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Quantitative reasoning played a crucial role in the development and revolution of 
scientific knowledge in the history of science (Crombie, 1961; Jin et al., 2019a; 
Kline, 1982). It has been emphasized as an important learning goal for K-12 students 
for many years (NGSS Lead States, 2013; National Research Council [NRC], 1996, 
2000). In science education literature, the term mathematization of science, or math-
ematization in short, is often used to refer to the specialized ways that scientists 
use to quantify phenomena and construct knowledge; it emphasizes the relation-
ship between quantitative reasoning and science disciplinary knowledge (e.g., Kline, 
1982; Lehrer & Schauble, 1998). Therefore, in this chapter, we use this term to refer 
to quantitative reasoning in science. 

Researchers describe scientists’ specialized ways of using quantitative reasoning 
with different terms such as mathematical deduction (Kind & Osborne, 2017; 
Osborne et al., 2018), mathematization (Kline, 1982), postulation exemplified by 
the Greek mathematical sciences (Crombie, 1961; Hacking, 1994), and quantifica-
tion (Crombie, 1961). Nevertheless, they all emphasize a process of quantification: 
Scientists generate mathematical descriptions of phenomena in the material world.
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In those descriptions, entities (e.g., matter, energy, and force) are represented by 
algebraic symbols and numeric values; and the relationships among those entities 
are represented by mathematical equations, tables, and graphs. Scientists generate 
concepts, principles, and theories to conceptualize those mathematical relationships. 
The value of mathematical descriptions resides in their accuracy, universality, and 
deductive logic (Pereira de Ataide & Greca, 2013). Due to this value, mathematical 
descriptions allow precise predictions and generation of new concepts; they also 
provide an objective base for scientific argumentation and discussion (Holton & 
Brush, 2006; Kline, 1990; Osborne et al., 2018). Although existing literature of 
scientists’ mathematization provides concrete ideas about the quantification process, 
additional effort is needed to identify key components that differentiate that quan-
tification process from our everyday intuitive thinking. Such information will help 
teachers and researchers design more targeted instruction on quantitative reasoning. 

Researchers have investigated how students use mathematization to solve prob-
lems and explain phenomena. These studies have documented the expert-novice 
differences across physics (Bing & Redish, 2009; Chi et al., 1981; Kuo et al., 2013; 
Niss, 2017; Schuchardt & Schunn, 2016; Sherin, 2001; Tuminaro & Redish, 2004, 
2007), chemistry (Dori & Hameiri, 2003; Kozma & Russell, 1997; Schuchardt & 
Schunn, 2016; Taasoobshirazi & Glynn, 2009), and biology (Schuchardt & Schunn, 
2016). While experts incorporate conceptual understanding of scientific knowl-
edge with mathematical representations, novices tend to select mathematical equa-
tions based on surface features of the scenario and manipulate the mathematical 
symbols/equations without understanding their scientific meaning. These expert-
novice differences are largely due to the different epistemological perspectives— 
while experts view mathematics and science as integrated, students tend to see math-
ematics as a mere instrument for calculation (Bing & Redish, 2009). Additionally, 
using graphs presents significant challenge for many students. Most existing studies 
on students’ use of graphs were conducted in the context of kinematics. These studies 
show that students often misinterpret graphs as pictures (e.g., viewing a velocity– 
time graph as a picture of the object’s trajectory) and do not use scientific ideas to 
interpret the relationships presented in the graphs such as slope, trends, and patterns 
(Beichner, 1994; Kozhevnikov et al., 2007; Planinic et al., 2012). Although empirical 
studies have generated significant findings about students’ mathematization, more 
research is needed to investigate how students develop from their novice thinking to 
expert thinking is limited. 

We addressed these two needs in a Mathematical Thinking in Science project. 
We used a learning progression (LP) approach to investigate student development of 
mathematization in physical and life sciences. LPs are “descriptions of successively 
more sophisticated ways of thinking about how learners develop key disciplinary 
concepts and practices within a grade level and across multiple grades” (Fortus & 
Krajcik, 2012, p. 784). It is well-recognized that coherence in science curriculum 
leads to high-quality instruction and student achievement (Fortus & Krajcik, 2012; 
Schmidt et al., 2005). Existing literature emphasizes two aspects of curricular coher-
ence—logical coherence and cognitive coherence (Fortus & Krajcik, 2012; Schmidt 
et al., 2005; Shwartz, et al., 2008; Sikorski & Hammer, 2017). That is, curriculum,
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instruction, and assessment are aligned based not only on the logical structure and 
organization of the discipline but also on the cognitive theories about student learning 
of the disciplinary knowledge and practices. Science LPs are rooted in foundational 
theories about disciplinary knowledge and cognition. Therefore, they are powerful 
in enhancing curricular coherence (Jin et al., 2019b). 

In the project, we defined mathematization based on a historical analysis and 
Thompson’s theory of quantitative reasoning in mathematics (Thompson, 1993, 
2011, Thompson, et al., 2014). We then used a learning progression (LP) approach 
to study student development in mathematization across several topics in physical 
sciences and life sciences (heat and temperature, kinetic and gravitational potential 
energy, and elastic energy in physical sciences; the carbon cycle and interdependent 
relationships in life sciences). Our study suggests that, by using an LP approach, 
mathematization can be used as a crosscutting theme to align curriculum, instruc-
tion, and assessment. In this chapter, we summarize the major findings of this work, 
including the definition of mathematization, the LP for mathematization, and prelim-
inary evidence of mathematization as a crosscutting theme. Based on these results, 
we discuss the possibility and benefits of using mathematization as a crosscutting 
theme for building curricular coherence. 

1 Defining Mathematization 

We intended to develop a functional definition of mathematization that reflects how 
scientists used quantitative reasoning to construct scientific knowledge. To do so, 
we conducted a historical analysis. We identified and examined five events across 
physics, biology, astronomy, and chemistry. These five events include the develop-
ment of the ideal gas law, Mendel’s discovery of the laws of hybridization, Newton’s 
derivation of universal gravitation from Kepler’s law of planetary motion, the chem-
ical revolution initiated by Lavoisier, and the paradigm shift from Aristotelian to 
Newtonian theories about forces and motion. They played a critical role in the knowl-
edge development and revolution in the history of science. Our analysis focused on 
how measurement and quantification enabled the generation of fundamental ideas in 
science. Details of the analysis can be found in our previous publication (Jin et al., 
2019a). In this chapter, we summarize one event that has led to the overthrown of the 
phlogiston theory and the establishment of modern chemistry—Antoine Lavoisier’s 
chemical revolution. 

Both phlogiston theorists and Lavoisier investigated phenomena of burning, calci-
nation, and breathing. However, the ways of reasoning used in their investigations 
are vastly different. Take burning as an example. The phlogiston theorists observed 
that some materials were combustible, while other materials were not. To explain 
this observation, they conjectured those combustible materials must contain some 
type of essence. They named this essence phlogiston. The ashes after combustion 
often weigh less than the combustible material. To explain this phenomenon, phlo-
giston theorists supposed that phlogiston must escape into the air. These qualitative



264 H. Jin et al.

conjectures constitute the phlogiston theory: Materials that are rich in phlogiston can 
burn; when a material burns, its phlogiston is liberated into the air and only ashes 
are left. 

Unlike the phlogiston theorists, Lavoisier used quantitative reasoning to analyze 
burning. He conducted experiments in closed systems and with accurate measure-
ment. He studied burning of different materials in a closed vessel system (Holton & 
Brush, 2001). In the burning iron experiment, burning 100 grains [a unit of mass] of 
iron produced 135 or 136 grains oxide of iron. At the same time, the diminution of 
air was found to be exactly 70 cubical inches, which weighed 35 grains. Lavoisier 
analyzed the relationships among several quantities: The mass of iron, the volume 
of air, the mass of air, and the mass of oxide of iron. After many similar experi-
ments, he found a mathematical pattern: the total mass of materials is conserved in 
burning. To explain this pattern, Lavoisier proposed a new theory of combustion, the 
oxygen theory: The total mass is conserved before and after the combustion because 
oxygen is involved in combustion and the mass of oxygen should be included in the 
calculation. 

Thompson’s theory of quantitative reasoning in mathematics (Thompson, 1993, 
2011; Thompson & Carlson, 2017) offers unique insights for us to identify key 
components that differentiates Lavoisier’s and other scientists’ mathematization from 
the intuitive reasoning patterns that once appeared and then became obsolete in the 
history of science. Thompson (1993) defines quantitative reasoning as “the analysis 
of a situation into a quantitative structure—a network of quantities and quantitative 
relationships” (p. 165). In explaining this definition, Thompson emphasizes two 
ideas. First, a key characteristic of quantity is its measurability (Thompson, 1993, 
p. 165): 

Quantity is not the same as a number. A person constitutes a quantity by conceiving of a 
quality of an object in such a way that he or she understands the possibility of measuring it 
(Thompson, 1989, in press). Quantities, when measured, have numerical value, but we need 
not measure them or know their measures to reason about them. 

This concept of measurability, or measurable quantities/variables, is one compo-
nent that differentiates mathematization from intuitive reasoning. While phlogiston 
theorists focused the analysis on qualitative attributes (e.g., combustible materials 
turn into ashes; some materials are combustible, while others are not), Lavoisier 
analyzed measured variables (i.e., the mass of iron, the volume of air, the mass of 
air, and the mass of oxide of iron). As another example, consider two responses to 
the following question: “Does a person have more energy after a night’s sleep?” 

Response A: After a night’s sleep, a person will have less energy than the night before since a 
certain amount of energy stored in the person’s body has been used to support body functions 
such as heart beating and breathing. 

Student B: The person has more energy because people normally feel more energetic after 
a good night’s sleep. 

In Response A, energy is treated as a measurable quantity because the response 
is about how the total amount of energy changes and where the reduced amount of
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energy goes. Response B does not treat energy as a measurable quantity because it 
uses a qualitative reason (i.e., feeling more energetic) to explain why the person has 
more energy after a night’s sleep. 

Second, understanding relational complexity is crucial for analyzing a network 
of quantities and quantitative relationships (Thompson, 1993; Thompson & Carlson, 
2017). This understanding involves coordination of two aspects of quantitative differ-
ence: (1) difference as the amount left over after a comparison and (2) quantitative 
difference as an item in a relational structure. In this sense, understanding rela-
tional complexity is not just about obtaining the result of subtracting. It includes 
understanding the relationships among multiple differences in a structure. Thompson 
discusses relational complexity in contexts involving subtraction and addition. We 
modified and applied this component to fit scientific contexts. We define relational 
complexity as the complexity involved in the kinds of relationships that play an 
important role in scientific conceptualization. These relationships include quanti-
tative conservation, extensive versus intensive variables, change versus the rate of 
change, proportionality, exponential growth, quadratic relationships, and so on. The 
historical analysis is about quantitative conservation. Lavoisier’s notion of conserva-
tion is quantitative because it is based on calculation of numerical values measured 
in experiments. Phlogiston theorists hold a notion of ‘qualitative conservation’. They 
recognize that the ashes cannot weigh more than the combustible material. Something 
must come out from the material and that something must go somewhere. They label 
that something as phlogiston. This type of conservation is qualitative because it is 
based on humans’ perception of less or more. Unlike Lavoisier’s quantitative conser-
vation, this “qualitative conservation” does not involve numerical values measured 
in experiments or real-world situations. 

A third component involved in Lavoisier’s mathematization is conceptualiza-
tion. Lavoisier identified a quantitative relationship in his experiments—quantitative 
conservation, that is, the mass of materials before and after combustion is conserved. 
He then conceptualized this relationship into the oxygen theory of combustion: 
Oxygen is involved in combustion. If we calculate all substances involved in combus-
tion, we will find that mass is conserved before and after the combustion. In the 
history of science, many concepts, principles, and theories were conceptualized from 
quantitative relationships. They are usually counter-intuitive, and therefore present 
significant challenges to students. For example, a student who understands relational 
complexity will understand the scientific implication of the equation of kinetic energy 
(E =½mv2) and explain that doubling the vehicle speed can lead to collision damage 
that is much larger than doubling (due to the quadratic relationship between energy 
and speed). However, a student who does not recognize the relational complexity 
involved in the same equation may know that a higher vehicle speed is associated 
with more damage, but the student would not recognize the scientific implication of 
the quadratic relationship between the speed and the energy. 

The above discussion suggests three components of mathematization of science— 
measurable variables, relational complexity, and scientific conceptualization.
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Subsequently, we define mathematization of science as abstracting measurable vari-
ables from ‘messy’ phenomena, identifying mathematical relationships among the 
variables, and using scientific ideas to conceptualize the mathematical relationships. 

2 The Learning Progression for Mathematization 
of Science 

In the Mathematical Thinking in Science project, we developed an LP for mathema-
tization in across topics in physical and life sciences: heat and temperature, kinetic 
and gravitational potential energy, and elastic energy in physical sciences; the carbon 
cycle and interdependent relationships in life sciences. We first carried out an inter-
view, where 44 students from suburban and urban high schools each completed a 
set of mathematization tasks. Based on the interview data, we developed an initial 
mathematization LP. 

Next, we conducted a large-scale field study. In the study, 57 assessment items, 
including 36 physical science items and 21 life science items were assembled into 
multiple computer-delivered tests forms, based on the courses taught by the partic-
ipating teachers. In addition, most students took 24 mathematics assessment items 
developed by Wylie et al. (2015). The mathematics items assess student under-
standing of linear functions and proportional reasoning. These two concepts are 
essential in middle school mathematics curriculum. They also constitute the foun-
dational knowledge for students to learn and conceptualize a variety of mathemat-
ical relationships in high school science. Therefore, they are used as a proxy for 
students’ mathematics baseline understanding. The test forms were administered to 
5353 students from 22 high schools in 14 US states. Among these students, 34% 
were in 11th grade, 27% in 10th grade, and 24% in 12th grade. Urban, suburban, 
and rural schools participated in the pilot study. Approximately 65% of the students 
were White, 10% Asian or Asian American, 8% African American, 8% Hispanic 
or Latino. We used students’ assessment responses to revise the LP. The assessment 
results also provide two pieces of evidence that the mathematization LP is applicable 
to topics in both physical sciences and life sciences. 

In this section, we use students’ assessment responses to illustrate the LP levels. 
Then, we provide the evidence for using mathematization as a crosscutting theme 
across science topics and disciplines. 

3 The LP for Mathematization of Science 

The learning progression contains four levels, with each level describing a charac-
teristic way of reasoning that students use to solve scientific problems and to explain 
real-world phenomena (Fig. 1). These four levels are named holistic phenomenon,
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Fig. 1 The learning 
progression for 
mathematization for 
problem-solving

attributes, measurability, and relational complexity. Together, they present a develop-
mental trend, where students progress from intuitive qualitative reasoning to scientific 
quantitative reasoning. 

. Level 1. Holistic Phenomenon: At Level 1, students do not ‘analyze’, meaning 
that they do not identify any relevant attributes of the phenomena. Instead, they 
describe the phenomenon, or tell a story related to the phenomenon, or express 
personal feeling about the phenomenon.

. Level 2. Attributes: Students identify relevant attributes of a phenomenon consid-
ering their everyday concepts. However, they do not ‘quantify’, meaning that they 
treat those attributes as qualitative characteristics rather than measurable quan-
tities/variables. The phlogiston theorists’ analysis of burning is an example of 
reasoning about attributes.

. Level 3. Measurability: Students analyze phenomena in terms of measurable 
quantities/variables. They can abstract some relevant variables from the messy 
phenomena and identify some mathematical relationships. However, conceptual-
izing the mathematical relationships in terms of scientific ideas presents significant 
challenge for them.

. Level 4. Relational Complexity: Students distinguish among different types of 
quantities/variables and understand the complex relationships among those quan-
tities/variables. The complex relationships include relationships between change 
and rate of change (e.g., velocity and acceleration), distinctions between extensive 
and intensive variables (e.g., thermal energy and temperature; mass and density), 
proportional relationship (e.g., gravitational potential energy is proportional to 
height), quadratic relationship (e.g., the relationship between kinetic energy and 
speed of a car), exponential relationship (e.g., the population size and the time), 
and so on.
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We use students’ responses in two assessment items, one in physical sciences and 
the other in life sciences, to illustrate this LP. In these responses, pseudonyms are 
used to protect the identity of the students. As presented below, the life science item 
(Fig. 2) asks students to mathematize the growth of reindeer population. In the item, 
the relevant variables are birth rate, the number of births, death rate, the number of 
deaths, the population size, and the population growth rate. The relationships among 
these variables are presented in the graph in Fig. 2. More specifically, the part about 
the exponential growth of the reindeer population shows an important mathematical 
pattern—the slope of the graph increases over time, meaning the population growth 
becomes more rapid over time, or in other words, the population growth rate increases. 
The conceptualization of this mathematical pattern is: Given adequate resources and 
an absence of predators, the reindeer population would increase exponentially for 
a long time. In such situation, while the birth rate and death rate (the number of 
births/deaths per reindeer per year) do not change, the total number of organisms 
increases, causing the rate of population growth (i.e., the absolute growth rate) to 
increase.

Table 1 presents students’ responses that were scored at each level of the LP. The 
responses at Level 1 indicate that Diego did not identify any qualitative factors or 
attributes that explain the observed pattern—the population grew faster in timespan 2 
than in timespan 1. Instead, he claimed that the observed pattern is due to reindeer’s 
intention to increase their population. Diego treated the phenomenon holistically 
and did not analyze and abstract any variables or attributes. The responses at Level 2 
suggests that Cindy identified two factors affecting the reindeer population: predation 
and starvation. She further explained how these qualitative factors affect the reindeer 
population. Cindy did not reason about any quantitative relationships or measurable 
variables. She only reasoned at a qualitative level. The responses at Level 3 suggest 
that Mike reasoned at a quantitative level. He explained that during the timespan 
2, the reindeer has adapted to their surroundings; consequently, the reindeer were 
able to increase the breeding rate significantly, which caused the reindeer population 
to increase more rapidly. This explanation focuses on the relationship between two 
measurable variables—the breeding rate and the population growth rate; the increase 
of breeding rate caused the increase of population growth rate. Although Mike began 
to reason about the quantitative relationships between measurable variables, he was 
not successful in identifying and conceptualizing the relational complexity involved 
in the problem. The responses at Level 4 show that Amber was able to identify rele-
vant measurable variables and conceptualize the complex relationships among the 
variables. Amber explained that, although individual reindeer produced offspring 
at the same rate, the total number of reindeers increased. As a result, the popula-
tion size increased exponentially. Her explanation targets the complex relationship 
among three measurable variables—the reproduction rate per individual reindeer, 
the population size, and the population growth rate.

A physical science item is provided in Fig. 3. This item assesses how well 
students identify and differentiate between heat/energy and temperature. High school 
students are expected to understand the following distinctions among heat, energy, 
and temperature (Kesidou & Duit, 1993, p. 90):
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In 1911, scientists released 25 reindeer on Saint Paul Island, a small 
Alaskan island. There were no predators of reindeer on the island. 
Scientists collected data on the reindeer population over many years. 
The graph below shows the scientists’ data. 

1. Please compare the population growth in these two timespans. 
Time span 1:  1911 to 1932 
Time span 2:  1932 to 1938 
Which of the three patterns below best describes the changes in reindeer 
population? 

A. The population grew faster in timespan 1 than in timespan 2. 
B. The population grew faster in timespan 2 than in timespan 1. 
C. The population grew at the same rate in these two timespans.  

2. Why do you think the reindeers on Saint Paul Island exhibited this pattern? 

Fig. 2 The life sciences item

Heat is the form of energy that is transported from one system to another due to temperature 
differences. From the physicist’s point of view, heat is a process variable. Therefore, it is 
wrong to state that a body contains a certain amount of heat. But it makes sense to view 
heat as an extensive quantity. If a specific amount of heat (Q1) is transported and if this is 
followed by another amount of heat (Q2) the total amount of heat transported is Q1 + Q2. 
Temperature, on the other hand, is an intensive quantity. If two bodies at temperature T are 
brought into contact, then the temperature of the two bodies is still T.
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Table 1 Middle and high school students’ responses in the life science task 

Learning progression levels Responses 

Level 4. Relational complexity Responses from Amber 
Choice: B. The population grew faster in timespan 2 than in 
timespan 1 
Explanation: the population increased exponentially because 
more individuals means that there is a greater number of 
animals capable of producing offspring. When they produce 
this amount of offspring, the population will increase, and 
then those offspring will go on to have offspring of their own, 
showing population growth 

Level 3. Measurability Responses from mike 
Choice: B. The population grew faster in timespan 2 than in 
timespan 1 
Explanation: I believe the reindeer on Saint Paul grew faster 
of the course of time span 2 because the reindeer need to be 
adjusted to their environmet [environment]. The island only 
hosted 25 reindeer to start, but as the reindeer adapted 
themselves to their surroundings, they were able to utilize 
whatever that helped them breed at a significantly faster rate 

Level 2. Attributes Responses from Cindy 
Choice: A. The population grew faster in timespan 1 than in 
timespan 2 
Explanation: they exhibit this pattern because there were no 
predators which says that they won’t die, but there are other 
problems when there aren’t predators, because they will they 
[then] die from starvation and etc. 

Level 1. Holistic phenomena Responses from Diego 
Choice: B. The population grew faster in timespan 2 than in 
timespan 1 
Explanation: they exhibited this because they wanted to 
increase their population

Note that the distinction between heat as a process variable and energy as a status 
variable is not assessed in the item illustrated in Fig. 3. The item focuses on the 
distinction between heat/energy and temperature: the former are extensive variables, 
while the latter is an intensive variable. Successful mathematization involves iden-
tifying and distinguishing variables from three observations. The first observation 
is the oven setting (or the fire), which indicates the amount of heat transferred into 
the water in the pot. Since the oven is set at high heat in Situation 1 and at medium 
heat in Situation 2, less heat is transferred into the water in Situation 2. The second 
observation is that, in both situations, the water is at the boiling stage, indicating the 
water temperature as 100 °C. The third observation is the degree of vigorousness 
in boiling, which indicates how much evaporation is going on. In Situation 1, more 
energy/heat is used to evaporate the water, so the water boils more vigorously. 

Table 2 provides students’ responses at each LP level. The responses at Level 1 
indicate that Zane did not identify any attributes or variables to support his claim
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Paulo put a pot with water on the stove at high heat. After a few minutes, the 
water started to boil vigorously. Paulo turned down the heat setting to medium, 
and the water kept boiling but less vigorously.  

1. Do you think the temperature of the water is the same in these two situations?  
A. The water temperature in Situation 1 and the water temperature in Situation 2 are the 

same. 
B. The water temperature in Situation 1 and the water temperature in Situation 2 are 

different. 
2. [Different sets of questions are shown when the student chooses A or B.]  

Choosing A: If the water temperatures in these two situations are the same, why does the 
water in Situation 2 boil less vigorously than the water in Situation 1?  

Choosing B: What evidence can be used to support the claim that the water temperature in 
Situation 1 and the water temperature in Situation 2 are different? Please explain why this 
evidence can be used to support the claim.  

Fig. 3 The physical sciences item

that the water temperatures in both situations are the same. Instead, he described 
macroscopic observations in an everyday activity—boiling water to cook pasta. The 
responses at Level 2 shows that Mia associated ‘boiling more vigorously’ with ‘being 
hotter’ and with higher temperature. As such, Mia treated temperature as hotness, 
which is a qualitative attribute and therefore is not measured and has no numer-
ical values. The responses at Level 3 show that Lucy reasoned about the values of 
temperature, indicating that she recognized measurability as a key characteristic of 
variables. However, she does not differentiate between energy/heat and temperature 
in terms of extensive and intensive variables. Instead, she assumed that more heat 
input causes the water to boil more vigorously; and that water boiling more vigorously 
has a higher temperature. However, she did learn that boiling water has a temperature 
of 100 °C. To reconcile the discrepancy, she conceptualized a new theory—water 
begins to boil at 100 °C, and the temperature of the water will keep increasing when 
the water is boiling more vigorously. This way, the input energy/heat, degree of 
boiling, and temperature are equivalent. The exemplar responses at Level 4 suggest 
that Kai was able to identify and differentiate heat/energy and temperature. Although
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more energy goes to the water in Situation 1 than Situation 2, the water temperature 
stayed the same (100 °C) in the two situations. The reason is that the input energy 
is used to make water evaporate. Because more evaporation happens in Situation 1 
than Situation 2, we observe that the water in Situation 1 boils more vigorously. 

Table 2 Students’ responses in a physical science task 

Learning progression levels Responses 

Level 4. Relational complexity Responses from Kai 
Choice: A. The water temperature in situation 1 and the water 
temperature in situation 2 are the same 
Explanation (if the water temperatures in these two situations 
are the same, why does the water in situation 2 boil less 
vigorously than the water in situation 1?): because with more 
heat the water is turning to steam more quickly, but at water’s 
boiling point no matter how much heat is added it does not 
increase in temperature in this state 

Level 3. Measurability Responses from Lucy 
Choice: B. The water temperature in situation 1 and the water 
temperature in situation 2 are different 
Explanation (what evidence can be used to support the claim 
that the water temperature in situation 1 and the water 
temperature in situation 2 are different? please explain why this 
evidence can be used to support the claim.): the evidence that 
can be used to support this claim is that they tell you 
in situation 1 the water is boiling but in situation 2 it is not 
boiling as much. this evidence can be used because boiling 
starts to occur at 100 °C but that is not just where it stops 

Level 2. Attributes Responses from Mia 
Choice: B. The water temperature in situation 1 and the water 
temperature in situation 2 are different 
Explanation (what evidence can be used to support the claim 
that the water temperature in situation 1 and the water 
temperature in situation 2 are different? Please explain why this 
evidence can be used to support the claim.): the water 
in situation 1 was boiling much more vigoriously [vigorously] 
than the water in situation 2. This means that situation 1 had 
significantly more energy to use, meaning that it was hotter 

Level 1. Holistic phenomena Responses from Zane 
Choice: A. The water temperature in situation 1 and the water 
temperature in situation 2 are the same 
Explanation (if the water temperatures in these two situations 
are the same, why does the water in situation 2 boil less 
vigorously than the water in situation 1?): your pot of water is 
on the stove, you’ve turned on the maximum heat, and the wait 
for boiling begins. You are staring impatiently at the pot when 
the water looks like it’s starting to swirl. You’re anxious to see 
the bubbles that signify that you can put your pasta into that 
water
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4 Evidence for Mathematization to Be Used 
as a Crosscutting Theme 

For mathematization to be used as a crosscutting theme, a framework of mathema-
tization must be developed to guide the development of curriculum, instruction, and 
assessment across topics and disciplines. In the project, we conducted quantitative 
analyses of the student assessment data. Our analyses provide two pieces of evidence 
that the mathematization LP is applicable to topics in both physical sciences and life 
sciences. Therefore, the mathematization LP is a potential framework to guide the 
development of curriculum, instruction, and assessment across science topics and 
disciplines. In this chapter, we describe these two pieces of evidence. 

First, we scored the item responses in terms of the four levels of the LP (score 
1 for Level 1 responses, etc.) and used the item response theory (IRT) models to 
analyze those scores. The results suggested that the mathematization LP can be 
used to evaluate student proficiency in both physical science topics and life science 
topics. More specifically, the Rasch model was used to fit dichotomous items; the 
Partial Credit model (Masters, 1982) was used for polytomous items. Results of 
the IRT analysis are presented in Wright maps (Fig. 4). The Wright maps provide 
quantified locations of item difficulties and students’ performances on the same 
scale, called the logit scale. The left side of the Wright Map displays the distribution 
of students’ performance estimates while the right side represents the distribution 
of the Thurstonian thresholds for each item. Each item has two to four threshold 
values. These values are 1, 2, 3, or 4, representing the transition between a zero 
score (responses such as “I don’t know” or random letters) and Level 1, between 
Level 1 and Level 2, between Level 2 and Level 3, and between Level 3 and Level 
4, respectively. For example, the location of the second threshold (labeled as 2) for a 
life science item, “LS18”, is close to zero logit. This suggests that students located 
at zero logit value of performance have about 50% chance of transition from Level 
2 to Level 3 for LS18.

Wright Maps allow a visual determination of whether the LP levels for math-
ematization of science were differentiated from each other. Undifferentiated levels 
in the Wright map would indicate that the scoring rubric or the LP is not empirically 
supported and should not be used to evaluate students’ performance. The two Wright 
maps (Fig. 4) provide the following evidence. For all items, the data supports the 
hypothesized order of the four learning progression levels. For most items, the data 
shows that the learning progression levels are differentiated from each other. It is also 
important to note that the data of some items do not support the distinction between 
adjacent levels. For example, for a physical science item, “PS21”, the threshold 1 and 
the threshold 2 are located remarkably close to each other. This evidence indicates 
that the transition between the zero score and Level 1 and the transition between 
Level 1 and Level 2 are not clearly distinguishable. One possible cause is that the 
small number of responses at those levels caused unreliable estimates. The distinc-
tion between levels is clear in the Wright map for the life science items, but not in 
the Wright map for the physical science items. This is probably because the physical
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Fig. 4 Wright maps of mathematization of science in life science (upper panel) and in physical 
science (lower panel)

science assessments contain more multiple-choice items and multiple-choice items 
are not as effective as constructed response items. This may also be due to that more 
topics are involved in physical science assessments. In summary, the Wright Maps 
in both the life science and physical science domains support the internal structure 
of the assessment (Wilson, 2004) that the learning progression levels provide useful 
measures of mathematization of science. 

Second, more advanced IRT modeling revealed the potential that the mathemati-
zation LP is applicable in both life sciences and physical sciences. More specifically, 
the same data was analyzed through a special type of IRT model (Shin et al., 2017) to  
investigate the relationships between students’ mathematics ability and their math-
ematization proficiency in physical/life sciences. For this analysis, the same set of 
math item parameters were used to put mathematization in physical science and 
mathematization in life science on the same scale in relation to the mathematics 
ability measure. Next, thresholds between two adjacent learning progression levels 
were computed. Table 3 provides the estimated thresholds in the life science and the 
physical science referenced to the mathematics items.

As shown in Table 3, thresholds were estimated as the median values across items 
on the logit scale (Shin et al., 2012). Thus, the differences between thresholds are 
allowed to be varied (e.g., Level 1 could have a smaller range than Level 2). For 
Thresholds 1 and 2, the values in two different disciplines were estimated to be quite
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Table 3 Estimated 
thresholds of the learning 
progression for 
mathematization 

Thresholds Life sciences Physical sciences 

Threshold 1 − 2.08 − 2.16 
Threshold 2 − 1.09 − 0.96 
Threshold 3 0.97 0.55 

Threshold 4 2.92 2.09

similar, although not identical. This pattern is not observed for Thresholds 3 and 4. 
This may be due to that many physical science items were multiple-choice items and 
that the physical science items were divided into multiple topics to fit the courses 
taught by the participating teachers. 

5 Conclusions 

Quantitative reasoning played a crucial role in the development and revolution of 
scientific knowledge (Crombie, 1961; Kline, 1982). It is also an essential learning 
goal for K-12 students (NGSS Lead States, 2013; NRC, 1996). In this chapter, we 
use mathematization of science to refer to quantitative reasoning in science, because 
it was used to refer to the specialized ways of reasoning that scientists used to quan-
tify phenomena and construct knowledge (Kline, 1982; Lehrer & Schauble, 1998). 
We conducted an analysis of five events that played critical role in the development 
and revolution of scientific knowledge. This analysis is inspired by Thompson’s 
theory of quantitative reasoning in mathematics (Thompson, 1993, 2011). We found 
Thompson’s ideas about measurability and relational complexity very useful for us to 
understand how mathematics and quantitative reasoning were used in the history of 
science. Our historical analysis suggests three components that differentiate math-
ematization from people’s everyday intuitive reasoning. These three components 
are measurability, relational complexity, and scientific conceptualization. Together, 
they illustrate a quantification process, by which scientists abstract measurable vari-
ables from messy phenomena and observations; use mathematical operations to 
identify relationships among those variables; and conceptualize concepts, princi-
ples, and theories to explain the identified relationships. By using this quantification 
process, scientists have made significant breakthroughs in the history of science (Jin 
et al., 2019a). Mathematization is also one of the six styles of scientific reasoning 
embedded in all science disciplines (Crombie, 1994; Kind & Osborne, 2017; Osborne 
et al., 2018). Like other styles of reasoning, the value of mathematization includes 
“explaining the diversity to be found within the sciences, elegantly capturing the 
forms of reasoning, and helping to identify the intellectual achievement that the 
sciences represent” (Osborne & Rafanelli, 2019, p. 530). Therefore, mathematiza-
tion, as well as other styles of reasoning, are good candidates for crosscutting themes 
to build curricular coherence.
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Schmidt et al. (2005) compared the mathematics and science standards of the 
United States with those of top-achieving countries in the Third International Math-
ematics and Science Study (TIMSS). They found that, “coherence is one of the most 
critical, if not the single most important, defining elements of high-quality stan-
dards” (p. 554). They further point out that the U.S. has a ‘mile-wide inch-deep’ 
science curriculum that covers a wide range of science topics, but the topics are not 
organized in ways reflecting the logical nature of the disciplinary content. In other 
words, the U.S. curriculum is not coherent. The current science standards, NGSS, 
present a significant improvement in curricular coherence. NGSS were developed 
under the guidance of the NRC Framework. In the Framework, the three dimensions 
of science learning (two to four core ideas in each discipline, eight scientific and 
engineering practices, and seven crosscutting concepts) are integrated to achieve the 
logical coherence in science disciplines; learning progressions for the components 
in each dimension are used to ensure the cognitive coherence in science learning. 
Moreover, the seven crosscutting concepts (patterns; cause and effect; energy and 
matter, etc.) “provide students with connections and intellectual tools that are related 
across the differing areas of disciplinary content and can enrich their application of 
practices and their understanding of core ideas” (NRC, 2012, p. 233). 

Osborne and colleagues (Kind & Osborne, 2017; Osborne & Rafanelli, 2019; 
Osborne et al., 2018) propose using the six styles of reasoning to replace the 
seven crosscutting concepts as crosscutting themes. While we agree with Saleh 
and colleagues (Saleh et al., 2019) that the crosscutting concepts have been proved 
effective when being used as a crosscutting theme, we also believe it is valuable 
to explore styles of reasoning as alternative crosscutting themes to build curricular 
coherence. After all, diversity drives innovation and advancements. A variety of 
approaches are needed to promote teaching and learning of science. For example, if 
mathematization is taught and assessed consistently across science topics and disci-
plines, students will learn to use mathematization more effectively. They will also 
develop deep understanding of the content knowledge in different topics and disci-
plines, because mathematization requires using disciplinary knowledge to explain 
mathematical relationships. 

For mathematization to be used as a crosscutting theme, evidence in both logical 
coherence and cognitive coherence should be provided. In terms of logical coherence, 
researchers have conducted extensive and thorough analysis of scientific knowledge 
and found that mathematization is embedded in the knowledge across science disci-
plines (Crombie, 1961; Kline, 1982; Jin et al., 2019a). In terms of cognitive coher-
ence, research of student understanding must be conducted to show that mathemati-
zation can be taught and assessed across topics and disciplines. Our research provides 
preliminary evidence for the cognitive coherence. We developed an LP that describes 
and evaluates student performance in terms of four levels of achievement—holistic 
phenomenon, attributes, measurability, and relational complexity. Moving up these 
levels, students demonstrate increasingly sophisticated mastery of mathematization. 
Our analyses of students’ assessment data suggest that the mathematization LP can 
be used to assess mathematization across several topics in physical and life sciences.
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Further research is needed to use the LP to guide assessment and instruction in more 
topics. 
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