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Preface

The first major gathering of people interested in discussing natural paradigms and their
application to solve real-world problems in Europe took place in Dortmund, Germany,
in 1990. What was planned originally as a small workshop with about 30 participants
finally grew into an international conference named Parallel Problem Solving from
Nature (PPSN) with more than 100 participants. The interest in the topics of the
conference has increased steadily ever since leading to the pleasant necessity of
organizing PPSN conferences biennially within the European region.

In times of a pandemic, it is difficult to find a host for a conference that should be held
locally if possible. To ensure the continuation of the conference series, the 17th edition,
PPSN 2022, returned to its birthplace in Dortmund. But even at the time of writing this
text, it is unclear whether the conference can be held on-site or whether we shall have
to switch to virtual mode at short notice.

Therefore, we are pleased that many researchers shared our optimism by submitting
their papers for review. We received 185 submissions from which the program chairs
have selected the top 85 after an extensive peer-review process. Not all decisions were
easy tomake but in all caseswe benefited greatly from the careful reviews provided by the
international Program Committee consisting of 223 scientists. Most of the submissions
received four reviews, but all of them got at least three reviews. This led to a total of 693
reviews. Thanks to these reviews we were able to decide about acceptance on a solid
basis.

The papers included in these proceedings have been assigned to 12 fuzzy clusters,
entitled Automated Algorithm Selection and Configuration, Bayesian- and Surrogate-
Assisted Optimization, Benchmarking and Performance Measures, Combinatorial
Optimization, (Evolutionary) Machine Learning and Neuroevolution, Evolvable
Hardware and Evolutionary Robotics, Fitness Landscape Modeling and Analysis,
Genetic Programming, Multi-Objective Optimization, Numerical Optimizaiton, Real-
World Applications, and Theoretical Aspects of Nature-Inspired Optimization, that can
hardly reflect the true variety of research topics presented in the proceedings at hand.
Following the tradition and spirit of PPSN, all papers were presented as posters. The
7 poster sessions consisting of about 12 papers each were compiled orthogonally to
the fuzzy clusters mentioned above to cover the range of topics as widely as possible.
As a consequence, participants with different interests would find some relevant papers
in every session and poster presenters were able to discuss related work in sessions
other than their own. As usual, the conference also included one day with workshops
(Saturday), one day with tutorials (Sunday), and three invited plenary talks (Monday to
Wednesday) for free.

Needless to say, the success of such a conference depends on the authors, reviewers,
and organizers. We are grateful to all authors for submitting their best and latest work, to
all the reviewers for the generous way they spent their time and provided their valuable
expertise in preparing the reviews, to the workshop organizers and tutorial presenters
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for their contributions enhancing the value of the conference, and to the local organizers
who helped to make PPSN 2022 happen.

Last but not least, we would like to thank for the donations of the Gesellschaft
der Freunde der Technischen Universität Dortmund e.V. (GdF) and the Alumni der
Informatik Dortmund e.V. (aido). We are grateful for Springer’s long-standing support
of this conference series. Finally, we thank theDeutsche Forschungsgemeinschaft (DFG)
for providing financial backing.
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Abstract. In recent years, feature-based automated algorithm selection
using exploratory landscape analysis has demonstrated its great potential
in single-objective continuous black-box optimization. However, feature
computation is problem-specific and can be costly in terms of computa-
tional resources. This paper investigates feature-free approaches that rely
on state-of-the-art deep learning techniques operating on either images
or point clouds. We show that point-cloud-based strategies, in particu-
lar, are highly competitive and also substantially reduce the size of the
required solver portfolio. Moreover, we highlight the effect and impor-
tance of cost-sensitive learning in automated algorithm selection models.

Keywords: Automated algorithm selection · Exploratory landscape
analysis · Deep learning · Continuous optimization

1 Introduction

The algorithm selection problem (ASP), nowadays, is a well-studied topic [12,31].
Essentially, it boils down to the identification of a mechanism m : I −→ A,
which selects an optimal algorithm a out of a collection of algorithms A for any
given optimization problem i ∈ I. Typically, this mechanism m is in need of a
numerical representation of a problem instance i to make an informed decision.
In the domain of single-objective continuous optimization, this role has largely
been filled by exploratory landscape analysis (ELA) [21].

Various research endeavours have improved and evaluated ELA for auto-
mated algorithm selection (AAS) [3,14,29]. In this paper, we offer an alternative
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and conceptually very different means to characterize a problem instance i in
the domain of AAS. We call this collection of methods ‘feature-free’. While these
methods still require a sample of the search space, they do not require any com-
putation of numerical features. Instead, the initial sample of a search space is
used to construct a 2D image (fitness map) or a cloud of points (fitness cloud),
which assists in the algorithm selection process. In a recent publication, we eval-
uated a few of these methods for AAS limited to 2D single-objective continuous
problems with promising results [28]. In a subsequent publication, we success-
fully tested these methods for predicting a landscape’s general characteristics,
e.g., the degree of multi-modality, without any dimensionality restrictions [33].

This paper combines the gained insights from both works by investigating the
methods’ potential for AAS while simultaneously bypassing the limiting factor
that 2D fitness maps are inherently restricted to 2D problems. To compare
our results with existing research, we mimic the algorithm selection scenario of
Kerschke and Trautmann [14]. Thereby, we will demonstrate the potential of
our feature-free and deep learning (DL) based approaches for AAS and promote
further research within this domain.

This paper is structured as follows. First, we briefly introduce ELA as well
as the construction of the fitness maps and fitness clouds in Sect. 2. Thereafter,
we describe our underlying data sets and the experimental setup in Sect. 3. This
is followed by a discussion of the results in Sect. 4, as well as a summary of our
findings and an outlook on further research potential in Sect. 5.

2 Background

2.1 Exploratory Landscape Analysis

ELA features [15,20] numerically characterize the landscape of continuous,
single-objective optimization problems which is crucial for problem understand-
ing and as input to automated algorithm selection models [12,23,24]. ELA fea-
tures are required to be descriptive, fast to compute, and reasonably cheap, i.e.,
the size of the initial sample on which they are most commonly based, has to be
small [4,13]. Over the years, a large variety of feature sets emerged, of which we
specifically consider the following:

Classical ELA comprises 22 features of six categories. While the meta
model, level set and y-distribution features are commonly used, the remaining
ones require additional function evaluations [21]. Six Fitness Distance Corre-
lation features provide metrics describing the distances in decision and objective
space, and the relation of these distances in-between those two spaces [11]. The
16 Dispersion features divide the initial sample into different subsets w.r.t.
sample quantiles and contrast homogeneity of both groups [18]. Five Informa-
tion Content features rely on smoothness, ruggedness and neutrality measures
of random walks over the initial sample [22]. Nearest Better Clustering (5
features) derives several metrics and ratios on nearest (better) neighbour dis-
tances of the initial sample [13]. Moreover, the Miscellaneous feature group
summarizes 10 features of different concepts, e.g. principal component analysis
based features or the problem dimensionality [15].
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2.2 Fitness Map

Fig. 1. Examples of different fitness maps. In particular, visualization of the rMC (a–b)
and Conv-rMC (c–d) image-based approaches for different dimensionalities. Note, that
we colored and inverted the color-scale for illustrative purposes.

Several works [2,28,32,33] have recently proposed measures to alleviate prob-
lems with feature-based AAS as it comes with three major drawbacks: instance
features (1) are manually designed in an elaborative process, (2) require addi-
tional calculations which may increase selection costs, and (3) are limited to a
specific domain and, thus, cannot be adapted to other problems easily (see [32]).
These three drawbacks are alleviated by applying DL-based approaches directly
on the raw instance information and, thereby, avoiding the need for computing
instance features as well as circumnavigating the three drawbacks.

In our previous work, we have proposed several feature-free approaches [28,
33]. These approaches range from simple convolutional neural networks (CNN)
[16] to point cloud transformers (PCT) [6]. The former approach is based on
images while the latter one is based on point clouds.

In [33], we proposed four different techniques to create fitness maps based on
an initial sample X of the search space with X ∈ Rm×(D+1). Here, m denotes
the sample size and D + 1 represents the size of the decision space in addition
to the fitness value. We formally define a fitness map as Fmap ∈ Rl×l×1 with a
width and height of l × l pixels plus a singular color channel. Each technique
consists of two steps. First, the D-dimensional samples and their fitness values
are normalized and, then, the samples are projected into 2D by using one of
four proposed dimensionality reduction techniques (cf. [33] for details about the
normalization and choice of parameters like l). Afterwards, the fitness values are
mapped into the respective 2D-Cartesian plane at their corresponding trans-
formed location. This 2D-plane can then be interpreted as a gray scaled image
in which unknown or bad fitness values have a brighter hue and respectively good
values a darker one (see Fig. 1). These four proposed dimensionality reduction
techniques are: (1) classical principal component analysis (PCA) [26], (2) PCA
including the fitness-value (PCA-Func), (3) multi channel (MC), and (4) reduced
multi channel (rMC). The MC approaches create an individual 2D feature map
for each possible pairwise combination of search space variables which amounts
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Fig. 2. Visualizations of the image- (left) and point-based approach (right), adapted
from [33]. a) A ShuffleNet V2 [19], extended by the following layers: Global Max.
Pooling, Linear, Batch Normalization [10], ReLU [25](LBR), and Linear with Softmax
activation. b) kNN-Embedding, followed by four Attention Layers (Attn.), a Global
Max. Pooling, LBR, and Linear Layer with Softmax activation as proposed in [33].

to n =
(
D
2

)
total feature maps. These are consolidated into a single fitness map

of shape Fmap ∈ Rl×l×n with n color channels. The rMC approach projects
these n feature maps into a single one by mean aggregation for each pixel of the
n fitness maps instead of adding additional color channels. Thereby, rMC fit-
ness maps retain their original shape which make them invariant to the problem
dimensionality while also decreasing the number of channels and weights. For
more details on the methods, we refer to [33]. Extending our previous work, we
introduce an additional image-based approach below.

Convolutional Reduced Multi Channel (Conv-rMC). This approach
works in a similar manner as the rMC approach. First, an individual 2D-plane
is created for every pairwise combination of decision variables, resulting in n
planes. As explained in [33], the major drawback of the previously considered
MC approach is the exponential growth of the number n =

(
D
2

)
of 2D-planes

(and thus channels) w.r.t. the number of dimensions D. This has also been
adressed by rMC, which reduces the amount of images n to a single 2D-plane.
Yet, the aggregation may cause the individual 2D-planes to become indistin-
guishable from one-another [33]. Now, the herein proposed Conv-rMC approach
is supposed to solve that issue. Conv-rMC projects the n images into a single,
gray-scale image using a 1 × 1-convolutional layer, followed by a batch normal-
ization layer [10] and a ReLU activation [25]. We choose this setup because this
is identical to the main building blocks of the ShuffleNet v2 [19] architecture
which we used for our experimental study. The additional weights of the convo-
lutional layer and the batch normalization layer are trained by backpropagation.
Representative fitness maps of the rMC and Conv-rMC can be found in Fig. 1.

2.3 Fitness Cloud

There are two significant issues related to image-based DL: (1) the resolution of
the 2D-planes is limited by the number of pixels as well as the upper and lower
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bound of the optimization problem’s decision space; and (2) for D > 2, some
(not all) image-based approaches lose information due to our employed methods
to reduce dimensionality [33].

Therefore, in [33], we explored the potential of a novel DL approach, called
point cloud analysis. The advantage is that for a point cloud, DL can be directly
applied to the individual observations of a sample without the need to project
them into a 2D Cartesian plane first. Further, as most DL approaches for point
clouds can handle any finite number of dimensions, there is no information loss
for D > 2 (cf. Fig. 2). We formally define a point cloud as Fcloud ∈ Rm×(D+1)

where m is the size of our initial sample and D + 1 are the dimensions plus the
fitness value. Next, as the resolution is not limited by the number of the image’s
pixels, local neighborhoods can be processed accurately in every detail. Yet, DL
for point clouds must respect the point-order isomorphic of the input data which
increases the complexity of DNNs, substantially. For details, we refer to [33].

Although there are several different point cloud approaches available, in [33]
we chose point cloud transformers (PCT) because of their transformer back-
ground. Transformers are part of DL and were introduced by [36] for neural lan-
guage processing. They are in-particular great in capturing global relationships
which is important for tasks like high-level property prediction or automated algo-
rithm selection. In addition, [33] proposed a novel embedding technique which is
based on the nodes in a k-nearest neighbor (kNN) graph. This embedding tech-
nique is supposed to embed every observation of X into the context of its local
neighborhood. The embedding layer is represented as the first layer in Fig. 2 b)
in dark blue. This is necessary as transformers are good in capturing global rela-
tions but may lose attention to local neighborhood [34]. The embedding layer
comes with three additional hyperparameters: (1) k for the kNN-search, (2) p for
the Lp-Norm which is used as distance measure, and (3) Δmax to limit the local
neighborhood. To avoid poorly chosen parameter values, we performed hyper-
parameter optimization for the three parameters during our experimental study
(see Sect. 3.3).

3 Experiments

3.1 Algorithm Performance Features

Commonly used in the continuous optimization community to evaluate their
algorithms is the Black-Box Optimization Benchmark (BBOB) [9]. This bench-
mark suite is embedded into the platform Comparing Continuous Optimizers
(COCO) [8], which provides data from various competitions on the BBOB test
bed. The accompanying results of these competitions are uploaded to COCO
and offer further opportunity for scrutiny and study.

To test and compare our feature-free methods w.r.t. automated algorithm
selection, we use data of Kerschke and Trautmann [14], which in turn was col-
lected from COCO. This data set consists of the performance data of twelve
different optimization algorithms evaluated on BBOB. An enumeration of these
algorithms can be found in Fig. 4 or in [14]. BBOB is structured as a set of
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different problem functions (FID) which can be initialized in different dimen-
sions (D), and can also be subjected to slight modification such as shifts and
rotations. The latter leads to different instances (IID) of a given problem func-
tion. In total, the set of benchmark problem consists of 480 unique problem
instances i, constituted by the tuple i := (FID, D, IID) with FID ∈ {1, 2, ..., 24},
D ∈ {2, 3, 5, 10}, and IID ∈ {1, 2, ..., 5}.

For a given problem instance i, an algorithm is considered to be successful
if it reaches the objective value of the global optimum up to a given precision
value. In [14], the authors deemed a precision value of 10−2 as reasonable. A
smaller precision value would otherwise lead to many unsuccessful runs across
all algorithms. For a given FID and D, the five different runs (over the instances)
are aggregated using the expected running time (ERT) [7].

ERT =
1
s

∑

k

FEk, (1)

where k refers to the different BBOB instances, FEk denotes the spent function
evaluations on k, and s is the number of successful runs. Since we aggregated
over the instances, the algorithmic performance data set is reduced from 480 to
480/5 = 96 observations.

While an ERT is useful in its own right, it is hard to compare these abso-
lute ERT values between functions of different dimensionality simply because
algorithms are allowed a larger budget in higher dimensions. As a remedy, we
employ a slight adaption which is called relative ERT (relERT). For any given
problem p := (FID, D), we divide the ERT values of the twelve algorithms by its
respective lowest one. Thereby, we obtain a measure which indicates by which
factor each algorithm is more expensive (in terms of function evaluations) com-
pared to the best performing algorithm on that specific problem p. Furthermore,
there are cases where none of the five instances of a problem was solved by an
algorithm. This causes the value s (from Eq. 1) to be zero, resulting in an infinite
ERT. For the purpose of our algorithm selector, we impute these values simi-
lar to Kerschke and Trautmann [14] by taking the largest observed (i.e., finite)
relERT value overall and multiplying it by the factor 10 as penalty [14].

The single-best solver (SBS) across all problems is the HCMA with an relERT
value of 30.37 [17]. This offers ample opportunity to close the gap between the
SBS and theoretically achievable performance of 1. The latter is also referred to
as the virtual-best solver (VBS). The VBS serves as an upper bound whereas
the SBS is a baseline which needs to be surpassed.

3.2 Landscape Features

Here, the term ‘landscape features’ comprises each kind of input to our models,
i.e., either a set of ELA features, a fitness map, or a fitness cloud. While these
three input variants differ substantially, the underlying sample, upon which they
are computed, largely remains the same. Meaning, these methods act as a sur-
rogate of an individual problem instance i, which is constructed from an initial
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sample of size 50D. The fitness cloud differs in this respect because the sample
size is a constant of either 100 or 500 – the lower (D = 2) and upper bound
(D = 10) of our sampling sizes – to estimate the lower and upper performance
bounds. This is done for every problem instance i, i.e., we create 480 different
samples.

We use latin hypercube sampling which is inherently stochastic and aim
to avoid propagating this stochasticity to the training phase of our algorithm
selectors as much as is reasonably possible by sampling independently ten times
for each i. Thereby, we not only reduce the stochasticity but also artificially
increase our training data by the factor ten. This is especially beneficial since
DL generally requires a more extensive set of training data. In short, we increase
the number of observations for a specific surrogate variant from 480 to 4 800 (=
480 · 10) observations. This is in stark contrast to the work of Kerschke and
Trautmann [14]. There, the numerical landscape features where computed once
for each problem instance i and aggregated using the median to match the
performance data set with 96 observations. Here, we increase the performance
data to match our landscape feature data set. To give an example, let us assume
that for a given problem p (e.g., FID 1 in dimension 2 of BBOB), we have
an algorithm a which performs best in terms of relERT. We surmise that this
fact also holds true for the underlying five BBOB instances and we duplicate
these relERT values onto these instances. With that, we increase the algorithm
performance data set from 96 observations to 480(= 96 · 5) and duplicate these
entries ten times, to match our landscape data set of size 4 800.

We compute the numerical landscape features, i.e., features described in
Sect. 2.1, with the Python package pflacco1. Features which suffer from miss-
ing values are removed in their entirety. These belong mostly to the set of ELA
level and sum up to 14 features. After removal, we are left with 48 distinct fea-
tures. On the other hand, we create the fitness map as described in Sect. 2.2 with
no further adjustment and an image resolution of 224 × 224 pixels. The fitness
clouds, however, require the selection of a predetermined and static input size.
For this, we ascertain two variants 100 and 500 as adequate based on [33].

3.3 Experimental Setup

We model our algorithm selection problem as a classification task with a typical
data set of S = (X, y). Meaning, our algorithm selection models, which are
described in more detail in the following, do not predict the performance for a
given algorithm and problem instance, but rather predict which algorithm to
choose for a given problem instance. Hence, our final data set does not consist
of twelve algorithms for each problem instance, but only the best one on that
specific problem. In this scenario, the algorithm operates as a label y, whereas the
landscape features represent X within our machine learning model. In cases of
misclassification, however, it is apparent that not each false prediction is equally
costly. Therefore, we utilize a cost matrix C, where an individual value ci,a

1 https://github.com/Reiyan/pflacco experiment.

https://github.com/Reiyan/pflacco_experiment
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defines the cost of a chosen algorithm a on a problem instance i. This granularity
of costs, which is relegated to individual observations, is also known as example-
specific cost-sensitivity [35] (see Eq. 2).

The performance of each used model is evaluated by using five-fold cross
validation. Since our data set is comprised of five instances per BBOB function,
each fold consists of the predetermined instance of each function.

Models Based on ELA Features. We designed two classification models
based on ELA features. The first approach is similar to our previous work in
[14], i.e., we use a gradient boosting classifier, a support vector machine (SVM)
and a random forest (RF) in conjunction with feature selection. These experi-
ments are conducted in Python where the machine learning models stem from
sklearn [27]. Furthermore, we use a ‘greedy forward-backward’ feature selection
strategy which is implemented in the package mlxtend [30]. This process deems
most of the features unnecessary or redundant, reducing the set to 15 features.
As feature selection is a computationally expensive task, we did not perform
any hyper-parameter tuning (similar to [14]). A major distinction compared to
the remaining models is that the aforementioned three classifiers are not cost-
sensitive during their training. Through this, we intend to highlight the potential
of cost-sensitivity on an individual observation-level.

The alternative strategy uses a multilayer-perceptron (MLP) [5] incorporat-
ing cost-sensitive training. Feature selection is omitted, as the training duration
of an MLP is significantly larger than that other machine learning models, e.g.,
RF, and the MLP internally includes feature selection due to its working mech-
anism. In general, the models predict a probability distribution p̂a ∼ P̂ where
p̂a is the probability to choose the a-th solver out of all A solvers. To implement
example-specific cost-sensitive training, we choose the loss function

LA(P̂ , T, C;Θ) =
A∑

a=1

|ti,a − p̂i,a| · ci,a. (2)

Here, ti,a ∈ Ti are the true labels for the best performing algorithm on
instance i, ci,a ∈ C are the costs for predicting algorithm a based on the current
instance i, and Θ are the model’s weights. The loss function has two properties:
(1) it is continuously differentiable, and (2) LK = 0 for models that predict the
best performing solver with a confidence of 1.

Next, we performed hyperparameter optimization using a coarse grid search.
We tested for the learning rate ∈ {0.01, 0.001, 0.0001}, dropout ∈ {0.1, 0.3, 0.5},
the number of layers ∈ [1, 6], hidden neurons ∈ {128, 256, 512, 1024}, and the
learning rate decay ∈ {0.99, 0.97, 0.95}. The remaining setup (including the 5-
fold cross validation) was chosen identically to the setup of the classical machine
learning approach. We found that a model with 1 024 hidden neurons, 3 repeti-
tions, a dropout of 0.1, trained with a learning rate of 0.01, and a learning rate
decay of 0.99 performed best. In the following, we will refer to this model as
ELA-MLP. All DL models were trained on a single Nvidia Quadro RTX 6000,
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and by using the PyTorch library in Python. In addition, the MLP models were
trained for 500 epochs and the models with the lowest loss on the validation
folds were selected as final.

Models Based on Fitness Maps. The training setup of the image-based DL
models is similar as proposed in [33]. We used a ShuffleNet V2 [19] (see Fig. 2 a)
with a width-multiplicator of 1.5, and we used the same cost-sensitive loss func-
tion for these models (see Eq. 2). Further, we tested several different training
approaches: learning rate ∈ {0.001, 0.0003, 0.0001, 0.00005, 0.00001}, an entropy
regularization ∈ {0, 0.001, 0.01, 0.1, 1, 10}, and a scaled and un-scaled version of
the loss function. The remaining training setup was identical to the ELA-MLP
approach. We found, that a learning rate of 0.0003, no entropy regularization,
and the un-scaled loss worked best. All image-based models were trained for 100
epochs, and the models with the lowest loss on the validation folds were selected
as the final models.

Models Based on Fitness Clouds. The model topology and training setup
for the PCTs was chosen identically to [33] (see Fig. 2 b). We tested for different
kNNs, k ∈ {3, 5, 10}, and (as proposed by [1]) also considered p = 0.5 for the
Lp distance function. However, we could not find any performance difference
between the different PCTs, confirming the finding of [33] that the hyperparam-
eters of the embedding layer have (at most) only a slight impact on performance
for the BBOB data. The PCT models were trained for 50 epochs and the models
with the lowest loss on the validation folds were chosen again as final models.

Next, due to a limitation of our implementation, we were not able to train the
PCT models with 50D points but had to choose a consistent number of points
for all dimensions. By using 100 and 500 points, we can estimate the upper and
lower PCT model performance as 50D = 100 for 2D and 50D = 500 for 10D. As
PCTs have lower or higher sampling costs compared to all other models, they
may have an advantage or disadvantage.

4 Results and Discussion

Table 1 summarizes the results of the considered approaches for constructing
AAS models. Model performances are provided in terms of mean relERT values,
split by dimensionality and BBOB function groups as well as in total, i.e., con-
sidering all instances simultaneously. Next to the SBS (cf. 3.1), results of feature-
based approaches are contrasted to feature-free concepts based on fitness maps
and point clouds. Figure 3 visualizes the respective results on problem dimension
level in terms of a parallel-coordinate-plot. Except from the SBS, the relERT
values of the AAS models incorporate the costs of the initial sample.

It becomes obvious that the classical ELA feature based AAS model approach
(ELA-RF) is largely outperformed. However, this is the only strategy not con-
sidering cost-sensitive learning in terms of integrating the loss in relERT induced
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Table 1. Performance results of difference AAS models represented by their relERT.
The first two columns represent information about the underlying problems, i.e., the
different dimensions (D) and the BBOB function groups (FGrp) of similar character-
istics. The best option based on the ELA features (ELA-RF and ELA-MLP) for a
given row is highlighted in green, and the best model consisting of either fitness map
(columns MC to PCA-Func) or fitness cloud (PCT-100 and PCT-500) is highlighted
in blue. Values displayed in red indicate the overall best option for a given group of
problems.

D FGrp SBS ELA-RF ELA-MLP MC Conv-rMC rMC PCA PCA-Func PCT-100 PCT-500

2

1 3.71 10.41 10.59 23.95 23.95 23.95 14.99 15.12 23.95 61.15

2 5.80 8.51 3.72 3.54 3.54 3.54 6.97 6.40 3.54 11.04

3 6.29 1473.16 4.72 4.02 4.02 4.02 4.98 5.64 4.02 16.11

4 25.34 3.89 9.25 8.90 8.90 8.90 26.98 24.00 8.90 12.21

5 44.95 148.39 3.32 4.33 4.33 4.33 30.01 30.97 4.33 6.18

all 17.69 342.22 6.43 9.17 9.17 9.17 17.19 16.84 9.17 21.77

3

1 356.10 1480.68 11.87 16.58 16.56 191.76 365.54 344.65 13.32 39.24

2 4.46 8.33 3.50 3.32 3.32 3.51 5.32 5.20 2.85 6.65

3 4.98 7.07 3.82 3.61 3.58 4.11 5.21 5.51 2.72 9.58

4 2.63 441.96 5.06 11.16 11.54 9.36 2.77 3.11 11.49 11.87

5 66.81 1.22 2.54 2.53 2.53 2.53 50.46 50.20 2.46 3.04

all 90.43 403.67 5.44 7.61 7.68 43.87 89.22 84.92 6.72 14.39

5

1 11.99 14.14 11.97 22.69 22.69 22.70 22.89 22.80 16.27 33.39

2 3.90 369.26 2.62 4.74 4.78 4.60 4.64 4.70 4.25 5.66

3 4.21 150.44 3.97 6.72 6.72 6.49 6.40 6.56 5.21 9.23

4 4.29 1470.28 6.81 4.38 4.38 4.38 4.38 4.38 4.33 4.47

5 7.67 1.13 1.83 4.22 7.80 3.38 4.08 4.90 7.72 7.93

all 6.52 402.38 5.56 8.71 9.46 8.46 8.64 8.83 7.69 12.41

10

1 2.74 14.64 15.27 16.34 16.34 16.34 16.39 16.41 5.46 16.34

2 2.16 1.62 1.76 2.71 2.71 2.71 2.69 2.67 2.27 2.71

3 2.76 2.87 4.35 4.48 4.48 4.48 4.48 4.48 3.10 4.48

4 2.02 442.01 1.96 2.09 2.09 2.09 2.07 2.09 2.03 2.09

5 23.64 148.01 3.25 21.77 23.74 14.61 5.08 10.21 23.66 23.74

all 6.85 126.84 5.46 9.76 10.17 8.27 6.29 7.36 7.51 10.17

all

1 93.63 379.97 12.43 19.89 19.88 63.68 104.96 99.74 14.75 37.53

2 4.08 96.93 2.90 3.58 3.59 3.59 4.91 4.75 3.23 6.52

3 4.56 408.38 4.21 4.71 4.70 4.78 5.27 5.55 3.76 9.85

4 8.57 589.54 5.77 6.63 6.73 6.18 9.05 8.40 6.69 7.66

5 35.77 74.69 2.74 8.22 9.60 6.21 22.41 24.07 9.54 10.22

all 30.37 318.78 5.72 8.81 9.12 17.44 30.34 29.49 7.78 14.68

by wrong predictions of the best suited solver. We exemplary report on ELA-RF
performance, as the best option among alternative standard classifiers such as
SVM or gradient boosting, which qualitatively show comparable performance.
However, integrating cost-sensitive learning into a multilayer-perceptron model
based on ELA features (ELA-MLP) has a tremendously positive impact. ELA-
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Fig. 3. Parallel coordinate plot visualizing AAS model results per problem dimension
in terms of relERT based on Table 1.

Fig. 4. Top Figure: Absolute frequencies of predicted solvers by AAS model type
(‘actual’ solver portfolio) grouped by BBOB function groups. Bottom Figure: Indi-
vidual solver performances (relERT) across all instances and dimensions.

MLP not only beats the SBS on almost all instances but rather largely reduces
the SBS-VBS gap (across all instances and dimensionalities) by 78%. While this
by itself is an outstanding result, even more notable is the performance of our
feature-free alternatives. Without requiring feature information, the point-cloud
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based PCT-100 model is second-best with really comparable results, closing the
respective SBS-VBS gap by 74%. Surprisingly, within this model class, this PCT
variant outperforms the more costly PCT-500 approach, i.e., the additional infor-
mation stemming from the larger initial sample (for D < 10) does not outweigh
the additional costs. Also, the fitness map based models MC- and Conv-rMC
do not lag behind by much, while rMC and the PCA-based models do not show
consistent quality across all dimensions.

Shifting the focus from pure performance analysis to a deeper understanding
of model decisions, we see from Fig. 4, that models based on ELA features make
use of the whole extent of the solver portfolio, whereas image- and point-cloud
based strategies simultaneously manage to meaningfully reduce the size of the
required solver portfolio. The upper image explicitly counts how often a specific
solver has been selected within the AAS models, split by model type. Note
that all image based approaches are aggregated within the image row, while
the same holds for the point category. Interestingly, basically two solvers, i.e.,
HCMA and HMLSL, are sufficient to yield highly beneficial AAS decisions. A
third, less important candidate is CMA-CSA. This is supported by the bottom
figure displaying solver performances across all instances in terms of boxplots.
The three respective solvers are performing consistently well, but also are most
robust in terms of substantially smaller variability in terms of relERT values.

5 Conclusions and Outlook

We introduced a conceptually novel feature-free alternative to the conventional
numerical landscape features and, thereby, provide an innovative solution to the
ASP. Although the feature-free models perform slightly worse than the ELA fea-
ture models, they significantly outperform the single-best solver of our algorithm
portfolio and meaningfully reduce the size of the algorithm portfolio.

However, our feature-free methods offer huge potential for future research. As
discussed in [33], a considerable challenge of our proposed image-based methods
is the balancing act between information loss for higher dimensions (which holds
for PCA, PCA-Func, MC, and rMC) and increasing sparsity of points in lower
dimensions (which holds for MC and Conv-rMC). Thus, for small dimensions
most of the provided feature maps are empty and the weights get partially
trained, only. Therefore, we proposed an alternative point cloud-based approach
(PCT) which can also be considered as highly competitive to the conventional
approaches. Summarizing, the classical ELA-MLP approach shows a slightly
better overall AAS model performance compared to PCT-100, but comes with
the trade-off of requiring a larger solver portfolio.

However, there is also large improvement potential for PCT based methods.
First, the embedding layer may play a crucial role for the model’s performance,
yet we know little about the impact of the different hyperparameters. Thus,
we will closer investigate the respective impact and experiment with different
distance metrics. Also, we will investigate the potential and usability of deep
features for cross-domain knowledge transfer. Deep features can be obtained after
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the last hidden layer of a trained model applied to a new task. Afterwards, a
small MLP or any other ML algorithm can be trained efficiently on the obtained
deep features. This is especially useful if the quantity of data or the training
resources for the new tasks are limited.
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Abstract. Algorithm selection wizards are effective and versatile tools
that automatically select an optimization algorithm given high-level
information about the problem and available computational resources,
such as number and type of decision variables, maximal number of eval-
uations, possibility to parallelize evaluations, etc. State-of-the-art algo-
rithm selection wizards are complex and difficult to improve. We propose
in this work the use of automated configuration methods for improving
their performance by finding better configurations of the algorithms that
compose them. In particular, we use elitist iterated racing (irace) to find
CMA configurations for specific artificial benchmarks that replace the
hand-crafted CMA configurations currently used in the NGOpt wizard
provided by the Nevergrad platform. We discuss in detail the setup of
irace for the purpose of generating configurations that work well over the
diverse set of problem instances within each benchmark. Our approach
improves the performance of the NGOpt wizard, even on benchmark
suites that were not part of the tuning by irace.

Keywords: Algorithm configuration · Algorithm selection · Black-box
optimization · Evolutionary computation

1 Introduction

In the context of black-box optimization, the use of a portfolio of optimization
algorithms [23], from which an algorithm is selected depending on the features
of the particular problem instance to be solved, is becoming increasingly pop-
ular. The algorithm that encapsulates the selection rules and the portfolio of
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algorithms is sometimes referred as a “wizard” [20]. Algorithm selection wizards
provide versatile, robust and convenient tools, particularly for black-box opti-
mization, where problems that arise in practice show a large variety of different
requirements, both with respect to problem models, but also with respect to the
(computational) resources that are available to solve them.

Building a competitive algorithm selection wizard is not an easy task, because
it not only requires devising the rules for selecting an algorithm for a given
problem instance, but also configuring the parameters of the algorithms to be
selected, which is a difficult task by itself [3]. Although there are examples of
wizards that were build automatically for SAT problems [29], many algorithm
selection wizards are still hand-crafted. An example of a successful hand-crafted
algorithm selection wizard is NGOpt [20], provided by the optimization platform
Nevergrad [22].

NGOpt was designed by carefully studying the performance of tens of opti-
mizers on a wide range of benchmark suites to design hand-crafted rules that
aim to select the best optimizer for particular problem features. Through an
iterative improvement process, new versions of NGOpt are designed by refining
the hand-crated rules and replacing optimizers by others that lead to a better
performance of the new NGOpt version. The result is a complex algorithm selec-
tion wizard that outperforms many well-known stand-alone optimizers on a wide
range of benchmark suites.

In this work, we attempt to investigate the potential of improving NGOpt via
automated algorithm design techniques. Rebuilding NGOpt from scratch using
automated methods is a daunting task that would waste the knowledge already
encoded in it and the human effort already invested in its creation. Instead, we
examine how automatic algorithm configuration (AC) methods may be used in
a judicious manner to improve NGOpt by focusing on improving one of its most
critical underlying optimizers.

AC methods such as irace [16], aim to find a configuration, i.e., a setting
of the parameters of an algorithm, that gives good expected performance over
a large space of problem instances by evaluating configurations on a training
subset from such space. AC methods, including irace, are typically designed to
handle categorical and numerical parameter spaces and stochastic performance
metrics, not only due to the inherent stochasticity of randomized optimization
algorithms but also because the training instances represent a random sample
of the problems of interest. Traditionally, AC methods have been used to tune
the parameters of specific algorithms [3], however, more recently, they have been
used to automatically design algorithms from flexible frameworks [1,12,18,19]
and to build algorithm portfolios [28]. For more background on AC, we refer the
interested reader to two recent surveys [8,25].

As mentioned above, we do not wish to re-build nor replace NGOpt but,
instead, iteratively improve it. To do so, we first answer the question of whether
the hand-crafted NGOpt may be further improved by replacing some of its com-
ponents by algorithm configurations obtained from the application of an AC
method, in particular, irace. When applied to a complex algorithm selection
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wizard such as NGOpt and a diverse black-box optimization scenario, such as
the one tackled by NGOpt, the correct setup of an AC method is crucial. We
discuss in detail our approach here, which we believe is applicable to other simi-
lar scenarios. Our results show that our proposed approach clearly improves the
hand-crafted NGOpt, even on benchmark suites not considered in the tuning
process by irace.

This paper is structured as follows. Section 2 gives an introduction to the
concept of algorithm selection wizard and describes, in particular, the one used
in our experiments, NGOpt. Section 3 presents the experimental setup and the
benchmark suites used for tuning the target algorithm. In Sect. 4 we present the
integration of the tuned algorithms into the new algorithm selection wizard. The
evaluation results are presented in Sect. 5. Section 6 concludes the paper.

2 Preliminaries

Algorithm Selection Wizards. Modern algorithm selection wizards make use
of a number of different criteria to chose which algorithm(s) are executed on
a given problem instance, and for how long. Algorithm selection wizards take
into account a priori information about the problem and the resources that are
available to solve it. Using this information, the algorithm selection wizards
recommend one or several algorithms to be run, along with a protocol to assign
computational budget to each of these.

NGOpt is built atop of several dozens of state-of-the-art algorithms that have
been added to Nevergrad over the last years. However, NGOpt does not only
select which algorithms to execute on which problem instances, but it also com-
bines algorithms in several ways, e.g., by enriching classic approaches with local
surrogate models. Since all algorithms submitted to Nevergrad are periodically
run on all fitting benchmark problems available within the environment, a very
large amount of performance data is available. In light of this rich data set,
and in light of the tremendous performance gains obtained through automated
algorithm designs [2,12,21] and selection rules [11], it is therefore surprising
that both the decision rules of NGOpt and the configuration of the algorithms
available in Nevergrad are hand-picked.

CMA. Among the algorithms that compose NGOpt, a key component is CMA, an
instance of the family of covariance matrix adaptation evolution strategies (CMA-
ES [7]). In Nevergrad’s CMA implementation, the following parameters are explic-
itly exposed, making them straightforward candidates for the configuration task.
The scale parameter controls the scale of the search of the algorithm in the search
domain: a small value leads to start close to the center. The elitist parameter is
a Boolean variable that can have values ‘True’ or ‘False’ and it represents a switch
for elitist mode, i.e., preserving the best individual even if it includes a parent. The
diagonal parameter is another Boolean setting that controls the use of diagonal
CMA [24]. Finally, the population size is another crucial parameter that is usually
set according to the dimension of the problem. Instead of setting its value directly,
we decided to create a higher-level integer parameter popsize factor and let the
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population size be �4+popsize factor · log d�, where d is the problem dimension.
The parameter search space of CMA is shown in Table 3.

Automated Algorithm Configuration. Given a description of the parameter
space of a target algorithm, a class of problems of interest, and a computational
budget (typically measured in target algorithm runs), the goal of an AC method
is to find a parameter configuration of the target algorithm that is expected
to perform well on the problem class of interest. Due to the stochasticity of
randomized algorithms and the fact that only a limited sample of (training)
problem instances can be evaluated in practice, specialized methods for AC
have been developed in recent years [8,9,25] that try to avoid inherent human
biases and limitations in manual parameter tuning. We have selected here the
elitist iterated racing algorithm implemented by the irace package [16], since it
has shown good performance for configuring black-box optimization algorithms
in similar scenarios [13–15,17].

3 Experimental Setup

To show the influence of the parameter tuning of the CMA included in
NGOpt [22], we have performed several parameter tuning experiments using
irace. The setup and results of this process are described in this section.

3.1 Setup of Irace for Tuning CMA

A training instance is defined by a benchmark function, a dimension, a rotation
and the budget available to CMA. We also define “blocks” of instances: all
instances within a block are equal except for the benchmark function and there
are as many instances within a block as benchmark functions. We setup irace so
that, within each race, the first elimination test (FirstTest) happens after seeing
5 blocks and subsequent elimination tests (EachTest) happen after each block.
Moreover, configurations are evaluated by irace on blocks in order of increasing
budget first and increasing dimension second, such that we can quickly discard
poor-performing configurations on small budgets and only good configurations
are evaluated on large ones [26]. The performance criterion optimized by irace is
the objective value of the point recommended by CMA after it has exhausted its
budget. Since Nevergrad validates performance according to the mean loss (as
explained later), the elimination test used by irace is set to t-test. Finally, we
set a maximum of 10 000 individual runs of CMA as the termination criterion
of each irace run. By parallelizing each irace run across 4 CPUs, the runtime of
a single run of irace was around 8 h.

3.2 Benchmark Suites Used for Tuning

Nevergrad contains a very large number of benchmark suites. Each suite is a
collection of benchmark problems that share some common properties such as
similar domains or constraints, similar computational budgets, etc. A large num-
ber of different academic and real-world problems are available. We selected five
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Table 1. Artificial benchmarks used as training instances by irace. The third column
gives the name of the CMA variant obtained by irace on that particular benchmark
(for the parameter values, see Table 4). The detailed code can be found in [22].

Benchmark name Context Optimized CMA

yabbob Dimension ∈ [2, 50], budget ∈ [50, 12800] CMAstd

yasmallbbob Budget < 50 CMAsmall

yatuningbbob Budget < 50 and dim ≤ 15 CMAtuning

yaparabbob Num-workers=100 CMApara

yaboundedbbob Box-constrained, budget ≤ 300, dim ≤ 40 CMAbounded

suites (yabbob, yasmallbbob, yatuningbbob, yaparabbob, and yabound-
edbbob) as training instances for irace, all of them derived from the BBOB
benchmark suite [5] of the COCO benchmarking environment [6]. See Table 1 for
their various characteristics. We ran irace once for each benchmark suite sepa-
rately, by setting up their problem instances as described above. All runs of irace
used the parameter space of CMA shown in Table 3. For each benchmark suite,
we selected one CMA configuration from the ones returned by irace by doing 10
validation runs using the best configurations obtained by irace and the default
CMA configuration. Each run consisted of running each CMA configuration on
the whole instance space. For each instance we declared a winner configuration
that yielded the smallest result. Using majority vote then we determined a winner
from the 10 validation runs. The optimized configurations selected are named
CMAstd for yabbob, CMAsmall for yasmallbbob, CMAtuning for yatun-
ingbbob, CMApara for yaparabbob, and CMAbounded for yaboundedbbob
(Table 1). Their parameter values are shown in Table 4 (Table 2).

Table 2. Artificial and real-world benchmarks used for testing. The detailed code can
be found in [22].

Type Name Context

Artificial yabigbbob Budget 40000 to 320000

yaboxbbob Box constrained

yahdbbob Dimension 100 to 3000

yawidebbob Different settings (multi-objective, noisy, discrete. . . )

Deceptive Hard benchmark, far from yabbob

Real-world SeqMLTuning Hyperparameter tuning for SciKit models

SimpleTSP Traveling Salesman Problem, black-box

ComplexTSP Traveling Salesman Problem, black-box, nonlinear terms

UnitCommitment Unit Commitment for power systems

Photonics Simulators of nano-scale structural engineering

GP Gym environments used in [27]

007 Game simulator for the 007 game
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Algorithm 1. Pseudocode for MetaCMA.
1: procedure MetaCMA(budget, dimension, num workers, fully bounded)
2: if fully bounded then return CMAbounded � All variables have bounded

domain.
3: if budget < 50 then
4: if dimension ≤ 15 then return CMAtuning else return CMAsmall

5: if num workers > 20 then return CMApara else return CMAstd

Table 3. Search space for the tuning of CMA by irace.

Parameter Default value Domain

Scale 1 (0.1, 10) ⊂ R

Popsize-factor 3 [1, 9] ⊂ N

Elitist False {True, False}
Diagonal False {True, False}

4 MetaCMA and Its Integration in Nevergard

The CMA configurations found by irace were further combined into a new algo-
rithm selection wizard. For this purpose, we propose MetaCMA (Algorithm 1),
a deterministic ensemble for noiseless single-objective continuous optimization
that, based on deterministic rules, switches between different tuned CMA con-
figurations. For problems where all variables have bounded domain, MetaCMA
selects CMAbounded. Otherwise, for low budget (function evaluations) avail-
able, the MetaCMA model selects either the CMAtuning configuration (for low
dimension) or the CMAsmall configuration (otherwise). If number of workers is
more than 20, then the MetaCMA uses the CMApara. If neither of the above-
mentioned rules is met, the MetaCMA will switch to CMAstd, which was tuned
on yabbob.

Given that NGOpt considers many more cases than MetaCMA, we have to
integrate it inside NGOpt so that we have both the improved performance of
our MetaCMA and the generality of NGOpt. NGTuned corresponds to NGOpt
with all instances of CMA in NGOpt replaced by MetaCMA.

5 Experimental Results

To evaluate the performance of the MetaCMA model and its integration in
NGOpt (NGTuned), we compared it with the previous variant of NGOpt and
other state-of-the-art algorithms in three different scenarios. The first scenario
consists of the benchmark suites that were used by irace during tuning. All
algorithms have been rerun independently of the tuning process. The second
scenario involves artificial benchmark suites whose problem instances were not
used in the tuning process. The third scenario involves real-world problems not
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Table 4. Best parameters found by irace for each benchmark suite.

CMAstd CMAsmall CMAtuning CMApara CMAbounded

Parameter (Yabbob) (Yasmallbbob) (Yatuningbob) (Yaparabbob) (Yaboundedbbob)

Scale 0.3607 0.4151 0.4847 0.8905 1.5884

Popsize-factor 3 9 1 8 1

Elitist False False True True True

Diagonal False False False True True

Fig. 1. Results on yabbob: suite used in the tuning, moderate dimension and budget.

Fig. 2. Results on yasmallbbob: benchmark suite used in the tuning, low budget.

Fig. 3. Results on yatuningbbob: benchmark suite used in the tuning, counterpart of
yabbob with low budget and low dimension.

presented in the tuning process of irace. Details about these benchmark suites
are given in Table 1.

The selection of algorithms involved in the evaluation for each benchmark
suite differ because each suite has its own set of state-of-the-art algorithms.
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Fig. 4. Results on yaparabbob: benchmark suite used in the tuning, parallel case.

Fig. 5. yaboundedbbob: suite used in the tuning, bounded domain.

5.1 Evaluation on Artificial Benchmark Suites Presented
in the Tuning Process of Irace

Figures 1, 2, 3, 4, and 5 present results on benchmark suites used for running
irace. On the left side of each figure is a robustness heatmap, where the rows and
columns represent different algorithms, and the values of the heatmap reflect the
number of times the algorithm in each row outperforms the algorithm in each
column. We use mean quantiles over multiple settings (compared to other opti-
mization methods) in an anytime manner, meaning that all budgets are taken
into account, not only the maximum one. This is robust to arbitrary scalings of
objective functions. The algorithms’ global score, defined as their mean scores
(the number of times it performs better than the other algorithms), is used for
ranking the rows and columns. The six best-performing algorithms are listed as
rows and sorted by their mean score, while the columns contain all of the algo-
rithms involved in the algorithm portfolio. The labels in the columns contain the
mean score of each algorithm. For instance, in Fig. 1, the label for NGTuned is
“1/18:76.1% +− 0.4”, meaning that it was ranked first, out of 18 evaluated algo-
rithms, and its mean score is 76.1%, which is the mean number of times it per-
formed better than the rest of the algorithms, on all problems and all budgets in
the benchmark suite. On the right side of each figure, we present the algorithms’
performance with different budgets. The x-axis represents the budget, while the
y-axis represents the rescaled losses (normalized objective value, averaged over
all settings), for a given budget, and linearly normalized in the range [0, 1]. Apart
from the algorithm name, the label of each algorithm in the legend contains two
values in brackets. The first one denotes the mean loss achieved by the algorithm



26 R. Trajanov et al.

for the maximum budget (after the losses for each problem have been normalized
in the range [0, 1]), while the second one denotes the mean loss for the second
largest budget. Figure 1 features the results on the yabbob benchmark suite.
The heatmap (left) shows that NGTuned outperforms the other algorithms, fol-
lowed by MetaCMA, while NGOpt is in the 7th position. Figure 2 features the
results on the yasmallbbob benchmark suite. The best results are obtained by
NGTuned, followed by MetaCMA, while NgOPt is ranked in the 6th position.
In addition, with regard to different budgets, MetaCMA outperforms NGOpt
by obtaining lower losses. In Fig. 3, the results from the evaluation on yatun-
ingbbob benchmark suite are presented. It follows the trend of NGTuned being
the best performing algorithm. Comparing NGTuned and NGOpt according to
the convergence it seems that till 2 × 101, both achieved similar loss, but later
on for budgets above 2 × 101, NGOpt can provide better losses. The compari-
son between the left and the right plot (keeping the rescaling in mind) suggests
that NGTuned has a better rank than NGOpt, but that the rescaled loss is bet-
ter for NGOpt. The results for yaparabbob benchmark suite are presented in
Fig. 4. In terms of mean scores obtained across all budgets, MetaCMA is the
best algorithm, followed by NGTuned. In terms of the loss achieved for differ-
ent budgets, NGTuned and MetaCMA provide similar results, with the biggest
difference being in the largest budget, where NGTuned achieves a lower loss.
Due to rescalings and the difference criteria (ranks on the left, normalized loss
on the right) the visual comparison between algorithms can differ. Both out-
perform NGOpt. On the yaboundedbbob benchmark suite (Fig. 5), NGOpt
achieves better performance than NGTuned. Here, several algorithms from [10]
have been tested: the low budget makes them relevant. The best results are
achieved by NLOPT LN BOBYQA [4], closely followed by MetaCMA, with a
difference of 0.4% in the average quantiles referring to the number of times they
outperform other methods. From the line plot on the right of the figure, we can
see that MetaCMA consistently provides the lowest normalized loss, for different
budgets.

5.2 Evaluation on Benchmark Suites Not Used for Tuning

Artificial Benchmarks. Figures 6, 7, 9, 8, and 10 present results on bench-
mark suites related to yabbob though with different configurations. The prob-
lem instances used were not used in the tuning process.

Figure 6 shows the results on the yabigbbob benchmark suite, which con-
sists of the same problem instances as the yabbob benchmark suite with longer
budgets. Here, NGOpt achieves the best performance, while NGTuned is second
ranked. From the line plot on the right of Fig. 6, we can see that NGOpt and
NGTuned are better than the other algorithms over all budgets. The results
for the yaboxbbob benchmark suite (box-constrained and low budget) are pre-
sented in Fig. 7. In this case, all of the proposed algorithms appear as top ranked,
with MetaCMA being the best performing one. As for budget up to around 103,
MetaCMA performs the best, and is later outperformed by NGTuned, which
uses the MetaModel on top of MetaCMA. The yahdbbob benchmark suite is
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Fig. 6. Results on yabigbbob: longer budgets than for BBOB. Not used in the irace
trainings, but same functions as yabbob.

Fig. 7. Results on yaboxbbob: box-constrained and low budget: not used in the irace
training but has similarities.

Fig. 8. yahdbbob: high-dim. counterpart of yabbob, not used for training.

a high-dimensional counter part of yabbob. On it, NGTuned is selected as the
best algorithm in Fig. 8, followed by NGOpt with 0.7% difference referring to
the % of times they outperform other algorithms. The right subplot shows that
these algorithms together with MetaCMA achieved the best losses, across all
budgets.

Figure 9 shows results on the yawidebbob benchmark suite, which is con-
sidered to be specially difficult and covers many different test problem instances
(continuous, discrete, noisy, noise-free, parallel or not, multi-objective or not).
On yawidebbob, NGTuned is selected as the best algorithm, followed by
NGOpt, with a difference of 1.7% in the average score related to the number
of times they outperform the other algorithms. MetaCMA is ranked as third.
From the line plot we can see that these algorithms achieved lowest losses, how-
ever the behavior is not stable over different budgets. We need to point out
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Fig. 9. Results on yawidebbob: this benchmark matters particularly as it covers
many different test cases, continuous, discrete, noisy, noise-free, parallel or not, multi-
objective or not. It is designed for validating algorithm selection wizards. The different
problems have different budgets, so that it is not surprising that the curve is not
decreasing.

Fig. 10. Deceptive functions: this benchmark [22] is quite orthogonal to the ya*bbob
benchmarks, and very hard (infinitely many local minima arbitrarily close to the opti-
mum/infinite condition number/infinitely tiny path to the optimum).

here that NGTuned is not using CMA for multi-objective problems, so that
some parts of yawidebbob are not modified by our work. The results indicate
that the automated configuration that is performed for such benchmark suites
also helps to improve the performance of the NGOpt on benchmark suites that
contain a mix of different problem instances. The results for the Deceptive func-
tions benchmark suite are presented in Fig. 10, where NGTuned is the winning
algorithm in terms of the number of times it performs better than the other
algorithms and the mean loss achieved for different budgets over all settings.
This benchmark suite is quite orthogonal to the yabbob variants and very hard
to optimize, since the deceptive functions contain infinitely many local minima
arbitrarily close to the optimum or have an infinite condition number or have
an infinite tiny path to the optimum.

Real-World Problems. We also tested our algorithms on some of the real-world
benchmark suites presented in Nevergrad. Due to length constraints, the figures
displaying these results are available only in the full version of this paper. On the
SimpleTsp benchmark suite, NGTuned outperforms NGOpt in terms of the aver-
age frequency of winning over other algorithms and mean loss achieved for differ-
ent budgets over all settings. On the SeqMlTuning benchmark NGTuned appears
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among the best-performing algorithms with rank six. It outperforms NGOpt and
MetaCMA which do not appear in the set of best performing algorithms. On the
ComplexTSP problem, NGTuned is found to be the best performing algorithm.
It also surpasses NGOpt. With regard to mean performance per budget, they are
very similar and consistently better than the other algorithms. On the Unit Com-
mitment benchmark suite, NGTuned is the third ranked algorithm. It outper-
forms NGOpt but not enough for competing with the best variants of DE. Accord-
ing to the convergence analysis, it seems that NGTuned and NGOpt have simi-
lar behavior. On the Photonics problem, NGOpt and NGTuned appear between
the top ranked algorithms showing very similar performance. On th benchmark
suite (GP), which is a challenge in genetic programming, NGOpt and NGTuned
show almost identical but very bad performance overall: it is mentioned in [22]
that NGOpt has counterparts dedicated to neural reinforcement learning (MixDe-
terministic RL and ProgNoisyRL) that perform better: we confirm this. On the
007 benchmark suite, NGTuned is the best performing algorithm. Regarding the
mean loss achieved for different budgets, NGTuned shows similar performance to
NGOpt.

6 Conclusion

We have shown in this paper how automated algorithm configuration methods
like irace may be used to improve an algorithm selection wizard like NGOpt.
NGTuned was better than NGOpt in most benchmark suites, included those
not used for tuning our MetaCMA. Our results improve the algorithm selection
wizard not only for the benchmark suites used during the tuning process but
also for a wider set of benchmark suites, including real-world test cases. Given
the complexity of NGOpt, we have an impact on few cases, so that the overall
impact on NGOpt across all Nevergrad suites remains moderate: in some cases,
NGTuned is equivalent to NGOpt, and in some cases (in which CMA is crucial) it
performs clearly better. In some cases, the differences between the two algorithms
are small. If we consider only clear differences, we have gaps for YABBOB, 007,
YASMALLBBOB, YAPARABBOB, YABOXBBOB, SimpleTSP, and Deceptive:
in all these cases, NGTuned performs better than NGOpt.

Our tuning process still contains a few manual steps that require an expert,
such as deciding which benchmark suites to use for tuning, as well as the inte-
gration of the tuned CMA configurations into NGOpt. Our ultimate goal is to
automatize all steps of the process, and to also tune other base components as
well as the decision rules that underlie the NGOpt algorithm selection process.
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Abstract. Modern optimization strategies such as evolutionary algo-
rithms, ant colony algorithms, Bayesian optimization techniques,
etc. come with several parameters that steer their behavior during the
optimization process. To obtain high-performing algorithm instances,
automated algorithm configuration techniques have been developed. One
of the most popular tools is irace, which evaluates configurations in
sequential races, making use of iterated statistical tests to discard poorly
performing configurations. At the end of the race, a set of elite config-
urations are selected from those survivor configurations that were not
discarded, using greedy truncation selection. We study two alternative
selection methods: one keeps the best survivor and selects the remaining
configurations uniformly at random from the set of survivors, while the
other applies entropy to maximize the diversity of the elites. These meth-
ods are tested for tuning ant colony optimization algorithms for traveling
salesperson problems and the quadratic assignment problem and tuning
an exact tree search solver for satisfiability problems. The experimental
results show improvement on the tested benchmarks compared to the
default selection of irace. In addition, the obtained results indicate that
non-elitist can obtain diverse algorithm configurations, which encourages
us to explore a wider range of solutions to understand the behavior of
algorithms.

Keywords: Parameter tuning · Algorithm configuration · Black-box
optimization · Evolutionary computation

1 Introduction

Algorithm configuration (AC) addresses the issue of determining a well-
performing parameter configuration for a given algorithm on a specific set of
optimization problems. Many techniques such as local search, Bayesian optimiza-
tion, and racing methods have been proposed and applied to solve the AC prob-
lem. The corresponding software packages, such as ParamILS [14], SMAC [13],
SPOT [3], MIP-EGO [29], and irace [19] have been applied to problem domains
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such as combinatorial optimization [19], software engineering [4], and machine
learning [15].

Irace, one of the most popular tools, has shown its ability to improve the
performance of the algorithms for various optimization problems [2,7,19,27].
However, we can still intuitively expect to improve the performance of irace
considering contemporary optimization techniques. Premature convergence is a
common problem for optimization methods resulting in being trapped into local
optima, which can also present irace from finding the optimal configurations.
For example, irace fails to find the optimal configuration of a family of genetic
algorithms (GAs) for OneMax in [30]. There exists more than one type of
competitive configuration of the GA for OneMax, which is known due to the
extensive body of theoretical work [11,28]. However, irace converges to a specific
subset of configurations that share similar algorithm characteristics. In order
to avoid issues like this, one could aim to increase the exploration capabilities
of irace. However, this does not necessarily address the concern of finding well-
performing configurations located in different parts of the space. Instead, we
would want to allow irace to automatically explore search space around a diverse
set of well-performing configurations to avoid converging on one specific type of
configuration.

A “soft-restart” mechanism has been introduced for irace to avoid prema-
ture convergence in [19], which partially reinitializes the sampling distribution
for the configurations that are almost identical to others. However, evaluations
can be wasted on testing similar configurations before the restart, and the con-
figuration may converge on the type of configurations that were found before
restarting. Therefore, we investigate alternative selection mechanisms which take
into account the diversity of the selected elite configurations. In addition, the
observations from [30] inspire a discussion on searching for various competitive
configurations with different patterns, which is addressed by our discussion that
more knowledge can be obtained by searching diverse configurations.

1.1 Our Contributions

In this paper, we show that an alternative random selection of elites can result
in performance benefits over the default selection mechanism in irace. Moreover,
we propose a selection operator maximizing the entropy of the selected elites.
These alternative selection operators are compared to default irace on the tested
scenarios.

The alternative approaches are tested on three scenarios: tuning the Ant
Colony Optimization (ACO) algorithm for the traveling salesperson problem
(TSP) and the quadratic assignment problem (QAP) and minimizing the compu-
tational cost of the SPEAR tool (an exact tree search solver for the satisfiability
(SAT) problem).

Experimental results show that (1) randomly selecting elites among config-
urations that survived the racing procedure performs better than the greedy
truncation selection, and (2) the irace variant that uses the entropy metric
obtains diverse configurations and outperforms the other approaches. Finally,
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the obtained configurations encourage us to (3) use such a diversity-enhancing
approach to find better configurations and understand the relationship between
parameter settings and algorithm behavior for future work.

Reproducibility: We provide the full set of logs from the experiments described
in this paper in [31]. Additionally, our implementation of the modified irace
versions described in this paper is available at https://github.com/FurongYe/
irace-1.

2 Related Work

2.1 Algorithm Configuration

Traditionally, the AC problem, as defined below, aims at finding a single optimal
configuration for solving a set of problem instances [9].

Definition 1 (Algorithm Configuration Problem). Given a set of problem
instances Π, a parametrized algorithm A with parameter configuration space Θ,
and a cost metric c : Θ × Π → R that is subject to minimization, the objective
of the AC problem is to find a configuration θ∗ ∈ arg min

θ∈Θ

∑

π∈Π

c(θ, π).

The parameter space can be continuous, integer, categorical, or mixed-
integer. In addition, some parameters can be conditional.

Many configurators have been proposed for the AC problem [3,13,14,17,19,
29], and they usually follow Definition 1 by searching for a single optimal solu-
tion, although the solvers may apply population-based methods. However, in
some cases it can be desirable to find a set of diverse, well-performing solutions to
the AC problem. For example, previous studies [21,30] found that algorithm con-
figurators can obtain different results when tuning for different objectives (i.e.,
expected running time, best-found fitness, and anytime performance), which sug-
gests that a bi- or multi-objective approach to algorithm configuration can be a
promising research direction. For such multi-objective configuration tasks, hav-
ing diverse populations of configurations is a necessity to understand the Pareto
front.

2.2 Diversity Optimization

To address the objective of obtaining a set of diverse solutions, certain evo-
lutionary algorithms have been designed specifically to converge to more than
one solution in a single run. For example, the Niching Genetic Algorithms are
applied for solving multimodular functions [6,12] and searching diverse solutions
of association rules [24], chemical structures [23], etc. Diversity optimization also
addresses the problem of searching for multiple solutions. Quality-diversity opti-
mization [8] was introduced to aim for a collection of well-performing and diverse
solutions. The method proposed in [8] measures the quality of solutions based
on their performance (i.e., quality) and distance to other solutions (i.e., novelty)

https://github.com/FurongYe/irace-1
https://github.com/FurongYe/irace-1
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dynamically. The novelty score of solutions is measured by the average distance
of the k-nearest neighbors [16]. Also, to better understand the algorithm’s behav-
ior and possible solutions, feature-based diversity optimization was introduced
for problem instance classification [10]. A discrepancy-based diversity optimiza-
tion was studied on evolving diverse sets of images and TSP instances [25]. The
approaches in both studies measure the solutions regarding their features instead
of performance. Unfortunately, the AC problem usually deals with a mixed-
integer search space, which is often not considered in the methods described in
this section.

3 Irace

In this section, we describe the outline of irace. Irace is an iterated racing
method that has been applied for hyperparameter optimization problems in
many domains. It samples configurations (i.e., hyperparameter values) from dis-
tributions that evolve along the configuration process. Iteratively, the generated
configurations are tested across a set of instances and are selected based on a
racing method. The racing is based on statistical tests on configurations’ per-
formance for each instance, and elite configurations are selected from the con-
figurations surviving from the racing. The sampling distributions are updated
after selection. The distributions from sampling hyperparameter values are inde-
pendent unless specific conditions are defined. As a result, irace returns one or
several elite configurations at the end of the configuration process.

Algorithm 1: Algorithm Outline of irace
1 Input: Problem instances Π = {π1, π2, . . .}, parameter configuration space X,

cost metric c, and tuning budget B;
2 Generate a set of Θ1 sampling from X uniformly at random;

3 Θelite = Race(Θ1, B1);
4 while The budget B is not used out do
5 j = j + 1;

6 Θj = Sample(X, Θelite);

7 Θelite = Race(Θj ∪ Θelite, Bj);

8 Output: Θelite

Algorithm 1 presents the outline of irace [19]. Irace determines the number
of racing iterations N iter = �2+ log2(Nparam)� before performing the race steps,
where Nparam is the number of parameters. For each Race(Θj , Bj) step, the bud-
get of the number of configuration evaluations Bj = (B −Bused)/(N iter − j +1),
where Bused is the used budget, and j = {1, . . . , N iter}. After sampling a set of
new configurations in each iteration, Race(Θ,B) selects a set of elite configura-
tions Θelite (elites). New configurations are sampled based on the parent selected
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from elites Θelite and the corresponding self-adaptive distributions of hyperpa-
rameters. Specific strategies have been designed for different types (numerical
and categorical) of parameters.

Each race starts with a set of configurations Θj and performs with a lim-
ited computation budget Bj . Precisely, each candidate configuration of Θj is
evaluated on a single instance πi, and the configurations that perform statisti-
cally worse than at least another one will be discarded after being evaluated on
a number of instances. Note that the irace package provides multiple statisti-
cal test options for eliminating worse configurations such as the F-test and the
t-test. The race terminates when the remaining budget is not enough for eval-
uating the surviving configurations on a new problem instance, or when Nmin

or fewer configurations survived after the test. At the end of the race, N surv
j

configurations survive and are ranked based on their performance. Irace selects
min{Nmin, N surv

j } configurations with the best ranks to form Θelite for the next
iteration. Note that irace applies here a greedy elitist mechanism, and this is the
essential step where our irace variants alter in this paper.

To avoid confusion, we note that an “elitist iterated racing” is described in the
paper introducing the irace package [19]. The “elitist” there indicates preserving
the best configurations found so far. The idea is to prevent “elite” configurations
from being eliminated due to poor performance on specific problem instances
during racing, and the best surviving “elite” configurations are selected to form
Θelite. We apply this “elitist racing” for our experiments in this paper, while the
alternative methods select diverse surviving “elite” configurations instead of the
best ones.

4 Random Survivor Selection

To investigate the efficacy of the greedy truncation selection mechanism used
by default within irace, we compare the baseline version of irace to a version of
irace that uses a random selection process. In particular, we adopt the selection
of elites by taking the best-performing configuration and randomly selecting the
remaining N surv

j − Nmin − 1 distinct ones from the best σNmin surviving con-
figurations when N surv ≥ σNmin, for some σ ≥ 1. The implementation of our
variants is built on the default irace package [20].

4.1 Tuning Scenario: ACOTSP

ACOTSP [27] is a package implementing ACO for the symmetric TSP. We apply
irace variants in this paper to configure 11 parameters (three categorical, four
continuous, and four integer variables) of ACO for lower solution costs (fitness).
The experimental results reported in the following are from 20 independent
runs of each irace variant. Each run is assigned with a budget of 5, 000 runs
of ACOTSP, and ACOTSP executes 20s of CPU-time per run following the
suggestion in [19]. We set σNmin = N surv indicating that the irace variant,
irace-rand, randomly selects survivor configurations to form elites. Other settings
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remain as default: the “elitist iterated racing” is applied, and Nmin = 5. We apply
the benchmark set of Euclidean TSP instances of size 2, 000 with 200 train and
200 test instances.

Figure 1 plots the deviations of the best configurations, which are obtained
by each run, from the best-found (optimum) configuration obtained by 20 (60
in total) runs of the irace variants. The results are averaged across 200 TSP
instances. We observe that the median and mean of irace-rand results are smaller
than those of irace, but the performance variance among these 20 irace-rand runs
is significantly larger.

Though irace is initially proposed for searching configurations that generally
perform well across a whole set of problem instances, we are nevertheless inter-
ested in the performance of the obtained configurations on individual instances.
Therefore, we plot in Fig. 2 the performance of all obtained configurations on
nine instances. Still, we observe comparable performance between irace and irace-
rand. It is not surprising that the performance of irace-rand presents larger vari-
ance because the configurations that do not perform the best get a chance to be
selected. Moreover, we spot significant improvement on instances “2000-6” and
“2000-9”, on which the configurations obtained by irace-rand generally perform
closer to the optima, compared to irace.

Fig. 1. Average deviation from the optimum of the best obtained configurations. Each
dot corresponds to the best final elite obtained by a run of irace, which plots the
average deviation from the best-found fitness across 200 TSP instances. Configurations
are measured by the average result of 10 validation runs per instance. The “optimum”
for each instance is the best-found configuration obtained by 20 (60 in total) runs of
the plotted methods.

4.2 Tuning Scenario: ACOQAP

We apply the same ACO implementation in [19] for solving QAP [22]. ACOQAP
executes 60s CPU-time per run following the default setting of the package, and
we apply the benchmark set of 50 train and test instances, respectively. The
other settings remain the same with the ACOTSP scenario.

Unfortunately, we do not observe similar improvement of using irace-rand
for ACOQAP. Irace-rand present worse performance than irace, comparing the
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Fig. 2. Boxplots of the deviation from the optimum of the obtained configurations
for TSP instances. Results are from the average fitness of 10 validation runs for each
obtained configuration.

Fig. 3. Average deviation from the optimum of the best obtained configurations. Each
dot corresponds to the best final elite obtained by a run of irace, which plots the
average deviation from the best-found fitness across 50 QAP instances. Configurations
are measured by the average result of 10 validation runs per instance. The “optimum”
is the best-found configuration obtained by 20 (60 in total) runs of the plotted methods.

average results across 50 instances in Fig. 3. While looking at Fig. 4, which plots
the results on ten randomly picked instances, we do not observe improvement
using irace-rand on ACOQAP, either. These observations indicate that using
this random selection to select elite configurations may deteriorate the perfor-
mance of irace for ACOQAP, though it does not necessarily mean that diverse
configurations are not helpful for the configuring process. We will discuss this
topic in more detail in Sect. 5.

4.3 Tuning Scenario: SPEAR

SPEAR [2] is a custom-made SAT solver configurable with 26 categorical param-
eters, of which nine are conditional, i.e., their activation depends on the values of
one or several of the other parameters. Our goal here is to minimize the runtime
of SPEAR. We run each irace variant 20 independent times. Each run of irace
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Fig. 4. Boxplots of the deviation from the optimum of the obtained configurations for
ACOQAP instances. Results are from the average fitness of 10 validation runs for each
obtained configuration.

is assigned with a budget of 10 000 runs of SPEAR, and the maximal runtime
of SPEAR is 30 s CPU-time per run. Other irace settings remain default: the
“elitist iterated racing” is applied, and Nmin = 6. The training and test set are
302 different SAT instances, respectively [1]. Note that the number of survivor
configurations is large (∼250) during racing, and experimental results show that
randomly selecting with such a large population deteriorates the performance
of irace. Therefore, for this scenario, we cap the size of survivor candidates by
2Nmin(σ = 2) to select from a relatively well-performing population.

Overall, we observe that the performance difference between the two methods
is tiny for most instances, though irace-rand can not obtain better average results
of runtime across all tested instances than irace. Note that the obtained configu-
rations may use much runtime (∼30 s) for a few instances, resulting in the com-
parison among the average runtime (∼3 s) across all instances can be significantly
affected by the results on those particular instances. Therefore, we plot only the
runtime for the first two instances of each class of instances in Fig. 5. Compared
to irace, though the performance of irace-rand deteriorates on “itox” instances,
significant improvements using irace-rand can be observed on more instances
such as “dspam vc9400”, “winedump” instances, and “xinetd vc56633”.

5 Selecting Diverse Elites

The optimistic results of ACOTSP and SPEAR scenarios introduced in Sect. 4
indicate that, while keeping the best configuration, randomly selecting from
well-performing survivor configurations to form elites can have positive impacts
on the performance of irace. An intuitive explanation is that irace-rand allows
exploring search space around those non-elitist configurations to avoid prema-
ture convergence on specific types of configurations, which matches our expec-
tation following the motivation introduced in Sect. 1. However, the failure to
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Fig. 5. Boxplots of the deviation from the optimum of the obtained configurations
for SPEAR instances. Results are from the average fitness of 10 validation runs for
each obtained configuration. Results of “gzip” class is omitted because runtime of all
obtained configurations are identical.

achieve improvements for ACOQAP requires us to consider explicitly controlling
the selected elite configurations’ diversity. To this end, we study an alternative
selection strategy based on entropy [5] as a diversity measure.

5.1 Maximizing Population Entropy

In information theory, entropy represents random variables’ information and
uncertainty level [26]. The larger the entropy, the more information the variables
deliver, e.g., the more diverse the solutions are. Our irace-entropy configurator
makes use of this idea, by using the Shannon entropy as criterion for selecting
survivor configurations to form elites.

For a random variable X with distribution P (X), the normalized entropy of
X is defined as:

H(X) =
n∑

i=1

P (Xi) log P (Xi)/ log(n),

In this paper, we estimate the entropy of integer and categorical variables
from the probability of each value. For continuous variables, the values are dis-
cretized into bins, and entropy is estimated based on the counts of each bin.
Precisely, the domain of a continuous variable is equally divided into n bins,
where n is the number of observations (i.e., configurations). Finally, we calcu-
late the diversity level D(Θ) of a set of configuration Θ using the mean entropy
across p variables (i.e., parameters), which is defined as:

D(Θ) =

∑p
j=1 H(Θj)

p
, Θj = {θj

1, θ
j
2, . . . , θ

j
n}

We introduce a variant of irace (irace-entropy) maximizing D(Θelite) for each
race step. Recall that N surv configurations survive at the end of race, and the
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Nmin best-ranked configurations are selected to form Θelite in Algorithm 1 (line
7). Irace-entropy adapts this step by selecting a subset of configurations Θ with
the maximal D∗(Θ), where |Θ| = Nmin and the best-ranked configuration θ∗ ∈
Θ. In practice, we replace the greedy truncation selection in Algorithm 1 (line 7)
with Algorithm 2. Note that we do not explicitly handle conditional parameters.

Algorithm 2: Entropy-maximization selection
1 Input: A set of ranked configurations Θsurv, the maximal size Nmin of Θelite ;

2 if |Θsurv| ≤ Nmin then

3 Θelite = Θsurv

4 else

5 Θelite = {θ∗}, Θsurv = Θsurv\{θ∗}, where θ∗ ∈ Θsurv is the best-ranked;

6 Θelite = Θelite ∪ S∗, where S∗ = arg max
S⊂Θsurv,|S|=Nmin−1

D(Θelite ∪ S)

7 Output: Θelite

5.2 Experimental Results

We present the results of irace-entropy in this section. All the settings remain the
same as reported in Sect. 4 while applying the introduced alternative selection
method.

For ACOTSP, we observe in Fig. 1 that irace-entropy performs better than
irace and irace-rand, obtaining significantly smaller deviations from the optimum
than those of irace for 19 out of 20 runs. Regarding the results on individual prob-
lem instances, irace-entropy also shows in Fig. 2 significant advantages against
irace and irace-rand across all the plotted instances.

Recall that, for ACOQAP, the performance of irace-rand deteriorates com-
pared to irace by randomly selecting survivor configurations to form elites. How-
ever, through using entropy as the metric to control the diversity explicitly,
irace-entropy shows comparable results to irace in Fig. 3, obtaining a smaller
median of deviations from the optimum for 20 runs. We also observe that the
performance of irace-entropy is comparable to irace for individual instances in
Fig. 4. In addition, irace-entropy can obtain the best-found configurations for
some instances such as “1220973202” and “1220973265”.

For SPEAR, we observe in Fig. 5 that irace-entropy outperforms irace. For
12 out of the 14 plotted instances, irace-entropy obtains better median results
than irace. Moreover, irace-entropy achieves improvements compared to irace-
rand for most instances. Especially for the “itox” instances, in which irace-rand
does not perform as well as irace, irace-entropy obtains better results while also
keeping the advantages over irace on other instances.

According to these results, we conclude that non-elitist selection can help
improve the performance of irace. By using entropy as the metric to maximize the
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diversity of the selected elite configurations, irace-entropy achieves improvements
compared to irace. However, irace-entropy does not obtain significant advantages
against irace for ACOQAP and performs worse than irace-rand on some SPEAR
instances, indicating potential improvements for non-elitist selection through
further enhancements in regards to controlling the diversity of elites for specific
problem instances.

Fig. 6. Parameter values and deviations from the optimum of the ACOTSP configu-
rations obtained by the irace variants. Each configuration is represented as a polyline
with vertices on the parallel axes. The point of the vertex on each x-axis corresponds to
the parameter value. We process “Null” values of the conditional parameter as 0. The
color of the lines indicates the deviation of their average solution costs across all tested
instances from that of the best-found one. Darker lines indicate better configurations.

5.3 Benefits from Diverse Configurations

While the irace variants, i.e., irace-rand and irace-entropy, achieve improvements
by using non-elitist selection, significant variances are noticeable in Figs. 2, 4,
and 5 for results of the obtained configurations. Recall that AC techniques have
been applied in [30] for exploring promising configurations of the GA on diverse
problems. Apart from analyzing a single optimal configuration, such benchmark-
ing studies can also benefit from diverse configurations to investigate algorithms’
performance with specific parameter settings. Therefore, we illustrate in this
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section that non-elitist selection can not only improve the performance of irace
but also help understand the behavior of algorithms.

Using ACOTSP as an example, we show the configurations obtained by each
irace variant in Fig. 6. The color of the configuration lines are scaled by the
deviation f−f∗

f∗ % from the optimum, where f is the average solution cost across
200 problem instances.

We observe that irace-entropy obtains most of the competitive configurations
while covering a wider range of performance with deviations from 0 to 0.25.
However, the performance of the configurations obtained by the irace cluster
in a range of deviations from 0.1 to 0.2. Moreover, regarding the parameters
of the obtained configurations, the range of beta and q0 are narrower for irace
compared to the other methods. However, the configurations with beta > 8 and
q0 > 0.9, outside the range obtained by irace, generally perform well.

We will not investigate how the parameter values practically affect the per-
formance of ACOTSP since it is beyond the scope of this paper. Nonetheless,
Fig. 6 provides evidence that irace-entropy can provide more knowledge concern-
ing the distribution of obtained performance (i.e., fitness) and parameter values,
which is helpful for understanding algorithms’ behavior.

6 Conclusions and Discussions

In this paper, we have demonstrated that randomly selecting survivor configura-
tions can improve the performance of irace, as illustrated on the cases of tuning
ACO on TSP and tuning SPEAR to minimize the runtime of a SAT solver.
Moreover, we have proposed an alternative selection method to form diverse
elite configurations, using Shannon entropy as the diversity metric. Experimen-
tal results show significant advantages of maximizing entropy in this way.

While the irace-entropy presents improvement in the performance of irace
via exploring diverse configurations in all the tested scenarios, irace-rand obtain
better configurations for specific SPEAR instances. Therefore, there is still room
for further study of incorporating diversity into the selection operators. More in-
depth analysis on a wider set of algorithm configuration problems can help us
better understand the benefits of considering diversity in selection. In addition,
we did not modify the procedure of sampling new configurations. Nevertheless,
we believe effectively generating diverse configurations can be beneficial and shall
be studied for future work.

Apart from boosting the performance of irace via focusing more on diversity,
we can find a diverse portfolio of well-performing algorithm configurations while
keeping the benefits of the iterated racing approach, by changing the objective
of the tuning from finding the best performing configuration to find a diverse
portfolio of well-performing algorithm configurations. In the context of algorithm
selection, such approaches are studied under the notion of algorithm portfolio
selection [18].
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Abstract. Per-instance algorithm selection seeks to recommend, for a
given problem instance and a given performance criterion, one or several
suitable algorithms that are expected to perform well for the particular
setting. The selection is classically done offline, using openly available
information about the problem instance or features that are extracted
from the instance during a dedicated feature extraction step. This ignores
valuable information that the algorithms accumulate during the opti-
mization process. In this work, we propose an alternative, online algo-
rithm selection scheme which we coin as “per-run” algorithm selection.
In our approach, we start the optimization with a default algorithm,
and, after a certain number of iterations, extract instance features from
the observed trajectory of this initial optimizer to determine whether to
switch to another optimizer. We test this approach using the CMA-ES
as the default solver, and a portfolio of six different optimizers as poten-
tial algorithms to switch to. In contrast to other recent work on online
per-run algorithm selection, we warm-start the second optimizer using
information accumulated during the first optimization phase. We show
that our approach outperforms static per-instance algorithm selection.
We also compare two different feature extraction principles, based on
exploratory landscape analysis and time series analysis of the internal
state variables of the CMA-ES, respectively. We show that a combina-
tion of both feature sets provides the most accurate recommendations
for our test cases, taken from the BBOB function suite from the COCO
platform and the YABBOB suite from the Nevergrad platform.

Keywords: Algorithm selection · Black-box optimization ·
Exploratory landscape analysis · Evolutionary computation

1 Introduction

It is widely known that optimization problems are present in many areas of
science and technology. A particular subset of these problems are the black-box
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problems, for which a wide range of optimization algorithms has been developed.
However, it is not always clear which algorithm is the most suitable one for a
particular problem. Selecting which algorithm to use comes with its own cost and
challenges, so the choice of an appropriate algorithm poses a meta-optimization
problem that has itself become an increasingly important area of study.

Moreover, a user needs to be able to select different algorithms for different
instances of the same problem, which is a scenario that very well reflects real-
world conditions. This per-instance algorithm selection most often relies on
being able to compute a set of features which capture the relevant properties
of the problem instance at hand. A popular approach is the landscape-aware
algorithm selection, where the problem features’ definition stems from the field
of exploratory landscape analysis (ELA) [25]. In this approach, an initial set of
points is sampled and evaluated on the problem instance to identify its global
properties. However, this induces a significant overhead cost to the algorithm
selection procedure, since the initial sample of points used to extract knowledge
from the problem instance is usually not directly used by the chosen algorithm
in the subsequent optimization process.

Previous research into landscape-aware algorithm selection suggests that,
as opposed to creating a separate set of samples to compute ELA features in a
dedicated preprocessing step, one could use the samples observed by some initial
optimization algorithm. This way, the algorithm selection changes from being a
purely offline procedure into being one which considers whether or not to switch
between different algorithms during the search procedure. This is an important
step towards dynamic (online) algorithm selection, in which the selector is able
to track and adapt the choice of the algorithm throughout the optimization
process in an intelligent manner.

In this paper, we coin the term per-run algorithm selection to refer to the
case where we make use of information gained by running an initial optimization
algorithm (A1 ) during a single run to determine which algorithm should be
selected for the remainder of the search. This second algorithm (A2 ) can then
be warm-started, i.e., initialized appropriately using the knowledge of the first
one. The pipeline of the approach is shown in Fig. 1.

Following promising results from [15], in this work we apply our trajectory-
based algorithm selection approach to a broader set of algorithms and problems.
To extract relevant information about the problem instances, we rely on ELA
features computed using samples and evaluations observed by the initial algo-
rithm’s search trajectory, i.e., local landscape features. Intuitively, we consider
the problem instance as perceived from the algorithm’s viewpoint.

In addition, we make use of an alternative aspect that seems to capture crit-
ical information during the search procedure – the algorithm’s internal state,
quantified through a set of state variables at every iteration of the initial algo-
rithm. To this end, we choose to track their evolution during the search by
computing their corresponding time-series features.

Using the aforementioned values to characterize problem instances, we build
algorithm selection models based on the prediction of the fixed-budget perfor-
mance of the second solver on those instances, for different budgets of function
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evaluations. We train and test our algorithm selectors on the well-known BBOB
problem collection of the COCO platform [11], and extend the testing on the
YABBOB collection of the Nevergrad platform [28]. We show that our approach
leads to promising results with respect to the selection accuracy and we also
point out interesting observations about the particularities of the approach.

State of the Art. Given an optimization problem, a specific instance of that
problem which needs to be solved, and a set of algorithms which can be used to
solve it, the so-called per-instance algorithm selection problem arises. How does
one determine which of those algorithms can be expected to perform best on that
particular instance? In other words, one is not interested in having an algorithm
recommendation for a whole problem class (such as TSP or SAT in the discrete
domain), but for a specific instance of some problem. A large body of work
exists in this line of research [2,5,13,21,23,36]. All of these deal predominantly
with offline AS. An effort towards online AS has been recently proposed [24],
where the switching rules between algorithms were defined based on non-convex
ratio features extracted during the optimization process. However, this particular
study is not based on using supervised machine learning techniques to define the
switching rule, which is the key difference presented in our approach.

Paper Outline. In Sect. 2, we introduce the problem collections and the algo-
rithm portfolio, and give details about the raw data generation for our exper-
iments. The full experimental pipeline is more closely presented in Sect. 3. We
discuss the main results on two benchmark collections in Sects. 4 and 5, respec-
tively. Finally, Sect. 6 gives several possible avenues for future work.

Data and Code Availability. Our source code, raw data, intermediate arte-
facts and analysis scripts have been made available on our Zenodo repository [17].
In this paper, we highlight only selected results for reasons of space.

2 Data Collection

Problem Instance Portfolio. To implement and verify our proposed approach,
we make use of a set of black-box, single-objective, noiseless problems. The data
set is the BBOB suite from the COCO platform [11], which is a very common
benchmark set within numerical optimization community. This suite consists of
a total of 24 functions, and each of these functions can be changed by applying
pre-defined transformations to both its domain and objective space, resulting in
a set of different instances of each of these problems that share the same global
characteristics [10].

Another considered benchmark set is the YABBOB suite from the Nevergrad
platform [28], that contains 21 black-box functions, out of which we keep 17
for this paper. By definition, YABBOB problems do not allow for generating
different instances.

Algorithm Portfolio. As our algorithm portfolio, we consider the one used
in [18,32]. This gives us a set of 5 black-box optimization algorithms: MLSL [19,
31], BFGS [3,8,9,33], PSO [20], DE [34] and CMA-ES [12]. Since for the CMA-ES
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Fig. 1. Per-run algorithm selection pipeline. The overhead cost of computing ELA
features per problem instance is circumvented via collecting information about the
instance during the default optimization algorithm run.

we consider two versions from the modular CMA-ES framework [29] (elitist and
non-elitist), this gives us a total portfolio of 6 algorithm variants. The implemen-
tation of the algorithms used can be found in more detail in our repository [17].

Warm-Starting. To ensure we can switch from our initial algorithm (A1) to
any of the others (A2), we make use of a basic warm-starting approach specific
to each algorithm. For the two versions of modular CMA-ES, we do not need to
explicitly warm-start, since we can just continue the run with the same internal
parameters and turn on elitist selection if required. The detailed warm-start
mechanisms are discussed in [18], and the implementations are available in our
repository [17].

Performance Data. For our experiments, we consider a number of data col-
lection settings, based on the combinations of dimensionality of the problem,
where we use both 5- and 10-dimensional versions of the benchmark functions,
and budget for A1, where we use 30 · D budget for the initial algorithm. This is
then repeated for all functions of both the BBOB and the YABBOB suite. For
BBOB, we collect 100 runs on each of the first 10 instances, resulting in 1 000
runs per function. For YABBOB (only used for testing), we collect 50 runs on
each function (as there are no instances in Nevergrad).

We show the performance of the six algorithms in our portfolio in the 5-
dimensional case in Fig. 2. Since the A1 budget is 30 · D = 150, the initial
part of the search is the same for all algorithms until this point. In the figure,
we can see that, for some functions, clear differences in performance between
the algorithm appear very quickly, while for other functions the difference only
becomes apparent after some more evaluations are used. This difference leads
us to perform our experiments with three budgets for the A2 algorithm, namely
20 · D, 70 · D and 170 · D.

To highlight the differences between the algorithms for each of these scenar-
ios, we can show in what fraction of runs each algorithm performs best. This
is visualized in Fig. 3. From this figure, we can see that while some algorithm
are clearly more impactful than others, the differences between them are still
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significant. This indicates that there would be a significant difference between
a virtual best solver which selects the best algorithm for each run and a single
best solver which uses only one algorithm for every run.

Fig. 2. Mean best-so-far function value (precision to global optimum) for each of the
six algorithms in the portfolio. For computational reasons, each line is calculated based
on a subset of 10 runs on each of the 10 instances used, for a total of 100 runs. Note
that the first 150 evaluations for each algorithm are identical, since this is the budget
used for A1. Figure generated using IOHanalyzer [35].

3 Experimental Setup

Adaptive Exploratory Landscape Analysis. As previously discussed, the
per-run trajectory-based algorithm selection method consists of extracting ELA
features from the search trajectory samples during a single run of the initial
solver. A vector of numerical ELA feature values is assigned to each run on the
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Fig. 3. Matrix showing for each scenario (with respect to the dimensionality and A2
budget) in what proportion of runs each algorithm reaches the best function value.
Note that these value per scenario can add to more than 1 because of ties.

problem instance, and can be then used to train a predictive model that maps
it to different algorithms’ performances on the said run. To this end, we use the
ELA computation library named flacco [22].

Among over 300 different features (grouped in feature sets) available in
flacco, we only consider features that do not require additional function eval-
uations for their computation, also referred to as cheap features [1]. They are
computed using the fixed initial sample, while expensive features, in contrast,
need additional sampling during the run, an overhead that makes them more
inaccessible for practical use. For the purpose of this work, as suggested in pre-
liminary studies [15,18], we use 38 cheap features most commonly used in the
literature, namely those from y-Distribution, Levelset, Meta-Model, Dispersion,
Information Content and Nearest-Better Clustering feature sets.

We perform this per-run feature extraction using the initial A1 = 30 · D
budget of samples and their evaluations per each run of each of the first 10
instances of each of the 24 BBOB problems, as well aas 17 YABBOB problems
(that have no instances) in 5D and 10D.

Time-Series Features. In addition to ELA features computed during the opti-
mization process, we consider an alternative – time-series features of the internal
states of the CMA-ES algorithm. Since the internal variables of an algorithm
are adapted during the optimization, they could potentially contain useful infor-
mation about the current state of the optimization. Specifically, we consider
the following internal variables: the step size σ, the eigenvalues of covariance
matrix �v, the evolution path �pc and its conjugate �pσ, the Mahalanobis distances
from each search point to the center of the sampling distribution �γ, and the
log-likelihood of the sampling model L (

�m, σ2,C
)
. We consider these dynamic

strategy parameters of the CMA-ES as a multivariate real-valued time series,
for which at every iteration of the algorithm, we compute one data point of the
time series as follows: ∀t ∈ [L]:

�ψt :=
(
σ,L(�m, σ2,C), ||�v||, ||�pσ||, ||�pc||, ||�γ||, ave(�v), ave(�pσ), ave(�pc), ave(�γ)

)�
,
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where L represents the number of iterations these data points were sampled,
which equals the A1 budget divided by the population size of the CMA-ES. In
order to store information invariant to the problem dimension, we compute the
component-wise average ave(·) and norm ||�x|| =

√
�x��v of each vector variable.

Given a set of m feature functions {φi}m
i=1 from tsfresh (where φi : RL →

R), we apply each feature function over each variable in the collected time series.
Examples of such feature functions are autocorrelation, energy and continuous
wavelet transform coefficients. In this paper, we take this entire time series (of
length L) as the feature window. We employ all 74 feature functions from the
tsfresh library [4], to compute a total of 9 444 time-series features per run.
After the feature generation, we perform a feature selection method using a
Random Forests classifier trained to predict the function ID, for computing the
feature importance. We then select only the features whose importance is larger
than 2×10−3. This selection procedure yields 129 features, among which features
computed on the Mahalanobis distance and the step-size σ are dominant. More
details on this approach can be found in [26].

Regression Models. To predict the algorithm performance after the A2 bud-
get, we use as performance metric the target precision reached by the algorithm
in the fixed-budget context (i.e., after some fixed number of function evalu-
ations). We create a mapping between the input feature data, which can be
one of the following: (1) the trajectory-based representation with 38 ELA fea-
tures per run (ELA-based AS), (2) the trajectory-based representation with 129
time-series (TS) features per run (TS-based AS), or (3) a combination of both
(ELA+TS-based AS) and the target precision of different algorithm runs. We
then train supervised machine learning (ML) regression models that are able
to predict target precision for different algorithms on each of the trajectories
involved in the training data. Following some strong insights from [14] and subse-
quent studies, we aim at predicting the logarithm (log10) of the target precision,
in order to capture the order of magnitude of the distance from the optimum.
In our case, since we are dealing with an algorithm portfolio, we have trained
a separate single target regression (STR) model for each algorithm involved in
our portfolio. As an ML regression method, we opt for using a random forest
(RF), as previous studies have shown that they can provide promising results
for automated algorithm performance prediction [16]. To this end, we use the
RF implementation from the Python package scikit-learn [27].

Evaluation Scenarios. To find the best RF hyperparameters and to evaluate
the performance of the algorithm selectors, we have investigated two evaluation
scenarios:

(1) Leave-instance out validation: in this scenario, 70% of the instances
from each of the 24 BBOB problems are randomly selected for training and 30%
are selected for testing. Put differently, all 100 runs for the selected instance will
either appear in the train or the test set. We thus end up with 16 800 trajectories
used for training and 7 200 trajectories for testing.
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(2) Leave-run out validation: in this scenario, 70% of the runs from each
BBOB problem instance are randomly selected for training and 30% are selected
for testing. Again, we end up with 16 800 trajectories used for training and 7 200
trajectories for testing.

We repeat each evaluation scenario five independent times, in order to analyze
the robustness of the results. Each time, the training data set was used to find
the best RF hyperparameters, while the test set was used only for evaluation of
the algorithm selector.

Table 1. RF hyperparameter names and their corresponding values considered in the
grid search.

Hyperparameter Search space

n estimators [100, 300]

max features [auto, sqrt, log2]

max depth [3, 5, 15,None]

min samples split [2, 5, 10]

Hyperparameter Tuning for the Regression Models. The best hyperpa-
rameters are selected for each RF model via grid search for a combination of
an algorithm and a fixed A2 budget. The training set for finding the best RF
hyperparameters for each combination of algorithm and budget is the same. Four
different RF hyperparameters are selected for tuning: (1) n estimators: the num-
ber of trees in the random forest; (2) max features: the number of features used
for making the best split; (3) max depth: the maximum depth of the trees, and
(4) min samples split : the minimum number of samples required for splitting an
internal node in the tree. The search spaces of the hyperparameters for each RF
model utilized in our study are presented in Table 1.

Per-run Algorithm Selection. In real-world dynamic AS applications, we
rely on the information obtained within the current run of the initial solver on
a particular problem instance to make our decision to switch to a better suited
algorithm. A randomized component of black-box algorithms comes into play
here, as one algorithm’s performance can vastly differ from one run to another
on the very same problem instance.

We estimate the quality of our algorithm selectors by comparing them to
standard baselines, the virtual best solver (VBS) and the single best solver (SBS).
As we make a clear distinction between per-run and per-instance perspective, in
order to compare we need to suitably aggregate the results. Our baseline is the
per-run VBS, which is the selector that always chooses the real best algorithm
for a particular run on a certain problem (i.e., function) instance. We then define
V BSiid and V BSfid as virtual best solvers on instance and problem levels, i.e.,
selectors that always pick the real best algorithm for a certain instance (across
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all runs) or a certain problem (across all instances). Last, we define the SBS as
the algorithm that is most often the best one across all runs.

For each of these methods, we can define their performance relative to the
per-run VBS by considering their performance ratio, which is defined on each
run as taking the function value achieved by the VBS and dividing it by the
value reach by the considered selector. As such, the performance ratio for the
per-run VBS is 1 by definition, and in [0, 1] for each other algorithm selector.

Fig. 4. Heatmap showing for each scenario the average performance ratio relative to
the per-run virtual best solver of different versions of VBS, SBS and algorithm selectors
(based on the per-instance folds). Scenario names show the problem dimensionality and
the total used budget.

To measure the performance ratio for the algorithm selectors themselves, we
calculate this performance ratio on every run in the test-set of each of the 5 folds,
and average these values. We point out here that the performance of different
AS models are not statistically compared, since the obtained performance values
from the folds are not independent [6].

4 Evaluation Results: COCO

For our first set of experiments, we train our algorithm selectors on BBOB
functions using the evaluation method described in Sect. 3. Since we consider
2 dimensionalities of problems and 3 different A2 budgets, we have a total of
6 scenarios for each of the 3 algorithm selectors (ELA-, TS-, and ELA+TS-
based). In Fig. 4, we show the performance ratios of these selectors, as well as
the performance ratios of the previously described VBS and SBS baselines. Note
that for this figure, we make use of the instance-run folds, but results are almost
identical for the per-run case.

Based on Fig. 4, we can see that the ELA-based algorithm selector performs
almost as well as the per-function VBS, which itself shows only minor perfor-
mance differences to the per-instance VBS. We also notice that as the total
evaluation budget increases, the performance of every selector deteriorates. This
seems to indicate that as the total budget becomes larger, there are more cases
where runs on the same instance have different optimal switches.
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To study the performance of the algorithm selectors in more detail, we can
consider the performance ratios for each function separately, as is visualized in
Fig. 5. From this figure, we can see that for the functions where there is a clearly
optimal A2, all algorithm selectors are able to achieve near-optimal performance.
However, for the cases where the optimal A2 is more variable, the discrepancy
between the ELA and TS-based algorithm selectors increases.

Fig. 5. Heatmap showing for each 5-dimensional BBOB function the mean performance
ratio at 500 total evaluations relative to the per-run virtual best solver, as well as the
average performance ratio of each of the 3 algorithm selectors.

5 Evaluation Results: Nevergrad

We now study how a model trained on BBOB problem trajectories can be used
to predict the performances on trajectories not included in the training. We
do so by considering the YABBOB suite from the Nevergrad platform. While
there is some overlap between these two problem collections, introducing another
sufficiently different validation/test suite allows us to verify the stability of our
algorithm selection models. We recall that for the performance data of the same
algorithm portfolio on YABBOB functions, we have target precisions for 850
runs, 50 runs per 17 problems, in all considered A2 budgets.

Training on COCO, Testing on Nevergrad. This experiment has resulted in
somewhat poorer performance of the algorithm selection models on an inherently
different batch of problems. The comparison of the similarity between BBOB and
YABBOB problems presented below nicely shows how the YABBOB problems
are structurally more similar to one another than to the BBOB ones.

To investigate performance flaws of our approach when testing on Nevergrad,
we compare, for each YABBOB problem, how often a particular algorithm is
selected by the algorithm selection model trained on the BBOB data with how
often that algorithm was actually the best one. This comparison is exhibited in
Fig. 6. We observe that MLSL in particular is not selected often enough in the
case of a large A2 budget, as well as a somewhat strong preference of the selector
towards BFGS. An explanation for these results may be the (dis)similarities
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Fig. 6. Heatmap showing for each 5-dimensional YABBOB/Nevergrad function the
fraction of times each algorithm was optimal to switch to when considering a total
budget of 500 evaluations (bottom) and how often each of these algorithm was selected
by the algorithm selector trained on BBOB/COCO (top). Note that the columns of
the bottom part can sum to more than 1 in case of ties.

between the benchmarks. Only for some YABBOB functions in the second half
of the set we might have similarities in the trajectories already seen from the
second half of the BBOB data, but this is anecdotal as the overall tendency is
that there are few parallels between BBOB and YABBOB.

Analyzing the Complementarity Between the COCO and Nevergrad
Suites. We illustrate the intra-similarity among the YABBOB test trajectories
from the Nevergrad suite, which are not part of the training data set. This is
shown via correlation between the YABBOB trajectories (test data) and the
BBOB trajectories (train data). For this purpose, we first find the subspace
that is covered by the training trajectories, where we then project the testing
trajectories. To find the subspace that is covered by training data, we apply
singular value decomposition (SVD), following an approach presented in [7]. For
the training and testing data, we summarize the trajectories on a problem level
using the median values for each ELA feature by using all trajectory instances
that belong to the same problem. Next, we map the BBOB trajectories to a
linear vector space they cover (found by the SVD decomposition), where the
trajectories are represented in different uncorrelated dimensions of the data. We
then project each of the YABBOB trajectories to the linear subspace that is
covered by the 24 BBOB problems, which allows us to find their correlation.

The Pearson correlation values between the trajectories obtained for 5D and
10D problem instances are showcased in Fig. 7. We opt for the Pearson corre-
lation coefficient since the trajectories are projected in a linear subspace. The
trajectories from 1 to 24 correspond to the BBOB suite, and the trajectories
starting from 25 to 44 correspond to the YABBOB suite. It is important to
recall here that the YABBOB problems F31, F33, F36 and F45 were omitted
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from further analysis due to missing values. This figure shows that the BBOB
trajectories are not correlated (the white square portion of the lower left part of
the heatmap), which confirms high diversity in the training trajectory portfolio.
However, there are lower positive and negative correlations between BBOB and
YABBOB trajectories, which indicate that the properties of the YABBOB trajec-
tories are not captured in the training data. This might be a possible explanation
for the poor performance for the algorithm selection models which is trained on
the BBOB trajectories, but only tested on the YABBOB trajectories.
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Fig. 7. Pearson correlation between BBOB (lower left portion) and YABBOB (bright
red upper right corner) trajectories for 5D and 10D.

6 Conclusions and Future Work

We have shown the feasibility of building an algorithm selector based on a very
limited amount of samples from an initial optimization algorithm. Results within
the BBOB benchmark suite show performance comparable to the per-function
virtual best solver when using a selector based on ELA features. While these
results did not directly transfer to other benchmark suites, this seems largely
caused by the relatively low similarity between the collections.

Since this work is based on warm-starting the algorithms using the infor-
mation of the initial search trajectory, further improvement in warm-starting
would be highly beneficial to the overall performance of this feature-based selec-
tion mechanism. In addition, identifying exactly what features contribute to the
decisions being made can show us what properties might be important to the
performance of the switching algorithm, which in turn can support the develop-
ment of better warm-starting mechanisms.

While the time-series based approach did not perform as well as the one based
on ELA, it still poses an interesting avenue for future research. In particular,
it would be worthwhile to consider the combined model in more detail, and
aim to identify the level of complementarity between landscape and algorithm
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state features, which would help gain insight into the complex interplay between
problems and algorithms.
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Abstract. Real-world optimization scenarios under uncertainty and no-
ise are typically handled with robust optimization techniques, which re-
formulate the original optimization problem into a robust counterpart,
e.g., by taking an average of the function values over different pertur-
bations to a specific input. Solving the robust counterpart instead of
the original problem can significantly increase the associated computa-
tional cost, which is often overlooked in the literature to the best of our
knowledge. Such an extra cost brought by robust optimization might
depend on the problem landscape, the dimensionality, the severity of the
uncertainty, and the formulation of the robust counterpart. This paper
targets an empirical approach that evaluates and compares the computa-
tional cost brought by different robustness formulations in Kriging-based
optimization on a wide combination (300 test cases) of problems, uncer-
tainty levels, and dimensions. We mainly focus on the CPU time taken
to find the robust solutions, and choose five commonly-applied robust-
ness formulations: “mini-max robustness”, “mini-max regret robustness”,
“expectation-based robustness”, “dispersion-based robustness”, and “com-
posite robustness” respectively. We assess the empirical performance of
these robustness formulations in terms of a fixed budget and a fixed tar-
get analysis, from which we find that “mini-max robustness” is the most
practical formulation w.r.t. the associated computational cost.

Keywords: Optimization under uncertainty · Robust optimization ·
Surrogate-assisted optimization · Kriging

1 Introduction

Solving a real-world optimization problem entails dealing with uncertainties and
noise within the system [2,9,16]. Due to various reasons, various types of uncer-
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tainties and noise can emerge in optimization problems, e.g., uncertainty and
noise in the output of the system if the system is non-deterministic in nature.
Hence, for practical scenarios, optimization methods are needed which can deal
with these uncertainties, and solutions have to be found which take into account
the impact of the unexpected drifts and changes in the optimization setup. The
practice of optimization that accounts for uncertainties and noise is often referred
to as Robust Optimization (RO) [2,13,14].

Despite its significance, achieving robustness in modern engineering applica-
tions is quite challenging due to several reasons [4,8]. One of the major reasons is
the computational cost involved to find the robust solution. The computational
cost mainly depends on the problem landscape, high dimensionality [15], the
type and structure of the uncertainty [3], and the robustness formulation (RF)
or criterion among others.

While the impact of high dimensionality and problem landscape in RO is
understood to some extent [3,4,9,15], the impact of the chosen RF, e.g., “mini-
max robustness”, on the computational cost, has been overlooked in the lit-
erature. For expensive-to-evaluate black-box problems, the chosen robustness
criterion can have a significant impact on the computational cost. This is due
to the fact that obtaining a robust solution requires additional computational
resources as opposed to a nominal one, since the optimizer has to take into
account the impact of uncertainty and noise as well. This need for additional
computational resources is based on the robustness criterion1 chosen, e.g., RO
based on the “mini-max” principle requires an internal optimization loop to com-
pute the worst impact of the uncertainty, whereas RO based on the “expectation”
of a noisy function requires computing an integral [4,16].

Since the Computational Cost of Robustness (CCoR) – the need for addi-
tional computational resources to find the robust instead of a nominal optimal
solution – depends on the robustness criterion chosen, it is desirable to evaluate
and compare commonly-employed robustness criteria with regards to computa-
tional cost, where the computational cost is based on the CPU time taken to find
the robust solution. By evaluating and comparing different robustness criteria
based on computational cost and quality of the solution, a novel perspective is
provided to practitioners for choosing the suitable robustness criterion for prac-
tical scenarios. To the best of our knowledge, there are no systematic studies
dealing with this issue so far.

Our contribution in this paper is as following. First, we generalize the
Kriging-based RO proposed in [11] (for the “mini-max robustness”) to other
RFs. Second, we evaluate and compare the empirical performance of Kriging-
based RO based on five of the most common RFs, namely “mini-max robust-
ness”, “mini-max regret robustness”, “expectation-based robustness”, “dispersion-

1 An underlying assumption in this study is the non-existence of hard constraints on
the choice of RF. In some practical scenarios of RO, this assumption is not valid.
Note, however, that, there are plenty of situations where the assumption is valid,
and the lack of information on the computational aspects of the RFs makes it harder
for practitioners to choose a suitable robustness criterion.
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based robustness”, and “composite robustness” respectively. Note that the per-
formance assessment is based on 300 test cases, owing to the combinations of
ten well-known benchmark problems from the continuous optimization domain,
two noise levels, three different settings of dimensionality, and five RFs reported.
Additionally, the performance in this context is characterized by a fixed budget
and a fixed target analysis, as well as the analysis on the average and maximum
of CPU time. Based on the findings of our investigation, we provide a novel
perspective on the computational aspects of these RFs, which is useful when
employing these RFs in practical scenarios.

The remainder of this paper is organized as follows. Section 2 describes the
basic working mechanism of Kriging-based optimization, and introduces the RFs
mentioned above. Section 3 extends the nominal Kriging-based optimization to
the robust scenario to account for parametric uncertainties in the search vari-
ables. Section 4 describes the experimental setup of our study. This is followed
by our experimental results in Sect. 5. The discussion on these results is pre-
sented in Sect. 6. Finally, we discuss the conclusions of the paper along side the
potential future research in Sect. 7.

2 Background

In this paper, we aim to minimize an unconstrained numerical black-box opti-
mization problem, i.e., f :S ⊆ R

D → R, using Kriging-based optimization
(KBO) [7,11]. KBO works on the principle of adaptive sampling, whereby the
Kriging model is sequentially updated according to a sampling infill criterion,
such as the “expected improvement” (EI) criterion. The sampling infill criterion
tries to balance the search behavior - exploration and exploitation - to find a
globally optimal solution on the model surface.

KBO starts by generating an initial data set D = (X,y) on the objective
function f . The locations: X = {x1,x2, . . . ,xN}, can be determined by the
Design of Experiment (DoE) methodologies, such as the Latin Hyper-cube Sam-
pling (LHS) scheme [12]. After this, function responses: y = [f(x1), f(x2), . . . ,
f(xN )]�, are computed on these locations. The next step involves constructing
the Kriging model Kf based on the available data set D. Following this, the
next query point xnew (to sample the function) is determined with the help of a
sampling infill criterion, such as the EI criterion. The function response f(xnew)
is computed at this location, and the data set is extended. Finally, the Kriging
model Kf is updated based on the extended data set. This process is repeated
until either a satisfactory solution is obtained, or a predetermined computational
budget or other termination criterion is reached.

When optimizing the function f in real-world applications, we note that it is
surrounded by the parametric uncertainties in the decision variables [13,14]. These
uncertainties, commonly denoted as Δx, are assumed to be structurally symmet-
ric, additive in nature, and can be modelled in a deterministic or a probabilistic
fashion [9]. For the objective function f , the notion of robustness refers to the qual-
ity of the solution with respect to these uncertainties. In the following, we define
robustness with respect to the five RFs discussed in our paper.
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2.1 Robustness Formulations

We start with the so-called “mini-max robustness” (MMR), which deals with
deterministic uncertainty [2,9,16]. Given a real-parameter objective function:
f(x), and the additive uncertainty in the decision variables: Δx, the “mini-max”
treatment considers minimizing the worst-case scenario of each search point x,
where the worst-case is defined as to taking account all possible perturbations
to x, which are restricted in a compact set U ⊆ R

D (containing a neighborhood
of x). Effectively, this is to minimize the following objective function

feff(x) = max
Δx∈U

f(x + Δx). (1)

Note that the radius of the compact set U is based on the anticipated scale of
the uncertainty, i.e., based on the maximum anticipated deviation of the decision
variables from their nominal values. The worst-case scenario refers to the fact
that we consider the maximal f -value under additive uncertainty at each search
point, and try to minimize that [16].

As opposed to MMR, the “mini-max Regret Robustness” (MMRR) [8] focuses
on minimizing the maximum regret under uncertainty. The regret can be defined
as the difference between the best obtainable value of the function f∗ for an
uncertainty event Δx, and the actual function value under that uncertainty event
f(x+Δx). The best obtainable response f∗ of the function under an uncertainty
event Δx can be defined as

f∗(Δx) = min
x∈S

f(x + Δx), (2)

and the effective (robust) objective function can be defined as

feff(x) = max
Δx∈U

(f(x + Δx) − f∗(Δx)). (3)

Minimizing Eq. (3) refers to the fact that firstly, the best achievable response
value for each uncertainty event Δx ∈ U is subtracted from the actual outcome
f(x + Δx). Then, the worst-case is determined similar to the MMR. As a conclu-
sion, the optimal solution is identified as the one for which the worst-case has a
minimal deviation from f∗ as defined in Eq. (2). The benefit of employing MMRR
is that even in the worst-case scenario, we do not compromise significantly in terms
of optimality. The biggest challenge, however, is the prohibitively high computa-
tional demand. Note that solving Eq. (3) inside an iterative optimization frame-
work, e.g., Kriging-based optimization, implies a quadrupled nested loop, which
is computationally infeasible even for a modest setting of dimensionality.

Different from the first two RFs, the expected output of a noisy function
can also serve as a robustness criterion [4,8,9]. The focus of this robustness
criterion is the overall good performance rather than the minimal deviation of
the optimal solution under uncertainty. Note, however, that, this RF requires
the uncertainty to be defined in a probabilistic manner. The uncertainty can be
modelled according to a continuous uniform probability distribution if no prior
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information is available. The effective counterpart of the original function based
on the “expectation-based robustness” (EBR) is defined as

feff(x) = EΔx∼U(a,b)[f(x + Δx)], (4)

where the bounds a and b can be set according to the anticipated scale of the
uncertainty.

As opposed to EBR, the “dispersion-based robustness” (DBR) emphasizes
on minimizing the performance variance under variation of the uncertain search
variables [8,9]). In this case, the original objective function f(x) can be remod-
elled into a robust objective function feff(x) by minimizing the variance as

feff(x) =
√

VarΔx∼U(a,b)[f(x + Δx)]. (5)

Note that this RF also requires the uncertainty to be defined in a probabilistic
manner, similar to the previous case.

Different from the robustness criteria mentioned above, practitioners may
also optimize the expected output of a noisy function while minimizing the dis-
persion simultaneously. We refer to this formulation as the “composite robust-
ness” (CR), similar to [16]. CR requires the uncertainty to be specified in the
form of a probability distribution. The expectation and dispersion of the noisy
function are combined at each search point x in S to produce a robust scalar
output. The optimization goal thus becomes to find a point x∗ in S, which
minimizes this scalar

feff(x) := EΔx∼U(a,b)[f(x + Δx)] +
√

VarΔx∼U(a,b)[f(x + Δx)]. (6)

3 Kriging-Based Robust Optimization

When aiming to find a solution based on the RFs discussed above, we note that
the standard KBO approach as described in Sect. 2 cannot be employed. There
are mainly two reasons for that. Firstly, the potential “improvement” which is
defined in the nominal scenario renders inapplicable. This is due to the fact that
this improvement is defined with respect to the “best-so-far” observed value of
the function: fmin, which has no clear meaning and usage when aiming for a
robust solution. Rather, in the case of RO, the improvement must be defined
with respect to the current best known “robust” value of the function: f̂∗(x),
which by implication can only be estimated on the Kriging surface (as opposed
to observed or fully known in the nominal case). Secondly, the Kriging surrogate
Kf in the nominal scenario does not model the robust/effective response of
the function2, which is desirable when aiming for a robust solution. Therefore,
the standard KBO approach must be extended to the robust scenario, which is
henceforth referred to as Kriging-based Robust Optimization (KB-RO) in this
paper.
2 The robust or effective function response has already been defined in Sect. 2 for five

of the most common RFs.
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Following the approach in [11], the adaptation of the KBO algorithm to
KB-RO is done in the following manner. Firstly, one must substitute the “best-
so-far” observed value of the function: fmin, with its robust Kriging counterpart:
f̂∗(x), which is defined as: f̂∗(x) = minx∈S f̂eff(x). Note that f̂eff(x) is the
approximation of the true robust response of the function: feff(x). In the context
of deterministic uncertainty – MMR and MMRR, this estimation merely refers
to the substitution of true function responses with their Kriging predictions in
Eqs. (1)–(3). On the other hand, in the context of probabilistic uncertainty –
EBR, DBR, and CR, it also encompasses the monte-carlo approximations for
the corresponding statistical quantities of interests, e.g., in Eq. (4), f̂eff(x) is
approximated with monte-carlo samples based on the Kriging prediction at each
search point x + Δx.

We model the robust Kriging response of the function using a normally
distributed random variable: Yeff(x), with mean f̂eff(x) and variance s2

eff(x),
i.e., Yeff(x) ∼ N (f̂eff(x), s2

eff(x)). Note that the assumption that Yeff(x) is nor-
mally distributed is not entirely rigorous, but rather a practical compromise [11].
Ideally, we should have attempted to estimate the actual posterior distribution
of the robust Kriging response of the function: f̂eff(x), which would require addi-
tional assumptions on the joint distribution of all search points. However, the
computational costs of finding this generally non-Gaussian distribution several
times on the original Kriging surface Kf are prohibitively high. Additionally,
numerically computing the integral for the expectation of the improvement for
this generally non-Gaussian distribution would also be computationally expen-
sive. To add to that, we note that the Kriging surface Kf only ever provides
an approximation, and hence the true distribution of the robust response of the
function for each RF can never be described with certainty in KB-RO.

Modelling the true robust response of the function with a normally dis-
tributed random variable: Yeff(x), we note that in the context of deterministic
uncertainty, the value s2

eff(x) merely refers to the Kriging mean squared error at
point x + Δ∗

x, where Δ∗
x indicates the worst setting of the uncertainty – which

maximizes Eq. (1) or (3) as the case may be. In the context of EBR, s2
eff(x) has

a closed form expression as: s2
eff = 1

J2

∑J
i,j C, where C is a co-variance matrix

with elements C(x
′
i,x

′
j). The entries C(x

′
i,x

′
j) in the matrix C are computed

with the help of posterior Kernel (with optimized hyper-parameters), and the
point x

′
j is defined as: x

′
j = x+ Δj

x, where Δj
x indicates the j-th sample for Δx.

In the context of DBR and CR, s2
eff(x) does not have a closed form expression,

and should be computed numerically.
After substituting the “best-so-far” observed value of the function: fmin,

with its robust Kriging counterpart: f̂∗(x), and modelling the true robust
response of the function with a normally distributed random variable: Yeff(x) ∼
N (f̂eff(x), s2

eff(x)), we can define the improvement and its expectation in the
robust scenario as

Ieff(x) = max{0, f̂∗(x) − Yeff(x)}, (7)
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Algorithm 1: Kriging-based Robust Optimization
1: procedure (f, S,Aeff , Δx) � f : objective function, S: search space, Aeff : robust

acquisition function, Δx: uncertainty in the search variables
2: Generate the initial data set D = {X,y} on the objective function.
3: Construct the Kriging model Kf on D = {X,y}.
4: while the stop criteria are not fulfilled do
5: Find robust optimum on the Kriging surface Kf

f̂∗(x) = minx∈S f̂eff(x).
6: Choose a new sample xnew by maximizing the robust (effective)

acquisition function
xnew ← argmaxx∈S Aeff(x).

7: Compute function response f(xnew).
8: Extend the data set D by appending the pair (xnew, f(xnew)) to D = {X,y}.
9: Reconstruct the Kriging model Kf on D = {X,y}.
10: end while
11: end procedure

and

E[Ieff (x)] := (f̂∗(x) − f̂eff(x))Φ

(
f̂∗(x) − f̂eff(x)

seff(x)

)
+ seff(x)φ

(
f̂∗(x) − f̂eff(x)

seff(x)

)
, (8)

where Φ(·) and φ(·) in Eq. (8) represent the cumulative distribution function and
probability density function of the standard normal random variable respectively.
An important thing to note here is that in the context of MMR and MMRR,
the point x+Δx can become infeasible with respect to the original search space
S if x is already close to the boundary of S. To address this issue, we compute
the robust optimum within a restricted search space S ′

of the original domain
to avoid extrapolation [17]. The working mechanism of KB-RO is summarized
in Algorithm 1, where the only significant difference to the nominal KBO is the
evaluation of steps 5 and 6, which emphasize on robustness.

4 Experimental Setup

Our aim in this paper is to understand the impact of RF in KB-RO with regards
to computational efficiency. Intuitively, RF can have a significant impact on the
performance of KB-RO since steps 5 and 6 in Algorithm 1 require much more
computational resources as opposed to the nominal KBO [7]. This need for addi-
tional computational resources is based on the chosen RF. Through our experi-
mental setup3, we aim to better understand this impact for each of the five RFs
discussed in the paper. To make our setup comprehensive, we take into account
the variability in external factors such as problem landscape, dimensionality, and
the scale/severity of the uncertainty.
3 The source code to reproduce the experimental setup and results is available at:

https://github.com/SibghatUllah13/UllahPPSN2022.

https://github.com/SibghatUllah13/UllahPPSN2022
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For our study, we select ten unconstrained, noiseless, single-objective opti-
mization problems from the continuous benchmark function test-bed known as
“Black-Box-Optimization-Benchmarking” (BBOB) [6]. Note that BBOB provides
a total of twenty four such functions divided in five different categories, namely
“Separable Functions”, “Functions with low or moderate conditioning”, “Func-
tions with high conditioning and unimodal”, “Multi-modal functions with ade-
quate global structure”, and “Multi-modal functions with weak global structure”
respectively. We select two functions from each of these categories to cover a
broad spectrum of test cases. The set of selected test functions is given as:
F = {f2, f3, f7, f9, f10, f13, f15, f16, f20, f24}. An important thing to note is that
each of the test functions in F is subject to minimization, and is evaluated on
three different settings of dimensionality as: D = {2, 5, 10}. Apart from the test
functions and dimensionality, we also vary the uncertainty level based on two
distinct settings as: L = {0.05, 0.1}, which indicate the maximum % deviation
in the nominal values of the search variables.

For the deterministic setting of the uncertainty, i.e., MMR and MMRR, the
compact set U is defined as: U = [−(L × R), (L × R)], where L ∈ L denotes the
choice of the uncertainty level, and R serves as the absolute range of the search
variables. For the test functions in F , the absolute range of the search variables
is 10, since all test functions are defined from −5 to 5. For the probabilistic
setting of the uncertainty, i.e., EBR, DBR and CR, the uncertainty is modelled
according to a continuous uniform probability distribution: Δx ∼ U(a, b), where
the boundaries a and b are defined similar to the boundaries of the set U in the
deterministic case. In our study, the size of the initial training data is set to be
2 × D, where D ∈ D denotes the corresponding setting of the dimensionality.
Likewise, the maximum number of iterations for KB-RO is set to be 50×D. The
computational budget for each of the nested (internal) loop is set to be 10 × D,
whereas the number of samples for the probabilistic setting of the uncertainty is
set to be 100×D. Note that our Kriging surrogate is based on the popular Matérn
3/2 kernel [5], and we standardize the function responses: y = [f(x1), f(x2), . . . ,
f(xN )]�, before constructing the Kriging surrogate Kf . In addition, we utilize
the robust EI in Eq. (8) as the sampling infill criterion for our experiments.

For the parallel execution of KB-RO for each of the 300 test cases consid-
ered, we utilize the Distributed ASCI Supercomputer 5 (DAS-5) [1], where each
standard node has a dual 8-core 2.4GHz (Intel Haswell E5-2630-v3) CPU con-
figuration and 64 GB memory. We implement our experiments in python 3.7.0
with the help of “scikit-learn” module [10]. The performance assessment of the
solutions in our experiments is based on 15 independent runs R of the KB-RO
for each of the 300 test cases considered. Note that for each trial, i.e., the unique
combination of the independent run and the test case, we ensure the same con-
figuration of hardware and software to account for fairness. Furthermore, in each
trial, we measure the CPU time for all iterations of KB-RO. After the successful
parallel execution of all trials, we assess the quality of the optimal solutions based

on Relative Mean Absolute Error (RMAE) as: RMAE =
(

|f ′ −f̂
′ |

|f ′ |

)
, where f

′

denotes the true robust optimal function value obtained from solving the original
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function under uncertainty with the help of a benchmark numerical optimiza-
tion algorithm (without the use of a surrogate model), also referred to as the
ground truth for the particular choice of the test case, and f̂

′
serves as the robust

optimal function value obtained from KB-RO (step 5 in Algorithm 1). As noted
in [16], the benefit of utilizing RMAE is that the quality of the optimal solu-
tion is always determined relative to the corresponding ground truth, and the
performance of KB-RO across different RFs can be easily compared.

Having obtained the quality of the optimal solution and CPU time for all iter-
ations of the KB-RO for each trial, we perform a fixed budget and a fixed target
analysis. For the fixed budget analysis, we consider two possibilities. Firstly, we
perform the analysis with respect to the running CPU time by fixing 50 differ-
ent settings of the CPU time. For each such setting, we report the best quality
solution (measured in terms of RMAE) obtained from KB-RO. The performance
in this context is averaged over all 50 settings of the CPU time. Secondly, we
perform the fixed budget analysis also with respect to the number of iterations.
In this context, we identify 30 different settings of the number of iterations
(checkpoints) to analyze the performance similar to the previous case.

Contrary to this, in fixed target analysis, we identify 10 distinct target values
for the RMAE – a set of thresholds describing the minimum desirable quality
of the solution. As soon as a particular target is achieved, we report the accu-
mulated CPU time taken by KB-RO to reach that target. If such a target is
never achieved, we report the penalized CPU time which is set to be D × Tmax,
where D ∈ D is the corresponding setting of the dimensionality, and Tmax is
the accumulated CPU time at the last iteration of that trial. In addition to the
fixed budget and fixed target analysis, we also report the average CPU time per
iteration (ACTPI), and Tmax for each trial.

5 Results

We share the results originating from our experiments in Figs. 1 and 2. In par-
ticular, Fig. 1 focuses on four distinct analyses, which include fixed CPU time
analysis, fixed iterations analysis, fixed target analysis, and the analysis on the
ACTPI. On the other hand, Fig. 2 reports the accumulated CPU time at the last
iteration of KB-RO: Tmax, which is averaged over 15 independent runs R, and
grouped by the RFs. Note that the results in Fig. 1 are presented in the form
of empirical cumulative distribution function (ECDF) for each RF and for each
type of analysis. The first row of plots in Fig. 1 illustrates the results on fixed
CPU time and fixed iteration analyses respectively (from left to right). In a sim-
ilar fashion, the second row of plots illustrates the performance with respect to
the fixed target analysis and the analysis on the ACTPI. Note that each curve in
these analyses is based on 900 data points (trials) due to 15 independent runs R
of KB-RO, 10 test functions in F , 3 settings of dimensionality in D , and 2 noise
levels in L . The results in Fig. 2 are presented in the form of box plots, where
each box inside a subplot presents Tmax values for the test cases corresponding
to the particular setting of the dimensionality and RF. The reported Tmax in
this context is averaged over 15 independent runs R of KB-RO.
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Fig. 1. Upper left: Fixed CPU time analysis, Upper right: Fixed iteration analysis,
Lower left: Fixed target analysis, Lower right: Average running CPU time per iteration.
For each analysis, the empirical cumulative distribution function (ECDF) for all five
RFs is presented. Each ECDF curve is based on 900 data points (trials) owing to 15
independent runs R, 10 test functions in F , 3 settings of dimensionality in D , and 2
noise levels in L .

In terms of performance comparison with respect to the fixed CPU time
analysis, we note the promising nature of all RFs except DBR, which performs
poorly compared to its competitors in most trials. Furthermore, we also note the
highest variation in quality (RMAE) for DBR. Although no RF is deemed a clear
winner for this analysis, we note that MMR, MMRR and CR have high empirical
success rates. Likewise, we note the highest variation in quality for DBR also
in the context of fixed iteration analysis. In this case, MMRR and CR perform
superior to the other RFs as we observe a high empirical success rate for both.
For the performance measure with respect to the fixed target analysis, we observe
that MMR outperforms the competitors, albeit the variation in the running CPU
time for MMR is also deemed higher. Here, we note a clear distinction in the
empirical success rate between MMRR and other RFs. For instance, if we cut-off
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Fig. 2. Left: 2D test cases, Middle: 5D test cases, Right: 10D test cases. Each box
plot shares the maximum CPU time spent to run KB-RO: Tmax, averaged over 15
independent runs in R and grouped by the RFs.

the running CPU time at 100 s, we observe that MMRR has an empirical success
rate of 45 %, whereas MMR, DBR, and CR achieve a success rate of more than
99%. We also note that MMRR has the highest variance of ACTPI, and the
lowest empirical success rate of all RFs. In this case, none of the MMR and
EBR can be deemed a clear winner, although both perform superior to other
RFs in most trials. When comparing the performance of RFs in the context
of maximum CPU time spent: Tmax, we note that MMR and EBR in general,
perform superior to other RFs, whereas MMRR performs the worst for each
setting of dimensionality. Furthermore, we deem that Tmax increases rapidly with
respect to dimensionality in the context of deterministic uncertainty, i.e., MMR
and MMRR, when compared with the probabilistic uncertainty, i.e., EBR, DBR,
and CR. Lastly, we note that in general, the variance in Tmax for the probabilistic
setting is also significantly lower when compared to the deterministic case.

6 Discussion

Based on the observations from the fixed budget analyses, we deem MMR,
MMRR, EBR and CR to be suitable RFs regarding the computational cost
involved in finding the robust solution. This validates their applicability in prac-
tical scenarios where the computational resources are limited, and the designer
cannot spend more than a fixed amount of computational budget (whether mea-
sured in terms of CPU time or the number of iterations). Note that MMR appears
to be the most promising RF also in the scenarios where the designer aims for
a fixed quality solution – where the designer cannot compromise on the quality
below a certain threshold. In those situations, MMR can yield the desired quality
robust solution with considerably less CPU time.
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In terms of performance, we find that MMRR poses an interesting situation
as it performs competitively in the context of fixed budget analyses. However,
its performance is significantly worse to other RFs in the context of fixed target
analysis, the ACTPI, and the maximum CPU time Tmax for running KB-RO. We
believe this is aligned with the intuition of MMRR (as discussed in Sect. 2), since
within an iterative optimization framework, we have to employ a quadrupled
nested loop to find the robust solution based on MMRR, which in turn expo-
nentially increases the computational cost per iteration. The MMRR, therefore,
has the highest CCoR, and takes much more CPU time to reach the same target
value as opposed to other RFs.

In terms of performance variance, we note that stochastic RFs, in particular
EBR and DBR, have a higher variance in quality – when measured in terms
of RMAE, and a comparatively lower variance in computational cost – when
measured in terms of the ACTPI and Tmax. This can mainly be attributed to
their intrinsic stochastic nature as they rely on numerical approximations. Since
the sample size of the numerical approximations is fixed with respect to the
corresponding setting of the dimensionality, we observe relatively lower variance
in the CPU time. However, since we only ever approximate the robust response
of the function, the quality of the solution may be deteriorated.

7 Conclusion and Outlook

This paper analyzes the computational cost of robustness in Kriging-based
robust optimization for five of the most commonly employed robustness criteria.
In a first approach of such kind, we attempt to evaluate and compare the robust-
ness formulations with regards to the associated computational cost, where the
computational cost is based on the CPU time taken to find the optimal solution
under uncertainty. Our experimental setup constitutes 300 test cases, which are
evaluated for 15 independent runs of Kriging-based robust optimization. A fixed
budget analysis of our experimental results suggests the applicability of “mini-
max robustness”, “mini-max regret robustness”, “expectation-based robustness”,
and “composite robustness” in practical scenarios where the designer cannot
afford the computational budget beyond a certain threshold. On the other hand,
a fixed target analysis deems the ‘mini-max robustness” as the most efficient
robustness criterion in the scenario where the designer cannot compromise the
quality of the optimal solution below a certain threshold. The analysis of the
ACTPI and Tmax also determines “mini-max robustness” as one of the most effi-
cient robustness criteria. Overall, “mini-max robustness” is deemed as the most
suitable robustness criterion with regards to the associated computational cost.

A limitation of our study is that we only emphasize on Kriging-based robust
optimization. Therefore, the findings may not be valid for other meta-heuristics
based approaches for numerical optimization. Furthermore, we fix the internal
computational budget for each robustness formulation in Kriging-based robust
optimization. Visualizing the impact of variability in the internal computational
budget, e.g., the internal optimization loop in the context of “mini-max robust-
ness”, is the focus of our future research. Lastly, we note that each robustness
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formulation is intrinsically associated with another cost, namely the cost of com-
promising on optimality to ensure robustness or stability. Focusing on this cost
of robustness will advance the state-of-the-art in this area, and help practitioners
choose the most suitable formulation with regards to optimality.
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Abstract. Surrogate modelling techniques have the potential to reduce
the number of objective function evaluations needed to solve black-box
optimization problems. Most surrogate modelling techniques in use with
evolutionary algorithms today do not preserve the desirable invariance
to order-preserving transformations of objective function values of the
underlying algorithms. We propose adaptive function value warping as
a tool aiming to reduce the sensitivity of algorithm behaviour to such
transformations.

1 Introduction

Many evolutionary algorithms are designed to be invariant to order-preserving
transformations of objective function values: the behaviour of the algorithm
applied to a problem with objective function f : R

n → R is identical to its
behaviour when applied to objective function g◦f , where ◦ denotes function com-
position and g : R → R is an arbitrary strictly monotonically increasing function.
This invariance is commonly achieved by using objective function values in a way
that is comparison-based rather than value-based: objective function values of
candidate solutions are compared in order to determine which solution is better,
but at no point are objective function values used in arithmetic operations. As a
consequence, the algorithms are subject to the fundamental constraints on their
convergence rates that have been shown by Teytaud and Gelly [18]. At the same
time, they are relatively insensitive to small disturbances in objective function
values, and they are potentially useful for solving problems that are not locally
well approximated by low-order Taylor polynomials.

Cost in black-box optimization is commonly measured in terms of the num-
ber of objective function evaluations expended to solve a problem. Surrogate
modelling techniques are often used to reduce the number of objective function
evaluations. The majority of candidate solutions sampled by evolutionary algo-
rithms are relatively poor, and models of the objective function that are built
based on information gained from objective function evaluations made in prior
iterations can often be used to either discard poor candidate solutions without
evaluating them using the objective function, or to suggest potentially good can-
didate solutions to evaluate. Commonly used types of surrogate models include
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low-order polynomials, Gaussian processes, and radial basis function (RBF) net-
works. Regression using any of those involves arithmetic operations applied to
function values, and when used in evolutionary algorithms that are otherwise
invariant to order-preserving transformations of the objective function, their use
breaks that invariance. In recognition of this, Loshchilov et al. [11] advocate
the use of purely comparison-based ranking support vector machines (SVMs)
as surrogate models. Their algorithm preserves the invariance properties of the
underlying evolution strategy. However, presumably at least in part due to their
simplicity, Gaussian processes, RBF networks, and polynomial models continue
to be commonly used as surrogate models.

Snelson et al. [17] have proposed function value warping as a tool for achieving
a better fit of Gaussian process models applied to regression tasks. The central
idea is to employ a warping function to transform function values before fitting
the model to the data points. If the transformation is such that the warped data
are a better fit for the type of model used, then function value warping may result
in superior models. In this paper we propose to employ function value warping in
connection with surrogate model assisted evolutionary optimization. If warping
function g−1 : R → R is used, then the behaviour of the algorithm employing
that function applied to a problem with objective function g ◦ f : Rn → R is
identical to its behaviour when applied to objective function f without warping.
In order to derive a suitable warp, we select a parameterized family of warping
functions and adapt the parameters by optimizing the goodness of fit of the
warped surrogate model. The proposed approach is evaluated experimentally
by incorporating it in a surrogate model assisted covariance matrix adaptation
evolution strategy (CMA-ES).

2 Related Work

Surrogate model assisted CMA-ES variants include the local meta model assisted
CMA-ES (lmm-CMA-ES) proposed by Kern et al. [9] and the linear/quadratic
CMA-ES (lq-CMA-ES) due to Hansen [5]. Both employ polynomial models.
Bajer et al. [3] and Toal and Arnold [19] use Gaussian processes as surrogate
models instead; the latter authors refer to their algorithm as GP-CMA-ES. None
of those algorithms is invariant to order-preserving transformations of objective
function values. In contrast, Loshchilov et al. [12,13] propose s∗ACM-ES, which
employ ranking support vector machines and are invariant to such transfor-
mations. Toal and Arnold [19] conduct a comparison of several of the above
algorithms using three classes of objective functions: convex, spherically sym-
metric functions where a parameter controls how much the function deviates
from being quadratic, convex-quadratic functions with variable degrees of con-
ditioning, and a variant of the generalized Rosenbrock function. They find that
lq-CMA-ES excel predominantly on the quadratic test problems, where they are
able to locate near optimal solutions with very few objective function evalua-
tions once accurate models of the objective have been built. For the spherically
symmetric problems that are not quadratic, the invariance to order-preserving
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transformations of objective function values of s∗ACM-ES is seen to be a valu-
able asset. GP-CMA-ES, which do not employ quadratic models, are less effi-
cient than lq-CMA-ES when applied to quadratic problems, and they do not
share the robustness to function value transformations of s∗ACM-ES. However,
they exhibit at least the second best performance of all of the surrogate-model
assisted CMA-ES variants across all problems considered.

The use of function value warping in connection with Gaussian processes
was proposed by Snelson et al. [17]. They consider regression tasks and apply
warps consisting of sums of parameterized hyperbolic tangent functions to the
data points. The warp parameters are set using maximum likelihood estimation.
The tasks considered by Snelson et al. are static in the sense that models are
fit to static, unchanging data sets. There is thus no need to continually adapt
the warp parameters. In the context of surrogate model assisted optimization, a
more rudimentary version of function value warping is implemented in COBRA,
a surrogate model assisted algorithm for constrained optimization proposed by
Regis [14]. That algorithm potentially subjects the objective or constraint func-
tions either to division by a constant or to a logarithmic transformation. The
goal is to “make the function values less extreme and avoid problems with fit-
ting RBF surrogates”. SACOBRA, a self-adaptive variant of COBRA proposed
by Bagheri et al. [2], makes that transformation adaptive in the sense that the
algorithm itself determines whether or not it is applied. However, the decision is
binary, and no attempt is made to parameterize the transformation and evolve
appropriate settings for the parameters.

A somewhat orthogonal approach that attempts to enable surrogate functions
to better model given data is to optimize the choice of kernel function used in the
models. Kronberger and Kommenda [10] employ genetic programming to evolve
Gaussian process kernel functions for regression tasks. Roman et al. [16] propose
a similar approach for time series extrapolation. A preliminary exploration of
the use of different kernel functions in a surrogate model assisted CMA-ES has
been presented by Repický et al. [15].

3 Algorithm

In order to explore the use of adaptive function value warping for surrogate
model assisted evolutionary optimization, we incorporate it in the algorithm of
Toal and Arnold [19]. That algorithm integrates covariance matrix adaptation as
proposed by Hansen et al. [6,7] into algorithms by Kayhani and Arnold [8] and
Yang and Arnold [20]. While both of the latter papers refer to the algorithms as
Gaussian process model assisted, only the mean values of the stochastic processes
are used and the models are more simply described using RBF terminology. A
single iteration of the algorithm, which we refer to as warped surrogate CMA-
ES (ws-CMA-ES) is shown in Fig. 1. The pseudocode is almost identical to that
presented by Toal and Arnold [19], with differences only in Lines 4, 6, and 7,
where the warping function is used, and in Line 11, where its parameters are
updated. The following description is adapted from that reference.
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Fig. 1. Single iteration of the ws-CMA-ES.

The state of the algorithm consists of candidate solution x ∈ R
n, step size

parameter σ ∈ R>0, positive definite n × n matrix C that is referred to as
the covariance matrix, vector s ∈ R

n that is referred to as the search path, an
archive of m candidate solutions that have been evaluated in prior iterations
along with their objective function values, and warp parameters ω. In Line 1, a
warped surrogate model is constructed from the archive, resulting in a function
f̃ : Rn → R that approximates the objective function in the vicinity of previously
evaluated points, but is assumed to be much cheaper to evaluate. Details of
this step are described below. The algorithm then proceeds to compute positive
definite matrix A as the principal square root of C. Line 3 generates λ ≥ 1
trial step vectors that are independently drawn from a multivariate Gaussian
distribution with zero mean and unit covariance matrix. Line 4 uses the warped
surrogate model to evaluate the corresponding trial points yi = x + σAzi, and
Line 5 computes z ∈ R

n as a weighted sum of the trial vectors, using rank based
weights. Line 6 generates candidate solution y = x+σAz that is then evaluated
using the warped surrogate model. If the warped surrogate model suggests that
y is not superior to parental candidate solution x (the function value of which is
transformed using the warping function for the comparison), then the step size
is reduced and the iteration is complete. Otherwise, y is evaluated using the true
objective function and added to the archive. The warp parameters are updated if
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needed as described below. If y is inferior to the parental candidate solution, then
the step size is reduced and the iteration is complete. Otherwise, the offspring
candidate solution replaces the parental one, the step size is increased, and the
search path s and covariance matrix C are updated as proposed by Hansen [4]
and described by Toal and Arnold [19]. Notice that at most one evaluation of
the objective function is performed in each iteration of the algorithm.

Parameter Settings Parameter λ determines the degree of surrogate model
exploitation as discussed by Yang and Arnold [20]. Toal and Arnold [19] found its
setting to be uncritical for the test problems they considered, with larger values
affording a moderate speed-up on some problems. Throughout this paper, we use
λ = 10 and set the rank based weights used in Line 5 as proposed by Hansen [4].
That is, weights w1 through w�λ/2� form a strictly monotonically decreasing
sequence of positive values that sum to one; the remaining weights are zero. The
parameters that determine the relative rates of change of the step size parameter
in Lines 8, 13, and 15 are set to d1 = 0.2, d2 = 1.0, and d3 = 1.0 according to the
recommendation by Yang and Arnold [20]. In accordance with prior work [8,20],
parameter D, which scales the rates of the step size parameter changes, is set to√
1 + n.

Warped Surrogate Model. Warping functions are strictly monotonically
increasing functions Ωω : R → R that are parameterized with warp parame-
ters ω. To ensure flexibility, warping function families should contain functions
with both positive and negative curvature. As the warp needs to be optimized
throughout a run of the algorithm, it is desirable to have a small number of warp
parameters. In what follows we employ warping functions

Ω〈p,q〉(y) = (y − q)p

that are parameterized with warp parameters ω = 〈p, q〉. We refer to q and p
as the shift and the power of the warp, respectively. The shift needs to be set
such that the warping function is never applied to function values less than q.
Setting the parameters according to the procedure described below satisfies that
requirement.

As surrogate models for the objective function we employ RBF networks. In
Line 1 of the algorithm in Fig. 1, in order to build a warped surrogate model from
the points in the archive we generate m×m matrix K with entries kij = k(xi,xj),
where kernel function k is defined as

k(x,y) = exp
(

− (x − y)TC−1(x − y)
2h2σ2

)

with the length scale parameter set to h = 8n. Notice that this is the com-
monly employed squared exponential kernel with the Mahalanobis distance using
matrix σ2C replacing the Euclidean distance. Toal and Arnold [19] point to the
similar use of the Mahalanobis distance for quadratic regression by Kern et al. [9]
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and, considering spherically symmetric test functions, find that choice of kernel
function results in surrogate models that are a better fit for quadratic functions
than for those where function values do not scale quadratically. The setting of the
length scale parameter is adopted from Toal and Arnold, who have experimented
with maximum likelihood estimation without having been able to consistently
improve on the performance of the constant setting.

To evaluate the warped surrogate model at a point y ∈ R
n, in Lines 4 and 6

of the algorithm in Fig. 1 we compute m × 1 vector k with entries ki = k(xi,y)
and define

f̃(y) = Ωω (f(x)) + kTK−1f̃ ,

where m×1 vector f̃ has entries f̃i = Ωω (f(xi))−Ωω (f(x)). That is, the warping
function is applied to the function values before using them in the RBF model,
and the function value of the best solution evaluated so far is used as an offset.

In order to avoid increasing computational costs from the need to invert
matrix K as the size of the archive grows, we use at most the most recent
m = 8n points from the archive in order to construct the surrogate model. For
n ≥ 3 that number is smaller than the value of m = (n + 2)2 used by Toal
and Arnold [19]. The primary reason for our choice is the computational cost of
optimizing the warp parameters, which grows with increasing archive size.

Whenever a point is added to the archive, it may become necessary to adapt
the warp parameters in Line 11 of the algorithm in Fig. 1. We employ leave-one-
out cross validation in order to judge the quality of the current warp parameter
settings. That is, for each point in the archive we build a warped surrogate
model from the remaining m − 1 points and use it to determine the warped
surrogate model value of the point in question. The Kendall rank correlation
coefficient τ between those m warped surrogate model values and the points’
true objective function values (which have been computed and stored in prior
iterations) is determined. If τ ≥ 0.9, then the current warp parameter settings
are considered adequate and the warp parameters remain unchanged. If τ < 0.9,
then the algorithm attempts to find better parameter settings using a simple
coordinate search: first a new setting for the shift parameter is obtained by com-
puting leave-one-out rank correlation coefficients for 31 uniformly spaced shift
parameter values and selecting the shift that results in the highest correlation. If
the resulting value of τ exceeds 0.9, then that setting is adopted and the power
parameter is left unchanged. Otherwise, the shift parameter setting is adopted
and a new setting for the power parameter is obtained analogously. In case the
new setting does not result in a rank correlation coefficient in excess of 0.9, the
strategy defaults to no warp and sets p = 1 and q = 0.

Figure 2 shows data from three typical runs of ws-CMA-ES on objective
functions f(x) = (xTx)α/2 with n = 16 and α ∈ {1, 2, 4}. Once the archive of
evaluated points has reached a sufficient length, linear convergence is observed.
All runs succeed in locating warp parameter settings that result in leave-one-out
rank correlations of at least 0.9 throughout. The values of the power parameter
that are generated are approximately equal to 2/α, effectively resulting in the
surrogate model “seeing” function values close to those obtained for α = 2.
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Fig. 2. Convergence plots of ws-CMA-ES on sphere functions with α ∈ {1, 2, 4} and
n = 16. The subfigure on the right shows the evolution of objective function values
against the number of iterations. The subfigures on the left display rank correlation
values τ encountered in those runs and the values of power parameter p.

Initialization and Start-Up. The search path s is initialized to the zero
vector, covariance matrix C to the identity matrix. The initialization of x and σ
usually is problem specific. We avoid constructing models based on insufficient
data by not using surrogate models in the first 2n iterations of the algorithm.
For the duration of this start-up phase, the algorithm is thus a model-free (1 +
1)-CMA-ES and we use parameter settings d2 = 0.25 and d3 = 1.0 for step
size adaptation. The warp parameters are initialized once the archive contains
sufficiently many data points. An illustration of the dependence of the value of
the leave-one-out rank correlation coefficient on the warp parameter settings is
shown in Fig. 3 for a sphere function with α = 4 and n = 8. While more efficient
approaches to selecting warp parameter settings with near optimal values of τ
are conceivable, we simply enumerate 31×31 settings and select the setting that
results in the highest leave-one-out rank correlation coefficient.

4 Evaluation

This section experimentally evaluates the performance of ws-CMA-ES relative
to that of several other algorithms. Section 4.1 briefly outlines the comparator
algorithms. Section 4.2 describes the testing environment, and Sect. 4.3 presents
experimental data along with a discussion of the findings.
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Fig. 3. Selection of warp parameters p and q on a sphere function with α = 4 and n = 8.
Rank correlation values obtained from leave-one-out cross validation are colour-coded.
The selected warp parameter setting is marked by the asterisk.

4.1 Comparator Algorithms

We compare ws-CMA-ES with four other algorithms:

– CMA-ES without surrogate model assistance; we use Version 3.61.beta of the
MATLAB implementation provided by N. Hansen at cma-es.github.io.

– s∗ACM-ES; we use Version 2 of the MATLAB implementation provided by
I. Loshchilov at loshchilov.com.

– lq-CMA-ES; we use Version 3.0.3 of the Python implementation provided by
N. Hansen on GitHub.

– GP-CMA-ES as described by Toal and Arnold [19].

All algorithm-specific parameters are set to their default values, with one excep-
tion: the archive size of GP-CMA-ES is set to m = 8n rather than m = (n+2)2.
The change was made in order to better isolate the effect of warping in ws-CMA-
ES, which use the smaller archive size in order to reduce the cost of computing
effective warp parameters. As used here, GP-CMA-ES are identical to ws-CMA-
ES with the warp power fixed at p = 1. All evolution strategies but lq-CMA-ES,
which employ quadratic models with diagonal scaling before switching to fully
quadratic models once sufficiently many data points are available, are invari-
ant to rotations of the coordinate system. Both CMA-ES and s∗ACM-ES are
invariant to order-preserving transformations of objective function values; GP-
CMA-ES and lq-CMA-ES are not. ws-CMA-ES are not fully invariant, but it
will be seen that their sensitivity to transformations of objective function values
is reduced significantly compared to GP-CMA-ES.

4.2 Test Environments

We consider the following three basic test problems:
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– Spherically symmetric quadratic function f(x) = xTx.
– Convex quadratic function f(x) = xTBx where symmetric n×n matrix B has

eigenvalues bii = β(i−1)/(n−1), i = 1, . . . , n, with condition number β = 106.
The eigenvectors of B coincide with the coordinate axes. We refer to this
function as the Ostermeier ellipsoid.

– Generalized Rosenbrock function f(x) =
∑n−1

i=1

[
100(xi+1 − x2

i )
2 + (1 − xi)2

]
.

All of those functions are considered in dimensions n ∈ {2, 4, 8}. Function value
transformations g(y) = yα/2 with α ∈ [1, 4] are applied, creating three families
of test problems. For the former two functions varying α controls the degree to
which the problems deviate from being quadratic. In all three cases the con-
tour lines of the functions remain unchanged. The optimal function value for all
problems is zero. Sphere functions are perfectly conditioned and do not require
the learning of axis scales, but for α 	= 2 may pose difficulties for algorithms
that internally build quadratic or near-quadratic models. The primary difficulty
inherent in ellipsoid functions is their conditioning and thus the need to learn
appropriate axis scales. The generalized Rosenbrock function is only moderately
ill-conditioned, but in contrast to the other function families requires a constant
relearning of axis scales. For n ≥ 4 it possesses a local minimizer different from
the global one and, depending on initialization, a minority of the runs of all of
the algorithms converge to that merely local optimizer. As global optimization
ability is outside of the focus of this paper, we discard such runs and repeat
them until convergence to the global optimizer is observed.

All runs of all algorithms are initialized by sampling starting points uniformly
at random in [−4, 4]n. The step size parameter is initially set to σ = 2 for all
strategies. Runs are terminated when a candidate solution with an objective
function value no larger than 10−8α is generated and evaluated. As all optimal
function values are zero, that stopping criterion is well within reach with double
precision floating-point accuracy. An advantage of requiring such high accuracy
is that the coefficient of variation of the observed running times is relatively low.
With the stopping criterion as chosen, running times (as measured in objective
function evaluations) are independent of α for those algorithms that are invariant
to order-preserving transformations of the objective. Except for those runs on
the (value-transformed) Rosenbrock function that were discarded for converging
to the merely local minimizer, all runs of all algorithms located the globally
optimal solutions with no restarts required. Some further experimental results
are presented by Abbasnejad [1].

4.3 Results

We have performed fifteen runs of each of the algorithms for each test problem
instance considered. Figures 4, 5, and 6 plot the numbers of objective function
evaluations required to locate the optimal solutions to within the required accu-
racy divided by the dimension of the problem against parameter α. Lines connect
the median values and error bars illustrate the ranges observed (i.e., they span
the range from the smallest to the largest values observed across the fifteen runs).
Results are discussed in detail in the following paragraphs.
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Fig. 4. Number of objective function evaluations per dimension required to optimize
sphere functions with parameters α ∈ [1, 4]. The lines connect median values; the error
bars reflect the full range of values observed for the respective algorithms.

Sphere Functions: Figure 4 shows that all surrogate model assisted strategies
improve on the performance of basic CMA-ES across the entire range of param-
eter values considered. s∗ACM-ES achieve a constant speed-up factor of about
four, reflecting the invariance of the algorithm to strictly increasing transfor-
mations of function values. As observed by Toal and Arnold [19], lq-CMA-ES
excel for α = 2, where the quadratic models that they build perfectly match the
objective function. Their relative performance deteriorates the more α deviates
from that value. GP-CMA-ES exhibit a similar but less pronounced pattern. To
judge the performance of ws-CMA-ES, recall that they differ from GP-CMA-ES
solely in their use of warping. Their performance nearly matches that of GP-
CMA-ES for α = 2, but it deteriorates to a much lesser degree as values of α
deviate from 2. While not invariant to the choice of α, the sensitivity to the value
of that parameter is significantly reduced, showing that the algorithm succeeds
in locating beneficial warps. The speed-up factor of ws-CMA-ES over CMA-ES
without surrogate model assistance ranges between six and ten throughout.

Ostermeier Ellipsoids: Running times on the Ostermeier ellipsoids are repre-
sented Fig. 5 and show essentially the same patterns. All of the surrogate model
assisted algorithms improve on the basic CMA-ES. s∗ACM-ES provide a speed-
up factor of about four. lq-CMA-ES excel for α = 2, but their performance is
matched or exceeded by that of s∗ACM-ES for other values of that parameter.
Applying a rotation to the coordinate system would further tilt the scale in
favour of s∗ACM-ES. GP-CMA-ES for α = 2 perform second to lq-CMA-ES.
For values of α significantly larger than 2 they are eventually outperformed by
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Fig. 5. Number of objective function evaluations per dimension required to optimize
ellipsoid functions with parameters α ∈ [1, 4]. The lines connect median values; the
error bars reflect the full range of values observed for the respective algorithms.

s∗ACM-ES, which are entirely unaffected by the function value transformation.
ws-CMA-ES again nearly match the performance of GP-CMA-ES for α = 2,
where no warp is needed. Due to the beneficial warping functions that are gen-
erated, they significantly outperform that algorithm for values of α different
from 2.

Rosenbrock Functions: Figure 6 shows results on function value-transformed
generalized Rosenbrock functions. With few outliers, all of the surrogate model
assisted algorithms require reduced numbers of function evaluations compared
to the algorithm that does not employ surrogate models. As the objective is
not quadratic for any value of α, lq-CMA-ES do not dominate the other algo-
rithms as they do for α = 2 in Figs. 4 and 5. Their performance appears broadly
comparable with that of s∗ACM-ES. GP-CMA-ES again exhibit their best per-
formance for values of α near 2, where the Gaussian process models that they use
appear to be particularly effective. ws-CMA-ES succeed in reducing the slow-
down resulting from function value transformations particularly for larger values
of α. Notably, their advantage over the other algorithms appears to decrease with
increasing dimension. We hypothesize that this is at least partly due to the lim-
ited archive size employed in the experiments.
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Fig. 6. Number of objective function evaluations per dimension required to optimize
Rosenbrock functions with parameters α ∈ [1, 4]. The lines connect median values; the
error bars reflect the full range of values observed for the respective algorithms.

5 Conclusions

To conclude, we have proposed adaptive function value warping as an approach
to potentially improving the performance of surrogate model assisted evolu-
tionary algorithms. Many types of surrogate models are better suited to mod-
elling some classes of functions than others. Clearly, quadratic models best fit
quadratic functions. RBF models with squared exponential kernels have also
been observed to better fit quadratic functions than function value-transformed
versions thereof. By subjecting function values to a nonlinear warp before apply-
ing the model, better fitting models can be generated provided that the warping
function is well chosen. ws-CMA-ES generate suitable warps by using leave-one-
out cross validation to quantify the quality of a model. Warp parameters are
adapted throughout the runs of the algorithm. Our experimental results suggest
that ws-CMA-ES successfully generate beneficial warps for the three classes of
function value-transformed test problems considered.

The computational cost of leave-one-out cross validation as implemented
effectively restricts the use of the algorithm to relatively low-dimensional prob-
lems. Considering problems with n > 10 is feasible, but may limit the length of
the archive used when fitting surrogate models. Developing either faster imple-
mentations of leave-one-out cross validation or alternative approaches to evaluat-
ing the quality of a surrogate model would enable the approach to be applied to
higher-dimensional problems without having to compromise on the archive size.
A further subject of our ongoing research is the development of other techniques
for the adaptation of warp parameters.
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Abstract. Many methods for performing multi-objective optimisation
of computationally expensive problems have been proposed recently.
Typically, a probabilistic surrogate for each objective is constructed from
an initial dataset. The surrogates can then be used to produce predic-
tive densities in the objective space for any solution. Using the predic-
tive densities, we can compute the expected hypervolume improvement
(EHVI) due to a solution. Maximising the EHVI, we can locate the most
promising solution that may be expensively evaluated next. There are
closed-form expressions for computing the EHVI, integrating over the
multivariate predictive densities. However, they require partitioning of
the objective space, which can be prohibitively expensive for more than
three objectives. Furthermore, there are no closed-form expressions for a
problem where the predictive densities are dependent, capturing the cor-
relations between objectives. Monte Carlo approximation is used instead
in such cases, which is not cheap. Hence, the need to develop new accu-
rate but cheaper approximation methods remains. Here we investigate
an alternative approach toward approximating the EHVI using Gauss-
Hermite quadrature. We show that it can be an accurate alternative to
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1 Introduction

Many real-world optimisation problems have multiple conflicting objectives
[10,23,28]. In many cases, these objective functions can take a substantial
amount of time for one evaluation. For instance, problems involving compu-
tational fluid dynamic simulations can take minutes to days for evaluating a
single design (or decision vector/candidate solution) [2,7]. Such problems do not
have analytical or closed-form expressions for the objective functions and are
termed as black-box problems. To alleviate the computation time and obtain
solutions with few expensive function evaluations, surrogate-assisted optimisa-
tion methods [3,6], e.g. Bayesian optimisation (BO) [27], have been widely used.
In such methods, a surrogate model (also known as a metamodel) is built on
given data (which is either available or can be generated with some design of
experiments technique [24]). If one builds independent models for each objective
function [15,31], the correlation between the objective functions is not directly
considered. Multi-task surrogates [5,26] have been used recently to consider the
correlation.

In BO, the surrogate model is usually a Gaussian process (GP) because GPs
provide uncertainty information in the approximation in addition to the point
approximation. These models are then used in optimising an acquisition function
(or infill criterion) to find the next best decision vector to evaluate expensively.
The acquisition function usually balances the convergence and diversity. Many
acquisition functions have been proposed in the literature. Here, we focus on
using expected hypervolume improvement (EHVI) [13], which has become a
popular and well-studied acquisition function for expensive multi-objective opti-
misation largely due to its reliance on the hypervolume [20,32] (the only strictly
Pareto compliant indicator known so far). The EHVI relies on a predictive dis-
tribution of solutions (with either independent [13] or correlated objective func-
tions [26]). An optimiser is used to maximise the EHVI to find a decision vector
with maximum expected improvement in hypervolume. The EHVI can be com-
puted analytically for any number of objectives assuming the objective functions
f1, . . . , fm are drawn from independent GPs [15]. However, this computation is
expensive for more than three objectives. Monte Carlo (MC) approximation of
EHVI is often used instead in such cases but this is not cheap. Consequently,
there is a need for accurate but cheaper approximation methods for EHVI. We
propose and investigate a novel way of approximating the EHVI using Gauss-
Hermite (GH) quadrature [19,22]. In essence, GH approximates the integral of
a function using a weighted sum resulting in fewer samples to approximate the
EHVI.

The rest of the article is structured as follows. In Sect. 2, we briefly describe
multivariate predictive densities and EHVI, and then introduce the GH method
in Sect. 3. In Sect. 4, we show the potential of the proposed idea of using GH
by comparing it with analytical and MC approximations (for 2–3 objectives).
Finally, conclusions are drawn in Sect. 5.
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2 Background

For multi-objective optimisation problems with m objective functions to be min-
imised, given two vectors z and y in the objective space, we say that z dominates
y if zi ≤ yi for all i = 1, . . . , m and zj < yj for at least one index j. A solution
is Pareto optimal if no feasible solution dominates it. The set of Pareto optimal
solutions in the objective space is called the Pareto front.

In multi-objective BO, the predictive distribution due to a solution with
independent models is defined as:

y ∼ N (µ,diag(σ2
1 , . . . , σ

2
m)),

where m is the number of objectives and µ = (μ1, . . . , μm)� is the mean vector,
with μi and σi being the mean and standard deviations of the predictive density
for the ith objective. To quantify the correlation between objectives, a multi-
task surrogate model can be used. The distribution of a solution with a single
multi-task model is defined with a multi-variate Gaussian distribution:

y ∼ N (µ, Σ),

where µ is the vector of means and Σ is the covariance matrix that quantifies the
correlation between different objectives. It should be noted that considering only
the diagonal elements of Σ would ignore any correlations between objectives, and
result in an independent multivariate predictive density.

The hypervolume measure [20,32] is a popular indicator to assess the quality
of a set of solutions to a multi-objective optimisation problem. Thus it is often
used to compare multi-objective optimisation algorithms or for driving the search
of indicator-based multi-objective optimisation algorithms. The interested reader
is referred to [4] for an investigation of the complexity and running time of
computing the hypervolume indicator for different Pareto front shapes, number
of non-dominated solutions, and number of objectives m. The EHVI answers the
question of what the expected improvement of the hypervolume is if some new
candidate solution x would be added to an existing set of solutions. Consequently,
the solution with the highest EHVI may be the one worth an expensive function
evaluation. To avoid ambiguity, in the following, we provide formal definitions of
the concepts discussed here, before discussing methods to calculate the EHVI.

Definition 1 (Hypervolume indicator). Given a finite set of k points (can-
didate solutions) P = {p1, . . . ,pk} ⊂ Rm where pi = (f1(xi), . . . , fm(xi)))�

for an optimisation problem with m objectives, the hypervolume indicator (HI)
of P is defined as the Lebesgue measure of the subspace (in the objective space)
dominated by P and a user-defined reference point r [31]:

HI(P ) = Λ(∪p∈P [p, r]),

where Λ is the Lebesgue measure on Rm, and r chosen such that it is dominated
by all points in P , and ideally also by all points of the Pareto front.
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Definition 2 (Hypervolume contribution). Given a point p ∈ P , its hyper-
volume contribution with respect to P is ΔHI(P,p) = HI(P ) − HI(P\{p}).

Definition 3 (Hypervolume improvement). Given a point p /∈ P , its
hypervolume improvement with respect to P is I(p, P ) = HI(P ∪{p})−HI(P ).

Definition 4 (Expected hypervolume improvement). Given a point p /∈
P , its expected hypervolume improvement (EHVI) with respect to P is

∫
p∈Rm

HI(P,p) · PDF (p)dp,

where PDF (p) is the predictive distribution function of p over points in the
objective space.

The EHVI can be computed analytically for any number of objectives assum-
ing they are uncorrelated, but this requires partitioning the objective space,
which can be prohibitively expensive for m > 3 objectives. Consequently, there
is considerable interest in finding more efficient ways to compute EHVI, see
e.g. [8,9,14,15,18,30]. MC integration is an alternative to an exact computation
of EHVI. It is easy to use in practice and has been the method of choice for
problems with m > 3 objectives. Given a multivariate Gaussian distribution
from which samples are drawn, or pi ∼ N (µ, Σ), and a set of points P (e.g. an
approximation of the Pareto front), then the MC approximation of EHVI across
c samples is

1
c

c∑
i=1

I(pi, P ), (1)

where I(pi, P ) is the hypervolume improvement (see Definition 3). The approxi-
mation error is given by e = σM/

√
c, where σM is the sample standard deviation

[21]. Clearly, as the sample size c increases, the approximation error reduces,
namely in proportion to 1/

√
c. In other words, a hundred times more samples

will result in improving the accuracy by ten times.
Typically, evaluating the improvement due to a single sample can be rapid.

Even if we consider a large c, it is often not that time-consuming to compute the
EHVI for a single predictive density. However, when we are optimising EHVI
to locate the distribution that is the most promising in improving the current
approximation of the front, an MC approach may become prohibitively expen-
sive with a large enough c for an acceptable error level. Therefore, alternative
approximation methods that are less computationally intensive are of interest.
In the next section, we discuss such an approach based on GH quadrature.

3 Gauss-Hermite Approximation

The idea of GH approximation is based on the concept of Gaussian quadratures,
which implies that if a function f can be approximated well by a polynomial
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of order 2n − 1 or less, then a quadrature with n nodes suffices for a good
approximation of a (potentially intractable) integral [19,22], i.e.

∫
D

f(x)ψ(x) dx ≈
n∑

i=1

wif(xi),

where D is the domain over which f(x) is defined, and ψ a known weighting
kernel (or probability density function). The domain D and weighing kernel ψ
define a set of n weighted nodes S = {xi, wi}, i = 1, . . . , n, where xi is the ith
deterministically chosen node and wi its associated quadrature weight. We refer
to this concept as Gauss-Hermite if D is infinite, i.e., D ∈ (−∞,∞), and the
weighting kernel ψ is given by the density of a standard Gaussian distribution.

The location of the nodes xi are determined using the roots of the polyno-
mial of order n, while the weights wi are computed from a linear system upon
computing the roots [19]; the interested reader is referred to [25] for technical
details of this calculation. Intuitively, one can think of the selected nodes as rep-
resentatives of the Gaussian distribution with the weights ensuring convergence
as n increases and a low approximation error for a given n [12].

Extending the one-dimensional GH quadrature calculations to multivariate
integrals is achieved by expanding the one-dimensional grid of nodes to form
an m-dimensional grid, which is then pruned, rotated, scaled, and, finally, the
nodes are translated. Figure 1 illustrates the key steps of this process for a two-
dimensional (m = 2) integral. The weights of the m-variate quadrature points
are the product of the corresponding m one-dimensional weights; for m = 2, this
leads to the following two-dimensional Gaussian quadrature approximation:

n,n∑
i=1,j=1

wiwjf(xi,xj).

The pruning step eliminates nodes that are associated with a low weight (i.e.,
points on the diagonal as they are further away from the origin); such nodes
do not contribute significantly to the total integral value, hence eliminating
them improves computational efficiency. Rotating, scaling and translating nodes
account for correlations across dimensions, which is often present in practice. The
rotation and scaling are conducted using a rotation matrix constructed from the
dot product of the eigenvector and the eigenvalues of the covariance matrix, and
the translation is performed by adding the mean vector.

Note that this approach may result in a combinatorial explosion of nodes
in approximating a high-dimensional multivariate Gaussian distribution. Given
n nodes per dimension for an m-dimensional space, the total number of nodes
generated is K = 
nm(1 − r)�, where r ∈ [0, 1] is the pruning rate (the greater
r, the more nodes are discarded with r = 0 corresponding to not discarding
any nodes). For instance, using n = 5, m = 10 and r = 0.2, we have K =
7812500 nodes. Clearly, this would be computationally more expensive than
MC approximation. Therefore, for high-dimensional integration the default GH
approach may not be suitable. As a rule of thumb, we propose that if the number
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Fig. 1. An illustration of the process of generating the nodes and the associated weights
using the GH quadrature for a two-dimensional (m = 2) Gaussian density with the

mean vector µ = (0, 0)� and the covariance matrix Σ =

(
1 0.5

0.5 1

)
. The parameters

used are: n = 8 points per dimension and a pruning rate of r = 0.2 (i.e., 20%). The
dots represent the nodes, and the colours represent the respective weights. The contours
show the Gaussian density with the outermost contour corresponding to two-standard
deviation.

of nodes from GH goes beyond the number of samples required for a good MC
approximation, then one should use the latter, instead.

It should be noted that there is some work on high-dimensional GH approx-
imations, e.g. [16], but we do not investigate these in this paper.

3.1 Gauss-Hermite for Approximating EHVI

To approximate the EHVI, we use K samples (nodes) and associated weights
from GH quadrature as follows:

K∑
i=1

ωiI(pi, P ), (2)

where P is the approximated Pareto front, pi is the ith sample, and ωi =∏m
j=1 wj(xi) is the weight in an m-dimensional objective space corresponding

to the sample xi. This is effectively a weighted sum of the contributions, where
the weights vary according to the probability density. This is also illustrated
in the right panel of Fig. 2: The dots show the GH samples (nodes). The grid
of points covers an area that is consistent with the underlying Gaussian dis-
tribution. Since we know how the probability density varies, we can generate
proportional weights, which in turn permits us to derive a good approximation
with only a few points in the grid.

On the other hand, with MC in (1), every sample (dots in Fig. 2, left panel)
contributes equally to the average EHVI. Hence, a sample is somewhat unrelated
to the intensity of the underlying probability density at that location. As such,
with few samples, we may not derive a good approximation. It should be noted
that the gray diamonds (in both panels) are dominated by the approximation of
the Pareto front, and therefore there is no improvement (see Definition 3) due
to these solutions. Hence, these gray diamonds do not contribute to the EHVI
for either of the methods.
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Fig. 2. A visual comparison of MC (left) and GH (right) samples in the objective
space (assuming a minimisation problem). The approximation of the Pareto front is
depicted with red crosses, and the reference vector r for hypervolume computation is
shown with a magenta square. The blue dashed line outlines the dominated area. We
used a two-variate Gaussian distribution to generate samples with the mean vector

µ = (1.5, 1.5)� and the covariance matrix Σ =

(
0.16 −0.15
−0.15 1.01

)
; the pick contours

represent this density. The gray diamonds are dominated by the approximated front.
(Color figure online)

4 Experimental Study

In this section, we focus on comparing the accuracy of GH and MC approxima-
tions with respect to the analytical calculation of EHVI (A) introduced in [8,15].
As the analytical method is only suitable for independent multivariate Gaussian
densities, we firstly investigate the efficacy of the approximation methods for
uncorrelated densities for m = 2 and 3, and then expand our exploration to cor-
related multivariate densities. We use popular test problems: DTLZ 1–4, 7 [11],
and WFG 1–9 [17]. They were chosen as they allow us to validate the efficacy of
the approximation methods for Pareto fronts with diverse features; e.g., DTLZ2
and WFG4 have concave, DTLZ7 and WFG2 have disconnected, and DTLZ1
and WFG3 have linear Pareto fronts.

Our strategy was to first generate a random multivariate distribution, and
then, for an approximation of the known Pareto front, compute the EHVI due
to this random distribution analytically and with the two approximation meth-
ods (GH and MC). Using this approach, we aimed to collect data on a range
of randomly generated multivariate distributions and inspect the agreement
between analytical measurements and approximations. To quantify this, we used
Kendall’s τ rank correlation test [1], which varies between [−1, 1] with 1 show-
ing perfectly (positively) correlated ordering of the data by a pair of competing
methods. The test also permits the estimation of a p-value, which, if below a
predefined level α indicates that results are significant. In this paper, we set
α = 0.05, however, in all cases, we found the p-value to be practically zero,
hence indicating significance in the results.
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To implement the GH approximation, we converted existing R code1

into Python; our code is available to download at github.com/AlmaRahat/
EHVI Gauss-Hermite. If not stated otherwise, MC uses 10, 000 samples, and
GH uses a pruning rate of r = 0.2. For GH, we investigate different numbers of
nodes (points) n per dimension, and use the notation GHn to indicate this num-
ber. Any results reported are results obtained across 100 randomly generated
multivariate Gaussian distributions to generate as many EHVIs.

4.1 Uncorrelated Multivariate Gaussian Distribution

To generate a random multivariate distribution, we first take a reference front
P . We then calculate the maximum pimax and minimum pimin values along each
objective function fi. The span along the ith objective is thus s = pimax − pimin.
Using this, we construct a hyper-rectangle H which has lower and upper bounds
at vectors l = (l1, . . . , lm) and u = (u1, . . . , um), respectively, with li = pimin −
0.3s and ui = pimax + 0.3s. We take a sample from H uniformly at random to
generate a mean vector µ. The covariance matrix must be a diagonal matrix
with positive elements for an independent multivariate distribution. Hence, we
generate the ith diagonal element by sampling uniformly at random in the range
[0, ui − li].

Figure 3 shows an example comparison between the analytical (A), MC and
GH computations of EHVI for DTLZ2. The comparisons clearly show that the
performances of MC and GH15 are reliable with respect to A with a Kendall’s
τ coefficient of over 0.97 and associated p-value of (almost) zero. To investigate
if there is an increase in accuracy with the number of points per dimension,
we repeated the experiment by varying the number of points per dimension
between 3 and 15 (see Fig. 4 for results on the DTLZ2 problem with m = 2).
Interestingly, there is a difference between having an odd or an even number of
points per dimension: there is often a dip in performance when we go from even
to odd. In Fig. 4, we see that there is a slight decrease in the rank coefficient
between 4 and 5 points per dimension. We attribute this decrease to how the
points are distributed for odd and even numbers of points per dimension. When
we have an odd number of points for GH, it produces a node at the mean of
the distribution. If there is an even number of points per dimensions, there
is no node at the mean (see Fig. 5). Because of this, the approximation may
vary between odd and even number of points. Nonetheless, the monotonicity in
accuracy improvement is preserved when the number of points is increased by
two.

1 https://biostatmatt.com/archives/2754.

http://github.com/AlmaRahat/EHVI_Gauss-Hermite
http://github.com/AlmaRahat/EHVI_Gauss-Hermite
https://biostatmatt.com/archives/2754
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Fig. 3. Efficacy of MC and GH (with 15 points per dimension, GH15) approximations
in comparison to analytical measurements of EHVI for the DTLZ2 problem with 2
objectives and 100 randomly generated multivariate Gaussian distributions. The dotted
red-line depicts the performance of the perfect approximations. MC approximations
used 10, 000 samples. In all cases, we observe strong rank correlations with Kendall’s
τ coefficient over 0.97 with practically zero p-values.

We took the same approach to investigate the efficacy of GH and MC in all
the test problems for m = 2 and 3. The results of the comparison are summarised
in Fig. 6. We observed the same trends that with the increase in the number of
points per dimension, we increase the accuracy. Even with a small number of
points per dimension we are able to derive coefficients of over 0.85 for all the
problems. Interestingly, in some instances, e.g., WFG3 (m = 3) and WFG4
(m = 2), we clearly get better approximations from GH in comparison to MC.

4.2 Correlated Multivariate Gaussian Distribution

The key issue with the analytical formula for EHVI is that it does not cater
for correlated multivariate predictive distributions. However, both MC and GH,
even though they are computationally relatively intensive, do not suffer from
this issue. To investigate the efficacy of different methods, again, we take the
same approach as before. We generate random distributions and compute the
EHVI values with A, MC and GH, and then evaluate the rank correlations using
Kendall’s τ coefficient. Importantly, the most reliable method in this case is MC.

In this instance, the process to generate a random mean vector remains the
same. However, for a valid covariance matrix, we must ensure that the randomly
generated matrix remains positive definite. We, therefore, use Wishart distri-
bution [29] to generate a positive definite matrix that is scaled by diag(u1 −
l1, . . . , um − lm). To demonstrate that the analytical version for uncorrelated
distributions generates a poor approximation for the EHVI due to a correlated
distribution, we use the diagonal of the covariance matrix and ignore the off-
diagonal elements, and compute the EHVI. This allows us to quantitatively
show that GH may be a better alternative to MC from an accuracy perspective.
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Fig. 4. Increase in accuracy with the increase in the number of points per dimension
between 3 to 15 for the GH approximation with respect to the analytical result for
DTLZ2 (m = 2) and 100 random multivariate distributions. The black horizontal line
shows the theoretical upper bound for Kendall’s τ coefficient. The red dashed horizontal
line shows the coefficient for the EHVI using MC. The blue and red lines depict the
increase in coefficient as we increase the number of points per dimensions for odd and
even numbers, respectively, for GH.

Fig. 5. An example of the distribution of GH nodes for 4 (GH4) and 5 (GH5) points
per dimension (before pruning) for the standard Gaussian density with the mean μ = 0
and the standard deviation σ = 1 (shown in dashed black line).

In Figs. 7a–7c, we show the comparison between different methods for com-
puting EHVI for the DTLZ2 problem with m = 2. Here, A somewhat agrees
with MC and GH15 with a correlation coefficient of approximately 0.84 in each
case. However, MC and GH15 are essentially producing the same ranking of
solutions with a coefficient of just over 0.97. Therefore, GH15 with 180 nodes is
an excellent alternative to MC with 10, 000 samples. The results on DTLZ2 do
not appear too bad for A. To ensure that this is the case for all test problems
under scrutiny, we repeated the experiments, but this time generating 100 ran-
dom multivariate correlated Gaussian distributions in each instance. Here, we
assumed that MC is the most reliable measure, and computed the Kendall’s τ
coefficient with respect to MC. The correlation coefficient distributions for A and
GHns are given in Fig. 7d. Clearly, there is a wide variance in the performance
of A, with the minimum being 0.39 for WFG7 (m = 3) and maximum being 0.9
for DTLZ1 (m = 2). On the other hand, GH3 produced the worst performance
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Fig. 6. Performance comparison of MC and GH (GHn, where n is the number of points
per dimension) with respect to the analytical EHVI for a range of test problems with
100 randomly generated multivariate Gaussian distributions in each instance. Lighter
colours correspond to better coefficient values. (Color figure online)

Fig. 7. Illustration of the efficacy of GH for correlated multivariate Gaussian distribu-
tions as Fig. 3 in 7a–7c for DTLZ2 (m = 2). In 7d, we show the summary of efficacies
for different approximation methods when compared to MC across all DTLZ and WFG
problems (for m = 2 and m = 3). Analytical approximations were generated using the
diagonal of the covariance matrix.
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for GH across the board, but that was at 0.86 for DTLZ (m = 2), which shows
a strong rank correlation. This shows that just considering the diagonal of the
covariance matrix and computing the analytical EHVI is not a reliable approxi-
mation method under a correlated multivariate predictive density. Instead, GH
can produce a solid approximation with very few points.

5 Conclusions

EHVI is a popular acquisition function for expensive multi-objective optimisa-
tion. Computing it analytically is possible for independent objectives (predictive
densities). However, this can be prohibitively expensive for more than 3 objec-
tives. Monte Carlo approximation can be used instead, but this is not cheap. We
proposed an approach using GH quadrature as an alternative to approximating
EHVI. Our experimental study showed that GH can be an accurate alternative
to MC for both independent and correlated predictive densities with statistically
significant rank correlations for a range of popular test problems. Future work
can look at improving the computational efficiency of GH for high-dimensional
problems, and validating GH within BO using EHVI as the acquisition function.
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Abstract. Multi-objective optimization requires many evaluations to
identify a sufficiently dense approximation of the Pareto front. Especially
for a higher number of objectives, extracting the Pareto front might not
be easy nor cheap. On the other hand, the Decision-Maker is not always
interested in the entire Pareto front, and might prefer a solution where
there is a desirable trade-off between different objectives. An example
of an attractive solution is the knee point of the Pareto front, although
the current literature differs on the definition of a knee. In this work, we
propose to detect knee solutions in a data-efficient manner (i.e., with a
limited number of time-consuming evaluations), according to two defini-
tions of knees. In particular, we propose several novel acquisition func-
tions in the Bayesian Optimization framework for detecting these knees,
which allows for scaling to many objectives. The suggested acquisition
functions are evaluated on various benchmarks with promising results.

Keywords: Multi-objective optimization · Knee finding · Bayesian
optimization · Surrogate modeling

1 Introduction

Optimization is an important topic in many domains, from engineering design
to economics and even biology. Real-world problems often involve multiple con-
flicting objectives. For example, in engineering, minimization of cost and max-
imization of efficiency are looked for simultaneously. As a result, there will be
a set of solutions, each better in one or more objectives and worse in at least
one objective. In the other words, they do not dominate each other. Hence,
these solutions are referred to as non-dominated or Pareto-optimal and form
the so-called Pareto set and Pareto front in the decision and objective spaces,
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respectively. A multi-objective optimization, without the loss of generality, can
be defined as:

minimize f1(x), f2(x), ..., fm(x) x ∈ Ω ⊆ R
n (1)

Finding a set of non-dominated solutions is challenging, or even infeasible, espe-
cially with an increasing number of objectives, as the number of solutions to cover
the entire Pareto front usually grows exponentially with the number of objectives
[5]. In practice, the Decision-Maker (DM) is not interested in the whole front
of the solutions and might prefer a solution where there is a desirable trade-off
between different objectives. One approach to tackle this problem is to transform
the multi-objective setting into a single-objective problem [9,14], for example,
by using a (non)linear utility function, but identifying the appropriate weights
with no prior information is not an easy task.

One set of attractive solutions are the knees of the Pareto front (see Fig. 1),
first defined in [11]. However, definitions of what a knee is differ in the literature;
depending on the definition, a knee might hold different properties. For example,
the ratio of gain and loss in each objective might be the same at a knee point.

Fig. 1. Pareto front approximation of a bi-objective minimization problem. Intuitively,
the knee (red star) is an attractive solution as it strikes a good trade-off between
objectives. (Color figure online)

Most of the current literature on knee-oriented optimization focuses on Evolu-
tionary Algorithms (EAs) to estimate the location of the knee. While EAs are
a good solution for high-dimensional and intractable problems, they are data-
hungry methods, as they evaluate the objective functions many times during
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optimization. However, EAs are still preferred in some situations, e.g., when the
objective exhibits complex non-linear behavior.

Evaluating objective functions are often computationally expensive, severely
limiting the number of function evaluations during optimization. In engineering
design, for instance, high-fidelity models can take hours to days for one simu-
lation. Thus, it is of interest to solve the problem in a data-efficient manner,
i.e., finding the most interesting Pareto-optimal solutions with minimal compu-
tational budget.

In this paper, we investigate two definitions of a knee in multi-objective
optimization, and propose three novel acquisition functions for the Bayesian
Optimization (BO) framework to detect them in a data-efficient way. BO is
an optimization technique that utilizes a surrogate model to reduce the number
of time-consuming evaluations.

This paper is structured as follows. In Sect. 2, we briefly review the related
work. Proposed algorithms are covered in detail in Sect. 3. Section 4 summarizes
the experimental setup, while the results are discussed in Sect. 5. Finally, in the
last section, we conclude with a discussion on further improvements.

2 Related Work

2.1 Bayesian Optimization

A powerful option for finding the optimum of a black-box and expensive-to-
evaluate function is Bayesian Optimization (BO) [22]. BO employs an acquisi-
tion function based on a surrogate model to quantify how interesting a solution
is. The point that maximizes the acquisition function will be chosen as the next
candidate for evaluation (Algorithm 1). Popular choices for the acquisition func-
tion are Expected Improvement (EI) [13,18] and Probability of Improvement
(PoI) [12,17]. BO can also be used to find the complete Pareto front of the solu-
tions, using e.g., the Expected Hyper-Volume Improvement (EHVI) acquisition
function [6,8].

Algorithm 1. Bayesian Optimization
Input Evaluated design of experiment using, e.g., Halton sampling
Input An acquisition function
1: while Budget left do
2: Train a surrogate model
3: Prediction of the surrogate model in the decision space
4: K ← The point that maximizes the acquisition function
5: Evaluate K using time consuming function
6: Reduce Budget
7: end while
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2.2 Gaussian Process

The Gaussian Process (GP) surrogate model [20] is a common choice in Bayesian
Optimization. The GP provides the prediction for a new input as well as uncer-
tainty. The GP is fully specified by a mean function and kernel matrix k(xi,xj).
Assuming a zero mean function, the posterior of the GP is given as:

μ(x∗) = k∗K−1
xx y (2)

σ2(x∗) = k∗∗ − k∗K−1
xx kT

∗ (3)

where x∗ is a new input, Kxx = k(xi,xj), k∗ = k(x∗,xi), and k∗∗ = k(x∗,x∗).
Different kernel functions, such as Matérn kernels [16] or an RBF kernel, can be
used. Which one to choose is problem-dependent. For example, the Matérn 5/2
kernel has less strong assumptions on the smoothness of the target function and
found to be more suitable for real-life problems [19].

2.3 Knee Finding Using Evolutionary Algorithms

Multi-objective Evolutionary Algorithms (MOEAs) are popular to find the
Pareto front of a problem. Yu et al. [25] classify the MOEAs into four differ-
ent categories, i.e., dominance relations based, decomposition based, indicator
based, and secondary-criterion based methods. Interested readers can refer to
[10,15,23,25] for more details.

There is no unique definition of what a knee point is. A knee point is an
attractive solution of the Pareto front that will often be chosen by the DM in
the absence of prior knowledge of the problem [4]. In [21], the methods to quan-
titatively measure a knee are classified into two different groups: (1) based on
the geometric characteristics of the Pareto front, and (2) based on the trade-off
information. In [25], knee-oriented MOEAs are classified into five categories, i.e.,
utility-based, angle-based, dominance-based, niching-based, and visualization-
based approaches. Each of the algorithms has its own definition of the knee,
making it difficult to compare them. For example, Branke et al. [4] defines the
knee as a point in the Pareto front that has the largest angle to its neighbours,
while other works take a utility-based approach for specifying a knee point [2,26].
In this work we focus on the definition of knee as described in [11] to develop
the proposed acquisition functions. We also propose another definition of the
knee and construct an acquisition function based on that. These are described
in detail in the next section.

3 Proposed Algorithms

We investigate two definitions of a knee point: (1) based on the Hyper-Volume
(i.e., the volume of objective space dominated by a given set of solutions [27])
with respect to a reference point, and (2) based on the distance to a reference
line.
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3.1 Hyper-Volume-Based Knee (HV-Knee)

The Hyper-Volume can be used to define knees in the Pareto front. A trade-off
between various objectives can be observed by calculating the Hyper-Volume
between different solutions and a reference point. Solutions with a high Hyper-
Volume are intuitively more interesting for the DM. Accordingly, the knee point
is the point on the Pareto front that has the maximum Hyper-Volume with
respect to a fixed reference point. The corresponding regret function is calculated
as follows:

RegretHV = HV (y∗
HV , N∗) − HV (ybest, N

∗) (4)

where N∗ is the true Nadir point, y∗
HV is the point in the Pareto front that

has the maximum hyper-volume with respect to N∗ (ground truth), and ybest

is the point that the algorithm found and has the maximum hyper-volume with
respect to N∗.

Fig. 2. Illustration of a knee point. Based on the HV-Knee definition, the point on the
Pareto front that has the maximum Hyper-Volume with respect to the reference point
is the best knee (yellow point). The striped region represents the Hyper-Volume (HV)
between the Knee and the Nadir Point. (Color figure online)

The identified knee depends on the reference point. Due to this sensitivity, select-
ing the reference point is a critical part of the proposed algorithm. It can be
defined upfront by the DM (informed), which might be unrealistic for many
problems. Hence, we set the reference point the same as the nadir point as a
sensible default (see Fig. 2) which in turn depends on an accurate estimation
of the extrema. However, locating the extrema is not an easy task. We propose
an interleaved approach to find the extrema. Algorithm 2 shows how two steps
iterate.
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Algorithm 2. The HV-Knee Algorithm
Input Evaluated design of experiment using, e.g., Halton sampling
1: while Budget left do
2: Train a surrogate model for each objective
3: E ← ExtremaSampler()
4: Evaluate E.
5: Update surrogate models
6: K ← HV KneeSampler()
7: Evaluate K.
8: Reduce Budget
9: end while

Both ExtremaSampler and HV KneeSampler are acquisition functions. To find
the extrema, first, the ideal point, which is the minimum of each objective (see
Fig. 2) is extracted from the current dataset. A large reference point will be
chosen to focus more on the extrema. Finally, a derivation of the standard EHVI
[6] is used. EHVI tries to evaluate the point that contributes the most to the
expected Hyper-volume of the Pareto front given a fixed reference point and the
extracted Pareto front so far. We modify EHVI with the ideal point as the only
point in the Pareto front and a sufficiently large vector as the reference point.
Reference point should have large values in a way that is dominated by all of the
extremum points. For example, a vector such as (1e6, . . . , 1e6) can be used as the
reference point. Algorithm 3 shows the implementation of ExtremaSampler.

Algorithm 3. ExtremaSampler: Optimizing the Extrema acquisition function
Input R : A sufficiently large vector
1: I ← Ideal Point extracted from the current Pareto front
2: E ← Maximize EHV I with R and I as the reference point and the Pareto front,

respectively.
3: Return E as the next candidate point

HV KneeSampler modifies the standard EHVI to estimate the location of the
knee as well. EHVI is evaluated with the nadir point as both the reference point
and the only point in the Pareto front. Algorithm 4 shows the implementation
of HV KneeSampler.

Algorithm 4. HV KneeSampler: Optimizing the HVKnee acquisition function
1: N ← Nadir Point extracted from the current Pareto front
2: K ← Maximize EHV I with N as the reference point and the Pareto front.
3: Return K as the next candidate point
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3.2 Distance to Line-Based Knee

Another intuitive definition of a knee is based on the distance to an imaginary
line connecting the extrema of the front in a bi-objective setting (see Fig. 3) first
proposed by [11]. It is in the interest of DM to maximize the gap between a
solution and the reference line. The regret function is calculated as follows:

RegretDL = Distance(y∗
DL, L∗) − Distance(ybest, L

∗) (5)

where L∗ is the true reference line, y∗
DL is the point in the Pareto front that

has the maximum distance to the L∗ (ground truth), and ybest is the current
best solution.

Fig. 3. Illustration of a knee based on the distance to the reference line between the
two extrema. The point on the Pareto front that has the maximum distance to the
line constructed by connecting the two extrema is considered the knee (yellow point).
(Color figure online)

Similarly to the HV-Knee approach, the location of the extrema is unknown
beforehand, and estimating them is a vital part. The two-step approach from the
previous section is reused, replacing HV KneeSampler with D2LKneeSampler.

Algorithm 5 shows the implementation of D2LKneeSampler. First, the cur-
rent Pareto front and extrema are extracted, and the reference line will be con-
structed. The point in the current Pareto front that has the largest distance
to the reference line is designated as the current best knee. To calculate the
probability of improving over the current best knee, a naive approach is to solve
a double integration requiring Monte Carlo integration. Instead, we propose to
transform to a new coordinate system based on the reference line. In particular,
we consider a line parallel to the reference line that passes through the current
knee. The system is rotated so reference line is aligned with the horizontal axis.
As a result, it is much easier to analytically integrate the (transformed) multi-
variate Gaussian distribution of the GPs. Now, the equation can be simplified to
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a single variable probability of improvement (or expected improvement) acquisi-
tion function (Fig. 4). Keep in mind that, the point should be below the reference
line (assuming minimization). If the point is above the line, we use the negative
of the distance.

Fig. 4. The probability of improvement (or expected improvement) is calculated by
transforming the problem to a new coordinate system, in such a way that the refer-
ence line becomes horizontal. A one-dimensional integration similar to the standard
probability of improvement and expected improvement can be applied to the rotated
Gaussian distribution.

If μ1, σ2
1 , μ2, and σ2

2 are the predicted mean and variance of a candidate point
using the GPs for objective 1 and objective 2, respectively, then Eqs. 6–11 can
be used to calculate lines 4–9 of Algorithm 5.

Cov =
[
σ2
1 0
0 σ2

2

]
(6)

Means =
[
μ1 μ2

]
(7)

meanrotated = μ2 × cos(θ) + μ1 × sin(θ) (8)

Covrotated =
[
cov11 cov12
cov21 cov22

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
× Cov ×

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
(9)

σ2
rotated = cov22 (10)

If the coordinates of the current knee before the rotation is best1 and best2, then:

bestrotated = (best2 − tan(θ) × best1) × cos(θ) (11)
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Algorithm 5. D2LKneeSampler: Optimizing the D2LKnee acquisition func-
tion
1: alpha ← Acquisition function (probability of improvement or expected improve-

ment).
2: E1, E2 ← Extract extrema from the current Pareto front.
3: L ← Reference line constructed using E1 and E2.
4: θ ← The angle between the constructed reference line and the horizontal axis.
5: Cov ← The diagonal covariance matrix composed of the predicted variances of the

GPs.
6: Means ← The predicted mean vector of the GPs.
7: μrotated ← Rotated mean vector by θ degrees
8: Covrotated ← Rotated Cov by θ degrees.
9: σ2

rotated ← cov22 element of Covrotated
10: bestrotated ← Vertical coordinate of the rotated best knee.
11: K ← Maximize alpha with bestrotated, μrotated and σ2

rotated.
12: Return K as the next candidate point.

It is possible to use either Probability of Improvement (PoI) or Expected
Improvement (EI) in the 11th line of Algorithm 5, leading to the Probability
of Improving with respect to the Distance to Line (PID2L), and the Expected
Improvement with respect to the Distance to Line (EID2L).

4 Experimental Setup

Experiments have been conducted with three various benchmark functions, nam-
ely DO2DK, DEB2DK, and DEB3DK [4]. We configure the functions to have
input dimensions 9, 5, and 7, respectively. DO2DK has an additional parameter,
s, that skews the front, which is set to 1 in the experiments.

The Pareto fronts of various benchmark functions have been approximated
using the NSGA-II algorithm, and the knee(s) are calculated based on the Hyper-
Volume and Distance to Line knee definitions as shown in Table 1. The extracted
knee(s) using NSGA-II are designated as ground truth knee(s) and used for regret
calculation. The nadir point N∗, and the reference line, L∗, are constructed using
extracted extrema from NSGA-II results as well. For each benchmark function,
these two definitions might end up choosing the same point as the knee, but
generally this is not true, however, they are often remarkably close to each other.

For extracting the Pareto front, we configure NSGA-II with population size
200 and 200 generations (DO2DK, DEB2DK), and population size 500 and 1000
generations (DEB3DK).

We compare the proposed acquisition functions for knee detection against
the standard Expected Hyper-Volume Improvement (EHVI), which extracts the
whole Pareto front. We use the RBF kernel for the GPs, and the number of
initialization points is ten times the input dimension. To optimize the acquisition
function, a Monte Carlo approach with one thousand times input dimension
samples is used and L-BFGS-B optimizer is utilized to fine-tune the best point.
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Table 1. Summary of the benchmark functions to validate the proposed approaches
and their truth ground knee extracted using the NSGA-II algorithm.

Name Input dimension Output dimension Ground truth

DEB2DK [4] 9 2 (2.83, 2.83)∗

DO2DK [4] 5 2 (1.07, 1.02)∗

DEB3DK [4] 7 3 (2.85, 2.83, 3.52)∗
∗Rounded to two decimal places

Due to ambiguous definitions of a knee, as well as the data-hungry nature of
EAs, no other knee-oriented methods could be included in the comparison (eval-
uating the initial population would exceed the computation budget). RegretHV

and RegretDL are used to measure the performance during the optimization
process. Each experiment was repeated 15 times for DEB2DK and DO2DK, and
10 times for DEB3DK, and the 50th, 20th, and 80th percentiles were calculated.

The Pymoo python package [3], and Trieste framework [1] have been used
for NSGA-II and the BO methods, respectively.

5 Results

The results are shown in Fig. 5. For DO2DK, a small value, 1.7 × 10−4 and
2×10−4, is added to all Hyper-Volume and Distance Regrets, respectively, since
the regret was negative for HV-knee and PID2L. This means that both PID2L
and HV-Knee were successful in finding a point that performs better than the
ground truth knee found by NSGA-II.

For DEB2DK the EID2L acquisition function shows a quick improvement
in the early stages, but the HV-Knee and PID2L show a continuous improve-
ment leading to better results near the end of the optimization process. All the
acquisition functions exhibit the same behavior for DO2DK as well.

The last benchmark function, DEB3DK, has three objectives, and, hence,
can only be used with the HV-Knee method. Note that the best regret is also
negative for this case. The shaded area at the 170th iteration is between −21 and
−25, which means the HV-Knee acquisition function was able to find a point
that performs much better than the knee point found by NSGA-II.

Figure 6 shows the extracted Pareto front for DTLZ2 [7] benchmark function.
Pareto front of the DTLZ2 function is concave. In this case, the DM might
prefer one of the extrema, known as the edge knee [24]. As all of the proposed
acquisition functions are able to estimate the location of the extrema, and since
the shape of the extracted Pareto front using the proposed acquisition functions
is concave, the DM can choose one of the extrema as the final solution. PID2L
(and also EID2L) return one of the extrema as the best point, but HV-Knee
acquisition function prefers a point that is almost in the middle of the front.
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Fig. 5. Results for the various benchmark function. Each experiment is repeated 15
times for the DO2DK and the DEB2DK functions, and 10 times for the DEB3DK
function. The medians are denoted by the solid lines, while the shaded area represents
the area between 20th and 80th percentile.
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Fig. 6. Extracted Pareto front of the DTLZ2 benchmark function using HV-Knee and
PID2L acquisition function (in blue) and NSGA-II algorithm (in red). In both cases, it
is clear that the Pareto front is concave, and since both acquisition functions are able
to estimate the location of the extrema, one of the extrema can be chosen as the final
solution. (Color figure online)

6 Conclusion and Next Steps

In this work we have proposed three acquisition functions for Bayesian Optimiza-
tion to find attractive solutions (knees) on the Pareto front. These acquisition
functions were able to identify the correct knee in a data-efficient manner, using
about 200 evaluations (or even less) for a satisfying solution. Identifying a single
solution is more efficient than the complete Pareto front, allowing Bayesian Opti-
mization to scale up to more inputs and objectives. The proposed acquisition
functions outperformed the ground truth obtained using an expensive NSGA-II
approach. However, in some cases EAs are still preferred, for example, when at
least one of the objective functions is hard to model with a GP (intractable func-
tion, high-input dimension), or when the evaluation of the objective functions is
cheap and fast.

The developed acquisition functions alternated between two steps which is
more time-consuming than it needs to be. More rigorous approaches will be
developed to achieve an automatic balance between finding the extrema and
identifying the knee. This will reduce the number of required evaluations further.
Moreover, the proposed methods only focused on the global knee. If there is
more than one knee in the Pareto front, they often remain unexplored. Current
approaches will be extended, so other knees are also explored.
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Abstract. Bayesian Optimization (BO) is a surrogate-based global
optimization strategy that relies on a Gaussian Process regression (GPR)
model to approximate the objective function and an acquisition function
to suggest candidate points. It is well-known that BO does not scale
well for high-dimensional problems because the GPR model requires
substantially more data points to achieve sufficient accuracy and acqui-
sition optimization becomes computationally expensive in high dimen-
sions. Several recent works aim at addressing these issues, e.g., meth-
ods that implement online variable selection or conduct the search on a
lower-dimensional sub-manifold of the original search space. Advancing
our previous work of PCA-BO that learns a linear sub-manifold, this
paper proposes a novel kernel PCA-assisted BO (KPCA-BO) algorithm,
which embeds a non-linear sub-manifold in the search space and per-
forms BO on this sub-manifold. Intuitively, constructing the GPR model
on a lower-dimensional sub-manifold helps improve the modeling accu-
racy without requiring much more data from the objective function. Also,
our approach defines the acquisition function on the lower-dimensional
sub-manifold, making the acquisition optimization more manageable.

We compare the performance of KPCA-BO to a vanilla BO and to
PCA-BO on the multi-modal problems of the COCO/BBOB benchmark
suite. Empirical results show that KPCA-BO outperforms BO in terms
of convergence speed on most test problems, and this benefit becomes
more significant when the dimensionality increases. For the 60D func-
tions, KPCA-BO achieves better results than PCA-BO for many test
cases. Compared to the vanilla BO, it efficiently reduces the CPU time
required to train the GPR model and to optimize the acquisition function
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1 Introduction

Numerical black-box optimization problems are challenging to solve when the
dimension of the problem’s domain becomes high [1]. The well-known curse of
dimensionality implies that exponential growth of the data points is required to
maintain a reasonable coverage of the search space. This is difficult to accommo-
date in numerical black-box optimization, which aims to seek a well-performing
solution with a limited budget of function evaluations. Bayesian optimization
(BO) [15,18] suffers from high dimensionality more seriously compared to other
search methods, e.g., evolutionary algorithms, since it employs a surrogate model
of the objective function internally, which scales poorly with respect to the
dimensionality (see Sect. 2 below). Also, BO proposes new candidate solutions
by maximizing a so-called acquisition function (see Sect. 2), which assesses the
potential of each search point for making progresses. The maximization task
of the acquisition function is also hampered by high dimensionality. As such,
BO is often taken only for small-scale problems (typically less than 20 search
variables), and it remains an open challenge to scale it up for high-dimensional
problems [3].

Recently, various methods have been proposed for enabling high-dimensional
BO, which can be categorized into three classes: (1) variable selection methods
that only execute BO on a subset of search variables [27], (2) methods that
leverage the surrogate model to high dimensional spaces, e.g., via additive mod-
els [6,7], and (3) conducting BO on a sub-manifold embedded in the original
search space [14,29]. Notably, in [9], a kernel-based approach is developed for
parametric shape optimization in computer-aided design systems, which is not
a generic approach since the kernel function is based on the representation of
the parametric shape and is strongly tied to applications in mechanical design.
In [21] we proposed PCA-BO, in which we conduct BO on a linear sub-manifold
of the search space that is learned from the linear principal components analysis
(PCA) procedure.

This paper advances the PCA-BO algorithm by considering the kernel PCA
procedure [25], which is able to construct a non-linear sub-manifold of the orig-
inal search space. The proposed algorithm - Kernel PCA-assisted BO (KPCA-
BO) adaptively learns a nonlinear forward map from the original space to the
lower-dimensional sub-manifold for reducing dimensionality and constructs a
backward map that converts a candidate point found on the sub-manifold to
the original search space for the function evaluation. We evaluate the empirical
performance of KPCA-BO on the well-known BBOB problem set [12], focusing
on the multi-modal problems.

This paper is organized as follows. In Sect. 2, we will briefly recap Bayesian
optimization and some recent works on alleviating the issue of high dimension
for BO. In Sect. 3, we describe the key components of KPCA-BO in detail. The
experimental setting, results, and discussions are presented in Sect. 4, followed
by the conclusion and future works in Sect. 5.
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2 Related Work

Bayesian Optimization (BO) [15,26] is a sequential model-based optimiza-
tion algorithm which was originally proposed to solve single-objective black-box
optimization problems that are expensive to evaluate. BO starts with sampling
a small initial design of experiment (DoE, obtained with e.g., Latin Hypercube
Sampling [24] or low-discrepancy sequences [20]) X ⊆ S. After evaluating f(x)
for all x ∈ X, it proceeds to construct a probabilistic model P(f | X,Y) (e.g.,
Gaussian process regression, please see the next paragraph). BO balances explo-
ration and exploitation of the search by considering, for a decision point x, two
quantities: the predicted function value f̂(x) and the uncertainty of this pre-
diction (e.g., the mean squared error E(f(x) − f̂(x))2). Both of them are taken
to form the acquisition function α : S → R used in this work, i.e., the expected
improvement [15], which quantifies the potential of each point for making pro-
gresses. BO chooses the next point to evaluate by maximizing the acquisition
function. After evaluating x∗, we augment the data set with (x∗, f(x∗)) and
proceed with the next iteration.

Gaussian Progress Regression (GPR) [22] models the objective function f
as the realization of a Gaussian process f ∼ gp(0, c(·, ·)), where c : S × S → R is
the covariance function, also known as kernel. That is, ∀x,x′ ∈ S, it holds that
Cov{f(x), f(x′)} = c(x,x′). Given a set X of evaluated points and the corre-
sponding function values Y, GPR learns a posterior Gaussian process to predict
the function value at each point, i.e., ∀x ∈ S, f(x) | X,Y,x ∼ N (f̂(x), ŝ2(x)),
where f̂ and ŝ2 are the posterior mean and variance functions, respectively. When
equipped with a GPR and the expected improvement, BO has a convergence rate
of O(n−1/d) [4], which decreases quickly when the dimension increases.

High-Dimensional Bayesian optimization. High dimensionality negatively
affects the performance of BO in two aspects, the quality of the GPR model and
the efficiency of acquisition optimization. For the quality of the GPR model,
it is well-known[4] that many more data points are needed to maintain the
modeling accuracy in higher dimensions. Moreover, acquisition optimization is a
high-dimensional task requiring more surrogate evaluations to obtain a reason-
able optimum. Notably, each surrogate evaluation takes O(d) time to compute,
making the acquisition optimization more time-consuming.

Depending on the expected structure of the high-dimensional problem, vari-
ous strategies for dealing with this curse of dimensionality have been proposed
in the literature, often falling into one of the following classes:

1. Variable selection or screening. It may be the case that a subset of parameters
does not have any significant impact on solutions’ quality, and it is convenient
to identify and keep only the most influential ones. Different approaches may
be considered: discarding variables uniformly [17], assigning weights to the
variables based on the dependencies between them [27], identifying the most
descriptive variables based on their length-scale value in the model [2], etc.
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2. Additive models. They keep all the variables but limit their interaction as they
are based on the idea of decomposing the problem into blocks. For example,
the model kernels can be seen as the sum of univariate ones [6,7], the high-
dimensional function can decompose as a sum of lower-dimensional functions
on subsets of variables [23], or the additive model can be based on an ANOVA
decomposition [10,19].

3. Linear/nonlinear embeddings. They are based on the hypothesis that a large
percentage of the variation of a high-dimensional function can be captured
in a low-dimensional embedding of the original search space. The embedding
can be either linear [21,29] or nonlinear [9,11].

We point the reader to [3] for a comprehensive overview of the state-of-the-art
in high-dimensional BO.

3 Kernel-PCA Assisted by Bayesian Optimization

In this paper, we deal with numerical black-box optimization problems f : S ⊆
R

d → R, where the search domain is a hyperbox, i.e., S = [l1, u1] × [l2, u2] ×
· · · × [ld, ud]. We reduce the dimensionality of the optimization problem on-the-
fly, using a Kernel Principal Component Analysis (KPCA) [25] for learning,
from the evaluated search points, a non-linear sub-manifold M on which we
optimize the objective function. Ideally, such a sub-manifold M should capture
important information of f for optimization. In other words, M should “tra-
verse” several basins of attractions of f . Loosely speaking, in contrast to a linear
sub-manifold (e.g., our previous work [21]), the non-linear one would solve the
issue that the correlation among search variables is non-linear (e.g., on multi-
modal functions), where it is challenging to identify a linear sub-manifold that
passes through several local optima simultaneously. KPCA tackles this issue by
first casting the search points to a high-dimensional Hilbert space H (typically
infinite-dimensional), where we learn a linear sub-manifold thereof. We consider
a positive definite function k : S × S → R, which induces a reproducing kernel
Hilbert space (RKHS) H constructed as the completion of span{k(x, ·) : x ∈ S}.
The function φ(x) := k(x, ·) maps a point x from the search space to H, which
we will refer as the feature map. An inner product on H is defined with k, i.e.,
∀x,x′ ∈ S, 〈φ(x), φ(x′)〉H = k(x,x′), known as the kernel trick.

The KPCA-BO Algorithm. Figure 1 provides an overview of the proposed
KPCA-BO algorithm. We also present the pseudo-code of KPCA-BO in Algo-
rithm 1. Key differences to our previous work that employs the linear PCA
method [21] are highlighted. Various building blocks of the algorithm will be
described in the following paragraphs. Notably, the sub-routine kpca indicates
performing the standard kernel PCA algorithm, which returns a set of selected
principal components, whereas, gpr represents the training of a Gaussian process
regression model. In the following discussion, we shall denote by X = {xi}n

i=1

and Y = {f(xi)}n
i=1 the set of the evaluated points and their function values,

respectively.
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Fig. 1. Flowchart of the KPCA-BO optimization algorithm with detailed graphical
representation of the KPCA subroutine.

Rescaling Data Points. As an unsupervised learning method, KPCA disre-
gards the distribution of the function values if applied directly, which contra-
dicts our aim of capturing the objective function in the dimensionality reduc-
tion. To mitigate this issue, we apply the weighting scheme proposed in [21],
which scales the data points in S with respect to their objective values. In
detail, we compute the rank-based weights for all points: wi is proportional to
lnn − lnRi, i = 1, . . . , n, where R1, R2, . . . , Rn are the rankings of points with
respect to Y in increasing order (minimization is assumed). Then we rescale each
point with its weight, i.e., xi = wi(xi−n−1

∑n
k=1 xk), i = 1, . . . , n. It is necessary

to show that the feature map φ respects the rescaling operation performed in S.
For any stationary and monotonic kernel (i.e., k(x,y) = k(DS(x,y)) (DS is a
metric in S) and k decreases whenever DS(x,y) increases), for all x,y, c ∈ X it
holds that DS(x, c) ≤ DS(y, c) implies that DH(φ(x), φ(c)) ≤ DH(φ(y), φ(c)).
Consequently, the point pushed away from the center of the data in X will still
have a large distance to the center of the data in H after the feature map. The
rescaling (or alternatives that incorporate the objective values into the distribu-
tion of data points in the domain) is an essential step in applying PCA to BO.

On the one hand, DoE aims to span the search domain as evenly as possible
and thereby the initial random sample from it has almost the same variability
in all directions, which provides no information for PCA to learn. On the other
hand, new candidates are obtained by the global optimization of the acquisition
function in each iteration, which is likely to produce multiple clusters and/or
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Algorithm 1 KPCA-assisted Bayesian Optimization. Highlighted are those lines
in which KPCA-BO differs from the linear PCA method [21]
1: procedure kpca-bo(f, S) � f : objective function, S ⊆ R

d: search space
2: Create X = {x1,x2, . . . ,xn0} ⊂ S with Latin hypercube sampling
3: Y ← {f(x1), . . . , f(xn0)}, n ← n0

4: while the stop criteria are not fulfilled do
5: if n = n0 or y∗ ≤ 20%-percentile of Y then
6: R1, R2, . . . , Rn are the rankings of points in X w.r.t. Y (increasing order)
7: x′

i ← xi − n−1 ∑n
k=1 xk, i = 1, . . . , n � centering

8: x′
i ← wix

′
i, wi ∝ lnn − lnRi, i = 1, . . . , n � rescaling

9: γ∗ ← optimize-rbf-kernel({x′
i}n

i=1) � Eq. (2)
10: end if
11: v1, . . . , vr ← kpca({x′

i}n
i=1, γ

∗) � r < d � n

12: construct the forward map F from span{v1, . . . , vr}. � Eq. (1)
13: zi ← F(xi), i = 1, . . . , n � map the data to T := span{v1, . . . , vr}
14: f̂ , ŝ2 ← gpr({zi}n

i=1,Y) � Gaussian process regression
15: z∗ ← argmaxz∈T EI(z; f̂ , ŝ2)

16: y∗ ← f(x∗),x∗ ← B(z∗) � the backward map; Eq. (4)
17: X ← X ∪ {x∗}, Y ← Y ∪ {y∗}, n ← n + 1
18: end while
19: end procedure

isolated points that are not meaningful to the PCA procedure. This is in con-
trast to the direct application of PCA to evolutionary algorithms [16], where we
apply PCA to the current population. Since the population is usually generated
from a unimodal mutation distribution, it is well-suited for applying the PCA
procedure.

Dimensionality reduction in Hilbert spaces. After the rescaling operation
in X, we map the points to the feature space H: φ(X) = {φ(xi)}i, 1 = 1, . . . , n.
After centering the feature points in H, i.e., φ̃(xi) = φ(xi)−n−1

∑n
i=1 φ(xi), we

express the sample covariance1 of the feature points: C = n−1
∑n

i=1 φ̃(xi)φ̃(xi)�.
KPCA essentially computes the eigenvalues and eigenfunctions of C, namely ∀i ∈
[1..n], Cvi = λivi, vi ∈ H, ||vi||H = 1, and 〈vi, vj〉H = 0, if i 
= j. Note that (1) C

is positive semi-definite; (2) since rank(C) ≤ ∑n
i=1 rank(φ̃(xi)φ̃(xi)�) = n, there

are maximally n nonzero eigenvalues and eigenfunctions; (3) the eigenfunction
takes the following form vi =

∑n
j=1 a

(i)
j φ̃(xj), a

(i)
j ∈ R and thereby all eigenfunc-

tions can be represented by a matrix V = (a(i)
j )ij . Assume the eigenvalues are

ordered in the decreasing manner (i.e., λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Eigenfunctions
are sorted accordingly). It is not hard to show that the variance of φ(X) along
vi is exactly λi: n−1

∑n
k=1〈φ̃(xk), vi〉2H = 〈vi, n

−1
∑n

k=1[φ̃(xk)φ̃(xk)�]vi〉H = λi.
Therefore, the eigenvalues can be used to select a linear subspace of H which
keeps the majority of the variability of φ(X). Specifically, we choose a subspace
1 The outer product is a linear operator defined as ∀h ∈ H, [φ(x)φ(x)�](h) : h �→

〈φ(x), h〉Hφ(x). Hence, the sample covariance is also a linear operator C : H → H.
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T := span{v1, . . . , vr} ⊂ H as the reduced search space of BO, where r is cho-
sen as the smallest integer such that the first-r eigenvalues explain at least
η percent of the total variability (we use η = 90% in our experiments). For
a point x ∈ S, we can formulate a forward map that projects φ(x) onto the
reduced space T : F : x → ∑r

i=1〈φ̃(x), vi〉Hvi. Let gi(x) = 〈φ̃(x), φ̃(xi)〉H =
k(x,xi) − n−1

∑n
j=1 k(x,xj) − n−1

∑n
j=1 k(xi,xj) + n−2

∑n
i=1

∑n
j=1 k(xi,xj),

the forward map can be re-expressed as

F : x → Vg(x), g(x) = (g1(x), . . . , gn(x))�. (1)

Computationally, the eigenfunction representation V can be calculated via eigen-
decomposition of the Gram matrix (Gij = 〈φ̃(xi), φ̃(xj)〉H, i.e., G = V�DV,
D is a n × n diagonal matrix with the eigenvalues of C on its nonzero entries.

Learning the forward map. We use the radial basis function (RBF,
a.k.a. Gaussian kernel) for KPCA in this paper. The RBF kernel k(x,x′) =
exp(−γ ‖x − x′‖22), contains a single length-scale hyperparameter γ ∈ R>0. To
determine this length-scale, we minimize the number of eigenvalues/functions
chosen to keep at least η percent of the variance, which effectively distributes
more information of φ(X) on the first few eigenfunctions and hence allows for
constructing a lower-dimensional space T . Also, we reward γ values which choose
the same number of eigenfunctions and also yield a higher ratio of explained vari-
ance. In all, the cost function for tuning γ is:

γ∗ = argmin
γ∈(0,∞)

r −
∑r

i=1 λi∑n
i=1 λi

, r = inf

{

k ∈ [1..n] :
k∑

i=1

λi ≥ η

n∑

i=1

λi

}

. (2)

This equation is solved numerically, using a quasi-Newton method (the L-BFGS-
B algorithm [5]) with γ ∈ [10−4, 2] and maximally 200d iterations. It is worth
noting that we do not consider anisotropic kernels (e.g., individual length-scales
for each search variable) since such a kernel increases the number of hyperpa-
rameters to learn.

Also, note that the choice of the kernel can affect the smoothness of the
manifold in the feature space H, e.g., the Matérn 5/2 kernel induces a C2 atlas
for the manifold φ(S). We argue that the smoothness of φ(S) is less important to
the dimensionality reduction task, comparing to the convexity and connectedness
thereof. In this work, we do not aim to investigate the impact of the kernel on
the topological properties of φ(S). Therefore, we use the RBF kernel for the
construction of the forward map for its simplicity.

Learning the Backward Map. When performing the Bayesian optimization
in the reduced space T , we need to determine a “pre-image” of a candidate point
z ∈ T for the function evaluation. To implement such a backward map B : T → S,
we base our construction on the approach proposed in [8], in which the pre-image
of a point z ∈ T is a conical combination of some points in S:

∑d
i=1 wipi, wi ∈

R>0. In this paper, the points {pi}d
i=1 are taken as a random subset of the data

points {xi}n
i=1. The conical weights are determined by minimizing the distance
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between z and the image of the conical combination under the forward map:

w∗
1 , . . . , w

∗
d = argmin

{wi}d
i=1⊂R

d
>0

∥
∥
∥
∥
∥
z − F

(
d∑

i=1

wipi

)∥
∥
∥
∥
∥

2

2

+ Q

(
d∑

i=1

wipi

)

, (3)

Q(x) = exp

(
d∑

i=1

max(0, li − xi) + max(0, xi − ui)

)

.

where the function Q penalizes the case that the pre-image is out of S. As with
Eq. (2), the weights are optimized with the L-BFGS-B algorithm (starting from
zero with 200d maximal iterations). Taking the optimal weights, we proceed to
define the backward map: ∀z ∈ T ,

B : z → CLIP

(
d∑

i=1

w∗
i pi

)

, (4)

where the function CLIP(x) cuts off each component of x at the lower and upper
bounds of S, which ensures the pre-image is always feasible.

Remark. The event that {pi}d
i=1 contains a co-linear relation is of measure zero

and the conical form can procedure pre-images outside S, allowing for a complete
coverage thereof. There exist multiple solutions to Eq. (3) (and hence multiple
pre-images) since the forward map F contains an orthogonal projection step,
which is not injective. Those multiple pre-images can be obtained by randomly
restarting the quasi-Newton method used to solve Eq. (3). However, since those
pre-images do not distinguish from each other for our purpose, we simply take
a random one in this work.

Bayesian Optimization in the Reduced Space. Given the forward and
backward maps, we are ready to perform the optimization task in the space T .
Essentially, we first map the data set X ⊂ S to T using the forward map (Eq. (1)):
F(X) = {F(xi)}n

i=1, which implicitly defines the counterpart f ′ := f ◦ B of the
objective function in T . Afterwards, we train a Gaussian process model with the
data set (F(X),Y) to model f ′, i.e., ∀z ∈ T, f ′(z) | F(X),Y, z ∼ N (f̂(z), ŝ2(z)).
The search domain in the reduced space T is determined as follows. Since the
RBF kernel monotonically decreases w.r.t. the distance between its two input
points, we can bound the set φ(X) by first identifying the point xmax with the
largest distance to the center of data points c and secondly computing the dis-
tance r between φ(xmax) and φ(c) in the feature space H. Since S is a hyperbox
in R

d, we simply take an arbitrary vertex of the hyperbox for xmax. Note that, as
the orthogonal projection (from H to T ) does not increase the distance, the open
ball B := {z ∈ T : ‖z‖2 < r} always covers F(X). For the sake of optimization
in T , we take the smallest hyperbox covering B as the search domain in T .

After the GPR model is created on the data set (F(X),Y), we maximize the
expected improvement function EI(z; f̂ , ŝ) = ŝ(z)uCDF(u) + ŝ(z) PDF(u), u =
(minY − f̂(z))/ŝ(x) to pick a new candidate point z∗, where CDF and PDF
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stand for the cumulative distribution and probability distribution functions of a
standard normal random variable, respectively. Due to our construction of the
search domain in T , it is possible that the global optimum z∗ of EI is associated
with an infeasible pre-image in S. To mitigate this issue, we propose a multi-
restart optimization strategy for maximizing EI (with different starting points
in each restart), in which we only take the best outcome (w.r.t. its EI value)
whose pre-image belongs to S. In our experiments, we used 10 random restarts
of the optimization. Also, it is unnecessary to optimize kernel’s hyperparameter
γ in each iteration of BO since the new point proposed by EI would not make
a significant impact on learning the feature map, if its quality is poor relative
to the observed ones in Y (and hence assigned with a small weight). Therefore,
it suffices to only re-optimize γ whenever we find a new point whose function
value is at least as good as the 20% percentile of Y. Also, the 20% threshold is
manually chosen to balance the convergence and computation time of KPCA-
BO, after experimenting several different values on BBOB test problems.

4 Experiments

Experimental Setup. We evaluate the performance of KPCA-BO on ten multi-
modal functions from the BBOB problem set [12] (F15 - F24), which should
be sufficiently representative of the objective functions handled in real-world
applications. We compare the experimental result of KPCA-BO to standard
BO and the PCA-BO in our previous work [21] on three problem dimensions
d ∈ {20, 40, 60} with the evaluation budget in {100, 200, 300}, respectively. We
choose a relatively large DoE size of 3d, to ensure enough information for learn-
ing the first sub-manifold. On each function, we consider five problem instances
(instance ID from 0 to 4) and conduct 10 independent runs of each algorithm.
We select the Matérn 5/2 kernel for the GPR model. The L-BFGS-B algo-
rithm [5] is employed to maximize the likelihood of GPR as well as the EI
acquisition function at each iteration. We add to our comparison results for
CMA-ES [13], obtained by executing the pycma package (https://github.com/
CMA-ES/pycma) with 16 independent runs on each problem. The implementa-
tion of BO, PCA-BO, and KPCA-BO can be accessed at https://github.com/
wangronin/Bayesian-Optimization/tree/KPCA-BO.

Results. All our data sets are available for interactive analysis and visualization
in the IOHanalyzer [28] repository, under the bbob-largescale data sets of the IOH
repository. In Fig. 2, we compare the convergence behavior of all four algorithms,
where we show the evolution of the best-so-far target gap (fbest−f∗) with respect
to the iteration for each function-dimension pair. In all dimensions, it is clear
that both KPCA-BO and PCA-BO outperform BO substantially across func-
tions F17 - F20, while both KPCA-BO and PCA-BO exhibit about the same
convergence with BO on F23, and are surpassed by BO significantly on F16.
The poor performance of PCA-BO and KPCA-BO on the Weierstrass function
(F16) can be attributed to the nature of its landscape, which is highly rugged and

https://github.com/CMA-ES/pycma
https://github.com/CMA-ES/pycma
https://github.com/wangronin/Bayesian-Optimization/tree/KPCA-BO
https://github.com/wangronin/Bayesian-Optimization/tree/KPCA-BO
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Fig. 2. The best-so-far target gap (fbest − f∗) against the iteration for CMA-ES (pur-
ple), BO (red), PCA-BO (blue), and KPCA-BO (green) is averaged over 50 independent
runs on each test problem. We compare the algorithms in three dimensions, 20D (top),
40D (middle), and 50D (bottom). The shaded area indicates the standard error of the
mean target gap. CMA-ES data is obtained from running the pycma package with the
same evaluation budgets as BO. (Color figure online)

moderately periodic with multiple global optima. Therefore, a basin of attrac-
tion is not clearly defined, which confuses both PCA variants. On functions F17,
F19, and F24, we observe that KPCA-BO is outperformed by PCA-BO in 20D,
while as the dimensionality increases, KPCA-BO starts to surpass the conver-
gence rate of PCA-BO. For functions F21 and F22, KPCA-BO’s performance is
indistinguishable from PCA-BO in 20D, and in higher dimensions, the advan-
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Fig. 3. Mean CPU time taken by training the GPR model (dark cyan) and maximizing
the EI acquisition function (red) in 60D for BO, PCA-BO, and KPCA-BO, respectively.
In general, training the GPR model takes the majority of CPU time and both PCA-BO
and KPCA-BO manages to reduce it significantly. (Color figure online)

tage of KPCA-BO becomes prominent. For the remaining function-dimension
pairs, KPCA-BO shows a comparable performance to PCA-BO. Compared to
CMA-ES, both KPCA-BO and PCA-BO either outperform CMA-ES or show
roughly the same convergence except on F21 and F22 in 20D. In higher dimen-
sions, although KPCA-BO still exhibits a steeper initial convergence rate (before
about 200 function evaluations in 60D), CMA-ES finds a significantly better solu-
tion after the first 3d evaluations (the DoE phase of the BO variants), leading
to better overall performance.

Also, we observe that KPCA-BO shows better relative performance when the
dimensionality increases (e.g., on F18 and F22 across three dimensions), implying
that the kernelized version is better suited for solving higher-dimensional prob-
lems. Interestingly, KPCA-BO shows an early faster convergence on F21 and F22
compared to PCA-BO and is gradually overtaken by PCA-BO, implying that
KPCA-BO stagnates earlier than PCA-BO. We conjecture that the kernel func-
tion of KPCA-BO (and consequently the sub-manifold) stabilizes much faster
than the linear subspace employed in PCA-BO, which might attribute to such
a stagnation behavior. Therefore, KPCA-BO is more favorable than PCA-BO
in higher dimensions (i.e., d ≥ 60), while in lower dimensions (d ≈ 20), it is
competitive to PCA-BO when the budget is small for most test cases (it only
loses a little to PCA-BO on F24).

In Fig. 3, we depict the CPU time (in seconds) taken to train the GPR model
as well as maximize EI in 60D. As expected, the majority of the CPU time is
taken by the training of the GPR model. PCA-BO and KPCA-BO achieve sub-
stantially smaller CPU time of GPR training than the vanilla BO with exception
on F19, F20, and F24, where KPCA-BO actually takes more time. In all cases,
the CPU time for maximizing EI is smaller for KPCA-BO and PCA-BO than
for BO.
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5 Conclusions

In this paper, we proposed a novel KPCA-assisted Bayesian optimization algo-
rithm, the KPCA-BO. Our algorithm enables BO in high-dimensional numerical
optimization tasks by learning a nonlinear sub-manifold of the original search
space from the evaluated data points and performing BO directly in this sub-
manifold. Specifically, to capture the information about the objective function
when performing the kernel PCA procedure, we rescale the data points in the
original space using a weighting scheme based on the corresponding objective
values of the data point. With the help of the KPCA procedure, the training
of the Gaussian process regression model and the acquisition optimization – the
most costly steps in BO – are performed in the lower-dimensional space. We
also implement a backward map to convert the candidate point found in the
lower-dimensional manifold to the original space.

We empirically evaluated KPCA-BO on the ten multimodal functions (F15-
F24) from the BBOB benchmark suite. We also compare the performance of
KPCA-BO with the vanilla BO, the PCA-BO algorithm from our previous work,
and CMA-ES, a state-of-the-art evolutionary numerical optimizer. The results
show that KPCA-BO performs better than PCA-BO in capturing the contour
lines of the objective functions when the variables are not linearly correlated.
The higher the dimensionality, the more significant this better capture becomes
for the optimization of functions F20, F21, F22, and F24. Also, the mean CPU
time measured in the experiments shows that after reducing the dimensionality,
the CPU time needed to train the GPR model and maximize the acquisition is
greatly reduced in most cases.

The learning of the lower-dimensional manifold is the crux of the proposed
KPCA-BO algorithm. However, we observe that this manifold stabilizes too
quickly for some functions, leading to unfavorable stagnation behavior. In further
work, we plan to investigate the cause of this premature convergence and hope to
identify mitigation methods. Since the manifold is learned from the data points
evaluated so far, a viable approach might be to use a random subset of data
points to learn the manifold, rather than taking the entire data set.

Another future direction is to improve the backward map proposed in this
paper. Since an orthogonal projection is involved when mapping the data to
the manifold, the point on the manifold has infinitely many pre-images. In our
current approach, we do not favor one direction or another, whereas it might
be preferable to bias the map using the information of the previously sampled
points. For example, the term to minimize (to exploit) or maximize (to explore)
the distance between the candidate pre-image point and the lower-dimensional
manifold can be added to the cost function used in the backward map. These
two approaches can be combined or switched in the process of optimization.
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Abstract. When the decision maker (DM) has unknown preferences,
the standard approach to a multi-objective problem is to generate an
approximation of the Pareto front and let the DM choose from the non-
dominated designs. However, if the evaluation budget is very limited,
the true best solution according to the DM’s preferences is unlikely to
be among the small set of non-dominated solutions found. We address
this issue with a multi-objective Bayesian optimization algorithm and
allowing the DM to select solutions from a predicted Pareto front, instead
of the final population. This allows the algorithm to understand the
DM’s preferences and make a final attempt to identify a more preferred
solution that will then be returned without further interaction. We show
empirically that significantly better solutions can be found in terms of
true DM’s utility than if the DM would pick a solution at the end.

Keywords: Preference elicitation · Simulation optimization ·
Gaussian processes · Bayesian optimization

1 Introduction

Many real-world optimization problems have multiple, conflicting objectives. A
popular way to tackle such problems is to search for a set of Pareto-optimal
solutions with different trade-offs, and allow the decision maker (DM) to pick
their most preferred solution from this set. This has the advantage that the DM
doesn’t have to specify their preferences explicitly before the optimization, which
is generally considered very difficult.

In case of expensive multi-objective optimization problems, where the num-
ber of solutions that can be evaluated during optimization is small, the Pareto
front, which may consist of thousands of Pareto-optimal solutions or even be
continuous, can only be approximated by a small set of solutions. It is thus
unlikely that the solution most preferred by the DM would be among the small
set of solutions found by the optimization algorithm, even if these are truly
Pareto-optimal solutions.
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We suggest tackling this issue by using Bayesian Optimization (BO), a surro-
gate-based global optimization technique, and letting the DM choose a solution
from a predicted Pareto front rather than from the identified non-dominated solu-
tions at the end of the run. BO is not only known to be very suitable for expensive
optimization as it carefully selects points to evaluate through an acquisition func-
tion that explicitly balances exploration and exploitation. It also generates a sur-
rogate model of each objective function. These surrogate models can be optimized
by a multi-objective evolutionary algorithm to generate an approximated Pareto
front, and as evaluation of the surrogate model is cheap relative to a fitness evalu-
ation, we can generate a fine-granular representation of the approximated Pareto
front, consisting of very many solution candidates. This approximated Pareto front
with many hypothetical solutions can then be shown to a DM to select from. While
we cannot guarantee that the picked solution is actually achievable, the location
of the picked solution should still give us a very good idea about the DM’s prefer-
ences. Essentially, it provides a reference point which we expect to be quite close
to what should be achievable. We then continue to run BO for a few more steps,
aiming to generate the desired solution or something better.

We believe that the cognitive burden for the DM is not much higher than in
standard multi-objective optimization: rather than having to identify the most
preferred solution from a discrete approximation of the Pareto front at the end
of the run, they now pick the most preferred out of the predicted (larger) set
of solutions, but the size of the set presented to the DM should not make a
big difference in terms of cognitive effort if the problem has only 2 (perhaps
3) objectives, where the interesting region can be identified easily by inspecting
the Pareto front visually. After the final optimization step, the algorithm has
to return a single recommended solution based on the elicited preference infor-
mation. Of course it would be possible to ask the DM again to choose from all
non-dominated solutions found, and this would probably further enhance the
quality of the identified solution. However, we deliberately limit the preference
elicitation in this paper to a single interaction.

Compared to the existing literature, we offer the following contributions:

– We are the first to question the common practice of returning the non-
dominated solutions after optimization.

– Instead, we demonstrate that it is beneficial to let the DM choose from an
approximated Pareto front before the end of optimization. While we cannot
guarantee to be able to find this solution, the found solution still has a better
utility than the best solution in the Pareto front obtained in the usual way.

– We examine the influence of the point in time when the DM is asked to pick
a solution and show that asking too early may be detrimental, while asking
too late may forfeit some of the benefits of the proposed approach.

– We explore the impact of a model mismatch between assumed and true utility
function and show that the benefit of our approach, while reduced, remains
significant despite model mismatch.

The paper is structured as follows. After a literature review, we formally define
the problem considered in Sect. 3. The proposed algorithm is described in Sect. 4,
followed by empirical results in Sect. 5. The paper concludes with a summary.
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2 Literature Review

Depending on the involvement of the DM in the optimization process, multi-
objective optimization can be classified into a priori approaches, a posteriori
approaches, and interactive approaches [8,21]. The field is very large, so we can
only mention some of the most relevant papers here. A priori approaches ask
the DM to specify their preferences ahead of optimization. This allows to turn
the multi-objective optimization problem into a single objective optimization
problem, but it is usually very difficult for a DM to specify their preferences
before having seen the alternatives. Most multi-objective EAs are a-posteriori
approaches, attempting to identify a good approximation of the Pareto frontier,
and the DM can then pick the most preferred solution from this set. This is much
easier for a DM, but identifying the entire Pareto front may be computationally
expensive. Interactive approaches attempt to learn the DM’s preferences during
optimization and then focus the search on the most preferred region of the Pareto
front. While this may yield solutions closer to the DM’s true preferences, it also
requires additional cognitive effort from the DM.

Our proposed algorithm lies in between a priori and interactive approaches:
It generates an initial approximation of the Pareto front, and only requires the
DM to pick a solution from this front. It then makes a final attempt to find
a more preferred solution based on what the DM has picked, and returns this
single final solution to the DM rather than an entire frontier.

BO is a global optimization technique that builds a Gaussian process (GP)
surrogate model of the fitness landscape, and then uses the estimated mean
and variance at each location to decide which solution to evaluate next. It uses
an acquisition function to explicitly make a trade-off between exploitation and
exploration (e.g., [17]). A frequently used acquisition function is the expected
improvement (EI) [9] which selects the point with the largest expected improve-
ment over the current best known solution as the next solution to evaluate.
Recently, BO has been adapted to the multi-objective case, for a survey see [15].
One of the earliest approaches, ParEGO [11] simply uses the Tchebychev scalar-
ization function to turn the multi-objective problem into a single objective prob-
lem, but it uses a different scalarization vector in every iteration where the next
solution is decided according to EI. Other multi-objective algorithms fit separate
models for each individual objective. [5] trains a GP model for each objective,
then chooses the next solution to be evaluated according to a hypervolume-based
acquisition criterion. Other multi-objective BO approaches include [2,10,12].

Recently, a few interactive multi-objective BO approaches have also been
proposed [1,7,19]. Gaudrie et al. [6] allow the DM to specify a reference point a
priori, and use this to subsequently focus the BO search.

3 Problem Definition

The standard multi-objective optimization problem with respect to a particular
DM is defined as follows.We assume a D-dimensional real-valued space of pos-
sible solutions, i.e., x ∈ X ⊂ R

D. The objective function is an arbitrary black
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box f : X → R
K which returns a deterministic vector output y ∈ R

K . The
(unknown) DM preference over the outputs can be characterized by a utility
function U : R

K → R. Thus, of all solutions in X, the DM’s most preferred
solution is x∗ = arg maxx∈X U(f(x)). There is a budget of B objective function
evaluations, and we denote the n-th evaluated design by xn and the n-th out-
put by yn = f(xn) where, for convenience, we define the sampled solutions and
outputs as X̃n = {x1, . . . ,xn} and Ỹn = {y1, . . . ,yn}, respectively.

In a standard EMO procedure, after consuming the budget, the algorithm
returns the set of evaluated non-dominated solutions Γ ⊂ X̃n and the DM
chooses a preferred solution xp according to xp = arg maxx∈Γ U(f(x)). Figure 1
shows that a solution set may not contain any solution close to the DM’s true
preferred Pareto-optimal solution, and thus the DM will choose a sub-optimal
solution.

Interactive multi-objective optimization algorithms attempt to learn the
DM’s preferences and then focus the search effort onto the most preferred region
of the Pareto front, which allows them to provide a more relevant set of solutions.
However, the multiple interactions mean additional cognitive effort for the DM.
In this paper, we restrict the interaction to a single selection of a most preferred
solution from a non-dominated front, as in the standard, non-interactive case.
However, we allow to ask the DM for this information before the end of optimiza-
tion, after B − p evaluations. This allows the algorithm to identify potentially
more relevant solutions in the final p evaluations. At the end, the algorithm
has to return a single recommended solution xr (rather than asking the DM to
choose again), so that the cognitive effort is equivalent to the non-interactive
case. The aim is then to minimize the Opportunity Cost (OC) of the chosen
sample,

OC = U(f(x∗)) − U(f(xr)).

4 Proposed Approach

This section describes details of the proposed algorithm. Section 4.1 and Sect. 4.2
show the statistical models used for the objectives and the utility, respectively.
Then, Sect. 4.3 provides background on EI-UU and Sect. 4.4 considers the case
when the DM utility model is different from the model assumed by EI-UU.
Finally, Sect. 4.5 provides a summary of the algorithm.

4.1 Statistical Model of the Objectives

Let us denote the set of evaluated points and their objective function values up
to iteration n as Fn = {(x,y)1, . . . , (x,y)n}. To model each objective function
yj = fj(x),∀j = 1, . . . , K, we use an independent GP defined by a mean function
μ0

j (x) : X → R and a covariance function k0
j (x,x′) : X × X → R. Given Fn,

predictions at new locations x for output yj are given by the posterior GP mean
μn

j (x) and covariance kn
j (x,x′). We use the popular squared exponential kernel

that assumes fj(x) is a smooth function, and we estimate the hyper-parameters
from Fn by maximum marginal likelihood. Details can be found in [13].
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Fig. 1. HOLE test problem (b = 0). (Orange triangles) Solution set Γ shown to the
DM. (Red cross) Solution picked by the DM xp. (Red dot) True most preferred solution
of the DM. (Color figure online)

4.2 Statistical Model over the Utility

After B−p evaluations, the DM selects a point μ∗ from an estimated Pareto front
P. Therefore, an interaction I is defined by the generated front and the selected
solution, I = (P, μ∗). The estimated front is generated using an evolutionary
algorithm (NSGA-II [3]) on the posterior mean response surfaces of the Gaussian
processes.

Let us assume that the DM’s utility can be described by a parametric utility
function U(x, θ) with parameters θ ∈ Θ. Similar to [1] and [16], we adopt a
Bayesian approach to obtain a distribution over parameters θ ∈ Θ. Commonly
used likelihood functions include probit and logit [20]. However, for simplicity we
assume fully accurate preference responses. Then, if we consider a utility model
U(θ), we would only accept a candidate parameter θ if the best solution from
the generated front P according to μ(θ) = arg maxμ∈P U(μ, θ) is the solution
selected by the DM. The likelihood for θ is then

L (θ) = Iμ(θ)=μ∗ .

Figure 2b shows the above process by drawing three randomly generated
linear utility functions.

Depending on the utility function model, the set of “compatible” (L (θ) = 1)
parameterizations can be determined easily and in a deterministic way. More
generally, if we assume a flat Dirichlet prior on the parameter space Θ, then a
posterior distribution over θ is given by Bayes rule as

P[θ|I] ∝ L (θ)P[θ].

We may obtain samples from the posterior distribution P[θ|I] by simply gen-
erating Dirichlet samples from P[θ] and accepting only those that are compatible
with the DM interaction (L (θ) = 1). This approach may also be immediately
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(a) (b)

Fig. 2. (a) Estimated Pareto front shown to the DM (white dots) and a single point
selected by the DM (red dot). (b) Three scalarizations are generated using a Linear
utility function. Some are compatible with the information elicited from the decision
maker (dashed green), and thus accepted. Scalarizations that are not compatible would
be rejected (dashed red). (Color figure online)

extended to multiple and independent interactions where L may be expressed as
the product of all different interactions. Thus, only those parameters compatible
with all interactions would be accepted.

4.3 EI-UU with Preference Information

EI-UU [1] is a recently proposed multi-objective BO algorithm that is able to
include uncertain preference information. Similar to ParEGO [11] it translates
the multi-objective problem into a single-objective problem using an achievement
scalarization function. However, ParEGO uses Tchebycheff scalarizations and
randomly picks a different scalarization in every iteration to ensure coverage
of the entire Pareto front, EI-UU uses linear scalarizations and integrates the
expected improvement over all possible scalarizations, so it takes into account
different scalarizations simultaneously rather than sequentially over iterations.

Given a parameterization θ, it is possible to determine the utility of the
most preferred solution out of the solutions sampled so far, Fn, as u∗(θ) =
maxi=1,...,n U(xi, θ). Then, EI-UU simply computes the expected improvement
over all possible realizations for θ and outputs y = f(x) , i.e.,

EI-UU(x) = Eθ,y[max{U(x, θ) − u∗(θ), 0}].

Figure 3 provides an example in two-dimensional solution space, showing two
EI landscapes for different θ (part a and b), as well as the corresponding overall
improvement over several such realizations (c).

If the utility is linear (as suggested in [1]), the computations are essentially
reduced to standard expected improvement, where we integrate over θ using a
Monte-Carlo (MC) approximation. Otherwise, the whole expectation must be
computed using Monte-Carlo with realisations of each objective at x generated



138 J. Ungredda et al.

Fig. 3. Expected Improvement over the solution space, with brighter colors indicat-
ing higher expected improvement. Circles indicate sampled solutions. (a-b) Expected
Improvement according to two different realizations of θ. Most preferred solution
according to the specific θ is highlighted in red. (c) shows the MC average over sev-
eral realizations of θ to obtain EI-UU. The recommended solution by the algorithm is
selected according to the maximum value of EI-UU. (Color figure online)

as fj(x) = μn
j (x)+ kn

j (x,x)Z, where Z ∼ N(0, 1). Then, the overall expectation
over θ and Z is computed using a MC average,

EI-UU(x) ≈ 1
NΘNZ

∑

w=1,t=1

max {U(x, θw, Zt) − u∗(θw)}.

It is straightforward to accommodate preference information in this approach
simply by adapting the distribution of the different scalarizations considered.

4.4 Utility Mismatch

All proposed approaches require a parameterized model of the utility function.
In reality, this assumed model may not be able to accurately represent the true
utility function of the DM. To mitigate the risk of the DM being misrepresented,
we can use more flexible models (e.g., Cobb-Douglas utility function, Choquet
Integral, or artificial neural network) or simply allow any of a set of simple
models, which is the approach we take below. In general, there is a trade-off:
The more restrictive the utility model, the more informative the elicited DM
preference information, and the more focused the search in the final p steps may
be. On the other hand, if the assumed utility model was wrong, the focus would
be put on the wrong area, and the approach could fail. Thus, a more flexible
model will provide less benefit, but also smaller risk of getting it wrong.

In this paper, let us consider a given set of L utility model candidates, as
{U1(θ1), . . . , Ul, . . . , UL(θL)}. In the Bayesian framework, one complete utility
model Ul is formed by a likelihood function LUl

(θ) and a prior probability
density function P(θ|Ul), where now we explicitly emphasize the dependence
of a model Ul on the likelihood and prior distribution. Therefore, to obtain a
posterior distribution over models given the interaction I, i.e., P(Ul|I), we must
compute the marginal likelihood, or Bayesian evidence, as
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P[I|Ul] =
∫

θl∈Θl

LUl
(θl)P(θl|Ul)dθl.

This quantity represents the probability of the data collected, I, given a util-
ity model assumption Ul. However, we rely on approximating each term P[I|Ul]
through MC integration. Hence, a posterior distribution over the different can-
didate utilities may be computed as

P[Ul|I] =
P[I|Ul]P[Ul]∑L

i=1 P[I|Ui]P[Ui]
,

where P[Ul] represents a prior distribution for the candidate utility models. If we
also consider a uniform distribution over the candidate models as P[Ul] = 1/L,
then the posterior distribution only depends on the likelihood distribution terms.
This shows that models with higher evidence values tend to have higher weight
than other competing candidate models. Finally, EI-UU may be adapted by
simply taking the expectation over the posterior P[Ul|I],

EI-UU(x) =
L∑

i=1

Eθi,y[max{Ui(x, θi) − u∗
i (θi), 0}]P[Ui|I]

4.5 Algorithm

The proposed algorithm follows the standard EI-UU algorithm with a single
exception. Instead of letting the DM choose their most preferred solution at the
end of optimization (after the budget of B samples has been depleted), we let the
DM choose their most preferred solution from an approximated frontier already
after B − p samples. This approximated frontier is generated by NSGA-II on
the posterior mean function obtained from the GPs for each objective. From
the interaction, we derive user preferences as explained above, and evaluate an
additional p solutions using this preference information. Finally, at the end of
the optimization run, the algorithm returns to the DM the single solution xr

that it thinks has the best expected performance.

5 Results and Discussion

To assess the performance of the proposed approach, we investigate the Oppor-
tunity Cost (OC) dependence on the time when the DM is asked to pick a
solution.

5.1 Experimental Setup

In all experiments, EI-UU is seeded with an initial stage of evaluations using
2(D+1) points allocated by Latin hypercube sampling over X. These evaluations
are in addition to the budget B. NSGA-II is run for 300 generations with a
population size of 100 to produce a Pareto front approximation.
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Algorithm 1: Overall Algorithm.

Input: black-box function, size of Monte-Carlo NΘ and NZ for EI-UU, and the
number of function evaluations B − p before asking the DM.

0. Collect initial simulation data, Fn, and fit an independent Gaussian process for
each black-box function output.

1. While b < B do:

2. If b = B − p do:

3. Generate approximated Pareto frontier.

4. DM selects preferred solutions.

5. Compute posterior distribution P[θ|I].

7. Compute xn+1 = arg maxx∈X EI-UU(x; NΘ, NZ).

8. Update Fn, with sample {(x,y)n+1}
9. Update each Gaussian process with Fn

10. Update budget consumed, b ← b + 1

11. Return: Recommend solution, xr = argmaxx∈X

∑L
i=1 Eθl [Ui(x, θ)]P[Ui|I]

We use four different test functions:

1. The HOLE function [14] is defined over X = [−1, 1]2 and has K = 2 objec-
tives. We use b > 0, which produces two unconnected Pareto fronts, and the
following function parameters: q = 0.2, p = 2, d0 = 0.02, and h = 0.2.

2. An instance of the DTLZ2 function [4] with K = 3 objectives and defined
over X = [0, 1]3.

3. The ZDT1 function [4] with k = 2 objectives and defined over X = [0, 1]3.
4. The rocket injector design problem [18]. This problem consists of minimizing

the maximum temperature of the injector face, the distance from the inlet,
and the maximum temperature on the post tip over X = [0, 1]4.

All results are averaged over 20 independent replications and the figures below
show the mean and 95% confidence intervals for the OC.

5.2 Preference Elicitation Without Model Mismatch

In this subsection, we look at the benefit that can be gained from letting the DM
choose from the approximated Pareto front. We assume the DM has a Tcheby-
chev utility with true underlying (but unknown to the algorithm) parameters
θ. The true underlying parameters are generated randomly for every replication
of a run using a different random seed. We include an optimistic setting (“Per-
fect Information”), such that once we interact with the DM, we receive the true
underlying parameter θ and use this information in the following optimization
steps. This represents the best performance we can hope for.

Figure 4 (first column) shows results depending on when the DM selects
a point from the Pareto front. The benchmark is the case where the DM picks
from the final set of non-dominated solutions after B − p = 100 iterations. The
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figure clearly indicates a trade-off about when the preference information should
be elicited. The earlier the DM is involved, the longer it is possible for EI-UU to
exploit the preference information gained. On the other hand, the earlier the DM
is shown an approximated Pareto front, the less accurate is this Pareto front, and
thus the learned preference information may be wrong. For the HOLE function,
asking the DM too early (small B − p values) even leads to substantially worse
results than letting the DM pick a solution after the end of the optimization
(B − p = 100). However, for all four functions considered, there is a broad range
of settings that yield a significantly better result than when asking the DM after
optimization. The intuitive explanation of the above trade-off is confirmed when
comparing results with the case when perfect preference information is obtained.
In this case, it is best to interact as early as possible, as there is no risk of learning
something wrong or less informative due to a poor approximation of the Pareto
front.

Figure 4 (second column) looks at the dependence of the observed ben-
efit of letting the DM pick a solution early on the budget B, comparing
B = 20, 100, 200. As expected, the OC decreases with increasing number of
function evaluations. If the budget is very small (B = 20), it seems not possible
to gain much by asking the DM early. Following the intuition above this is not
really surprising, as after a very short optimization run the Pareto front is not
well approximated and any information gained from the DM may be misleading.
For a large budget (B = 200), there is still a small benefit to be gained for
some of the test functions. However, intuitively, as the available budget tends to
infinity, we can expect that the algorithm will return a very dense and accurate
Pareto frontier, so the DM will be able to choose their true most preferred solu-
tion (or some solution very close to that), and so it is not possible to improve
over that. The figure also allows us to appreciate the magnitude of the benefit of
letting the DM choose earlier. For example, using a medium budget of B = 100
for the HOLE function and letting the DM choose after 80% = 80 samples yields
an OC almost as small as increasing the budget to B = 200 samples and letting
the DM choose at the end of the run.

5.3 Preference Elicitation with Model Mismatch

If the DM’s true utility model is different from the parameterized model used by
the algorithm there is a mismatch between the DM’s true utility model (unknown
to the algorithm) and the learned utility model in the algorithm. The conse-
quences of model mismatch are explored next.

So far, we assumed that the true DM utility model is Tchebychev, and this
model is used when the DM picks a solution from the approximated Pareto
front, and again to evaluate the OC at the end. Now, in each replication of the
algorithm, a random true linear utility model is generated for the DM. However,
all approaches still assume a Tchebychev utility function and use this to focus
the search over the last p iterations and also to recommend a final solution.
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Fig. 4. First column: Final true utility of the generated solution set after B = 100
iterations, depending on how many iterations from the start the DM was presented with
an approximation of the front (B − p). True and assumed DM utility was Tchebychev.
Second column: Final true utility of the generated solution set after different budgets,
depending on the percentage of consumed budget before presenting an approximation
of the front to the DM. True and assumed DM utility was Tchebychev. Third column:
Final true utility of the generated solution set after B = 100 iterations, depending on
how many iterations from the start the DM was presented with an approximation of the
front (B−p). The DM has a Linear utility and we show results for three different utility
model assumptions (Linear, Tchebychev, and a model average). The dashed horizontal
lines show the OC when the DM selects the best solution after optimization.
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We consider two candidate utility functions to average EI-UU, Tchebychev
and Linear. As Fig. 4 (third column) shows, model mismatch (orange) leads
to substantially worse solutions, even when the DM only picks a solution after
optimization. This seems counter-intuitive at first, but actually, EI-UU implicitly
assumes a distribution of utility functions for scalarization, even if the distribu-
tion of parameter values θ is uniform. It appears that even with this relatively
weak assumption, a model mismatch leads to significantly worse solutions. It
is also clear that if there is a severe model mismatch (the algorithm assumes
Tchebychev but the true utility is linear), letting the DM choose a solution
before the end of the optimization is not always helpful (for the HOLE and
DTLZ2 function, no setting of B − p leads to significantly better results than
B − p = 100). On the other hand, except for letting the DM choose very early,
it is also not significantly worse. For the correct and the more flexible model
encompassing Tchebychev and Linear, better results can be obtained for all four
test problems by letting the DM choose before the end of optimization. But
as expected, the benefit is smaller with the more flexible model, as its flexibil-
ity means it can focus less narrowly than if a less flexible but correct model is
assumed.

6 Conclusion

For the case of expensive multi-objective optimization, we show how the surro-
gate models generated by Bayesian optimization can be used not only to speed
up optimization, but also to show the DM a predicted Pareto front before the end
of optimization, rather than the sampled non-dominated solutions at the end of
the optimization run. Then, the information on the most preferred solution can
be used to focus the final iterations of the algorithm to try and find this pre-
dicted most preferred solution, or even a better solution, which is then returned
to the DM as recommended solution (no more interaction from the DM required
- as in the standard case for EMO, the DM only once picks a most preferred
solution from a frontier). We demonstrate empirically on four test problems that
for various scenarios, the benefit in terms of true utility to the DM is significant.

Future directions of research may include the evaluation on a wider range of
test problems, making the time to ask the DM self-adaptive, and to turning the
approach into a fully interactive approach with multiple interactions with the
DM during the optimization.
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Abstract. Surrogate-assisted (meta-model based) algorithms are dedi-
cated to expensive optimization, i.e., optimization in which a single Fit-
ness Function Evaluation (FFE) is considerably time-consuming. Meta-
models allow to approximate the FFE value without its exact calcula-
tion. However, their effective incorporation into Evolutionary Algorithms
remains challenging, due to a trade-off between accuracy and time com-
plexity. In this paper we present the way of recursive meta-model incor-
poration into LSHADE (rmmLSHADE) using a Recursive Least Squares
(RLS) filter. The RLS filter updates meta-model coefficients on a sample-
by-sample basis, with no use of an archive of samples. The performance
of rmmLSHADE is measured using the popular CEC2021 benchmark in
expensive scenario, i.e. with the optimization budget of 103 · D, where
D is the problem dimensionality. rmmLSHADE is compared with the
baseline LSHADE and with psLSHADE – a novel algorithm designed
specifically for expensive optimization. Experimental evaluation shows
that rmmLSHADE distinctly outperforms both algorithms. In addition,
the impact of the forgetting factor (RLS filter parameter) on algorithm
performance is examined and the runtime analysis of rmmLSHADE is
presented.

Keywords: Surrogate model · LSHADE · Recursive Least Squares

1 Introduction

Continuous optimization is a well-known but still intensively explored field. The
variety of problem structures implies that universal general purpose approach
does not exist. In this work, we consider single-objective continuous global opti-
mization in a black-box manner, i.e., no information about function gradient
is provided, and the only interaction with the algorithm is through the Fitness
Function Evaluation (FFE) calculation. Furthermore, the solution space is con-
strained by given search boundaries. Formally, the goal is to find a solution xxx∗

that minimizes the function f : RD → R, where D is the problem dimensionality.
Evolutionary algorithms are metaheuristics commonly employed for solving

optimization problems [26]. Various relatively uncomplicated algorithms such as
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Differential Evolution [23] (DE) or Particle Swarm Optimization [17] (PSO) are
not only versatile but also provide a base for numerous extensions. For instance,
parameter adaptation is a mechanism that resulted in the formation of Adap-
tive Differential Evolution with Optional External Archive [32] (JADE) and
its successor Success-History Based Parameter Adaptation for Differential Evo-
lution [24] (SHADE). Covariance Matrix Adaptation Evolution Strategy [13]
(CMA-ES) is, by its principle, based on multiple parameters adaptation. Another
commonly used mechanism is a dynamic reduction or increasing of a popula-
tion size. In this context, SHADE evolved into SHADE with Linear Population
Size Reduction, known as LSHADE [25]. Variations of the two above-mentioned
methods (SHADE and CMA-ES) have resulted in even more sophisticated algo-
rithms (e.g. LSHADE cnEpSin [4], MadDE [7], IMODE [21], IPOP-CMA-ES [2],
KL-BIPOP-CMA-ES [28], or PSA-CMA-ES [20]). The heuristics listed above
are computationally efficient and their complexity does not depend on the num-
ber of FFEs, i.e., the time and memory required for an algorithm iteration are
approximately constant during the whole optimization run. Therefore, the well-
known benchmarks assume, by default, a relatively high FFEs budget. For exam-
ple, employed in this work, CEC2021 Special Session and Competition on Sin-
gle Objective Bound Constrained Numerical Optimization benchmark suite [19]
(CEC2021) considers a budget of 2 · 105 for D = 10 dimensions.

A significantly different type of optimization is an expensive optimization,
where a single FFE is costly, so high optimization budgets are inapplica-
ble. CEC2015 benchmark for Computationally Expensive Numerical Optimiza-
tion [10] assumes 5 · 102 FFEs for D = 10. Consequently, an entirely different
class of algorithms are utilized in such optimization (e.g. Kriging [11] or Efficient
Global Optimization [16] (EGO)). They usually operate on complex surrogate
models of the function being evaluated. The purpose of the surrogate model
is to estimate the fitness function value without its costly evaluation. Increas-
ing the number of FFEs over the rational threshold makes the model compu-
tationally inefficient. Nevertheless, the idea of surrogate-assisted optimization
was incorporated into evolutionary algorithms [15]. The CMA-ES extensions: S-
CMA-ES [5] and DTS-CMA-ES [6], which rely heavily on Kriging, are designed
for regular expensive optimization. Likewise, lmm-CMA-ES [18], which utilizes
Locally Weighted Regression [1]. In contrast, LS-CMA-ES [3] uses a more effi-
cient quadratic approximation of fitness function, which results in the ability to
perform considerably more FFEs.

The concept of efficient local meta-models hybridized with PSO and DE was
presented in [31]. The lq-CMA-ES [12] employs a global quadratic model with
interactions, but its structure relies on simplicity and computational efficiency.
However, when analyzing its experimental results, the benefits of incorporating
the meta-model are visible up to 103 ·D FFEs. Meta-models can also be incorpo-
rated into the LSHADE algorithm. An idea of pre-screening solutions supported
by a quadratic meta-model with interactions and inverse transformations was
incorporated into the psLSHADE algorithm [29,30]. The psLSHADE outper-
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formed both LSHADE and MadDE using 103 ·D FFEs budget. The psLSHADE
is the reference point for the algorithm presented in this work.

Moreover, the above works introducing psLSHADE suggest that the gains
from meta-model utilization can vanish with an optimization budget greater
than 103 · D FFEs. In contrast, complex surrogate-assisted algorithms, such as,
mentioned above, Kriging or EGO, are overly ineffective in budgets greater than
102 · D FFEs. To sum up, we perceive and try to explore a niche in research on
expensive optimization in budgets greater than 102 · D FFEs but still less than
105 · D - 106 · D FFEs.

Most of the surrogate-assisted algorithms are based on some form of lin-
ear regression. Therefore, we decided to investigate how to employ meta-model
estimation without maintaining an archive of already evaluated samples. The
utilization of the Recursive Least Squares (RLS) filter [22] appeared to be an
engaging idea. The RLS filter has been successfully applied to mixed-variable
optimization [8] or combinatorial problems with integer constraints [9].

We investigate the usefulness of the RLS filter in continuous optimization
by integrating it with the LSHADE algorithm. In effect, we propose the rmmL-
SHADE algorithm: recursive meta-model LSHADE utilizing the Recursive Least
Squares filter. The rmmLSHADE is an extension of LSHADE and similarly to
psLSHADE employs the pre-screening mechanism, albeit in a different, more effi-
cient manner. In particular, the meta-model coefficients are re-estimated with the
help of RLS, instead of the Ordinary Least Squares applied in psLSHADE. Fur-
thermore, unlike psLSHADE, rmmLSHADE does not use an archive of already
evaluated samples. Accordingly, it re-estimates meta-model coefficients once per
evaluation, not once per iteration as is the case of psLSHADE.

2 Related Work

In this section, LSHADE and psLSHADE are briefly described. The LSHADE
algorithm is the basis of the proposed rmmLSHADE. The psLSHADE extends
LSHADE by adding a pre-screening mechanism. For a detailed description of
LSHADE and psLSHADE, please see the original works ( [25] and [29,30], resp.).

2.1 LSHADE

LSHADE is an iterative population-based meta-heuristic. In each iteration g,
population P g = [xxxg

1, . . . ,xxx
g
Ng ], where each individual i represents a solution

xxxg
i = [xg

i,1, . . . , x
g
i,D], is subjected to three successive phases: mutation, crossover,

and selection. In the mutation phase, each parent vector xxxg
i is randomly mutated

into vector vvvg
i . In the crossover phase, each mutated vector vvvg

i is crossed with
its parent vector xxxg

i , resulting in trial vector uuug
i . Finally, in the selection phase,

vector uuug
i is evaluated using fitness function and replaces its parent xxxg

i if its value
is better than the parent’s value (f(uuug

i ) < f(xxxg
i )). Both mutation and selection

are based on parameters (F g
i and CRg

i , respectively) obtained independently for
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each individual i. In a nutshell, memory, included in LSHADE, stores success-
ful F g

i and CRg
i parameters values that have resulted in fitness function value

improvement in the selection phase. Parameter adaptation shifts the mean value
of F g

i and CRg
i during generation towards successful values. Additionally, during

the optimization run the population size decreases from Ninit to Nmin.

2.2 psLSHADE

The psLSHADE extends the baseline LSHADE by means of the pre-screening
mechanism. In the mutation phase, each individual i generates independently
Ns mutated vectors vvvg,ji , j = 1, . . . , Ns. Next, they are subjected to the same
(per individual) rules in the crossover phase. Right before the selection phase,
the meta-model estimates the surrogate value fsurr of each trial vector uuug,j

i

and designates the best one uuug,best
i , independently for each i. Finally, all Ng

best trial vectors uuug,best
i , i = 1, . . . , Ng are evaluated, and their parameters

F g,best
i , CRg,best

i are stored if they have improved the fitness function value com-
pared to the parent’s one. The whole pre-screening process is transparent for
parameter adaptation and memory features.

The meta-model utilizes an archive of limited size Na = 2 ·dfmm, where dfmm

is the number of degrees of freedom of the meta-model. The archive contains Na

best already evaluated solutions and corresponding fitness function values. The
meta-model is estimated using Ordinary Least Squares [27], once per iteration,
before pre-screening, i.e., the same meta-model is utilized in all Ng pre-screening
procedures. The meta-model consists of the following transformations: linear
(xd), quadratic (x2

d), interactions (xd · xd′), inverse linear (x−1
d ) and inverse

quadratic (x−2
d ), resulting in dfmm = 0.5 · (D2 + 7D) + 1.

3 Proposed rmmLSHADE

The underlying idea of rmmLSHADE is discussed below, along with a description
of the meta-model integration and the pre-screening mechanism. A pseudocode
of the method is presented in Algorithm 1. The source code of rmmLSHADE is
available at https://bitbucket.org/mateuszzaborski/rmmlshade/.

In rmmLSHADE, the basic population P g consists of Ng individuals xxxg
i =

[xg
i,1, . . . , x

g
i,D], i = 1, . . . , Ng. Before the mutation phase population P g is mul-

tiplicated Nm times resulting in the extended population:

P g
ext = [P g, . . . , P g] = [xxxg

1, . . . ,xxx
g
Ng , . . . ,xxx

g
1, . . . ,xxx

g
Ng ] (1)

where |P g
ext| = Nm · Ng. The same extension rules apply to a vector containing

fitness values. Next, the mutation is applied to each individual k = 1, . . . , Nm ·Ng

as follows:
vvvg
k = xxxg

k + F g
k (xxxg

pbestk
− xxxg

k) + F g
k (xxxg

r1k
− xxxg

r2k
) (2)

The pbestk index denotes a randomly selected individual from the set of p · Ng

best individuals from the original population P g, where p ∈ [0, 1] is a parameter.

https://bitbucket.org/mateuszzaborski/rmmlshade/
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Algorithm 1. rmmLSHADE high-level pseudocode
1: Set all parameters Ninit, Nmin, MF , MCR, p, a, H, Na, Nm, λ
2: Initialize M0

F,m and M0
CR,m memory entries with default values of MF and MCR

3: P 0 = [xxx0
1, . . . ,xxx

0
N0 ] � Population initialization using Latin Hypercube

Sampling [14]
4: Estimate meta-model’s coefficients www0 from P 0 and fitness function values of P 0

using Ordinary Least Squares [27]
5: g=0
6: while evaluation budget left do
7: Extend P g to P g

ext = [P g, P g, . . . , P g], where |P g
ext| = Nm · Ng using eq. (1)

8: Generate Nm · Ng mutated vectors vvvg
k using eq. (2)

9: Generate Nm · Ng trial vectors uuug
k using eq. (3)

10: for i = 1 to Ng do
11: Calculate Nm · Ng surrogate values fsurr(uuug

k)

12: Designate the best (not already chosen) trial vector uuug,best
i

13: Evaluate trial vector uuug,best
i using true fitness function

14: Update coefficients wwwg using RLS eq. (9)
15: end for
16: Do selection of all Ng chosen trial vectors uuug,best

i using eq. (4)
17: Update memory with Mg

F,m and Mg
CR,m using eq. (6)

18: Set new population size Ng+1 using eq. (5)
19: g = g + 1
20: end while

Index r1k ∈ {1, . . . , Ng} indicates the individual from the original population
P g. Index r2k ∈ {1, . . . , Ng + |A|}, denotes an individual from the union of the
original population P g and an external archive A. The principles of external
archive A are discussed in Sect. 3.2. The following inequalities: k �= r1k, k �= r2k,
r2k �= r1k, k �≡ r1k (mod Ng) and k �≡ r2k (mod Ng) must be fulfilled. The way
of setting the scaling factor F g

k in (2) is discussed in Sect. 3.1.
In the crossover phase Nm · Ng trial vectors uuug

k = [ug
k,1, . . . , u

g
k,D] are gener-

ated as follows:

ug
k,d =

{
vg
k,d, if rand(0, 1) ≤ CRg

k or d = drandk

xg
k,d, otherwise

(3)

where rand(0, 1) is a uniformly sampled number from (0, 1), drandk ∈ {1, . . . , D}
is a randomly selected index and CRg

k is a crossover rate described in Sect. 3.1.
All listed above parameters are generated independently per individual k.

A four-step loop occurs after the crossover phase (cf. Algorithm 1). The loop
is executed Ng times in order to evaluate Ng subsequent best trial vectors uuug,best

i ,
i = 1, . . . , Ng. In the first step, the meta-model estimates surrogate values fsurr

of all trial vectors uuug
k. Then, the best, not already chosen, trial vector uuug,best

i is
picked for evaluation. Finally, after fitness function evaluation, the meta-model
is updated using the rules presented in Sect. 3.3.

The selection phase (4) results in restoring the population size to the original
value Ng.
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xxxg+1
i =

{
uuug,best
i , if f(uuug,best

i ) < f(xxxg
i )

xxxg
i , otherwise

(4)

Finally, Linear Population Size Reduction (LPSR), derived from LSHADE,
changes the population size P g after the selection phase. A target population
size is defined by the following equation:

Ng+1 = round

((
Nmin − Ninit

MAX NFE

)
· NFE + Ninit

)
(5)

where MAX NFE is the optimization budget and NFE is the number of FFEs
made so-far. Ninit and Nmin are algorithm parameters. The worst individuals
are removed from the population to achieve the desired population size Ng+1.

3.1 Parameter Adaptation

Both the scaling factor F g
k in (2) and crossover rate CRg

k in (3) are adaptive
parameters. Analogously to LSHADE, the adaptation is provided by a memory
mechanism. The memory stores those historical values of F g,best

i and CRg,best
i

that succeeded, i.e., their corresponding trial vector uuug,best
i improved the fitness

function value f(uuug,best
i ) compared to its parent f(xxxg

i ).
The memory consists of H (H is a parameter) entry pairs (Mg

F,m,Mg
CR,m),

where m = 1, . . . , H. In each iteration, after the selection phase, all success-
ful values F g,best

i and CRg,best
i are stored in the sets SF and SCR, resp. Both

sets are transformed using weighted Lehmer means to obtain two scalar values:
meanWL

(SF ) and meanWL
(SCR):

meanWL
(S) =

∑|S|
s=1 wsS

2
s∑|S|

s=1 wsSs

, ws =
Δfs∑|S|
r=1 Δfr

(6)

where Δfp = f(xxxg
p) − f(uuug,best

p ), p ∈ {s, r}.
The memory entry pairs (Mg

F,m,Mg
CR,m) are updated cyclically with pairs

(meanWL
(SF ),meanWL

(SCR)), using m = 1, 2, . . . ,H, 1, 2, . . . entry indexing
scheme. Moreover, if all CRg,best

i values in set SCR are equal to 0, the entry
Mg

CR,m is permanently set to terminal value ⊥ (the notation follows LSHADE’s
description [25]) instead of meanWL

(SCR).
The values F g

k and CRg
k are generated randomly using Cauchy distribution

and Normal distribution, respectively, using Mg
F,rk

and Mg
CR,rk

as distribution
parameters. Both Mg

F,rk
and Mg

CR,rk
are taken from the memory. A random

index rk ∈ 1, . . . H denotes the memory index and is designated independently
for each individual k of population P g

ext. Concluding, F g
k and CRg

k are generated
using the following formulas:

F g
k = randCauchy(M

g
F,rk

, 0.1) (7)
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CRg
k =

{
0 if Mg

CR,rk
= ⊥

randNormal(M
g
CR,rk

, 0.1) otherwise
(8)

Both values F g
k and CRg

k are limited. Scaling factor F g
k is truncated from top

to 1. If scaling factor F g
k ≤ 0, a random generation is repeated. Crossover rate

CRg
k is truncated to [0, 1].

3.2 External Archive

An external archive A is incorporated into rmmLSHADE. Its principle is inspired
by the one employed in baseline LSHADE. However, the proposed pre-screening
mechanism enforces some adjustments. Archive A extends the current population
P g
ext with parent vectors replaced by a better trial vector in the selection phase.

The parent vector is an xxxg
k vector utilized in the successful uuug,best

i generation
(2). The size of the archive is a ·Ng, where a is a parameter. Randomly selected
elements are removed when the archive is full in order to insert new element.
A gradual decrease of the population size leads to shrinking the archive size.
Similarly, randomly selected elements are when necessary.

3.3 Recursive Meta-model Description

The rmmLSHADE utilizes a global linear meta-model that pre-screens trial vec-
tors to choose the best ones according to its surrogate value. Although the model
is technically linear, it contains additional nonlinear transformations of variables:
constant, quadratic, and interactions. Compared to the meta-model incorporated
into psLSHADE, rmmLSHADE meta-model does not include inverse linear and
inverse quadratic transformations. The absence of these inverse transformations
is due to the higher risk of numerical instability in Recursive Linear Squares
(RLS) compared to Ordinary Least Squares. We observed this phenomenon in
preliminary trials while including extra inverse transformations. The final form
of the meta-model utilized in rmmLSHADE is presented in Table 1.

Table 1. A description of transformations and the final form of the recursive meta-
model (rmm.) For the sake of readability, the estimated coefficients applied to each
variable are omitted.

Name Form DoF

Constant zzzc = [1] dfc = 1

Linear zzzl = [x1, . . . , xD] dfl = D

Quadratic zzzq = [x2
1, . . . , x

2
D] dfq = D

Interactions zzzi = [x1x2, . . . , xD−1xD] dfi = D(D−1)
2

Final rmm zzzmm = [zzzc + zzzl + zzzq + zzzi] dfmm = D2+3D
2

+ 1

The RLS filter [22, Eqs. (21.36)–(21.39)] is an adaptive algorithm that recur-
sively solves the least squares problem. It provides a procedure that computes



Surrogate-Assisted LSHADE Algorithm Utilizing RLS Filter 153

coefficients wwwt from wwwt−1 considering input signal aaat, output signal dt, and out-
put signal estimation d̂t = aaaT

t wwwt−1. et = dt − aaaT
t wwwt−1 is an output error. The

sum of error squares is a cost function being minimized.
The rmmLSHADE employs RLS filter to recursively estimate meta-model

coef-
ficients. Hence: aaat = zzzmm, dt = f(uuug,best

i ), and d̂t = fsurr(uuug,best
i ) = zzz�

mmwwwt−1,
where zzzmm denotes the uuug,best

i vector transformation (cf. Table 1). The follow-
ing system of equations expresses the recursive estimation of the meta-model
coefficients wwwt:

et = f(uuug,best
i ) − zzz�

mmwwwt−1, gggt =
Qt−1zzzmm

λ + zzz�
mmQt−1zzzmm

Qt =
1
λ

(Qt−1 − gggtzzz
�
mmQt−1), wwwt = wwwt−1 + gggtet

(9)

where λ ∈ (0, . . . 1] is a forgetting factor and Qt is a matrix of size |zzzmm| × |zzzmm|.
The RLS filter requires two initial components: Q0 and www0. The initial

matrix Q0 is an identity matrix and www0 is estimated using OLS regression [27]
performed for the initial population P 0 = [xxx0

1, . . . ,xxx
0
N0 ] on the corresponding

N0 = Ninit fitness function values f(xxx0
i ). P 0 is generated using Latin Hyper-

cube Sampling [14] to provide better search space coverage. Therefore, the initial
population size must at least equal the number of the meta-model’s degrees of
freedom dfmm = 0.5 · (D2 + 3D) + 1.

The forgetting factor λ directly affects the meta-model performance. As the
population converges, the global meta-model is evolving into the local one. In
other words, since we are dealing with a time-varying fitness landscape, λ = 1
may decline the adaptation ability of the meta-model. In contrast, undersized
λ < 1 may cause instability due to the overfitting, i.e., insufficient noise signal
filtering. Section 4 includes experimental evaluation of λ = 0.98, 0.99, 1.00.

4 Experimental Evaluation

In the experimental evaluation the CEC2021 Special Session and Competition
on Single Objective Bound Constrained Numerical Optimization benchmark suite
was used, described in the technical report [19], hereafter referred to as CEC2021.

CEC2021 consists of 10 functions defined for D = 10 and D = 20. The func-
tions are split into 4 categories: unimodal (F1), basic (F2 – F4), hybrid (F5 – F7),
and composition functions (F8 – F10). All of them are bounded to [−100, 100]D.
Furthermore, three function transformations are applied: bias (B), shift (S), and
rotation (R) to increase the complexity of the benchmark problems. Besides the
variant without transformations, four additional combinations are considered in
the tests: S, B+S, S+R, and B+S+R. Each experiment was repeated 30 times.

Although CEC2021 proposes, by default, an optimization budget of 2 · 105

for D = 10 and 106 for D = 20, we follow the experimental procedure used for
the psLSHADE evaluation [29,30] and assume an optimization budget of 103 ·D.
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Moreover, to ensure a fair comparison, all rmmLSHADE parameters shared
with psLSHADE were not changed with respect to psLSHADE parameteriza-
tion [29,30]. Also, the baseline LSHADE included in the comparison follows the
same parametrization: initial population size Ninit = 18 · D, final population
size Nmin = 4, initial value of MF = 0.5, initial value of MCR = 0.5, best-
from-population rate p = 0.11, archive rate a = 1.4, memory size H = 5. Since
psLSHADE utilizes Ns = 5 number of trial vectors per individual, despite prin-
cipal operational differences in rmmLSHADE, we set Nm = 5, as well.

We followed the performance metrics described in detail in the technical
report [19]. The final Score = Score1 + Score2, where Score ∈ (0, 100], uti-
lizes four partial measures: SNE, SR, Score1, and Score2. SNE represents
the sum of the smallest errors obtained by a given algorithm for each problem.
SR indicates the sum of the algorithm’s ranks among all problems. Both SNE
and SR are relative, referring to the performance of all evaluated algorithms.
Score1 transforms SNE by comparing it to the best SNE obtained among other
algorithms. Score2 transforms SR in the same manner.

The comparison results of rmmLSHADE with LSHADE and psLSHADE
are presented in Table 2. Three rmmLSHADE variants, for λ = 0.98, 0.99, and
1.00 are included. In addition, a variant denoted λ = Ø, without the RLS filter
adaptation is presented. In this case coefficients www0, once-estimated using OLS,
remain unchanged (www = www0) during the whole optimization run.

Table 2. Scores of LSHADE, psLSHADE and rmmLSHADE (λ = 0.98, 0.99, 1.0) for
103 · D optimization budget. λ = Ø is a variant without RLS adaptation.

Score Algo

LSHADE psLSHADE λ = Ø λ = 0.98 λ = 0.99 λ = 1.0

SNE 30.06 17.86 36.72 15.75 14.81 21.62

SR 217.00 154.25 245.50 138.50 122.75 172.00

Score 1 24.64 41.47 20.16 47.02 50.00 34.25

Score 2 28.28 39.79 25.00 44.31 50.00 35.68

Score 52.92 81.26 45.16 91.33 100.00 69.93

Not surprisingly, the variant with λ = 0.99 turned out to be the best perform-
ing. In 57 out of 100 test cases (functions × transformations × dimensions) the
difference between this variant and psLSHADE was significant (Mann-Whitney
test, p-value=0.05). A smaller or larger value of λ causes a clear performance
degradation. The variant with no www adaptation is distinctly weakest, which sup-
ports the assumption from Sect. 3.3 about the significantly time-varying fitness
landscape. The proposed rmmLSHADE outperformed the reference psLSHADE.
The advantage over LSHADE is, unsurprisingly, more prominent.

Figure 1 shows four convergence plots for functions: F1, F3, F7, and F9 (D =
20) one per each of the four categories. The comparison includes rmmLSHADE
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(λ = 0.99), psLSHADE, and LSHADE. The plots present the error obtained after
every 100 FFEs. The error is averaged over 5 transformations and 30 independent
runs, i.e., each point is the average of 150 values.

F7 F9

F1 F3

0 5000 10000 15000 20000 0 5000 10000 15000 20000

0 5000 10000 15000 20000 0 5000 10000 15000 20000
3e+01

1e+02

3e+02

1e+03

5e+02

7e+02

1e+03

1e+00

1e+04

1e+08

1e+03

1e+05

1e+07

# FFEs

A
vg

. e
rr

or

LSHADE psLSHADE rmmLSHADE-0.99

Fig. 1. The averaged convergence of rmmLSHADE, psLSHADE and LSHADE for F1,
F3, F7, and F9 (D = 20) with 103 · D optimization budget. The x-axis represents the
number of FFEs, and the y-axis the error (a difference from the optimum) averaged
across 150 runs (5 transformation selections × 30 runs).

Function F1 is unimodal, so meta-model utilization is particularly noticeable
in this case. For the remaining functions, better convergence of rmmLSHADE
over LSHADE and psLSHADE is clearly observable with the greatest advantage
is occurring in the first stage of the optimization run. Further, the distinction
for the last 2 ·103 - 5 ·103 FFEs (depending on the function) tends to decrease. It
is worth emphasizing that for F3 and F9, psLSHADE starts to converge approx-
imately in the same time as rmmLSHADE but later loses its momentum and
approaches the baseline LSHADE. The above observation suggests better adapt-
ability of the meta-model utilized in rmmLSHADE than the one of psLSHADE.

Figure 2 illustrates the convergence of LSHADE and the four rmmLSHADE
variants from Table 2 for F2 and F4, with D = 20 (the λ = Ø variant is denoted
rmmLSHADE-no-adapt). Additionally, 3D maps of 2D versions of F2 and F4

are shown. Function F2 was chosen due to the absence of a significant global
structure. In turn, function F4 contains a noticeable flat area. Both cases make
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meta-model adaptation pertinent. The lack of model adaptation (rmmLSHADE-
no-adapt) results in dramatic performance degradation for both functions. A
tendency to convergence to local optimum could be observed when the meta-
model was not fitted well during experiments. Similarly, a slightly smaller but
still significant phenomenon occurs for λ = 1.00. The λ = 0.98 variant is slightly
weaker than the case of λ = 0.99. We also observed that decreasing λ below
0.99 introduces noise in the meta-model estimations, which declines meta-model
utility. In particular, trial vectors tend to be chosen randomly, i.e., rmmLSHADE
start to behave more like baseline LSHADE.
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Fig. 2. The averaged convergence of rmmSHADE with λ = 0.98, 0.99, 1.00, and without
www adaptation (denoted as rmmLSHADE-no-adapt) for F2 and F4 (D = 20) with 103 ·D
optimization budget. The x-axis represents the number of FFEs, and the y-axis the
error (a difference from the optimum) averaged across 150 runs (5 transformation
selections × 30 runs). Additionally, 3D maps from [19] of 2D versions of F2 and F4 are
presented.

4.1 The Algorithm’s Runtime

We examined the runtime of the methods in accordance with detailed instruc-
tions presented in the technical report [19]. The results are presented in Table 3.
The core measure is T3 which represents the final runtime assessment (named
algorithm complexity in [19]). The final runtime is understood as the time
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required by a pure algorithm computations (excluding the time for FFEs calcula-
tion) in relation to test program runtime T0 (see [19] for the details). In addition,
we present extra measure T ′

3 which indicates the relation of algorithm’s final run-
time to LSHADE’s final runtime. psLSHADE is 18.7 times slower than LSHADE
for D = 10 and 35.1 for D = 20. The proposed rmmLSHADE is characterized by
36.2 and 169.9 ratios. It follows that rmmLSHADE is approximately two times
slower than psLSHADE for D = 10 and 5 times slower for D = 20.

Please note that rmmLSHADE estimates the meta-model after each eval-
uation, not each iteration, which results in 46 and 79 times more meta-model
estimations for D = 10 and D = 20, resp. compared to psLSHADE (column
nmm). Hence, we consider the estimated runtime highly satisfactory.

Table 3. Runtime of rmmLSHADE, psLSHADE and LSHADE calculated according
to the recommendation proposed in [19]. T0 is time of a test program run. T1 - time of
pure 2 ·105 FFEs of F2 function. T2 - average running time of the algorithm for F2 with
2 · 105 evaluation budget. T3 = (T2 − T1)/T0 is the final runtime. T ′

3 is T3 related to
LSHADE’s final runtime. nmm denotes the average number of meta-model estimates
during an optimization run.

D Algorithm T0[s] T1[s] T2[s] T3 T ′
3 nmm

10 rmmLSHADE 0.002323 10.4592 83.3448 31364.19 36.2 199821

psLSHADE 0.002323 10.4592 48.0409 16172.15 18.7 4329

LSHADE 0.002323 10.4592 12.4722 866.23 1 0

20 rmmLSHADE 0.002323 11.8945 279.9270 115339.96 169.9 199641

psLSHADE 0.002323 11.8945 67.2213 23808.24 35.1 2528

LSHADE 0.002323 11.8945 13.4723 678.94 1 0

5 Conclusion

In this paper the rmmLSHADE algorithm enhancing the popular LSHADE with
a recursive meta-model based on the RLS filter is introduced. The rmmLSHADE
is archive-free and its meta-model is estimated sample-by-sample. The algo-
rithm is evaluated using the popular CEC2021 benchmark, in expensive scenario,
i.e., 103 · D FFEs optimization budget. rmmLSHADE is compared to baseline
LSHADE and to psLSHADE – which proven to be efficient in expensive scenar-
ios. The proposed algorithm outperforms both LSHADE and psLSHADE when
utilizing exactly the same experiment settings and common parameterization.
We also demonstrate how the forgetting factor λ affects the performance.

Future work includes using less accurate but faster recursive algorithms, e.g.
Least Mean Squared filter.
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Abstract. Developing an efficient solver for hyperparameter optimiza-
tion (HPO) can help to support the environmental sustainability of mod-
ern AI. One popular solver for HPO problems is called BOHB, which
attempts to combine the benefits of Bayesian optimization (BO) and
Hyperband. It conducts the sampling of configurations with the aid of a
BO surrogate model. However, only the few high-fidelity measurements
are utilized in the building of BO surrogate model, leading to the fact
that the built BO surrogate cannot well model the objective function in
HPO. Especially, in the scenario of multiobjective optimization (which
is more complicated than single-objective optimization), the resultant
BO surrogates for modelling all conflicting objective functions would
be more likely to mislead the configuration search. To tackle this low-
efficiency issue, in this paper, we propose an efficient algorithm, referred
as Multiobjective Multi-Fidelity Bayesian Optimization and Hyperband,
for solving multiobjective HPO problems. The key idea is to fully con-
sider the contributions of computationally cheap low-fidelity surrogates
and expensive high-fidelity surrogates, and enable effective utilization of
the integrated information of multi-fidelity ensemble model in an online
manner. The weightages for distinct fidelities are adaptively determined
based on the approximation performance of their corresponding surro-
gates. A range of experiments on diversified real-world multiobjective
HPO problems (including the HPO of multi-label/multi-task learning
models and the HPO of models with several performance metrics) are
carried out to investigate the performance of our proposed algorithm.
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Experimental results showcase that the proposed algorithm outperforms
more than 10 state-of-the-art peers, while demonstrating the ability of
our proposed algorithm to efficiently solve real-world multiobjective HPO
problems at scale.

Keywords: Hyperparameter optimization · Multiobjective
optimization · Bayesian optimization · Hyperband · Surrogate

1 Introduction

In the field of AutoML, there are two fundamental problems, namely, hyper-
parameter optimization (HPO) and neural architecture search (NAS) [9]. The
former aims to automate the search for well-behaved hyperparameter configu-
rations based on the data at hand, and hence it plays a crucial role in enabling
the underlying machine learning (ML) model perform effectively. However, in
today’s era, the HPO problem generally suffers from heavy evaluation costs for
training the underlying model due to the “large-instance” character of datasets
and/or the “deep” depth of models. Resultantly, a substantial amount of energy
is usually required in the procedure of HPO, and the attention has been increas-
ingly drawn to the carbon footprint of deep learning [1,25]. Developing an effi-
cient solver could help to alleviate the computational bottleneck in HPO, thus
supporting the environmental sustainability of modern AI [5].

In the literature, there is a large body of work on single-objective HPO. How-
ever, there is relatively less work on the more challenging HPO problem consider-
ing multiple objective functions, which is called multiobjective HPO (MOHPO).
In essence, MOHPO is a multiobjective optimization problem (MOOP), which
is a more general, challenging and realistic scenario. For example, when tuning
the hyperparameters of a neural network model, one may be interested in max-
imizing the prediction accuracy while minimizing the prediction time. In this
scenario, it is unlikely to be possible to optimize all of the objectives simulta-
neously, since they may be conflicting. Thus, for an MOHPO problem, we aim
to find a set of best trade-off configurations rather than a single best configura-
tion. This would provide a decision maker an even greater degree of flexibility.
Furthermore, the multiobjective optimization technique has attracted more and
more attention within the ML area, since [24] has demonstrated the feasibility
of modeling multi-task learning problem as multiobjective optimization. Along
this line, we could model the HPO of a multi-task/multi-label learning model as
an MOHPO problem. Therefore, in terms of the research on MOHPO, there is
a lot more practical potential that has yet to be explored.

Among existing solvers for HPO problems, one popular method called BOHB
[7] attempts to combine the benefits of Bayesian optimization (BO) and Hyper-
band (HB) [17]. And the MO-BOHB [12] for solving MOHPO problems is a
simple extension of BOHB to the multiobjective case. Both them conduct the
sampling of configurations with the aid of a BO surrogate model. However, only
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the few high-fidelity measurements are utilized in the building of BO surro-
gate model, leading to the fact that the built BO surrogate cannot well model
the objective function in HPO. This issue is more serious when simultaneously
optimizing multiple objectives, as the resultant BO surrogates for modelling all
conflicting objective functions would be of higher approximation error and more
likely to mislead the configuration search.

Of particular interest in this paper is: how to well tackle the low-efficiency
issue of Hyperband-style HPO solver due to the scarcity of high-fidelity mea-
surements, in the scenario of multiobjective optimization? With this in mind,
we draw inspirations from some state-of-the-art multi-fidelity single-objective
HPO solvers [11,14,18], and propose a Multiobjective Multi-Fidelity Bayesian
Optimization and Hyperband (called MoFiBay for short) algorithm to efficiently
solve MOHPO problems. This is the first work that attempts to combine
the benefits of both HB and multi-fidelity multiobjective BO. The key
idea of MoFiBay is to fully consider the contributions of computationally cheap
low-fidelity surrogates and expensive high-fidelity surrogates, and enable effec-
tive utilization of the integrated information of multi-fidelity ensemble model in
an online manner. To differentiate the contributions of the surrogates with dis-
tinct fidelities, the weightages for all fidelities are adaptively determined based
on the approximation performance of their corresponding surrogates. To val-
idate the performance of the proposed MoFiBay algorithm, we conducted a
series of experiments on real-world MOHPO problems (including the HPO of
multi-label/multi-task learning models and the HPO of models with several per-
formance metrics), covering various sizes of real-world datasets and distinct mod-
els. Moreover, we have also compared MoFiBay to more than 10 state-of-the-art
MOHPO solvers, to showcase the efficacy of the proposed algorithm.

2 Related Work

In essence, MOHPO is generally considered as a type of expensive black-box
optimization problem. Without loss of generality, it can be expressed as a mul-
tiobjective optimization problem (MOOP), shown as follows:

min
x∈Ω

F(x) =
(
f1

(
x
)
, . . . , fM

(
x
))

(1)

where x is an n-dimensional decision vector and fi(x) denotes the i-th objective
function (whose computation requires some data at hand). Ω ⊆ Rn represents
the decision space (also known as search space), and the image set S = {F(x)|x ∈
Ω} is called the objective space.

In the literature, there are a wide variety of surrogate model based mul-
tiobjective BO algorithms that can be used to solve the expensive MOHPO
problems. One classical solver called ParEGO [15] employs random scalarization
technique to transform the original MOOP to single-objective optimization, and
utilizes the expected improvement (EI) as the acquisition function to select the
next input for evaluation. In addition to scalarization technique, many methods
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attempt to optimize the Pareto hypervolume (PHV) metric [6] that has the abil-
ity to capture the quality of a candidate Pareto set. To achieve this, one may
extend the standard acquisition functions to the scenario of multiobjective opti-
mization, for example, expected improvement in PHV (EHI) [6] and probability
of improvement in PHV (SUR) [22]. SMSego [23] attempts to find a limited
set of points by optimizing the posterior means of the Gaussian processes, and
computes the gain in hypervolume over those set of points.

On the other hand, some principled algorithms (such as PAL [28], PESMO
[10], USeMO [4] and MESMO [2]) attempt to reduce the uncertainty by virtue
of information theory. PAL iteratively selects the candidate input for evaluation
towards the goal of minimizing the size of uncertain set [28]. Although PAL is
theoretically guaranteed, it is only applicable for the input space with finite set of
discrete points. PESMO depends on input space entropy search, and selects the
input maximizing the information gain about the Pareto set in each iteration [10].
USeMO is a general framework that iteratively generates a cheap Pareto front
using the surrogate models and then selects the point with highest uncertainty
as the next query [4]. MESMO improves over PESMO by extending max-entropy
search (MES) to the multi-objective setting. Till now, there exists only one multi-
fidelity multiobjective BO algorithm within ML literature. This algorithm, called
MF-OSEMO [3], employs an output space entropy based acquisition function to
select the sequence of candidate input and fidelity-vector pairs for evaluation.

Although BOHB has been a popular solver for single-objective HPO prob-
lems, there exists only one Hyperband-style solver (namely, MO-BOHB [12]) for
MOHPO problems. MO-BOHB is a simple extension of the popular BOHB [7]
to the multiobjective case. However, this solver did not attempt to tackle the
low-efficiency issue of BOHB due to the scarcity of high-fidelity measurements.
Thus, the low-efficiency issue of Hyperband-style solver for MOHPO
problems still remains to be settled.

3 Proposed MoFiBay Algorithm

This section first provides an overview of the proposed MoFiBay algorithm for
solving MOHPO problems, and then introduces its important components.

3.1 Framework of MoFiBay

First of all, we assume that an MOHPO problem is modeled as an MOOP as
shown in Eq. (1). Then, we can accordingly specify the type of training resource
(such as the size of training subset or the number of iterations) and also the unit
of resources.

The pseudocode of the proposed MoFiBay algorithm for solving this type of
MOHPO problem are shown in Algorithm 1. On the whole, the MoFiBay follows
the basic flows of BOHB. The pseudocode shown in Lines 4–10 constitute a whole
call of a multiobjective version of BOHB algorithm, which can be called several
times until the termination criterion (in terms of the total budget for solving
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Algorithm 1. Pseudocode of Proposed MoFiBay
Input: F: objective functions; Ω: hyperparameter space; Rmax: maximum amount of

resources for a hyperparameter configuration; η: discarding faction;
Output: Non-dominated solutions (best trade-off configurations);
1: Initialization: smax = �logη(Rmax)�, B = (smax + 1)Rmax, K = �logη(Rmax)� + 1;

2: Initialize the multi-fidelity measurements Di = ∅ (i = 1, ..., K) and the multi-
fidelity ensemble model Mens = None;

3: while termination criterion is not fulfilled do
4: for s ∈ {smax, smax − 1, ..., 0} do
5: n1 = � B

Rmax
· ηs

s+1
�, r1 = Rmax · η−s;

6: Sample n1 configurations from Ω by using Algorithm 2;
7: Execute the SuccessiveHalving procedure (the inner loop) with the sampled n1

configurations and r1 as input, and collect the new multi-fidelity measurements
D′

1:K ;
8: Di = Di

⋃
D′

i (i = 1, ..., K);
9: Update the multi-fidelity ensemble model Mens with D1:K ;

10: end for
11: end while
12: Output the non-dominated solutions (w.r.t. F) in DK .

Algorithm 2. Pseudocode of Model-based Sampling
Input: F: objective functions; Ω: hyperparameter space; Mens: multi-fidelity ensem-

ble model; Ns: number of random configurations to optimize EHVI; D1:K : multi-
fidelity measurements; ρ: fraction of random configuration;

Output: Next configuration to evaluate;
1: if rand() < ρ or Mens = None then
2: Output a random configuration;
3: else
4: Draw Ns configurations randomly, and then compute their values of EHVI metric

(where Mens is adopted as the surrogate model);
5: Output the configuration with the largest EHVI value.
6: end if

an MOHPO problem) is fulfilled. Next, we will illustrate how the multiobjective
version of BOHB (Lines 4–10 in Algorithm 1) is conducted.

In the outer loop, a grid search over feasible values of n1 (the number of
hyperparameter configurations to evaluate in the inner loop) and r1 (the amount
of resources) is conducted, which is the same as in Hyperband [17]. For each
specific pair (n1, r1), Algorithm 2 is invoked to sample n1 configurations from Ω
with the aid of a multi-fidelity ensemble model Mens. Then, the SuccessiveHalving
procedure (i.e., the inner loop) is executed with the sampled n1 configurations
and r1 as input. Each of the new multi-fidelity quality measurements D′

i appeared
in the SuccessiveHalving procedure is collected, and then merged with the old
Di so as to form an augmented Di. With the augmented measurements D1:K ,
the multi-fidelity ensemble model Mens is updated. Finally, the non-dominated
solutions (best trade-off configurations w.r.t. F) in DK are output as final results.
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The important components of MoFiBay (including the SuccessiveHalving pro-
cedure, the building and update of multi-fidelity ensemble model, and the sam-
pling of configurations) will be elaborated in the following subsections.

3.2 Successive Halving Based on Random Scalarization

Each time when entering the inner loop, a search direction vector λ is drawn
uniformly at random from the set of evenly distributed vectors defined by

Λ =

⎧
⎨
⎩λ = (λ1, ..., λM )

∣∣∣∣∣∣
M∑

j=1

λj = 1 ∧ ∀j, λj =
l

H
, l ∈ {0, ...,H}

⎫
⎬
⎭ (2)

with |Λ| = CM−1
H+M−1.

Recall that a specific pair (n1, r1) serves as the input of the SuccessiveHalv-
ing procedure, and n1 hyperparameter configurations have been sampled before
the SuccessiveHalving procedure. The sampled n1 hyperparameter configurations
are firstly evaluated with the initial r1 units of resources, and the performance
score of each configuration x along the search direction λ is computed with the
augmented Tchebycheff function:

fλ(x) =
M

max
j=1

(λj · fj (x)) + 0.05
M∑

j=1

λj · fj (x). (3)

The n1 configurations are ranked based on the performance score. Then, only
the top η−1 configurations remain (while the evaluations of the other configura-
tions are stopped in advance), and their evaluations are continued with η times
larger resources, that is, n2 = n1 ∗η−1 and r2 = r1 ∗η. The n2 configurations are
ranked again by the performance score. This process repeats until the maximum
amount of training resources Rmax is reached, that is, ri = Rmax. In this way,
the badly-behaved configurations which have lower performance score along the
specific search direction vector are gradually discarded. And the superior con-
figurations have more chance to be evaluated with higher amount of training
resources. Therefore, this SuccessiveHalving procedure could help to accelerate
the configuration evaluations.

3.3 Construction and Update of Multi-fidelity Ensemble Model

Multi-fidelity Measurements: Note that after the SuccessiveHalving proce-
dure, different hyperparameter configurations have finally gone through objective
function evaluations with different amounts of training resources. This actually
classifies all configurations into several distinct configuration sets with different
fidelities. Denote these sets as D1, ...,DK , where the value of K can be deter-
mined based on the successive halving rule, that is, K = �logη(Rmax)� + 1.
Specifically, the measurement (x,y) in each set Di (i = 1, ...,K) is acquired
through evaluating x with ri = ηi−1 units of resources. The former K − 1 sets
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(i.e., D1:K−1) represent the low-fidelity measurements obtained from the early-
stopped evaluations, while the last one DK represents the high-fidelity mea-
surements obtained from the evaluations with the maximum amount of training
resources (i.e., rK = Rmax). Thus, the low-fidelity measurements in D1:K−1 are
actually the biased measurements about the true objective functions F, whereas
all the high-fidelity measurements in DK are the unbiased measurements.

With the above in mind, if we use Di (i < K) to fit a BO surrogate model
(denoted as Mi), then Mi should be to model the objective functions Fi with
ri units of training resources, rather than to model the true objective functions
FK = F with the maximum amount of training resources. When i increases,
the measurements in Di are obtained from the evaluations with a larger amount
of training resources, and then the corresponding model Mi has the ability to
provide a more accurate approximation to the true objective functions F. Thus,
it may be expected that the low-fidelity measurement sets D1:K−1, which are
computationally cheaper than DK , can provide a certain degree of instrumental
information for surrogate modeling. In this regard, we can consider to integrate
the biased yet informative low-fidelity measurements with high-fidelity measure-
ments, when building a BO surrogate to model the true objective functions F.

Construction of Multi-fidelity Ensemble Model: With the aim of integrat-
ing all the instrumental information from low- and high-fidelity measurements,
we construct a multi-fidelity ensemble model called Mens. To be specific, we let
each BO surrogate Mi (fitted on Di, i = 1, ...,K) act as a base surrogate, and
assign each base surrogate with a weightage wi ∈ [0, 1]. Note that all weightages

need to satisfy
K∑

i=1

wi = 1. It’s expected that the weightages can reflect the online

contributions of different base surrogates with different fidelities. Specifically, for
the base surrogate Mi that can provide a more accurate approximation to the
true objective functions F, a larger wi should be assigned to it. Otherwise, the
corresponding wi should be smaller.

Here, we employ the MOTPE [21] to serve as the BO surrogate Mi fitted
on Di. Therefore, similar to [18], we also can use the generalized product of
experts framework to combine the predictions from the base surrogates M1:K

(MOTPEs) with weightages. The predictive mean and variance of the multi-
fidelity ensemble model Mens at x are computed by the following equations:

μens (x) =
(

K∑
i=1

μi (x) wiσ
−2
i (x)

)
σ2

ens (x) ,

σ2
ens (x) =

(
K∑

i=1

wiσ
−2
i (x)

)−1

.

(4)

Weightage Computation Method Based on Generalized Mean Square
Cross-validation Error: As illustrated above, the value of the weightage wi

should be proportional to the performance of Mi when approximating F. More-
over, all the weightages should be adaptively determined by means of an online
computation method. An intelligent weightage computation method is important
for building a superior ensemble of surrogates.
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It is claimed in [8] that the weightages should not only reflect the confidence
in the surrogates, but also filter out the adverse effects of surrogates which
perform poorly in sampling sparse regions. A weightage computation method
based on generalized mean square cross-validation error (GMSE) is proposed to
address these two issues. Here, we modify this method to make it suitable for
the multiobjective case, which can be formulated as follows:

wi = w∗
i

/
K∑

j=1

w∗
j
, w∗

i =
(
Ei + αĒ

)β
,

Ē = 1
K

K∑
i=1

Ei, Ei =

√
1

|DK |
|DK |∑
l=1

‖yl − ŷil‖2,
(5)

where (xl,yl) is the l-th measurement in DK , and ŷil is the i-th surrogate model
(i.e., Mi)’s corresponding prediction value using cross-validation. Ei is the given
error measure of Mi in the context of multiobjective optimization, and Ē indi-
cates the average value of all base surrogates’ error measures. Two parameters
α and β control the importance of averaging and individual surrogates, respec-
tively. And we adopt the setting of α = 0.05 and β = −1 according to the
suggestion in [8].

Update of Multi-fidelity Ensemble Model: With the augmented measure-
ments D1:K , the multi-fidelity ensemble model Mens is updated as follows: (1)
refitting each base surrogate Mi with all measurements in the augmented Di;
(2) computing the weightage for each base surrogate; (3) combining all base
surrogates to form the new multi-fidelity ensemble model Mens.

4 Experimental Studies

4.1 Comparative Algorithms

Our proposed MoFiBay is compared with 10 peers: (1) MO-BOHB [12]; (2)
ParEGO [15]; (3) SMSego [23]; (4) EHI [6]; (5) SUR [22]; (6) PESMO [10];
(7) MESMO [2]; (8) PFES [26]; (9) MF-OSEMO-TG; (10) MF-OSEMO-NI
[3]. In addition, the baselines (i.e., random search, SH-EMOA, MS-EHVI, MO-
BANANAS, and BULK & CUT) proposed in [12] for solving multiobjective joint
NAS+HPO problems are also compared. The parameter settings for the above
algorithms follow the suggestions in their original literature.

As the true Pareto fronts of the MOHPO problems constructed in the experi-
ments are unknown, we use the hypervolume as the indicator to compare the per-
formances of various algorithms. To be specific, we report the average hypervol-
ume values obtain by each algorithm over 10 independent runs on each MOHPO
problem.
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4.2 Experiment on the HPO of Models with Several Performance
Metrics

Construction of MOHPO Problems: In this experiment, we aim to solve
the type of MOHPO problem where several performance metrics are to be simul-
taneously optimized. To be specific, we consider the MNIST dataset [16]. The
MOHPO problem at hand is to find a neural network model with low predic-
tion error and low prediction time. These two performance metrics are conflict-
ing, since reducing the prediction error will involve larger networks which will
inevitably take longer time to predict. The underlying neural network model
for MOHPO is set as a feed-forward network (FFN) with ReLus in the hidden
layers and a soft-max output layer, and Adam [13] (with a mini-batch size of
4,000 instances during 150 epochs) is selected as the optimizer. The hyperpa-
rameters being optimized are as follows: the number of layers (between 1 and 3),
the number of hidden units per layer (between 50 and 300), the learning rate,
the amount of dropout, and the level of l1 and l2 regularization. The prediction
error is measured on a set of 10,000 instances extracted from the dataset. The
rest of the dataset, i.e., 50,000 instances, is used for training. We consider a logit
transformation of the prediction error, since the error rates are very small. The
prediction time is measured as the average time required for doing 10,000 pre-
dictions. We compute the logarithm of the ratio between the prediction time of
the network and the prediction time of the fastest network, (i.e., a single hidden
layer and 50 units). When measuring the prediction time, we do not train the
network and consider random weights (the time objective is also set to ignore
irrelevant parameters). Thus, the problem is suited for a decoupled evaluation
because both objectives can be evaluated separately.

In this experiment, the resource type is the number of iterations; the maxi-
mum amount of training resource Rmax is 81; one unit of resource corresponds
to 0.5 epoch. The termination criterion for each solver is set to 4 h.

Results: The average hypervolume values obtained by our proposed MoFiBay
algorithm and 10 peers on MOHPO of FFN model with minimizing prediction
error and minimizing prediction time are shown in Fig. 1. As can be seen, after
2 h, the hypervolume obtained by the three solvers involving multi-fidelity evalu-
ations (i.e., MF-OSEMO-TG, MF-OSEMO-NI and our proposed MoFiBay) are
much larger than the results obtained by other solvers, meaning that these three
solvers converge faster than other solvers. After 4 h, the hypervolume difference
among most solvers are small. This phenomenon indicates that most solvers
have converged. Among all solvers, our proposed MoFiBay algorithm has the
best performance in terms of efficiency, as it can obtain faster convergence and
larger hypervolume values.

4.3 Experiment on the HPO of Multi-label/Multi-task Learning
Models

Construction of MOHPO Problems: We employ a convolution neural net-
work (CNN) to serve as the underlying ML model, and use it to conduct multi-
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Fig. 1. Performance comparisons among different algorithms on MOHPO of FFN
model (minimizing prediction error & time).

label/multi-task classification. Multi-task learning, as the name suggests, needs
to simultaneously deal with multiple learning tasks. In essence, multi-label learn-
ing is a special form of multi-task learning where each task represents a different
label. The feasibility of modeling multi-task learning problem as multi-objective
optimization has been demonstrated in [24]. Thus, we can use multi-label/multi-
task learning datasets to conduct MOHPO experiments.

For the sake of simplicity, we limit the number of convolution layers in the
used CNN to 2. For the training of CNN, we choose the cross entropy loss with
dropout regularization as the loss function and select Adam (with 20 epochs)
as a state-of-the-art CNN optimizer. The hyperparameters being optimized and
their ranges are listed in Table 1. All hyperparameters are encoded in the range
[0, 1], and they can be transformed into their corresponding ranges through the
transformation method used in [19].

To construct an MOHPO problem, we let the classification error for each
label/task act as each objective function to be minimized. Two types of real-
world datasets are adopted:

1. Four multi-label learning datasets (including scene, yeast, delicious and
tmc2007 ) downloaded from the Mulan website1. For simplicity, we restrict
each of the original datasets to three labels by following the steps below:
selecting the top three labels (in terms of the number of instances in each
label) from all labels and then deleting the data instances without any label.
In this way, the MOHPO on each dataset would be modeled as a 3-objective
optimization problem. In addition, each dataset is split into a training set
and a validation set with a splitting ratio of 80% and 20%, respectively.

2. One multi-task learning dataset (i.e., the MultiMNIST dataset). Concretely,
we adopt the construction method introduced in [24] to build the Mul-
tiMNIST dataset (where the training set and validation set contain 60,000

1 http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. Hyperparameters of multi-label/multi-task learning models.

No. Description Range Type

1 Mini-batch size [24, 28] Discrete

2 Size of convolution window {1, 3, 5} Discrete

3 # of filters in the convolution layer [23, 26] Discrete

4 Dropout rate [0, 0.5] Continuous

5 Learning rate [10−4, 10−1] Continuous

6 Decay parameter beta 1 used in Adam [0.8, 0.999] Continuous

7 Decay parameter beta 2 used in Adam [0.99, 0.9999] Continuous

8 Parameter ε used in Adam [10−9, 10−3] Continuous

Table 2. Average hypervolume values obtained by different algorithms on HPO of
multi-label/multi-task learning models.

Scene Yeast Delicious tmc2007 MultiMNIST

MO-BOHB 0.644 0.523 0.266 0.520 0.917

ParEGO 0.640 0.521 0.260 0.478 0.908

SMSego 0.650 0.529 0.269 0.510 0.922

EHI 0.645 0.525 0.265 0.522 0.915

SUR 0.651 0.529 0.275 0.548 0.923

PESMO 0.654 0.532 0.274 0.556 0.928

MESMO 0.656 0.533 0.277 0.568 0.930

PFES 0.658 0.535 0.278 0.577 0.933

MF-OSEMO-TG 0.664 0.538 0.282 0.586 0.938

MF-OSEMO-NI 0.663 0.539 0.282 0.588 0.940

MoFiBay* 0.663 0.543 0.285 0.593 0.945

and 10,000 instances, respectively), which is a two-task learning version of
MNIST dataset. Hence, the MOHPO on MultiMNIST is a 2-objective opti-
mization problem.

In this experiment, the resource type is data subset; the maximum amount
of training resource Rmax is 27; one unit of resource corresponds to 1/27 times
the number of samples. The termination criterion for each solver is set to 4 h.

Results: Table 2 displays the average hypervolume values obtained by different
solvers on HPO of five multi-label/multi-task learning models. From this table,
we can observe that our proposed MoFiBay algorithm performs best on all con-
sidered datasets except scene. On the scene dataset, MoFiBay (Hyperband-style
solver) and MF-OSEMO-NI (not belonging to Hyperband-style solver) share the
second place, while MF-OSEMO-TG ranks first.
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Table 3. Architectural and non-architectural hyperparameters being optimized.

No. Description Range Log scale

1 # of convolution layers {1, 2, 3} No

2 # of filters in the convolution layer [24, 210] Yes

3 Kernel size {3, 5, 7} No

4 Batch normalization {true, false} No

5 Global average pooling {true, false} No

6 # of fully connected layers {1, 2, 3} No

7 # of neurons in the fully connected layer [21, 29] Yes

8 Learning rate [10−5, 100] Yes

9 Mini-batch size [20, 29] Yes

Table 4. Average hypervolume values obtained by different algorithms on mutiobjec-
tive joint NAS + HPO.

Flowers Fashion-MNIST

Random search 283.10 296.40

SH-EMOA 304.73 308.25

MO-BOHB 301.02 332.52

MS-EHVI 306.45 360.57

MO-BANANAS 302.09 301.55

BULK & CUT 311.96 350.08

MoFiBay* 316.19 363.48

4.4 Experiment on Mutiobjective Joint NAS+HPO

Construction of MOHPO Problems: In this experiment, we further test our
algorithm on the mutiobjective joint NAS+HPO benchmark proposed in [12]. We
select the network size (measured by the number of parameters in the network)
and the classification accuracy to act as the objectives of our multi-objective
optimization. And we define a maximum budget of 25 epochs for training a single
configuration. We used the Flowers dataset [20] and Fashion-MNIST dataset
[27]. We split these two datasets according to [12]. The hyperparameters being
optimized and their ranges are listed in Table 3. As for more details about the
search space, readers can refer to [12].

In this experiment, the resource type is data subset; the maximum amount
of training resource Rmax is 27; one unit of resource corresponds to 1/27 times
the number of samples. The termination criterion for each solver is set to 10 h.
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Results: Table 4 lists the average hypervolume values obtained by our proposed
MoFiBay algorithm and 6 baselines on the mutiobjective joint NAS+HPO prob-
lem. We can see that our proposed MoFiBay algorithm has the best performance
on both datasets. This phenomenon demonstrates that the proposed MoFiBay
also can well optimize the architectural hyperparameters.

5 Conclusions

This paper has proposed an efficient MOHPO solver named MoFiBay, and it is
the first work attempting to combine the benefits of both Hyperband and multi-
fidelity multiobjective BO. We have conducted three main types of experiments
on real-world MOHPO problems, covering various sizes of real-world datasets
and distinct models, to validate the performance of the proposed algorithm.
For future work, we would like to conduct research on how to design a more
efficient acquisition function for multiobjective BO. In addition, we also would
like to further verify the performance and efficiency of our proposed algorithm
on datasets with more than one hundred thousand data instances and on a much
richer variety of multi-objective AutoML problems under large-instance data.

Acknowledgements. This work is supported by the Fundamental Research Funds
for the Central Universities, Sun Yat-sen University (22qntd1101). It is also supported
by the National Natural Science Foundation of China (62162063, 61703183), Science
and Technology Planning Project of Guangxi (2021AC19308), and Zhejiang Province
Public Welfare Technology Application Research Project of China (LGG19F030010).

References

1. Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: tracking and pre-
dicting the carbon footprint of training deep learning models. arXiv preprint
arXiv:2007.03051 (2020)

2. Belakaria, S., Deshwal, A.: Max-value entropy search for multi-objective Bayesian
optimization. In: International Conference on Neural Information Processing Sys-
tems (NeurIPS) (2019)

3. Belakaria, S., Deshwal, A., Doppa, J.R.: Multi-fidelity multi-objective Bayesian
optimization: an output space entropy search approach. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 10035–10043 (2020)

4. Belakaria, S., Deshwal, A., Jayakodi, N.K., Doppa, J.R.: Uncertainty-aware search
framework for multi-objective bayesian optimization. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 34, pp. 10044–10052 (2020)

5. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019)

6. Emmerich, M., Klinkenberg, J.W.: The computation of the expected improvement
in dominated hypervolume of pareto front approximations. Technical report, Lei-
den University, p. 34 (2008)

7. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter
optimization at scale. In: International Conference on Machine Learning, pp. 1437–
1446. PMLR (2018)

http://arxiv.org/abs/2007.03051
http://arxiv.org/abs/1908.09791


Towards Efficient Multiobjective Hyperparameter Optimization: MoFiBay 173

8. Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V.: Ensemble of surrogates. Struct.
Multidiscip. Optim. 33(3), 199–216 (2007)

9. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based
Syst. 212, 106622 (2021)

10. Hernández-Lobato, D., Hernandez-Lobato, J., Shah, A., Adams, R.: Predictive
entropy search for multi-objective Bayesian optimization. In: International Con-
ference on Machine Learning, pp. 1492–1501. PMLR (2016)

11. Hu, Y.Q., Yu, Y., Tu, W.W., Yang, Q., Chen, Y., Dai, W.: Multi-fidelity automatic
hyper-parameter tuning via transfer series expansion. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 3846–3853 (2019)

12. Izquierdo, S., et al.: Bag of baselines for multi-objective joint neural architecture
search and hyperparameter optimization. In: 8th ICML Workshop on Automated
Machine Learning (AutoML) (2021)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian optimiza-
tion of machine learning hyperparameters on large datasets. In: Artificial Intelli-
gence and Statistics, pp. 528–536. PMLR (2017)

15. Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput.
10(1), 50–66 (2006)

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

17. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18(1), 6765–6816 (2017)

18. Li, Y., Shen, Y., Jiang, J., Gao, J., Zhang, C., Cui, B.: MFES-HB: efficient hyper-
band with multi-fidelity quality measurements. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 35, pp. 8491–8500 (2021)

19. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural
networks. arXiv preprint arXiv:1604.07269 (2016)

20. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), vol. 2, pp. 1447–1454. IEEE (2006)

21. Ozaki, Y., Tanigaki, Y., Watanabe, S., Onishi, M.: Multiobjective tree-structured
Parzen estimator for computationally expensive optimization problems. In: Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 533–
541 (2020)

22. Picheny, V.: Multiobjective optimization using gaussian process emulators via step-
wise uncertainty reduction. Stat. Comput. 25(6), 1265–1280 (2015)

23. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization
on a limited budget of evaluations using model-assisted S-metric selection. In:
Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008.
LNCS, vol. 5199, pp. 784–794. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87700-4 78

24. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 525–536 (2018)

25. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in NLP. arXiv preprint arXiv:1906.02243 (2019)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1604.07269
https://doi.org/10.1007/978-3-540-87700-4_78
https://doi.org/10.1007/978-3-540-87700-4_78
http://arxiv.org/abs/1906.02243


174 Z. Chen et al.

26. Suzuki, S., Takeno, S., Tamura, T., Shitara, K., Karasuyama, M.: Multi-objective
Bayesian optimization using pareto-frontier entropy. In: International Conference
on Machine Learning, pp. 9279–9288. PMLR (2020)

27. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

28. Zuluaga, M., Sergent, G., Krause, A., Püschel, M.: Active learning for multi-
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Abstract. Designing optimisation algorithms that perform well in gen-
eral requires experimentation on a range of diverse problems. Training
neural networks is an optimisation task that has gained prominence with
the recent successes of deep learning. Although evolutionary algorithms
have been used for training neural networks, gradient descent variants
are by far the most common choice with their trusted good performance
on large-scale machine learning tasks. With this paper we contribute
CORNN (Continuous Optimisation of Regression tasks using Neural Net-
works), a large suite for benchmarking the performance of any contin-
uous black-box algorithm on neural network training problems. Using
a range of regression problems and neural network architectures, prob-
lem instances with different dimensions and levels of difficulty can be
created. We demonstrate the use of the CORNN Suite by comparing
the performance of three evolutionary and swarm-based algorithms on
over 300 problem instances, showing evidence of performance comple-
mentarity between the algorithms. As a baseline, the performance of
the best population-based algorithm is benchmarked against a gradient-
based approach. The CORNN suite is shared as a public web repository
to facilitate easy integration with existing benchmarking platforms.

Keywords: Benchmark suite · Unconstrained continuous
optimisation · Neural network regression

1 Introduction

The importance of a good set of benchmark problem instances is a critical compo-
nent of a meaningful benchmarking study in optimisation [4]. As a consequence
of the No Free Lunch Theorems for optimisation [49], if an algorithm is tuned
to improve its performance on one class of problems it will most likely perform
worse on other problems [22]. Therefore, to develop algorithms that perform
well in general or are able to adapt to new scenarios, a wide range of different
problem instances are needed for experimental algorithm design.
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Most of the benchmark problems available for continuous optimisation are
artificial, so performance achieved through tuning algorithms on these problems
cannot be assumed to transfer to real-world problems. On the other hand, testing
algorithms on real-world problems is not always feasible and has the disadvantage
of not covering the wide range of problem characteristics needed for different
problem scenarios. To bridge this gap, we introduce a benchmark suite from the
real-world domain of neural network (NN) training that includes some of the
advantages of artificial benchmark problems.

Metaheuristics frequently suffer from the curse of dimensionality with per-
formance degrading as the number of decision variables increases [30,31,37,46].
This is in part due to the increased complexity of the problem, but also due to
the exponential growth in the size of the search space [30]. The training of NNs
presents an ideal context for high-dimensional optimisation as even a medium-
sized network will have hundreds of weights to optimise. Most NN training stud-
ies use a limited number of problem instances (classification datasets or regres-
sion problems), which brings into question the generalisability of the results.
For example, in six studies using population-based algorithms for NN train-
ing [6,15,33–35,43], the number of problem instances used for testing ranged
from a single real-world instance [15] to eight classification or regression prob-
lems [33,35]. To facilitate the generalisability of NN training studies, we provide
a suite of hundreds of problem instances that can easily be re-used for bench-
marking algorithm performance.

Stochastic gradient descent [29] is the default approach to training NNs with
its trusted good performance on large-scale learning problems [10]. Population-
based algorithms have been proposed for training NNs [6,15,33–35,43], but they
are seldom used in practice. One of the challenges is that the search space of
NN weights is unbounded and algorithms such as particle swarm optimisation
may fail due to high weight magnitudes leading to hidden unit saturation [39,40].
The one domain where population-based metaheuristics have shown competitive
results compared to gradient-based methods is in deep reinforcement learning
tasks [45]. More benchmarking of gradient-free methods against gradient-based
methods is needed to highlight the possible benefits of different approaches.

This paper proposes CORNN, Continuous Optimisation of Regression tasks
using Neural Networks, a software repository of problem instances, including
benchmarking of population-based algorithms against a gradient-based algo-
rithm (Adam). Over 300 regression tasks are formed from 54 regression functions
with different network architectures generating problem instances with dimen-
sions ranging from 41 to 481. The source code and datasets associated with the
benchmark suite are publicly available at github.com/CWCleghornAI/CORNN.

2 Continuous Optimisation Benchmark Suites

When benchmarking algorithms, it is usually not practical to use real-world prob-
lems, due to the limited range of problem instances available and the domain
knowledge required in constructing the problems. Individual real-world prob-
lem instances also do not effectively test the limits of an algorithm because

https://github.com/CWCleghornAI/CORNN
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they will not usually cover all the problem characteristics of interest [41]. Arti-
ficial benchmark suites and problem instance generators have therefore become
popular alternatives for testing optimisation algorithms. In the continuous opti-
misation domain, the most commonly used artificial benchmark suites include
the ACM Genetic and Evolutionary Computation Conference (GECCO) BBOB
suites [13] and IEEE Congress on Evolutionary Computation (CEC) suites [14].
These artificial suites have been criticised for having no direct link to real-world
settings [17], resulting in a disconnect between the performance of algorithms
on benchmarks and real-world problems [47].

To address the limitations of artificial benchmarks, suites that are based on
real-world problems or involve tasks that are closer to real-world problems have
been proposed, such as from the domains of electroencephalography (EEG) [21],
clustering [20], crane boom design [18], and games [48]. The CORNN Suite pro-
posed in this paper extends these sets to include the class of problems for solving
NN regression tasks. These tasks are unique in that the decision variables are
unbounded and the scenario makes it possible to benchmark black-box algo-
rithms against gradient-based approaches.

3 Neural Network Training Landscapes

Training NNs involves adjusting weights on the connections between neurons to
minimise the error of the network on some machine learning task. Since weight
values are real numbers, the search space is continuous with dimension equal
to the number of adjustable weights in the network. Training NNs is known to
be NP-complete even for very small networks [9] and the properties of error
landscapes are still poorly understood [12] with conflicting theoretical claims
on the presence and number of local minima [2,3,23,32]. Some studies have
suggested that these landscapes have large flat areas with valleys that radi-
ate outwards [11,19,28,36] and a prevalence of saddle points rather than local
minima [12,16]. Saddle points present a challenge for search, because they are
generally surrounded by high error plateaus [16] and, being stationary points,
can create the illusion of being local optima. It has, however, also been found
that failure of gradient-based deep learning is not necessarily related to an abun-
dance of saddle points, but rather to aspects such as the level of informativeness
of gradients, signal-to-noise ratios and flatness in activation functions [42].

To better understand the nature of NN error landscapes, investigations are
needed into the behaviour of different algorithms on a wide range of problems.
The CORNN Suite can be used to complement existing suites or as a starting
point for this kind of analysis.

4 The CORNN Benchmark Suite

With sufficient neurons, NNs are able to model an arbitrary mathematical func-
tion [7,25], so are a suitable model for solving complex regression problems.
The optimisation task of the CORNN Suite involves fitting a fully-connected
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feed-forward NN to a real-valued function, f(x). Each network has an
n-dimensional real-valued input,x, and a single real-valued output, which is the
prediction of the target value, f(x). The CORNN Suite uses 54 two-dimensional
functions as the basis for regression fitting tasks. These functions are specified on
the CORNN Suite repository on github1. The functions cover a range of charac-
teristics with respect to modality, separability, differentiability, ruggedness, and
so on. Note, however, that although these characteristics will no doubt have
some effect on the difficulty of the regression task, we cannot assume that the
features of the functions relate to the characteristics of the higher dimensional
search space of NN weights for fitting the functions.

4.1 Training and Test Sets

Datasets were generated for each of the 54 functions as follows: 5000 (x1, x2) pairs
were sampled from a uniform random distribution of the function’s domain. A
value of 5000 was used to be large enough to represent the actual function, while
still allowing for reasonable computational time for simulation runs. The true
output for each (x1, x2) pair was calculated using the mathematical function
and stored as the target variable. Each dataset was split randomly into training
(75% of samples) and testing (25% of samples) sets. Two forms of preprocessing
were performed on the CORNN Suite datasets: (1) Input values were normalised
to the range [−1, 1] using the domain of each function; (2) To compare results of
problem instances with different output ranges, output values were normalised
using simple min-max scaling based on the training data to the range (0, 1).

In addition, the CORNN Suite’s implementation allows for the use of custom
datasets; either generated from analytic functions or existing datasets.

4.2 Neural Network Models

The architecture used in the CORNN Suite is a fully connected feed-forward
network with 2 inputs; 1-, 3-, or 5-hidden layers, each with 10 neurons plus a
bias unit; and 1 output neuron. This results in 41, 261, and 481 weights to be
optimised for the 1-, 3-, and 5-layer networks respectively. Each architecture
uses one of two hidden layer activation functions: the conventional hyperbolic
tangent (Tanh) and the rectified linear unit (ReLU). ReLU is currently the most
commonly used activation function in deep learning [29], but Tanh has been
recommended above ReLU for reinforcement learning tasks [1]. The output layer
uses a linear activation function in all cases. These six topologies are referred to
as Tanh1, Tanh3, Tanh5, ReLU1, ReLU3, and ReLU5, specifying the activation
function and number of hidden layers. The CORNN Suite therefore consists of
54×6 = 324 problem instances, since each function has six NN models for fitting
the function. Note that the CORNN Suite’s implementation allows for complete
customisation of architectures to create any desired topology for further analysis.

1 https://github.com/CWCleghornAI/CORNN/blob/main/CORNN RegressionFunc
tions.pdf.

https://github.com/CWCleghornAI/CORNN/blob/main/CORNN_RegressionFunctions.pdf
https://github.com/CWCleghornAI/CORNN/blob/main/CORNN_RegressionFunctions.pdf
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4.3 Performance Evaluation

Performance of an algorithm is measured using mean squared error (MSE) of
the trained model on the test set given a set budget of function evaluations.
Note that in the analysis presented in this paper, no evidence of overfitting was
observed. If overfitting becomes a consideration as more specialised optimisers
are developed/considered, it may become necessary to hold out a portion of the
training set to employ techniques such as early stopping etc. When using hold-
out training instances, the total number of function evaluations should be seen
as the maximum number of times any one training instance has been used. If
no hold-out instances are used this measurement is equivalent to the number
of full passes of the training data. A similar consideration should be made if
an optimiser requires hyper-parameter tuning; in such cases hold-out instances
from the training set should be used for tuning and not the test set instances.

4.4 Implementation Details

The CORNN Suite was developed in Python 3 using PyTorch. The user selects
a regression task and a model architecture, after which the library constructs a
problem instance object with a callable function to which the user can pass a
candidate solution for evaluation on either the training set during optimisation,
or on the test set after optimisation. A user of CORNN therefore does not
have to concern themselves with any data processing or NN computation. The
complexity of the problem instances are abstracted away to the point where a
user of CORNN can just work with an objective function after setup.

The GitHub repository provides installation instructions with a detailed
example of how to construct and use a CORNN problem instance. The suite
is easily extended beyond the 324 problem instances presented in this paper to
include other regression tasks and/or NN architectures through reflection. The
datasets for all 54 regression tasks are also provided in CSV format, but when
using the CORNN Suite it is not necessary to directly interact with these files.

5 Experimentation and Results

To demonstrate CORNN, we provide results of metaheuristics and contrast these
with a gradient-based method. The aim is not to compare algorithms, but to
provide a use-case of the suite. No tuning of algorithm parameters was done, so
the results are not representative of the best performance of the algorithms.

5.1 Experimental Setup

The algorithms used in this study were: particle swarm optimisation (PSO) [26],
differential evolution (DE) [44], covariance matrix adaptation evolution strat-
egy (CMA-ES) [24], Adam [27], and random search. For the population-based
algorithms, standard versions and hyperparameters defined in the Nevergrad [5]
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library were used to facilitate reproducibility2. Adam was used for the gradient-
based approach (PyTorch [38] implementation with default parameters). Each
algorithm had a function evaluation (FE) budget of 5000 per problem instance,
where an FE is defined as one complete pass through the training dataset. We
used full batch learning, but the suite is not limited to this approach. Optimi-
sation runs were repeated 30 times for each algorithm/problem instance pair.

5.2 Analysis of Population-Based Algorithms

The first set of results contrasts the performance of the three population-based
algorithms: CMA-ES, DE and PSO against random search. We only present the
performance on the testing datasets, because we found no evidence of overfit-
ting by any of the algorithms on the problem set. Each algorithm is given a
performance score at each evaluation using the following scoring mechanism per
problem instance against each competing algorithm:

– 1 point is awarded for a draw (when there is no statistically significant dif-
ference based on a two-tailed Mann-Whitney U test with 95% confidence).

– 3 points are awarded for a win and 0 for a loss. In the absence of a draw, we
determine whether a win or loss occurred using one-tailed Mann-Whitney U
tests (with 95% confidence).

This results in a maximum score for an algorithm on a single instance of 9, or
3(n−1) in general, where n is the number of algorithms. The scores per instance
were normalised to the range [0, 1].

Figure 1 plots the normalised mean performance score over all 54 problem
instances for the full budget of 5000 evaluations for the six NN models. Solid lines
denote the mean performance score with shaded bands depicting the standard
deviation around the mean. Two general observations from Fig. 1 are that the
three metaheuristics all performed significantly better than random search and
that no single algorithm performed the best on all NN models. On the Tanh
models (plots in the left column of Fig. 1), CMA-ES performed the best on the
1-layer network, while DE performed the best on the 3- and 5-layer networks after
the full budget of evaluations. On the ReLU models (plots in the right column
of Fig. 1), PSO ultimately performed the best on all three models. CMA-ES was
the quickest to find relatively good solutions, but converged to solutions that
were inferior to those ultimately found by PSO.

Figure 2 visualises the performance of the algorithms on individual problem
instances (the 3-layer models are omitted to save space). Each dot represents a
single problem instance (54 of them in each column) and the vertical position
corresponds to the average normalised MSE on the testing set from 30 runs of the
algorithm after 5000 evaluations. Algorithms are plotted in a different colour for
clarity. The final column (purple dots) shows the results of the best performing

2 Nevergrad version 0.4.2, PSO with optimizers.PSO, DE with optimizers.TwoPoints
DE, CMA-ES with optimizers.CMA, and random search with optimizers.Random
Search.
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Fig. 1. Summarised relative performance on the test set of a 1-, 3- and 5-layer Tanh and
ReLU models over 54 function datasets. Lines denote mean performance with shaded
bands denoting the standard deviation around the mean.

algorithm for each problem instance. In these plots, better performing algorithms
have a concentration of dots closer to the horizontal axis (lower MSE values).

For all models, random search (red dots) performs worse than other algo-
rithms. Contrasting Fig. 2a and 2c, shows that for Tanh, the performance across
all algorithms deteriorates (fewer dots lower down) as the number of layers
increase from 1 to 5, indicating an increase in problem difficulty. The same
can be observed for ReLU architectures in Figs. 2b to 2d. Note that in Fig. 2d,
only a single dot is shown for random search, because the other MSE values are
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above the range plotted on the graph. The very poor results of random search
on ReLU5 indicates that these instances are more challenging overall than the
other architectures.

Fig. 2. Performance per function for each optimiser on two Tanh and ReLU models
(Color figure online)

Figure 2 shows interesting outliers in the individual high dots at approxi-
mately 0.25 MSE. This corresponds to function 34, Periodic, on which most
algorithms perform markedly worse than on the other problem instances. In con-
trast, the lowest dots in Fig. 2c correspond to function 20, Easom, on which all
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algorithms (except random search) achieved close to 0.00 MSE. Figure 3 plots
these two functions, clearly illustrating why it was easier for the search algo-
rithms to fit models to Easom than to Periodic.
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Fig. 3. Two regression tasks on which all algorithms performed the best and the worst.

5.3 Analysis of Individual Problem Instances

The next set of results highlights the range of difficulty of problems in the
CORNN Suite for population-based algorithms in relation to a gradient-based
approach. As a baseline, we provide the results of Adam, a form of gradient-
descent with adaptive learning-rate that is popular for training deep NNs.

Figures 4, 5, 6 and 7 show violin plots of the distribution of MSE values from
30 runs on each of the 54 problem instances for Tanh1, Tanh5, Relu1 and Relu5,
respectively. The blue violins represent the performance of the best population-
based algorithm (of the three discussed in Sect. 5.2) on the problem instance,
while the red violins represent the performance of Adam. Note that most of the
violins for Adam are very small due to the small variance in the performance
over the 30 runs – except for the random initial weights, Adam is a deterministic
algorithm. The median MSE values appear as tiny white dots in the centre of
each violin and the maximal extent of the violins are cropped to reflect the actual
range of the data.

The functions are sorted from left to right by the difference between the
median MSE of the two approaches. For example, in Fig. 4, the first func-
tion on the left is function 26 (Himmelblau), where the median MSE of the
best population-based algorithm was slightly lower than the median MSE of
Adam. From about the eighth function onwards, it can however be seen that
Adam out-performed the best population-based algorithm. The superior perfor-
mance of Adam is even more marked for the 5-layer Tanh model (Fig. 5), with
function 43 (Schwefel 2.22) resulting in the worst relative performance of the
population-based algorithms. The most difficult function to fit for both Adam
and population-based algorithms is evident by the high MSE values on function
34 (Periodic).
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Fig. 4. Best performing population based optimiser compared to Adam on the 1-layer
Tanh model (Color figure online)

Fig. 5. Best performing population based optimiser compared to Adam on the 5-layer
Tanh model (Color figure online)

Figures 6 to 7 show slightly better relative performance of the population
based algorithms on the ReLU architectures compared to the Tanh architectures.
On the left of Fig. 7 we can see that the median MSE of the best population
based algorithm is lower than Adam on about the first nine functions (37, 8, 47,
54, 25, 43, 46, and 52).
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Fig. 6. Best performing population based optimiser compared to Adam on the 1-layer
ReLU model (Color figure online)

Fig. 7. Best performing population based optimiser compared to Adam on the 5-layer
ReLU model (Color figure online)

In this way, these results provide a ranking of CORNN problem instances
from the easiest to the hardest in terms of relative performance against gradient-
based techniques. Future studies can focus on black-box algorithm development
to reduce the gap in performance compared to gradient-based approaches. The
CORNN Suite can be used in different types of analysis and not just in the way
illustrated in this paper. For example, to simulate cases where the analytical
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gradient is not available for using gradient-based techniques, black-box optimis-
ers can be benchmarked against one another to investigate the effectiveness on
NN training tasks.

6 Discussion

The CORNN Suite complements existing benchmark sets with NN training tasks
that can be used to benchmark the performance of any continuous black-box
algorithm. Ideally, a benchmarking suite should be [4]: (1) diverse, (2) repre-
sentative, (3) scalable and tunable, and (4) should have known solutions/best
performance. The problem instances of the CORNN Suite are diverse as demon-
strated by the wide range of performances by different algorithms. In addition,
the problems are partly-representative of real-world problems in being continuous
(which is more common in real-world settings than combinatorial problems [8]),
with computationally expensive evaluation and involving the real-world task of
NN training. Problems are scalable and tunable through the selection of different
NN models coupled with different regression tasks. For each problem instance the
theoretical optimal solution is known (where MSE = 0 on the test set). However,
given a fixed number of neurons in a model, we cannot rely on the universal
approximator theorem [25] to guarantee the existence of an optimal solution
of weights that will result in an error of zero. In addition to the theoretical
minimum, we provide the performance of Adam as a baseline against which
alternative algorithms can be benchmarked.

7 Conclusion

The CORNN Suite is an easy-to-use set of unbounded continuous optimisation
problems from NN training for benchmarking optimisation algorithms that can
be used on its own or as an extension to existing benchmark problem sets. An
advantage of the suite is that black-box optimisation algorithms can be bench-
marked against gradient-based algorithms to better understand the strengths
and weaknesses of different approaches.

The results in this paper provide an initial baseline for further studies. We
have found that although Adam in general performed better, population-based
algorithms did out-perform Adam on a limited set of problem instances. Further
studies could analyse the characteristics of these instances using landscape analy-
sis to better understand which NN training tasks are better suited to population-
based approaches than gradient-based approaches. The CORNN Suite can also
be used to try to improve population-based algorithms on NN training tasks. It
would be interesting to analyse whether parameter configurations from tuning
on the CORNN Suite can be transferred to other contexts to improve black-box
metaheuristic algorithm performance on NN training tasks in general.
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Periaux, J., Gauger, N., Quagliarella, D., Giannakoglou, K. (eds.) Evolutionary
and Deterministic Methods for Design Optimization and Control With Applica-
tions to Industrial and Societal Problems. CMAS, vol. 49, pp. 355–370. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-89890-2 23

19. Gallagher, M.R.: Multi-layer perceptron error surfaces: visualization, structure and
modelling. Ph.D. thesis, University of Queensland, Australia (2000)

20. Gallagher, M.: Towards improved benchmarking of black-box optimization algo-
rithms using clustering problems. Soft Comput. 20(10), 3835–3849 (2016). https://
doi.org/10.1007/s00500-016-2094-1,https://doi.org/10.1007/s00500-016-2094-1

21. Goh, S.K., Tan, K.C., Al-Mamun, A., Abbass, H.A.: Evolutionary big optimization
(BigOpt) of signals. In: 2015 IEEE Congress on Evolutionary Computation (CEC).
IEEE, May 2015. https://doi.org/10.1109/cec.2015.7257307

22. Haftka, R.T.: Requirements for papers focusing on new or improved global opti-
mization algorithms. Struct. Multidiscip. Optim. 54(1), 1–1 (2016). https://doi.
org/10.1007/s00158-016-1491-5

23. Hamey, L.G.: XOR has no local minima: a case study in neural network error
surface analysis. Neural Netw. 11(4), 669–681 (1998). https://doi.org/10.1016/
s0893-6080(97)00134-2

24. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in
evolution strategies: the covariance matrix adaptation. In: Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 312–317. IEEE Press, Piscataway
(1996)

25. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Trans. Neural
Netw. 17(4), 879–892 (2006). https://doi.org/10.1109/tnn.2006.875977

26. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1942–1948. IEEE
Press, Piscataway (1995)

27. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv
abs/1412.6980 (2014)

28. Kordos, M., Duch, W.: A survey of factors influencing MLP error surface. Control.
Cybern. 33, 611–631 (2004)

29. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015). https://doi.org/10.1038/nature14539

30. Lozano, M., Molina, D., Herrera, F.: Editorial scalability of evolutionary algorithms
and other metaheuristics for large-scale continuous optimization problems. Soft.
Comput. 15(11), 2085–2087 (2010). https://doi.org/10.1007/s00500-010-0639-2

31. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global
continues optimization: A survey. Inf. Sci. 295, 407–428 (2015). https://doi.org/
10.1016/j.ins.2014.10.042

32. Mehta, D., Zhao, X., Bernal, E.A., Wales, D.J.: Loss surface of XOR artificial
neural networks. Phys. Rev. E 97(5) (2018). https://doi.org/10.1103/physreve.97.
052307

33. Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer per-
ceptrons. Appl. Intell. 43(1), 150–161 (2015). https://doi.org/10.1007/s10489-014-
0645-7

https://doi.org/10.1016/j.asoc.2020.106315
https://doi.org/10.1016/j.asoc.2020.106315
https://doi.org/10.1007/978-3-319-89890-2_23
https://doi.org/10.1007/s00500-016-2094-1
https://doi.org/10.1007/s00500-016-2094-1
https://doi.org/10.1007/s00500-016-2094-1
https://doi.org/10.1109/cec.2015.7257307
https://doi.org/10.1007/s00158-016-1491-5
https://doi.org/10.1007/s00158-016-1491-5
https://doi.org/10.1016/s0893-6080(97)00134-2
https://doi.org/10.1016/s0893-6080(97)00134-2
https://doi.org/10.1109/tnn.2006.875977
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s00500-010-0639-2
https://doi.org/10.1016/j.ins.2014.10.042
https://doi.org/10.1016/j.ins.2014.10.042
https://doi.org/10.1103/physreve.97.052307
https://doi.org/10.1103/physreve.97.052307
https://doi.org/10.1007/s10489-014-0645-7
https://doi.org/10.1007/s10489-014-0645-7


A Continuous Optimisation Benchmark Suite 191

34. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural net-
works using hybrid particle swarm optimization and gravitational search algo-
rithm. Appl. Math. Comput. 218(22), 11125–11137 (2012). https://doi.org/10.
1016/j.amc.2012.04.069

35. Mousavirad, S.J., Schaefer, G., Jalali, S.M.J., Korovin, I.: A benchmark of recent
population-based metaheuristic algorithms for multi-layer neural network training.
In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
Companion. ACM, July 2020. https://doi.org/10.1145/3377929.3398144

36. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. In: Pro-
ceedings of the International Conference for Learning Representations (2017)

37. Oldewage, E.T.: The perils of particle swarm optimization in high dimensional
problem spaces. Master’s thesis, University of Pretoria, South Africa (2017).
https://hdl.handle.net/2263/66233

38. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–
8035. Curran Associates, Inc. (2019)

39. Rakitianskaia, A., Engelbrecht, A.: Training high-dimensional neural networks with
cooperative particle swarm optimiser. In: 2014 International Joint Conference on
Neural Networks (IJCNN). IEEE, July 2014. https://doi.org/10.1109/ijcnn.2014.
6889933

40. Rakitianskaia, A., Engelbrecht, A.: Saturation in PSO neural network training:
good or evil? In: 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE,
May 2015. https://doi.org/10.1109/cec.2015.7256883

41. Rardin, R.L., Uzsoy, R.: Experimental evaluation of heuristic optimization algo-
rithms: a tutorial. J. Heurist. 7(3), 261–304 (2001). https://doi.org/10.1023/a:
1011319115230

42. Shalev-Shwartz, S., Shamir, O., Shammah, S.: Failures of gradient-based deep
learning. In: Proceedings of the 34th International Conference on Machine Learn-
ing, pp. 3067–3075. PMLR, 06–11 August 2017)

43. Socha, K., Blum, C.: An ant colony optimization algorithm for continuous opti-
mization: application to feed-forward neural network training. Neural Comput.
Appl. 16(3), 235–247 (2007). https://doi.org/10.1007/s00521-007-0084-z

44. Storn, R., Price, K.: Differential evolution: a simple evolution strategy for fast
optimization. J. Glob. Optim. 11, 341–359 (1997)

45. Such, F., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv abs/1712.06567 (2018)

46. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the
CEC 2010 special session and competition on large-scale global optimization. Tech-
nical report, Nature Inspired Computation and Applications Laboratory (2009).
https://titan.csit.rmit.edu.au/∼e46507/publications/lsgo-cec10.pdf

47. Tangherloni, A., etal.: Biochemical parameter estimation vs. benchmark functions:
a comparative study of optimization performance and representation design. Appl.
Soft Comput. 81, 105494 (2019). https://doi.org/10.1016/j.asoc.2019.105494

48. Volz, V., Naujoks, B., Kerschke, P., Tušar, T.: Single- and multi-objective game-
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1 Introduction

Multi-objective optimization (MOO), i.e., the simultaneous optimization of mul-
tiple (often competing) objectives, is challenging for both research and indus-
trial applications [19]. Despite the practical relevance of MOO and decades of
research in this area, multi-objective optimization problems (MOPs) have long
been treated as black boxes – probably due to their numerous dimensions in the
decision and objective space. This view made it very difficult to study a MOP’s
properties or the algorithmic behavior on it. As a result, MOPs were often visu-
alized only by their Pareto fronts (i.e., a representation of the non-dominated
solutions of the MOP in the objective space), algorithms were designed to con-
verge to this Pareto front as fast as possible, and visualization of this search
behavior was often based on point clouds evolving towards the Pareto front.

In related domains, such as single-objective continuous optimization, knowl-
edge of a problem’s characteristics has proven to be critical for a better problem
understanding and for designing appropriate algorithms. For example, in single-
objective optimization (SOO), it is widely accepted that multimodality can pose
difficult obstacles [21]. Despite the insights gained in SOO, research in MOO has
only recently begun to focus on multimodality [9]. Nevertheless, several visualiza-
tion methods capable of revealing multimodal structures of MOPs [13,24,25,30],
definitions that provide a theoretical description of a MOP’s structural character-
istics such as locally efficient sets [15,16], a couple of benchmark suites consisting
mainly of multimodal MOPs [8,12,17,34], and optimization algorithms with a
particular focus on (finding or at least exploiting local structures of) multimodal
MOPs [10,18,26,29] have been proposed in recent years.

All these advances ultimately help to gain a better understanding of MOPs
and to develop more efficient algorithms. For example, combining visualizations
and theoretical definitions helps categorize MOPs into four categories of multi-
modality: (1) Unimodal MOPs consist of a single locally efficient set (i.e., the
multi-objective counterpart of a local optimum in single-objective optimization)
that naturally maps to the (single) Pareto front of the MOP; (2) Multiglobal
MOPs contain multiple efficient sets that are all mapped to the same Pareto
front; (3) Multilocal MOPs that contain multiple locally efficient sets that map
to different fronts in the objective space; (4) (Truly) Multimodal MOPs, where
some efficient sets map to the same (Pareto) front and others map to different
fronts. A schematic representation of multiglobal and multilocal MOPs is shown
in Fig. 1. Note that due to space limitations, we refrain from showing unimodal
and multimodal MOPs as those are special variants of the shown ones.

Multimodal solutions may, e.g., be interesting to consider if the decision
space values of the optimal points are not feasible, but the values of only slightly
worse non-optimal solutions are. The problem with assessing algorithm perfor-
mance concerning multimodality is that classical evaluation methods like hyper-
volume (HV) [36] cannot account for dominated solutions. Therefore, measures
that consider decision space diversity like the Solow-Polasky (SP) indicator [28]
are used to express to how distributed the solutions are over the efficient sets. A
recent study on the two aforementioned indicators showed that these indicators



194 J. Heins et al.
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Fig. 1. Schematic differentiation of a multiglobal (left) and a multilocal MOP (right).
There are two further specializations: MOPs containing only a single efficient set (and
front) are called unimodal, whereas MOPs, which are both multilocal and multiglobal,
are called multimodal. This figure is inspired by Figure 1 in [9].

alone are not achieving the desired performance assessment in multimodal prob-
lems by MOO algorithms [23]. However, diversity measures, also those specifi-
cally considering multimodality [22], can neither capture the properties of the
HV nor problem-specific aspects. Thus, there is a need for a new indicator devel-
oped in this paper.

Also in the light of obtaining better problem understanding there is a shortage
of multi-objective landscape features. These features, however, are needed for a
variety of tasks, such as automated algorithm selection [14].

The remainder of this paper is organized as follows. Section 2 describes the
considered algorithms and performance indicators from the literature. Subse-
quently, Sect. 3 presents our proposed measure. Finally, our experimental study
is described in Sect. 4 before Sect. 5 concludes our work.

2 Background

2.1 Algorithms

Until recently, the main focus of algorithmic developments was on the approxi-
mation of globally optimal solutions of MOPs. Well-known and commonly used
respective evolutionary MOO algorithms (EMOAs) are NSGA-II [4] and SMS-
EMOA [7]. NSGA-II uses non-dominated sorting in a first step and crowding dis-
tance in a second step to focus on global convergence and diversity in objective
space. SMS-EMOA implements a (μ + 1) steady-state approach where NSGA-
II’s second step is replaced by a procedure which drops the individual with the
least contribution to the dominated hypervolume. Again, this algorithm does
not consider diversity in decision space. Omni-Optimizer [6] was developed with
the idea in mind to be very generic in the sense that it allows for optimiza-
tion of both single- and multi-objective problems. It operates very much like
NGSA-II, but also adopts diversity preservation in decision space. NSGA-II,
SMS-EMOA and Omni-Optimizer are all evolutionary optimization algorithms.
Recently, Schäpermeier et al. [26] proposed MOLE as a member of the fam-
ily of gradient-based multi-objective optimizers, which refines upon earlier work
on the MOGSA concept [10]. MOLE takes a very different approach to multi-
modality by actively modeling locally efficient sets and exploiting interactions
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between their attraction basins, leading to a sequential exploration of the MO
optimization landscape. Note that due to this sequential nature, MOLE does
not maintain a “population” and thus points need to be sampled from its return
values to enable a fair comparison to the other algorithms, which have fixed-size
populations.

2.2 Indicators

Performance assessment of multi-objective optimizers is a non-trivial task.
Research came up with a plethora of indicators, i.e., functions which map
an approximation set to the real-valued numbers. Usually, an indicator mea-
sures either cardinality, convergence, spread/diversity, or a combination of these.
Prominent examples are the Inverted Generational Distance [36] or the domi-
nated hypervolume in the objective space or the Solow-Polasky measure in deci-
sion space. In this study we focus on the latter two for which we provide more
details:

The hypervolume (HV) [36] is arguably one of the most often used perfor-
mance indicators im MOO. The dominated hypervolume can be interpreted as
the (hyper-)space enclosed by the approximation set and the reference point.
HV rewards both convergence to the Pareto front and diversity and brings along
many desirable properties, e.g., Pareto compliance [37].

In 1994, Solow and Polasky introduced their eponymous Solow-Polasky (SP)
indicator to measure the amount of diversity between species in biology [28].
Its first application in evolutionary computation dates back to work by Ulrich
and Thiele [33] in the context of Evolutionary Diversity Optimization to guide a
single-objective EA towards diversity in (continuous) decision space subject to a
minimum quality threshold. Given a set of points X = {x1, . . . , xµ} and pairwise
(Euclidean) distances d(xi, xj), 1 ≤, i, j ≤ μ let M be a (μ × μ) matrix with
Mij = exp(−θ·d(xi, xj)). Here, θ serves for normalization of the relation between
d and the number of species; its choice is not critical [28]. Now the Solow-Polasky
diversity is defined as the sum of all elements of the Moore-Penrose generalized
inverse M−1 of the matrix M . The measure can be interpreted “as the number
of different species in the population” [28]. Note, however, that the measure
calculates a real-valued diversity in [1, μ] and no integer value. As pointed out
in [32], SP is maximized if points are aligned in a grid.

3 The BBE Measure(s)

For classical MOO, the HV serves as an excellent measure capturing the coverage
of the Pareto front. However, in MMMOO, the local efficient sets that, per
definition, cannot contribute to the HV are of interest as well. One approach to
achieve this is measuring decision space diversity with SP. SP, however, does not
focus on the coverage of the local efficient sets but rather on the coverage on the
whole decision space. Therefore, we introduce a basin-based evaluation (BBE)
method in this paper, which focuses on the coverage of the Pareto front as well
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Fig. 2. If a set of solution points (the black points in the left image) is to be evaluated
with BBE, first (middle image) only the points in the first basin (on the left hand side)
are evaluated and then (right image) only the points in the next basin (on the right
hand side). This continues until all basins of interest are evaluated.

as local efficient sets simultaneously. The main idea is to compute the HV per
basin and not only globally.

The division of the decision space into basins is done based on the technique
for decision space visualization by Schäpermeier et al. [24]. In order to visual-
ize the optimization landscape, they divide the decision space into equal-sized
regions arranged in a grid. Every region is represented by the contained point
with the lowest value in all decision variables. This enables the computation
of multi-objective gradients for all parts of the grid. Then, based on the hull
spanned by the gradients, regions which likely contain parts of the efficient sets
can be identified. With the gradients and the approximation of the efficient sets,
the path from a region to an efficient set can be traced. With this, the accumu-
lated gradient length along the path can be calculated as a measure of distance
to the attracting set. Based on this measure of distance, the visualization of
the regions is determined. For more detailed information on this procedure we
refer the interested reader to [24]. As a by-product, the affiliation of a region to
a basin is determined as well. The latter information is used to evaluate a set
of returned solution points separately per basin for the proposed measure. For
every point of the solution set, the region, and thus, the corresponding basin
they are encapsulated in, is identified. This allows to filter out all points that
are not contained in a basin and calculate a specific metric only for the points of
interest. In the default case, this metric is the HV. See Fig. 2 for a visualization.

As not all basins can be included in the evaluation, only the first k are
evaluated. The order of the basins is determined by non-dominated sorting [4]
of the regions that approximate the efficient sets. The basin which contributes
the most points to the approximated Pareto front thus will be the first in the
constructed order. In case of an equal number of regions, the number of regions
attributed to the next domination layer is decisive. Basins that are not part of the
Pareto front have an equal number of regions (i.e., zero) constituting the Pareto
front. In case of many basins, they can also be joined based on the contained
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Fig. 3. The shown gradient field heatmap belongs to the same highly multimodal
problem instance as the PLOT visualization in Fig. 8: the bi-objective BBOB function
with FID 55 and IID 11. If the basins are considered individually the area covered
by the first basin is relatively small (image in the middle). To circumvent too many
individual basins the efficient sets can be joined, which leads to a potentially distributed
area covered by the first basin (right image).

regions attributed to the domination layer with the lowest number. The joint
basins are regarded as a single one during evaluation, see Fig. 3.

To aggregate the attained HV from the k basins of interest, the arithmetic
mean is taken. Note that this includes a natural weighting between the basins,
as a higher HV is attainable in the basins closer to the Pareto front in case
the reference point is fixed. To capture an algorithm’s anytime behavior, this
mean is recorded in every interval of a specific number of function calls needed
by the algorithm. Here, one can decide if the accumulation of all the points
evaluated by the algorithm up until this point (the solution archive) or only the
ones evaluated in the interval should be considered. A visualization of the latter
case can be seen in Fig. 4. In order to aggregate those intermediate results, the
area under the curve is computed. This value captures the anytime behavior of
an algorithm regarding the convergence to k local efficient sets of interest when
we focus on multimodal multi-objective optimization.

4 Analysis

To test our basin-based indicators we conduct a benchmark study with four
MO optimizers on a set of multimodal problem instances. First, we provide the
experimental setup, followed by our experimental results and we end with a
discussion and interpretation of these results.

4.1 Experimental Setup

Hardware and Software. All experiments were conducted on PALMA, the high-
performance compute cluster of the WWU Münster. Each optimizer run had
access to 1 CPU core and 4 GB of memory. In total, all experiments required
20 000 CPU hours. All experimental code for reproducibility is available online1.
1 Available at: github.com/jeroenrook/BBE-experiments.

https://github.com/jeroenrook/BBE-experiments
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Fig. 4. Shown is a run of NSGA-II on the gradient field heatmap of the Aspar Func-
tion [9] together with the corresponding BBE scores. Note that only the most recent
points are considered, and therefore, the achieved HV of the points in the second basin
eventually declines. (See supplementary material for an animated version of the figure.)

Resources. To run our analysis we use the R implementations of the optimiz-
ers SMS-EMOA [1], NSGA-II [1], Omni-Optimizer [3], and MOLE [27]. Fur-
thermore, we compiled a set of 35 well-established, mainly multimodal MOP
instances. We selected all instances from ZDT [35], DLTZ [5], MMF [34], with
exception of MMF13 and ZDT5, which are provided by smoof [2]. Furthermore,
we selected 5 problem instances (FID ∈ {46, 47, 50, 10, 55}, IID = 1) from BiOb-
jBBOB [31], which are provided by moPLOT [24]. All problem instances have a
2D decision and objective space. For each instance, we approximated the Pareto
front and chose the reference point such that it covered the whole reachable
objective space with moPLOT. These reference points are needed to compute the
HV and the BBE indicators. The approximated Pareto front is used to compute
the maximum obtainable HV. In turn, the maximum HV is used to normalize
the BBE and HV indicators to make them comparable.

Indicators. For computing the BBE measures we use our own R package2. We
used 3 variants of BBE; 1) the mean HV of the basins with the population
returned by the optimizers (BBE(HV)), 2) the mean HV of the basins with the
complete archive of function calls the optimizer made (BBEcum(HV)), and 3)
the area under the curve of the convergence of the mean HV across all basins
during search (BBEcum,auc(HV)). For each variant we considered the 5 most
important basins (automatically derived by the BBE package with the landscape
exploration of moPLOT) and we did not merge basins of joined fronts.

Configuration. To maximize optimizer performance on the problem instances
w.r.t. the indicators we make use of the automated algorithm configurator SMAC
[11] (through Sparkle3). Here, each configuration scenario aims to maximize

2 BBE available at: github.com/jonathan-h1/BBE.
3 Accessible through ada.liacs.nl/projects/sparkle.

https://github.com/jonathan-h1/BBE
https://ada.liacs.nl/projects/sparkle
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Fig. 5. Spearman correlation between performance metrics. Points taken from 25 runs
with all algorithms in all configuration scenarios and on all instances.

performance for one indicator in 10 separate configuration runs. Each configu-
ration run had a budget of 250 algorithm calls and the configuration run with
the highest performance score on the whole training set is used for validation.
We used leave-one-out validation, i.e., we configured on 34 instances to derive
the parameters and then validated the performance on the left out instance.
Separate configuration experiments were conducted, each aiming to maxi-
mize one of the 5 indicator scores: HV, SP, BBE(HV), BBEcum(HV), and
BBEcum,auc(HV).

Validation. We validated each optimizer configuration on each instance 25 times
with fixed random seeds per run. The median score over these runs was used to
represent the configuration’s performance. Furthermore, each run was given a
budget of 25 000 function evaluations. In total, we validated on all 840 pairs that
can be made out of the 6 configurations (including the default configuration), 4
algorithms, and 35 problem instances.

4.2 Indicator Similarity

We start our analysis by focusing on the similarity of the measures. We specifi-
cally look at the Spearman correlations between the indicators over all conducted
optimizer runs, which are visualized in Fig. 5. A high correlation score indicates
that the two indicators yield a similar ordering within the underlying optimizer
runs.

The correlation matrix shows that the global convergence in objective space
measured by hypervolume (HV) is highly correlated with the variants of our
basin-based approach. These high correlations indicate that, despite the reduc-
tion in focus on obtaining global convergence, the basin-based approaches are still
able to measure this property. Another observation is a clear trade-off between
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Table 1. The mean indicator score of the best ranked optimizer under different con-
figuration scenarios. Before the mean was taken over the runs, all indicators, except
SP, were first normalized against the maximum approximated HV for each instance.

Indicator Default Configuration target

HV SP BBE(HV) BBEcum(HV) BBEcum,auc(HV)

HV 1.031 1.071 1.067 1.048 1.072 1.053

SP 2.226 5.195 5.568 3.598 5.197 3.572

BBE(HV) 0.417 0.515 0.497 0.531 0.517 0.488

BBEcum(HV) 0.613 0.651 0.650 0.647 0.650 0.651

BBEcum,auc(HV) 15 074 16 092 16 069 15 891 16 064 16 103

HV and the diversity in decision space (SP). Interestingly, the correlation scores
between the basin-based indicators and SP are higher than between HV and SP.
This suggests that the basin-based indicators are more considerate of the global
decision space diversity than HV is.

We bolster the latter observations by looking at the mean indicator values of
the best-ranked optimizers after automatically configuring for a particular indi-
cator, depicted in Table 1. Here, we see that the best indicator score (or within
proximity to the best) is obtained when explicitly configuring for that indicator.
Additionally, the untargeted indicators tend to improve as well by configuration.
Disappointingly, when we configure for the mean basin-based HV, both HV and
SP are behind compared to the improvements we see in the other configuration
scenarios. Speculatively, this is because the points of the last populations of the
optimizer are more distributed over the different basins. Further, we see that the
configurations of the cumulative BBE variants have excellent performance across
all indicators compared to the BBE variant that focuses only on the points in
the last population. This could potentially be explained by the fact that these
variants aim to visit at least all the basins during search and not on maintaining
a population across the different basins. Thus, by keeping an archive of all visited
points, one can easily obtain a good coverage across all basins retrospectively.

4.3 Rankings

We now shift our focus to the rankings between optimizers under varying circum-
stances. Specifically, we compute the average rankings between the 4 optimizers
(Sect. 2.1) for each indicator-configuration target pair, resulting in a total of 30
rankings. Figure 6 plots these rankings where each column indicates the indicator
by which the ranking was generated, and the rows refer to the configuration tar-
get indicator which was used to tune the optimizers’ parameters. These rankings
reveal that NSGA-II and SMS-EMOA rank best for default parameters. After
configuration, both optimizers are almost always exceeded by MOLE or Omni-
Optimizer for all indicators, except for HV. There, SMS-EMOA also remains the
best-ranked optimizer after configuration. MOLE and Omni-Optimizer have a
larger parameter space compared to SMS-EMOA and NSGA-II, likely making
them more configurable. However, these two optimizers are also conceptually dif-
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Fig. 6. Average rankings of the optimizers for each measure (columns) and config-
uration scenario (rows). The confidence distance (CD) to be significantly differently
ranked, as determined by a Nemenyi test [20] with α < 0.1, is 0.16.

ferent because they exploit structural knowledge of the problem instance during
search. Especially for Omni-Optimizer this causes larger ranking improvements
when it is configured for the basin-based indicators.

4.4 Ranking Changes

The visualized average rankings in Fig. 6 revealed significant changes in the rank-
ing concerning a measure if the algorithms are configured based on different
desired properties. However, the relationship of the ranking shifts, and therefore
the mutual configuration impact on two measures cannot be assessed with this
figure. Thus, we consider the correlation between the ranking shifts with regard
to the measures aggregated over all runs per algorithm and problem instance.
Here, the ranking shift is the difference between the average ranking if the algo-
rithms are run with default settings and the average ranking if the algorithms
are configured for HV or SP. Therefore, a high correlation between two measures
means that the shifts in algorithm rankings per problem instance are similar.
The corresponding correlation heatmaps can be seen in Fig. 7. Independent of
whether the aim is convergence to the Pareto front (configuring for HV) or max-
imizing diversity (configuring for SP), the BBE measure variants yield a higher
correlation of ranking changes with the diversity indicator SP than with HV.
The correlation with HV is relatively small in general, which may be caused by
the small changes in the ranking w.r.t. HV independent of the configuration (see
Fig. 6). Nevertheless, the correlation of the BBE measures with SP indicates that
the former are more similar to a diversity measure than HV and can result in
more similar ranking changes in relation to diversity.
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Fig. 7. The Spearman correlations of the differences between the resulting rankings
after configuration for a certain target and the rankings with default parameters. In
the left plot the configuration target is the HV and in the right one the target is the
SP.

4.5 Discussion

From the presented experimental results, we derive the following insights:
First, the proposed basin-based evaluation captures the main properties of

the classical HV evaluation. This is supported by the observed high correlation
between HV and the introduced BBE variants. Theoretically, this is explained
by the fact that HV is measured per basin. In case of only one basin containing
the efficient set which makes up the Pareto front, the found solution points in
other basins do not matter for the achieved HV score. In general, the proposed
measure variants are generalizations of HV, where HV corresponds to the special
case in which the whole decision space is regarded as one basin.

Second, the proposed measure additionally captures diversity aspects that
HV cannot capture. The HV, even though a reliable measure for global conver-
gence, does not cover decision space diversity, as shown by the low correlation
with the SP. Further, the low correlation of rank shifts, if the algorithms are
configured for SP, demonstrates that the HV lacks the ability to score an algo-
rithm run based on the diversity in decision space of the proposed solution set
as all points that are dominated by others cannot contribute to the HV. The
BBE variants alleviate this issue, as can be seen by the higher correlation with
the SP regarding the general scores and the rank shifts.

Third, the actual aim of MMMOO is not to find an algorithm that is per-
forming well w.r.t. diversity over the complete decision space but conditional
diversity as explained in the following. So far, in MMMOO, a form of general
diversity is used to measure how points are distributed in the complete decision
space and not just areas in decision space that have objective values along the
Pareto front (i.e., multiglobal basins). However, this general diversity can only
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Fig. 8. PLOT visualizations of two functions (left: FID 10, IID 5; right: FID 55, IID
11) from the bi-objective BBOB in decision (x) and objective space (y). The colored
points are locally efficient, with the blue points being globally efficient. The gray-scale
background illustrates the attraction basins of each locally efficient set, with darker
colors indicating more optimal points within a basin. While the left one contains the
good-performing locally efficient sets mostly in the lower right corner, the globally
efficient regions are much further spread in the right function. (Color figure online)

serve as a proxy of the actual goal to find points other than the global efficient
sets. Evenly distributed points may allow choosing the favored combination of
decision variables, but the corresponding objectives may be arbitrarily bad. For
some problem instances, the interesting space may be a fraction of the complete
decision space. As, e.g., shown in Fig. 8, the interesting basins with efficient sets
close to the Pareto front are distributed in the decision space but cover only a
fraction. Thus, the actual desired diversity is a conditional one. The proposed
measure enforces this conditional diversity by only considering the user-defined
basins of interest and neglecting the other parts of the decision space.

5 Conclusions

This paper provides different perspectives on multimodality in multi-objective
optimization and explicitly contributes to problem characterization and algo-
rithm performance evaluation. We not only introduce a specific method for
acquiring comprehensive information on decision-space basins, but also propose
variants of a performance indicator BBE which addresses both convergence in
objective space as well as decision space diversity. In this regard, not overall
diversity but rather conditional diversity adhering to local efficient sets and
basin coverage is accounted for. Classical EMOAs and algorithms exploiting
local problem structures are experimentally compared and automatically con-
figured. We experimentally show that especially the latter algorithms extremely
profit from being configured w.r.t. BBE. By this means, global HV as well as
conditional decision space diversity are optimized and the improvements for clas-
sical EMOAs lag behind. Moreover, it has to be noted that BBE explicitly needs
underlying basin information and is thus not an indicator to be incorporated
into an indicator-based EMOA or that can be computed on-the-fly. However,
it can be used for optimally configuring EMOAs and for getting an increased
understanding on problem hardness w.r.t. multimodality. Also, it can perspec-
tively contribute to deriving multi-objective landscape features. For future work
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it would be interesting to see how BBE behaves for different classes of multi-
modality (e.g., problems with only multiglobal basins) and for problems with
higher dimensionality in both decision or objective space. Furthermore, instead
of using HV, also other measures can potentially be used for computing the basin
performance (e.g., BBE(SP)).
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Abstract. We propose two new methods for evolving the layout of an
instance-space. Specifically we design three different fitness metrics that
seek to: (i) reward layouts which place instances won by the same solver
close in the space; (ii) reward layouts that place instances won by the
same solver and where the solver has similar performance close together;
(iii) simultaneously reward proximity in both class and distance by com-
bining these into a single metric. Two optimisation algorithms that
utilise these metrics to evolve a model which outputs the coordinates
of instances in a 2d space are proposed: (1) a multi-tree version of GP
(2) a neural network with the weights evolved using an evolution strat-
egy. Experiments in the TSP domain show that both new methods are
capable of generating layouts in which subsequent application of a classi-
fier provides considerably improved accuracy when compared to existing
projection techniques from the literature, with improvements of over 10%
in some cases. Visualisation of the the evolved layouts demonstrates that
they can capture some aspects of the performance gradients across the
space and highlight regions of strong performance.

Keywords: Instance-space · Dimensionality-reduction ·
Algorithm-selection

1 Introduction

Instance Space Analysis is a methodology first proposed by Smith-Miles et al.
in a series of papers [14,15,18] with the purpose of (1) providing a means of
visualising the location of benchmark instances in a 2d space; (2) illustrating the
‘footprint’ of an algorithm (i.e. the regions of the space in which it performs well)
and (3) calculating objective (unbiased) metrics of algorithmic power via analysis
of the aforementioned footprints. Once an instance-space has been created, it can
be used in various ways: for example, to identify regions in the space that are
lacking representative data (followed by generation of instances targeted at filling
these gaps) or developing automated algorithm selection tools to determine the
best algorithm for solving a new instance.

A critical step of the methodology is clearly the projection of an instance
described by a high-dimensional feature-vector into a 2d instance-space, with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the quality of this projection having significant influence of the utility of the
resulting space [14]. Three factors are important. Firstly, the projection method
should be model-based, i.e. it should learn a model that can be used to project
future unseen instances into the space once it has been created—this rules out
embedding approaches such as the popular t-sne [10] technique. Secondly, if
instances are labelled according to the solver which produces the ‘best’ perfor-
mance, instances with the same label should be co-located in the space (poten-
tially in multiple distinct regions). Finally, within a subset of instances with the
same label, we propose that the projection should locate instances where the
solver provides similar performance closer together than those where the perfor-
mance differs widely, i.e. performance should vary smoothly across a cluster of
instances with the same label, thereby indicating regions in which the winning
solver is particularly strong and vice-versa.

The vast majority of work in the area of instance-space creation has used
Principal Component Analysis (PCA) [12] as the means of projecting to a 2d-
space—despite the fact that this method is unsupervised and therefore does not
take into account either instance-labels or relative performance of solvers. Alter-
native methods for dimensionality-reduction such as manifold-learning meth-
ods (e.g. UMAP [3]) which can be used in a supervised manner seek to place
instances that are close in the high-dimensional space close in low-dimensional
instance space: that is, an instance should retain the same nearest neighbours
in the embedded space as in the input space. However, mapping from an high-
dimensional feature-space to a low-dimensional feature-space that also smoothly
captures variation in the performance-space for the purpose of instance-space
creation poses a problem for most manifold-learning methods: neighbours in the
performance-space are not necessarily neighbours in the feature-space. This is
clearly illustrated in Fig. 1 which plots the distance in a feature-space against
distance in the performance-space for all pairs of instances taken from a large
set of 950 TSP instances, and shows there is very little correlation.

Therefore, in order to produce instance-spaces which attempt to satisfy all
three criteria outlined above, we propose two evolutionary approaches to learn a
model which maps from a high-dimensional feature-space to a low-dimensional
instance-space. The first uses a multi-tree genetic programming (GP) algorithm
to output the coordinates in a 2d space, while the second evolves the weights of
a neural-network which outputs the 2d coordinates, using an evolution strategy
(ES) to train the network. We propose three novel fitness functions that can
be combined with either optimiser to address this. To evaluate the quality of
the evolved layouts, post-evolution we apply multiple classifiers to the space
to determine whether it facilitates algorithm-selection, and visualise the space
to gain a qualitative understanding of whether the space smoothly reflect the
performance gradient of the solvers. Both approaches are demonstrated to evolve
layouts that improve the accuracy of classifiers trained on the 2d space compared
to using layouts created using PCA and UMAP, with some progress towards
improving layouts with respect to the performance gradients within a class.
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Fig. 1. Scatter plots showing distance in feature-space (x-axis) vs performance-gap for
pairwise comparisons of TSP instances, illustrating lack of correlation between these
quantities

2 Related Work

A long line of work by Smith-Miles and her collaborators [14,15,18] has gradu-
ally refined the approach to defining an instance-space into a rigorous methodol-
ogy, culminating in the freely available MATILDA toolbox [2]. The method has
been applied in multiple domains within combinatorial optimisation (e.g. TSP
[16], timetabling [17], knapsack [2], graph-colouring [18]) and more recently to
machine-learning datasets [11]. In the vast majority of the work described in
combinatorial optimisation, instance-spaces are created using PCA to project
into low-dimensions. As this is an unsupervised method, in order to find pro-
jections that place instances won by the same solver in similar regions, an evo-
lutionary algorithm is used to select a subset of features that - when projected
via PCA - maximise classification accuracy using an SVM classifier. However,
this potentially biases the projection towards SVM. A more recent approach in
which a single instance-space is developed to represent multiple machine-learning
datasets uses a new projection method that tries to minimise the approximation
error |F − f |+ |P − p| where F, P correspond to the feature/performance vector
in a high-d space and f, p to the same vectors in the low-d space, but cannot
be directly translated to laying out an instance-space to reflect the performance
gradients of multiple solvers.

More recently, Lensen et al. [7] proposed a GP approach to manifold learning
of machine-learning datasets [19]. A multi-tree GP method is used to learn a 2d
projection using a fitness function that attempts to maintain the same ordering
between neighbours of an instance in both spaces. The quality of a learned
embedding is estimated via a proxy measure calculated post-evolution—applying
a classifier to the newly projected data and measuring classification accuracy. In
more recent work, the same authors propose further extensions that (1) optimise
the embedding learned by GP to match a pre-computed UMAP embedding, and
(2) optimise UMAP’s own cost-function directly [13]. Most recently they adapt
their approach to consider how local structure within an embedding can be
better reflected, proposing a modified fitness functions that seeks to measure
how well local topology is preserved by the evolved mapping [8]. However, a
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common trait in this body of work is that the various fitness functions proposed
optimise embeddings such that the input and embedded neighbourhood of a
given instance contain the same instances with the same ordering. As previously
discussed in Sect. 1, this is not necessarily desirable if the instance-space is to
capture performance gradients as well as maintain neighbourhoods in the feature-
space. These issues motivate our new approach which is detailed below.

3 Methods

Our goal is to evolve an instance-space layout that places instances won by the
same solver in the same regions of a low-d feature-space while also attempting to
maintain an ordering in the performance-space, i.e. instances won by the same
algorithm and eliciting similar performance from that algorithm should placed
close together. We investigate two approaches for creating the layout: the first
uses an evolution-strategy to evolve the weights of a neural network that outputs
the 2d coordinates of each instances. The second, inspired by the work of Lensen
et al., uses a multi-tree genetic programming approach to achieve the same goal
but with new fitness function(s). Assuming a set of instances, each of which is
described by a high-dimensional feature-vector and is labelled with the solver
that ‘wins’ the instance, we propose the following novel fitness functions:

1. Label-based (L): maximise the proportion of the k nearest neighbours of an
instance i in the embedded space that have the same label as i (averaged over
all instances)

2. Distance-based (D) :minimise the normalised average distance between the
performance of an instance and that of its k nearest neighbours that have the
same label. A penalty of 1 is added to this quantity for every neighbour that
is wrongly labelled, in order to prevent the fitness function favouring a small
number of correctly labelled neighbours with very small distance.

3. Combined (L + D): maximise L + (1 − D), i.e. a linear combination of the
previous fitness functions

We evolve mappings using each combination of fitness-function and optimi-
sation algorithm (ES/GP), i.e. 6 combinations in total. Post-optimisation, we
follow the approach of Lensen et al. and estimate the quality of an evolved
instance-space using a proxy measure: we apply three off-the-shelf classifiers to
the evolved layout to predict the best solver on an unseen set of instances,
hence determining whether the layout facilitates algorithm-selection. Secondly,
we provide a qualitative view of the extent to which instances that have simi-
lar performance are mapped to similar regions of the space using visualisation.
Results are compared to PCA and UMAP. PCA is chosen as it is the method
of choice to produce an instance-space in MATILDA. UMAP is selected as it
can be used in a supervised fashion and therefore offers a comparison to our
proposed supervised techniques.



Evolutionary Approaches to Improving the Layouts of Instance-Spaces 211

3.1 Mapping Using an Evolution Strategy

An ES is used to learn the hyper-parameters of a neural-network that given a set
of features describing an instance, outputs the coordinates of the instance in a
2-d space. A population encodes a set of individuals that specify the real-valued
weights of a fixed-size neural network. The neural network is a feed-forward
neural network with f inputs corresponding to the number of features describing
an instance, and o = 2 outputs specifying the new coordinates in a 2d space. The
network has one hidden layer with (f + o)/2 neurons. The hidden neurons use a
relu activation function, while the two output neurons have sigmoid activation.

To evolve the population to optimise the chosen fitness function(s) (as defined
above), we apply the standard evolution strategy CMA-ES [4] due its prevalence
in the literature in the context of neuro-evolution [5,6,9]. We use the default
implementation of CMA-ES provided in the DEAP library [1]. This requires
three parameters to be set: the centroid (set to 0.0), the value of sigma (set to
1.0) and the number of offspring lambda which is set to 50 in all experiments.
The algorithm was run for 50 generations.

3.2 Mapping Using a Multi-tree Genetic Programming

We use a multi-tree GP representation in which each individual contains 2 GP
trees, each representing a single dimension in the embedding, following the gen-
eral approach of Lensen et al. [7]. The terminal set contains the n features
describing an instance, with a mix of linear/non-linear functions (Table 1). The
algorithm is implemented using DEAP. All parameter settings are given in
Table 1. To enable direct comparison with the ES, the number of generations
was fixed at 25, resulting in the same number of individual evaluations for both
methods.

Table 1. GP parameters and settings

GP parameters

Population size 100

Initialisation GenHalfandHalf (5,10)

Selection Tournament (size= 7)

Crossover 1 pt

Mutation GenFull (3, 5)

Max tree depth 17

GP function set

ADD COSINE

SUBTRACT SIN

MULTIPLY TANH

ProtectedDIVIDE RELU

NEG Eph. Const.(0,1)

3.3 Instance Data

We use the instances from the TSP domain provided via MATILDA [2]. This
includes the meta-data associated with an instance that defines the values of fea-
tures identified as relevant for the domain and the performance data from two
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solvers (Chained Lin-Kernighan (CLK) an Lin-Kernighan with Cluster Compen-
sation (LKCC) [18]). 950 instances are provided which are synthetically gener-
ated to be either easy or hard for each solver (see [18] for a detailed description
of the generation method and solver), labelled by the best-solver determined
according to the time taken to solve.

We conduct experiments using the 17 features given in the MATILDA meta-
data (denoted ‘full features’). In addition we repeat experiments using the subset
of 6 features that were selected by MATILDA to produce the instance-space
projection using PCA, as described in the Sect. 2, referred from here on as the
‘reduced set’. Recall that this reduced set was specifically chosen to optimise a
PCA projection but is used in all experiments to enable direct comparison. The
reader is referred to the MATILDA toolbox [2] for a detailed description of each
feature and the features designated as the ‘reduced’ feature-set.

4 Experiments

Experiments are conducted for each optimiser (ES/GP) combined with each of
the three proposed fitness functions. For each combination we evolve layouts
using both the full and reduced feature set. All experiments are repeated 10
times. The feature-data is normalised (specifically as this provides input in a
suitable range to the neural network). For PCA and UMAP, standardised scaling
is applied to the data to remove the mean and scale to unit variance as this is
widely accepted as best-practice for these methods. The 950 instances are split
into a ‘training’ set using 60% of the data (selected using stratified sampling)
to preserve class distribution in each split. The same training dataset is used in
all experiments to evolve the instance-space layout. In all experiments reported,
the k nearest neighbour parameter required to calculate fitness was set to 15.
(A series of preliminary experiments that varied k between 15 and 45 did not
provide any statistical evidence that the setting influenced results).

Following evolution, we calculate a proxy measure of quality as described
in Sect. 2 to quantify the effectiveness of the evolved layout: three off-the-shelf
classifiers are trained to predict the best solver (a binary classification prob-
lem) using the evolved 2d projection as input to the classifier. The classifier is
trained using the same training data used to evolve the layout, then results are
reported on the held-out test set. Three classifiers are chosen: Random Forest
(generally cited as providing strong performance), support vector machines (as
used in the MATILDA methodology), and finally a k-nearest neighbour clas-
sifier (which would be expected to perform well in the spaces evolved by the
label-based method which also relies on neighbourhoods). For each evolved lay-
out, we record the accuracy and F1 score (which combines the precision and
recall of a classifier into a single metric by taking their harmonic mean) of each
classifier. This is repeated using layouts created using PCA and UMAP on the
same data as comparison. The standard scikit-learn implementation of PCA is
used which does not require any parameter setting. UMAP requires a parameter
nearest neighbor which controls the balance between local versus global struc-
ture in the data (where low values emphasise local structure) which was set to
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5 again following a brief empirical investigation. All other UMAP settings were
left in their default setting as provided in the Python implementation [3]. As
previously noted, UMAP is used in its supervised form.

5 Results

This section reports quantitative and qualitative results that (1) compare the
quality of embedding (using classification accuracy/F1-score as a proxy) using
each combination of optimiser/fitness-function to off-the-shelf methods (PCA,
UMAP) and (2) provide a qualitative evaluation of the evolved instance-spaces
with respect to the extent to which they appear to separate the two classes, and
illustrate gradients in the performance data.

Fig. 2. Convergence curves for combinations of (optimiser, fitness function), obtained
using the reduced feature-set as input. Top row shows results for the NN method, the
bottom row for GP. Red line shows median value over 10 runs (Color figure online)

5.1 Insights into Evolutionary Progress

Figure 2 plots convergence curves for each combination of optimiser/fitness func-
tion applied to evolving a layout in the reduced feature-space1. The GP method
combined with label-based fitness measure L or the combined fitness measure
exhibits less variance than the neural network approach, although both meth-
ods show wide variance using the distance based function which only implicitly
accounts for class-labels. Furthermore, the GP approaches converge more quickly
than the neural-network equivalents.
1 Similar trends are observed in the plots obtained in the full feature space but not

shown due to space limitations.
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Table 2. Median accuracy and F1 score per classifier using projection obtained by each
combination of optimiser/fitness function, with comparison to PCA and UMAP. Top
row - full feature set; bottom row - reduced feature set. Bold indicates that accuracy is
better than both PCA/UMAP, italics that F1 is better than both. All results reported
on held-out test set

A(SVM) F1(SVM) A(KNN) F1(KNN) A(RndF) F1(RndF)

Full features

GP-KNN (L) 0.920 0.911 0.972 0.972 0.959 0.958

GP-DIST (D) 0.953 0.951 0.966 0.966 0.962 0.962

GP-DIST-ADD (L+D) 0.942 0.939 0.966 0.966 0.961 0.960

NN-KNN (L) 0.912 0.912 0.920 0.919 0.915 0.913

NN-DIST (D) 0.833 0.782 0.933 0.933 0.917 0.917

NN-DIST-ADD (L+D) 0.800 0.711 0.778 0.710 0.800 0.711

PCA 0.850 0.843 0.847 0.845 0.858 0.844

UMAP 0.855 0.845 0.861 0.852 0.855 0.845

Reduced features

GP-KNN (L) 0.891 0.897 0.965 0.964 0.958 0.957

GP-DIST (D) 0.950 0.949 0.970 0.969 0.961 0.960

GP-DIST-ADD (L+D) 0.952 0.952 0.968 0.968 0.961 0.960

NN-KNN (L) 0.800 0.711 0.955 0.955 0.951 0.951

NN-DIST (D) 0.800 0.711 0.958 0.957 0.951 0.951

NN-DIST-ADD (L+D) 0.800 0.711 0.772 0.708 0.800 0.711

PCA 0.874 0.875 0.889 0.888 0.868 0.846

UMAP 0.909 0.907 0.903 0.902 0.913 0.911

5.2 Quantitative Evaluation via Proxy Classification Metrics

Table 2 shows the classification accuracy and F1-score obtained from each of
three classifiers on the unseen dataset for each experiment using the projections
evolved in the prior step, and compared to projections obtained from PCA and
UMAP. With the exception of two combinations that use the neural network
method (L, L+D), it is clear that the evolved layouts enable all three classifiers
tested to produce significantly better results that PCA and UMAP, with per-
formance gains of over 10% in several cases. This demonstrates that the evolved
layouts provided a good general basis for classification, in eliciting good per-
formance from mutiple different types of classifier. As expected, the neighbour-
based L fitness function creates layouts that favour the KNN classifier, which
also relies on a neighbourhood method, but it is clear that the other classifiers
(particularly Random Forest) are also competitive in a space evolved to favour
similar neighbours. The GP approach generally outperforms the neural-network
approaches. The SVM classifier generally provides weaker results than the other
two classifiers, although still markedly better than PCA/UMAP in 4 out of 6
experiments.

Figure 3 shows boxplots of results obtained on the test set from the 10
runs for each combination, plotted per classifier. Pairwise significance tests were
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conduct on each set of results per classifiers (Mann-Whitney test using Bonfer-
roni correction). Similar plots of p-values were obtained for all three classifiers,
however only one is shown due to space restrictions. The boxplots demonstrate
that the SVM classifier has more variable performance in the evolved spaces
while the other two classifiers appear robust to the projection; similarly, the
neural approach tends to result in layouts in which classification performance is
more variable than the spaces evolved using GP; this result is consistent across
all three classifiers.

Fig. 3. Boxplots showing distribution of results per proxy classifier for each layout
combination. (d) Shows a typical plot of p-values obtained from comparing pairs of
methods: similar plots were obtained for all 3 classifiers.

5.3 Qualitative Evaluation: Visualisation of Layouts (by Label)

Figure 4 shows examples of layouts obtained by the single run from the 10 runs
of each combination that resulted in the best fitness for each combination of
optimiser/fitness function. The plots are shaded by class label. A wide variety of
layouts are observed. Note that UMAP (as expected) produces plots that favour
local structure within the data. The fitness function L + D that favours both
positioning instance with the same label and similar performance tends to spread
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Fig. 4. Embeddings from run with best accuracy. First row: reduced feature-set, GP
plus PCA reduced features. Second row: reduced feature-set, NN, plus UMAP reduced
features. Third/fourth row: as above using full feature set.

the instances more widely across the space. While all but one of the evolutionary
methods (the exception being NN(L+D) produce layouts that result in consid-
erably higher classification accuracy than PCA/UMAP, the layouts are perhaps
less easy to interpret to the human eye. In several cases, multiple instances
are mapped to the same coordinates which improves classification but does not
easily enable ‘similar’ instances (from an algorithm-selection perspective) to be
easily identified. A trade-off thus exists: ultimately the choice of method depends
on the priorities of the user, i.e. whether the goal is simply to select the best
algorithm or from a more scientific perspective, to gain insights into algorithm
performance relative to algorithm features.

Furthermore, while the boxplots show low variance in classification accuracy
across multiple runs, there is considerably variation in the layouts themselves
(see Fig. 5 as an example). The different biases of the two fitness functions is
clearly observed: note the tighter clustering of instances per class in the top
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Fig. 5. Layouts from repeated runs of the same optimiser/fitness function. Top row -
GP with nearest-neighbour fitness; bottom - GP with distance based fitness

row from rewarding near neighbours of the same class, while the distance based
fitness function results in a wider spread of instances. This variability further
emphasises the trade-offs to be considered as mentioned above.

5.4 Visualisation of Layouts (by Performance)

Finally we evaluate the extent to which the distance based fitness function results
in layouts that place instances that elicit similar performance from the same
algorithm close together. Figure 6 shows three examples obtained from separate
runs of the GP optimiser with the distance-based fitness function. Instances
‘won’ by each class are shown on separate plots for clarity with the shading
representing the relative performance of the algorithm (normalised between 0
and 1). Some clear clusters of similar performance are visible (e.g. particularly
regarding the dark colours representing very strong performance), while there is
some evidence of instances with weak performance (lightest colours) appearing

Fig. 6. Layouts from 2 runs of GP optimiser (fitness=Distance), one run per row.
Instances shaded by relative performance and separated into two plots according to
the class label of the instance
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towards the edge of clusters. However, there is clearly further work required to
adapt this method to create smoother gradients across the space.

6 Conclusion

Instance-space analysis methods have been attracting increasing attention as
a way of understanding the ‘footprints’ of an algorithm within a feature-space,
enabling new insights into relative performance and algorithmic power [14], while
additionally facilitating algorithm-selection. We first outlined the properties that
we believe an instance-space should embody, specifically that it should co-locate
instances with the same class label, while also reflecting the performance-gradient
across a cluster, i.e. placing instances that elicit the similar performance from
an algorithm close together. These factors are peculiar to the goal of instance-
space analysis in optimisation. Specifically, they differ from the goals of stan-
dard dimensionality reduction methods which usually try to creating a map-
ping in which the ordering of neighbours of a point in a high-dimensional space
is reflected in the low-dimensional space. As described in Sect. 1 however, an
ordering in the feature-space of a set of instances can differ extensively from
the ordering within the performance-space, hence manifold-learning techniques
might not be appropriate for instance-space analysis.

We demonstrate that both proposed optimisation methods are capable of
generating layouts that provide considerable improvement in classification accu-
racy to UMAP and PCA, of over 10% in some cases. We also provide a more
qualitative analysis of the visualisations in terms of their ability to reflect per-
formance gradients. Results suggest that the approach shows promise with the
respect to the latter goal, although there is scope for refinement. The calculation
of the k nearest-neighbours is time-consuming for a large dataset but this can be
significantly improved using an efficient implementation (e.g. k -d trees) and is
therefore not limiting. We deliberately chose not to conduct a wide exploration
of possible neural architectures or to spend a large amount of effort in tuning
the parameters of the proposed algorithms. This will be further investigated in
future work. Finally, we intend to repeat the experiments in other combinatorial
domains, using the MATILDA generated instance-spaces as a baseline.

Acknowledgments. Hart gratefully acknowledges the support EPSRC EP/V02
6534/1.
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Abstract. We propose a new approach to generating synthetic instances
in the knapsack domain in order to fill an instance-space. The method
uses a novelty-search algorithm to search for instances that are diverse
with respect to a feature-space but also elicit discriminatory performance
from a set of target solvers. We demonstrate that a single run of the algo-
rithm per target solver provides discriminatory instances and broad cov-
erage of the feature-space. Furthermore, the instances also show diver-
sity within the performance-space, despite the fact this is not explic-
itly evolved for, i.e. for a given ‘winning solver’, the magnitude of the
performance-gap between it and other solvers varies across a wide-range.
The method therefore provides a rich instance-space which can be used
to analyse algorithm strengths/weaknesses, conduct algorithm-selection
or construct a portfolio solver.

Keywords: Instance generation · Novelty search · Evolutionary
algorithm · Knapsack problem · Optimisation

1 Introduction

The term instance-space—first coined by Smith-Miles et al. [16]—refers to a
high-dimensional space that summarises a set of instances according to a vector
containing a list of measures features derived from the instance-data. Project-
ing the feature-vector into a lower-dimensional space (ideally 2D) enables the
instance-space to be visualised. Solver-performance can be superimposed on the
visualisation to reveal regions of the instance-space in which a potential solver
outperforms other candidate solvers. The low-dimensional visualisation of the
instance-space can then be used in multiple ways: to understand areas of the
space in which solvers are strong/weak, to perform algorithm-selection or to
assemble a portfolio of solvers.
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The ability to generate a useful instance-space however depends on the avail-
ability of a large set of instances. These instance sets should ideally (1) cover a
high proportion of the 2D-space, i.e. instances are diverse with respect to the
features defining the 2D-space; (2) contain instances on which the portfolio of
solvers of interest exhibit discriminatory performance; (3) contain instances that
highlight diversity in the performance-space (i.e. highlight a range of values for
the performance-gap between the winning solver and the next best solver), in
order to gain further insight into the relative performance of different solvers.

On the one hand, previous research has focused on evolving new instances
that are maximally discriminative with respect to solvers [1,3,13] (i.e. maximise
the performance-gap between a target and other solvers), but tend not to have
explicit mechanisms for creating instances that are diverse w.r.t feature-space.
On the other hand, space-filling approaches [14] directly attempt to fill gaps in
the feature-space, but tend not to account for discriminatory behaviour. The
main contribution of our work is therefore in proposing an approach based on
Novelty Search (NS) [9] that is simultaneously capable of generating a set of
instances which are diverse with respect to a feature space and exhibit discrim-
inatory but diverse performance with respect to a portfolio of solvers (where
diversity in this case refers to variation in the magnitude of the performance
gap). The latter results from forcing the search to explore areas of the feature-
space in which one solver outperforms others only by a small amount, which
would be overlooked by methods that attempt to optimise this. Furthermore,
only one run of the method is required to generate the instance set targeted to
each particular solver considered, where each solution of the NS corresponds to
one KP instance.

We evaluate the approach in the Knapsack Problem (KP) domain, using a
portfolio of stochastic solvers (Evolutionary Algorithms - EAs), extending previ-
ous work on instance generation which has tended to use deterministic portfolios.
Finally, we explain in the concluding section why we believe the method can eas-
ily be generalised both to other domains and other solvers.

2 Related Work

The use of EAs to target generation of a set of instances where one solver outper-
forms others in a portfolio is relatively common. For instance, in the bin-packing
domain, Alissa et al. [1] evolve instances that elicit discriminatory performance
from a set of four heuristic solvers. Plata et al. [13] synthesise discriminatory
instances in the knapsack domain, while there are multiple examples of this app-
roach to generate instances for Travelling Salesman Problem (TSP) [3,15]. All of
these methods follow a similar approach: the EA attempts to maximise the per-
formance gap between a target solver and others in the portfolio. Hence, while the
methods are successful in discovering instances that optimise this gap, depending
on the search-landscape (i.e. number and size of basins of local optima), multiple
runs can converge to very similar solutions. Furthermore, these methods focus
only on discrimination and therefore there is no pressure to explore the ‘feature-
space’ of the domain. An implicit attempt to address this in TSP is described



An NS Approach to Generate Diverse and Discriminatory Instances 225

in [6], in which the selection method of the EA is altered to favour offspring
that maintain diversity with respect to a chosen feature, as long as the offspring
have a performance gap over a given threshold. Again working in TSP, Bossek
et al. [3] tackle this issue by proposing novel mutation operators that are designed
to provide better exploration of the feature-space however while still optimising
for performance-gap. In contrast to the above, Smith-Miles et al. [14] describe
a method for evolving new instances to directly fill gaps in an instance-space
which is defined on a 2D plane, with each axis representing a feature derived
from the instance data. While this targets filling the instance-space, it does not
pay attention to whether the generated instances show discriminatory behaviour
on a chosen portfolio.

As noted in the previous section, our proposed approach addresses the above
issue using a novelty-search algorithm to generate diverse instances that demon-
strate statistically superior performance for a specified target algorithm com-
pared to the other solvers in the portfolio.

3 Novelty Search for Instance Generation: Motivation

NS was first introduced by Lehman et al. [9] as an attempt to mitigate the
problem of finding optimal solution in deceptive landscapes, with a focus on the
control problems. The core idea replaces the objective function in a standard
evolutionary search process with a function that rewards novelty rather than
a performance-based fitness value to force exploration of the search-space. A
‘pure’ novelty-search algorithm rewards only novelty: in the case of knapsack
instances, this can be defined w.r.t a set of user-defined features describing the
instance. However, as we wish to generate instances that are both diverse but also
illuminate the region in which a single solver outperforms others in a portfolio,
we use a modified form of NS in which the objective function reflects a weighted
balance between diversity and performance, where the latter term quantifies
the performance difference between a target algorithm and the others in the
portfolio.

Given a descriptor x, i.e., typically a multi-dimensional vector capturing fea-
tures of a solution, the most common approach to quantify novelty of an indi-
vidual is via the sparseness metric which measures the average distance between
the individual’s descriptor and its k -nearest neighbours. The main motivation
behind the usage of descriptors is to obtain a deeper representation of solutions
via their features. These features are problem dependent.

The k nearest-neighbours are determined by comparing an individual’s
descriptor to the descriptors of all other members of the current population
and to those stored in an external archive of past individuals whose descriptors
were highly novel when they originated. Sparseness s is then defined as:

s(x) =
1
k

k∑

i=0

dist(x, μi) (1)

where μi is the ith-nearest neighbour of x with respect to a user-defined distance
metric dist.
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The archive is supplemented at each generation in two ways. Firstly, a sample
of individuals from the current population is randomly added to the archive with
a probability of 1% following common practice in the literature [17]. Secondly,
any individual from the current generation with sparseness greater than a pre-
defined threshold ta is also added to the archive.

In addition to the archive described above which is used to calculate the
sparseness metric that drives evolution, a separate list of individuals (denoted
as the solution set) is incrementally built as the algorithm runs: this constitutes
the final set of instances returned when the algorithm terminates, again following
the method of [17]. At the end of each generation, each member of the current
population is scored against the solution set by finding the distance to the nearest
neighbour (k = 1) in the solution set. Those individuals that score above a
particular threshold tss are added to the solution set. The solution set forms the
output of the algorithm.

It is important to note that the solution set does not influence the sparseness
metric driving the evolutionary process: instead, this approach ensures that each
solution returned has a descriptor that differs by at least the given threshold tss

from the others in the final collection. Finally, both the archive and the solution
set grow randomly on each generation depending on the diversity discovered
without any limit in their final size.

4 Methods

We apply the approach to generating instances for the KP, a commonly studied
combinatorial optimisation problem with many practical applications. The KP
requires the selection of a subset of items from a larger set of N items, each with
profit p and weight w in such a way that the total profit is maximised while
respecting a constraint that the weight remains under the knapsack capacity C.
The main motivation behind choosing the KP over other optimisation problems
is the lack of literature about discriminatory instance generation for this problem
in contrast to other well-known NP-hard problems such as the TSP.

4.1 Instance Representation and Novelty Descriptor

A knapsack instance is described by an array of integer numbers of size N × 2,
where N is the dimension (number of items) of the instance of the KP we want
to create, with the weights and profits of the items stored at the even and odd
positions of the array, respectively. The capacity C of the knapsack is determined
for each new individual generated as 80% of the total sum of weights, as using
a fixed capacity would tend to create insolvable instances. From each instance,
we extract a set of features to form a vector that defines the descriptor used in
the sparseness calculation shown in Eq. 1. The features chosen are shown below,
i.e. the descriptor is a 8-dimensional vector taken from [13] containing: capacity
of the knapsack; minimum weight/profit; maximum weight/profit; average item
efficiency; mean distribution of values between profits and weights (N ×2 integer
values representing the instance); standard deviation of values between profits
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Table 1. Parameter settings for EAsolver. The crossover rate is the distinguishing
feature for each configuration.

Parameter Value

Population size 32

Max. evaluations 1e5

Mutation rate 1/N

Crossover rate 0.7, 0.8, 0.9, 1.0

Crossover Uniform crossover

Mutation Uniform one mutation

Selection Binary tournament selection

and weights. We evolve fixed size instances containing N = 50 items, hence each
individual describing an instance contains 100 values describing pairs of (profit,
weight). In addition, upper and lower bounds were set to delimit the maximum
and minimum values of both profits and weights.1 All algorithms were written
in C++.2

4.2 Algorithm Portfolio

While in principle the portfolio can contain any number or type of solvers, we
restrict experiments to a portfolio containing four differently configured versions
of an EA. Parameter tuning can significantly impact EA performance on an
instance [12]. That is the reason why we are interested in addressing the gener-
ation of instances for specific EA configurations rather than different heuristics
or algorithmic schemes. As a result, it is expected that different configurations
of the same approach cover different regions of the instance space. Each EA
(EAsolver) is a standard generational with elitism GA [10] with parameters
defined in Table 1. The four solvers differ only in the setting of the crossover
rate, i.e. ∈ 0.7, 0.8, 0.9, 1.0, which are common values used in the literature.

4.3 Novelty Search Algorithm

The NS approach (EAinstance), described by Algorithm1, evolves a population
of instances: one run of the algorithm evolves a diverse set of instances that are
tailored to a chosen target algorithm. All parameters are given in Table 2. We
note that, since EAinstance is time-consuming, its population size, as well as its
number of evaluations, were set by trying to get a suitable trade-off between the
results obtained and the time invested for attaining them.

1 The description of an instance follows the general method of [13], except that they
converted the real-valued profits/weights to a binary representation.

2 The source code, instances generated and results obtained are available in a GitHub
repository: https://github.com/PAL-ULL/ns kp generation.

https://github.com/PAL-ULL/ns_kp_generation
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Table 2. Parameter settings for EAinstance which evolves the diverse population of
instances. This approach was executed 10 times for each targeted algorithm for statis-
tical purposes.

Parameter Value

Knapsack items (N) 50

Weight and profit upper bound 1,000

Weight and profit lower bound 1

Population size 10

Crossover rate 0.8

Mutation rate 1/(N × 2)

Evaluations 2,500, 5,000, 10,000, 15,000

Repetitions (R) 10

Distance metric Euclidean distance

Neighbourhood size (k) 3

Thresholds (ta, tss) 3.0

To calculate the fitness of an instance in the population (Algorithm2), two
quantities are required: (1) the novelty score measuring the sparseness of the
instance and (2) the performance score measuring difference in average per-
formance over R repetitions between the target algorithm and the best of the
remaining algorithms. The novelty score s (sparseness) for an instance is cal-
culated according to Eq. 1 using the descriptor x detailed in Sect. 4.1, and the
Euclidean distance between the vectors as the dist function. The performance
score ps is calculated according to Eq. 2, i.e., the difference between the mean
profit achieved in R repetitions by the target algorithm and the maximum of
the mean profits achieved in R repetitions by the remaining approaches of the
portfolio (where profit is the sum of the profits of items included in a knapsack).
The reader should consider that, in order to generate discriminatory instances
for different algorithms, the target algorithm must vary from one execution to
another. In other words, our approach does not generate biased instances for
different algorithms in one single execution.

ps = target mean profit − max(other mean profit) (2)

Finally, the fitness f used to drive the evolutionary process is calculated as a
linearly weighted combination of the novelty score s and the performance score
ps of an instance, where φ is the performance/novelty balance weighting factor.

f = φ ∗ ps + (1 − φ) ∗ s (3)

5 Experiments and Results

Experiments address the following questions:
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Algorithm 1: Novelty Search
Input: N , k, MaxEvals, portfolio

1 initialise(population, N);
2 evaluate(population, portfolio);
3 archive = ∅ ;
4 feature list = ∅;
5 for i = 0 to MaxEvals do
6 parents = select(population);
7 offspring = reproduce(parents);
8 offspring = evaluate(offspring, portfolio, archive, k) (Algorithm 2);
9 population = update(population, offspring);

10 archive = update archive(population, archive);
11 solution set = update ss(population, solution set);

12 end
13 return solution set

Algorithm 2: Evaluation method
Input: offspring, portfolio, archive, k

1 for instance in offspring do
2 for algorithm in portfolio do
3 apply algorithm to solve instance R times;
4 calculate mean profit of algorithm

5 end
6 calculate the novelty score(offspring, archive, k) (Equation 1);
7 calculate the performance score(offspring) (Equation 2);
8 calculate fitness(offspring) (Equation 3);

9 end
10 return offspring

1. What influence does the number of generations have on the distribution of
evolved instances?

2. To what extent do the evolved instances provide diverse coverage of the
instance space?

3. What effect does the parameter φ that governs the balance between novelty
and performance have on the diversity of the evolved instances?

4. How diverse are the instances evolved for each target with respect to the
performance difference between the target algorithm and the best of the other
algorithms, i.e. according to Eq. 2?

5. Given a set of instances evolved to be tailored to a specific target algorithm, to
what extent is the performance of the target on the set statistically significant
compared to the other algorithms in the portfolio?
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Fig. 1. Instance representation in a 2D space after applying PCA. Colours reflect the
‘winning’ algorithm for an instance: red (crossover rate 1.0); green (0.9), orange (0.8),
blue (0.7). For more detail about this and following figures please refer to the GitHub
repository previously mentioned. (Color figure online)

5.1 Influence of Generation Parameter

EAinstance was run for 250, 500, 1,000 and 1,500 generations (2,500, 5,000, 10,000
and 15,000 evaluations, respectively). EAinstance was run 10 times for each of the
four target algorithms and the instances for each run per target were combined.
The parameter φ describing the performance/novelty balance was set to 0.6.
Principal Component Analysis (PCA) was then applied to the feature-descriptor
detailed in Sect. 4.1 to reduce each instance to two dimensions. The results are
shown in Fig. 1.

From a qualitative perspective, the most separated clusters are seen for the
cases of 500 and 1,000 generations. More overlap is observed when running for too
few or too many generations. A plausible explanation often noted in the novelty
search literature, e.g. [4], is that if the novelty procedure is run for too long, it
eventually becomes difficult to locate novel solutions as the search reaches the
boundaries of the feasible space. As a result, the algorithm tends to fill in gaps
in the space already explored. On the other hand, considering 250 generations
does not allow sufficient time for the algorithm to discover solutions that are
both novel and high performing. That is the reason why those results are not
shown in Fig. 1. In the remaining experiments, we fix the generations at 1,000.

In order to quantitatively evaluate the extent to which the evolved instances
cover the instance space, we calculate the exploration uniformity (U) metric,
previously proposed in [7,8]. This enables a comparison of the distribution of
solutions in the space with a hypothetical Uniform Distribution (UD). First, the
environment is divided into a grid of 25 x 25 cells, after which the number of
solutions in each cell is counted. Next, the Jensen-Shannon divergence (JSD) [5]
is used to compare the distance of the distribution of solutions with the ideal
UD. The U metric is then calculated according to Eq. 4. The higher the U met-
ric score, the more uniformly distributed the instances and better covered the
instance space in a given region. Obtaining a score of 1 proves a perfect unifor-
mity distributed set of solutions.

U(δ) = 1 − JSD(Pδ, UD) (4)
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Table 3. Average number of instances generated after running EAinstance 10 times
for each target algorithm, average coverage metric (U) per run, and total number of
unique instances obtained from combining the instances over multiple runs with its cor-
responding coverage metric (U). No duplicated instances were found when comparing
the individual’s descriptors.

Target Avg. instances Avg. U Tot. instances Tot. U

GA 0.7 33.4 0.404 334 0.673

GA 0.8 37.6 0.416 376 0.678

GA 0.9 33.9 0.405 339 0.647

GA 1.0 38.3 0.410 383 0.647

In Eq. 4, δ denotes a descriptor associated with a solution. Following common
practice in the literature and to simplify the computations, this descriptor is
defined as the two principal components of each solution extracted after applying
PCA to the feature-based descriptor described in Sect. 4.1.

Table 3 summarises the average number of instances generated per run and
the average coverage metric U per each target algorithm, as well as the total
number of unique instances generated and its corresponding coverage metric
U per each target approach. Since the portfolio approaches only differ in the
crossover rate, we use the term GA cr with cr ∈ {0.7, 0.8, 0.9, 1.0} to refer to
each target algorithm. Considering the instance space, it can be observed that
the method is robust in terms of the number of instances generated, as well as
in terms of the corresponding U metric values. Values are similar regardless of
the particular target approach for which instances were generated.

5.2 Instance Space Coverage

The left-hand side of Fig. 2 shows results from running EAinstance with the
performance/novelty weighting factor φ set to 1, i.e., the EA only attempts to

Fig. 2. Instance representation in a 2D search space after applying PCA comparing
two methods of instances generation.
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maximise the performance gap and ignores novelty, i.e. an equivalent experiment
to that described in [13]. The target algorithm in this case has crossover rate =
0.7. Small groups of clustered instances are observed, with a U value of 0.3772.
In contrast, the right-hand side (again with target crossover=0.7) demonstrates
that running EAinstance with a performance/novelty weighting factor φ set to
0.6 clearly results in a large coverage of the space with a corresponding U value
of 0.7880.

5.3 Influence of the Balance Between Novelty and Performance

Recall that the evolutionary process in EAinstance is guided by Eq. 3, where
parameter φ balances the contribution of performance and novelty to calcu-
late an individual’s fitness. Low values favour feature-diversity, while high val-
ues large performance-gaps. We test eight different weighting settings, show-
ing three examples with φ ∈ {1, 0.7, 0.3} in Fig. 3. The target approach was
GA 0.7. Results show that a reasonable compromise is obtained with a perfor-
mance/novelty balance weighting factor φ equal to 0.7: instances are clustered
according to the target algorithm while maintaining diversity. As φ reduces
to favour novelty, as expected, coverage increases at the expense of clustered
instances.

Fig. 3. Instance representation in a 2D search space after applying PCA for three
examples of performance/novelty balance weighting factors used to calculate fitness.

5.4 Comparison of Target Algorithm Performance on Evolved
Instances

The goal of the approach presented is to evolve a diverse set of instances whose
performance is tailored to favour a specific target algorithm. Due to the stochas-
tic nature of the solvers, we conduct a rigorous statistical evaluation to determine
whether the results obtained on the set of instances evolved for a target algo-
rithm show statistically significant differences compared to applying each of the
other algorithms to the same set of instances (Table 4). First, a Shapiro-Wilk
test was performed to check whether the values of the results followed a normal
(Gaussian) distribution. If so, the Levene test checked for the homogeneity of the
variances. If the samples had equal variances, an anova test was done; if not, a
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Table 4. Statistical analysis. A win (↑) indicates significance difference between two
configurations and that the mean performance value of the target was higher. A draw
(↔) indicates no significance difference between both configurations. The number
of instances generated for each target approach was 90 (ga 0.7), 101 (ga 0.8), 110
(ga 0.9) and 80 (ga 1.0).

GA 0.7 GA 0.8 GA 0.9 GA 1.0

GA 0.7 ↑ 87 ↔ 3 ↑ 69 ↔ 21 ↑ 25 ↔ 65

GA 0.8 ↑ 100 ↔ 1 ↑ 77 ↔ 24 ↑ 21 ↔ 80

GA 0.9 ↑ 107 ↔ 3 ↑ 87 ↔ 23 ↑ 18 ↔ 92

GA 1.0 ↑ 21 ↔ 59 ↑ 61 ↔ 19 ↑ 76 ↔ 4

Welch test was performed. For non-Gaussian distributions, the non-parametric
Kruskal-Wallis test was used [11]. For every test, a significance level α = 0.05
was considered. The comparison was carried out considering the mean profits
achieved by each approach at the end of 10 independent executions for each
instance generated.

For each target approach A in the first column, the number of ‘wins’ (↑)
and ‘draws’ (↔) of each target algorithm with respect to other approach B is
shown. A ‘win’ means that approach A provides statistically better performance
in comparison to approach B, according to the procedure described above, when
solving a particular instance. A ‘draw’ indicates no significant difference. For
example, GA 0.7 provides statistically better performance than GA 0.8 in 87
out of the 90 instances generated for the former. Note that in no case did the
target algorithm lose on an instance to another algorithm.

For the three algorithms with crossover rates {0.7, 0.8, 0.9} then for the vast
majority of instances, the target algorithm outperforms the other algorithms.
However for these three algorithms, it appears harder to find diverse instances
where the respective algorithm outperforms the algorithm with configuration
1.0. Thus the results provide some insights into the relative strengths and weak-
nesses of each algorithm in terms of the size of their footprint within the space
(approximated by the number of generated instances).

5.5 Performance Diversity

Finally, we provide further insight into the diversity of the evolved instances
with respect to the performance space (see Figs. 4 and 5). That is, we consider
instances that are ‘won’ by a target algorithm and consider the spread in the
magnitude of the performance gap as defined in Eq. 2. We note that the approach
is able to generate diverse instances in terms of this metric: while a significant
number of instances have a relatively small gap (as seen, for instance, by the
left skew to the distribution in Fig. 4), we also find instances spread across the
range (see Fig. 5). The instances therefore exhibit performance diversity as well
as diversity in terms of coverage of the instance space.
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Fig. 4. Histogram showing the distribution of performance gap between the approach
GA 0.7 and the remaining approaches by considering the instances generated for the
former.

Fig. 5. Histogram showing the distribution of performance gap between the approach
GA 1.0 and the remaining approaches by considering the instances generated for the
former.

6 Conclusions and Further Research

The paper proposed an NS-based algorithm to generate sets of instances tailored
to work well with a specific solver that are diverse with respect to a feature-space
and also diverse with respect to the magnitude of the performance-gap between
the target solvers and others in a portfolio.

The results demonstrate that the NS-based method provides larges sets of
instances that are considerably more diverse in a feature-space in comparison to
those generated by an evolutionary method that purely focuses on maximising
the performance gap (i.e. following the method of [13]). It also provides instances
that demonstrate diversity in the performance space (Figs. 4 and 5). A major
advantage of the proposed method is that a single run returns a set of diverse
instances per target algorithm, in contrast to previous literature for instance
generation [1,13,15]) that requires repeated runs due to EA convergence, with
no guarantee that repeated runs will deliver unique solutions.

The results also shed new insights into the strengths and weaknesses of the
four algorithms used, in terms of the size of their footprint in the instance-
space, while also emphasising the benefits of algorithm-configuration. Despite
only changing one parameter (crossover rate) per configuration, we are able to
generate a large set of instances per configuration that are specifically tailored to
that configuration, demonstrating that even small changes in parameter values
can lead to different performance.
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Although our results are restricted to evolving knapsack instances in con-
junction with a portfolio of EA-based approaches for generating solutions, we
suggest that the method is generalisable. The underlying core of the approach is
an EA to evolve new instances: this has already been demonstrated to be feasible
in multiple other domains, e.g. binpacking and TSP [1,3]. Secondly, it requires
the definition of a feature-vector: again the literature describes numerous poten-
tial features relevant to a range of combinatorial domains3 At the same time, a
basic version of NS was recently used by Alissa et al. [2] to evolve instances that
are diverse in the performance-space for 1D bin-packing, suggesting that other
descriptors and other domains are plausible.

Finally, regarding the KP domain, it would be interesting to add the capacity
C of the knapsack as a feature of the instances being evolved.
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Abstract. Recently different evolutionary computation approaches have
been developed that generate sets of high quality diverse solutions for a
given optimisation problem. Many studies have considered diversity 1) as
a mean to explore niches in behavioural space (quality diversity) or 2) to
increase the structural differences of solutions (evolutionary diversity opti-
misation). In this study,we introduce a co-evolutionary algorithm to simul-
taneously explore the two spaces for the multi-component traveling thief
problem. The results show the capability of the co-evolutionary algorithm
to achieve significantly higher diversity compared to the baseline evolu-
tionary diversity algorithms from the literature.

Keywords: Quality diversity · Co-evolutionary algorithms ·
Evolutionary diversity optimisation · Traveling thief problem

1 Introduction

Diversity has gained increasing attention in the evolutionary computation com-
munity in recent years. In classical optimisation problems, researchers seek a
single solution that results in an optimal value for an objective function, gen-
erally subject to a set of constraints. The importance of having a diverse set of
solutions has been highlighted in several studies [15,17]. Having such a set of
solutions provides researchers with 1) invaluable information about the solution
space, 2) robustness against imperfect modelling and minor changes in problems
and 3) different alternatives to involve (personal) interests in decision-making.
Traditionally, diversity is seen as exploring niches in the fitness space. How-
ever, two paradigms, namely quality diversity (QD) and evolutionary diversity
optimisation (EDO), have been formed in recent years.

QD achieves diversity in exploring niches in behavioural space. QD maximises
the quality of a set of solutions that differ in a few predefined features. Such a set
of solutions can aid in the grasp of the high-quality solutions’ behaviour in the
feature space. QD has a root in novelty search, where researchers seek solutions
with new behaviour without considering their quality [10]. For the first time,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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a mechanism is introduced in [5] to keep best-performing solutions whereby,
searching for unique behaviours. At the same time, the MAP-Elites framework
was introduced in [4] to plot the distribution of high-performing solutions over
a behavioural space. It has been shown that MAP-Elites is efficient in evolving
behavioural repertoires. Later, the problem of computing a set of best-performing
solutions differing in terms of some behavioural features is formulated and named
QD in [22,23].

In contrast to QD, the goal of EDO is to explicitly maximise the structural
diversity of a set of solutions that all have a desirable minimum quality. This app-
roach was first introduced in [25] in the context of continuous optimisation. Later,
EDO was adopted to generate images and benchmark instances for the traveling
salesperson problem (TSP) [3,9]. Star-discrepancy and performance indicators
from multi-objective evolutionary optimisation were adopted to achieve the same
goals in [14,15]. In recent years EDO was studied in the context of well-known
combinatorial optimisation problems, such as the quadratic assignment prob-
lem [7], the minimum spanning tree problem [2], the knapsack problem [1], and
the optimisation of monotone sub-modular functions [13]. Distance-based diver-
sity measures and entropy have been incorporated into EDO to evolve diverse
sets of high-quality solutions for the TSP [6,18]. Nikfarjam et al. [17] introduced
an EAX-based crossover focusing on structural diversification of TSP solutions.
Most recently, Neumann et al. [12] introduced a co-evolutionary algorithm to find
Pareto-front for bi-objective optimisation problem and simultaneously evolve
another population to maximise structural diversity.

In this paper, we introduce a co-evolutionary algorithm (Co-EA) to compute
two sets of solutions simultaneously; one employs the QD concept and the other
evolves towards EDO. We consider the traveling thief problem (TTP) as a well-
studied multi-component optimisation problem. QD and EDO have separately
been studied in the context of TTP in [19] and [20], respectively. However, the
Co-EA has several advantages:

– QD provides researchers with invaluable information about the distribution of
best-performing solutions in behavioural space and enables decision-makers to
select the best solution having their desirable behaviour. On the other hand,
EDO provides us with robustness against imperfect modelling and minor
changes in problems. We can benefit from both paradigms by using the Co-
EA.

– Optimal or close-to optimal solutions are required in most EDO studies for
initialization. The Co-EA eliminates this restriction.

– We expect the Co-EA brings about better results, especially in terms of struc-
tural diversity since the previous frameworks are built upon a single solution
(the optimal solution). The Co-EA eliminates this drawback.

– The Co-EA benefits from a self-adaptation method to tune and adjust some
hyper-parameters during the search improving the results meaningfully.

The remainder of the paper is structured as follows. We formally define the
TTP and diversity in Sect. 2. The Co-EA is introduced in Sect. 3. We conduct
comprehensive experimental investigation to evaluate Co-EA in Sect. 4. Finally,
we finish with concluding remarks.
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2 Preliminaries

In this section, we introduce the traveling thief problem and outline different
diversity optimisation approaches established for this problem.

2.1 The Traveling Thief Problem

The traveling thief problem (TTP) is a multi-component combinatorial opti-
mization problem. I. e., it is a combination of the classic traveling salesper-
son problem (TSP) and the knapsack problem (KP). The TSP is defined on
a graph G = (V,E) with a node set V of size n and a set of pairwise edges
E between the nodes, respectively. Each edge, e = (u, v) ∈ E is associated
with a non-negative distance d(e). In the TSP, the objective is to compute a
tour/permutation x : V → V which minimizes the objective function

f(x) = d(x(n), x(1)) +
n−1∑

i=1

d(x(i), x(i + 1)).

The KP is defined on a set of items I with m := |I|. Each item i ∈ I has a profit
pi and a weight wi. The goal is to determine a selection of items, in the following
encoded as a binary vector y = (y1, . . . , ym) ∈ {0, 1}, that maximises the profit,
while the selected items’ total weight does not exceed the capacity W > 0 of the
knapsack:

g(y) =
m∑

j=1

pjyj s. t.
m∑

j=1

wjyj ≤ W.

Here, yj = 1 if the jth item is included in the selection and yj = 0 otherwise.
The TTP is defined on a graph G and a set of items I. Each node i except

the first one includes a set of items Mi ⊆ I. In TTP, a thief visits each city
exactly once and picks some items into the knapsack. A rent R is to be paid
for the knapsack per time unit, and the speed of thief non-linearly depends on
the weight Wxi

of selected items so far. Here, the objective is to find a solution
p = (x, y) including a tour x and a packing list (the selection of items) y that
maximises the following function subject to the knapsack capacity:

z(p) = g(y) − R

(
d(x(n), x(1))
νmax − νWxn

+
n−1∑

i=1

d(x(i), x(i + 1))
νmax − νWxi

)
s. t.

m∑

j=1

wjyj ≤ W.

where νmax and νmin are the maximal and minimal traveling speed, and ν =
νmax−νmin

W .

2.2 Diversity Optimisation

This study simultaneously investigates QD and EDO in the context of the TTP.
For this purpose, two populations P1 and P2 co-evolve. P1 explores niches in
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the behavioural space and the P2 maximises its structural diversity subject to a
quality constraint. In QD, a behavioural descriptor (BD) is defined to determine
to which part of the behavioural space a solution belongs. In line with [19], we
consider the length of tours f(x), and the profit of selected items g(y), to serve
as the BD. To explore niches in the behavioural space, we propose a MAP-Elites-
based approach in the next section.

For maximising structural diversity, we first require a measure to determine
the diversity. For this purpose, we employ the entropy-based diversity measure
in [20]. Let E(P2) and I(P2) denote the set of edges and items included in pop-
ulation P2. The structural entropy of P2 defines on two segments, the frequency
of edges and items included in E(P2) and I(P2), respectively. let name these two
segments edge and item entropy and denote them by He and Hi. He and Hi are
calculated as

He(P2) =
∑

e∈E(P2)

h(e) with h(e) = −
(

f(e)∑
e∈I f(e)

)
· ln

(
f(e)∑

e∈I f(e)

)

and

Hi(P2) =
∑

i∈I(P2)

h(i) with h(i) = −
(

f(i)∑
i∈I f(i)

)
· ln

(
f(i)∑
i∈I f(i)

)

where h(e) and h(i) denote the contribution of edge e and item i to the entropy
of P2, respectively. Also, the terms f(e) and f(i) encode the number of solutions
in P2 that include e and i. It has been shown that

∑
e∈E(P2)

f(e) = 2nμ in [18],
where μ = |P2|, while the number of selected items in P2 can fluctuate. The
overall entropy of P2 is calculated by summation

H(P2) = He(P2) + Hi(P2).

P2 evolves towards maximisation of H(P2) subject to z(p) ≥ zmin for all p ∈ P2.
Overall, we maximise the solutions’ quality and their diversity in the feature-
space through P1, while we utilise P2 to maximises the structural diversity.

3 Co-evolutionary Algorithm

This section presents a co-evolutionary algorithm – outlined in Algorithm1 –
to simultaneously tackle QD and EDO problems in the context of TTP. The
algorithm involves two populations P1 and P2, employing MAP-Elite-based and
EDO-based selection procedures.

3.1 Parent Selection and Operators

A bi-level optimisation procedure is employed to generate offspring. A new tour
is generated by crossover at the first level; then, (1 + 1) EA is run to optimise
the packing list for the tour. The crossover is the only bridge between P1 and
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P2. For the first parent we first select P1 or P2 uniformly at random. Then,
one individual, p1(x1, y1) is selected again uniformly at random from the chosen
population; the same procedure is repeated for the selection of the second parent
p2(x2, y2). To generate a new solution p′(x′, y′) from p1(x1, y1) and p2(x2, y2),
a new tour x′ ← crossover(x1, x2) is first generated by EAX-1AB crossover.
Edge-assembly crossover (EAX) is a high-performing operator and yields strong
results in solving TSP. Nikfarjam et al. [19] showed that the crossover performs
decently for the TTP as well.

EAX-1AB includes three steps: It starts with generating a so-called AB-Cycle
of edges by alternatively selecting the edges from parent one and parent two.
Next, an intermediate solution is formed. Having the first parent’s edges copied
to the offspring, we delete parent one’s edges included in the AB-cycle and add
the rest of edges in the AB-cycle. In this stage, we can have either a complete
tour or a number of sub-tours. In latter case, we connect all the sub-tours one by
one stating from the sub-tour with minimum number of edges. For connecting
two sub-tours, we discard one edge from each sub-tour and add two new edges,
a 4-tuple of edges. The 4-tuple is selected by following local search by choosing

(e1, e2, e3, e4) = arg min{−d(e1) − d(e2) + d(e3) + d(e4)}.

Note that if E(t) and E(r) respectively show the set of edges of the intermediate
solution t and the sub-tour r, e1 ∈ E(r) e2 ∈ E(t) \ E(r). We refer interested
readers to [11] for details on the implementation of the crossover.

Then, an internal (1 + 1) EA is started to optimise a packing list y′ for
the new tour x′ and form a complete TTP solution p′(x′, y′). The new solution
first inherits the first parent’s packing list, y′ ← y1. Next, a new packing list
is generated by standard bit-flip mutation (y′′ ← mutation(y′)). If z(x′, y′′) >
z(x′, y′), the new packing list is replaced with old one, y′ ← y′′. These steps
repeats until an internal termination criterion for the (1 + 1) EA is met. The
process of generating a new solution p′(x′, y′) is complete here, and we can ascend
to survival selection.

3.2 Survival Selection Procedures

In MAP-elites, solutions with similar BD compete, and usually, the best solution
survives to the next generation. To formally define the similarity and tolerance
of acceptable differences in BD, the behavioural space is split into a discrete grid,
where each solution belongs to only one cell. Only the solution with the highest
objective value is kept in a cell in survival selection. The map not only contributes
to the grasp of the high-quality solutions’ behaviour but also does maintain the
diversity of the population and aids to avoid premature convergence.

In this study, we discretize the behavioural space in the same way [19] did.
They claimed that it is beneficial for the computational costs if we focus on a
promising portion of behavioural space. In TTP, solely solving either TSP or
KP is insufficient to compute a high-quality TTP solution. However, a solution
p(x, y) should score fairly good in both f(x) and g(y) in order to result in a high
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TTP value z(p). Thus, we limit the behavioural space to the neighbourhood
close to optimal/near-optimal values of the TSP and the KP sub-problems. In
other words, a solution p(x, y) should result in f(x) ∈ [f∗, (1 + α1) · f∗] and
g(y) ∈ [(1 − α2) · g∗, g∗]. Note that f∗ and g∗ are optimal/near-optimal values
of the TSP and the KP sub-problems, and α1 and α2 are acceptable thresholds
to f∗ and g∗, respectively. We obtain f∗ and g∗ by EAX [11] and dynamic
programming [24]. Next, We discretize the space into a grid of size δ1 × δ2. Cell
(i, j), 1 ≤ i ≤ δ1, 1 ≤ j ≤ δ2 contains the best solution, with

f(x) ∈
[
f∗ + (i − 1) ·

(
α1f

∗

δ1

)
, f∗ + i ·

(
α1f

∗

δ1

)]

and

g(y) ∈
[
(1 − α2) · g∗ + (j − 1) ·

(
α2g

∗

δ2

)
, (1 − α2) · g∗ + j ·

(
α2g

∗

δ2

)]
.

After generating a new solution p′(x′, y′), we find the cell corresponding with
its BD (f(x′), g(y′)); if the cell is empty, p′ is added to the cell. Otherwise, the
solution with highest TTP value is kept in the cell.

Having defined the survival selection of P1, we now look at P2’s survival
selection based on EDO. We add p′(x′, y′) to P2 if the quality criterion is met,
i. e., z(p′) ≥ zmin. If |P2| = μ+1, a solution with the least contribution to H(P )
will be discarded.

3.3 Initialisation

Population P1 only accepts solutions with fairly high BDs (f(x), g(y)), and there
is a quality constraint for P2. Random solutions are unlikely to have these char-
acteristics. As mentioned, we use the GA in [11] to obtain f∗; since the GA is
a population-based algorithm, we can derive the tours in the final population
resulting in a fairly good TSP score. Afterwards, we run the (1+1) EA described
above to compute a high-quality packing list for the tours. These packing lists
also bring about a high KP score that allows us to populate P1. Depending on the
quality constraint zmin, the initial solutions may not meet the quality constraint.
Thus, it is likely that we have to initialize the algorithm with only P1 until the
solutions comply with the quality constraint; then, we can start to populate P2.
Note that both parents are selected from P1 while P2 is still empty. We stress
that in most previous EDO-studies an optimal (or near-optimal solution) was
required to be known a-priori and for initialization. In the proposed Co-EA, this
strong requirement is no longer necessary.

3.4 Self Adaptation

Generating offspring includes the internal (1 + 1) EA to compute a high-quality
packing list for the generated tour. In [19], the (1 + 1) EA is terminated after a
fixed number of t = 2m fitness evaluations. However, improving the quality of
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Algorithm 1. The Co-Evolutionary Diversity Algorithm
1: Find the optimal/near-optimal values of the TSP and the KP by algorithms in [11,

24], respectively.
2: Generate an empty map and populate it with the initialising procedure.
3: while termination criterion is not met do
4: Select two individuals based on the parent selection procedure and generate

offspring by EAX and (1 + 1) EA.
5: if The offspring’s TSP and the KP scores are within α1, and α2 thresholds to

the optimal values of BD. then
6: Find the corresponding cell to the TSP and the KP scores in the QD map.
7: if The cell is empty then
8: Store the offspring in the cell.
9: else

10: Compare the offspring and the individual occupying the cell and store the
best individual in terms of TTP score in the cell.

11: if The offspring complies with the quality criterion then
12: Add the offspring to the EDO population.
13: if The size of EDO population is equal to μ + 1 then
14: Remove one individual from the EDO population with the least contribu-

tion to diversity.

solutions is easier in the beginning and gets more difficult as the search goes on.
Thus, we adopt a similar self-adaptation method proposed in [8,16] to adjust
t during the search. Let Z = arg maxp∈P1

{z(p)}. Success defines an increase
in Z. We discretize the search to intervals of u fitness evaluations. An interval is
successful if Z increases; otherwise it is a failure. We reset t after each interval;
t decreases if Z increases during the last interval. Otherwise, t increases to give
the internal (1 + 1) EA more budget in the hope of finding better packing lists
and better TTP solutions. Here, we set t = γm where γ can take any value in
[γmin, γmax]. We set

γ := max{γ · F1, γmin} and γ := min{γ · F2, γmax}
in case of success and failure respectively. In our experiments, we use F1 =
0.5, F2 = 1.2, γmin = 1, γmax = 10, and u = 2000m based on preliminary
experiments. We refer to this method as Gamma1.

Moreover, we propose an alternative terminating criterion for the internal
(1 + 1) EA, and denote it Gamma2. Instead of running the (1 + 1) EA for
t = γm, we terminate (1 + 1) EA when it fails in improving the packing list
in t′ = γ′m consecutive fitness evaluations. γ′ is updated in the same way as
γ. Based on the preliminary experiments, we set γ′

min and γ′
max to 0.1 and 1,

respectively.

4 Experimental Investigation

We empirically study the Co-EA in this section. We run the Co-EA on eighteen
TTP instances from [21], the same instances are used in [19]. We first illustrate
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Fig. 1. Evolution of P1 and P2 over 4000m and 1000000m fitness evaluations on
instance 1 with α = 2%. The first row depicts the distribution of high-quality solutions
in the behavioural space (P1). The second and the third rows show the overlay of all
edges and items used in exemplary P2, respectively. Edges and items are coloured by
their frequency. (Color figure online)

Fig. 2. Overlay of all edges and items used in an exemplary final population P2 on
instance 1 with α = 10% (left) and α = 50% (right). Edges and items are coloured by
their frequency. (Color figure online)
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the distribution of solutions in P1, and the structural diversity of solutions in P2.
Then, we compare the self-adaptation methods with the fixed parameter setting.
Afterwards, we conduct a comprehensive comparison between P1 and P2 and the
populations obtained by [19] and [20]. Here, the termination criterion and α are
set on 1000000m fitness evaluations and 10%, respectively.

MAP-Elite selection can be beneficial to illustrate the distribution of high-
quality solutions in the behaviour space. On the other hand, EDO selection
aims to understand which elements in high-quality solutions is easy/difficult to
be replaced. Figure 1 depicts exemplary populations P1 and P2 after 4000m
and 1000000m fitness evaluations of Co-EA on instance 1, where α = 2%.
The first row illustrates the distribution P1’s high-performing solutions over
the behavioural space of f(x) and g(y). The second and the third rows represent
the overlay of edges and items in P2, respectively. The figure shows the solutions
with highest quality are located on top-right of the map on this test instance
where the gaps of f(x) and g(y) to f∗ and g∗ are in [0.0150.035] and [0.150.18],
respectively. In the second row of the figure, we can observe that Co-EA success-
fully incorporates new edges into P2 and reduces the edges’ frequency within the
population. However, it is unsuccessful in incorporating new items in P2. The
reason can be that there is a strong correlation between items in this particular
test instance, and the difference in the weight and profit of items is significant. It
means that there is not many other good items to be replaced with the current
selection. Thus, we cannot change the items easily when the quality criterion is
fairly tight (α = 2%). As shown on the third row of the figure, the algorithm
can change i8 with i43 in some packing lists.

Figure 2 reveals that, as α increases, so does the room to involve more items
and edges in P2. In other words, there can be found more edges and items to be
included in P2. Figure 2 shows the overlays on the same instances, where α is
set to 10% (left) and 50% (right). Not only more edges and items are included
in P2 with the increase of α, but also Co-EA reduces the frequency of the edges
and items in P2 to such a degree that we can barely see any high-frequent edges
or items in the figures associated with α = 50%. Moreover, the algorithm can
successfully include almost all items in P2 except item i39. Checking the item’s
weight, we notice that it is impossible to incorporate the item into any solution.
This is because, wi39 = 4400, while the capacity of the knapsack is set to 4 029.
In other words, wi39 > W .

4.1 Analysis of Self-Adaptation

In this sub-section, we compare the two proposed termination criteria and self-
adaptation methods Gamma1 and Gamma2 with the fixed method employed
in [19]. We incorporate these methods into the Co-EA and run it for ten inde-
pendent runs. Table 1 summarises the mean of P2’s entropy obtained from the
competitors. The table indicates that both Gamma1 and Gamma2 outperform
the fixed method on all test instances. Kruskal-Wallis statistical tests at signifi-
cance level 5% and Bonferroni correction also confirm a meaningful difference in
median of results for all instances except instance 15 where there is no significant
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Table 1. Comparison of Gamma1 (1) and Gamma2 (2), and the fixed method (3).
The instances are numbered as Table 1 in [19]. In columns Stat the notation X+

means the median of the measure is better than the one for variant X, X− means it
is worse, and X∗ indicates no significant difference. Stat shows the results of Kruskal-
Wallis statistical test at a significance level of 5% and Bonferroni correction. Also,
p∗ = maxp∈P1{z(p)}.

H(P2) z(p∗)

Inst. Gamma1 (1) Gamma2 (2) fixed (3) Gamma1 (1) Gamma2 (2) fixed (3)

mean Stat mean Stat mean Stat mean Stat mean Stat mean Stat

1 8.7 2−3+ 8.8 1+3+ 8.2 1−2− 4452.4 2−3∗ 4465 1+3∗ 4461.1 1∗2∗

2 9.3 2∗3+ 9.3 1∗3+ 9.1 1−2− 8270.4 2∗3∗ 8232.2 1∗3∗ 8225.2 1∗2∗

3 9.9 2+3+ 9.8 1−3+ 9.6 1−2− 13545.4 2∗3∗ 13607.5 1∗3∗ 13609 1∗2∗

4 7.7 2−3+ 7.7 1+3+ 7.4 1−2− 1607.1 2∗3∗ 1607.5 1∗3∗ 1607.5 1∗2∗

5 9 2∗3+ 9 1∗3+ 8.8 1−2− 4814.7 2∗3∗ 4805.3 1∗3∗ 4811 1∗2∗

6 9.4 2∗3+ 9.4 1∗3+ 9.2 1−2− 6834.5 2∗3∗ 6850 1∗3∗ 6850 1∗2∗

7 8 2∗3+ 8.1 1∗3+ 7.6 1−2− 3200.8 2∗3∗ 3218.4 1∗3∗ 3165 1∗2∗

8 9 2−3+ 9 1+3+ 8.8 1−2− 7854.2 2∗3∗ 7854.2 1∗3∗ 7850.9 1∗2∗

9 9.5 2∗3+ 9.5 1∗3+ 9.3 1−2− 13644.8 2+3+ 13644.8 1−3+ 13644.8 1−2−

10 10.5 2−3+ 10.5 1+3+ 10.1 1−2− 11113.6 2∗3∗ 11145.7 1∗3− 11148 1∗2+

11 11.2 2∗3+ 11.2 1∗3+ 11 1−2− 25384.6 2+3∗ 25416.6 1−3− 25401.3 1∗2+

12 9.3 2∗3+ 9.4 1∗3+ 9.2 1−2− 3538.2 2∗3∗ 3564.4 1∗3∗ 3489.4 1∗2∗

13 10.7 2∗3+ 10.7 1∗3+ 10.5 1−2− 13369.3 2+3∗ 13310.4 1−3∗ 13338.4 1∗2∗

14 7.7 2−3∗ 9.7 1+3+ 8.5 1∗2− 5261.9 2∗3∗ 5410.3 1∗3∗ 5367.1 1∗2∗

15 10.9 2∗3+ 10.9 1∗3+ 10.7 1−2− 20506.8 2∗3∗ 20506.8 1∗3∗ 20385.3 1∗2∗

16 11.6 2−3∗ 11.7 1+3+ 11.4 1∗2− 18622.2 2∗3∗ 18609.6 1∗3∗ 18641.4 1∗2∗

17 11.2 2∗3+ 11.2 1∗3+ 11.1 1−2− 9403.8 2∗3∗ 9448.3 1∗3∗ 9428.1 1∗2∗

18 11.4 2∗3+ 11.4 1∗3+ 11.1 1−2− 19855.3 2−3∗ 19943.8 1+3∗ 19879.3 1∗2∗

difference in the mean of Gamma1 and the fixed method. In comparison between
Gamma1 and Gamma2, the latter outperforms the first in 4 test instances, while
it is surpassed in only one case. In conclusion, Table 1 indicates that Gamma2

works the best with respect to the entropy of P2.
Moreover, Table 1 also shows the mean TTP score of the best solution in

P1 obtained from the three competitors. Although Table 1 indicates that the
statistical test cannot confirm a significant difference in the mean of the best
TTP solutions, Gamma2’s results are slightly better in 7 cases, while Gamma1

and fixed have better results in 3 cases. Overall, all three competitors perform
almost equally in terms of the best TTP score. Since Gamma2 outperforms other
methods in entropy, we employ it for the Co-EA in the rest of the study.

4.2 Analysis of Co-EA

This section compares P1 and P2 with the QD-based EA in [19] and the standard
EDO algorithm, respectively. Table 2 summarises this series of experiments. The
results indicate that the Co-EA outperforms the standard EDO in 14 instances,
while the EDO algorithm has a higher entropy average in only two cases. In
the two other test instances, both algorithms performed equally. Moreover, the
Co-EA yields competitive results in terms of the quality of the best solution



Co-evolutionary Diversity Optimisation for the Traveling Thief Problem 247

Table 2. Comparison of the Co-EA and QD from [19] in terms of z(p∗), and EDO
algorithm from [20] in H(P2). Stat shows the results of Mann-Whitney U-test at sig-
nificance level 5%. The notations are in line with Table 1.

Inst. Co-EA (1) QD (2) Co-EA (1) EDO (2)

Q Stat Q Stat H Stat H Stat

1 4465 2∗ 4463.5 1∗ 8.8 2∗ 8.6 1∗

2 8232.2 2∗ 8225.7 1∗ 9.3 2− 9.4 1+

3 13607.5 2∗ 13544.9 1∗ 9.8 2− 9.8 1+

4 1607.5 2+ 1607.5 1− 7.7 2+ 7.7 1−

5 4805.3 2∗ 4813.2 1∗ 9 2∗ 9 1∗

6 6850 2∗ 6806.8 1∗ 9.4 2+ 9.3 1−

7 3218.4 2∗ 3191.9 1∗ 8.1 2+ 8 1−

8 7854.2 2∗ 7850.9 1∗ 9 2∗ 9 1∗

9 13644.8 2+ 13644.8 1− 9.5 2∗ 9.5 1∗

10 11145.7 2− 11149.2 1+ 10.5 2+ 10.2 1−

11 25416.6 2− 25555.2 1+ 11.2 2+ 11 1−

12 3564.4 2∗ 3514 1∗ 9.4 2+ 8.8 1−

13 13310.4 2∗ 13338.6 1∗ 10.7 2+ 10.2 1−

14 5410.3 2∗ 5364.6 1∗ 9.7 2+ 9.5 1−

15 20506.8 2∗ 20499.2 1∗ 10.9 2+ 10.7 1−

16 18609.6 2− 18666.4 1+ 11.7 2+ 11.1 1−

17 9448.3 2∗ 9407.7 1∗ 11.2 2+ 10.4 1−

18 19943.8 2+ 19861.8 1− 11.4 2+ 11.1 1−
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compared to the QD-based EA; in fact, the Co-EA results in a higher mean
of TTP scores on 12 test instances. For example, the best solutions found by
Co-EA score 19943.8 on average, whereby the figure stands at 19861.8 for the
QD-based algorithms.

Figure 3 depicts the trajectories of Co-EA and the standard EDO algorithm
in entropy of the population (the first row), and that of Co-EA and QD-based
EA in quality of the best solution (the second row). Note that in the first row
the x-axis shows fitness evaluations from 4000m to 1000000m. This is because
P2 is empty in the early stages of running Co-EA and we cannot calculate the
entropy of P2 until |P2| = μ for the sake of fair comparison. The figure shows
that Co-EA converges faster and to a higher entropy than the standard EDO
algorithm. Moreover, it also depicts results obtained by Co-EA has much less
standard deviation. Regarding the quality of the best solution, both Co-EA and
QD-based EA follow a similar trend.

5 Conclusion

We introduced a co-evolutionary algorithm to simultaneously evolve two pop-
ulations for the traveling thief problem. The first population explore niches in
a behavioural space and the other maximises structural diversity. The results
showed superiority of the algorithm to the standard framework in the literature
in maximising diversity. The co-evolutionary algorithm also yields competitive
results in terms of quality.

It is intriguing to adopt more complicated MAP-Elites-based survival selec-
tion for exploring the behavioural space. Moreover, this study can be a transition
from benchmark problems to real-world optimisation problems where imperfect
modelling is common and diversity in solutions can be beneficial.

Acknowledgements. This work was supported by the Australian Research Council
through grants DP190103894 and FT200100536.

References

1. Bossek, J., Neumann, A., Neumann, F.: Breeding diverse packings for the knapsack
problem by means of diversity-tailored evolutionary algorithms. In: GECCO, pp.
556–564. ACM (2021)

2. Bossek, J., Neumann, F.: Evolutionary diversity optimization and the minimum
spanning tree problem. In: GECCO, pp. 198–206. ACM (2021)

3. Chagas, J.B.C., Wagner, M.: A weighted-sum method for solving the bi-objective
traveling thief problem. CoRR abs/2011.05081 (2020)

4. Clune, J., Mouret, J., Lipson, H.: Summary of “the evolutionary origins of modu-
larity”. In: GECCO (Companion), pp. 23–24. ACM (2013)

5. Cully, A., Mouret, J.: Behavioral repertoire learning in robotics. In: GECCO, pp.
175–182. ACM (2013)

6. Do, A.V., Bossek, J., Neumann, A., Neumann, F.: Evolving diverse sets of tours
for the travelling salesperson problem. In: GECCO, pp. 681–689. ACM (2020)



Co-evolutionary Diversity Optimisation for the Traveling Thief Problem 249

7. Do, A.V., Guo, M., Neumann, A., Neumann, F.: Analysis of evolutionary diversity
optimisation for permutation problems. In: GECCO, pp. 574–582. ACM (2021)

8. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying
the 1/5-th rule in discrete settings. In: GECCO Companion, pp. 1335–1342 (2015)

9. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for
problem instance classification. Evol. Comput. 29(1), 107–128 (2021)

10. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search
for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

11. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS J. Comput. 25(2), 346–
363 (2013)

12. Neumann, A., Antipov, D., Neumann, F.: Coevolutionary Pareto diversity opti-
mization. CoRR arXiv:2204.05457 (2022), accepted as full paper at GECCO 2022

13. Neumann, A., Bossek, J., Neumann, F.: Diversifying greedy sampling and evolu-
tionary diversity optimisation for constrained monotone submodular functions. In:
GECCO, pp. 261–269. ACM (2021)

14. Neumann, A., Gao, W., Doerr, C., Neumann, F., Wagner, M.: Discrepancy-based
evolutionary diversity optimization. In: GECCO, pp. 991–998. ACM (2018)

15. Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity opti-
mization using multi-objective indicators. In: GECCO, pp. 837–845. ACM (2019)

16. Neumann, A., Szpak, Z.L., Chojnacki, W., Neumann, F.: Evolutionary image com-
position using feature covariance matrices. In: GECCO, pp. 817–824 (2017)

17. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Computing diverse sets
of high quality TSP tours by EAX-based evolutionary diversity optimisation. In:
FOGA, pp. 9:1–9:11. ACM (2021)

18. Nikfarjam, A., Bossek, J., Neumann, A., Neumann, F.: Entropy-based evolutionary
diversity optimisation for the traveling salesperson problem. In: GECCO, pp. 600–
608. ACM (2021)

19. Nikfarjam, A., Neumann, A., Neumann, F.: On the use of quality diversity algo-
rithms for the traveling thief problem. CoRR abs/2112.08627 (2021)

20. Nikfarjam, A., Neumann, A., Neumann, F.: Evolutionary diversity optimisation
for the traveling thief problem. CoRR abs/2204.02709 (2022)

21. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A
comprehensive benchmark set and heuristics for the traveling thief problem. In:
GECCO, pp. 477–484. ACM (2014)

22. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolu-
tionary computation. Front. Robot. AI 3, 40 (2016)

23. Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of
quality diversity. In: GECCO, pp. 967–974. ACM (2015)

24. Toth, P.: Dynamic programming algorithms for the zero-one knapsack problem.
Computing 25(1), 29–45 (1980)

25. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective opti-
mization. In: GECCO, pp. 641–648. ACM (2011)

http://arxiv.org/abs/2204.05457


Computing High-Quality Solutions
for the Patient Admission Scheduling
Problem Using Evolutionary Diversity

Optimisation

Adel Nikfarjam1(B), Amirhossein Moosavi2, Aneta Neumann1,
and Frank Neumann1

1 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

adel.nikfarjam@adelaide.edu.au
2 Telfer School of Management, University of Ottawa,

55 Laurier Avenue E, Ottawa, ON K1N 6N5, Canada

Abstract. Diversification in a set of solutions has become a hot research
topic in the evolutionary computation community. It has been proven
beneficial for optimisation problems in several ways, such as computing
a diverse set of high-quality solutions and obtaining robustness against
imperfect modeling. For the first time in the literature, we adapt the
evolutionary diversity optimisation for a real-world combinatorial prob-
lem, namely patient admission scheduling. We introduce an evolutionary
algorithm to achieve structural diversity in a set of solutions subjected
to the quality of each solution, for which we design and evaluate three
mutation operators. Finally, we demonstrate the importance of diversity
for the aforementioned problem through a simulation.

Keywords: Evolutionary diversity optimisation · Combinatorial
optimisation · Real-world problem · Admission scheduling

1 Introduction

Traditionally, researchers seek a single (near) optimal solution for a given opti-
misation problem. Computing a diverse set of high-quality solutions is gaining
increasing attention in the evolutionary computation community. Most studies
consider diversity as finding niches in either fitness landscape or a predefined-
feature space. In contrast, a recently introduced paradigm, evolutionary diver-
sity optimisation (EDO), explicitly maximises the structural diversity of a set of
solutions subjected to constraints on their quality. EDO has shown to be bene-
ficial in several aspects, such as creating robustness against imperfect modeling
and minor changes in problems’ features [20]. This paradigm was first defined
by Ulrich and Thiele [26]. Afterwards, the use of EDO in generating images
and traveling salesperson problem (TSP) benchmark instances are investigated
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in [1,13], respectively. The previous studies are extended by incorporation of
the concepts of star discrepancy and indicators from the frameworks of multi-
objective evolutionary algorithms (EAs) into EDO in [17,18]. More recently,
diverse TSP solutions are evolved, using distance-based and entropy measure
in [8,21]. Nikfarjam et al. [20] introduced A special EAX-based crossover that
focuses explicitly on the diversity of TSP solutions. Several studies examine EDO
in combinatorial problems, such as the quadratic assignment problem [9], the
minimum spanning tree problem [4], the knapsack problem [3], the optimisation
of monotone sub-modular functions [16], and the traveling thief problem [23].
Neumann et al. [15] introduced a co-evolutionary algorithm to compute Pareto-
front for bi-objective optimisation problems and concurrently evolve another set
of solutions to maximise structural diversity. For the first time, we incorporate
EDO into a real-world combinatorial problem, namely the patient admission
scheduling (PAS). PAS is a complex multi-component optimisation scheduling
problem in healthcare, involving more features compared to the problems already
studied in the literature of EDO.

A recent report on the global health spending of 190 countries shows that
healthcare expenditure has continually increased and reached around US$ 10
trillion (or 10% of global GDP) [27]. Due to the ever-increasing demand and
healthcare expenditures, there is a great deal of pressure on healthcare providers
to increase their service quality and accessibility. Among the several obstacles
involved in healthcare resource planning, the PAS problem is of particular sig-
nificance, impacting organisational decisions at all decision levels [2]. PAS has
been studied under different settings, but it generally investigates the allocation
of patients to beds such that both treatment effectiveness and patients’ com-
fort are maximised. A benchmark PAS problem is defined in [7], and an online
database including 13 benchmark test instances, their best solutions and a solu-
tion validator are maintained in [6]. Various optimization algorithms have been
proposed for the benchmark PAS problem, such as simulated annealing [5], tabu
search [7], mixed-integer programming [2], model-based heuristic [25], and col-
umn generation [24]. The simulated annealing in [5] has demonstrated the best
overall performance amongst the EAs for the PAS problem. The previous studies
aimed for a single high-quality solution for the PAS problem. In contrast, our
goal is to diversify a set of PAS solutions, all with desirable quality but some
different structural properties.

Having a diverse set of solutions can be beneficial for PAS from different
perspectives. PAS is a multi-stakeholder problem and requires an intelligent
trade-off between their interests, a challenging issue because (i) stakeholders
have conflicting interests, (ii) health departments have diverse admission policies
and/or requirements, and (iii) decision-makers (or even health systems) have
different values so they could have different decision strategies. A diverse set
of high-quality solutions provides stakeholders with different options to reach
an agreement. Moreover, most hospitals use manual scheduling methods [11].
Several subtle features are involved in such problems that are not general enough
to be considered in the modelling but occasionally affect the feasibility of the
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optimal solutions (imperfect modelling). Once again, computing a diverse set of
solutions can be highly beneficial in providing decision-makers with robustness
against imperfect modelling and small changes in problems. Thus, the use of
EDO can be a step forward in seeing applications of optimisation methods,
particularly EAs, in the practice.

In this study, we first define an entropy-based measure to quantify the struc-
tural diversity of PAS solutions. Having proposed an EA maximising diversity,
we introduce three variants of a random neighbourhood search operator for the
EA. The first variant is a change mutation with fixed hyper-parameters, the sec-
ond variant uses a self-adaptive method to adjust its hyper-parameters during
the search process, and the last variant is a biased mutation to boost its efficiency
in maximising diversity of PAS solutions. Finally, we conduct an experimental
investigation to (i) examine the performance of the EA and its operators, and (ii)
illustrate the effects of EDO in creating robustness against imperfect modelling.

We structure the remainder of the paper as follows. The PAS problem and
diversity in this problem are formally defined in Sect. 2. The EA is introduced
in Sect. 3. Section 4 presents experimental investigations, and finally, Sect. 5 pro-
vides conclusions and some remarks.

2 Patient Admission Scheduling

This section defines the benchmark PAS problem [7] to make our paper self-
contained.

Problem Definition

The PAS problem assumes that each patient has a known gender, age, Length
of Stay (LoS), specialty and room feature/capacity requirements/preferences.
Similarly, the set of rooms is known in advance, each associated with a depart-
ment, gender and age policies, and medical equipment (or features). The problem
assumptions for the PAS can be further explained as follows:

– Room and department: Room is the resource that patients require during
their treatment (r ∈ R). Each room belongs to a unique department.

– Planning horizon: The problem includes a number of days where patients
must be allocated to a room during their course of treatment (t ∈ T ).

– LoS: Each patient (p ∈ P) has fixed admission and discharge dates, by which
we can specify her LoS (t ∈ Tp).

– Room capacity (A1): Each room has a fixed and known capacity (a set of
beds) (CPr).

– Gender policy (A2): The gender of each patient is known (either female or
male). Each room has a gender policy. There are four different policies for
rooms {D,F,M,N}: (i) rooms with policy F (resp. M) can only accommo-
date female (resp. male) patients, (ii) rooms with policy D can accommodate
both genders, but they should include only one gender on a single day, and
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(iii) rooms with policy N can accommodate both genders at the same time.
There will be a penalty if cases (i) and (ii) are violated. While CG1

pr measures
the cost of assigning patient p to room r regarding the gender policy for room
types F and M , CG2 specifies the cost of violating the gender policy for room
type D.

– Age policy (A3): Each department is specialised in patients with a specific age
group. Thus, patients should be allocated to the rooms of a department that
respect their age policy. Otherwise, there will be a penalty. CApr determines
the cost of assigning patient p to room r regarding the age policy.

– Department specialty (A4): Patients should be allocated to the rooms of
a department with an appropriate specialty level. A penalty occurs if this
assumption is violated. CDpr specifies the cost of assigning patient p to room
r regarding the department speciality level.

– Room specialty (A5): Like departments, patients should be allocated to rooms
with an appropriate specialty level. CBpr defines the penalty of assigning
patient p to room r regarding the room speciality level.

– Room features (A6): Patients may need and/or desire some room features. A
penalty occurs if the room features are not respected for a patient. Note that
the penalty is greater for the required features compared to the desired ones.
CFpr shows the combined cost of assigning patient p to room r regarding the
room features.

– Room capacity preference (A7): Patients should be allocated to rooms with
either preferred or smaller capacity. CRpr specifies the cost of assigning
patient p to room r regarding the room capacity preference.

– Patient transfer: There exists a fixed penalty for each time that a patient is
transferred during their LoS, which is shown by CT .

Assumption A1 must always be adhered (a hard constraint), while the rest
of the assumptions (A2–A7) can be violated with a penalty (soft constraints).
Demeester [6] provides complementary information on the calculation of these
penalties. The objective function of the PAS problem minimizes the costs of
violating assumptions A2–A7 and patient transfers between rooms within their
LoS.

To simplify the cost coefficients of the PAS problem, we merge the costs
associated with assumptions A2–A7 (except the penalty of violating the gender
policy for room type D) into a single matrix CVpr (CVpr = CApr + CDpr +
CBpr +CFpr +CRpr +CG1

pr). Then, we formulate the objective function of this
problem as below:

Mins∈Ξ O(s) = O1(s, CVpr) + O2(s, CG2) + O3(s, CT )

where Ξ denotes the feasible solution space. This objective function minimises:
(i) costs of violations from assumptions A2 (for rooms with policies F and M)
and A3-A7, (ii) costs of violations from assumption A2 (for rooms with policy
D), and (iii) costs of patient transfers.

We use a two-dimensional integer solution representation in this paper.
Figure 1 illustrate an example of the solution representation with four patients,



254 A. Nikfarjam et al.

two rooms (each with one bed), and a five-day planning horizon. Values within
the figure represent the room numbers allocated to patients. With this solution
representation, we can compute the above objective function and ensure the
feasibility of solutions with respect to the room capacity (the number of times
a room appears in each column - each day - must be less than or equal to its
capacity). For a mixed-integer linear programming formulation of this problem,
interested readers are referred to [7].
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Fig. 1. An illustrative example of the solution representation

This study aims to maximise diversity in a set of feasible PAS solutions
subjected to a quality constraint. Let (i) S refers to a set of PAS solutions, (ii)
H(S) denotes diversity of population S, and (iii) cmax refers to the maximum
acceptable cost of solution s. Then, we define the diversity-based optimization
problem as follows:

max H(S)
subjected to:
O(s) ≤ cmax ∀s ∈ S

Align with most studies in the literature of EDO, such as [8,21], we assume
that optimal/near-optimal solutions for given PAS instances are prior knowledge.
Therefore, we set cmax = (1+α)O∗, where O∗ is the optimal/near-optimal value
of O(s), and α is an acceptable threshold for O∗.

2.1 Diversity in Patient Admission Scheduling

In this sub-section, we define a metric for the diversity of PAS solutions. We
adopt a measure based on the concept of entropy. Here, entropy is defined on
the number of solutions that patient p is assigned to the room r on the day t,
nprt. The entropy of population S can be calculated from:

H(S) =
∑

p∈P

∑

r∈R

∑

t∈Tp

h(nprt) with h(x) = −
(

x

μ

)
ln

(
x

μ

)
.
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where, h(nprt) is the contribution of nprt to entropy of S, and μ = |S|. Note that
h(nprt) is equal to zero if nprt = 0. We, now, calculate the maximum achievable
entropy. If μ ≤ |R|, the maximum entropy (Hmax) occurs when there are not
two solutions in S where a patient p is assigned to the same room r at a day
t. In other words, nprt is at most equal to 1 if H(S) is maximum and μ ≤ |R|.
Generally, H ← Hmax ⇐⇒ max(nprt) = �μ/|R|	. Based on the pigeon holds
principle, the maximum entropy can be calculated from:

Hmax = W (μ mod |R|)h(�μ/|R|	) + W |R|h(
μ/|R|�)

where W is the total patient-day to be scheduled (W =
∑

p∈P |Tp|).

3 Evolutionary Algorithm

We employ an EA to maximise the entropy of a set of PAS solutions (outlined
in Algorithm 1). The algorithm starts with μ copies of an optimal/near-optimal
solution. Having selected a parent uniformly at random, we generate an offspring
by a mutation operator. If the quality of the offspring is acceptable, and it
contributes to the entropy of the population S more than the parent does, we
replace the parent with the offspring; otherwise, it will be discarded. These steps
are continued until a termination criterion is met. Since the PAS problem is
heavily constrained, we use a low mutation rate in order to maintain the quality
of solutions. This results in parents and offspring similar to each other, and there
is no point to keep two similar solutions in the population while maximising
diversity. Thus, the parent could be only replaced with its offspring.

Algorithm 1. Diversity-Maximising-EA
Require: Initial population S, maximum quality threshold cmax

1: while The termination criterion is not met do
2: Choose s ∈ S uniformly at random and generate one offspring s′ by the mutation

operator
3: if O(s′) ≤ cmax and H({S \ s} ∪ s′) > H(S) then
4: Replace s with s′

3.1 Mutation

In this sub-section, we introduce three mutation operators for the EA.

Fixed Change Mutation: This mutation first selects x patients uniformly at
random and remove them from the solution. Let Ps denotes the set of selected
patients. For each patient p ∈ Ps, we identify those rooms that have enough
capacity to accommodate them (Rp). If no room has the capacity for patient p,
we terminate the operator and return the parent. Otherwise, we calculate the
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cost of allocating patient p to room r ∈ Rp (Cpr). We determine q(r, p) for room
r and patient p:

q(r, p) = 1 − Cpr∑
r′∈Rp

Cpr′
∀p ∈ Ps; r ∈ Rp

Finally, we use the normalized q(r, p), p̃r(r, p), and randomly allocate patient p
to one of the eligible rooms. The above steps are repeated for all patients in Ps.
The fixed change mutation is outlined in Algorithm2.

Hyper-parameter x should be passed to the operator, which will be tuned
later for our problem. It is worth noting that we limit the search to the y best
rooms identified based on matrix CVpr for each patient to save computational
cost. The standard swap, which has been used frequently in the PAS literature
(e.g., see [5]), can be used as an alternative operator. In the standard swap, two
patients are selected uniformly at random. Then, their rooms are swept for their
whole LoS. While the standard swap might create infeasible offsprings, there is
no such an issue for the fixed change mutation.

Algorithm 2. Fixed change mutation
1: Randomly select x patients (Ps)
2: Remove patients in Ps from allocated rooms
3: for p in Ps do
4: Make a list of candidate rooms Rp that they have the capacity for the LoS of

patient p
5: If Rp is empty, terminate the operator and return the parent
6: for r in Rp do
7: Evaluate the cost of allocating patient p to room r (Cr)

8: Calculate q(r, p) = 1 − Cpr∑

r
′ ∈Rp

Cpr′

9: Normalize q(r, p) (p̃r(r, p))
10: Randomly select room r for patient p using probability p̃r(r, p)
11: Allocate patient p to room r

Self-adaptive Change Mutation: Adjusting hyper-parameters during the
search procedure can boost efficiency of operators [10]. Based on initial exper-
iments, we learned that the number of patients to be reallocated (i.e., hyper-
parameter x) is the of great importance in the performance of the change muta-
tion. Here, we employ a self-adaptive method to adjust parameter x (similar to
[10,19]). As parameter x increases, so does the difference between the parent and
its offspring. However, a very large value for x may result in poor quality offspring
that do not meet the quality criterion. We assess H(S) every u fitness evalua-
tions. If the algorithm has successfully increased H(S), we raise x to extend the
changes in the offspring; otherwise, it usually indicates that offspring are low-
quality and cannot contribute to the population. However, we limit x to take
values between [xmin, xmax]. In successful intervals, we reset x = min{x·F, xmax}.
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And for unsuccessful intervals, x = max{xmin, x ·F− 1
k }. F and k here determine

the adaptation scheme. While xmin = 4 and F = 2, the rest of these hyper-
parameters will be tuned by the iRace framework [14].

Biased Change Mutation: Here, we make the fixed change mutation biased
towards the entropy metric utilized for diversity maximisation. For a given room
r, this new mutation operator selects patient p ∈ Ps according to probability
pr′(r, p).

pr′(r, p) =

∑
t∈Tp

nprt∑
p′ ∈Ps

∑
t∈T

p
′ np′ rt

∀p ∈ Ps; r ∈ Rp

Obviously, the higher pr′(r, p), the higher chance patient p to be selected in
the biased mutation. Thus, the most frequent assignments tend to occur less,
which results in increasing the diversity metric H(S).

4 Numerical Analysis

In this section, we tend to examine the performance of the EA using the existing
benchmark instances. As mentioned earlier, there exist 13 test instances in the
literature for the benchmark PAS problem. First, [7] introduced around half of
test instances (instances 1–6), then, [6] introduced the other half (instances 7–
13). Since test instances 1–6 have been further investigated in the literature,
our study focuses on them. The specifications of these instances are reported in
Table 1.

Table 1. Specifications of test instances: B, beds; R, rooms; P , patients; TP, total
presence; PRC, average patient/room cost; BO, average percentage bed occupancy;
SL, average LoS. [5]

In B R D P TP PRC BO SL

1 286 98 14 652 2390 32.16 59.69 3.66

2 465 151 14 755 3950 36.74 59.98 5.17

3 395 131 14 708 3156 35.96 57.07 4.46

4 471 155 14 746 3576 38.39 54.23 4.79

5 325 102 14 587 2244 31.23 49.32 3.82

6 313 104 14 685 2821 29.53 64.38 4.12

The diversity-based EA includes parameters whose values must be fully spec-
ified before use. The list of all parameters and their potential values for the
fixed, adaptive and biased mutations are provided in Table 2. The choice of these
parameters are significant for two main reasons. First, such algorithms are not
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parameter robust and might be inefficient with inappropriate parameter choices
[12,22], and second, random choices of parameters would lead to an unfair com-
parison of the two algorithms [28]. For this problem, we apply the iterated racing
package proposed by [14] for automatic algorithm configuration (available on R
as the iRace package). After specifying the termination criterion of the iRace
package equal to 300 iterations, the best configurations of the EA are found and
reported in Table 2. Note that we set the termination criterion for each run of
the EA equal to 100, 000 fitness evaluations during the hyper-parameter tuning
experiments due to limited computational budget. However, we set this param-
eter equal to 1, 000, 000 fitness evaluations for the main numerical experiments
(one fitness evaluation is equivalent to the computation of H(S) for once). Since
F and k are two dependent parameter and together determine the adaptation
scheme in the self-adaptive mutation, we set F equal to two based on experi-
ments to make parameter tuning easier. Also, the population size is set to 50
in the EA, and α ∈ {0.02, 0.04, 0.16}. We consider 10 independent runs on each
instances.

Table 2. Parameter tuning for the EA

Parameter Type Range Elite configuration

Fixed Adaptive Biased

x Integer [10, 30] 14 - -

xmax Integer [10, 30] - 15 14

k Categorical {0.25, 0.5, 1, 2, 4, 8, 16} - 8 1

u Categorical {10, 50, 100, 200, 1000} - 200 200

The underlying aim of increasing H(S) is to assign the patients to as
many different rooms as possible. This increases the robustness of the solu-
tion population and provides decision-makers with more alternatives to choose.
Figure 2 illustrates the distribution of patients over rooms in the final popu-
lations obtained by the EA on test instance 1 (first row) and 2 (second row)
where α = 0.02 (first column) and 0.16 (second column). Each cell represents
a patients, and it is coloured based on the number of rooms allocated to them.
Red cells are related to those patients with less changeable room assignments
(given an acceptable cost threshold). On the other hand, blue cells associate
with patients that the EA successfully assigned them to many different rooms.
If H(S) = 0, all cells are coloured in red (like the initial population). Also, if
H(S) = Hmax, the heat map only includes blue cells. Figure 2 illustrates that
the EA successfully diversifies the PAS solutions (several cells are not red), from
which stakeholders have access to different alternatives with desirable quality.
Also, these solutions can aid with imperfect modeling. For example, the cost of
violating assumption A2 (i.e., the gender policy) is considered to be equal for
all patients in the benchmark test instances. However, cost of such violations
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Fig. 2. The distribution of the patients over rooms in the final populations obtained
by the introduced EA on test instances 1 and 2 where α ∈ {0.02, 0.16}. (Color figure
online)

depend on several factors, including - but not limited to - patient’s health con-
dition, stakeholder preference and hospital policy. Having said that, it may be
impossible to set an appropriate penalty for every single patient. The diverse
set of solutions enables decision-makers to take health condition of patients into
account.

We now compare the standard swap and three variants of the change muta-
tion. Table 3 summarises the results of the EA obtained using the swap (1), and
fixed, self-adaptive and biased change mutations (2–4). In this table, Hmax rep-
resents the maximum entropy where no quality constraint is imposed. It is highly
unlikely to achieve Hmax when the quality constraint is considered, but we use
it as an upper-bound for H(S). The table shows the superiority of all variants
of the change mutation over the standard swap across all six instances. In fact,
the change mutations result in 31% higher entropy on average compared to the
standard swap. The self-adaptive mutation provides the average highest H(S)
over instances 1, 3, 4 and 6. This is while the fixed mutation and the biased have
the best results for instances 2 and 5, respectively. Note that we can observe the
same results for all α ∈ {0.02, 0.04, 0.16}. All aforementioned observations are
confirmed by the Kruskal-Wallis statistical test at a 5% significance level and
with Bonferroni correction.
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Table 3. Comparison of the standard swap and three variants of the change mutation.
Stat shows the results of Kruskal-Wallis statistical test at a 5% significance level with
Bonferroni correction. In row Stat, the notation X+ means the median of the measure
is better than the one for variant X, X− means it is worse, and X∗ indicates no
significant difference.

Swap Fixed Change Self-adaptive Change Biased Change

Hmax
α In. H(S) Stat (1) H(S) Stat (2) H(S) Stat (3) H(S) Stat (4)

2 1 4865.8 2−3−4∗ 6746.3 1+3∗4∗ 6752.4 1+2∗4+ 6679.1 1∗2∗3−

13488.84 1 4966.3 2−3−4∗ 6895.9 1+3∗4∗ 6920.9 1+2∗4+ 6818.9 1∗2∗3−

16 1 5426.7 2−3−4∗ 7660 1+3∗4∗ 7691.4 1+2∗4+ 7500.1 1∗2∗3−

2 2 7734.2 2−3−4∗ 11563.3 1+3∗4+ 11559.5 1+2∗4+ 11374.1 1∗2−3−

22039.24 2 7889.4 2−3−4∗ 11971.9 1+3∗4∗ 11957.3 1+2∗4+ 11718.1 1∗2∗3−

16 2 8633.4 2−3−4∗ 13597.5 1+3∗4∗ 13633.2 1+2∗4+ 13448.1 1∗2∗3−

2 3 6000.6 2−3−4∗ 9043.6 1+3∗4∗ 9061.5 1+2∗4+ 9011.3 1∗2∗3−

178124 3 6128 2−3−4∗ 9332.7 1+3∗4∗ 9353.6 1+2∗4+ 9242 1∗2∗3−

16 3 6706.5 2−3−4∗ 10499.6 1+3∗4+ 10503.3 1+2∗4+ 10381.8 1∗2−3−

2 4 6849.9 2−3−4∗ 10273.3 1+3∗4∗ 10278.9 1+2∗4+ 10225.2 1∗2∗3−

20812.44 4 6986.5 2−3−4∗ 10590.5 1+3∗4∗ 10620.2 1+2∗4+ 10507.5 1∗2∗3−

16 4 6864.3 2−3−4∗ 11989 1+3∗4∗ 12016.9 1+2∗4+ 11881.1 1∗2∗3−

2 5 6446.5 2−3−4− 7772 1+3∗4− 7774.9 1+2∗4− 7835.6 1+2+3+

12664.84 5 6542.3 2∗3−4− 8081.4 1∗3∗4− 8090.9 1+2∗4∗ 8142.7 1+2+3∗

16 5 7012.7 2∗3−4− 7775.3 1∗3∗4− 8965.8 1+2∗4∗ 9069.3 1+2+3∗

2 6 6163.6 2−3−4∗ 8368.2 1+3∗4∗ 8381.9 1+2∗4+ 8328.5 1∗2∗3−

15921.34 6 6293.1 2−3−4∗ 8671.5 1+3∗4∗ 8680.9 1+2∗4+ 8574.5 1∗2∗3−

16 6 6905.7 2−3−4∗ 9857.8 1+3∗4∗ 9865.1 1+2∗4+ 9772.9 1∗2∗3−

Figure 3 illustrates the trajectories of the average entropy of the population
obtained by the EA using different operators over 10 runs. This figure indicates
that all variants of the change mutation converge faster and to a higher value
of H(S) than the standard swap across all test instances. It also shows that the
majority of improvements for the change mutations have occurred in the first
100, 000 fitness evaluations while the gradient is slower for the swap. Among
the change mutations, the biased one has the highest H(S) in the first 100, 000
fitness evaluations, but it gets overtaken by the self-adaptive mutation during
the search over all instances except instance 5. The same observation (with
smaller gap) can be seen between the fixed and self-adaptive mutations, where
the fixed mutation is overtaken by the self-adaptive one during the last 200, 000
fitness evaluations except instance 2. Since instance 2 is the largest instance,
the self-adaptive mutation may cross the fixed one if the EA runs for a larger
number of fitness evaluations. Also, the figure depicts the variance of the entropy
of populations obtained by the standard swap is considerably higher than those
obtained by the fixed, adaptive, and biased change mutations.
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Fig. 3. Representation of trajectories of the EA employing different operators (α =
2%).

Earlier, we mentioned how the EA can provide decision-makers with robust-
ness against imperfect modeling. To evaluate this robustness for population S,
for instance, we investigate a scenario that pairs of patients should not share the
same room. For this purpose, we randomly choose b ∈ {1, 4, 7} pairs of patients
that accommodate the same rooms in the initial population/solution. Repeating
this selection for 100 times (e.g., the number of selected pairs is equal to 4× 100
if b = 4), we then assess: (i) the ratio of times that all patient pairs are allocated
to different rooms in at least one of the solutions in the population (Ratio),
and (ii) the average number of solutions that all patient pairs occupy different
rooms across 100 selections (Alt). Table 4 presents the results for this analysis.
As shown in the table, the ratio is always higher than 95%. It also indicates that
S includes more than 20 alternatives when α = 2% and b = 7 (the worst case).
All this means that the proposed EA can successfully diversify S and increase
solution robustness against imperfect modeling.
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Table 4. Simulation results for the solution robustness of the EA

b 1 4 7

α 0.02 0.04 0.16 0.02 0.04 0.16 0.02 0.04 0.16

In Ratio Alt Ratio Alt Ratio Alt Ratio Alt Ratio Alt Ratio Alt Ratio Alt Ratio Alt Ratio Alt

1 99 45.4 100 43.9 100 45.8 99 32.8 100 31.4 100 38.2 96 21.1 96 21.4 100 28.2

2 100 44.7 100 45.9 100 46.6 100 32 100 31.4 100 36.7 99 21.8 99 24 100 30.1

3 99 43.9 100 45 100 46.1 97 29.9 99 31.6 100 36.3 98 22.5 99 23 100 29.3

4 100 44 100 42.7 100 45.5 100 30.6 100 30.8 100 36.7 99 22.1 99 22.4 100 27.8

5 100 46.1 100 47 100 47.8 100 33.7 100 36.5 100 42.1 99 25.6 100 28.9 100 38

6 99 44.7 99 44.9 100 46.9 98 34.6 99 35.5 100 38.2 96 24 96 27.1 100 33.9

5 Conclusions and Remarks

In this study, we introduced a methodology to compute a highly diverse set of
solutions for the PAS problem. We first defined an entropy-based measure to
quantify the diversity of PAS solutions. Then, we proposed an EA to maximise
the diversity of solutions and introduced three mutations for the problem. The
iRace package was used to tune the hyper-parameters of the EA. Through a com-
prehensive numerical analysis, we demonstrated the efficiency of the proposed
mutations in comparison to the standard swap. Our analyses revealed that the
EA is capable of computing high-quality and diverse sets of solutions for the
PAS problem. Finally, we showed the solution robustness of the proposed EA
against imperfect modeling by performing a scenario analysis.

For future studies, it could be interesting to investigate the case that
optimal/near-optimal solutions are not known a-priori for the PAS problem. It
might be also valuable to apply diversity-based EAs to other real-world optimisa-
tion problems in healthcare, such as the operating room planning and scheduling,
home-health care routing and scheduling, and nurse scheduling. These problems
are usually multi-stakeholder (with conflicting interests) and require high solu-
tion robustness.

Acknowledgements. This work was supported by the Australian Research Council
through grants DP190103894 and FT200100536.
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Abstract. We use a multi-agent system to model how agents (repre-
senting firms) may collaborate and adapt in a business ‘landscape’ where
some, more influential, firms are given the power to shape the landscape
of other firms. The landscapes we study are based on the well-known
NK model of Kauffman, with the addition of ‘shapers’, firms that can
change the landscape’s features for themselves and all other players. Our
work investigates how firms that are additionally endowed with cogni-
tive and experiential search, and the ability to form collaborations with
other firms, can use these capabilities to adapt more quickly and adeptly.
We find that, in a collaborative group, firms must still have a mind of
their own and resist direct mimicry of stronger partners to attain bet-
ter heights collectively. Larger groups and groups with more influential
members generally do better, so targeted intelligent cooperation is bene-
ficial. These conclusions are tentative, and our results show a sensitivity
to landscape ruggedness and “malleability” (i.e. the capacity of the land-
scape to be changed by the shaper firms). Overall, our work demonstrates
the potential of computer science, evolution, and machine learning to
contribute to business strategy in these complex environments.

Keywords: Cooperative learning · NK models ·
Endogenously-changing landscape · Shaping · Searching · Adaptation

1 Introduction

Most non-trivial social systems are inherently challenging to gauge due to the
potential complexity arising from interactions at both individual and collec-
tive levels [8]. Especially in the business context, the mechanics of interaction
between competing firms (agents) are often based on rather coarse simplifica-
tions and an incomplete understanding of the business landscape. The sophistry
embedded within the interplays of businesses, difficult to appreciate from the
outside, produces counterintuitive resultant behaviours [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13398, pp. 265–278, 2022.
https://doi.org/10.1007/978-3-031-14714-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14714-2_19&domain=pdf
http://orcid.org/0000-0003-1236-3143
http://orcid.org/0000-0001-8112-6112
http://orcid.org/0000-0002-0197-0936
https://doi.org/10.1007/978-3-031-14714-2_19


266 C. W. Lim et al.

Firms compete by developing new strategies, technologies or business mod-
els all of which involve solving complex problems and making a high number of
interdependent choices. To solve these problems, managers need to search their
firms’ business landscapes and find a combination of these choices that allows
them to outperform their competitors. Bounded rational managers cannot eas-
ily identify the optimal combination, and tend to engage in sequential search
processes [13] and, via trial and error, learn and find what combinations are
possible and perform well. Effective search for well-performing solutions in a
business landscape is thus a source of competitive advantage for companies.

Conceptually, a business landscape dictates the effectiveness of a firm’s search
strategy by assigning them a fitness, which typically represents the level of return
or performance. The active revision of a firm’s choices is crucial in maintaining its
competitive advantage, growth and profitability when competing against other
firms on a business landscape. Such revisions are normally in the form of research
and development of any aspect of a firm in order to find better choices (strate-
gies, methods, and/or products), leading it towards a better path, and to higher
local peaks on the landscape. Generalising, firms improve their performance by
adapting to the business landscape within which they operate. However, actual
business landscapes are dynamic, and they tend to change not only exogenously
as a result of external factors (changes in government policies and regulations,
in demographic and social trends, etc.) but also due to the behaviour and strate-
gies of the firms competing within them. Firms simply do not limit themselves
to only adapting and accepting the state of their current environment as it is.
Capable firms might be able to shape the business landscape to their advantage
(in addition to search the landscape) [6,17]. A quintessential example of this
phenomenon was when Apple introduced the iPhone and swiftly shook the envi-
ronment in its favour, demolishing Nokia, which was the incumbent cell-phone
market leader at that time.

Management research has used the NK model [9,11] introduced in the man-
agement literature by [12] to build simulation models to represent business land-
scapes, and study different factors that influence the effectiveness of companies’
search processes (see [2] for a review). Despite the usefulness of these models,
most of them consider that the business landscape within which companies com-
pete does not change or it changes in an exogenous manner, i.e. due to factors
external to the companies. They thus do not account for the influence that
endogenous changes rooted in firms’ behaviour have in the business landscape,
and in turn in the performance of firms within it. The first simulation model that
has analysed companies search effectiveness when business landscapes change
endogenously was proposed by Gavetti et al. in 2017 [10]. The authors extend
the NK model to consider two types of firms (agents): agents that search a land-
scape only (referred to as searchers) and agents that can both search and shape
the landscape (shapers). Consequently, searching firms need to adapt (search) on
a landscape that is being shaped (changed) by the shaping firms. In other words,
shapers have the power to change a landscape endogenously, while searchers per-
ceive these changes as exogenous. Since all agents (shapers and searchers) search
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the same landscape, a change in the landscape (caused by a shaper) affects all
agents. The study of Gavetti et al. [10] focused on studying how the impact
of different levels of landscape ruggedness and complexity, and the proportion
of shapers vs searchers operating in it, affect the performance of both types of
firms. In real contexts, firms do not only compete within a business landscape but
in many cases competing firms try to improve their performance by cooperat-
ing, i.e. via coopetition. Coopetition is the act of cooperation between competing
companies. Businesses that engage in both competition and cooperation are said
to be in coopetition. This paper extends Gavetti et al. [10] by allowing firms to
cooperate and analyses how cooperation influence firms performance in endoge-
nously changing business landscapes. This is achieved by incorporating cognitive
and experiential search into the adaptation process.

The next section details the traditional NK model and the adapted version of
that model by Gavetti et al. [10] (also referred to NKZE model), and explains the
search rules. Section 3 proposes a cooperative approach with learning, and Sect. 4
provides details about the experimental study and then analyzes the proposed
approach for different configurations of the simulated changing (and competi-
tive) business environment. Finally, Sect. 5 concludes the paper, and discusses
limitations of the work and areas of future research.

2 Preliminaries

2.1 Kauffman’s NK(C) Model

The NK model of Kauffman [11] is a mathematical model of a tunably rugged
fitness landscape. The ruggedness is encapsulated by the size of the landscape
and the number of local optima, which are controlled by the parameters, N and
K, respectively. Formally, in an NK model, the fitness f(x) of an agent (firm)
at location g = (g1, . . . , gN ), gi ∈ {0, 1}, on the landscape can be defined as

f(g) =
1
N

N∑

i=1

fi(gi, gi1 , . . . , giK ), (1)

where gi is the ith (binary) decision variable, and the fitness contribution fi
of the ith variable depends on its own value, gi, and K other variable values,
gi1 , . . . , giK . The parameter K has a range of 0 ≤ K ≤ N−1 that determines how
many other K different gi’s will be affecting each gi when computing fitness. The
relationships between gi’s are determined randomly and recorded in an inter-
action matrix that shall be left unchanged. The function fi : {0, 1}K+1 → R
assigns a value drawn from the uniform distribution in the range [0,1] to each
of its 2K+1 inputs. The values i1, . . . , iK are chosen randomly (without replace-
ment) from {1, . . . , N}. Increasing the parameter K results in more variables
interacting with each other, and hence a more rugged (epistatic) landscape. The
two extreme cases, K = 0 and K = N −1, refer to the scenarios where the fitness
contributions fi depend only on gi (i.e. each fi can be optimized independently)
and all variables, g1, . . . , gN , respectively (maximum ruggedness).
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Taking an arbitrary firm with a search policy string of g = (011101), we can
calculate the fitness contribution (fi) of g1 by forming a temporary string with
the gi’s that are related to itself by referring to the interaction matrix. Let us
assume that, in this example, g1 was initially and randomly determined to be
related to g2, g4 and g5. Since g1 = 0, g2 = 1, g4 = 1 and g5 = 0, the string
formed shall be (0110). The fitness contribution can then be extracted from the
fitness matrix by taking the value from 6th row (0110 in decimal), and the ith
column (1st column in this case). Understandably, the fitness contributions of
subsequent gi’s are calculated similarly.

Kauffmann later extended the NK model to introduce coupled landscapes
(a.k.a NKC model) [11], which allows multiple species to exist on different land-
scapes, and interact through a phenomena of niche construction.

2.2 Gavetti et al.’s NKZE Model

The conventional NK model allows firms to continually adapt on a fixed land-
scape until they reach some local or global optima. Additionally, the action of
any firm has no consequence on other competing firms. However, in a realistic
and dynamic business environment, the introduction of disruptive technologies
and concepts can often drastically restructure the business landscape, thereby
needing competing firms to re-strategize towards a new goal or face obsoleteness.

Gavetti et al. [10] introduced the concept of shapers, which have the ability to
modify the business context to their own advantage on top of the standard agents
(hereinafter known as searchers) in the baseline NK model. They then studied
the effects of different levels of shaping on the performance of shapers themselves
and on searchers. Unsurprisingly, shaper firms and the level of shaping have great
effects on the performance of their competitors as landscape restructuring always
tend to undermine competitor performance. However, a high level of shaping
coupled with a great number of shapers were found to be highly non-beneficial
for shapers and searchers alike, as constant landscape restructuring changes the
objective too fast and too much, thus rendering local search obsolete and causing
massive performance instabilities.

The key feature of shapers is their ability to influence the business context
(hopefully) to its own advantage, and as a side-product, alter the fitness of their
competitors. To achieve this, Gavetti et al. [10] extends the NK model with
an additional Z (binary) decision variables, e = (e1, . . . , eZ), ei ∈ {0, 1}. Here,
e is referred to as the shape policy string and is globally shared by all firms,
differently to the search policy string, g, which is controlled by each firm (agent)
independently. Similarly to the parameter K in the NK model, Gavetti et al. [10]
use a parameter E to interlink the shape and search policy strings: each gi is
related to E randomly sampled ei’s or ei1 . . . , eiE . Such relationships are also
recorded in an interaction matrix that shall be kept constant throughout a run.
Notably, E has a range of 0 ≤ E ≤ Z.

Accordingly (for the added dimensions), Gavetti et al. [10] update the fitness
assignment function to fi : {0, 1}K+1+E → R, which assigns a value drawn
from the uniform distribution in the range [0,1] to 2K+1+E inputs. In practice,



Cooperative Search in Complex Business Domains 269

the fitness contributions are stored in a matrix of size 2K+1+E × N , and the
interactions are stored in a matrix of size N ×K +1+E. Now, the evaluation of
a firm’s fitness depends on E too. Taking the search policy string for an arbitrary
firm to be g = (011011), global shape policy string to be e = (101000), K = 3
and E = 3, an interaction matrix was generated randomly, resulting in g1 being
related to g2, g4, g5, e2, e3 and e6. The fitness of contribution of g1 (f1) will be
determined by firstly forming a temporary string in the order of (g1g2g4g5e2e3e6),
making (0101010). Similarly, f1 will be taken as the 42nd (0101010 in decimal)
row and the 1st column (ith column) of the fitness contribution matrix.

Gavetti et al. [10] use the following approach to tackle the NKZE model:
At the beginning of the simulation, a predetermined amount of firms will be
turned into shapers based on a shaper proportion (β) parameter. Firms are re-
ordered randomly at the beginning of each iteration. More specifically, all firms
are allowed to make an action in accordance with the randomly determined order
in each iteration. Thus, the number of actions within an iteration would be equal
to that of the firm (agent) population. In terms of action, each (shaping and
searching) firm is allowed to make one adaption move. A searching firm flips one
randomly selected search policy bit (keeping the shaping policy unaltered) and
if the resulting policy has a better fitness than the current policy, then the firm
retains the new policy; otherwise, the firm will stick with the old policy. However,
when it is the turn of a shaper, it has the choice of either adapt as a searcher
would without altering the shape policy string, or randomly mutating a single
bit of the shape policy string and evaluate fitness with its original unmutated
search policy string. A shaper will then pick either choice that is better, or end
its turn without adopting any mutation if both the choices were found to be
unfit.

Intuitively, E also corresponds to the level of shaping and the malleability of
the fitness landscape. A higher E means that the globally shared shape policy
string has more influence on fitness contributions, and transitively, the fitness
landscape itself. Under this condition, the extent of fitness landscape restruc-
turing when a shaper acts on the shape policy string is high. Thus, the fitness
landscape is said to be highly malleable at high E.

The NKZE model is a variation of Kaufmann’s NKC model. While both
models allow agents to dynamically change the environment, there are critical
differences: in the NKC model (i) each species operate on a separate landscape,
(ii) all species have the ability to change the landscape, and (iii) each species
is represented by one agent only. Consequently, the two models are designed to
simulate different (simplified) business environments.

3 Stealthy and Cooperative Learning

The transient environment of the NKZE model caused traditional myopic
“hill-climbing” adaptation to underperform. Additionally, such myopic practices
hardly capture the rationality of realistic firms. Motivated by this weakness,
we extend the methodology to tackle the NKZE model to provide firms with
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the ability to learn from one another (stealthily or cooperatively), potentially
allowing firms to adapt more quickly and adeptly to changing environments.

To implement such ideas, a strategy of exploiting multi-agent search in NKZE
with population-based optimisation techniques, specifically particle swarm opti-
misation (PSO) [5] and explicit direct memory genetic algorithm [20], was imple-
mented. This was done by (i) allowing firms to quickly adapt to the environment
by looking towards excellent firms during the exploration phase following con-
cepts inspired by PSO (similar to neighborhood search [18]) and (ii) preserving
good solutions in a memory and exploiting them at the end of exploration. We
will refer to this strategy as stealthy global learning (StealthL). StealthL oper-
ates in an idealistic environment where intel regarding the strategies (and success
level) of competing firms is always freely and readily available without limitation
(i.e., globally). However, such limitation does exist and is inherent to the nature
of competition. Additionally, the NKZE and StealthL model do not share simi-
lar dynamics, as the former had a single-mutation restriction whereas the latter
allowed for very rapid adaptation by mutating multiple elements within policies
of firms. The dynamics of NKZE is more realistic as a change in a firm’s policy
takes time and is limited by resources. A complete or near-complete revamp of
policies continuously is not affordable.

As a result, the StealthL model was modified to allow firms to form col-
laboration groups. Swarm intelligence and memory scheme were now restricted
within the boundary of these groups, thus limiting the amount of information
a firm gets. This new model will be referred to as the structured cooperation
(StructC) model. Both StealthL and StructC were compared against the stan-
dard adaptation used in the NKZE (hereinafter known as the standard model)
in the next section. First, we will describe StealthL and StructC in the next two
subsections.

3.1 Stealthy Global Learning

Our model of how stealthy learning occurs between firms is based on a simple
information-sharing scheme used in the swarm intelligence method, PSO. This
is augmented with the use of a memory of past policies, a technique reminiscent
of poly-ploid organisms’ storage of defunct (inactive) genetic material (chromo-
somes) that can be resurrected quickly under environmental stress.

Swarm Intelligence. To implement swarm intelligence, the search policy string
of an arbitrary firm was mutated based on a guiding vector that is unique to
each firm [21]. Descriptively, the guiding vector of an arbitrary firm is P =
(p1, . . . , pN ) and has a length of N , matching that of the search policy string
g = (g1, . . . , gN ). Each element pi in the guiding vector represents the probability
of its corresponding element (gi) in the search policy string to mutate to 1.
Naturally, the probability of which gi mutates to 0 is given by 1−pi. All guiding
vectors were randomly initialised with a uniform distribution with [0,1] range at
the beginning. At its turn, the firm first learns towards the search policy string
of the current global best performing firm (gmaxf,t) at time t using its guiding



Cooperative Search in Complex Business Domains 271

vector with a learning rate of α where 0 ≤ α ≤ 1:

P t+1 = (1 − α) × P t + α × gmaxf,t .

Subsequently, a string of random variates with length N is generated as
R = (r1, . . . , rN ) using a uniform distribution with [0,1] range. Finally, the new
search policy string is determined as follows:

gi =
{

1, ri < pi
0, ri ≥ pi .

Note that pi has a range of 0.05 ≤ pi ≤ 0.95 to allow for 5% random mutation
after convergence. This new adaptation was designed to facilitate fast landscape
adaptation via guided multiple mutations. The single random mutation of the
shape policy string was kept without alteration to preserve the nature of the
landscape-shaping dynamics. Finally, the firm chooses whether to adopt the
mutated policy strings or to remain unchanged as in the standard NKZE model.

Learning from Experience, a.k.a. Polyploidy. In addition to swarm intelli-
gence, the model was also extended to memorise the aggregated policy (search +
shape) of the best performing firms in each iteration [20]. We limit the size of the
database in which these memories are stored to Θ agents. To ensure environmen-
tal diversity within the database, newly memorized candidate memory should
have a unique shape policy string. If the shape policy string of the candidate
is already present in a memory, the fitter one will be adopted. At full capacity,
replacement can only happen if an environmentally unique candidate was better
than the worse performing memory. To prevent premature memory exploitation,
a parameter ε representing the probability of not exploring the database was
initialised to 1 at the beginning of the model. A decay parameter γ < 1 was
then set to reduce ε at the end of each iteration using εt+1 = εt × γ.

At the turn of an arbitrary firm, the firm shall only exploit the memory if a
random number generated is greater than ε without undergoing any exploration
(searching and/or shaping). The firm then, without hesitation, adopts the best
policies of the best performing memory. Note that a searcher can only adopt the
search policy string of the best performing memory, whilst a shaper adopts both
search and shape policy strings simultaneously.

Relevance to Practice. Coopetition emphasizes the mixed-motive nature of
relationships in which two or more parties can create value by complementing
each other’s activity [3]. In the stealth model, organizations in the landscape
are all competing to reach the best fitness, but also cooperating by sharing
knowledge with each other. This resembles the scenario of organizations helping
each other to reach a new common goal, such as tech giants Microsoft and
SpaceX working together to explore space technology. In their collaboration,
the organizations work together to provide satellite connectivity between field-
deployed assets and cloud resources across the globe to both the public and
private sector via SpaceX’s Starlink satellite network [16]. At the same time,
they are competing to dominate niche segments. If this collaboration succeeds,
Microsoft and SpaceX will be dominating the space technology market.
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3.2 Structured Cooperation

By forming random collaboration groups, firms are now equipped to exchange
landscape knowledge amongst their partners, but have no information outside
of the group. Thus, (i) a firm can only refer to the best performing policy within
its group, and (ii) each group has a separate memory. Mutation-wise, only the
element of the search policy string that has the highest probability of mutating
can mutate. If multiple were present, one will be selected at random to mutate.

Relevance to Practice. Collaboration between companies can occur in
numerous ways, one of which is sharing knowledge and expertise. In today’s
age, expertise and information are considered valuable strategic assets for
organizations [15]. The StructC model mimics sharing knowledge among a
closed pre-determined group of companies that falls under the same manage-
ment/ownership (a.k.a conglomerate). Examples of this type of corporations
are, Alphabet LLC who owns Google, DeepMind; Amazon who owns Audible,
Amazon Fresh, Ring to list a few. Despite sharing their knowledge and expertise,
collaborating companies work towards one goal while maintaining their indepen-
dence and decision making [14]. Also, knowledge sharing becomes the natural
required action for the company to reduce costs and save time, and improve
efficiency [22].

4 Experimental Study

This section outlines the model and algorithm parameter settings followed by
an analysis of results. Table 1 provides an overview of the default parameter set-
tings for the the three models to be investigated, Standard Model, StealthL and
StructC. Parameter N , Z and β were chosen in accordance to [10] for compari-
son purposes. We simulate a business environment with a population of M = 10

Table 1. Default algorithm
parameter settings.

Parameter Default values

N 12
Z 12
M 10
β 50%
α 0.2

pi,ceil 0.95
pi,floor 0.05

Θ 50
εt=0 1

γ 0.999
ωmax 4

Table 2. StructC group combinations.

ω = 1 ω = 2 ω = 3 ω = 4

1 searcher
(β = 0)

2 searchers
(β = 0)

3 searchers
(β =0)

4 searchers
(β =0)

1 shaper
(β = 1)

1 searcher
1 shaper
(β = 0.5)

2 searchers
1 shaper
(β = 0.33)

3 searchers
1 shaper
(β = 0.25)

- 2 shapers
(β = 1)

1 searcher
2 shapers
(β = 0.67)

2 searchers
2 shapers
(β = 0.5)

- - 3 shapers
(β = 1)

1 searcher
3 shapers
(β = 0.75)

- - - 4 shapers
(β = 1)
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agents (firms) and a maximum group size of ωmax = 4. Table 2 lists the possible
group compositions. The default parameters for the other parameters were set
based on preliminary experimentation such that robust results are obtained.

4.1 Experimental Results

We investigate the performance of various models as a function of the problem
complexity. We achieve this by visualizing and analysing the model behaviors
during the search process. All models were validated using 50 runs with each run
using a randomly generated fitness landscapes (same set of landscapes were used
for each model) and lasting for 100 iterations. For StructC, group compositions
were randomly sampled to preserve generality. As a result, it was ensured that
each unique group composition will have appeared 50 times throughout the whole
experiment. Each run takes around 2 minutes depending on problem complexity
using an Intel i7 (8th gen.) CPU, 8 GB DDR3L RAM.1

Standard vs. Stealthy Global Learning. Figures 1, 2 and 3 compare the
performance of searchers and shapers for the Standard Model and StealthL as
well as for different learning rates (α). Following observations can be made:

Shapers and searchers in StealthL outperform their counterparts in the Stan-
dard Model significantly for rugged landscape (K > 0) and regardless of the
learning rate α. However, for K = 0, the Standard Model achieved a better
performance because StealthL is suffering from premature convergence caused
by its weakened random perturbation, a trade-off of guided learning. Stronger
mutation is necessary when peaks on the fitness landscape are rare (or a single
peak is present as is the case for K = 0) and sufficiently far from one another
since StealthL becomes complacent to the point in which exploration is inhibited
when its corresponding agents all have roughly good and near solutions.

For StealthL, the performance of searchers and shapers is almost identical
regardless of the level of ruggedness K. For the Standard Model, the performance
gap between searchers and shapers depends on K with the most significant per-
formance gap being observed for an intermediate level of landscape ruggedness.

The learning rate α has a significant impact on search performance. A
decrease in α leads to a slower convergence but an improved final performance
(if given sufficient optimization time). A high learning rate of α > 0.8 leads to
premature convergence. Generally, slightly higher learning rates perform better
as the level of landscape ruggedness and malleability increases. Searchers and
shapers are affected in a similar fashion by a changing learning rate, while the
performance gap between searchers and shapers for a specific learning rate is
minimal.

4.2 StructC Model at Low Landscape Ruggedness and Malleability

Figure 4 visualizes the impact of different group sizes on structured cooperation
for K = 0, E = 0. Evidently, being in a bigger group with shapers helped with
1 The code to replicate these experiment can be downloaded at https://github.com/

BrandonWoei/NK-Landscape-Extensions.

https://github.com/BrandonWoei/NK-Landscape-Extensions
https://github.com/BrandonWoei/NK-Landscape-Extensions
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a searcher’s performance. Lone searchers suffered from severe premature con-
vergence with no sign of any improvement. The advantage of having a shaper
was especially prominent in a twin group. However, the relationship between
shaper proportion and searcher performance was highly inconspicuous and non-
linear. A group of size 3 gave the best searcher performance when it only had
1 shaper. The further increase in shapers decreased searcher performance but
was still better than the complete searcher group. The results for size 4 groups
were even more astonishing, with searchers only groups outperforming groups
with 1 or 2 shapers in terms of searcher performance. However, a group with 3
shapers enabled its only searcher to outperform complete searcher groups by a
noticeable degree. Whilst shapers are useful to searchers, the benefits were found
to be highly dependent on group size and the number of shapers.

Albeit outperforming a lone searcher, a lone shaper suffers a similar prema-
ture convergence problem. For twin groups, a complete shaper group gave better
shaper performance than a mixed group. For size 3 groups, a complete shaper

Fig. 1. Average best fitness (and 95% confidence interval in shading calculated using t
statistic) obtained by the Standard Model and StealthL at (left plot) minimal (K = 0,
E = 0), (middle plot) intermediate (K = 5, E = 6), and (right plot) high (K = 11,
E = 12) landscape ruggedness and malleability. StealthL Searcher and Stealth Shaper
have almost identical performance.

Fig. 2. Varying StealthL learning rate α at extreme malleability (E = 12) with (left
plot) minimal (K = 0) (middle plot) intermediate (K = 5) (right plot) high (K = 12)
landscape ruggedness. The confidence interval of the average fitness value has been
omitted in this and following plots for the sake of readability.
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gave the best shaper performance. In terms of the mixed groups, groups with 1
searcher were found give better shaper performance than groups with 2 searchers.
For size 4 groups, shaper dominated groups gave better shaper performance than
the balanced and searcher dominated groups. Unexpectedly, a shaper dominated
group with 1 searcher gives slightly better shaper performance than a complete
shaper group. Generally, a large group size dominated by shapers (>75%) was

Fig. 3. Varying StealthL learning rate α at extreme ruggedness (K = 11) with (left
plot) minimal (E = 0) (middle plot) intermediate (E = 6) (right plot) high (E = 12)
landscape malleability.

Fig. 4. Average fitness values achieved by StructC for different group sizes at low
ruggedness and malleability (K = 0, E = 0).

Fig. 5. Average fitness values achieved by StructC for different group sizes at high
ruggedness and malleability (K = 11, E = 12).
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found to be group configuration that produced excellent searchers and shapers.
Predictably, all groups were not able to surpass the standard and StealthL model
performance under all conditions.

4.3 StructC Model at High Landscape Ruggedness and Malleability

Figure 5 visualizes the impact of different group sizes on structured cooperation
for K = 11, E = 12. At high ruggedness and malleability, lone searchers had
no improvement from its initial fitness. Mixed twin groups were only able to
marginally improve their initial searcher performance. Searcher performance of
searcher dominated twin groups was seen to deteriorate slightly with time. Such
temporal deterioration effects were also seen in all complete searcher groups
regardless of group size. Universally, the increase in group size and shaper pro-
portion improved searcher performance. At maximum group size, searcher per-
formance was able to exceed that of the standard model by a noticeable degree.
On the other hand, lone shapers found it difficult to improve themselves. Simi-
larly, a larger group size with more shapers led to excellent shaper performance.

5 Conclusion

We have used a multi-agent system to model how agents (firms) may collab-
orate and adapt in a business ‘landscape’ where some, more influential, firms
are given the power to shape the landscape of other firms. We have found that
shapers outperform searchers under all landscape conditions. However, excessive
landscape reshaping can lead to poor collective performance due to the insta-
bility it introduces. Additionally, both searchers and shapers perform best, even
under dynamic business landscapes, when they can keep their organisational
complexities at a minimum by reducing relationships between elements of their
policies (encoded here by the two parameters K and E). Complex organisations
can find it hard to cope with landscape changes especially when the changes
are frequent and substantial. However, we found that this can be overcome to
some extent by allowing for collaboration via experience-sharing between firms.
Whilst mutual learning is beneficial, direct mimicry of best practices can lead to
a reduction in collective knowledge as firm’ shared inertia hinders exploration,
thereby weakening the synergistic effects of collaboration. Lastly, the positive
effects of collaboration were also found to be at their best when collaboration
groups are dominated by shapers.

Despite having extended NK models, a limitation of our work is that reality
is more complex than the abstraction considered here, particularly in terms of
the kinds of strategy different firms might employ. Moreover, the model could
be made more realistic by, for example, accounting for additional objectives
and constraints, observing delays between evaluating an objective/constraint
function and having its value available [1,4,19], and simulating more than two
types of agents as firms may vary widely e.g. in terms of capabilities, goals, and
how they engage with other firms.
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Abstract. We propose an evolutionary algorithm with a novel diver-
sity oscillation mechanism for the Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW). Evolutionary algorithms are among
state-of-the-art methods for vehicle routing problems and the diversity
management is the key component of many of these algorithms. In our
algorithm the diversity level slowly oscillates between its minimum and
maximum value, however, whenever a new best solution is found the
algorithm switches to decreasing the diversity level in order to intensify
the search in the vicinity of the new best solution. We use also an addi-
tional population of high quality diverse solutions, which may be used
to re-fill the main population when the diversification level is increased.
The results of the computational experiment indicate that the proposed
mechanism significantly improves the performance of our hybrid evolu-
tionary algorithm on typical CVRPTW benchmarks and that the pro-
posed algorithm is competitive to the state-of-the-art results presented
in the literature.

Keywords: Diversity management · Vehicle routing · Hybrid
evolutionary algorithms · Multi-population algorithms

1 Introduction

The family of vehicle routing problems (VRP) is an important class of NP-hard
combinatorial optimization problems with a high practical importance in trans-
portation and logistics, intensively studied by the research community [4,17,33].
In this paper we consider the Capacitated Vehicle Routing Problem with Time
Windows (CVRPTW) which is defined by a depot node and a set of customer
nodes with defined demands. For each node, a non-negative service time and
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a time window is defined. For each pair of nodes (edge), a travel time and a
travel distance are defined. A fleet of homogeneous vehicles with limited capac-
ity is available. The goal is to find a set of routes that start and end at the
depot, so that each customer node is visited exactly once, the sum of demands
for each route does not exceed the vehicle capacity, and the time windows are
respected. CVRPTW is usually formulated as a bi-objective problem with two
lexicographically ordered objectives. The first objective is to minimize the num-
ber of routes and the second one is to minimize the total travel distance. Evolu-
tionary algorithms (EAs) are among state-of-the-art methods to efficiently solve
vehicle routing problems [17,20,22,35].

Premature convergence is well-known to be one of the major obstacles for EAs
caused by the loss of population diversity that leads to getting trapped in sub-
optimal solutions [7,9]. To avoid this obstacle additional techniques promoting
population diversity are often used [31,32]. For example, Squillero and Tonda [31]
describe 25 diversity management techniques, e.g. clone extermination, crowding,
fitness sharing, clearing, and island model. In particular in clearing the best
individuals within a clearing radius are declared ’winners’ and other individuals
have their fitness cleared [24]. The risk of premature convergence naturally affects
also EAs for VRP. Thus, diversity management techniques are often used in
successful algorithms for VRP (see Sect. 2).

In this paper, we propose a novel diversity management scheme based on
clearing with adaptive clearing radius. The clearing radius is an additional
parameter of an EA. Larger values of the radius promote diversity (exploration),
while lower values promote exploitation (intensification). Instead of trying to
define a single value of this parameter we interlace the phases of exploration
increasing and exploration decreasing. In the exploration increasing phase the
clearing radius is gradually increased while in the exploration decreasing phase
the radius is gradually decreased.

The main contributions of this work are summarized as follows.

– A novel diversity management mechanism based on the idea of oscillation of
the diversity level with a dual-population model is proposed.

– The proposed diversity management mechanism is used in a hybrid evolu-
tionary algorithm for the CVRPTW.

– Through a computational experiment it is shown that the proposed diver-
sity management mechanism significantly improves results of the evolutionary
algorithm.

– The computational experiment shows also that the results of our algorithm
are competitive to the state-of-the-art results for the CVRPTW reported in
the literature.

The paper is organized in the following way. In the next section we review the
use of diversity management mechanisms in evolutionary algorithms for VRP.
In Sect. 3, we present the proposed diversity management mechanism and the
hybrid evolutionary algorithm. Then, in Sect. 4, we describe the order-based
recombination used in the algorithm. Local search used in the algorithm is pre-
sented in Sect. 5. In Sect. 6, we describe and present results of a computational
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experiment. In the last section, we present conclusions and directions for further
research.

2 Diversity Management in Vehicle Routing Problems

As previously stated, diversity management techniques are often used in suc-
cessful EAs for VRP. Vidal et al. [35,36] proposed a hybrid genetic algorithm
with adaptive diversity management for a large class of vehicle routing problems.
Each individual in the population is characterized by both solution cost and its
diversity contribution defined as the average distance to its closest neighbours.
The evaluation biased fitness involves both the rank based on the solution cost
and the rank based on the diversity contribution. In addition, a number of elite
solutions are preserved, chosen randomly from among 25% of the best solutions.
The authors conclude that the trade-off between diversity and elitism is critical
for a thorough and efficient search. This mechanism became highly popular in
algorithms for VRP and has also been applied in [2,5,10,13].

Prins [25] does not allow clones in the population. However, to speed-up the
clone detection process clones are defined not in the decision space but in the
objective space.

Segura et al. [30] use a multi-objective replacement strategy. First, they com-
bine the population from the previous generation and the offspring in a tempo-
rary set. The best individual is selected to form part of the new population.
Then, until the new population is filled with the required number of individuals,
the following steps are executed. First, the distance to the closest neighbor is
calculated. The calculation considers the currently selected individuals as the
reference, i.e. for each pending individual the distance to the nearest individual
previously selected is taken into account. Then, considering the individuals that
have not been selected, the non-dominated front is calculated. The two objec-
tives considered are the cost and the distance to the closest neighbor. This front
is computed as a set with no repetitions. Finally, a non-dominated individual is
randomly selected to survive.

Xu et al. [37] use a measure to evaluate population diversity. Once popula-
tion diversity is below a given level, the evolutionary algorithm switches to the
simulated annealing, which could avoid the drawback of premature convergence.
The experimental data show the effectiveness of the algorithm and authenticate
the search efficiency and solution quality of this approach.

Zhu [38] manages diversity by varying crossover and mutation rates. The
authors observe, that increasing crossover and mutation rates promotes diversity
and delays the convergence of the algorithm.

Sabar et al. [29] vary fitness function that takes into account both the fit-
ness and diversity of each solution in the population. Furthermore, the authors
propose to allow the EA to focus on exploration in the early stages and then
gradually switch to exploitation.

Sabar et al. [28], in order to maintain solution diversity, utilize a memory
mechanism that contains a population of both high-quality and diverse solutions
that is updated during the problem-solving process.
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Qu and Bard [26] assure high diversity of the initial population by generating
a higher number of randomized solutions. Then a number of best solutions is
selected based on the objective function and the remaining solutions are selected
by solving the maximum diversity problem.

Repoussis et al. [27] initially place all solutions from the parent population
in the new population. Then, each offspring is compared to the corresponding
parent and if the offspring performs better, then it replaces the parent. Next,
the best and the worst individuals are identified and the median similarity in the
new population is determined. Subsequently, the remaining offsprings (if any)
are competing against individuals currently placed into the new population with
respect to the level of similarity. Precisely, if the offspring performs better than
an existing solution and its level of similarity is lower than the current median,
then the offspring replaces this solution. In addition, if the offspring performs
better than any selected individual and its level of similarity is lower then the
offspring also replaces this selected solution.

Liu et al. [18] divide the population equally into two subpopulations of win-
ners and losers of a binary tournament. Then they use two different mutation
strategies in the two subpopulations. The mutation strategy applied to winners is
focused on exploitation, while the mutation strategy applied to losers is focused
on exploration.

Boudia et al. [3] accept a new solution to replace a solution in the current
population only if the minimum distance of the new solution to a solution in the
current population exceeds a given threshold Δ. Furthermore, a decreasing policy
is used to vary Δ. Starting from an initial value Δmax, Δ is linearly decreased
to reach 1 (the minimum value to avoid duplicate solutions) at the end of each
cycle. In addition, after completion of each cycle, Boudia et al. use a renewal
procedure which keeps the best solution and replaces the other solutions by new
random ones. The acceptance threshold is then set to the initial, maximum value.
This approach is perhaps the most similar to ours, however, we do not increase
the diversity level immediately after achieving its minimum level, but rather we
start to increase it slowly. Furthermore, we use a different population update
mechanism based on clearing and we do not use a similar population renewal
procedure but we rather try to preserve the current population.

3 The Diversity Management and the Evolutionary
Algorithm

As it is clear from the previous section, diversity management mechanisms are
typically used in EAs for VRP. The diversification mechanisms usually involve
some parameters promoting either diversity (exploration) or elitism (exploita-
tion, intensification). It is well acknowledged that the trade-off between explo-
ration and exploitation has a crucial influence on the performance of EAs and
other metaheuristics [15]. Too strong focus on exploitation may result in a hill-
climber type algorithm which quickly becomes trapped in a local optimum. Too
much exploration may result in a random search. Thus, the parameters of the
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diversity mechanisms may have a crucial influence on the performance of EAs
for VRP. Some authors, instead of trying to set single values of such parame-
ters, vary them during the run such that in the initial iterations the algorithm
is more focused on exploration and gradually switches to exploitation [3,29].
This strategy is well-known from simulated annealing [16] and it has been also
recently applied in a successful large neighborhood search for VRP [6]. However,
the strategy exploration → exploitation may still lead to a convergence to sub-
optimal solutions. If such premature convergence happens it may be beneficial to
increase the diversity of the current population in order to explore other regions
of the search space. On the other hand, if the best solution has been improved,
there is no need to increase the diversity level or it could be further reduced in
order to intensify the search in the new promising region.

Thus, we propose to interlace the phases of increasing and decreasing explo-
ration in our algorithm. The mechanism is based on the idea of clearing with
a parameter clearing radius. In the exploration increasing phase, the clearing
radius is gradually increased, while in the exploration decreasing phase the clear-
ing radius is gradually decreased. The clearing radius is not changed if the algo-
rithm improves the best solution in a given number of iterations, because we
interpret this situation as an indicator that the algorithm is capable of finding
new best solutions at the current diversification level. Otherwise, if the best solu-
tion has not been improved in a given number of iterations, the clearing radius
is either increased or decreased, depending on the current phase of exploration
decreasing/increasing. The phases are changed when the clearing radius achieves
the minimum or maximum value. In addition, whenever a new best solution is
found during the exploration increasing phase, we also switch to the exploration
decreasing phase in order to intensify the search in the new promising region just
found. In other words, the diversity level slowly oscillates between its minimum
and maximum value, however, whenever a new best solution is found we switch
to decreasing the diversity level.

As the distance measure we use the number of different edges in two solutions
normalized to the range between 0 (equal solutions) to 1 (no common edges).

Figure 1 shows an exemplary evolution of the clearing radius and the best
objective value in 1700 main iterations of the evolutionary algorithm (each main
iteration involves kmax recombinations) for R1_10_8 instance (see Sect. 6). One
can see that the clearing radius rarely achieves the maximum allowed value
(0.15), that there are periods of search at relatively low diversity levels (periods
of a high intensification) when the best solution is often improved, and that the
diversity level increases when the search stagnates i.e. when the best solution is
not improved for a longer time. Note that the best objective function value shown
in this figure involves only the distance (since the number of vehicles was quickly
reduced to the best known value) and constraint penalties with the current
weights. Thus, the best solution may improve both due to the improvement of
the distance and due to the reduction of constraint violations.

The proposed oscillation mechanism partially resembles the ideas of iter-
ated local search (ILS) [19] and very large-scale neighborhood search (VLNS)
[1]. Both algorithms alternate the phases of high intensification (local search or
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Fig. 1. Exemplary evolution of the clearing radius in 1700 iterations of the evolutionary
algorithm.

greedy heuristics) with diversity increasing mechanisms (perturbation or destroy
operators). However, these algorithms work with a single solution and the phases
of intensification/exploration are much more fine-grained, while in our case oscil-
lations are applied to the whole population and each of them involves multiple
iterations of recombination and local search.

Motivated by Prins [25] we initialize current population with random solu-
tions and apply local search only to several of them. Furthermore, similarly
to [28] we maintain an additional small population (called reserve) of few best
solutions for the maximum diversification level (the maximum clearing radius).
After increasing the diversification level we try to add solutions from the reserve
to the main population. Note, that our version of clearing differs slightly from
the original version [24] because we immediately remove all losers from the cur-
rent population, while in the original version their fitness is set to the minimum
value (which leads to their further removal with a high probability). Thus, after
increasing the diversification level, some solutions may be removed from the cur-
rent population and the population will not be completely filled. The solutions
from the reserve may either be added to the current population without remov-
ing any existing solutions or they may substitute some existing solutions. Note
that a similar concept of an additional population serving as a reservoir of diver-
sity was also proposed by Park and Ryu outside the scope of VRP [23]. They
use, however the additional population for crossbreeding with solutions from the
main population.

In addition, since CVRPTW is a constrained problem we adapt a simplified
version of the penalty weights management mechanism proposed in [14]. Note,
however, that we update the penalty weights only in the exploration increasing
phase, while we do not change them in the exploration decreasing phase. The
idea is, that in the latter case, we should intensify the search with the current
level of penalty weights.



Evolutionary Algorithm for Vehicle Routing 285

The algorithm is summarized in Algorithm 1. To decrease and increase the
clearing radius it is multiplied by β1 < 1 and β2 > 1, respectively. The weights
update mechanism is summarized in Algorithm 2 and the population update is
summarized in Algorithm3.

Solutions are represented by sets of routes, each defined by a list of nodes.

Algorithm 1. Main algorithm
clearing_radius ← maximum value
current_phase ← exploration decreasing
penalty_weights ← initial weights
Initialize the current population with random solutions and apply local search to
some of them.
while stopping conditions are not met do

for kmax iterations do
offspring ← recombine two randomly chosen solutions from the current
population
Apply local search to offspring.
Try to insert offspring to reserve population
Try to insert offspring to the current population.

if the best solution has been improved then
current_phase ← exploration decreasing

else
if current_phase = exploration decreasing then

if clearing_radius has not achieved the minimum value then
decrease clearing_radius

else
current_phase ← exploration increasing

if current_phase = exploration increasing then
if clearing_radius has not achieved the maximum value then

increase clearing_radius
else

current_phase ← exploration decreasing
Update penalty_weights.
Remove all solutions from the current population and try to reinsert
them using the current clearing_radius and penalty_weights.
Try to insert solutions from the reserve population to the current
population.
while the current population is not full do

Try to insert a random solution to the current population.
if in the past 10 iterations of the while loop the best feasible solutions has not
been improved then

Increase kmax if its maximum value has not been achieved.

4 Order-Based Recombination

As the recombination operator we use Order-based recombination which is a
new operator briefly introduced in [8]. It is motivated by the observation made
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Algorithm 2. Update penalty_weights

for each constraint and corresponding penalty_weight do
if the best solution in the current population is feasible on the current constraint
then

penalty_weight ← penalty_weight ∗ α1, where α1 < 1
else

With probability p, penalty_weight ← penalty_weight∗α2, where α2 > 1

Algorithm 3. Update population (try to insert a new solution)
Parameters ↓: population (current or reserve), clearing_radius, new candidate solu-
tion x
if the set Y of solutions for the population within clearing_radius from x is not
empty then

if x is not better than the best solution in Y then
Reject x.

else
Remove all solutions from Y from the population and add x to the popu-
lation.

in preliminary experiments that pairs of local optima often have many common
pairs of nodes (pairs of nodes assigned in both solutions to a single route) that
appear in different orders in the two solutions, i.e. in one solution node a precedes
(directly or indirectly) node b, while in the other solution node b precedes node
a. Results for exemplary instances (see Sect. 6) are presented in Table 1. This
table presents average numbers of all common pairs of nodes and common pairs
with the same order observed between all pairs of 2000 local optima obtained
by starting local search from random solutions. While majority of pairs have
the same order in both solutions there are still quite many pairs with different
orders. It suggests that new promising solutions may be obtained by inverting
the order of pairs of nodes that have different order in the parents. The general
idea of this operator is to find such pairs of nodes and to apply in parent pA the
order from parent pB to all or some of these pairs. Thus, the proposed operator
can also be interpreted as a kind of guided perturbation applied to parent pA.

The Order-based operator is summarized in Algorithm 4. The sorting in this
algorithm is performed via MergeSort algorithm, which simultaneously counts
the number of inversions. We limit the number of modified routes for efficiency
reasons concerning both the scope of the following local search procedure and
the lack of notable improvements observed with k > 3.

The last if statement is only needed in longer runs when the space of inverted
routes combinations may be exhausted, or in the rare instances when a single
route is sufficient (otherwise the algorithm would produce solution pB from pA,
which is blocked by the Tabu lists).
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Table 1. Average numbers of all common pairs of nodes and common pairs with the
same order between local optima

Instance Number of all
common pairs
of nodes

Number of common
pairs of nodes with the
same order

RC2_4_1 1866.2 1819.2
RC2_4_2 2033.9 1849.9
RC2_6_1 2411.6 2358.9
RC2_6_2 2356.2 2125.7
RC2_8_1 3253.1 3187.2
RC1_4_10 651.0 465.4
RC1_8_10 1186.1 848.6
C1_10_10 3161.1 3045.1
RC2_10_1 3915.3 3836.3
RC2_10_2 3539.2 3227.7

5 Local Search

After each recombination a local search procedure is applied to the offspring. The
local search is based on the results presented in [14,21,22,34]. We use a node
based neighbourhood proposed in [21] (the strategy called LCRD): we maintain
a list of changed nodes and apply local search operators until the list is empty.
The best move that improves the objective function is chosen. If no such move is
found then the considered node is removed from the list. The algorithm of [21]
uses only one node exchanges and the well known [34] operators: cross, 2-opt*,
relocate, Or-opt and intra route cross. Our version uses wider neighbourhoods
and more operators:

1. Generalized cross - each of the exchanged fragments may be reversed.
This effectively defines four operators corresponding to four combinations
of reversal/non-reversal of two crossed fragments. The maximal number of
exchanged nodes is limited to 3.

2. Generalized relocate - the relocated fragment may be reversed. This effectively
defines two operators. The maximal number of relocated nodes is set to 5.

3. Generalized Or-opt. As in the previous operators the relocated fragment may
be reversed. The ideas of [14] make it possible to evaluate this type of move in
constant time. Moreover, [14] limited the moved fragment to 3 nodes and the
distance to move the fragment forward or backward to 15 nodes. We observed
that it may be beneficial to relocate longer fragments by a smaller number
of nodes, however some single nodes with wide time windows may be moved
freely inside the route. We therefore define an ascending sequence of distances:
16, 32, 64, 128 and descending sequence of fragment lengths to move: 8, 4,
2, 1. The time complexity depends on the product of these numbers (and is
maintained constant and equal to 128).
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Algorithm 4. Order-based recombination
Parameters ↓: Two parents pA and pB , global Tabu list TG of forbidden groups of
routes
Parameter ↑: Offspring solution O

For each node in pA find its relative position in its corresponding route from pB .
Find in pA all the routes containing at least two pairs of nodes in the order inverted
with respect to pB and randomly choose up to ten such inverted routes.
Sort each of the inverted routes in the ascending order of the relative positions of its
nodes in pB (ties in the relative position numbers are resolved by adding very small
random values).
for each k-combination of the set of inverted routes, where k ∈ {1, 2, 3} do

if the combination is not present in TG then
Exchange the original routes with the ones from current combination,
obtaining O.
Add the combination of the modified routes to TG.
Quit the loop.

if all combinations were already present in TG then
Consider the number I of all inversions in pA with respect to pB .
Select at random a number r ∈ N from [ 1

4
I, 3

4
I].

Perform at random order r neighbour transpositions.
return O

4. 2-opt* operator.
5. Intra route one node cross operator (as in [21,22]).
6. A new time feasibility operator. We use this operator only if the considered

node belongs to an infeasible route and it is impossible to decrease the infea-
sibility by removing this node from the route. It was observed in [22] that if
for some node the time infeasibility introduced by some route is equal to the
sum of infeasibilities introduced by the fragments before and after the node,
then removing this node from the route does not lead to improvement in
time feasibility. It was noted in [22] that only the intra route cross move may
improve feasibility in this situation. We propose another strategy to tackle
this problem: move the node to some other route and introduce another node
from the same route to this place. This allows us to reduce infeasibility caused
by the starting or ending fragment by other type of operator than intra route
cross. The reason for introducing this operator is that intra route cross is very
rarely successful at improving feasibility of a route.

Such a strong family of operators would be impractical without a move filtering
strategy. For generalized cross, generalized relocate, and 2-opt* operators we
use neighbour lists as in [14]. The move evaluation is performed in constant
time as in [14]. We also do not allow a move to increase time infeasibility of a
solution. This allows to prune moves that increase time infeasibility without the
full evaluation [22]. The neighbour lists and time based filtration allow evaluating
larger neighbourhood without degrading the time of evaluation.
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6 Computational Experiment

To evaluate the proposed algorithm we utilize commonly used Gehring and
Homberger instances categorized into six groups with 200, 400, 600, 800, and
1000 nodes [11]. This benchmark includes instances of several types. C1 and C2
instances have geographically clustered nodes. In R1 and R2, nodes have random
positions. In RC1 and RC2, a mix of random and clustered nodes is included.
R1, C1 and RC1 have a short scheduling horizon, narrow time windows, and low
vehicle capacities, while R2, C2 and RC2 have a long scheduling horizon, wider
time windows, and greater vehicle capacities. As a result solutions for instances
with suffix 2 have relatively low numbers of routes, while the solutions for the
instances with suffix 1 have larger numbers of routes.

The goal of the experiment is twofold. First, the goal is to verify that the
proposed diversity management mechanism improves the performance of the
algorithm. Another goal is to verify if the results of our algorithm are competitive
to the state-of-the-art results reported in the literature, namely the results of
the algorithms of Vidal et al. (VCGP) [35], and Christiaens and Vanden Berghe
(CVB) [6].

In Table 2 we present the comparison of the best results of 5 runs for each
instance as stated in [6] - cumulative number of vehicles (CNV) and cumulative
distance (CTD) for instances of each size. The best results are highlighted. Let us
remind that the objectives are lexicographically ordered with minimization of the
number of vehicles being the main objective. In online Appendix A1 we present
the details of the comparison: the parameters (Table 1), the detailed comparison
of the average results (Table 2) and the best results (Table 3) obtained for each
instance. Unfortunately, since the referenced papers do not provide results for
particular instances, we were not able to test statistical significance of differences
with respect to these methods. Nevertheless, we conclude that the results of our
method are comparable to the state-of-the-art literature results. In fact, in both
comparisons based on the average and the best values, our method generated
the best cumulative results for 4 out of 5 sets of instances, with the exception of
the smallest ones with 200 nodes.

Table 2. Comparison of the best results

Size VCGP CVB Our method Our method with constant diversity level

R = 0.15 R = 0.1 R = 0.05 R = 0

CNV CTD CNV CTD CNV CTD CNV CTD CNV CTD CNV CTD CNV CTD

200 694 168092 694 168447 694 168290 694 168220 694 168264 694 168522 694 168982

400 1381 388013 1382 389861 1381 388010 1381 388375 1382 388058 1383 388376 1384 391438

600 2068 786373 2067 790784 2067 785951 2067 788231 2067 788136 2069 786939 2069 795718

800 2739 1334963 2743 1337802 2738 1330989 2738 1338609 2738 1337490 2740 1336973 2747 1347095

1000 3420 2036700 3421 2036358 3420 2027373 3421 2038359 3420 2036954 3422 2037095 3436 2053621

1 https://math.uni.lodz.pl/~cybula/ppsn2022/ppsn2022supplement.pdf.

https://math.uni.lodz.pl/~cybula/ppsn2022/ppsn2022supplement.pdf
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Furthermore, to verify the hypothesis that the proposed diversity manage-
ment mechanism improves the performance of the evolutionary algorithm we
run the proposed algorithm with constant normalized clearing radius R using
values R = 0.15, R = 0.1, R = 0.05, and R = 0 (full elitism). We used Friedman
post-hoc test with Bergmann and Hommel’s correction at the significance level
α = 0.05. The results are presented in online Appendix A (Table 4). Except for
the smallest instances, our method is significantly better than all methods with
constant radius. In addition, the relative performance of the methods with con-
stant clearing radius depends on the size of the instances. For example, R = 0.15
is the best setting for the smallest instances, but is the worst (except of R = 0)
for the largest instances. This shows, that setting a good constant value of the
clearing radius may be a difficult task even with the use of a normalized distance.
In addition, the method with full elitism (R = 0) was in all cases outperformed
by all other methods. This confirms that diversity management is crucial in
evolutionary algorithms for CVRPTW.

7 Conclusions and Directions for Further Research

We have presented a hybrid evolutionary algorithm with a novel diversity man-
agement mechanism based on the idea of oscillation of the diversity level with a
dual-population model for the Capacitated Vehicle Routing Problem with Time
Windows. In the computational experiment the algorithm were competitive to
the state-of-art algorithms for this problem. We have also shown that the pro-
posed novel diversity management mechanism significantly improves results of
the algorithm. The presented results confirm also the well-known fact that main-
taining diversity of the population is necessary in evolutionary algorithms for
CVRPTW.

The reported algorithm was used in a VRP solver that generated 124 best-
known solutions for CVRPTW in multiple additional runs (which are not
reported in this paper) that were verified and published by SINTEF2.

The presented research was motivated by a commercial project with the aim
to develop the aforementioned VRP solver. This is why we focus on CVRPTW.
The proposed diversity management mechanism is, however, fairly general and
could be potentially applied in evolutionary algorithms for other problems. Thus,
such applications constitute one of the directions for further research. Further-
more, in this paper we use clearing as the underlying diversity management
mechanism, however, the idea of oscillating the diversity level is quite general
and could be potentially used with other diversity management mechanisms that
include some parameters influencing the diversity levels.

Another interesting direction for further research would be to compare and
combine our mechanism with some novel diversity management techniques which
to our knowledge have not been applied in the context of VRP, e.g. Quality and
Diversity Optimization [7,12].

2 https://www.sintef.no/projectweb/top/vrptw/.

https://www.sintef.no/projectweb/top/vrptw/
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Abstract. Evolutionary algorithms have been widely used for a range of
stochastic optimization problems in order to address complex real-world
optimization problems. We consider the knapsack problem where the
profits involve uncertainties. Such a stochastic setting reflects important
real-world scenarios where the profit that can be realized is uncertain.
We introduce different ways of dealing with stochastic profits based on
tail inequalities such as Chebyshev’s inequality and Hoeffding bounds
that allow to limit the impact of uncertainties. We examine simple evo-
lutionary algorithms and the use of heavy tail mutation and a problem-
specific crossover operator for optimizing uncertain profits. Our experi-
mental investigations on different benchmarks instances show the results
of different approaches based on tail inequalities as well as improve-
ments achievable through heavy tail mutation and the problem specific
crossover operator.

Keywords: Stochastic knapsack problem · Chance-constrained
optimization · Evolutionary algorithms

1 Introduction

Evolutionary algorithms [10] have been successfully applied to a wide range of
complex optimization problems [5,17,20]. Stochastic problems play a crucial role
in the area of optimization and evolutionary algorithms have frequently been
applied to noisy environments [22].

Given a stochastic function to be optimized under a given set of constraints,
the goal is often to maximize the expected value of a solution with respect
to f . This however does not consider the deviation from the expected value.
Guaranteeing that a function value with a good probability does not drop below
a certain value is often more beneficial in real-world scenarios. For example, in
the area of mine planning [3,15], profits achieved within different years should be
maximized. However, it is crucial to not drop below certain profit values because
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then the whole mine operation would not be viable and the company might go
bankrupt.

We consider a stochastic version of the knapsack problem which fits the
characteristics of the mine planning problem outline above. Here the profits are
stochastic and the weights are deterministic. Motivated by the area of chance
constrained optimization [4] where constraints can only be violated with a small
probability, we consider the scenario where we maximize the function value P
for which we can guarantee that the best solution x as a profit has less than P
with probability at most αp, i.e. Prob(p(x) < P ) ≤ αp. Note that determining
whether Prob(p(x) < P ) ≤ αp holds for a given solution x and values P and αp

is already hard for very simple stochastic settings where profits are independent
and each profit can only take on two different values. Furthermore, finding a
solution with a maximal P for which the condition holds poses in general a
non-linear objective function that needs to take the probability distribution of
p(x) into account. Constraints of the beforehand mentioned type are known
as chance constraints [4]. Chance constraints on stochastic components of a
problem can only be violated with a small probability, in our case specified by
the parameter αp.

1.1 Related Work

Up to recently, only a few problems with chance constraints have been studied
in the evolutionary computation literature [11,13,14]. They are based on simula-
tions and sampling techniques for evaluating chance constraints. Such approaches
require a relatively large computation time for evaluating the chance constraints.
In contrast to this, tail inequalities can be used if certain characteristics such as
the expected value and variance of a distribution are known. Such approaches
have recently been examined for the chance constrained knapsack problem in
the context of evolutionary computation [25,26]. The standard version of the
chance-constrained knapsack problem considers the case where the profits are
deterministic and the weights are stochastic. Here the constraint bound B can
only be violated with a small probability. Different single and multi-objective
approaches have recently been investigated [25,26].

Furthermore, chance constrained monotone submodular functions have been
studied in [8,18]. In [8], greedy algorithms that use tail inequalities such as
Chebyshev’s inequality and Chernoff bounds have been analyzed. It has been
shown that they almost achieve the same approximation guarantees in the chance
constrained setting as in the deterministic setting. In [18], the use of evolu-
tionary multi-objective algorithms for monotone submodular functions has been
investigated and it has been shown that they achieve the same approximation
guarantees as the greedy algorithms but perform much better in practice. In
addition, different studies on problems with dynamically changing constraints
have been carried out in the chance constrained [2] and deterministic constrained
setting [23,24].

Finally, chance constrained problems have been further investigated through
runtime analysis for special instances of the knapsack problem [19,27]. This
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includes a study on very specific instances showing when local optima arise [19]
and a study on groups of items whose stochastic uniform weights are correlated
with each other [27].

All previously mentioned studies concentrated on stochastic weights and how
algorithms can deal with the chance constraints with respect to the weight bound
of the knapsack problem. In [16], a version of the knapsack problem stochastic
profits and deterministic weights has been considered where the goal is to maxi-
mize the probability that the profit meets a certain threshold value. In contrast to
this, we will maximize the profit under the condition that it is achieved with high
probability. We will provide the first study on evolutionary algorithms for giving
guarantees when maximizing stochastic profits, a topic that is well motivated by
the beforehand mentioned mine planning application but to our knowledge not
studied in the literature before.

The paper is structured as follows. In Sect. 2, we introduce the problem for-
mulation and tail bounds that will be used to construct fitness functions for
dealing with stochastic profit. In Sect. 3, we derive fitness functions that are
able to maximize the profit for which we can give guarantees. Section 4 intro-
duces evolutionary algorithms for the problem and we report on our experimental
investigations in Sect. 5. We finally finish with some conclusions.

2 Problem Definition

In this section, we formally introduce the problem and tail inequalities for deal-
ing with stochastic profits that will later be used to design fitness functions. We
consider a stochastic version of the classical NP-hard knapsack problem. In the
classical problem, there are given n items 1, . . . , n where each item has a profit
pi and a weight wi, the goal is to maximize the profit p(x) =

∑n
i=1 pixi under

the condition that w(x) =
∑n

i=1 wixi ≤ B for a given weight bound B holds.
The classical knapsack problem has been well studied in the literature. We con-
sider the following stochastic version, where the profits pi are stochastic and the
weights are still deterministic. Our goal is to maximize the profit P for which
we can guarantee that there is only a small probability αp of dropping below P .
Formally, we tackle the following problem:

max P (1)
s.t. Pr(p(x) < P ) ≤ αp (2)

w(x) ≤ B (3)
x ∈ {0, 1}n (4)

Equation 2 is a chance constraint on the profit and the main goal of this paper
is to find a solution x that maximize the value of P such that the probability
of getting a profit lower than P is at most αp. We denote by μ(x) the expected
profit and by v(x) the variance of the profit throughout this paper.
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2.1 Concentration Bounds

In order to establish guarantees for the stochastic knapsack problem we make
use of well-known tail inequalities that limit the deviation from the expected
profit of a solution.

For a solution X with expected value E[X] and variance V ar[X] we can use
the lower tail of the following Chebyshev-Cantelli inequality.

Theorem 1 (One-sided Chebyshev’s/Cantelli’s inequality). Let X be a
random variable with expected value E[X] and variance Var[X] > 0. Then, for
all λ > 0,

Pr[X ≥ E[X] − λ] ≥ 1 − Var[X]
Var[X] + λ2

(5)

We will refer to this inequality as Chebyshev’s inequality in the following.
Chebyshev’s inequality only requires the expected value and variance of a solu-
tion, but no additional requirements such as the independence of the random
variables.

We use the additive Hoeffding bound given in Theorem 1.10.9 of [7] for the
case where the weights are independently chosen within given intervals.

Theorem 2 (Hoeffding bound). Let X1, . . . , Xn be independent random
variables. Assume that each Xi takes values in a real interval [ai, bi] of length
ci := bi − ai. Let X =

∑n
i=1 Xi. Then for all λ > 0,

Pr(X ≥ E[X] + λ) ≤ e−2λ2/(
∑n

i=1 c2i ) (6)

Pr(X ≤ E[X] − λ) ≤ e−2λ2/(
∑n

i=1 c2i ) (7)

3 Fitness Functions for Profit Guarantees

The main task when dealing with the setting of chance constraint profits is to
come up with fitness functions that take the uncertainty into account.

In this section, we introduce different fitness functions that can be used in
an evolutionary algorithm to compute solutions that maximize the profit under
the uncertainty constraint. We consider the search space {0, 1}n and for a given
search point x ∈ {0, 1}n, item i chosen iff xi = 1 holds.

The fitness of a search point x ∈ {0, 1}n is given by

f(x) = (u(x), p̂(x))

where u(x) = max{w(x) − B, 0} is the amount of constraint violation of the
bound B by the weight that should be minimized and p̂(x) is the discounted
profit of solution x that should be maximized. We optimize f with respect to
lexicographic order and have

f(x) ≥ f(y)
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iff
(u(x) < u(y)) ∨ ((u(x) = u(y)) ∧ (p̂(x) ≥ p̂(y)).

This implies a standard penalty approach where the weight w(x) is reduced
until it meets the constraint bound B, and the profit p̂(x) is maximized among
all feasible solutions.

The key part if to develop formulations for p̂ that take into account the
stochastic part of the profits to make the formulations suitable for our chance
constrained setting. Therefore, we will develop profit functions that reflect dif-
ferent stochastic settings in the following.

3.1 Chebyshev’s Inequality

We give a formulation for p̂ that can be applied in quite general settings, thereby
providing only a lower bound on the value P for which a solution x still meets
the profit chance constraint.

We assume that for a given solution only the expected value μ(x) and the
variance v(x) are known. The following lemma gives a condition for meeting the
chance constraint based on Theorem 1.

Lemma 1. Let x be a solution with expected profit μ(x) and variance v(x). If

μ(x) − P ≥
√

((1 − αp)/αp) · v(x) then Pr(p(x) < P ) ≤ αp.

Proof. We have

Pr(p(x) ≥ P ) = Pr(p(x) ≥ μ(x) − (μ(x) − P )) ≥ 1 − v(x)
v(x) + (μ(x) − P )2

The chance constraint is met if

1 − v(x)
v(x) + (μ(x) − P )2

≥ 1 − αp

⇐⇒ αp ≥ v(x)
v(x) + (μ(x) − P )2

⇐⇒ αp · (v(x) + (μ(x) − P )2) ≥ v(x)
⇐⇒ αp · v(x) + αp · (μ(x) − P )2 ≥ v(x)
⇐⇒ αp(μ(x) − P )2 ≥ (1 − αp)v(x)
⇐⇒ (μ(x) − P )2 ≥ ((1 − αp)/αp) · v(x)

⇐= μ(x) − P ≥
√

(1 − αp)/αp · v(x)
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Given the last expression, P is maximal for

P = μ(x) −
√

((1 − αp)/αp) · v(x).

We use the following profit function based on Chebyshev’s inequality:

p̂Cheb(x) = μ(x) −
√

(1 − αp)/αp ·
√

v(x) (8)

3.2 Hoeffding Bound

We now assume that each element i takes on a profit pi ∈ [μi − δp, μi + δp]
independently of the other items. Let μ(x) =

∑
μixi. We have p(x) = μ(x) −

δp|x|1 + p′(x) where p′(x) is the sum of |x|1 independent random variables in
[0, 2δp]. We have E[p′(x)] = |x|1δp and

Pr(p(x) ≤ μ(x) − λ) = Pr(p′(x) ≤ |x|1δp − λ) ≤ e−2λ2/(4δ2
p|x|1) = e−λ2/(2δ2

p|x|1)

based on Theorem 2. The chance constraint is met if

e−λ2/(2δ2
p|x|1) ≤ αp

⇐⇒ −λ2/(2δ2p|x|1) ≤ ln(αp)

⇐⇒ λ2 ≥ ln(1/αp) · (2δ2p|x|1)
⇐⇒ λ ≥ δp ·

√
ln(1/αp) · 2|x|1

Therefore, we get the following profit function based on the additive Hoeffd-
ing bound from Theorem 2:

p̂Hoef (x) = μ(x) − δp ·
√

ln(1/αp) · 2|x|1 (9)

3.3 Comparison of Chebyshev and Hoeffding Based Fitness
Functions

The fitness functions p̂Hoef and p̂Cheb give a conservative lower bound on the
value of P to be maximized. We now consider the setting investigated for the
Hoeffding bound and compare it to the use of Chebyshev’s inequality. If each
element is chosen independently and uniformly at random from an interval of
length 2δp as done in Sect. 3.2, then we have v(x) = |x|1 · δ2p/3. Based on this we
can establish a condition on αp which shows when p̂Hoef (x) ≤ p̂Cheb(x) holds.

We have

p̂Hoef (x) ≥ p̂Cheb(x)

⇐⇒ √
ln(1/αp) · 2 · |x|1 ≤

√
(1−αp)|x|1

3αp

⇐⇒ ln(1/αp) · 2 · |x|1 ≤ (1−αp)|x|1
3αp

⇐⇒ ln(1/αp) · αp/(1 − αp) ≤ 1/6
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Algorithm 1: (1+1) EA
1: Choose x ∈ {0, 1}n to be a decision vector.
2: while stopping criterion not met do
3: y ← flip each bit of x independently with

probability of 1
n
;

4: if f(y) ≥ f(x) then
5: x ← y ;
6: end if
7: end while

Note that the last inequality depends only on αp but not on δp or |x|1.
We will use values of αp ∈ {0.1, 0.01, 0.001} in our experiments and have

ln(1/αp) · αp/(1 − αp) > 1/6 for αp = 0.1 and ln(1/αp) · αp/(1 − αp) < 1/6
for αp = 0.01, 0.001. This means that the fitness function based on Chebyshev’s
inequality is preferable to use for αp = 0.1 as it gives a better (tighter) value for
any solution x and the fitness function based on Hoeffding bounds is preferable
for αp = 0.01, 0.001. Dependent on the given instance, it might still be useful
to use the less tighter fitness function as the fitness functions impose different
fitness landscapes.

4 Evolutionary Algorithms

We examine the performance of the (1+1) EA, the (1+1) EA with heavy-tail
mutation and the (μ+1) EA. The (μ+1) EA uses a specific crossover operator
for the optimization of the chance-constrained knapsack problem with stochas-
tic profits together with heavy-tailed mutation. All algorithms use the fitness
function f introduced in Sect. 3 and we will examine different choices of p̂ in our
experimental investigations.

4.1 (1+1) EA

We consider a simple evolutionary algorithm called the (1+1) EA that has been
extensively studied in the area of runtime analysis. The approach is given in
Algorithm 1. The (1+1) EA starts with an initial solution x ∈ {0, 1}n chosen
uniformly at random. It generates in each iteration a new candidate solution by
standard bit mutation, i.e. by flipping each bit of the current solution with a
probability of 1/n, where n is the length of the bit string. In the selection step, the
algorithm accept the offspring if it is at least as good as the parent. The process is
iterated until a given stopping criterion is fulfilled. While the (1+1) EA is a very
simple algorithm, it produces good results in many cases. Furthermore, it has
the ability to sample new solutions globally as each bit is flipped independently
with probability 1/n. In order to overcome large inferior neighborhoods larger
mutation rates might be beneficial. Allowing larger mutation rates from time to
time is the idea of heavy tail mutations.
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Algorithm 2: The heavy-tail mutation operator
Input: Individual x = (x1, . . . , xn) ∈ {0, 1}n and value β;
1: Choose θ ∈ [1, .., n/2] randomly according to Dβ

n/2;
2: for i = 1 to n do
3: if rand([0, 1]) ≤ θ/n then
4: yi ← 1 − xi;
5: else
6: yi ← xi;
7: end if
8: end for
9: return y = (y1, . . . , yn);

4.2 Heavy Tail Mutations

We also investigate the (1+1) EA with heavy tail mutation instead of stan-
dard bit mutation. In each operation of the heavy tail mutation operator (see
Algorithm 9, first a parameter θ ∈ [1..n/2] is chosen according to the discrete
power law distribution Dβ

n/2. Afterwards, each bit n is flipped with probability
θ/n. Based on the investigations in [9], we use β = 1.5 for our experimental
investigations.

The heavy-tail mutation operator allows to flip significantly more bits in
some mutation steps than the standard bit mutation. The use of heavy tail
mutations has been shown to be provably effective on the OneMax and Jump
benchmark problems in theoretical investigations [1,9]. Moreover, in [26] has
been shown in that the use of heavy tail mutation effective improves performance
of single-objective and multi-objective evolutionary algorithms for the weight
chance constrained knapsack problem. For details, on the discrete power law
distribution and the heavy tail operator, we refer the reader to [9].

4.3 Population-Based Evolutionary Algorithm

We also consider the population-based (μ + 1)-EA shown in Algorithm 3. The
algorithm produces in each iteration an offspring by crossover and mutation with
probability pc and by mutation only with probability 1 − pc. We use pc = 0.8
for our experimental investigations. The algorithm makes use of the specific
crossover operator shown in Algorithm 4 and heavy tail mutation. The crossover
operator chooses two different individuals x and y from the population P and
produces an offspring z. All bit positions where x and y are the same are trans-
ferred to z. Positions i where xi and yi are different form the set I. They are
treated in a greedy way according to the discounted expected value to weight
ratio. Setting pi = μi − u(z, i) discounts the expected profit by an uncertainty
value (see Line 3 in Algorithm 4). This uncertain value is based on the solution
z and the impact if element i is added to z.

There are different ways of doing this. In our experiments, where the profits
of the elements are chosen independently and uniformly at random, we use the
calculation based on Hoeffding bounds and set
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Algorithm 3: (μ + 1) EA
1: Randomly generate µ initial solutions as the initial population P ;
2: while stopping criterion not meet do

3: Let x and y be two different individual from P chosen uniformly at random;

4: if rand([0, 1]) ≤ pc then
5: apply the discounted greedy uniform crossover operator to x and y to produce

an offspring z.

6: else
7: Choose one individual x from P uniformly at random and let z be a copy of x.

8: end if

9: apply the heavy-tail mutation operator to z;
10: if f(z) ≥ f(x) then
11: P ← (P \ {x}) ∪ {z};
12: else
13: if f(z) ≥ f(y) then
14: P ← (P \ {y}) ∪ {z};

15: end if
16: end if

17: end while

p′
i = μi − δp ·

(√
ln(1/αp) · 2(|z|1 + 1) −

√
ln(1/αp) · 2|z|1

)

.

The expected profit μi is therefore discounted with the additional uncer-
tainty that would be added according to the Hoeffding bound when adding an
additional element to z. Once, the discounted values p′

i, the elements are sorted
according to p′

i/wi. The final steps tries the elements of I in sorted order and
adds element i ∈ I if it would not violate the weight constraint.

5 Experimental Investigation

In this section, we investigate the (1+1) EA and the (1+1) EA with heavy-
tailed mutation on several benchmarks with chance constraints and compare
them to the (μ + 1) EA algorithm with heavy-tailed mutation and new crossover
operator.

5.1 Experimental Setup

Our goal is to study different chance constraint settings in terms of the uncer-
tainty level δp, and the probability bound αp. We consider different well-known
benchmarks from [12,21] in their profit chance constrained versions. We con-
sider two types of instances, uncorrelated and bounded strong correlated ones,
with n = 100, 300, 500 items. For each benchmark, we study the performance of
(1+1) EA, (1+1) EA with heavy-tailed mutation and (μ + 1) EA with value of
μ = 10. We consider all combinations of αp = 0.1, 0.01, 0.001, and δp = 25, 50
for the experimental investigations of the algorithms. We allow 1 000 000 fitness
evaluations for each of these problem parameter combinations. For each tested
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Algorithm 4: Discounted Greedy Uniform Crossover
Input: Individuals x = (x1, . . . , xn) and y = (y1, . . . , yn);
1: Create z = (z1, . . . , zn) by setting zi ← xi iff xi = yi and zi ← 0 iff xi! = yi;
2: Let I = {i ∈ {1, . . . , n} | xi! = yi};
3: Set p′

i = μi − u(z, i) for all i ∈ I;
4: Sort the items i ∈ I in decreasing order with respect to p′

i/wi ratio;
5: for each i ∈ I in sorted order do
6: if w(z) + wi ≤ B then
7: zi ← 1;
8: end if
9: end for

10: return z = (z1, . . . , zn);

instance, we carry out 30 independent runs and report the average results, stan-
dard deviation and statistical test. In order to measure the statistical validity of
our results, we use the Kruskal-Wallis test with 95% confidence. We apply the
Bonferroni post-hoc statistical correction, which is used for multiple comparison
of a control algorithm, to two or more algorithms [6]. X(+) is equivalent to the
statement that the algorithm in the column outperformed algorithm X. X(−) is
equivalent to the statement that X outperformed the algorithm given in the col-
umn. If algorithm X∗ does appear, then no significant difference was determined
between the algorithms.

6 Experimental Results

We consider now the results for the (1+1) EA, the (1+1) EA with heavy-tailed
mutation and the (μ + 1) EA with heavy-tailed mutation and specific crossover
algorithm based on Chebyshev’s inequality and Hoeffding bounds for the bench-
mark set.

We first consider the optimization result obtained by the above mentioned
algorithms using Chebyshev’s inequality for the combinations of αp and δp.
The experimental results are shown in Table 1. The results show that the (1
+ 1) EA with heavy-tailed mutation is able to achieve higher average results
for the instances with 100, 300, 500 items for type bounded strongly correlated
in most of the cases for all αp and δp combinations. It can be observed that
for the instance with 100 uncorrelated items the (1 + 1) EA with heavy-tailed
mutation outperforms all algorithms for αp = 0.1 and δp = 50 and for αp = 0.01
δp = 25, 50, respectively. However, the (μ+1) EA can improve on the optimiza-
tion result for small αp and high δp values, i.e. αp = 0.001, δp = 50.

It can be observed that the (μ + 1) EA obtains the highest mean value for
the instance with 300 and 500 items for the uncorrelated type. Furthermore, the
statistical tests show that for all combinations of αp and δp the (μ + 1) EA
significantly outperforms the (1 + 1) EA and (1 + 1) EA with heavy-tailed
mutation. For example, for the instance with 300, 500 items uncorrelated and
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Table 1. Experimental results for the Chebyshev based function p̂Cheb.

(1+1) EA (1+1) EA-HT (μ+1) EA

B αp δp p̂Cheb std stat p̂Cheb std stat p̂Cheb std stat

uncorr 100 2407 0.1 25 11073.5863 36.336192 2(∗), 3(∗) 11069.0420 46.285605 1(∗), 3(∗) 11057.4420 59.495722 1(∗), 2(∗)

50 10863.1496 85.210231 2(∗), 3(∗) 10889.4840 37.175095 1(∗), 3(∗) 10883.7163 53.635972 1(∗), 2(∗)

0.01 25 10641.9089 63.402329 2(∗), 3(∗) 10664.5974 29.489838 1(∗), 3(∗) 10655.7251 43.869265 1(∗), 2(∗)

50 10054.6427 49.184220 2(∗), 3(∗) 10066.2854 36.689426 1(∗), 3(∗) 10064.8734 39.556767 1(∗), 2(∗)

0.001 25 9368.33053 46.894877 2(∗), 3(∗) 9368.2483 34.904933 1(∗), 3(∗) 9365.5257 40.458098 1(∗), 2(∗)

50 7475.44948 50.681386 2(∗), 3(∗) 7490.6387 27.819516 1(∗), 3(∗) 7497.5054 14.098629 1(∗), 2(∗)

strong 100 4187 0.1 25 8638.0428 68.740095 2(−), 3(−) 8698.2592 64.435352 1(+), 3(∗) 8707.9271 49.633473 1(+), 2(∗)

50 8441.9311 80.335771 2(−), 3(−) 8483.1151 45.284814 1(+), 3(∗) 8481.0022 55.979520 1(+), 2(∗)

0.01 25 8214.8029 56.705379 2(−), 3(−) 8230.9642 42.084563 1(+), 3(∗) 8210.1448 55.148757 1(+), 2(∗)

50 7512.3033 71.115520 2(−), 3(−) 7563.5495 37.758812 1(+), 3(∗) 7554.7382 53.030592 1(+), 2(∗)

0.001 25 6771.7849 58.314395 2(−), 3(−) 6797.0376 42.944371 1(+), 3(∗) 6793.0387 43.492135 1(+), 2(∗)

50 4832.2084 88.887119 2(−), 3(−) 4929.1483 52.858392 1(+), 3(∗) 4902.0006 44.976733 1(+), 2(∗)

uncorr 300 6853 0.1 25 34150.7224 167.458986 2(∗), 3(−) 34218.9806 164.65331 1(∗), 3(∗) 34319.8500 177.580430 1(+), 2(∗)

50 33749.8625 202.704754 2(∗), 3(−) 33827.9115 158.675094 1(∗), 3(∗) 33992.7669 157.059148 1(+), 2(∗)

0.01 25 33298.9369 215.463952 2(∗), 3(−) 33482.2230 186.361325 1(∗), 3(∗) 33584.5679 129.781221 1(+), 2(∗)

50 32326.5299 203.976688 2(∗), 3(−) 32332.5785 190.826414 1(∗), 3(∗) 32504.2005 178.815508 1(+), 2(∗)

0.001 25 30989.2470 242.861056 2(∗), 3(−) 31150.1989 187.329891 1(∗), 3(∗) 31281.7283 181.280416 1(+), 2(∗)

50 27868.2812 180.822780 2(∗), 3(−) 27923.1672 148.146917 1(∗), 3(∗) 28024.3756 144.125407 1(+), 2(∗)

strong 300 13821 0.1 25 24795.3122 143.413609 2(−), 3(∗) 24939.0678 94.941101 1(+), 3(∗) 24850.2784 135.783162 1(∗), 2(∗)

50 24525.1204 161.185000 2(−), 3(∗) 24585.2993 112.692219 1(+), 3(∗) 24589.7315 125.724850 1(∗), 2(∗)

0.01 25 24047.9634 147.055910 2(−), 3(∗) 24138.6765 103.635233 1(+), 3(∗) 24121.8843 132.985469 1(∗), 2(∗)

50 22982.7691 169.377913 2(−), 3(∗) 23088.9710 81.229946 1(+), 3(∗) 23057.3537 160.481591 1(∗), 2(∗)

0.001 25 21689.9288 168.324844 2(−), 3(∗) 21824.5028 77.615607 1(+), 3(∗) 21786.4256 126.077269 1(∗), 2(∗)

50 18445.0866 125.747992 2(−), 3(∗) 18545.0084 98.512038 1(+), 3(∗) 18543.0067 96.526569 1(∗), 2(∗)

uncorr 500 11243 0.1 25 58309.8801 266.319166 2(−), 3(−) 58454.4069 295.624416 1(+), 3(−) 58708.9818 157.245339 1(+), 2(+)

50 57783.7554 316.155254 2(−), 3(−) 57927.2459 299.811063 1(+), 3(−) 58267.9737 204.854052 1(+), 2(+)

0.01 25 57262.7885 330.683000 2(−), 3(−) 57538.1166 260.869372 1(+), 3(−) 57770.6524 178.217884 1(+), 2(+)

50 55916.4463 260.392742 2(−), 3(−) 56086.6031 224.647105 1(+), 3(−) 56321.8437 197.704397 1(+), 2(+)

0.001 25 54149.7603 364.823822 2(−), 3(−) 54406.8517 249.217045 1(+), 3(−) 54806.6815 170.082092 1(+), 2(+)

50 50124.9811 265.408552 2(−), 3(−) 50312.3993 286.632525 1(+), 3(−) 50672.0950 197.712768 1(+), 2(+)

strong 500 22223 0.1 25 41104.1611 321.324820 2(∗), 3(∗) 41523.8952 222.691441 1(∗), 3(∗) 41458.8477 238.463764 1(∗), 2(∗)

50 40834.8213 243.308935 2(∗), 3(∗) 41067.8559 229.706142 1(∗), 3(∗) 41043.6296 173.586544 1(∗), 2(∗)

0.01 25 40248.7094 289.114488 2(∗), 3(∗) 40567.8724 133.387473 1(∗), 3(∗) 40448.5671 206.754226 1(∗), 2(∗)

50 38831.0336 298.888606 2(∗), 3(∗) 39123.3879 120.110352 1(∗), 3(∗) 38984.3118 169.701352 1(∗), 2(∗)

0.001 25 37201.8768 273.119842 2(∗), 3(∗) 37490.7767 118.382846 1(∗), 3(∗) 37395.7375 164.601365 1(∗), 2(∗)

50 32880.2003 272.672330 2(∗), 3(∗) 33013.4535 172.524052 1(∗), 3(∗) 32951.6884 206.900731 1(∗), 2(∗)

for 100 items bounded strongly correlated the statistical tests show that the
(μ + 1) EA and (1 + 1) EA with heavy-tailed mutation outperforms the (1 +
1) EA. For the other settings there is no statistical significant difference in terms
of the results between all algorithms.

Table 2 shows the results obtained by the above mentioned algorithms using
Hoeffding bounds for the combinations of αp and δp and statistical tests. The
results show that the (1+1) EA with heavy-tailed mutation obtains the highest
mean values compared to the results obtained by (1+1) EA and (μ + 1) EA
for each setting for the instance with 100 items for both types, uncorrelated and
bounded strongly correlated. Similar to the previous investigation in the case for
the instances with 300 items, the (1+1) EA with heavy-tailed mutation obtains
the highest mean values compared to the results obtained by other algorithms in
most of the cases. However, the solutions obtained by (μ+1) EA are significantly
better performance than in the case for αp = 0.1, 0.001, δp = 25.

The use of the heavy-tailed mutation when compared to the use of stan-
dard bit mutation in the (1+1) EA achieves a better performance for all cases.
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Table 2. Experimental results for the Hoeffding based function p̂Hoef .

(1+1) EA (1+1) EA-HT (μ+1) EA

B αp δp p̂Hoef std stat p̂Hoef std stat p̂Hoef std stat

uncorr 100 2407 0.1 25 10948.7292 90.633230 2(−), 3(∗) 11016.8190 49.768932 1(+), 3(+) 10981.3880 37.569308 1(∗), 2(−)

50 10707.1094 43.869094 2(−), 3(∗) 10793.1175 58.150646 1(+), 3(+) 10708.6094 44.384035 1(∗), 2(−)

0.01 25 10836.0906 91.332983 2(−), 3(∗) 10928.3054 45.464936 1(+), 3(+) 10866.9831 45.408500 1(∗), 2(−)

50 10482.6216 46.444510 2(−), 3(∗) 10611.1895 69.341044 1(+), 3(+) 10477.2328 47.065426 1(∗), 2(−)

0.001 25 10765.3289 68.565293 2(−), 3(∗) 10862.7124 49.091526 1(+), 3(+) 10784.7286 38.187390 1(∗), 2(−)

50 10263.9426 90.504901 2(−), 3(∗) 10487.5621 32.625499 1(+), 3(+) 10309.8572 44.811326 1(∗), 2(−)

strong 100 4187 0.1 25 8553.1744 74.046187 2(−), 3(∗) 8640.05156 39.413105 1(+), 3(+) 8588.4894 53.878268 1(∗), 2(−)

50 8264.8129 63.309264 2(−), 3(∗) 8398.4354 46.013234 1(+), 3(+) 8273.9670 41.403505 1(∗), 2(−)

0.01 25 8422.9258 70.464985 2(−), 3(∗) 8540.2095 63.072560 1(+), 3(+) 8447.8489 59.841707 1(∗), 2(−)

50 7996.0193 65.822419 2(−), 3(∗) 8181.2980 45.667034 1(+), 3(+) 8013.1724 56.445427 1(∗), 2(−)

0.001 25 8338.5159 57.880350 2(−), 3(∗) 8460.7513 53.402755 1(+), 3(+) 8362.9405 51.607219 1(∗), 2(−)

50 7794.1245 80.411946 2(−), 3(∗) 8017.8843 53.266120 1(+), 3(+) 7833.5575 37.293481 1(∗), 2(−)

uncorr 300 6853 0.1 25 33831.9693 181.485453 2(−), 3(−) 34118.7631 200.095911 1(+), 3(∗) 34129.8891 172.788856 1(+), 2(∗)

50 33380.4952 157.014552 2(−), 3(−) 33715.2964 199.074378 1(+), 3(∗) 33662.2668 124.206823 1(+), 2(∗)

0.01 25 33655.5737 234.136500 2(−), 3(−) 34014.3456 200.488072 1(+), 3(∗) 33962.8643 161.560953 1(+), 2(∗)

50 32933.5174 291.623690 2(−), 3(−) 33327.8984 235.915481 1(+), 3(∗) 33277.4015 142.387738 1(+), 2(∗)

0.001 25 33515.7445 219.707660 2(−), 3(−) 33806.1572 184.532069 1(+), 3(∗) 33835.4528 149.327823 1(+), 2(∗)

50 32706.4466 176.599463 2(−), 3(−) 33112.7494 177.218747 1(+), 3(∗) 32940.4397 173.836538 1(+), 2(∗)

strong 300 13821 0.1 25 24602.1254 171.596469 2(−), 3(−) 24848.3209 100.078545 1(+), 3(+) 24734.7210 127.268428 1(+), 2(−)

50 24184.8938 125.755762 2(−), 3(−) 24457.7279 118.679623 1(+), 3(+) 24205.9660 116.049342 1(+), 2(−)

0.01 25 24476.1412 159.274566 2(−), 3(−) 24638.0751 105.088783 1(+), 3(+) 24538.4199 101.959196 1(+), 2(−)

50 23653.3561 225.087307 2(−), 3(−) 24060.0806 87.242862 1(+), 3(+) 23830.8655 85.829604 1(+), 2(−)

0.001 25 24256.4468 173.293324 2(−), 3(−) 24558.9506 105.253206 1(+), 3(+) 24345.4340 144.094192 1(+), 2(−)

50 23377.6774 143.350899 2(−), 3(−) 23843.7258 114.231223 1(+), 3(+) 23520.1166 112.403711 1(+), 2(−)

uncorr 500 11243 0.1 25 57995.2668 285.959899 2(−), 3(−) 58286.1443 253.880622 1(+), 3(−) 58527.7062 179.624520 1(+), 2(+)

50 57331.7069 319.089163 2(−), 3(−) 57825.9426 227.649351 1(+), 3(−) 57899.9614 167.585846 1(+), 2(+)

0.01 25 57757.1719 290.254639 2(−), 3(−) 58023.1930 277.702516 1(+), 3(−) 58224.2474 211.715398 1(+), 2(+)

50 56787.0897 411.706381 2(−), 3(−) 57367.9869 206.916491 1(+), 3(+) 57309.9927 227.397029 1(+), 2(−)

0.001 25 57519.6613 379.930530 2(−), 3(−) 57910.4812 250.540248 1(+), 3(−) 58052.4481 182.866780 1(+), 2(+)

50 56446.5408 273.663433 2(−), 3(−) 57018.3566 253.684943 1(+), 3(+) 56942.4016 183.464200 1(+), 2(−)

strong 500 22223 0.1 25 41060.1634 306.686391 2(−), 3(∗) 41397.7895 146.844521 1(+), 3(+) 41186.7266 213.577571 1(∗), 2(−)

50 40244.7545 272.646652 2(−), 3(∗) 40897.9183 231.639926 1(+), 3(+) 40543.1279 221.615657 1(∗), 2(−)

0.01 25 40800.7084 271.459688 2(−), 3(∗) 41204.2676 179.999423 1(+), 3(+) 40967.2373 229.232904 1(∗), 2(−)

50 39839.2235 271.298804 2(−), 3(∗) 40445.3621 157.093438 1(+), 3(+) 40012.5861 189.516720 1(∗), 2(−)

0.001 25 40561.9235 348.722449 2(−), 3(∗) 41038.9246 136.670185 1(+), 3(+) 40768.4056 206.509572 1(∗), 2(−)

50 39404.7836 249.449911 2(−), 3(∗) 40087.0447 167.453651 1(+), 3(+) 39561.6572 216.629134 , 1(∗), 2(−)

Furthermore, the statistical tests show that for most combinations of αp and δp,
the (1+1) EA with heavy-tailed mutation significantly outperforms the other
algorithms. This can be due to the fact that a higher number of bits can be
flipped than in the case of standard bit mutations flipping every bit with prob-
ability 1/n.

7 Conclusions

Stochastic problems play an important role in many real-world applications.
Based on real-world problems where profits in uncertain environments should be
guaranteed with a good probability, we introduced the knapsack problem with
chance constrained profits. We presented fitness functions for different stochastic
settings that allow to maximize the profit value P such that the probability of
obtaining a profit less than P is upper bounded by αp. In our experimental
study, we examined different types of evolutionary algorithms and compared
their performance on stochastic settings for classical knapsack benchmarks.
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Abstract. Non-elitist evolutionary algorithms (EAs) can be beneficial
in optimisation of noisy and or rugged fitness landscapes. However,
this benefit can only be realised if the parameters of the non-elitist
EAs are carefully adjusted in accordance with the fitness function. Self-
adaptation is a promising parameter adaptation method that encodes
and evolves parameters in the chromosome. Existing self-adaptive EAs
often sort the population by first preferring higher fitness and then the
mutation rate. A previous study (Case and Lehre, 2020) proved that self-
adaptation can be effective in certain discrete problems with unknown
structure. However, the population can be trapped on local optima,
because individuals in “dense” fitness valleys which survive high muta-
tion rates and individuals on “sparse” local optima which only survive
with lower mutation rates cannot be simultaneously preserved.

Recently, the Multi-Objective Self-Adaptive EA (MOSA-EA) (Lehre
and Qin, 2022) was proposed to optimise single-objective functions,
treating parameter control via multi-objectivisation. The algorithm max-
imises the fitness and the mutation rates simultaneously, allowing indi-
viduals in “dense” fitness valleys and on “sparse” local optima to co-
exist on a non-dominated Pareto front. The previous study proved its
efficiency in escaping local optima with unknown sparsity, where some
fixed mutation rate EAs become trapped. However, the performance is
unknown in other settings.

This paper continues the study of MOSA-EA through an empirical
study. We find that the MOSA-EA has a comparable performance on
unimodal functions, and outperforms eleven randomised search heuris-
tics considered on a bi-modal function with “sparse” local optima. For
NP-hard problems, the MOSA-EA increasingly outperforms other algo-
rithms for harder NK-Landscape and k-Sat instances. Notably, the
MOSA-EA outperforms a problem-specific MaxSat solver on several
hard k-Sat instances. Finally, we show that the MOSA-EA self-adapts
the mutation rate to the noise level in noisy optimisation. The results
suggest that self-adaptation via multi-objectivisation can be adopted to
control parameters in non-elitist EAs.
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1 Introduction

Non-elitism is widely adopted in continuous EAs, and has recently shown to
be promising also for combinatorial optimisation. Several runtime analyses have
shown that non-elitist EAs can escape certain local optima efficiently [9,10] and
can be robust to noise [11,32]. There exist a few theoretical results to investigate
how non-elitist EAs can cope with local optima [9,10,14]. SparseLocalOpt
[10] is a tunable problem class that describes a kind of fitness landscapes with
sparse deceptive regions (local optima) and dense fitness valleys. Informally,
search points in a dense fitness valley have many Hamming neighbours in the fit-
ness valley, while search points in sparse deceptive regions have few neighbours
within the deceptive region. Non-elitist EAs with non-linear selection mecha-
nisms are proven to cope with sparse local optima [9,10]. In non-linear selection
mechanisms [30,34], the selection probability is decreasing with respect to the
rank of the individual, e.g., tournament and linear ranking selection [22]. The
fitter individual has a higher probability to be selected, but worse individuals
still have some chance to be selected. Thus, while individuals on sparse local
optimum have higher chance of being selected, fewer of their offspring stay on
the peak under a sufficiently high mutation rate. In contrast, even if individuals
in dense fitness valley individuals have less chance of being selected, a larger
fraction of their offspring stay within the fitness valley. However, it is critical to
set the “right” mutation rate, which should be sufficiently high but below the
error threshold. Non-elitist EAs with mutation rate above the error threshold
will “fail” to find optima in expected polynomial time, assuming the number of
global optima is polynomially bounded [29]. Finding the appropriate mutation
rate which allows the algorithm to escape not too sparse local optima is non-
trivial. In noisy environments, non-elitist EAs using the “right” mutation rate
beat the current state of the art results for elitist EAs [32] on several settings of
problems and noise models. However, the “right” mutation rate depends on the
noise level, which is usually unknown in real-world optimisation.

Self-adaptation is a promising method to automate parameter configuration
[4,36,41]. It encodes the parameters in the chromosome of each individual, thus
the parameters are subject to variation and selection. Some self-adaptive EAs are
proven efficient on certain problems, e.g., the OneMax function [17], the simple
artificial two-peak PeakedLO function [12] and the unknown structure version
of LeadingOnes [7]. These self-adaptive EAs sort the population by preferring
higher fitness and then consider the mutation rate. They might be trapped in
sparse local optima, because individuals in dense fitness valleys which survive
high mutation rates and individuals on sparse local optima which only survive
with lower mutation rates cannot be simultaneously preserved.

Recently, a new self-adaptive EA, the multi-objective self-adaptive EA
(MOSA-EA) [33], was proposed to optimise single-objective functions, which
treats parameter control from multi-objectivisation. The algorithm maximises
the fitness and the mutation rates simultaneously, allowing individuals in dense
fitness valleys and on sparse local optima to co-exist on a non-dominated Pareto
front. The previous study showed its efficiency in escaping a local optimum with



310 X. Qin and P. K. Lehre

unknown sparsity, where some fixed mutation rate EAs including non-linear
selection EAs become trapped. However, it is unclear whether the benefit of the
MOSA-EA can also be observed for more complex problems, such as NP-hard
combinatorial optimisation problems and noisy fitness functions.

This paper continues the study of MOSA-EA through an empirical study of
its performance on selected combinatorial optimisation problems. We find that
the MOSA-EA not only has a comparable performance on unimodal functions,
e.g., OneMax and LeadingOnes, but also outperforms eleven randomised
search heuristics considered on a bi-modal function with a sparse local optimum,
i.e., Funnel. For NP-hard combinatorial optimisation problems, the MOSA-
EA increasingly outperforms other algorithms for harder NK-Landscape and
k-Sat instances. In particular, the MOSA-EA outperforms a problem-specific
MaxSat solver on some hard k-Sat instances. Finally, we demonstrate that the
MOSA-EA can self-adapt the mutation rate to the noise level in noisy optimi-
sation.

2 Multi-Objective Self-Adaptive EA (MOSA-EA)

This section introduces a general framework for self-adaptive EAs (Algorithm 1),
then defines the algorithm MOSA-EA as a special case of this framework by
specifying a self-adapting mutation rate strategy (Algorithm 2).

Algorithm 1. Framework for self-adaptive EAs [33]
Require: Fitness function f : {0, 1}n → R. Population size λ ∈ N. Sorting mechanism

Sort. Selection mechanism Psel. Self-adapting mutation rate strategy Dmut. Initial
population P0 ∈ Yλ.

1: for t in 0, 1, 2, . . . until termination condition met do
2: Sort(Pt, f)
3: for i = 1, . . . , λ do
4: Sample It(i) ∼ Psel([λ]); Set (x, χ/n) := Pt(It(i)).
5: Sample χ′ ∼ Dmut(χ).
6: Create x′ by independently flipping each bit of x with probability χ′/n.
7: Set Pt+1(i) := (x′, χ′/n).

Let f : X → R be any pseudo-Boolean function, where X = {0, 1}n is the
set of bitstrings of length n. For self-adaptation in non-elitist EAs, existing algo-
rithms [7,12,17] optimise f on an extended search space Y := X × [ε, 1/2] which
includes X and an interval of mutation rates. Algorithm 1 [33] shows a frame-
work for self-adaptive EAs. In each generation t, they first sort the population
Pt using an order that depends on the fitness and the mutation rate. To sort the
population, existing self-adaptive EAs [7,12,17] often prefer higher fitness and
then consider the mutation rate. Then, each individual in the next population
Pt+1 is produced via selection and mutation. The selection mechanism is defined
in terms of the ranks of the individuals in the sorted population. Then, the
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selected individual changes its mutation rate based on a self-adapting mutation
rate strategy and each bit is flipped with the probability of the new muta-
tion rate. For example, the fitness-first sorting mechanism in the self-adaptive
(μ, λ) EA (SA-EA) [7] ensures that a higher fitness individual is ranked strictly
higher than a lower fitness individual as illustrated in Fig. 1(a).

Different from the existing algorithms, the MOSA-EA sorts the population
by the multi-objective sorting mechanism (Alg. 3 in Appendix 1). It first applies
the strict non-dominated sorting method (Alg. 4 in Appendix 1) to divide the
population into several Pareto fronts, then sorts the population based on the
ranks of the fronts and then the fitness values. Unlike the non-dominated fronts
used in multi-objective EAs, e.g., NSGA-II [13,42], each strict non-dominated
front only contains a limited number of individuals, i.e., no pair of individuals
have the same objective values. Alg. 5 in Appendix 1 shows an alternative way
to do multi-objective sorting. Figure 1(b) [33] illustrates an example of the order
of a population after multi-objective sorting.

Fig. 1. Illustration of population sorting in (a) SA-EA and (b) MOSA-EA [33]. The
points in the same cell have the same fitness and the same mutation rate.

In this paper, we consider comma selection (Alg. 6 in Appendix 1) which
selects parents from the fittest μ individuals of the sorted population uniformly
at random. To self-adapt the mutation rate, we apply the same strategy as
in [33] (Algorithm 2), where the mutation rate is multiplied by A > 1 with
probability pinc ∈ (0, 1), otherwise it is divided by A. The range of mutation
rates is from ε > 0 to 1/2. We sample the initial mutation rate of each individual
from {εAi | i ∈ [

0,
⌊
logA( 1

2ε )
⌋]} uniformly at random, where i is an integer.

Most programming languages represent floats imprecisely, e.g., multiplying a
number by A, and then dividing by A is not guaranteed to produce the original
number. In the MOSA-EA, it is critical to use precise mutation rates to limit
the number of distinct mutation rates in the population. We therefore recom-
mend to implement the self-adaptation strategy as follows: build an indexed list
containing all mutation rates χ/n = εAi for all integers i ∈ [

0,
⌊
logA( 1

2ε )
⌋]

, and
encode the index into each individual. Then mutating the mutation rate can be
achieved by adding or subtracting 1 to the index instead of the mutation rate
multiplying A or dividing by A.
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Algorithm 2. Self-adapting mutation rate strategy [33]
Require: Parameters A > 1, ε > 0 and pinc ∈ (0, 1). Mutation parameter χ.

1: χ′ =

{
min(Aχ, εnA�logA( 1

2ε
)�) with probability pinc,

max (χ/A, εn) otherwise.

2: return χ′.

3 Parameter Settings in MOSA-EA

One of the aims of self-adaptation is to reduce the number of parameters that
must be set by the user. MOSA-EA has three parameters ε, pinc and A, in
addition to the population sizes λ and μ. We will first investigate how sensitive
the algorithm is to these parameters. Adding three new parameters to adapt
one parameter seems contradictory to the aim of self-adaptation. However, as
we will see later in this paper, these parameters need not to be tuned carefully.
We use the same parameter setting of the MOSA-EA for all experiments in this
paper to show that the MOSA-EA does not require problem-specific tuning of
the parameters.

The parameter ε is the lower bound of the mutation rate in the MOSA-EA.
In fixed mutation rate EAs, we usually set a constant mutation parameter χ.
To cover the range of all possible mutation rates χ/n, we recommend to set
the lowest mutation rate ε = c/(n ln(n)), where c is some small constant. In
this paper, we set ε = 1/(2n ln(n)). As mentioned before, A > 0 and pinc ∈
(0, 1) are two self-adapting mutation rate parameters in Algorithm 2. We use
some simple functions as a starting point to empirically analyse the effect of
setting the parameters of A and pinc. We run the MOSA-EA with different
parameters A and pinc on OneMax, LeadingOnes and Funnel (n = 100, the
definitions can be found in Sect. 4.2) which represent single-modal and multi-
modal functions. For each pair of A and pinc, we execute the algorithm 100
times, with population sizes λ = 104 ln(n) and μ = λ/8. Figures 2(a), (b) and
(c) show the medians of the runtimes of the MOSA-EA for different parameters
A and pinc on OneMax, LeadingOnes and Funnel, respectively. The maximal
number of fitness evaluations is 109.

From Figs. 2, the algorithm finds the optimum within 107 function evalua-
tions for an extensive range of parameter settings. The algorithm is slow when
A and pinc are too large. Therefore, we recommend to set pinc ∈ (0.3, 0.5) and
A ∈ (1.01, 1.5). For the remainder of the paper, we will choose pinc = 0.4
and A = 1.01. We also recommend to use a sufficiently large population size
λ = c ln(n) for some large constant c. We will state the population sizes λ and
μ later.
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Fig. 2. Median runtimes of the MOSA-EA for different parameters A and pinc on (a)
OneMax, (b) LeadingOnes and (c) Funnel over 100 independent runs (n = 100).

4 Experimental Settings and Methodology

We compare the performance of the MOSA-EA with eleven other heuristic algo-
rithms on three classical pseudo-Boolean functions and two more complex com-
binatorial optimisation problems. We also empirically study the MOSA-EA in
noisy environments. In this section, we will first introduce the other algorithms
and their parameter settings. We will then describe the definitions of bench-
marking functions and problems. We will also indicate the statistical approach
applied in the experiments.

4.1 Parameter Settings in Other Algorithms

We consider eleven other heuristic algorithms, including three single-individual
elitist algorithms, random search (RS), random local search (RLS) and
(1+1) EA, two population-based elitist algorithms, (1 + (λ, λ)) GA [15] and
FastGA [16], two estimation of distribution algorithms (EDAs), cGA [24]
and UMDA [37], two non-elitist EAs, 3-tournament EA and (μ, λ) EA,
and two self-adjusting EAs, SA-EA [7] and self-adjusting population size
(1, {F 1/sλ, λ/F}) EA (SA-(1, λ) EA) [27], and a problem-specific algorithm,
Open-WBO [35]. These heuristic algorithms are proved to be efficient in many
scenarios, e.g., in multi-modal and noisy optimisation [3,6,7,9,10,16,18,19,26,
31]. Open-WBO is a MaxSat solver that operates differently than randomised
search heuristics. It was one of the best MaxSat solvers in MaxSAT Evaluations
2014, 2015, 2016 and 2017 [2].

It is essential to set proper parameters for each algorithm for a compara-
tive study [5]. In the experiments, we use parameter recommendations from the
existing theoretical and empirical studies, which are summarised in Table 1.

Note that to investigate the effect of self-adaptation via multi-objectivisation,
the SA-EA applied the same self-adapting mutation rate strategy and initiali-
sation method as the MOSA-EA, instead of the strategy used in [7]. The only
difference between the SA-EA and the MOSA-EA in the experiments is the sort-
ing mechanism: The SA-EA uses the fitness-first sorting mechanism [7] (Alg. 7
in Appendix 1) and the MOSA-EA uses the multi-objective sorting mechanism.
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Table 1. Parameter settings of algorithms considered in this paper

Category Algorithm Parameter settings

Elitist EAs RS -

RLS -

(1+1) EA Mutation rate χ/n = 1/n

(1 + (λ, λ)) GA [15] Mutation rate p = λ/n; Crossover bias
c = 1/λ;

Population size λ = 2 ln(n) [6]

FastGA [16] β = 1.5 [16]

EDAs cGA [24] K = 7
√

n ln(n) [44]

UMDA [37] μ = λ/8

Non-Elitist EAs 3-tournament EA Mutation rate χ/n = 1.09812/n [9,10]

(μ, λ) EA Mutation rate χ/n = 2.07/n;
Population size μ = λ/8 [29,34]

Self-adjusting EAs SA-(1, λ) EA [27] Population size λinit = 1,
λmax = enF 1/s; F = 1.5, s = 1 [27]

SA-EA Population size μ = λ/8; A = 1.01,
pinc = 0.4, ε = 1/(2 ln(n))

MOSA-EA Population size μ = λ/8; A = 1.01,
pinc = 0.4, ε = 1/(2 ln(n))

MaxSat solver Open-WBO [35]a Default
aWe use version 2.1: https://github.com/sat-group/open-wbo.

4.2 Classical Functions

We first consider two well-known unimodal functions, OneMax and Leadin-
gOnes, i.e., OM(x) :=

∑n
i=1 x(i) and LO(x) :=

∑n
i=1

∏i
j=1 x(j). One would

not expect to encounter these functions in real-world optimisation. However,
they serve as a good starting point to analyse the algorithms. We cannot expect
good performance from an algorithm which performs poorly on these simple
functions. We also consider Funnel which was proposed by Dang et al. [9], It
is a bi-modal function with sparse local optima and a dense fitness valley which
belongs to the problem class SparseLocalOptα,ε [10]. The parameters u, v,
w in the Funnel function describe the sparsity of the deceptive region and the
density of the fitness valley. Dang et al. [9] proved that the (μ + λ) EA and
the (μ, λ) EA are inefficient on Funnel if v − u = Ω(n) and w − v = Ω(n),
while the 3-tournament EA with the mutation rate χ/n = 1.09812/n can find
the optimum in polynomial runtime. In the experiments, we test the Funnel
function with the parameters u = 0.5n v = 0.6n and w = 0.7n which satisfy the
restrictions above.

For each problem, we independently run each algorithm 30 times for each
problem size n from 100 to 200 with step size 10 and record the runtimes. For
fair comparison, we set sufficiently large population sizes λ = 104 ln(n) for the
MOSA-EA, the 3-tournament EA, the (μ, λ) EA, the UMDA and the SA-EA.

https://github.com/sat-group/open-wbo
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4.3 Combinatorial Optimisation Problems

We consider two NP-hard problems, the random NK-Landscape problem and
the random k-Sat problem, which feature many local optima [28,38]. We com-
pare the performance of the MOSA-EA with other popular randomised search
heuristics in a fitness evaluation budget. To further investigate the MOSA-EA,
we compare it with the problem-specific algorithm Open-WBO [35] which is a
MaxSat solver in a fixed CPU time.

For fair comparisons, we set the population sizes λ = 20000 for the MOSA-
EA, the 3-tournament EA, the (μ, λ) EA, the UMDA and the SA-EA. We also
apply Wilcoxon rank-sum tests [45] between the results of each algorithm and
the MOSA-EA.

Random NK-Landscape Problems. The NK-Landscape problem [28] can
be described as: given n, k ∈ N satisfying k ≤ n, and a set of sub-functions fi :
{0, 1}k → R for i ∈ [n], to maximise NK-Landscape(x) :=

∑n
i=1 fi (Π (x, i)) ,

where the function Π : {0, 1}n, [n] → {0, 1}k returns a bit-string containing k
right side neighbours of the i-th bit of x, i.e., xi, . . . , x(i+k−1) mod n. Typically,
each sub-function is defined by a lookup table with 2k+1 entries, each in the
interval (0, 1). The “difficulty” of instance can be varied by changing k [39].
Generally, the problem instances are considered to become harder for larger
k. We generate 100 random NK-Landscape instances with n = 100 for each
k ∈ {5, 10, 15, 20, 25} by uniformly sampling values between 0 and 1 in the lookup
table. We run each algorithm once on each instance and record the highest fitness
value achieved in the fitness evaluation budget of 108.

Random k-Sat Problems. The k-Sat problem is an optimisation problem
that aims to find an assignment in the search space {0, 1}n which maximises the
number of satisfied clauses of a given Boolean formula in conjunctive normal form
[1,8,23]. For each random k-Sat instance, each of m clauses have k literals which
are sampled uniformly at random from [n] without replacement. We first generate
100 random k-Sat instances with k = 5, n = 100 and m ∈ {100i | i ∈ [30]}.
Similarly with the NK-Landscape experiments, we run each algorithm on these
random instances and record the smallest number of unsatisfied clauses during
runs of 108 fitness function evaluations. Additionally, we run Open-WBO and
the MOSA-EA on the same machine in one hour CPU time. The MOSA-EA
is implemented in OCaml, while OpenWBO is implemented in C++, which
generally leads to faster-compiled code than OCaml.

4.4 Noisy Optimisation

We consider the one-bit noise model (q) which are widely studied [18,20,21,31,
40,43]. Let fn(x) denote the noisy fitness value. Then the one-bit noise model
(q) can be described as: given a probability q ∈ [0, 1], i.e., noise level, and a

solution x ∈ {0, 1}n, then fn(x) =

{
f(x) with probability 1 − q

f(x′) with probability q
, where x′ is

a uniformly sampled Hamming neighbour of x.
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From the previous studies [11,32], non-elitist EAs can cope with the higher-
level noise by reducing the mutation rate. However, we need to know the exact
noise level to set a proper mutation rate. Our aim with the noisy optimisation
experiments is to investigate whether the mutation rate self-adapts to the noise
level when using the multi-objective self-adaptation mechanism. Therefore, we
set the mutation rate of the (μ, λ) EA as ln(λ/μ)/(2n) instead of the value close
to the error threshold [29,34]. For a fair comparison, we set population sizes
λ = 104 ln(n) and μ = λ/16 for both the MOSA-EA and the (μ, λ) EA. The
difference between the two EAs is only the parameter control method.

We test the algorithms on LeadingOnes in the one-bit noise model with
noise levels q = {0.2, 0.6, 0.8, 0.9}. For each problem size n = 100 to 200 with
step size 10, we execute 100 independent runs for each algorithm and record
the runtimes. To track the behaviours of the MOSA-EA under different levels of
noise, we also record the mutation rate of the individual with the highest real
fitness value during the run.

5 Results and Discussion

5.1 Classical Functions

Figures 3(a), 3(b) and 3(c) show the runtimes of the MOSA-EA and nine other
heuristic algorithms on OneMax, LeadingOnes and Funnel over 30 indepen-
dent runs, respectively. Based on theoretical results [25], the expected runtimes
of the (1+1) EA are O (n log(n)) and O

(
n2

)
on OneMax and LeadingOnes,

respectively. We thus normalise the y-axis of Figs. 3(a) and (b) by n ln(n) and n2,
respectively. We also use the log-scaled y-axis for Figs. 3(a) and 3(b). The run-
time of the 3-tournament EA with a mutation rate χ/n = 1.09812/n and a pop-
ulation size c log(n) for a sufficiently large constant c on Funnel is O

(
n2 log(n)

)

[9]. We thus normalise the y-axis of Fig. 3(c) by n2 ln(n). Note that (1+1) EA,
RLS, (μ, λ) EA, cGA, FastGA, (1 + (λ, λ)) GA, SA-EA and SA-(1, λ) EA can-
not achieve the optimum of the Funnel function in 109 fitness evaluations. It is
known that no elitist black-box algorithm can optimise Funnel in polynomial
time with high probability [9,10].

Although the MOSA-EA is slower than EDAs and elitist EAs on the uni-
modal functions OneMax and LeadingOnes, it has comparable performance
with the other non-elitist EAs and the SA-EA. Recall theoretical results on
Funnel [9,10], elitist EAs and the (μ, λ) EA fail to find the optimum, while the
3-tournament EA is efficient. The results in Fig. 3 (c) are consistent with the
theoretical results. In this paper, the (μ, λ) EA, the SA-EA and the MOSA-EA
use the (μ, λ) selection. Compared with the (μ, λ) EA and the SA-EA, self-
adaptation via multi-objectivisation can cope with sparse local optima and even
achieve a better performance than the 3-tournament EA.
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Fig. 3. Runtimes of nine algorithms on the (a) OneMax, (b) LeadingOnes, (c)
Funnel (u = 0.5n, v = 0.6n, w = 0.7n) functions over 30 independent runs. The y-axis
in sub-figures (a) and (b) are log-scaled. (1+1) EA, RLS, (μ, λ) EA, cGA, FastGA,
(1 + (λ, λ)) GA, SA-EA and SA-(1, λ) EA cannot find the optimum of the Funnel
function in 109 fitness evaluations.

5.2 Combinatorial Optimisation Problems

Random NK-Landscape Problems. Figure 4 illustrates the experimen-
tal results of eleven algorithms on random NK-Landscape problems. From
Wilcoxon rank-sum tests, the highest fitness values achieved by the MOSA-EA
are statistically significantly higher than all other algorithms with significance
level α = 0.05 for all NK-Landscape with k ∈ {10, 15, 20, 25}. Furthermore, the
advantage of the MOSA-EA is more significant for the harder problem instances.

Fig. 4. The highest fitness values found in the end of runs in 108 fitness evaluations
on 100 random NK-Landscape instances with different k (n = 100).

Figure 5 illustrates the highest fitness values found during the optimisation
process on one random NK-Landscape instance (k = 20, n = 100). Note that
the non-elitist algorithms, i.e., EDAs, (μ, λ) EA, 3-tournament EA, SA-(1, λ) EA
and MOSA-EA, do not always keep the best solution found. Therefore, the
corresponding lines might fluctuate. In contrast, the elitist EAs, e.g., (1+1) EA,
increase the fitness value monotonically during the whole run.

The elitist EAs converge quickly to solutions of medium quality, then stag-
nate. In contrast, the 3-tournament EAs, the (μ, λ) EA and the MOSA-EA
improve the solution steadily. Most noticeably, the MOSA-EA improves the solu-
tion even after 107 fitness evaluations.
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Fig. 5. The median of the highest fitness values found in every 2×104 fitness evaluations
over 30 independent runs on one random NK-Landscape instance (k = 20, n = 100).
The x-axis is log-scaled.

Random k-Sat Problems. Figure 6 illustrates the medians of the smallest
number of unsatisfied clauses found in the 108 fitness evaluations budget among
eleven algorithms on 100 random k-Sat instances (k = 5, n = 100) with dif-
ferent total number of clauses m. Coja-Oghlan [8] proved that the probability
of generating a satisfiable instance drops from nearly 1 to nearly 0, if the ratio
of the number of clauses m and the problem size n is greater than a threshold,
rk−Sat = 2k ln(2) − 1

2 (1 + ln(2)) + ok(1), where ok(1) signifies a term that tends
to 0 in the limit of large k. In this case, rk−Sat is roughly 2133 if we ignore the
ok(1) term. We therefore call an instance with m ≥ 2133 hard. The MOSA-EA is
statistically significantly better than the other ten algorithms with significance
level α = 0.05 on hard instances from Wilcoxon rank-sum tests.

Fig. 6. The medians of the smallest number of unsatisfied clauses found in 108 fitness
evaluations on 100 random k-Sat instances with different total numbers of clauses m
(k = 5, n = 100).

Figure 7 illustrates the smallest number of unsatisfied clauses of the best
solution found during the optimisation process on one random k-Sat instance
(k = 5, n = 100, m = 2500). From Fig. 7, we come to similar conclusions with
the experiments on NK-Landscape (Fig. 5).

Figure 8 illustrates the medians of the smallest number of unsatisfied clauses
found in one hour CPU-time budget of Open-WBO and the MOSA-EA on 100
random k-Sat instances (k = 5, n = 200) with different total number of clauses
m. For the instances with small numbers of clauses, i.e., m ≤ 1900, Open-WBO
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Fig. 7. The smallest number of unsatisfied clauses found over 2×104 fitness evaluations
over 30 independent runs on one random k-Sat instance (k = 5, n = 100, m = 2500).
The axis are log-scaled.

Fig. 8. The smallest number of unsatisfied clauses found in one hour CPU-time on 100
random k-Sat instances with different total numbers of clauses m (k = 5, n = 100).

returns all satisfied assignments within a few minutes, while the MOSA-EA takes
up to one hour to find all satisfied assignments. However, the performance of the
MOSA-EA is statistically significantly better than Open-WBO on hard instances
in one hour of CPU time.

5.3 Noisy Optimisation

Figures 9 show the runtimes of the MOSA-EA and the (μ, λ) EA on Leadin-
gOnes in the one-bit noise model. With a fixed mutation rate χ =
ln(λ/μ)/(2n) = ln(16)/(2n) ≈ 1.386/n, the runtimes of the (μ, λ) EA could
be in O(n2) for low-level noise, while the runtimes rise sharply as problem size
growing if the noise levels are q = 0.9. Based on the theoretical results [32], we
could furthermore cope with the higher-level noise by using a lower mutation
rate.

However, the exact noise level in real-world optimisation is usually unknown.
Self-adaptation might help to configure the proper mutation rate automatically.
From Fig. 9, the MOSA-EA handles the highest levels of one-bit noise, where the
(μ, λ) EA encounters a problem. Figure 10 illustrates the relationships between
mutation rates and real fitness values of the MOSA-EA. We observe a decrease
in the mutation rate when the noise level increases. In particular, the MOSA-
EA automatically adapts the mutation rate to below 1.386/n, when using the
(μ, λ) EA close to the optimum under the highest noise level. The lower mutation
rate could be the reason for successful optimisation under noise.
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Fig. 9. Runtimes of the MOSA-EA and the (μ, λ) EA with the fixed mutation rate
χ/n = 1.386/n on LeadingOnes under one-bit noise with different noise levels q.
(λ = 104 ln(n), μ = λ/16)

Fig. 10. Real fitness and mutation parameter of the highest real fitness individual per
generation of the MOSA-EA on LeadingOnes under one-bit noise with different noise
levels q. Lines show median value of mutation parameter χ. The corresponding shadows
indicate the IQRs. The y-axis is log-scaled. (n = 100, λ = 104 ln(n), μ = λ/16)

6 Conclusion

EAs applied to noisy or multi-modal problems can benefit from non-elitism.
However, it is non-trivial to set the parameters of non-elitist EAs appropriately.
Self-adaptation via multi-objectivisation, a parameter control method, is proved
to be efficient in escaping local optima with unknown sparsity [33]. This paper
continues the study of MOSA-EA through an empirical study of its performance
on a wide range of combinatorial optimisation problems. We first empirically
study the MOSA-EA on theoretical benchmark problems. The performance of
the MOSA-EA is comparable with other non-elitist EAs on unimodal functions,
i.e., OneMax and LeadingOnes. Self-adaption via multi-objectivisation can
also help to cope with sparse local optima. For the NP-hard combinatorial opti-
misation problems, random NK-Landscape and k-Sat, the MOSA-EA is signif-
icantly better than the other nine heuristic algorithms. In particular, the MOSA-
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EA can beat a state-of-the-art MaxSat solver on some hard random k-Sat
instances in a fixed CPU time. We then experimentally analyse the MOSA-EA
in noisy environments. The results also demonstrate that self-adaptation can
adapt mutation rates to given noise levels. In conclusion, the MOSA-EA out-
performs a range of optimisation algorithms on several multi-modal and noisy
optimisation problems.
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B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 75

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

http://arxiv.org/abs/2007.03488
https://doi.org/10.1007/978-3-319-45823-6_75


322 X. Qin and P. K. Lehre

14. Doerr, B.: Does Comma Selection Help to Cope with Local Optima? Algorithmica,
January 2022

15. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

16. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 777–
784. ACM, Berlin Germany, July 2017

17. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation
rates. Algorithmica 83(4), 1012–1053 (2020). https://doi.org/10.1007/s00453-020-
00726-2

18. Droste, S.: Analysis of the (1 + 1) EA for a noisy OneMax. In: Deb, K. (ed.)
GECCO 2004. LNCS, vol. 3102, pp. 1088–1099. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24854-5 107

19. Friedrich, T., Kotzing, T., Krejca, M.S., Sutton, A.M.: The compact genetic algo-
rithm is efficient under extreme gaussian noise. IEEE Trans. Evol. Comput., 1
(2016)

20. Friedrich, T., Kötzing, T., Krejca, M.S., Sutton, A.M.: Robustness of ant colony
optimization to noise. Evol. Comput. 24(2), 237–254 (2016), publisher: MIT Press

21. Gießen, C., Kötzing, T.: Robustness of populations in stochastic environments.
Algorithmica 75(3), 462–489 (2015). https://doi.org/10.1007/s00453-015-0072-0

22. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. In: Foundations of Genetic Algorithms, vol. 1, pp. 69–93. Else-
vier (1991)

23. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary algorithms for the satisfiability
problem. Evol. Comput. 10(1), 35–50 (2002)

24. Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. IEEE Trans.
Evol. Comput. 3(4), 287–297 (1999)

25. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)

26. Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting offspring population sizes out-
perform fixed parameters on the cliff function. In: Proceedings of the 16th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp. 1–15. ACM,
Virtual Event Austria, September 2021

27. Hevia Fajardo, M.A.H., Sudholt, D.: Self-adjusting population sizes for non-elitist
evolutionary algorithms: why success rates matter. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 1151–1159. ACM, Lille France,
June 2021

28. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and
its application to maturation of the immune response. J. Theoretical Biol. 141(2),
211–245 (1989)

29. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 25

30. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation - GECCO 2011, pp.
2075. ACM Press, Dublin, Ireland (2011)

31. Lehre, P.K., Nguyen, P.T.H.: Runtime analyses of the population-based univariate
estimation of distribution algorithms on LeadingOnes. Algorithmica 83(10), 3238–
3280 (2021). https://doi.org/10.1007/s00453-021-00862-3

https://doi.org/10.1007/s00453-020-00726-2
https://doi.org/10.1007/s00453-020-00726-2
https://doi.org/10.1007/978-3-540-24854-5_107
https://doi.org/10.1007/s00453-015-0072-0
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1007/s00453-021-00862-3


Self-adaptation via Multi-objectivisation: An Empirical Study 323

32. Lehre, P.K., Qin, X.: More precise runtime analyses of non-elitist EAs in uncer-
tain environments. In: Proceedings of the Genetic and Evolutionary Computation
Conference, p. 9. ACM, Lille, France (2021)

33. Lehre, P.K., Qin, X.: Self-adaptation to multi-objectivisation: a theoretical study.
In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM
(2022)

34. Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime
of evolutionary algorithms. IEEE Trans. Evol. Comput. 16(2), 225–241 (2012)

35. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

36. Meyer-Nieberg, S.: Self-adaptation in evolution strategies. Ph.D. thesis, Dortmund
University of Technology (2007)

37. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of dis-
tributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61723-X 982

38. Ochoa, G., Chicano, F.: Local optima network analysis for MAX-SAT. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
pp. 1430–1437. ACM, Prague Czech Republic, July 2019
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Abstract. Studying complex networks has received a great deal of
attention in recent years. A relevant problem is detecting critical nodes
- nodes which, based on some measures, are more important than others
in a certain network. In this paper, we propose a new optimization prob-
lem: the critical node and edge detection problem, which combines two
well-known problems. A simple genetic algorithm is proposed to solve
this problem, with numerical experiments having shown the potential of
the method. As an application, we analyze several real-world networks
and use the introduced problem as a new network robustness measure.

Keywords: Critical nodes · Critical edges · Genetic algorithm ·
Complex networks

1 Introduction

The study of complex networks has gained increased attention in recent years
due to its applicability in different research fields (e.g. biology [1], ecology [7],
telecommunication [12]). A relevant problem in networks study is the identifica-
tion of a set of nodes, which, based on some properties, can be considered more
important than others. If this property is a network measure, the problem is
called the critical node detection problem.

The critical node detection problem (CNDP) has several application possi-
bilities in different research fields, e.g. social network analysis [8,14], network
risk management [5] and network vulnerability studies [10].

Generally, the CNDP consists of finding a set of k nodes in a given graph
G = (V,E), which, if deleted, maximally degrades the graph according to a given
measure σ (σ can be for example, betweenness centrality, closeness centrality or
page rank [18,24]).
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The definition of critical edge detection is almost the same. Given a graph
G = (V,E), the goal is to find a set of l edges in order to optimize a certain
network property.

We propose a new combinatorial optimization problem, the critical node and
edge detection problem. Although the critical node detection and the critical
edge detection problems exist separately, the unification of the two problems is
essential in some applications (e.g. road networks, computer networks, etc.) as
it can model real-world situations better. In a certain network not only nodes
but also edges can be deleted.

The next section of the paper presents related work about critical node
and edge detection variants and algorithms. The third section describes the
new proposed critical node and edge detection problem. In the fourth section,
the designed algorithms are described, while section five presents the numerical
results. The article ends with conclusions and further work.

2 Related Work

The CNDP can be considered as a special case of the node deletion problem
[22]. Based on the survey [21] the CNDP can be divided in two main classes.
The first class is the k-vertex-CNDP, where in the given graph G = (V,E) and
a connectivity metric σ and a given number k and the goal is to minimize the
objective function f(σ) of deleting k nodes. Some problems from this class are
the MaxNum problem [32] (maximizing the number of connected components),
MinMaxC (minimizing the size of the largest components) [33], and CNP (critical
node problem - minimizing pairwise connectivity) [26]. The most studied variant
is the CNP, with several algorithm proposals, for example, using integer linear
programming [4], iterated local search algorithms [23], and greedy randomized
adaptive search procedures [29]. In [3] an evolutionary framework is proposed
which can deal with several variants of the CNDP.

The other main class is the β-connectivity-CNDP, where for a given G =
(V,E) graph, a connectivity metric σ and an integer β, the main goal is to limit
the objective function f(σ) to β, while minimizing the number of deleted nodes.
Examples from this class are the Cardinality-Constrained-CNP (CC-CNP) [6]
or the Component-Cardinality-Constrained CNP (3C-CNP) [20].

In an early work [40], edge deletion was studied in the case of maximum flow
networks. In [37], the edge interdiction clique problem is introduced, where edges
need to be removed so that the size of the maximum clique in the remaining graph
is minimized and an exact algorithm is proposed to solve it for small graphs. In
[15], a branch-and-cut algorithm is proposed to solve the problem.

In the matching interdiction problem [43] the weight of the maximum match-
ing in the remaining graph after deleting edges or nodes needs to be minimized.
In the same article, a pseudo-polynomial algorithm is proposed.

A recent article [9] proposes the online node and edge detection problem,
where there are discussed and analyzed some online edge and node deletion
problems. In [27] vertex and edge protection is proposed to stop a spreading
process.
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Simultaneous deletion of nodes and links, for the best of our knowledge,
appeared only in two variants: in [39] a joint region identification is proposed
and in [11] the β-connectivity CNDP is studied where both nodes and edges can
be deleted.

3 Combined Critical Node and Edge Detection Problem

The critical node and edge detection problem (CNEDP) consists of finding a set
W ⊆ V containing k nodes and a set F ⊆ E having l edges in a given graph
G = (V,E), which deleted maximally degrades the graph according to a given
measure σ. We denote this introduced problem by (k, l)-CNEDP.

In this article we study as a network connectivity measure the pairwise con-
nectivity. The objective function, which needed to be minimized is the following:

f(A) =
∑

Ci∈G[V \A]

δi(δi − 1)
2

, (1)

where A ⊆ V , Ci is the set of connected components in the remaining graph, after
the deletion of nodes and edges, and δi is the size of the connected component
Ci.

Remark 1. It is obvious that (k, 0)-CNEDP reduces the CNDP, and (0, l)-
CNEDP reduces the critical edge detection problem (CEDP).

Example 1. Let us consider the graph presented in Fig. 1. Considering (1,1)-
CNDEP, if deleting the sixth node and the edge between node 3 and 4, A =
{1, 2, 3, 4, 5, 7}, C1 = {1, 2, 3}, C2 = {4}, C3 = {5, 7}, δ1 = {3}, δ2 = {1},
δ3 = {2},

f(A) =
3(3 − 1)

2
+

1(1 − 1)
2

+
2(2 − 1)

2
= 4

1

2 3 4

5

6 7

Fig. 1. A simple graph with 7 nodes

Remark 2. The complexity of the (k, l)-CNEDP is NP-complete. In [4] it is
proved that the decision variant of the CNP problem is NP-complete, CNP
is a subtask of the (k, l)-CNDEP problem.
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4 Methods

We propose two algorithms to solve the (k, l)-CNEDP presented in the following.

4.1 Greedy Algorithm

In the framework proposed in [3] three non-evolutionary greedy solutions are
presented to solve the CNDP. We adapted the second algorithm to fit the
CNEDP, using the pairwise connectivity in the greedy decision-making process.
The greedy selection is made based on the following function:

GR2(SX) = argmax{(f(SX) − f(SX ∪ {t}) : t ∈ X \ SX}
where SX is one of Snodes or Sedges, and X represents respectively the original
set of nodes or edges of the network.

The algorithm selects the best nodes and edges that minimize the objective
function and, depending on the values of k and l, selects a single node or edge
randomly, which will be removed from the network. The procedure is repeated
until the maximal number of removed nodes and edges is reached. Since the
selection is made randomly from the pre-selected components that have maximal
impact on pairwise connectivity, the algorithm should be repeated several times
to achieve the best possible results. According to [3] the number of iterations
to perform should be set to |Snodes|2, thus we can achieve a feasible solution by
setting this value to (|Snodes| + |Sedges|)2. The original framework recommends
the execution of the other greedy selection rule to minimize the removed network
component count after reaching a solution.

GR1(SX) = argmax{(f(SX \ t) − f(SX) : t ∈ SX}
Since the pairwise connectivity is driven by both the removed nodes and

edges, and because of the specific structure of (k, l) − CNEDP , we consider
that this step is not mandatory. We can argue that the complexity of the rein-
troduction of the removed components is too resource-intensive, but in case it
is required, it can be executed. The outline of the algorithm is presented in
Algorithm 1.

The number of total fitness function execution can be approximated for the
algorithm, since the method is set to stop when k edges and l nodes are reached
in the removal process. In each iteration the GR2 method computes the fitness
of the network if any of the remaining nodes and edges are removed, one at a
time, selecting the Best∗ items those resulting in the best fitness value. Let us
suppose that Daverage is the average node degree, and that with the removal of
every node the number of fitness calculations in the next iteration will decrease
with 1 + Daverage, and with the removal of an edge it decreases with 1. Then
the approximate number of fitness execution will be l(V + E) + 1

2 l(l + 1)(1 +
Daverage) + 1

2k(2V − k).
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Algorithm 1. Greedy algorithm
Parameters:

– G the network
– k the number of edges to remove
– l the number of nodes to remove
– Sedges and Snodes, the set of nodes and edges to remove.
– GR2(SX , 1, a) - greedy selection algorithm notation based on [3]

Sedges = {∅}
Snodes = {∅}
while (|Sedges| < l) or (|Snodes| < k) do

Bestedges = {GR2(Sedges, 1, a)}
Bestnodes = {GR2(Snodes, 1, a)}
[Snodes, Sedges] = [Snodes, Sedges] ∪ Select(Bestedges, Bestnodes)

end while
return Snodes, Sedges

4.2 Genetic Algorithm

We designed a simple genetic algorithm, the encoding, fitness evaluation and the
operators used are presented in the next. The outline of the genetic algorithm
is described in Algorithm 2.

Encoding: An individual is represented by two lists, one for nodes and the other
for edges.

Fitness: Each individual is evaluated according to the pairwise connectivity of
the connected components in the network, after the removal of the individual’s
nodes and edges.

Crossover and Parent Selection: This is realized using a tournament-based
selection. For each round of the crossover tournament, the algorithm randomly
chooses a set number of individuals from the population after which a selec-
tion is made, keeping only the two best individuals according to their fitness.
They will then reproduce, by combining their node and edge lists. The algorithm
will then split these lists randomly and evenly, keeping some restrictions, such
as uniqueness. This way we generate two children for each round of the tourna-
ment. At the end of the crossover tournament, a set of new individuals is created
(Algorithm 3).

Mutation: Two types of mutation are used. The first one is done by randomly
replacing either a node or an edge in the offspring. The chance of either selection
is 50%. Our new node or edge selection takes into account uniqueness inside an
individual.

The second mutation is a time-varying operator. In the first step 50% of the
k + l nodes and edges are changed. The number of changes decreases linearly
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until half of the maximum generation number is reached, after which it will equal
one.

While we have strict restrictions on each individual in our population, a repair
operator is not necessary, since both the crossover and mutation operators self-
repairs the potentially caused damage to any given individual.

Selection of Survivors: The algorithm combines the original population and
any newly-created child, including the possible mutations, into a larger set of
individuals, after which we trim this new set to the original population size using
elitism (keeping the best individuals), this will become the new population for
the next iteration of the algorithm (a (μ + λ) selection scheme is used).

Algorithm 2. Genetic algorithm
Parameters:

– G the network
– pop size the number of individuals in the population
– k and l, the number of nodes and edges in an individual.
– pmut the chance of mutation

Randomly initialize pop;
repeat

Evaluate current population based on fitness value;
Create child population using tournament based crossover;
if random chance == pmut then

Choose a random child from list of children.
Mutate child by randomly replacing either a node or an edge with a new one;

end if
Elitist selection of pop size number of individuals from combined parent and chil-
dren population;

until Maximum number of generations;
return Best individual from final pop;

4.3 Experimental Set-Up

Benchmarks The synthetic benchmark set proposed in [38] contains three types
of graphs, with different basic properties: Barabási-Albert (BA) - scale-free net-
works, Erdős-Rényi (ER) - random networks, and Forest-fire (FF) graphs, which
simulate how fire spreads through a forest. Table 1 describes basic network mea-
sures of the benchmarks employed: number of nodes (|V |), number of edges (|E|),
average degree (〈d〉), density of the graph (ρ), and average path length (lG).

In Table 2 the set of real networks used for numerical experiments is pre-
sented, including the source of the network.
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Algorithm 3. Parent selection and Crossover
Parameters:

– pop the current population in the genetic algorithm.
– tournament size the number of selected individuals to partake in the tournament.
– max round number the maximum number of rounds for the tournament, equal to

half the size of newly generated child population

repeat
Select tournament size number of individuals to participate;
Select the two best individuals according to evaluation from tournament con-
tenders;
Unite and then split evenly the two parents’ node and edge lists.
Append new children to the result children population.

until Maximum number of tournament rounds;
return child pop

Table 1. Synthetic benchmark test graphs and basic properties.

Graph |V | |E| 〈d〉 ρ lG

BA500 500 499 1.996 0.004 5.663

BA1000 1000 999 1.998 0.002 6.045

ER250 235 350 2.979 0.013 5.338

ER500 466 700 3.004 0.006 5.973

FF250 250 514 4.112 0.017 4.816

FF500 500 828 3.312 0.007 6.026

Parameter Setting. To find a good parameter configuration 16 parameter set-
tings were tested on four networks: two synthetic (ER250 and FF250) and two
real world networks (dolphins and karate). Table 3 presents the tested param-
eter settings, and Fig. 2 presents the obtained results. Based on a Wilcoxon
non-parametric statistical test the configuration S11 was chosen for the further
experiments.

The number of critical nodes (k) is 5% of the total nodes, while the number
of critical edges (l) is set to 3% of the total number of edges (proportions are
set general, to emphasize critical nodes and edges on different type of networks).
The maximum generation number for both GA variants was set to 5000.

4.4 Results and Discussion

An example of the evolution of the fitness value of the genetic algorithm is
presented in Fig. 3, we can observe the change of the values in each step.

For better understanding, Fig. 4 presents the smallest network, the Zebra
network, and critical nodes and edges detected with the genetic algorithm.

Table 4 presents the results obtained from the genetic algorithm (GA1),
genetic algorithm with time-varying mutation (GA2) and from the greedy algo-
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Table 2. Real graphs and basic properties.

Graph |V | |E| 〈d〉 ρ lG Ref

Bovine 121 190 3.140 0.026 2.861 [30]

Circuit 252 399 3.167 0.012 5.806 [28]

Dolphins 62 159 5.1290 0.0841 3.3570 [19]

Ecoli 328 456 2.780 0.008 4.834 [25,41]

Football 115 613 10.6609 0.0935 2.5082 [16,19]

Hamsterster 2426 16631 13.7106 0.0057 2.4392 [31]

HumanDis 516 1188 4.605 0.008 6.509 [17]

Karate 34 78 4.5882 0.1390 2.4082 [19,42]

Zebra 27 111 8.2222 0.3162 1.3590 [19,36]

Table 3. Parameter setting used for parameter tuning

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 15 S16

Pop. size 50 50 50 50 50 50 50 50 100 100 100 100 100 100 100 100

pc 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9

pm 0.02 0.02 0.05 0.05 0.02 0.02 0.05 0.05 0.02 0.02 0.05 0.05 0.02 0.02 0.05 0.05

Tournament s. 3 3 3 3 5 5 5 5 3 3 3 3 5 5 5 5

rithm. GA1 and GA2 outperformed the greedy algorithm in most cases. Only in
the case of the Football network did both algorithms perform in the same way
(with standard deviation equal to 0). However, analyzing the results, in the case
of the Football network the values for k and l were too small, because there was
no change from the initial population in GA1 and GA2. The incorporation of
time-varying mutation did not significantly improve the results.

Regarding the running time of both methods (GA1 and greedy), in small
networks, as expected, greedy runs faster (e.g. in the case of dolphins network
2.47±0.02 s running time has the greedy algorithm, and 183.64±0.48 s the GA1),
but in a larger network the GA1 has better running time (e.g. for the FF500
network the greedy runs in average 1420.66 ± 63.48 s and the GA1 1294.3 ±
25.15 s).

4.5 Application: New Network Robustness Measure Proposal

As an application of critical node and edge detection, we introduce a new network
robustness measure. In the literature several robustness measure exist, trying to
capture different properties of the networks. For example [13] describes differ-
ent measures to characterize network robustness: kv - vertex connectivity - the
minimal number of vertices which need to be removed to disconnect the graph,
ke- edge connectivity - the same measure for edges, diameter of the graph (d),
average distance (d−), average efficiency (E) - considering shortest paths, max-
imum edge betweenness (bem), average vertex betweenness (bv), average edge
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Fig. 2. Pairwise connectivity values over ten independent runs for four networks for 16
different parameter configurations

betweenness (be) - these measures considering shortest paths. The average clus-
tering coefficient (C) is a proportion of triangles and connected triples. Algebraic
connectivity (λ2) is the second smallest eigenvalue of the Laplacian matrix of
G, a number of spanning trees (ε) counts the possible different spanning trees
of the graph, while effective graph resistance (Kirchhoff index) (R) investigates
the graph as a network circuit.

We study several real-world networks from different application fields: two
infrastructure networks - UsAir97 [31] a weighted undirected network with 332
nodes and 2126 edges (we do not take into account the weights) containing
flights in the US in the year 1997 (nodes are airports and edges represent direct
flight between them) and a road network [19,35] containing international E-
roads, nodes representing cities (1174 nodes) and edges representing direct E-
road connections between them (1417 edges). Two brain networks are studied:
a mouse visual cortex network [2] with 123 nodes and 214 edges, and a cat-
mixed-brain-species-1 network [2] with 65 nodes and 1100 edges (we will use the
abbreviations Mouse cortex and Cat brain in the next). Two power networks
are studied: 494-bus [31] (494 nodes and 586 edges) and 662-bus [31] (662 nodes
and 906 edges), two interaction networks (Infect-dublin [34] having 410 nodes
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Fig. 3. Errorbar of 10 independent runs representing fitness values over evaluations on
two example graphs: an Erdos-Renyi graph and Dolphins network

and 2800 edges and Infect-hyper [34] with 113 nodes and 2200 edges), and a
computer network - Route views [19] (6474 nodes and 13895 edges).

The above mentioned network measures are calculated for the studied net-
works, as presented in Table 5. As we can see, the majority of the indices cannot
be used for disconnected networks (in this example, the E-road network is discon-
nected), this is one of the motivations to introduce the new measure to analyze
the network robustness, based on the (k,l)-CNEDP.

The introduced measure (NEk,l) has the following form:

NEk,l =
2 · (k, l)-CNEDP

(n − k − 1)(n − k − 2)
(n−k−1)(n−k−2)

2 is the worst possible value of pairwise connectivity, after deleting
k nodes, n is the number of nodes in the original network, NEk,l ∈ [0, 1].

In the case of the USAir97 network, for example:

NE21,6 =
2 · 35264

(332 − 21 − 1)(332 − 21 − 2)
= 0.66.

The NEk,l can be seen as a measure which based on the number of deletion
of nodes and edges quantifies the network robustness. To analyse the results a
correlation matrix was built (without the results of the E-road network), the
new measure - NEk,l (new m) was compared with d, d−, E, bem, bv and C. As
presented in Fig. 5 a weak correlation exists between the new measure and the
clustering coefficient (C).
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Fig. 4. The smallest real-world network, the zebra network (left). The remaining net-
work after node and edge deletion - after (1, 3)-CNEDP (right)

Fig. 5. Pearson’s correlation coefficients between network robustness mesures
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Table 4. Results for synthetic and real graphs. Mean values and standard deviation
over 10 independent runs are presented. A (*) indicates best result based on a Wilcoxon
sign-rank test

Graph GA1 GA2 Greedy

BA500 650.70 ± 82.62∗ 835.00 ± 259.57 5722.90 ± 33.20

BA1000 1947.20 ± 235.93∗ 2021.10 ± 255.62∗ 362555.90 ± 924.58

ER250 15296.30 ± 785.33∗ 14976.70 ± 623.52∗ 25066.70 ± 156.40

ER500 61664.60 ± 1532.08∗ 62929.20 ± 2215.60∗ 100357.40 ± 568.82

FF250 7905.50 ± 1212.81∗ 7909.70 ± 619.53∗ 25508.20 ± 1052.20

FF500 12303.30 ± 4858.39∗ 12342.90 ± 4493.16∗ 105350.50 ± 4396.26

Bovine 16.50 ± 20.66∗ 29.20 ± 25.50∗ 1337.10 ± 31.78

Circuit 274.00 ± 332.22∗ 274.70 ± 417.62∗ 24110.10 ± 1448.70

Dolphins 1220.40 ± 14.55∗ 1230.20 ± 15.75∗ 1711.00 ± 0.00

Ecoli 447.60 ± 465.91∗ 1338.40 ± 1467.07∗ 47649.30 ± 576.69

Football 5995.00 ± 0.00∗ 5995.00 ± 0.00∗ 5995.00 ± 0.00∗

HumanDis 531.70 ± 859.40∗ 3927.30 ± 9258.98 113625.90 ± 1521.87

Karate 355.90 ± 41.98∗ 315.00 ± 10.54∗ 411.10 ± 80.67

Zebra 165.20 ± 7.32∗ 166.40 ± 8.98∗ 237.00 ± 0.00

Table 5. Network robustness measures for studied networks

Measure Networks

USAir97 E-road Mouse cortex Cat brain 494-bus 662-bus Infect-dublin Infect-hyper Route views

kv 1 0 1 3 1 1 1 1 1

ke 1 0 1 3 1 1 1 1 1

d 6 ∞ 8 3 26 25 9 3 9

d− 2.73 ∞ 4.27 1.69 10.47 10.24 3.63 1.65 3.70

E 0.40 0 0.27 0.66 0.11 0.11 0.32 0.67 0.29

bem 0.06 – 0.16 0.01 0.19 0.18 0.12 0.01 0.02

bv 618.65 – 506.01 86.38 2827.38 3716.30 947 148.75 15227.74

be 70.76 – 369.78 4.84 1180.51 1429.46 110.10 4.77 5586.99

C 0.62 0 0.02 0.66 0.04 0.04 0.45 0.53 0.25

λ2 0.12 0 0.03 2.88 −4.75 −5.14 0.19 0.99 −25.84

ε 3.37e+234 0 6.41e+10 1.45e+81 0 1.004 ∞ 1.7e+169 ∞
R 45538.19 ∞ 47450.21 262.08 −4.56e+18 1.78e+18 30563.17 527.78 1587664.19

NEa
k,l 0.66 0.33 0.09 1.00 0.28 0.64 0.92 1 0.39

a k and l are chosen as 3% of the nodes and 1% of edges

5 Conclusions

A new combinatorial optimization problem, the combined CNEDP, is defined
and analyzed. Two methods are proposed to solve this problem: a greedy app-
roach and a simple GA. Numerical experiments on both synthetic and real-world
networks show the effectiveness of the proposed algorithm. As a direct applica-
tion this newly-introduced problem is used as a new network centrality measure
for network robustness testing. Further work will address other network mea-
sures (for example maximum components size, network centrality measures) and
the refinement of the GA.
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Abstract. Many recent studies have shown that deep neural networks
(DNNs) are vulnerable to adversarial examples. Adversarial attacks on
DNNs for natural language processing tasks are notoriously more chal-
lenging than that in computer vision. This paper proposes an attention-
based genetic algorithm (dubbed AGA) for generating adversarial exam-
ples under a black-box setting. In particular, the attention mechanism
helps identify the relatively more important words in a given text. Based
on this information, bespoke crossover and mutation operators are devel-
oped to navigate AGA to focus on exploiting relatively more important
words thus leading to a save of computational resources. Experiments
on three widely used datasets demonstrate that AGA achieves a higher
success rate with less than 48% of the number of queries than the peer
algorithms. In addition, the underlying DNN can become more robust by
using the adversarial examples obtained by AGA for adversarial training.

Keywords: Attention mechanism · Adversarial attack · Genetic
algorithm · Natural language processing

1 Introduction

Deep neural networks (DNNs) have become pervasive tools for solving problems
that have resisted the best attempts of the artificial intelligence community for
decades. Since they have shown to be capable of discovering highly complex
structures embedded in high-dimensional data, DNNs are applicable to various
domains of science, engineering, business and government. For example, DNNs
have achieved state-of-the-art performance in image recognition [23], computer
vision [15] and natural language processing (NLP) [19]. However, many recent
studies demonstrated that DNNs can be highly vulnerable, even being perturbed
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by some hardly detectable noises [6,11,20], a.k.a. adversarial examples. The pur-
pose of an adversarial attack is to find adversarial examples that fool the DNNs.
There have been a wealth of studies of adversarial attacks in computer vision
(e.g., [3,6]). However, due to intrinsic differences between images and textual
data, the approaches for adversarial attacks in computer vision are not directly
applicable for natural language processing (NLP) [26]. In a nutshell, there are
two major reasons. First, the images are usually represented as continuous pixel
values while the textual data are usually discrete by nature. Second, a small
perturbation of images on the pixel values can hardly be recognized by a human
wheres the perturbations on the text are relatively easy to be perceptible.

The existing approaches for adversarial attack for NLP can be divided into
three categories. The first one is called the gradient-based attack [13,17] of
which an attacker generates adversarial examples by leveraging the gradient
of text vectors in a model. The second approach is called the importance-based
attack [5,16]. This type of method believes that each word in the text has a dif-
ferent importance on the classification result of DNNs. The third one is called the
population-based attack [1,7,25] that uses a population-based meta-heuristic to
generate semantically and grammatically similar adversarial examples through
exploiting synonyms. Comparing to the previous two approaches, the population-
based attacks have shown to be powerful especially under a black-box setting.
However, due to the use of a population of solutions and some intrinsic charac-
teristics such as the importance of different words are largely ignored, they are
usually less efficient.

Bearing these above considerations in mind, this paper develops a new GA
based on an attention mechanism (dubbed AGA) for the adversarial example
generation. In particular, the attention mechanism is designed to analyze and
understand the importance of different tokens in the underlying text. Based on
the extracted attention scores, our proposed AGA is able to strategically allocate
the computational resources to the most influential tokens for offspring repro-
duction. In addition, AGA applies a (μ + λ)-selection mechanism to achieve an
accelerated convergence. Extensive experiments on three widely used datasets
have fully validated the effectiveness of our proposed AGA for generating adversar-
ial examples. In a nutshell, AGA is able to achieve a higher success rate with less
than 48% of the number of queries compared against the peer methods. More-
over, our experiments also demonstrate that the adversarial examples found by
AGA can be used in an adversarial training thus leading to a more robust DNNs.

The rest of this paper is organized as follows. Section 2 starts from a formal
problem definition followed by description of the implementation of our proposed
AGA. The experimental setup is introduced in Sect. 3 and the results are discussed
in Sect. 4. At the end, Sect. 5 concludes this paper.

2 Proposed Method

In this section, we start from a formal problem definition of the adversarial
attack considered in this paper. Then, we delineate the implementation of our
proposed AGA step by step.
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2.1 Problem Formulation

Given a text input X = {xi}ni=1 ∈ X , h : X → Y is defined as a classifier
that predicts the label y ∈ Y of X, where x = (x1, · · · , xñ)� is a word vector,
X and Y are the input and output domains respectively. More specifically, the
output of h is a logit vector φh(X) ∈ R

K such that y = argmaxkφh(X)k, where
k ∈ {1, · · · ,K} and K > 1 is the number of classes. An (untargeted) adversarial
example is a data instance X ′ ∈ X such that h(X ′) �= y but X ′ and X are imper-
ceptibly close to each other. In other words, X ′ and X have the same meaning
to a human. In practice, the process of search for adversarial examples, a.k.a.
adversarial attack, can be formulated as the following optimization problem.

min
X′∈X ,y∈Y

L(X ′, y;h)

subject to ρ(X,X ′) ≤ ε
, (1)

where L(X ′, y;h) is defined as an adversarial loss that promotes the misclassifi-
cation of the given text input X:

L(X, y;h) = max
(
φh(X)y − max

k �=y
φh(X)k, 0

)
. (2)

ρ(X ′,X) : X × X → R
+ evaluates the difference between the X ′ and X, and

ε > 0 is a predefined threshold.

2.2 Implementation of Our Proposed AGA

The pseudo code of our proposed AGA is given in Algorithm 1. It follows the
routine of a conventional GA but is featured with an evaluation of the attention
scores of different words of the input text X at the outset. In the following
paragraphs, we first introduce the working mechanism of the main crux of this
paper, i.e., how to obtain the attention scores based on the attention mechanism.
Then, we delineate the implementation of AGA step by step.

Attention for Score. One of the most attractive advantages of the attention
mechanism is its ability to identify the information in an input most pertinent
to accomplishing a task. Inspired by this, we expect to use the attention mech-
anism to help us identify the most important token(s) for perturbation. More
specifically, this paper considers the hierarchical attention network (HAN) [24]
to calculate the attention scores of different tokens in an input text (denoted as
sa). As the overall architecture of HAN shown in Fig. 1, we can see that there
are two levels of attention mechanisms in HAN. One is at the word level while
the other is at the sentence level. An encoder and attention network are two
building blocks of the attention model. The encoder learns the meaning behind
those sequences of words and returns the vector corresponding to each word.
The attention network returns weights corresponding to each token vector by
using the corresponding shallow network. Afterwards, it aggregates the repre-
sentation of those words to constitute a sentence vector, i.e., a weighted sum of
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Algorithm 1: Pseudo code of AGA
Input: original text X, original label y, classifier h, maximum number of iterations T ,

population size N , attention network HAN;
Output: adversarial example X̂a;

1 t ← 1, P ← ∅;
2 Apply the HAN on X to obtain the attention scores sa;
3 Sort sa in a descending order and return the sorted indices as i;
4 for i ← 1, · · · , N do
5 Apply the mutation operation upon the i-th word of X to obtain a perturbed text X̂i;
6 Pt ← Pt ⋃{X̂i};

7 while stopping criterion is not met do
8 X̂a = argmin

X̂i∈Pt
L(X̂i, y;h);

9 if h(X̂a) �= y then
10 return X̂a;

11 Q ← ∅;
12 for i ← 1, · · · , N do
13 Randomly pick up X̂1 and X̂2 from Pt;
14 Apply the crossover operation upon X̂1 and X̂2 to obtain an offspring X̂i

new;
15 Select a site 1 ≤ j ≤ N with the probability proportional to the attention scores;
16 Apply the mutation operation upon the j-th word of X̂i

new to obtain a further
perturbed text X̂i

new;
17 Q ← Q ⋃{X̂i

new};

18 Q ← Q ⋃ Pt;
19 Pick up the first N solutions in Q with the smallest adversarial loss to constitute Pt+1;
20 t ← t + 1;

21 return NULL;

Fig. 1. The working mechanism of HAN.

those vectors that embrace the entire sentence. Analogously, we apply the same
procedure to the sentence vectors so that the final vector is expected to embrace
the gist of the whole document. In this paper, AGA mainly utilizes the weight
vector of each token and sentence learned by HAN.

As shown in line 1 of Algorithm 1, the input text X is at first fed into HAN.
By doing so, we can get the attention scores at both the word and the sentence
levels. Thereafter, the importance of a word in the text X is evaluated as the
product of its two attention scores. Let us use an example shown in Fig. 2 to
illustrate this idea. Considering the word “loved", its sentence- and word-level
attention scores are 0.1 and 0.78, respectively. Accordingly, its attention score is
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0.1× 0.78 = 0.078. In practice, the higher the attention score, the larger impact
on the output. By this means, considering the example shown in Fig. 2, we prefer
perturbing “interesting" and “loved". Note that since the HAN is pretrained
before being used in AGA, it does not cost any extra computational resource.

Fig. 2. An example on how to calculate the attention scores sa.

Optimization Procedure. As shown in Algorithm 1, AGA starts with using
the HAN to obtain the attention score of each word of the input text X (line
2). Then, we sort the attention scores sa in a descending order while the sorted
indices is stored as a vector i for latter operations (line 3). For the first N words
with the largest attention scores, we prepare a set of synonyms constituted by
the closest 50 words in the word vector trained by GloVe [14]. GloVe is an
unsupervised learning algorithm for obtaining vector representations for words.
In particular, these synonyms will be used as the building blocks for the mutation
operation. In lines 4 to 6, we apply the mutation operation upon each of the N
important words spotted by the attention mechanism. Accordingly, we come up
with a population of initialized solutions P1 = {X̂i}Ni=1. During the main while
loop, we first identify the solution X̂a having the minimal adversarial loss as
defined in Eq. (2) (line 8). Thereafter, if X̂a can already achieve an attack, i.e.,
h(X̂a) �= y, it is returned as an adversarial example we are looking for (lines 9
and 10). Otherwise, we will apply crossover and mutation operators together to
generate another N offspring (lines 11 to 17). Afterwards, these offspring will be
combined with the parent population Pt and the first N solutions having the
smallest adversarial loss are used to constitute the parent population for the next
iteration, a.k.a. (μ+λ)-selection (lines 18 and 19). It is worth noting that if there
is no successful adversarial example found after the computational resources are
exhausted, the adversarial attack is treated as a failure and we return a NULL
instead. At the end, we briefly introduce the working mechanisms of the crossover
and mutation operations used in AGA.

– Crossover operation: Given a pair of texts X = {xi}ni=1 and X̄ = {x̄i}ni=1

and a crossover position 1 ≤ j ≤ n, the new texts are generated by swap-
ping the words between the crossover position, i.e., X̂1 = {xi}ji=1

⋃{x̄i}ni=j+1

and X̂2 = {x̄i}ji=1

⋃{xi}ni=j+1. In particular, the one having a smaller



346 S. Zhou et al.

adversarial loss is used as the offspring after the crossover operation, i.e.,
X̂new = argmin

X∈{X̂1,X̂2}
L(X, y;h).

– Mutation operation: For a given text X = {xi}ni=1 and a mutation position
1 ≤ j ≤ N where N < n, AGA randomly pick a synonym x̃j from the set of
synonyms of xj . Then, a new text is mutated by replacing xj by x̃j .

3 Experimental Setup

The experimental settings used in this paper are outlined as follows.

3.1 Datasets

The following three widely used public datasets including IMDB [10]1, AG’s
News [27]2, and SNLI [2]3 are considered in our empirical study.

– IMDB: This dataset considers binary classification tasks used for sentiment
analysis. It consists of 50, 000 movie reviews collected from IMDB, each of
which is assigned with a binary sentiment, i.e., either positive or negative.
More specifically, this dataset contains 9, 998 unique words. The average
length is 234 words and the standard deviation is 173 words. In our experi-
ments, half of the data are used as the training data while the other half is
used for the testing purpose.

– AG’s News: This is a subset of AG’s corpus. Its news articles collected from
four largest classes of AG’s corpus including ‘World’, ‘Sports’, ‘Business’,
and ‘Sci/Tech’. In particular, they are constructed by assembling titles and
description fields. In our experiments, the AG’s News dataset contains 30, 000
training data and 1, 900 test data for each class.

– SNLI: This dataset considers text entailment (TE) tasks for three classes
including entailment, contradiction, and neutral. In particular, the TE in NLP
is a directional relation between text fragments. The relation holds whenever
the truth of one text fragment (text) follows from another text (hypothe-
sis). In our experiments, the SNLI dataset consists of 570, 000 human-written
English sentence pairs.

Note that both AG’s News and SNLI datasets are multi-class classification tasks.
The average text length of IMDB is longer than the other two.

3.2 Target Model

For the IMDB ad AG’s News dataset, we choose WordCNN [8], LSTM [22] and BERT [4]
as the classification models to validate the effectiveness of the generated adver-
sarial examples. For the SNLI dataset, since its inputs are sentence pairs, we
1 https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews.
2 https://www.kaggle.com/amananandrai/ag-news-classification-dataset.
3 https://nlp.stanford.edu/projects/snli/.

https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/amananandrai/ag-news-classification-dataset
https://nlp.stanford.edu/projects/snli/
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choose three variants of Transformer including BERT [4], DistilBERT [18], and
ALBERT [9] as the target models. More specifically, we apply bert-base-uncased,
distilbert-base-cased and albert-base-v2 published in HuggingFace4. They
are fine tuned with five epochs while the batch size is set to 16 and the learning rate
is set to 2 × 10−5. As for the WordCNN and LSTM, we apply the models trained by
TextAttack [12].

3.3 Evaluation Metrics

To quantitatively evaluate the performance different methods, we consider the
following three metrics in our empirical study.

– Attack success rate (ASR): the percentage of the number of successful adver-
sarial attacks examples (denoted as Nsucc) w.r.t. the total number of examples
generated by the corresponding algorithm (denoted as Ntotal):

ASR =
Nsucc

Ntotal
× 100%. (3)

The higher the ASR is, the better performance of the algorithm achieves.
– Average perturbation word rate (APWR): the average ratio of the perturba-

tion words w.r.t. the total number of words:

APWR =
1

Nsucc

Nsucc∑
i=1

|xadv − xi|
|xi| × 100%, (4)

where | ∗ | indicates the number of tokens in the set. The lower the APWR
is, the less perturbations caused by the adversarial example.

– Average query count (AQC): the average number of queries (denoted as
Nquery) w.r.t. the target model to find a successful adversarial example:

AQC =
1

Nsucc

Nsucc∑
i=1

Nquery. (5)

The larger the AQC is, the more resources required by the corresponding
algorithm.

4 Experimental Results

We seek to answer the following three research questions (RQs) through our
experimental evaluation:

– RQ1: How is the performance of our proposed AGA against the selected peer
algorithms?

– RQ2: What are the benefits of the attention mechanism and (λ+μ)-selection
of AGA?

– RQ3: What are the effectiveness of adversarial examples generated by AGA?

4 https://huggingface.co/.

https://huggingface.co/
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Table 1. Comparision results of ASR, APWR and AQC values obtained by AGA and
the other three selected peer algorithms on IMDB, AG’s News and SNLI.

Dataset Model Metric Genetic attack IBP-certified IGA AGA

IMDB

WordCNN
ASR(%) 9.594E+1(3.16E-2)† 8.634E+1(6.58E-1)† 9.881E+1(2.84E-1) 9.735E+1(2.27E-1)

APWR(%) 4.660E+0(1.49E-1)† 4.643E+0(1.84E-2)† 3.335E+0(1.06E-1)† 3.033E+0(1.06E-1)
AQC 3.688E+3(2.45E+3)† 8.829E+3(1.34E+6)† 2.248E+5(5.40E+8)† 3.324E+3(2.23E+3)

LSTM
ASR(%) 9.298E+1(1.50E-1)† 8.151E+1(2.81E-1)† 9.638E+1(2.43E-1)‡ 9.415E+1(1.85E-1)

APWR(%) 4.800E+0(1.14E+0)† 4.640E+0(3.08E+0)† 2.980E+0(1.29E+0) 3.080E+0(1.50E-1)
AQC 3.987E+3(2.63E+2)† 8.653E+3(4.00E+5)† 1.975E+5(1.63E+8)† 3.517E+3(1.08E+4)

BERT
ASR(%) 8.507E+1(2.12E+0)† 7.397E+1(2.46E+0)† 8.737E+1(3.56E+0)† 9.053E+1(2.73E+0)

APWR(%) 7.940E+0(1.55E+0)† 7.425E+0(3.89E+0)† 4.870E+0(8.70E-1) 4.980E+0(1.02E+0)
AQC 5.947E+3(9.34E+4)† 6.058E+3(3.14E+5)† 1.738E+5(3.73E+3)† 4.667E+3(5.77E+5)

AG’s News

WordCNN
ASR(%) 5.565E+1(3.89E-1)† 2.722E+1(4.15E+0)† 7.685E+1(4.37E-1)† 8.441E+1(7.52E-3)

APWR(%) 1.570E+1(5.33E-2)† 1.358E+1(2.63E-1)‡ 1.561E+1(2.12E-2)† 1.457E+1(8.67E-2)
AQC 3.090E+3(5.57E+2)† 4.936E+3(8.21E+3)† 5.056E+3(5.56E+4)† 1.702E+3(3.56E+3)

LSTM
ASR(%) 5.208E+1(3.38E+0)† 2.875E+1(5.75E+0)† 6.981E+1(1.33E+0)† 7.682E+1(1.50E-1)

APWR(%) 1.465E+1(1.86E+1) 1.332E+1(2.21E-1)‡ 1.592E+1(8.00E-4)† 1.472E+1(3.47E-1)
AQC 3.287E+3(8.19E+2)† 4.792E+3(1.49E+3)† 5.529E+3(2.44E+3)† 1.831E+3(1.15E+3)

BERT
ASR(%) 3.822E+1(4.67E+0)† 2.338E+1(4.26E+0)† 5.670E+1(2.46E+0)† 5.996E+1(1.28E-1)

APWR(%) 1.447E+1(4.18E-2)† 1.320E+1(1.01E-1) 1.519E+1(2.64E-2)† 1.401E+1(4.03E-3)
AQC 3.649E+3(1.84E+4)† 4.095E+3(1.40E+3)† 6.189E+3(3.35E+4)† 2.259E+3(9.79E+3)

SNLI

DistilBERT
ASR(%) 8.772E+1(4.26E-1)† 7.686E+1(1.40E+0)† 9.871E+1(3.33E-5)† 9.918E+1(3.00E-2)

APWR(%) 9.170E+0(5.19E-2)† 1.017E+1(1.16E-1)† 8.38E+0(2.43E-2)‡ 8.550E+0(1.20E-1)
AQC 7.664E+2(1.55E+1)† 1.059E+3(1.92E+2)† 4.047E+2(3.38E+2)† 2.324E+2(1.71E+2)

ALBERT
ASR(%) 8.997E+1(3.05E-2)† 7.867E+1(4.90E-1)† 9.932E+1(3.98E-2) 9.940E+1(1.76E-2)

APWR(%) 9.330E+0(3.01E-2)† 9.850E+0(3.92E-2)† 8.010E+0(3.84E-2)† 7.827E+0(3.33E-5)
AQC 7.502E+2(1.12E+2)† 1.064E+3(1.17E+2)† 3.700E+2(4.40E+2)† 2.108E+2(9.78E+1)

BERT
ASR(%) 8.692E+1(1.14E+0)† 7.723E+1(3.08E+0)† 9.922E+1(2.24E-1) 9.887E+1(1.50E-1)

APWR(%) 8.910E+0(5.04E-2)† 1.011E+1(7.05E-2)† 8.350E+0(5.00E-5)† 8.120E+0(8.33E-4)
AQC 8.623E+2(7.22E+2)† 1.082E+3(2.80E+3)† 3.811E+2(5.80E+2)† 2.200E+2(9.98E+1)

† denotes the performance of AGA is significantly better than other peers according to the
Wilcoxon’s rank sum test at a 0.05 significance level;

‡ denotes the corresponding algorithm significantly outperforms AGA.

4.1 Performance Comparison with the Selected Peer Algorithms

Method. In this experiment, Genetic attack [1], IBP-certified [7], and
IGA [21] are chosen as the peer algorithms. All these algorithms apply a genetic
algorithm to attack neural networks and are under a black-box attack setting.
For each dataset introduced in Sect. 3.1, we randomly pick up 1, 000 examples
in our experiment. In view of the stochastic characteristics of the selected peer
algorithms, each experiment is independently repeated 10 times with a different
random seed. For a fair comparison, the population size is set to be 60, and the
maximum number of iterations is set to be 20 for all peer algorithms.

Results and Analysis. From the comparison results shown in Table 1, it is
clear to see the superiority of our proposed AGA. It obtains better ASR, APWR
and AQC values in 18 out of 27 comparisons compared against the other three
selected peer algorithms. More specifically, for the sentiment analysis task given
in IMDB, the number of queries cost by IGA is at least 3× larger than the other
peer algorithms. This can be partially attributed to the longer text length of the
data in IMDB. Since the basic idea of IGA is to perturb the tokens in a sequential
manner, it thus requires a larger number of queries in IMDB. The ASR obtained
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by AGA significantly outperforms the other peer algorithms on the AG’s News
whereas the superiority of the APWR is not that evident accordingly. This can
be explained as none of the other peer algorithms can lead to a successful attack
while our proposed AGA perturbs more words to achieve so.

Table 2. Selected adversarial attack examples for BERT on IMDB, AG’s News, and SNLI.
Note that the modified words are highlighted blue and red, respectively, for the original
and adversarial texts.

Dataset Attacker Prediction Text

original Pos

This movie is one of the funniest I have seen in years. A movie which deals
with death and funerals without being depressing, or irreverant. Christopher
Walken provides much of the comedy in this charming romance and I could
hardly breathe for laughing so hard. I saw the movie a preview, and when it
was over, the audience not only applauded, but cheered. I am telling all my
friends to watch for it’s arrival in the USA. I definitely plan on seeing it again
in the theater and purchasing it on DVD as soon as it’s available.

IGA Neg

Cette movie is one of the funniest I have seen in yr. A movie which deals
with death and mortuary without being depressing, or irreverant. Christopher
Walken provides much of the sitcom in this charming romance and I could
hardly breathe for laugh so cumbersome. I saw the movie a preview, and when
it was over, the audience not only applauded, but cheered. I am telling all my
friends to watch for it’s arrival in the US. I admittedly plan on seeing it again
in the theater and purchasing it on DVD as soon as it’s accessible.

IMDB

AGA Neg

Cette movie is one of the funniest I have seen in yr. A movie which deals
with death and funerals unless being depressing, or irreverant. Christopher
Walken provides much of the sitcom in this charming romance and I could
hardly breathe for smile so cumbersome. I saw the movie a preview, and when
it was over, the audience not only applauded, but cheered. I am telling all my
friends to watch for it’s arrival in the USA. I definitely plan on seeing it again
in the theater and purchasing it on DVDS as soon as it’s available.

original World
Around the world Ukrainian presidential candidate Viktor Yushchenko was
poisoned with the most harmful known dioxin, which is contained in Agent
Orange, a scientist who analyzed his blood said Friday.

IGA Sci/Tech
Around the universe Ukrainian chair candidate Viktor Yushchenko was
venomous with the most harmful known dioxin, which is contained in Actor
Orange, a scientist who exploring his blood said Tuesday.

AG’s News

AGA Sci/Tech
Around the universe Ukrainian chairmen candidate Viktor Yushchenko was
venomous with the most harmful known dioxin, which is contained in Agent
Orange, a scientist who analyzed his blood said Friday.
premise: A blond-haired woman squinting and wearing a bright yellow shirt.

original neutral
hypothesis: A woman is brushing her hair with a fork.
premise: A blond-haired woman squinting and wearing a bright amber
sweater.

IGA entailment
hypothesis: A nana is brushing her headgear with a fork.
premise: A blond-haired woman frowning and wearing a radiant yellow shirt.

SNLI

AGA entailment
hypothesis: A nana is brushing her headgear with a fork.

To have a better understanding of the adversarial examples generated by our
proposed AGA and IGA, we pick up some selected examples for BERT on IMDB,
AG’s News, and SNLI, respectively, in Table 2. From these examples, we can see
that AGA perturbs less words than IGA to achieve a successful attack, especially
for the IMDB dataset. In addition, we notice that many of the words perturbed
by IGA. This observation indicates that AGA is able to capture the words essential
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to the underlying text. Thus, the corresponding adversarial examples are more
likely to be closer to the decision boundary.

Response to RQ1 : From the experimental results shown in this subsection, it is
clear to see the outstanding performance of our proposed AGA compared against
the other three selected peer algorithms for generating adversarial examples. In
particular, it is interesting to note that AGA is able to find adversarial examples
with nearly half of the computational cost (i.e., the amount of queries to the
target models) of the peer algorithms.

4.2 Ablation Study of Attention Mechanism and (μ + λ)-Selection

Method. To address the RQ2, we develop three variants to investigate the use-
fulness of the attention mechanism and the (μ+λ)-selection mechanism therein.

– AGA-v1: This variant considers a vanilla genetic algorithm without using both
the attention and the (μ+λ)-selection mechanisms. Instead, AGA-v1 first picks
up the best solution from the parent population to survive to the next itera-
tion. Thereafter, it uses a uniform mutation upon each parent to generation
N − 1 offspring to directly survive to the next iteration. In particular, the
uniform mutation simply picks up a token for a perturbation.

– AGA-v2: This variant is similar to AGA-v1 except the offspring reproduction
is kept the same as AGA.

– AGA-v3: This variant is similar to AGA except the offspring reproduction is
replaced by the uniform mutation as in AGA-v1.

Note that the other parameter settings are kept the same as in Sect. 4.1.

Results and Analysis. From the comparison results shown in Table 3, we find
that although the ASR obtained by AGA-v2 is worse than that of AGA-v1, the
number of queries incurred by AGA-v2 is reduced by 58%. This can be explained
as the use of attention mechanism is able to narrow down the search space
thus leading to a loss of population diversity. On the other hand, we find that
the ASR obtained by AGA-v3 is improved on around 67% comparisons against
AGA-v1. This can be attributed to the accelerated convergence provided by the
(μ+ λ)-selection mechanism towards the decision boundary. In contrast, it is as
anticipated that our proposed AGA is the most competitive algorithm in almost
all cases, except for BERT on the IMDB dataset. Due to the use of both the
attention mechanism and the (μ+λ)-selection mechanism, AGA is able to achieve
a successful with the least amount of queries.

Response to RQ2 : From the experimental results obtained in this subsection,
we appreciate the usefulness of both the attention mechanism and the (μ+λ)-
selection mechanism in AGA. In particular, the attention mechanism is able to
narrow down the search space while the (μ + λ)-selection mechanism is able
to provide a stronger selection pressure towards the decision boundary.
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4.3 Comparison of the Generated Adversarial Examples

Method. To address RQ3, this subsection aims to investigate the effectiveness
of the generated adversarial examples from the following two aspects.

Table 3. Comparison results of ASR, APWR and AQC values obtained by AGA and
its three variants on IMDB, AG’s News and SNLI.

IMDB

Attacker WordCNN LSTM BERT
ASR(%) APWR(%) AQC ASR(%) APWR(%) AQC ASR(%) APWR(%) AQC

AGA-v1 98.51 3.36 203870.01 96.14 3.02 197649.08 88.17 4.82 173762.83
AGA-v2 95.56 3.14 5466.94 96.73 3.04 5665.29 88.85 4.77 6694.37
AGA-v3 98.37 3.78 3977.12 95.89 3.04 3999.88 89.52 4.84 4393.78
AGA 96.05 3.03 3350.92 94.15 3.08 3577.11 90.75 4.93 4722.83

AG’s News

Attacker WordCNN LSTM BERT
ASR(%) APWR(%) AQC ASR(%) APWR(%) AQC ASR(%) APWR(%) AQC

AGA-v1 76.21 15.63 4914.31 68.99 15.90 5419.71 57.85 15.30 6055.97
AGA-v2 55.40 12.12 2526.81 54.01 12.13 2568.27 56.47 14.73 3310.33
AGA-v3 78.28 13.73 3513.37 77.37 15.96 4813.49 61.37 14.65 2570.82
AGA 84.36 14.74 1668.02 77.04 15.07 1811.27 60.17 14.05 2201.93

SNLI

Attacker DistilBERT ALBERT BERT
ASR(%) APWR(%) AQC ASR(%) APWR(%) AQC ASR(%) APWR(%) AQC

AGA-v1 98.71 8.47 415.35 99.32 8.01 379.63 98.88 8.34 395.04
AGA-v2 95.44 8.19 319.58 97.51 7.65 267.02 97.19 7.89 268.61
AGA-v3 99.24 8.38 342.82 99.43 8.58 234.59 98.79 8.19 323.68
AGA 99.18 8.55 239.89 99.32 7.83 216.49 98.65 8.14 255.73

– Transferability of the adversarial examples: It evaluates the usefulness of an
adversarial example for attacking the models other than the target model.
To this end, we first randomly pick up 1, 000 instances from the testing
set of SNLI dataset. Then, for a given neural network, we apply Genetic
attack, IBP-certified, IGA and AGA to find adversarial examples, respec-
tively. Thereafter, the generated adversarial examples are used as inputs to
feed into the other two neural networks. To evaluate the transferability, we
evaluate the success rates of the generated examples that successfully attack
the victim models. Note that each experiment is repeated 5 times and each
of BERT, ALBERT and DistilBERT is used as the base model for adversarial
example generation in a round-robin manner.

– Adversarial training: We randomly pick up Ñ ∈ {1, 000, 2, 000, 3, 000} exam-
ples from the training set of the AG’s News and SNLI datasets, respectively.
Then, we apply IGA and AGA to generate adversarial examples accordingly.
Thereafter, the generated adversarial examples are used to augment the train-
ing set for fine-tuning the BERT-base-uncased where the epoch is set to be
5 and the learning rate is set to be 5 × 10−5. The testing accuracy of the
fine-tuned BERT-base-uncased is used as the measure of the effectiveness of
the fine-tuning. To investigate the robustness coming out of the adversarial
training, we apply IGA and AGA again to conduct adversarial attacks on the
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model fine-tuned with the generated adversarial examples and evaluate the
ASR accordingly.

Results and Analysis. From the results shown in Fig. 3, we find that the gen-
eralization performance of the adversarial examples generated by our proposed
AGA is similar to that of IGA. This can be explained as the adversarial examples
generated by AGA are closer to the corresponding decision boundary. As for the
effect of adversarial training, as shown in Fig. 4(a) and Fig. 4(b), we can see that
the testing accuracy is improved after the fine-tuning by using the adversarial
examples generated by AGA. Furthermore, as shown in Fig. 4(c) and Fig. 4(d), we
can see that the ASR decreases with the increase of the number of adversarial
examples. This indicates that the model thus becomes more robust.

Fig. 3. Bar charts of the success rate of transferring adversarial examples generated
from one model to the other on the SNLT dataset.

Fig. 4. Comparison of the impact of the number of adversarial examples used in the
adversarial training on the testing accuracy (a) and (b) and the robustness (c) and (d)
after fine-tuning.

Response to RQ3 : We have the following takeaways from our experiments.
The transferability of the adversarial examples generated by AGA is similar
to the other peer algorithms on the SNLI dataset. Moreover, the adversarial
examples generated by AGA have a better chance to improve the robustness of
the victim model via adversarial training.

5 Conclusion

In this paper, we propose an efficient adversarial attack method based on genetic
algorithm and attention, i.e. AGA. We analyze the shortcomings of the exist-
ing genetic algorithm attacks and improve these shortcomings. Inspired by the
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importance-based attacks, we use the attention mechanism to quickly find the
most important words to reduce the number of queries. Then, we find the con-
vergence rate of the population is slow, so we use the (λ+μ)-selection strategy to
accelerate the search procedure. Moreover, compared with the baseline methods,
the proposed methods not only accelerate the speed to find adversarial examples
but are also more successful in finding adversarial examples.
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Abstract. Recently, it is promising to apply deep reinforcement learn-
ing (DRL) to the vehicle routing problem (VRP), which is widely
employed in modern logistics systems. A practical extension of VRP is
the electric vehicle routing problem with time windows (EVRPTW). In
this problem, the realistic traveling distance and time are non-Euclidean
and asymmetric, and the constraints are more complex. These charac-
teristics result in a challenge when using the DRL approach to solve it.
This paper proposes a novel end-to-end DRL method with a two-stage
training strategy. First, a graph attention network with edge features is
designed to tackle the graph with the asymmetric traveling distance and
time matrix. The node and edge features of the graph are effectively cor-
related and captured. Then, a two-stage training strategy is proposed to
handle the complicated constraints. Some constraints are allowed to be
violated to enhance exploration in the first stage, while all the constraints
are enforced to be satisfied to guarantee a feasible solution in the sec-
ond stage. Experimental results show that our method outperforms the
state-of-the-art methods and can be generalized well to different problem
sizes.

Keywords: Deep reinforcement learning · Electric vehicle routing
problem with time windows · Graph attention network · Two-stage
training

1 Introduction

Vehicle routing problem (VRP) [2], as a classic combinatorial optimization prob-
lem, aims at dispatching a fleet of vehicles to serve a set of customers so as to
minimize the total traveling cost. Recently, electric vehicles (EVs) have been
extensively popularized. Compared with traditional vehicles, EVs can be bene-
ficial to sustainable transportation systems and environmental protection. They
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Fig. 1. An illustration of the practical EVRPTW.

will undoubtedly become the mainstream of vehicles in the future. By incorpo-
rating EVs into VRP, an interesting problem called the electric VRP (EVRP)
attracts researchers’ attention [25]. In addition to basic properties of VRP, EVRP
further considers limited electricity of EVs. This implies that EVs need to be
recharged at recharging stations before running out of battery. A natural and
practical variant of EVRP is to impose a specific time window for each customer,
known as EVRP with time windows (EVRPTW). Figure 1 illustrates an example
of EVRPTW.

To solve VRP and its variants, traditional methods include exact algorithms
and heuristic algorithms. Exact algorithms [6] usually employ the branch-and-
bound framework to produce an optimal solution, but they can only handle
small-scale problems in general. Heuristic algorithms [26] can obtain acceptable
solutions in reasonable time, but they require problem-specific experience and
knowledge. In addition, heuristic methods, which independently address problem
instances and iteratively perform search in solution space, also suffer from long
computation time for large-scale problems.

Recently, a novel framework based on deep reinforcement learning (DRL) is
developed to rapidly obtain near-optimal solutions of combinatorial optimization
problems [22], especially routing problems [21,28]. By using an end-to-end learn-
ing paradigm, a deep network model is trained offline with numerous instances.
It can automatically learn underlying features from the data and generalize to
unseen instances. Then it is leveraged to rapidly construct a solution by a direct
forward inference without any iterative search.

The DRL methods have achieved some success for traditional VRPs. How-
ever, when these methods are applied to the practical EVRPTW, additional
issues need to be addressed.

1) Most of the existing works only focus on routing problems where the sym-
metric Euclidean traveling distance and time are calculated by the given
coordinates of nodes. In the practical EVRPTW, the traveling distance and
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time are non-Euclidean and asymmetric, as shown in Fig. 1. The traveling
distance is determined by the realistic routes in the transportation network.
The traveling time is not only linear with the actual traveling distance but
also related to comprehensive traffic factors like terrain, weather, and crowd-
ing degree. Therefore, existing methods that exploit coordinates as inputs
may fail to extract the edge features between two nodes containing the actual
traveling distance and time.

2) Different from the classic VRP, EVRPTW has more complicated constraints
including limited electricity and time windows. Although the masking mech-
anism in most DRL methods can be directly adopted to ensure a feasible
solution, such mechanism also restricts the exploration of DRL, which makes
it difficult to cross through the infeasible region to learn the relationships
among solutions, constraints and objectives.

To tackle the aforementioned issues, this paper proposes a novel DRL method
with a two-stage training strategy (DRL-TS) to solve the practical EVRPTW.
Our contributions can be summarized as follows.

1) A deep neural network based on a graph attention network (GAT) with edge
features is proposed to effectively capture both node and edge features of
a graph input. The network correlates the node embeddings with the edge
embeddings, which can produce a high-quality solution.

2) A two-stage training strategy is proposed to deal with complex constraints.
It is a general strategy, as it does not rely on a specific form of constraints.
Specifically, in the first stage, some constraints are treated as soft and allowed
to be violated to enhance the exploration, but penalties are appended to the
objective if constraints are violated. In the second stage, all the constraints
must be satisfied by the masking mechanism to guarantee a feasible solution.

3) Computational experiments conducted on real-world asymmetric datasets
show that the proposed method outperforms conventional methods and state-
of-the-art DRL methods.

2 Literature Review

This section first briefly reviews traditional methods for EVRPTW, including
exact and heuristic algorithms. EVRPTW was first introduced by Schneider et
al. [26] and solved by a hybrid heuristic algorithm combining a variable neighbor-
hood search heuristic with a tabu search heuristic. Exact branch-and-price-and-
cut algorithms relying on customized labeling algorithms [6] were proposed for
four variants of EVRPTW. A few conventional methods for EVRPTW have been
proposed. Other heuristic algorithms are further developed for some extensions
of EVRPTW considering various recharging policies [4,11,12].

Next, we review recent DRL methods for routing problems. A sequence-to-
sequence model based on a pointer network [1] was first proposed to solve routing
problems. The recurrent neural network (RNN) and attention mechanism [23]
were used to improve the policy network for VRP. The framework of [23] was
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adapted to solve EVRPTW [19], which is named as DRL-R. Inspired by the
Transformer architecture [27], the multi-head self-attention mechanism [14] was
adopted to improve the policy network for routing problems. A dynamic atten-
tion model with dynamic encoder-decoder architecture [24] was developed to
improve the performance for VRP. Policy optimization with multiple optima
[15] was introduced to further improve the performance by utilizing the symme-
tries in the representation of a solution. A structural graph embedded pointer
network [10] was presented to iteratively produce tours for the online VRP. A
deep model based on the graph convolutional network with node and edge fea-
tures [7] was proposed for the practical VRP. These methods were further devel-
oped for variants of routing problems [16–18,29,33] and their multi-objective
versions [30,32,34]. Different from the above end-to-end methods that learn to
directly construct solutions, a learn-to-improve framework [5,20,31] that learns
local search operators was developed to iteratively improve an initial solution.

In summary, most of the DRL methods were focused on VRP and its simple
variants. Only one work, DRL-R [19], applied the DRL method to EVRPTW.
This method treating coordinates as inputs cannot be directly applied to the
practical EVRPTW with asymmetric traveling distance and time. In addition,
it cannot well handle the complex constraints. These facts motivate us to develop
a more effective DRL method for EVRPTW.

3 The Proposed DRL-TS for Practical EVRPTW

3.1 Problem Statements and Reinforcement Learning Formulation

EVRPTW is defined on a complete directed graph G = (N,E), where N is the
node set and E is the edge set. The node set N = V ∪ F ∪ {0}, where V is the
set of customers, F is the set of recharging stations, and 0 is the depot. Each
node i ∈ V has a positive demand qi and a service time si. Each node i ∈ F also
has a demand qi = 0 and a service time si representing its full recharging time.
Also, each node i ∈ N has a time window [ei, li]. Each edge is associated with
a traveling distance dij , a traveling time tij , and a battery consumption λdij ,
where λ is a battery consumption rate. In the practical EVRPTW, the traveling
distance and time are both possibly asymmetric, i.e., dij �= dji and tij �= tji.

A fleet of homogeneous EVs with identical loading capacity C and battery
capacity Q is initially placed at the depot with full battery power. EVs must serve
all the customers and finally return to the depot. The objective is to minimize
the total traveling distance. The following constraints must be satisfied.

1) Capacity constraints: The remaining capacity of EVs for serving node i ∈ V
must be no less than the demand qi.

2) Time window constraints: EVs need to wait if they arrive at node i ∈ N
before ei. The service after li is not allowed.

3) Electricity constraints: The remaining electricity of EVs arriving at each node
i ∈ N must be no less than 0.
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Fig. 2. The GAT-based policy network. LP denotes a linear projection, AGG denotes
the aggregation sub-layer, COMB denotes the combination sub-layer, GRU denotes a
gated recurrent unit, MHA denotes a multi-head attention layer, and N = {0, 1, ..., n}.

To formulate EVRPTW as a reinforcement learning (RL) form, it can be
naturally deemed as a sequential decision problem by constructing the routes
step-by-step. Especially, a solution is represented by a sequence π = {π0, ..., πT },
where πt ∈ N , π0 = πT = 0. Note that the sequence length T is unfixed, because
there are multiple routes and the recharging stations can be visited any times.

In RL, the state is defined as a partial solution π0:t−1. The action is defined
as visiting a node πt ∈ V \{π0:t−1} ∪ F ∪ {0} satisfying all the constraints.
The state transition is defined as π0:t = {π0:t−1, πt}. The reward is defined as
R =

∑T
t=1 −dπt−1,πt

, where dπt−1,πt
represents the traveling distance at step t. A

stochastic policy p(π|G) generating a solution π from the graph G of an instance
is calculated as p(π|G) =

∏T
t=1 pθ (πt|π0:t−1, G), where pθ (πt|π0:t−1, G) is the

probability of the node selection parameterized by θ.

3.2 GAT-based Policy Network with Edge Features

To learn the policy pθ , a GAT-based policy network with edge features is
designed, which follows the encoder-decoder architecture (see Fig. 2). It can
extract both the node and edge features including the traveling distance and
time matrix of the practical EVRPTW. The encoder produces the correlated
node and edge embeddings of the graph. At each time step, the decoder aggre-
gates the embeddings with the context to generate a probability vector and
selects a node accordingly. The process is iteratively repeated until all the cus-
tomers are served.
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Encoder. The encoder first computes initial node and edge embeddings of
the graph input with node features xi = (qi, ei, li, zi) and edge features eij =
(dij , tij , aij), i, j ∈ N , where zi denotes the node type (depot, customer or
recharging station) and aij denotes whether i and j are adjacent as follows.

zi =

⎧
⎨

⎩

0, i ∈ {0}
1, i ∈ V
−1, i ∈ F

, (1)

aij =

⎧
⎨

⎩

1, i and j are r-nearest neighbors
−1, i = j
0, otherwise

, (2)

where r is empirically set to 10 as in [7]. The inputs are linearly projected to
initial node embeddings h0

i and edge embeddings h0
ij with the same dimension

dh.
h0

i = W 0
Nxi + bN ,

h0
ij = W 0

Eeij + bE ,
(3)

where WN , WE , bN , and bE are all trainable parameters. Let hl
i and hl

ij

respectively denote the embeddings of node i and edge (i, j) produced by layer
l ∈ {1, ..., L}. The final embeddings hL

i and hL
ij are obtained by the encoder.

Each layer l contains an aggregation and a combination sub-layer, which aggre-
gate each embedding with its neighbors and combine itself with the aggregated
embeddings [7], respectively.

In the aggregation sub-layer, the node and edge embeddings are simultane-
ously computed as follows.

h̃l
i = MHAl(hl−1

i , {[hl−1
j ;hl−1

ij ] | j ∈ N}),
h̄l

i = σ(BNl(W l
N h̃l

i)),

h̃l
ij = W l

E1h
l−1
ij + W l

E2h
l−1
i + W l

E3h
l−1
j ,

h̄l
ij = σ(BNl(W l

E h̃l
ij)),

(4)

where [;] is the concatenation of two vectors, BN is a batch normalization layer
[9], σ is the ReLU activation, and W l

N , W l
E , W l

E1, W l
E2, W l

E3 are all trainable
parameters. MHA is a multi-head attention layer with M heads [27], in which
qm,l−1
i = Wm

Q hl−1
i , km,l−1

ij = Wm
K [hl−1

j ;hl−1
ij ], vm,l−1

ij = Wm
V [hl−1

j ;hl−1
ij ], and

m ∈ {1, ...,M}.
In the combination sub-layer, the node and edge embeddings are both com-

bined by a skip-connection [8], as follows.

hl
i = σ(hl−1

i + BNl(FFl(h̄l
i))),

hl
ij = σ(hl−1

ij + BNl(FFl(h̄l
ij))),

(5)

where FF is a fully connected feed-forward layer.
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Decoder. The decoder sequentially selects a node according to a probability
distribution obtained by the node embeddings hL

i and edge embeddings hL
ij from

the encoder (the superscript L is omitted for readability in the following).
Specifically, at the decoding step t, the context ct, previous partial tour, node

embeddings, and edge embeddings are firstly aggregated as the glimpse gt [1].

ct = WCCt−1 + bC ,

ĥt = GRU(hπt−1 , ĥt−1),

gt = MHA([ĥt; ct], {[hj ;hπt−1,j ] | j ∈ N}),
(6)

where WC and bC are trainable parameters, GRU is a gated recurrent unit,
which can better handle the partial solution generated by sequential steps. Ct =
(Tt,Dt, Bt) is composed of the traveling time Tt, remaining capacity Dt, and
remaining electricity Bt when leaving node πt, which are updated as follows.

Tt =
{

Tt−1 + tπt−1,πt
+ sπt

, πt ∈ V ∪ F
0, πt ∈ {0} ,

Dt =
{

Dt−1 − qπt
, πt ∈ V ∪ F

C, πt ∈ {0} ,

Bt =
{

Bt−1 − λdπt−1,πt
, πt ∈ V

Q, πt ∈ F ∪ {0} .

(7)

Then, the compatibility ut is calculated by the query qt = WQgt and key kt
i =

WK [hi;hπt−1,i] with trainable parameters WQ and WK .

ut
i =

{
ζ · tanh( (q

t)T kt
i√

dh
), maskt

i = 1
−∞, otherwise

, (8)

where ζ is used to clip the result. maskt
i = 1 represents that the feasible node i is

unmasked at step t. A node is called feasible or unmasked, if upon its arrival, the
capacity, time window and electricity constraints are not violated. Finally, the
probability distribution to select a node at step t is computed using the softmax
function as follows.

pθ (πt|π0:t−1, G) = softmax(ut). (9)

Two common decoding strategies, which are sampling decoding and greedy
decoding, are adopted to choose a node at each step. A node is chosen according
to the probability distribution in the sampling decoding, or according to the
maximum probability in the greedy decoding.

3.3 Two-Stage Training Strategy

The masking mechanism in DRL methods can be directly applied to EVRPTW
by including the capacity, time window, and electricity constraints [19]. How-
ever, such mechanism would limit the exploration of those infeasible regions,



DRL-TS for Practical EVRPTW 363

thereby impairing the seeking of global-best solutions. In order to enrich the
search space, we propose a two-stage training strategy, which tries to well bal-
ance the exploration and feasibility of the search.

Specifically, in the first stage, the capacity, time window and electricity con-
straints are treated as the soft constraints. Only the constraints ensuring a tour
are retained hard. In this case, node i is masked, i.e., maskt

i = 0, if one of the
following conditions is satisfied.

1) The customer has already been visited before, i.e., i ∈ V and i ∈ {π0:t−1}.
2) The depot has been visited in the last step, i.e., i ∈ {0} and πt−1 = 0.
3) The recharging station is visited by the EV with full electricity, i.e., i ∈

F, πt−1 ∈ F ∪ {0}.

In the second stage, all the original constraints must be respected. In this
case, maskt

i = 0 if one of the following conditions in addition to above three
conditions in the first stage is satisfied.

1) The capacity constraint: Dt−1 < qi.
2) The time window constraint: Tt−1 + tπt−1,i > li.
3) The electricity constraint: Bt−1 < λdπt−1,i +minj∈F∪{0} λdij .

The loss is defined as L(θ|G) = Epθ (π |G)[y(π)], where y(π) is defined as an
uniform form for two training stages as follows.

y(π) =
T∑

t=1

dπt−1,πt
+ α

T∑

t=1

max(Tt−1 + tπt−1,πt
− lπt

, 0)

+ β

T∑

t=1

max(qπt
− Dt−1, 0) + γ

T∑

t=1

max(λdπt−1,πt
− Bt−1, 0)

. (10)

For the first stage, α, β, and γ are respectively three penalties for the violation
of the capacity, time window, and electricity constraints. For the second stage,
y(π) is degenerated to the total traveling distance

∑T
t=1 dπt−1,πt

, since the hard
constraints are considered. L(θ|G) is optimized by gradient descent using the
well-known REINFORCE algorithm with a rollout baseline b(G), as follows.

∇L(θ|G) = Epθ (π |G)[(y(π) − b(G))∇logpθ (π|G)], (11)

θ ← Adam(θ,∇L), (12)

where Adam is the Adam optimizer [13]. The training algorithm is similar to
that in [14], and b(G) is a greedy rollout produced by the current model.

The proportions of the epochs of the first and second stage are respectively
controlled by η and 1 − η, where η is a user-defined parameter.
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3.4 Characteristics of DRL-TS

The characteristics of DRL-TS are summarized as follows.

1) For the policy network, DRL-TS uses GAT with edge features to effectively
tackle the graph input with the asymmetric traveling distance and time
matrix, while DRL-R [19] exploiting coordinates as inputs can only deal
with the symmetric Euclidean traveling distance. In addition, unlike DRL-R
adopting a dynamic T -step encoder based on RNN, which consumes enormous
memory for large-scale cases, DRL-TS uses an efficient one-step encoder.

2) For the training, like most of DRL-based methods, DRL-R [19] directly adopts
the masking mechanism to EVRPTW to ensure a feasible solution. However,
DRL-TS uses a two-stage training strategy. The capacity, time window, and
electricity constraints are all allowed to be violated to enhance exploration in
the first stage, while the original constraints must be satisfied by the masking
mechanism to guarantee feasibility in the second stage.

4 Experimental Results

In this section, we conduct computational experiments to evaluate the proposed
method on practical EVRPTW instances. All the experiments are implemented
on a computer with an Intel Xeon 4216 CPU and an RTX 3090 GPU. The source
code of the proposed algorithm is available on request.

4.1 Experimental Settings

Benchmarks. The practical EVRPTW instances are generated from the real-
world data of the Global Optimization Challenge competition1 held by JD
Logistics, where the traveling distance and time are both asymmetric. For each
instance, each customer i is randomly selected from the entire customer set of
the data. The time window [ei, li], service time (or recharging time) si, traveling
distance dij , and traveling time tij are all directly obtained from the original
data. The time window of the depot [e0, l0] is [8:00,20:00], as the working time
is 720min. Each demand qi is randomly chosen from {1,...,9}. Following the
previous work [14,19], we conduct experiments on the instances with different
customer sizes |V | = 10/20/50/100, denoted as C10/C20/C50/C100. The capac-
ities of EVs Q are correspondingly set to 20/30/40/50. The number of recharging
stations |F | is set to |V |/10. The battery capacity Q is set to 1.6×105. The bat-
tery consumption rate λ is fixed to 1.

Baselines. The following representative methods, including the state-of-the-art
DRL method, exact method, and heuristic method, are considered as baselines
for the comparisons.

1 https://jdata.jd.com/html/detail.html?id=5.

https://jdata.jd.com/html/detail.html?id=5
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1) SCIP2: an open-source exact solver for combinatorial optimization problems,
which solves EVRPTW using the mathematical model described in [26].
SCIP(180s) indicates running the SCIP solver for 180 s.

2) DRL-R [19]: the state-of-the-art DRL method for EVRPTW, which adopts
an RNN-based policy network and uses an ordinary masking mechanism to
train the network.

3) SA-VNS: the combination of simulated annealing (SA) and variable neighbor-
hood search (VNS), which is an especially designed meta-heuristic method
based on [26] for EVRPTW. To efficiently explore the solution space, different
neighborhood operators are employed, including 2-opt, 2-opt*, or-opt, cross-
exchange, merge, and stationInRe. The last operator is specially designed for
EVRPTW [26], while the others are widely used in routing problems [3]. The
SA framework is adopted to avoid local optima. The number of outer iter-
ations is 1000. The linear annealing rate is 0.99. The initial temperature is
10. The number of inner iterations is 10. The six operators are successively
executed in a random order in each inner iteration.

Hyper-parameters. In the encoder, L = 2 GAT-layers are used as in [7]. dh,
M , and ζ are respectively set to 128, 8, and 10 as in [14]. The Adam optimizer
with a constant learning rate 10−4 is adopted to train the model. The penalties
α, β, and γ are all set to 1. Regarding the training, 200 epochs are run. In each
epoch, 250 batches are generated. The batch size is set to 128 for C10/C20/C50
and 64 for C100 due to memory constraints. η is set to 0.5, i.e., 100 epochs are
run both for the first and second stage.

4.2 Comparison Analysis

The experimental results of SCIP, SA-VNS, DRL-R [19] and DRL-TS (ours)
are recorded in Table 1, where the objective value, optimality gap, and average
computing time of an instance are shown. The objective values are normalized
by a scale of 105. The gap of a method is calculated by (Om − Ob)/Ob × 100%,
where Om is the objective value of the compared method and Ob is the best
objective value among all methods. The performance of our method and that of
other methods are all statistically different by the Wilcoxon rank-sum test with
a significance level 1% for each experiment.

From Table 1, it can be seen that our method outperforms DRL-R with both
greedy and sampling decoding. DRL-R is first trained on C20 and then tested
on instances of various sizes like that in [19], since it is a dynamic encoding
model with T steps consuming enormous memory. DRL-TS20 uses the same
training and testing form as DRL-R, but it still outperforms DRL-R. Regard-
ing sampling decoding, it achieves smaller objective values and gaps than greedy

2 https://scip.zib.de/.

https://scip.zib.de/
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Table 1. The average performance of our method and baselines on 1000 random
instances. DRL-TS20/50 means that our proposed model trained on the C20/C50 is
tested on instances of various sizes. G denotes greedy decoding and S denotes sampling
decoding that chooses the best solution from 1280 sampled solutions.

Method C10 C20
Obj. Gap Time/s Obj. Gap Time/s

SCIP(180s) 3.665 0.00% 4.01 5.626 0.00% 146.20
SA-VNS 3.687 0.58% 20.23 5.771 2.58% 27.79

DRL-R(G) 4.172 13.81% 0.01 6.554 16.49% 0.01
DRL-TS20(G) 4.038 10.16% <0.01 6.247 11.04% <0.01
DRL-TS50(G) 4.184 14.15% <0.01 6.425 14.19% <0.01
DRL-TS(G) 3.950 7.76% <0.01 6.247 11.04% <0.01

DRL-R(S) 3.930 7.23% 0.71 6.112 8.63% 1.99
DRL-TS20(S) 3.819 4.18% 0.95 5.903 4.91% 1.67
DRL-TS50(S) 3.818 4.17% 1.24 5.975 6.19% 1.94
DRL-TS(S) 3.796 3.57% 0.91 5.903 4.91% 1.67

Method C50 C100
Obj. Gap Time/s Obj. Gap Time/s

SCIP(180s) 14.499 26.22% 180.00 62.910 217.62% 181.06
SA-VNS 11.693 1.80% 49.87 20.470 3.35% 105.22

DRL-R(G) 13.147 14.46% 0.01 23.197 17.12% 0.03
DRL-TS20(G) 12.642 10.06% <0.01 22.008 11.11% 0.01
DRL-TS50(G) 12.187 6.10% <0.01 21.084 6.45% 0.01
DRL-TS(G) 12.187 6.10% <0.01 20.847 5.25% 0.01

DRL-R(S) 12.155 5.82% 5.26 21.515 8.63% 30.91
DRL-TS20(S) 11.604 1.03% 3.72 20.879 5.41% 12.85
DRL-TS50(S) 11.486 0.00% 3.77 19.844 0.19% 14.97
DRL-TS(S) 11.486 0.00% 3.77 19.806 0.00% 13.10

decoding despite using slightly more computing time, which shows that the sam-
pling strategy can effectively improve the solution quality. SCIP can engender
the optimal solutions for all of C10 instances and 400 instances of C20, but
only feasible solutions for all of C50 and C100 instances, as it suffers from expo-
nentially growing computing time. SA-VNS can produce near-optimal solutions
within reasonable computing time. Our method can rapidly achieve better per-
formance in terms of objective values and gaps for large problem sizes, i.e., C50
and C100, and achieve acceptable performance for small problem sizes. Moreover,
compared with results of DRL-TS that performs best correspondingly trained
on each problem size, the results of DRL-TS20 and DRL-TS50 demonstrate that
the model has a desirable ability of generalization for different problem sizes.

In summary, our method has fast solving speed and high generalization abil-
ity, and it is superior to the state-of-the-art DRL method. For small-scale cases,
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compared with the exact and heuristic methods carefully calibrated for problems,
our method can still produce promising solutions with acceptable gaps.

4.3 Ablation Study

To verify the significance of the two-stage training strategy and the GAT-based
network considering the feature edges, the results of ablation experiments are
shown in Table 2. DRL-H/DRL-S is our proposed GAT-based network trained
only with purely hard/soft constraints, i.e., the same as the second/first stage,
which is used to evaluate the effects of the proposed two-stage training strategy.
DRL-TS w/o E is our proposed policy network without edge features, which is
used to evaluate the effects of the edge features. The results indicate that our
model performs better for both greedy and sampling decoding than that trained
only with the hard or soft constraints and without edge features.

Furthermore, for the two-stage training strategy, the sensitivity of the pro-
portion of the epochs of the first stage η is studied. η = 0 and η = 1 represent
DRL-H and DRL-S, respectively. The results on C50 instances are shown in
Fig. 3. Except η = 0 and η = 1, η has a little influence on the objective value
and η = 0.5 is always a robust strategy. This again verifies the effectiveness of
the two-stage training strategy.

Table 2. Different DRL methods on 1000 random instances.

Method C10 C20 C50 C100
Obj. Gap Obj. Gap Obj. Gap Obj. Gap

DRL-TS(S) 3.796 0.00% 5.903 0.00% 11.486 0.00% 19.806 0.00%
DRL-H(S) 3.833 0.97% 5.931 0.48% 11.551 0.56% 19.965 0.80%
DRL-S(S) 3.819 0.60% 5.990 1.48% 11.729 2.11% 20.298 2.48%
DRL-TS w/o E(S) 4.210 10.91% 6.875 16.47% 15.817 37.70% 30.437 53.67%

DRL-TS(G) 3.950 4.05% 6.247 5.83% 12.187 6.10% 20.847 5.25%
DRL-H(G) 3.971 4.60% 6.257 6.01% 12.248 6.63% 21.121 6.64%
DRL-S(G) 4.024 6.00% 6.483 9.83% 12.769 11.17% 21.515 8.62%
DRL-TS w/o E(G) 4.781 25.95% 8.545 44.76% 18.841 64.03% 34.417 73.77%
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Fig. 3. Effect of the parameter η. (a) Greedy. (b) Sampling.

5 Conclusion

This paper proposes a novel DRL method for the practical EVRPTW. A GAT-
based policy network with edge features is designed to cope with the non-
Euclidean and asymmetric traveling distance and time. A two-stage training
strategy is presented to handle the complicated constraints. The experimental
results based on the real-world asymmetric data verify the effectiveness of the
proposed approach. In the future, the proposed method can be extended to other
VRP variants with practical characteristics and their multi-objective versions.
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Abstract. Nature has spent billions of years perfecting our genetic representa-
tions, making them evolvable and expressive. Generative machine learning offers
a shortcut: learn an evolvable latent space with implicit biases towards better
solutions. We present SOLVE: Search space Optimization with Latent Variable
Evolution, which creates a dataset of solutions that satisfy extra problem criteria
or heuristics, generates a new latent search space, and uses a genetic algorithm
to search within this new space to find solutions that meet the overall objective.
We investigate SOLVE on five sets of criteria designed to detrimentally affect the
search space and explain how this approach can be easily extended as the prob-
lems become more complex. We show that, compared to an identical GA using
a standard representation, SOLVE with its learned latent representation can meet
extra criteria and find solutions with distance to optimal up to two orders of mag-
nitude closer. We demonstrate that SOLVE achieves its results by creating better
search spaces that focus on desirable regions, reduce discontinuities, and enable
improved search by the genetic algorithm.

Keywords: Variational autoencoder · Latent variable evolution · Generative
machine learning · Genetic algorithm

Fig. 1. Search space Optimization with Latent Variable Evolution (SOLVE). An optimizer pro-
duces a dataset of random solutions satisfying an extra criterion (e.g., constraint or secondary
objective). A variational autoencoder learns this dataset and produces a learned latent represen-
tation biased towards the desired region of the search space. This learned representation is then
used by a genetic algorithm to find solutions that meet the objective and extra criterion together.
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1 Introduction

In nature, the mapping from gene to phenotypic effect is hugely complex. Any new
human genetic trait will be propagated through trillions of cells, which via a complex
developmental process involving gene regulatory networks, intercellular communica-
tion, pattern formation and differentiation, results in altered phenotypic characteristics:
an improved ability to taste bitter substances; an increased likelihood of developing an
immunity to certain diseases; a reduced propensity to be creative. There is pervasive
pleiotropy in the human genome [1] and yet like all living organisms, we have evolved
and continue to do so, withmost of our offspring remaining viable as healthy functioning
organisms. Somehow, nature has learned a genetic representation that is astonishingly
expressive, searchable, and despite constant genetic innovation, maps to viable living
creatures that satisfy the multiple criteria of survival.

In evolutionary computation our hand-designed genetic representations are usually
mapped directly to phenotypic effects so that we have minimal pleiotropy. Yet if we
introduce any additional criterion or constraint, our evolutionary algorithms still strug-
gle. From an optimization perspective, the additional criteria distort the search space,
adding discontinuities and deceptive regions that result in ineffective optimization [2].
Typical solutions involve modifying the search operators or the optimization algorithm
to overcome problems in the search space [3–5]. These specialized algorithms may need
tuning for each problem and require expertise, which may not always be available.

Recent work has used autoencoders to learn representations when performing black
box optimization. We extend our previous work [6] and propose a variation of this idea:
learn a better search space. In contrast to previous work which aims to reduce the
problem dimensionality, here we investigate the idea that a generative machine learning
approach could map a difficult-to-search genotype space into an easier-to-search latent
space. This new space would be biased towards solutions that satisfy the additional
criteria to the problem, while at the same time smoothing out discontinuities in the
space, effectively achieving evolution of evolvability [9] by using deep learning as a
shortcut.

To achieve this objective, we introduce SOLVE: Search space Optimization with
Latent Variable Evolution (Fig. 1). SOLVE generates a dataset from problem criteria
(a constraint, secondary objective, or heuristic). A Variational Autoencoder (VAE) [10,
11] is applied to the dataset to generate a learned latent representation biased towards
solutions that satisfy the criteria. A Genetic Algorithm is then used to evolve in the
corresponding latent search space and find solutions that also satisfy the overall objec-
tive. We provide a step-by-step investigation of this approach, examining improvements
provided for optimization in latent space vs. genotype search space through a selection
of different types of criterion. To better isolate the effect of the learned search space, we
employ only a very simple optimizer.

SOLVE is not a multi-objective optimization algorithm – it aims to find single solu-
tions thatmeet one objective andone ormore extra criteria. SOLVE is also not a constraint
satisfaction approach – while constraints can be recast as additional criteria [6], it cannot
guarantee that they will always be met. Instead, SOLVE is a search space optimizer. It is
suitable for difficult problems that can be broken down into separate objectives, criteria
and/or constraints, or that may have important domain knowledge available in the form
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of heuristics or required features. SOLVE shows for the first time that a VAE can be
used to map a difficult-to-search space into a latent space that is easier to search, without
relying on parameter reduction.

2 Background

2.1 Variational Autoencoders

An autoencoder [7] is a neural network originally used for feature learning or dimension-
ality reduction, but its concept became widely popular for learning generative models
of the data. An autoencoder consists of two parts - an encoder p and a decoder q. The
encoder maps the observations x to a (lower dimensional) embedding space z, whereas
the decoder maps the embeddings back to the original observation space. We denote the
reconstructed data as x′. The autoencoder is trained to minimize the reconstruction error
between observation and decoded output and simultaneously project the observations
into the lower dimensional “bottleneck”.

The Variational Autoencoder (VAE) is a probabilistic autoencoder proposed concur-
rently by Kingma et al. [8] and Rezende et al. [9]. The architecture of a VAE is similar to
the one of autoencoders described above. However, instead of encoding an observation
as a single point, VAEs encode it as a distribution over the latent space. Due to its sim-
plicity and the resulting analytical solution for the regularization, the distribution is set
to be an isotropic Gaussian distribution. From a Bayesian perspective, VAEs maximize
a lower bound on the log-marginal likelihood, which is given by

log p(x) ≥ Eqφ

[
log pθ (x|z)

]

︸ ︷︷ ︸
log likelihood

− DKL(q(z|x)||p(z))
]

︸ ︷︷ ︸
latent space regularization

=: −LVAE(x; θ, φ) (1)

where θ are themodel parameters of encoder p andφ are themodel parameters of decoder
q. The expected log-likelihood or “reconstruction”, the first term of Eq. (1), is propor-
tional to the mean squared loss between decoded output and input observation if the
output distribution is Gaussian. The second term of Eq. (1) denotes the Kullback-Leibler
(KL) divergence and measures the similarity between the latent variable distribution q
and a chosen prior p. In the common VAE, the latent variable distribution is isotropic
Gaussian and parameterized through the neural network qφ and the prior distribution
is a Gaussian distribution with zero mean and diagonal unit variance N (0, I). The KL
divergence has an analytical solution. The final minimization objective is

LVAE(x; θ, φ) = −Eqφ

[
log pθ (x|z)

] + DKL(q(z|x)||p(z))
] ∝ ‖x′ − x‖2

+ DKL(q(z|x)||p(z))
]

(2)

2.2 Evolving Latent Variables

The ability of deep learning systems like VAEs to learn representations has not gone
unnoticed by the evolutionary optimization community. Latent variable evolution (LVE)
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techniques first train generative models on existing datasets, such as video game levels,
fingerprints, or faces and then use evolution to search the latent spaces of those models.
Game levels can be optimized for a high or low number of enemies [10], fingerprints to
defeat biometric security [11], celebrity look-alike faces can be generated with varied
hair and eye colors [12], and VAEs can learn alternative search spaces for GP [13].When
no existing dataset of solutions is available, these solution sets must be generated. In [14,
15], solutions were collected by saving the champion solutions found after repeatedly
running an optimizer on the problem.A representation learned from this set of champions
can then be effective in solving similar sets of problems.

Quality-diversity [16, 17] approaches have been blended with LVE to improve opti-
mization in high dimensional spaces. DDE-Elites [18] learns a ’data-driven encoding’ by
training a VAE based on the current collection, and uses that encoding together with the
direct encoding to accelerate search. The related PolicyManifold Search [19] uses aVAE
trained in the same way as part of a mutation operator. Standard and surrogate-assisted
GAs have also been shown to benefit from having learned encodings “in-the-loop” in
order to better tackle high-dimensional search spaces [20, 21].

A learned representation does more than reduce the dimensionality of the search
space – it reduces the range of solutions which can be generated [22]. A model trained
on Mario levels will never produce Pac-man levels, a model trained on predominantly
white faces will only produce white faces. In this work we subvert the biases of models
to limit search to desirable regions. Our previous work introduced this idea for constraint
handling [6], here we expand the concept to problems with additional criteria.

3 Method

The SOLVE approach comprises three steps: Dataset Generation, Representation
Learning, and Optimization.

3.1 Step 1: Dataset Generation

SOLVE decomposes the problem of optimization into stages, similar to [23]: the first
step (Fig. 1 left) is the generation of a set of solutions that meet a criterion, without
regard to their performance on the objective. When the only requirement is to satisfy
a single criterion out of several, the search problem becomes much easier. Where it is
feasible to calculate random values that satisfy the criterion using a dedicated algorithm,
e.g., a constraint solver, this is typically the fastest method. However, it is sufficient to
use a simple genetic algorithm for many criteria.

To produce the dataset of solutions we use the simple genetic algorithm defined in
the DEAP framework [22].We use real encoding, with a real-valued gene corresponding
to each variable of the overall problem including variables that may be in the objective
function and not in the extra criterion. Fitness is defined only by the criterion with a
threshold used to determine acceptability for that criterion. The criterion fitness is zero
if the value is under the threshold, otherwise it is set to a linear distance value representing
the degree to which the criterion has been met, e.g., for 45 – x < = 0: if x < 45 then
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fitness f(x) = 45 – x; otherwise f(x) = 0. If the best individual in the population achieves
a fitness of 0 it is added to the dataset and the run terminates.

The genetic algorithm is run repeatedly until a dataset of d values has been found
(typical execution times for C1 were no more than 10 ms per run, with a dataset of
5000 values taking less than 30 s on a MacBook Air 2020 M1, 16 GB memory). Each
run used different initial populations, producing a distribution of values in the feasible
region. These solutions provide a sampling of the valid region that serves as the basis for
the learned representation. Should coverage be insufficient, or should a more efficient
method be required, alternative algorithms which explicitly search for diversity such
as Clustering [24], Clearing [25], Novelty Search [26], or MAP-Elites [27] could be
employed for this step. Specialized constraint satisfaction algorithms could be used if
the criterion takes the form of a constraint [28, 29].

3.2 Step 2: Representation Learning

Redesigning representations offers an alternative approach to optimization: a represen-
tation that has a bias towards the expression of useful or desirable solutions can enable
simple optimizers to find good solutions, removing the requirement of needing expert
tuning or development of specialized optimization algorithms.

In the second step of SOLVE (Fig. 1 middle), we use a simple VAE1 with a standard
loss function from [8]. We use one latent variable for every variable in the problem. We
transform the input from the dataset to -1.0 to 1.0 (although the data-generation GA was
limited to this range, its output data can focus on a smaller area of the search space and
thus the dataset range may be smaller) and learn for E epochs. We refer the reader to the
Supplemental Material2 for full details.

3.3 Step 3: Optimization

In the third step (Fig. 1 right), we use the objective function for the first time and use
a GA to search for optimal solutions that also satisfy the extra criterion in the learned
latent space. Again, we use DEAP with real encoding, each gene corresponding to a
latent variable with range −2.0 to 2.0 (typically sufficient to express the full learned
range in the latent representation) with the results of all operators bound to this range.
The same crossover and mutation operators are used as described in step 1.

Individuals are evaluated by decoding the latent values using the learnedVAEmodel,
mapping back to the range of the problem, and applying the fitness function. Fitness is
a combination of the criterion, as formulated in Subsect. 3.1, and objective function. To
ensure both are treated equally, we use tournament fitness, which awards individuals
an average fitness score based on how many times it beats another individual for each
objective and criterion over a series of smaller tournaments, similar to [3], chosen to
encourage diversity akin to [30]. This approach avoids the need for summing andweight-
ing separate criteria or using penalties for constraints [2, 31] and preliminary experiments
using this method on benchmark problems with a standard GA resulted in significant

1 https://github.com/pytorch/examples/tree/master/vae.
2 http://www.cs.ucl.ac.uk/staff/p.bentley/solvesupplemental.pdf.

https://github.com/pytorch/examples/tree/master/vae
http://www.cs.ucl.ac.uk/staff/p.bentley/solvesupplemental.pdf
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improvements to optimization with the settings used here. See the Supplemental Mate-
rial for the tournament fitness algorithm. Parent selection is then performed using the
same tournament selection (t size = 3) as described in step 1. A small population size
evolving for few generations is sufficient.

4 Experiments

For all experiments we use a simple objective function to minimize for D variables:

f (x) =
∑D−1

i=0
x2i (3)

Table 1 provides the additional criteria used to modify the search space of Eq. (3).
These represent several commonly observed constraint and optimization functions
inspired by the analysis in [34]: the range limit (C1), correlated variables in the form

Table 1. Extra criteria designed to conflict with the objective optimal.
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Fig. 2. Visualizing the Learned Landscapes. We can observe how the VAE shapes the space to
be searched. Left: x0 and x1 values from −2 to 2 are color-coded to their locations in the learned
space.Others: when these points in the learned space are projected back to the original space they
are confined closely to the valid regions as defined by C1, C2 and C3.

of chained inequality (C2), the more complex Rosenbrock function [32] used in opti-
mization competitions (C3) [35], multiple criteria (C4), and a discontinuous, multimodal
function (C5). For all experiments, the range of the problem (objective and criteria) is
−50 to 50.

4.1 Single Criterion (C1, C2, C3)

We initially focus on problems with one extra criterion. We investigate C1, C2, and C3,
each designed to create a search space that cannot be solved reliably using a standard
GA. The criteria achieve this by conflicting with the true optimal of Eq. (3) forcing
the optimizer to compromise to meet the objective and criterion equally. We apply
each step of SOLVE: generating data, learning new representation, using a GA to find
optimal solutions with this representation. First, we examine the VAE and its learned
representation.

Visualizing Learned Latent Representations. To understand how the learned latent
representation may be beneficial for the GA in SOLVE, we plot the distribution of values
returned by the latent representation as we vary the latent variables from −2 to 2 for C1
and C2. Figure 2 shows how the search space is compressed and folded into the small
valid region for C1. This gives the dual advantage of reducing the search space to focus
on the valid region and improving evolvability through duplication, with different values
for the latent variables mapping to the same valid region. For C2 the space is compressed
into a straight line, showing that the VAE has learned the correlation between the two
variables.

Comparing Learned Latent Representation with Standard Representation. We
examine criteria C1 to C3, using SOLVE to generate valid, optimal solutions and com-
pare results to a standalone GA. The number of parameters D for the objective and
criterion were varied from 1 to 10 to examine the effects of scaling the problem. The
simple GA within step 1 of SOLVE generated data for C1 and C3 (5000 points).

This GA was unable to generate data for C2 for higher dimensions in feasible time,
so 5000 random datapoints were calculated directly from the criterion in this case. The
algorithm is provided in Supplementary Material.
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Fig. 3. Example run showing SOLVE criterion error (far left), SOLVE objective error over time
(middle left), standalone GA criterion error (middle right) and standalone GA objective error over
time (right) for 3 variable C1, and averaged over entire population. Note difference in y-axis scales
for SOLVE and standalone GA results.

Fig. 4. Average error per criteria and average percentage error from best solution, over 100 runs,
for different numbers of variables (D = 1..10). SOLVE always met C1 and C2; almost always C3.
Error bars: mean ± SE.

We compare SOLVE with a standalone GA evolving a direct representation of the
same problem (each gene real coded and bound to between −1.0 to 1.0, and using the
same fitness calculation, selection, population size of 20 and 50 generations). Every run
for both representations was repeated 100 times and average (mean) results reported.
In order to enable comparison of achieving different optimal solutions, we calculate
objective error as difference between f (x) (Eq. 3) and optimal, divided by optimal×100,
and criterion error is distance to criterion divided by number of variables.

Figure 3 shows a representative sample run comparing SOLVE evolution vs. stan-
dalone GA for C1 with D = 3 variables. While the GA struggles to evolve solutions
that satisfy C1 and meet the objective, with evolution becoming stuck in a poor local
optimal, SOLVE is consistently able to evolve solutions that meet C1 and are of high
quality according to the objective. (Similar findings are presented in [6]).

The learned latent representation enables dramatic improvement (two orders of mag-
nitude better) for the evolution of solutions meeting the objective and criteria. Figure 4
shows results for the three criteria with the number of variables increased from 1 to 10.
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In C1 the standalone GA performs equally poorly for criteria and objective in all cases,
while SOLVE achieves all criteria and a good objective for all numbers of variables. In
C2, where variables are correlated, the standalone GA performs worse for larger num-
bers of variables, but objective values improve as the constrained problem reduces the
number of possible good solutions. In contrast, SOLVE consistently nearly alwaysmeets
all criteria and achieves solutions that reach the objective more closely for all numbers
of variables. In the more difficult C3, the standalone GA performs worse for criteria and
objectives as the number of variables increases. SOLVE meets the criteria better and
consistently achieves good objective values.

4.2 Multiple Criteria (C4)

We next consider problems with multiple criteria (C4 in Table 1). This common form of
optimization comprises several criteria and an objective. Each criterion applies only to
a subset of the variables in the problem.

WhileSOLVEmaybe successfully applied to problemswith a single extra criterion as
shown for C1 to C3, for multiple criteria the creation of datasets that comprise examples
of valid solutions for each criterion is incompatible with the VAE. This incompatibility
is caused by the fact that by considering one criterion at a time to keep the problem easily
solvable we can only generate valid values for the subsets of the variables belonging to
that criterion. If we were to create a dataset for each criterion, we would generate valid
values for variables belonging to the criterion in question, and random values for the
free variables. For example, C4.1 applies only to x0 and x1, leaving x2 and x3 free to
take any values; conversely, C4.4 applies only to x2 and x3, leaving x0 and x1 free. The
result would be datasets comprising, in part, random values for all variables – effectively
training the VAE that all values for all variables are valid and removing or even harming
its ability to learn a useful representation. (While a GA could generate one dataset for
all criteria simultaneously, this partially solves the difficult problem that we wish to
transform by the VAE, defeating the objective of the work.)

The solution is to layer SOLVEs. We generate a latent representation for the first
criterion, and then use theGAwith the learned latent representation to create a dataset for
the second criterion, which is used to learn a new latent representation that encapsulates
both criteria, and so on, until all criteria have been learned in turn. The final latent
representation is then used with all criteria and the objective to evolve optimal solutions
that meet all criteria together, Fig. 5.

To assess the advantages of using a learned latent representation for multiple criteria,
we used C4 with the same objective and compared a standalone GA against the original
SOLVE and the LayeredSOLVE. We grow the difficulty incrementally, first trying C4.1
andC4.2with a 2-layer SOLVE, thenC4.1, C4.2, C4.3with a 3-layer SOLVE, and finally
C4.1, C4.2, C4.3, C4.4 with a 4-layer SOLVE (using 4 variables for all). To determine
whether the order of the criteria alters the results, we also perform the same experiment,
this time ordered: C4.1, C4.2, C4.4, C4.3. Figure 6 shows the results.

The results show that the original SOLVE offers little advantage compared to the
standalone GA, both showing poor performance and large variance over the 100 runs. In
contrast, the LayeredSOLVE can meet the criteria better, and enable solutions close to
the optimum to be found, both with high consistency. The experiments also show that the
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Fig. 5. LayeredSOLVE for two criteria over different subsets of problem variables. The number
of stacks = number of criteria in the problem.

Fig. 6. Average error per criterion (average degree to which each criterion was broken) and
average percentage error from best solution, over 100 runs, for a standalone GA, SOLVE and
LayeredSOLVE, for 2, 3 and 4 criteria on 4 variables. Left two charts: C4.1, C4.2, C4.3, C4.4;
Right two charts: C4.1, C4.2, C4.4, C4.3. Error bars: mean ± SE.

order in which criteria are presented to LayeredSOLVE has an effect. When presenting
the “stricter” C4.4 before C4.3, the criteria are better satisfied. (Although the objective
error increases, analysis of the solutions shows the better objective error observed for
cases where criteria are not met are caused by the standalone GA cheating – criteria
are conflicted to have invalid but deceptively good objective scores.) The notion that
criteria more difficult to satisfy should be presented first to an algorithm was exploited
in [36] where constraints are ordered according to “the sum of the constraints violations
of all solutions in the initial population from the least violated to the most violated”. Our
results suggest that using the same strategy in the LayeredSOLVE will also improve its
ability to satisfy all criteria.

4.3 Discontinuous Criteria (C5)

Finally, we focus on discontinuous problems. While SOLVE has been successfully
applied to single (C1–C3) and multiple (C4) criteria problems, discontinuous criteria
provide a challenge for the SOLVE model used in Sect. 4.1. We use an intuitive two-
dimensional discontinuous constrained optimization problem (Table 1 C5). The problem
is based on the well-known DeJong #5 function [33, 37], designed as a multimodal opti-
mization benchmark, adjusted to create discontinuous valid regions and rotated to make
it non-trivial for our optimizer, akin to [35].

This problem is difficult for a standalone GA, but its discontinuous nature is also
incompatible with the use of a simple VAE, which attempts to fit a single Gaussian
distribution to the set of valid points, i.e., it assumes a Gaussian distribution N (0, I) as
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Fig. 7. Average error per criterion (average degree to which each criterion was broken) and
average percentage error from best solution, over 100 runs, for original SOLVE, SOLVEwith flow
model (SOLVEfm), and a standalone GA for criterion C5. Average criterion error for SOLVEfm
is zero. Error bars: mean ± SE.

Fig. 8. Visualizing the learned latent representation. A: Sampling space from -2 to 2. B: Points
projected onto space learned by a simple VAE.C: Points projected onto space learned byVAEwith
normalizing flow prior (SOLVEfm). D: Latent space colored by valid and invalid regions – this is
the transformed landscape searched by SOLVEfm.

prior. The solution to improve expressivity in SOLVE is to increase the complexity of
the VAE prior (i.e., “the structure of the sampling space”). While a Gaussian distribution
allows for easy sampling and theKLdivergence termcan be calculated in closed form, for
many datasets the representation is much more complicated than Gaussian distribution.
For discontinuous criterion C5, we use a normalizing flow [38] as prior. A normalizing
flow transforms a simpleGaussiandistribution into a complexoneby applying a sequence
of invertible transformations. Given the chain of transformations, we change the latent
variable to obtain a more complex target variable according to the change of variables
theorem.

We compare the standalone GA with SOLVE and SOLVE using a normalizing flow
VAE on C5 plus the usual objective function, reporting the average results of 100 runs.
Figure 7 shows that the standalone GA and original SOLVE find valid solutions with
large variance but fail to locate the optimummuch of the time. SOLVEwith normalizing
flow model (denoted as SOLVEfm in Fig. 7) finds valid solutions with high consistency
and finds better solutions for the objective with smaller variance.

We can understand how this result is achieved by examining Fig. 8. When using a
simple VAE within SOLVE, the VAE fails to learn a good representation for the nine
unbalanced and separated data modes for valid solutions (Fig. 8B). The generated data
from the simple VAE tries to cover the center of the data, however, it misses some
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data modes and covers many invalid regions, making this learned representation little
different (and potentially inferior) to the original representation. Figure 8C shows the
resulting expressed values for the flow-based model. Even though we observe some
samples in the invalid regions, the flow-based model is able to cover most modes of the
criterion, thus reducing the search space to the valid regions. Figure 8D illustrates how
this representation “connects the disconnected” – transforming the discontinuous space
into a more connected region, conducive to search.

The advantages of this method still need to be weighed against the generation of
datasets, which even when the problem has been simplified by considering just one
criteria at a time, requires computation time, see [6] for discussion. A comparison of the
quality of SOLVE solutions should also be made with state-of-the-art optimizers.

5 Conclusions

Nature achieved evolution of evolvability in its genetic representations through a compu-
tationally expensive process that is infeasible for us to duplicate. Here we have demon-
strated a viable alternative: SOLVE, which uses generative machine learning to learn
better representations for search. Using this method, not only can we bias the representa-
tion so that it focusses mainly on desirable regions of the space according to extra criteria
or constraints, but the nature of the Kullback-Leibler (KL) divergence used for regular-
izationwithin theVAEprovides a natural “smoothing” effect on the resulting latent space
akin to the notion of evolvability, which can change a discontinuous space into a con-
tinuous space enabling highly effective search by the optimizer. We have demonstrated
that with zero dimensionality reduction (i.e., using the same number of latent variables
as problem variables), SOLVE can map different forms of hard-to-search spaces onto
improved latent spaces. These spaces enable even a simple optimizer to achieve sub-
stantive performance increases in terms of quality of solution found and effort required
to find that solution, as evidenced by the small population sizes and low number of
generations required for the GA within SOLVE.

This work used a GA for data generation and optimization and a VAE for represen-
tation learning, but other equivalent approaches could be employed within SOLVE. The
field of generative machine learning continues to advance at a great pace, so we antici-
pate that the integration of these newer techniques into optimization for the purposes of
generating improved search spaces will be a fruitful area of research going forwards.

Source Code. The source code necessary to reproduce the experiments in this paper is available
at: https://github.com/writingpeter/SOLVE.
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Abstract. Generative adversarial imitation learning (GAIL) learns an
optimal policy by expert demonstrations from the environment with
unknown reward functions. Different from existing works that studied
the generalization of reward function classes or discriminator classes, we
focus on policy classes. This paper investigates the generalization and
computation for policy classes of GAIL. Specifically, our contributions lie
in: 1) We prove that the generalization is guaranteed in GAIL when the
complexity of policy classes is properly controlled. 2) We provide an off-
policy framework called the two-stage stochastic gradient (TSSG), which
can efficiently solve GAIL based on the soft policy iteration and attain
the sublinear convergence rate to a stationary solution. The comprehen-
sive numerical simulations are illustrated in MuJoCo environments.

Keywords: Generative adversarial imitation learning ·
Generalization · Computation · Policy classes

1 Introduction

Imitation learning (IL) [1,16,23,30,33,36], a powerful and practical alternative
to reinforcement learning (RL) [24,32], aims at recovering expert policies from
limited demonstration data. It has been widely applied to decision-making in
many complex fields, including robotics [17], autonomous driving [6], and rec-
ommendation systems [31].

Promoted by increasingly sophisticated sequential decision tasks, IL mainly
includes two kinds of algorithms: behavioral cloning (BC) [5,26,34] and adver-
sarial imitation learning (AIL) [1,33,39]. BC attempts to minimize the differ-
ence between the agent and expert policies, and converts the IL task to ordi-
nary regression or classification [26,34]. AIL mimics the expert policy through
the state-action distribution matching, which mitigates the compounding error
[26,27]. For large and high-dimensional environments, traditional BC and AIL
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13398, pp. 385–399, 2022.
https://doi.org/10.1007/978-3-031-14714-2_27
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are not good at imitating complex expert policies. As a generalization of AIL,
generative adversarial imitation learning (GAIL) [16] formulates the IL problem
as a min-max optimization based on dual representation, which can be efficiently
solved by stochastic gradient algorithms. Many empirical studies with the com-
plicated environment based on GAIL have been successfully conducted [9,17,31].

Unfortunately, theories on GAIL are less complete. Chen et al. [8] analyzed
the generalization capability of R-distance, which is essentially an integral prob-
ability metric (IPM) [22]. Then Xu et al. [36] utilized the neural network distance
[3] to link the generalization capability with the expected return. Existing works,
however, mainly focus on the properties of reward functions or discriminator
classes. R-distance and neural network distance can analyze the generalization
capability of reward function classes or discriminator classes well. The discrimi-
nator aims to maximize the difference between the expert and the learned poli-
cies, while the learned policy contributes to making itself as close to the expert
policy as possible. As a result, R-distance and neural network distance are not
suitable for depicting the generalization property of policy classes.

In this paper, we introduce a novel state-action distribution error, which
investigates the infimum of the expected return gap between the expert pol-
icy and the policy class. Furthermore, this new definition can normalize the
reward function as a distribution. Simultaneously, we prove that the generaliza-
tion is guaranteed in GAIL when the complexity of policy classes is properly
controlled. Moreover, GAIL easily suffers from the phenomenon that the dis-
criminator learns faster than the policy. Such an imbalance has a bad impact on
the convergence of GAIL [37]. Our policy generalization ensures that the com-
putation of GAIL can be performed using reproducing kernel policy functions.
Based on reproducing kernel reward functions [8] and reproducing kernel pol-
icy functions, we consider a slightly modified constrained min-max optimization
problem from the primal problem for more sufficient explorations to enhance the
policy in both performance and sample efficiency. Inspired by the success of the
updating strategy of soft policy iteration in soft actor-critic (SAC) [10,13–15], we
leverage the two-stage stochastic gradient (TSSG) with the automatic entropy
tuning to our framework. TSSG can efficiently solve GAIL and attain sublinear
convergence to a stationary solution.

2 Preliminaries

2.1 Markov Decision Process

We take an infinite-horizon Markov decision process (MDP) [24,32,36] into con-
sideration. It is formalized by the tuple (S,A, p(s′|s, a), r(s, a), γ, p(s0)), i.e.,
the finite state space S, the finite action space A, the transition distribution
p(s′|s, a) : S × A × S → [0, 1], the reward function r(s, a) : S × A → R, the
discount factor γ ∈ (0, 1), and the initial state distribution p(s0) : S → [0, 1].

We define dπ(s) = (1 − γ)
∑∞

t=0 γtPr(st = s;π) as the discounted stationary
state distribution. It measures the overall “frequency” of visiting a state under the
policy π. Similarly, the discounted stationary state-action distribution is defined
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as ρπ(s, a) = (1 − γ)
∑∞

t=0 γtPr(st = s, at = a;π), measuring the overall “fre-
quency” of visiting a state-action under the policy π.

The goal of RL is to find a policy π� that maximizes the expected return,
i.e., maxπ∈Π Vπ = maxπ∈Π Eπ [

∑∞
t=0 γtr(st, at)], where st+1 ∼ p(·|st, at) and Π

is the policy class. Another equivalent formulation of Vπ is

Vπ =
1

1 − γ
E(s,a)∼ρπ

[
r(s, a)

]
. (1)

2.2 Generative Adversarial Imitation Learning

IL [1,16,23,30,33,36] requires expert demonstrations to train a policy. The pur-
pose of IL is to minimize the expected return gap between πE and π ∈ Π, i.e.,
VπE − Vπ, where πE is the expert policy.

GAIL [16] uses a discriminator to provide rewards for the agent. To dis-
tinguish whether a state-action is from the expert demonstration or generated
by the agent, the optimization objective of the discriminator D(s, a) from the
discriminator class D can be written as

max
D∈D

E(s,a)∼ρπE [log(D(s, a))] + E(s,a)∼ρπ [log(1 − D(s, a))].

The target of the agent is to minimize the discrepancy between the distri-
butions generated by the agent and the expert. With the reward function
r(s, a) = − log(1−D(s, a)), the optimization objective of the agent is formalized
as maximizing its expected return:

max
π∈Π

E(s,a)∼ρπ [− log(1 − D(s, a))].

3 Related Work

IL [1,16,23,30,33,36] trains a policy by learning from expert demonstrations.
GAIL [16], a famous IL algorithm, has achieved vital empirical progress [6,17,31].

In the theoretical aspect, R-distance dR(π, π′) [8] is defined as dR(π, π′) =
supr∈R{Eπ[r(s, a)]−Eπ′ [r(s, a)]} for two policies π and π′, as well as the reward
function class R. The generalization of R-distance can be guaranteed as long
as the class of the reward functions is properly controlled for GAIL with gen-
eral reward parameterization [8]. In [8], the authors also designed convergent
stochastic first-order optimization algorithms to solve the min-max optimiza-
tion in GAIL, but they set the entropy regularizer as an unchangeable constant.
Our paper regards the entropy regularizer as dynamically updated to capture
the change in the policy. Zhang et al. [38] studied a gradient-based algorithm
with alternating updates and established its sublinear convergence to the glob-
ally optimal solution of GAIL. Then Guan et al. [12] characterized the global
convergence with a sublinear rate for a broad range of commonly used policy
gradient algorithms. In terms of generalization, the closest work to ours is [36],
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where the authors considered the generalization capability of GAIL. In particu-
lar, they analyzed the generalization capability of discriminator classes but they
did not provide the result for policy classes, which is another way of learning
the generalization of GAIL. Besides, they also focused on the value discrepancy
of BC and GAIL respectively [35,36].

4 Generalization for Policy Classes of GAIL

4.1 State-Action Distribution Error

First, we take a classic example.

Example 1. Here we set a toy environment to elaborate on the gap between the
expert policy and the policy class. In an adversarial environment, the state si

can be viewed as the opponent in a two-player game and the action aj as our
response. Note that for a state-action pair (si, aj), if j ≥ i, the player loses the
game. Likewise, if j < i, the player wins the game. The policy class Π contains
six policies.

Fig. 1. An example depicting the gap
between the expert policy and the policy
class. The scoring mechanism is determined
by a discriminator D.

The scoring mechanism states the
score for each win or loss in the game,
which can be determined by a discrim-
inator D. In Fig. 1, we discover that
the score for D1 is 1 per win and −2
per loss. Similarly, the score for D2 is
3 per win and −1 per loss. The total
score gap between the expert and the
policy class for all games in the dis-
criminators D1 and D2 are 1−(−2) =
3 and 8 − 4 = 4 respectively, which
implies that the total score gaps in
various discriminators are different.

An error is introduced to measure
the discrepancy between the distributions generated by the expert and agent,
which aims to learn the closest policy in the policy class Π to the expert policy.
The error essentially describes the infimum of the expected return gap between
the expert policy and the policy class.

Definition 1. (State-action distribution error) Given an expert policy πE,
a policy class Π and a fixed discriminator D ∈ (0, 1)S×A, the state-action
distribution error between πE and Π is

e(CDρπE , CDρΠ)

= inf
π∈Π

{E(s,a)∼ρπE

[ − log(1 − D(s, a))
] − E(s,a)∼ρπ

[ − log(1 − D(s, a))
]},

where CD = −∑
(s,a)∈S×A log(1 − D(s, a)) denotes the discriminant coefficient

and ρΠ is the state-action distribution functional class induced by Π.
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Remark 1. The reward function r(s, a) = − log(1 − D(s, a)) is not a distribu-
tion, and we normalize it by D(s, a) = r(s, a)/CD. Intuitively, this state-action
distribution measures the overall “frequency” of visiting a state-action according
to the discriminator D. Then Definition 1 can be rewritten as

e(CDρπE , CDρΠ) = CD inf
π∈Π

{E(s,a)∼D

[
ρπE(s, a) − ρπ(s, a)

]}. (2)

Actually, Eq. (2) is equivalent to Definition 1:

e(CDρπE , CDρΠ) = CD inf
π∈Π

{E(s,a)∼D

[
ρπE(s, a) − ρπ(s, a)

]}

= CD inf
π∈Π

{
∑

(s,a)∈S×A
ρπE(s, a)

− log(1 − D(s, a))
CD

−
∑

(s,a)∈S×A
ρπ(s, a)

− log(1 − D(s, a))
CD

}

= inf
π∈Π

{
∑

(s,a)∈S×A
ρπE(s, a)

[ − log(1 − D(s, a))
]

−
∑

(s,a)∈S×A
ρπ(s, a)

[ − log(1 − D(s, a))
]}.

In addition, the learned policy is fixed to investigate the generalization capability
of the reward function class or discriminator class [8,36]. The discriminator D
is required to be fixed while dealing with the generalization capability of policy
classes in comparison.

Remark 2. In Example 1, e(CDρπE , CDρΠ) is the total score gap between the
expert and the policy class for all games.

The purpose of a discriminator is to maximize the difference between the
expert policy and the learned policy. Accordingly, GAIL maximizes the empirical
state-action distribution error

e
(( −

m∑

i=1

log(1 − D(s(i)D , a
(i)
D ))

)
ρπE ,

( −
m∑

i=1

log(1 − D(s(i)D , a
(i)
D ))

)
ρΠ

)
,

where {(s(i)D , a
(i)
D )}m

i=1 is the demonstration samples collected by D. Similarly, the
empirical state-action distribution error is defined as follows.

Definition 2. Given an expert policy πE, a policy class Π and a fixed discrim-
inator D ∈ (0, 1)S×A, the empirical state-action distribution error between πE

and Π is

e(ĉ(m)
D ρπE , ĉ

(m)
D ρΠ) = ĉ

(m)
D inf

π∈Π
{E(s,a)∼D̂

[
ρπE(s, a) − ρπ(s, a)

]},

where ĉ
(m)
D = −∑m

i=1 log(1 − D(s(i)D , a
(i)
D )) denotes the empirical discriminant

coefficient and D̂ is the empirical version of D with m samples, i.e., D̂(s(i)D , a
(i)
D ) =

− log(1 − D(s(i)D , a
(i)
D ))/ĉ

(m)
D means the empirical “frequency” of visiting a state-

action according to D.
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4.2 Generalization Properties for Policy Classes

To facilitate later analysis, we present the upper bound with respect to the
state-action distribution and the discriminant coefficient in Assumption 1.

Assumption 1. Given πE and a fixed discriminator DI, suppose that there is
an upper bound BΠ on the product of the discriminant coefficient and the state-
action distribution functional class induced by (i) the policy class Π, (ii) the
expert policy πE, i.e., for all π ∈ Π, max(s,a)∈S×A {CDIρ

π(s, a), CDIρ
πE(s, a)} ≤

BΠ .

We now show the result on the generalization property for policy classes in
the view of distribution error. We denote the empirical Rademacher complex-
ity [21,29,36] of CDρΠ on m samples Z = {(s(i)D , a

(i)
D )}m

i=1 as R̂
(m)
D

(CDρΠ) =

Eσ

[
1
m supπ∈Π{∑m

i=1 σiCDρπ(s(i)D , a
(i)
D )}

]
, where σi is the independent and iden-

tically distributed (i.i.d.) Rademacher random variable for i = 1, ...,m.

Theorem 1. (Generalization for policy classes of distribution error)
Suppose Assumption 1 holds, and for any ε̂ > 0, given DI and πE with

e(ĉ(m)
DI

ρπE , ĉ
(m)
DI

ρΠ) ≥ sup
D∈D

{e(ĉ(m)
D ρπE , ĉ

(m)
D ρΠ)} − ε̂,

then

e(CDIρ
πE , CDIρ

Π)

≥ sup
D∈D

{e(ĉ(m)
D ρπE , ĉ

(m)
D ρΠ)}

︸ ︷︷ ︸
Appr(D,m)

−2R̂(m)
DI

(CDIρ
Π) − 8BΠ

√
log(3/δ)

2m︸ ︷︷ ︸
Estm(Π,m,δ)

−ε̂

for all δ ∈ (0, 1), with a probability of at least 1 − δ.

Proof Sketch. To prove Theorem 1, we decompose the state-action distribution
error e(CDIρ

πE , CDIρ
Π) into three parts: the approximation error Appr(D,m),

the estimation error and the optimization error −ε̂, where Appr(D,m) corre-
sponds to the approximation error induced by the limited discriminator class.
Then we only need to study the lower bound Estm(Π,m, δ) of the estimation
error. Here Estm(Π,m, δ) denotes the estimation error of GAIL regarding the
complexity of the policy class and the number of samples. For detailed proof,
please refer to the Supplementary Material1. ��

Theorem 1 implies that the generalization of state-action distribution error
can be guaranteed as long as the complexity of policy class Π is properly con-
trolled. Concretely, a simpler policy class increases the estimation error, then
tends to increase the state-action distribution error.
1 The Supplementary Material is released at

https://github.com/MDM-shu/GAIL-Policy-Generalization-and-TSSG.

https://github.com/MDM-shu/GAIL-Policy-Generalization-and-TSSG
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Additionally, applying Dudley’s entropy integral [8], we can further connect
R̂

(m)
DI

(CDIρ
Π) with the covering number [21]. Then we study the generalization

property of state-action distribution error in terms of the covering number, which
is a direct consequence of Theorem 1. For detailed proof, please refer to the
Supplementary Material.

Example 2. (Reproducing kernel policy function) One available choice to
parameterize the product of the state-action distribution functional class and the
discriminant coefficient is the reproducing kernel Hilbert space (RKHS) [18,19].
We consider the feature mapping approach. To be specific, h : Rn × R

m → R
p

is taken into account, and the product of the state-action functional class and
the discriminant coefficient can be written as CDIρ

π(s, a) = CDIρ
πθ (ψs, ψa) =

θ�h(ψs, ψa), where h satisfies Assumption 2 and θ ∈ R
p.

Assumption 2. The feature mapping h satisfies h(0, 0) = 0, where h is Lips-
chitz continuous with respect to (ψs, ψa), i.e., there exists a positive constant Lh

such that for any ψs, ψa, ψ′
s, ψ

′
a, we have

‖h(ψs, ψa) − h(ψ′
s, ψ

′
a)‖2 ≤ Lh

√
‖ψs − ψ′

s‖22 + ‖ψa − ψ′
a‖22.

Moreover, for all s ∈ S and a ∈ A, we have ‖ψs‖2 ≤ 1 and ‖ψa‖2 ≤ 1.

Assumption 2 is a standard condition for studying the properties of popular
feature mappings [4,8,25]. A step further, we investigate the generalization of
GAIL using feature mapping (see Corollary 1).

Corollary 1. Suppose Assumption 2 holds and ‖θ‖2 ≤ Bθ. Then

e(CDIρ
πE , CDIρ

Π) ≥ sup
D∈D

{e(ĉ(m)
D ρπE , ĉ

(m)
D ρΠ)}

− 8
m

− 24BΠ√
m

√

p log(1 + 2
√
2mBθLh) − 8BΠ

√
log(3/δ)

2m
− ε̂

with a probability of at least 1 − δ.

Proof Sketch. We first exploit the Lipschitz continuity of CDIρ
π(s, a) with

respect to the parameter θ. Then applying the standard argument of the volume
ratio, we bound the covering number. For detailed proof, please refer to the
Supplementary Material. ��

Example 2 shows that, with respect to a class of properly normalized repro-
ducing kernel policy functions, GAIL generalizes in terms of the state-action
distribution error.

Based on Theorem 1, we can obtain the result of the generalization capa-
bility of GAIL from the perspective of the expected return between the expert
policy and the best-learned policy. This best-learned policy is based on the given
discriminator DI in the policy class Π.
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Theorem 2. (GAIL Generalization for policy classes) Under the same
assumption of Theorem 1, we have

VπE − sup
π∈Π

Vπ ≥ 1
1 − γ

(
Appr(D,m) + Estm(Π,m, δ) − ε̂

)

with a probability of at least 1 − δ.

Proof Sketch. Combining the definition of Vπ in Eq. (1) with the reward func-
tion of GAIL, we get the relationship between VπE − supπ∈Π Vπ and the state-
action distribution error. Then plugging the result into the conclusion of Theo-
rem 1, we complete the proof of Theorem 2. For detailed proof, please refer to
the Supplementary Material. ��

Theorem 2 discloses that the generalization is guaranteed in GAIL when the
complexity of policy classes is properly controlled. Moreover, Theorem 2 implies
a necessary condition (the right-hand side less than or equal to zero) for the
learned policy to outperform the expert policy. Future work could be sufficient
conditions for the learned policy to outperform the expert policy.

5 Two-Stage Stochastic Gradient Algorithm

In this section, we show the computational properties of GAIL, which are the
direct application of Example 2 and reproducing kernel reward functions [8].
Particularly, the reward function can be parameterized by r(s, a) = rφ(ψs, ψa) =
φ�g(ψs, ψa), φ ∈ R

q, where g is based on the following assumption.

Assumption 3. [8] The feature mapping g satisfies g(0, 0) = 0, and there exists
a constant Lg such that for any ψs, ψa, ψ′

s, ψ
′
a, we have

‖g(ψs, ψa) − g(ψ′
s, ψ

′
a)‖2 ≤ Lg

√
‖ψs − ψ′

s‖22 + ‖ψa − ψ′
a‖22.

Assumption 3 is consistent with Assumption 2. For computational convenience,
a slightly modified min-max optimization problem from the primal problem with
a constraint condition

min
θ

max
‖φ‖2≤κ

E(s,a)∼ρπE [rφ(s, a)] − E(s,a)∼ρπθ [rφ(s, a)] − μ

2
‖φ‖22

s.t. E(st,at)∼ρπθ

[ − log(πθ(at|st))
] ≥ H0, (3)

is considered. Here E(st,at)∼ρπθ

[ − log(πθ(at|st))
]
= Est∼dπθ

[
H(πθ(·|st))

]
is the

entropy regularizer for the policy, H0 is a desired minimum expected entropy
[15] and μ > 0 is a tuning parameter.

Based on SAC, the constraint in Eq. (3) is usually tight. It is unnecessary to
impose an upper bound on the entropy [15]. Compared with the primal problem,
this optimization problem with constraint conditions supports:

(i) Any useful action is not omitted in the learned policy that corresponds with
the idea of maximum entropy RL.
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(ii) Computational stability is improved in practice.

Then the optimization problem of Eq. (3) can be transformed into two sub-
problems:

(i) For a fixed φ, the sub-problem is

min
θ

−E(s,a)∼ρπθ [rφ(s, a)] s.t. E(st,at)∼ρπθ

[ − log(πθ(at|st))
] ≥ H0. (4)

(ii) For a fixed θ, the sub-problem is

max
‖φ‖2≤κ

E(s,a)∼ρπE [rφ(s, a)] − E(s,a)∼ρπθ [rφ(s, a)] − μ

2
‖φ‖22. (5)

By the fact that minθ −E(s,a)∼ρπθ [rφ(s, a)] = maxθ Eπθ
[
∑T

t=0 γtrφ(st, at)], Eq.
(4) is equivalent to:

max
θ

min
α≥0

Eπθ
[

T∑

t=0

γtrφ(st, at)] + α(E(st,at)∼ρπθ

[ − log(πθ(at|st))
] − H0). (6)

To solve the optimization problem in Eq. (3), the inner and outer layers are
updated alternately. The framework of TSSG is shown in the Supplementary
Material.

In the inner layer , we introduce the soft alternating mini-batch (SAM)
submodule. Specifically,

Update of θ: we follow the soft policy improvement in SAC to solve the
min-max optimization problem in Eq. (6). Particularly, the optimized objective
functions of the value network and the policy network are denoted by

JQ(w; θ, φ, α) = E(st,at)∼DI

[1
2
(
Qsoft

w (st, at; θ, φ) − (rφ(st, at)

+ γEst+1∼p(·|st,at)[V
soft
w (st+1)])

)2
]
,

F (θ;w, φ, α) = Jπ(θ) + E(s,a)∼ρπE [rφ(s, a)] − μ

2
‖φ‖22,

respectively, where DI denotes the experience replay buffer [20] of SAC. The value
function is implicitly parameterized through the soft Q-function parameters via:

V soft
w (st) = Eat∼πθ

[Qsoft
w (st, at; θ, φ) − α log(πθ(at|st))]. (7)

Jπ(θ) is the objective function in SAC:

Jπ(θ) = Est∼DI

[
Eat∼πθ

[α log(πθ(at|st)) − Qsoft
w (st, at; θ, φ)]

]
. (8)

Both Eq. (7) and Eq. (8) are referred to [14,15]. For the reason that �θF = �θJπ,
the convergence of SAC is not affected. Therefore, we take

wt+1 = wt − ηw

nw

∑
j∈Dt

w
�wJ̃

(j)
Q (wt; θt, φ̂(θ(k)), αt), (9)

θt+1 = θt − ηθ

nθ

∑
j∈Dt

θ
�θf̃

(j)(θt;wt+1, φ̂(θ(k)), αt) (10)
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at the (t+1)-th iteration, where ηw and ηθ are learning rates of w and θ respec-
tively. �wJ̃

(j)
Q ,�θf̃

(j) are independent stochastic approximations of �wJQ and
�θF , and Dt

w,Dt
θ are mini-batches with sizes nw and nθ respectively. Note that

φ̂(θ(k)) is the unbiased estimator of the sub-problem Eq. (5):

E[φ̂(θ(k))] = φ�(θ(k))

= argmax
φ

E(s,a)∼ρπE [rφ(s, a)] − E(s,a)∼ρπθ [rφ(s, a)] − μ

2
‖φ‖22, (11)

which is the direct consequence of [8].
Update of α: we claim that α is not only a Lagrange multiplier but also

an entropy temperature parameter. Thus, α can be self-updated directly by the
loss function J(α; θ) = Eat∼πθ

[−α log(πθ(at|st))−αH0

]
introduced in SAC [15].

Therefore, we take the (t + 1)-th iteration as

αt+1 = αt − ηα�αJ̃
(k)
t (αt; θt+1), (12)

where ηα is the learning rate of α and �αJ̃
(k)
t is a stochastic approximation of

�αJ .
Moreover, two Q-functions in the SAM submodule are used to restrain the

overestimation of the value function.
The pseudocode for the SAM submodule is presented in Algorithm 1.

Algorithm 1 SAM submodule: θT = SAM(θ0;w0, α0, φ)
Input: θ0 ∈ R

p, w0 ∈ R
d, α0 ∈ R, fixed φ ∈ R

q;
Output: θT .
1: for t = 0, ..., T − 1 do
2: Apply Eq. (9) and Eq. (10) to update wt+1 and θt+1 respectively.
3: Apply Eq. (12) to automate entropy adjustment for αt+1.
4: end for

In the outer layer , we introduce the TSSG algorithm. φ is updated by Eq.
(11) and θ is updated by the SAM submodule, where w

(k)
T = w

(k+1)
0 , θ

(k)
0 = θ(k),

θ
(k)
T = θ(k+1) and α

(k)
T = α

(k+1)
0 .

The pseudocode for TSSG is presented in Algorithm 2.
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Algorithm 2 TSSG
Input: Expert demonstrations D�, an empty dataset DI, θ(0) ∈ R

p, w
(0)
0 ∈ R

d, α
(0)
0 ∈

R;
Output: θ(N).
1: for k = 0, ..., N − 1 do
2: Collect samples with πθ(k) . Add them to DI.
3: Apply Eq. (11) using data from DI and D� to update φ̂(θ(k)).
4: Apply the SAM submodule (Alg. 1) using data from DI to update the policy:

θ(k+1) = SAM(θ(k);w
(k)
0 , α

(k)
0 , φ̂(θ(k))).

5: end for

The convergence analysis of TSSG is in the Supplementary Material. The
result shows that TSSG attains sublinear convergence to a stationary solution.
Compared with the alternating mini-batch stochastic gradient algorithm and the
greedy stochastic gradient algorithm in [8], TSSG involves a dynamic entropy
regularizer rather than regarding it as an unchangeable constant.

6 Experiments

In the sequel, we compare the TSSG algorithm with some AIL variations. The
sensitivity of inner layer steps T is shown in Subsect. 6.2.

6.1 Evaluation and Results

The purpose of IL is to recover the expert policy based on limited expert demon-
strations. These demonstrations are typically collected from human experts or
static datasets in practice. In our experiment settings, to create such an expert
for generating demonstrations, we utilize a trained model-free SAC [15] agent
to simulate the expert policy in Hopper-v2, Walker2d-v2 and HalfCheetah-v2
respectively. The demonstration data containing a buffer size of 106 is obtained
with 0.01 standard deviation in each environment. The imitator aims to achieve
expert-level control under the limited buffers. The mean return of the demon-
stration data in each environment is listed in Table 1.

Table 1. Mean return of the
demonstration data in MuJoCo
environments.

Environment Mean return
Hopper-v2 3433
Walker2d-v2 3509
HalfCheetah-v2 9890

When training imitation learning approaches,
we compare two contenders in all the afore-
mentioned environments. The first is adversar-
ial inverse reinforcement learning (AIRL) [11]
where the policy parameters are updated by
the proximal policy optimization (PPO) [28].
The second is GAIL with PPO, where the
parameters of the kernel function are updated
by the greedy stochastic gradient algorithm [8].
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We use the same neural network architecture in all experiments. We establish
a multi-layer perceptron (MLP) structure to build the policy network, the Q-
functions and the discriminator network. To implement the kernel function, we
use two layers of the neural network to mimic the random feature mapping [2,7].

Fig. 2. Performances of the three algorithms.

We set T = 32 in Hopper-v2, T = 64 in Walker2d-v2 and T = 32 in
HalfCheetah-v2 for the TSSG algorithm. Figure 2 shows the performance of
all methods. The dashed lines indicate the mean return of expert demonstra-
tions. More details and experiments are displayed in the Supplementary Mate-
rial. These results show that the TSSG algorithm yields significant improvements
and reduces the sample complexity by an order of magnitude. It is due to:

(i) The framework of TSSG achieves higher efficiency in learning the expert
policy by making full use of the samples from the experience replay buffer
of SAC, compared with the previous algorithms in [8,11].

(ii) The phenomenon that the discriminator learns faster than the policy in
GAIL [37] can be alleviated by sufficient exploration of the agent training
in TSSG.

6.2 Hyper-parameter Sensitivity

Fig. 3. Learning curves from
Hopper-v2 for TSSG at different
T s.

Without loss of generality, we choose Hopper-
v2 as an example for sensitivity analysis. In
this subsection, we explore the performance of
the TSSG algorithm under different T . Figure 3
visualizes that increasing T increases the sam-
ple efficiency of TSSG. However, T should not
be set too large owing to two aspects:

(i) T = 64 takes much longer time than T =
32, while the effect does not witness more
improvement.

(ii) T = 64 has the risk of instability caused
by overfitting.
From the above discussion, T dropping in
[16, 32] is the best choice for Hopper-v2.
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7 Conclusion

In this paper, we have explored the generalization and computation for policy
classes of GAIL. In terms of generalization, we normalize the reward function as
a distribution. We also propose the state-action distribution error to study the
infimum of the expected return gap between the expert policy and the policy
class. We prove that the generalization can be guaranteed when the complex-
ity of policy classes is properly controlled. Our TSSG algorithm can efficiently
solve GAIL and attain sublinear convergence to a stationary solution. Numerical
experiments are provided to support our analysis.

We investigate the necessary condition of the learned policy outperforming
the expert policy. The sufficient conditions are left for future works.
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Abstract. We introduce a technique that leverages the power of indirect
encodings (IE) from the field of evolutionary computation to improve the
speed of evolution in transfer learning control tasks. Although genera-
tive models have previously been used to construct IEs, their potential in
transfer learning, specifically in reinforcement learning domains, has not
yet been utilised. We train three types of generative models: an autoen-
coder (AE), a variational autoencoder (VAE) and a generative adver-
sarial network (GAN) on the neural network weights of well-performing
solutions of a set of paramaterised source domains. The decoder of the
AE and VAE or the generator of the GAN is then used as the IE in an
evolutionary run on unseen, but related, target domains. We compare
against two baselines: a direct encoding (DE) and a DE starting evolu-
tion from a controller pre-trained to maximise the average fitness over
the set of source domains. We show that, by using these IEs, the speed
of learning on the target domains is greatly increased with respect to the
baselines.

Keywords: Indirect encodings · Evolutionary algorithms · Generative
models · Neuroevolution

1 Introduction

Transfer learning refers to the situation where what has been learned on one
task can be exploited in a different but related task [7]. An example from the
supervised learning setting would be to use the initial layers of a classifier trained
to detect pictures of cats in order to initialise or pretrain a classifier used to
detect pictures of dogs. One would assume that the features learned in the first
layers to detect cats such as edges, corners, changes in lighting etc. will also be
useful in detecting dogs. Pretraining a model with a large auxiliary dataset that
differs from the target dataset enhances object detection performance compared
to a model trained solely on the target image dataset [5]; suggesting the features
that were useful in classifying objects in the first dataset were also useful for
classification in the second dataset.

In reinforcement learning (RL) tasks, transfer learning consists of leveraging
prior knowledge from a set of source domains to improve learning on some target
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domain [15]. For example, the ability to walk is a prerequisite for many different
tasks such as hunting, building and evading predators, however, when learning
each of these tasks, animals do not have to relearn how to walk each time. It
would be inefficient for RL agents to relearn primitive actions every time they
learn a new, but related, task. To avoid this, there needs to be some mechanism
by which invariant knowledge over the source domains is gathered and stored.

Evolutionary algorithms (EA) are a set of gradient-free search algorithms
that can be used to find and optimise policies for RL tasks. EAs also have
the ability to store invariant domain knowledge via an indirect encoding (IE).
An IE is a mapping from a genotype space to a phenotype space, where the
phenotype space is the solution space, and the genotype space is that on which
evolutionary operators are applied. One way of producing a domain-dependent
IE is by learning a distribution over the parameters of previously found solutions
using a generative model, this is known as a data-driven encoding (DDE) [4].
Data-driven encodings have been explored in a number of works referenced in
Sect. 2. However, despite the proven link between evolutionary processes and
learning theory suggesting evolution has the ability to generalise via their IEs
[11,14], to the authors knowledge, no work has yet applied DDEs to transfer
learning in RL tasks.

Consequently, in this work we use indirect encodings to capture the similar-
ities in neural network controller parameter spaces for a set of source domains,
and then reuse these IEs to evolve solutions on a set of unseen target domains
with much greater speed. Three different IEs are explored: the decoders derived
from a trained autoencoder (AE) and a variational autoencoder (VAE), as well
as the generator derived from a trained generative adversarial network (GAN).
Hence, we address the following questions, which are central to transfer learning:

1. What knowledge is relevant for generalisation to future tasks?
2. Which storage mechanism should be used for this knowledge?

For 1., we model the distribution of well-performing solutions in parameter space
over a set of source domain; for 2., we store relevant knowledge in the IE. We
demonstrate the ability of this technique on three OpenAI gym environments:
Continuous Mountain Car, Frozen Lake and Bipedal Walker and give evidence
that IEs trained in this way perform much better than two other baselines.

2 Related Work

An autoencoder and a VAE are used in [13] and [2], respectively, to learn a
distribution over neural network controller parameters for benchmark RL tasks,
such as Bipedal Walker and Cart Pole. Unlike our work, the focus is not on
transferring gained knowledge to unseen target domains, rather, the enumeration
and analysis of behaviours on a single domain instance. Furthermore, the fitness
of discovered solutions is not used as a metric of evaluation in either [13] or
[2], whereas our work considers the fitness of produced solutions of paramount
importance.
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DDE-Elites [4] uses a VAE to learn a distribution over joint angles for well-
performing solutions to a 2D planar arm inverse kinematics environment. Similar
to our work, evolutionary search is subsequently performed in the latent space
of the VAE decoder, which acts as an IE, and is compared to a direct encoding.
Also, optimisation on novel but similar tasks is performed, akin to the transfer
learning experiments in our work. However, unlike our work, the technique is
not evaluated on RL tasks. Furthermore, in [4], the parameters of optimisation
are joint angles as opposed to the parameters of neural network controllers.

Conditional GANs (cGAN) have also been used to construct IEs. The opti-
misation of high-level control policies for a robotic arm, and the design of build-
ings, an energy plant and the respective energy distribution network for an urban
neighbourhood is assisted by a cGAN in [9] and [10] respectively. Similar to our
work, [9] tests the generalisation capabilities of the trained generative model on
unseen but related domains. Unlike our work, neither [9] or [10] consider neural
network controllers, nor do they perform any form of search in the latent space
of their respective generative models.

COIL [1] applies the ideas of [4] to the concept of constrained mathematical
optimisation problems. AutoMap [12] uses the decoder of an autoencoder as an
IE to re-evolve on a rugged fitness landscape resulting in much faster learning
on the same task.

All of the works cited in Sect. 2 consider only a single type of IE, whereas
our work compares three different types of IE.

3 Conceptual Overview

3.1 Indirect Encodings

A typical evolutionary algorithm takes a genotype space, Γ , and a fitness func-
tion, f : Γ → R and aims to find

g∗ ∈ Γ s.t.

f(g∗) ≥ f(g) ∀g ∈ Γ

by applying evolutionary operators such as mutation, crossover and selection
directly to Γ .

An indirect encoding δ : Γ → Φ introduces the concept of a phenotype space,
Φ, and in turn reformulates the concept of an EA as aiming to find

g∗ ∈ Γ s.t.

f(δ(g∗;θ)) ≥ f(δ(g;θ)) ∀g ∈ Γ

where δ may have some additional function parameters, θ. Γ and Φ are vectors
of elements, these elements can take a number of different forms such as: real
numbers, integers, binary values, characters, etc.
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Fig. 1. Fitness function plots for three different engine power settings in CMC. Plots
were generated by producing 1000 random neural networks and assessing their fitnesses.
The axes are the weight values of the neural networks and the colour represents the
fitness.

In the above formulation, a direct encoding would be a special case of an indi-
rect encoding where Γ = Φ and δ is the identity function resulting in no change
to the genotype, in other words, the phenotype is the same as the genotype.

In this work, we use IEs in neuroevolution - the optimisation of neural net-
works using evolutionary algorithms - therefore, Φ ∈ Rn where n is the number
of neural network weights. We use Γ ∈ Rm, however, Γ does not have to be
restricted to real numbers when using IEs in neuroevolution.

3.2 Related Fitness Functions

In RL, each domain typically has a reward function that gives a set reward for
each state entered by an agent; an RL agent will try to maximise this cumulative
reward by taking actions resulting in higher rewards. An agent that is optimised
by an EA typically receives a singular reward at the end of an environmental run,
which is used in the selection procedure. Step-wise RL rewards can be converted
into a singular end reward by simply summing the rewards for all the steps of
the episode.

One can imagine that for completely different domains, the fitness functions
are vastly different. For example, a neural network trained on Continuous Moun-
tain Car (CMC) would not work at all on Bipedal Walker. Aside from the fact
that the number of inputs and number of outputs of the control networks are
different, even if they were not, the likelihood is that a good solution on one
domain would not be a good solution on another. However, for similar domains
it might be the case that the fitness functions are somewhat related.

For example, CMC can be solved with a very simple neural controller; there
are 2 inputs and 1 output and a solution can be found using a linear controller
with only 2 weights (no bias). The more complicated fitness function used in our
work encourages the car to get as close to the goal as possible but also rewards
the car for getting there in a faster time and for having a lower speed at the
goal. There are a number of adjustable domain parameters within CMC, such as
gravity and engine power. For each of these parameterised domains, the resulting
fitness function will be different.
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Figure 1 illustrates the fitness functions for three different engine power set-
tings. It can be observed that despite the fitness functions being different, they
contain structural similarities. For example, no matter what the power value, all
networks with a second weight value of less than 0, or a first weight value greater
than 5, have poor fitness scores. Information of this kind could be very useful in
future search because we can assume that for domains with similar power values,
it will be fruitless to search within these low valued fitness areas. Similarly, we
can see that the higher fitness solutions are located in a ridge on the top left of
the fitness function. This ridge is at a different place for each power setting but
still in the same area of the weight space.

Without prior information about where good solutions in the weight space are
located, there would not be much reason to start search anywhere other than at
0 with an unknown starting distribution variance. If one were therefore going to
constrain the search space to [–100, 100] (which is reasonable when searching over
neural network weight space) the areas of interest in Fig. 1 are a small proportion
of the space. Therefore, without integrating previous information into search, a
substantial amount time and computational power might be required to locate
this region.

The main proposition of this work is that we can capture the area of good
solutions common to a number of different parameterised domains using gen-
erative models. These generative models will then act as the indirect encoding,
thereby mapping arbitrary genotype values to high fitness areas of the phenotype
space. We can then evolve again on some unseen domains using this IE, result-
ing in a much more informed search. However, this proposition can be extended
much further than the neuroevolution experiments ran here and can be used for
any parameterised optimisation problem where there are commonalities amongst
the different search spaces.

4 Methodology

We prepared training data for the generative models using CMA-ES [8] to evolve
solutions on a set of parameterised domains (source domains) using a direct
encoding. A solution was defined as a neural network controller that achieves
some minimal fitness value. Next, the generative models were trained using the
neural network weights of the training data. We then performed evolution using
CMA-ES over the latent space of the decoder, in the case of the AE and VAE,
or the generator, in the case of the GAN. For the AE, evolution was started at
0.5 as the learnt code was bound in the range [0, 1] due to the sigmoid activation
function in the pre-code layer. For the VAE and GAN, evolution was started at
0.0 because their training procedures are such that the typical code processed
by the latent space is that derived from a unit normal distribution.

For evaluation, we tested the speed of evolution and the fitness of the best
winner found for the three IEs and two baselines on a set of target domains.
The two baselines were: (1) a direct encoding, and (2) a direct encoding starting
evolution from a controller pretrained to maximise the average fitness over the
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full set of source domains. We call this pretrained controller a universal controller
(UC), which has been previously used as a baseline for MAML [3]1.

5 Experiments

5.1 Continuous Mountain Car

Continuous Mountain Car (CMC) is a variation of Mountain Car in which a
continuous valued force is applied to the car instead of a singular valued discrete
force. The car begins in the trough of a valley, and aims to reach a flag atop one
of the mountains. The simulation ends once 1000 time steps have elapsed or the
car reaches the goal position.

In order to make the environment more difficult, we modified the reward
function such that the car achieves a greater reward for having a smaller speed
at the goal position. This requires more precise control over the acceleration,
making a solution more difficult to come by. There are three aspects of the
reward function: a higher reward for the car getting closer to the goal, a higher
reward for finding the goal in a smaller amount of time, and a higher reward for
a slower speed at the goal location.

In CMC one can modify the engine power of the car such that the force
applied to the car by the controller, and thereby the acceleration of the car,
will be different given the same control signal. We use this engine power as
the modifiable domain parameter in these experiments. Each instance of engine
power will result in a similar but related fitness function, as in Fig. 1. A controller
trained on one engine power instance will either overshoot or undershoot the
goal, thereby reducing the overall fitness.

In order to collect training data for the IE, a DE was used to evolve 333
solutions for each of the three source domain instances with an engine power
in the following set: {0.0008, 0.0012, 0.0016}, giving a total of 999 solutions.
These solutions were evolved using CMA-ES with an initial sigma of 1.0 and the
initial distribution centroid at [0, 0]. A population size of 100 was ran for 100
generations. Each element in the search space was bound between [−100, 100]2.
No IE was used in the collection of the training data.

Each of the three generative models were trained five times. It should be
noted that the decoder (in the case of the AE and VAE) or the generator (in
the case of the GAN) had a hidden layer with a non-linear activation function.
Therefore, the resulting output space was non-linear.

1 Both the training of the IEs and the initialisation of the UC have additional prepara-
tory overheads compared to evolution using a DE only. To compare techniques
according to the total number of FLOPS, including pretraining, would be par-
ticularly meticulous and, more importantly, implementation dependent. We have
therefore decided to evaluate with respect to the number of generations inline with
evaluation methods used in [4] (no. of generations) and [3] (no. of gradient steps).

2 Often CMA-ES can discover solutions with very large values making it more difficult
to train a generative model over.
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Fig. 2. Ten evolutionary runs for the DE and five evolutionary runs for the UC and
a VAE with a code size of 1 on CMC with an engine power of 0.0014. The fitnesses
plotted are those of the best winner so far, this is the best solution found so far in the
evolutionary run. The solid lines are the mean fitnesses of the runs and the dotted line
is the best run according to the final generation fitness.

Once trained, we used the decoder or generator as the IE for another evolu-
tionary process on target CMC domains with test engine power values in the set:
{0.0010, 0.0014}. We ran the evolutionary process 5 times for each test parame-
ter and for each of the three generative models. We compared these results with
10 runs of a DE and 5 runs of a DE starting from a UC trained on the source
domains.

Figure 2 shows the fitnesses of the best winner so far of the evolutionary runs
for an engine power of 0.0014. The plotted IE is derived from a VAE with a
code size of 1. The VAE begins the evolutionary run with a much higher fitness
than both the DE and the UC, and repeatedly finds a solution that beats the
baselines after 30 generations. The mean of the best winner so far for this IE
starts above 2.0 in the first generation, which is considered to be a full solution
to this environment. These results show that the IE and UC have the ability to
integrate information from their own respective training procedures to bootstrap
their evolutionary procedures.

Figure 3 highlights some key information about the controller’s weight space.
The illustrated training data, which represents the weights of solutions to the
source domains, is shown as lying in regular parabolic shapes for each particu-
lar engine power. The grey dotted line, which represents the enumeration over
the latent space of the IE, shows how the decoder of the VAE learnt to map
values from its latent space to the weight space such that it could reconstruct
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Fig. 3. The weight space of the neural network controller for the CMC domain. The
thistle, gold and dark orange points represent the training data used to train the gen-
erative models. The grey dotted line labelled ‘IE manifold’ represents an enumeration
over the one dimensional latent space of the decoder derived from the VAE in Fig. 2
mapped into the two dimensional weight space. The enumeration is over the range [−3,
3] with increments of 0.05. The blue diamond at (−3.68, 89.58) represents the best win-
ner found by the decoder. The red and green crosses represent the initial centroids of
search for the DE and the UC, respectively, with the dotted circles representing the
initial sigma of the search distributions. (Color figure online)

the training data as accurately as possible using a single dimension. It intersects
the weight space near the center of the source domain solutions, which evidently
happens to coincide with high fitness solutions of the target domains. It is inter-
esting to see how this enumerated weight manifold is more sparse in areas of
least interest and more dense in areas with a higher likelihood of finding a good
solution.

Figure 3 also shows the starting positions of evolutionary search for the DE
and the UC as red and green crosses, respectively. Without previous knowledge
of the search space, there is no other information to suggest that the best place
to start search is anything other than the origin; for this reason we start evolu-
tionary search of the DE at [0, 0]. However, starting search at the origin results
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Fig. 4. Ten evolutionary runs for the DE and 5 evolutionary runs for both the UC
and a GAN with code size = 2 on Frozen Lake with an goal position of (1, 3). The
fitnesses plotted are those of the best winner so far in the evolutionary run. The solid
lines are the means of the runs and the dotted line is the best run according to the
final generation fitness. All three dotted lines are on top of each other, however this
renders as showing only the green dotted line. (Color figure online)

in a significant amount of time and compute expended as the search distribution
maneuvers into the area of good solutions for every single new domain instance.
Alternatively, the UC has been trained to maximise the average fitness over the
three source domains. Even though the UC does not achieve perfect fitness on
any of the source domains individually or the newly tested 0.0014 target domain,
it allows search to start in a much more informed position, which leads to much
faster convergence to a solution on the new target domain.

5.2 Frozen Lake

Frozen Lake (FL) is a simple, text-based, maze-like environment with a discrete
state and action space. An agent aims to move from a start location to a goal
location without falling through a hole into the lake within a designated time
limit. By default, FL is a stochastic environment, however we modify it to be
deterministic for these experiments. The action space consists of four actions:
north, east, south, west. The state space consists of one integer representing the
current tile that the agent is located at.

A neural network controller with 1 input, 4 hidden units with a ReLU acti-
vation function and 4 output units (one for each of the 4 discrete actions) with
a sigmoid activation was used. In order to select the action of the agent, the
argument of the largest value output was used. Not all positions in the maze
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Fig. 5. Representations of the Frozen Lake environment highlighting the percentage
of the population in a single generation that ends the episode in a particular tile.
Each tile in the 4× 4 FL environment is labeled by one of the following types: S, the
starting location; F, frozen tile (traversable); H, hole; and G, the goal location. The
target domain with goal position (1, 3) is shown. The coordinates of the tile and the
aformentioned percentage are also shown. Each subfigure highlights the state of the
environment at different generations for the DE, UC and GAN plotted in Fig. 4.

can be located by a controller with zero hidden layers, it was for this reason
that a hidden layer was included in the controller. FL is therefore an appropri-
ate domain to demonstrate the ability of our learnt IEs to find neural network
controllers with a hidden layer and with a larger number of weights than in the
CMC experiments.

For FL, we use goal position as the modifiable domain parameter. The source
domains consists of those with goal positions in the set: {(1,2), (3,2), (3,3)}. The
reward given is inversely proportional to the manhattan distance between the
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end location of the agent and the goal, with a reward of −10 given if the agent
falls in a hole.

The UCs were prepared by training solutions to maximise the average of the
reward over the three training goal positions using a DE. Then, the training
data for the generative models was collected in the same way as in CMC: 999
solutions were found, 333 for each of the three source domains. These solutions
were found using a random search. In practice, random search found solutions
faster and more frequently than a directed search procedure. We hypothesise
that this is because the search space is somewhat deceptive [6]. As before, all
weights in these experiments were bound in the range [–100, 100]. All three
generative models were trained five times on these 999 solutions.

We then ran 5 evolutionary runs using the three IEs on the target domains
with test goal positions: {(1,3), (3,0)}. We compared these with 10 runs using
a DE and 5 runs using a DE starting at a pre-trained UC. Figure 4 shows the
results of these runs on the (1, 3) goal position where the IE plotted is the
generator derived from a GAN trained with a code size of 2.

Figure 4 shows that the best run of all three experiments achieved a score of
0 in the first generation, however, the mean fitnesses of these runs suggest that
the IE achieves a higher fitness faster than both the DE and UC. The IE has
not been trained on controllers that locate this target goal but it is successfully
able to interpolate over the weight space in order to quickly generate controllers
capable of finding this new goal location. The DE encodes no previous domain
knowledge and therefore takes a much longer time to converge to a good solution.

Figure 5 illustrates that without any information about the solution space
the DE chooses from the four actions equally in the starting tile resulting in half
of the controllers in generation 1 not moving at all. Alternatively, the trained
IE biases the solution space such that zero individuals in generation 1 choose
either the action north or west and end the episode in the start state. Figure 5c
shows that as the number of generations increases the DE gets stuck in a local
minima at the deceptive (0, 1) location. In contrast, 23% of the controllers that
the GAN derived IE produces find the goal (Fig. 5i).

5.3 Bipedal Walker

Bipedal Walker (BPW) is a simulation that requires the design of a controller
that allows a two legged robot to walk as far as possible in a fixed time without
falling over. It is more complicated than the previously tested domains due to the
fact that there are 24 state inputs and 4 action outputs. In these experiments we
use a controller network with no hidden layers resulting in 100 tunable weights.
This demonstrates the capability of our technique to scale to a one hundred
dimensional problem.

For this domain, we use the knee speed as the modifiable domain parameter.
We collected training data for the IEs for the knee speeds: {2, 4, 6}. The default
reward function for BPW is used. Target domains with knee speeds of {3, 5}
were used to evaluate performance.
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Fig. 6. Ten evolutionary runs for the DE and 5 evolutionary runs for both the UC and
a GAN with code size = 2 on Bipedal Walker with aknee speed of 5. The fitnesses
plotted are those of the best winner so far. The solid lines are the means of the runs
and the dotted line is the best run according to the final generation fitness.

Figure 6 shows that the best winners for both the IE and UC start the evo-
lutionary run with a much higher fitness than the DE. Due to the difficulty of
this domain, it takes a significant number of generations for the DE to generate
a solution with fitness greater than 250, however, the IE and UC already achieve
this in the first generation. The GAN finds solutions with a much higher fitness
faster than the UC, however, it begins to plateau after a short amount of time,
and is eventually overtaken by the UC.

6 Conclusion and Future Work

In summary, we have demonstrated the ability of three generative models,
namely autoencoders, VAEs and GANs, to produce indirect encodings that suc-
cessfully evolve neural controller solutions for unseen target domains in transfer
learning RL tasks. We have also highlighted certain settings in which these IEs
significantly outperform two baseline techniques with respect to speed of search.

In future work, we wish to scale these techniques to domains that require
controllers with a larger number of parameters than those used in this work. We
would also like to apply the techniques to more significant cross-domain transfer
examples.
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Abstract. In this paper, we propose HVC-Net, a deep learning based
hypervolume contribution approximation method for evolutionary multi-
objective optimization. The basic idea of HVC-Net is to use a deep neural
network to approximate the hypervolume contribution of each solution
in a non-dominated solution set. HVC-Net has two characteristics: (1) It
is permutation equivalent to the order of solutions in the input solution
set, and (2) a single HVC-Net can handle solution sets of various size
(e.g., solution sets with 20, 50 and 100 solutions). The performance of
HVC-Net is evaluated through computational experiments by compar-
ing it with two commonly-used hypervolume contribution approximation
methods (i.e., point-based method and line-based method). Our experi-
mental results show that HVC-Net outperforms the other two methods in
terms of both the runtime and the ability to identify the smallest (largest)
hypervolume contributor in a solution set, which shows the superiority
of HVC-Net for hypervolume contribution approximation.

Keywords: Hypervolume contribution · Approximation ·
Evolutionary multi-objective optimization · Deep learning

1 Introduction

Hypervolume [11,15] is a popular performance indicator in the field of evolution-
ary multi-objective optimization (EMO). It possesses rich theoretical properties
(e.g., Pareto compliance [16], submodularity [13]), which make it attractive to
use in practice. For example, it has been used to design EMO algorithms (e.g.,
SMS-EMOA [2,6]) and subset selection algorithms (e.g., greedy hypervolume
subset selection [4,7]).

In SMS-EMOA, the population evolves in a steady-state manner. In each
generation, one offspring is generated and added to the population, then one
solution is removed from the population so that the hypervolume of the remain-
ing population is maximized. In greedy hypervolume subset selection, in each
step, one solution is selected from a candidate set and added to the subset so
that the hypervolume of the subset is maximized. In these two cases, in order
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Rudolph et al. (Eds.): PPSN 2022, LNCS 13398, pp. 414–426, 2022.
https://doi.org/10.1007/978-3-031-14714-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14714-2_29&domain=pdf
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to remove (select) the correct solution, we need to calculate the hypervolume
contribution of each solution. Hypervolume contribution is an important con-
cept which describes the amount of hypervolume contributed by one solution
to a solution set. In SMS-EMOA, we need to identify the solution with the
smallest hypervolume contribution to the population. In greedy hypervolume
subset selection, we need to identify the solution with the largest hypervolume
contribution to the subset.

However, the calculation of the hypervolume contribution is#P-hard [3], which
limits its applicability in many-objective optimization. In order to overcome this
drawback, some hypervolume contribution approximation methods have been pro-
posed [1,5,12]. Two representative methods are the point-based method [1] and the
line-based method [12]. The point-based method is also known as the Monte Carlo
sampling method. In this method, in order to approximate the hypervolume con-
tribution of a solution, a sampling space is firstly determined. After that, a large
number of samples are uniformly drawn in the sampling space to do the approxi-
mation. The line-based method is also known as the R2 indicator variant. In this
method, a large number of line segments are uniformly drawn in the hypervolume
contribution region of a solution to do the approximation.

In this paper, we propose a new hypervolume contribution approximation
method. The proposed method, named HVC-Net, uses a deep neural network to
do the approximation. The input of HVC-Net is a non-dominated solution set,
and the output of HVC-Net is the approximated hypervolume contribution of
each solution in the input solution set. HVC-Net has two characteristics. One is
that it is permutation equivalent [14]. That is, a change of the order of solutions
in the input solution set will cause the same change of the order of the outputs
(i.e., the same results are obtained for any permutation of solutions in the input
solution set). The other is that it can handle solution sets of different size (e.g.,
20, 50, 100 solutions). That is, a single HVC-Net is trained using solution sets of
various size. These two characteristics guarantee high applicability of HVC-Net
for hypervolume contribution approximation.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
naries of the study. Section 3 introduces a new hypervolume contribution approx-
imation method, HVC-Net. Section 4 conducts experimental studies. Section 5
concludes the paper.

2 Preliminaries

In this section, we present the preliminaries of this paper, including the defi-
nitions of hypervolume and hypervolume contribution, and two representative
hypervolume contribution approximation methods.

2.1 Hypervolume and Hypervolume Contribution

Hypervolume. The hypervolume is a widely used performance indicator in the
field of evolutionary multi-objective optimization. Formally, for a solution set S
in the objective space, the hypervolume of S is defined as
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HV (S, r) = L
(⋃

s∈S

{s′|s ≺ s′ ≺ r}
)

, (1)

where L(·) is the Lebesgue measure of a set, r is a reference point which is
dominated by all solutions in S, and s ≺ s′ denotes that s dominates s′ (i.e.,
si ≤ s′

i for all i = 1, ...,m and sj < s′
j for at least one j = 1, ...,m in the

minimization case, where m is the number of objectives).
Figure 1(a) gives an illustration of the hypervolume of a solution set

{a1,a2,a3} in a two-dimensional objective space, where each objective is to
be minimized.

Hypervolume Contribution. The hypervolume contribution is an important
concept based on the hypervolume indicator. It describes the amount of the
hypervolume value contributed by a solution to the solution set. Formally, for a
solution s ∈ S, the hypervolume contribution of s to S is defined as

HV C(s, S, r) = HV (S, r) − HV (S \ {s}, r). (2)

Figure 1(b) gives an illustration of the hypervolume contribution of each solu-
tion to the solution set {a1,a2,a3}.

Fig. 1. Illustrations of the hypervolume and the hypervolume contribution. The shaded
area in (a) is the hypervolume of the solution set {a1,a2,a3}, and each shaded area in
(b) is the hypervolume contribution of the corresponding solution to the solution set
{a1,a2,a3}.

2.2 Hypervolume Contribution Approximation

Two representative hypervolume contribution approximation methods are the
point-based method and the line-based method. These two methods are briefly
explained as follows.
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Point-Based Method. The point-based method is also known as the Monte
Carlo sampling method [1]. Figure 2(a) illustrates this method. The basic idea
is as follows. To approximate the hypervolume contribution of a solution s ∈ S,
a sampling space (i.e., a hyperrectangle) which contains s’s hypervolume contri-
bution region is firstly determined (e.g., the rectangle bounded by a2 and p in
Fig. 2(a)). Then a large number of samples are uniformly drawn in the sampling
space (e.g., k samples). Suppose there are k′ samples uniquely dominated by s
(e.g., the red samples in Fig. 2(a)), then the hypervolume contribution of s is
approximated as

HV C(s, S, r) ≈ k′

k
V, (3)

where V is the volume of the sampling space (i.e., the hyperrectangle).
In practice, the sampling space should be as tight as possible. In [1], the

tightest sampling space is theoretically derived. The lower bound of the sampling
space is the solution itself (e.g., a2 in Fig. 2(a)). The upper bound (e.g., p in
Fig. 2(a)) is determined as follows:

pi = min {s′
i|s′ ∈ S \ {s} and s′ ≺i s} , i = 1, ...,m, (4)

where s′ ≺i s denotes that s′ dominates s in all but the ith objective.
Therefore, the tightest sampling space in Fig. 2(a) is exactly the hypervolume

contribution region of a2 (i.e., p = (a3
1, a

1
2)). We did not put p exactly at position

(a3
1, a

1
2) (i.e., the red point) in Fig. 2(a) for easy illustration.

Fig. 2. Illustrations of the point-based and line-based methods for hypervolume con-
tribution approximation.

Line-Based Method. The line-based method is also known as the R2 indica-
tor variant [12]. Figure 2(b) illustrates this method. The basic idea is as follows.
To approximate the hypervolume contribution of a solution s ∈ S, a set of line
segments starting from s and with different directions are drawn in its hyper-
volume contribution region. Suppose there are n line segments and the length
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of each line segment is li, i = 1, ..., n, then the hypervolume contribution of s is
approximated as

HV C(s, S, r) ≈ 1
n

n∑
i=1

(li)m, (5)

where m is the number of objectives.
The directions of the line segments can be defined using a direction vector

set Λ = {λ1, ...,λn} where each direction vector satisfies
∥∥λi

∥∥
2

= 1, λi
j ≥ 0,

i = 1, ..., n, j = 1, ...,m. The length of each line segment can be calculated as

li = min
{

min
s′∈S\{s}

{
g*2tch(s′|λi, s)

}
, gmtch(r|λi, s)

}
, i = 1, ..., n, (6)

where g*2tch(·)1 and gmtch(·) are defined as follows:

g*2tch(s′|λi, s) = max
j∈{1,...,m}

{
s′

j − sj

λi
j

}
, (7)

gmtch(r|λi, s) = min
j∈{1,...,m}

{
|sj − rj |

λi
j

}
. (8)

3 HVC-Net

Motivated by DeepSets [14], which is a deep neural network for dealing with a set
as its input, we design HVC-Net to approximate the hypervolume contribution of
each solution in a solution set. The architecture of HVC-Net is shown in Fig. 3.
The input of HVC-Net is a non-dominated solution set S = {s1, s2, ..., sN}.
The output of HVC-Net is the hypervolume contribution approximation of each
solution in S. The working mechanism of HVC-Net can be described in the
following three steps.

– Step 1: Each of N solutions si (i = 1, ..., N) is presented to the network φ
and transformed to ai = φ(si).

– Step 2: N vectors ai are averaged as one vector b = 1
N

∑N
i=1 a

i. Vector b
is further presented to network η and transformed to c = η(b). Vector c is
added to each of N vectors ai and N vectors di = c + ai are obtained.

– Step 3: Each of N vectors di is presented to network ρ and N outputs
˜HV Cθ (si, S, r) = ρ(di) are obtained, where θ is the parameter vector of
HVC-Net.

It should be noted that Step 2 can be stacked multiple times (i.e., K) as
shown in Fig. 3. Step 2 is used to learn the relation between a solution and the
whole solution set. The two main characteristics of HVC-Net are as follows:
1 The g*2tch(·) function defined in Eq. (7) is used in minimization case. For maxi-

mization case, s′
j and sj should be swapped in Eq. (7). Please refer to [12] for more

detailed explanations.
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Fig. 3. The architecture of HVC-Net.

1. It is permutation equivalent. That is, for any permutation π of the
input solutions (i.e., S = {sπ(1), ..., sπ(N)}), the outputs of HVC-Net are
˜HV Cθ (sπ(1), S, r), ..., ˜HV Cθ (sπ(N), S, r). This means that the approximated
hypervolume contribution value for each solution is not affected by the order
of the input solutions. This is because the change of the order of the input
solutions will lead to the change of the order of the approximated values
consistently. This characteristic guarantees the robustness of HVC-Net.

2. A single HVC-Net can handle solution sets of various size. For example, we
can use a trained HVC-Net to handle a solution set with 10 solutions. We
can also use the same HVC-Net to handle a solution set with 100 solutions.
This characteristic guarantees high applicability of HVC-Net.

3.1 How to Train HVC-Net

In HVC-Net, we implicitly assume the minimization case where the reference
point for hypervolume contribution calculation is set to r = (1, ..., 1) and all
solutions in S are located in [0, 1]m. For the training of HVC-Net, we prepare
the training data as follows. First, we prepare L non-dominated solution sets
{S1, S2, ..., SL} where each solution set is located in [0, 1]m. Then, we calculate
the hypervolume contribution of each solution in each solution set based on the
reference point r = (1, ..., 1). That is, we obtain the target output HV C(si, Sj , r)
for each solution si ∈ Sj (i = 1, ..., |Sj |, j = 1, ..., L).

Based on the training data (i.e., the pairs of the solution sets and the cor-
responding hypervolume contributions), we define the loss function of HVC-Net
as follows:

L(θ) =
1
L

L∑
j=1

1
|Sj |

|Sj |∑
i=1

(
log ˜HV Cθ (si, Sj , r) − log HV C(si, Sj , r)

)2

. (9)

The loss function defined in Eq. (9) is similar to the mean squared error
(MSE) loss function. The only difference is that we add log function to the
hypervolume contribution (approximation) values. This is because the hypervol-
ume contribution values are usually very small (e.g., in the magnitude of 10−4).
Using log values can make the training easier and better. More details about the
training of HVC-Net are described in Sect. 4.1.
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3.2 How to Use HVC-Net

After we train a HVC-Net, we can use it to approximate the hypervolume contri-
bution if the solution set is in [0, 1]m and the reference point is r = (1, ..., 1). The
question is how to use it for hypervolume contribution approximation when the
solution set and the reference point are both arbitrarily given. Before answering
this question, we need the following properties.

Property 1. For any positive vector α ∈ R

m
>0, HV C(s, S, r) = 1∏m

i=1 αi
HV C(α�

s,α � S,α � r), where � denotes the element-wise multiplication2.

Property 2. For any real vector β ∈ R

m, HV C(s, S, r) = HV C(s+β, S +β, r+
β).

Property 3. HV C(s, S, r) = HV C(−s,−S,−r) where HV C(−s,−S,−r) is cal-
culated for maximization problems whereas HV C(s, S, r) is calculated for min-
imization problems.

The above three properties can be easily obtained from the properties of the
hypervolume indicator obtained in [10]. Based on these properties, we can first
transform the solution set and the reference point so that the reference point
is r = (1, ..., 1) and the solution set is located in [0, 1]m. Then we use HVC-
Net to approximate the hypervolume contribution for the transformed solution
set. Lastly, we calculate the hypervolume contribution approximation for the
original solution set based on the output of HVC-Net. The last step is not needed
when our task is to find the solution with the smallest or largest hypervolume
contribution in a solution set.

Thus, although HVC-Net is trained based on solution sets in [0, 1]m and
reference point r = (1, ..., 1), it can be used for any solution set with any reference
point.

4 Experiments

In this section, we conduct computational experiments to examine the perfor-
mance of HVC-Net by comparing it with the point-based and line-based methods
for hypervolume contribution approximation.

4.1 Experimental Settings

HVC-Net Specifications. In HVC-Net in Fig. 3, three networks φ, η, and
ρ need to be specified. In our experiments, all three networks are specified as
feedforward neural networks. Figure 4 shows the structures of φ, η, and ρ used in
our experiments. All the networks have three hidden layers. In the hidden layers
of the three networks, we use ReLU activation function for efficient training.
2 For two vectors a = (a1, ..., am) and b = (b1, ..., bm), a�b = (a1b1, ..., ambm). For a

set B, a � B means a � b for all b ∈ B.
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In the output layer of network ρ, we use Sigmoid activation function since the
hypervolume contribution values are in [0, 1] for the training solution sets. In
HVC-Net, Step 2 can be stacked K times as shown in Fig. 3. In our experiments,
we set K = 10. That is, we have 10 different η networks in HVC-Net.

Fig. 4. Networks φ, η, and ρ in HVC-Net. The number in the parentheses indicates the
number of neurons in each layer. The activation function used in each layer is shown
under each layer.

Training and Testing Data Generation. We examine 5, 8, and 10-objective
cases (i.e., m = 5, 8, 10). We generate training data with L solution sets
{S1, ..., SL} for each case where L = 1, 000, 000. Each solution set is generated
using the following procedure:

– Step 1: Randomly sample an integer num ∈ [1, 100] where num denotes the
number of solutions in the solution set.

– Step 2: Randomly sample 1000 solutions in [0, 1]m as candidate solutions.
– Step 3: Apply non-dominated sorting to these 1000 solutions and obtain differ-

ent fronts {F1, ..., Fl} where F1 is the first front (i.e., the set of non-dominated
solutions in the 1000 solutions) and Fl is the last front.

– Step 4: Identify all the fronts Fi with |Fi| ≥ num. If no front satisfies this
condition, go back to Step 2.

– Step 5: Randomly pick one front Fi with |Fi| ≥ num and randomly select
num solutions from this front to construct one solution set.

This procedure is used in order to select a wide variety of non-dominated
solution sets for training. On average, about 10,000 solution sets with the same
size are generated (1,000,000 solution sets in total for 100 different sizes).
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We generate two types of testing solution sets. Type-I testing solution sets
are generated using exactly the same procedure as described above. We generate
10,000 Type-I testing solution sets for each case (i.e., m = 5, 8, 10). These 10,000
solution sets form one group. We generate 10 different groups of Type-I testing
solution sets for each case of m. Type-II testing solution sets are generated using
a similar procedure. The only difference is that an integer num ∈ [101, 200] is
randomly sampled in Step 1 and 10,000 solutions are randomly sampled in Step 2.
We generate 10,000 Type-II testing solution sets for each case of m. These 10,000
solution sets form one group. We generate 10 different groups of Type-II for each
case of m. Type-II testing solution sets are used to test the generalization ability
of HVC-Net since we train HVC-Net using solution sets with 1–100 solutions and
test HVC-Net using solution sets with 101–200 solutions.

Parameter Settings. For the training of HVC-Net, we use Adam [8], an effec-
tive gradient-based optimization method with an adaptive learning rate. The
initial learning rate is set to 10−4. For all the other parameters in Adam, we use
their default settings in PyTorch [9]. The batch size during training is set to 100.
The number of epochs for training is set to 100.

For the number of sampling points in the point-based method, we examine 20
different settings: 5, 10, ..., 100. For the number of lines in the line-based method,
we examine 20 different settings: 5, 10, ..., 100. We use the unit normal vector
method [5] to generate the direction vector set Λ in the line-based method.

Performance Metrics. To compare the performance of different hypervol-
ume contribution approximation methods, we use the correct identification rate
(CIR). CIR is a metric which can evaluate the ability of a method to identify
the smallest (largest) hypervolume contributor in a solution set. For example,
suppose we have P solution sets. If a method can correctly identify the small-
est (largest) hypervolume contributor for Q out of P solution sets, then CIR is
calculated as Q/P . In our experiments, we use CIRmin (i.e., CIR for identifying
the smallest hypervolume contributor) and CIRmax (i.e., CIR for identifying the
largest hypervolume contributor). A larger CIR value means better approxima-
tion quality of a method.

We also record the runtime of the three methods to compare their efficiency.
Here the runtime of HVC-Net means its evaluation time on the testing solution
sets, not the training time.

Platforms. All the methods are coded in Python and tested on a server with
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, GeForce RTX 2080 GPU, and
Ubuntu 18.04.6 LTS. HVC-Net is implemented based on PyTorch version 1.9.0.

4.2 The Training of HVC-Net

Figure 5 shows the training curve of HVC-Net in each case of m. We can see that
the loss decreases sharply in the first 20 epochs. This is mainly because we use
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a batch size of 100 for training 1M solutions, which means that the parameters
of HVC-Net can be updated 10K times in each epoch. We can also observe that
the loss becomes very small at the end of the training process in each figure,
which shows the success of the training of HVC-Net.

Fig. 5. The training curve of HVC-Net in each case.

Table 1 shows the time used for training HVC-Net. Although the training of
HVC-Net needs quite a substantial time, the trained HVC-Net models can be
saved and are ready to use at any time. That is, once we obtain a well trained
HVC-Net model, we can save it and use it directly in the future without spending
a lot of time to retrain it.

Table 1. The time (GPU hours) used for training HVC-Net in each case.

5-objective 8-objective 10-objective

369.13 370.47 383.79

Next, we will examine the performance of our trained HVC-Net models on
the testing solution sets.

4.3 Testing on Type-I Solution Sets

We apply the three hypervolume contribution approximation methods to Type-I
testing solution sets, i.e., solution sets with 1–100 solutions. For fair comparison,
all the methods are tested on CPU. That is, we disable GPU when using HVC-
Net for evaluation.

Figure 6 shows the results of CIRmin and CIRmax for each case. We can see
that HVC-Net clearly dominates the other two methods in most cases in terms of
both the correct identification rate and the runtime, which shows the advantage
of using HVC-Net for identifying the smallest (largest) hypervolume contrib-
utor in a solution set. It is worth noting that the point-based and line-based
methods are very time-consuming compared with HVC-Net. HVC-Net is able to
process the testing solution sets in less than 10 s and achieves a good CIR value.
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Fig. 6. Experimental results of the three hypervolume contribution approximation
methods on Type-I testing solution sets in each case. The runtime (in seconds) means
the total time for evaluating 10,000 testing solution sets. The CIR (CIRmin in (a)–
(c) and CIRmax in (d)–(f)) means the correct identification rate over 10,000 testing
solution sets. All the results are the average over 10 groups of Type-I testing solution
sets.

The other two methods even perform worse (i.e., a smaller CIR value) than
HVC-Net by consuming 1000 s. Of course, the other two methods can achieve
better CIR values than HVC-Net using more points or lines in some cases (e.g.,
in Fig. 6(a) the other two methods achieve better CIR values than HVC-Net by
consuming more than 1000 s). However, the runtime cost is too high to realize
this goal for the point-based and line-based methods.

4.4 Testing on Type-II Solution Sets

We also apply the three hypervolume contribution approximation methods to
Type-II testing solution sets, i.e., solution sets with 101–200 solutions. We use
Type-II testing solution sets to examine the generalization ability of HVC-Net.

Figure 7 shows the results of CIRmin and CIRmax for each case. We can
observe that HVC-Net performs well in general. It can still dominate the other
two methods in terms of the correct identification rate and the runtime in most
cases. There is almost no runtime increase for HVC-Net compared with the
results on Type-I solution sets. However, there is a significant runtime increase
for the point-based and line-based methods. These results show the strong gen-
eralization ability and the efficiency of HVC-Net. Although HVC-Net is trained
using solution sets with 1–100 solutions, it is able to handle solution sets with
101–200 solutions effectively and efficiently.
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Fig. 7. Experimental results of the three hypervolume contribution approximation
methods on Type-II testing solution sets in each case. The runtime (in seconds) means
the total time for evaluating 10,000 testing solution sets. The CIR (CIRmin in (a)–(c)
and CIRmax in (d)–(f)) means the correct identification rate over 10,000 testing solu-
tion sets. All the results are the average over 10 groups of Type-II testing solution
sets.

5 Conclusions

In this paper, we proposed HVC-Net, a deep learning based method for hypervol-
ume contribution approximation. We compared HVC-Net with the point-based
method and the line-based method. The experimental results showed that HVC-
Net outperformed the other two methods in terms of both the correct identifi-
cation rate and the runtime, which showed the potential of using deep learning
technique for hypervolume contribution approximation.

Our future work is the development of a hypervolume-based EMO algorithm
and a hypervolume subset selection algorithm based on HVC-Net for many-
objective optimization. Of course, we will also try to further improve the per-
formance of HVC-Net by improving its structure, parameter settings, training
method, and so on.

All the source codes and the trained HVC-Net models are available at
https://github.com/HisaoLabSUSTC/HVC-Net.
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Abstract. Ensemble learning trains and combines multiple base learn-
ers for a single learning task, and has been among the state-of-the-art
learning techniques. Ensemble pruning tries to select a subset of base
learners instead of combining them all, with the aim of achieving a bet-
ter generalization performance as well as a smaller ensemble size. Previ-
ous methods often use the validation error to estimate the generalization
performance during optimization, while recent theoretical studies have
disclosed that margin distribution is also crucial for better generalization.
Inspired by this finding, we propose to formulate ensemble pruning as a
three-objective optimization problem that optimizes the validation error,
margin distribution, and ensemble size simultaneously, and then employ
multi-objective evolutionary algorithms to solve it. Experimental results
on 20 binary classification data sets show that our proposed method out-
performs the state-of-the-art ensemble pruning methods significantly in
both generalization performance and ensemble size.

Keywords: Machine learning · Ensemble pruning · Multi-objective
optimization · Margin distribution · Multi-objective evolutionary
algorithm

1 Introduction

For one machine learning task, ensemble methods [31] train and combine multi-
ple base learners, which can achieve a better generalization performance than a
single base learner, and has been one of the most successful learning algorithms.
Based on the way how the base learners are generated, ensemble methods can be
generally classified into two categories: sequential methods such as Boosting [26],
and parallel methods such as Bagging [4]. After generating a set of trained base
learners, ensemble pruning [31] selects and combines a subset of base learners
instead of combining them all, which can not only save the storage space and
accelerate the prediction speed, but also lead to a better generalization perfor-
mance than the whole ensemble [7,20,24,34].
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In the past twenty-five years, a number of effective ensemble pruning methods
have been proposed, which can be roughly classified into two groups, ordering-
based pruning and optimization-based pruning. Ordering-based methods are
usually based on greedy strategies. Given a set of trained base learners, this kind
of method iteratively selects the base learner with the largest marginal gain on
some specially designed evaluation criterion. Representative criteria include min-
imizing the error on the validation set (i.e., validation error) [10,21], maximizing
the diversity [2], maximizing the complementarity [20], or combining different
evaluation criteria [17]. It has been shown that compared with combining all
base learners, ordering-based methods can often achieve a smaller error on the
test set (i.e., test error) by selecting only a subset of base learners [20].

Different from ordering-based methods, optimization-based pruning meth-
ods formulate ensemble pruning as an optimization problem explicitly, and then
apply optimization techniques to search for the optimal subset of base learners
that constitutes the final pruned ensemble. As evolutionary algorithms (EAs) [1]
inspired by natural evolution are a kind of general-purpose optimization algo-
rithms, they have been naturally used for ensemble pruning. Indeed, the first
work which opened the direction of optimization-based pruning [34] used a stan-
dard genetic algorithm to select a subset of base learners minimizing the vali-
dation error. Compared with the ordering-based methods, the generated pruned
ensemble has a competitive test error, but also has a much larger ensemble size.

In order to obtain not only a good generalization performance but also a small
ensemble size, Qian et al. [24] formulated ensemble pruning as an explicit bi-
objective optimization problem that minimizes the validation error and ensemble
size simultaneously, and proposed the Pareto Ensemble Pruning (PEP) method,
which employs a simple MOEA [16,23] combined with a local search opera-
tor to solve the bi-objective problem. It has been shown [24] that PEP can be
significantly better on both test error and ensemble size than various ordering-
based methods [2,10,17,20,21] as well as the single-objective optimization-based
method that minimizes the validation error only [34].

Ensemble pruning naturally has two goals: maximizing the generalization
performance and minimizing the ensemble size. The above-mentioned works
(e.g., [20,24,34]) mainly measured the generalization performance by the valida-
tion error during the optimization process. However, it has been revealed that
the generalization performance depends on not only the error on a sampled data
set, but also the margin, i.e., the distance from a sampled data to the decision
boundary. Margin theory for Boosting was first presented by Schapire et al. [3] to
explain the success of AdaBoost. Soon after, Breiman [5] proved that the mini-
mum margin is crucial to the margin theory, but optimizing the minimum margin
led to poor empirical generalization performance; this sentenced margin theory
to death. Later, Reyzin and Schapire conjectured that it is margin distribution
rather than minimum margin concerns [25]. Gao and Zhou [14] finally proved
that it is crucial to optimize margin distribution, characterized by maximizing
margin mean and minimizing margin variance simultaneously. Later, Grønlund
et al. [15] proved that one cannot hope for much stronger upper bounds than Gao
and Zhou’s result. Gao and Zhou’s result has inspired many advanced machine
learning algorithms to maximize margin mean and minimize margin variance
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simultaneously [29,30], generally by taking one of them as an objective whereas
the other as a constraint. Lyu et al. [19] tried to take margin ratio, defined by
the standard deviation of margin over margin mean, and applied it to improve
deep forest. But to the best of our knowledge, the margin distribution has not
been exploited for ensemble pruning.

In this paper, we propose a Margin Distribution guided multi-objective evolu-
tionary Ensemble Pruning (MDEP) method, which formulates ensemble pruning
as a three-objective optimization problem that minimizes the validation error,
margin ratio [19] and ensemble size simultaneously, and then applies advanced
multi-objective EAs (MOEAs) to solve it. Experiments have been conducted on
20 binary classification data sets. We first examine the performance of MDEP
equipped with three typical MOEAs, i.e. NSGA-II [9], MOEA/D [28] and NSGA-
III [8], suggesting that NSGA-III leads to the best performance. Then, we com-
pare MDEP using NSGA-III against all the state-of-the-art pruning methods
introduced before, showing that MDEP can achieve a better test error with a
significantly smaller ensemble size. Finally, we also perform an ablation study to
show that introducing the objective of minimizing the margin ratio (i.e., opti-
mizing the margin distribution) really contributes to the advantage of MDEP.

2 MDEP Method

In this section, we first introduce the three-objective formulation (i.e., validation
error, margin distribution and ensemble size) of the ensemble pruning problem,
and then show how to solve this three-objective problem by MOEAs.

2.1 Three-Objective Formulation with Margin Distribution

Given a set of n trained base learners H = {ht}nt=1, where ht : X → Y maps the
instance space X to the label space Y. Let Hs denote a pruned ensemble with
the selector vector s ∈ {0, 1}n, where ∀t ∈ {1, 2, . . . , n}, st = 1 and st = 0 mean
that the base learner ht is selected and unselected, respectively. Considering
using voting to combine the base learners, the output of Hs on an instance
x ∈ X is calculated by taking an average of the selected base learners, i.e.,

Hs(x) =
1
|s|

n∑

t=1

stht(x), (1)

where |s| =
∑n

t=1 st represents the ensemble size. The goal of ensemble pruning
is to select a pruned ensemble Hs that optimizes the generalization performance
(i.e., the expected prediction error under the unknown data distribution D over
X × Y) while containing as few base learners as possible.

Ensemble pruning can be naturally formulated as a bi-objective optimization
problem that optimizes the generalization performance of Hs and minimizes the
ensemble size |s|, simultaneously. Previous work [24,34] measured the general-
ization performance by the validation error only. However, it has been proved
by Gao and Zhou [14] that the generalization performance depends on not only
the error on a sampled data set, but also the margin distribution.
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Fig. 1. A simple illustration of two linear classifiers h1, h2 with the same validation
error but different margin distributions. Dotted ellipses are two underlying distribu-
tions, from which blue triangles and green squares are validation instances sampled for
two classes. This illustration takes the idea from [32]. (Color figure online)

To intuitively show that the generalization performance of a learner is related
to the margin distribution, we consider an example of binary classification in
Fig. 1. The margin of an instance with respect to a learner is the distance from
the instance to the learner’s decision boundary, which can also be viewed as a
measure of confidence in classification. The larger the margin, the better it is.
Figure 1 illustrates the importance of margin distribution. h1 and h2 are different
linear classifiers with equal validation errors which cannot be distinguished if we
only consider the validation error. But when we also consider the margin distri-
bution, h1 has larger margins on most sampled instances and will be selected,
which is the true better classifier that separates the two classes perfectly.

For achieving a better generalization performance, it is thus required to
optimize both the error and the margin distribution on the validation set. Let
D = {(xi, yi)}mi=1 denote the given validation set. Considering binary classifica-
tion, i.e., Y = {+1,−1}, the validation error of a pruned ensemble Hs can be
represented as

errorD(Hs) =
1
m

m∑

i=1

(
I(yiHs(xi) < 0) +

I(yiHs(xi) = 0)
2

)
, (2)

where I(·) is the indicator function that is 1 if the inner expression is true and 0
otherwise. Note that yiHs(xi) < 0 implies that the pruned ensemble Hs makes
the wrong prediction; yiHs(xi) = 0 implies that Hs(xi) in Eq. (1) is equal to 0,
and the pruned ensemble will make a random guess, resulting in an error with
probability 1/2. The margin of the labeled instance (xi, yi) with respect to a
pruned ensemble Hs is

ρHs
(xi , yi) = yiHs(xi) =

1
|s|

⎛

⎝
∑

t:yi=ht(xi)

st −
∑

t:yi �=ht(xi)

st

⎞

⎠ . (3)
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Gao and Zhou [14] have revealed that a smaller margin variance and a larger
margin mean will lead to a better margin distribution, and Lyu et al. [19] have
further proved that margin distribution can be characterized by margin ratio
related to the margin standard deviation against the margin mean. For a pruned
ensemble Hs , its margin ratio on the validation set D can be calculated as

ρratioD (Hs) =

√
VarD(ρHs

)
Mean2

D(ρHs
)

=

√
m

∑
i�=j (ρHs

(xi , yi) − ρHs
(xj , yj))

2

2(m − 1)(
∑m

i=1 ρHs
(xi , yi))2

, (4)

where VarD(ρHs
) and MeanD(ρHs

) denote the margin variance and mean,
respectively, of the instances in D with respect to Hs , and ρHs

(xi , yi) is the
margin of (xi , yi) with respect to Hs , as calculated in Eq. (3). The smaller the
margin ratio, the better the margin distribution and thus the generalization
performance.

Based on the above analysis, we formulate ensemble pruning as a three-
objective minimization problem

arg mins∈{0,1}n

(
errorD(Hs), ρratioD (Hs), |s|

)
. (5)

That is, the validation error, the margin ratio and the ensemble size are mini-
mized simultaneously. Note that minimizing the first two objectives corresponds
to optimizing the generalization performance. To the best of our knowledge, this
is the first time that margin distribution is utilized for ensemble pruning.

By solving the three-objective problem formulated in Eq. (5) by MOEAs,
we propose the Margin Distribution guided multi-objective evolutionary Ensem-
ble Pruning method, briefly called MDEP. Though the margin in Eq. (3) is
defined for binary classification, it can be adapted to multi-class classification
and regression accordingly [11,22], and thus MDEP can also be applied to these
tasks.

2.2 Multi-objective Evolutionary Algorithms

Next, we will show how MDEP applies MOEAs to solve the three-objective
problem in Eq. (5). The input of MDEP is a set of trained base learners H =
{ht}nt=1 and a validation data set D. As introduced before, a pruned ensemble
can be naturally represented by a Boolean vector s ∈ {0, 1}n, where the t-th bit
st = 1 if and only if the base learner ht is selected. Note that the solution with
all 0s is excluded during optimization. The procedure of MDEP is presented in
Algorithm 1. In fact, MDEP can be equipped with any existing MOEA, e.g.,
NSGA-II [9], MOEA/D [28] and NSGA-III [8]. Here, we mainly introduce the
special initialization, crossover and mutation operations that MDEP adopts.

Initialization. With the goal of improving the search efficiency of MDEP in
the solution space with a small ensemble size, we evaluate all the solutions with
size 1 in line 1 of Algorithm 1, and select the non-dominated solutions among
them as initial solutions in line 2. Note that these solutions must be Pareto
optimal, because solutions with size larger than 1 cannot dominate them. To
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Algorithm 1. MDEP Method
Input: Original ensemble H = {ht}n

t=1, validation data set D = {(xi, yi)}m
i=1

Output: Pruned ensemble Hs

1: Evaluate all the solutions
{
si

}n

i=1
with size 1, where si has value 1 on the i-th bit,

and 0 otherwise;
2: Select the non-dominated solutions among

{
si

}n

i=1
, and add them into the initial

population P1;
3: For the remaining required initial solutions, randomly select them from {0, 1}n;
4: for t = 1 : maximum #generations do
5: Select solutions from Pt to compose the mating pool;
6: Generate offspring population P ′ by uniform crossover and bit-wise mutation;
7: for each offspring solution s′ ∈ P ′ do
8: if |s′| ≤ 1 then
9: repeat

10: Apply the bit-wise mutation operator to update s′

11: until |s′| > 1
12: end if
13: Evaluate s′

14: end for
15: Select next population Pt+1 from Pt ∪ P ′

16: end for
17: Select a non-dominated solution s from the final population

fill in the initial population P1, the remaining initial solutions are randomly
selected from the whole solution space {0, 1}n in line 3. Note that this setting
implicitly requires that the population size is at least the number of Pareto
optimal solutions with size 1. In our experiments, the population size will be set
to n, which obviously satisfies this requirement.

Reproduction. To reproduce offspring solutions from the selected parent solu-
tions, we employ the common operators over Boolean vector representation:
uniform crossover and bit-wise mutation [13], as shown in line 6 of Algorithm 1.
The uniform crossover operator generates the first offspring solution by inherit-
ing each bit from the first parent solution independently with probability 1/2,
and otherwise from the second parent. The second offspring is created using
inverse mapping. The bit-wise mutation operator flips each bit of a solution
independently with probability 1/n. Since we have explored all the solutions
with size 1 in the initialization procedure, when an offspring solution s′ with
|s′| ≤ 1 is generated, the bit-wise mutation operator is applied repeatedly to
update s′ until |s′| > 1 (i.e., lines 8–12).

Though the above settings are simple, they have been sufficient to lead to
a good performance of MDEP, which will be shown in our experiments. More
careful designs may further improve the performance. Note that the uniform
crossover and bit-wise mutation operators are usually applied with some prob-
abilities, denoted as Pc and Pm, respectively. They are treated as two hyperpa-
rameters. The parent selection strategy for reproduction in line 5 as well as the
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survival selection strategy for updating the population in line 15 depends on the
concrete MOEA employed by MDEP. For example, if NSGA-II [9] is employed,
binary tournament selection is used to select parent solutions and the survival
selection strategy is based on non-dominated sorting and crowding distance.

MDEP will continue to run until a predefined number of generations (i.e.,
maximum #generations in line 4 of Algorithm 1) is reached. After MDEP termi-
nates, we will get a set of solutions, and the final output solution can be selected
according to the user’s preference. Here we propose to select the solution with
the smallest validation error from the final population. If such a solution is not
unique, we select the solution with the smallest ensemble size among them. This
strategy of selecting the final solution will be used in our experiments.

3 Experiments

In this section, we empirically examine the performance of MDEP. Section 3.1
introduces the general experimental settings. As MDEP can be equipped with
any MOEA, we compare the performance of MDEP using three typical MOEAs,
i.e., NSGA-II [9], MOEA/D [28] and NSGA-III [8], in Sect. 3.2, showing that
NSGA-III is the best choice. Next, we compare MDEP equipped with NSGA-III
against state-of-the-art pruning methods in Sect. 3.3. Finally, Sect. 3.4 performs
an ablation study to examine whether considering the margin distribution in
problem formulation, i.e., introducing the objective of minimizing the margin
ratio in Eq. (5), really contributes to the advantage of MDEP.

3.1 Settings

We conduct experiments on 20 binary classification data sets from the UCI
repository [12]. Some of the binary classification data sets are generated from
multi-class data sets: letter-ah is based on the letter data and classifies ‘a’ against
‘h’, and alike letter-br and letter-oq ; optdigits classifies ‘01234’ against ‘56789’;
satimage-12v57 is based on the satimage data and classifies labels ‘1’ and ‘2’
against ‘5’ and ‘7’, and alike satimage-2v5; vehicle-bo-vs is based on the vehicle
data and classifies ‘bus’ and ‘opel’ against ‘van’ and ‘saab’, and alike vehicle-b-v.

To evaluate each method on each data set, a data set is evenly and randomly
split into three parts: training set, validation set and test set. We use Bagging [4]
to train 100 C4.5 decision trees [6] on the training set as the original ensemble
H = {ht}nt=1, and then prune the ensemble by a pruning method on the valida-
tion set. Finally, we report the performance of the pruned ensemble on the test
set. In order to reduce the influence of randomness, each data set is randomly
partitioned 30 times independently, and each method will be performed on each
partition of the data set and the average performance will be reported.

3.2 Comparison of MDEP Using Various MOEAs

Since MDEP can employ various MOEAs to solve the three-objective problem
in Eq. (5), we first compare the performance of MDEP equipped with NSGA-
II [9], MOEA/D [28] and NSGA-III [8]. Because the optimization process of an
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MOEA is inherently stochastic, for each partition of each data set, the MOEA
is repeated 5 times further. That is, each MOEA on each data set is repeated
150 times (30 partitions × 5 times per partition). For fairness of comparison,
we use the same hyperparameter setting for each MOEA. The population size is
100, the number of generations is 500. The probabilities Pc and Pm of applying
crossover and mutation are set arbitrarily to 0.7 and 1, respectively. The more
careful setting may achieve better results.

The comparative methods also include two baselines: Bagging which uses
the original ensemble (i.e., all 100 trained base learners), and Best Individual
(BI) which selects the base classifier with the smallest validation error. Table 1
gives the detailed results, i.e., the mean and standard deviation of test error and
ensemble size of each method on each data set. To save space, MDEP equipped
with a specific MOEA is denoted by the name of the MOEA in Table 1. For
example, NSGA-III actually means MDEP equipped with NSGA-III. Among all
the comparison methods, BI has the worst test error on all data sets, which is
consistent with the fact that an ensemble of multiple classifiers usually achieves
better generalization performance than a single classifier. From the row of “w/t/l
to Bagging”, we can observe that MDEP using any MOEA achieves a smaller
test error than Bagging on at least 80% (16/20) data sets. Furthermore, by the
Wilcoxon rank-sum test [27] with confidence level 0.1, MDEP using any MOEA
can be significantly better than Bagging on 60% (12/20) of the data sets.

By the row of “count of the best”, we can observe that MDEP using NSGA-III
achieves the smallest test error on 75% (15/20) data sets, which is better than
using other MOEAs. This may be because NSGA-III is proposed to improve
the performance of NSGA-II for problems with more objectives. Though using
NSGA-II most often achieves the smallest ensemble size, the average ensemble
size of NSGA-III, NSGA-II, and MOEA/D on 20 data sets is similar, which is
8.66, 8.42 and 8.76, respectively. That is, MDEP using any MOEA will reduce
the original ensemble size greatly.

In conclusion, MDEP using any MOEA can result in better generalization
performance with significantly reduced ensemble size. Furthermore, using NSGA-
III leads to the best performance of MDEP, which achieves a smaller test error
with a similar ensemble size, compared with using other MOEAs.

3.3 MDEP vs. State-of-the-Art Pruning Methods

Next, we compare MDEP with state-of-the-art ensemble pruning methods. Note
that MDEP uses NSGA-III here, which has been shown to be the best choice in
Sect. 3.2. We implement seven state-of-the-art pruning methods, including five
ordering-based methods: Reduce-Error (RE) [7], Kappa [2], ComPlementarity
(CP) [20], Margin Distance (MD) [21] and DREP [17]; two optimization-based
methods: EA [33,34] that employs a standard genetic algorithm to minimize
the validation error only, and PEP [24] that employs a simple MOEA [16] com-
bined with a local search operator to minimize the validation error and ensemble
size simultaneously. Note that EA and PEP output the pruned ensemble with
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Table 1. The test errors and ensemble sizes (mean+std.) of the compared methods
on 20 binary data sets. The smallest error and size on each data set are bolded. In
the row of “count of the best”, the largest values are bolded. The “w/t/l to Bagging”
denotes the number of data sets where the test error of MDEP using a specific MOEA
is smaller, same, or larger, compared to Bagging.

Test error Ensemble size
Data set NSGA-III NSGA-II MOEA/D Bagging BI NSGA-III NSGA-II MOEA/D

australian .143± .020 .144± .021 .143± .020 .143± .017 .152± .023 8.2± 3.4 7.5± 3.3 7.5± 3.1
breast-cancer .273± .035 .279± .038 .278± .035 .279± .037 .298± .044 7.4± 2.7 6.9± 1.6 6.8± 2.2
liver-disorders .312± .033 .313± .033 .310± .035 .327± .047 .365± .047 11.2± 3.8 10.6± 3.7 10.9± 3.3
heart-statlog .192± .037 .197± .040 .195± .040 .195± .038 .235± .049 7.7± 2.4 7.9± .2.7 7.7± 2.1
house-votes-84 .044± .018 .045± .019 .043± .020 .041± .013 .047± .016 3.0± 1.4 3.1± 1.8 3.0± 1.9
ionosphere .083± .022 .085± .025 .083± .023 .092± .025 .117± .022 5.0± 1.6 4.9± 1.7 5.1± 1.7
kr-vs-kp .009± .003 .010± .003 .009± .003 .015± .007 .011± .004 3.8± 1.4 4.0± 1.2 4.4± 1.8
letter-AH .012± .006 .014± .006 .012± .006 .021± .006 .023± .008 5.1± 2.0 4.9± 1.9 5.1± 1.7
letter-BR .045± .011 .047± .012 .048± .010 .059± .013 .078± .012 9.8± 2.2 9.4± 2.5 10.7± 2.9
letter-OQ .041± .009 .042± .010 .043± .009 .049± .012 .078± .017 9.9± 2.5 9.8± 2.7 10.7± 2.9
optdigits-b .035± .005 .034± .005 .037± .005 .038± .007 .095± .008 21.1± 4.1 21.7± 4.5 21.5± 5.3
satimage-12v57 .028± .004 .028± .004 .028± .004 .029± .004 .052± .006 13.7± 3.1 14.3± 4.6 14.7± 4.2
satimage-25 .022± .006 .021± .007 .021± .006 .023± .009 .033± .010 5.4± 1.3 5.6± 1.9 5.7± 1.9
sick .015± .003 .015± .003 .016± .003 .018± .004 .018± .004 5.8± 2.2 5.6± 2.7 6.2± 1.8
sonar .244± .052 .257± .057 .257± .040 .266± .052 .310± .051 10.9± 3.5 9.9± 2.7 10.9± 3.5
spambase .065± .006 .066± .007 .066± .006 .068± .007 .093± .008 14.0± 4.9 13.7± 3.7 14.0± 3.4
tic-tac-toe .128± .024 .131± .021 .128± .022 .164± .028 .212± .028 12.4± 3.2 11.2± 3.2 12.0± 3.1
vehicle-bo-vs .226± .022 .223± .021 .229± .021 .228± .026 .257± .025 13.1± 4.6 11.9± 4.1 12.6± 3.6
vehicle-b-v .019± .011 .020± .012 .019± .013 .027± .014 .024± .013 2.8± 1.0 2.8± 1.1 2.9± 1.5
vote .044± .018 .046± .019 .046± .020 .047± .018 .046± .016 2.9± 1.5 2.7± 1.1 2.8± 1.3
count of the best 15 5 9 2 0 7 13 4
w/t/l to Bagging 18/1/1 16/1/3 16/2/2 - - - - -

the smallest validation error from the final population [24,33,34]. The hyper-
parameter p of MD is set to 0.075 [21], and the hyperparameter ρ of DREP is
selected from {0.2, 0.25, . . . , 0.5} [17]. As suggested by [24], the total number of
fitness evaluations used by EA and PEP is set to n4 log n, which is much greater
than that (i.e., population size 100 × 500 #generations = 50, 000) of MDEP
as n = 100. Though this is unfair MDEP, better performance on test error and
ensemble size can still be achieved by MDEP, and will be shown later.

The average test error and ensemble size are shown in Table 2. In terms of test
error, MDEP performs the best on 65% (13/20) of the data sets, while the other
methods are at most 40% (8/20). Compared with any other method, MDEP is
better on at least 55% (11/20) of the data sets, and is never significantly worse
since no ‘◦’ appears in the upper half of Table 2. In terms of ensemble size,
MDEP and PEP perform the best on 85% (17/20) and 20% (4/20) of the data
sets, respectively, while the other methods never achieve the smallest size. This
may be because only MDEP and PEP minimize the ensemble size explicitly. EA
minimizes the validation error only, and generates ensembles with the largest size
on all data sets, which is consistent with previous observation [18,34]. Compared
with the runner-up PEP, MDEP achieves a smaller ensemble size on 80% (16/20)
of the data sets, and is significantly better on 45% (9/20) of the data sets. To sum
up, MDEP can achieve better generalization performance than other pruning
methods, while with a significantly smaller ensemble size.
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Table 2. The test errors and ensemble sizes (mean+std.) of the compared methods
on 20 binary data sets. The smallest error and size on each data set are bolded, and
‘•/◦’ denotes that MDEP is significantly better/worse than the corresponding method
by the Wilcoxon rank-sum test with confidence level 0.1. In the rows of “count of
the best”, the largest values are bolded. The “MDEP: w/t/l” denotes the number of
data sets where the test error (or ensemble size) of MDEP is smaller, same or larger,
compared to the corresponding method.

Test error

Data set MDEP DREP Kappa CP MD RE EA PEP Bagging BI

australian .143± .020 .144± .019 .143± .021 .145± .022 .148± .022 .144± .020 .143± .020 .144± .020 .143± .017 .152± .023•
breast-cancer .273± .035 .275± .036 .287± .037• .282± .043 .295± .044• .277± .031 .275± .032 .275± .041 .279± .037 .298± .044•
liver-disorders .312± .033 .316± .045 .326± .042• .306± .039 .337± .035• .320± .044 .317± .046 .304± .039 .327± .047• .365± .047•
heart-statlog .192± .037 .194± .044 .201± .038 .199± .044 .226± .048• .187± .044 .196± .032 .197± .037 .195± .038 .235± .049•
house-votes-84 .044± .018 .045± .017 .044± .017 .045± .017 .048± .018 .043± .018 .041± .012 .045± .019 .041± .013 .047± .016

ionosphere .083± .022 .085± .021 .084± .020 .089± .021• .100± .026• .086± .021 .093± .026• .088± .021• .092± .025• .117± .022•
kr-vs-kp .009± .003 .011± .003 .010± .003 .011± .003 .011± .005 .010± .004 .012± .004• .010± .003 .015± .007• .011± .004

letter-AH .012± .006 .014± .005• .012± .006 .015± .006• .017± .007• .015± .006• .017± .006• .013± .005 .021± .006• .023± .008•
letter-BR .045± .011 .048± .009 .048± .014 .048± .012 .057± .014• .048± .012 .053± .011• .046± .008 .059± .013• .078± .012•
letter-OQ .041± .009 .041± .010 .042± .011 .042± .010 .046± .011• .046± .011• .044± .011 .043± .009 .049± .012• .078± .017•
optdigits-b .035± .005 .035± .006 .035± .005 .036± .005 .037± .006 .036± .006 .035± .006 .035± .006 .038± .007• .095± .008•
satimage-12v57 .028± .004 .029± .004 .028± .004 .029± .004 .029± .004 .029± .004 .029± .004 .028± .004 .029± .004 .052± .006•
satimage-25 .022± .006 .022± .008 .022± .007 .021± .008 .026± .010• .023± .007 .021± .008 .021± .007 .023± .009 .033± .010•
sick .015± .003 .016± .003 .017± .003 .016± .003 .017± .003• .016± .003 .017± .004• .015± .003 .018± .004• .018± .004•
sonar .244± .052 .257± .056 .249± .059 .250± .048 .268± .055 .267± .053• .251± .041 .248± .056 .266± .052• .310± .051•
spambase .065± .006 .065± .006 .066± .006 .066± .006 .068± .007• .066± .006 .066± .006 .065± .006 .068± .007• .093± .008•
tic-tac-toe .128± .024 .129± .026 .132± .023 .132± .026 .145± .022• .135± .026 .138± .020• .131± .027 .164± .028• .212± .028•
vehicle-bo-vs .226± .022 .234± .026 .233± .024 .234± .024 .244± .024• .226± .022 .230± .024 .224± .023 .228± .026 .257± .025•
vehicle-bus-van .019± .011 .019± .013 .019± .012 .020± .011 .021± .011 .020± .011 .026± .013• .018± .011 .027± .014• .024± .013

vote .044± .018 .043± .019 .041± .016 .043± .016 .045± .014 .044± .017 045± .015 .044± .018 .047± .018 .046± .016

count of the best 13 3 5 1 0 1 4 8 2 0

MDEP: w/t/l − 14/5/1 12/7/1 17/0/3 20/0/0 16/2/2 16/2/2 11/5/4 18/1/1 20/0/0

Ensemble size

australian 8.2± 3.4 11.7± 4.7• 14.7± 12.6• 11.0± 9.7 8.5± 14.8 12.5± 6.0• 41.9± 6.7• 10.6± 4.2• − −
breast-cancer 7.4± 2.7 9.2± 3.7• 26.1± 21.7• 8.8± 12.3 7.8± 15.2 8.7± 3.6• 44.6± 6.6• 8.4± 3.5• − −
liver-disorders 11.2± 3.8 13.9± 5.9• 24.7± 16.3• 15.3± 10.6 17.7± 20.0 13.9± 4.2• 42.0± 6.2• 14.7± 4.2 • − −
heart-statlog 7.7± 2.4 11.3± 2.7• 17.9± 11.1• 13.2± 8.2 13.6± 21.1 11.4± 5.0• 44.2± 5.1• 9.3± 2.3 − −
house-votes-84 3.0± 1.4 4.1± 2.7• 5.5± 3.3• 4.7± 4.4 5.9± 14.1 3.9± 4.0 46.5± 6.1 2.9± 1.7 − −
ionosphere 5.0± 1.6 8.4± 4.3• 10.5± 6.9• 8.5± 6.3• 10.7± 14.6 7.9± 5.7• 48.8± 5.1• 5.2± 2.2 − −
kr-vs-kp 3.8 ± 1.4 7.1 ± 3.9• 10.6 ± 9.1• 9.6 ± 8.6• 7.2± 15.2 5.8± 4.5 45.9± 5.8 4.2± 1.8 − −
letter-AH 5.1± 2.0 7.8± 3.6• 7.1± 3.8• 8.7± 4.7• 11.0± 10.9 7.3± 4.4• 42.5± 6.5• 5.0± 1.9 − −
letter-BR 9.8 ± 2.2 11.3 ± 3.5• 13.8 ± 6.7• 12.9 ± 6.8• 23.2 ± 17.6• 15.1 ± 7.3• 38.3 ± 7.8• 10.9 ± 2.6 − −
letter-OQ 9.9 ± 2.5 13.7± 4.9• 13.9± 6.0• 12.3± 4.9• 23.0± 15.6• 13.6± 5.8• 39.3± 8.2• 12.0± 3.7• − −
optdigits-b 21.1± 4.1 25.0± 8.0• 25.2± 8.1• 21.4± 7.5• 46.8± 23.9• 25.0± 9.3• 41.4± 7.6• 22.7± 3.1• − −
satimage-12v57 13.7± 3.1 18.1± 4.9• 22.1± 10.3• 21.2± 10.0• 37.6± 24.3• 20.8± 9.2• 42.7± 5.2• 17.1± 5.0• − −
satimage-25 5.4± 1.3 7.7± 3.5• 7.6± 4.2• 10.9± 7.0• 26.2± 28.1• 6.8± 3.2• 44.1± 4.8 5.7± 1.7 − −
sick 5.8± 2.2 11.6± 6.7• 10.9± 6.0• 11.5± 10.0• 8.3± 13.6 7.5± 3.9• 44.7± 8.2• 6.9± 2.8 − −
sonar 10.9± 3.5 14.4± 5.9• 20.6± 9.3• 13.9± 7.1 20.6± 20.7 11.0± 4.1 43.1± 6.4 11.4± 4.2 − −
spambase 14.0± 4.9 16.7± 4.6• 20.0± 8.1• 19.0± 9.9• 28.8± 17.0• 18.5± 5.0• 39.7± 6.4• 17.5± 4.5• − −
tic-tac-toe 12.4± 3.2 13.6± 3.4 17.4± 6.5• 15.4± 6.3 28.0± 22.6• 16.1± 5.4• 39.8± 8.2• 14.5± 3.8• − −
vehicle-bo-vs 13.1± 4.6 13.2± 5.0 16.5± 8.2• 11.2± 5.7 21.6± 20.4 15.7± 5.7• 41.9± 5.6• 16.5± 4.5• − −
vehicle-bus-van 2.8± 1.0 4.0± 3.9 4.5± 1.6• 5.3± 7.4 2.8± 3.8 3.4± 2.1 48.0± 5.6 2.8± 1.1 − −
vote 2.9± 1.5 3.9± 2.5 5.1± 2.6• 5.4± 5.2 6.0± 9.8 3.2± 2.7 47.8± 6.1 2.7± 1.1 − −
count of the best 17 0 0 0 0 0 0 4 − −
MDEP: w/t/l − 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 20/0/0 16/1/3 − −

We further make a more comprehensive comparison between MDEP and the
runner-up PEP [24]. We map all the solutions in their final population into the
space of test error and ensemble size. Figure 2(a) shows the results on the data
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Fig. 2. The final solution sets of MDEP (blue stars) and PEP (red dots) in the space
of test error and ensemble size on the data set spambase. (a) All solutions. (b) Non-
dominated solutions in (a). (Color figure online)

Fig. 3. The histogram of the margin distributions (i.e., the frequency on each margin)
obtained by MDEP and PEP on the data set heart-statlog.

set spambase. It can be observed that MDEP obtains a much larger solution
set than PEP, with more solutions in the lower-left corner of the figure. Note
that PEP does not maintain a fixed-size population, and thus may obtain few
final solutions, as observed. Figure 2(b) shows the non-dominated solutions in
Fig. 2(a). It can be more clearly observed that for each solution obtained by
PEP, MDEP has at least one solution that can dominate it.

Since MDEP optimizes the margin distribution explicitly, we also visualize
the margin distribution of the final pruned ensemble by plotting the histogram
of the frequency on each margin. Figure 3 shows the results of MDEP and PEP
on the data set heart-statlog. It can be seen that MDEP obtains larger margins
(e.g., margins greater than 0.7). Although MDEP also gets more very negative
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margins (e.g., margins no greater than −0.7), the overall frequency of non-
positive margins is less than that of PEP, implying that fewer samples are mis-
classified by MDEP. Thus, MDEP achieves an overall better margin distribution,
suggesting a better generalization performance as observed before.

3.4 Ablation Study

The above experiments have shown the clear advantage of MDEP, which employs
NSGA-III to minimize the three-objective problem in Eq. (5). Then, a natural
question is whether explicitly minimizing the margin ratio really contributes to
the advantage of MDEP. Though PEP [24] is to minimize the validation error
and ensemble size simultaneously, it employs a simple MOEA [16] combined
with local search for optimization, and thus the superiority of MDEP over PEP
cannot answer the question due to the difference of the employed optimizer.

To answer the question, we next compare the performance of the same MOEA
(i.e., NSGA-III, NSGA-II or MOEA/D) optimizing the three objectives and two
objectives (i.e., only the validation error and ensemble size), respectively. The
hyper-parameters of all MOEAs are the same as in the previous experiments.
The results are shown in Table 3. We can observe that for the same MOEA, min-
imizing the margin ratio additionally (corresponding to the columns of ‘3-obj’)
usually results in a smaller test error, which also supports the margin distribution
theory [14,19]. We note that the ensemble size obtained by optimizing the three
objectives is relatively larger, which may be because a solution with a larger
ensemble size is easier to be dominated under the bi-objective formulation. In
fact, the difference in the ensemble size is very small. For the three-objective for-
mulation, the average ensemble size of NSGA-III, NSGA-II and MOEA/D on the
20 data sets is 8.66, 8.42 and 8.76, respectively; while for the bi-objective formu-
lation, the average size is 8.15, 7.66 and 8.20, respectively. Furthermore, as shown
in Sect. 3.3, the ensemble size achieved by NSGA-III under the three-objective
formulation is still significantly smaller than other state-of-the-art pruning meth-
ods. Thus, these results give a positive answer, i.e., confirm that optimizing the
margin distribution explicitly brings advantages.
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Table 3. The test errors and ensemble sizes (mean+std.) of each MOEA optimizing
three or two objectives on 20 binary data sets. For each MOEA on each data set, the
smaller error and size are bolded. The “3-obj vs. 2-obj: w/t/l” denotes the number
of data sets where the test error (or ensemble size) of an MOEA optimizing three
objectives is smaller, same or larger, compared to that of the MOEA optimizing two
objectives.

Test error Ensemble size

Data set NSGA-III NSGA-II MOEA/D NSGA-III NSGA-II MOEA/D

3-obj 2-obj 3-obj 2-obj 3-obj 2-obj 3-obj 2-obj 3-obj 2-obj 3-obj 2-obj

australian .143± .020 .143± .019 .144± .021 .147± .022 .143± .020 .144± .022 8.2± 3.4 7.0± 3.1 7.5± 3.3 6.7± 2.6 7.5± 3.1 7.9± 3.2

breast-cancer .273± .035 .283± .037 .279± .038 .275± .038 .278± .035 .280± .039 7.4± 2.7 5.5± 2.2 6.9± 1.6 5.9± 1.6 6.8± 2.2 5.6± 2.3

liver-disorders .312± .033 .325± .043 .313± .033 .325± .040 .310± .035 .313± .040 11.2± 3.8 11.5± 4.2 10.6± 3.7 10.2± 4.1 10.9± 3.3 11.6± 3.9

heart-statlog .192± .037 .193± .042 .197± .040 .209± .039 .195± .040 .202± .033 7.7± 2.4 6.6± 2.4 7.9± .2.7 6.9± 2.2 7.7± 2.1 7.2± 2.3

house-votes-84 .044± .018 .045± .019 .045± .019 .046± .018 .043± .020 .044± .018 3.0± 1.4 2.9± 1.4 3.1± 1.8 2.9± 1.3 3.0± 1.9 2.7± 1.3

ionosphere .083± .022 .092± .021 .085± .025 .095± .025 .083± .023 .090± .023 5.0± 1.6 4.5± 1.5 4.9± 1.7 4.0± 1.2 5.1± 1.7 5.1± 2.2

kr-vs-kp .009± .003 .010± .004 .010± .003 .010± .003 .009± .003 .010± .003 3.8± 1.4 3.7± 1.4 4.0± 1.2 3.6± 1.2 4.4± 1.8 3.7± 1.4

letter-AH .012± .006 .013± .006 .014± .006 .012± .006 .012± .006 .013± .005 5.1± 2.0 4.7± 1.7 4.9± 1.9 4.9± 1.8 5.1± 1.7 5.1± 1.5

letter-BR .045± .011 .049± .010 .047± .012 .048± .010 .048± .010 .047± .011 9.8± 2.2 9.2± 3.5 9.4± 2.5 8.3± 3.1 10.7± 2.9 8.9± 3.5

letter-OQ .041± .009 .046± .010 .042± .010 .044± .011 .043± .009 .045± .011 9.9± 2.5 8.9± 2.2 9.8± 2.7 9.0± 3.0 10.7± 2.9 11.1± 2.6

optdigits-b .035± .005 .036± .006 .034± .005 .036± .006 .037± .005 .037± .006 21.1± 4.1 20.2± 4.9 21.7± 4.5 20.3± 5.6 21.5± 5.3 18.9± 5.0

satimage-12v57 .028± .004 .029± .004 .028± .004 .029± .004 .028± .004 .030± .004 13.7± 3.1 13.2± 4.3 14.3± 4.6 12.5± 3.7 14.7± 4.2 13.7± 3.3

satimage-25 .022± .006 .022± .008 .021± .007 .022± .006 .021± .006 .022± .007 5.4± 1.3 5.7± 2.4 5.6± 1.9 4.7± 1.2 5.7± 1.9 5.1± 1.9

sick .015± .003 .016± .003 .015± .003 .016± .003 .016± .003 .017± .003 5.8± 2.2 5.7± 2.2 5.6± 2.7 5.1± 2.0 6.2± 1.8 5.3± 2.3

sonar .244± .052 .267± .071 .257± .057 .263± .064 .257± .040 .255± .048 10.9± 3.5 8.5± 3.5 9.9± 2.7 8.6± 3.4 10.9± 3.5 8.8± 3.3

spambase .065± .006 .067± .006 .066± .007 .066± .005 .066± .006 .067± .007 14.0± 4.9 15.1± 4.8 13.7± 3.7 12.2± 3.7 14.0± 3.4 14.2± 3.9

tic-tac-toe .128± .024 .133± .024 .131± .021 .135± .024 .128± .022 .137± .020 12.4± 3.2 11.0± 3.5 11.2± 3.2 10.7± 3.6 12.0± 3.1 12.4± 3.2

vehicle-bo-vs .226± .022 .228± .023 .223± .021 .225± .019 .229± .021 .233± .024 13.1± 4.6 13.7± 5.0 11.9± 4.1 11.1± 4.1 12.6± 3.6 12.1± 5.1

vehicle-b-v .019± .011 .021± .013 .020± .012 .018± .012 .019± .013 .019± .013 2.8± 1.0 2.7± 1.1 2.8± 1.1 2.8± 1.1 2.9± 1.5 2.8± 1.2

vote .044± .018 .045± .020 .046± .019 .045± .019 .046± .020 .045± .017 2.9± 1.5 2.7± 1.2 2.7± 1.1 2.7± 1.1 2.8± 1.3 2.5± 1.1

3-obj vs. 2-obj: w/t/l 18/2/0 14/2/4 15/2/3 4/0/16 0/3/17 5/2/13

4 Conclusion

In this paper, we introduce the three-objective (i.e., validation error, margin
ratio and ensemble size) formulation of ensemble pruning, and propose a new
optimization-based ensemble pruning method MDEP, which employs MOEAs to
solve the three-objective problem. Experimental results show that MDEP using
NSGA-III is better than using NSGA-II and MOEA/D, and more importantly,
it can outperform state-of-the-art pruning methods significantly in both gener-
alization performance and ensemble size. In the future, it would be interesting to
perform theoretical analysis [35], as well as to design the components of MDEP
more carefully or apply more advanced MOEAs, which may bring further per-
formance improvement.
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21. Mart́ınez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Pro-
ceedings of the 23rd International Conference on Machine Learning (ICML 2006),
Pittsburgh, PA, pp. 609–616 (2006)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Multi-objective Evolutionary Ensemble Pruning 441

22. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
MIT Press, Cambridge (2018)

23. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective
evolutionary optimization. Artif. Intell. 204, 99–119 (2013)

24. Qian, C., Yu, Y., Zhou, Z.H.: Pareto ensemble pruning. In: Proceedings of the
29th AAAI Conference on Artificial Intelligence (AAAI 2015), Austin, TX, pp.
2935–2941 (2015)

25. Reyzin, L., Schapire, R.E.: How boosting the margin can also boost classifier com-
plexity. In: Proceedings of the 23rd International Conference on Machine Learning
(ICML 2006), Pittsburgh, PA , pp. 753–760 (2006)

26. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

27. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

28. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

29. Zhang, T., Zhou, Z.H.: Optimal margin distribution clustering. In: Proceedings of
the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans,
LA, pp. 4474–4481 (2018)

30. Zhang, T., Zhou, Z.H.: Optimal margin distribution machine. IEEE Trans. Knowl.
Data Eng. 32(6), 1143–1156 (2019)

31. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman &
Hall/CRC Press, Boca Raton, FL (2012)

32. Zhou, Z.H.: Large margin distribution learning. In: Proceedings of the 6th Inter-
national Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR
2014), Montreal, Canada, pp. 1–11 (2014)

33. Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Proceddings of
the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing (RSFDGrC 2003), Chongqing, China, pp. 476–483 (2003)

34. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better
than all. Artif. Intell. 137(1–2), 239–263 (2002)

35. Zhou, Z.H., Yu, Y., Qian, C.: Evolutionary Learning: Advances in Theories and
Algorithms. Springer, Singapore (2019)



Revisiting Attention-Based Graph Neural
Networks for Graph Classification

Ye Tao1, Ying Li2(B), and Zhonghai Wu2

1 School of Software and Microelectronics, Peking University, Beijing, China
tao.ye@pku.edu.cn

2 National Engineering Center of Software Engineering, Peking University,
Beijing, China

{li.ying,wuzh}@pku.edu.cn

Abstract. The attention mechanism is widely used in GNNs to improve
performances. However, we argue that it breaks the prerequisite for a
GNN model to obtain the maximum expressive power of distinguishing
different graph structures. This paper performs theoretical analyses of
attention-based GNN models’ expressive power on graphs with both node
and edge features. We propose an enhanced graph attention network
(EGAT) framework based on the analysis to deal with this problem. We
add a degree-related scale term to the attention coefficients and adjust
the message extraction function to enhance the expressive power, which
is critical in the graph classification task. Furthermore, we introduce a
virtual node connected with all nodes to augment the node representa-
tion update process with global information. To prove the effectiveness
of our EGAT framework, we first construct synthetic datasets to vali-
date our theoretical proposal, then we apply EGAT to two Open Graph
Benchmark (OGB) graph classification tasks to empirically demonstrate
that our model also performs well in real applications.

Keywords: Graph neural network · Attention mechanism · Expressive
power

1 Introduction

Graph-structured data is ubiquitous across application domains ranging from
science to engineering [1,4,11,23,27,29,40]. One of the major tasks in graph
analysis is graph classification. Traditional approaches often use hand-crafted
graph features to deal with this task, which is not necessarily suitable for all
datasets. Recently, a significant research effort is to develop Graph Neural Net-
works (GNNs) to learn graph representations from raw features, and use these
learned representations for the download tasks [5,10,12,19,32].

GNN models follow a neighborhood aggregation scheme. Generally speak-
ing, GNNs are formed using a composition of i) an aggregate function, which
collects messages from the target node’s neighbors to capture local structure
information, ii) a combine function, which fuses the neighborhood information
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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VS.

(a) GIN fails to distinguish

VS.

(b) RGCN fails to distinguish

VS.

(c) All GNN models with standard 
attention mechanisms fail to distinguish

Fig. 1. Examples of local structures that some classical GNNs cannot distinguish.

with the target node embedding, and iii) a readout function, which gets the rep-
resentation of the entire graph based on the representations of all nodes. Most
GNN models follow the above framework and only differ in how these operations
are defined and composed. The attention mechanism has been widely used in
GNN models. By assigning different weights to nodes within the neighborhood,
attention-based GNN models can focus on the most relevant parts of the input to
make decisions and have achieved success in real applications. Although extensive
studies conducted on attention-based GNN models have achieved unprecedented
results, there is little understanding of why these models are successful in prac-
tice. Recently, studies [28,38] have proved that any GNN model that follows the
above framework is at most as powerful as the Weisfeiler-Lehman (WL) test in
distinguishing different graph structures. However, their theoretical results are
limited to graphs that only consider node features, and they did not discuss
GNN models with attention mechanisms. Because of the above restrictions, the
existing theoretical analyses cannot well meet the needs of practical applications.

In order to adapt to a broader range of application scenarios, we propose to
extend the existing theoretical analyses. We first generalize the WL test algorithm
to graphs with both node features and edge features. When considering edge fea-
tures, we observed that many classical GNN models could not distinguish some
different structures that the generalized WL test decides as non-isomorphic, even
for models that have the maximum expressive power on graphs with only node fea-
tures. For example, GIN [38] and RGCN [33] cannot distinguish the different local
structures around v in Fig. 1(a) and Fig. 1(b) respectively. Further, we argue that
the widely used attention mechanism breaks the prerequisite for a GNN model to
obtain the maximum expressive power. This means that the existing attention-
based GNN model has some inherent limitations that restrict the upper bound
of its theoretical representation ability. For example, all GNN models with stan-
dard attentionmechanisms cannot distinguishFig. 1(c). Besides,GNNmodels lack
the ability to propagate messages across remote parts. In most GNN models, the
combine function only aggregates information collected from one-hop neighbors so
that a k-layer GNN can only obtain information within k-hop neighbors. In prac-
tice, we usually use shallow structures because piling up too many GNN layers
does not improve the predictive performance [31]. This means that each node can-
not obtain information from distant nodes.

To deal with the above problems, we propose an enhanced graph attention
network (EGAT) framework. The standard attention mechanism performs soft-
max to normalize the attention coefficients, which makes the aggregate func-
tion not injective. We add a degree-related scale term to attention coefficients



444 Y. Tao et al.

to enhance the attention-based aggregate function and provide the necessary
and sufficient conditions for it to obtain the maximum expressive power to dis-
criminate different structures. Further, we also revise the combine function by
introducing a virtual node connected with all nodes to guide the fusion process
between the target node’s representation and the neighborhood information.
Therefore, each node can determine how to employ neighborhood information
to obtain a higher-level node representation based on the global state.

We first construct synthetic datasets to validate our theoretical proposal
experimentally. Then, in order to illustrate that strong theoretical expressive
power will bring benefit in practical applications, we compare our EGAT with
many classical competitors on Open Graph Benchmark (OGB) [16]. The experi-
mental results demonstrate that our model achieves state-of-the-art performance
on two OGB graph property prediction tasks. Our main contributions are as fol-
lows:

– We generalize the theoretical analysis of GNNs’ expressive power to graphs
with both edge features. And we discussed how the attention mechanism
influences the expressive power of GNN models. Besides, we explain why
GNNs lack the ability to propagate messages across remote parts.

– We propose a new attention-based GNN framework EGAT to solve the above
two problems. We add a degree-related scale term to the attention coefficients
to enhance the theoretical expressive power and prove it is as powerful as the
generalized WL test. We introduce a virtual node connected with all nodes
to enhance the information propagation process with global status.

– We conducted comprehensive experiments on both synthetic datasets and
real-world datasets. The experimental results show that our model has good
theoretical and practical performance, outperforming state-of-the-art GNN
based competitors in graph classification tasks.

2 Preliminaries

2.1 Graph Neural Networks Framework

We denote a graph as a tuple G = (V, E ,X,A). Xv is the node feature vector for
v ∈ V and Auv is the edge feature vector for euv ∈ E , where euv denotes the edge
from node u to node v. We use Nv to denote the neighbor nodes set of v ∈ V,
i.e., Nv = {u | ∃euv ∈ E}. A node may have multiple neighbors with the same
representation, so we regard the set of feature vectors of a given node’s neighbors
as a multiset, i.e., a generalization of a set that allows repeated elements. We
use {{·}} to denote a multiset, �hk

v to denote the embedding of node v at the
k-th layer, and �huv to denote the embedding of edge euv. The k-th layer of the
classical GNN models can be written as follows

�ak
v = Aggregatek

({{
φ

(
�hk−1

u ,�huv,�hk−1
v

)
| u ∈ Nv

}})
(1)

�hk
v = Combinek

(
�hk−1

v ,�ak
v

)
(2)
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For the graph classification task, the representative approach for obtaining
the final graph representation is to exploit different levels of graph level embed-
dings, i.e., using the read function to obtain the graph representation at each
layer and then aggregate all layers graph representations for prediction.

�hk
G = Readk

({
�hk

v |v ∈ V
})

, �hG = f
({

�hk
G

})
, ŷG = Prediction

(
�hG

)
(3)

where �hk
G and �hG are the k-th layer and final graph representation.

2.2 Weisfeiler-Lehman Test

The Weisfeiler-Lehman (WL) test is an algorithm to distinguish whether two
graphs are isomorphic. Given a labeled graph, the WL test proceeds recursively
to update node labels. At the k-th iteration, a new label is computed for each
node from the current label and its neighbors’ labels, i.e.,

lkv = Hashk
(
lk−1
v ,

{{
lk−1
u | u ∈ Nv

}})
(4)

where Hash is an injective function that maps different inputs to a unique label.
The WL test algorithm decides that two graphs are non-isomorphic if at some
iteration, the labels of the nodes between the two graphs differ. Although there
are some corner cases that the WL test can not distinguish [8], this algorithm is
a successful isomorphism test for a broad class of graphs [3].

2.3 Theoretical Analysis

Compare Eqs. 1–2 with Eq. 4, we observe that a GNN model can be viewed as
replacing the Hash function of the WL test algorithm with a neural network
so that it can handle node/edge representations in continuous space. Without
considering edge attributes, it has been proved that a GNN model can be as
most powerful as the WL test in distinguishing non-isomorphic graphs [28,38].
We generalize the WL test to graphs with edge features,

lkv = Hashk
(
lk−1
v ,

{{
luv, lk−1

u | u ∈ Nv

}})
(5)

where luv is the label obtained from the attribute of the edge euv.
Our first theoretical result shows that a GNN following Eqs. 1–3 is at most

as powerful as the generalized WL test in distinguishing graph structures.

Theorem 1. Let G1 and G2 be any two graphs. If a GNN maps G1 and G2 to
different embeddings, the generalized WL also decides they are not isomorphic.

Our second theoretical result shows that a GNN can obtain the same expres-
sive power as the generalized WL test when the feature extraction is injective.
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Multiset (B) 
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Neighbor (A) Neighbor (B) Neighbor (C) Neighbor (D) Neighbor (E) Neighbor (F) Neighbor (G) Neighbor (H) Neighbor (I) Neighbor (J) 
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interaction (Concatenate, Sum)

Feature extraction with interaction 
(MLP, Edge Type-specific Matrix)

Sum, Enhanced Attention Aggregator

Mean, Standard Attention Aggregator

Max, Edge Type-specific 
Mean/Attention Aggregator

Fig. 2. Expressive power comparison for GNN models with different aggregate func-
tions. The top panel shows the local input structure for the target node v. Then the
message extraction function constructs the neighbor nodes’ representation multiset,
which is illustrated in the middle panel. Finally, the aggregate function gets the uni-
form neighborhood representation. Different inputs should result in different outputs
to obtain the maximum expressive power. If two different elements on the previous
layer point to the same element on the next layer, the mapping process is not injective,
which means that it restricts the model’s expressive power.

Theorem 2. Let A : G → d ∈ R
d be a GNN. With sufficient layers, A maps

any graphs G1 and G2 that the generalized Weisfeiler-Lehman test decides as
non-isomorphic to different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

�hk
v = f2

(
�hk−1

v , f1

({{(
�huv,�hk−1

u

)
| u ∈ Nv

}}))

where the function f1 and f2 are injective.
b) A’s graph-level readout function is injective.

3 Enhanced Graph Attention Networks

3.1 Enhancing the Aggregate Function

The aggregate function collects neighborhood messages to capture local struc-
ture. Since graph data is generated from non-Euclidean domains, a node’s neigh-
bors have no natural ordering. Thus, the messages transmitted to a target node
from all neighbors can be regarded as a multiset. It has been proved that a func-
tion f(X) operating on a set X that has elements from a countable universe is
invariant to the permutation of instances in X iff it can be decomposed in the
form ρ (Σx∈Xξ(x)), for suitable transformations ρ and ξ [39]. Thus, we formulate
our attention-based aggregate function framework as follows,

�ak
v =

∑
u∈Nv

αuv �mk
uv, �mk

uv = φk
(
�hk−1

u ,�huv,�hk−1
v

)
(6)
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αk
uv =

Dv
β exp

(
ck
uv

)
Σu∈Nv

exp (ck
uv)

, ck
uv = ψk

(
�hk−1

u ,�huv,�hk−1
v

)
(7)

where αuv is the attention coefficient for u, �muv is the message transmitted to
v from u, φ is the message extraction function, cuv is the importance score for
node u, Dv is the degree of target node v and β is a hyper-parameter.

If we employ concatenation or addition to map the edge and node fea-
ture into a single neighbor message �muv (like most existing works), and
set the attention coefficient of each neighbor to the same value (such as
sum and mean aggregator), we cannot distinguish the structures with the
same multiset of neighbor node features and edge features but a different
neighborhood. This explains why GIN has the most expressive power for
graphs without edge features but cannot distinguish the different graphs in
Fig. 1(a) and Fig. 1(c), i.e., we have f

(
(1 + ε)�hv + [(�a1 +�b1) + (�a2 +�b2)]

)
=

f
(
(1 + ε)�hv + [(�a1 +�b2) + (�a2 +�b1)]

)
, while the multiset

{{
(�a1,�b1), (�a2,�b2)

}}

�=
{{

(�a1,�b2), (�a2,�b1)
}}

.
Compared with the standard attention mechanism, we simply add a degree-

related scale term Dv
β . This modification strategy is compatible and can be

combined with any specific attention coefficient calculation methods under the
standard attention mechanism framework. Although simple, the following theo-
rem shows this item is essential to the theoretical expressive power.

Theorem 3. Suppose node and edge features are from a countable universe. Iff
β �= 0, for multiset

{{(
�huv,�hu

)}}
of bounded size, there exist a function φ and

a function ψ so that
∑

u∈Nv

Dv
β exp(ψk(�hu,�huv,�hv))

Σu∈Nv exp(ψ(�hu,�huv,�hv))φ
(
�hu,�huv,�hv

)
is injective .

Suppose β = 0, the new framework will degenerate into a traditional
attention-based GNN model. If so, according to Theorems 1–3, it cannot dis-
tinguish some different graph structures that the generalized WL test decides
as non-isomorphic. Take Fig. 1(c) as an example, the GNN model cannot dis-
tinguish these two structures if we set β = 0. No matter how we implement
ψ, after normalization with softmax, the ratio of the attention coefficients in
the left panel to these values in the right panel is always 2:1. After aggrega-
tion by weighted sum, the same representation is obtained for the two different
neighborhood multisets. Without the degree-related scale term, attention-based
GNNs only capture the (proportions) of elements in a multiset but not the exact
multiset, as shown in Fig. 1. Using node degrees as extra node input features
is another way to solve the above problem. In this way, GNNs need to learn
how the node degree affects node representation through neural networks. By
contrast, using Dv

β means that we have introduced the prior knowledge into the
aggregation process: the node representation is scaled in each dimension accord-
ing to its degree. We compare these two methods in experiments to prove the
effectiveness of our design.
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3.2 Enhancing the Combine Function

In the traditional combine function, the node representation update process
only depends on local information, which restricts the expressive power. GNNs
should determine the node representation update strategy based on the global
state or a specific remote substructure to alleviate this problem. Therefore, we
also integrate the global status in addition to the neighborhood information.

To learn the representation of global status at different levels, we introduce a
virtual node that is connected with all nodes in a graph. At first, the virtual node
representation is initialized according to the initial node and edge embeddings.
We denotes the virtual node embedding at k-th layer as �hk

g . Formally,

�hk
v = Combine

(
�hk−1

v ,�ak
v ,�hk−1

g

)
(8)

To obtain higher-level global status, we aggregate node representations to obtain
a new global state �gk, and use it to update the virtual node embedding.

�gk = Readout
(
�hk−1

g ,
{{

�hk
v | v ∈ V

}})
, �hk

g = Update
(
�hk−1

g , �gk
)

(9)

Although the Read function in Eq. 3 and the Readout function in Eq. 9 both
obtain the global status, they have different goals. The Readout function focuses
on determining the update strategy to capture higher-level node representations
more effectively, while the Read function focuses on capturing features that can
be directly used for downstream graph-level tasks.

3.3 Implementation

We first discuss the aggregate function. The hyper-parameter β depends on the
prior knowledge that we want to introduce. We set β > 0, so that Dv

β is mono-
tonically increasing, which means the node representation becomes more promi-
nent as the degree increase. This is usually more in line with the actual application
scenario, where the core nodes have a greater impact on the overall property of
the whole graph. For the message extraction function φ, we concatenate the input
�hk−1

u , �huv and �hk−1
v , and process it with a MLP. For the attention function ψ, we

use a single-layer FFN parameterized by a weight vector �a. It is obvious that con-
catenating operation is injective. Thanks to the universal approximation theorem
[14,15], we can use an MLP and �a to model φ and ψ in Theorem 3. Thus our aggre-
gate function is injective, which corresponds to the f1 in Theorem 2.

�mk
uv = MLPk

1

(
[�hk−1

u ‖�huv‖�hk−1
v ]

)
, ck

uv = �aT
k �mk

uv (10)

Then we discuss the combine function. For simplicity, we set the initial virtual
node representation to �0. When updating the node representations, we concate-
nate the input �hk−1

v , �ak
v , �hk−1

g , and process it with another MLP.

�hk
v = MLP2

(
[�hk−1

v ‖�ak
v‖�hk−1

g ]
)

(11)
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Fig. 3. Examples of different graphs that some classical GNNs cannot distinguish. The
structures illustrated in detail determine the label of a graph, which is called decisive
structures, The dotted box with the letter A/B represents the rest of the graph that
obeys a certain distribution A/B. Nodes labeled as X represent the connection nodes
that bridge these two parts. In (b), the ratio of the average number of nodes in B to
the average number of nodes in A is 3:2.

For the same reason as Eq. 10, we can use MLP2 to model any function over the
tuple (�hk−1

u ,�huv,�hk−1
v ), which corresponds to the f2 in Theorem 2.

We use attention sum as the Readout function to get the global state. A linear
function is used to calculate the attention coefficients for each node, and we use
residual connection with another MLP to update the virtual node embedding.

αk
v = softmax

(
W k�hk

v +�bk
)

, �gk =
∑
v∈V

αk
v
�hk

v (12)

�hk
g = MLP3

(
�hk−1

g + �gk
)

(13)

According to Theorem 2, since our aggregate and combine functions are both
injective, our implementation of EGAT is as powerful as the generalized WL-test
if the Read function in Eq. 3 is injective. To consider structural information at
different levels, we concatenate the output of Read function across all layers to
get the final graph representations for graph-level tasks.

4 Experimental Setup

4.1 Synthetic Datasets

To the best of our knowledge, existing studies only provide examples that some
classical GNNs cannot distinguish at the node-level. Although we will get the
same representation for v, GNN models can still distinguish these different graph
structures with an effective graph readout function. To verify our analyses, we
provide three representative structures that cannot be distinguished by some
classical GNN models in Fig. 3. In some cases, we assume a graph’s property can
be determined by a specific substructure (called decisive structure).

In Fig. 3(a), the decisive structure is a relatively independent part that is
connected to the rest of the graph through a small number of nodes and edges.
In Fig. 3(b), the decisive structure constitutes the skeleton of the whole graph,
and the rest is generated around the skeleton. In Fig. 3(c), each node in the deci-
sive structure has a different neighborhood multiset

{{(
�huv,�hu

)}}
, but they
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have the same multiset of neighbor node features and edge features. We con-
structed three synthetic datasets based on the above three situations illustrated
in Fig. 3(a)(b)(c) and set the graph label accordingly.

Table 1. Statistics of OGB graph-level datasets.

Dataset ogbg-molpcba ogbg-molpcba

#Graphs 437,929 452,741

Average #Nodes 26.0 125.2

Average #Edges 28.1 124.2

Split Scheme Scaffold Project

Split Ratio 80/10/10 90/5/5

Task Type Binary class Sub-token prediction

Metric Average Precision F1 score

Baselines. To validate our theoretical proposal, we compare our model with
classical GNN models GCN [21], GAT [34], GraphSAGE [13] and GIN [38].

Table 2. Experimental results on synthetic datasets. We use -x to denote EGAT with
β = x, + d to denote using node degrees as extra features, ✓ to denote a model can
make perfect predictions and ✗ to denote it fails to give any effective predictions.

Method structure-a structure-b structure-c

GCN/GraphSAGE ✗ ✗ ✗

GCN/GraphSAGE + d ✓ ✓ ✗

GAT ✗ ✗ ✓

GAT + d ✓ ✓ ✓

GIN ✓ ✓ ✗

EGAT-0 ✗ ✗ ✓

EGAT-0 + d ✓ ✓ ✓

EGAT-1 ✓ ✓ ✓

4.2 Real World Datasets

To prove that our EGAT also has better prediction performance in practice, we
conducted experiments on two datasets in Open Graph Benchmark (OGB) [16].
The statistics of datasets are summarized in Table 1.

ogbg-code2 is a collection of ASTs obtained from approximately 450 thou-
sand Python method definitions. ogbg-code2 originates from CodeSearchNet [18].
The task is to predict the method name, given the method body represented by
AST and its node features. Project split [2] is used for dataset splitting, where the
methods in the training set are obtained from projects that do not appear in the
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Table 3. Experimental results for ogbg-molpcba.

Method Test Average Precision #Params

GINE+ w/virtual nodes 0.2917 ± 0.0015 6,147,029

DGN 0.2885 ± 0.0030 6,732,696

PNA 0.2838 ± 0.0035 6,550,839

DeeperGCN+virtual node 0.2781 ± 0.0038 5,550,208

GIN+virtual node 0.2703 ± 0.0023 3,374,533

GCN+virtual node 0.2424 ± 0.0034 2,017,028

GIN 0.2266 ± 0.0028 1,923,433

GAT* 0.2032 ± 0.0027 1,213,068

GCN 0.2020 ± 0.0024 565,928

GraphSAGE* 0.1987 ± 0.0030 1,657,068

EGAT 0.2966 ± 0.0028 6,766,844

test set. ogbg-molpcba is a molecular dataset adopted from MOLECULENET
[37]. Each graph represents a molecule, where nodes are atoms and edges are
chemical bonds. All molecules are preprocessed using RDKIT [22]. The task is
to predict the target molecular properties. OGB uses a scaffold splitting proce-
dure to separate structurally different molecules.

Baselines. OGB provides public leaderboards to keep track of recent advances,
so we compare EGAT with these recent public results. For ogbg-code2, the meth-
ods include GCN, GCN + virtual node, GIN and GIN + virtual node. For
ogbg-pcba, in addition to the above methods, the methods also include Deep-
erGCN + virtual node [25], PNA [9], DGN [6] and GINE+ w/virtual nodes [7].
We also implemented GAT and GraphSAGE for comparison on OGB datasets.

4.3 Implementation Details

We implement all GNN methods with Deep Graph Library (DGL) [35] and run
experiments on an NVIDIA RTX TITAN. We use Adam [20] optimizer with
learning rate 0.001. We set the embedding size to 300 (the same as the OGB
example models). We use the same edge encoder as EGAT to get edge embedding
and sum it up with node embedding during message processing for methods that
do not consider edge features. For EGAT, GAT and GraphSAGE, we use the
validing data to select suitable hyper-parameters (the number of GNN layers
∈ {4, 5, 6}, the dropout value ∈ {0.4, 0.5, 0.6}, the value of β ∈ {0.1, 0.5, 1, 2, 10}).
For other baseline models, we quote the experimental results on the leaderboards
provided by OGB. The data and source code are publicly available at here.

https://www.dropbox.com/s/44fu18fbh7k60gs/Supplementary%20files.zip?dl=0
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Table 4. Experimental results for ogbg-code2.

Method Test F1 #Params

GCN+virtual node 0.1595 ± 0.0018 12,484,310

GIN+virtual node 0.1581 ± 0.0026 13,841,815

GraphSAGE* 0.1578 ± 0.0019 11,487,710

GAT* 0.1564 ± 0.0020 11,487,710

GCN 0.1507 ± 0.0018 11,033,210

GIN 0.1495 ± 0.0023 12,390,715

EGAT 0.1783 ± 0.0014 14,825,335

Table 5. Ablation study for EGAT on ogbg-molpcba and ogbg-code2.

Method ogbg-pcba Test AP ogbg-code2 Test F1

EGAT 0.2966 ± 0.0028 0.1783 ± 0.0014

w/o Dv
β 0.2814 ± 0.0027 0.1754 ± 0.0017

w/o Dv
β + d 0.2778 ± 0.0031 0.1743 ± 0.0015

old v-node 0.2749 ± 0.0032 0.1698 ± 0.0014

w/o v-node 0.2324 ± 0.0022 0.1632 ± 0.0018

w/o Dv
β , v-node 0.2198 ± 0.0028 0.1596 ± 0.0012

5 Experimental Results

5.1 Synthetic Datasets Performance

We first validate our theoretical analyses of GNN methods’ representational
power by comparing models’ performances on synthetic datasets. Since each
graph’s label in the dataset is determined by a certain decisive structure, the
model can either make perfect predictions or fail to give any effective prediction.

We show the results in Table 2, which are in line with our expectations.
GCN, GraphSAGE, GAT, and EGAT-0 can only capture the distribution of a
multiset so they fail to give any effective predictions with (a) and (b). These
situations are illustrated in Fig. 2 as the Mean, Standard Attention Aggrega-
tor and the Max, Edge Type-specific Mean/Attention Aggregator. By adding the
degree-related scale term or using node degree as extra features, models can rep-
resent the exact multiset of neighbor node features and edge features. Assuming
that a GNN model only concatenates or sums the edge and node features to
obtain a single neighbor message and does not use the attention mechanism, it
still cannot process (c). These situations are illustrated in Fig. 2 as the Feature
extraction without interaction(Concatenate, Sum). To summarize, without using
node degrees as extra node features, EGAT-1 is the only one that can deal with
all three situations among these GNN models.
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5.2 Real World Datasets Performance

To prove the proposed EGAT also performs well in real applications, we apply
EGAT to two OGB graph-level datasets. The experimental results in Tables 3
and 4 show that EGAT significantly outperform the state-of-the-art GNN meth-
ods on both datasets. It is worth noting that in addition to modifying the
aggregate, combine and readout functions, some recent related work did some
extra work to improve model performance. For example, DGN [6] performs pre-
computed steps to compute eigenvectors and GINE+ [7] includes higher-order
neighbors in a single aggregation step. Since our EGAT is modified on the general
framework of attention-based GNNs, as future work, we would like to combine
their methodology into our EGAT framework to further improve the perfor-
mance.

5.3 Comparison Among EGAT Variants

Further, we compare the variants of EGAT concerning the following two aspects
to demonstrate the effectiveness of our design: (1) whether adding the degree-
related term to the attention coefficients, we use w/o Dv

β to denote removing the
degree-related term Dv

β . Using node degrees as extra node features is another
way to restore the theoretical representative capacity, which is denoted as
+ d. (2) whether using the virtual node to enhance the local node represen-
tation update process with global status, we use w/o v-node to denote remov-
ing the virtual node. We also tried to use virtual nodes in the same way as
GCN/GIN+virtual node in [16], which is denoted as old v-node.

The results in Table 5 shows that: (a) For ogbg-molpcba, no matter whether
introducing the virtual node, adding the degree-related scale term always
improves the performance. We also try to employ Dβ

v in GAT, and the Test
AP rises from 0.2032 to 0.2178. It proves that our extension of the classical
attention mechanism not only guarantees the theoretical expressive power but
also improves the predictive performance. On the contrary, using node degrees as
extra node features worsens the performance, which illustrates that it is difficult
for the model to use this information effectively. For ogbg-code2, there are large
differences between node features. Therefore, the distribution of a multiset is
sufficient to determine its property. The performance improvement brought by
adding Dβ

v is relatively small, showing that our technology is more suitable for
graphs with many nodes with similar features. (b) On both datasets, the intro-
duction of the virtual node has significantly improved the performance. It proves
that enhancing the local node representation update process with global status
is necessary. We compared two strategies for using virtual nodes. Our strategy
is better than the existing one, proving that sufficient interaction between local
information and global information is essential to improve performance.

6 Related Work

GNN extends the deep learning technique to deal with graph data. Graph atten-
tion networks (GAT) [34] firstly introduced the attention mechanism into GNNs.
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Later, many attention-based GNNs have been proposed to perform improve-
ments and extensions on GAT [17,24,36]. The attention mechanism allows GNNs
to focus on the most informative parts and avoid noise, enhancing the robustness
and generalization ability. However, existing work does not discuss the impact
of the attention mechanism on model representation capabilities.

Two recent papers [28,38] have started exploring the expressive power of
GNN models by establishing a close connection between GNN models and the
WL test in distinguishing different graph structures. However, many classical
GNNs do not satisfy the requirement, such as GCN, GraphSAGE, and most
attention-based GNN models. Moreover, although the attention mechanism has
been widely used in GNN models, studies have not yet explored its impact on
GNN models’ expressive ability. Therefore, we think it is necessary to generalize
the theoretical analyses to cover more general application scenarios.

Besides, studies have illustrated that GNN models lack the ability to cap-
ture long-range dependencies. Introducing a virtual node connected to all nodes
to aggregate and propagate messages is a common solution to this problem.
However, most of the existing works divide combining neighbor information and
applying virtual node embedding into two steps with simple network structures
[26,30], which makes the interaction between the virtual node and other nodes
insufficient. Therefore we need to design a new structure to get, update and
employ the virtual node representation to improve the performance further.

7 Conclusion

In this paper, we theoretically analyze the expressive power of attention-based
GNN models. Based on the analyses, we propose a new attention-based aggre-
gation framework EGAT by adding a degree-related scale term and introducing
a virtual node to enhance the local node representation update process with
global information. The experimental results show that our model outperforms
the state-of-the-art GNN methods on two OGB real-world datasets.
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Abstract. Convolutional neural networks have achieved success in var-
ious tasks, but often lack compactness and robustness, which are, how-
ever, required under resource-constrained and safety-critical environ-
ments. Previous works mainly focused on enhancing either compact-
ness or robustness of neural networks, such as network pruning and
adversarial training. Robust neural network pruning aims to reduce
computational cost while preserving both accuracy and robustness of
a network. Existing robust pruning works usually require expert experi-
ences and trial-and-error to design proper pruning criteria or auxiliary
modules, limiting their applications. Meanwhile, evolutionary algorithms
(EAs) have been used to prune neural networks automatically, achiev-
ing impressive results but without considering the robustness. In this
paper, we propose a novel robust pruning method CCRP by coopera-
tive coevolution. Specifically, robust pruning is formulated as a three-
objective optimization problem that optimizes accuracy, robustness and
compactness simultaneously, and solved by a cooperative coevolution
pruning framework, which prunes filters in each layer by EAs separately.
The experiments on CIFAR-10 and SVHN show that CCRP can achieve
comparable performance with state-of-the-art methods.

Keywords: Model compression · Neural network pruning ·
Robustness · Evolutionary algorithm · Cooperative coevolution

1 Introduction

Recently, convolutional neural networks (CNNs) have achieved great success in
the field of computer vision, such as image classification [9] and object detec-
tion [6]. Despite the impressive performance, the high computational cost of
CNNs inhibits their deployments in resource-limited scenarios. The CNNs are
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also vulnerable to malicious attacks, challenging their reliability in safety-critical
scenarios. Therefore, in many real-world applications like autonomous driv-
ing [4,5], enhancing the compactness and robustness of CNNs simultaneously
is essential.

Most previous works, however, only focus on enhancing either compactness
or robustness of networks. On the one hand, various model compression methods
have been proposed to reduce the computational cost of neural networks, such as
neural network pruning [8] and quantization [30]. Among them, neural network
pruning aims to remove the redundant parameters in networks while preserving
accuracy, which has achieved impressive success. On the other hand, methods like
adversarial training [7], which aims to minimize the training loss on adversarial
examples, can significantly improve the robustness of neural networks.

Recently, several works [21,22,27] took the network robustness into consid-
eration when pruning neural networks. They usually use criteria designed by
experts to measure the importance of network weights and prune the networks
accordingly. However, the designing and tuning of such criteria require plenty of
expertise and tiring trials, making them difficult to be applied to the practical
scenarios where the data sets and neural network architectures can be various.
Meanwhile, these works mainly focus on unstructured neural network pruning [2],
which can hardly reduce the computation cost in practical applications, since the
consequent irregular structures are incompatible with the mainstream software
and hardware frameworks. Therefore, an automatic structured robust pruning
method is essential in real-world applications.

Robust neural network pruning can be naturally formulated as an optimiza-
tion problem that aims to search for a sub-net of the original network which still
maintains high accuracy and robustness but has less computation cost. Evolu-
tionary algorithms (EAs) [1] are a kind of heuristic randomized optimization
algorithms inspired by natural evolution, which have been used for pruning neu-
ral networks automatically since the 1990s [26]. However, unlike artificial neural
networks in the last century, modern CNNs usually consist of dozens of layers
and millions of parameters, implying a huge search space. It is difficult for EAs to
obtain satisfactory solutions within a limited computational overhead. Recently,
Shang et al. have proposed CCEP [23], an evolutionary pruning method inspired
by cooperative coevolution, which has achieved encouraging results on the large-
scale pruning problem. However, they only focused on the accuracy but did not
take robustness into consideration.

In this paper, we propose a novel Cooperative Coevolution method for Robust
Pruning (CCRP). The robust pruning problem is formulated as an explicit three-
objective optimization problem, i.e., optimizing accuracy, robustness and com-
pactness simultaneously. A cooperative coevolution framework is adopted to
solve the formulated robust pruning problem, which divides the search space
by layer and applies an EA to optimize each group. Besides, since the process
of generating adversarial examples for each pruned network is time-consuming,
we design an adversarial example generating method to improve the efficiency
of robustness evaluation.
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The contributions of this paper are summarized as follows.

1. We propose a novel framework, CCRP, that considers network robustness dur-
ing the pruning process and automatically solves the three-objective robust
pruning problem by cooperative coevolution. To the best of our knowledge,
this is the first application of EAs to robust neural network pruning.

2. We propose an adversarial example generating method to improve the effi-
ciency of evaluating the robustness of pruned networks.

3. We compare CCRP with previous methods through experiments on three net-
work architectures and two data sets. Experimental results show that CCRP
can achieve comparable performance with state-of-the-art methods.

2 Related Work

2.1 Neural Network Pruning

Neural network pruning aims to enhance the efficiency of a network by remov-
ing redundant components. Existing methods can be generally classified into
two categories, i.e., unstructured pruning and structured pruning [2]. Unstruc-
tured pruning methods directly prune the weights in the parameter matrices
of the network. Even though such methods can achieve impressive theoretical
acceleration, the resulted sparse matrices and broken structures are incompat-
ible with the mainstream software and hardware platforms, which can hardly
obtain actual acceleration. Instead, structured pruning methods focus on prun-
ing structured components such as filters in convolution layers, which has shown
better overall performance in real-world application, and thus has prevailed and
attracted more attention nowadays.

Based on how to identify the redundant component, previous structured
pruning methods can be generally categorized into criteria-based and learning-
based methods. Criteria-based methods (e.g., [15,16]) use expert-designed cri-
teria to identify unimportant components and prune them while learning-based
methods (e.g., [18]) use auxiliary modules to measure the importance of compo-
nents and conduct pruning accordingly. However, both of these methods heavily
rely on the expertise, limiting their application and extensibility.

To get rid of the reliance on expertise, it is natural to use EAs to search
for the good pruned networks automatically, which has been studied since the
1990s [26]. However, the huge search space of a deep neural network brings severe
challenge to EAs [13,14]. Recently, a novel pruning method inspired by coop-
erative coevolution named CCEP [23] is proposed, which employs the idea of
divide-and-conquer to settle the huge search space and has achieved impressive
performance, showing the great potential of EA-based methods for neural net-
work pruning. But the previous EA-based pruning methods never considered the
network robustness, which is important to many application scenarios [4,5].

2.2 Robustness of Neural Network

In application scenarios [4,5], neural networks are typically vulnerable to adver-
sarial attacks [7]. Generally, adversaries utilize the model information to generate
adversarial examples for attack. An adversarial example can be defined as
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Dog Goldfish

Fig. 1. Illustration of an adversarial example in the image classification task.

x̂ = x + η s.t. ‖η‖∞ ≤ ε, (1)

where x is the original example and η is the perturbation subject to budget
ε. As shown in Fig 1, an adversarial example in the image classification task
is generated by adding perturbations to the original image. The perturbations
are imperceptible to the human eyes, but will mislead the neural network to
incorrect prediction. When facing adversarial attacks, the robustness of a neural
network N is usually measured by the robust accuracy on an adversarial data
set Da, i.e.,

ACCr(N ) =
1

|Da|
∑

x̂,y∈Da

I(N (x̂) = y), (2)

where |Da| denotes the size of Da (i.e., the number of adversarial examples),
N (x̂) denotes the prediction of the neural network N on the adversarial example
x̂, and I(·) is the indicator function that is 1 if the inner expression is true and
0 otherwise.

Adversarial training [7,19,29] is one of the primary defense methods against
adversarial attacks. The main idea is to minimize the training loss on adversarial
examples generated by adversarial attacks, such as fast gradient sign method
(FGSM) [7]. Thus, the objective of adversarial training can be formulated as

min
θ

E
(x,y)∼D

[
max

‖η‖∞≤ε
L(x + η, y,θ)

]
, (3)

where θ denotes the parameters of the neural network, and L is a loss function.
Previous empirical results have indicated that adversarial training requires the
networks owning a larger capacity for better overall performance. Therefore,
neural networks with robustness are usually too computationally intensive to be
deployed on resource-constrained applications.

2.3 Robust Neural Network Pruning

Recently, some works [10,25] have studied on the relationship between robust-
ness and network capacity, revealing that a sub-net of the original network can
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have similar or even better robustness than the original one, and different sub-
nets can have quite different robustness. This finding has inspired robust neural
network pruning, which aims to find a compact neural network and retain the
robustness. The few existing methods usually train a network by adversarial
training and conduct unstructured pruning based on expert-designed criteria.
For example, ADV-LWM [21] prunes weights with small l1-norm, and fine-tunes
the obtained network by adversarial training to recover robustness. Ye et al. [27]
adopts the ADMM pruning framework by replacing the original training loss
with an adversarial one, and prunes weights with small l1-norm. HYDRA [22]
adds importance scores to all the weights in the network, and optimizes the
adversarial loss by adjusting importance scores while freezing weights. Then the
weights with small importance scores are pruned. DNR [12] chooses the feature
matrices with small Frobenius norm and prunes the corresponding filters. Fur-
thermore, these methods need proper pruning ratios of each layer, which also
often require a lot of expert experience and trial-and-error.

3 CCRP Method

Let N denote a well-trained neural network with n convolution layers
{L1,L2, · · · ,Ln}, where Li denotes the ith layer which has li filters and Lij

denotes the jth filter in the ith layer. Robust neural network pruning can be
formulated as an optimization problem, with the aim of searching for a subset
of filters in N , which can maximize the accuracy and robustness while mini-
mizing computational cost simultaneously. Let the mask vector M = {mij |
mij ∈ {0, 1}, i ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., li}}, where mij = 1 if and only if Lij

is retained. Thus, a pruned network can be represented by the mask M as

NM =
n⋃

i=1

li⋃

j=1

mijLij . (4)

Let ACC(NM) denote the accuracy of the pruned network NM on the clean
data sets, ACCr(NM) denote the robust accuracy on the generated adversarial
examples, and FLOPs(NM) denote the number of FLoating point OPerations,
which is a common metric to measure the computational cost. The robust neural
network pruning problem can be formulated as

arg max
M∈{0,1}

∑n
i=1 li

(ACC(NM),ACCr(NM),−FLOPs(NM)) (5)

Because the number of alternative filters to be pruned in a CNN, i.e.
∑n

i=1 li,
can be very large, this is essentially a challenging large-scale optimization prob-
lem. To solve this problem, we propose a novel robust pruning method named
CCRP. Inspired by our previous work CCEP [23], we adopt a cooperative coevo-
lution pruning framework which divides the search space by layer and conducts
an EA on each layer independently. Robust accuracy is set as an optimization
objective to directly guide pruned neural networks towards robustness. Note
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that the evaluation of ACCr(NM) is time-consuming since specialized adversar-
ial examples need to be generated for each pruned network. To settle this, we
propose an adversarial example generating method that needs to generate adver-
sarial samples pnly once in each iteration of CCRP. The generated examples can
be used to evaluate all the pruned networks in this iteration.

Fig. 2. Illustration of the framework of CCRP.

3.1 Framework of CCRP

The framework of CCRP is shown in Algorithm 1. It prunes a well-trained
network iteratively and finally outcomes a set of pruned networks with robustness
for user selection. Each iteration works as follows. Firstly, a mask M is generated
based on the network to be pruned in line 4. Then the mask M will be split
into n groups by layer in line 5. After that, in line 6, a set Da of adversarial
examples is generated for the evaluation of the pruned networks, which is shown
in Algorithm 3 in detail. For each group, an EA is employed to optimize it and
obtain m′

i representing the pruned result of the ith layer. The process of EA
in each group is described in Algorithm 2. By collecting all the m′

i of n layers
and applying it to Nb, the corresponding pruned network N ′ is obtained, as
presented in line 8. After pruning, to recover the accuracy and robust accuracy,
the pruned network N ′ will be fine-tuned by adversarial training in line 9. The
fine-tuned model will be used as the new base network Nb to be pruned in the
next iteration, and added into archive H in line 11. After T iterations, the CCRP
method will stop and return the pruned networks in archive H. An illustration
of the framework of CCRP is also shown in Fig. 2.

3.2 EA in Each Group

For EA in each group, we use a typical evolutionary process: generate an ini-
tial subpopulation randomly, breed new individuals by applying reproductive
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Algorithm 1. CCRP Framework
Input: A well trained CNN N with n layers, maximum number T of iterations, training
set Dt, a randomly sampled part Ds of the training set Dt

Output: A set of pruned networks with different sizes

1: Let H = ∅, i = 0;
2: Set base network Nb = N ;
3: while i < T do
4: Generate a mask M based on Nb and initialize it with all bits equal to 1;
5: m1,m2, · · · ,mn = Decompose(M);
6: Da = Generate adversarial samples based on (Nb, Ds);
7: m′

1,m
′
2, · · · ,m′

n = EA(m1, Ds, Da),EA(m2, Ds, Da), · · · ,EA(mn, Ds, Da);
8: N ′ =

⋃n
i=1

⋃li
j=1 m

′
ijLij , where Lij is a filter of Nb;

9: Nb = Fine-tune(N ′, Dt);
10: H = H ∪ Nb;
11: i = i + 1
12: end while
13: return H

operators, evaluate the fitness of each individual, and select better individuals
to remain in the next generation. When the termination condition is reached, it
selects an individual from the final subpopulation, which represents the corre-
sponding pruned layer.

The detailed description of EA in each group is shown in Algorithm 2. At the
beginning, it generates the initial subpopulation P with d individuals, as shown
in line 2. An individual m0 with all bits equal to 1 is created and added into
P to encourage conservative pruning. The rest d − 1 individuals are generated
by applying a modified bit-wise mutation operator with mutation rate p1. In
each generation of EA, it generates d new offspring individuals by uniformly
and randomly choosing d individuals from the subpopulation and applying the
bit-wise mutation operator with mutation rate p2. Following the prior work
CCEP [23], we make a modification to the standard bit-wise mutation operator
to prevent the pruning process from being too violent. That is, a ratio bound r is
introduced to limit the number of filters to be pruned. Specifically, a standard bit-
wise mutation operator with mutation rate p is first performed on an individual
m; if the number of 0s in the mutated m, denoted by |m|0, is larger than
Len(m) × r, it will randomly select |m|0 − Len(m) × r bits from where mi = 0,
and flip them to 1.

When evaluating the fitness of an offspring individual, noting that each indi-
vidual only corresponds to a single pruned layer, it first obtains a complete net-
work by splicing this single layer with the other layers obtained from the base
network Nb. Then, we can evaluate the accuracy, robust accuracy, and FLOPs
of offspring individuals. More specifically, ACC is evaluated on the clean data
set Ds, which is randomly sampled from the training set Dt; ACCr is evaluated
on the adversarial data set Da, which is generated by Algorithm 3 and will be
introduced in Sect. 3.3; FLOPs can be calculated directly. After evaluation in
lines 6–7, the d offspring individuals and d individuals in the current subpopu-
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Algorithm 2. EA in each group
Input: A mask mi of the ith layer, population size d, a randomly sampled part Ds

of the training set Dt, adversarial data set Da, mutation rate p1, p2, ratio bound r,
maximum number G of generations
Output: Mask vector m′

i

1: Let j = 0, m0 = mi;
2: Initialize a subpopulation P with m0 and d− 1 individuals generated from m0 by

applying the bit-wise mutation operator with p1 and r;
3: while j < G do
4: Uniformly randomly select d individuals from P with replacement as the parent

individuals;
5: Generate d offspring individuals by applying the bit-wise mutation operator

with p2 and r on each parent individual;
6: Calculate the ACC and ACCr of d offspring individuals by using Ds and Da;
7: Calculate the FLOPs of d offspring individuals;
8: Set Q as the union of P and d offspring individuals;
9: Rank the 2d individuals in Q in descending order by ACC+ACCr

2
; for two indi-

viduals with the same value, the one with less FLOPs is ranked ahead;
10: Replace the individuals in P with the top d individuals in Q;
11: j = j + 1
12: end while
13: Select the rank one individual in P as m′

i

14: return m′
i

lation P will be merged into a collection Q. Since we consider three objectives
as in Eq. (5), it is not easy to find a proper ranking of the individuals. For sim-
plicity, the individuals in Q are ranked by the average value of ACC and ACCr

in descending order. As for two individuals with the same average value, the
one with less FLOPs is ranked ahead. Other techniques (e.g., non-dominated
sorting [3]) may also be employed, and will be investigated in our future work.
After the evolution of G generations, the individual that ranks first in the final
subpopulation is chosen as the pruned result of the corresponding group.

3.3 Robustness Evaluation

Typically, the robustness of a neural network is based on its ability against adver-
sarial attacks. In this paper, we use the robust accuracy on the generated adver-
sarial examples as the metric of robustness, which is denoted as ACCr. CCRP
applies, the state-of-the-art white-box attack algorithm PGD [19] to generate
the adversarial examples. PGD is designed to attack a specialized network in an
iterative style, which is time-consuming. If we use PGD to generate specialized
adversarial examples when evaluating each pruned network, the computational
overhead will be prohibitive. To settle this issue, we design an adversarial exam-
ple generating method shown in Algorithm 3 to generate an adversarial data
set Da, which can be shared in one iteration of CCRP. The method samples a
sub-net N ′ of base network Nb by randomly selecting �n/k� layers in Nb and
applying bit-wise mutation operator with p1 and r to them in lines 4-5, and
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Algorithm 3. Adversarial Example Generating
Input: Base network Nb with n layers, a randomly sampled part Ds of the training
set Dt, number k of sampled sub-nets.
Output: Adversarial data set Da

1: Let Da = ∅, i = 0;
2: while i < k do
3: Randomly select �n/k� layers from Nb;
4: Apply mutation with p1 and r on these layers to obtain a sub-net N ′;
5: A = PGD(N ′,Ds);
6: Da = Da ∪ A;
7: i = i + 1
8: end while
9: return Da

then employs PGD on N ′ to generate adversarial examples based on Ds in line
6. This process will be repeated k times independently, and all the generated
adversarial examples constitutes the adversarial data set Da, which will be used
to evaluate the robustness of all the pruned networks in the current iteration
of CCRP. Note that the goal of generating adversarial examples from diverse
sub-nets of Nb is to better measure the robustness of a pruned network.

3.4 Comparison with CCEP

In this subsection, we make a comparison between CCEP and CCRP. CCEP
applies cooperation coevolution to neural network pruning and achieves impres-
sive results. CCRP is inspired by CCEP and extended to robust neural network
pruning, i.e., by taking the robustness of networks into consideration. These two
methods use a similar decomposition strategy that splits the search space by
layer. The most significant difference between them is the problem formulation.
CCRP introduces robustness as an optimization objective while CCEP concerns
accuracy and compactness only. An adversarial example generation method has
been introduced into CCRP, which can reduce the cost of robustness evaluation.
In addition, adversarial training is applied in fine-tuning to retain the robustness
of the pruned network.

4 Experiments

We conduct experiments from three aspects. First, we compare CCRP with the
state-of-the-art unstructured robust pruning methods. Second, we extend several
popular structured pruning methods to robust pruning and compare CCRP with
them. In the third aspect, we visualize the architecture of pruned networks and
conduct repeated experiments to examine the stability of CCRP.

Two popular image classification data sets CIFAR-10 [11] and SVHN [20],
and three typical neural networks VGG [24], ResNet [9] and WRN [28] are used
for examination. Following the common filter pruning settings, CCRP prunes all
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Table 1. Comparison in terms of ACC drop, ACCr drop, and inference speed with
unstructured robust pruning methods on CIFAR-10 and SVHN. The best results of
each objective are shown in bold.

Data set Architecture Method Base ACC

(%)

Base

ACCr (%)

ACC↓
(%)

ACCr ↓
(%)

Speed

(images/s)

CIFAR-10 VGG-16 ADV-LWM 82.70 51.90 3.90 4.20 2082.13

ADV-ADMM 78.36 47.07 3.50 3.76 2114.77

HYDRA 82.70 51.90 2.20 2.40 2077.57

CCRP 81.57 61.71 −1.39 0.63 6842.39

WRN-28-4 ADV-LWM 85.60 57.20 2.80 3.40 4142.74

ADV-ADMM 78.22 51.56 2.46 2.50 4375.58

HYDRA 85.60 57.20 1.90 2.00 4016.55

CCRP 85.91 53.42 −0.05 −9.12 4737.09

SVHN VGG-16 ADV-LWM 90.50 53.50 1.30 2.00 2308.65

ADV-ADMM 89.35 54.61 −0.23 4.10 2322.72

HYDRA 90.50 53.50 1.30 1.10 2334.29

CCRP 86.86 53.18 −1.58 2.36 11124.56

WRN-28-4 ADV-LWM 93.50 60.10 1.20 0.70 5259.51

ADV-ADMM 92.14 59.07 1.32 4.53 5482.91

HYDRA 93.50 60.10 −0.90 −2.70 5294.31

CCRP 90.07 57.47 −1.63 −0.18 6467.55

convolution layers for VGG and the first convolution layer of the residual blocks
for ResNet and WRN. The popular adversarial training method, TRADES [29],
is used in the pre-train and fine-tune processes. The settings of CCRP are
described as follows. It runs for 16 iterations, i.e., T = 16. For EA in each
group, the population size m is 5, the mutation rate p1 and p2 are 0.05 and 0.1,
respectively, the ratio bound r is 0.1, the maximum generation G is 10, and Ds

is generated by selecting 10% of the training set randomly. When generating
adversarial examples, the number k of sampled sub-nets is 5.

For adversarial training by TRADES [29], the common settings are used.
The optimizer is SGD with an initial learning rate 0.1, and a Cosine Annealing
scheduler [17] is employed to adjust the learning rate during fine-tuning. The
weight decay is 0.0001 and the momentum is 0.9. The number of epochs in each
process of fine-tuning is 30. The batch size for training is 128. For adversarial
attack by PGD, the l∞ perturbation budget, number of steps, and perturbation
per step are set as 8/255, 10, 2/255 respectively in adversarial training and
8/255, 40, 2/255 for evaluation and testing.

We compare CCRP with various methods, including three state-of-the-art
unstructured robust pruning methods: ADV-LWM [21], ADV-ADMM [27] and
HYDRA [22], as well as two structured pruning methods L1 [15] and HRank [16]
extended to robust pruning. The results of HYDRA and ADV-LWM are obtained
from their released models. All the experiments are realized based on PyTorch
and carried out on a single Nvidia GeForce RTX-3090 GPU.

Comparison with Unstructured Robust Pruning Methods: We first com-
pare CCRP with state-of-the-art unstructured robust pruning methods in terms
of accuracy drop, robust accuracy drop, and inference speed, as shown in Table 1.
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Inference speed is used to measure the computation cost here since FLOPs drop
of unstructured models cannot reflect the actual computational performance in
applications. The inference speed is tested on 100,000 32 × 32 images with a
batch size of 128. For CCRP, the solution in the 10th iteration is presented in
Table 1 for comparison. CCRP achieves a smaller drop in accuracy and robust
accuracy with faster inference speed in most cases. On SVHN, HYDRA [22]
and ADV-LWM [21] achieve a smaller drop in robust accuracy than CCRP but
more drop in accuracy and slower inference speed. It is worth noting that CCRP
achieves the fastest inference speed in all cases.

Comparison with Structured Robust Pruning Methods: For a more com-
prehensive comparison, two structured pruning methods, L1 [15] and HRank [16],
are extended to the scenario of robust pruning by introducing adversarial train-
ing in the pre-train and fine-tune steps. For CCRP, we select the solution in the
16th iteration for comparison. The results in Table 2 show that compared with
L1 and HRank, CCRP can always achieve better performance on at least two
of the three metrics. Sometimes CCRP prevails on two metrics but only with
minor disadvantage on the third metric.

Table 2. Comparison in terms of ACC drop, ACCr drop, and pruning ratio with
structured robust pruning methods on CIFAR-10 and SVHN. The best results of each
objective are shown in bold.

Data set Architecture Method Base ACC

(%)

Base

ACCr (%)

ACC↓
(%)

ACCr ↓
(%)

FLOPs ↓
(%)

CIFAR-10 VGG-16 L1 81.57 61.71 2.00 3.37 69.23

HRank 81.91 61.11 7.05 3.01 65.85

CCRP 81.57 61.71 0.05 6.22 77.95

ResNet-56 L1 80.31 48.95 2.47 −4.62 68.53

HRank 80.31 48.95 0.13 −2.22 50.02

CCRP 80.31 48.95 0.23 −8.31 72.30

WRN-28-4 L1 85.91 53.61 2.00 3.37 69.23

CCRP 85.91 53.61 −0.88 −8.06 66.92

SVHN VGG-16 L1 86.86 53.18 2.17 4.35 85.88

HRank 86.06 54.53 0.40 5.03 65.85

CCRP 86.86 53.18 −0.98 2.68 80.44

ResNet-56 L1 85.91 52.24 −2.04 −1.78 60.08

HRank 87.09 55.57 −1.53 3.25 50.02

CCRP 85.91 52.24 −1.95 −2.01 70.71

WRN-28-4 L1 90.07 57.47 1.45 4.19 72.11

CCRP 90.07 57.47 −1.25 1.46 70.99

Further Studies: Because experiments of network pruning are very time-
consuming and may require dozens of hours, previous works [15,16,21,22] usually
conducted experiments only once. However, considering the stochastic character-
istic of EAs, we conduct a repeated test on a relatively small data set CIFAR-10,
to prune ResNet-56 and VGG-16 for ten independent runs. The ACC, ACCr,
and ACCa (i.e., the average of ACC and ACCr), are recorded and shown in
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Fig. 3. The solid line is the mean value, and the shadow area represents the 95%
confidence interval. We can observe that the ACC and ACCr are even better
than the base model when the pruning ratio is low and get a slight drop as the
pruning ratio increases; the ACCa is always better than the base model. The
95% confidence interval implies the good stability of CCRP.

Fig. 3. Repeated test of CCRP on CIFAR-10.

In Fig. 4, we visualize the architecture (i.e., the number of filters in each
layer or residual block) of pruned networks on CIFAR-10. The results show that
CCRP can choose different pruning ratios at different layers (or residual blocks)
automatically. For ResNet-56, CCRP prunes fewer filters around the expansion
of channels, while on VGG-16, CCRP prunes more filters after the 6th layer.
As for WRN-28-4, more filters at 9th block are preserved. Note that previous
robust pruning methods may require lots of trial and error to design the proper
pruning ratios at each layer manually.

Fig. 4. Visualization of the original networks and the pruned networks obtained by
CCRP on CIFAR-10.
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5 Conclusion

This paper proposes the automatic robust neural network pruning method, which
formulates robust pruning as a three-objective optimization problem considering
robustness, and solves it by an adapted cooperative coevolution framework. To
the best of our knowledge, this is the first application of EAs to robust neural
network pruning. Experiments show that CCRP can achieve a comparable per-
formance with the state-of-the-art methods. In the future, we will try to perform
theoretical analysis [31], as well as incorporate more advanced multi-objective
optimization techniques to improve the performance of CCRP.
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Abstract. GNNs have achieved remarkable performance on graph clas-
sification tasks. It can be attributed to the accessibility of abundant
graph data, which are usually isolated by different data owners. Graph
Federated Learning (GraphFL) allows multiple clients to collaboratively
build GNN models without explicitly sharing data. However, all existing
works assume that all clients have fully labeled data, which is imprac-
tical in reality. This work focuses on the graph classification task with
partially labeled data. (1) Enhancing the collaboration processes: We
propose a new personalized FL framework to deal with Non-IID data.
Clients with more similar data have greater mutual influence, where the
similarities can be evaluated via unlabeled data. (2) Enhancing the local
training process: We introduce auxiliary loss for unlabeled data that
restrict the training process. We propose a new pseudo-label strategy for
our SemiGraphFL framework to make more effective predictions. Exten-
sive experimental results prove the effectiveness of our design.

Keywords: Graph Neural Network · Federated Learning ·
Semi-supervised learning

1 Introduction

The availability of amount graph data has shed interest into the topic of graph
analysis. Recently, Graph Neural Networks (GNNs) have demonstrated remark-
able performance in modelling graph data and derived various researches and
applications [11,23]. The success of GNNs relies on abundant data, which usually
exists in an isolated manner in real applications. Due to privacy or commercial
concerns, it gives rise to challenges on centrally training GNNs. Given this sit-
uation, Graph Federated Learning (GraphFL) has been proposed [2,9]. FL is a
paradigm where multiple clients collaboratively train machine learning models
via coordinated communication while keeping the data decentralized [10,12,19].

To the best of our knowledge, all existing GraphFL methods designed for
the graph classification task assumes that all clients have fully labeled data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Labeled Unlabeled Labeled Unlabeled

Communication

Fig. 1. An example of semi-supervised graph federated learning.

However, large labeled datasets are scarce in many practical cases. Creating
labeled datasets requires a considerable amount of resources, limiting the adop-
tion of these methods. To deal with the problem in Fig. 1, we propose a new data-
efficient Semi-Supervised Graph Federated Learning framework SemiGraphFL
to overcome the need for large annotated datasets. Since the GraphFL framework
consists of multi-client collaboration and single-client local training, we focus on
how to take advantage of unlabeled data to enhance these two processes.

To enhance the multi-client collaboration process, we propose a decentralized
framework where each client performs local training and aggregates messages
from others. In classical FL methods, a server aggregates the locally learned
model parameters to obtain a unified global model [12]. However, FL applica-
tions generally face the data Non-IID problem, making it challenging to ensure
good performance across different clients. Intuitively, clients with more similar
data should have more significant mutual influence. To evaluate the similarities
between clients, we design a new communication strategy. Each client collects
parameters from other clients and tests them on the local unlabeled data. They
use these predictions to compute the similarities and perform a weighted sum to
aggregate parameters from other clients to update the local parameters. Using
labeled data to do the same thing cannot achieve good results because clients
perform local supervised learning on these data and over-fit them.

To enhance the local training process, we borrow ideas for general semi-
supervised learning methods. According to the low-density assumption, we
restrict predictions on unlabeled data to be sharper, i.e., the decision bound-
ary should not pass through unlabeled data. The auxiliary supervision makes
training more stable when there are little training data in each client. We also
introduce a new pseudo-label strategy to alleviate the problem of insufficient
labeled data. We propose integrating the output of multiple models for unla-
beled data to obtain more effective and robust pseudo-labeled data.

Since there is no semi-supervised graph federated learning benchmarks, we
employ the widely used graph datasets in Open Graph Benchmark (OGB) [3]
and split data in different ways to simulate various Non-IID scenarios in reality.
To summarize, our main contributions are as follows:

– To the best of our knowledge, we are the first to deal with semi-supervised graph
federated learning. We propose a data-efficient framework SemiGraphFL that
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multiple clients can employ both the labeled and unlabeled data to train a GNN
model collaboratively without sharing raw data.

– Under our SemiGraphFL framework, we design strategies to enhance the
FL training process. We propose to use unsupervised data to evaluate the
similarity of different clients, which enhances the collaboration between clients
to train personalized local models. And we design semi-supervised learning
strategies suitable in FL settings to enhance the local training process.

– To evaluate our SemiGraphFL framework, we provide semi-supervised
GraphFL datasets. The experimental results show that our SemiGraphFL
performs well on universal scenarios with different data distributions. And
the ablation studies prove the effectiveness of our design for each module.

2 Related Work and Preliminaries

2.1 Federated Learning

Federated Learning (FL) has gained increasing attention as a decentralized learn-
ing technique where many clients collaboratively train a model under the orches-
tration of a central server while protecting data privacy. FedAvg [12] is currently
the most widely adopted FL framework. Most existing FL frameworks rely on
the optimization by SGD. However, data of Non-IID distribution will not guar-
antee the stochastic gradients to be an unbiased estimation of the full gradients,
thus hurting the convergence of FL. A research trend is to accommodate person-
alized local models for Non-IID data, e.g., by integrating FL with meta-learning
[5], assisted learning [20] and multi-task learning [15]. Besides, there are many
improvement efforts devoted to addressing other problems, including reducing
the communication cost [8] and protecting data privacy [10].

Federated Learning collaboratively trains machine learning models via
coordinated communication with multiple clients. Suppose there are N clients,
let D = {D1, . . . ,DN} be a given dataset with n samples, where Di is privately
collected local dataset at i-th client. For a machine learning problem, we typically
take fi(θ) = l(x; θ), i.e., the loss of the prediction on example x with parameter
θ. Generally, the objective function of a FL method can be written as follows

f(θ) =
N∑

i=1

ni

n
Fi(θ), Fi(θ) =

1
ni

∑

j∈Di

fj(θ) (1)

If {D1, . . . ,DN} was formed by distributing examples over D at random, we
would have EDi

[Fi(θ)] = f(θ), where the expectation is over the set of examples
assigned to a fixed client i. This is the IID scenario. We refer to the case where
this does not hold as the Non-IID setting.

2.2 Semi-supervised Learning

Semi-Supervised Learning (SSL) is a machine learning paradigm that uses par-
tially labeled data. SSL algorithms only work under some assumptions about
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the structure of the data need to hold [13,17]. If sufficient unlabeled data is
available and under certain assumptions about the distribution, this data can
help construct a better classifier. The low-density assumption assumes that the
decision boundary of a classifier should preferably pass through low-density
regions in the input space. The smoothness assumption assumes that for two
input points x, x′ ∈ X that are close by in the input space, the correspond-
ing labels y, y′ should be the same. And the manifold assumption assumes that
high-dimensional data are likely to be located in a low-dimensional manifold.

Semi-supervised learning employs labeled as well as unlabeled data to
perform certain learning tasks. Usually, the examples of unlabeled data are much
more than those of the labeled data. Let S = {(xi, yi)}ns

i=1 be a set of ns labeled
data instances and U = {(xi)}nu

i=1 be a set of nu of unlabeled instances without
corresponding label. Given a neural network parameterized by weights θ with
these two datasets, the objective is to minimize the following loss function

�final (θ) = �s(x, y; θ) + �u(x; θ) (2)

where �s is loss term for supervised learning on S and �u is loss term for unsu-
pervised learning on U . Some recent works have studied the problems of Semi-
Supervised Federated Learning (SSFL) [4,6,26], but none of them paid attention
to the GNN-based graph classification problem.

2.3 Graph Neural Network

Graph Neural Networks (GNNs) extend the deep learning technique to deal with
graph-structure data. Early studies define the graph convolution operation on
the spectral domain [1]. GCN [7] generalizes the graph convolution technique
to the spatial domain, which has become a prevalent formulation of GNNs in
current graph representation learning methods. GIN [22] theoretically proves
that standard GNNs are at most as powerful as the Weisfeiler-Lehman graph
isomorphism test in distinguishing graph structures. Generally, GNNs consist
of (i) aggregate function, which collects messages from neighbors to capture
local structure information, (ii) combine function, which fuses the neighborhood
information with the node embedding, and (iii) readout function, which performs
graph-level readout to get the representation of the entire graph.

GNN-Based Graph Classification. GNNs broadly follow a neighborhood
aggregation scheme. They iteratively update the representation of a node by
aggregating representations of its neighbors. We denote a graph as a tuple G =
(V, E ,X,A), where Xv is the node feature vector for v ∈ V and Auv is the edge
attribute vector for euv ∈ E . Let �hk

v denotes the embedding of node v at the
k-th layer, and �huv denotes the embedding of edge euv. We use Nv denotes the
neighbor nodes of node v, the aggregate and combine function at k-th layer of
the a GNN model can be written as follows

�ak
v = Aggregatek

({{
φ

(
�hk−1

u ,�huv,�hk−1
v

)
| u ∈ Nv

}})
(3)
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�hk
v = Combine

(
�hk−1

v ,�ak
v

)
(4)

For graph-level tasks, sometimes different levels of graph representations are
needed. To deal with the graph classification tasks, GNN models employ the
readout function to obtain the graph-level representation for prediction. Then a
final layer makes predictions based on graph representation.

�g = Readout
({

�hv |v ∈ V
})

, ŷ = Pre(�g) (5)

3 SemiGraphFL: A Semi-supervised Graph Federated
Learning Framework

We borrow the ideas from the Graph Attention Networks (GAT) [18]. First, we
construct a fully connected communication graph, where each client is regarded
as a node, and the model parameters are considered as the node representa-
tion. Then, each FL training round is accomplished as a communication step
in GAT that consists of the (1) local feature extraction, which corresponds to
the model local training process, (2) message aggregation between neighbors,
which corresponds to the multi-client communication, and (3) local represen-
tation updates, which corresponds to updating the local model parameters. In
Sect. 3.1, we mainly concentrated on the last two parts, while the first part will
be illustrated in detail in Sect. 3.2. Figure 2 is a overview of our strategies.

3.1 Multi-client Collaboration

In FL tasks, one key problem is how multiple clients collaboratively train deep
learning models. Most FL structures iteratively cycle between downloading
model parameters from server to client, performing local training, and send-
ing back the updated models for future rounds. In a Traditional FL framework
such as FedAvg, the server average the model parameters collected from clients
and use the result as the result parameters, which means that multiple clients
share the same model. However, to deal with the Non-IID problem, we propose
a new decentralized framework that does not compute a single global model.

For each FL training round, all clients receive GNN model parameters from
other clients. We denote the parameters at client i as θi and the corresponding
model as fθi

, they construct a parameter set {θi} and a model set {fθi
}. Assum-

ing N federating clients, we update each local model parameters θi at round t
as the weighted sum the parameter set {θi}

θt+1
i =

N∑

n=1

wmodel,t
ij · θt

j (6)

where the value of wmodel,t
ij indicates how important client j is to client i at

round t. Intuitively, clients with more similar data should have greater mutual
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Fig. 2. An illustration of how SemiGraphFL framework employs the unlabeled data
to perform personalized parameters aggregation and data pseudo-labeling. Parameter
aggregation executes every FL round, while pseudo-labeling only executes once.

influence, i.e., wmodel,t
ij should be positively correlated with Sim(Di,Dj). How-

ever, to protect data privacy, the local data are not available to other clients.
Therefore, one should estimate Sim(Di,Dj).

Recently, some related works have also proposed to enhance the training pro-
cess of FL by evaluating the similarity between different clients [14,21,25]. Most
of them evaluate Sim(Di,Dj) directly by defining the distance between model
parameters, e.g., [21] computes the distance between the local model and the
global model and divides all clients into little clusters with smaller intra-cluster
distance. However, models with different parameters can perform a similar fea-
ture extraction process. The randomness of mini-batch data sampling, parameter
dropout, and other model components makes parameter-level distances unsta-
ble. Thus we argue that the similarity evaluation of model parameters, such as
the Euclidean distance or cosine similarity, does not well reflect the data distri-
bution similarity. Thus, we propose to evaluate the similarity of models by their
behavior rather than the values of their items.

Under our SemiGraphFL framework, each client receives model parameters
from other client and use these parameters to perform predictions on its local
unsupervised dataset. It is worth noting that GNN-based graph classification
model first get the graph representations and then perform the final predic-
tion with Eqs. 3–5. We argue that the hidden representations are more effective
and stable than final predictions to evaluate these similarities. We denote the
representation with the j-th client’s parameter on i-th client’s k-th unlabeled
data sample as �g

θj ,i
k . Then we compute the cosine similarities between graph

representations. Formally, we have

Sim(Di,Dj) =
1
ni

ni∑

k=1

�gθi,i
k · �gθj ,i

k

||�gθi,i
k || · ||�gθj ,i

k ||
(7)

We employ softmax to normalize weights for all clients.
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wmodel
ij =

eSim(Di,Dj)/Tmodel

∑N
k=1 eSim(Di,Dk)/Tmodel

(8)

We introduce a temperature hyper-parameter Tmodel that controls the parame-
ter synchronization process. There are significant randomness and fluctuations
at the beginning of the training process. So we use a high temperature to enhance
mutual constraints between multiple clients. As the training progresses, we grad-
ually reduce the Tmodel so that each client can obtain a personalized model that
is not constrained by clients with different data distributions. The personalized
parameters aggregation process is illustrated in Fig. 2.

3.2 Single-Client Training

Since we have explained how multiple clients work together, now we turn our
attention to how each client performs its local training with both labeled data.

For labeled data, we perform supervised learning with the standard cross
entropy loss. Therefore, our SemiGraphFL framework can enhance most existing
GNN-based graph classification methods. Formally, we have

�l = − 1
nl

nl∑

i=1

C∑

c=1

wc · yi,c log ˆyi,c (9)

where �l is the supervision loss for labeled data, C is the number of classes, ˆyi,c

represents the probability of predicting sample xi with label c, and {wc} is the
weight set to control the loss weights for different classes.

For unlabeled data, we first design a supervision signal according to the
low-density assumption, i.e., the decision boundary should preferably not pass
through unlabeled data. Specifically, for GNN-based graph classification tasks,
we restrict the predictions for unlabeled data to be sharp. Formally, we restrict
the output of the classifier to have low entropy.

�i = − 1
nu

nu∑

i=1

C∑

c=1

ˆyi,c log ˆyi,c (10)

Since each client has little labeled data, introducing this auxiliary loss will
restrict the training process to be stable.

Another simple approach to extending existing GNN methods to the semi-
supervised setting is to first train GNN models on labeled graphs, and then
use the predictions for unlabeled data of the resulting classifiers to generate
additional labeled data [17]. Some existing methods design multiple classifiers
that mutually enhance each other. The classifiers are supposed to be sufficiently
diverse, which is usually achieved by operating on different subsets of the given
objects or features. In our SemiGraphFL framework, each client can obtain other
clients’ models, which are trained under different data distribution. Therefore,
we propose a new pseudo-label strategy that can take the advantages of this
feature to get more effective pseudo-labeled data. Formally,
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ŷpseudo
i,k =

N∑

j=1

eSim(Di,Dj)/Tpseudo

∑N
k=1 eSim(Di,Dk)/Tpseudo

ŷj,k (11)

where ŷpseudo
i,k is the pseudo prediction for unlabeled data xk on client i, ŷj,k

is the prediction for xk at client i with the j-th client’s model, Sim(Di,Dj) is
obtained with Eq. 8, and Tpseudo is a temperature hyper-parameter. We select
top np,i = p · ni samples with the highest confidence as supplement for labeled
data, where p is the pseudo ratio. And we use ypseudo to denote the one-hot
value for ŷpseudo, the pseudo-label loss is as follows

�p = − 1
np

np∑

i=1

C∑

c=1

wc · ypseudo
i,k log ˆyi,c (12)

To get more effective pseudo-labeled data, we should set Tpseudo > Tmodel. There-
fore, the pseudo-label process will obtain more restrictions from other clients
than the model parameter aggregation, which is illustrated in Fig. 2.

To further enhance the pseudo-label procedure, we propose to employ a two-
stage training strategy. At the first stage, the target is set to

�first = �first
l + λu · �u (13)

We set wc = np

|C|·∑np
i=1 1(yi,c=1)

for �first
l . Although the labeled data distributions

of multiple clients are different, we can get pseudo-label data with a uniform
and consistent distribution across datasets. Besides, since the distribution of
training data samples are not balanced, without employing wc to normalize the
loss weights, the pseudo-labeled data with high confidence will only concentrated
in a few categories with a large amount of labeled data. We use the model to
perform pseudo label. For the second stage, the target is set to

� = �second
l + λu · �u + λp · �p (14)

We set wc = 1 for �second
l so that each client will train their optimum personalized

model. Our framework can alleviate the confirmation bias with these techniques,
which is a common problem with pseudo-labeling strategies.

4 Experimental Setup

4.1 Datasets

Since there is no semi-supervised graph federated learning benchmarks, we adopt
and process the widely used datasets in Open Graph Benchmark (OGB) [3].
The dataset ogbg-ppa is a set of undirected protein association graphs extracted
from the protein-protein association networks of 1,581 different species [16] that
cover 37 broad taxonomic groups. Each species contains 100 samples, so there
are 158,100 graphs in total. Given a graph, the task is a 37-way multi-class
classification to predict what taxonomic group the graph originates from.
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Table 1. Statistics of Non-IID distribution for ogbg-ppa. For example, in NIID-1
dataset, the Client-1 distribution is 70%/10%/10%/10%, meaning that client-1 hold
70% data samples in the data cluster and hold 10% data in the 2/3/4 data cluster.

Clint name NIID-1 NIID-2 NIID-3

Client-1 70%/10%/10%/10% 40%/20%/20%/20% 40%/40%/10%/10%

Client-2 10%/70%/10%/10% 20%/40%/20%/20% 40%/40%/10%/10%

Client-3 10%/10%/70%/10% 20%/20%/40%/20% 10%/10%/40%/40%

Client-4 10%/10%/10%/70% 20%/20%/20%/40% 10%/10%/40%/40%

To simulate different Non-IID degrees in practical application scenarios, we
first split the ogbg-ppa dataset into 4 clusters. Each cluster consists of graphs of
multiple species, and species in different clusters do not contain intersections.
Then, these data are distributed to 4 clients. Each client holds different pro-
portions of data in each cluster. We first construct an IID dataset by randomly
dividing data in all clusters into 4 clients, which is denoted as IID-data. Then,
we construct three None-IID datasets by dividing data in different clusters into
4 clients with different ratios/proportions. Detailed data distributions are illus-
trated in Table 1. After divide data into different clients, we randomly divide
the data at each client into the labeled/unlabeled/test set with the proportion
of 1%/50%/49% to perform the following experiments.

4.2 Baseline Methods and Model Settings

To illustrate our SemiGraphFL framework can be easily applied to existing GNN-
based graph classification methods, we select GCN [7] and GAT [18] to be the
base models. We compare our framework with: (1) the single-training method,
(2) classical FL frameworks FedAvg [12] and FedProx [10], (3) a personalized FL
framework FeSEM [21] that split clients into multiple cluster with little intra-
cluster differences, and (4) a graph contrastive learning method GraphCL [24],
we add the contrastive learning loss under the FedAvg framework.

For all methods, we employ the SGD optimizer. We follow [3] to employ a
GNN model consisting of 5 GNN layers and a linear prediction layer to perform
graph classification. The batch size for labeled, unlabeled, and pseudo-labeled
data are all set to 32, the embedding size is set to 300, and the drop-out ratio
is set to 0.5. The loss weight parameters λu and λp are both set to 1. Tmodel

is decreasing gradually as the model training, and the final value are searched
from {1, 0.5, 0.25, 0.1}. For the pseudo-labeling process, we set Tpseudo = 2.0,
pseudo ratio p = 0.1. Since we have 4 clients, we report the mean Accuracy for
all clients as the final result.

5 Experimental Results

5.1 Comparison with Baseline Methods

The results in Table 2 show that our SemiGraphFL framework significantly and
consistently outperforms all baseline methods on all experimental scenarios.
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Table 2. Experimental results under different data distribution scenarios.

Model name IID-data NIID-1 NIID-2 NIID-3

Single-GCN 22.14% 36.08% 23.95% 28.80%

Single-GAT 22.51% 35.98% 24.51% 29.01%

FedAvg-GCN 35.46% 35.56% 35.66% 35.89%

FedAvg-GAT 35.45% 35.47% 35.53% 35.70%

FedProx-GCN 35.57% 35.81% 24.15% 36.41%

FedProx-GAT 35.72% 35.73% 24.48% 36.51%

FeSEM-GCN 33.86% 36.18% 35.08% 36.58%

FeSEM-GAT 33.94% 36.07% 35.18% 36.78%

GraphCL-GCN 35.28% 35.38% 34.98% 35.47%

GraphCL-GAT 35.37% 35.47% 35.02% 35.60%

Ours-GCN 38.68% 40.31% 38.98% 39.88%

Ours-GAT 38.80% 40.62% 39.02% 40.18%

For the IID-data scenario, all FL methods significantly outperform the single-
training method. And we also came to a similar conclusion for scenarios where
there is a slight data distribution difference (NIID-2/3). The above results prove
that FL methods can indeed improve the performance of GNN-based graph
classification tasks while protecting data privacy in many application scenarios.
However, things are different when significant differences in data distributions
(NIID-1). In this scenario, models trained with only local data can achieve bet-
ter results than federated methods. A unified global model restricts each client
from making effective predictions based on locally distributed prior knowledge.
Therefore, it is necessary to design a personalized FL strategy.

FeSEM is a personalized FL framework that divides clients into multiple small
clusters with slight data distribution differences. It only outperforms the classical
FL methods FedAvg and FedProx under NIID-3. Under this scenario, clients are
naturally divided into two clusters: {Client 1, Client 2} and {Client 3, Client
4}. FeSEM reduces the mutual impact between clients with large differences.
However, results in other scenarios illustrate the limitations of this approach.
By contrast, our framework can adapt to various scenarios and bring benefits.
Recently, Graph Contrastive Learning (GCL) has received extensive attention.
We have tried the feature-drop/edge-perturb/sub-graph methods proposed by
GraphCL, but none of them improves the final results. We also tried to use GCL
to pre-train the model, and the results were not satisfactory. Perhaps a more
suitable GCL method for a specific dataset can benefit, and we can add it to the
local training part of our framework. This is reserved for future work.

Single-training can be regarded as an extreme case for personalized FL strate-
gies, while FedAvg can be regarded as an extreme case for non-personalized FL
strategies. Actually, our SemiGraphFL framework is a more universal framework
that generalizes the above two methods. If we only concentrated on multi-client
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Table 3. Experimental results of ablation study.

Model name IID-data NIID-1 NIID-2 NIID-3

SemiGraphFL 38.68% 40.31% 38.98% 39.88%

Param-sim 38.66% 39.61% 38.56% 39.28%

Label-sim 38.63% 39.42% 38.47% 39.14%

w/o λu 36.53% 37.11% 36.48% 36.97%

w/o λp 38.13% 38.92% 38.02% 38.78%

Single-pseudo 38.52% 39.51% 38.44% 39.26%

collaboration, SemiGraphFL will result in FedAvg with Tmodel → +∞, i.e.,
wmodel

ij = 1/N . And SemiGraphFL will result in single-training with Tmodel → 0,
i.e., wmodel

ij = 1 where i = j while wmodel
ij = 0 where i �= j.

5.2 Ablation Study and Hyper-Parameter Analysis

We perform ablation studies to illustrate the effectiveness of each module. (1)
We compare using the model parameters or the final predictions of labeled data
to compute the Sim(Di,Dj), which are denoted as param-sim and label-sim; (2)
We analyze whether the unlabeled supervision loss can bring benefits to the final
results, which are denoted as w/o λu; (3) We remove the pseudo-labeling step,
which is denoted as w/o λp. And we also tried a pseudo-labeling strategy that
uses the local model after model aggregation, which is denoted as single-pseudo.

The ablation results are included in Table 3. Due to space limitations, we
only show results with GCN as the base model, and models based on GAT have
similar results. The results show that each module in SemiGraphFL contributes
to the final result: (1) Employing hidden representations of unlabeled samples to
evaluate the similarities between clients is better than using the model param-
eters or the hidden representations of labeled data. This allows the model to
have better generalization performance; (2) unlabeled supervision restricts the
classifier to sharp output is the most critical part of enhancing the predictive
performance. It proves that the underlying marginal data distribution p(x) over
the input space contains information about the posterior distribution p(y|x);
(3) Pseudo label is a general method for semi-supervised tasks. However, if we
employ the local model to perform pseudo-labeling, a personalized model tends
to select samples similar to local labeled data. This procedure will lead to the
accumulation of training bias that hurts the generalization performance. Our
new pseudo-label strategy alleviates this problem and enhances the final perfor-
mance.

For the personalized parameter aggregation, Tmodel is an important hyper-
parameter. We conduct experiments to verify how its value affects performance.
The results in Fig. 3 show that NIID-1 achieves the best performances when
Tmodel = 0.25 and NIID-2/3 achieves the best performances when Tmodel = 0.5.
If Tmodel is too small, the mutual constraints between clients are too weak.
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Fig. 3. The parameters sensitivity analyses about Tmodel.

NIID-1 NIID-2 NIID-3IID

Fig. 4. The parameter aggregation weights wmodel
ij under different Non-IID scenarios.

Each client will over-fit the local labeled data quickly. On the contrary, large
Tmodel may lead to a low level of model personalization, which may not be the
optimum solution. Generally, scenarios with high data Non-IID level need small
Tmodel value and high-level personalization. To verify whether the personaliza-
tion parameter aggregation is executed as expected, we compute the mean value
of wmodel

ij for all communication steps during the training process, which is visu-
alized in Fig. 4. It shows that our method can well evaluate the similarity of data
distribution between different clients without exposing raw data.

5.3 Complexity Analysis

Assume there are N clients, K communication rounds, and the model param-
eter size is d. The communication cost for each client in FedAvg is O (K · d),
and for all clients are O (N · K · d). SemiGraphFL is a decentralized framework,
the communication cost for each client is O (N · K · d), and the overall cost is
O

(
N2 · K · d

)
. During local training, the computation cost of additional super-

vision for unlabeled data is similar to that of labeled data. So the computational
cost is about twice as much as before. For most cross-silo FL tasks, N is small
(usually N ≤ 10). And the size d of GNN-based graph classification models is
usually small compared with other DNN models, e.g., CV/NLP. Therefore, the
additional communication and computation cost is acceptable.

6 Conclusion

This paper proposes a new semi-supervised graph federated learning frame-
work SemiGraphFL. We propose to employ the unlabeled data to enhance the
multi-client collaboration and single-client training process, including personal-
ized parameter aggregation, unlabeled data supervision, and FL pseudo-labeling
strategy. Extensive experimental results illustrate the effectiveness of our design.
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Abstract. The aim of this work is to design a hardware-efficient imple-
mentation of data preprocessing in the task of levodopa-induced dyski-
nesia classification. In this task, there are three approaches implemented
and compared: 1) evolution of magnitude approximation using Carte-
sian genetic programming, 2) design of preprocessing unit using two-
population coevolution (2P-CoEA) of cartesian programs and fitness
predictors, which are small subsets of training set, and 3) a design
using three-population coevolution (3P-CoEA) combining compositional
coevolution of preprocessor and classifier with coevolution of fitness pre-
dictors. Experimental results show that all of the three investigated
approaches are capable of producing energy-saving solutions, suitable
for implementation in hardware unit, with a quality comparable to base-
line software implementation. Design of approximate magnitude leads to
correctly working solutions, however, more energy-demanding than other
investigated approaches. 3P-CoEA is capable of designing both prepro-
cessor and classifier compositionally while achieving smaller solutions
than the design of approximate magnitude. Presented 2P-CoEA results
in the smallest and the most energy-efficient solutions along with pro-
ducing a solution with significantly better classification quality for one
part of test data in comparison with the software implementation.

Keywords: Cartesian genetic programming · Compositional
coevolution · Adaptive size fitness predictors · Levodopa-induced
dyskinesia · Approximate magnitude · Energy-efficient

1 Introduction

Parkinson’s disease (PD) is one of the most common neurological conditions
affecting the motor system. Treatment of symptoms usually involves the admin-
istration of a drug containing levodopa. The proper dosage of levodopa is crucial
for reducing its side effects, which include levodopa-induced dyskinesia (LID).
Lones et al. [4] developed a non-invasive wearable monitoring system for assessing
LID in people with PD. In our previous work [3], we followed up their work with
a goal to evolve LID-classifiers with respect to hardware (HW) implementation
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and thus enable LID-classifier to be implemented directly in a home wearable
device. We successfully applied coevolution of cartesian programs and adaptive
size fitness predictors (CGPcoASFP) [1] in order to design LID-classifiers work-
ing with fixed-point arithmetic with reduced precision, which is suitable for
implementation in application-specific integrated circuits (ASIC).

However, evolved HW-efficient LID-classifier still employed data preprocess-
ing in the form of magnitude calculation, which is considerably complex to be
implemented directly in HW as the square root has to be calculated. In the most
effective and accurate HW implementations, the square root is typically com-
puted iteratively in n/2 cycles for n-bit inputs using additions and subtractions.
That makes the calculation complex and power-inefficient. To achieve a good
throughput, the operation can be pipelined but the final area on the chip signif-
icantly grows up. The square root can also be approximated by a lookup table,
but for 12-bit inputs such a table would be enormous. Therefore the goal of this
paper is to replace this preprocessor with HW-effective implementation while
keeping a reasonable accuracy of the classifier and thus to produce a solution
that could be implemented directly into a home wearable device. A small low-
power solution would enable long-term continuous monitoring of people with PD
in their own homes and allow clinicians accurate assessment of their patient’s
condition and the advised adjustment of levodopa dosage.

We propose and evaluate three evolutionary approaches to design HW-effi-
cient preprocessor and classifier. The first approach represents the state-of-the-
art approximation of magnitude in terms of symbolic regression with the use
of HW-friendly functions performed by Cartesian genetic programming (CGP)
[7]. The second approach designs a preprocessor that is connected to an exist-
ing LID-classifier [3] using CGPcoASFP. The third approach is compositional
coevolution [8] of preprocessor and classifier supplemented with the coevolution
of adaptive size fitness predictors in order to accelerate the design process. The
proposed evolutionary approaches are compared with a baseline software imple-
mentation in terms of classification quality. Selected solutions evolved using pro-
posed approaches are then compared in terms of their HW characteristics.

2 LID-Classifier Model

Lones et al. [4] developed a system for monitoring LID in people with PD’s own
homes, which included non-invasive wearable units and a model of LID-classifier.
Sensing modules comprised a tri-axial accelerometer and a tri-axial gyroscope
and stored data in local memory.

Baseline Preprocessing: Data used for classification of LID contain data from
the three-axial accelerometer, recorded with a sample rate 100 Hz. Each sample
contains three unsigned 12-bit numbers corresponding to axes a1, a2 and a3,
which need to be normalized by some preprocessing algorithm. Baseline data
preprocessing for LID-classifier, as introduced by Lones et al. [4], consists in
calculating a magnitude a from a1, a2 and a3 values, using the formula:
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a =
√

(a21 + a22 + a23). (1)

Classification of LID: According to [4], a fitness case for LID-classifier consists
ofL preprocessed values (i.e.L = 100 represents a record of length 1 s). The fitness
case is processed through classifier in the form of L − 31 overlapping windows of
length 32 (0.32 s). The classifier produces an output for each of theL−31 windows
(i.e. input vectors), and the resulting response from the classifier is then expressed
as the mean of output values. A target class is then decided by applying a threshold
to the response range of the classifier. The threshold is not included in the classifier
model, as for determining the quality of classifiers during evolution we use AUC
(Area Under the receiver operating characteristics Curve), which allows accurate
assessment of the ability to distinguish classes without defining a threshold value.
The procedure of LID classification is illustrated in Fig. 1.
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Fig. 1. LID-classifier model. Figure also shows classifier C0 proposed in [3].

In our previous work [3], we presented a HW-efficient LID-classifier operating
with unsigned 8-bit data representation and including only a few function blocks,
evolved using CGPcoASFP. The resulting classifier is shown in Fig. 1 and is
labelled as C0 in the rest of this paper. To adjust magnitude calculated according
to Eq. 1 to the range of 0 to 255, a logical shift by five bits to the right has shown
as the most suitable from investigated techniques in this task [3].

3 Evolutionary Design of LID-Preprocessor

Hardware implementation of data preprocessing using Eq. 1 is considerably com-
plex. Our goal is to replace expensive magnitude calculation with a simpler solu-
tion evolved using CGP which was successful in various related topics, such as
the design of efficient digital circuits [5], solving problems of classification and
prediction [6], or medical applications [10].
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3.1 Model of Magnitude Approximation

The first approach replaces computationally expensive magnitude calculation
with a fixed-point magnitude approximation, evolved in terms of symbolic regres-
sion performed using standard CGP [7]. A preprocessor is then represented using
a cartesian grid of functional nodes operating over three primary inputs, taken
from three axes a1, a2 and a3, and giving one primary output representing the
magnitude approximation.

3.2 Model of LID-Preprocessor

The aim of this approach is to evolve a preprocessor without a need of defining
a specific mathematical expression, that preprocessor should accomplish. In this
model, data from clinical studies (described below in Sect. 4.1) that are employed
in LID-classifier design, are directly used during LID-preprocessor evolution.
Fitness of LID-preprocessor is then evaluated in connection with LID-classifier,
i.e. in terms of classification quality.

At first, we used the same preprocessor model as for magnitude approxima-
tion, i.e. the cartesian grid operating over the three axes a1, a2 and a3, and
giving one primary output. Our initial experiments have shown, that evolution
of this model produces preprocessors that prefer to operate over one or two of
three axes, which does not lead to correctly working solutions in general.

Thus, we propose to evolve one component to be used for operating each
of the three axes and then aggregated. In this model, we propose to aggregate
component outputs in the following way: Each component output shift by 2 bits
to the right and summed. This model affords the important property of the same
weighting of all axes.

Preprocessinga1 >>4

Preprocessinga2 >>4

Preprocessinga3 >>4

>>2

>>2

>>2
+

+

Fig. 2. The layout of proposed preprocessing enforcing equal weight of all axes.

As we aim to use 8-bit unsigned integer representation in LID-classifier, it is
fundamental to use this representation in preprocessor. For this reason, acceler-
ation values, which are originally in 12-bit range, are at first fitted to a range
of 0–255 by a logical shift of 4 bits to the right. The LID-preprocessor model is
illustrated in Fig. 2.

For the automated design of the LID-preprocessor, we propose to use two-
population coevolution of cartesian programs and adaptive size fitness predictors
(CGPcoASFP). Next, we propose a three-population coevolutionary algorithm
where two types of candidate components, one of LID-preprocessors and one of
LID-classifiers, are evolved in separate populations and composed to evaluate
their fitness together using fitness predictors (the third population).



Evolutionary Design of Preprocessor for LID-Classifier 495

3.3 Two-Population Coevolutionary Algorithm

There are two concurrently evolving populations in the proposed two-population
coevolutionary algorithm (2P-CoEA), one of candidate programs (LID-prepro-
cessors) evolving using CGP and one containing fitness predictors (FP, i.e. small
subsets of training set). FPs are evolving using a simple genetic algorithm accom-
panied with a specific heuristic allowing to change the size of fitness predictor
dynamically in response to the evolutionary process [1]. The variable size of the
fitness predictor helps to evaluate candidate programs on the proper amount of
input data, i.e. to find a good trade-off between the time and quality of evalu-
ation. Fitness predictors with variable size reduce evolution time, allow leaving
local optima and help to prevent overfitting [1,3]. Both populations evolve simul-
taneously and interact through the fitness function. Two archives, one of fitness
trainers (AFT ) and one containing the best-evolved fitness predictors (AFP ),
supplement these populations. AFT is used by the predictor population for the
evaluation of evolved fitness predictors. It contains copies of selected candidate
programs obtained during the evolution. The fitness predictor from AFP is used
to evaluate candidate programs. The method is depicted in Fig 3. The detailed
approach description is summarised by Drahosova et al. [1].

AFT AFP

Fitness 
predictors

Candidate 
programsSelected candidate 

programs
Evalua�on of

candidate programs

The best fitness 
predictor

Evalua�on of
fitness predictors

Fig. 3. Two-population coevolutionary algorithm.

3.4 Three-Population Coevolutionary Algorithm

Inspired by the previous work of Sikulova et al. [9], we propose to employ a
compositional coevolution in this task. Compositional coevolution sprang from
cooperative coevolutionary algorithms, wherein the originally stated aim was
to attack the problem of evolving complex objects by explicitly breaking them
into parts, evolving these parts separately and then assembling the parts into
a working whole [8]. When designing LID-preprocessor, we naturally use two
components: 1) the preprocessor and 2) the classifier; see Fig. 1. Our target is
to replace the evolution of non-interacting components with a coevolutionary
algorithm, in which the fitness of a component depends on fitness of other com-
ponents, i.e. the components are adapted to work together. Two populations,
one of preprocessors and one of classifiers, are accompanied with three archives:
a) the archive of preprocessors (Aprep) used by the classifiers population for their
evaluation, b) the archive of classifiers (Aclass) used by the preprocessors pop-
ulation for their evaluation, and c) the archive of the top-ranked composition
(Acomp). The detailed approach description for use with CGP is summarised
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by Sikulova et al. [9]. Fitness of each candidate preprocessor is thus determined
as a fitness of the whole module composed of the candidate preprocessor and a
classifier in the Aclass, and vice-versa.

Moreover, we propose to supplement this compositional coevolutionary app-
roach with the coevolution of fitness predictors to evaluate the fitness of can-
didate components and thus include its benefits in the compositional approach.
Then, this approach involves three populations (i.e. three-population coevolu-
tionary algorithm; 3P-CoEA), one of preprocessor components, one of classifier
components and one containing FPs. These three populations are supplemented
with five archives: a) Aprep, b) Aclass, c) Acomp, d) AFT - i.e. compositions used
by the predictor population for the evaluation of fitness predictors, and e) AFP .

Preprocessors 
population

Classifiers 
population

Aclass

Acomp

Aprep

Evaluation of 
preprocessors

Evaluation of
preprocessors

Evaluation of 
classifiers

Evaluation of
classifiers

AFT

AFP

Fitness 
predictors

Save the top ranked predictor

Classfier for 
preprocessors 

evaluation

Preprocessor
for classifier 
evaluation

Save the top ranked 
preprocessor

Save the top 
ranked classifier

Fitness predictor for 
compositions 

evaluation

Fitness predictor for 
compositions 

evaluation

Evaluation of
fitness predictors

Selected candidate
composition

Save the best
composition

Save the best
composition

Fig. 4. Three-population coevolutionary algorithm.

3P-CoEA is initialised as follows: All three populations are initialised using
random individuals while complete mixing interaction of populations [8] is
utilised to evaluate initial generation. That means, all individuals of preproces-
sors are composed with all individuals of classifiers and their fitness is evaluated.
Fitness predictors are evaluated using randomly initialized AFT . The top-ranked
preprocessor is then copied to Aprep, the top-ranked classifier to Aclass, the top-
ranked fitness predictor to AFP , AFT is filled with selected compositions, while
the top-ranked composition is placed to Acomp. For further generations, the
complete mixing approach is not utilised (as it is time demanding) – only the
top-ranked preprocessor from Aprep is utilised to evaluate classifiers and the
top-ranked classifier from Aclass is used to evaluate preprocessors. When a new
top-ranked preprocessor occurs in preprocessor population, it replaces an old one
in Aprep, and vice-versa. Acomp is used as evolutionary process memory. After
the coevolution is terminated, a final solution, i.e. the best-evolved composi-
tion, is found in Acomp. Interactions of fitness predictors are utilised in terms of
CGPcoASFP [1]. The overall methodology is depicted in Fig. 4.

4 Experimental Results

This section presents experimental data, experimental setup and experimental
evaluation of the proposed coevolutionary approaches and their comparisons.
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4.1 Clinical Study Data

In our work, we adopt two clinical studies (from [4]) conducted at Leeds Teaching
Hospitals NHS Trust, UK, with granted ethics approval and written informed
consent given by all participants. Collected movement records were split into
time periods, of different lengths, according to the severity of LID it character-
izes. Each time period (time-series) is graded by the standard UDysRS (Unified
Dyskinesia Rating Scale) scoring system from 0 (no dyskinesia) to 4 (severe
dyskinesia) and contains information, among others, about the patient’s activ-
ity during a set moment, e.g. sitting at rest, walking, drinking.

Data from clinical studies are used the same as by Lones et al. [4] and Hurta
et al. [3] in their previous works. Due to the sliding window size in the proposed
model, only time-series of at least 32 samples (i.e. 0.32 s) are considered. As
described in [4], training data is constructed of Clinical study 1 [4] using 2939
time series of LID grade 0, understood to be LID negative (N) and 745 time
series of merged grades 3 and 4, understood to be LID positive (P). The reason
for excluding grades 1 and 2 is that it is easier to generate robust classifiers when
these are not involved during training, as described in [4].

Evolved solutions are re-evaluated using the movement samples from Clinical
study 2 [4] to obtain a more robust measure of generality. Six test groups are
created to allow detailed measurement of the LID-classifier quality, see Table 1.
Besides four test groups representing classification of LID severity (LID 0 to LID
4), two more groups are created to classify severe LID (i.e. LID grade 3 and 4)
during specific movement activities of sitting at rest and walking.

Table 1. Number of positive (P) and negative (N) samples in training data used for
fitness calculation and in test groups used for re-evaluation of solutions in order to
obtain a more robust measure of generality.

Training data
(LID 3 + LID4)

Test groups

LID 1 LID 2 LID 3 LID 4 Walking Sitting

Number of (P) 745 895 628 179 361 21 170

Number of (N), i.e. LID 0 2939 1588 1588 1588 1588 90 733

4.2 Test Scenarios

In order to evaluate the proposed approach, three scenarios and thus three
approaches to LID-preprocessor design are examined:

Scenario S1: The first scenario replaces computationally expensive magnitude
calculation with a fixed-point magnitude approximation, searched in terms of
symbolic regression performed using standard CGP. In order to form a training
set representing LID-preprocessor function (as used in [3]), 68 921 equidistant
distributed samples were taken from function

fmagnitude(a1, a2, a3) =
√

(a12 + a22 + a32) >> 5, (2)

with sampling U [0, 100, 4095] for training and U [0, 1, 4095] for testing. A fitness
function in Scenario S1 is represented by the mean square error (MSE).
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Scenario S2: The second scenario involves the 2P-CoEA design of LID-prepro-
cesor that is trained using training data set from clinical studies Sect. 4.1. The pre-
processor is then evaluated in composition with the fixed C0 classifier [3] in terms
of AUC (Area Under the receiver operating characteristics Curve). This allows us
to find such a preprocessor that is adapted to work with the C0 classifier without
finding a magnitude function. The training set consists of 2939 fitness cases of class
(N) and 745 fitness cases of class (P), as described in Sect. 4.1.

Scenario S3: The third scenario employs 3P-CoEA to evolve LID-preprocessor
together with the evolution of LID-classifier to adapt them to work together
directly during evolution. AUC fitness for each component evaluation is used as
same as in Scenario S2. The detailed AUC-based fitness calculation in the task
of LID-classifier design is summarised in Hurta et al. [3]. Presented scenarios are
illustrated in Fig. 5.
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MSE AUC AUC
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Magnitude 
approxima�on 

popula�on
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Preprocessor 
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Preprocessor 
popula�on
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Classifier 
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Fig. 5. Presented scenarios.

4.3 Experimental Setup

The experimental setup of CGP uses some shared parameter settings for all
scenarios S1–S3 as follows (based on our previous work [3]): The initial popula-
tions are randomly seeded, the (1 + 4) evolutionary strategy and the Goldman
mutation operator [2] are used to produce a new generation.

The remaining CGP parameters are based on our initial experiments. The
set of functions was altered to reflect our intention to design HW efficient solu-
tion. Computationally expensive multiply and divide functions used in [3] were
removed. The set of functions has been supplemented with functions suitable for
use in HW and successfully used for magnitude approximation search by Wiglasz
and Sekanina [11]. The used function set is shown in Table 2. The remaining CGP
parameters differ for surveyed scenarios.

Table 2. CGP node functions.

Function Description Function Description Function Description

255 Constant i1 ∧ i2 Bit. NAND i1 >> 1 Right shift by 1

i1 Identity i1 ⊕ i2 Bit. XOR i1 >> 2 Right shift by 2

255 − i1 Inversion i1 ∨ i2 Bit. i1 OR i2 i1 − i2 − (subtraction)

i1 ∨ i2 Bit. OR swap(i1, i2) Swap nibbles i1 −S i2 − with saturation

i1 ∧ i2 Bit. AND i1 + i2 + (addition) i1 +S i2 + with saturation

min(i1, i2) Minimum max(i1, i2) Maximum (i1 >> 1) + (i2 >> 1) Mean
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CGP used to train an approximate magnitude according to scenario S1 com-
prised of up to 96 function instances laid out on a 12× 8 Cartesian plane. CGP
takes inputs from 3 terminal nodes fed from the accelerometer axes (a1, a2 and
a3). We used a generation limit of 100 000.

To train a preprocessor according to scenarios S2 and S3, CGP comprises up
to 32 function instances laid out on a 4 × 8 Cartesian plane. CGP takes inputs
from 1 terminal node fed from the accelerometer axis, i.e. one of a1, a2 and a3
as an aggregation is done according to Fig. 2. A generation limit is set to 20 000,
where significant changes are no longer observed in evolved solutions. CGP used
to train a classifier according to scenario S3 differs in having 32 inputs from 32
terminal nodes fed from the preprocessor outputs (see Fig. 1). Function set is
also given by Table 2.

CGPcoASFP employed in scenarios S2 and S3 is used according to [3], i.e. 6
fitness trainers in the AFT , 8 FPs in the predictor population, and evolution of
FPs is conducted using a simple GA, where one-point crossover and mutation
with probability 0.01 per gene operators are used. The size of FP is initialized
with 300 fitness cases, which is around 8 % of the original training set. The
detailed setup of CGPcoASFP for the classifier design task is surveyed in [3].

4.4 The Quality and the Size of Evolved Solutions

The quality of solutions evolved using proposed approaches evaluated using
test groups (Table 1) is shown in Fig. 6. Preprocessors evolved using S1 and
S2 are composed with C0 classifier in order to evaluate AUC, preprocessors
evolved using S3 are composed with corresponding classifiers coevolved with
them according to S3. It can be seen that all three investigated scenarios are
capable of producing solutions with AUC comparable to baseline implementa-
tion, i.e. exact magnitude calculation composed with classifier C0.

Fig. 6. AUC of baseline solution and solutions evolved using proposed scenarios on the
test groups. Baseline represents evolution with the use of exact magnitude [3].
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Fig. 7. Trade-off between fitness and number of nodes in evolved solutions composed
with corresponding classifiers. Figure a) shows MSE fitness vs. number of nodes for
scenario S1. Figure b) shows AUC fitness vs. number of nodes for scenarios S2 and S3
supplemented with the selected solution from S1 re-evaluated in terms of AUC. Lines
represent the Pareto frontiers and cross highlight the selected solutions. (Color figure
online)

It can be noticed that the LID 1 and LID 2 cases were much more difficult
to fit. It might be caused by negligible signs of lower LID grades in some body
parts.

As our target is a small solution (i.e. highly optimized energy-efficient imple-
mentation) along with the classification accuracy as close as possible to a baseline
software implementation, we analyse evolved solutions in terms of the number
of active nodes and the AUC fitness. Figure 7 shows the fitness and the number
of nodes for all evolved solutions.

In S1, five Pareto optimal solutions were found spanning their fitness (MSE)
on test data from 18.25 to 126.99. Their number of active nodes, including
the C0 classifier, ranges from 11 to 43, see Fig. 7a. The preprocessor (P1) with
MSE = 22.95 (AUC = 0.91 for P1 in composition with C0) using 17 active nodes
is selected for further evaluation of HW characteristics. It should be noted that
a lower MSE does not lead to a solution with a better classification AUC – see
the red cross in Fig. 7b, which shows the AUC and the number of used nodes of
selected P1 in composition with classifier C0.

In scenario S2, only three Pareto optimal solutions with fitness (AUC) rang-
ing from 0.916 to 0.922 were found, see the green Pareto frontier in Fig. 7b. A
number of their active nodes multiplied by three axes and with the addition of
aggregation (see Fig. 2) and C0 classifier spans from 17 to 41. The preprocessor
(P2) with AUC = 0.92 (for P2 in composition with C0) using 23 active nodes is
selected for further evaluations (the green cross in Fig. 7b).

Five Pareto optimal solutions were found in scenario S3 with fitness (AUC)
from 0.912 to 0.921 and the number of total nodes including preprocessing of
three axes, their aggregation and composition with corresponding co-evolved
classifier from 16 to 23 nodes, see the orange Pareto frontier in Fig. 7b. The
composition of preprocessor and classifier (P3+C3) with AUC = 0.92 using 23
active nodes is selected for further evaluations (the orange cross in Fig. 7b).
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Fig. 8. Selected solutions of scenarios S1 (P1), S2 (P2) and S3 (P3 and C3).

The number of nodes in solutions designed by individual scenarios tends to
be the lowest in solutions designed by scenario S3, with a mean of 27 nodes, an
increase in size by two nodes in scenario S2 and an additional node in S1.

4.5 HW Characteristics of Selected Preprocessors

For the evaluation of HW characteristics, one solution from each of the scenarios
is selected. To select precise enough and, at the same time, space-saving solution,
a solution from the Pareto frontier with fitness in the top ten percent of the
fitness span with the lowest number of used nodes is selected. In Fig. 7, the
selected solutions are marked by the cross.

Selected magnitude approximation (preprocessor P1), evolved according to
scenario S1, is shown in Fig. 8a. Figure 8b shows the preprocessor P2 evolved
according to scenario S2 for composition with the baseline classifier C0. Coevolu-
tionary designed preprocessor P3 and classifier C3, evolved according to scenario
S3, i.e. using 3P-CoEA, are shown in Fig. 8c and Fig. 8d.

AUC of the presented solutions are shown in Table 3. All three proposed
solutions achieve comparable AUC to the baseline implementation (P0+C0) on
all investigated test groups. Moreover, the solution evolved using scenario S2,
i.e. P2+C0, achieved significantly better AUC on the test group “walking”.

Table 3. AUC of presented preprocessors and classifiers on training data and on test
groups according to Table 1. The highest AUC of each group is marked in bold font. A
significant improvement of AUC on test group Walking is marked in italic bold font.

Training data LID 1 LID2 LID3 LID 4 Walking Sitting

P0+C0 (baseline solution) 0.91 0.57 0.72 0.89 0.96 0.82 0.95

P1+C0 (S1: magnitude approximation) 0.91 0.55 0.73 0.89 0.96 0.82 0.95

P2+C0 (S2: 2P-CoEA) 0.92 0.56 0.73 0.89 0.97 0.87 0.95

P3+C3 (S3: 3P-CoEA) 0.92 0.55 0.73 0.90 0.97 0.83 0.95
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Table 4. HW characteristics of synthesized solutions for a 45 nm technology on
100 MHz frequency.

LID-Classifier Area on chip [µm2] Number of cycles Power [mW] Energy [pJ]

P0+C0 (baseline solution) 7115 13 1.0459 135.967

P1+C0 (S1: magnitude approx.) 5014 1 0.8593 8.593

P2+C0 (S2: 2P-CoEA) 2435 1 0.4645 4.645

P3+C3 (S3: 3P-CoEA) 2629 1 0.5131 5.131

In order to determine the HW cost, Synopsys Design Compiler targeting
45 nm ASIC technology is employed as a synthesis tool. Synthesis expects data
preprocessing to be done once for each sample in a stream of acceleration data.
This is in contrast to placing preprocessor before each of the primary inputs of
a classifier that would generally result in four to five times more calculations in
preprocessing stage and require three times more storage.

A combination of magnitude approximation preprocessor P1 and classifier
C0 are synthesised with 16-bit data representation necessary for preprocessor
P1. Combination P2+C0 and P3+C3 use a more efficient 8-bit representation.
Preprocessors P2 and P3 are in both cases presented in the solution three times
together with the aggregation unit shown in Fig. 2.

Investigated hardware characteristics are shown in Table 4. The baseline solu-
tion P0+C0 is the largest LID-classifier in terms of area on chip. Iterative cal-
culation of square roots also requires 13 clock cycles (i.e. 130 ns), resulting in
an energy of 136 pJ. All proposed solutions result in better characteristics. Solu-
tion P1+C0 (Scenario 1) reduces area on chip by 30% with the main benefit of
requiring only one clock cycle for calculation and thus almost 16 times reduction
of energy. Solutions P2+C0 (Scenario 2) and P3+C3 (Scenario 3) both result in
an additional reduction of area on chip compared to solution P1+C0 due to 8-bit
data representation. Energy of P2+C0 and P3+C3 also achieve an additional
reduction of energy in comparison with P1+C0 by 46%, 40% respectively.

5 Conclusion

In this paper, we proposed and compared three methods for the automatic design
of an energy-efficient variant of data preprocessing for the levodopa-induced
dyskinesia classifier. We have shown that all of three investigated methods,
including compositional coevolution of preprocessor and classifier, are capable of
producing space-saving solutions with AUC comparable to the baseline software
implementation.

Evolutionary design of magnitude approximation using Cartesian genetic
programming (CGP) (scenario S1) leads to larger and more energy-demanding
solutions. Compositional coevolution of preprocessor and classifier supplemented
with coevolution of adaptive size fitness predictors (scenario S3) has resulted on
an average in the smallest solutions while evolution of preprocessor for the base-
line classifier implementation (scenario S2) has resulted in a solution with signif-
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icantly better AUC for “walking” test-group in comparison with other investi-
gated approaches. All of the proposed solutions significantly improve investigated
hardware characteristics compared to the baseline solution, which is the most
evident in up to 29 times lower energy consumption.

Our future work will be devoted to utilisation of compositional evolution and
inclusion of multi-objective optimization into the design of HW-efficient solu-
tions, whereas HW parameters of candidate solutions will be concerned during
the evolutionary process.
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Abstract. Nanomaterial networks have been presented as a building
block for unconventional in-Materio processors. Evolution in-Materio
(EiM) has previously presented a way to configure and exploit physical
materials for computation, but their ability to scale as datasets get larger
and more complex remains unclear. Extreme Learning Machines (ELMs)
seek to exploit a randomly initialised single layer feed forward neural net-
work by training the output layer only. An analogy for a physical ELM
is pro0duced by exploiting nanomaterial networks as material neurons
within the hidden layer. Circuit simulations are used to efficiently inves-
tigate diode-resistor networks which act as our material neurons. These
in-Materio ELMs (iM-ELMs) outperform common classification methods
and traditional artificial ELMs of a similar hidden layer size. For iM-
ELMs using the same number of hidden layer neurons, leveraging larger
more complex material neuron topologies (with more nodes/electrodes)
leads to better performance, showing that these larger materials have a
better capability to process data. Finally, iM-ELMs using virtual mate-
rial neurons, where a single material is re-used as several virtual neurons,
were found to achieve comparable results to iM-ELMs which exploited
several different materials. However, while these Virtual iM-ELMs pro-
vide significant flexibility, they sacrifice the highly parallelised nature of
physically implemented iM-ELMs.

Keywords: Evolution in-Materio · Evolvable processors · Extreme
learning machines · Material neurons · Virtual neurons · Classification

1 Introduction

The inevitable slowdown in traditional CMOS technology improvement [6] has
led to a growing interest in alternative and unconventional computing techniques.
Evolution in-Materio (EiM) is one such paradigm which attempts to leverage a
material’s inherent properties and exploit them for computation, these materials
were initially referred to as Configurable Analogue Processors [29]. EiM uses an
Evolutionary Algorithm (EA) to optimise external stimuli and other parame-
ters such that the material can perform a target application. Materials which
might have limited uses in conventional electronic devices, may in fact provide
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sufficiently complex and interesting characteristics to be exploited as an EiM
device. EiM processors have been used to achieve a range of applications such
as logic gates [2,4,23,27] and for classification [5,28,40]. Notably, EiM attempts
to exploit a system’s intrinsic physics with only a few configurable parameters,
which is important for the complexity engineering approach [15] and helps pre-
vent an over parametrised system. If this relative computational simplicity is
paired with low power materials, then in-Materio processors present a possible
candidate for edge case computing [30]. Recent analysis of EiM systems has
established fundamental good practices [21] and enhancements [20] to the EiM
paradigm. However, even with these improvements, methods to scale in-Materio
processing systems to larger and more complex datasets remains lacking. With-
out this, any real-world adoption remains unlikely.

Generally, within a ‘material’ or ‘in-Materio’ processor, some nanomaterial is
placed on a microelectrode such that stimuli and data can be applied as a volt-
age. Some form of hardware interface is necessary to apply and read voltages to
the material, often controlled from a PC (which in the case of EiM hosts the EA
that optimises the system). Devices operating in such a manner include liquid
crystals [17,18], metallic nanoparticles [2,16], single walled carbon nanotubes
[27,28], and dopant networks [4,35]. However, in-Materio processors could be
configured using any external stimuli such as light [39] or radio waves [25]. In
fact, any medium with complex intrinsic characteristics which can be interfaced
with and leveraged could be used as an in-Materio processor. Networks of com-
mon electronic devices (resistors, diodes, etc.) can provide interesting tunable
dynamics [22] and can be realised physically or investigated using reliable and
fast SPICE (Simulation Program with Integrated Circuit Emphasis) simulations
[20,21].

Extreme Learning Machines (ELM) and Reservoir Computing (RC) present
a good analogy for in-Materio processors since both involve the exploitation of
random networks. These systems depend on the underlying assumption that the
randomised network/reservoir will produce useful and often higher dimensional
output states that are used to process the data more successfully. Notably, within
these fields of research it is generally assumed that the network/reservoir remains
fixed after its inception. However, previous work has shown that a small amount
of stochastic optimisation can improve a systems performance [7,13,43]. RC was
developed from recurrent neural networks and is generally employed to process
temporal data. Physical RCs [38] could lead to low power, efficient and fast
systems which can operate at ‘the edge’. Examples include the use of circuit
(anti-parallel diode) based non-linear neuron [22], memristive network [1,12] and
magnetic spintronic [8] based reservoirs. ELMs were developed from single layer
feed forward neural networks (SLFN) and are generally employed to process
non-temporal data [19]. Examples of physical implementations of ELM remain
sparse but include memristor based networks [1] and photonic systems [26,32].
Their remains significant opportunity to develop both classical and quantum
substrates [31] for both RC and ELM.
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Here we present a method of exploiting nanomaterial networks as ‘material
neurons’, grouping them into a SLFN’s hidden layer and training them as an
ELM. To enable efficient analysis, random diode-resistor networks are used as
a proxy for physical nanomaterials, which are solved using fast, reliable SPICE
simulations. The performance of these ‘in-Materio ELMs’ on several common
machine learning datasets is examined for various hidden layer sizes and physical
material network topologies. They are found to outperform other common clas-
sification techniques and traditional (artificial) ELMs of a similar size. Finally,
drawing from the work showing EiM processors can be configured via external
voltage stimuli and other parameters, we implement a material ‘re-use’ system,
whereby a single material neuron is used to create several virtual material neu-
rons. These physical neuron based ELMs provide a scalable in-Materio uncon-
ventional computing method whereby the intrinsic properties of a material (or
medium) can be exploited in a highly parallelisable way.

2 Background

2.1 Evolution In-Materio Processors

EiM exploits nanomaterials using an optimisation algorithm such that they can
perform useful tasks. Since in-Materio processors are analogue and generally
lack an analytical model to describe their electrical characteristics, derivative-
free optimisation algorithms are used, rather than gradient based algorithms [28].
EAs are a subset of evolutionary computing [36], consisting of population-based
metaheuristic search algorithms, making them ideal for EiM. Many types of EAs
have been used for EiM such as Evolutionary Strategies [9], Genetic Algorithms
[2], Differential Evolution [28,40]. In particular, Differential Evolution (DE) is
an easily implemented and effective optimisation algorithm [36,37] which only
requires a few robust control variables [33] and is attractive for real parameter
optimisation [10].

Such a DE algorithm can be combined with a material simulation (developed
in [21]) to allow for significantly faster testing and analysis of EiM processors
than physical manufacturing and experimentations would allow. Full details are
available elsewhere [10,37], but briefly, the DE algorithm uses the greedy crite-
rion that involves evaluating the fitness of each member of a generation’s popula-
tion, with those members of the population with better fitness being more likely
to proceed to the next generation. The characteristics of the population there-
fore change gradually over time due to the random mutation of characteristics
and cross-over with other population members. Every member of the population
is represented by a vector of decision variables X. This decision vector contains
configuration parameters which the EA optimises each generation. A basic EiM
processor might commonly have a decision vector defined as:

X = [Vc1, Vc2, ..., VcP , l1, l2, ..., lR ]T , (1)

where T is the vector transpose. Here, the included configuration parameters
are as follows: Input “configuration” voltage stimuli Vcp ∈ [−5, 5] V applied to a
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Fig. 1. Illustration of a typical monolithic EiM processor’s structure. Input data is
applied to the material as voltages. The output voltages (i.e., material processor output
states) are regressed to produce an output layer which predicts the class (ŷ) of the
processed data instances. Input weights (lr) can be used to scale the input data voltages,
and configurable voltage stimuli (Vc) can manipulate the processor’s behaviour [21].

node p, where the total number of configuration nodes is P . These configuration
voltages have been shown to both introduce a bias but also alter the decision
boundary of an EiM classifier [21]; therefore, these effect how the materials IV
characteristic is exploited which could be analogous to altering the material’s
‘activation function’. Input weights lr ∈ [−1, 1], are used to scale the input
voltages V in

r applied at the data driven input electrodes r due to a corresponding
input attribute ar, such that:

V in
r (k) = lr × ar(k), (2)

where k is a given data instance and the total number of data driven input
electrodes is R. The structure of this type of typical EiM processor is shown
in Fig. 1, and illustrates how the configurable parameters effect the material
processor’s operation.

While an evolved output layer and threshold can be used to interpret the
materials output voltages and assign a label to a particular data instance which
has been processed [21], it has been found that a regressed output layer is more
successful at evaluating and exploiting a material’s output voltage states [20].
This regressed layer is generated when evaluating a population member on the
training dataset and must be maintained and updated in tandem with the EA’s
population.

Generally, for classification, a dataset D, containing R attributes a1,
a2, . . . , aR, is split into two subsets: a training set Dtrain and a test set Dtest.
During each generation, every member of the population is evaluated using the
training data and an associated fitness is calculated using the EA’s objective
function. The objective function Φ has commonly been the classification error,
but other types of fitnesses may be desirable, such as binary cross entropy [20].
The best population member pbest is tracked during training and the test set is
used to evaluate the final best population member.
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Fig. 2. Basic structure of an artificial single-hidden layer feed forward network used as
an extreme learning machine.

2.2 Extreme Learning Machines

ELMs generally consist of a SLFN, as seen in Fig. 2. They operate by assigning
random weights and biases to the input and hidden layers respectively [19].
These parameters are fixed and remain unchanged during training. Here, the
hidden layer neurons use the sigmoid activation function. Whilst many activation
functions exist [34], the sigmoid function is widely used [42] and can achieve good
performance in most cases [3]. The only parameters learned are the weights (and
sometimes biases) associated with the output layer, done during the training
phase. Therefore, ELMs converge significantly faster than traditional artificial
neural network algorithms, such as back propagation. ELMs have been shown
to perform well and are more likely to reach a global optimum than systems
with networks which have all parameters trained [42]. Specifically, ELM systems
achieve fast training speeds with good generalisation capability.

Keeping our nomenclature consistent with Sect. 2.1, consider K data
instances, where a particular data instance k is defined by its inputs ak and
its target outputs yk. Here, we define a particular instances’ input containing R
attributes as ak = [ak1, ak2, ..., akR]T , and its corresponding target containing S
outputs as yk = [yk1, yk2, ..., ykS ]T . The predicted outputs ŷ from an ELM with
N hidden neurons can be expressed as:

ŷk =
N∑

n=1

βng(wn · ak + bn) =
N∑

n=1

βnhkn . k = 1, ...,K (3)

where wn = [wn1, wn2, ..., wnR]T is the weight vector connecting the nth hidden
neuron and the input neurons, βn = [βn1, βn2, ..., βnS ]T is the weight vector
connecting the nth hidden neuron and the output neurons, bn is the bias of the
nth hidden neuron, g(x) is the activation function of the hidden layer neurons,
and hkn is a hidden layer neurons’ output. A SLFN with enough hidden neurons
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can approximate these K samples such that
∑N

n=1 ‖ŷn − yk‖ = 0 (universal
approximation capability), hence a set of βn, wn and bn must exist so that [19]:

Hβ = Y , (4)

where H = {hkn} (k = 1, ...,K and n = 1, ..., N) is the hidden layer out-
put matrix, Y = [y1,y2, ...,yK ]T is the matrix of target outputs, and β =
[β1,β2, ...,βN ]T is the matrix of output weights. Having randomised and fixed
the input layer, the output layer is then learnt during training using the train-
ing data subset Dtrain. The output weights β are traditionally obtained by the
Moore-Penrose inverse. Therefore, the smallest norm least-squares solution is:

β̂ = H†Y , (5)

where H† is the Moore-Penrose inverse of matrix H. The final solution is then
tested on the test set Dtest to provide a uniform evaluation of the system.

Often, many randomly initialised networks are considered and the network
size is incrementally increased. Various methods of calculating the output layer,
adjusting network structure, and increasing convergence speed have been pro-
posed [42]. Specifically, we highlight work producing an RR-ELM algorithm [24]
which optimises the output layer using ridge regression rather than the Moore-
Penrose method described above. The RR-ELM algorithm is shown to have good
generalisation and stability, while also reducing adverse effects caused by per-
turbation or multicollinearity - properties likely to be useful in physical systems.

3 In-Materio Extreme Learning Machines

Traditionally, as described in Sect. 2.1, EiM processors have used one-to-one
mapping. Here, we refer to this as a typical monolithic EiM processor, where
each attribute is applied as a voltage to a corresponding input node. However,
as a dataset becomes more complex, with more attributes, the size of the material
network would need to physically grow. We postulate that in real microelectrode-
based nanomaterial processors, larger networks might lead to fewer ‘interactions’
between distance electrodes, leading to poorer performance i.e., material proces-
sors may struggle to scale as the data does.

In order to overcome this problem we can take inspiration from SLFNs, as
shown in Fig. 2. Specifically, the Configurable Analogue Processors or ‘material
processors’ used in previous EiM work can instead be viewed as a complex phys-
ical neuron. These ‘material neurons’ can then be grouped into a Hidden Layer
(HL) to produce a typical SLFN like structure. The output voltages from these
material neurons are the HL’s output states; we note that a material generally
projects the applied input data voltages to a higher dimensional number of out-
put voltages. The remaining question then becomes how to translate the input
data into usable voltage which can be fed into the material neurons’ input data
electrodes/nodes i.e., an input layer.

We propose a directly connected input layer network structure as shown in
Fig. 3. Consider a network with M material neurons, each of which contains J
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Fig. 3. Diagram of a structured network of material processors which are exploited
as hidden layer neurons for an ELM using a directly connected input layer, where M
material neurons make up the hidden layer.

input data electrodes/nodes. Each data voltage input V in is the product of a
weight and a selected attribute. Therefore, the voltage applied to a particular
material m and node j is defined as:

V in
mj = lmj × aCm

j
, (6)

where Cm
j ∈ {1, 2, ..., R} defines which attribute ar is being passed to a particu-

lar material’s data input node, and lmj ∈ [−1, 1] is that connection’s associated
weight. This is a relatively simple input layer scheme, not requiring the introduc-
tion of an activation function, ensuring that the computation within the system
is carried out by the material neuron only and that the hardware voltage limits
are note exceeded. The relatively few number of parameters helps the system
comply with the complexity engineering approach [15] and potentially benefit
from concepts such as weight agnostic and minimal neural network topologies
which have been found to be beneficial in ANNs [14].

The system can be defined using a vector of decision variables X as discussed
in Eq. 1. Expanding this to include all the discussed adjustable parameters, the
new structured network’s decision vector can be defined as:

X = [V 1
c1, ..., V

1
cP , l11, ..., l

1
J , C1

1 , ..., C1
J , ...., V M

c1 , ..., V M
cP , lM1 , ..., lMJ , CM

1 , ..., CM
J ]T .

(7)
Now, any single material neuron based SLFN or population p of material neuron
based SLFNs (i.e., multiple initialisations of X) can be randomly generated and
trained as an ELM network using Algorithm 1. We refer to this method of
combining a physical neuron based SLFN and ELM training as an in-Materio
ELM (iM-ELM). In this paper, the output layer of an iM-ELM is trained using
ridged regression rather then the Moore-Penrose inverse detailed in Sect. 2.2.

Finally, we highlight the possibility of re-using a single nanomaterial network
as several ‘virtual’ neurons. The basis of this method stems from EiM processors
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Algorithm 1: Method for in-Materio ELM.
Initialise random population of solutions p;

Train population p on Dtrain;
Evaluate population using the test data Dtest;

whereby a wide variety of operations can be discovered by configuring the exter-
nal stimuli of a single nanomaterial network. Therefore, by randomly initialising
the different configurable parameters, but using only a single material, several
virtual material neurons can be produced. Each of these will manifest their own
unique internal IV characteristics which the ELM system will attempt to exploit.
Here, we refer to such a network as a Virtual iM-ELM.

4 Problem Formulation

4.1 Simulated Material Networks

A circuit SPICE model is used to generate Diode Random Networks (DRNs)
which behaves as a complex and exploitable network, and acts as a proxy for
a non-linear nanomaterial. These networks contain: voltage driven input data
nodes (in-nodes), voltage driven configuration stimuli (c-nodes), and measured
output voltage nodes (out-nodes) calculated using a DC analysis. The DRN
consists of randomly orientated diodes and series resistors between every node
pair. The rapid changes in conductivity when a diode turns on allows for complex
non-linear IV characteristics which can be exploited for classification. The DRN
is physically realisable using discrete circuit components and its properties are
common in nanomaterials. An example of a five node (i.e., electrode) material is
given in Fig. 4. We note that other IV characteristics or circuit components could
be used to create a variety of ‘material networks’ for different types of analysis.
1N4148PH Signal Diodes are used, and the resistance of the interconnecting
resistors are uniformly randomly selected between ∈ [10, 100] kΩ.

4.2 Classification Tasks

The performance of the iM-ELM systems are compared against several common
machine learning datasets which can be found on the UCI repository [11]. These
include: the Pima Indians Diabetes Database (diabetes) dataset containing 8
attributes, 768 data instances and 2 classes. The wine (wine) dataset containing
13 attributes, 178 instances and 3 classes. The Australian Credit Approval (aca)
dataset containing 14 attributes, 690 instances and 2 classes. The Wisconsin
Diagnostic Breast Cancer (wdbc) dataset containing 30 attributes, 569 instances
and 2 classes. These datasets are more complex (i.e., contain more attributes)
than have been previously used, specifically within Evolution in-Materio based
literature [20,27,41], but remain small enough (i.e., relatively few data instances)
to ensure comprehensive analysis without excessive simulation times.
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Fig. 4. An example five node DRN material, where each node is connected to every
other node via a resistor and diode. In this example, two nodes are behaving as outputs
(o1, o2) and three nodes as inputs (x1, x2, x3) which could be allocated as either data
driven or configuration stimuli voltages.

The datasets are randomly split into a training (Dtrain) and test (Dtest)
subset using a 70%–30% split respectively. The datasets are normalised (using
Dtrain) and then scaled to the max/min allowed hardware voltages ∈ [−5, 5] V.
The performance of these datasets was considered using some simple (default)
python sklearn classification methods and the results are shown in Table 1.

5 Results and Discussion

Considering the model developed in Sect. 3, iM-ELMs of incremental sizes were
analysed. Specifically, the number of material neurons in the HL was increased
from one to fifteen (beyond which the results plateau). For each HL size, thirty
different random seeds were used to generate the material neurons within thirty
iM-ELMs. The same thirty seeds are used for each network size incrementa-
tion, meaning that each system continues to include the same material neurons
that were used in its corresponding previous smaller networks. Therefore, we
can consider the change in performance of the iM-ELM networks as they are

Table 1. Test accuracy results for the datasets when using several common classifica-
tion methods. The best accuracy achieved for each dataset is highlighted in bold.

Dataset Classification method

Ridge
Regression

Logistic
Regression

Random
Forest

SVM
(linear)

SVM
(poly)

diabetes 0.7576 0.7619 0.7403 0.7662 0.6970

wine 0.9815 0.9815 1.000 0.9630 0.9815

aca 0.8357 0.8502 0.8599 0.8213 0.8261

wdbc 0.9357 0.9591 0.9298 0.9532 0.9591
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Fig. 5. Mean test accuracy of all the (30 systems, each with 100 parameter initial-
isations) in-Materio ELMs for each hidden layer size increment used to classify the
(a) diabetes, (b) wine, (c) aca and (d) wdbc datasets. Three different material neuron
topologies are considered ([No. in-nodes, No. c-nodes, No. out-nodes]), and these are
compared to the mean accuracy of 3000 traditional artificial ELMs and RR-ELMs.

enlarged. For each iM-ELM, a ‘population’ of 100 randomly generated decision
vectors are considered (i.e., randomly initialised input layer and configuration
parameters), which was observed to provide a good insight into performance
and maintain reasonable simulation times. The mean test accuracy from these
thirty systems each with 100 parameter initialisation is shown for each HL size in
Fig. 5. Recall from Sect. 4.1 that these material neurons’ consist of a fully inter-
connected network containing three main classes of nodes: input voltage nodes
for data (in-nodes), input voltage nodes for configuration/stimuli altering the
material neurons behaviour (c-nodes), and output voltage nodes (out-nodes).
Notably, the directly connected input layer connects each data input node to
only a single data attribute; so, if too few neurons are in use, then not all data
attributes may be ‘connected’. The experiment is performed with three increas-
ingly larger material neuron network topologies: (i) materials containing two
in-nodes, two c-nodes and four out-nodes denoted by [2,2,4], (ii) materials con-
taining three in-nodes, three c-nodes and five out-nodes denoted by [3,3,5], (iii)
materials containing four in-nodes, four c-nodes and six out-nodes denoted by
[4,4,6]. This will provide some initial insight on the effect of scaling the size of
(well connected) materials. The performance of these iM-ELMs is plotted against
the mean accuracy of 3000 artificial (Moore-Penrose) ELMs and (Ridge Regres-
sion) RR-ELMs, selected because it matches the total ‘computational expense’
(i.e., total number of data instances) used over the 30 iM-ELMs systems.

On average, the iM-ELMs considered outperformed the artificial ELM and
RR-ELM systems of equivalent network sizes. The simulated ‘material’ neurons
are successfully generating useful, higher dimensional output states which the
ELM algorithm can exploit, and these are out-performing their artificial neu-
ron counterparts. As more material neurons are operated in parallel, the mean
classification accuracy improves. Notably, the larger and more complex mate-
rial neuron topologies (i.e., when using more input, configuration, and output
nodes/electrodes) achieve higher mean accuracies for iM-ELMs with the same
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Fig. 6. Mean test accuracy of all the (30 systems, each with 100 parameter initialisa-
tions) Virtual in-Materio ELMs for each hidden layer size increment used to classify the
(a) diabetes, (b) wine, (c) aca and (d) wdbc datasets. Three different material neuron
topologies are considered ([No. in-nodes, No. c-nodes, No. out-nodes]), and these are
compared to the mean accuracy of 3000 traditional artificial ELMs and RR-ELMs.

size of HL. This in turn means that fewer neurons are required within the SLFN
HL to achieve comparable results with networks leveraging less capable neurons.

The best accuracy achieved, across all HL sizes, for the different material
neuron topologies and datasets, is shown in Table 2. The iM-ELMs discussed can
significantly outperform some of the common classification methods presented in
Table 1. Indeed, the best iM-ELMs also compare favourably with the traditional
artificial ELM networks, and in the case of the wdbc dataset the iM-ELMs can
achieve a 1.76% increase in the best obtained accuracy.

As discussed in Sect. 3 any single material could be re-used as a virtual
material neuron. Ideally, the different randomised parameters (input weights,
connections and configuration voltages) enable the different virtual neurons to
behave in a sufficiently independent manner. To investigate this, the previous
analysis is repeated i.e., generating thirty SLFN for each HL size, each with
100 random initialisations. However, now each HL contains several virtual neu-
rons which are generated from only a single material. The mean accuracy of
these Virtual iM-ELMs is plotted against the size of the SLFN in Fig. 6, and the
best ever achieved accuracies are shown in Table 2. The Virtual iM-ELMs have a

Table 2. Best accuracy achieved from the different systems, from across the different
hidden layer sizes. The best accuracy for each dataset is highlighted in bold.

Dataset iM-ELM Virtual iM-ELM ELM RR-ELM

[2,2,4] [3,3,5] [4,4,6] [2,2,4] [3,3,5] [4,4,6]

diabetes 0.7922 0.7922 0.7965 0.7879 0.7922 0.7965 0.7965 0.7922

wine 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

aca 0.8792 0.8792 0.8889 0.8841 0.8841 0.8792 0.8889 0.8744

wdbc 0.9708 0.9708 0.9708 0.9708 0.9708 0.9649 0.9532 0.9532
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near identical average performance to the previously discussed iM-ELMs systems
that exploited several different materials. This suggests that the type of material
neuron used here (i.e., the simulated circuit based DRN non-linear network) can
successfully produce several virtual instances, achieved by exploiting the wide
range of current-voltage characteristics which can be tuned and selected by the
voltage stimuli and input layer respectively. These Virtual iM-ELMs are signif-
icantly more flexible, only requiring one material substrate to create an SLFN.
However, by ‘re-using’ a single material, the systems loses its ability to benefit
from the highly parallelisable structure.

These results provide guidance on how to operate in-Materio processors in
parallel to process much more complex datasets then would have previously
been possible with only a single monolithic material. However, further work is
needed to consider how well these systems can scale to the much larger datasets
commonly found in state of the art machine learning problems.

6 Conclusion

In this paper, material networks are exploited as physical material neurons to
implement a single hidden layer feed forward network (SLFN) which was trained
as an Extreme Learning Machine (ELM). The input data was passed to the
physical neurons using a directly connected input layer which ensured physical
hardware limits were obeyed and that ‘computation’ within the system was car-
ried out by the materials only. Complex diode-resistor networks were simulated
to provide a convenient, fast and reliable proxy to nanomaterial based Config-
urable Analogue Processors, used as the physical neurons. This enabled the effi-
cient investigation of these in-Materio ELMs (iM-ELMs) when classifying several
datasets of varying complexity. It was found that these iM-ELMs could signif-
icantly outperform other common classification methods, as well as traditional
(artificial) ELMs. The complex current-voltage characteristics of the materials
are successfully being exploited to leverage them as physical neurons, which
outperform traditional artificial neurons. As the size of the material topology
increases (i.e., the number of nodes/electrodes used in the material network), the
performance of iM-ELMs with similar hidden layer sizes improves; showing the
capability of the material neurons to process data is increasing. As more mate-
rial neurons are used in parallel, the average classification performance improves
rapidly before plateauing.

Drawing from previous work with Evolution in-Materio processors, which
show that a single nanomaterial network can be tuned for a range of operations,
we present a method to re-use a single material as several ‘virtual’ physical
neurons. These Virtual iM-ELMs which leveraged only a single physical material
performed comparably to the iM-ELMs which used several different physical
material neurons. This suggests that our circuit based ‘materials’ can achieve
a wide range of physical properties which are successfully exploited as different
virtual neurons. While this forgoes the benefits of parallelised operation, it grants
more flexibility when creating larger SLFN and when designing the required
physical hardware interface.
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These physical analogue neurons have the potential to produce efficient in-
Materio ELMs which can exploit the non-differentiable, complex characteristics
presented by a nanomaterial. We anticipate that, when implemented using phys-
ical substrates, highly parallelisable and fast ELMs will be produced.

Acknowledgements. This work was supported by the Engineering and Physical Sci-
ences Research Council [EP/R513039/1].
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Abstract. We investigate the impact of the duration of evaluation
episodes and of the way in which the duration is varied during the course of
the evolutionary process in evolving robots. The results obtained demon-
strates that these factors can have drastic effects on the performance of the
evolving robots and on the characteristics of the evolved behaviors. Indeed,
the duration of the evaluation episodes do not alter simply the accuracy of
the fitness estimation but also the quality of the estimation. The compar-
ison of the results indicates that the best results are obtained by starting
with short evaluation episodes and by increasing their duration during the
course of the evolutionary process, or by using shorter evaluation episodes
during the first part of the evolutionary process.

Keywords: Evolutionary robotics · Fitness evaluation · Experimental
parameter tuning

1 Introduction

Evolutionary robotics [16,17] permits to develop robots capable to perform a
desired function automatically, with limited human intervention. Indeed, it frees
the experimenter from the need to identify the behavior that should be exhib-
ited by the robot and the control rules which enable the robot to exhibit such
behavior.

The experimenter, however, should specify manually the fitness function, i.e.
the criterion which is used to evaluate the performance of alternative robots.
Despite designing the fitness function, which is used to evolve a robot auto-
matically, is much less demanding than directly designing the characteristics of
the robot, it can be still challenging. For this reason, the problem of the fitness
function design has been investigate by several authors [6,7,12].

The problem is further complicated by the fact that the fitness assigned to
robots depends also on other factors, such as the termination criteria, the way
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in which the initial properties of the robot and of the environment are varied at
the beginning of evaluation episodes, and the number and duration of evaluation
episodes.

The termination criteria are rules that determine the premature termination
of evaluation episodes. They are introduced to minimize the cost of the evaluation
of the robots. An example of termination criterion is a rule that terminate the
evaluation episode when a robot which is evolved for the ability to walk fall to
the ground. The rationale, is that keep evaluating a fallen robot is pointless since
it will not be able to keep improving its fitness once it is fallen down. On the
other hand, the criterion which is used to determine whether a robot is fallen
down or not might influence the behavior of the evolving robots. The effect of
termination conditions, however, have not been sufficiently studied yet.

The way in which the initial state of the robot and of the environment are
varied at the beginning of evaluation episodes is also crucial to evolve robots
which are robust with respect to variations of the environmental conditions
[10,19] and to evolve robots which can cross the reality gap [9,11].

In this article we will demonstrate that also the duration of the evaluation
episode and eventually the way in which the duration of the episodes vary during
the course of the evolutionary process has a strong influence on the quality of
the evolved solutions.

As far as we know, the impact of the duration of evaluation episodes on the
efficacy of the evolved robots have not been investigated before. Several works
investigated methods for optimizing the number of evaluation episodes [2–4,8].
The utility of evaluating the robots for multiple episodes originates from the
fact the fitness measure is stochastic in the presence of environmental varia-
tions. Indeed, the fitness obtained by an individual depends both on the ability
of the individual and on the difficulty of the environmental conditions expe-
rienced by that individual. The easier the conditions experienced, the higher
the fitness obtained by the individual. The stochasticity of the fitness measure
can be reduced by evaluating the robots for multiple episodes and by using
the fitness averaged over the episodes. On the other hand, carrying multiple
episodes increases the computation cost. For this reason, the works referenced
above investigated mechanisms for setting automatically the number of episodes
with the objective of improving the estimation of the fitness while maintaining
the computation cost as lower as possible.

The only work, we are aware of, that investigated the impact of the duration
of evaluation episodes is [5]. In this work, the authors analyzed the problem of
adapting the duration of the episodes to the characteristics of the environment
with the objective of identifying the minimal duration which permit to estimate
the performance of the evolving robot with sufficient accuracy.

In this work, instead, we will demonstrate that the duration of evaluation
episodes alters not only the accuracy of the estimation but also the quality of the
estimation. The duration of evaluation episodes can have drastic effects on the
behavior and on the performance of evolving robots. Consequently, the duration
of evaluation episodes should be considered as a fundamental characteristics of
the fitness function and, overall, of the evaluation process.
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2 Method

To investigate the impact of the length of evaluation episodes we carried a set of
experiments by using the PyBullet locomotor environments [1], a popular set of
problems which are widely used to benchmark evolutionary and reinforcement
learning algorithms.

The Pybullet environments involve multi-segments robots with varying mor-
phologies which are evaluated for the ability to locomote as fast as possi-
ble toward a given destination. More specifically, we used the Hopper, Ant,
Walker2D, and Humanoid environments (Fig. 1). The Hopper agent is formed
by 4 segments which form a single-leg system which can locomote by jumping.
The Ant agent is constituted by four legs attached to a central body element.
The Walker2D agent is constituted of biped with two legs attached to a hip.
Finally, the Humanoid agent has a humanoid morphology which include two
legs, two arms, a torso and a head.

Fig. 1. The Hopper (top-left), Ant (top-right), Walker2D (bottom-left) and Humanoid
(bottom-right) agents.

The agents are controlled by 3-layered feedforward neural networks including
50 internal neurons in the case of the Hopper, Ant and Walker2d environments
and 250 internal neurons in the case of the Humanoid environment.

The connection weights of the neural networks are evolved. We used the Ope-
nAI evolutionary algorithm [21] which is a state-of-the-art evolutionary strategy.
Connection weights are normalized with weight-decay [13]. Observation vectors
are normalized with virtual batch normalization [20,21]. This setup was chosen
based on previous good results reported on [21]. The evolutionary process is
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continued up to a total of 50 million evaluation steps in the case of the Hopper,
Ant, Walker environments and up to a total of 100 million evaluation steps in
the case of the Humanoid environment.

The experiments were performed with the open-source Evorobotpy2 soft-
ware [14,15]. The software can also be used to easily replicate the experiments
reported in this paper. The agents are rewarded for their ability to locomote
on the basis of their speed toward the destination. In addition, they receive: (1)
a positive bonus for staying upright, (2) a punishment for the electricity cost
which corresponds to the average of the dot product of the action vector and of
the joint speed vector, (3) a punishment for the stall cost which corresponds to
the average of the squared action vector, (4) a punishment proportional to the
number of joints that reached a joint limit, and (5) a punishment of –1 for falling
down. The bonus for staying upright is set to 2.0 in the case of the Humanoid
and to 1.0 in the case of the other problems. The electricity cost, stall cost,
and joint at limit cost are weighted by −8.5, −0.425, and −0.1 in the case of
the Humanoid, and for −2.0, −0.1, and −0.1 in the case of the other problems
[1]. The five additional components have been introduced to facilitate the devel-
opment of the locomotion behavior. The fitness of the agents is computed by
summing the reward received during each step of the evaluation episodes. When
the agents are evaluated for multiple evaluation episodes, the fitness is computed
by averaging the sum of the rewards received during each episode.

As demonstrated by [18], the efficacy of the reward functions depends on the
algorithm. The standard reward functions described above and implemented in
the Pybullet environment is optimized for reinforcement learning algorithm but
can produce sub-optimal solutions in combination with evolutionary algorithms.
We will thus also carry on experiments with the modified reward function pro-
posed by [18] which are optimized for evolutionary algorithms. These functions
are simpler with respect to the standard version. Indeed they reward the agents
on the basis of their speed toward the destination only in the case of the hopper,
and include fewer additional components in the case of the other environments.

At the beginning of an evaluation episode, the agents are initialized at the
center of the surface slightly elevated over the plane. Evaluation episodes are
terminated prematurely when the agents fall down, e.g. when certain part of the
agents’ body touch the ground and/or when the inclination of the agents’ body
exceed a certain threshold. The effect of the actions performed by the agents are
perturbed by adding a random value selected within the range [–0.01, 0.01] the
value of the motor neurons. The standard duration of evaluation episodes is 1000
steps. However, in our experiments, we study the effect of different durations.

Some of the agents are post-evaluated for multiple episodes. During these
post-evaluations the initial posture of the agents and the noise added to the
effects the motor neurons vary randomly. In particular, the best agent of each
generation are post-evaluated for 3 episodes. The fitness obtained during these
post-evaluations is used to identify the best individual obtained in an evo-
lutionary experiment. The best agents of each evolucionary experiment are
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post-evaluated for 1000 episodes. The fitness obtained in this manner is used
to compare the relative efficacy of the experimental conditions.

2.1 Experimental Conditions

To investigate the effect of the duration of learning episodes and the effect of
using constant or variable durations we considered the following experimental
conditions:

1. A standard experimental condition in which the duration of evaluation
episodes is set to 1000 steps and remains constant. This is the modality
implemented in the standard Pybullet locomotor environments. As mentioned
above, the duration of evaluation episodes indicate the maximum duration.
The episodes are terminated prematurely when the agents fall down.

2. A fixed-nsteps experimental condition in which the duration of evaluation
episodes is constant and is set to nsteps. The experiments have been repeated
by setting nsteps to 100, 200, 300, 400 and 500.

3. A fixed-nsteps-1000 experimental condition in which the duration of the eval-
uation episodes is constant and is set to nsteps during the first half of the
evolutionary process and to 1000 during the remaining part. As in the cases of
the previous condition, the experiments have been repeated by setting nsteps
to 100, 200, 300, 400 and 500.

4. An incremental condition in which the duration of evaluation episodes is ini-
tially set to 100 and is incremented of 100 steps every 1/10 of the evolutionary
process.

5. An mod-reward conditions in which the duration of evaluation episodes is
set to 1000 and in which the agents are evaluated with the reward functions
optimized for evolutionary algorithms described in [18].

6. A random-n experimental condition in which the duration of evaluation
episodes is set randomly in the range [50, 1000] with an uniform distribu-
tion every generation.

In all experimental condition the performance of the evolve agents are evalu-
ated by post-evaluating them for 1000 episodes with the standard reward func-
tion and by setting the duration of the episodes to 1000. This is necessary to
compare the efficacy of the agents evolved in different conditions on the same
settings.

3 Results and Discussion

Figures 2, 3, 4 and 5 display the results obtained. For the fixed-nsteps and fixed-
nsteps-1000 conditions, in which the experiments have been repeated by setting
the nsteps parameter to different values, the Figures show the results obtained
in the best case. The performance of agents obtained with the random-n experi-
mental condition are very poor and, consequently, are not shown in this section.
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Fig. 2. Performance of the hopper agents evolved in the different experimental condi-
tions. For the fixed-nsteps and fixed-nsteps-1000 conditions in which the experiments
have been repeated by setting the nsteps parameter to different value we report the
results obtained with the best parameter. Average results obtained by post-evaluating
the best evolved agents for 1000 episodes. Each histogram shows the average result of
10 replications.

Overall, the duration of the episodes and the variation of the duration during
the evolutionary process have a strong impact on performance.

In the case of the Hopper, Ant and Walker environments, the standard setting
in which the length of the episodes is fixed and is set to 1000 is rather sub-optimal
and is outperformed by all other conditions.

Simply reducing the duration of the episodes to 100/500 (see the fixed-nsteps
condition) steps leads to better results. The best value of nsteps is task dependent
and corresponds to 100, 500 and 200 steps in the case of the Hopper, Ant, and
Walker, respectively.

Using shorter evaluation episodes during the first half of the evolutionary
process leads to even better performance in the three environments. Also in this
case, the best value of nsteps during the first part of the evolutionary process
is task dependent and correspond to 100, 200, and 100 steps in the case of the
Hopper, Ant, and Walker, respectively.

Linearly increasing the duration of episodes leads to the best performance in
the three environments considered and to much better performance with respect
to the standard condition in which the duration of evaluation episode is fixed
and set to 1000 steps.

The usage of the modified reward function leads to better performance with
respect to the standard condition in all cases. However, the advantage gained
by using the reward function optimized for evolutionary algorithms is lower
than the advantage gained in the incremental experimental condition, i.e. of the
advantage that is obtained by starting with short evaluation episodes and by
linearly increasing the length of the episodes during the evolutionary process.

In the case of the Humanoid problem, instead, the performances are low
in all cases. The only experiments which lead to reasonably good performance
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Fig. 3. Performance of the Ant agents evolved in the different experimental conditions.
For the fixed-nsteps and fixed-nsteps-1000 conditions in which the experiments have
been repeated by setting the nsteps parameter to different value we report the results
obtained with the best parameter. Average results obtained by post-evaluating the
best evolved agents for 1000 episodes. Each histogram shows the average result of 10
replications.
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Fig. 4. Performance of the walker agents evolved in the different experimental condi-
tions. For the fixed-nsteps and fixed-nsteps-1000 conditions in which the experiments
have been repeated by setting the nsteps parameter to different value we report the
results obtained with the best parameter. Average results obtained by post-evaluating
the best evolved agents for 1000 episodes. Each histogram shows the average result of
10 replications.

are those performed by using the reward function optimized for evolutionary
algorithms. Possibly, even better results can be obtained by running experiments
which combine this reward function with the incremental condition.

All the performance differences were statistically significant (p < .001 for all
experiments). We performed the Shapiro-wilk test for normality checking and
Kruskal-Wallis H-test for checking statistical significance. It is noteworthy that
the statistical difference for the Humanoid case was due to the Mod-Reward
experiment, rather than the episode duration experiments.
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Fig. 5. Performance of the Humanoid agents evolved in the different experimental con-
ditions. For the fixed-nsteps and fixed-nsteps-1000 conditions in which the experiments
have been repeated by setting the nsteps parameter to different value we report the
results obtained with the best parameter. Average results obtained by post-evaluating
the best evolved agents for 1000 episodes. Each histogram shows the average result of
10 replications.

4 Conclusion

We investigated the impact of the duration of evaluation episodes and of the way
in which the duration is varied during the course of the evolutionary process in
the case of the Pybullet locomotors environments.

The results obtained demonstrate that the duration of evaluation episodes
and the way in which the duration is varied have drastic effect on the performance
of the evolving agents and on the characteristics of the evolved behavior. The
duration of the evaluation episodes do not alter simply the accuracy of the
estimation of the fitness but also the quality of the estimation. This qualitative
effect can be explained by considering that the duration of evaluation episodes
alter the relative strength of fitness components. In particular, in the case of
the environments considered, the length of the evaluation episodes alter the
adaptive pressure exhorted toward mediocre/prudent behaviors, which achieve
low progress by taking low risks, versus high-performing/risky behaviors, which
achieve high progress by taking high risk. A good example of this case is the
Hopper robot that evolves a jumping behavior when a 100-step episode is used,
instead of a standing still behavior when a 1000-step episode is used.

The comparison of the results obtained by varying the duration of the eval-
uation episodes and eventually the way in which the duration is varied during
the course of the evolutionary process indicates that best results are obtained
by starting with short evaluation episodes and by increasing the duration of the
evaluation episodes during the course of the evolutionary process or by using
shorter evaluation episodes during the first part of the evolutionary process.

Our results also show that, in some cases, the advantage which can be gained
by optimizing the duration of evaluation episodes can be higher than the advan-
tage which can be gained by optimizing the characteristics of the fitness function.
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As future work, we aim to find ways of combining this adaptive episode duration
strategy with other characteristics of the fitness function and of the evaluation
process.
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(eds.) GECCO 2003. LNCS, vol. 2723, pp. 766–777. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45105-6 91
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Abstract. Fitness landscape rotation has been widely used in the field of
dynamic combinatorial optimisation to generate test problems with aca-
demic purposes. This method changes the mapping between solutions and
objective values, but preserves the structure of the fitness landscape. In
this work, the rotation of the landscape in the combinatorial domain is
theoretically analysed using concepts of discrete mathematics. Certainly,
the preservation of the neighbourhood relationship between the solutions
and the structure of the landscape are studied in detail. Based on the theo-
retical insights obtained, landscape rotation has been employed as a strat-
egy to escape from local optima when local search algorithms get stuck.
Conducted experiments confirm the good performance of the rotation-
based local search algorithms to perturb the search towards unexplored
local optima on a set of instances of the linear ordering problem.

Keywords: Landscape rotation · Combinatorial optimisation · Group
theory

1 Introduction

In the field of dynamic optimisation, there still remains the issue of translat-
ing real-world applications to academia [20]. Researchers often design simplified
and generalised benchmark problems for algorithm development in controlled-
changing environments, although they often omit important properties of real-
world problems [12,16]. In academia, dynamic problems are generally created
using generators that introduce regulated changes to an existing static optimisa-
tion problem by means of adjustable parameters. The Moving Peaks Benchmark
(MPB) [3] is probably the most popular generator, where a set of n parabolic
peaks change in height, width and position in a continuous space R

n.
In the combinatorial domain, the landscape rotation is presumably the most

popular method to construct dynamic problems for academic purposes [2,11,18,
19,21]. Introduced by Yang and Yao, the XOR dynamic problem generator [18,19]
periodically modifies the mapping between solutions and objective values by
means of defined operators (the exclusive-or and the composition operators).
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According to [16], the landscape rotation in the binary space progressively per-
mutes the initial problem, preserving important properties of the problem, such
as the landscape structure, stable. In fact, the wide use of this strategy comes
from its preservation nature, as well as its simplicity for comparing algorithms in
controlled-changing environments. However, despite its popularity, a theoretical
analysis of the preservation of the landscape structure, and study further applica-
tions of this operation in combinatorial optimisation problems, beyond the binary
space, are still lacking [16].

This work introduces an analysis of the fitness landscape rotation in com-
binatorial problems using notions of group and graph theory. The theoretical
notations provided investigate the preservation of the neighbourhood relation-
ship between solutions even when the landscape is rotated, and capture the
repercussion of rotations in the permutation space. The study is supported by
proofs and examples to demonstrate its validity.

Utilising the theoretical insights gained, we experimentally investigate differ-
ent ways to employ the landscape rotation for the development of advanced local
search algorithms. Particularly, the goal is to illustrate the applicability of the
landscape rotation to perturb the search of the algorithm when it gets trapped.
To that end, two rotation-based algorithms, obtained from [2], are employed
and compared to study the exploratory profit of this strategy. Conducted exper-
iments on a set of instances of the Linear Ordering Problem [5,10] reveal the
good performance of rotation-based local search algorithms, and also show the
ability of the landscape rotation strategy to reach unexplored local optima. The
results obtained are supported by visualisations that illustrate the behaviour of
these algorithms by means of Search Trajectory Networks [13].

The remainder of the paper is structured as follows. Section 2 introduces
background on the fitness landscape in the combinatorial domain, and provides
important properties of the group theory. Section 3 explores the landscape rota-
tion under group actions, and studies the repercussion of rotations in combinato-
rial fitness landscapes. Section 4 presents two rotation-based algorithms that are
studied in the experimentation. Section 5 describes the experimental study, and
discusses the applicability of the landscape rotation from the observed results.
Finally, Sect. 6 concludes the paper.

2 Background

This section introduces concepts to comprehend the rotation of the fitness land-
scape in the combinatorial domain, and presents some basics of group theory to
analyse the rotation consequences in the next section.

2.1 Combinatorial Fitness Landscape

Formally, a combinatorial optimisation problem is a tuple P = (Ω, f), where Ω
is a countable finite set of structures, called search space, and f : Ω −→ R is an
objective function that needs to be maximised or minimised. Most combinatorial
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problems are categorised as NP-Hard [6], which means that there is no algorithm
able to solve them in polynomial time. As a result, heuristic algorithms, and
especially local search algorithms, have been widely used to solve combinatorial
problems [8].

A key assumption about local search algorithms is the neighbourhood oper-
ator, which links solutions to each other through their similarity. Formally, a
neighbourhood N is a mapping between a solution x ∈ Ω and a set of solutions
N (x) after a certain operation in the encoding of x, such that

N : Ω −→ P(Ω),

where P(Ω) is the power set of Ω. In other words, two solutions x and y are
neighbours when a modification in the encoding of x transforms it into y, so x ∈
N (y). The neighbourhood operator in combinatorial optimisation usually implies
symmetric relations, meaning that any operation is reversible, i.e. x ∈ N (y) ⇔
y ∈ N (x). This property naturally leads to define regular neighbourhoods, which
implies the same cardinality of the neighbourhood of every solution in Ω, i.e.
each solution has the same number of neighbours.

The fitness landscape in the combinatorial domain can be defined as the
combination of combinatorial optimisation problems together with the neigh-
bourhood operator [14]. Formally, the fitness landscape is a triple (Ω, f,N ),
where Ω is the search space, f is the objective function and N stands for the
neighbourhood operator. The metaphor of the fitness landscape allows compre-
hending the behaviour of local search algorithms when solving a combinatorial
problem, given a specific neighbourhood operator. In other words, the behaviour
of local search algorithms, along with the suitability of different neighbourhood
operators, can be studied based on properties of the fitness landscape, such as the
number of local optima, global optima, basins of attraction or plateaus. These
components are thoroughly described in the following paragraphs.

A local optimum is a solution x∗ ∈ Ω whose objective value is better or equal
than its neighbours’ N (x∗) ∈ Ω, i.e. for any maximisation problem, ∀y ∈ N (x∗),
f(x∗) ≥ f(y). The number of local optima of a combinatorial problem can be
certainly associated to the difficulty of a local search algorithm to reach the global
optimum (the local optimum with the best objective value) [7]. Nevertheless,
there are other problem features, such as those explained in [15], that are also
valid for understanding the dynamics of local search algorithms.

Some works in the combinatorial domain study the basins of attraction of
local optima to shape the fitness landscape, and calculate the probability to reach
the global optimum [7,8,17]. Formally, an attraction basin of a local optimum,
B(x∗), is a set of solutions that lead to the local optimum x∗ when a steepest-
ascent hill-climbing algorithm is applied, so B(x∗) = {x ∈ Ω|ax = x∗}, where ax

is the final solution obtained by the algorithm starting from x. Figuratively, an
attraction basin B(x∗) can be seen as a tree-like directed acyclic graph, where
the nodes are solutions, and the edges represent the steepest-ascent movement
from a solution to a neighbour. This assumption leads to the following definition.
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Definition 1 (Attraction graph). Let us define an attraction graph to be
a directed graph Gf (x∗) = (V,E), where f is the objective function, V ⊆ Ω
is a set of solutions, and E is a set of directed edges representing the move-
ment from a solution to a neighbour with a better, or equal, objective value.
For every solution in the graph, there is an increasing path (sequence of solu-
tions connected by directed edges) until reaching the local optima, such that
∀x ∈ V, (x = a1, a2, . . . , ah = x∗), where ai+1 ∈ N (ai), (ai, ai+1) ∈ E, and
f(ai) ≤ f(ai+1) for any maximisation problem.

The fitness landscape can be represented as the collection of all the attraction
graphs, such that Of = ∪x∗∈Ω∗Gf (x∗), where x∗ is a local optimum of the set
composed by local optima Ω∗ ⊂ Ω, given a triple (Ω, f,N ). Note that a solution
(node) may belong to multiple attraction graphs if some neighbours, that belong
to different attraction graphs, share the same objective value.

In the case that neighbouring solutions have equal objective values, we say
that the landscape contains flat structures, called plateaus. Formally, a plateau
Γ ⊆ Ω is a set of solutions with the same objective value, such that for every
pair of solutions x, y ∈ Γ , there is a path (x = a1, a2, . . . , ak = y), where
ai ∈ Γ, ai+1 ∈ N (ai) and f(ai) = f(ai+1). The authors in [8] demonstrated that
combinatorial problems often contain plateaus, and remark the importance of
considering plateaus when working with problems in the combinatorial domain.
The authors also differentiate three classes of plateaus, and point out that a
plateau composed by multiple local optima can be considered as a single local
optimum when applying local search-based algorithms, as their basins of attrac-
tion lead to the same plateau.

2.2 Permutation Space

One of the most studied fields in combinatorial optimisation is the permutation
space, where solutions of the problem are represented by permutations. Formally,
a permutation is a bijection from a finite set, usually composed by natural num-
bers {1, 2, . . . , n}, onto the same set. The search space Ω represents the set of
all permutations of size n, called symmetric group and denoted as Sn, whose
size is n!. Permutations are usually denoted using σ, π ∈ Sn, except for the iden-
tity permutation e = 12...n. We direct the interested reader to [4] for a deeper
analysis of permutation-based problems.

The similarity between permutations can be specified by permutation dis-
tances. The distance between two permutations is the minimum number of
operations to convert one permutation into another. Irurozki in [9] studies the
Kendall’s-τ , Cayley, Ulam and Hamming distance metrics, and suggests some
methods to generate new permutations uniformly at random for each distance
metric. It is worth mentioning that each distance metric has its own maximum
and minimum distances, dmin and dmax. We direct the interested reader to [9]
for more details on permutation distances.
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2.3 Landscape Rotation

The fitness landscape rotation has been probably the most popular benchmark
generator, for academic purposes, in the combinatorial domain. Introduced as
the XOR dynamic problem generator [18,19], this method periodically applies
the rotation operation to alter the mapping between solutions and objective
values by means of the exclusive-or (rotation) operator. Formally, given a static
binary problem, a rotation degree ρ and the frequency of change τ , the objective
value of a solution x ∈ Ω is altered by

ft(x) = f(x ⊕ Mt),

where ft is the objection function at instance t = � i
τ , i is the iteration of the

algorithm, f is the original (static) objective function, ‘⊕’ is the exclusive-or
operator and Mt ∈ Ω is a binary mask. The mask Mt is incrementally generated
by Mt = Mt−1⊕T , where T is a binary template randomly generated containing
�ρ × n� number of ones. The initial mask is a zero vector, M1 = {0}n.

Some works in the literature extended the XOR dynamic problem generator
to the permutation space [2,11,21]. The landscape rotation in the permutation
space can be represented as

ft(σ) = f(Πt ◦ σ),

where σ ∈ Sn is a solution, ‘◦’ is the composition operation and Πt is a permuta-
tion mask. The permutation mask is incrementally generated by Πt = Πt−1 ◦ π,
where π is a permutation template generated using the methods in [9], containing
�dmax × ρ� operations from the identity permutation given a permutation dis-
tance. The permutation mask is initialised by the identity permutation, Π1 = e.

According to T́ınos and Yang [16], the XOR dynamic problem generator
changes the fitness landscape according to a permutation matrix, where the
neighbourhood relations between solutions are maintained over time. However,
as far as we are concerned, these assumptions have never been studied in the
permutation space. Hence, this is the motivation of this work.

2.4 Group Theory

The landscape rotation can be represented by group actions, where the search
space along with the rotation operation satisfy certain properties. Formally, given
a finite set of solutions Ω and a group operation ‘·’, G = (Ω, ·) is a group
if the closure, associativity, identity, and invertibility properties are satisfied.
Mathematically, these fundamental group properties (axioms) are defined as:

– Closure: x, y ∈ G, x · y ∈ G.
– Associativity: x, y, z ∈ G, (x · y) · z = x · (y · z).
– Identity: i ∈ G,∀x ∈ G, x · i = i · x = x.
– Invertibility: x, x−1 ∈ G, x · x−1 = x−1 · x = i.
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There is another property, the commutativity, that is not fundamental for
the definition of a group. A group is said to be commutative when x, y ∈ G,
x · y = y · x. It is worth mentioning that the commutation property holds in the
binary space, but it does not in the permutation space.

3 Analysis of the Fitness Landscape Rotation

In this section, we aim to theoretically analyse some important consequences
of rotating the landscape in the combinatorial domain using group proper-
ties. To that end, we will study the (i) the neighbourhood relation preservation
after rotating the landscape, and (ii) the repercussion of rotations in landscapes
encoded by permutations.

3.1 Neighbourhood Analysis

The properties of the fitness landscape rotation can be studied using notions of
group theory, i.e. the rotation (exclusive-or ‘⊕’ and composition ‘◦’) operators
can be generalised to the group operation ‘·’. Following previous notations, we
can demonstrate the preservation of neighbourhood relations between solution
before and after a rotation without loss of generality.

Theorem 1. Given a group G, let N (x) ∈ G be the neighbourhood of x and
t ∈ G the mask used to rotate the space. We say that the neighbourhood relations
are preserved iff N (t · x) ⇔ t · N (x).

Proof. Let x, y ∈ G be two neighbouring solution in the group, such that x ∈
N (y) is a neighbour of y (and vice versa). We can define the neighbourhood
operation as c(i, j) · x ∈ N (x), where c(i, j) is an operation in the encoding of a
solution. For example, c(i, j) can represent the swap of the elements i and j, or
the insertion of the element at position i into the position j.

Based on this notation, we can define the fundamental group properties (iden-
tity, invertibility and associativity) as

c(i, j) · e = e · c(i, j) = c(i, j) (1)

c(i, j) · c(i, j)−1 = c(i, j)−1 · c(i, j) = e (2)

x = c(i, j) · x · c(i, j)−1 (3)

Note that c(i, j)−1 = c(j, i) represents the inverse operation of c(i, j). Assum-
ing that the landscape is rotated using the template t ∈ G, we can say that Ω
and t · Ω are defined independently. In the following, we aim to prove that
t · N (x) ⇔ N (t · x).

First, we must ensure that the rotation of the landscape preserves the neigh-
bourhood relation between solutions, so N (t · x) ⊂ t · N (x). It can be demon-
strated in the following way.
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x ∈ N (y)
x = c(i, j) · y

t · x = t · c(i, j) · y

c(i, j)−1 · t · x = c(i, j)−1 · t · c(i, j) · y

c(i, j)−1 · t · x = t · y

(4)

Note that the last step in the equation is given by the Eq. 3. Considering that
c(i, j)−1 = c(j, i) and c(i, j) ·x ∈ N (x), we can say that c(i, j)−1 · t ·x ∈ N (t ·x).
Therefore, given the symmetry of the neighbourhood operator, we can prove
that the rotation of the neighbourhood is a subset of the neighbourhood of the
rotated t · x, so t · y ∈ N (t · x).

Then, we must prove the inverse statement, i.e. the rotated neighbourhood
derives in the rotation of the neighbourhood, t · N (x) ⊂ N (t · x). It can be
demonstrated in the following way.

x ∈ N (t · y)
x = c(i, j) · t · y

x = c(i, j) · [c(i, j)−1 · t · c(i, j)] · y

x = e · t · c(i, j) · y

(5)

In this case, after considering c(i, j) · x ≡ N (x), we use the inverse prop-
erty of the neighbourhood operation (Eq. 3) and the identity property (Eq. 2) to
demonstrate that x = t · c(i, j) · y, so x ∈ t · N (y). Therefore, we can prove that
x ∈ t · G derives in x ∈ G.

In summary, by showing the symmetry of the rotation operation, we can
confirm that the neighbourhood relations between solutions are preserved.

3.2 Repercussion of the Landscape Rotation

The authors in [16] mention that the topological structure of the fitness landscape
must be analysed to comprehend the behaviour of the algorithms. In order to
study the repercussion of changes in the space, we will use the definition of
the attraction graphs (Definition 1) to represent the topological features of the
fitness landscape. In the following, we will consider the permutation space (Sn),
the swap operation (2-exchange operator) and the steepest-ascent hill-climbing
algorithm (saHC) to represent the fitness landscape, and more precisely, the
collection of attraction graphs.

Note that the preservation of the neighbourhood relations (previous section)
is independent of the algorithm and objective function. Thus, we can demon-
strate that the landscape structure is preserved even if solutions are rearranged.
Using graph theory notations, we could point out that attraction graphs are
isomorphic (structurally equivalent) to themselves in the rotated environment,
such that Of

∼= Oft
, where Oft

is the set of attraction graphs that composes the
rotated fitness landscape ft. Despite the conservation of the landscape structure,
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Fig. 1. Illustrative visualisation of the landscape structure before and after a rotation.

all solutions are mapped to different positions when the landscape is rotated. Let
us illustrate these concepts with the following example.

Figure 1 displays the landscape of a permutation problem of size n = 4 as a
collection of attraction graphs produced by a given objective function f . These
images illustrate the preservation of the landscape structure. For example, the
attraction graph on the right side of both images will always contain two solu-
tions, such that Gf (3241) and Gft

(1324 ◦ 3241 = 2431) are isomorphic.
It is worth noting that the landscape rotation alters the mapping between

solutions and objective values. Hence, we can conclude that, since solutions are
rearranged at different positions in the fitness landscape, the objective values
are preserved. In other words, the fitness landscapes before and after a rotation,
Of and Oft

, are equal in terms of objective values, e.g. f(3241) = ft(2431).
In order to measure the impact of the rearrangement after a rotation, we

can use the total number of solution exchanges between attraction graphs. This
assumption is motivated by the fact that, for a local search-based algorithm, it
is more likely to “escape” from an attraction graph when a rotation implies a
big number of solution exchanges between graphs. Continuing with the previous
example, Table 1 summarises the total number of solution exchanges between
attraction graphs for all the possible rotations generated at a given Cayley dis-
tance (dC). This distance metric uses the smallest number of swaps assumption
to generate permutations uniformly at random [1]. The table entries demonstrate
that the rotation degree, measured as the Cayley distance, is not necessarily pro-
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Table 1. Example of the number of exchanges between attraction graphs of all possible
rotation masks generated by the Cayley distance metric.

t (dC) Exchanges t (dC) Exc. t (dC) Exc.

1234 (0) 0 (original) 1423 (2) 10 4213 (2) 13

1243 (1) 4 2143 (2) 16 4321 (2) 14

1324 (1) 8 2341 (2) 14 2314 (3) 12

1432 (1) 8 2431 (2) 14 2413 (3) 12

2134 (1) 16 3124 (2) 12 3142 (3) 12

3214 (1) 12 3241 (2) 13 3421 (3) 13

4231 (1) 14 3412 (2) 12 4123 (3) 14

1342 (2) 10 4132 (2) 14 4312 (3) 13

portional to the number of solution exchanges between attraction graphs in the
permutation space. For example, the average number of solution exchanges for
each Cayley distance in Table 1 reflects that rotating to dC = 1 produces 10.3
exchanges, dC = 2 produces 12.9 exchanges and dC = 3 produces 12.6 exchanges,
on average, respectively. Hence, the use of permutation distances as a rotation
degree should be used with caution, since medium rotations can be severe, in
terms of the total number of solution exchanges between attraction graphs.

4 Rotation as a Perturbation Strategy

From the theoretical insights gained from the previous section analysis, we sug-
gest the landscape rotation as a perturbation strategy for local search-based
algorithms to react when algorithms get trapped in poor quality local optima.
The rotation action can be used to relocate a stuck algorithm’s search, ideally
into a different attraction graph, by means of the permutation distance that con-
trols the magnitude of the perturbation. Note that, generally, a local optimum
in the original landscape is not mapped to a local optimum in the rotated land-
scape. This assumption motivates its usage to reach unexplored local optima. In
short, rotation-based local search algorithms can be summarised as follows:

1: Run the local search algorithm until reaching a local optimum, x∗.
2: The rotation operation is applied to relocate the algorithm at the solution

t ·x∗. Ideally, the algorithm will reach a new local optimum, such that t ·x∗ ⊆
Gft

(y∗).
3: This process is repeated until meeting the stopping criterion.

In [2], we presented two rotation-based perturbation strategies: a depth-first
and a width-first strategy. These methods differ in the way they use the rota-
tion operation. If we apply these strategies into the steepest-ascent hill climbing
algorithm (saHC), the depth-first algorithm (saHC-R1) will use the rotation
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operation to move the search away, and continue the search from a new posi-
tion until getting trapped again. Then, both local optima are compared, and the
search is relocated to the best found solution. On the other hand, the width-first
algorithm (saHC-R2) applies the rotation operation for some iterations, and then
continues to search from a new position (undo the rotation) until it gets stuck
again. Unlike saHC-R1, this strategy does not relocate the search to the best
solution found, which encourages continuous exploration of different graphs. For
more details, see [2].

5 Results and Discussion

This section evaluates the performance of the proposed strategies to solve the
Linear Ordering Problem (LOP) [5,10]. This problem aims to maximise the
entries above the main diagonal of a given matrix B = [bi,j ]n×n. The objective
is to find a permutation σ that orders the rows and columns of B, such that

arg max
σ∈Sn

f(σ) =
n−1∑

i=1

n∑

j=i+1

bσi,σj
.

The specific instances used in the experimentation of this work are obtained
from the supplementary material web1 presented in [8]. The web contains 12
LOP instances: eight instances of size 10, and four instances of size 50. The
parameters employed in the rotation-based algorithms [1] are summarised in
Table 2. Note that the rotation degree is designed to start with big rotations,
and exponentially decreasing it to intensify the search. The motivation of this
strategy is to balance the intensification-diversification trade off based on the
search process of the algorithm.

Table 2. Parameter settings for the experimental study.

Parameter Value

Rotation degree d =

∣
∣
∣
∣
dmaxe

⎛
⎜⎝

ln
(

dmin
dmax

)

S

⎞
⎟⎠i∣

∣
∣
∣

Distance metric Cayley distance

Number of repetitions 30

Stopping criterion 103n iterations

1 http://www.sc.ehu.es/ccwbayes/members/leticia/AnatomyOfAB/instances/
InstancesLOP.html.

http://www.sc.ehu.es/ccwbayes/members/leticia/AnatomyOfAB/instances/InstancesLOP.html
http://www.sc.ehu.es/ccwbayes/members/leticia/AnatomyOfAB/instances/InstancesLOP.html
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Obtained results and instance properties are summarised in Table 3, where
the best found objective values, the number of rotations and the number (and
percentage) of visited local optima are shown for each algorithm. The total
number of local optima for each instance has been obtained from [8]. However,
due to the incompleteness of the number of local optima for instances of size
n = 50, we only show the number of local optima explored for these instances,
without showing the percentages of local optima explored.

The results show the good performance of rotation-based algorithms, as well
as their explorability ability. Both algorithms are able to find the same optimal
solutions (except for N-be75oi), in terms of objective values, but they differ in
the number of rotations and local optima explored. The percentages represent
the ability of the algorithms to explore the attraction graphs that compose the
landscape. saHC-R2 always performs more rotations than saHC-R1, and thus, it
can find a larger (or the same) number of local optima than saHC-R1. Therefore,
we can say that saHC-R2 tends to be more exploratory than saHC-R1.

In order to illustrate the influence of the rotation degree on the search of
the algorithms, Table 4 shows the number of rotations and local optima reached
by each algorithm, over the 30 runs, for each Cayley distance, on Instance 8.
Remember that the rotation degree describes an exponential decrease as the
search progresses2.

Table 3. Information of the instances, and results of the rotation-based algorithms on
LOP instances. Percentages for instances of size n = 50 are not available, since their
total number of local optima is unknown.

Instance LO saHC-R1 saHC-R2

Obj.
value

Rotations LO (%) Obj.
value

Rotations LO (%)

Instance 1 13 1605 2015 13 (100%) 1605 2636 13 (100%)

Instance 2 24 1670 2011 24 (100%) 1670 2629 24 (100%)

Instance 3 112 4032 1956 104 (92.8%) 4032 2545 106 (94.6%)

Instance 4 129 3477 1988 121 (93.8%) 3477 2565 125 (96.9%)

Instance 5 171 32952 2093 169 (98.8%) 32952 2712 171 (100%)

Instance 6 226 40235 1954 215 (95.1%) 40235 2571 220 (97.3%)

Instance 7 735 22637 2138 683 (92.9%) 22637 2742 716 (97.4%)

Instance 8 8652 513 2528 6063 (70%) 513 3351 6887 (79.6%)

N-be75eec >500 236464 8527 62143 (−%) 236464 10737 75404 (−%)

N-be75np >500 716994 8306 36046 (−%) 716994 10364 58423 (−%)

N-be75oi >500 111171 8507 80001 (−%) 111170 10698 96371 (−%)

N-be75tot >500 980516 8437 31550 (−%) 980516 10606 53450 (−%)

2 The repercussion of the rotation degree in other instances is available online.
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Table 4. Number of rotations and reached local optima by each algorithm on
Instance 8.

Cayley distance

1 2 3 4 5 6 7 8 9

saHC-R1 Rotations 19594 19304 10851 7416 5623 4525 3778 3279 1452

LO 678 1968 2500 2679 2725 2633 2438 2234 1227

saHC-R2 Rotations 27680 26090 14191 9432 7039 5633 4676 4027 1746

LO 736 3809 4014 3719 3337 3037 2761 2528 1346

The table shows that, although the number of rotations exponentially decays,
the highest exploratory behaviour of the algorithms holds on medium-small dis-
tances, i.e. both algorithms find more local optima when the rotation operates
at dC = {3, 4, 5}. This performance matches with the example in Table 1, where
rotating to medium distances is sufficient to perturb the search of algorithms to
different attraction graphs.

In order to visually represent and analyse the evolution of the algorithms,
we use the Search Trajectory Networks (STNs) tool [13], a directed-graph-based
model that displays search spaces in two or three dimensions. Figure 2 displays a
single run of each algorithm on Instance 8 using STNs. The colours in the figures
highlight the starting and ending points of the search (blue and green nodes),
the best found solutions (yellow nodes) and the rotation operations (red edges),
respectively. The entire experimentation is available online3.

The plots show the behaviour of each algorithm in a two-dimensional space.
The left plot shows the behaviour of saHC-R1, where the algorithm always
applies the rotation operation from the best solution found. This visualisa-
tion gives an insight of the structure of the landscape, since the algorithm is
able to explore the paths that compose the attraction graphs. On the other
hand, Fig. 2b shows a continuous search of saHC-R2, where the algorithm moves
through attraction graphs, meaning that it rarely gets stuck on the same local
optimum after a rotation. This behaviour can be comprehended by the fact
that saHC-R2 does not rotate from the best solution found, but from the last
local optimum found. That said, we can conclude that saHC-R1 outperforms in
instances with few but deep attraction graphs, while saHC-R2 outperforms in
instances composed of many attraction graphs.

Finally, it is worth noting the presence of a plateau composed of local optima
in Instance 8, i.e. multiple local optima have the same objective value, which
turns out to be the optimal value. The figures confirm that both algorithms
can detect and deal with plateaus. Interestingly, Fig. 2a shows that some local
optima that form the plateau are visibly larger, which means that saHC-R1 visits
them several times. From previous statements, we can deduce that Instance 8 is
composed of neighbouring local optima with the same objective value, and also
that saHC-R2 reaches more local optima than saHC-R1.
3 https://zenodo.org/record/6406825#.YkcxaW7MI-Q.

https://zenodo.org/record/6406825#.YkcxaW7MI-Q
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Fig. 2. Search Trajectory Networks of rotation-based algorithms on Instance 8.

6 Conclusions and Future Work

Landscape rotation has been widely used to generate dynamic problems for
academic purposes due to its preserving nature, where important properties of
the problem are maintained. In this article, we study the preservation of the
landscape structure using group actions, and based on the insights gained, we
suggest using the rotation operation to relocate the search of local search-based
algorithms when they get stuck. The experiments carried out show the good
application of the landscape rotation to perturb the search of the local search
algorithm through unexplored local optima. Obtained results also illustrate that
‘medium’ rotations can cause a big repercussion, when it comes to the number
of rearranged solutions.

This work can be extended in several ways. First and most obvious, there
are some landscape properties that have been ignored in this manuscript, such
as the number and size of attraction graphs, or the frontier and the centrality
of local optima [8]. These assumptions, along with the consideration of problem
properties, such as the symmetries of the problem instance, could lead to very
different outcomes, where the landscape rotation may be less applicable. Finally,
this work has considered the swap operator and the steepest-ascent hill-climbing
algorithm to construct the attraction graphs in the Linear Ordering Problem.
This study can be naturally extended to other combinatorial optimisation prob-
lems, as well as other ways to represent the landscape, such as the insertion
operation or the first-improvement hill-climbing heuristic.
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Abstract. Landscape metrics have proven their effectiveness in build-
ing predictive models, including when applied to University Timetabling,
a highly neutral problem. In this paper, two Iterated Local Search algo-
rithms sample search space to obtain over 100 landscape metrics. The
only difference between the samplers is the exploration strategy. One
uses neutral acceptance while the other only accepts strictly improving
neighbors. Different sampling time budgets are considered in order to
study the evolution of the fitness networks and the predictive power of
their metrics. Then, the performance of three solvers, Simulated Anneal-
ing and two versions of a Hybrid Local Search, are predicted using a
selection of landscape metrics. Using the data gathered, we are able to
determine the best sampling strategy and the minimum sampling time
budget for models that are able to effectively predict the performance of
the solvers on unknown instances.

Keywords: University Timetabling · Performance prediction ·
Landscape analysis · Local search

1 Introduction

University Timetabling is an active research area in combinatorial optimization.
Research into the topic is stimulated, notably, by the International Timetabling
Competition (ITC) organized at PATAT. Many different heuristics [6] have
been proposed to solve University Timetabling problems, including both local
search [12] and crossover-based algorithms [18]. Given the complex nature of the
problems, hybrid and hyper-heuristic approaches are also well suited [17].

Fitness landscapes [19] and their analysis can help to understand the nature
of the search space. Over the last ten years or so, landscape analysis has moved
from an admittedly mainly theoretical construct to being a more practical
tool [8,10].

In general, the whole landscape cannot be enumerated and sampling is
required. One such approach relies on gathering the traces of Iterated Local
Search (ILS) runs. This is the approach taken in this paper, where we compare

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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two ILS samplers with different exploration strategies. We wish to investigate
whether considering the neutrality of the landscape will provide a better sam-
ple or not. We rely on the predictive ability of performance models built from
features derived from the samples as a proxy for the quality of the samples.

In the context of performance prediction, some papers have shown that land-
scape analysis and associated metrics can build accurate models [10]. In particu-
lar, when considering continuous optimization, Bisch et al. [1] have used support
vector regression models, Muñoz et al. [11] considered neural networks to pre-
dict the performance of CMA-ES, Malan and Engelbrecht [9] used decision trees
to predict failure in particle swarm optimization, while Jankovic and Doerr [4]
considered random forests and CMA-ES. In the combinatorial context, Daolio
et al. [2] and Liefooghe et al. [7] respectively applied mixed-effects multi-linear
regression and random forest models to multiobjective combinatorial optimiza-
tion, and Thomson et al. [20] considered random forests and linear regression
on the Quadratic Assignment Problem, finding that random forests performed
better.

In this paper, we consider the Curriculum-Based Course Timetabling prob-
lem (CB-CTT). We first use two variants of an ILS to explore and sample the
search space for problem instances of the ITC 2007 competition [16] across 4 dif-
ferent time budgets. After a feature selection step, a model is built for each time
budget and each sampler. Each model is evaluated, via cross-validation, accord-
ing to its ability to predict the final fitness on 3 different solvers on unseen
instances. Our results show that, on our instances, sampling the search space
with 100 ILS runs of 5 s each allows us to build models that can accurately
predict fitness across solvers.

The paper is organized as follows: Sect. 2 presents our problem; Sect. 3 intro-
duces fitness landscapes and relevant definitions; we develop our experimental
protocol in Sect. 4; the features used in our models are laid out in Sect. 5; Sect. 6
analyzes the effects of the sampler time budget on networks; Sect. 7 describes
the preprocessing involved in building the models as well as the evaluation pro-
cedure; the models obtained are discussed in Sect. 8; finally, Sect. 9 concludes
the paper and outlines potential for future research.

2 Curriculum-Based Course Timetabling

The paper focuses on a specific University Timetabling problem: Curriculum-
Based Course Timetabling (CB-CTT). ITC 2007 was especially important for
CB-CTT because it formalized several instances and imposed a runtime limit of
5 min, encouraging the use of metaheuristics instead of exact solvers.

CB-CTT is centered on the notion of a curriculum, that is a simple package
of courses. This may be a simplification of the real-life problem since a student
can choose only one curriculum. Curricula cluster students together, with each
change of event impacting all students in the same way.

Courses are sets of lectures and are taught by one teacher. One course can
belong to several different curricula. In this case, all students across curricula
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attend lectures together. The problem is scheduled over a limited number of
days, divided into periods or timeslots. One period corresponds to the duration
time of one lecture.

In CB-CTT, a solution consists of scheduling lectures in timeslots and avail-
able rooms following hard and soft constraints. Hard constraints must always be
respected. A timetable is said to be feasible when all the hard constraints are
met. An example of a hard constraint is preventing one teacher from teaching
two lectures at once. On the contrary, soft constraints are optional and gen-
erally represent targets to strive for. The violations of each soft constraint are
represented as a function to minimize.

The objective function to optimize for CB-CTT is a weighted sum of the
constraint violations: f(s) =

∑4
i=1 SoftConstraintsi(s)∗ωi, where S represents a

timetable. The weights, as used for ITC 2007, are set to 1, 5, 2 and 1 for ω1, ω2,
ω3 and ω4 respectively. SoftConstraintsi(s) represents the number of violations
for the soft constraints listed below.

1. RoomCapacity : All students can be sat in the room.
2. MinWorkingDays: A course has lectures which should be scheduled within a

minimum number of days.
3. CurriculumCompactness: A student should have always two consecutive lec-

tures before a gap.
4. RoomStability : Lectures of a course should be in the same room.

3 Search Landscape

Educational timetabling, and CB-CTT in particular, is known to be a very
neutral problem [13]. This means that a large number of similar solutions share
the same fitness value. Neutrality may hinder the solving process because finding
a suitable trajectory in the search landscape becomes more difficult. In this
context, landscape analysis can help to understand the nature of the search space,
for instance by characterizing the ruggedness of the landscape or its connectivity
patterns.

The notion of landscape is strongly tied to the algorithm and neighborhood
operators used to explore the search space.

Landscape. A landscape [19] may be formally defined as a triplet (S,N, f) where

– S is a set of solutions, or search space,
– N : S −→ ℘(S), the neighborhood structure, is a function that assigns, to

every s ∈ S, a set of neighbors N(s) (℘(S) is the power set of S), and
– f : S −→ R is a fitness function.

In CB-CTT, a problem instance establishes fixed relationships between cur-
ricula, courses, lectures and teachers. A solution then describes the tripartite
graph that links lectures, rooms and timeslots together. We choose to imple-
ment this as an object-oriented representation where lecture, room and timeslot
objects are connected together as appropriate.
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We use 6 classic timetabling neighborhood operators: 3 basic ones and 3
designed to deal with specific soft constraints. A link between two solutions in
our landscapes is the result of the application of any one of these operators.
The 3 simplest operators focus, at each call, on a single lecture. RoomMove and
TimeMove respectively change the room and the timeslot. LectureMove changes
the room and timeslot at the same time. The 3 other operators attempt to lower
the violation penalty of their associated soft constraint using a combination of
the basic moves. For instance, the CurriculumCompactnessMove identifies an
isolated lecture in a curriculum and performs a TimeMove to bring it closer to
another lecture.

Besides exhaustive exploration that gives a perfect model of the landscape,
any other sampling method will only provide an approximation. In our case,
exhaustive exploration is computationally infeasible. We therefore rely on an
ILS to sample the search space, as has been done for instance by Ochoa et
al. [14]. We focus in particular on local optima.

Local Optimum. A local optimum is a solution s∗ ∈ S such that ∀s ∈ N(s∗),
f(s∗) ≤ f(s). In order to allow for plateaus and neutral landscapes, the inequality
is not strict. Minimization is considered since we deal with constraint violations.

A number of landscape metrics can be measured by building Local Optima
Networks (LONs) [21]. These provide compressed graph models of the search
space, where nodes are local optima and edges are transitions between them
according to some search operator. LONs for neutral landscapes have been stud-
ied before by Verel et al. [22]. The latter work introduces the concept of Local
Optimum Neutral Network that considers that a neutral network is a local opti-
mum if all the configurations of the neutral network are local optima. Another
approach to neutrality in LONs is by Ochoa et al. [14] who develop the notion
of Compressed LONs where connected LON nodes of equal fitness are aggre-
gated together. For our purposes, we will consider two slightly different kinds of
networks: Timeout Plateau Networks and Fitness Networks.

Plateau. A plateau, sometimes called a neutral network, is usually defined as a
set of connected solutions with the same fitness value. Two solutions s1 and s2 are
connected if they are neighbors, i.e., s2 ∈ N(s1). Depending on the neighborhood
function, we may also have s1 ∈ N(s2). Plateaus are defined as sequences of
consecutive solutions with the same fitness.

Timeout Plateau. The first ILS sampler we consider, ILSneutral, contains a hill-
climber that stops if it remains on the same plateau for too long (50,000 consec-
utive evaluations at the same fitness). Furthermore, the hill-climber used accepts
the first non-deteriorating move (i.e., an improving or a neutral neighbor). We
call the last plateaus thus found timeout plateaus because the hill-climber has
not been able to escape from them within a given number of iterations. However
they are not necessarily a set of local optima. Some exploratory analysis showed
at least 1 % of these solutions were not actual local optima. The other sampler,
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ILSstrict, has the same components but will only accept a strictly improving
solution. Its timeout plateaus therefore trivially only contain one solution.

Timeout Plateau Network. A Timeout plateau network is a graph where each
node represents one timeout plateau and an edge represents a transition between
two such plateaus. Here this transition is an ILS perturbation followed by hill-
climbing. Timeout Plateau Networks are a set of independent chains, where each
represents one ILS run.

Fitness Network. This is a simplification of Timeout Plateau Networks where
all nodes with the same fitness are contracted together. This provides a graph
structure with much higher connectivity than a Timeout Plateau Network. While
it is not meant as an accurate representation of the landscape, several different
metrics related to connectivity between fitness levels can be computed. Note
that this is an even greater simplification than Compressed LONs [14] which
only aggregate nodes sharing the same fitness that are connected together at the
LON level.

4 Experimental Protocol

Experiments use 19 of the 21 instances proposed for ITC 2007. Instances 01 and
11 are set aside they are very easy to solve. All instances contain between 47
and 131 courses, 138–434 lectures, 52–150 curricula, 25–36 timeslots and 9–20
rooms.

Our solver of choice is the Hybrid Local Search (HLS) proposed by
Müller [12]. It combines Hill-Climbing (HC), Great Deluge and Simulated
Annealing algorithms in an Iterated Local Search and won ITC 2007. Our exper-
iments use two versions of the HLS. We will refer to the default version, that
accepts equal or better solutions during HC, simply as HLS. The other, HLSstrict,
uses a strict acceptance criterion for HC. In addition, iterated Simulated Anneal-
ing (SA) is tested. We reuse the SA component found within HLS and place it
inside a loop that stops when runtime budget is reached. All executions run on
Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz, all solvers have a time budget of
5 min and were tested 100 times on each instance.

Sampling the Search Space. To sample our search space, we use one of two
ILS, based on algorithmic components found in the HLS mentioned above. Both
ILS include an Iterative Bounded Perturbation (IBP) and use a hill-climber
(HC) following a first improvement strategy. HC stops when it finds a local
optimum or when it has evaluated 50,000 solutions without strict improvement.
The distinction between the two ILS samplers lies in the acceptance criterion.
The first follows the same strategy as HLS, i.e., accepting any equal or better
solution; it is called ILSneutral. Second sampler, ILSstrict, follows the strategy of
HLSstrict, accepting only strictly improving solutions.
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IBP takes a baseline fitness, FitFirstSol, corresponding to the fitness of the
first solution after construction. Then it deteriorates the final solution found by
HC, FitLastSol, to reach a solution with fitness equal to Bound = FitLastSol +
0.1(FitFirstSol − FitLastSol).

Due to memory constraints, ILSneutral only records fitness and size for all
timeout plateaus met. ILSstrict just saves the fitness of last solution of each HC,
its timeout plateaus have a size of 1. Both ILS samplers are run 100 times with
a time budget of {5, 10, 20, 30} seconds per run on each instance. This budget
was set in order to obtain enough predictive information on the landscape. Each
(time budget, sampler) pair produces one network, so we have 8 networks for
each instance.

Timeout Plateau Network. Each Timeout Plateau Network is built from the
data gathered from 100 runs. Each node of the network is a timeout plateau and
each directed edge is a transition corresponding to a perturbation followed by
a hill-climber. At this stage the weight of a directed edge is 1 and there is no
connectivity between the trajectories of the individual ILS sampler runs. Thus,
a contraction step is required to obtain further information.

Fitness Network. Given the high level of neutrality of the problem, we have
chosen to consider that all solutions with the same fitness belong to a single
wide plateau. This hypothesis allows us to obtain a connected network very
easily. The contraction process of the Timeout Plateau Network into a Fitness
Network preserves all the data required to compute the metrics mentioned in
Sect. 5.2. The new weights on the directed edges correspond to the sum of the
contracted directed edges.

Timeout Plateaus
25
50
75
100

125

340

660
Fitness

Fig. 1. Fitness network of instance 12 built by ILSneutral with 30 s.

5 Features

Gathering a large number of features ranging from instance features to global
and local landscape metrics increases the probability of finding combinations of
them that contain complementary information for prediction.
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5.1 Instance Features

Instance features include descriptive data about the problem instance. The most
basic ones count the courses, curricula, lectures, and days. Others quantify the
complexity of the problem. LecturesByCourse counts the minimum, maximum
and average number of lectures for one course. TeachersNeeded is the number
of lectures divided by the number of timeslots. Finally, CourseByCurriculum is
number of courses divided by the number of curricula. It measures the difficulty
of scheduling without violations. In total, there are 24 instance features.

5.2 Landscape Metrics

We consider different metrics that are computed on the landscape.

Node-Level Metrics. A first set of metrics relates to what the nodes represent.
Plateaus is the number of plateaus that have been contracted to form the node.
It is used as the size property of nodes in Fig. 1. Size is the sum of number of
accepted solutions in the contracted plateaus. Fit corresponds to the Fitness of
all Timeout Plateaus represented by the current node. Loops is the number of
consecutive loops on the same fitness, an estimator for attraction power.

A second set of metrics relates to the connectivity of the nodes within the
network. Each connectivity metric has 9 variants by combining whether all,
ingoing or outgoing edges are considered, together with whether we considered
directed edges that reach any node or only select the ones that reach better
(resp. worse) nodes. The Degree metric measures the number of different arcs
connected to the nodes. The Weight metric represent the number of times the
samplers have passed from one timeout plateau to another.

We also consider two variants of weight and degree metrics. For some given
node, the better (resp. worse) variant only considers directed edges between this
node and better (resp. worse) nodes.

The above metrics are computed for each node and five points corresponding
to the quartiles (Q1, median and Q3) and the 10th and 90th percentiles of
the distribution are used as features for our models. The number of features
calculated with node-level metrics amounts to 65 features.

Network Metrics. To describe the networks themselves, we used additional
metrics including the Mean fitness, the number of timeout plateaus, nodes and
edges. Moreover, the number of sink nodes is stored, as well as the matching
coefficients of assortivity and transitivity.

Sink nodes are ones that do not have any outgoing edges to nodes with
better fitness. Assortivity is a measure of similarity between linked nodes [15].
The more numerous the connected nodes with the same attributes, the higher
the coefficient. The transitivity coefficient, also called the clustering coefficient, is
the probability of a link between adjacent neighbors and one chosen vertex [15].
In total, we consider 23 network metrics.
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Fig. 2. Cumulative percentage of the number of plateaus as a function of fitness, and
the associated groups, for ILSneutral with 30 s.

We also wish to identify and quantify the most and least promising regions
of the network. To do so, we consider the cumulative percentage distribution
of the number of plateaus with respect to fitness, as illustrated in Fig. 2 for a
representative instance, and split the network into 3 groups:

– Group A: The first sub-network has a low local density. Its fitness values are
little visited and are the best found.

– Group B : This set of nodes represents a big part of the networks. Nodes cor-
respond to good fitness values, and solving methods often find them. Vertices
are inter-connected and arcs are frequently traveled, with high weights.

– Group C : The nodes in this group are almost all of size one. They represent
the worst fitness values found. They are not connected to each other because
their arcs lead only to vertices belonging to Group B.

For all instances, the distributions are of the same shape. That implies that
behaviors are similar. In order to automate the partitioning of nodes into the
above groups, we identify two points of inflection on the curve as follows. The
first point is found when a percentage difference of at least 1% point is observed.
If the difference in percentage between two consecutive fitness values represents
a variation greater than 1% point, the first fitness values are part of Group A and
the following ones are from Group B. In the cases where this point is reached very
early, the 10 best fitness values are assigned to Group A, as in Fig. 2. Afterwards,
the second point is identified when the difference drops below 1% point, and the
remaining fitness values are in Group C. For sub-networks A and B, the mean
fitness, number of nodes, number of plateaus, and the number of sink nodes are
computed. There are thus 8 features relative to sub-networks.

6 Effects of Sampler Choice on Sampled Fitness Values

Here we consider the effects of the (sampler, time budget) pairs on fitness dis-
tribution. Recall that the samplers are two Iterative Local Search algorithms,



556 T. Feutrier et al.

ILSneutral  5s
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Fig. 3. Fitness distribution for each (sampler, time budget) pair on instance 21. Vertical
lines represent the mean fitness values for each solver.

ILSstrict and ILSneutral, differing in the neutral or strict acceptance strategy of
neighboring solutions.

Figure 3 shows the fitness distribution of the timeout plateaus obtained by
each sampler on one representative instance as boxplots. As might be expected,
we can observe a clear relationship between the time budget and the skew of the
distribution towards better solutions. This stands for both samplers. The best
solutions found with 20 and 30 s sampling runs reach, or are very close to, the
mean fitness value obtained by the solvers when run for 5 min. In addition, it
stands to reason that as time increases, timeout plateaus are added but those
found within shorter time budgets remain, only they represent a smaller propor-
tion. The tighter time budgets also, naturally, sample fewer solutions. The study
of network features shows that networks become sparser in terms of connectivity
as time is reduced. This behavior is similar for both samplers.

The fact that some sampling scenarios reach, or are very close to, the mean
solver fitness likely indicates that any feature that encodes some information
about the best sample fitness will be very important to the model. In our case
this is exactly what FitA, the mean fitness of Group A, does. This is investigated
further in Sect. 8.

The boxplots also show that the two samplers do not have the same behavior.
It is clear that ILSneutral finds, within the same time, better solutions in terms of
fitness. Furthermore, Fig. 3 reveals that as the time decreases, the gap between
the two ILS widens. With the neutral acceptance policy, the first plateau from
which the ILS needs to escape via a perturbation is further down the landscape.
These observations imply that ILSneutral is the most efficient and the most robust
in finding better solutions in the face of time. Thus, the neutral strategy improves
ILS performance and sampling effectiveness on the most promising parts of the
space.

7 Model Construction and Evaluation

A small but growing number of landscape analysis papers [2,7,20] have success-
fully shown that landscapes contain meaningful information that is linked to
search algorithm performance. We employ a model building process consisting
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Table 1. Selected features with respect to sampler and budget.

ILSstrict ILSneutral Feature Description

5s 10s 20s 30s 5s 10s 20s 30s

� � � � � � � � Cu Number of Curricula

� � � � � � � � FitA Mean fitness of Group A

� � � � � � � FitB Mean fitness of Group B

� � � � � � � � Fit Mean fitness

� SinkB Number of sink nodes in Group B

� CC Number of connected components

of feature selection followed by linear regression to predict the fitness value. The
objective will then be to assess how the sampler and its budget affect the quality
of the prediction for different solvers.

Pre-processing. After merging all data, there is a total of 120 features, some
of which may not be useful. We first remove 21 features with a constant value:
most of them are 90th percentile features, i.e., they describe the top of the
landscape. Features are then standardized. After these two steps, features have
to be selected in order to improve the potential success of our models.

We use correlation preselection which computes the correlation value between
the outcome variable and features. Here, the outcome variable corresponds to
the fitness value, which is the result of one of the three solvers used. This step
selects all the features correlated with fitness above a fixed threshold that we
set to a relatively high value of 0.9. Table 1 summarizes the selected features
depending on the version of the ILS sampler and the allotted budget. Between
3 and 6 features are selected, with the number of curricula, the mean fitness
across all sampled timeout plateaus, and the mean fitness of groups A and B
always being present. These last two features are not only about fitness but also
indirectly encode some information about the proportion of plateaus since this
is used to create the groups. It is interesting to note the relative homogeneity
of the selected features across samplers and budgets, as well as the absence of
more complex features.

One potential caveat of this restricted feature set relates to the different
fitness features and the associated multicollinearity that is not usually recom-
mended for linear regression. Multicollinearity makes it difficult to interpret
regression coefficients, however in this work we are essentially interested in the
models’ predictions and their precision, so this is not a concerning problem.

Evaluation. In order to obtain a robust evaluation of the models, especially
given that we have few instances, we use complete 5-fold cross-validation.

Cross-validation uses complementary subsets of the data for training and test-
ing in order to assess the model’s ability to predict unseen data. With a k-fold
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approach, data are partitioned into k subsets, one of which is retained for test-
ing, the remaining k − 1 being used for training the model. The cross-validation
process is repeated k times such that each subset is used once for testing. The
results are then averaged to produce a robust estimation. The specificity of the
complete cross validation is to apply a k-fold on all possible cutting configu-
rations [5]. Therefore

(
m

m/k

)
configurations are considered instead of only k. In

our case, with 19 instances and 5 folds, we have
(
19
4

)
= 3876 configurations.

This complete 5-fold cross-validation algorithm has two main advantages. The
first is to check whether the model can predict final fitness for new instances.
The second smooths out the impact of how the data are split between training
and test sets. When two problem instances are very similar and are not in the
same fold, information about the first helps prediction. However, our objective
is to obtain a robust model for all problem instances and not only very similar
instances. Testing all combinations reduces this boosting effect.

The quality of the regression is assessed using the coefficient of determination,
R2, a well-known indicator for regression tasks.

8 Model Results and Discussion

Using the data collected and the selected features, we build linear regression
models for each of the 2 ILS samplers, ILSneutral and ILSstrict, across 4 different
time budgets to predict the performance of the 3 solvers considered, HLS, or
HLSstrict and SA. Since we observed that the FitA feature was likely to have a
major impact on the model, we also build a set of trivial models that incorporate
this single feature and another set of models that exclude this feature. There are
therefore 72 different models in total. The resulting R2 values are plotted on
Fig. 4 where each line represents a (sampler, solver) pair.

The first observation is that in all cases we obtain relatively good to very
good models, with R2 values ranging from 0.62 to 0.97. As was expected, FitA by
itself is a very good predictor of the final fitness obtained by the different solvers.
Nonetheless, models that use all the selected features come out on top, even if
the advantage is somewhat marginal, indicating that it is worth using the extra
features. Models that do not use FitA perform less well but remain competitive.
The outliers to this general trend are the models built using ILSneutral and a 5 s
budget per sampling run, where removing FitA causes a major decrease in R2.
In that specific scenario, however, the sampling did not reach the mean fitness
of the solvers and so FitA is a non-trivial feature.

If we consider neutral versus strict acceptance sampling, ILSneutral is always
better except in the scenario mentioned before. This is to be expected since
the landscape is known to be neutral. What is more surprising, is that strict
acceptance holds up nonetheless and provides decent models.

Next, we consider what happens w.r.t. the different solvers. The performance
of all 3 solvers is adequately predicted, even though the sampling algorithm dif-
fers from the solvers, as has been observed in the literature [3,20]. The prediction
for SA is slightly worse since it is the most different from the sampling algorithm,
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Fig. 4. R2 values for models, where each point represents a (sampler, solver) pair.

whereas ILS is a component within HLS. Interestingly, there is no major differ-
ence between HLS with neutral (default version) and strict acceptance.

A general observable trend that holds for most cases, is that R2 improves as
the sampling budget increases, which seems fairly intuitive. Perhaps surprisingly
however, predictive performance remains almost flat (but very good) when all
the selected features and neutral sampling are used. This robustness with respect
to time makes it easy to recommend using the smallest budget in that scenario.

9 Conclusion

In this paper, we considered the Curriculum-based Course Timetabling problem
known to be a very neutral problem where a large number of solutions share the
same fitness value. We proposed to characterized the search landscape taking into
account the specificity of neutrality and used relevant metrics to build predictive
models of solver performance. We compared two ILS samplers, ILSstrict and
ILSneutral, based on hill-climbers that differ in their acceptance criterion. We
showed that the sampler that considers the neutral specificity of the search
space leads to better predictive models and is more time-robust.

In future work, we intend to consider different types of solvers, for example
evolutionary algorithms, in order to study further the notion of neutrality and
how it relates to predicting the performance of the solving algorithm. Moreover,
we plan to investigate other university timetabling problems to observe the sim-
ilarities and differences, and especially to check whether the same models can
be used elsewhere.
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Abstract. We study the effect of varying perturbation strength on the
fractal dimensions of Quadratic Assignment Problem (QAP) fitness land-
scapes induced by iterated local search (ILS). Fitness landscapes are
represented as Local Optima Networks (LONs), which are graphs map-
ping algorithm search connectivity in a landscape. LONs are constructed
for QAP instances and fractal dimension measurements taken from the
networks. Thereafter, the interplay between perturbation strength, LON
fractal dimension, and algorithm difficulty on the underlying combina-
torial problems is analysed. The results show that higher-perturbation
LONs also have higher fractal dimensions. ILS algorithm performance
prediction using fractal dimension features may benefit more from LONs
formed using a high perturbation strength; this model configuration
enjoyed excellent performance. Around half of variance in Robust Taboo
Search performance on the data-set used could be explained with the aid
of fractal dimension features.

Keywords: Local Optima Network · Fractal dimension · Quadratic
Assignment Problem · QAP · Iterated local search · Perturbation
strength · Fitness landscapes

1 Introduction

Many systems can be characterised by their fractal geometry. Fractals are pat-
terns which contain parts resembling the whole [1]. This kind of geometry is
non-Euclidean in nature and a non-integer dimension can be computed for a
pattern—the fractal dimension. This is an index of spatial complexity and cap-
tures the relationship between the amount of detail and the scale of resolution
the detail is measured with. Not all systems can be characterised by a single
fractal dimension, however [2] and multiple fractal dimensions—a spectrum—
can be obtained through multifractal analysis. If there is diversity within the
spectrum, this is an indication that the pattern is multifractal; i.e., the spatial
complexity may be heterogeneous in nature.

Local Optima Networks (LONs) [3] are a tool to study fitness landscapes.
The nodes are local optima, and the edges are transitions between local optima
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-14714-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14714-2_39&domain=pdf
https://doi.org/10.1007/978-3-031-14714-2_39


Fractal Dimension and Perturbation Strength 563

using a given search operator. Analysing the features of LONs can help explain
algorithm search difficulty on the underlying optimisation problem. LONs have
been subject to fractal analysis previously [4]; results have suggested that their
fractal dimension, and extent of multifractality, may be linked to increased search
difficulty.

The connection between perturbation strength and fractal dimension in
LONs has not been studied before. We speculate that there may be some
untapped knowledge concerning algorithm performance explanation in this area,
and advance towards this aim in the present work.

The Quadratic Assignment Problem (QAP)—a benchmark combinatorial
optimisation domain—is used for this study. We extract LONs with low and
high perturbation strength, then compute fractal dimension features from them.
Separately, two metaheuristics (iterated local search and robust taboo search)
are executed on the QAP instances to collect algorithm performance information.
The interplay between perturbation strength, fractal dimensions, and algorithm
performance is then examined.

2 Methodology

2.1 Quadratic Assignment Problem

Definition. A solution to the QAP is generally written as a permutation s of
the set {1, 2, ..., n}, where si gives the location of item i. Therefore, the search
space is of size n!. The cost, or fitness function associated with a permutation
s is a quadratic function of the distances between the locations, and the flow
between the facilities, f(s) =

∑n
i=1

∑n
j=1 aijbsisj , where n denotes the number

of facilities/locations and A = {aij} and B = {bij} are the distance and flow
matrices, respectively.

Instances. We consider the instances from the QAPLIB1 [5] with between 25 and
50 facilities; these are of moderate size, and yet are not always trivial to solve.
Some of the instances in this group have not been solved to optimality; for those,
we use their best-known fitness as the stand-in global optimum. In the rest of this
paper, for simplicity we refer to these as the global optimum. According to
[6,7], most QAPLIB instances can be classified into four types: uniform random
distances and flows, random flows on grids, real-world problems, and random
real-world like problems. All of these are present in the instance set used in this
work.

2.2 Monotonic Local Optima Networks

Monotonic LON. Is the directed graph MLON = (L,E), where nodes are the
local optima L, and edges E are the monotonic perturbation edges.

1 http://www.seas.upenn.edu/qaplib/.

http://www.seas.upenn.edu/qaplib/
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Local Optima. We assume a search space S with a fitness function f and a
neighbourhood function N . A local optimum, which in the QAP is a minimum,
is a solution l such that ∀s ∈ N(l), f(l) ≤ f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which we found to occur in some QAP instances. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Monotonic Perturbation Edges. Edges are directed and based on the per-
turbation operator (k-exchange, k > 2). There is an edge from local optimum l1
to local optimum l2, if l2 can be obtained after applying a random perturbation
(k-exchange) to l1 followed by local search, and f(l2) ≤ f(l1). These edges are
called monotonic as they record only non-deteriorating transitions between local
optima. Edges are weighted with estimated frequencies of transition. We esti-
mated the edge weights in a sampling process. The weight is the number of times
a transition between two local optima basins occurred with a given perturbation.
The set of edges is denoted by E.

2.3 Multifractal Dimensions

A fractal dimension is the logarithmic ratio between amount of detail in a pat-
tern, and the scale used to measure the detail: ln(detail)

ln(scale) . Multifractal analysis
[2] can be used for systems where a single fractal dimension may not be suffi-
cient to characterise the spatial complexity. With this approach, a spectrum of
dimensions is instead produced. Study of the spectrum can provide information
about the multifractality (i.e., the heterogeneity of fractal complexity), as well as
dimensionality. We approach multifractal analysis using the sandbox algorithm
[8] where several nodes are randomly selected to be sandbox ‘centres’. Members
of the sandboxes are computed as nodes which are r edges apart from the centre
c. After that the average sandbox size is calculated. The procedure is replicated
for different values of r which is the sandbox radius. To facilitate the produc-
tion of a dimension spectrum the whole process is repeated for several arbitrary
real-valued numbers which supply a parameter we call q.

The sandbox algorithm has been specialised and modified to suit LONs
[4] and this is the process we use for our fractal analysis experiments. Fit-
ness distance—as well as network edge distance—is considered. The compar-
ison between two local optima fitness values is conducted through logarithmic
returns: fitness difference = |ln(f1/f2)| where f1 and f2 are the fitnesses of two
local optima at the start and end of a LON edge. The resultant value can then be
compared with a set fitness-distance maximum allowable threshold, ε. Pseudo-
code for the multifractal algorithm we use on the LONs is given in Algorithm 1.
Sandbox centre selection is at Line 7 of the Algorithm. A node n is included in
the ‘sandbox’ of a central node c (Line 15 of the pseudo-code) if either the LON
edge distance d(n, c) = 1 or d(n, c) = r−1 and the fitness-distance between the
two local optima is less than a threshold: |ln( f(n)f(c) )| < ε (see Line 14).
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Algorithm 1. Multifractal Analysis of a LON
Input: LON , q.values, radius.values, fitness.thresholds, number.centres
Output: mean sandbox size

1: Initialisation:
2: centre.nodes ← ∅, noncentre.nodes ← all.nodes
3: mean.sandbox.sizes ← ∅
4: for q in q.values do
5: for r in radius.values do
6: for ε in fitness.thresholds do
7: centre.nodes ← RANDOM.SELECTION(all.nodes, number.centres)
8: sandbox.sizes ← ∅
9: for c in centre.nodes do

10: number.boxed ← 0
11: for v in all.nodes do
12: d ← DISTANCE(c, v)
13: j ← DIFFERENCE(f(c), f(v))
14: if ( d == 1 ) OR ( d == r - 1 and j < ε ) then:
15: number.boxed ← number.boxed + 1
16: end if
17: end for
18: sandbox.sizes ← sandbox.sizes ∪ {[number.boxed]}
19: end for
20: bs ← MEAN(sandbox.sizes)
21: mean.sandbox.sizes[q][r][ε] ← bs
22: end for
23: end for
24: end for

At the end of each ‘sandboxing’ iteration conducted with particular values
for the parameters q, r and ε, the associated fractal dimension is calculated:

fractal dimension =
ln(detailq−1)

(q − 1) ∗ ln(scale)
(1)

where detail is the average sandbox size (as a proportion of the network size), q
is an arbitrary real-valued value, and scale is r

dm , with r being the radius of the
boxes and dm the diameter of the network. The sandbox algorithm has a cubic
time complexity and quadratic space complexity [9].

3 Experimental Setup

3.1 Iterated Local Search

We use Stützle’s iterated local search (ILS) for both gathering performance
data and as the foundation of LON construction [7]. The local search stage
uses a first improvement hill-climbing variant with the pairwise (2-exch
ange) neighbourhood. This operator swaps any two positions in a permutation.
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The perturbation operator exchanges k randomly chosen items. We consider two
perturbation strengths for both constructing the LONs and computing
the performance metrics: ND

8 (we will henceforth refer to this as low pertur-
bation) and 3ND

4 (this will be referred to as high perturbation) with ND being
the problem dimension. These perturbation magnitudes were chosen because
they have been studied previously for the QAP and ILS [10]; in that work, ND

8 is
the lowest strength considered, while 3ND

4 is the second-strongest (the strongest
was a total restart, which we decided was too extreme for our purposes). Only
local optima which have improved or equal fitness to the current are accepted.
Worsening local optima are never accepted.

3.2 Robust Taboo Search

Robust Taboo Search (ROTS) [11] is a competitive heuristic for the QAP and
is also executed on the instances in this study. ROTS is a best-improvement
pairwise exchange local search with a variable-length taboo list tail. For each
facility-location combination, the most recent point in the search when the facil-
ity was assigned to the location is retained. A potential move is deemed to be
‘taboo’ (not allowed) if both facilities involved have been assigned to the prospec-
tive locations within the last y cycles. The value for y is changed randomly, but
is always from the range [0.9n, 1.1ND], where ND is the problem dimension.

Algorithm Performance Metric. We compute the performance gap to sum-
marise ILS and ROTS performance on the instances. In the case of ILS, runs
terminate when either the known best fitness is found or after 10,000 iterations
with no improvement. For ROTS, runs complete when the best-known fitness
is found or after 100,000 iterations. The performance gap is calculated over 100
runs for each, and is defined as the mean obtained fitness as a proportion of the
best-known fitness.

3.3 LON Construction and Metrics

The LON models are constructed by aggregating the unique nodes and edges
encountered during 100 independent ILS runs with the standard acceptance
strategy (i.e. accepting improvements and equal solutions). Runs terminate after
10,000 non-improving iterations.

At this stage, esc instances are removed from the set: their local optima
networks are uninteresting to study because there is a very high degree of LON
neutrality. Removing these anomalies left us with the remaining moderate-size
(between 25 and 50, inclusive) QAPLIB: 40 instances. There are two LONs per
problem instance (for the two perturbation strengths), totalling 80 LONs.

For each LON, thousands of fractal dimensions are produced. The exact num-
ber depends on the diameter of the network: full parameter details are given in
the next Section. The measurements we compute from the set of fractal dimen-
sions for a given LON are: the median fractal dimension (simply the median
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of all the dimensions calculated); the maximum fractal dimension (maximum of
all dimensions); the dimension variance; the multifractality (measured by taking
the absolute value of a fractal dimension at the end of the spectrum divided by
the absolute value of a dimension at the beginning), and an excerpt dimension
(randomly chosen from the spectrum).

We consider some other LON metrics too: the flow towards global optima
(computed as the incoming network edge strength to global optima in the LON);
the number of local optima (simply the number of nodes in the LON); and the
number of global optima (number of LON nodes with the best-known fitness).

3.4 Multifractal Analysis

We implement the multifractal analysis algorithm for LONs in C programming
language and have made it publicly available for use; some of the code func-
tionality was obtained from a monofractal analysis algorithm [12] available on
Hernan A. Makse’s webpage2. To generate multifractal spectra, a range of arbi-
trary real-valued numbers is needed. We set these as q in the range [3.00, 8.90]
in step sizes of 0.1. The number of ‘sandbox’ centres in each iteration is set at 50
and the choice of these centres is randomised. A range of ten values is used for
the local optima fitness-distance threshold: ε ∈ [0.01, 0.19] in step sizes of 0.02.
The sizes of sandboxes are integers in the range r ∈ {2..diameter − 1} where
diameter is the LON diameter. Note that in the interest of reducing computa-
tion, we constrain the maximum considered box radius to eleven—that is, when
the LON diameter exceeds twelve (diameter − 1 > 11), then the upper limit for
r is set to 11, to allow ten possible values r ∈ {2..11}.

3.5 Regression Models

Random Forest regression [13] is used. We separate LONs by the ILS perturba-
tion strength which was applied during their construction; in this way, for mod-
elling there are two distinct data-sets, each of them totalling 40 rows. Each obser-
vation is a set of LON features such as median fractal dimension (these are the
independent variables) alongside performance metrics (the dependent variables).
LONs formed using low perturbation are mapped to low-perturbation ILS per-
formance runs, and high-perturbation LONs are mapped to high-perturbation
ILS performance runs. The same Taboo Search performance metrics are used for
both sets of LONs. The candidate independent variables are:

◦ Number of local optima
◦ Number of global optima
◦ Search flow towards global optima
◦ Median fractal dimension for the LON

2 https://hmakse.ccny.cuny.edu/.

https://hmakse.ccny.cuny.edu/
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◦ Variance of fractal dimension (proxy for multifractality)
◦ Maximum fractal dimension
◦ Variation in the multifractal spectrum (proxy for multifractality)

The manner of computing the metrics was described in Sect. 3.3. Iterated
local search and Robust Taboo Search performance gap on the instances serve
as response variables, making this a regression setting.

We aimed for models with as few independent variables as possible, owing
to the limited number of eligible QAPLIB instances of moderate size. The one-
in-ten rule [14] stipulates that roughly ten observations are required per inde-
pendent variable. Our instance sets are each comprised of 40 instances—so we
correspondingly set the maximum number of independents as four and conduct
feature selection, as described now.

Recursive Feature Elimination. Backwards recursive feature elimination (RFE)
was used to select model configurations with subsets of the predictors. We use
Root Mean Squared Error (RMSE) as the quality metric for model comparisons.
RMSE is the square-root of the MSE, which itself is the mean squared difference
between the predicted values and true values. For the experiments, we configure
RFE as follows. Random Forest is the modelling method. We consider feature
subset sizes of one, two, three, and four from a set of eight candidates (listed
earlier). The RFE cross-validation is set to 10-fold; model configurations are
compared based on the mean RMSE over the 10 folds.

Models Using Selected Features. After feature selection, Random Forest regres-
sion is conducted using the selected features only. There are several separate
model configurations owing to the different ILS perturbations under scrutiny
and the two optimisation performance algorithms. To attempt to mitigate the
effect of the limited training set size—which is due to the available quantity of
moderate-size QAPLIB instances—we bootstrap the selection of the training and
validation sets. We consider an 80–20 split for training and validation with 1000
iterations. Quality metrics are computed on both the training set and also from
the predictions made on the validation set. The first included measurement is the
R-Squared (RSQ, computed as 1 − MSE

variance(t) , where t is the response variable).
Also considered is the RMSE, as detailed already. The metrics are computed
as the mean value over 1000 bootstrapping iterations, and their standard error
is also included in the results. The standard error reported here is a measure-
ment for how varied the means for RSQ and RMSE are across different random
sub-samplings: it is the standard deviation of the means for these parameters.

Details. For all feature selection and subsequent modelling, the default hyperpa-
rameters for Random Forest in R are used, namely: 500 trees; minimum size of
terminal nodes set to five; a sample size set to the number of observations;
re-sampling with replacement; features considered per split set to one-third
of the number of features. Independent variables are standardised as follows:
p = (p−E(p))

sd(p) , with p being the predictor in question, E the expected value
(mean), and sd the standard deviation.
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(a) bur26a,p=low,d=(1.60, 2.10) (b) bur26a,p=high,d=(1.91, 5.63)

(c) nug25,p=low,d=(1.79, 2.50) (d) nug25,p=high,d=(2.16, 5.07)

(e) tai30b,p=low,d=(7.05, 21.91) (f) tai30b,p=high,d=(11.62, 167.32)

Fig. 1. Monotonic LONs for selected instances and the two perturbation strengths,
p = low (left) p = high (right). The median and maximum fractal dimension are also
indicated in the sub-captions as d = (median, maximum) (Color figure online)
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4 Experimental Analysis

4.1 Network Visualisation

Visualisation is a powerful tool to get insight into the structure of networks.
Figure 1 illustrates MLONs for three representative QAP instances: a real-world
instance bur26, a random flows on grids instance nug25, and a random real-
world like instance tai30b. The networks in Fig. 1 capture the whole set of
sampled nodes and edges for each instance and perturbation strength. The two
perturbation strengths, low and high, are shown. In the plots, each node is a
local optimum and edges are perturbation transitions, either improving in fitness
(visualised in grey) or leading to equal fitness nodes (visualised in orange). Node
and edge decorations reflect features relevant to search. The edges colour reflect
their transition type, to nodes with improving (grey) or equal fitness (orange).
Global optima are highlighted in red. The start nodes (without incoming edges)
are highlighted as yellow squares, while the sink nodes (without outgoing edges)
are visualised in blue.

Figures 1a and 1b reflect the same problem instance (bur26a) but with LONs
constructed using different perturbation strengths. Figure 1b has higher fractal
dimensions and this is probably because of the lesser extent of neutrality at
the local optima level (in the image, this can be seen through the amount of
orange connections), as well as fewer connection patterns between local optima.
There are also some long monotonic paths. All of these factors would result
in higher fractal dimension, because they would lend to the fitness-distance and
edge-distance boxing constraints in the multifractal analysis algorithm not being
satisfied—and consequently, nodes remaining un-boxed, leading to a higher level
of detail being computed and a higher fractal dimension (recall Sect. 2.3 for
particulars on this process).

The LONs of instance tai30b (Fig. 1e and 1f) have the highest fractal dimen-
sions shown. This is probably because of the lack of LON neutrality (lack of
orange edges in the plot), as well as long and separate monotonic pathways
(notice the number of edge-steps forming some of the paths). Additionally, com-
pared to the networks associated with the other two instances, the LON fitness
ranges are quite large for here: the minimum LON fitness is around 73–74% of
the maximum in the tai30b LONs, while for the other two instances shown in
Fig. 1a–1d, it is between approximately 92%–99%. This means that the fitness-
distance boxing condition in the fractal algorithm will be satisfied much less for
these LONs, resulting in higher fractal dimensions. This situation also implies
that the monotonic pathways contain large fitness jumps.

4.2 Distributions

Figure 2 presents distributions for fractal dimension measurements, split by
perturbation strength: low and high. In Fig. 2a are median fractal dimensions
for the LONs. Notice that the dimensions are noticeably higher—and more
varied—in the high-perturbation group (on the right) when compared to the
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low-perturbation group on the left. Next, in Fig. 2b, are the maximum frac-
tal dimensions for the LONs. The same trend is evident here; that is, high-
perturbation LONs (on the right) have higher and more varied dimensions than
the low-perturbation LON group.
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Fig. 2. Distributions of fractal dimension measurements taken from local optima net-
works. Note the different scales on the y-axes.

Figure 2c shows the amount of multifractality (heterogeneity of fractal geom-
etry), computed as the absolute value of a fractal dimension at the end of the
spectrum divided by the absolute value of a dimension at the beginning. This
time, in the plot, it cannot confidently be said that one group contains more
multifractality than another; however, it seems clear that the high-perturbation
group have more varied multifractality values.

4.3 Predictive Modelling

Table 1 presents the configuration and quality of regression models for algorithm
performance prediction. Each column (columns two to four) is a model setting.
The first two rows are configuration information: the ILS perturbation strength
used to form the LONs whose features are used as predictors (LON perturbation)
and the features selected for the model by recursive feature elimination. All the
remaining rows convey data about the quality of the models. Provided are the
RSQ, RMSE, and RMSE as a percentage of the range of the target variable.
Each of these are reported for the training and validation data. In the Table,
abbreviations are used for feature names. Multifractality is computed as the
absolute value of a fractal dimension at the end of the spectrum divided by the
absolute value of a dimension at the beginning; FD is short for fractal dimension;
flow GO is the combined strength of LON edges incoming to global optima; and
var FD is the variance of the fractal dimension.

Recall from Sect. 3.5 that the number of local optima and the number of
global optima were candidate predictors. Notice from Table 1, row two, that
these are never selected from the pool. Instead, fractal dimension metrics and
the incoming search flow to global optima (flow GO) are chosen by the RFE
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Table 1. Information about models with features selected by recursive feature elimi-
nation in a Random Forest setting.

Iterated local search Robust taboo search

LON perturbation Low High Low High

Selected features [multifractality,
median FD,
max FD ]

[flow GO,
multifractality,
max FD,
median FD ]

[median FD,
multifractality,
flow GO,
max FD ]

[var FD, median FD ]

RSQ-train (SE) 0.1663 (0.2650) 0.7917 (0.2457) 0.8610 (0.3081) 0.7523 (0.2790)

RMSE-train (SE) 0.0001 (0.0001) 0.0000 (0.0000) 0.0005 (0.0042) 0.0010 (0.0044)

RMSE%range-train 0.1% (0.1%) 0% (0%) 0.1% (0.7%) 0.2% (0.8%)

RSQ-validation (SE) 0.8661 (0.4630) 0.9891 (0.4147) 0.5124 (1.1331) 0.4973 (1.0439)

RMSE-validation (SE) 0.0086 (0.0076) 0.0007 (0.0021) 0.0709 (0.0509) 0.0720 (0.0482)

RMSE%range-validation 7.9% (7.0%) 0.3% (0.8%) 12.2% (8.8%) 12.4% (8.3%)

algorithm. We particularly note that multifractality, which captures how varied
the fractal complexity in a LON is, appears in three of the four model setups.
The median fractal dimension appears in all four, and maximum dimension in
three. Differing quantities of predictors are selected. In two cases, there is the
maximum allowable amount (recall Sect. 3.5) chosen from eight candidates: four.
The remaining models, however, contain less selected features: two and three,
respectively.

Bold text in the Table draw the eye to the best value within a row. RMSE
values are not highlighted in this way because they do not have a common range
(owing to different response variable distributions). Instead, the RSQ and RMSE
as a percentage of the range are emphasised with emboldened text. Notice that
the model built using features of high perturbation LONs and which is modelling
ILS performance gap as a response seems to be the best of the four models; this
can be seen by comparing the second model column with the other three. RMSE
is very low on both training and validation data, suggesting that this is a good
model. While the RSQ-train is lower than for the ROTS response using low-
perturbation LONs modelling (in the next column along), the RSQ-validation is
superior to that—and indeed, the others—by a large margin.

Using features of low-perturbation LONs to model ILS performance response
results in a much weaker model (view this in the first model column). The RSQ
for training data is poor—only approximately 0.17. Even though the RSQ for
validation data is significantly higher (approximately 0.87), the low RSQ on
training data suggests that it does not accurately capture the patterns. Compar-
ing this model (low-perturbation LONs) with its neighbour in the Table (high-
perturbation LONs), we observe that using a higher perturbation strength to
construct LONs may result in fractal dimension metrics which are more useful
in predicting ILS performance.

Focusing now on the two models which consider ROTS performance as
response variables (model columns three and four), we can see that—on valida-
tion data—each of them explains around 50% of variance (RSQ-validation row).



Fractal Dimension and Perturbation Strength 573

That being said, both RSQ means have very high standard errors (in brackets).
This means that while the results hold true for this set of QAP instances, we
would be cautious in extrapolating these specific results to other instance sets. A
high standard error can occur with a limited sample size and with high diversity
of training instances—both of which are present in our dataset. Nevertheless,
the fact that some ROTS variance can be explained (at least for this specific
dataset) is important because the LONs were not formed using a ROTS process;
ILS was the foundation (Sect. 3.3).

The finding means that performance of a separate metaheuristic can be par-
tially explained using ILS-built LON fractal dimension features, even when dif-
ferent perturbation strengths are used. Notice also that the low-perturbation
model for ROTS is slightly better than the high-perturbation LON model. This
might be because ROTS does not conduct dramatic perturbations on solutions.
While RMSE is low on the training data (RMSE%range-train), it is much higher
on validation data (although still not what might be considered ‘high’).

5 Conclusions

We have conducted a study of the relationship between Iterated Local Search
(ILS) perturbation strength and fractal dimensions. The ILS perturbation
strength is used when constructing Local Optima Networks (LONs), and fractal
dimension can be computed from those LONs.

We found that higher-perturbation LONs also have higher fractal dimensions.
Fractal dimension measurements drawn from LONs which were constructed
using low and high perturbation strengths were related to algorithm performance
on the underlying Quadratic Assignment Problems (QAPs). The results showed
that ILS algorithm performance prediction using fractal dimension features
may benefit more from LONs formed using a high perturbation strength; this
model configuration enjoyed excellent performance. Around half of variance in
Robust Taboo Search performance on the dataset used could be explained using
predictors including fractal dimension features, and the model using the low-
perturbation features was slightly stronger than the high-perturbation model.

The local optima networks are available online3; the fractal analysis algorithm
for local optima networks is published here4.
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1 Introduction

In machine learning (ML), hyperparameter optimization (HPO) constitutes one
of the most frequently used tools for improving the predictive performance of
a model [3]. The goal of classical single-objective HPO is to find a hyperpa-
rameter configuration that minimizes the estimated generalization error. Gen-
erally, neither a closed-form mathematical representation nor analytic gradient
information is available, making HPO a black-box optimization problem and
evolutionary algorithms (EAs) and model-based optimizers good candidate algo-
rithms. As a consequence, no prior information about the optimization landscape
– which could allow comparisons of HPO and other black-box problems, or pro-
vide guidance regarding the choice of optimizer – is available. This also extends
to automated ML (AutoML) [14], which builds upon HPO.

In contrast, in the domain of continuous black-box optimization, a sophisti-
cated toolbox for landscape analysis and the characterization of their properties
has been developed over the years. In exploratory landscape analysis (ELA),
optimization landscape features are calculated from small samples of evaluated
points from the original black-box problem. It has been shown in numerous
studies that ELA feature sets capture relevant landscape characteristics and
that they can be used for automated algorithm selection, improving upon the
state-of-the-art selector [5,17]. Particularly well-studied are the functions from
the black-box optimization benchmark (BBOB) [12].

Empirical studies [30,31] in the closely related area of algorithm configura-
tion hint that performance landscapes often are rather benign, i.e., unimodal and
convex, although this only holds for an aggregation over larger instance sets and
their analysis does not allow further characterization of individual problem land-
scapes. There exists some work to circumvent HPO altogether, by automatically
configuring an algorithm for a given problem instance [1,28]. However, these
are limited to configuring optimization algorithms rather than ML models. In
addition, they are often restricted in the number and type of variables they are
able to configure. [26] apply fitness landscape analysis on AutoML landscapes,
computing fitness distance correlations and neutrality ratios on various AutoML
problems. They utilize these features only in an exploratory manner, characteriz-
ing the landscapes, without a link to optimizer performance, and cannot compare
the analyzed landscapes to other black-box problems in a natural way. Similar
work on fitness landscape analysis exists but focuses mostly on neural networks
[6,35]. Some preliminary work [9] on the hyperparameters of a (1 + 1)-EA on
a OneMax problem suggests that the ELA feature distribution of a HPO prob-
lem can be significantly different from other benchmark problems. Recently, [32]
developed statistical tests for the deviation of loss landscapes from uni-modality
and convexity and showed that loss landscapes of AutoML problems are highly
structured and often uni-modal.

In this work, we characterize continuous HPO problems using ELA features,
enabling comparisons between different black-box optimization problems and
optimizers. Our main contributions are as follows:
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1. We examine similarities and differences of HPO and BBOB problems by inves-
tigating the performance of different black-box optimizers.

2. We compute ELA features for all HPO and BBOB problems and demonstrate
their usefulness in distinguishing between HPO and BBOB.

3. We demonstrate how HPO problems position themselves in ELA feature space
on a meta-level by performing a cluster analysis on principle components
derived from ELA features of HPO and BBOB problems and investigate
performance differences of optimizers on HPO problems and BBOB problems
that are close to the HPO problems in ELA feature space.

4. We discuss how ELA can be used for HPO in future work and highlight open
challenges of ELA in the context of HPO.

5. We release code and data of all our benchmark experiments hoping to facil-
itate future research (which currently may be hindered due to the computa-
tionally expensive HPO black-box evaluations).

The remainder of this paper is structured as follows: Fundamentals for HPO and
ELA are introduced in Sect. 2. The experimental setup is presented in Sect. 3,
with the results regarding the algorithm performance and ELA feature space
analysis in Sect. 4 and 5, respectively. Section 6 concludes this paper and offers
future research directions.

2 Background

Hyperparameter Optimization. Hyperparameter optimization (HPO) methods
aim to identify a well-performing hyperparameter configuration λ ∈ Λ̃ for an ML
algorithm Iλ [3]. An ML learner or inducer I configured by hyperparameters
λ ∈ Λ maps a data set D ∈ D to a model f̂ , i.e., I : D × Λ → H, (D,λ) �→ f̂ . H
denotes the so-called hypothesis space, i.e., the function space to which a model
belongs [3]. The considered search space Λ̃ ⊂ Λ is typically a subspace of the
set of all possible hyperparameter configurations: Λ̃ = Λ̃1 × Λ̃2 × · · ·× Λ̃d, where
Λ̃i is a bounded subset of the domain of the i-th hyperparameter Λi. This Λ̃i

can be either real, integer, or category valued, and the search space can contain
dependent hyperparameters, leading to a possibly hierarchical search space. The
classical (single-objective) HPO problem is defined as:

λ∗ ∈ arg min
λ∈Λ̃

̂GE(λ), (1)

i.e., the goal is to minimize the estimated generalization error. This typically
involves a costly resampling procedure that can take a significant amount of
time, see [3] for further details. ̂GE(λ) is a black-box function, as it generally
has no closed-form mathematical representation, and analytic gradient informa-
tion is generally not available. Therefore, the minimization of ̂GE(λ) forms an
expensive black-box optimization problem. In general, ̂GE(λ) is only a stochastic
estimate of the true unknown generalization error. Formally, ̂GE(λ) depends on



578 L. Schneider et al.

the concrete inducer, a resampling strategy (e.g., cross-validation) and a perfor-
mance metric, for more details see [3]. In the following, we use the logloss as
performance metric:

1
ntest

ntest
∑

i=1

(

−
g

∑

k=1

σk

(

y(i)
)

log
(

π̂k

(

x(i)
))

)

. (2)

Here, g is the total number of classes, σk

(

y(i)
)

is 1 if y is class k, and 0 otherwise
(multi-class one-hot encoding), and π̂k

(

x(i)
)

is the estimated probability for
observation x(i) belonging to class k.

Exploratory Landscape Analysis. The optimization landscapes of black-box func-
tions, by design, carry no prior problem information, beyond the definition of
their search parameters, which can be used for their characterization. In the
continuous domain, ELA [23] addresses this problem by computing features on
a small sample of evaluated points, which can be used for better understanding
optimizer performance [24], algorithm selection [17] and even algorithm config-
uration [28].

The original ELA features consist, e.g., of meta model features (ela meta)
such as adjusted R2 values for quadratic and linear models and y-distribution
features (ela distr) such as the skewness and kurtosis of the objective values.
Over time, researchers continued to propose further feature sets, including near-
est better clustering (nbc) [16] and dispersion (disp) [22] features to measure
multi-modality, and information content (ic) features [25], which extract fea-
tures from random walks across the problem landscape. The R package flacco
[18] and Python package pflacco [27] implement a collection of the most widely
used ELA feature sets.

ELA studies often focus on the noiseless BBOB functions, as they offer
diverse, well-understood challenges (such as conditioning and multimodality)
and a wide range of algorithm performance data is readily available. BBOB
consists of 24 minimization problems, which are identified by their function ID
(FID) and scalable with respect to their dimensionality, which ranges from 2
to 40. Furthermore, different instances, identified by instance IDs (IIDs), are
defined for each function, creating slightly different optimization problems with
the same fundamental characteristics by means of randomized transformations
in the decision and objective space. All D-dimensional BBOB problems share a
decision space of [−5, 5]D, which is guaranteed to contain the (known) optimum.

3 Experimental Setup

We compare the following optimizers: CMAES (a simple CMA-ES with σ0 = 0.5
and no restarts), GENSA (a generalized simulated annealing approach as described
in [37]), Grid (a grid search performed by generating a uniform sized grid over
the search space and evaluating configurations of the grid in random order),
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Random (random search performed by sampling configurations uniformly at ran-
dom), and MBO (Bayesian optimization using a Gaussian process as surrogate
model and expected improvement as acquisition function [15], similarly config-
ured as in [20]). All optimizers were given a budget of 50D function evaluations
in total (where D is the dimensionality of the problem). All optimizer runs were
replicated 10 times. We choose these optimizers for the following reasons: (1)
they cover a wide range of optimizers that can be used for a black-box problem,
(2) Grid and especially Random are frequently used for HPO and Random often
can be considered a strong baseline [2].

As HPO problems, we tune XGBoost1 [8] on ten different OpenML [36]
data sets (classification tasks) chosen from the OpenML-CC18 benchmarking
suite [4]. The specific data sets were chosen to cover a variety of the num-
ber of classes, instances, and features (cf. Table 1). To reduce noise as much as
possible, performance (logloss) is estimated via 10-fold cross-validation with a
fixed instantiating per data set. On each data set, we create 2, 3 and 5 dimen-
sional XGBoost problems by tuning nrounds, eta (2D), lambda (3D), gamma
and alpha (5D), resulting in 30 problems in total. We selected these hyperpa-
rameters because (1) they can be incorporated in a purely continuous search
space which is generally required for the computation of ELA features, (2) they
have been shown to be influential on performance [29] and (3) have a straight-
forward interpretation, i.e., nrounds controls the number of boosting iterations
(typically increasing performance but also the tendency to overfit) while the
other hyperparameters counteract overfitting and control various aspects of reg-
ularization. The full search space is described in Table 2. Note that nrounds is
tuned on a logarithmic scale and therefore all parameters are treated as continu-
ous during optimization. Missing values of numeric features were imputed using
Histogram imputation (values are drawn uniformly at random between lower
and upper histogram breakpoints with cells being sampled according to the rel-
ative frequency of points contained in a cell). Missing values of factor variables
were imputed by adding a new factor level and factor variables were encoded
using one-hot-encoding. While XGBoost is a practically relevant learner we do
have to note that only considering a single learner is somewhat restrictive. We
discuss this limitation in Sect. 6. In the following, individual HPO problems are
abbreviated by <name> <d>, i.e., wilt 2 for the 2D wilt problem.

As BBOB problems we select FIDs 1–24 with IIDs 1–5 with a dimension-
ality of {2, 3, 5}, resulting in 360 problems in total. We abbreviate individual
BBOB problems by <fid> <iid> <dim>, i.e., 24 1 5 for FID 24 with IID 1 in
the 5D setting. Experiments have been conducted in R [33], where the individ-
ual implementation of an optimizer is referenced in the mlr3 ecosystem [19]. The
package smoof [7] provides the aforementioned BBOB problems. We release all
data and code for running the benchmarks and analyzing results via the follow-
ing GitHub repository: https://github.com/slds-lmu/hpo ela. HPO benchmarks
took around 2.2 CPU years on Intel Xeon E5-2670 instances, with optimizer
overhead ranging from 10% (MBO for 5D) to less than 1% (Random or Grid).

1 Using a gbtree booster.

https://github.com/slds-lmu/hpo_ela
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Table 1. OpenML data sets.

ID Name Number of

Cl. Inst. Feat.

40983 wilt 2 4839 5

469 analcatdata dmft 6 797 4

41156 ada 2 4147 48

6332 cylinder-bands 2 540 37

23381 dresses-sales 2 500 12

1590 adult 2 48842 14

1461 Bank-marketing 2 45211 16

40975 car 4 1728 6

41146 sylvine 2 5124 20

40685 shuttle 7 58000 9

IDs correspond to OpenML data set IDs, which

enable to query data set properties via

https://www.openml.org/d/<id>.

Table 2. XGBoost search space.

Hyper-param. Type Range Trafo

nrounds int. [3, 2000] log

eta cont. [exp(−7), exp(0)] log

lambda cont. [exp(−7), exp(7)] log

gamma cont. [exp(−10), exp(2)] log

alpha cont. [exp(−7), exp(7)] log

“log” in the Trafo column indicates that this parameter
is optimized on a (continuous) logarithmic scale, i.e.,
the range is given by [log(lower), log(upper)], and
values are re-transformed via the exponential function
prior to their evaluation. Parameters part of the full
XGBoost search space that are not shown are set to
their default.

4 Optimizer Performance

For each BBOB problem, we computed optimizer rankings based on the average
final performance (best target value of an optimizer run averaged over replica-
tions). Figures 1a to 1c visualize the differences in rankings on the BBOB prob-
lems split for the dimensionality. Friedman tests indicated overall significant
differences in rankings (2D: χ2(4) = 154.55, p < 0.001, 3D: χ2(4) = 219.16, p <
0.001, 5D: χ2(4) = 258.69, p < 0.001). We observe that MBO and CMAES perform
well throughout all three dimensionalities, whereas GENSA only is significantly
better than Grid or Random for dimensionalities 3 and 5. Moreover, Grid only
falls behind Random for the 5D problems.

Figures 1d to 1f analogously visualize differences in rankings on the HPO
problems split for the dimensionality. Friedman tests indicated overall signif-
icant differences in rankings (2D: χ2(4) = 36.32, p < 0.001, 3D: χ2(4) =
34.32, p < 0.001, 5D: χ2(4) = 34.80, p < 0.001). Again, MBO and CMAES per-
form well throughout all three dimensionalities. Notably, GENSA shows lacklus-
tre performance regardless of the dimensionality, failing to outperform Grid or
Random. Similarly as on the BBOB problems, Grid tends to fall behind Random
for the higher-dimensional problems. We do want to note that critical difference
plots for the HPO problems are somewhat underpowered when compared to
the BBOB problems due to the difference in the number of benchmark problem
which results in larger critical distances, as seen in the figures.

In Fig. 2, we visualize the anytime performance of optimizers by the mean
normalized regret averaged over replications split for the dimensionality of prob-
lems. The normalized regret is defined for an optimizer trace on a benchmark
problem as the distance of the current best solution to the overall best solution
found across all optimizers and replications, scaled by the overall range of empir-
ical solution values for this benchmark problem. We choose this metric due to
the theoretical optimal solutions being unknown for HPO problems, and apply
it to both BBOB and HPO problems to enable performance comparisons. We
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Fig. 1. Critical differences plots for mean ranks of optimizers on BBOB and HPO
problems split with respect to the dimensionality.
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Fig. 2. Anytime mean normalized regret of optimizers on BBOB and HPO problems
averaged over replications split for the dimensionality of problems. Ribbons represent
standard errors. The x-axis starts after 8% of the optimization budget has been used
(initial MBO design).

observe strong anytime performance of MBO and CMAES on both BBOB and HPO
problems regardless their dimensionality. GENSA shows good performance on the
5D BBOB problems but shows poor anytime performance on HPO problems in
general. Differences in anytime performance are less pronounced on the HPO
problems, although we do want to note that the width of the standard error
ribbons is strongly influenced by the number of benchmark problems.
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Fig. 3. Average ERT ratios (optimizers to Random) for HPO and BBOB problems.

As an additional performance evaluation, we calculated the Expected Run-
ning Time (ERT) [11]. In essence, for a given algorithm and problem, the ERT
is defined as ERT = 1

n

∑10
i=1 FEi, where n is the number of repetitions which

are able to reach a specific target, i refers to an individual repetition, and FEi

denotes the number of function evaluations used. We investigated the ERT of
optimizers with the target given as the median of the best Random solutions
(using 50D evaluations) over the ten replications per benchmark problem. We
choose this (for BBOB unusual) target due to (1) the theoretical optimum of
HPO problems being unknown and (2) Random being considered a strong baseline
in HPO [2]. To bring all ERTs on the same scale, we computed the ERT ratios
between optimizers and Random per benchmark problem which further allows us
to aggregate these ratios over benchmark problems2. We visualize these aggre-
gated ERT ratios separately for the dimensionality of benchmark problems in
Fig. 3. We observe that average ERT ratios of MBO and CMAES are comparably
similar for BBOB and HPO problems although the tendency that these optimiz-
ers become even more efficient with increasing dimensionality is less pronounced
on the HPO problems. Grid generally falls behind and GENSA shows lacklustre
performance on HPO.

5 ELA Feature Space Analysis

For each HPO and BBOB problem, we use 50D points sampled by LHS (Min-
Max) as an initial design for computing ELA features. We normalize the search
space to the unit cube and standardize objective function values per benchmark
problem ((y − μ̂)/σ̂) prior to calculating ELA features. This is done to counter
potential artefacts that could be seen in ELA features solely due to different
value ranges in decision and, in particular, in objective space. We calculate the
feature sets ela meta, ic, ela distr, nbc and disp, which were introduced in
Sect. 2, using the flacco R package [18].

To answer the question whether ELA can be used to distinguish HPO from
BBOB problems, we construct a binary classification task using ELA features
to predict the label “HPO” vs. “BBOB”. We use a decision tree and estimate

2 Following [17], optimizers that did not meet the target in any run were assigned an
ERT of the worst ERT on a benchmark problem multiplied by a factor of 10.
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Fig. 4. Decision trees for classifying benchmark problems into HPO or BBOB problems
(left) and classifying the dimensionality of BBOB problems (right).

the generalization error via 10 times repeated 10-fold cross-validation (stratified
for the target). We obtain an estimated classification error of 3.54%. Figure 4a
illustrates the decision tree obtained after training on all data. We observe
that only few ELA features are needed to correctly classify problems: HPO
problems tend to exhibit a lower ela distr.kurtosis combined with more
ela distr.number of peaks or show a higher nbc.nb fitness.cor than BBOB
problems if the first split with respect to the kurtosis has not been affirmed.
This finding is supported by visualizations of the 2D HPO problems, which we
present in our online appendix, i.e., most 2D HPO problems have large plateaus
resulting in negative kurtosis.

To answer the question whether dimensionality is a different concept for HPO
compared to BBOB problems3 we perform the following analysis: We construct
a classification task using ELA features to predict the dimensionality of the
problem but only use the BBOB subset for the training of a decision tree. We
estimate the generalization error via 10 times repeated 10-fold cross-validation
(stratified for the target) and obtain an estimated classification error of 7.39%.
We then train the decision tree on all BBOB problems (illustrated in Fig. 4b)
and determine the holdout performance on the HPO problems and obtain a
classification error of 10%. Only few ELA features of the disp and nbc group are
needed to predict the dimensionality of problems with high accuracy. Intuitively,
this is sensible, due to nbc features involving the calculation of distance metrics
(which themselves should be affected by the dimensionality) and both nbc and
disp features being sensible to the multimodality of problems [16,22] which
should also be affected by the dimensionality. Based on the reasonable good
hold-out performance of the classifier on the HPO problems, we conclude that
“dimensionality” is a similar concept for BBOB and HPO problems.

3 For HPO problems, it is a priori often unclear whether a change in a parameter value
also results in relevant objective function changes, i.e., the intrinsic dimensionality
of a HPO problem may be lower than the number of hyperparameter suggests.

https://github.com/slds-lmu/hpo_ela
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Fig. 5. Factor loadings of ELA features on the first two principle components. Blue
indicates a positive loading, whereas red indicates a negative loading.

To gain insight on a meta-level, we performed a PCA on the scaled and
centered ELA features of both the HPO and BBOB problems. To ease further
interpretation, we select a two component solution that explains roughly 60% of
the variance. Figure 5 summarizes factor loadings of ELA features on the first
two principle components. Most disp features show a medium positive loading
on PC1, whereas some nbc show medium negative loadings. ela meta features,
including R2 measures of linear and quadratic models, also exhibit medium neg-
ative loadings on PC1. We therefore summarize PC1 as a latent dimension that
mostly reflects multimodality of problems. Regarding PC2, three features stand
out with strong loadings: nbc.dist ratio.coeff var, nbc.nn nb.mean ratio
and ic.eps.s. Moreover, disp.ratio * features generally have a medium neg-
ative loading. We observe that all features used by the decision tree in Fig. 4b
also have comparably large loadings on PC2. Therefore, we summarize PC2 as
an indicator of the dimensionality of problems.

We then performed k-means clustering on the two scaled and centered prin-
cipal component scores. A silhouette analysis suggested the selection of three
clusters. In Fig. 6, we visualize the assignment of HPO and BBOB problems
to these three clusters. Labels represent IDs of BBOB and HPO problems. We
observe that the dimensionality of problems is almost perfectly reflected in the
PC2 alignment. Cluster 2 and 3 can be mostly distinguished along PC2 (cluster
3 contains low dimensional problems and cluster 2 contains higher dimensional
problems) whereas cluster 1 contains problems with large PC1 values. HPO
problems are exclusively assigned to cluster 2 or 3, exhibiting low variance with
respect to their PC1 score, with the PC1 values indicating low multimodality.

As a final analysis we determined the nearest BBOB neighbors of the HPO
problems (in ELA feature space based on the cluster analysis, i.e., minimizing
the Euclidean distance over the first two principal component scores). For a
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Fig. 6. Cluster analysis of BBOB and HPO problems on the first two principle com-
ponent scores in ELA feature space.

complete list, see our online appendix. We again computed optimizer rankings
based on the average final performance of the optimizers (over the replications),
but this time for all HPO problems (regardless their dimensionality) and the
subset of BBOB problems that are closest to the HPO problems in ELA fea-
ture space (see Fig. 7). Friedman tests indicated overall significant differences
in rankings for both HPO (χ2(4) = 104.99, p < 0.001) and nearest BBOB
(χ2(4) = 61.01, p < 0.001) problems. We observe similar optimizer rankings,
with MBO and CMAES outperforming Random or Grid, indicating that closeness
in ELA feature space somewhat translates to optimizer performance. Neverthe-
less, we do have to note that GENSA exhibits poor performance on the HPO
problems compared to the nearest BBOB problems. We hypothesize that this
may be caused by the performance of GENSA being strongly influenced by its
hyperparameter configuration itself and provide an initial investigation in our
online appendix.
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(a) HPO.

1 2 3 4 5
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GENSA
Random
Grid

(b) Nearest BBOB.

Fig. 7. Critical differences plots for mean ranks of optimizers on all HPO problems
(left) and the subset of nearest BBOB problems.

https://github.com/slds-lmu/hpo_ela
https://github.com/slds-lmu/hpo_ela
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6 Conclusion

In this paper, we characterized the landscapes of continuous hyperparameter
optimization problems using ELA. We have shown that ELA features can be
used to (1) accurately distinguish HPO from BBOB problems and (2) classify
the dimensionality of problems. By performing a cluster analysis in ELA feature
space, we have shown that our HPO problems mostly position themselves with
BBOB problems of little multimodality, mirroring the results of [30,32]. Deter-
mining the nearest BBOB neighbor of HPO problems in ELA feature space
allowed us to investigate performance differences of optimizers with respect to
HPO problems and their nearest BBOB problems and we observed comparably
similar performance. We believe that this work is an important first step in iden-
tifying BBOB problems that can be used in lieu of real HPO problems when,
for example, configuring or developing novel HPO methods.

Our work still has several limitations. A major one is that traditional ELA is
only applicable to continuous HPO problems, which constitute a minority of real-
world problems. In many practical applications, search spaces include categorical
and conditionally active hyperparameters – so-called hierarchical, mixed search
spaces [34]. In such scenarios, measures such as the number of local optima,
fitness-distance correlation or auto-correlation of fitness along a path of a random
walk [10,13] can be used to gain insight into the fitness landscape. Another
limitation is that our studied HPO problems all stem from tuning XGBoost,
with little variety of comparably low dimensional search spaces, which limits the
generalizability of our results.

In future work, we would like to extend our experiments to cover a broader
range of HPO settings, in particular different learners and search spaces, but also
data sets. We also want to reiterate that HPO is generally noisy and expensive. In
our benchmark experiments, costly 10-fold cross-validation with a fixed instanti-
ating per data set was employed to reduce noise to a minimal level. Future work
should explore the effect of the variance of the estimated generalization error
on the calculation and usage of ELA features which poses a serious challenge
for ELA applied to HPO in practice. Besides, we used logloss as a performance
metric which by definition is rather “smooth” compared to other metrics such
as the classification accuracy (but the concrete choice of performance metric
typically depends on the concrete application at hand). Moreover, ELA requires
the evaluation of an initial design, which is very costly in the context of HPO.
In general, HPO often can be performed with evaluations on multiple fidelity
levels, i.e., by reducing the size of training data, and plenty of HPO methods
make use of this resulting in significant speed-up [21]. Future work could explore
the possibility of using low fidelity evaluations for the initial design required by
ELA and how multiple fidelity levels of HPO affect ELA features.
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We consider our work as pioneer work and hope to ignite the research inter-
est in studying the landscape properties of HPO problems going beyond fitness
measures. We envision that, by improved understanding of HPO landscapes and
identifying relevant landscape properties, better optimizers may be designed,
and eventually instance-specific algorithm selection and configuration for HPO
may be enabled.
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Abstract. The Black Box Optimization Benchmarking (BBOB) set
provides a diverse problem set for continuous optimization benchmark-
ing. At its core lie 24 functions, which are randomly transformed to
generate an infinite set of instances. We think this has two benefits:
it discourages over adaptation to the benchmark by generating some
diversity and it encourages algorithm designs that are invariant to trans-
formations. Using Exploratory Landscape Analysis (ELA) features, one
can show that the BBOB functions are not representative of all possi-
ble functions. Muñoz and Smith-Miles [15] show that one can generate
space-filling test functions using genetic programming. Here we propose
a different approach that, while not generating a space-filling function
set, is much cheaper. We take affine recombinations of pairs of BBOB
functions and use these as additional benchmark functions. This has the
advantage that it is trivial to implement, and many of the properties of
the resulting functions can easily be derived. Using dimensionality reduc-
tion techniques, we show that these new functions “fill the gaps” between
the original benchmark functions in the ELA feature space. We there-
fore believe this is a useful tool since it allows one to span the desired
ELA-region from a few well-chosen prototype functions.

Keywords: Exploratory landscape analysis · Benchmarking · Instance
generator · Black box continuous optimization

1 Introduction

Playing the benchmarking game when developing or choosing an optimization
algorithm is a tricky endeavor. On the one hand, the choice of benchmark func-
tions is crucially important in guiding the development in the right direction by
posing challenging and representative problems. On the other hand, there is no
guarantee that there is a benchmark function that is similar to “my” real world
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problem. A popular choice when faced with this challenge are curated sets of
benchmark functions, such as those contained in the BBOB suite [5]. These sets
have proven so useful, that they are often used for other purposes as well. In
particular, they are often used to generate datasets for a multitude of machine
learning tasks related to algorithm selection or algorithm configuration. While
the original 24 noiseless BBOB functions were designed to cover many proper-
ties of real world problems, they are far from unbiased. Therefore, any dataset
generated using only these functions is also biased. For example, Liao et al. [9]
showed that the choice of a benchmark set has a non-negligible influence on the
benchmark result. This is not really surprising, given that each benchmark suite
is designed for a specific purpose.

While we think it is almost impossible to obtain a completely unbiased func-
tion set, we believe it is possible to generate a function set which is more uni-
formly distributed w.r.t. the set of all problems. Why would we want such a
set? For one thing, we could be more certain, that we haven’t missed any cases
in our empirical studies. Furthermore, and possibly more important, there is an
ever-increasing effort to use machine learning methods to choose or configure
optimization algorithms. As mentioned above, the datasets used to train these
models are currently heavily biased by the choice of benchmark suite used to
generate them.

With exploratory landscape analysis (ELA) [12] there is a method to empir-
ically assess problem properties. We therefore have a tool to check how uniform
our function set is with regard to some ELA features. Here we have to be careful
that we cannot assume, that true uniformity in the statistical sense is what we
ultimately want since little is known about the scaling of the different classes
of ELA features. The other tool we need is some way to ideally arithmetically
define new candidate benchmark functions for our set.

One way to approach this problem is proposed by Muñoz and Smith-
Miles [15]. They represent every function by its eight dimensional ELA feature
vector. Then, using principal component analysis, this space is projected down
to two components. This allows them to visualize a model of the instance space
and to identify points in the instance space and by extension ELA feature com-
binations, which are not yet covered. The identified gaps are then filled using
genetic programming to find functions with the missing ELA feature combi-
nations. This approach is successful and shows promising results by filling the
gaps and even expanding the boundaries of the instance space. However, there
are some drawbacks. For example, in contrast to the BBOB function sets, the
global optima of the generated functions are not known. But we think the most
significant disadvantage is the computational overhead associated with the app-
roach. Ideally, a large number of new benchmark functions are needed to ensure
diversity. Randomly generated benchmark functions also tend to not resemble
real world problems [6]. We believe genetic programming is especially suscep-
tible here. Once it has found a building block that will reliably exhibit some
ELA feature or combination of ELA features, the algorithm will exploit that
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building block as much as it can. Therefore, the internal structure of many of
the generated instances will likely be the same.

An entirely different approach is implemented within the COCO framework
[4]. There is an infinite number of instances of each benchmark function included
in the COCO code. These are obtained by scaling, rotating, and shearing the
parameter and objective space. This scales well and creates just enough diversity
to ensure that the functions are not immediately recognized by the optimization
algorithms. Still the ELA features, and therefore the properties of the instances
barely change as has previously been shown and can also be seen in the plots
later in this paper.

Thus, the need to construct novel benchmarking functions remains, and in
this article we propose a new approach which tries to address some of the previ-
ously mentioned concerns. Our method can be described as something between
the genetic programming approach used in Muñoz and Smith-Miles [15] and the
simple instance generation mechanism used by COCO to vary the benchmark
functions. Our idea is to use well established benchmark functions that were
designed by experts as the “basis vectors” from which we construct new func-
tions. Here, the term basis vector is obviously not meant in the literal sense -
these functions are certainly not orthogonal! We think the analogy is still helpful
because our new functions are convex combinations of pairs of existing bench-
mark functions. Why restrict ourselves to convex combinations and pairs? We
chose convex combinations of pairs of functions because we wanted to stay “in
between” the two functions for visualization purposes. To make the most of the
advantage, which is to start from easily transformable functions, we shift one
function of the recombined pair in such a way that the global optima of both
functions are aligned. This way, our results are new benchmark functions with
known global optima. We determine the properties of the resulting functions
by employing ELA. The resulting data is then used to construct an instance
space using principal component analysis similar to the procedure described in
Muñoz and Smith-Miles [15]. In the following, the experimental methods will be
described in detail.

2 Experimental Methods

2.1 ELA Feature Selection

Research related to ELA has flourished in recent years. This has resulted in
an immense number of landscape features which posses different strengths and
weaknesses. Many of these are fairly similar and in fact, when calculated for
the BBOB functions, are highly correlated. We therefore choose to use only the
following 14 features from the literature:

ela level.lda mmce 25 Mean cross-validation accuracy (MCVA) of a linear dis-
criminant analysis (LDA) for the 25% level set [12].

ela level.lda qda 25 The ratio between the MCVA of a LDA at 25% and the
MCVA of a quadratic discriminant analysis (QDA) for the 25% level set [12].
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ela meta.lin simple.intercept The intercept of the linear regression model
approximating the function [12].

ela meta.lin simple.coef.max The largest coefficient of the linear regression
model approximating the function (excluding the intercept) [12].

ela meta.lin simple.adj r2 Adjusted coefficient of determination of the linear
regression model [12].

ela meta.quad simple.adj r2 Adjusted coefficient of determination of the
quadratic regression model without any interactions [12].

ela meta.quad simple.coef.min by max Ratio between the minimum and the
maximum absolute values of the quadratic term coefficients in the quadratic
regression model without any interactions [12].

ela distr.skewness Skewness of the cost distribution [12].
disp.ratio mean 02 Ratio of the pairwise distances of the points having the best

2% fitness values with the pairwise distances of all points in the design [10].
ic.eps.ratio The half partial information sensitivity [13].
ic.eps.s The settling sensitivity [13].
nbc.nb fitness.cor The correlation between the fitness values of the search

points and their indegree in the nearest-better point graph [7].
entropy.y Entropic significance of first order [11].
entropy.sig dth order Entropic significance of d-th order [20].

For an exact description of the features, we refer the reader to the above cited
literature and the code contained in the supplementary material. Our choice
of features stems from the two sets of features selected by Muñoz and Smith-
Miles [15] and Renau et al. [18]. Muñoz and Smith-Miles [15] select eight features
based on the co-linearity of 33 candidate features. Renau et al. [18] use ten
candidate features to determine even smaller sets of feature combinations, that
are able to characterize BBOB functions sufficiently for different classification
algorithms. Both selection approaches seem valid to us, and the combined set
of features is sufficiently small for our purposes. We therefore skip a rigorous
selection of features and opt to use the combination of both suggested feature
sets with the exception of two. Firstly, we omit the number of peaks of the cost
distribution (ela distr.n peaks [12]). This is due to the fact that we deem
it numerically unstable, meaning it has too many hyperparameters, which in
practice changes the estimated number of peaks drastically. Secondly, we leave
out the feature pca.expl var PC1.cov init [8]. It only captures information
about the sampling strategy and since we don’t vary that here, we can safely
ignore it. With two overlapping features in both lists, we arrive at the 14 features
listed above. It is worth mentioning that Renau et al. [18] findings showed that,
during variation of sample size and search space dimension, in no case more than
six features are necessary to correctly classify the BBOB functions with a target
accuracy of 98%. But since the feature combinations vary w.r.t. dimension and
sample size, we include all of their candidate features such that we have a single
set of features regardless of the dimensionality of the underling instance space.
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Sampling Method. For every function the features are calculated on the basis
of 250 · d sampled points. We choose this sample size since it is the smallest
sample size that resulted in correct classification of the functions for every tested
dimension in the previously mentioned paper by Renau et al. [18]. The choice
of sampling method has a large influence on the resulting ELA features. In fact,
Renau et al. [17] showed that for different sampling strategies, the ELA features
do not necessarily converge to the same values.

As recommended by Santner et al. [19] and further discussed by Renau et
al. [17], we choose to use Sobol sequences [21] as our sampling strategy. For
every function, the feature values are calculated 30 times with samples obtained
from different Sobol sequences. We use the scrambling procedure described
by Owen [16] to obtain 30 different Sobol sequences.

2.2 Function Generation

As stated before, in order to generate new benchmark functions, we recombine
already known and proven benchmark functions. We do this in such a manner
that the known global optima of the combined functions are aligned by shifting
one of the functions. To perform such an affine recombination of two functions,
the pair must be compatible.

Given two real valued functions f0 and f1, with

x∗ := arg min f0(x) = arg min f1(x),

we define the family of functions

f (α)(x) = (1 − α) · f0(x) + α · f1(x) α ∈ [0, 1]

as the convex recombinations of f0 and f1. The domain of f (α) is given by
dom f0 ∩ dom f1 and, by definition, contains x∗.

Note that given any two functions f̂0 and f̂1, you can always shift f̂1 such
that the above conditions are met by defining

f̃1(x) = f̂1(x − (x∗
0 − x∗

1))

where x∗
0 = arg min f̂0(x) and x∗

1 = arg min f̂1(x) and the domain of f̃ is given
by shifting the domain of f̂1 by x∗

0 − x∗
1.

Like already mentioned, we only use functions from the set of 24 noiseless,
single-objective and scalable BBOB functions. These functions are designed to
be evaluated over R

d and their search space is given by [−5, 5]d. Thus, all the
functions have their global minimum inside the search space. This means each
function from this set is per design compatible to be combined with every other
function from the set. This results in

(
242 − 24

)
/2 = 276 possible pairs.

In order to have the new functions once with their optima locations being
equal to the optimum location of f0 and once being equal to the optimum loca-
tion of f1, we calculate every pair twice. Once with shifted f0 and once with
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shifted f1. Thus, this makes a total of 552 pairs. As mentioned before, the trans-
formations performed by COCO to generate different function instances include
translations. Per design, this approach wants to keep algorithms from learning
the optimum location and how to get there by hard while preserving the func-
tions properties (ELA features). Thus, shifting a function by a relatively small
amount does not change its ELA feature values significantly. In line with this,
we do not observe significant differences between pairs with shifted f0 and pairs
with shifted f1. For the recombinations we generally only use the first instances
of the BBOB functions. For this proof of concept we generate recombinations
for the dimensions d ∈ {2, 3, 5, 10, 20}.

Selection of α Values. Varying α would theoretically allow generating an
infinite number of new functions from only one function recombination. But since
small changes in α cannot be expected to cause huge changes in the resulting
functions properties, it is not sensible to generate too many functions from only
one pair. We also need to take into account that the function value ranges do
not always have comparable scales. This means the values need to be chosen in a
manner that circumvents one function dominating for all α values between zero
and one. To avoid this scenario, we use an algorithmic approach based on the
entropy of the cost distribution (entropy.y). Our goal is to choose n = 20 values
for α such, that the corresponding values for the entropy of the cost distribution
are spaced equidistantly between the entropy for α = 0 (f0) and α = 1 (f1).
That is, we choose E1 as the entropy of the cost distribution of f0 and En as
the cost distribution of f1. Thus, this will generate 18 new entropy values E2 to
E19. To find the corresponding α values, we iteratively minimize the quadratic
distance of the linearly spaced entropy and the current calculated entropy w.r.t.
αi

arg min
αi−1<αi<1

(E(fαi) − Ei)2

with i ∈ {2, 3, 4, ..., n − 1}. This is done in a bounded setting where αi must
always be bigger than αi−1 and smaller than 1 (αn). Subtracting the α values
that correspond to the original functions (α1 & αn) we generate 552 · 18 = 9936
new functions. Of course, half of these functions are expected to have similar
properties to the first half (shifting either f0 or f1). We provide the resulting
ELA feature dataset under an open source license for further use [2].

2.3 Principal Component Analysis

To visualize the diversity of the new functions, we follow the approach outlined
in Muñoz and Smith-Miles [15]. While the method to reduce the dimensions
remains the same (PCA), there are several things that set our visualization
approach apart.

First, we use a different set of features as listed above. From this list, we
omit the two entropy features to avoid any artifacts from our generation of α
values in the visualization. Second, we normalize all the feature values individ-
ually to be between 0 and 1 by subtracting the minimum and dividing by the
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Fig. 1. Absolute values of the PCA transformation matrix.

range. Last and most importantly, we determine our transformation matrix on
independently estimated feature vectors of the first 15 instances of all BBOB
functions. These feature vectors are again calculated 30 times, and thus we
have 24 × 15 × 30 = 10 800 12-dimensional feature vectors per dimension.
The absolute values of the coefficients in the resulting transformation matrix
are shown in Fig. 1. With the first two principal components, it is possible
to explain 73.19% of the variance in the instance data set. The first prin-
cipal component is dominated by the features ela meta.quad simple.adjr2,
ela meta.lin simple.adjr2 and ela level.qda mmce 25, while the second
principal component mostly explains the variance of ic.eps.ratio, ic.eps.s
and ela level.lda qda 25.

3 Results

The resulting PCA scatter plots are shown in Fig. 2. All five selected dimen-
sions are visualized independently (in SubFig. 2(a) to (e)) even though the same
transformation matrix is used in every case. Subfigure 2(f) shows the shared
legend for all the plots. The colored points in all the graphs represent the first
15 instances of all BBOB functions. These are the actual instances that we
use to determine the PCA transformation matrix. Every instance is evaluated
on 30 differently scrambled sobol samples, therefore in every graph there are
15 (instances) × 30 (sobol samples) points of the same color. As specified in
the legend, we use a different color gradient for every one of the five function
groups contained by BBOB. The first principal component is always plotted on
the x-axis, while the second principal component is plotted on the y-axis. Look-
ing at the color distribution of the plots, we observe that Separable Functions
and Functions with low or moderate conditioning are generally more distributed
towards the middle and left of the occupied area in the instance space. Functions
with high conditioning and unimodal are settled at the top, while Multi-modal
functions with adequate global structure and Multi-modal functions with weak
global structure can be found more towards the bottom and right. This obser-
vation holds for all dimensions and lets us assume that the employed feature
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(a) d=2 (b) d=3

(c) d=5 (d) d=10

(e) d=20 (f) Legend

Fig. 2. Instance spaces spanned by the first two principal components that resulted
from applying PCA to the ELA feature vector representations of the first 15 instances
of all BBOB functions.For every BBOB function there are 15 (instances) × 30 (sobol
samples) points of the respective color given in the legend. In gray the 30 repetitions
of our 9936 recombinations are plotted. (Color figure online)
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set is largely invariant w.r.t. dimension. These results are in accordance with
Mersmann et al. [12] and Muñoz and Smith-Miles [14], as they again show that
it is possible to correctly classify BBOB functions via ELA features.

In gray, the recombinations are shown as points in the instance space. These
give a good impression of where the new functions are located in the instance
space. We find that the gray points form path like structures between their
building blocks (the two combined functions). This way, a lot by the BBOB
instances unoccupied instance space is now occupied by the recombinations.
Thus, we “fill the gaps” and achieve a more uniform coverage of the convex
hull spanned by the original instances. At the same time, the recombinations
rarely exceed this convex hull and, therefore, do not resemble a space-filling set
of benchmark functions.

While looking at points with the same color, it is possible to get an idea of how
much diversity in terms of changing ELA features is added to the BBOB function
set by the instantiating procedure. We see that points of the same color cluster
together in clusters of 30. These clusters each represent one of the 15 instances
of the BBOB function corresponding to the color. This is especially visible in
case of the green, blue, purple and dark red colored functions. As clusters of
the same color spread over a certain region of the instance space, they remain
rather regional. Therefore, as expected, the variance of ELA features between
different instances of the same function is small. When looking at the spreading
clusters, we also notice that the direction of spread mostly happens in x-direction.
Thus, instantiating might have a larger influence on the features dominating
the first principal component. Comparing this to the recombinations we see
that the path like structures also form in the direction of the second principal
component. We therefore assume that recombinations increase the diversity of
features dominating in the first and second principal component. As the features
of the second principal component only explain roughly 19% of the total original
variance, they are much less important when trying to discriminate the original
BBOB functions. Thus, we believe this approach is able to increase the diversity
of a benchmark suite.

To get a better understanding of the recombination process, we look at Fig. 3.
Here, the recombination results of all pairs that include the unshifted sphere
function are depicted. We choose the sphere function as it can be considered one
of the simplest functions in the set. In this case, we do not show one point for
every sobol sample, but every point corresponds to the average over all 30 sobol
samples. Every function pairing is connected by a line, and every gray point on
that line is a recombination corresponding to a different α value. The lines and
endpoints are again colored according to the legend in SubFig. 3(f).

The figures clearly show paths that interpolate the instance space between
the paired up functions. We think it is interesting that most of the points are
spaced almost equidistantly along the paths, even though we did not use the
entropy feature, used to determine the α values, to construct the instance space.
Some paths show abrupt direction changes which, we think, could be attributed
to something akin to a phase transition in one or several features. For the two-
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(a) d=2 (b) d=3

(c) d=5 (d) d=10

(e) d=20 (f) Legend

Fig. 3. Instance spaces spanned by the first two principal components that resulted
from applying PCA to the ELA feature vector representations of the first 15 instances
of all BBOB functions. Every point is the result from the average over the 30 sobol
samples.For every dimension all recombinations (gray) that include the sphere function
(star) are plotted and connected by a line.The other original BBOB functions are
visualized as colored circles according to the legend. (Color figure online)
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dimensional case, we supply animations that show the changing function land-
scape during variation of α [1].

Another behavior that can be observed is that, in some cases, most of the
recombinations lie on a straight path close to one of the combined functions.
The connecting line to the other function is then best described to be jumping.

4 Outlook

Since this approach is able to fill the convex hull of the instance space, spanned by
the BBOB instances, we think generalization experiments for problem specific
algorithm selection can benefit largely from the new diversity of benchmark
functions. The immense amount of functions that can be generated using the
described method, will allow deeper insight on algorithm performance vs. feature
values. Testing known algorithms on the recombinations can uncover overfitted
hyperparameters, and thus encourage more evenly tuned algorithms. This testing
is especially facilitated by the fact that we know the optimum location of every
generated function.

Besides COCO, the IOH profiler by Doerr et al. [3] is another benchmark
platform for evaluating the performance of iterative optimization heuristics. We
believe the main benefit of this platform is its contribution to understanding
algorithm performance. The IOH analyzer tracks the evolution of dynamic state
parameters during the optimization process, and allows visualizing them vs. the
algorithm budget. Currently, this is done during the optimization process of a
fixed function. Our results could introduce a new dimension to this visualization
approach. Instead of plotting the dynamic state parameters vs. budget, they
could now be plotted vs. the α values of a recombination between, e.g., a uni-
modal and a multimodal function. This would allow insights on to which internal
algorithm parameters are chosen dependent on a changing function landscape.

Lastly, we think the proposed method to artificially generate problem
instances could be a great candidate for further testing the algorithm selection
done by Škvorc et al. [22]. In this work they tested whether an algorithm selec-
tion model trained only on artificially generated problems can correctly provide
algorithm recommendations for the existing BBOB problems. The results showed
that the transfer learning model was not able to do so. It would be interesting
to see whether such a model, trained on the BBOB instances, could correctly
select the best algorithm for the recombinations. If so, this could improve the
understanding of algorithm behavior. It might also help to identify “phase tran-
sitions”, and therewith critical αC values for each individual function pairing.
These values would mark the degree of mixture between two functions, at which
the optimal algorithm changes.

For future work we plan to look into a different algorithmic generation of
α values that explicitly considers function ranges. This might be beneficial while
pairing functions with ranges that differ by several orders of magnitude. Another
interesting direction for the future could be to pair the BBOB functions with
Benchmark functions from other Benchmark sets. By doing this, we hope to
“expand the borders” of the uniformly covered instance space.
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Lastly, we would like to run Benchmark experiments along the recombination
paths. This is another approach of finding the critical αC values. Determining
and then marking them for every path through the instance space could create
borders between regions of dominating optimization algorithms.
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platform for comparing continuous optimizers in a black-box setting. Optim. Meth-
ods Softw. 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

5. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization
Benchmarking 2009: Noiseless Functions Definitions. Research Report RR-6829,
Inria (2009). https://hal.inria.fr/inria-00362633

6. Hooker, J.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42 (1995).
https://doi.org/10.1007/BF02430364

7. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures
by means of exploratory landscape analysis. In: GECCO 2015 - Proceedings of
the 2015 Genetic and Evolutionary Computation Conference, pp. 265–272 (2015).
https://doi.org/10.1145/2739480.2754642

8. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the R-package Flacco.
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Abstract. Neural architecture search (NAS) refers to the use of search
heuristics to optimise the topology of deep neural networks. NAS algo-
rithms have produced topologies that outperform human-designed ones.
However, contrasting alternative NAS methods is difficult. To address
this, several tabular NAS benchmarks have been proposed that exhaus-
tively evaluate all architectures in a given search space. We conduct a
thorough fitness landscape analysis of a popular tabular, cell-based NAS
benchmark. Our results indicate that NAS landscapes are multi-modal,
but have a relatively low number of local optima, from which it is not
hard to escape. We confirm that reducing the noise in estimating perfor-
mance reduces the number of local optima. We hypothesise that local-
search based NAS methods are likely to be competitive, which we confirm
by implementing a landscape-aware iterated local search algorithm that
can outperform more elaborate evolutionary and reinforcement learning
NAS methods.

Keywords: Neural architecture search · Fitness landscapes · Local
optima networks · Neuroevolution · Neural networks · Deep learning

1 Introduction

Neural architecture search (NAS) is a fast growing topic within automated
machine learning (AutoML). The idea is to use search methods to automatically
design the architecture (or topology) of deep neural networks. NAS has pro-
duced neural network models that surpass the performance of human-designed
ones in image recognition [1,2] and natural language processing [1,3]. NAS is
a relatively recent term, coined in 2017 by Zoph and Le [1], but the subject
of research overlaps with earlier topics such as hyper-parameter optimisation,
meta-learning and neuroevolution.

Neuroevolution, the use of evolutionary algorithms to design neural networks,
has a long tradition in evolutionary computation with roots in the late 1980s and
early 1990s [4]. Most neuroevolution systems optimise both the neural network
topology and its weights. However, when scaling up to contemporary deep models
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with millions of weights for supervised learning tasks, gradient-based weight
optimisation generally outperforms evolutionary methods. In consequence, many
recent neuroevolution systems use gradient-based weight optimisation and only
evolve the topology [2,5]. Other approaches to NAS include random search [6,
7], hill-climbing [7], reinforcement learning [1], Bayesian optimisation [8], and
gradient-based optimisation [3].

NAS is generally formulated as a discrete optimisation problem maxa∈Af(a),
where A denotes a set of architectures (the search space) and f(a) denotes the
objective function to be maximised1, often set to the validation accuracy after
training with a fixed set of hyper-parameters. Several search spaces have been
studied [9], including chain-structured networks, which encode a sequence of lay-
ers; multi-branch networks, which incorporate skip connections; and networks
consisting of repeated motifs also called cells or blocks. These cell-based archi-
tectures are designed by combining repeated cells in a predefined arrangement.
Despite the underlying complexity of deep neural network architectures, many
NAS spaces can be encoded as fixed-length strings of symbols of a given alpha-
bet, where symbols represent predefined operations. This is the case of the search
space considered in our study (see Sect. 2 for details).

The performance of NAS algorithms crucially depends on the search space
structure. However, very little work has been devoted to analysing NAS fitness
landscapes [7,10]. Our work is inspired by White et al. [7] findings when study-
ing NAS loss landscapes, which the authors summarise as follows: “. . . we show
that (1) the simplest hill-climbing algorithm is a powerful baseline for NAS, and
(2), when the noise in popular NAS benchmark datasets is reduced to a mini-
mum, hill-climbing outperforms many popular state-of-the-art algorithms”. Our
contributions are to:

– Analyse the fitness landscapes of a established NAS benchmark, using three
landscape analysis techniques not previously used in this setting: (i) density-
of-states [11], fitness-distance correlation [12], and local optima networks [13].
These techniques explore the landscape global structure and have a strong
visual component.

– Explore the impact of reducing the noise in estimating the fitness function
(validation accuracy) on the NAS landscape structure.

– Propose a local search-based NAS method informed by the structure of NAS
landscapes.

2 The Selected NAS Benchmark

It is challenging to provide fair and statistically sound comparisons among NAS
methods due to the different search spaces and training setups, as well as the
high computational costs [6,9]. In response to this challenge, several tabular NAS
benchmarks have been proposed, which exhaustively evaluate all architectures
in a given search space, and store a wealth of training, evaluation and testing

1 NAS can also be formulated as a minimisation problem (minimising validation loss).
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Fig. 1. The macro skeleton of candidate architectures in the search space. The skeleton
is shared by all architectures and only the configuration of the cell (visualised in red)
is subject to change. (Color figure online)

metrics in queryable look-up tables [14–16]. This facilitates the reproducibility
of NAS experiments, drastically reduces the computational costs, and fosters a
wider uptake of this topic. Our experiments use one of these tabular benchmarks,
specifically, the cell-based topology search space St in NATS-Bench [16], also
called NAS-Bench-201 [15].

The NATS-Bench Topology Search Space was inspired by the successful cell-
based NAS algorithms [1–3], it consists of a predefined macro skeleton where
modular (searchable) cells are stacked. Figure 1 illustrates the macro skeleton.
The architecture starts with one 3×3 convolution layer with 16 output channels
and a batch normalisation layer. The main body contains three stacks of cells,
connected by a residual block. Each cell is stacked N = 5 times. The architecture
ends with a global average pooling layer that flattens the feature map in to a
vector. A fully connected layer with softmax is used for the final classification
[16]. The macro skeleton remains fixed for all architectures, what changes is the
configuration of the red cell in Fig. 1. For a given architecture, all the cells in the
macro skeleton will have the same structure. Therefore, searching for a suitable
architecture is reduced to searching for a suitable cell.

A cell is represented as a dense directed acyclic graph (DAG), as illustrated
in Fig. 2a. Each edge in this DAG is associated with an operation that transforms
the feature map from the start to the end node. Operations are selected from a
predefined set of five: (A) zeroize, (B) skip connection, (C) 1 × 1 convolution,
(D) 3×3 convolution, and (E) 3×3 average pooling layer. The zeroise operation
simply drops the associated edge. Therefore, the cell topology is not restricted
to densely connected DAGs. The nodes represent the sum of the feature maps
from the incident edges. The DAG has V = 4 nodes. This number was chosen
to allow the encoding of basic residual block-like cells, which require 4 nodes. A
complete graph with 4 nodes has combinations of 4 in 2,

(
4
2

)
= 6 edges. Since each

edge can be one of 5 operations, the search space contains 56 = 15, 625 unique
neural architectures. Each architecture was trained three times using different
random seeds on three popular image classification datasets: CIFAR-10, CIFAR-
100, and ImageNet-16-120. The training pipeline and hyper-parameters is the
same for all architectures. NATS-Bench [16] provides training, validation, and
test loss and accuracy metrics for all architectures that can be queried via an
API2 with negligible computational costs.

2 https://github.com/D-X-Y/NATS-Bench.

https://github.com/D-X-Y/NATS-Bench
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(a) Cell (b) Genotype

Fig. 2. Encoding of an example architecture showing the mapping from a cell to the
corresponding linear genotype. (a) A cell is represented as DAG with six edges repre-
senting operations taken from a fixed set of five operations (A – E) as indicated in the
legend. (b) A candidate solution (genotype) is encoded as a string of six symbols, each
representing the operation associated with the numbered edge in the DAG.

3 Fitness Landscape Analysis

A fitness landscape [17] is a triplet (S,N, f) where S is a set of admissible
solutions i.e., a search space, N : S −→ 2S , is a neighbourhood structure, a
function that assigns a set of neighbours N(s) to every solution s ∈ S, and
f : S −→ R is a fitness function that measures the quality of the corresponding
solutions. We define below these three components for our NAS formulation.

Search Space. The search space consists of strings of length n = 6 (the
number of edges in the DAG representing the cell, Fig. 2a) in the alphabet
Σ = {A,B,C,D,E}, where each symbol represents a predefined operation. An
example genotype is given in Fig. 2b, where the symbol at position i corresponds
to the operation associated to edge i in the DAG. The size of the search space
is |Sigma|n, that is, 56 = 15, 625 as indicated in Sect. 2.

Neighbourhood Structure. We use the standard Hamming distance 1 neighbour-
hood (1-change operator). The Hamming distance between two strings is the
number of positions in which they differ. Therefore, the neighbourhood N(s) of
solution s includes the set of all solutions at a maximum Hamming distance 1
from s. The size of the neighbourhood is n × (|Σ| − 1), that is, 6 × 4 = 24.

Fitness Function. To measure the performance of each cell we consider the
validation accuracy metric, to be maximised. In NATS-Bench, every architecture
(cell) was independently trained three times using three different random seeds.
Therefore, there are three sets of metrics for each image dataset. Since we are
interested in exploring the effect of noise in the fitness landscape, we follow the
approach in [7], where two ways to draw the validation metric were considered:
(i) using a single value, and (ii) using the average of the three values to obtain
a less noisy estimate. We therefore consider two fitness functions that we call
fsng and favg, to refer to using a single validation accuracy or the average of the
three available values, respectively.
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3.1 Density of States

The density of states (DOS) [11], plots the number of solutions in the search
space with a certain fitness value. Normally, this plot requires sampling the
search space, but since we have access to the whole space, we do not need a
sample and instead use the complete set of solutions. The density of states gives
an indication of the performance of random search or a random initialisation of
metaheuristics, as it gives the probability of having a given fitness value when
a solution is randomly chosen. Moreover, the right tail of the distribution near
optimal fitness values gives a measure of the difficulty of a maximisation problem,
the faster the decay, the harder the problem.
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Fig. 3. Density of states for the two fitness functions fsng (top) and favg (bottom) on
all the datasets. The x-axis shows the whole range of validation accuracy values for
each dataset, grouped in bins of width 0.5 in order to draw the frequency polygons.

In order to visualise the distribution of fitness function values, Fig. 3, shows
frequency polygon plots contrasting the distribution across the two fitness func-
tions, fsng (top) and favg (bottom), for the three image datasets. There is no
clear visual difference between the distributions of the two fitness functions.
Notice that the range of accuracy values (x-axis) is different for each image
dataset, which is consistent with the difficulty of the respective classification
task. The DOS curves show a faster decay towards near optimal fitness in all
cases, indicating that NAS landscapes are not completely smooth. For ImageNet,
there is wider range of accuracy values with high frequency of solutions, indi-
cating a more complex landscape. Another interesting observation is the high
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Fig. 4. Genotype maps of the best 1% (top), and worst 1% (bottom) performing cells
for all datasets, sorted according to favg. Each line in the plots visualises a cell where
positions are coloured according to the respective operation.

frequency of cells with a low accuracy near zero in all plots. A close inspection
revealed that these low accuracy cells correspond to genotypes where three or
more of the symbols are ‘A’, that is zeroise (dropped) operations, so they are
mostly no-operation, empty cells, which explains their low performance.

Figure 4 visualises the configuration of the best 1% (top plots), and worst 1%
(bottom plots) performing cells (genotypes) for the three datasets according to
favg. Each line in these plots is a cell configuration (solution in the search space),
where positions are visualised with colours identifying operations. The rows are
sorted by their favg value, where the cell with the highest fitness value (highest
average accuracy) in the set is the top line of each plot. We can clearly see that
the low performing cells (bottom plots) are those containing a majority of ‘A’
(zeroise, or drop) operations, thus they are mostly empty cells. Specially the
4th positions is always an ‘A’ in the worst performing configurations. The best
performing configurations (top plots) also show a visible pattern, with the most
common operations being ‘C’ (green) and ‘D’ (orange), corresponding to 1 × 1
and 3× 3 convolutions, respectively. The exception is the 4th position, which for
all datasets is mostly a ‘B’ (light blue, skip connection) in the best performing
cells. The plots suggest that the choice of operation for the 4th position (4th

edge in the DAG cell, Fig. 2a) has more impact in performance than the other
positions. An analysis of the frequency of operations in the top 1% performing
cell across the 3 datasets revealed that they rank as follows: D, C, B, A, E with
frequency percentages of: 45.7, 24.8, 19.2, 6.1, 4.1, respectively. We argue that
this information can be used to design informed mutation operations that can
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improve the performance of search heuristics in this domain, and we set to do
that in Sect. 4.

3.2 Fitness Distance Correlation

Since the whole search space is available, and thus the optimal cell is known,
we can compute the distances from all cells in the search space to the global
optimum. Specifically, for each cell i we have a pair (fi, di), where fi is the
validation accuracy (either fsng or fsng) of cell i and di is the Hamming distance
to the cell with the highest validation accuracy (global optimal cell). The FDC
is calculated as the (Spearman) correlation coefficient of this set of (accuracy,
distance) pairs.

Figure 5 shows the FDC plots, as well as the Spearman correlation coeffi-
cients (R) with significance level (p-values) for each image classification dataset.
The top plots show the measurements with a single training seed (fsing), while
the bottom plots show the average of the 3 training seeds available (favg). The
regression lines with confidence regions (95%) are also shown. The horizontal
axes show the Hamming distance between all architectures and the global opti-
mal architecture, while the vertical axes show the validation accuracy of each
architecture. From these plots we can observe that there is a moderate negative
correlation (ranging from −0.33 to −0.46) between distance and fitness (valida-
tion accuracy), suggesting a gradient towards the global optimum. However, for
all studied scenarios, some configurations that differ in 3 or 4 operations from
the global optimum reveal a low accuracy value, these are the cells with a high
number of zeroise operations. For the three datasets, the correlations coefficients
are higher when the less noisy estimation of fitness favg is considered, supporting
the insight from [7] indicating that reducing noise in the estimation of fitness
can improve search. The range of possible values for R is [−1, 1] where, for a
maxisimisation problem, high negative correlations would be regarded as easier
for a hill climber. When FDC was proposed [12], –0.15 ≤ R ≤ 0.15 was classified
as hard, and R ≤ –0.15 was considered as misleading for a minimisation problem.
Using these criteria, none of the problems used in this study is regarded as hard
or misleading. The ImageNet dataset reveals the lowest correlation coefficient,
which supports that this is hardest of the three instances.

3.3 Local Optima Networks

To further understand the landscapes’ global structure, we extract and analyse
local optima networks (LONs)[13]. LONs are graph-based model of landscapes
where nodes are local optima and edges are transitions among optima with a
given search operator.

Definitions. The relevant definitions, and the procedure to construct the LON
modes, are given below.
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Fig. 5. FDC plots for all datasets. The horizontal axes show the Hamming distance
to the global optimum, using the fsng fitness values (top plots), and the less noisy
favg values (bottom plots). The Spearman correlation coefficients with p-value are also
shown.

Local Optima. A local optimum, which in our NAS formulation is a maximum,
is a solution l such that ∀s ∈ N(l), f(l) > f(s). Local optima are identified
with a best-improvement hill-climbing heuristic using the 1-change (Hamming
distance 1) neighbourhood. The set of local optima, denoted by L, corresponds
to the nodes in LON model.

Edges. Edges are directed and based on the perturbation operator 2-change.
There is an edge from local optimum l1 to local optimum l2, if l2 can be obtained
after applying a random perturbation (changing at random 2 locations in the
genotype) to l1 followed by local search. Edges are weighted with estimated
frequencies of transition in a sampling process. The weight is the number of
times a transition between two local optima occurred when constructing the
LON models as detailed below. The set of edges is denoted by E.

LON. The LON is the directed graph LON = (L,E), with node set L, and edge
set E as defined above.

LON Sampling and Construction. To construct the LON models for each dataset
and fitness function, a sampling process is conducted. It consists in running an
iterated local search algorithm (ILS) [18], where the stopping condition is set
to t = 100 iterations without any improvement. This serves the purpose of
empirically estimating the global optimum or the end of a funnel, i.e., a solution
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at the end of an ILS trajectory, where escaping is difficult, if not impossible.
While running ILS, we store in a set L all the unique optima obtained after
the local search stage, and in a set E all the unique edges obtained after a
perturbation followed by local search. To construct the LONs for each image
dataset and fitness function, these sets of nodes and edges are aggregated over
1 000 runs, started from different random configurations.

Network Visualisation. One advantage of network models is that they can
be visualised, bringing useful insight into their structure. Figure 6 illustrates the
LONs for all datasets and fitness functions. The networks capture the whole set of
sampled nodes and edges in each case. In the plots, each node is a local optimum
and edges are perturbation transitions. Plots were produced using force-directed
layout methods as implemented in the igraph R library [19]. The global optimum,
which was unique in all cases, is highlighted in red. The other local optima are
painted in grey. The edges’ colour indicate whether they end in a node with
better fitness (dark gray), worse fitness (orange) or equal fitness (blue). The
size of nodes is proportional to their incoming weighed degree, so larger nodes
indicate attractors in the search process.

The networks in Fig. 6 indicate that for all datasets and fitness functions,
there is a connected component of nodes that can reach the global optimum
(red node) in a few search steps. This is indicative of a multi-modal landscape,
but where it is not too hard to reach the global optimum. For all datasets, there
are fewer local optima when the less noisy fitness function favg is used (Figs. 6d,
6e and 6f), which indicates that improving the fitness estimate facilitates the
search process, as the search paths to the global optimum become shorter.

The LON analysis indicates that the edges considered (changing 2 locations
in the genotype), allow escaping local optima in most cases. This suggests that a
local search based method, coupled with a escape mechanism can be a suitable
NAS search strategy. This is empirically explored in the next section.

4 Search Performance Analysis

4.1 Competing Algorithms

We propose and implement a local search based algorithm, specifically an iter-
ated local search (ILS) method [18]. ILS is a simple yet powerful metaheuristic
that alternates a local search stage with a perturbation stage. We use a first
improvement local search with a 1-change neighbourhood, and a perturbation
operator that changes 2 positions in the incumbent solution. Only improving
moves are accepted. We consider two versions of the ILS: ILS-shuffle where
the values for the 1-change operator are explored in random order and ILS-order
where the 1-change operator uses insights from the landscape analysis. Specif-
ically, following the frequency profile observed in the 1% best-performing cells
(Sect. 3.1 and Fig. 3) we systematically explore neighbours using the following
ordering of the operations: D, C, B, A, E.
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(a) cifar10, fsng, (19,44) (b) cifar100, fsng, (26,41) (c) ImageNet, fsng, (43,145)

(d) cifar10, favg, (10,18) (e) cifar100, favg, (18,27) (f) ImageNet, favg, (28,98)

Fig. 6. LONs for all datasets and the two fitness functions. For each model, the number
of nodes n and edges e are indicated as (n, e). (Color figure online)

We contrast our proposed ILS against the following NAS methods, as imple-
mented in [16].

– Random search (RANDOM) [6]. This serves as the baseline. It draws cells
at random and returns the best found.

– Regularised evolution (REA) [2]. This is a mutation only evolutionary
algorithm that uses tournament selection and introduces the notion of age
to the individuals. The replacement strategy removes the oldest individual
in the population, thus favouring newer cells. This serves as a mechanism to
handle the noisy performance estimation.

– Reinforcement learning (REINFORCE) [1]. This approach frames NAS as
a reinforcement learning problem. The generation of a neural cell correspond
to the agent’s actions, with the action space identical to the search space.
The agent’s reward is based on an estimate of the cell performance on unseen
data.
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Fig. 7. Evolution of average test accuracy across the three datasets.

4.2 Empirical Setup

Our experiments follow the protocol suggested by NATS-Bench [16]. The bench-
mark provides performance data on each neural architecture for two scenarios:
one with 12 epochs, the other 200. The epoch indicates the number of times the
entire training dataset is used while building the model.

We replicate the NATS-Bench experiments by training the models over 12
epochs and using the accuracy calculated on the validation set as feedback to
direct the search. This is meant to simulate a faster but less accurate training
step. The configurations obtained are then evaluated against the test set of the
200 epoch scenario. The best solution found using 12 epochs is therefore not
necessarily the best for 200 epochs. The training time budgets considered for
cifar10, cifar100 and ImageNet datasets are 20 000, 40 000 and 120 000 seconds
respectively. Each algorithm is executed 30 times.

4.3 Results

The average test accuracy is presented on Fig. 7. The different methods have
fairly similar behaviour. ILS, for its part, initially converges slightly slower than
the rest since it is costly to evaluate multiple neighbours before accepting a new
solution. However, on average, it manages to get ahead of the other approaches
within the time budget on the cifar10 and ImageNet datasets. Using ILS-order
improves convergence speed and the final result. As was previously noted [16],
despite its simplicity, random search performs comparatively well, even if it
comes in last.

In order to better grasp the overall performance of the different algorithms,
Fig. 8 presents boxplots of the test accuracy calculated on the cell configurations
found at the end of each run. The ILS-order boxplots are fairly tight, indicating
that there is little spread in the quality of configurations obtained. In contrast,
the results for ILS-shuffle on cifar10 and cifar100 are much more spread out.
This is because its slower convergence means it hasn’t yet reached the very
bottom of the landscape. This is not the case on the ImageNet dataset where
both ILS versions converge to similar solutions within the allotted budget.
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Fig. 8. Test accuracy distribution for configurations found at the end of 30 runs.

On this problem, the challenge for optimisation methods compared to classic
optimisation problems is that the function used to evaluate the end result (test
accuracy) is not the same as the objective function (validation accuracy). We
know from sampling the landscape and LON analysis that ILS is able to reach
the global validation accuracy optima on the benchmarks when there is no time
limit, however this is not a guarantee that the same solution will be the best for
test accuracy.

Overall, ILS proves to be a viable and competitive approach for optimis-
ing neural network topology, especially if appropriate design choices are imple-
mented. Despite its conceptual simplicity, ILS is able to match and even outper-
form more sophisticated approaches within the time budget in this NAS topology
benchmark.

5 Conclusions

We analysed the fitness landscape of a popular tabular, cell-based NAS bench-
mark for image classification. Our analysis revealed that the landscapes are not
trivial to search, they are rugged (multi-modal), however they have a relatively
low number of local optima, from which it is not difficult to escape with a simple
perturbation operation. Our analysis of the best-performing cells indicated that
some operations of the available set appear more frequently than others. We
used this information to design a conceptually simple, yet high-performing local
search based NAS method. On the studied benchmark, our iterated local search
(ILS) implementation outperforms both a reinforcement learning method on the
3 available image datasets, and the state-of-the-art evolutionary method on 2 of
the 3 image datasets. Future work will analyse the landscapes of other available
NAS-benchmarks, as well as test the performance of the proposed ILS on them.
We will also incorporate noise-handling mechanisms into our ILS approach since
our landscape analysis reported a smoother landscape when noise is reduced.
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11. Rosé, H., Ebeling, W., Asselmeyer, T.: The density of states—a measure of the
difficulty of optimisation problems. In: Voigt, H.-M., Ebeling, W., Rechenberg,
I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 208–217. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X 985

12. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: International Conference on Genetic Algorithms, pp.
184–192. Morgan Kaufmann (1995)

13. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Genetic and Evolutionary Computation Conference,
GECCO, pp. 555–562. ACM (2008)

14. Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-
101: towards reproducible neural architecture search. In: International Conference
on Machine Learning, ICML, vol. 97, pp. 7105–7114. PMLR (2019)

15. Dong, X., Yang, Y.: NAS-Bench-201: extending the scope of reproducible neural
architecture search. In: Conference on Learning Representations, ICLR (2020)

16. Dong, X., Liu, L., Musial, K., Gabrys, B.: NATS-Bench: benchmarking NAS algo-
rithms for architecture topology and size. IEEE Trans. Pattern Anal. Mach. Intell.
7(2022), 3634–3646 (2021)

17. Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)
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