
Constructing Covariational 
Relationships and Distinguishing 
Nonlinear and Linear Relationships 

Teo Paoletti and Madhavi Vishnubhotla 

[T]o ground the development of algebraic thinking on the notion of functions and functional 
relationships without, in turn, grounding these on understandings of quantities and quantita-
tive reasoning in dynamic situations, is like building a house starting with the second floor. 
The house will not stand. (Thompson & Thompson, 1995, p. 98) 

1 Introduction 

Mathematics generally (Crisp et al., 2009; Sass, 2015), and algebra specifically 
(Loveless, 2013), serve as gatekeepers that have restricted student access to STEM 
fields. Thus, it is more important than ever that K-12 education supports students in 
developing foundational knowledge and ways of thinking that support their algebra 
learning. However, current algebra curricula and teaching often present an abstract, 
static, symbolic, and largely procedural mathematics (e.g., Hiebert et al., 2005; Litke, 
2020). To increase STEM opportunity, pre-algebra and algebra instruction must 
help students develop ways of thinking that are meaningful, accessible, and appli-
cable broadly across STEM fields. One of these ways of thinking is covariational 
reasoning, the ability to construct and reason about relationships between quantities 
changing together. Students are not currently being provided sufficient opportunities 
to reason about covarying quantities (Frank & Thompson, 2021; Smith & Thompson, 
2008; Thompson & Harel, 2021). As reflected in the opening quote, the lack of 
opportunities to reason about covarying quantities may explain much of students’

T. Paoletti (B) 
School of Education, University of Delaware, Willard Hall, Newark, DE 19716, USA 
e-mail: teop@udel.edu 

M. Vishnubhotla 
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, 
VA 24061, USA 
e-mail: madhavi@vt.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
G. Karagöz Akar et al. (eds.), Quantitative Reasoning in Mathematics 
and Science Education, Mathematics Education in the Digital Era 21, 
https://doi.org/10.1007/978-3-031-14553-7_6 

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14553-7_6&domain=pdf
mailto:teop@udel.edu
mailto:madhavi@vt.edu
https://doi.org/10.1007/978-3-031-14553-7_6


134 T. Paoletti and M. Vishnubhotla

difficulties with algebra; students are not being provided with a foundation on which 
to build their more formal algebra knowledge. 

In this chapter, we propose that middle school students would be better served first 
having opportunities to reason about dynamically changing quantities to construct 
basic types of covariational relationships. These covariational relationships can 
serve as the foundation for students’ activity as they begin to use multiple repre-
sentations (e.g., graphs, tables, equations) to represent such relationships. In the 
following sections, we first outline our theoretical framework, which details the 
requisite meanings students need to construct, reason about, and represent covaria-
tional relationships between continuously changing quantities. We then outline a task 
sequence we iteratively designed and tested to support students in constructing, coor-
dinating, and graphically representing covarying quantities. Throughout, we use two 
students’ activity to exemplify the productivity of this task sequence. We conclude 
by discussing implications for student reasoning and highlighting the potential for 
such activity to serve as a foundation for students developing meanings for various 
functional relationships. 

2 Theoretical Background 

Prior to presenting our task sequence, we describe constructs relevant to how students 
construct, coordinate, and represent covarying quantities. We then describe how 
students can leverage their covariational reasoning to characterize basic types of 
covariational relationships and differentiate between nonlinear and linear relation-
ships. We conclude by characterizing the requisite meanings students must maintain 
to represent such relationships graphically. 

2.1 Foundations of Covariational Reasoning 

In this section, we first describe the theoretical framework we use when characterizing 
students’ quantitative and variational reasoning. We then present our coordination of 
the frameworks from Carlson et al. (2002) and Thompson and Carlson (2017) that 
we leverage. 

2.1.1 Quantitative and Variational Reasoning 

Several researchers (see Thompson & Carlson, 2017 for a review) have begun 
to explore ways in which students’ quantitative reasoning (Thompson, 2011) 
can support their development of productive meanings for various mathematical 
ideas. Adopting this theory, we contend that quantities are conceptual entities a 
student constructs to make sense of some phenomenon. A student’s quantitative
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reasoning can involve numerical and non-numerical reasoning (Johnson, 2012; 
Moore et al., 2019), but the essence of quantitative reasoning is non-numerical 
(Smith & Thompson, 2008). There are numerous ways students can reason about 
magnitudes (see Thompson et al., 2014), but we are particularly interested in students 
conceiving of an increasing or decreasing amount of a measurable attribute of an 
object or phenomenon. Furthermore, although a student can reason quantitatively 
about static quantities (e.g., comparing two static lengths to determine the measure 
of one length in terms of the other), we attend to students’ variational reasoning about 
conceived dynamic quantities. 

In this report, we leverage and refine Thompson and Carlson’s (2017) varia-
tional reasoning framework (Table 1) based on our attempts to analyze student 
activity using this framework. Specifically, we add smooth variational reasoning, 
which entails a student reasoning about the variation of a quantity’s magnitude or 
value as changing smoothly across an interval. Such reasoning is not as sophisti-
cated as smooth continuous variation. Smooth continuous variation entails smooth 
variation with an additional anticipation that any smaller sub-interval would also 
entail smooth and continuous variation; we only characterize a student as engaging 
in smooth continuous variation if the student explicitly describes such smaller sub-
intervals. In our research, we often observed students engaging in smooth variation 
without explicitly considering or describing sub-intervals, thereby creating a need 
for a new level within the framework. We note our characterization of smooth vari-
ational reasoning is more sophisticated than gross variation and chunky continuous 
variation, as the student anticipates the quantity takes on magnitudes or values while 
changing between intervals of a fixed size (Thompson, personal communication).

We note that while Thompson and Carlson (2017) use the term levels in both their 
variational and covariational reasoning framework, these levels are not necessarily 
hierarchical. Students do not need to move sequentially up from the lowest to the 
highest level. Thompson and Carlson (2017) cautioned researchers not see these 
levels as 

a learning progression in the sense that one level should be targeted instructionally before 
the next higher level. As Castillo-Garsow et al. (2013) point out, teachers should emphasize 
smooth variation in their talk and actions whenever they can. Students will reason at the 
level they will, and if at some point in time they reason variationally at the highest level, 
they get all other levels for free. (p. 440) 

Consistent with this recommendation, we design tasks we intend to promote 
smooth variation in students’ reasoning. 

To exemplify several of the levels in Table 1, and the distinctions we make 
moving forward, we will use the Triangle/Rectangle Task. In the  Triangle/Rectangle 
Task, students are presented with a GeoGebra applet which presents an (apparently)
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Table 1 An amended version of Thompson and Carlson’s (2017) major levels of variational 
reasoning (p. 440), with changes in bold 

Level Description 

Smooth continuous variation The person thinks of variation of a quantity’s or variable’s 
(hereafter, variable’s) value as increasing or decreasing (hereafter, 
changing) by intervals while anticipating that within each interval 
the variable’s value varies smoothly and continuously 

Smooth variation (added) The person thinks of variation of a variable’s value as 
changing smoothly across an interval without considering 
sub-intervals within the interval. The person anticipates that 
the variable changes from a to b smoothly by taking all values 
between a and b without attending to sub-intervals within the 
interval from a to b 

Chunky continuous variation The person thinks of variation of a variable’s value as changing 
by intervals of a fixed size…The person imagines, for example, 
the variable’s value varying from 0 to 1, from 1 to 2, from 2 to 3 
(and so on), like laying a ruler. Values between 0 and 1, between 
1 and 2… and so on, “come along” by virtue of each being part of 
a chunk…but the person does not envision that the quantity has 
these values in the same way it has 0, 1, 2, and so on, as values 

Gross variation The person envisions that the value of a variable increases or 
decreases, but gives little or no thought that it might have values 
while changing 

Discrete variation The person envisions a variable as taking specific values. The 
person sees the variable’s value changing from a to an by taking 
values a1, a2, …,  an but does not envision the variable taking any 
value between ai and ai + 1 (i = 1, 2, …, n) 

No variation The person envisions a variable as having a fixed value. It could 
have a different fixed value, but that would be simply to envision 
another scenario 

Variable as symbol The person understands a variable as being just a symbol that has 
nothing to do with variation

smoothly1 growing triangle and rectangle (Fig. 1; https://www.geogebra.org/m/cxe 
evsyc). The two shapes have equal base lengths (highlighted in pink) defined by 
the slider value (a), which ranges from 0 to 5. The shorter slider allows students 
to change the increment with which the a-values change, from apparently smoothly 
(in increments of 0.01) to larger chunks (in increments of 1.0). We ask students to 
consider variations in each shape’s base length and area as the animations play to 
support students in conceiving of each shape’s base length and area as quantities in 
the situation.

1 We acknowledge that, due to the digital nature of the task, all quantities vary according to the 
discrete parameters set in the applet, which is why we refer to the quantities as varying (apparently) 
smoothly. Hereafter, we will use smoothly to convey the (apparently) smooth nature of the variations 
in the applets. 

https://www.geogebra.org/m/cxeevsyc
https://www.geogebra.org/m/cxeevsyc
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Fig. 1 Screenshots of the triangle/rectangle task 

Particular to students’ variational reasoning, gross variational reasoning is 
common when students begin to conceive quantities in the situation. For example, 
a student may initially conceive that each shape has an increasing area as the base 
length is increasing. If a student conceives area as varying smoothly as the slider 
increases from 0 to 5 without providing any description of how the area is changing 
within subintervals, we only classify the student as engaging in smooth variational 
reasoning. Evidence for smooth variational reasoning may entail students using 
smooth hand motions or active voice to describe how quantities are changing (e.g., 
motioning to represent an interval of changing a-values, describing “the a-value 
starts at 0 and increases until it reaches 5”). We classify a student as engaging in 
smooth continuous variational reasoning if the student anticipates and explicitly 
describes variations of area within smaller subintervals (e.g., describing what could 
be happening to area as the base length varies from 1.77 to 1.78). 

If a student is constrained to reasoning about incremental changes of a fixed size 
of the base length (e.g., 0.01, 1.0, or some other value), then we would categorize 
the student’s reasoning as entailing chunky continuous variation. It is common for 
students to exhibit chunky continuous variational reasoning when they describe how 
the area changes if the short slider is set to integer values (e.g., describing “the area of 
the triangle jumps by bigger amounts”). Although such reasoning is chunky, chunky 
reasoning is critical to differentiate between different patterns of growth (Vishnub-
hotla, 2020). Hence, several tasks are designed to support students in engaging in
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both smooth and chunky thinking. However, we always start by presenting contin-
uously changing phenomena as we concur with Castillo-Garsow et al. (2013), who 
contended: 

smooth thinking would entail a capacity to think in chunks (or, at least at its foundation, one 
chunk). In contrast, in our experience with students, chunky thinking does not seem to entail 
a capacity to think smoothly, nor does chunky thinking seem to provide a cognitive root for 
smooth thinking. (p. 36) 

With the idea that smooth thinking can entail chunky thinking, we design tasks that 
allow students to first experience and possibly conceptualize a smoothly changing 
phenomenon. Only after such opportunities do we introduce features of the applet 
that allow the quantities to change in chunks. 

2.1.2 Covariational Reasoning: Coordinating Frameworks 

As our goal is for students to coordinate and represent (at least) two varying quantities, 
we also attend to students’ covariational reasoning (Carlson et al., 2002; Thompson & 
Carlson, 2017). In this section, we first offer an overview of covariational reasoning 
and multiplicative objects. We then provide the theoretical underpinnings for how 
we design tasks to support students’ covariational reasoning by relating our interpre-
tations of Carlson et al.’s (2002) framework with Thompson and Carlson’s (2017) 
covariational reasoning framework (Table 2).

Researchers (Carlson et al., 2002; Saldanha & Thompson, 1998) have contended 
covariational reasoning is developmental. Saldanha and Thompson (1998) described 
that initially a student is likely to coordinate two quantities by thinking, “of one, then 
the other, then the first, then the second, and so on” (p. 299). Through this process, 
the student can develop an operative image of covariation that entails a relationship 
between quantities that results from imaging both quantities being tracked for some 
duration. Elaborating on their description of covariational reasoning Saldanha and 
Thompson (1998) stated: 

[Covariational reasoning] entails coupling the two quantities, so that, in one’s understanding, 
a multiplicative object is formed of the two. As a multiplicative object, one tracks either 
quantity’s value with the immediate, explicit, and persistent realization that, at every moment, 
the other quantity also has a value. (p. 299) 

Elaborating on their use of multiplicative object, which stems from Piaget’s notion 
of ‘and’ as a multiplicative operator, Thompson et al. (2017) noted, “A person forms 
a multiplicative object from two quantities when she mentally unites their attributes 
to make a new attribute that is, simultaneously, one and the other” (p. 98). Hence, 
covariational reasoning entails understanding the simultaneity of two quantities’ 
magnitudes or values in relation to each other. 

As we are particularly interested in supporting students in conceiving smoothly 
changing phenomena, we use dynamic applets that could support students in antici-
pating that quantities covary smoothly, as recommended by others (Castillo-Garsow 
et al., 2013; Johnson, 2020; Stevens et al., 2017). We agree with Castillo-Garsow
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Table 2 An amended version of Thompson and Carlson’s (2017) major levels of covariational 
reasoning (p. 441), with changes in bold 

Level Description 

Smooth continuous covariation Envisioning changes in one quantity’s or variable’s value as 
happening simultaneously with changes in another variable’s 
value, and the person envisions both variables varying via 
smooth continuous variation 

Smooth covariation (added) Envisioning changes in one quantity’s or variable’s value 
as happening simultaneously with changes in another 
variable’s value, and the person envisions both variables 
varying via smooth variation 

Chunky continuous covariation Envisioning changes in one variable’s value as happening 
simultaneously with changes in another variable’s value, with 
both variables varying with chunky continuous variation 

Coordination of values Coordinating the values of one variable (x) with values of 
another variable (y) with the anticipation of creating a discrete 
collection of pairs (x, y) 

Gross coordination of values Forming a gross image of quantities’ values varying together. 
Envisioning a loose link between the overall changes in two 
quantities’ values. The person does not envision that 
individual values of quantities go together. Instead, the person 
envisions a loose, non-multiplicative link between the overall 
changes in two quantities’ values 

Pre-coordination of values Envisioning two variables’ values varying, but 
asynchronously—one variable changes, then the second 
variable changes, then the first, and so on. The person does not 
anticipate creating pairs of values as multiplicative objects 

No coordination Having no image of variables varying together

et al.’s (2013) assertion that smooth thinking can serve as a cognitive root for chunky 
thinking, and therefore design tasks to provide students opportunities to first antici-
pate quantities changing smoothly. Specifically, we design tasks to support students 
in moving from gross coordination of values to smooth or smooth continuous covari-
ational reasoning, initially bypassing chunky continuous covariational reasoning 
(Table 2; Thompson & Carlson, 2017). Gross coordination of values (Table 2), which 
Carlson et al. (2002) referred to as coordinating direction of change, is common when 
students are first conceiving a relationship between covarying quantities (e.g., “the 
triangle’s area and base length are both increasing”). 

After students conceive of the directional changes in two quantities, they can 
further conceive the relationship via smooth or smooth continuous covariational 
reasoning. Due to our addition of smooth variational reasoning, we also amend 
Thompson and Carlson’s (2017) covariational framework to differentiate between 
smooth covariation and smooth continuous covariation (Table 2). The primary 
distinction we make is to differentiate conceiving each quantity at the smooth varia-
tional or smooth continuous variational level. We would characterize a student who 
consistently attends to simultaneous variations in two quantities across an interval,
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without describing subintervals, as engaging in smooth covariational reasoning. 
For example, a student may describe that, until a ball thrown in the air reaches 
its maximum height, the ball’s height increases and its velocity decreases without 
explicitly describing the ball’s height or velocity within any sub-interval. We char-
acterize such reasoning as smooth covariational reasoning unless a student explicitly 
describes the quantities values within sub-intervals. 

After students have had opportunities to engage in smooth (or smooth contin-
uous) covariational reasoning, we provide opportunities for students to engage in 
chunky continuous covariational reasoning (Thompson & Carlson, 2017). Partic-
ularly, we are interested in supporting students in reasoning about what Carlson 
et al. (2002) referred to as amounts of change (e.g., the change in a triangle’s area 
increases as the base length increases in equal successive amounts). Although there 
are ways students may engage in chunky continuous covariation without attending 
to the amounts of change of one quantity for equal changes in the second quan-
tity, reasoning about amounts of change is a particular form of chunky continuous 
covariational reasoning (Thompson, personal communication). In this paper, when 
we refer to a student engaging in chunky continuous covariation, we refer specifi-
cally to a student reasoning about amounts of change as described by Carlson et al. 
(2002). As we describe in the next section, such reasoning can productively interplay 
with students’ smooth reasoning as they conceive of different types of covariational 
relationships (e.g., Paoletti & Moore, 2017). 

2.2 Using Direction and Amounts of Change to Conceive 
the Basic Types of Covariational Relationships 
and Distinguish Between Nonlinear and Linear 
Relationships 

Smooth covariational reasoning can support students in conceiving of the directional 
change of two quantities. A student can conceive that as the first quantity increases 
or decreases, the second quantity increases, decreases, or remains constant. If both 
quantities are changing (i.e., the second quantity is not constant), engaging in chunky 
continuous covariational reasoning is necessary to further characterize a covaria-
tional relationship. Specifically, students can examine equal successive changes in 
the first quantity to explore whether the amounts of change of the second quantity are 
increasing, decreasing, or remaining constant. For example, in the Triangle/Rectangle 
Task, a student may conceive that, as the base length increases, the triangle’s area 
increases by increasing amounts (as represented by the consecutive trapezoids on 
the triangle in Fig. 2). For the rectangle, the student may identify that, as the base 
length increases, the rectangle’s area increases by equal amounts (as represented by 
the five consecutive rectangles in Fig. 2).

Table 3 presents the basic types of covariational relationships that a student can 
conceive by focusing explicitly on directional and amounts of change. We note that,
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Fig. 2 A screenshot of the triangle/rectangle task showing amounts of change of area for equal 
integer changes of base length

Table 3 The basic types of 
covariational relationships 

First quantity Directional change in 
second quantity 

Amounts of change in 
second quantity 

Increasing or 
decreasing 

Constant N/A 

Increasing By equal amounts 

By increasing 
amounts 

By decreasing 
amounts 

Decreasing By equal amounts 

By increasing 
amounts 

By decreasing 
amounts

due to the prevalence of students’ presuming all relationships are linear after learning 
about linear functions (e.g., De Bock et al., 2007; Esteley et al., 2010), we intention-
ally provide students repeated opportunities to construct various nonlinear relation-
ships prior to considering a linear relationship. As described in the introduction, we 
conjecture providing students opportunities to construct these basic types of covari-
ational relationships can serve as the foundation for students’ meanings for various 
nonlinear and linear relationships. Based on prior experiences, and as exemplified in 
the Faucet Task (Sect. 4.1), we found it important to provide students with repeated 
opportunities to construct and reason about different directional relationships first. 
After such experiences, students can experience an intellectual need (Harel, 2008) 
to further characterize such relationships via the amounts of change of the second 
quantity with respect to the first. 
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2.3 Representing Covariational Relationships Graphically 

In the above descriptions, we characterize students’ reasoning about quantities in situ-
ations. To represent a covariational relationship graphically, it is important to attend 
to students’ meanings for the underlying coordinate system. Lee and colleagues (Lee, 
2016; Lee et al., 2020; Paoletti et al., 2022) distinguished two types of coordination 
that result in two uses of coordinate systems in students’ thinking: spatial coordinate 
systems and quantitative coordinate systems. Spatial coordination refers to an indi-
vidual using a coordinate system to represent a physical space or phenomenon. The 
resulting spatial coordinate system organizes the space (or an analogous space) in 
which the phenomenon is conceived (e.g., a map). 

Students must construct a quantitative coordinate system to represent two quanti-
ties that are not established spatially in a physical space (e.g., temperature, pressure). 
To construct a quantitative coordinate system, a student must first establish quanti-
tative frames of reference (Joshua et al., 2015) within the situation. They can then 
disembed the quantities from the situation while maintaining an awareness of the 
situational quantities (Steffe & Olive, 2010) and project the quantities onto the quan-
titative coordinate system. Produced graphs in a quantitative coordinate system are 
not projections of physical phenomena onto the same space containing the original 
objects or phenomena. 

To construct a quantitative coordinate system in the context of area and base 
length of the triangle in the Triangle/Rectangle Task (Fig. 3a–c), a student must 
first conceive of the triangle’s area and base length as quantities. Then, intending 
to represent the quantities on a coordinate system, the student must consider repre-
senting each magnitude (or value) with a corresponding line segment. The student 
may disembed area and base length from the situation and represent them with a 
green segment on the vertical axis and a pink segment on the horizontal axis, respec-
tively (e.g., the segments on the axes in Fig. 3a–c). The student can then anticipate 
that variations in the quantities’ magnitudes (or values) correspond to variations 
in the segments’ magnitudes (or values). For example, the student may leverage 
their situational understanding to argue that if they move the slider to the right, the 
green segment will go up and the pink segment will go to the right as the area and 
base length are both increasing. As representing nonlinear quantities using linear 
segments is non-trivial (Johnson et al., 2017; Paoletti et al., accepted), we provide 
students repeated opportunities to consider how line segments could be used to repre-
sent such quantities, often using tasks similar to the ‘Which One’ task described by 
Moore and colleagues (Liang & Moore, 2020; Stevens et al., 2017).

With a quantitative coordinate system in mind, a student can then conceive of 
a point as a multiplicative object (Lee, 2016; Lee et al., 2020; Thompson, 2011) 
that simultaneously represents the two segments’ magnitudes on the axes. This point 
reflects the multiplicative object the student conceived of when reasoning covaria-
tionally by representing the two quantities’ simultaneous values at every moment. 
For example, a student may argue that moving the slider to the right will result in the
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Fig. 3 Screenshots of the triangle/rectangle task applet with a coordinate system shown

point representing (triangle’s base length, triangle’s area) in Fig. 3 moving diagonally 
up and to the right because the triangle’s area and base length both increase. 

2.3.1 Emergent Graphical Shape Thinking 

Leveraging the aforementioned descriptions of covariational reasoning, Moore and 
colleagues have differentiated between students’ static and emergent graphical shape 
thinking (Moore, 2021; Moore & Thompson, 2015). Moore and Thompson (2015) 
described emergent graphical shape thinking (hereafter emergent thinking) as: 

understanding a graph simultaneously as what is made (a trace) and how it is made (covari-
ation)… [E]mergent shape thinking entails assimilating a graph as a trace in progress (or 
envisioning an already produced graph in terms of replaying its emergence), with the trace 
being a record of the relationship between covarying quantities. (p. 785) 

Students’ conceptions of quantities, coordinate systems, and points as multiplica-
tive objects are all critical to their emergent thinking. Prior to conceiving a graph 
as an emergent trace of covarying quantities, students must construct quantities and 
consider how such quantities could be represented on a coordinate system.2 They 
must then conceive of a point as a multiplicative object simultaneously representing 
two quantities. With such a conception in mind, a student can conceive of a graph in

2 Paoletti et al. (2018) characterize ways students could engage in emergent thinking in both spatial 
and quantitative coordinate systems. 
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Fig. 4 Trace of a point simultaneously representing the triangle’s changing area and side length 

terms of an emergent, progressive trace constituted by the point’s movement dictated 
by the covarying quantities’ magnitudes represented on the axes. 

To support students’ emergent thinking, we use GeoGebra’s ‘trace’ feature to 
trace the point’s motion. For example, we have students trace the point in Fig. 3a–c 
to produce the graph in Fig. 4 representing a record of the relationship between the 
triangle’s base length and area. 

In addition to having students observe points producing emergent traces in 
multiple contexts, we leverage two other techniques to support their emergent 
thinking. First, as we have contended elsewhere (e.g., Paoletti, 2019; Paoletti & 
Moore, 2017), students’ reasoning about the same final graph as being producible 
by different traces is a strong indication of a student engaging in emergent thinking; 
hence, we often provide students with opportunities to engage in such reasoning. For 
example, in the context of the Triangle/Rectangle Task, this opportunity can entail 
having the animation play in reverse (with a going from 5 to 0). 

Second, we often leverage animations, applets, or videos with deliberate pauses. 
Such pauses provide students opportunities to explicitly attend to the two quantities 
under consideration (e.g., if the animation pauses and the quantities stop varying, 
then the point does not move). For example, we use a video of the growing triangle 
that deliberately pauses for several seconds at two a-values to provide students with 
opportunities to consider how such pauses impact their graphs. Such opportunities 
help address a common difficulty students experience with graphs, namely, reasoning 
univariationally about one quantity with respect to time (e.g., Carlson et al., 2003; 
Leinhardt et al., 1990; Paoletti, 2015). Students using such reasoning might expect 
that, if the animation pauses, the graph should contain a straight horizontal line to 
represent the pause.
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2.3.2 Differentiating Between Nonlinear and Linear Relationships 
Graphically 

Particular to differentiating between nonlinear and linear relationships, once a student 
has conceived of each type of relationship situationally (as described in Sect. 2.2), 
they can consider how such changes will constrain the movement of the segments and 
the point in the coordinate system. For example, in the Triangle/Rectangle Task, a  
student may conceive that the increasing changes in the triangle’s area will correspond 
to increasing jumps of the segment representing area along the vertical axis (shown in 
Fig. 5a). These changes will therefore create points with increasing vertical changes 
for equal horizontal changes, represented by the large green dots in the coordinate 
system in Fig. 5a. The student may then leverage their smooth covariational reasoning 
to anticipate the smooth nature of the increasing quantities to draw a smooth (concave 
up) curve representing the relationship. The student can engage in similar reasoning 
for the growing rectangle where the vertical changes are equal, thereby creating a 
straight graph (Fig. 5b). In both cases, the student understands the shape of the graph 
is dictated by the relationship between the covarying quantities, which is indicative 
of emergent thinking. 

3 Methods, Participants, and Analysis 

The results reported here are a part of a larger design-based research study (Cobb 
et al., 2003) involving six small group teaching experiments (Steffe & Thompson, 
2000). The goal of the study was to examine ways to support middle school 
students developing various mathematical ideas via their variational and covaria-
tional reasoning. We iteratively designed, tested, and redesigned tasks and a task

Fig. 5 Graphs representing nonlinear and linear relationships for the Triangle/Rectangle Task 
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sequence that was productive for this goal. In this report, we describe the final task 
sequence we designed and use student data to exemplify ways students engage with 
the task sequence. We briefly describe the subjects and data analysis below. 

3.1 Subjects and Setting 

We conducted the teaching experiments in a school in the Northeastern U.S. that hosts 
a diverse student population with over 75% students of color and over 67% students 
who qualify for free or reduced-price lunch. We chose to work with middle school 
students because they had not taken or completed Algebra I. We asked teachers to 
recommend students who would be willing to participate and could articulate their 
thinking. 

In this report, we focus on two male students, Vicente (Hispanic) and Lajos (Asian) 
(pseudonyms), as they engaged with the task sequence. The students participated in 
10 teaching episodes that mostly occurred one week apart (February through May), 
though, due to scheduling constraints (e.g., spring break), some sessions occurred 
two weeks apart. Each session lasted approximately 40 min. We only report on their 
activity in the first 8 sessions, as it is critical to their differentiating between linear 
and nonlinear relationships. Table 4 provides an overview of the 8 sessions including 
the time span and the task the students were engaged in during each session.

3.2 Data Analysis 

We employed on-going and retrospective analyses to characterize models of each 
student’s reasoning. During each phase of analysis, we conducted conceptual anal-
ysis—“building models of what students actually know at some specific time and 
what they comprehend in specific situations” (Thompson, 2008, p. 105). To accom-
plish this, we analyzed the records using open (generative) and axial (convergent) 
approaches (Strauss & Corbin, 1998). Specifically, we watched all videos and identi-
fied instances that provided insights into each student’s reasoning about, coordination 
of, or representations of varying and covarying quantities. We developed tentative 
models of each student’s mathematics with special attention to the students’ covari-
ational reasoning and emergent thinking, including the possibility that they were 
distinguishing between the different types of relationships (e.g., linear and nonlinear). 
To test these models, we returned to the previously identified instances, searching for 
supporting or contradicting instances. When evidence contradicted our models, we 
revised the models based on interpretation of latter instances. This iterative process 
resulted in viable models of each student’s mathematics. We reiterate that our goal 
in this paper is not to present complete models of the students’ mathematics but to 
use evidence from these models to exemplify the efficacy of the task sequence.
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Table 4 A summary of the teaching experiment sessions 

Session Month Task Reasoning supported 

1 February Faucet task Construct numerous directional 
relationships 

2 March Faucet task Construct a quantitative coordinate 
system and graph directional 
relationships 

3 March Faucet task Reason emergently to represent 
directional relationships 

4 March Growing triangle task Construct an increasing by increasing 
amounts relationship 

5 March Pausing triangle task 
Shrinking triangle task 

Explicitly reason emergently 
Construct a decreasing by decreasing 
amounts relationship 

6 April Growing trapezoid task Construct an increasing by decreasing 
amounts relationship 

7 April Triangle/rectangle task Construct an increasing by constant 
amounts relationship 
Differentiate between nonlinear and 
linear relationships 

8 April Triangle/rectangle task Graph nonlinear and linear 
relationships

4 Building to Nonlinear and Linear Growth: A Task 
Sequence with Student Work 

In this section, we describe most of the final task sequence that supported students 
reasoning covariationally to construct and graphically represent many of the basic 
types of covariational relationships (Table 3) and differentiate between nonlinear and 
linear relationships. For each task, we first describe the task and how it relates to 
our goals for student learning. We then present results highlighting how Vicente and 
Lajos engaged in the task and connect their activity back to our goals and theoret-
ical framework. Notably, all tasks were situated in an experientially real situation 
(Gravemeijer & Doorman, 1999) that entailed quantities we intended to be conceived 
as varying smoothly (i.e., entail smooth variation). As we are interested in middle 
school students’ initial variational and covariational reasoning, we did not design 
tasks with eliciting smooth continuous variational reasoning in mind.
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4.1 The Faucet Task: Gross Covariational Reasoning 
and Emergent Thinking 

We designed the Faucet Task (https://ggbm.at/rdxkrwek; see Fig. 6 for screenshots 
of initial applet) for two primary purposes. First, the Faucet Task provides students 
repeated opportunities to engage in smooth covariational reasoning in which one 
quantity (temperature) increased, decreased, or remained constant as the other quan-
tity (amount of water) increased or decreased, reflecting the directional relationships 
in Table 3. Second, we designed this task to have students consider how to represent 
two changing quantities as an emergent trace in a quantitative coordinate system. 

4.1.1 Students’ Quantification and Directional Covariation 
in the Faucet Task 

To support students’ quantification, at the outset of the Faucet Task, we present 
students with a GeoGebra applet intending to represent a faucet with water coming 
out (Fig. 6). Students can use red and blue sliders to smoothly turn the hot and cold 
knobs on and off. As they do so, the rectangle below the faucet smoothly increases 
or decreases in width to represent the changing amount of water leaving the faucet. 
Further, the color of the water changes to represent the water’s changing temperature 
(darker red for hotter, darker blue for colder). Initially, our goal is to provide students 
with the opportunity to construct quantities within the situation. 

After Vicente and Lajos explored the applet, the teacher-researcher (TR) asked 
them what quantities they can measure, with the intention of discussing water temper-
ature and amount of water leaving the faucet (e.g., flow rate, water pressure). Vicente 
quickly identified “temperature or direction of the knobs” as quantities we could 
consider, with Lajos adding “the degree of the [knob]”. Shortly thereafter, Vicente 
described the “speed” of the water as another quantity, which we referred to as the 
“amount of water” or “volume” throughout the rest of the task. Both students had 
constructed amount of water and water temperature as quantities in the situation.

Fig. 6 Several screenshots for Scenario A of the Faucet Task with the cold-water knob being turned 
all the way on 

https://ggbm.at/rdxkrwek
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After students describe water temperature and amount of water, the TR further 
describes the faucet system in relation to an “engineering problem.” The applet 
reflects that, situationally, if only cold water is turned on then the temperature of the 
water leaving the faucet is the constant temperature of groundwater. Similarly, if only 
hot water is turned on, then the temperature of the water is the constant temperature 
determined by the hot water heater’s settings. This conversation includes describing 
why water feels as if it is warming up when the hot knob is first turned due to the loss 
of heat of stagnant water in the hot water pipe. By describing the situation, we intend 
to provide opportunities for students to conceive a situation in which one quantity 
(temperature) remains constant while the second quantity (amount of water) varies. 

After this conversation, we begin to pose questions intended to support students’ 
covariational reasoning. For each prompt, both the hot and cold knobs start halfway 
on. We ask students to predict what will happen to water temperature and amount of 
water leaving the faucet for the following prompts, with the directional relationship 
between (amount of water, temperature) noted in brackets: 

(A) they turn the cold knob all the way on [increasing, decreasing] (i.e., Fig. 6), 
(B) they turn the cold knob off [decreasing, increasing], 
(C) they turn the hot knob all the way on [increasing, increasing], and 
(D) they turn the hot knob off [decreasing, decreasing]. 

Additionally, we ask students to explore how the same two quantities will vary 
when: 

(E) the hot knob stays off and the cold knob is turned on and/or off 
[increasing/decreasing, constant] and 

(F) the cold knob stays off and the hot knob is turned on and/or off 
[increasing/decreasing, constant]. 

Our goal is to support students in engaging in directional covariational reasoning 
with either quantity increasing, decreasing, or remaining constant reflecting each 
directional relationship in Table 3. Additionally, we intend to foreshadow for students 
the notion that graphs can be producible in different directions (i.e., support their 
emergent thinking). 

Vicente and Lajos had little difficulty describing how each quantity changes as 
the knobs are turned. For instance, addressing Prompt B, Vicente quickly described, 
“I think that it’ll only be hot water [left running]. So temperature will increase, but 
volume will decrease because it’s less water.” Addressing Prompt D, he described, 
“it’ll be more cold, like the temperature will go down. And I think less water will be 
pouring out of the faucet.” Further, when asked to address Prompts E and F, Vicente 
identified in each case that temperature would remain the same while the amount of 
water varied. For instance, addressing Prompt F, Vicente described, “Temperature is 
going to stay the same, and less water will be coming out as you turn the knob.” 

There are several notable features from Vicente’s activity. First, based on the 
active nature of his utterances describing changing quantities (e.g., “temperature 
will increase, but volume will decrease,” “less water will be coming out as you turn 
the knob”), we infer Vicente engaged in (at least) smooth variational reasoning as he
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Fig. 7 a The Faucet Task applet with an additional thermometer and pink segment below the water 
and b the next applet showing red and pink segments on the vertical and horizontal axis 

developed smooth images of change, including varying temperature, amount of water, 
and the turning of the knobs. We note that since Vicente never explicitly referred to 
sub-intervals of either quantity, we do not classify his reasoning as smooth continuous 
variational reasoning; student reasoning compatible with Vicente’s motivated our 
modification of Thompson and Carlson’s (2017) variational reasoning framework. 

Second, Vicente’s quantitative understanding of the situation supported him in 
reaching numerous (accurate) conclusions regarding the directional relationships 
between temperature and amount of water. This included situations in which one 
quantity changed as the other quantity remained constant. Third, Vicente consistently 
described how both the amount of water and temperature changed as a knob was 
turned without ever referring to sub-intervals, which is indicative of his engaging in 
(at least) smooth covariational reasoning. 

4.1.2 Students Developing Graphing Meanings Via the Faucet Task 

Once students have described each relationship covariationally, we ask a series 
of prompts designed to support students in constructing a quantitative coordinate 
system. First, we present a revised applet that includes a thermometer to gauge the 
water temperature and a horizontal pink line segment below the rectangle corre-
sponding to the rectangle’s width to represent the amount of water leaving the faucet 
(Fig. 7a).3 We present these segments for two reasons. First, the red segment provides 
students a way to describe temperature changing without referring to the color of 
the water. Second, by using vertical and horizontal linear segments to represent the 
quantities’ magnitudes, we intend to foreshadow a similar representation in the next 
applet. In that applet, we present students what we intend to be a quantitative coordi-
nate system, with temperature represented by a red segment on the vertical axis and 
amount of water represented by a pink segment on the horizontal axis (i.e., Fig. 7b).

3 Depending on time constraints, we sometimes have the thermometer and pink segment as two 
different tasks and sometimes present them simultaneously, as we did in this case. 
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Lajos and Vicente interpreted the segment lengths as representing variations in the 
disembedded quantities. Describing a situation in which the hot knob is turned on, 
Lajos described, “the temperature will increase [motioning his finger in an upward 
direction], and the pink segment [putting two fingers together then moving them apart 
horizontally] will get wider.” Lajos characterized each segments’ variation based on 
his conception of the quantities in the situation. Also, like Vicente, Lajos’s words 
(e.g., “temperature will increase”) and actions (e.g., smooth motions with his fingers) 
are indicative of at least smooth variational reasoning. 

After students describe what each segment represents situationally, we move to 
the next applet showing a red and a pink segment on the vertical and horizontal axis, 
respectively (Fig. 7b). Hoping to support students in conceiving of a quantitative 
coordinate system, the TR asks them to describe what will happen to each segment 
for Prompts A–F described above. 

After observing the applet, Lajos and Vicente described how the segments vary 
based on their understanding of how the quantities change situationally. For example, 
when tasked with describing how the segments vary for Prompt D, the following 
conversation ensued: 

Lajos The temperature will decrease and [pause] the water will decrease. 
TR So the amount of water will decrease, and you said, why will the temperature 

decrease? 
Lajos Because since the cold is still on, and temp. The hot water will, ah, you’re 

turning it off, and the cold is still on so it will decrease. 

[The TR asked Lajos to describe what that means for the segments.] 

Lajos Down. 
TR Yeah, this one [pointing to the red segment on the vertical axis] will definitely 

move down, but when you say this one [pointing to the pink segment on the 
horizontal axis] will move down, what does that mean? 

Lajos Like smaller. 
TR Smaller, so it’ll go down? 
Lajos Like to the left. 

We infer Lajos disembodied amount of water and water temperature from the 
situation as he interpreted the varying segment on each axis, which is critical to his 
constructing a quantitative coordinate system. 

After describing how each segment varies for Prompts A–F, we intend to support 
students in constructing a point as a multiplicative object simultaneously representing 
water temperature and amount of water. Hence, we present another applet that now 
includes a point in the coordinate system with a horizontal magnitude corresponding 
to the endpoint of the pink segment and a vertical magnitude corresponding to the 
endpoint of the red segment (Fig. 8a). We first have students turn the knobs and 
observe the movement of the point.

Constructing a point as a multiplicative object is non-trivial. For example, 
after Vicente and Lajos turned each knob and observed the point, the following 
conversation ensued:
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Fig. 8 a The applet with the point shown and b the applet with one emergent trace resulting from 
turning the cold on

TR So, Vicente, what do you think you’ve got about [the point]? 
Vic. I think as, as the water gets warmer [turning hot knob on], [the point] moves 

farther away from [the vertical axis]. It’s still like in the same spot but like it 
goes farther away. 

TR Ohhh, why do you think it might be moving to the right? 
Vic. Maybe, because of this [motioning the cursor over the pink segment on the 

horizontal axis]. 

Whereas previously, Vicente always attended to variations in both quantities, when 
initially making sense of the point’s motion, he only attended to the horizontal motion 
dictated by the pink segment. We often observe such reasoning when students are 
first considering how to represent two quantities on a quantitative coordinate system. 

Immediately after the above interaction, Vicente again attended to only one quan-
tity as he described the point moving left when the amount of water decreased. The 
TR attempted to draw his attention to the vertical motion of the point by providing 
a prompt analogous to Prompt C (hot on): 

TR There is some cold water right now. Does the temperature go up or 
down as I turn hot all the way on? 

Vic. It’s going to go up. 
TR It’s going to go up. So this red segment is going to go up. So, what 

do you think is going to happen to that point in terms of moving up, 
down? 

Lajos Go like [Vicente interjects, Lajos continues] away from the  [motioning 
away from the horizontal axis]. 

TR It’s going to go away because there’s more water but will it go away 
like to the right and down or to the right and up? 

Lajos & Vic. [simultaneously] To the right and up [each moving his finger in the 
air to the right then up]. 

After conceiving of the point’s movement as being constrained by the varying 
magnitudes on each axis (i.e., as a multiplicative object), each student described the 
point’s motion in the quantitative coordinate system so that the point represented the 
covarying magnitudes in this and other cases.
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Once students have conceived of the point as a multiplicative object, we support 
them in engaging in emergent shape thinking. To do this, we use the ‘Trace’ feature 
of GeoGebra to trace the point as the students again address (at least a subset of) 
Prompts A–F (Fig. 8b shows the resulting trace for Prompt A). Our goal is to support 
students in imagining the graph as being produced by the trace of the point as it 
moves based on the two quantities. Further, the variety of prompts ensures students 
have opportunities to engage with graphs tracing in multiple directions. 

After having numerous opportunities to observe how graphs are created via the 
changing quantities in the situation, we present students with several completed 
graphs (e.g., Fig. 9) and ask them to predict how the knobs began and what action 
occurred to produce the graph. Our goals are to explore how students interpret a 
graph representing covarying quantities and to examine if students consider reasoning 
emergently to describe different scenarios that create the same final graph. If the 
students do not consider more than one scenario, the TR can raise a second scenario 
as a hypothetical classmate’s solution and ask students to comment on this solution. 

Addressing the first of these tasks (Fig. 9a), Vicente accurately argued, “I think 
the hot water is going to be turned on… because it looks like the temperature is 
going up… there’s more water coming out, it’s going to the right.” After this, the TR 
posited that a pair of their classmates had argued the graph was made from turning 
hot water off and asked Vicente and Lajos if these students could have been correct. 
Responding to this, and indicative of reasoning about a single graph being traceable 
in multiple directions, Vicente immediately responded: 

[M]aybe backwards. Maybe they could be thinking about it in reverse because, so you turn 
hot off right? [TR agrees] So that means if you turn it off there will be less water, so you 
go to the left [motioning from the top right point leftwards], and the temperature is going 
to go down [tracing along the curve from the top right point down to the left].... [T]hey’re 
imagining it backwards. 

Hence, Vicente, and later Lajos, reasoned about covarying quantities to describe 
two possible emergent traces producing the same final graph. 

Additionally, each student correctly described numerous ways a straight hori-
zontal line could be produced from the situation, with Lajos arguing that “everything

Fig. 9 Two examples of 
graph interpretation tasks 
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turned off then turn hot all the way on,” would produce the graph in Fig. 9b. Hence, 
the students repeatedly engaged in smooth covariational reasoning in which temper-
ature increased, decreased, or remained constant as the amount of water increased 
or decreased, reflecting the directional relationships in Table 3. 

4.2 The Growing Triangle Task 

After the Faucet Task, we have students address the Growing Triangle Task. This  
task provides students additional opportunities to reason emergently about a smoothly 
changing phenomenon in a quantitative coordinate system. Additionally, we designed 
the task to extend their covariational reasoning by supporting them in reasoning 
about amounts of change to construct and accurately represent such a relationship. 
Specifically, we intended to support students in conceiving that the triangle’s area 
grows by increasing amounts for equal changes in its base length; this relationship 
is the first type of nonlinear covariational relationship we have students construct. 

To support students in imagining and anticipating smooth variation, we first have 
them interact with a dynamic GeoGebra applet (https://www.geogebra.org/m/yu2 
5d2my) showing a smoothly growing scalene triangle (Fig. 10a). We ask them what 
quantities they could measure in this situation. To support them in attending to and 
coordinating area and base length (i.e., to reason covariationally), we highlight the 
triangle’s base length in pink and area in green. After describing the directional 
change of area and side length, we specifically ask students to identify if, for equal 
changes in the base length, the area increases by (a) more, (b) less, or (c) the same 
amount. As described in Sect. 2.1, we included a second smaller slider which allows 
students to increase the increment by which the pink length increases (e.g., to integer 
chunks versus smoothly). We have the ‘trace’ option available so that students can 
visually identify the increasing amounts of change of area in the applet (i.e., the 
increasing size of the consecutive trapezoids shown in Fig. 10b). This feature of the 
task supports students in conceiving of increasing changes in area.

Consistent with constructing quantities in the situation, when asked what quanti-
ties they could measure, Vicente quickly described, “all sides are increasing,” and, 
as the base length increases, “the area gets bigger.” Later in the session, with the 
pink length increasing in one unit chunks, Vicente described, “[the area jump] starts 
with small and… keeps getting bigger and bigger.” After conceiving of the area 
increasing by more, Vicente and Lajos approximated values for each of the amount 
of change amounts to numerically represent the increasing changes in the triangle’s 
area, as shown in Fig. 10c (i.e., 1, 3, 5, 7, and 9 represent the amounts of change). 
Hence, while initially leveraging smooth variation (e.g., “area gets bigger”), the 
students began to leverage chunky variational reasoning as they conceived of and 
numerically represented the amounts of change of area increasing by more.

https://www.geogebra.org/m/yu25d2my
https://www.geogebra.org/m/yu25d2my
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Fig. 10 a Two screenshots of the Growing Triangle Task, b the triangle shown in the applet with 
chunky changes, and c the students’ work approximating area values

4.2.1 Graphing the Relationship in the Growing Triangle Task 

Once students describe the amounts of change in area as increasing, we present them 
with what we intend to be a quantitative coordinate system with the side length 
represented by a pink line segment on the horizontal axis. We ask them to describe 
how the increasing change in the triangle’s area will correspond to the movement 
of a segment representing area on the vertical axis. Our intent is to offer students 
repeated opportunities to reason about covariational relationships and consider how 
to represent a quantity’s magnitude (or value) with a corresponding line segment. 

Indicative of disembedding area from the situation and representing it with a 
segment’s magnitude on the vertical axis, each student described that the increasing 
changes in the triangle’s area will correspond to increasing jumps of the segment 
on the vertical axis. For instance, referring to the approximated area values, Lajos 
motioned his finger by three units in an upward direction along the vertical axis from 
a point representing the area when the side length was one unit. Lajos described that 
“the area is four…the area would go to nine [motioning his pointing finger by five 
units in an upward direction along the vertical axis from the point placed by the 
TR at (0, 4)].” While Lajos described how the segment representing area increased 
by more, Vicente simultaneously motioned his finger by one unit to the right on 
the horizontal axis, indicative of reasoning about the horizontal segment varying by 
equal amounts. We infer Lajos engaged in numeric chunky continuous covariational 
reasoning to describe how the segments varied, and hence conceived of a quantitative
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coordinate system. Further, the students extended this activity by creating points in 
the coordinate system that simultaneously represented side length and area. 

The next several prompts are designed to support students’ emergent thinking. 
After students represent specific base length and area magnitudes via points as multi-
plicative objects, we change the small slider to present the triangle growing smoothly. 
We then show the dynamic point representing the two quantities’ magnitudes in the 
coordinate system and use the ‘trace’ feature to allow the students to observe how 
the point moves with the intention of supporting the students in conceiving the graph 
as being produced by an emergent trace. 

When asked to explain why the graph contains more than the five chunky points 
shown in Fig. 11a, Vicente claimed “it’s [the point] just not skipping, it’ll go like this 
[motioning his pointer finger in a curve that passes through the five points as though 
sketching a smooth concave up curve] and Lajos added, “it’s [the point is] tracing, 
tracing slowly up [motioning his fingers in the air as though sketching a smooth 
concave up curve].” After this, each student sketched a smooth curve (Fig. 11b, c) 
joining the five points on a given handout. Further, Vicente claimed, “[the area] is not 
going to be just here and here [pointing to consecutive points shown on the graph]” 
and explained that “like [the area] could be at 50, but at some point it has to be smaller 
than that like 49, 48.” Realizing that Vicente spontaneously began to describe smaller 
sub-intervals of the changing area, the TR asked him if the area’s value must ever 
be 48.5. Possibly indicative of Vicente engaging in smooth continuous variational 
reasoning, he quickly agreed that the area must take on such a value. However, the 
TR did not provide additional follow-up questions to allow us to claim definitively 
if Vicente was engaging in smooth continuous variational reasoning.

4.2.2 The Pausing and Shrinking Triangle Tasks: Examining Students’ 
Emergent Reasoning 

To investigate the extent to which the students are attending to the two intended 
quantities and to examine their potential emergent thinking, we include two follow-
up tasks. In the Pausing Triangle Task, we present a video showing the same smoothly 
growing triangle. However, twice in this video, the triangle’s growth pauses. In the 
Shrinking Triangle Task, we present a video showing the same triangle, but with its 
side length and area decreasing from their maximum values until they are both zero. In 
each case, we intend to support the students in attending to the two changing quantities 
in the situation and considering how the new features of the situation (pauses, going in 
reverse) do or do not influence either their graph or the trace producing their graph. An 
added affordance of the Shrinking Triangle Task is that students have the opportunity 
to describe a decreasing by decreasing amounts relationship; this relationship is the 
second type of nonlinear covariational relationship we have students construct. 

Addressing these tasks, each student exhibited emergent thinking as they related 
their original graph to these new situations. For the Pausing Triangle Task, Lajos 
argued this new situation would have a different trace but produce the same graph. 
He explained, “it [the moving point] would stop for a few seconds here [marking a
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Fig. 11 a One screenshot from the Growing Triangle applet that includes a graphical representation 
and points produced by the 5 equal changes of side length, b, c Lajos’s and Vicente’s graphs, 
respectively

point on the curve in Fig. 11b] and then keeps going [tracing the pen on the curve] 
then stops [stops pen along the curve] and then keeps going [moves the pen along the 
curve].” Addressing the Shrinking Triangle Task, Lajos re-traced the original graph 
from the top right to the bottom left while claiming, “[the point] would start right up 
there and it would go reverse and go back down.” Likewise, Vicente claimed that the 
graph “would go backwards.” We infer each student was reasoning emergently as 
he created and interpreted graphs representing the triangle’s varying base length and 
area. Further, when addressing the Shrinking Triangle Task, the students explicitly
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described that the triangle’s area decreased by less for equal decreases in the base 
length. Hence, the students constructed a second type of nonlinear covariational 
relationship. 

4.3 The Growing Trapezoid Task: An Increasing by Less 
Relationship 

After engaging in the prior tasks, we hope students will begin to spontaneously 
examine the direction and amounts of change of a relationship and will leverage 
emergent thinking when prompted to graphically represent a relationship. We use 
the Growing Trapezoid Task (https://ggbm.at/jbk6kw8f) to examine this possibility. 
In this task, we present students with a smoothly growing figure that starts as a line, 
becomes a trapezoid, and increases until it results in a triangle (Fig. 12a). Although 
the resultant triangle is the same triangle as in the Growing Triangle Task, in this 
situation, area increases by less for equal changes in the pink length, which is a third 
type of covariational relationship in the task sequence. 

Relevant to the students’ quantitative and covariational reasoning, each student 
quickly responded that the “area gets bigger.” Vicente described the area increases 
by “smaller amounts,” and Lajos elaborated the consecutive amounts of change in the 
area “are smaller.” Particular to their graphing activity, the students plotted points on 
the vertical axis in a way that was indicative of leveraging a quantitative coordinate 
system. Specifically, with prompting from the TR, Vicente and Lajos worked together 
to connect the increasing amounts of change represented on the vertical axis in their 
graph in the Growing Triangle Task to corresponding decreasing amounts of change 
in this task (e.g., approximating the size of the final jump for their graph in the

Fig. 12 a The Growing Trapezoid Task and b a recreation of Vincent’s work showing area 
increasing by smaller amounts and points produced as multiplicative objects 

https://ggbm.at/jbk6kw8f
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Growing Triangle Task and using this magnitude for the first jump in this task). 
Leveraging this reasoning, Vicente plotted several points on the vertical axis that 
he conceived “jump by less.” Using these points, Vincente plotted points in the 
coordinate system representing simultaneously the growing trapezoid’s base length 
and area (Fig. 12b), which we infer represented the trapezoid’s area increasing by 
decreasing amounts for equal changes in base length. 

4.4 The Triangle/Rectangle Task 

In addition to providing another opportunity to reason emergently, the 
Triangle/Rectangle Task provides students an occasion to construct a linear covaria-
tional relationship, a fourth type of covariational relationship in the sequence. Further, 
the task provides opportunities to compare linear and nonlinear growth and consider 
how each type of relationship can be represented via graphs as emergent traces. 
In the Triangle/Rectangle Task, we present students with a smoothly growing rect-
angle next to the original triangle from the Growing Triangle Task; both figures have 
equal pink base lengths. We ask students to describe how each area is changing and to 
graphically represent the relationships between area and side length for each growing 
shape. 

Once Lajos and Vicente described that each area is increasing, the TR began to 
pose questions to investigate their covariational reasoning. For instance, after Vicente 
and Lajos described the area of the rectangle as increasing, the following conversation 
ensued: 

TR How is the area of the rectangle increasing? 
Vic. I think for the rectangle, I think that it’s increasing by, keeps increasing by the 

same amount. 
TR Increasing by the same amount? 
Vic. Yeah, ‘cause it keeps adding that one block [pointing to the smallest amount of 

change rectangle] over and over again [motions hand over successive amounts 
of change rectangles, shown in Fig. 2]. 

We infer Vicente (and later Lajos) engaged in chunky continuous covariational 
reasoning to describe the area of the rectangle increasing by equal amounts for equal 
changes in base length. 

To investigate the students’ emergent shape thinking, we then asked the students 
to graph the relationship between area and side length for each growing shape on 
a handout with the area and side length represented on the vertical and horizontal 
axes, respectively. Watching the applet with side length increasing in increments of 
1, Lajos leveraged chunky continuous variational reasoning as he used his fingers to 
indicate the segment representing the rectangle’s area would jump by equal amounts 
along the vertical axis. Justifying these equal changes along the vertical axis, he 
described, “Because all of the [smaller] rectangles (shown in Fig. 2) are equal sized, 
so it [the increase in area] has to be the same amount.” After this, Vicente also engaged
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in chunky continuous covariational reasoning as he plotted points that represented 
the area changes described by Lajos vertically and corresponding equal side length 
changes horizontally (Fig. 13a). As Vicente plotted points, Lajos described that the 
points correspond to “both of them” referring to the rectangle’s base length and area. 
After Vicente plotted the last point, the TR changed the smaller slider to change the 
applet from playing in chunks to smoothly and asked “and what if I have it playing, 
sort of, smoothly?” Immediately, and indicative of engaging in smooth covariational 
reasoning and emergent shape thinking, Lajos picked up the marker, said “it would be 
like this,” and sketched a straight line through the points Vicente plotted (Fig. 13b). 

Shortly after this, the TR prompted the students to graphically represent the 
triangle’s area and side length on the same coordinate system. The students recalled 
their work in the prior sessions to sketch a smooth concave up curve to represent 
this relationship (Fig. 13c). Hence, the students were able to leverage a combina-
tion of their chunky continuous and smooth covariational reasoning to conceive of 
both nonlinear and linear relationships. Further, they graphically represented each 
relationship via an emergent trace on a quantitative coordinate system.

Fig. 13 a Vicente’s plotted points, b Lajos finishing sketching a straight line, and c the pair’s graph 
with the curve representing the triangle’s base length and area 
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5 Discussion 

We first discuss contributions this chapter provides to the literature on students’ 
covariational reasoning. We then relate our task design to the theoretical framework 
and provide implications for developing other mathematical ideas. We conclude with 
areas for future research. 

5.1 Middle School Students’ Covariational Reasoning 

In this chapter, we explored the possibility of middle school students constructing and 
reasoning about basic types of covariational relationships (Table 3), which supports 
them in differentiating between nonlinear and linear relationships. Through the task 
sequence, students had repeated opportunities to construct numerous directional 
relationships. Such activity was foundational for the students’ later activity as they 
characterized covariational relationships with differing amounts of change; Table 5 
presents all of the directional and amounts of change relationships Lajos and Vicente 
constructed. Further, we described how such covariational reasoning supported 
students’ emergent reasoning as they accurately constructed and interpreted graphs 
tracing in numerous directions with varying concavities. 

Table 5 The directional and amounts of change covariational relationships Vicente and Lajos 
constructed with the first quantity in the Faucet Task being amount of water 

First quantity Directional change in second quantity 
(task where student experienced) 

Amounts of change in second quantity 
(task where student experienced) 

Increasing Constant (Faucet Task, Scenarios E 
and/or F) 

– 

Increasing, (Faucet Task, Scenario C; 
Growing Triangle Task; Growing 
Trapezoid Task) 

Increasing by the same amount 
(rectangle’s area in Triangle/Rectangle 
task) 

Increasing by more (triangle’s area in 
Growing Triangle task) 

Increasing by less (trapezoid’s area in 
Growing Trapezoid task) 

Decreasing (Faucet Task, Scenario A) – 

Decreasing Constant (Faucet Task, Scenarios E 
and/or F) 

– 

Increasing (Faucet Task, Scenario B) – 

Decreasing (Faucet Task, Scenario D; 
Shrinking Triangle Task) 

Decreasing by less (triangle’s shrinking 
area in Shrinking Triangle task)
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Throughout our presentation of the tasks, we explicitly connected our task design 
to our theoretical framing. Compatible with the Learning Through Activity frame-
work described by Simon and colleagues (e.g., Simon et al., 2018), our goal was 
to design a task sequence that supported students in gradually developing ways of 
thinking that would eventually lead to their constructing sophisticated mathemat-
ical understandings. We intend for such descriptions to serve as a resource for other 
researchers’ and teachers’ efforts at adapting these tasks or designing new tasks that 
could afford similar shifts in students’ reasoning. 

In addition to providing empirical examples of middle school students 
constructing numerous covariational relationships, we extend Thompson and 
Carlson’s (2017) variational and covariational framework to include smooth varia-
tional and smooth covariational reasoning. We provide empirical examples of middle 
school students first engaging in gross and smooth covariational reasoning prior to 
engaging in chunky continuous covariational reasoning. Consistent with the conjec-
ture of Castillo-Garsow et al. (2013), smooth reasoning seemed to entail a capacity to 
engage in chunky reasoning, with the latter reasoning supporting students in further 
characterizing their conceived relationships. These forms of reasoning interplayed 
productively with the students’ meanings for quantitative coordinate systems and 
points as multiplicative objects as students constructed and interpreted graphs as 
emergent traces, “with the trace being a record of the relationship between covarying 
quantities” (Moore & Thompson, 2015, p. 785). 

5.2 Task Design in Relation to Our Theoretical Framework 

We highlight that each part of the Faucet Task involved (almost all) of Prompts 
(A)–(F). We conjecture these repeated opportunities were critical for the students’ 
developing graphing meanings as they considered how to represent a relationship via 
a point as a multiplicative object constrained by the motions of segments on axes. 
Further, their directional covariational reasoning in the Faucet Task laid the foun-
dation for their later activity discerning the amounts of change of one quantity with 
respect to a second quantity in the tasks that followed. In these latter tasks, the students 
leveraged a combination of chunky continuous and smooth covariational reasoning 
to construct and graphically represent numerous nonlinear and linear relationships. 

We contend the ability for students to change the intervals by which an applet’s 
parameter varied from smooth to chunky was critical. By first engaging with smoothly 
changing phenomena, Vicente and Lajos developed smooth images of change. 
However, and as we contended elsewhere (Paoletti & Moore, 2017), smooth thinking 
alone is not sufficient for discerning the amounts of change of one quantity with 
respect to another. Hence, changing the parameter via the slider also supported 
students in developing chunky images of the situation, which was critical to them 
constructing the different covariational relationships in Table 5. 

Relatedly, across all students we interviewed in the larger design experiment, using 
smoothly changing phenomena supported students in developing smooth images of
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change. In contrast, we conjecture tasks which present a table of values, regardless 
of the teacher’s or researcher’s intention, are more likely to elicit (at best) chunky 
covariational reasoning from students. We contend that creating mental imagery of 
smoothly changing phenomena from a table of values is possible, but non-trivial; 
providing students with dynamic representations of smoothly changing phenomena 
is invaluable to their development of smooth variational and covariational reasoning 
(Castillo-Garsow et al., 2013; Johnson, 2020; Stevens et al., 2017). 

5.3 Implications for Developing Other Mathematical Ideas 

An immediate consequence of constructing various nonlinear and linear relationships 
is that students can experience an intellectual need (Harel, 2008) to further differ-
entiate between types of covariational relationship (or function) classes that exhibit 
similar change patterns. For example, both quadratic and exponential relationships 
can exhibit growth such that the second quantity increases by an increasing amount 
for equal changes of the first quantity. As described by Vishnubhotla (2020), once 
students identify such a similarity, they may further explore numeric relationships to 
identify patterns. Hence, once students have repeated experiences constructing and 
representing covarying quantities, other representations, such as tables of values, 
can be useful as they further differentiate between various forms of change (beyond 
linear versus nonlinear). 

To exemplify this, we turn to Vicente and Lajos’s activity described in Sect. 4.2. 
Specifically, after identifying numeric values for specific amounts of change (+ 1, 
+ 3, + 5, etc.) the pair identified that these amounts of changes were changing 
by a constant amount. As our goal in this study did not entail students developing 
meanings for quadratic relationships, we did not design tasks or prompts to explore 
this reasoning further. However, such activity supported this pair, and other students 
(Mohamed et al., 2020), in identifying the defining characteristic of quadratic growth 
(Ellis, 2011; Lobato et al., 2012). Hence, the presented task sequence has the poten-
tial to lay a foundation for students developing meanings for specific nonlinear 
relationships. 

5.4 Concluding Remarks and Areas for Future Research 

We contend that providing middle school students opportunities to reason about 
dynamically changing quantities to construct basic types of covariational relation-
ships can serve as a foundation for their developing meanings for various functional 
relationships (Thompson & Thompson, 1995). There is a further need to develop or 
adapt tasks that extend middle school students’ covariational and emergent thinking 
to support them in developing meanings for other relationships as described by other
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researchers, including quadratic relationships (Ellis, 2011; Lobato et al., 2012), expo-
nential relationships (Confrey & Smith, 1994, 1995; Ellis et al., 2015; Thompson, 
2008), and possibly even trigonometric relationships (Moore, 2014). 

In addition to designing or adapting tasks to foster students’ thinking, there is also 
a need to investigate ways to scale a task sequence like this one to be effective in larger 
settings (e.g., whole class). Based on a pilot whole class teaching experiment with 
6th-grade students, we conjecture there is a need to provide students with sufficient 
opportunities to reflect on their activity for them to develop stable meanings that 
entail covariational reasoning and emergent thinking. Such reflective activities can 
further support students in developing stable meanings for graphs, relationships, and 
various relationship classes. Hence, we call for further research on how to make 
task sequences like the one presented in this chapter both productive in whole class 
settings and usable by middle school teachers everywhere. Such research has the 
potential to impact the teaching and learning of middle school mathematics across 
the world, as such an approach can support all students in developing foundational 
knowledge and ways of thinking that are critical to their algebra learning. 
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