize the objective
function and, depending on the values of k and l, selects a single node or edge
randomly, which will be removed from the network. The procedure is repeated
until the maximal number of removed nodes and edges is reached. Since the
selection is made randomly from the pre-selected components that have maximal
impact on pairwise connectivity, the algorithm should be repeated several times
to achieve the best possible results. According to [3] the number of iterations
to perform should be set to |Snodes|2, thus we can achieve a feasible solution by
setting this value to (|Snodes| + |Sedges|)2. The original framework recommends
the execution of the other greedy selection rule to minimize the removed network
component count after reaching a solution.

GR1(SX) = argmax{(f(SX \ t) − f(SX) : t ∈ SX}
Since the pairwise connectivity is driven by both the removed nodes and

edges, and because of the specific structure of (k, l) − CNEDP , we consider
that this step is not mandatory. We can argue that the complexity of the rein-
troduction of the removed components is too resource-intensive, but in case it
is required, it can be executed. The outline of the algorithm is presented in
Algorithm 1.

The number of total fitness function execution can be approximated for the
algorithm, since the method is set to stop when k edges and l nodes are reached
in the removal process. In each iteration the GR2 method computes the fitness
of the network if any of the remaining nodes and edges are removed, one at a
time, selecting the Best∗ items those resulting in the best fitness value. Let us
suppose that Daverage is the average node degree, and that with the removal of
every node the number of fitness calculations in the next iteration will decrease
with 1 + Daverage, and with the removal of an edge it decreases with 1. Then
the approximate number of fitness execution will be l(V + E) + 1

2 l(l + 1)(1 +
Daverage) + 1

2k(2V − k).
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Algorithm 1. Greedy algorithm
Parameters:

– G the network
– k the number of edges to remove
– l the number of nodes to remove
– Sedges and Snodes, the set of nodes and edges to remove.
– GR2(SX , 1, a) - greedy selection algorithm notation based on [3]

Sedges = {∅}
Snodes = {∅}
while (|Sedges| < l) or (|Snodes| < k) do

Bestedges = {GR2(Sedges, 1, a)}
Bestnodes = {GR2(Snodes, 1, a)}
[Snodes, Sedges] = [Snodes, Sedges] ∪ Select(Bestedges, Bestnodes)

end while
return Snodes, Sedges

4.2 Genetic Algorithm

We designed a simple genetic algorithm, the encoding, fitness evaluation and the
operators used are presented in the next. The outline of the genetic algorithm
is described in Algorithm 2.

Encoding: An individual is represented by two lists, one for nodes and the other
for edges.

Fitness: Each individual is evaluated according to the pairwise connectivity of
the connected components in the network, after the removal of the individual’s
nodes and edges.

Crossover and Parent Selection: This is realized using a tournament-based
selection. For each round of the crossover tournament, the algorithm randomly
chooses a set number of individuals from the population after which a selec-
tion is made, keeping only the two best individuals according to their fitness.
They will then reproduce, by combining their node and edge lists. The algorithm
will then split these lists randomly and evenly, keeping some restrictions, such
as uniqueness. This way we generate two children for each round of the tourna-
ment. At the end of the crossover tournament, a set of new individuals is created
(Algorithm 3).

Mutation: Two types of mutation are used. The first one is done by randomly
replacing either a node or an edge in the offspring. The chance of either selection
is 50%. Our new node or edge selection takes into account uniqueness inside an
individual.

The second mutation is a time-varying operator. In the first step 50% of the
k + l nodes and edges are changed. The number of changes decreases linearly
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until half of the maximum generation number is reached, after which it will equal
one.

While we have strict restrictions on each individual in our population, a repair
operator is not necessary, since both the crossover and mutation operators self-
repairs the potentially caused damage to any given individual.

Selection of Survivors: The algorithm combines the original population and
any newly-created child, including the possible mutations, into a larger set of
individuals, after which we trim this new set to the original population size using
elitism (keeping the best individuals), this will become the new population for
the next iteration of the algorithm (a (μ + λ) selection scheme is used).

Algorithm 2. Genetic algorithm
Parameters:

– G the network
– pop size the number of individuals in the population
– k and l, the number of nodes and edges in an individual.
– pmut the chance of mutation

Randomly initialize pop;
repeat

Evaluate current population based on fitness value;
Create child population using tournament based crossover;
if random chance == pmut then

Choose a random child from list of children.
Mutate child by randomly replacing either a node or an edge with a new one;

end if
Elitist selection of pop size number of individuals from combined parent and chil-
dren population;

until Maximum number of generations;
return Best individual from final pop;

4.3 Experimental Set-Up

Benchmarks The synthetic benchmark set proposed in [38] contains three types
of graphs, with different basic properties: Barabási-Albert (BA) - scale-free net-
works, Erdős-Rényi (ER) - random networks, and Forest-fire (FF) graphs, which
simulate how fire spreads through a forest. Table 1 describes basic network mea-
sures of the benchmarks employed: number of nodes (|V |), number of edges (|E|),
average degree (〈d〉), density of the graph (ρ), and average path length (lG).

In Table 2 the set of real networks used for numerical experiments is pre-
sented, including the source of the network.
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Algorithm 3. Parent selection and Crossover
Parameters:

– pop the current population in the genetic algorithm.
– tournament size the number of selected individuals to partake in the tournament.
– max round number the maximum number of rounds for the tournament, equal to

half the size of newly generated child population

repeat
Select tournament size number of individuals to participate;
Select the two best individuals according to evaluation from tournament con-
tenders;
Unite and then split evenly the two parents’ node and edge lists.
Append new children to the result children population.

until Maximum number of tournament rounds;
return child pop

Table 1. Synthetic benchmark test graphs and basic properties.

Graph |V | |E| 〈d〉 ρ lG

BA500 500 499 1.996 0.004 5.663

BA1000 1000 999 1.998 0.002 6.045

ER250 235 350 2.979 0.013 5.338

ER500 466 700 3.004 0.006 5.973

FF250 250 514 4.112 0.017 4.816

FF500 500 828 3.312 0.007 6.026

Parameter Setting. To find a good parameter configuration 16 parameter set-
tings were tested on four networks: two synthetic (ER250 and FF250) and two
real world networks (dolphins and karate). Table 3 presents the tested param-
eter settings, and Fig. 2 presents the obtained results. Based on a Wilcoxon
non-parametric statistical test the configuration S11 was chosen for the further
experiments.

The number of critical nodes (k) is 5% of the total nodes, while the number
of critical edges (l) is set to 3% of the total number of edges (proportions are
set general, to emphasize critical nodes and edges on different type of networks).
The maximum generation number for both GA variants was set to 5000.

4.4 Results and Discussion

An example of the evolution of the fitness value of the genetic algorithm is
presented in Fig. 3, we can observe the change of the values in each step.

For better understanding, Fig. 4 presents the smallest network, the Zebra
network, and critical nodes and edges detected with the genetic algorithm.

Table 4 presents the results obtained from the genetic algorithm (GA1),
genetic algorithm with time-varying mutation (GA2) and from the greedy algo-
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Table 2. Real graphs and basic properties.

Graph |V | |E| 〈d〉 ρ lG Ref

Bovine 121 190 3.140 0.026 2.861 [30]

Circuit 252 399 3.167 0.012 5.806 [28]

Dolphins 62 159 5.1290 0.0841 3.3570 [19]

Ecoli 328 456 2.780 0.008 4.834 [25,41]

Football 115 613 10.6609 0.0935 2.5082 [16,19]

Hamsterster 2426 16631 13.7106 0.0057 2.4392 [31]

HumanDis 516 1188 4.605 0.008 6.509 [17]

Karate 34 78 4.5882 0.1390 2.4082 [19,42]

Zebra 27 111 8.2222 0.3162 1.3590 [19,36]

Table 3. Parameter setting used for parameter tuning

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 15 S16

Pop. size 50 50 50 50 50 50 50 50 100 100 100 100 100 100 100 100

pc 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9

pm 0.02 0.02 0.05 0.05 0.02 0.02 0.05 0.05 0.02 0.02 0.05 0.05 0.02 0.02 0.05 0.05

Tournament s. 3 3 3 3 5 5 5 5 3 3 3 3 5 5 5 5

rithm. GA1 and GA2 outperformed the greedy algorithm in most cases. Only in
the case of the Football network did both algorithms perform in the same way
(with standard deviation equal to 0). However, analyzing the results, in the case
of the Football network the values for k and l were too small, because there was
no change from the initial population in GA1 and GA2. The incorporation of
time-varying mutation did not significantly improve the results.

Regarding the running time of both methods (GA1 and greedy), in small
networks, as expected, greedy runs faster (e.g. in the case of dolphins network
2.47±0.02 s running time has the greedy algorithm, and 183.64±0.48 s the GA1),
but in a larger network the GA1 has better running time (e.g. for the FF500
network the greedy runs in average 1420.66 ± 63.48 s and the GA1 1294.3 ±
25.15 s).

4.5 Application: New Network Robustness Measure Proposal

As an application of critical node and edge detection, we introduce a new network
robustness measure. In the literature several robustness measure exist, trying to
capture different properties of the networks. For example [13] describes differ-
ent measures to characterize network robustness: kv - vertex connectivity - the
minimal number of vertices which need to be removed to disconnect the graph,
ke- edge connectivity - the same measure for edges, diameter of the graph (d),
average distance (d−), average efficiency (E) - considering shortest paths, max-
imum edge betweenness (bem), average vertex betweenness (bv), average edge
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Fig. 2. Pairwise connectivity values over ten independent runs for four networks for 16
different parameter configurations

betweenness (be) - these measures considering shortest paths. The average clus-
tering coefficient (C) is a proportion of triangles and connected triples. Algebraic
connectivity (λ2) is the second smallest eigenvalue of the Laplacian matrix of
G, a number of spanning trees (ε) counts the possible different spanning trees
of the graph, while effective graph resistance (Kirchhoff index) (R) investigates
the graph as a network circuit.

We study several real-world networks from different application fields: two
infrastructure networks - UsAir97 [31] a weighted undirected network with 332
nodes and 2126 edges (we do not take into account the weights) containing
flights in the US in the year 1997 (nodes are airports and edges represent direct
flight between them) and a road network [19,35] containing international E-
roads, nodes representing cities (1174 nodes) and edges representing direct E-
road connections between them (1417 edges). Two brain networks are studied:
a mouse visual cortex network [2] with 123 nodes and 214 edges, and a cat-
mixed-brain-species-1 network [2] with 65 nodes and 1100 edges (we will use the
abbreviations Mouse cortex and Cat brain in the next). Two power networks
are studied: 494-bus [31] (494 nodes and 586 edges) and 662-bus [31] (662 nodes
and 906 edges), two interaction networks (Infect-dublin [34] having 410 nodes
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Fig. 3. Errorbar of 10 independent runs representing fitness values over evaluations on
two example graphs: an Erdos-Renyi graph and Dolphins network

and 2800 edges and Infect-hyper [34] with 113 nodes and 2200 edges), and a
computer network - Route views [19] (6474 nodes and 13895 edges).

The above mentioned network measures are calculated for the studied net-
works, as presented in Table 5. As we can see, the majority of the indices cannot
be used for disconnected networks (in this example, the E-road network is discon-
nected), this is one of the motivations to introduce the new measure to analyze
the network robustness, based on the (k,l)-CNEDP.

The introduced measure (NEk,l) has the following form:

NEk,l =
2 · (k, l)-CNEDP

(n − k − 1)(n − k − 2)
(n−k−1)(n−k−2)

2 is the worst possible value of pairwise connectivity, after deleting
k nodes, n is the number of nodes in the original network, NEk,l ∈ [0, 1].

In the case of the USAir97 network, for example:

NE21,6 =
2 · 35264

(332 − 21 − 1)(332 − 21 − 2)
= 0.66.

The NEk,l can be seen as a measure which based on the number of deletion
of nodes and edges quantifies the network robustness. To analyse the results a
correlation matrix was built (without the results of the E-road network), the
new measure - NEk,l (new m) was compared with d, d−, E, bem, bv and C. As
presented in Fig. 5 a weak correlation exists between the new measure and the
clustering coefficient (C).
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Fig. 4. The smallest real-world network, the zebra network (left). The remaining net-
work after node and edge deletion - after (1, 3)-CNEDP (right)

Fig. 5. Pearson’s correlation coefficients between network robustness mesures
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Table 4. Results for synthetic and real graphs. Mean values and standard deviation
over 10 independent runs are presented. A (*) indicates best result based on a Wilcoxon
sign-rank test

Graph GA1 GA2 Greedy

BA500 650.70 ± 82.62∗ 835.00 ± 259.57 5722.90 ± 33.20

BA1000 1947.20 ± 235.93∗ 2021.10 ± 255.62∗ 362555.90 ± 924.58

ER250 15296.30 ± 785.33∗ 14976.70 ± 623.52∗ 25066.70 ± 156.40

ER500 61664.60 ± 1532.08∗ 62929.20 ± 2215.60∗ 100357.40 ± 568.82

FF250 7905.50 ± 1212.81∗ 7909.70 ± 619.53∗ 25508.20 ± 1052.20

FF500 12303.30 ± 4858.39∗ 12342.90 ± 4493.16∗ 105350.50 ± 4396.26

Bovine 16.50 ± 20.66∗ 29.20 ± 25.50∗ 1337.10 ± 31.78

Circuit 274.00 ± 332.22∗ 274.70 ± 417.62∗ 24110.10 ± 1448.70

Dolphins 1220.40 ± 14.55∗ 1230.20 ± 15.75∗ 1711.00 ± 0.00

Ecoli 447.60 ± 465.91∗ 1338.40 ± 1467.07∗ 47649.30 ± 576.69

Football 5995.00 ± 0.00∗ 5995.00 ± 0.00∗ 5995.00 ± 0.00∗

HumanDis 531.70 ± 859.40∗ 3927.30 ± 9258.98 113625.90 ± 1521.87

Karate 355.90 ± 41.98∗ 315.00 ± 10.54∗ 411.10 ± 80.67

Zebra 165.20 ± 7.32∗ 166.40 ± 8.98∗ 237.00 ± 0.00

Table 5. Network robustness measures for studied networks

Measure Networks

USAir97 E-road Mouse cortex Cat brain 494-bus 662-bus Infect-dublin Infect-hyper Route views

kv 1 0 1 3 1 1 1 1 1

ke 1 0 1 3 1 1 1 1 1

d 6 ∞ 8 3 26 25 9 3 9

d− 2.73 ∞ 4.27 1.69 10.47 10.24 3.63 1.65 3.70

E 0.40 0 0.27 0.66 0.11 0.11 0.32 0.67 0.29

bem 0.06 – 0.16 0.01 0.19 0.18 0.12 0.01 0.02

bv 618.65 – 506.01 86.38 2827.38 3716.30 947 148.75 15227.74

be 70.76 – 369.78 4.84 1180.51 1429.46 110.10 4.77 5586.99

C 0.62 0 0.02 0.66 0.04 0.04 0.45 0.53 0.25

λ2 0.12 0 0.03 2.88 −4.75 −5.14 0.19 0.99 −25.84

ε 3.37e+234 0 6.41e+10 1.45e+81 0 1.004 ∞ 1.7e+169 ∞
R 45538.19 ∞ 47450.21 262.08 −4.56e+18 1.78e+18 30563.17 527.78 1587664.19

NEa
k,l 0.66 0.33 0.09 1.00 0.28 0.64 0.92 1 0.39

a k and l are chosen as 3% of the nodes and 1% of edges

5 Conclusions

A new combinatorial optimization problem, the combined CNEDP, is defined
and analyzed. Two methods are proposed to solve this problem: a greedy app-
roach and a simple GA. Numerical experiments on both synthetic and real-world
networks show the effectiveness of the proposed algorithm. As a direct applica-
tion this newly-introduced problem is used as a new network centrality measure
for network robustness testing. Further work will address other network mea-
sures (for example maximum components size, network centrality measures) and
the refinement of the GA.
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