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Introduction 

Quantitative Reasoning in Mathematics and Science 
Education in the Digital Era 

The digital era is a period beginning in the mid-20th century and leading its way into 
the 21st century. Technology characterizes this era as it provides access to widespread 
information in various electronic forms; therefore, it “increases the speed and breadth 
of knowledge turnover within the economy and society” (Shepherd, 2004, p. 1). 
The digital era demands specific 21st-century skills and abilities such as critical 
thinking, creativity, collaboration, communication, and flexibility. These skills are 
central to STEM disciplines (Beswick & Fraser, 2019), with which the teachers and 
learners need to be equipped. Even though technology is a crucial driver for such 
a “skills agenda, simply assisting students to develop up-to-date technology skills 
is not sufficient” (Beswick & Fraser, 2019, p. 958) to promote such an agenda. 
This is where we believe quantitative reasoning comes to the fore as it lays the 
foundation for developing these skills within STEM subjects. This book focuses on 
quantitative reasoning as an orienting framework to analyze learning, teaching, and 
curriculum. Different chapters of the book delve into quantitative reasoning related 
to the learning and teaching diverse mathematics and science concepts, conceptual 
analysis of mathematical and scientific ideas, and analysis of school mathematics 
(K-16) curricula in different contexts. 

Quantitative reasoning is “an individual’s analysis of a situation into a quantita-
tive structure” (Thompson, 1990, p. 13) such that it entails “the mental actions of an 
individual conceiving a situation, constructing quantities of his or her conceived 
situation, and both developing and reasoning about relationships between these 
constructed quantities” (Moore et al., 2009, p. 3). Thompson and Carlson (2017) 
point out that envisioning a situation in terms of a quantitative structure is advan-
tageous for students’ positioning “to propagate information about how to calculate 
values of quantities in the structure in terms of arithmetic or algebraic expressions that 
are implied by the structure” (p. 440). Particularly, quantitative reasoning provides 
“content and meaning for numerical and symbolic expression and computation”

v
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(Smith III & Thompson, 2008, p. 41). Envisioning a situation in terms of quanti-
ties and relationships among quantities is important to establish a foundation for 
reasoning about covariation, which plays a crucial role in learners’ development 
of more complex mathematical and scientific ideas in critical ways (Thompson & 
Carlson, 2017). These suggest that quantitative reasoning is a key in education, and 
the proposed book unveils its particulars. In this regard, Johnson’s chapter focuses on 
the “relationships” as an intellectual need and uses mathematizing to describe a cate-
gory of a way of thinking emerging from that need. These relationships are essential 
in both mathematics and science. Gonzales’ chapter uses quantitative reasoning to 
develop an understanding of the energy budget as a system of interrelated quantities 
and utilizes covariational reasoning to investigate climate change with a critical lens. 
In addition, Brahmia and Olshon’s chapter discusses physics quantitative literacy as 
the blending of conceptual and procedural mathematics to generate and apply models 
relating physics quantities to each other. 

The relevant literature suggests that quantitative reasoning supports the learning 
of arithmetic and algebra and plays a vital role in learning concepts foundational to 
calculus, geometry, trigonometry, physics, and so on. The literature studies provided 
detailed accounts of how quantitative reasoning can play an essential role in learning 
and teaching different mathematical and scientific concepts. In this book, Moore et al. 
chapter provides an analysis of concept construction from a quantitative reasoning 
perspective. In addition, Paoletti et al. chapter further describes a task sequence to 
construct covariational relationships among quantities and distinguish nonlinear and 
linear relationships. Moreover, based on a 15-year research program, Carlson et al. 
chapter explores how to support instructors in making their precalculus teaching more 
engaging, meaningful, and coherent using quantitative relationships symbolically 
and graphically. 

Quantitative reasoning also provides a propitious arena for the conceptual analysis 
of mathematical and scientific ideas. Thompson (2008) defined conceptual analysis 
of mathematical ideas as a method “to describe ways of understanding ideas that 
have the potential of becoming goals of instruction or of being guides for curric-
ular development” (p. 58). Conceptual analyses are “extremely powerful” because 
they offer concrete examples of learning trajectories (Thompson, 2008). The book 
gives examples of such analyses from different areas of mathematics. For instance, 
Akar, Zembat, Arslan, and Belin’s chapter provides such analysis of isometries 
and their conceptualization. Nunes and Bryant’s chapter considers numbers and 
number systems as models of quantitative relations and investigates how action 
schemas used in different situations support students’ understanding of quantities 
and numbers. Ellis et al. chapter provides examples from linear and quadratic func-
tions by identifying a sequence of conceptual activities and examples of associated 
student reasoning and task design principles to guide curricular decisions. 

The use of quantitative reasoning in the development of ideas in curricula has also 
been given prominence since 2010 in Common Core State Standards for Mathematics 
(CCSSM) (Johnson, 2016). However, Johnson argued that despite greater inclusion 
of quantity and quantitative reasoning in CCSSM, a lack of emphasis on forming
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and interpreting relationships between quantities that change together remains a chal-
lenge. Thompson and Carlson (2017) proposed researching the systematic analysis 
of different curricular approaches that support students in developing quantitative 
and covariational reasoning. Akar, Watanabe, and Turan’s chapter exemplifies such 
systematic analysis based on quantitative reasoning for a Japanese textbook series 
and curricular resources. 

Quantitative reasoning is also crucial for other disciplines, including science. 
Duschl and Bismack (2013) stated, “quantitative reasoning is represented as a compo-
nent of model-based reasoning that bridges the divide between mathematics and 
science” (p. 122). Similarly, further elaborating on quantitative reasoning, Thompson 
(2011) offered a detailed definition of quantification as “the process of conceptual-
izing an object and an attribute of it so that the attribute has a unit of measure, 
and the attribute’s measure entails a proportional relationship (linear, bi-linear, or 
multi-linear) with its unit” (p. 37). Thompson considered this definition as a link 
between mathematics and science education. One can undoubtedly establish such 
connections between mathematics and other disciplines, and this book contributes 
to such an initiative. For example, Jin et al. chapter uses the mathematization of 
science dwelling on quantitative reasoning to quantify phenomena and construct 
knowledge and as a cross-cutting theme to build curricular coherence in physical 
and life sciences. 

Although not exhausting all quantitative reasoning work, we point to the impor-
tance of quantitative reasoning and its crucial role in mathematics and science educa-
tion with this book. Thompson’s introductory chapter highlights that many scholars 
have based their work on quantitative reasoning as a framework to investigate and 
think about learning and teaching, conceptual analyses, curricular efforts, and links 
to other disciplines for decades. However, there seems to be a void in collecting 
this work together and pondering quantitative reasoning from different angles. This 
book provides ways to cluster the work established so far and can be considered as a 
reference book to be used by researchers, teacher educators, curriculum developers, 
and pre- and in-service teachers. We hope that it finds its place in the mathematics 
and science education literature within the digital era. 
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Quantitative Reasoning 
as an Educational Lens 

Patrick W. Thompson 

I must begin by thanking Gülseren Karagöz Akar, Ismail Özgür Zembat, and Sela-
hattin Arslan for including me in their effort to produce this book. While I am listed 
as an editor, they did the heavy lifting of conceptualizing the book and working with 
authors. My role was more as a consultant than an editor. I am nevertheless grateful 
they thought to include me. 

1 Origins of a Theory of Quantitative Reasoning and Its 
Applicability 

Humans have been reasoning quantitatively for thousands of years. I did not invent 
quantitative reasoning. I developed a theory of quantitative reasoning—a theory 
with the aim of explaining how individuals might come to reason about the world as 
they see it through a measurement lens (including not seeing it through a measure-
ment lens) and implications for students’ mathematical learning. My early work 
was motivated by wanting to understand students’ difficulties with story problems— 
descriptions of settings designed by textbook authors that included a question about 
the setting. This interest was sparked in the spring of 1985 by James Greeno in 
his presentation of Valerie Shalin’s work (Shalin, 1987; Shalin & Bee, 1985) to  
the mathematics education faculty at San Diego State University. Shalin designed a 
computer interface of notecards to represent quantities and arrows among notecards 
to show relationships. I realized Shalin had devised a way to represent relationships 
among quantities without having to rely on formulas or expressions. Shalin had not, 
however, explicated what she meant by quantity or quantitative relationship, nor did
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2 P. W. Thompson

she include a theory of how relationships among quantities imply methods for eval-
uating them. However, I immediately saw the theoretical power of having a way to 
represent quantities and relationships without formulas or expressions. 

In 1986 I was invited to contribute a chapter on artificial intelligence (AI) in 
mathematics education to an NCTM publication on learning and teaching algebra 
(Thompson, 1989). I wanted to include a discussion of Shalin’s and Greeno’s 
computer program, but was unsuccessful in obtaining more information about it. 
I therefore decided to write an AI program, Word Problem Analyst (WPA), inspired 
by Shalin’s interface and discuss the aspects of quantitative reasoning as I conceived 
it embodied in the program. I will not recap all the insights I gained from writing 
WPA (and revising it over the next four years) except to say writing it, with support 
from the US National Science Foundation, provided a testbed for creating a scheme 
theory for ideas of quantity and the development of mathematical reasoning from 
quantitative reasoning (Thompson, 1990, 2011). 

The following problem and Figs. 1, 2, 3, 4, 5, 6 and 7 illustrate the use of WPA to 
model someone conceptualizing a problem in terms of quantities and relationships 
among quantities and the algebra that can be inferred from this structure. 

MEA Export is to deliver an oil valve to Costa Rica. The valve’s price is $5000. Freight 
charges to Costa Rica are $100. Insurance is 1.25% of Costa Rica’s total cost. Costa Rica’s 
total cost includes the costs of the valve, insurance, and freight. What is Costa Rica’s total 
cost? (Thompson, 1990, p. 39) 

Figure 1 shows a person’s (say, José’s) conception that there are six quantities 
involved in this situation: Total Cost to Costa Rica, the costs of Freight, Valve, and 
Insurance, the Insurance Rate, and the cost of Insurance and Freight together. At

Fig. 1 José’s understanding of quantities involved in the situation 



Quantitative Reasoning as an Educational Lens 3

Fig. 2 José’s conception of relationships among quantities in the situation 

this moment José has not conceptualized any relationships among quantities. Each 
notecard reflects the schematic nature of a conceived quantity—a natural language 
description of an object’s attribute, a unit in which the attribute is measured, and a 
potential value for the quantity’s measure. Each notecard also has a “Formula Cell”. 
This represents José’s anticipation that a quantity’s value might be calculated from 
relationships with other quantities. 

Figure 2 shows the relationships José envisioned among quantities: Total Cost is 
made by an additive combination of Insurance and Freight and the cost of the Valve. 
Insurance and Freight is made by an additive combination of the cost of Insurance 
and the cost of Freight. The cost of Insurance is made by instantiating the Insurance 
Rate with the Total Cost to Costa Rica. Notice that at this moment, José has not 
thought about any calculations. 

Figure 3 shows that José has now attended to the information given in the problem 
statement. Freight has a value of $100, Valve Cost has a value of $5000, and Insurance 
Rate has a value of $1.25/100 of insurance per dollar of cost. Notice that, at this 
moment, José cannot make any inferences about values of other quantities.

Figure 4 shows José’s decision to let C stand for the value of Total Cost to Costa 
Rica. Figure 5 shows an immediate consequence of letting C stand for the value of 
Total Cost—since Total Cost is made by an additive combination of Insurance & 
Freight and Valve Cost, and Valve Cost has a value of 5000, the value of Insurance 
and Freight must be C—5000$.

Figure 6 shows the next propagation. Since Insurance is made by instantiating 
Insurance Rate with the value of Total Cost, the  value of  Insurance will be C*  0.0125 
dollars. Figure 7 reflects José’s openness to deriving a formula for a quantity for which 
he already knows a value. Insurance & Freight is made by an additive combination
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Fig. 3 Adding information given in the problem to José’s conception of the situation

Fig. 4 Using “C” to stand for the value of total cost

of Insurance and Freight, and since its value is C – 5000 and Freight’s value is 100, 
José infers that a formula to compute Freight’s value is C – 5000 – 0.0125C. But  the
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Fig. 5 Inferring a formula to compute the value of insurance and freight

Fig. 6 Inferring a formula to calculate the value of insurance

value this formula must yield is the value of Freight, which is 100.1 In other words, 
by reasoning quantitatively, José ended with the equation C – 5000 – 0.125C = 100. 

1 The brackets in the Freight notecard indicate that José ignored the fact he already knows a value 
of Freight in order to infer a formula to compute Freight’s value. 
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Fig. 7 Inferring a formula for the value of freight even though it has a known value of 100 

José’s conceptualization of the Costa Rica situation is not unique. It can be concep-
tualized in many ways. Indeed, in Thompson (1990) I illustrate how even simple prob-
lems can have very different underlying conceptualizations in terms of quantities and 
relationships composing it yet yield the same arithmetic or algebra. 

There are three significant differences between Shalin’s model and the theory I 
developed. First, Shalin’s model did not have an underlying theory of quantity or 
quantification, except for the arithmetic or units developed by Schwartz (1988). An 
arithmetic of units, such as cm · cm = cm2, or (ft/s)/s = ft/s2,conflates arithmetic 
operations and quantitative operations. It is not a theory of quantitative reasoning. 
Rather, units are treated as if they are numbers or variables. An arithmetic of units 
is implied by quantitative reasoning, but it is not a theory of it. Second, the theory 
addressed how one propagates information throughout a quantitative structure when 
knowing only partial information about the context. The theory of propagation is 
the foundation of the model’s hypotheses about students’ transitions from quantity-
based arithmetic to quantity-based algebra (and beyond). Third, Shalin did not make a 
distinction between quantitative operations and arithmetic operations, which resulted 
in confounding type of quantity with an arithmetic operation to calculate its value, 
such as describing a quantity as a difference simply because, in a particular situation, 
subtraction is used to calculate its value (see Greeno, 1987, p. 77). 

Finally, the WPA model of José’s conception of the Costa Rica situation presumed 
he had mature schemes for the quantities and quantitative operations depicted 
therein. WPA was meant to model implications of reasoning quantitatively for alge-
braic reasoning. It did not address ways learners construct quantities and quanti-
tative operations. The theory I expressed in Thompson (1990) provided a founda-
tion for later studies that brought coherence to understanding the development of
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students’ schemes for quantitative comparisons, variation and covariation, ratio and 
rate, geometric and exponential growth, uses of notation, function, probability and 
statistics, and many ideas specific to calculus. 

2 Chapters in This Book 

I am surprised and gratified that many people found this early work, and later expan-
sions of it, useful in their research. The chapters in this book show creative uses 
of quantitative reasoning as a lens for making sense of students’ reasoning, for 
design of instruction, for curriculum design and evaluation, for teacher professional 
development, and for design of assessments. Johnson’s use of Harel’s notion of 
intellectual need as a motive for why students might seek relationships between 
quantities whose values vary is novel and powerful. Moore et al.’s focus on students’ 
creation of abstract quantitative structures addresses the question of how students 
might generalize their quantitative reasoning in specific contexts to broader areas of 
application. Karagöz Akar, Watanabe and Turan created a novel way of examining 
mathematics textbooks by the criterion of ways they support or inhibit students’ 
quantitative reasoning. Paoletti extends a framework for thinking about students’ 
variational and covariational reasoning by filling a gap in it, while Ellis et al. build 
a learning progression based in variational and covariational reasoning to address 
students’ development over early grades of schemes for function. Karagöz Akar, 
Zembat, Arslan and Belin leverage quantitative reasoning to address the issue of 
students’ difficulties in conceiving motions in the plane as functions mapping R2 

to R2. Carlson et al. leverage quantitative reasoning to address the question of how 
to support teachers in transitioning from speaking to students as if to themselves to 
engaging students in reflective discourse aimed at students’ construction of coherent 
systems of mathematical meanings. I am especially gratified to see three chapters 
by science educators leveraging a theory originally aimed to support learning and 
teaching mathematics to address issues within science education. Jin et al. apply 
quantitative reasoning as a theme to enhance curricular coherence across grade levels 
and across a broad array of scientific concepts. González uses quantitative reasoning, 
especially distinctions between ratio as a quantity and rate as a quantity, to examine 
students’ meanings for ideas central to understanding climate change. White Brahmia 
and Olsho turn the lens around. Instead of using quantitative reasoning as a lens on 
students’ reasoning in physics, they use physics as a context to assess students’ quan-
titative reasoning. Nunes and Bryant take an approach to quantitative reasoning more 
in line with Schwartz (1988), in which numbers represent quantities and arithmetic 
operations imply operations on quantities. 

I suspect one reason quantitative reasoning has found such broad applicability is 
its fundamental stance that quantities are in a mind, not in the world. This stance 
forces anyone adopting it to examine ways learners understand situations presented 
to them. It forces us to ask, “What is this situation to the learner?” As Carlson 
et al. (this volume) document, adopting this stance is nontrivial for instructors who
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are accustomed to apply criteria of coherence only to their own understandings, not 
to ways their students might understand the situations presented to them or might 
understand their instructor’s actions and utterances regarding a situation. 

Another possible reason quantitative reasoning has been found broad applicability 
is that using it forces one to employ a level of qualitative precision that is uncommon 
in mathematics instruction, yet beneficial for students’ learning. Distinctions among 
object, attribute, and measure are often unaddressed by mathematics teachers—as 
witnessed by the common proclivity among teachers and students to write statements 
like “D = distance”. Carlson et al. (this volume) document difficulties precalculus 
instructors create for themselves and their students by their lack of precision about 
contextual meanings of numbers, variables, and expressions. 

3 Conceptualizing Units and Conceptualizing 
Quantification: Aspects of Quantitative Reasoning 
Needing Greater Attention 

Early on in developing this theory of quantitative reasoning I proposed that a quantity 
is a scheme—someone’s conception of an object and an attribute of it the person 
has conceived as measurable in an appropriate unit. I also spoke repeatedly of the 
synergy among a person’s conceptions of object, attribute, and measurability—they 
each mature as the person gains clarity on the others. In Thompson (2011) I gave  
a brief recount of 8th-graders’ construction of “explosiveness of a grain silo” as a 
quantity. They engaged in extended discussions of just what was it that was explosive: 
The silo? The grain in the silo? Dust in the silo? Dust in the air within the silo? They 
also had to settle on a mechanism for explosions, eventually settling on oxidation at 
the surface of grain dust particles. This led them eventually to a unit of grain silo 
explosiveness: cm2 of “dust surface area” per cm3 of “dust volume” per ft3 of “silo 
volume” in which the dust is dispersed. 

I offered the example of grain silo explosiveness to illustrate the messiness of 
quantitative reasoning that often is unaddressed in studies employing a quantitative 
reasoning lens. But we need not go to uncommon quantities like “grain silo explo-
siveness” to see the interdependence among conceptualizations of object, attribute, 
and unit. In Thompson (2000) I spoke of ways students often understand area and 
volume as one-dimensional quantities. Area is one-dimensional when one conceives 
the unit as having one dimension—a square region of a particular size. Then all areas 
are just counts of that one-dimensional unit. Similarly, volume is one-dimensional 
when one conceives the unit as having one dimension—a cubic object of a partic-
ular size. Then all volumes are just counts of that one-dimensional unit. Brady and 
Lehrer (2020) clarified that a unit of area is conceived as two-dimensional when one 
conceives it as generated by two segments, one being swept along the other. This 
is the imagistic equivalent of understanding the interior of a rectangle being formed 
by the cross product of two perpendicular lines viewed as sets of points. Karagöz
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Akar et al.’s chapter on isometries makes a similar point with respect to conceptual-
izing the Cartesian plane as R2 = R × R You obtain a two-dimensional object by the 
quantitative operation of multiplicative combination of two one-dimensional objects. 
Area and volume are just two instances of quantities teachers and researchers take 
as unproblematic in conceiving their unit when in fact students often conceive them 
in ways that are problematic for their comprehension of situations involving them. 

In the following paragraphs, I offer two additional examples to illustrate the messi-
ness of quantification and how attention to units can be helpful to students in under-
standing mathematical or scientific ideas. The first is conceptualizing interest rate as 
actually being a rate of change of one quantity with respect to another. The second 
is the quantification of kinetic energy. 

3.1 Quantification of Interest Rate as a Rate of Change 

To specify a quantity as a rate of change, we must state two quantities whose values 
covary. They vary with respect to each other. The “rate of change” attribute of two 
quantities covarying is captured by a statement of the amount one varies in relation 
to variations in the other. 

Here are three definitions of interest rate by commonly accepted authorities: 

1. “The cost of borrowing money from a lender is represented as a percentage 
of the principal loan amount, called the interest rate.” U.S Federal Housing 
Administration https://www.fha.com/define/interest-rate 

2. “The amount earned on a savings, checking, or money market account, or on an 
investment, as a certificate of deposit or bond, typically expressed as an annual 
percentage of the account balance or investment sum.” Dictionary.com https:// 
www.dictionary.com/browse/interest-rate 

3. “The percentage usually on an annual basis that is paid by the borrower to the 
lender for a loan of money.” Meriam-Webster.com https://www.merriam-web 
ster.com/dictionary/rateofinterest. 

I find it peculiar that, despite purporting to define interest rate, none of these 
statements actually defines a rate of change of one quantity with respect to another. 

Imagine a bank advertisement as follows: 

We pay 3% interest per year on your deposit. 

What quantities are involved in this practice of charging or paying interest? What 
are their units? What is the rate of change of one quantity with respect to another 
that is the “rate”? 

The quantities are interest paid (dollars of interest), dollars on balance (basis of 
the percentage), and an amount of time (number of years balance is on deposit). 
Regarding the rate—what is it? Is it a rate of change of balance with respect to time? 
The rate of change of interest earned with respect to time?

https://www.fha.com/define/interest-rate
https://www.dictionary.com/browse/interest-rate
https://www.dictionary.com/browse/interest-rate
https://www.merriam-webster.com/dictionary/rateofinterest
https://www.merriam-webster.com/dictionary/rateofinterest
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The crux of the matter is to understand that “3%” has a unit: dollars of interest 
per dollar on balance. The unit of “3% interest per year” is ($interest/$balance)/year. 
The bank will pay interest at the rate of 0.03 dollars interest per dollar of balance 
per year. There is yet one open question: What constitutes the balance upon which 
interest is computed? Is it the current balance at the time of computing interest, or is 
it the initial balance at the time of opening the account? 

The difference between simple interest and compound interest is much easier to 
understand when we answer these questions explicitly. “We pay 3% interest per year 
on your deposit, compounded quarterly” means that at the end of each quarter they 
will add to your balance the amount earned at the rate of (($0.03 interest per $1.00 
balance at beginning of compounding period) per year) earned in 1/4 year. You earn 
interest over a quarter year at 1/4 the rate you would earn over a year. This is like 
speeding up at a rate of 10 (km/h)/h for 1/4 h. Your speed increases at a rate per 
1/4 hour that is 1/4 the rate for an hour, or at a rate of (2.5 km/h) per 1/4 h. 

The idea of the unit of an interest rate is related to students’ difficulties distin-
guishing between linear and geometric growth. Graphs given in Fig. 8 show two 
ways to understand the phrase “… increases at a rate of 20% per month.” Fig. 8a 
shows 20% of the original amount (e.g., $2) added to the current value (e.g., $10) to 
get the next value (e.g., $12). The same amount is added at the end of each month. 
Figure 8b shows 20% of the current month’s value added to get the next month’s 
value. Since the current value increases each month, the amount added at the end of 
each month increases. 

The phrase “… increases at a rate of 20% per month” is ambiguous regarding 
which interpretation the speaker intends a listener to make. Being clear about the 
quantities and their units is clarifying. The first would be “… increases at a rate of

Fig. 8 Two ways to interpret the phrase, “… increases at a rate of 20% per month” 
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($0.20 interest per dollar of initial balance) per month”, whereas the second would 
be, “… increases at a rate of ($0.20 interest per dollar of current balance) per month”. 

3.2 Quantification of Kinetic Energy 

A characteristic of physical quantities is how deeply their conceptualizations are 
interconnected. Energy is commonly defined as “the capacity to do work” (Ency-
clopedia Britannica, 2022). The idea of work is tied to the idea of applying a force 
to move an object some distance, while force is the idea of accelerating an object 
(having mass) from one velocity to another velocity. The meaning of kinetic energy 
is the work required to bring an object having mass m from velocity v to velocity 0.2 

Jin et al. (this volume) speak of students’ understanding of kinetic energy in terms 
of implications they draw from a formula for quantifying its measure, namely E =
1 
2 mv2, for how an object’s kinetic energy changes when its velocity changes. Some 
students think doubling an object’s velocity doubles its kinetic energy. Other students 
think doubling its velocity quadruples its kinetic energy. The issue Jin et al. addressed 
is students’ abilities to reason about the implications of a quantification expressed in 
a formula. I address a more foundational issue—the quantitative reasoning involved 
in quantifying kinetic energy to end with the formula E = 1 

2 mv2. My aim here 
is to illustrate how conceptualizations of object, attribute, and quantifications are 
intertwined. 

To quantify kinetic energy, we must identify an object and its attribute as a starting 
point of quantification—to determine a method by which to measure it and the unit 
in which it will be measured. In the case of kinetic energy, the “object” is anything 
having mass. One attribute is its motion—it is moving (at least momentarily) at a 
constant velocity. Another attribute is the effort (work) required to stop its motion. 
Work, as a quantity, is a force applied over a distance. The object’s velocity, however, 
is not constant. Its velocity decreases as work is applied to it. 

A slight twist which makes envisioning kinetic energy easier is to realize the 
energy required to bring an object from velocity v to velocity 0 is the same as the 
energy required to bring it from velocity 0 to velocity v. 

Breaking down these components, and envisioning the object’s velocity changing 
in little bits as it accelerates from 0 to v, we get 

• a force of measure F is created by accelerating a mass of measure m at a rate of 
measure a, 

• a small bit of acceleration is created by changing an object’s velocity by a variation 
of measure dv during a variation of time of measure dt, 

• a small variation in distance ds is made by going at velocity v for a small variation 
in time dt,

2 I have limited these descriptions to mechanical quantities to avoid dealing with the complexities 
of their electro and thermal equivalents. 
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• a small variation of work is created by applying a force of measure F over a small 
variation in distance of measure ds, and 

• a small variation in an object’s kinetic energy of measure dE is created by a small 
variation in work of measure Fds  that varies its velocity. 

Symbolically, taking F as a measure of force, E as a measure of kinetic energy, 
and dE, dv, dt, and ds as infinitesimal variations in kinetic energy, velocity, time, 
and distance, respectively: 

F = ma, a = 
dv 
dt  

, ds  = vdt, dE  = Fds  

− − − − − − − − − − − − − − − − − − −  
dE  = Fds  
= mads 

= m
(
dv 
dt

)
vdt  

= mvdv 

So, a small variation in an object’s kinetic energy is its momentum times a small 
variation in its velocity. This says an object’s momentum at any velocity is its rate 
of change of kinetic energy with respect to velocity. 

Recalling that the work required to decelerate an object from v to 0 is the same as 
the work required to accelerate it from 0 to v, an object’s kinetic energy is the (hyper) 
sum of all infinitesimal variations in its kinetic energy as velocity varies from 0 to v. 
Symbolically3 : 

E(v) =
∫ v 

0 
mudu 

= 
1 

2 
mu2

∣∣∣∣
u=v 

u=0 

= 
1 

2 
mv2 

As I said earlier, a full, robust understanding of this quantification of kinetic energy 
requires understanding constituent quantities’ units (units of mass, time, distance) 
and the units of quantities created from them (acceleration, force, momentum, work, 
kinetic energy)—but not in the sense of an arithmetic of units. Rather, I mean one

3 I acknowledge that this derivation relies on students’ understanding of integrals as a (hyper) sum 
of infinitesimal variations and on their understanding of the relationship between a rate of change 
function and its accumulation functions. However, they could approximate any object’s kinetic 

energy to an acceptable accuracy with Desmos using the finite sum Eapprox(v) = 
v/Δv∑
i=1 

m(iΔv)Δv, 

where Δv is a small increment in velocity. See Thompson et al. (2019, Ch 5) for a full development 
of these ideas. 
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must understand units in the sense of Bridgman’s (1922) dimensional analysis, which 
attends to the creation of quantities from other quantities while attending to the nature 
of their attributes. Bridgman wrote, for example, [F] = [m][a] to convey that the 
quantity force is formed by the quantitative operation of multiplicative combina-
tion—by accelerating an object having mass. He wrote F = ma to represent how 
you calculate a measure of force, ending with a number with a unit that is consis-
tent with the quantity’s dimension. If you measure a mass in kg and acceleration in 
((meters per second) per second), the unit of force is kg ((m/s)/s), meaning a mass 
measured in kg is accelerated at a rate measured in ((meters per second) per second). 

How might students know to multiply m and a to calculate a measure of force? 
Hopefully, from schemes they constructed through experimentation,4 that force is 
proportional to both mass and acceleration. If we increase by a factor of j the mass 
being accelerated at a rate a, the force of accelerating it increases by a factor of j; if we  
increase the acceleration of an object by a factor of k, meaning its velocity increases k 
times as rapidly with respect to time, the force of accelerating it increases by a factor 
of k. Let  F( j, k) represent a measure of the force of accelerating an object of j mass 
units at a rate of k acceleration units. Then F( j, k) = F( j · 1, k · 1) = j · kF(1, 1). 
This says the measure of force that accelerates a mass of measure j mass units at a 
rate of measure k acceleration units is j · k times as large as the force of accelerating 
a mass of measure 1 mass unit at a rate of change of velocity with respect to time of 
1 acceleration unit. 

Lastly, there is another question we should hope students ask with respect to 
quantification of kinetic energy. Since kinetic energy is equivalent to an amount of 
work, they hopefully ask whether 1 2 mv2, our quantification of kinetic energy, actually 
quantifies an amount of work. If it does, then the derived unit of 1 2 mv2 must, in line 
with Bridgman, accord with a force applied over a distance. Its unit must be of 
dimension [F][d]. Here is where arithmetic of units is useful. 

The standard unit of force in the kg-meter-second system is the Newton (N), or 
1 kg accelerated at 1 (m/s)/s. Keeping track of units, and using m as a measure of 
mass and v as a measure of velocity in the kg-meter-second system, we get 

1 

2 
mv2 → kg m2 /s2 

→ (
kg

(
m/s2

)
m 

→ (kg (m/s)/s) m 

→ N m 

→ [F][d] 

The unit of 1 2 mv2 in the kg-meter-second system is the Newton-meter, which is 
of dimension [F][d], so it is a unit of work.

4 Of course, the experimentation that affords students an opportunity to construct such schemes 
must be crafted carefully so their abstractions are from their own activity. 
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4 Connections with Chapters in This Book 

The examples of conceptualizing and quantifying force and kinetic energy tie together 
themes developed in several chapters of this volume: Brahmia and Oshlo’s focus on 
quantification as a central aspect of scientific reasoning, Johnson’s focus on mathe-
matizing a la  Freudenthal via an intellectual need for relationships, Jin et al.’s focus 
on mathematizing as a bridge between mathematics and science, Paoletti et al.’s and 
Ellis et al.’s focus on variation and covariation as foundational ways of thinking for 
students to develop understandings of functions, Moore et al.’s focus on abstracted 
quantitative structures as a target for students’ quantitative reasoning, Gonzalez’ 
proposal of quantitative reasoning and quantification as a central theme in climate 
science. 

Moreover, if we consider these quantifications of force and kinetic energy as 
conceptual analyses of understandings we hope students construct—as a teacher’s 
key developmental understandings of force and kinetic energy—then Carlson et al.’s 
analysis comes into play. As they explain, teachers must reflect upon their own 
quantitative understandings to become conscious of the intricacies entailed in their 
goals of instruction and must decenter to consider how one might support students 
in developing these understandings via conventions of speaking with meaning and 
emergent symbolization. 

The example of work as a quantity relates to Moore et al.’s construct of abstract 
quantitative structure in a profound way. Understanding work dimensionally, as 
[F][d], is to understand the quantitative structure of work and to understand that 
units will be involved, but the exact units need not be specified—they just need to 
be coherent with the quantities of force and distance. The example of kinetic energy 
also is related to Karagöz Akar, Watanabe and Turan’s use of quantitative reasoning 
as a lens to examine mathematics textbooks’ coherence. Does a textbook support 
teachers to engage students in reflective discourse aimed at their conceptualization 
of quantities, their quantification, and situations involving them that textbook authors 
purport to address? 

The representation of kinetic energy as a function of velocity, E(v) = 1 
2 mv2, 

relates to Johnson’s stance regarding intellectual need for relationships, Ellis et al.’s 
conceptual analysis of functions, and Paoletti’s analysis of covariational reasoning. 
For a student (or instructor) to even consider writing “E(v)” requires they (1) seek 
a relationship between velocity and kinetic energy that remains invariant as velocity 
varies, (2) envision velocity varying smoothly from 0 to v regardless of the amount 
of time this acceleration takes, and (3) understand the notation “E(v)” through a 
scheme that entails an image of velocity and kinetic energy varying simultaneously 
and varying in a way that each value of velocity determines a value of kinetic energy 
(see Yoon & Thompson, 2020). 

I can imagine mathematics educators questioning the examples of quantifying 
force and kinetic energy as being largely relevant to science education and less 
relevant to mathematics education. I disagree. Anyone who has taught arithmetic, 
algebra, precalculus or calculus in the United States has seen their students arrive
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at solutions to applied problems with little meaning or inappropriate meanings for 
numbers or variables in their answer. This is a serious problem. The solution to 
the problem of meaning, however, must be systemic. To take quantitative reasoning 
seriously in mathematics and science education requires attention to having students 
conceptualize quantities and methods and meanings of their measures throughout 
their schooling. This can range from asking students what quantity their arithmetic 
has evaluated, to asking them what an appropriate unit for the area of a rectangle 
of height 3 jibs and width of 4 jabs would be, to how one might convert measures 
of fuel efficiency from miles per gallon to kilometers per liter, to asking them for a 
useful unit of effort to complete a job (e.g., person-hour), and so on. 

Moore et al.’s construct of abstract quantitative structure might be behind experts’ 
utterances like “speed times time equals distance”. They of course do not mean speed 
in any unit times time in any unit equals distance in any unit. Rather, they presume, 
without saying, this is true for a coherent system of units for speed, time, and distance. 
This brings to mind Carlson et al.’s explanation of the necessity for instructors to 
examine their own understandings and presumptions in order to consider how their 
expressions of them might be interpreted by students who will interpret teacher’s 
utterances and actions through schemes quite unlike the teacher’s. 

5 Conclusion 

I once again praise the authors’ work expressed in this volume and my colleagues’ 
who brought this collective work to our attention. I hope my call to give greater atten-
tion to the details of students’ and teachers’ conceptualizations of object, attribute, 
and measure is useful for those employing quantitative reasoning as a lens in math-
ematics and science education. I suspect doing this will give greater insight into 
difficulties students experience in learning mathematics and science and difficulties 
teachers experience in promoting such learning. 
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An Intellectual Need for Relationships: 
Engendering Students’ Quantitative 
and Covariational Reasoning 

Heather Lynn Johnson 

People encounter situations involving change and variation as citizens of the world. 
For instance, sea levels are rising as the oceans continue to absorb heat from the atmo-
sphere. One may read about this phenomenon in newspaper articles or encounter 
graphs representing rising sea levels over time. By engaging in quantitative and 
covariational reasoning (Carlson et al., 2002; Thompson, 1994, 2011; Thompson & 
Carlson, 2017), people can interpret and make meaning of such situations (e.g., 
González, 2021). Not only are these forms of mathematical reasoning productive for 
being informed citizens, but they also underlie key mathematical concepts such as 
rate and function (Thompson & Carlson, 2017). Hence, it is crucial for students to 
develop and engage in such reasoning, and for opportunities to occur throughout their 
schooling, across K-12 and university mathematics courses. Yet, from a student’s 
point of view, what may serve as a catalyst, so students can actualize potential 
opportunities? Drawing on Harel’s construct of “intellectual need” (1998, 2008b, 
2013), I offer an intellectual need for relationships, which is a need to explain how 
elements work together, as in a system. I argue that this need can engender students’ 
quantitative and covariational reasoning. 

To illustrate, consider a situation involving Sam, who is walking from home to 
the corner store. There are a number of attributes that students may separate from the 
situation; two include Sam’s distance from home and Sam’s distance from the store. 
Engaging in quantitative reasoning (Thompson, 1994, 2011), a student can conceive 
of the possibility of measuring those attributes, even if they do not find particular 
amounts of measure. For instance, a student may have a sense of a length of a stretch-
able cord extending from Sam’s current location to home or the store. As Sam is 
walking, each distance changes, increasing or decreasing depending on Sam’s route. 
Engaging in covariational reasoning (Carlson et al., 2002; Thompson & Carlson,
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2017), a student can conceive of relationships between the changing distances. 
For instance, with a direct route, Sam’s distance from home increases while the 
distance from the store decreases. By forming and interpreting relationships between 
attributes, students can mathematize (Freudenthal, 1973) such situations in terms of 
quantities and covariation. 

Results of researchers’ investigations of students’ quantitative and covariational 
reasoning represent both challenge and promise. Even accomplished university 
students have demonstrated difficulty (e.g., Carlson et al., 2002; Moore et al., 2019a, 
2019b), while middle and secondary students have shown promising evidence (e.g., 
Ellis et al., 2020; Johnson, 2012). I argue that students’ intellectual need for such 
reasoning may account, in part, for differences in these findings. For example, 
consider a task in which students are to sketch a Cartesian graph relating Sam’s 
distance from home and Sam’s distance from the store. Some students may find 
such a task problematic; they may wonder how to measure and relate the different 
distances as they sketch their graph. In contrast, other students may think the task is 
an exercise in finding a resulting graph that is an instance of some familiar graph. If 
students are focused on getting end results, they may miss opportunities to engage 
in quantitative and covariational reasoning. 

Harel (1998, 2008b, 2013) put forth the construct of intellectual need, rooted in 
Piaget’s constructivist theory. To illustrate, say a student encounters a situation that 
is problematic for them, and as a result of engaging with that situation, they develop 
some new mathematical knowledge. The “problematic-ness” of that situation, from 
the student’s point of view, is the student’s intellectual need. For example, one student 
may intend for Sam’s graph to represent a relationship between distances. Another 
student may intend to represent Sam’s physical motion on the walk. While both 
students find the situation problematic, the first student’s goal is more compatible 
with quantitative and covariational reasoning. 

Harel (2008a) has posited two different forms of mathematical knowledge that 
can emerge from students’ intellectual needs: ways of understanding (products of 
mental action) and ways of thinking (characteristics of mental action). For example, 
a conception of function can be a product of mental action, and a correspondence 
approach can be a characteristic of mental action. Through broad categories, Harel 
has illuminated three ways of thinking (2008a) and five forms of intellectual need 
(2013), leaving room for the possibility that more categories can emerge. I argue for 
an expansion of the ways of thinking and forms of intellectual need put forward by 
Harel. 

I organize this chapter into six sections. First, I discuss theoretical underpin-
nings of quantitative and covariational reasoning. Second, I offer Freudenthal’s term, 
“mathematizing” (Freudenthal, 1973), to represent an additional category of a way 
of thinking that can emerge from students’ intellectual need. Third, I explain what 
I mean by an intellectual need for relationships, and how that need may engender 
students’ quantitative and covariational reasoning. Fourth, I put forward four facets 
of such a need. Fifth, I address task design considerations for each facet, using a 
digital Ferris wheel task to illustrate. Sixth, I discuss implications for theory and 
practice.
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1 Theorizing Quantitative and Covariational Reasoning 

Thompson rooted the theory of quantitative reasoning (1994, 2011) in Piaget’s 
constructivist theory, which assumes that individuals develop new understandings 
by reorganizing their existing conceptions. From this lens, the distances I identified 
in the situation of Sam walking from home to the store would not be “out there” for 
a student to observe. Rather, they would be a person’s conception of the situation. 
In the theory of quantitative reasoning, Thompson explains how individuals may 
conceive of situations in terms of attributes that are possible to measure, such as the 
distances in Sam’s situation. Engaging in quantitative reasoning involves concep-
tions of quantities, a quantification process, and quantitative operations. A student’s 
quantitative reasoning can entail some or all of these elements. 

Quantities are a foundational element of the theory. Per Thompson (1994), a 
quantity is an individual’s conception of an attribute in a situation as being possible to 
measure. This means that quantities are human creations; through their conceptions, 
individuals transform attributes into quantities. For example, in Sam’s situation, a 
student can transform attributes into quantities by separating those attributes (e.g., 
distance) from the physical motion described in the situation (e.g., Sam’s walking). 
Essential to Thompson’s theory is a distinction between conceiving of the possibility 
of measurement and the act of determining particular amounts of measure. This 
means that students can think of measuring Sam’s distance from the store without 
finding certain amounts of distance. 

With quantification, Thompson (2011) explained a three-part process by which an 
individual can formalize this “possible to measure-ness.” First, they would conceive 
of an attribute that could be measured, such as Sam’s distance. Second, they would 
conceive of a unit of measure for the attribute. This might be a standard unit, such as 
a meter or foot, or a nonstandard unit, such as one of Sam’s steps. Third, they would 
conceive of a proportional relationship between the unit and the attribute’s measure. 
That is, they could iterate one of the units, such as a step length, to measure Sam’s 
distance from the store. As with quantity, an essential aspect of quantification was 
that an individual did not need to actually measure Sam’s distance from the store 
with the indicated unit, just think of the possibility of doing so. 

Thompson (1994, 2011) put forward quantitative operations to describe mental 
activity in which individuals could employ a quantitative lens on situations and 
conceive of new kinds of quantities. Thompson identified a “difference” as one such 
quantity that students could create via additive comparison. For example, at any 
instant in Sam’s walk, a student might compare Sam’s distance to the store and Sam’s 
distance from home to create a new quantity, the difference between the distances. 
As with quantity and quantification, students could engage in quantitative operations 
without determining particular amounts of difference. 

With Fig. 1, I express interconnections between quantity, quantification, and quan-
titative operations. Because both quantification and quantitative operations extend 
from quantities, I have placed unidirectional arrows between quantity and those 
elements. Conceiving of an attribute as being possible to measure is the first part
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Fig. 1 Key elements of 
Thompson’s theory of 
quantitative reasoning 

of the quantification process. By engaging in quantitative operations, students can 
create new quantities in relationship to quantities they already know. I have placed 
bidirectional arrows between quantification and quantitative operations to indicate a 
reflexive relationship between them. Students can engage in quantification of some 
quantities, create new quantities, and then engage in quantification yet again. 

Covariational reasoning (Carlson et al., 2002; Thompson & Carlson, 2017) entails 
conceptualizing relationships between attributes, which individuals perceive to be 
capable of varying and possible to measure. For example, one student may conceive 
that Sam’s distances change in harmony with each other, their values continually 
changing together: “Sam’s distance from home increases while Sam’s distance from 
the store decreases.” In contrast, another student may think about snapshots of the 
distances at particular instances in Sam’s walk: “Now Sam is 2 blocks from home 
and 18 blocks from the store; now Sam is 5 blocks from home and 15 blocks from 
the store.” As suggested by these examples, when individuals conceive of variation, 
or covariation in attributes, they have mental images of how those attributes have 
changed or are changing. Castillo-Garsow (2012) proposed the terms “chunky” and 
“smooth” to distinguish these images of change. One way to conceive of a distinction 
between these images is in their “countable-ness.” Chunky images entail countable 
units, whereas smooth images entail a continual flow of change (Castillo-Garsow 
et al., 2013). The first example suggests smooth thinking because Sam’s distances 
are continually changing together. The second example suggests chunky thinking 
because the focus is on particular instances in Sam’s walk. While both images of 
change have utility, there is something special about smooth images of change, which 
comprise conceptions of continual change in attributes. 

Not only did Thompson and Carlson (2017) position smooth thinking at the 
highest levels of variational and covariational reasoning, they contend that opportu-
nities for students to engage in such thinking should happen early and often. Given 
the centrality of quantitative and covariational reasoning for students’ mathematical 
development (Thompson & Carlson, 2017), I argue that they are more than just a 
means to promote students’ learning of new mathematical concepts, such as rate or 
function. They are worthy ways of reasoning in and of themselves.
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2 Mathematizing as a Way of Thinking Emerging 
from Students’ Intellectual Need 

To sketch out a landscape of ways of thinking, Harel (2008a) has provided three 
different, yet interrelated categories: proof schemes, problem-solving approaches, 
and beliefs about mathematics. Broadly, these ways of thinking involve how people 
determine the viability of an assertion, think while solving problems, and view math-
ematics itself. I posit that students’ quantitative and covariational reasoning point to a 
categorically different way of thinking from those put forward by Harel. By engaging 
in quantitative and covariational reasoning, students can conceive of the possibility 
of measuring different attributes in a situation and form and interpret relationships 
between those attributes. This may or may not involve assessing the truth of an asser-
tion, solving a given problem, or considering the nature of mathematics itself. I offer 
Freudenthal’s (1973) term, “mathematizing,” to characterize this fourth category of 
a way of thinking. 

When mathematizing a situation, people conceive of some “thing” from a math-
ematical lens (Freudenthal, 1973). For example, I have provided descriptions of 
different ways students might mathematize Sam’s situation, from quantitative and 
covariational lenses. These lenses are not “out there” for people to see, rather they 
are ways of thinking that people bring to a situation. By positioning mathematizing 
as a complementary, yet distinct way of thinking, from those put forward by Harel 
(2008a), I foreground mental actions involved in this human activity. 

To provide a rationale for this fourth category, I appeal to the construct of goals 
(Simon & Tzur, 2004). By goal, I mean some achievable outcome that a person 
has set in an educational setting, rooted in their current conceptions and tasks they 
encounter (Simon & Tzur, 2004). A person’s goal is a goal from their perspective; 
it can be different from a teacher or researcher’s goal. For example, a teacher may 
intend for a student to sketch a graph of Sam’s situation. One student may have 
a goal of sketching a graph that shows Sam’s movement from home to the store. 
Another student may have a goal of exploring how Sam’s distances are changing 
together. While the first student has a goal of solving the problem, the second student’s 
goal involves investigating relationships between attributes in the situation. Mental 
actions compatible with the second student’s goal are crucial for mathematizing 
Sam’s situation in terms of quantity and covariation. 

Like a student’s goal, with the construct of intellectual need, a researcher employs 
their perspective of a student perspective, because an intellectual need is from the 
perspective of the person engaging in the thinking, rather than an outside observer. 
I conceive of a person’s intellectual need as akin to a goal, with the caveat that an 
intellectual need emerges when a person finds a situation to be problematic for them. 
Whereas, a student may have a goal without problematizing anything. For example, 
one student may sketch a graph with the goal of showing Sam’s literal movement, 
get feedback that a correct graph looks different, and experience nothing problematic 
about the situation. In contrast, another student with the same goal may wonder what 
could account for a graph’s different features, and adjust their goal based on their
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wondering. The adjustments may entail separating the attributes from the situation 
and conceiving of how those attributes might be measured. As suggested by these 
examples, students may have the same “task” presented to them, yet they can conceive 
of that task in very different ways. 

Students’ covariational reasoning has potential to serve as a catalyst for their intel-
lectual need. In a study of two university students, Paoletti and Moore (2017) have  
shown how aspects of students’ covariational reasoning can engender an intellectual 
need for conceiving of a quantity, such as time, which may only be implicit in a 
problem situation. In particular, they have found that students conceived of time in a 
conceptual way (Thompson & Carlson, 2017), not just as elapsing, but as something 
possible to measure, in terms of duration. As Paoletti and Moore (2017) argued, such 
a conception can promote students’ understanding of parametric function and repre-
sents something beyond mental actions in covariational reasoning. Describing this 
finding in terms of students’ intellectual need can go like this: A way of reasoning 
(covariational reasoning) can create an intellectual need for a way of understanding (a 
new understanding of a quantity implicit in a situation), which can promote students’ 
development of mathematical concepts (parametric function). 

In light of the foundational nature of quantitative and covariational reasoning, I 
posit they are not only catalysts for, but also products of students’ intellectual need. 
With Freudenthal’s “mathematizing,” I have described such ways of reasoning in 
broad terms, to illuminate a new category beyond the three offered by Harel (2008a). 
Broadening categories of ways of thinking can, in turn, make room for new categories 
of intellectual need. To this end, I propose an “intellectual need for relationships,” 
which can engender students’ quantitative and covariational reasoning. 

3 An Intellectual Need for Relationships 

Leaving room for the possibility of expansion, Harel (2013) put forward five cate-
gories of intellectual need: certainty, causality, computation, communication, and 
structure. Harel (2013) defined certainty as a need to determine the truth of some 
conjecture, causality as a need to explain why some assertion is true, computation 
as a need to determine values of measurable attributes in a situation, communica-
tion as a need to formalize and formulate mathematical ideas, and structure as a 
need to reorganize what is known in a logical way. Together, these intellectual needs 
provided a landscape to explain how students may reconcile situations they find to 
be problematic for them. 

Students’ quantitative and covariational reasoning point to a new category of 
intellectual need, beyond those put forward by Harel. Broadly, this new category 
involves a desire to explain, which shares some similarities with a need for causality. 
A key difference lies in the object of the explanation. This new category reflects 
a need to explain a situation from a mathematical lens, which does not necessitate 
explaining why something is true or determining the truth of a proposition. Further-
more, this new category of need is different from computation. As Thompson (1994,
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2002, 2011) has asserted, students can conceive of the possibility of measuring 
attributes without finding particular amounts of measure. Forming and interpreting 
relationships between attributes does not necessitate formalizing ideas into symbolic 
expressions or formulating those expressions into the spoken word. Although a need 
to reorganize existing structures may follow from students’ quantitative or covari-
ational reasoning, it addresses a different kind of problem. Thus, I offer a sixth 
category of intellectual need: relationships. 

Harel (2013) has posited that intellectual needs have three main characteristics, 
which I summarize here. First, they are from the perspective of a person, not an 
outside observer such as a researcher or teacher. Second, they are something people 
learn, not something innate. Third, they are linked to a person’s desire to resolve 
some “problematic-to-them” situation. I view this third characteristic to be a key 
distinction between goals and intellectual needs. Goals may or may not result from a 
desire to resolve a problematic situation; they may just be part of engaging in some 
task. Intellectual needs resolve something problematic for a learner. Laying out each 
category of intellectual need, Harel (2013) has provided a three-part discussion: 
definition of the need, description of inchoate conceptions underlying the need, and 
historical evidence to account for the need. I follow this approach. 

An intellectual need for relationships is a need to explain how elements work 
together, as in a system. This may apply to scientific phenomena, such as global 
warming, or to everyday situations, such as a filling bottle. While a need for causality 
is a need for directionality (e.g., A leads to B), a need for relationships is a need to 
understand how A and B work together. For instance, in the classic filling bottle 
problem (Shell Centre for Mathematical Education (University of Nottingham), 
1985), students are to sketch graphs representing the height and volume of liquid 
in differently shaped bottles. I view an intellectual need for relationships to stem 
from people’s desire to form connections between attributes, so they may mathe-
matize the world around them. Across history, humans have connected measures of 
attributes, such as the length of an object’s shadow, with a duration of time (Barnett, 
1999). In the history of mathematics, a need for relationships has played a role in 
mathematicians’ conceptualization of what is now called function. 

Appealing to historical accounts of Boyer, which were compatible with those of 
Kleiner, Thompson and Carlson (2017) identified four broad eras in the evolution 
of the idea of function: proportion, equation, function (I), and function (II). In their 
discussion, Thompson and Carlson (2017) threaded the representation of relation-
ships throughout the eras. In the proportion era, “people represented relationships 
between quantities geometrically” (p. 421). The equation era was “characterized by 
the use of equations to represent constrained variation in related quantities’ values” 
(p. 422). The first function era was “characterized by explicit representations of 
a relationship between values of two quantities so that values of one determined 
values of another” (p. 422). The second function era, which is still continuing, was 
“characterized by values of one variable being determined uniquely by values of 
another” (p. 422). Thompson and Carlson (2017) emphasized how ideas of variation 
and covariation were central to people’s development of the function concept, even



24 H. L. Johnson

though the evolution of people’s meaning for function relegated those ideas to lesser, 
or even seemingly absent, roles. 

In reflecting on the discussion of Thompson and Carlson (2017), I note a shift in 
the foreground and background, coinciding with the invention of algebraic represen-
tations. As algebraic representations have become more formal, causality has come 
to the foreground (e.g., the possibility of determining one variable’s value given 
another). In turn, an explanation of how elements in a system work together has 
faded to the background (e.g., relationships between quantities given constraints in 
their variation). By proposing a need for relationships, I mean to foreground ways of 
reasoning, including quantitative and covariational reasoning, which are crucial for 
students’ mathematical development (Thompson & Carlson, 2017). 

4 Four Facets of an Intellectual Need for Relationships 

I put forward four facets of an intellectual need for relationships: attributes in 
a situation (What are the things?), measurability of attributes (How can things 
be measured?), variation in attributes (How do things change?), and relationships 
between attributes (How do things change together?). I think of an intellectual need 
like a mental gemstone; a sparkling, multifaceted conception that can illuminate 
things once puzzling or mysterious. I include a question with each facet to empha-
size a person’s point of view, what they may be wondering in a situation. The first 
two facets address quantitative reasoning and the mental action of quantification. 
The last two address variational and covariational reasoning, respectively. I view the 
first facet, attributes in a situation, to ground the other facets, because it focuses on 
the “things” which people can separate from a situation, then conceive of as possible 
to measure or capable of varying. 

While I present four facets, I leave room for the possibility for more to be included. 
I propose these facets based on theoretical underpinnings of quantitative and covari-
ational reasoning, and on empirical results of fine-grained studies that I have led 
to investigate middle and secondary students’ reasoning. My colleagues and I have 
found these facets to illuminate students’ progressions in (or challenges with) their 
engagement in covariational reasoning (Johnson & McClintock, 2018; Johnson et al., 
2017a, 2017b, 2020). I describe conceptions related to each facet, then highlight 
results to demonstrate how those conceptions were (or could have been) productive 
for students’ reasoning. 

5 Attributes in a Situation: What Are the Things? 

To conceive of relationships between elements in a system, people need to separate 
those elements, or attributes, from the system itself. A conception of attributes them-
selves is foundational to quantitative (and covariational) reasoning. For example, to
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begin quantifying Sam’s situation, students would separate attributes, such as Sam’s 
distances from home and the store, from the physical situation itself. This conception 
may sound too obvious to highlight (e.g., of course students will separate distances 
from a situation); however, students’ long-standing challenges with sketching and 
interpreting graphs suggest otherwise. Two enduring challenges involve conceptions 
of graphs as providing a static picture of a situation (Leinhardt et al., 1990), such as 
a physical map, or as showing the physical motion in a situation (Kerslake, 1977). 

If students approach a graphing task with a goal of representing the physical 
motion they perceive in a situation, they likely will sketch a graph inconsistent with 
constraints of a Cartesian coordinate system. For example, a student may expect 
that a graph of Sam’s walk from home to the store should share some physical 
characteristics with Sam’s journey, and in turn, that student may sketch a graph that 
resembles the literal path that Sam took, regardless of the distances labeled on the 
axes. Even in the face of such inconsistencies, this goal can remain persistent for 
secondary students (Johnson et al., 2020). 

6 Measurability of Attributes: How Can Things Be 
Measured? 

To explain how elements work together in a system, people can mathematize different 
elements, or attributes, in a situation. I focus on a person’s conception of the possi-
bility of measuring some attribute they have separated from a situation, or their 
conception of a quantity, per Thompson’s theory. Such a conception may or may not 
entail all three aspects of Thompson’s (2011) process of quantification. For instance, 
a student may think of Sam’s distance from home as a path represented by a line drawn 
on a map or a trail of breadcrumbs Sam may have left while walking. This student 
is doing more than just thinking of Sam engaging in the physical activity of walking 
to the store. They are separating an attribute from the situation and conceiving of 
how they might measure it. Students can extend from this conception to engage in 
all aspects of the quantification process by conceiving of a unit of measure and a 
multiplicative relationship between the unit of measure and the attribute. 

When students conceive of how attributes may be measured, they are in a ripe posi-
tion to mathematize variation in attributes. Evan McClintock and I have found that 
when middle school students conceived of an attribute as being possible to measure, 
it impacted their conceptions of variation in that attribute (Johnson & McClintock, 
2018) when interacting with dynamic computer tasks involving “filling” polygons. 
For example, one task was a “filling triangle,” in which students were to watch an 
animation of a right triangle “fill” with color, moving vertically from its horizontal 
base to the opposite vertex. All students who discerned variation in unidirectional 
change in that attribute (e.g., The “fill” increases, but the increases are slowing.) were 
those who conceived of the triangle’s “fill” as an attribute possible to measure (e.g., 
the area of a polygon).
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7 Variation in Attributes: How Do Things Change? 

When exploring how elements work together in a system, students can conceive 
of how those elements, or attributes, vary. I liken this to a conception of a vari-
able as something whose values can vary, rather than just a placeholder for some 
unknown value. When students engage in smooth thinking, they can conceive of 
continual variation in an attribute. Yet, at some point, there is reason to stop a contin-
uation of ongoing values, at which point a person can conceive of some accumu-
lated amount (Castillo-Garsow et al., 2013). Johnson (2012) used the term “smooth 
chunks” to describe products of this way of thinking, to distinguish them from 
“chunks” emerging from chunky images of change. It is beneficial for students to 
have space to wonder, “How do things change?,” before determining, “By how much 
have things changed?,” because they can conceive of values in an interval, and not 
just find beginning and ending amounts. 

When students conceive of continuing variation in individual attributes, it is a 
productive time for teacher/researchers to engage them in tasks to promote their 
covariational reasoning. In two different studies that I have led, with secondary 
students from different school settings, when students conceived of continuing vari-
ation in individual attributes in a situation, they were able to shift to covariational 
reasoning via their work on digital task sequences (Johnson et al., 2017a, 2017b, 
2020). Not only did students shift their reasoning, but they also were aware of a 
change in their thinking and found the new way of thinking to be powerful for them. 

8 Relationships Between Attributes: How Do Things 
Change Together? 

To explain how elements work together in a system, students conceive of how 
those elements change together, forming and interpreting relationships between those 
attributes. Put another way, they engage in covariational reasoning. Such reasoning 
can promote students’ conception of nuances in relationships between attributes. 
For example, a student may wonder why a graph has a particular kind of curva-
ture, or whether a linear or nonlinear graph may best represent a relationship. This 
can allow students to fine-tune their interpretations of graphs, and they can discern 
“new-to-them” distinctions. 

Secondary students’ engagement in covariational reasoning can foster their atten-
tion to and accounting for distinctions and nuances in graphs that represent relation-
ships between attributes in linked animations (Johnson et al., 2017a, 2017b, 2020). 
I discuss two instances, in which students had a spontaneous question or noticing, 
during an individual task-based interview. These instances illustrate how a student’s 
intellectual need for relationships can intertwine with their graphing. 

One student, Alan, spontaneously questioned how it could be possible for a graph 
to be piecewise linear, when he noticed the linked animation was slowing down
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(Johnson et al., 2020). The graph represented a relationship between distance and 
height, with time as an implicit variable, because each of the attributes were varying 
with elapsing time. The researcher invited Alan to explore the situation further. 
Relating different amounts of distance and height, Alan convinced himself that 
a piecewise linear graph best represented the relationship (Johnson et al., 2020). 
Another student, Ana, spontaneously noticed differences in the curvature between 
a graph that she had drawn and a computer graph. (Ana’s graph looked more like a 
parabolic arch and the computer graph was a sine curve.) By conceiving of how two 
different attributes were varying together in the situation (e.g., The Ferris wheel cart 
is gaining a lot of distance, but only a little bit of height), she decided it made more 
sense for her graph to curve in a way that would account for that kind of covariation 
(Johnson et al., 2017a, 2017b). 

9 Task Design Considerations: A Ferris Wheel “Techtivity” 

By a task, I mean something more than an artifact, such as a problem written on paper 
or a computer activity. Tasks include the intentions and activities of those designing 
the task, implementing the task, and engaging with the task (Johnson et al., 2017a, 
2017b). To illustrate task design considerations, I provide an example of a task, a 
dynamic computer activity, that my colleague, Gary Olson, termed a “Techtivity.” My 
purpose is to illuminate how task designers may work to nurture students’ intellectual 
need for relationships, and in turn engender students’ quantitative and covariational 
reasoning. 

The Techtivity that I share is part of a set of seven freely available digital tasks 
(Desmos, n.d.), usable by a broad range of instructors. Each Techtivity consists of a 
series of screens which students can move through at their own pace. There are four 
main components. First, students are to view an animation of a dynamic situation 
involving change in progress, a move common for researchers designing tasks to 
investigate students’ conceptions of change and variation. Second, students are to 
manipulate dynamic segments representing measures of two attributes in the situa-
tion, a move that operationalizes Thompson’s (2002) recommendation that students 
use their fingers as tools to represent change in individual attributes. Third, students 
are to sketch a Cartesian graph to represent a relationship between variables in the 
situation. Fourth, students are to repeat the second and third components for the same 
situation, with attributes represented on different axes, a move that shares similarities 
with tasks designed by Moore and colleagues (e.g., Moore et al., 2014). In addition, at 
the end of each Techtivity there are questions designed to promote students’ reflection 
on relationships between attributes in the situation. 

Figure 2 depicts the four components of a Ferris wheel Techtivity. The animation 
shows a green cart that begins in the middle left of the Ferris wheel (Fig. 2, bottom 
left), and moves clockwise around the Ferris wheel for one rotation. Throughout 
my description of this Techtivity, I use parentheticals to highlight how the design 
components link back to the four facets of an intellectual need for relationships.
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Fig. 2 Components of a Ferris wheel techtivity 

There are many attributes which students may conceive of in the Ferris wheel 
situation (What are the things?). For this Techtivity, students are to consider two 
attributes: the cart’s width from the center and the cart’s distance traveled around the 
wheel. The width is measured by the cart’s horizontal distance from a vertical line 
extending through the center of the wheel (How can things be measured?). While 
the width might seem like an arbitrary attribute, people riding on a Ferris wheel may 
feel this “width” as a sensation of moving out and back while the cart goes around 
the wheel. Figure 2 (top left) shows a trace of each attribute for a partial turn of the 
wheel. When students represent change in the width and distance (How does each 
thing change?), at first the attributes are represented on the vertical and horizontal 
axes, respectively (Fig. 2, top right). Both Cartesian graphs are shown at the bottom 
of Fig. 2. In the second graph (bottom right), the width and distance are represented 
on the horizontal and vertical axes, respectively (How do things change together?). 

At the end of this Ferris wheel Techtivity, there are two different types of reflec-
tion questions. One is an interpretation of a single point on the graph, and the other 
is a comparison of two different graphs. First, students are to predict the green 
cart’s location on the wheel given a point on the graph (Fig. 3). Second, they are 
to determine whether they agree or disagree with a student’s claim that the two 
different looking graphs generated by the computer can represent the same relation-
ship between attributes (Fig. 4). In addition, Figs. 3 and 4 include selected responses 
from undergraduate students enrolled in a College Algebra course.

The selected responses to each reflection question provide examples of how 
students may conceive of the four different facets in their work on the task. Responses
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Fig. 3 Reflection question: graph shows a single point 

Fig. 4 Reflection question: agree or disagree?

to the first reflection question (Fig. 3) represent a range of reasons given by students 
who predicted the cart to be at the bottom of the wheel, and mentioned both width and 
distance in their response (What are the things? How can the things be measured?). 
Some students have provided specific amounts of width and distance to support their 
responses (e.g., “0 width from the center,” “around ¾ distance travelled”), while 
others have discussed in more general terms (e.g., “no width,” “a lot of distance”). 
The two responses to the second reflection question (Fig. 4) give evidence of students’ 
conceptualization of change in, and relationships between attributes, even when they 
provide differing views of Val’s claim (How is each thing changing? How do things 
change together?). 

With the reflection questions, I have intended to invite students to relate, or even 
mentally fuse different attributes to make sense of the situation (How do things 
change together?). Put another way, I have worked to create space to engender
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students’ mental forming of multiplicative objects (Thompson & Carlson, 2017). 
In the first question (Fig. 3), the point students are to interpret is on the vertical axis, 
representing a location when the green cart’s width from center is equal to zero. 
There are two possibilities, the top and bottom of the wheel. By taking into account 
both the width from the center and the distance traveled, students can determine 
the point to represent when the cart is located at the bottom of the wheel. In the 
second question (Fig. 4), the two graphs look different, with the second graph being 
unconventional, yet they represent the same relationship between attributes. Even 
advanced university students can have challenges interpreting function relationships 
represented by unconventional graphs (Moore et al., 2014). With this in mind, I have 
designed the reflection question in terms of whether students agree or disagree with 
Val, rather than whether Val is right or wrong. With this move, I intend to make room 
for students to consider Val’s statement as a sensible claim made by a human, rather 
than rushing to a judgment of the validity of Val’s claim. For instance, students may 
think Val’s claim is reasonable, yet state Val is wrong, because they do not think such 
a claim is viable to make in a mathematics class, given the unconventional looking 
graph. 

10 Discussion 

I have posited an expansion in Harel’s categories of students’ intellectual need, to 
include a need for relationships; a need to explain how elements work together, as in 
a system. While interconnected, this need is distinct from the needs that Harel (2013) 
offered (certainty, causality, computation, communication, and structure). Thompson 
and Carlson (2017) have discussed how relationships are woven throughout scholars’ 
development of the function concept. Yet, the relationships are something more than 
just a stepping stone in students’ development of the concept of function. Variational 
and covariational reasoning are theoretical constructs, ways of thinking that can 
explain students’ conceptualizations of situations in ways that are both quantitative 
and dynamic (Thompson & Carlson, 2017). 

When engaging in quantitative reasoning, students mathematize attributes, by 
conceiving of them as being possible to measure. Both Thompson and Harel discuss 
mental actions of quantifying and quantification, drawing on Piaget’s theory. Harel 
(2013) explains quantifying in broad terms, such that a person could transform some 
perceptible “thing,” for example a feeling of movement, into a measurable attribute. 
Thompson’s (2011) definition of quantification illuminates three mental actions in 
such a transformation: a conception of an attribute as possible to measure, a unit 
with which to measure the attribute, and a multiplicative relationship between the 
unit and attribute. Harel (2013) has located quantifying within an intellectual need 
for computation, yet quantifying is not limited to a need for computation. Quanti-
fying entails relationships, which Thompson’s definition addresses. By positioning 
an intellectual need for relationships as a need in and of itself, I aim to raise the status
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of quantifying, and related forms of reasoning, to position them as something more 
than a means to compute a result. 

When engaging in covariational reasoning, students form and interpret relation-
ships between attributes they can conceive to be capable of varying and possible 
to measure. Images of change are part of such mental action, and those images 
make a difference. Chunky images of change involve only beginning and ending 
amounts, while smooth images of change allow for all values in an interval. Accord-
ingly, Thompson and Carlson (2017) position smooth images of change at the 
highest levels of variational and covariational reasoning. Furthermore, they assert 
that students’ opportunities to engage in smooth thinking come early and often. With 
the Ferris wheel Techtivity, I provide an example of a task designed to engender such 
opportunities. 

Nurturing students’ intellectual need for relationships may help them to develop 
further abstractions. One possibility is an “abstracted quantitative structure” (Moore 
et al., this volume; Moore et al., 2019a, 2019b). Moore et al., (2019a, 2019b, p. 1879) 
have characterized such a structure as “a system of quantitative relationships a person 
has interiorized to the extent they can operate as if it is independent of specific figu-
rative material (i.e., representation free).” To illustrate, they report on a preservice 
mathematics teacher who conceived of the inverse sine function as a relationship that 
was irrespective of a particular representation type. Questions, such as the second 
reflection question in the Ferris wheel Techtivity (Fig. 4), can afford opportunities 
for students to conceive of relationships that remain invariant, even if physical char-
acteristics of graphs vary. Both students’ responses (Fig. 4, right), provide evidence 
of their conception of relationships between attributes in the situation. Physical arti-
facts, such as Cartesian graphs, are products of a representation system. I conjecture 
that students who conceive of relationships between quantities in ways that are inde-
pendent of such artifacts, can discern aspects of the representation system itself (see 
also Johnson, 2020). Integrating multiple theoretical lenses can be productive for 
researchers investigating students’ quantitative and covariational reasoning while 
engaging in tasks involving socially shared artifacts, such as Cartesian graphs. 

An intellectual need for relationships can serve as a starting point to reimagine 
curricular materials focused on function. One consequence can be opportunities to 
conceive of quantities as covarying, for which Thompson and Carlson (2017) advo-
cate. A second consequence can be the ways in which students encounter different 
types of functions. In U.S. secondary math classrooms, students typically see, in a 
particular order, different types of functions and graphs representing those function 
types (e.g., linear, then quadratic, then exponential). With such an approach, students 
may miss out on the relationships themselves. Our field has spent much time arguing 
about the order in which to present different function types (e.g., Should linear 
functions come first? Should exponentials come before quadratics?). I recommend 
reframing the argument. Rather than organizing materials around function types, 
center relationships between attributes, then introduce different function types as a 
way to explain different kinds of relationships.
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11 Conclusion 

I proposed an expansion in Harel’s categories of intellectual needs and ways of 
thinking. With my choice of Freudenthal’s term, mathematizing, I intended to 
communicate that conceiving of some “thing” from a mathematical lens was a viable 
way of thinking in its own right. “Mathematizing” is more than a part of a problem-
solving approach or a proof scheme. It is a way of thinking that can entail conceptions 
of variables as actually varying together, a fundamental mathematical idea not to be 
backgrounded in service of a formal definition. For students to develop quantita-
tive and covariational reasoning across K-12 mathematics, for which Thompson and 
Carlson (2017) advocate, it is important that ways of thinking be positioned as just 
as valuable as ways of understanding. While worthwhile, such a goal is at odds with 
high-stakes testing pressure rampant in K-12 education in the U.S. in which students 
and teachers can hear messages that test results, and consequently answer finding 
and computation, are the only things that matter. Hence, stakeholders have work to 
do at multiple levels so that each and every student can have opportunities to engage 
in mathematical reasoning in spaces where they feel safe and valued. 

There is a “tension of intention” (Johnson et al., 2017a, 2017b) with task design 
to engender students’ quantitative and covariational reasoning, taking into account 
students’ intellectual need for relationships. While some students may have goals 
consistent with satisfying an intellectual need for relationships, other students may 
have different goals. As task designers, it is important to wrestle with the tension 
of anticipated versus actual intellectual needs in students’ engagement with a task 
situation. As researchers, it is crucial to critique one’s own task and research design, 
to guard against deficit approaches in investigations of student cognition (Johnson 
et al., 2020). 

Promoting students’ reasoning and sense making in mathematics classrooms is 
not a neutral activity. Despite the utility of an intellectual need for relationships, 
students may not perceive mathematics classrooms to be places where they could 
exert such a need. They may have internalized that to “play the game” (Gutiérrez, 
2009) of mathematics, answers are what matter. Furthermore, even if instructors make 
space for students’ reasoning, existing classroom power dynamics can become more 
apparent, for example, which student voices get amplified (or marginalized). This 
can be compounded if the intended reasoning is something that their instructors still 
need to develop. Thompson and Carlson (2017) have called for research investigating 
teachers’ experiences fostering students’ covariational reasoning, highlighting how 
teachers may need to develop such reasoning themselves. Such a problem is complex, 
and I argue that its investigation could benefit from teams of researchers coordinating 
different theoretical lenses to explain multiple phenomena at play. 

Broadly, I view an intellectual need for relationships to be compatible with broader 
needs for play and exploration in mathematics. When students are mathematizing a 
situation via their quantitative and covariational reasoning, they conceptualize that 
situation in terms of attributes which they conceive to be measurable and the ways in 
which those attributes can change together. They can play with different possibilities
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and explore results of their efforts (e.g., What happens if?). Students’ quantitative 
and covariational reasoning are more than just a means to develop their function 
understanding. When their intellectual need for relationships is nurtured in mathe-
matical spaces, students can feel that their ways of reasoning, as well as the results 
of their reasoning, are welcomed and valued. 
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Abstracted Quantitative Structures: 
Using Quantitative Reasoning to Define 
Concept Construction 

Kevin C. Moore, Biyao Liang, Irma E. Stevens, Halil I. Tasova, 
and Teo Paoletti 

Steffe and Thompson enacted and sustained research programs that have characte-
rized students’ (and teachers’) mathematical development in terms of their conceiving 
and reasoning about measurable or countable attributes (see Steffe & Olive, 2010; 
Thompson & Carlson, 2017). Thompson (1990, 2011) formalized such reasoning into 
a system of mental operations he termed quantitative reasoning, and researchers have 
since adopted quantitative reasoning to characterize individuals’ meanings within 
topical and related reasoning areas. For instance, researchers have adopted a quan-
titative reasoning perspective to explore how individuals construct or understand 
exponential relationships (Castillo-Garsow, 2010; Ellis et al., 2015), graphs or coor-
dinate systems (Frank, 2017; Lee, 2017; Lee et al., 2019), and trigonometric functions 
(Moore, 2014; Thompson et al., 2007). Relatedly, researchers have adopted quantita-
tive reasoning to explore individuals’ meanings for concepts including rate of change 
(Byerley & Thompson, 2017; Johnson, 2015a, 2015b), function (Oehrtman et al.,
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2008; Paoletti & Moore, 2018), and accumulation (Thompson & Silverman, 2007), 
to name a few. More generally, researchers have related quantitative reasoning to other 
types of reasoning processes including multiplicative reasoning (Hackenberg, 2010; 
Tzur, 2004), algebraic reasoning (Ellis et al., 2020; Smith III & Thompson, 2007), 
generalization (Ellis, 2007), problem solving (Carlson et al., 2003), and transfer 
(Lobato & Siebert, 2002). An additional example that we leverage significantly in 
this chapter is reasoning about quantities changing in tandem, or covarying (e.g., 
Carlson et al., 2002; Johnson, 2012, 2015b; Saldanha & Thompson, 1998; Stalvey & 
Vidakovic, 2015). 

The aforementioned studies and their authors’ research agendas vary in the extent 
they focus on local or longitudinal development. Carlson et al. (2002) conducted a set 
of clinical interviews with calculus students in order to provide a localized description 
of their covariational reasoning. In contrast, Steffe and Olive (2010) provide a longi-
tudinal model for children’s construction and development of fractional schemes and 
concepts. Both grain sizes are critical to mathematics education research, with local-
ized studies forming the foundation for longitudinal and generalized descriptions of 
individuals’ cognition. But, each grain size has an associated cost. Localized studies 
can make it difficult for a researcher to characterize an individual’s abstraction of a 
concept due to the extensive work necessary to make claims about an individual’s in-
the-moment reasoning. Longitudinal studies can make it difficult for the researcher 
to incorporate nuanced discussions of individual’s in-the-moment construction of 
a concept due to the focus on described operations and their development in ways 
independent of particular contexts. 

In this chapter, we introduce the construct abstracted quantitative structure (AQS) 
to marry the two aforementioned grain sizes and enable sensitivity to both localized 
and longitudinal development. Defined generally, an AQS is a system of quantita-
tive operations a person has interiorized to the extent they can operate as if it is 
independent of specific figurative material.1 That person can thus re-present this 
structure in several ways, and an AQS enables an individual to accommodate to 
novel experiences permitting the associated quantitative operations. Importantly, the 
AQS construct provides researchers (and teachers) criteria for characterizing individ-
uals’ construction and abstraction of concepts, and the AQS criteria are generalizable 
across concepts rather than specific to a particular concept. Researchers conducting 
work in the area of quantitative reasoning have made significant progress in artic-
ulating its role in the learning of particular concepts, yet generalized descriptions 
of how concept construction can be framed in terms of quantitative reasoning are 
less detailed or prevalent. This lack of specificity likely limits researchers’ abili-
ties to apply quantitative reasoning to their work (Drimalla et al., 2020; Thompson, 
2008). This is especially problematic due to the extent researchers referenced above 
have shown quantitative reasoning to be a key component to students constructing 
a mathematics that is generative, coherent, generalizable, and sophisticated. It is 
thus important that researchers have the tools necessary to clarify meanings associ-
ated with these reasoning processes. In addition to providing generalizable criteria

1 As we elaborate below, no conceptual structure is truly representation free. 
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by which to describe concept construction, the AQS construct helps make more 
explicit the role of quantitative reasoning in students’ learning and development of 
key mathematical concepts. 

In this chapter, we first introduce the AQS construct and its criteria. Due to its 
criteria being informed by numerous perspectives and extant constructs, we then 
introduce background information that underpins the AQS construct. With the back-
ground information in place, we provide a more detailed discussion of the AQS 
construct and its criteria. As part of this discussion, we draw from data to illustrate 
both indications—those actions that are consistent with particular AQS criteria—and 
contraindications—those actions that are inconsistent with particular AQS criteria— 
of individuals having constructed an AQS.2 Following our empirical examples, we 
discuss the AQS in terms of how it can inform both research and teaching. 

1 Introducing the Abstracted Quantitative Structure 
Construct 

von Glaserfeld (1982) defined a concept as, “any structure that has been abstracted 
from the process of experiential construction as recurrently usable…must be stable 
enough to be re-presented in the absence of perceptual ‘input’” (p. 194). Our notion 
of an AQS applies and extends von Glasersfeld’s definition of concept to the area of 
quantitative and covariational reasoning. In the introduction, we defined an AQS as 
a system of quantitative (including covariational) operations a person has interior-
ized to the extent he or she can operate as if it is independent of specific figurative 
material. Adapting and extending von Glaserfeld’s definition, an AQS is a system of 
quantitative operations (or quantitative structure) that an individual has interiorized 
so that it: 

(1) is recurrently usable beyond its initial experiential construction; 
(2) can be re-presented in the absence of available figurative material including that 

in which it was initially constructed; 
(3) can be transformed to accommodate to novel contexts permitting the associated 

quantitative operations; 
(4) is anticipated as re-presentable in any figurative material that permits the 

associated quantitative operations. 

Our development of the Criteria 1–4 (C1–C4) defining an AQS is informed 
by perspectives on quantitative reasoning and covariational reasoning, distinctions 
between figurative and operative thought, and different forms of re-presentation. 
To provide the proper foundation for further defining and illustrating the criteria

2 We underscore that we do not consider an AQS to be an exhaustive description of the meanings 
that can be associated with some concept. An AQS is a construct that can be used to describe a 
meaning for a concept that is rooted in quantitative and covariational reasoning, and we limit our 
discussion to such meanings except when contrasting them with alternative meanings to clarify 
AQS defining criteria. 
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associated with an AQS, we introduce critical definitions and perspectives in this 
section. 

1.1 Quantitative Reasoning 

Thompson (2011) defined quantitative reasoning as the mental operations involved in 
conceiving a context as entailing measurable attributes (i.e., quantities) and relation-
ships between those attributes (i.e., quantitative relationships). A premise of quantita-
tive reasoning is that quantities and their relationships are idiosyncratic constructions 
that occur and develop over time (e.g., hours, weeks, or even years). A researcher or 
a teacher cannot take quantities or their relationships as a given when working with 
students or teachers (Izsák, 2003; Moore, 2013; Thompson, 2011). Furthermore, and 
reflecting the criteria of an AQS presented below, a researcher or teacher should not 
assume a student has constructed a system of quantities and their relationships based 
on actions within only one context (e.g., situation, graph, or formula). 

An important distinction is Thompson’s (Smith III & Thompson, 2007; 
Thompson, 1990) use  of  quantitative operation/magnitude and arithmetic opera-
tion/measure. The former refers to the mental actions involved in constructing a 
quantity via a quantitative relationship. The latter are actions used to determine 
a quantity’s numerical measure. Following Thompson (1990), we illustrate these 
distinctions using a comparison between two heights. Thompson (1990) described 
that an additive comparison requires one to construct an image of the measurable 
attribute that indicates by how much one height exceeds the other height (Fig. 1). 
Constructing such a quantity (i.e., a difference in heights) through the quantitative 
operation of comparing two other quantities additively does not depend on having 
specified measures. Returning to Fig. 1, no arithmetic operations are needed to 
conceive of a difference in heights as a measurable attribute, nor are they needed 
to conceive that difference as the black segment. Arithmetic operations, on the other 
hand, are those operations between specified or generalized measures such as addi-
tion, subtraction, or multiplication, that one uses to evaluate a quantity’s measure. 
Such operations often occur in the context of symbols like inscriptions or glyphs. 
The arithmetic operations used to evaluate a quantity may reflect those quantitative 
operations that form the quantity (Fig. 2a, in which subtraction is used to calculate 
the difference quantity) or they may reflect other contextual relationships and prop-
erties (Fig. 2b, in which multiplication is used to calculate the difference quantity) 
(Thompson, 1990).

We provide Thompson’s distinction between quantitative operations and arith-
metic operations to emphasize that the enactment of quantitative operations occurs 
in the context of figurative material that permit those operations. As Steffe described 
in the context of the use of formulas versus graphs, “operations have to operate on 
something and that something is the figurative material contained in the operations, 
figurative material that has its origin in the construction of the operations” (L. P. 
Steffe, personal communication, July 24, 2019). To illustrate, consider Fig. 3. For
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Fig. 1 An image of an additive comparison based in magnitudes 

Fig. 2 The arithmetic operations that might be used to evaluate the measure of a quantity

example, the symbol “3” was socially negotiated as a way to signify those operations 
involved in measuring some magnitude as three of some unit. The symbol “3” is not 
designed to afford the enactment of quantitative operations.3 On the other hand, a 
segment (more naturally) provides figurative material to assimilate via quantitative 
operations as having a measure of “3”. Figure 3 illustrates a sequence that involves 
operations associated with units coordination including creating a unit and iterating 
that unit to determine the segment is some number of times as large as the unit 
(Steffe & Olive, 2010).

Addressing this distinction’s implications for the AQS criteria, because symbols 
including glyphs and inscriptions are typically not used for the purpose of providing 
the figurative material to operate on quantitatively, students operating with symbols 
as such provides limited evidence of them enacting quantitative operations (Liang & 
Moore, 2021; Moore, Stevens, et al., 2019a, 2019b; Van Engen, 1949). On the other

3 We acknowledge that we can identify creative ways to partition the symbol, but it is not used for 
such purposes. A stronger example of the distinction between a symbol and figurative material that 
permits quantitative operations is provided in the following section. 
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Fig. 3 The symbol “3” and a segment that affords enacting the mental operations signified by “3”

hand, coordinate systems, displayed graphs, phenomena, physical objects (e.g., a 
Ferris wheel or fraction blocks), and the like provide figurative material in which 
quantities can to be conceived and quantitative operations can be constructed and 
enacted. Thus, a student’s activity with them can provide evidence of that student’s 
engagement in reasoning quantitatively at that moment. It is for that reason that 
our defining the AQS criteria is with reference to contexts like coordinate systems, 
phenomena, and physical objects. We again illustrate the relevance of our focus in 
the following section and in the context of covarying quantities (Fig. 5) rather than 
quantities in a fixed state (Fig. 1 or Fig. 3). 

1.2 Covariational Reasoning 

A form of quantitative reasoning is covariational reasoning, which is defined as 
the actions involved in constructing relationships between two quantities that vary 
in tandem (Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson & 
Carlson, 2017). Researchers have identified that covariational reasoning is crit-
ical for key concepts of K–16 mathematics including function (Carlson, 1998; 
Oehrtman et al., 2008), modeling dynamic situations (Carlson et al., 2002; Johnson, 
2012, 2015b; Paoletti & Moore, 2017), and calculus (Johnson, 2015a; Thompson & 
Silverman, 2007; Thompson, 1994b). Researchers have also illustrated that covari-
ational reasoning is critical to constructing function classes (Ellis, 2007; Hohensee, 
2014; Lobato & Siebert, 2002; Moore, 2014). 

Carlson et al. (2002), Confrey and Smith (1995), Ellis and colleagues (Ellis, 
2011; Ellis et al., 2020), Castillo-Garsow and colleagues (Castillo-Garsow, 2012; 
Castillo-Garsow et al., 2013), Johnson (2015a, 2015b), and Thompson and Carlson 
(2017) have each detailed covariation frameworks and mental actions. Reflecting the 
emphasis of the empirical examples we use below, we narrow the present chapter’s 
focus to Mental Action 3 (Fig. 4, MA3) identified by Carlson et al. (2002). MA3 refers 
to coordinating and comparing quantities’ amounts of change, which is a critical 
mental action to differentiating between nonlinear and linear growth (Paoletti & Vish-
nubhotla, this volume) and various function classes (Ellis et al., 2015; Moore, 2014). 
MA3 is also important for understanding and justifying that a graph and its curvature
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Mental Action Descriptions of Mental Actions 
MA1 Coordinating the value of one variable with changes in the other 
MA2 Coordinating direction of change of one variable with changes in the other variable 
MA3 Coordinating amount of change of one variable with changes in the other variable 

MA4 Coordinating the average rate-of-change of the function with uniform increments of change 
in the input variable 

MA5 Coordinating the instantaneous rate of change of the function with continuous changes in the 
independent variable for the entire domain of the function 

Fig. 4 Carlson et al., (2002, p. 357) covariational reasoning mental actions 

Fig. 5 For equal increases in arc length (colored in pink) from the 3 o’clock position, height 
(colored dark blue) increases by decreasing amounts (colored in light blue) 

appropriately model covarying quantities of a situation (Fig. 5) (Stevens & Moore, 
2016), and MA3 provides a foundation for rate of change reasoning (Johnson, 2015b; 
Thompson, 1994a). Furthermore, such reasoning enables understanding invariance 
among different representations of quantities’ covariation (Liang & Moore, 2021; 
Moore et al., 2013; Norton, 2019), which is an AQS criterion we detail below. 

Returning to the previous section’s discussion of figurative material and the enact-
ment of quantitative operations, Fig. 5 illustrates how a coordinate system and 
phenomenon provide material to assimilate via quantitative operations associated 
with MA3 and the sine relationship (Liang & Moore, 2021; Moore, 2014). The written 
“y = sin(x)” was socially negotiated as a way to signify the operations involved in 
conceiving the sine relationship including the quantities’ covariation. The symbol “y 
= sin(x)” is not designed to afford the enactment of those quantitative operations, 
whereas the coordinate system and phenomenon provide contexts more organic to 
investigations of individuals’ quantitative reasoning and, hence, defining the AQS 
criteria. 

1.3 Figurative and Operative Thought 

Although contexts like coordinate systems and phenomenon afford the enactment of 
quantitative operations, they also afford numerous other ways of reasoning, including
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those that might be incompatible with quantitative operations. We thus draw on 
Piagetian notions of figurative and operative thought (Piaget, 2001; Steffe,  1991), 
and particularly Thompson’s (1985) extension of Piaget’s distinction (see Moore, 
Stevens and et al., (2019b) for more), in our defining an AQS. The distinction between 
the two forms of thought enable us to differentiate between foregrounded aspects of 
thought including how those foregrounded aspects of thought may or may not support 
conceiving invariance among different actions and contexts. Defined generally, figu-
rative thought is often based in and constrained to carrying out activity including 
physical actions, mental actions, motion, and imitations so that such activity produces 
a particular state. Operative thought is dominated by logico-mathematical opera-
tions, their re-presentation, and possibly their transformations. Operative thought 
foregrounds “intrinsic necessity, as opposed to successful solutions by chance or 
successful solutions that have simply been observed” (Piaget, 2001, p. 272), and avail-
able figurative material including that of the physical and perceptual kind is subordi-
nate to the associated mental operations. Furthermore, meanings rooted in operative 
thought enable the reproduction or imagining of unavailable figurative material such 
that said material is a consequence of the construction of those mental actions. Quan-
titative and covariational reasoning are examples of operative thought due to their 
basis in logico-mathematical operations (Steffe & Olive, 2010; Thompson, 1994b). 

To illustrate the figurative and operative distinction, Steffe (1991) characterized 
a child’s counting scheme as figurative if his counting required re-presenting partic-
ular sensorimotor actions and operative if it entailed unitized records of counting 
that did not require the child to re-present particular perceptual material or sensori-
motor experience. Relevant to the present chapter, Moore, Stevens and et al., (2019b) 
illustrated figurative graphing meanings in which prospective secondary teachers’ 
graphing actions were constrained to particular figurative features (e.g., drawing a 
graph solely left-to-right) even when they perceived those features as constraining 
their ability to graph a relationship. In contrast, Moore, Stevens and et al., (2019b) 
described that a prospective secondary teacher’s graphing meaning is operative when 
mental operations associated with quantitative and covariational operations persis-
tently dominate perceptual and sensorimotor features of their graphing actions. Such 
a meaning enables an individual to graph a relationship across different coordinate 
orientations and coordinate systems and come to understand those graphs as quan-
titatively equivalent despite their perceptual differences or differences that occur in 
the sensorimotor experience of drawing a graph (Fig. 6). A student’s construction of 
such a meaning illustrates Thompson’s (1985) emphasis on the distinction of figu-
rative and operative thought as an issue of “figure to ground” (p. 195), in which that 
which is operative on one level can become figurative on another level as it becomes 
the source material for subsequent operations and transformations.
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Fig. 6 Four graphs that differ perceptually and each represent one varying quantity being three 
times as large as another varying quantity (clockwise from top-left: y = 3x, x = 3y, r = 3θ, θ = 3r) 

1.4 Three Forms of Re-presentation 

Building on these aforementioned scholars’ work on students’ figurative and oper-
ative thought, Liang and Moore (2021) further operationalized these constructs in 
terms of a critical feature of an individual’s cognition—an individual’s ability to 
re-present their thought. According to Piaget (2001), von Glasersfeld (1995), and 
other constructivist scholars (e.g., Hackenberg (2010) and Steffe and Olive (2010)), 
re-presentation refers to an individual’s ability to bring forth an image of schemes 
and operations that were enacted previously. Building on these scholars’ collective 
works, Liang and Moore conceptualized three manifestations of an individual’s re-
presentational activities. The first form of re-presentation requires an individual to 
mentally generate some substitute for all sensory material that was present in prior 
experience but is absent currently (von Glasersfeld, 1995). For example, an individual 
can re-present MA3 in the context of a blank sheet of paper by recalling a Ferris wheel 
(or circle) and partitions (drawn or imagined) that correspond to amounts of change 
in two quantities. 

The second form of re-presentation is similar to the first form, but it allows for the 
presence or supply of minimal figurative material or stimuli whose reconstructions 
are trivial to an individual. Using the same example as above, we can offer the 
individual a drawn circle after they’ve experienced a Ferris wheel animation and ask 
them to reconstruct MA3 in such context. This form of re-presentation is less strict 
than the first form, because it allows for some figurative material, and particularly that
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of the perceptual kind (e.g., the drawn circle), to be made available to an individual 
by a researcher. 

The third form of re-presentation involves an individual transforming and regener-
ating operations enacted from a prior experience to accommodate a novel context. For 
example, after an individual constructs MA3 in the Ferris wheel (or circle) context, 
they can recall those operations and then transform and regenerate those operations 
under the constraints of the Cartesian coordinate system’s quantitative organization 
to produce a graph representing the equivalent covariational relationship (see the 
graph given in Fig. 5). We use the word transform because this latter construction 
requires the individual to modify the operations associated with figurative mate-
rial from the circle (e.g., incremental arcs and vertical segments) into material that 
differs perceptually due to the orthogonal orientation on the coordinate system. We 
underscore that this third form of re-presentation is different from the previous two 
forms in that it requires a transformation to occur in order to accommodate a novel 
context in a way that preserves some form of mathematical equivalence, and it thus 
forms an apropos example of operative thought. Collectively, these three forms of 
re-representation enable us to draw distinctions between each of the AQS criteria. 

2 Further Defining and Illustrating the Abstracted 
Quantitative Structure Criteria 

Recall that the criteria for an AQS is a system of quantitative operations that an 
individual has interiorized so that it: 

(C1) is recurrently usable beyond its initial experiential construction; 
(C2) can be re-presented in the absence of available figurative material including 

that in which it was initially constructed; 
(C3) can be transformed to accommodate to novel contexts permitting the associ-

ated quantitative operations; 
(C4) is anticipated as re-presentable in any figurative material that permits the 

associated quantitative operations. 

C1 and C2 are consistent with the first two forms of re-presentation and associated 
examples discussed in the prior section. With respect to C2, it involves an individual 
having constructed a quantitative structure that is re-presentable in thought, and the 
individual can regenerate the operations with respect to those contexts experienced 
previously. It does not require that the individual be able to transform those operations 
to accommodate or generate a novel context. 

Clarifying C3, a feature of an AQS is that it can accommodate novel contexts 
through additional processes of experiential construction with figurative material 
of which such construction has not previously occurred. We use accommodation 
to refer to when an individual modifies or reorganizes their meanings in order to 
establish a state of equilibrium or understanding (Montangero & Maurice-Naville, 
1997; von Glasersfeld, 1995). Some forms of accommodation can be quite significant
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and require a fundamental change in an individual’s ways of operating (Steffe & 
Olive, 2010), while other forms of accommodation can be more subtle and involve a 
way of operating being used with respect to novel sensory material (i.e., generalizing 
assimilation as defined by Steffe and Thompson (2000)). To illustrate, and building 
off the example provided in the previous section, after an individual has constructed 
some quantitative structure in the Cartesian coordinate system, they might recall 
those operations and then transform and regenerate them under the constraints of the 
Polar coordinate system’s quantitative organization to produce a graph representing 
the equivalent covariational relationship (see the graphs given in Fig. 6). Such an 
accommodation is consistent with the third form of re-presentation discussed in the 
prior section, and it is a hallmark of operative thought because it entails an individual 
transforming and using operations of their quantitative structure to accommodate to 
novel quantities and associated figurative material, as opposed to having fragments 
of figurative activity dominate their thought (Thompson, 1985). 

Whereas C3 refers to the enactment (and transformation) of quantitative opera-
tions in specified contexts, C4 refers to an individual anticipating the mathematical 
properties (e.g., quantities’ covariation) of the quantitative operations constituting 
an AQS independent of any particular instantiation of them. The individual under-
stands the operations and associated properties as not constrained to any particular 
quantities and figurative material. It is in this way that the quantitative operations of 
an AQS are abstract; the individual not only understands that the operations are re-
presentable in previous experiences, but they also anticipate that the operations and 
their properties could be relevant to novel but not yet had experiences. Or, similarly, 
the individual anticipates that the operations and their properties could be relevant 
to experiences so complex in their figurative material or specified quantities that the 
individual does not yet have the fluency to enact those operations. 

C4 extends beyond the forms of re-presentation discussed in the previous section 
due to it involving the anticipation of a hypothetical experience that has not 
been previously experienced. As an example, after graphing some relationship in 
numerous coordinate systems and orientations (e.g., the Cartesian and polar coor-
dinate systems), a student may anticipate that there likely exist coordinate systems 
not yet experienced such that those coordinate systems enable enacting and repre-
senting the AQS and its mathematical properties; the student understands that they 
will need to adjust their operations to the specific quantitative constraints of the yet-
to-be-experienced coordinate system, while also anticipating that the properties of 
those operations will remain the same (i.e., a linear relationship entails a constant 
rate of change no matter the coordinate system it is graphed within). As an alterna-
tive example, an individual could experience a novel or complex pair of quantities in 
which they have difficulty or cannot enact particular quantitative operations. Despite 
that difficulty, C4 involves the individual being able to anticipate the mathematical 
properties of a particular AQS. For instance, a student might not yet have constructed 
the capacity to enact quantitative operations with a quantity like surface area, but 
the student could anticipate a linear relationship between the painted surface area 
and height of a sphere to mean the painted surface area of a spherical cap increases 
at a constant rate of change with respect to the painted height of a sphere (Fig. 7).
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Fig. 7 For equal increases in height (marked on the right of the figure), the surface area of the 
spherical cap (colored in green) increases by equal amounts (each shaded band of surface area) 

The student could then leverage that inference to explore the relationship between 
surface area and height without having to enact quantitative operations in the context 
of the sphere (Stevens, 2019). 

2.1 Empirical Illustrations 

The value of a construct aimed at explaining cognition rests in its ability to provide 
explanatory or descriptive accounts of individual activity. We use selected empirical 
examples in this section to illustrate the criteria of an AQS. Each example is drawn 
from a study that used clinical interview (Ginsburg, 1997) or teaching experiment 
(Steffe & Thompson, 2000) methodologies to build second-order models of student 
thinking (Ulrich et al., 2014). It was in our reflecting on second-order models that we 
identified themes in student reasoning, and the AQS construct provided a consistent 
way to frame data from those studies. 

We acknowledge the way we have defined AQS presents inherent problems in 
attempts to characterize a student as having or having not constructed such. First, 
it is impossible to investigate a student’s reasoning in every context in which an 
AQS could be relevant. This limits the strength of claims relative to C3. Second, to 
characterize a students’ quantitative reasoning necessarily involves focusing on their 
enactment of operations in the context of particular figurative material. This limits 
the strength of claims relative to C3 and C4, and particularly attempts to characterize 
the extent an individual’s reasoning is not constrained to specific figurative material 
or quantities. No conceptual structure is truly representation free, as “operations have 
to operate on something” (L. P. Steffe, personal communication, July 24, 2019), but a 
conceptual structure can be abstracted to the extent the individual can symbolize and 
project it as if it is representation free. For these above reasons, we find it productive 
to discuss a student’s actions in terms of indications and contraindications of their 
having constructed an AQS per the defined criteria, as opposed to claiming whether 
a student has or has not constructed an AQS. Indications are those actions that are 
consistent with particular AQS criteria, and contraindications are those actions that 
are inconsistent with particular AQS criteria.
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In what follows, we provide examples that illustrate indications and contraindi-
cations of C2 and C3. C1 is trivial in its illustrations and is indicated by an indi-
vidual re-enacting the associated quantitative operations to assimilate some experi-
ence separate from but identical in form to the original enactment of those operations. 
A contraindication of C1 is an individual enacting associated quantitative operations 
only in-activity, with each enactment of them being effortful and somewhat anew 
even when presented with what an observer considers the same figurative material as 
considered in previous activity (e.g., an identical task and/or animation). As we illus-
trate below, C4 is also somewhat trivial in its illustration, as it typically involves an 
individual making a verbal statement acknowledging the possibility of re-presenting 
particular relationships in situations not yet experienced. The illustration in Fig. 7 was 
one example of a potential anticipated linear relationship in a novel context. Another 
example is after numerous experiences graphing some relationship in multiple coor-
dinate orientations and systems, the individual might acknowledge the possibility 
that other coordinate systems exist that entail a quantitative organization that affords 
re-presenting the operations associated with that relationship. Yet another example, 
although more complex in its form, is an individual thinking of hypothetical expe-
riences they may work to occasion with a learner in order to support the learner’s 
developmental of an AQS.4 

2.1.1 A Contraindication of Re-Presentation in the Absence 
of Figurative Material (C2) 

A critical criterion of an AQS is the ability to re-present that structure in the absence of 
available figurative material (and, often, in the context of transforming its operations 
to accommodate to novel contexts, i.e., C3). As a contraindication of re-presentation, 
consider Lydia’s actions during a teaching experiment focused on trigonometric rela-
tionships and re-presentation (Liang & Moore, 2021). Prior to the actions presented 
here, Lydia had constructed incremental changes compatible with those displayed 
with the Ferris wheel in Fig. 5 to conclude that the vertical segment (Fig. 8, in green) 
increases by decreasing amounts (circled in Fig. 8c) for equal changes of arc length 
(i.e., MA3). We took her actions to indicate her reasoning quantitatively, particularly 
as she was able to reproduce her actions repeatedly in the context of the Ferris wheel 
animation (i.e., C1). We subsequently presented her the Which One? task (Fig. 9, 
also see [https://youtu.be/2pVVGl8eEr0]).

This task included a simplified version of a Ferris wheel (the left side of Fig. 9) 
with the position of a rider indicated by a dynamic point. The topmost blue bar (the 
right side of Fig. 9) displayed the arc length the rider had traveled counterclockwise 
from the 3 o’clock position. Lydia could vary the length of this bar by dragging 
its endpoint or by clicking the “Vary” button, and the dynamic point on the circle 
moved correspondingly. We asked Lydia to determine which of the six red bars, if any,

4 We thank a reviewer for pointing out the relationship between an educator seeking to engender 
learning and their having constructed an AQS. 

https://youtu.be/2pVVGl8eEr0
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Fig. 8 Lydia’s prior actions and their results (Liang & Moore, 2021, p. 303) 

Fig. 9 The Which One? Task as presented to the student (Liang & Moore, 2021, p. 300)

accurately display the rider’s height above the horizontal diameter as the rider’s arc 
length varied (i.e., the sine relationship). The vertical dotted line provided a reference 
mark for the red bars, with a red bar emanating left being a negative magnitude and 
a red bar emanating right being a positive magnitude. The red bars were “free-
moving” in that they could be repositioned and reoriented in the plane, including 
being reoriented and placed as a vertical segment emanating from the center of the 
circle. Our overall design was intended to determine the extent she could re-present 
her previous actions in a similar context with less figurative material immediately 
available than before (i.e., the Ferris wheel and its features, like the spokes in Fig. 8), 
but with novel material that might support her in enacting those operations (i.e., the 
red and blue segments oriented horizontally). For reference, the topmost bar is a 
normative solution, and the other bars vary with either different directional variation 
(e.g., positive or negative; decreasing or increasing) or different rates (e.g., constant, 
increasing, or decreasing rate) than the normative solution (see https://youtu.be/2pV 
VGl8eEr0).

https://youtu.be/2pVVGl8eEr0
https://youtu.be/2pVVGl8eEr0
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Fig. 10 Lydia re-orienting and checking the red segment that is the normative solution (left) and 
Lydia, with assistance, constructing partitioning activity (right, with the red partitions added to aid 
the reader) (Liang & Moore, 2021, p. 304) 

As detailed in Liang and Moore (2021), Lydia became perturbed as to whether 
or not the horizontal red segment should vary at a changing rate with respect to 
the horizontal blue segment despite originally claiming that it should be based on 
her previous actions with the Ferris wheel (see identified changes circled in blue in 
Fig. 8). After much effort, she abandoned considering the segments in the horizontal 
orientation and re-oriented them vertically on the screen. Importantly, she persistently 
held in mind that her activity with the Ferris wheel led to the relationship of decreasing 
increases in height for successive equal changes in arc length (e.g., Fig. 8), but stated 
that she was unsure how to show such a relationship with the present segments. 
She eventually chose the correct segment solution by checking whether the heights 
matched at multiple static states within the displayed circle (Fig. 10, left).  

At this point in the task, Lydia’s activity had us question the extent she had 
constructed an AQS during her activity for the Ferris wheel. Specifically, she required 
re-orienting the red segments rather than either mentally rotating them vertically or 
leaving them horizontal and comparing their behavior with her image from the prior 
activity (i.e., a contraindication of C3). Furthermore, when re-oriented, she explicitly 
acknowledged having difficulty re-presenting the relationship from the Ferris wheel 
(i.e., a contraindication of C2). In an attempt to provide additional insights into her 
reasoning, after Lydia had chosen the normative solution, the teacher-researcher (TR) 
returned her to the question of whether the chosen red segment and blue segment 
entailed the same relationship as she identified in her previous activity (see Fig. 5, 
left): 

Lydia: Not really…Um, I don’t know. [laughs] Because that was just like something that I 
had seen for the first time, so I don’t know if that will like show in every other case…Well, 
for a theory to hold true, it like – it needs to be true in other occasions, um, unless defined 
to one occasion. 

TR.: So is what we’re looking at right now different than what we were looking at with the 
Ferris wheel?
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Lydia: No. It’s – No…Because I saw what I saw, and I saw that difference in the Ferris wheel, 
but I don’t see it here, and so – 

TR.: And by you “don’t see it here,” you mean you don’t see it in that red segment? 

Lydia: Yes.  

(Liang & Moore, 2021, p. 303). 

In the present interaction, and as the interaction continued, Lydia expressed uncer-
tainty as to how to determine if the blue segment and her chosen red segment entailed 
the same relationship she had illustrated in her previous activity, although she knew 
the segments were correct in static states. We underscore that Lydia held in mind the 
relationship she conceived in the Ferris wheel situation, and in the Ferris wheel illus-
tration she could regenerate the operations as suggested by her work in Fig. 5 (i.e., an 
indication of C1). Consistent with a contraindication of C2, one possible explanation 
for her activity is that the Ferris wheel situation provided arms that supported her 
partitioning activity, and her activity at this time was reliant on the availability of that 
material (Liang & Moore, 2021). As a further contraindication of C2, it was only 
after the teacher-researcher introduced perceptual material using their pens (Fig. 10, 
right) that she conceived the red and blue segments’ covariation as compatible with 
the MA3 relationship she had constructed in the Ferris wheel situation. 

2.1.2 An Indication of Re-Presentation in the Absence of Figurative 
Material (C2) 

As suggested by Lydia’s activity, an indication of C2 would have been her regener-
ating amounts of change using the circle, the re-oriented red bars, and the blue bars, 
and without the assistance of the research team. As a more detailed indication of 
C2, consider Caleb’s activity (Liang et al., 2018; Tasova et al., 2019) when engaging 
in the Changing Bars Task (Fig. 11). For the task, the red segment on the circle 
represents the magnitude of the point’s height above the horizontal diameter and the 
blue segment represents the magnitude of the point’s arc length from the 3 o’clock 
position (i.e., the sine relationship). The user was able to move the endpoint along the 
circle between the 3:00 position to the 12:00 position. On each displayed orthogonal 
pair, the user was able to drag the endpoint of the red segment in order to increase 
or decrease its magnitude. We asked Caleb to choose which, if any, of the orthog-
onal pairs—red representing height and blue representing arc length—accurately 
represents the relationship between the point’s height and arc length as it moves a 
quarter of a rotation around the circle. Two of the pairs accurately represented the 
relationship.

Before Caleb engaged with the Changing Bars Task, he had engaged with 
numerous Ferris wheel and segment orientation tasks including Which One? His 
activity on those tasks indicated he had constructed a quantitative structure consis-
tent with C1. We designed the Changing Bars Task to gain insights into the sophis-
tication of his quantitative structuring. The Changing Bars Task thus includes subtle 
figurative differences including less figurative material than that of a Ferris wheel
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Fig. 11 Changing Bars Task (numbering of the six pairs provided for readers)

situation, pairs of orthogonally oriented bars (Fig. 11) rather than six height bars 
and one arc length bar (as in Fig. 9), and the ability to vary the red (height) segment 
rather than the blue (arc length) segment. 

Summarizing Caleb’s activity, he initially compared the amounts of change in arc 
length and amounts of change in height as the dynamic point traveled a small distance 
from the 3:00 position. He stated that, “…at the very beginning, … the height above 
the center and the distance traveled from 3:00 position should be similar.” Caleb then 
repeated his actions near the 12:00 position, adding: 

Caleb: ...from this point [pointing to the point denoted in orange in Fig. 12b] ... to this 
point [pointing to 12:00 position in Fig. 12b], the height barely changes [green segment in 
Figs. 12b and c (i.e., Δ||H3||)], but you’re still traveling a fair distance around the circle [blue 
annotation in Fig. 12b and blue segment (i.e., Δ||A3||) in  Fig. 12c]. 

Caleb’s actions suggest he constructed a gross additive comparison of Δ||H1|| 
with Δ||A1|| near the 3:00 position (i.e., Δ||H1|| is almost equal to Δ||A1||) and of 
Δ||H3|| with Δ||A3|| near the 12:00 position (i.e., Δ||H3|| is smaller than Δ||A3||). 
He also generalized this relationship across all cases in the first quarter of rotation. 
He stated, “the further you move away from the 3:00 position, the more variance 
there would be between the red (i.e., Δ||H||) and the blue lines (i.e., Δ||A||).” In 
this case, by “variance” he meant that Δ||A|| became much bigger than Δ||H|| as the 
dynamic point approached the 12:00 position, whereas an alternative meaning would 
be comparing Δ||H|| magnitudes for successive changes in arc length. In other words, 
he was coordinating how the two quantities’ changes compared to each other rather

Fig. 12 Recreation of Caleb’s activity in the Changing Bars Task. We introduce the Δ and magni-
tude notation to use in the narrative and highlight that Caleb’s reasoning foregrounded magnitudes 
rather than (directed) measures 
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Fig. 13 Caleb’s choice of two pairs of bars at a the beginning state and b the final state. The 
direction and length of each arrow indicates the direction and magnitude of change respectively 

than fixing changes in one quantity and comparing the changes in the other quantity 
(Liang et al., 2018; Tasova et al., 2019). 

Turning his attention to the orthogonal pairs, he dragged the end point of the red 
bar for a small amount from a start of near zero magnitude, and observed by how 
much the blue bar changed (Fig. 13a); he also dragged the end point of the red bar 
for a small amount towards the maximum length of both bars to observe by how 
much the blue bar changed (Fig. 13b). He moved aside all pairs which either the blue 
bar did not change by “almost equal” as the red bar near their minimal amounts or 
the blue bar did not change by noticeably larger amounts than the red bar near their 
maximum amounts. He selected two pairs (the normative solutions), the relevant 
behavior of which are described in the Fig. 13 caption. 

In contrast to Lydia’s activity above, Caleb’s activity is an indication of C2 because 
the entirety of his solution suggests he did not need aspects of the Ferris wheel (e.g., 
the spokes) or denoted partitions on the segments to provide markers for his activity. 
Rather, he was able to mentally imagine particular actions and their results in the 
absence of available figurative material including that with which he had previously 
acted. Furthermore, he was able to conceive equivalence in his actions among both 
contexts without having to reflect upon and enact operations on produced figurative 
material.5 

2.1.3 A Contraindication of Accommodation (C3) 

As a contraindication of C3, we turn to Patty’s activity when prompted to graph a 
covariational relationship in a different Cartesian orientation than she had previously 
graphed (Moore et al., 2019b). Patty was working the Going Around Gainesville 
(GAG) task (Fig. 14). Patty constructed a normative solution to Part I in ways that 
suggested her reasoning covariationally and re-presenting that relationship using a 
Cartesian graph (Fig. 15).

5 We note that we do not consider Caleb’s activity as an indication of C3 as he had previously experi-
enced both circle and segment contexts repeatedly during the teaching experiment. His engagement 
suggested they were not novel relative to his perceived goal and activity. 
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Fig. 14 The Going around Gainesville (GAG) task (Moore et al., 2019b, p. 4)6 

Fig. 15 Patty’s work on 
GAG part I (Moore et al., 
2019b, p. 13) 

Moore et al. (2019b) provided a detailed account of Patty’s solution to GAG Part 
II, which illustrated her experiencing a sustained, conscious perturbation that left 
her unable to complete the task to her satisfaction. We note that Patty anticipated 
graphing the same relationship she had previously constructed and graphed (i.e., a

6 This task is a modification of the task Saldanha and Thompson (1998) presented. 
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quantity’s magnitude decreasing as the other magnitude increased), but she encoun-
tered an irreconcilable perturbation when attempting to do so in the Part II coordinate 
orientation. Specifically, Patty had determined an initial point along the vertical axis 
and then motioned as if drawing a segment sloping downward left to right from 
this point. She later crossed out that point on vertical axis, as seen in the top-left of 
Fig. 16. She explained (see Fig. 16 for her work): 

Patty: I wanted to start here because I wanted to show that the distance was decreasing 
[motioning down and to the right from the point plotted on the vertical axis], but that means 
your distance from Athens is decreasing [tracing vertical axis from the initial point to the 
origin]…[turning her attention to the relationship from the animation] But your distance from 
Athens is growing. But your distance from Gainesville is decreasing. So, if that’s growing 
and that’s decreasing, so [draws an arrow pointing downward beside horizontal axis label 
and then an arrow pointing upwards beside the vertical axis label] 

[Patty then works for six additional minutes maintaining her ‘starting’ point on the vertical 
axis, without making progress, and explaining “this is so hard”. She repeatedly identifies 
the distance from Gainesville as decreasing and the distance from Athens as increasing, 
including drawing a graph in an alternative axes orientation (i.e., Distance from Athens 
(“dA”) being on the horizontal axis, see the bottom right of Fig. 16). She eventually has an 
insight.] 

Patty: Ohhhh, what if I started it like here [plots point on the right end of the horizontal 
axis]. Okay…but I don’t want to start like, like I don’t like starting graphs. You know I 
don’t know work backwards that’s weird…[in the next minute and a half Patty draws in 
a normative initial segment of the graph, as seen in Fig. 16, hesitating throughout while 
explaining how the distances covary] But it’s backwards so I don’t like it…My graph is 
from right-to-left, which is probably not right…[describes the covariational relationship 
between the two distances] I guess I just don’t like this. 

Int.: And why don’t you like it? 

Patty: Because it’s backwards. 

Int.: And by backwards we mean? 

Patty: Backwards is traveling from right-to-left. But I think my graph is just, I think I’m just 
not clicking. I think I’m missing something. 

(Moore et al., 2019b, p. 14).

Recall that C3 involves transforming a system of quantitative or covariational 
operations in order to accommodate novel contexts permitting the associated quanti-
tative operations. On one hand, Patty’s activity is an indication of C3; she was able to 
transform MA3 operations enacted in the situation—a car traveling along a road—to 
construct a Cartesian graph representing the same amounts of change relationship 
(Fig. 15). On the other hand, Patty’s activity is a contraindication of C3; she was 
unable to accommodate those operations enacted in the situation and previous graph 
to construct a Cartesian graph in a different quantitative orientation that she main-
tained as a correct representation of the relationship. Notably, figurative features 
of her graphing activity (e.g., “work[ing] backward,” and “traveling right-to-left) 
constrained her ability to enact and sustain quantitative operations in the alternative 
Cartesian orientation. Patty’s activity illustrates the complexity of C3, and we return 
to this complexity in the closing discussion.
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Fig. 16 Patty’s graph for the first portion of the trip for GAG part II

2.1.4 An Indication of Re-presentation and Accommodation (C3) 

As an indication of re-presentation and accommodation (i.e., C3), we turn to two 
prospective secondary teachers’—Kate and Jack—actions when asked to determine 
a formula for an unnamed polar coordinate system graph (Fig. 17, which is r = 
sin(θ);  see Moore et al.  (2013) for the detailed study). After investigating a few 
points, Kate and Jack conjectured that r = sin(θ) is the appropriate formula and drew 
from memory a Cartesian sine graph to compare to the polar graph. Important to 
note, Kate and Jack were not familiar with graphing the sine relationship in the polar 
coordinate system.

Kate: This gets us from zero to right here is zero again [tracing along Cartesian horizontal 
axis from 0 to π ]. So, we start here [pointing to the pole in the polar coordinate system].



56 K. C. Moore et al.

Fig. 17 Kate and Jack covary quantities with respect to the given graph (from Moore et al., 2013, 
p. 467)

Jack: Yeah, and you’re sweeping around because [making circular motion with pen], theta’s 
increasing, distance from the origin increases and then decreases again [Jack traces along 
Cartesian graph from 0 to π as Kate traces along corresponding part of the polar graph]. 
TR.: OK, so you’re saying as theta increases the distance from the origin does what? 

Jack: It increases until pi over 2 [Kate traces along polar graph] and then it starts decreasing 
[Kate traces along polar graph as Jack traces along Cartesian graph]. 

TR.: And then what happens from like pi to two pi. 

Kate: It’s the same. 

Jack: Um, same idea except your, the radius is going to be negative, so it gets more in the 
negative direction of the angle we’re sweeping out [using marker to sweep out a ray from π 
to 3π /2 radians – see Fig. 17] until three pi over two where it’s negative one away and then 
it gets closer to zero [continuing to rotate marker]. 

TR.: OK, so from three pi over two to two pi, can you show me where on this graph [pointing 
to polar graph] we would start from and end at? 

Kate: This is the biggest in magnitude, so it’s the furthest away [placing a finger on a ray 
defining 3π /2 and a finger at (1, π /2)], and then [the distance from the pole] gets smaller in 
magnitude [simultaneously tracing one index finger along an arc from 3π /2 to 2π and the 
other index finger along the graph – see Fig. 17]. 

(Moore et al., 2013, p. 468). 

Kate and Jack’s actions indicate their having constructed (or constructing) a 
covariational relationship associated with the sine relationship such that they could 
take that relationship as a given in the Cartesian coordinate system. Furthermore, 
their actions indicate their transforming the associated operations to accommodate 
to a polar coordinate system displayed graph. Their activity enabled them to conceive 
two graphs as representing equivalent quantitative structures despite their perceptual 
differences, which is an indication of C3. 

2.1.5 An Implication of Anticipation (C4) and Accommodation (C3) 

In Kate and Jack’s case, an indication of C4 would involve their identifying the 
potential of not yet experienced coordinate systems that enable re-presenting the 
same quantitative structure. In our experience it is difficult to gain evidence of C4, 
as it relies almost entirely on verbal descriptions of anticipation that stem from
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researcher prompting. Thus, rather than using this section to illustrate an indication 
of C4, we focus on an important implication of an individual’s (whether they are 
a researcher, teacher, or student) actions that suggest their constructing a structure 
consistent with C4: their AQS is generative in their consideration of other individuals’ 
work. By generative, we mean that their AQS is productive for assimilating a broad 
range of experiences with others in ways that are sensitive to the ways of operating 
of those others (Liang, 2021). 

In our previous work, we documented prospective teachers’ (PSTs’) difficul-
ties with attributing and valuing meanings rooted in quantitative and covariational 
reasoning to non-normative student work and coordinate system orientations, such 
as a student graphing x and y on the Cartesian vertical and horizontal axes, respec-
tively (Lee et al., 2019; Moore et al., 2014, 2019a, 2019b). Attributing and valuing 
meanings rooted in quantitative and covariational reasoning to non-normative work 
(e.g., graphing under alternative axes orientations) necessitates the construction of 
an AQS. More specifically, an individual having constructed an AQS consistent with 
C1 through C4 positions the individual to anticipate some other person producing 
representations that, while novel to the individual, are viable (i.e., C4). Furthermore, 
the individual is positioned to accommodate to that person’s produced representa-
tions via the transformation and regeneration of particular quantitative operations 
(i.e., C3). 

As an illustration, we draw on Annika’s activity as reported in Moore et al., 
(2019b). Annika was addressing a task (Fig. 18) presenting student work. Prior to this 
task, Annika’s activity had indicated her anticipating rate of change as a coordination 
of quantities’ variation that she could enact in any coordinate system or orientation 
so as long as she adjusted to the quantitative organization of that system and its 
orientation. Moore et al., (2019b) thus provided a task to see how she would attribute 
meaning to student work that was not clearly labeled but could be determined as 
viable in a number of ways.

As an indication of C4, Annika’s immediate action was to consider the presented 
graph as a potentially viable graph of y = 3x, and she sought to determine coordinate 
orientations that enabled her to regenerate the quantitative operations she associated 
with a graph of y = 3x. Namely, she sought to determine labeling so that y varied 
by a magnitude 3 times as large as any corresponding variation in x. As potential 
labels, she identified positive x- and y-values oriented down and right of the origin, 
respectively, and she identified positive x- and y-values oriented up and left of the 
origin, respectively.

Following this interaction, and in an attempt to determine the extent Annika 
considered the graph as a viable representation of y = 3x, the teacher-researcher 
posed that a different student claimed that the line has “a negative slope” and thus 
is not a graph of y = 3x. She responded with the following, using positive x- and 
y-values oriented down and to the right of the origin (see Fig. 19), respectively, as 
her specific example: 

Annika: You’d have to notice that even though it looks like a negative slope [making a hand 
motion down and to the right] because we call it slope because it’s visual and it’s easy to 
visualize a negative and positive slope [making hand motions to indicate different slopes].
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Fig. 18 The task presented 
to Annika, which was posed 
as a student solution to 
graphing y = 3x (Moore 
et al., 2019b, p. 7)

Fig. 19 Annika’s annotated 
version of Fig. 18, each tick 
mark based on a unit change 
of 1 (Moore et al., 2019b, 
p. 13)
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But that’s only visual on our conventions of how we set it up. Um, but like [pointing to 
the graph] if slope is rate of change, we can still see that for like equal increases of x 
[making hand motions to indicate equal magnitude increases] we have an equal increase of 
y [making hand motions to indicate equal magnitude increases] of three. And so for equal 
positive increase of one [sweeping fingers vertically downward to indicate an increase of 
one], we have an equal positive increase of three [sweeping fingers horizontally rightward 
to indicate an increase of three]. And so, it is a positive slope. 

(Moore et al., 2019b, p. 12). 

Annika’s response suggests her differentiating visual notions of slope from rate of 
change in a way that indicates her having constructed rate of change as a relationship 
between quantities’ values as they vary. This relationship was not tied tightly to any 
particular coordinate system or orientation (i.e., C4). She then further enacted her 
scheme for constant rate of change to make sense of a graph in a particular orientation 
by re-presenting the quantitative operations she associated with a constant rate of 
change of 3 (i.e., changes in one value are a multiple of changes in the other value). 
Collectively, Annika’s activity illustrates the powerful implications of an individual, 
and in this case a PST, having constructed an AQS in the context of their considering 
non-normative and unclear student work. 

2.1.6 A Few Comments on Context 

For consistency, we provided examples drawn from one population (prospective 
teachers) with a focus on particular mathematical ideas (e.g., covariation and 
graphing). However, our framing of an AQS is applicable to all age ranges and 
across numerous mathematical, scientific, and day-to-day domains (e.g. Steffe and 
colleagues work addressing students’ counting and fraction schemes). Namely, we 
see the AQS criteria as relevant to topics and contexts including the construction of 
individual quantities (e.g., length), the combining of quantities to form other struc-
tures (e.g., coordinate systems or multiplicative objects), the construction of partic-
ular covariational relationships (e.g., the sine relationship), or the construction of a 
phenomenon itself (e.g., a Ferris wheel). For instance, an individual’s construction 
of length as a quantity can start out tied to the experience of movement. Over time 
the individual may then construct height as a measurable attribute of a person, and 
then length as a more generalized measurable attribute of any number of concrete 
objects. Finally, that individual may conceive length as a measurable attribute they 
can impose on any span of space or object they come across in future experience. 
To illustrate further, we draw on the Faucet Task (Paoletti, 2019; Paoletti et al., 
accepted) to provide an example that spans students’ mathematical understandings, 
understandings of systems, and lived experiences. 

In the Faucet task, students interact with a dynamic applet that allows them to 
turn hot and cold knobs, with such turns resulting in changing amounts of water and 
temperature of water leaving the faucet (Fig. 20). Overall, the middle school students 
(aged 10–13) develop a quantitative structure that supports them in making additive 
(e.g., turning a knob on results in an increase in water) and ratio (e.g., turning the hot
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Fig. 20 Several screenshots of the faucet task with the cold-water knob being turned on from an 
initial state 

knob on results in increasing the hot water relative to the cold water, thereby making 
the water hotter) comparisons to determine how temperature and amount of water 
covary. As an initial stage of the task, and with the aid of the applet, students develop 
an understanding of how the faucet system operates. For instance, if only the cold 
knob is turned, all the water comes out at the constant temperature of groundwater. 
Or, if only the hot knob is turned, all the water comes out a constant temperature set by 
the hot water heater. Likely due to their numerous experiences with faucets, middle 
school students often quickly develop a quantitative structure for the faucet system 
that satisfies C1–C2, thus being able to imagine changes in amounts of water and 
temperature of water in thought, as well as creating the relevant states and variations 
of the system using the applet. In other words, they can enact quantitative operations 
in order to control the faucet system as they choose. 

The Faucet tasks illustrates that a conversation on the extent an individual has 
constructed an AQS can exist with respect to different contexts. For instance, while 
middle school students are able to construct a sophisticated quantitative structure 
with respect to the faucet system (i.e., C1–C2), it is often non-trivial for them to 
use a graph to re-present relationships constructed within the faucet system environ-
ment (i.e., C3). Similarly, Patty’s difficulty graphing a relationship she conceived 
highlights this complexity. A student having developed a sophisticated situational 
quantitative structure that provides evidence of C1–C2 does not immediately imply 
the student will be able to transform or regenerate this structure in a new context like 
a coordinate system. As Patty’s actions illustrate, it could be the case that while their 
situational quantitative structure is sophisticated, their meaning for the representa-
tional system in which they are attempting to re-present that structure might not afford 
such actions. Or, as Lydia’s actions indicate, it could be the case that an individual’s 
situational understanding is not sophisticated enough to either be re-presented in 
the absence of specific figurative material or be transformed and regenerated in a 
different representational system. We return to this point in the next section when 
discussing research and teaching implications.
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3 Discussion and Implications 

Throughout the results, we used students’ activity to provide indications and 
contraindications of the four criteria for AQSs (C1–C4). We leveraged these criteria to 
highlight the different forms of re-presentation and to distinguish between students’ 
meanings in terms of their foregrounding figurative material and activity and their 
foregrounding logico-mathematical operations (i.e., quantitative operations). For 
example, Lydia’s initial activity was illustrative of the importance of the first two 
manifestations of re-presentation, as she required some figurative material available 
to coordinate which segment length represented the rider’s vertical distance. We 
underscore that Lydia did not encounter much difficulty once all necessary figurative 
material was available; she assimilated the segments and their variation to quantita-
tive operations. Rather, Lydia struggled (and explicitly acknowledged said struggle) 
to accommodate the relationship she constructed in a way that she could re-present 
it with novel, and partially unavailable figurative material. 

The complexities Lydia experienced further demonstrates the power of Kate, Jack, 
and Annika’s reasoning. Kate and Jack’s activity exemplifies students leveraging the 
third manifestation of re-presentation by transforming and regenerating operations 
enacted from a prior experience to accommodate a novel context, which is an indi-
cation of operative thought. For example, not only did they re-present a quantitative 
structure and regenerate that structure in a novel context, they also abstracted the 
associated operations such that they could identify the same relationship within a 
perceptually different representational system. In Annika’s case, her activity under-
scores that the construction of an AQS better positions an individual to understand 
the reasoning of others as their meanings are more malleable in the presence of novel 
figurative material. 

Because this chapter serves as an introduction of the AQS construct and criteria, 
we spend the remainder of this section discussing potential research and teaching 
implications. We envision these implications to provide avenues by which researchers 
and teachers can move the AQS construct forward. As we mentioned above, the value 
of a construct aimed at explaining cognition is measured by the extent it affords 
explanatory or descriptive accounts of individual activity, and such an affordance is 
best judged in the context of subsequent research and attempts to engender learning. 

3.1 Research Implications 

We find the criteria associated with an AQS to provide a grounding for researcher 
claims regarding students’ (and teachers’) quantitative and covariational reasoning 
in two primary ways. First, the AQS criteria provide a way to characterize the sophis-
tication of a student’s quantitative reasoning whether with respect to a phenomenon 
(e.g., a Ferris wheel or a faucet), a representational system (e.g., a coordinate system 
or number line), or a concept (e.g., rate of change or the sine relationship). Prior to
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developing the AQS criteria, our research team often found it difficult (and unpro-
ductive) to characterize a student as reasoning quantitatively or not. For instance, for 
students for which we only had gathered data indicating C1, we were unsure whether 
those students were or were not reasoning quantitatively. But, as we gathered indi-
cations (or contraindications) of C2 through C4 through the design of interactions 
that afforded such indications, we found that we were able to develop more nuanced 
models of the students’ quantitative reasoning. Furthermore, as we gathered indica-
tions or contraindications of C2 through C4, we found that we had more evidence to 
make viable claims regarding students’ quantitative reasoning across each context in 
which their reasoning occurred. Thus, we see the AQS criteria as providing guidance 
for researchers as it relates to building evidence and making claims regarding the 
affordances and constraints of a student’s quantitative reasoning. The AQS criteria 
emphasize that a researcher’s sensitivity to figurative and operative distinctions in 
an individual’s thought should be based in the researcher’s sustained interactions 
with the individual and iterative testing of hypotheses regarding the individual’s 
re-presentation and regeneration capacities. 

Second, and relatedly, the AQS construct and criteria emphasize the importance 
of situating models of students’ quantitative reasoning, including the perturbations 
students experience when enacting such reasoning. By providing criteria that draw 
attention to recurrent usability, re-presentation of prior experience, regeneration 
within novel contexts, and the anticipation of regeneration in future experience, the 
AQS criteria enable researchers to situate their claims regarding students’ quan-
titative reasoning by being explicit about both the quantitative operations under 
study, as well as the contexts and figurative material in which those operations 
can be enacted or anticipated. Actions like those of Patty and Lydia highlight that 
it is important for researchers to simultaneously attend to students’ meanings for 
various phenomena (e.g., a faucet system or Ferris wheel ride), various represen-
tational systems (e.g., Cartesian coordinate system and polar coordinate system), 
and the quantitative relationships they construct within a phenomenon or represen-
tational system. For instance, Patty’s experienced perturbation did not stem from the 
relationship she constructed within the phenomenon. It instead stemmed from her 
meaning for graphing in the Cartesian coordinate system. The AQS criteria draw 
attention to this distinction with a focus on quantitative operations, their enactment, 
and their regeneration, and this distinction can prove powerful when designing for 
other interactions with a student as we illustrate in the next section. 

With respect to students’ mathematical development, we acknowledge to this 
point we have not explicitly defined abstraction in this chapter. This is notable given 
Piaget’s (2001) extensive use of different forms of abstraction. It is not an oversight 
that we have not explicitly defined abstraction to this point, but rather an indica-
tion that we have not yet operationalized the construct of an AQS in terms of its 
construction and development. We are in the process of conducting and designing 
additional studies to provide insights into the construction and development of such 
structures as it relates to particular relationships, topics like rate of change, and repre-
sentational systems. We hypothesize that the construction of AQSs occurs through 
cyclical processes of pseudo-empirical, reflecting, and reflected abstraction, in which
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what becomes operative and conscious at one level becomes the figurative ground 
for further processes of abstraction. We also note that our studies to date suggest the 
developmental interdependence of particular structures. Particularly, a student having 
constructed an AQS for a particular relationship can support them in constructing an 
AQS for a representational system as they attempt to re-present the relationship in 
that system. One can imagine that Patty’s perturbation could have led to a powerful 
accommodation to her Cartesian graphing meanings had the setting afforded partic-
ular instructional interventions. Similarly, a student is afforded the opportunity to 
construct an AQS associated with a topic like rate of change through repeated oppor-
tunities of constructing AQSs of particular relationships that entail different rates of 
change as those relationships can become a source of reflection and abstraction. 

Lastly, providing a set of criteria for a construct invites the question whether said 
criteria have a hierarchy. There is a natural hierarchy with C2 through C4, as they 
move from re-presenting a previous experience, to accommodating to a novel context, 
and ultimately anticipating hypothetical future contexts. With that said, we have not 
conducted the empirical work necessary to articulate developmental stages or shifts, 
and thus hesitate to make claims relative to the hierarchy of the criteria. We do note 
that C2 and C3 are each a subset of C1, as both C2 and C3 require the enactment of 
the associated operations beyond their initial experiential construction. For instance, 
a student reenacting MA3 by reproducing a Ferris wheel (or circle) on a (provided or 
imagined) blank sheet of paper and producing (via drawing or imagining) partitions 
to construct amounts of change is an example of C2 and necessarily implies their 
constructed quantitative structure is recurrently usable beyond its initial experiential 
construction. C1 is broader than C2 and C3, and particularly C2, because it includes 
cases that do not require regenerating figurative/perceptual material, including that 
in which it was initially constructed. For example, a researcher might give a student 
their finished work from a previous experience, and the student could assimilate it 
with little effort in order to recall their previous actions and their results. 

3.2 Teaching Implications 

With respect to teaching, and mirroring several of the research implications, the AQS 
criteria provide a lens for instructional design, both with respect to curricula and a 
teacher’s or student’s interactions with students. With respect to curricula, our expe-
rience (at least in the US) leads us to believe a majority of mathematics curricula do 
not intentionally provide students opportunities to reason in ways consistent with C2 
through C4 (Moore et al., 2013, 2014, 2019a, 2019b). As a notable example, within 
US 6–12 curricula function classes are almost presented and graphed exclusively in 
the Cartesian coordinate system with their independent variable along an axis oriented 
horizontally and with positive values oriented to the right of the origin. Furthermore, 
the vertical axis is almost exclusively oriented with positive values above the origin.
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This practice constrains students’ opportunities to construct an AQS because it does 
not afford repeated occasions to transform and regenerate the quantitative opera-
tions associated with a function class to accommodate to novel contexts (i.e., other 
coordinate orientations or systems). Instead, this practice affords the propagation of 
meanings that foreground figurative aspects of thought and lower forms of abstrac-
tion (Moore et al., 2019b; Paoletti et al., 2018a, 2018b; Thompson, 2013; Thompson 
et al., 2017). More generally, it likely restricts students in constructing a coordinate 
system as a form of an AQS, as students only experience one form of a coordinate 
system. 

That the majority of curricula do not intentionally target C2 through C4 is also 
problematic for the type of classroom interactions that occur in the context of that 
curricula. Echoing our comments about building evidence for making claims relative 
to students’ quantitative reasoning, the products students are likely to produce are 
constrained (cf. diSessa et al., 1991). Ultimately, this limits the variety and multi-
tude of student products teachers and fellow students have to consider, compare, 
and leverage. For students, this limits their opportunities to construct and compare 
different forms of reasoning and representations. For a teacher, this limits their ability 
to assess the extent their students have constructed a sophisticated and flexible mean-
ings for the topic under consideration. In short, the aforementioned limitations in 
curricula have the likely consequence of restricting or devaluing the variety of student 
actions necessary to support reasoning in ways consistent with C2 through C4. 

Responding to this issue, we have found promising results in designing instruc-
tional experiences that incorporate the criteria set forth in this chapter (Moore et al., 
2014). Specifically, when designing for instruction, we have found it productive to 
start with answering the question: What is critical to a concept and what are merely 
conventional practices for representing that concept? By answering that question and 
differentiating between the two, an educator can identify the mental operations they 
want to foster and then use the AQS criteria to inform their instruction and interactions 
with students. As a concise example, consider the sine relationship. With respect to 
covariation and MA3, we consider a critical aspect of the sine relationship to be that 
for successive equal increases from 0 in one quantity’s value, the other quantity’s 
value increases by decreasing amounts, then decreases by increasing amounts, then 
decreases by decreasing amounts, and then increases by increasing amounts before 
repeating that pattern.7 With that aspect in mind, targeting C2 and C3 then involves 
providing students a variety of experiences to construct, coordinate, re-present, and 
regenerate the corresponding mental operations. Such experiences could include 
having students determine how the arc length traveled by various Ferris wheel riders 
varies in relation to the riders’ heights above the center of the Ferris wheel, and 
then extending that to any object traveling along a circle (i.e., C2). From there, the 
students could be tasked with regenerating those operations in different Cartesian

7 We note that there are several other key aspects to understanding the sine relationship, including 
measuring quantities in radius lengths, proportionality, and periodicity (Bressoud, 2010; Moore, 
2014; Thompson, 2008). 
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and polar coordinate orientations (i.e., C3). Ideally, when reflecting on that collec-
tion of experiences and identifying the invariant properties of their operations, the 
students would be positioned to anticipate the corresponding MA3 relationship as 
potentially relevant for future experiences in not-yet experienced coordinate systems 
and phenomenon (i.e., C4). 

In providing the concise example in the prior paragraph, we do not imply that 
such a process is simple or quick. Rather, each step and construction along the way 
is quite effortful on the part of the learner, and we view each AQS criterium as 
drawing educators’ attention (whether teachers, researchers, or curricular designers) 
to an area deserving intense focus. As an example, consider a student’s construction 
of a coordinate system, which is itself a quantitative structure. Lee (2017) illus-
trated, and underscoring the emphasis of C1 and C2, a student’s construction of a 
coordinate system is a complex coordination of mental operations that develop over 
time. Students need repeated opportunities to construct and coordinate the oper-
ations associated with a coordinate system if they are to use coordinate systems 
productively. Instructional design should thus be built around student opportunities 
to construct coordinate systems that at least satisfy C1 through C3. Additionally, 
other mental operations are necessary when constructing a graph within a coordi-
nate system, particularly when that graph involves regenerating and representing a 
relationship from a different context like a Ferris wheel (Lee et al., 2018; Moore, 
2021; Moore & Thompson, 2015; Paoletti et al., 2018a). Here, the AQS criteria C1 
through C3 draw attention to the importance of a student not only constructing a 
sophisticated quantitative structure in a context like the Ferris wheel, but also to their 
being able to transform and regenerate that structure in the context of the coordinate 
system. Student actions as such cannot be taken for granted and should instead be 
explicit targets of instructional design. 
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Number Systems as Models 
of Quantitative Relations 

Terezinha Nunes and Peter Bryant 

This chapter starts with a theoretical and, in our view, crucial distinction between 
two types of meaning that number words have: a representational meaning and an 
analytical meaning. The representational meaning connects the number words to 
quantities and to relations between quantities. Quantities are constructs about objects 
and events in the world; “a person constitutes a quantity by conceiving of a quality 
of an object in such a way that he or she understands the possibility of measuring 
it.” (Thompson, 1993, p. 165). The analytical meaning is defined by the rules of the 
number system. Because numbers are conventional systems of signs, there is nothing 
in the world nor in the organism that justifies that 2 plus 2 makes 4 (Piaget, 1952a); 
this meaning of the number 4 is based on the conventional rules of the system. 

Mathematical thinking also has two distinct facets, quantitative reasoning, which 
relates to the representational meaning of number, and arithmetic, which relates to 
the analytical meaning. Quantitative reasoning is the ability to analyze “a situation 
into a quantitative structure—a network of quantities and quantitative relationships. 
A prominent characteristic of reasoning quantitatively is that numbers and numeric 
relationships are of secondary importance, and do not enter into the primary analysis 
of a situation. What is important is relationships among quantities” (Thompson, 
1993, p. 165).1 

1 The term relationship(s) is kept as in the original. Subsequently the term relation(s) is used with 
the same meaning to keep with the recommendation of the American Psychological Association 
that relationship(s) should be restricted to those between people.
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In contrast, arithmetic has been defined as “the science of numbers, which analyzes 
the behavior of various numbers in four operations: addition, subtraction, multiplica-
tion, and division” (Guedj, 1998, p. 63); relations between quantities are not the point 
of arithmetic. When arithmetic is used to solve problems about quantities, numbers 
and operations work essentially as models of the world, and the model must be rele-
vant to the problem in order for the solution to be a good one. From the psychological 
perspective, a fundamental question is how children come to understand these two 
meanings of number in such a way that they can connect quantitative reasoning and 
arithmetic in order to use mathematics to understand the world. 

The aim of this chapter is to provide an account of how action schemas used in 
different situations support students’ understanding of quantities and of numbers as 
ways of representing their thinking about quantities. In the first section of this chapter, 
we shall illustrate the distinction between the two types of meaning, representational 
and analytical, by considering words in natural language in order to draw on theories 
and research about the development of word meaning. In the second section we will 
contrast the schemas of action that give meaning to natural and rational numbers. 
In the third section we will use the pair situation/action-schema to analyze research 
about students’ understanding of rational numbers. In the final section we shall draw 
implications from our analysis for the teaching of rational numbers. 

1 Learning the Meanings of Words 

Two eminent developmental psychologists, Piaget and Vygotsky, whose theories 
differ in many ways, argued that word meanings come from thought, not from asso-
ciations between words and referents. Adults say words that children can repeat, but 
they cannot pass on the words’ meanings directly to children. “Thought and speech 
have different genetic roots; the two functions develop along different lines and inde-
pendently of each other” (Vygotsky, 1962, p. 41). Vygotsky suggested that thought 
develops from the child’s activity whereas speech originates from social interac-
tions. In Piaget’s theory too, thought and language have different roots: the origin 
of thinking is in (sensorimotor) action schemas2 and words are learned in social 
interactions. An action schema (or schema of action) is an organized action that 
can be applied to different objects and in different situations (Piaget, 1952a, 1953); 
for example, joining two collections is an action schema because collections can be 
composed of different objects (e.g., pencils, flowers, candies) and with different aims 
(e.g., to put them in a bag, to count them).

2 In English translations, Piaget’s term ‘scheme’ is often maintained, but we prefer ‘schema’ because 
it is included in English dictionaries with a meaning close to the one intended here. The noun 
‘scheme’ in English means a large-scale plan to attain something (e.g., maternal leave scheme); 
the verb ‘scheme’ means to plot. When the full expression ‘schema of action’, is used, there is less 
room for confusion with other meanings. 
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Both psychologists theorized that, as children develop, their thinking processes 
change from relying on specific instances or images to relying on classes and rela-
tions. As children use their action schemas in interaction with the external world, 
they establish relations between objects and events, which give origin to classifica-
tion and classes. As children interact with other people and learn words, adults direct 
the children’s attention to specific relations and classes and use words, which can 
become signs to represent thinking about classes and relations. These interactions 
result in the socialization of thinking (Inhelder & Piaget, 1964) because children’s 
thinking is now based on classes and relations similar to those used by adults. 

This abstract description can be clarified by considering how children learn the 
meanings of words in natural language. When children start to learn the meaning 
of words, their first experiences are with the connection between words and specific 
exemplars of concepts because adults say a word and indicate a referent for that word: 
for example, the mother might say to a young child “this is your little brother” when 
she brings home a newborn baby. The child learns that this is his/her brother, but it 
is likely that the child will not give to the word “brother” the meaning that adults 
give. Children start to use the word “brother” at an early age to refer to specific 
persons (e.g., my brother, my friend’s brother) and can use it correctly in this way; 
this functional similarity leads to the illusion that they know the meaning of the word 
(Vygotsky, 1962). However, the referential meaning of the word “brother” is not 
a particular person: it is based on classes (a brother is a male) and relations (both 
people have the same parents, which means that someone is a brother of one person 
but not of another). The analytical meaning is defined by the conventional rules of 
the English kinship system: if A (a male) is brother of B, they share both parents; if 
A and B only share one parent, A is a half-brother of B. Once the conventional rules 
are understood, they allow for inferences that generate new knowledge: if one is told 
that A is brother of B and that B is sister of C, one can infer that A is brother of 
C. Such inference rests on thinking based on classes as well as on relations defined 
by the kinship system; if the word “brother” were only connected to specific people 
(my brother, my friend’s brother), it would not be possible to draw inferences. 

Research shows that young children find it difficult to use words to refer to classes 
rather than to specific instances. When children were exposed to artificial concepts in 
laboratory studies, 3-year-olds tended not to show progress in attaining a class-based 
use of the words, even though they could identify specific instances; 4- and 5-year-
olds showed some progress in using words to refer to a class, if they were supported 
by adults in making comparisons between classes and in establishing a connection 
between the word and the criteria used in the classification; 6-year-olds performed 
above chance level in the assessments (Edwards et al., 2019). Young children have still 
greater difficulty in learning relational concepts, even if the concepts seem simple, 
such as “passenger” (Gentner et al., 2011; Hollich et al., 2000; Parish-Morris et al., 
2010). 

Thus, research results support Vygotsky’s and Piaget’s theories of how children 
learn word meanings and contradict the associationist view that word meanings are 
based on co-occurrences between the sounds of words and referents. However, some 
psychologists still approach the learning of number words as based on the association
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between number words and the recognition of numerosities (see Piantadosi et al., 
2012, and Ni & Zhu, 2005, for reviews), but such theories are not considered in this 
chapter. 

2 Giving Meaning to Number Words 

Like other words in natural language, number words have a referential and an analyt-
ical meaning, but with number words there is a procedure for telling which number 
word to use for a collection of items: counting. Counting in order to attribute the 
correct number word to a collection depends on the schema of one-to-one corre-
spondence (i.e., each number word must be paired with a single object) and on 
saying the number words in the right order. Knowing how to count allows children to 
use number words correctly to indicate how many items are in a group of objects, but 
it does not guarantee that the children use the words with the same meaning as adults 
do. For example, many 3- and 4-year-olds who can count to ten and say correctly how 
many items are in a collection do not give exactly five cookies to a doll when asked 
by an adult to do so; they just give some cookies without counting. Children who 
came up with the exact number of objects requested by an adult were classified by 
Sarnecka and Carey (2008) as “cardinal knowers”, but their criterion only indicates 
that the children used number words in a way that was functionally similar to the 
adults’ use. Later research (Davidson et al., 2012) showed that some children, who 
were “cardinal knowers” by this criterion, did not make inferences justified by the 
representational and by the analytical meanings of number words: for example, they 
did not know which box had more items inside, a box with the label 5 or another box 
with the label 7. It seems that the children did not treat the numbers as measures of 
the quantities inside the box. 

According to Thompson, “a person constitutes a quantity by conceiving of a 
quality of an object in such a way that he or she understands the possibility of 
measuring it.” (Thompson, 1993, p. 165). “Measurement, in the broadest sense, 
is defined as the assignment of numerals to objects or events according to rules” 
(Stevens, 1945, p. 677). The fact that numerals can be assigned under different rules 
leads to different types of analytical meaning of numbers. 

Helmholtz (1887), one of the founders of the science of psychology, wrote exten-
sively about number and measurement and argued that measurement is the basis 
for the representational meaning of number. According to him, cardinal number is 
based on the idea that, as items are counted, they are added to the collection of already 
counted items; it is this idea of additive relations between counting words (i.e., five 
is four plus one) that makes counting into a measure of a quantity and allows one to 
say that there are, for example, five objects in a collection, and that all collections 
with five objects are equivalent in number. 

According to Helmholtz, ordinal numbers are based on the sequence of number 
words and are rather different from cardinal numbers. In contrast, Piaget (1952a, 
1952b) argued that addition is the source for understanding both cardinal and ordinal
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number. Piaget’s writings (Piaget, 1952a, 1952b, 1953) make it clear that his focus 
was on the action schemas of adding and its inverse, taking away, and not on addition 
and subtraction as arithmetic operations. When a child counts, for example, four items 
and realizes that counting another item means adding it to the already-counted items, 
the child also realizes that addition increases the quantity and, therefore, five is more 
than four. Piaget’s studies focused on the referential meaning of number words, i.e., 
how number words represent quantities. He investigated what children thought was 
implied about quantities when the quantities were represented by numbers, and vice-
versa: what inferences children made about number when they knew the relations 
between the quantities. In his well-known conservation studies, the children saw 
the items in one of two equivalent sets being spread apart or pushed together; some 
children argued that, after the items in one quantity had been spread apart while those 
in the other, equivalent quantity remained unchanged, the number of items had not 
changed, but the quantities were no longer the same (Gréco, 1962); other children 
argued that quantities only change when something is added or taken away and were 
confident that both the quantities and the number of items remained the same. Piaget’s 
(1952b) studies, and several subsequent replications (for a list of replications in the 
Journal for Research in Mathematics Education, see Nunes et al., 2016), support 
the idea that connecting the action schemas of adding and taking away with the 
conception of quantities provides the basis for the referential meaning of number. 

The action schemas of addition and subtraction also support children’s under-
standing of the analytical meaning of natural number words because, according to 
the rules of the natural number system, each number is equivalent to the previous 
number in the counting sequence plus 1. The coordination of the action schema of 
addition with its inverse, the schema of subtraction, forms the basis for children’s 
thinking about part-whole relations and for the idea that any number is composed of 
other numbers, a concept known as additive composition. In a more general form, 
additive composition describes any number as having an infinite number of analyt-
ical meanings: 5, for example, means 1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1, 2 + 
2 + 1, 2 + 3, 6 − 1, 7-1-1, 7-2, 8-3 and so on. However, many children may not 
understand additive composition on their own, simply from applying action schemas 
to objects without interacting with adults to guide them to think about how number 
words are related to addition. Research in different countries, such as Brazil, Greece, 
Hong Kong, Malaysia, India and the UK (see Nunes & Bryant, 2022a) showed that a 
significant proportion of children have not mastered the concept of additive composi-
tion at the age of six. Once children understand the additive composition of number, 
they can make many inferences: for example, 4 + 1 = 5 means that 5 is greater 4, an 
inference about an order relation; it also means that the difference between 5 and 4 
is exactly 1. Such inferences elude many “cardinal knowers”; in fact, Sarnecka and 
Carey (2008) recognized that children need to take further steps beyond counting 
to learn how natural numbers represent quantities. Later research showed that chil-
dren’s understanding of additive composition and of part-whole relations is a strong 
longitudinal predictor of their mathematics learning in school (Ching & Nunes, 2017; 
Nunes et al., 2012).



76 T. Nunes and P. Bryant

Summary. When young children count correctly and say how many items are in 
a collection, they are using number words in a way that is functionally similar to 
the way adults use them. However, the representational meaning of a number word 
is not a collection in itself, but rather the children’s thinking about quantities and 
about relations between quantities represented in a counting system. Establishing 
one-to-one correspondence between number words and items when counting is not 
sufficient for understanding number: one-to-one correspondence has to be coordi-
nated with thinking about how the action schemas of adding and taking away relate to 
the meaning of number words. Together, one-to-one correspondence and the action 
schemas of addition and subtraction create a framework for the children to under-
stand how relations between numbers represent relations between quantities. These 
developments in thought are coordinated with number words by means of social 
interactions, during which adults direct the children’s attention to relevant relations 
between the children’s own activity and number words. 

The same theoretical perspective can be used to think about how students learn 
the representational meaning of rational numbers. The representational meaning 
of a fraction, for example a half, is not a referent such as one of the pieces of 
a chocolate which was cut in two equal parts. The representational meaning of 
rational numbers is provided by the action schemas of one-to-many correspon-
dence, sharing and partitioning, which support thinking about multiplicative relations 
between quantities. 

Different aims and activities are met by thinking about the relevant relations 
between quantities. Consider the following questions. 

Imagine that in a school there are 32 children in first grade and 8 copies of a book 
that the teacher wants the children to read. 

(1) The first grade teacher wants to know how many copies of the book she needs 
to buy so that each child can have a copy. 

(2) There are no funds in the school for buying lots of copies of the book; the head 
teacher wants to know how many children would have to share a copy in order 
to assess the situation and decide how many more books to buy. 

There is nothing in the sets of children and books that requires thinking in terms 
of additive or multiplicative relations. One needs to establish a relation between the 
number of books and the number of children that is relevant to what one wants to 
know. In order to answer the first question, the relevant relation between the quan-
tities is additive: the assumption is of one-to-one correspondence between children 
and books and the difference between 32 and 8 indicates how many books the teacher 
needs to buy. In order to answer the second question, the relevant relation is multi-
plicative: the assumption is of one-to-many correspondence and the ratio of books 
to children, 1 book for 4 children, is what will help the head teacher to assess if there 
will be too many children sharing one copy of the book for the teaching to work well. 

According to Kieren (1976) “rational numbers are ‘ratio’ numbers … elements of 
an infinite ordered quotient field” (p. 103: inverted commas in the original). He also 
maintained that natural number and some aspects of the concept of addition arise 
out of children’s natural activity, and pondered if “in working with rational numbers,
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children are dealing with mathematical structures which do not have an obvious basis 
in natural thought” (p. 110). 

In this chapter, we suggest that there are action schemas that provide a basis for 
thinking about ratios; the most important one is the schema of one-to-many corre-
spondence. Past research (e.g., Becker, 1993; Kornilaki & Nunes, 2005; Kouba, 1989; 
Mamede, 2016; Nunes & Bryant, 1996; Nunes et al., 2008, 2010) has shown that even 
primary school students can use the one-to-many correspondence action schema to 
establish multiplicative relations between two quantities. When they do so, they can 
be taught to use numbers alongside other signs in order to represent two quantities 
and a ratio between them: for example, 1:4 can be used to represent “1 book for 4 
children”. Streefland and his colleagues (Middleton & Van den Heuvel-Panhuizen, 
1995; Streefland, 1984, 1985) proposed that a useful mathematical representation 
of the relations between quantities in such situations is the ratio table, in which the 
measure of each quantity is placed in correspondence with the measure of the other 
quantity at several points on different sides of a line, yielding a representation of 
several ordered pairs (see also Brinker, 1998; Dole, 2008). 

Teaching of rational numbers often starts with a focus on fractions rather than 
on ratios and children are asked to share continuous quantities amongst recipients, 
which requires them to carry out partitioning of wholes. When discrete quantities 
are used, sharing takes the form of dealing out items. The schema of one-to-many 
correspondence is the action schema used by children when they share items to 
recipients: for example, if a child is sharing cookies to recipients, the cookies are 
placed in correspondence with recipients sequentially until all the cookies have been 
shared out. When a quantity is continuous, this action schema is still relevant because 
it is possible to establish correspondences between the quantities without partitioning 
them: for example, students can place a cake in correspondence with 3 children or in 
correspondence with 4 children without actually partitioning the cake and can think 
about which share would be larger. 

In the next section, we review research in order to consider how different pairs 
of teaching situation/action schemas are used as starting points for students to learn 
about rational numbers. Thompson and Saldanha (2003) argued that understanding 
the rational numbers system in the way that mathematicians use it is far beyond the 
grasp of school students, a point that is not disputed in this chapter. We espouse 
Vygotsky’s (1962) view that spontaneous concepts arise from children’s activities 
and are precursors to the scientific concepts, which are elaborated over time and 
culturally transmitted; students’ activities in school can create the opportunity for 
teachers to help them to transform their spontaneous concepts into concepts that are 
closer to the way in which mathematicians use rational numbers. 

In the remaining sections of this chapter, we analyze situations created by teachers 
and researchers to teach students about rational numbers as well as the action schemas 
typically used by students in these situations and how the action schemas become 
connected to relations between quantities and to numerical signs.



78 T. Nunes and P. Bryant

3 Rational Numbers and the Situation/Action-Schema Pair 

Teachers create teaching situations using different means: they can ask students to 
solve problems using objects, to explain their solutions, to draw diagrams, to talk 
about relations between quantities in a problem, to use mathematical conventions, 
such as numbers and signs for operations, to represent relations between quantities. 
The content of the problems used in the teaching situations can also vary, and this 
variation can prompt students to use different action schemas. Different terminologies 
have been used to describe this facet of rational numbers. Kieren (1976) described 
the variations as “interpretations”, “situations” and “settings”; Mack (1990) used the  
expression “real-world situations”; Steffe (2002) used the expression “experiential 
situations”; Empson et al. (2006) used simply “situations”; the terms “applications”, 
“embodiments”, “concepts” and “constructs” have also been used (Behr et al., 1983, 
1984; Domoney, 2002; Olive,  2000; Post et al.,  1985; Simon, 2017). There is no 
consensus yet on the terminology nor on a particular classification. The criteria for 
the classifications and the number of classes described in the literature also differ 
(see, for example, Behr et al., 1992, 1993; Kieren, 1976, 1988; Mack, 2001; Nunes 
et al., 2007; Ohlsson, 1988). 

Classifications are established by people for specific purposes. In this chapter we 
present a classification of teaching situations described in the literature in order to 
examine which action schemas used by primary school students are relevant in each 
class of situations. For reasons of space, this is a selective review and does not cover 
all different types of situations. Because the aim is to analyze students’ quantitative 
reasoning, the criteria used in our classification are the type and number of quantities 
involved in the situations. The labels used for the categories are drawn from previous 
research. Three classes of teaching situations are distinguished in this chapter. 

(1) Part-whole teaching situations involve one extensive quantity (often an area 
or a line segment) divided in equal parts. The numbers are used to represent a 
part-whole relation: for example, if one chocolate is divided into four equal parts 
and someone eats three, the portion of the chocolate eaten can be represented by 
the number 3/4. The action schema most relevant in this situation is partitioning. 

(2) Ratio teaching situations involve two different extensive quantities and a multi-
plicative relation between them (Streefland, 1984, 1985). For example, if 3 
chocolates are shared fairly among 4 children, the relation between chocolates 
and children can be represented by the number 3/4: the numerator represents the 
number of chocolates, the denominator represents the number of children, the 
slash/represents a division; the number 3/4 represents the amount of a chocolate 
bar that each child receives. The representation 3:4 can also be used to signify 
the ratio 3 chocolates to 4 children. The action schema most relevant in this 
situation is one-to-many correspondence. 

(3) Intensive quantities teaching situations involve an intensive quantity 
measured by a ratio between two extensive quantities (Schwartz, 1988; Tolman, 
1917); thus, three quantities are involved in this type of situation, whereas in
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ratio teaching situations two extensive quantities are involved.3 Some intensive 
quantities can be represented either by a ratio or by a fraction. For example, the 
concentration of a solution of fertilizer can be described as 1 ml of fertilizer 
to 3 ml of water or as 1/4 of fertilizer and 3/4 water. Other intensive quantities 
are most often described in ratio language: for example, miles per hour or price 
per unit. The action schema most relevant in this situation is also one-to-many 
correspondence. Each of these teaching situations is discussed in the rest of this 
section. 

3.1 Part-Whole Situations and Relevant Action Schemas 

The widespread use of the part-whole situation in association with the schema 
of equipartitioning to introduce students to rational numbers makes the pair part-
whole/partitioning a good starting point for this analysis. Equipartitioning (hence-
forth referred to simply as partitioning) is the action schema of cutting a whole 
into equal parts; in teaching and research situations, the number of parts is often 
specified by the teacher. The image of a whole divided into equal parts seems to 
be the most prevalent, and sometimes the only one (Kerslake, 1986; Silver, 1981), 
that students relate to rational numbers in the form 3/4. However, students often 
need to use different action schemas in any teaching situation (Vergnaud, 2009); in 
part-whole situations, partitioning is used in conjunction with counting the parts and 
adding them to reconstruct the whole. 

We summarize in the next sections research findings about the difficulties in 
carrying out equipartitioning, how the relation between the parts and the whole is 
established, how teachers and researchers guide students to connect relations between 
quantities in the situation with signs that represent rational numbers, and logical 
inferences that can be drawn from equipartitioning that help students to think about 
rational numbers. 

Part-whole Situations and the Schema of Partitioning. Since the pioneering work 
of Piaget et al. (1960), many researchers have confirmed that partitioning is not easy 
to carry out. Piaget and colleagues suggested that, when children are asked to cut a

3 There is not complete agreement regarding the definition of intensive quantities. Some authors 
suggest that any ratio between two variables constitutes an intensive quantity; for example, in the 
ratio situations described in the preceding paragraph, one could say that there is an intensive quantity 
“chocolates per child” or indeed the opposite, “children per chocolate”. Others suggest that there 
must be a quality or an intuition of a quantity that is measureable by the ratio between two extensive 
quantities for an intensive quantity to be defined. In the latter approach, a ratio is conceived as 
a mathematical relation between two extensive quantities conceived by someone to measure the 
intensive quantity, but not as a quantity in itself. When one speaks of the taste of lemonade, for 
example, taste is a quality that can be conceived as measurable by the relation between amount of 
water and lemon juice; this relation can be represented by a ratio, but people experience a taste, 
which is the quality they are trying to measure. We do not presume to solve this issue and refer the 
interested reader to a collection of papers edited by Steffe et al. (2014b) for further discussion. 
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whole into a pre-established number of parts, the children need to think about part-
whole relations in order to anticipate how many cuts as well as where the partitioning 
should be done in order to succeed. Piaget and colleagues noted that, when attempting 
to cut a whole into a specific number of parts, young children sometimes just cut 
out pieces and stopped when they had reached the required number of parts, without 
exhausting the whole; sometimes young children confused the number of parts with 
the number of cuts and, for example, when attempting to cut a rectangle in three 
equal parts, they made three cuts, ending up with four parts. Piaget and colleagues 
interpreted this behavior as suggestive of a focus on the number of parts without 
thinking about part-whole relations. 

The level of difficulty of partitioning is influenced by the shape of the whole 
and the number of parts: rectangles are easier to divide into equal parts because 
of the symmetry lines that can be used in folding, and it is easier to find a way of 
folding something in half and then in half again, arriving at 4 parts, than to fold 
something in three equal parts. Piaget’s results have been replicated by researchers 
in other countries (e.g., Charles & Nason, 2000; Davis & Hunting, 1990; Lima,  
1982; Pothier & Sawada, 1983). For example, Pothier and Sawada (1983), working 
in Canada, asked children to cut cakes into specific number of parts and replicated 
Piaget et al.’s finding that kindergarten children, aged 4 or 5 years, did not ensure 
that partitioning resulted in two equal parts even when attempting to cut a rectangle 
in half. At this age level, the children used the word “half” to mean “cut”, without 
necessarily thinking that the number of parts had to be two. The children used the 
word “half” “in expressions like break it [the cake] in half four pieces and split it [the 
cake] in half three pieces” (Pothier & Sawada, 1983, p. 311, italics in the original). 
Lima (1982) made similar observations with Brazilian children. When the children 
were asked what each part would be called, typical answers were “pieces”, “a broken 
cookie” or “I don’t know”. When asked to cut a circle into three parts, many children 
used horizontal cuts across a circle, producing unequal parts; this observation was 
replicated by Charles and Nason (2000) in Australia, who worked with children aged 
7 and 8 years. 

Pothier and Sawada (1983) further replicated Piaget and colleagues’ observation 
of the use of symmetry lines and successive halving; children in the age range 8– 
9 years achieved good partitioning of figures in two, four and eight parts, but found it 
difficult to divide figures in three, five, seven and nine parts. The children themselves 
remarked that it was easy to divide a figure in an even but not in an odd number 
of parts (but note that division in six parts is also difficult); they realized that they 
needed to find a different first move than dividing the whole in two parts, but could 
not implement such a move. In their study, which included children up to the age of 
9 years and 8 months, in one of the tasks the children were asked to divide a whole into 
nine equal parts; no child succeeded in finding the strategy that Pothier and Sawada 
(1983) termed  composition, which would involve trisecting a figure twice in order 
to generate nine equal parts (see also Maloney & Confrey, 2010, for descriptions of 
difficulties in partitioning). 

We have also observed such difficulties with partitioning amongst English chil-
dren. Figure 1 displays an English 9-year-old child’s attempts to represent 2/6 of a
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pizza in drawing (Nunes et al., 2006): after two initial attempts based on successive 
halving of the circle, the child attempted to trisect the two halves, and remained 
unaware that the resulting figure was divided into seven parts. 

In brief, partitioning wholes into equal parts is not an easy task because children 
need to anticipate how their action of cutting will produce a specific number of same-
size parts. The difficulty is not restricted to partitioning areas and is observed also 
when children are asked to partition lines (see Steffe, 2002, for equipartitioning a 
stick). Some teaching programs attempt to circumvent the difficulty of partitioning 
by providing students with already cut materials: for example, same size rectangles 
of different colors are cut into pieces that can be represented by different fractions 
(half, quarters, thirds, sixths etc.); students can verify if two fractions are equivalent 
by superimposing the pieces. Whereas this approach circumvents the difficulty of 
carrying out the partitioning, it might direct students’ attention to visual comparisons 
as students superimpose the pieces and might not impact students’ thinking about 
part-whole relations. 

Quite apart from the difficulty of cutting something into equal parts, tasks that seek 
to analyze students’ understanding of part-whole relations reveal other difficulties 
in reasoning about part-whole relations. Many researchers have used tasks in which 
children are invited to compare quantities that result from partitioning the same or 
same-sized wholes. The wholes are often rectangles that represent chocolate bars 
or cakes, which are being shared by dolls; the students are asked if the dolls would 
eat the same amount of chocolate/cake after these had been cut in different ways. 
Sometimes the researchers cut the rectangles as they pose the questions; sometimes 
they ask the children to imagine that the chocolates/cakes were cut. These results are 
summarized here.

Fig. 1 One 9-year-old’s 
attempts to represent the 
fraction 2/6 of a pizza 
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• Many young children (up to about 7 years) did not realize that eating one chocolate 
bar that was not partitioned and eating two halves of a same-size chocolate bar 
meant eating equivalent amounts of chocolate (Lima, 1982; Piaget et al., 1960). 

• If two dolls ate each one half of same-size chocolate bars and the bars had been 
cut along different lines of symmetry (e.g., horizontally vs. diagonally), many 
children thought that the dolls would eat different amounts of chocolate (Kamii & 
Clark, 1995; Lima,  1982; Piaget et al., 1960). 

• If two same-size chocolate bars were cut in different ways in more than two parts, 
resulting in parts that looked rather different but that would be represented by 
equivalent fractions, many children believed that the dolls would eat different 
amounts of chocolate; this conclusion was noted even among children who had 
been taught about fractions (Kamii & Clark, 1995; Lima,  1982). A similar result 
was reported when the children were asked to imagine the partitioning without 
any marks made on the rectangles (Nunes et al., 2006). 

• Successive divisions of the same chocolate produce slightly better results than 
comparing parts of two same-size chocolates (Lima, 1982; Piaget et al., 1960). 

Although many students up to the age of nine years struggle to make inferences 
based on part-whole relations in the context of partitioning, this does not mean that 
they cannot be supported to reflect about it. Vygotsky’s (1962) concept of the zone 
of proximal development has inspired much research (e.g., Allal & Ducrey, 2000; 
Brown & Ferrara, 1985; Wood et al., 1976) that shows that, with support, children 
can do and can learn to do much that they do not accomplish without support. This 
is the point of teaching. 

In concluding this section, we make two final points: the first is about the types of 
inferences about relations between quantities afforded by part-whole situations and 
the second about its current use in teaching. Two types of inference about quantities 
are supported by reasoning about partitioning and part-whole relations: equivalence 
and order by magnitude. The tasks described in the previous paragraphs exemplify 
inferences about equivalence. Students can also be invited to think about order rela-
tions in part-whole situations: for example, students can be guided to reflect on the 
idea that the more parts into which they cut a chocolate, the smaller the parts are. This 
insight is relevant to understanding the inverse relation between the divisor and the 
quotient. However, one must recognize that this insight is based on the assumption 
that the whole is constant and that the whole is equal to the sum of the parts. The 
literature documents that, from the students’ perspective, improper fractions violate 
this additive principle (Hackenberg, 2007; Olive & Steffe, 2002; Tian et al., 2021; 
Tzur, 1999; Vamvakoussi & Vosniadou, 2004). 

Finally, part-whole situations and the schema of partitioning can be used in 
teaching for different purposes. The previous paragraph considered their use to 
promote quantitative reasoning and to provide a referential meaning for rational 
numbers; the focus was on relations between quantities. However, according to 
Thompson (1990), textbooks and curricula do not promote quantitative reasoning 
and it would be surprising to find many teachers promoting it in the classroom. In 
the English National Curriculum (Department for Education, 2013), for example,
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the aims of teaching about fractions in the first year in school are described as to: 
“recognise, find and name a half as 1 of 2 equal parts of an object, shape or quantity; 
recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quan-
tity” (Department for Education, 2013, p. 8). In the second year, pupils should be 
taught to: “recognise, find, name and write fractions 1/3, 1/4, 2/4 and 3/4 of a length, 
shape, set of objects or quantity; write simple fractions, for example 1/2 of 6 = 3 and 
recognise the equivalence of 2/4 and 1/2” (Department for Education, 2013, p. 13). 
The assumption underlying these aims seems to be that specific fractions acquire 
meaning by being connected to a specific referent, independently of their relation 
to other fractions; this is analogous to the idea that a natural number has meaning 
on its own, by reference to a numerosity associated with it, and without reference 
to the number system, a theoretical standpoint that was rejected in earlier sections 
of this chapter. Alajmi (2012) suggested that this way of teaching does not seem to 
acknowledge that “it is not possible to learn ‘every single fraction’” (p. 251, inverted 
commas in the original) because the set of fractions is infinite. 

Using Rational Numbers to Represent Thinking About Part-whole Situations. 
Teaching rational number in the context of part-whole situations cannot stop at 
thinking about relations between quantities after partitioning: students still need 
to learn to use mathematical signs to talk and think about quantities and relations 
between them. Two different approaches can be identified in how teaching promotes 
the connection between the parts and the whole, on the one hand, and numerical 
representations, on the other hand. 

In the most common approach, a fraction is introduced as representing the number 
of parts taken from a whole (the numerator) and the total number of parts into which 
the whole was partitioned (the denominator): 1/4, for example, means 1 of 4 parts of 
a cake divided in 4 parts (see Behr et al., 1983, for a review of teaching approaches). 
Thus, students are guided to connect a fraction to a referential meaning by means of 
a double-counting procedure, counting the parts eaten and the total number of parts, 
a procedure that can be executed as if these were independent natural numbers. After 
dividing a cake into four parts, the fractions can be added to compose the whole, 
as if the pieces of the cake were brought close together. It has been suggested that 
this teaching approach is at the root of students’ tendency to interpret fractions as 
two whole numbers (Kerslake, 1986; Mack, 1990; Pitkethly & Hunting, 1996; Tzur, 
1999) and to think of improper fractions as truly inappropriate. 

A different approach employed in teaching children how to use fractions to repre-
sent quantities and multiplicative relations between them is to guide students to 
think about a fraction as a unit of measurement by coordinating two different action 
schemas, partitioning and iteration. Partitioning defines the fraction, usually a unit 
fraction: once the unit fraction is defined, it is applied repeatedly to objects being 
measured (Olive & Steffe, 2002; Steffe,  2002). Steffe (2002) argued that, by coordi-
nating the two schemas, partitioning (which he terms equi-portioning) and iteration, 
students build a meaning for fractions that is “at a learning level above the learning 
level that is made possible by equipartitioning” on its own (p. 204).
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In Steffe’s (2002) problems, the students were asked to share fairly a candy, 
represented by a line on a computer screen, into a pre-specified number of parts. 
In order to do so, they had to estimate the size of each share. The difficulties of 
estimating the size of the parts in order to divide a whole into a pre-specified number 
of parts, described in the previous section, were replicated in Steffe’s (2002) study, 
even though in this study the children were able to use resources in the software that 
facilitated the task. After succeeding with partitioning, the researchers created a unit 
stick to be used iteratively to measure other sticks and encouraged the students to 
describe the sticks multiplicatively: a 2-stick was one two times the length of the 
unit, a 3-stick was three times the unit and so on. However, it is not clear that the 
students were thinking in these terms: for example, a 9-stick was created by adding 
one unit to the 8-stick and a 10-stick was made by joining a 3-stick with a 7-stick. It 
can be argued that the students were thinking in additive terms and continued to think 
in terms of part-whole relations. Olive and Steffe (2002) reported that, even after the 
students had themselves produced a written representation of an improper fraction 
in their teaching study, they still queried its sense: a 4th Grade student produced the 
fraction 10/7 and said: “I still don’t understand how you could do it. How can a 
fraction be bigger than itself ? (p. 428, italics in original). 

Of the two approaches described in the literature to help students to connect 
numerical signs for fractions with meanings constructed in part-whole situations, 
the most common seems to be the counting of parts to define the numerator and 
the denominator. A review about the teaching of fractions in textbooks used in the 
United States, Kuwait and Japan (Alajmi, 2012) revealed that the measure approach 
described by Steffe (2002) did not appear in the textbooks in the US and Kuwait, but 
it was used in Japan. In contrast with Steffe’s (2002) teaching study, in the Japanese 
textbooks fractions as representations of measures were not introduced in the context 
of partitioning. One widely used textbook, for example, introduced fractions to 3rd 
graders after they had been taught about decimals using conventional measures, 
such as meter and centimeter. In order to introduce fractions, a meter stick without 
centimeter marks was used to measure a child’s arm span, which was a bit longer 
than one meter; the children in the class were asked to think about how to describe 
this extra length as part of a meter, and the concept of fraction was introduced by 
trying to figure out how many times the extra length of the arm would fit onto the 
meter stick. This question introduced the fractional notation for the unit fraction as 
involving a multiplicative relation between the segment of the child’s arm which 
extends beyond a meter and the meter stick. Watanabe’s (2006) review of Japanese 
textbooks concurred with this description and further stressed the multiplicative 
relation between the unit fraction and other fractions: for example, 2 times the unit 
fraction 1/3 equals 2/3; 3 times the unit fraction equals 3/3 and equivalent to the 
meter length and 4 times the unit fraction equals 4/3 and describes a length that is 
more than a meter. Thus, the object being measured (the arm span) and the unit of 
measure in these examples are not part of a whole; it is unlikely that students using 
this textbook would see improper fractions as problematic, but one cannot know if 
this is the case from the review of textbooks.
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Simon et al. (2018) provided a similar contrast between Steffe’s and the Japanese 
approach in teaching the connection between the representational meaning of frac-
tions and the numerical fraction signs. They considered the approach suggested by 
Steffe (2002) a hybrid between part-whole and measurement, which distinguished 
it from the teaching approach used in Japan and in the Elkonin-Davydov (E-D) 
curriculum. Simon et al. (2018) noted that in the E-D curriculum students are taught 
from the outset that all numbers represent measures, so students are taught from the 
outset a different concept of number than the one taught in current practice in the 
US. They carried out a case study to investigate what happens if US students are 
taught about fractions using the measurement approach from the E-D curriculum, 
even though the students had not been taught about whole numbers in the same way 
as the E-D curriculum assumes. Their case study of how one student learned about 
fractions as measurement offers valuable suggestions for further research, but it is 
not reviewed here for reasons of space. 

Summary. This situation/schema analysis illustrates how teachers can use part-
whole situations and partitioning to explore the logic of part-whole relations, thereby 
promoting a form of quantitative reasoning that can give meaning to fractions. 
Reasoning about part-whole as well as part-part relations can support children’s 
understanding of equivalence and order of magnitude of quantities resulting from 
partitioning. A weakness of teaching in this context is that part-whole relations are 
additive and this seems to create an obstacle to understanding improper fractions. 
Students can be taught to represent their thinking about part-whole relations by using 
fractions in two ways, but both seemed to interfere with students’ understanding of 
improper fractions. 

3.2 Ratio Situations and Relevant Action Schemas 

Ratio teaching situations involve two different extensive quantities and a multiplica-
tive relation (a fixed ratio) between them (in Vergnaud’s, 1983, terminology: isomor-
phism of measures). So much has been written about children’s understanding of 
ratio and its connection to rational numbers (e.g., Behr et al., 1992; Brousseau et al., 
2004; Hart,  1984, 1988; Inhelder & Piaget, 1958; Kieren, 1992, 1993; Noelting, 
1980a, 1980b; Resnick & Singer, 1993) that it is not possible to review this research 
here. We focus on the work of Streefland (1984), who asserted that ratio is one of 
the basic concepts in mathematics education because it forms “a basis for fractions, 
percentages and decimal numbers” (Streefland, 1984, p. 338). His approach provides 
a clear contrast with teaching children about rational numbers in part-whole situa-
tions. In his view, problems that involve fractions represent only one of the “many 
aspects of the phenomenon of ratio” (p. 339). Streefland suggested that, in sharing 
problems, the idea of invariance can be intuitively experienced (because the divi-
sion is expected to be fair and exhaustive) and can be explored by students during 
teaching, supporting students’ reflection about invariance. However, ratio situations
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are not restricted to sharing problems. For example, Streefland (1984) told students 
that a man had to take 32 steps to cover the same distance that a giant covered in 8 
steps and then asked students how many steps the man would have to take to keep up 
with a giant when the giant took different numbers of steps. Other examples include 
research by Inhelder and Piaget (1958) and Singer et al. (1997), who presented 
students with problems that required establishing a ratio between the length of a fish 
and the number of food pellets to be fed to the fish a day and by Nunes et al. (2015a, 
2015b), who asked students to think about the ratio between the number of scoops 
of food a hamster eats and the number of days the food lasts. 

Ratio situations can be connected to different mathematical representations: for 
example, 3 chocolates to be shared by 4 children can be represented as 3:4 or 3/4. 
Students can be guided to think of the numbers in this example as representing the 
ratio of chocolates to children rather than part-whole relations. Problems involving 
sharing have been termed “quotient situations” (e.g., Empson et al., 2006; Flores  
et al., 2006; Mamede et al., 2005; Toluk & Middleton, 2001) because sharing is 
commonly used to teach students about division, and quotient is the term that refers 
to the result of a division. Following Streefland (1984), the term “ratio” is used 
in this chapter because of the wider variation of problems that can be created to 
teach students to represent the relations between quantities using rational numbers. 
In the next sections we summarize some of the research that has been carried out 
about students’ use of the schema of one-to-many correspondence in ratio situations; 
research that invited students to use partitioning is not included in this section, as it 
was already covered in the previous one. 

Ratio Situations and the Schema of One-to-many Correspondence. Streefland 
(1987, 1991, 1993, 1997) was undoubtedly the most prominent advocate of the 
use of ratio situations in teaching rational numbers. His work has had considerable 
international impact on research (see Presmeg & Van den Heuvel-Panhuizen, 2003, 
for a comment) as indicated by the number of citations of his work and the different 
countries in which it has been used (e.g., Brinker, 1998, United States; Campos 
et al., 2013, Brazil; Flores et al., 2006, United States; Mamede et al., 2005, Portugal; 
Middleton & Van den Heuvel-Panhuizen, 1995, United States; Naik & Subramaniam, 
2008, India; Toluk & Middleton, 2001, Turkey), but it does not seem to have had so 
far a similar impact on teaching. 

The aim of teaching students to solve problems in ratio situations is to guide 
them to realize that they can establish an invariant correspondence between two 
quantities. The schema of one-to-many correspondence establishes a multiplicative 
relation between two quantities, but it is a theorem in action (Vergnaud, 2009) in the  
sense that it only represents a ratio in action, not explicitly by means of words or other 
external signs. From about age six, many students are able to use the one-to-many 
correspondence schema to solve multiplicative reasoning problems (Becker, 1993; 
Kouba, 1989; Nunes et al., 2010; Park & Nunes, 2001; Piaget, 1952b). For example, 
students were asked how many sandwiches are required in order to fill 8 plates with 
3 sandwiches in each plate; the majority of 5- and 6-year-old children provided a 
correct answer when they had different types of manipulatives to represent the plates



Number Systems as Models of Quantitative Relations 87

and the sandwiches (Nunes et al., 2015a, 2015b). Ellis (2015) investigated the impact 
on performance in multiplicative reasoning problems of providing students with two 
types of manipulatives, such as blocks and cut-out shapes, to represent each of the 
quantities versus providing students with only one type of manipulative, such as 
blocks. She found that the rate of correct responses was higher and the quality of the 
students’ explanations about their answers was significantly better when two types 
of manipulatives were used than when just one type was used. 

Other researchers (Battista & Borrow, 1995; Kaput & West, 1994; Lamon, 1993; 
Langrall & Swafford, 2000; Steffe,  1992) have used the expressions “composite unit” 
and “linked composites” to describe students’ concepts in the course of learning 
multiplicative reasoning in teaching experiments. These expressions do not empha-
size the action schema of one-to-many correspondence, which students use to solve 
ratio problems, but they do imply that students are able to find the fixed ratio between 
two quantities in problem situations without clarifying the process by which the 
students identify the composite units. 

When two quantities are placed in a fixed ratio, two relations between the quantities 
can be explored: a functional relation (e.g., if for every group of three children, there 
are two cakes, the number of cakes divided by the number of children is constant) 
and a scalar relation (if the number of children is doubled, the number of cakes must 
be doubled for the correspondence to remain the same). Both scalar and functional 
relations between quantities can be explored when children use the one-to-many 
correspondence schema and this renders ratio situations quite distinct from part-
whole situations. 

Streefland’s studies on teaching students about ratio (1982, 1984, 1985, 1987, 
1991, 1993, 1997) included situations related to fractions as well as situations that 
are not typically represented using fractions. Many of his studies used sharing as a 
context because of the intuitive agreement that sharing has to be fair and exhaustive. 
As Streefland did not provide details of students’ answers, we describe some answers 
observed in our own research in order to explore the role of the action schema of 
one-to-many correspondence. 

Streefland’s (1997) teaching sequence in sharing situations aimed to direct 
students’ attention to the relation between the two quantities. This is illustrated in 
the questions below, which were proposed in the first lesson: 

1. Imagine a closed package of cookies and six girls. If the girls receive one cookie 
each, how many cookies were in the package? 

2. If the girls receive a half cookie each, how many cookies were in the package? 
3. If some more girls come and now they all share the same package of cookies 

fairly, will each girl receive more, less or the same amount as before? 

These questions were posed to students in a teaching study (Campos et al., 2014) 
carried out with Brazilian students in 4th and 5th grade, aged 9–10 years. The teacher 
asked the questions to the whole class; the students first answered individually, then 
discussed their answers in small groups, and finally presented an agreed solution to 
the whole class. Figure 2 presents one student’s drawings, done during the individual 
answer phase of the lesson. In the drawing used to answer the first question, the
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student combines numbers to represent cookies with drawings to represent children, 
establishing a one-to-one correspondence between cookies and children, which is in 
line with the question. In the second drawing, the student drew three pairs of half-
cookies and established a correspondence between each pair of half-cookies and a 
child. In the third drawing, the student drew two possible numbers of children, two 
and three, as recipients of the same package of six cookies; from this comparison, she 
arrived at her written answer: “if more people come, we have to divide again, there 
will be fewer cookies for each one”. The sequence of questions may have guided the 
student to use the schema of correspondence and may have helped her to arrive at 
the correct answers. 

Not all the students in the class realized from the start that the relation between 
the divisor and the quotient is an inverse one but, as this was a teaching experiment, 
during the group discussions students explained their answers and sometimes reached 
new insights and changed their minds as they attempted to explain their thinking. For 
example, one student initially said: “if the girls shared the cookies fairly, they would 
continue to get the same amount as before”, but changed her mind as she explained 
that “each girl would have to take some of the cookies they had to give to the girls 
who arrived later”. 

In another study, Nunes et al. (2006) asked students the same initial questions, 
which were followed by questions about equivalence. In the equivalence questions, 
the quantities in the situations differed but the ratios were equivalent. For example, 
four girls had a party and had one pie to share fairly amongst themselves; eight boys 
had a party and shared fairly two pies that were identical to the pie that the girls 
had. Which one of these alternatives is correct: (a) each girl eats more than each 
boy; (b) each boy eats more than each girl; (c) each girl eats as much as each boy? 
The percentage of correct answers was 76% for the 9-year-olds and 87% for the 
10-year-olds, which is considerably higher than those observed in other studies of 
equivalence in part-whole situations (e.g., Kamii & Clark, 1995, report 13% correct 
responses for 8-year-olds and 32% correct responses for 9-year-olds when the ques-
tions were presented in part-whole situations). Some of the students’ justifications

Fig. 2 One student’s drawings used to answer Streefland’s task: imagine a closed package of 
cookies and six girls. If the girls receive one cookie each, how many cookies were in the package? 
If the girls receive a half cookie each, how many cookies were in the package? If some more girls 
come and now they all share the same package of cookies fairly, will each girl receive more, less 
or the same amount as before? 
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for their answers consisted of simply showing that in the boys’ party there was also 
a correspondence of four children to one pie. 

We (Campos et al., 2014; Nunes et al., 2006) used two further tasks designed by 
Streefland (1997) in two teaching experiments to investigate students’ use of one-
to-many correspondence in reasoning about continuous quantities. In this task, the 
students were asked to imagine that four children were sharing three chocolates; each 
child was given a paper with drawings of four children and the chocolates (Fig. 3). 
The children were asked: 

1. Can each child receive a whole chocolate? 
2. Can each child receive at least a half chocolate? 
3. Show how the chocolates could be shared and write what fraction of a chocolate 

bar each child would receive. 
4. After the students produced drawings of different ways of sharing, the teacher 

asked: would the children receive the same amount of chocolate if they shared 
the chocolate bars differently? 

Figure 3 shows two ways of sharing the chocolates that typically emerged in 
all taught groups, which were also described by Streefland (1997). The student’s 
drawing on the left shows the first sharing; on the right, the student drew the children 
and the chocolates and showed a different way of sharing. The students argued that 
it does not matter how the chocolates are shared, each girl will eat the same amount. 
The main argument was summarized by one child: “It is the same number of children 
and the same number of chocolates, and they share fairly. It does not matter how you 
cut the chocolates” (Nunes et al., 2006). 

The logical implications of one-to-many correspondence were explored further in 
the subsequent task (adapted from Streefland, 1997), in which the researchers used 
the language of fractions (i.e., oral language, two sixths, one third; written symbols, 
2/6, 1/3) to talk about the problem (the way in which the signs were introduced is 
described in the section that follows). The sharing task below was presented:

Fig. 3 Different ways of sharing 3 chocolate bars among 4 children. The student’s first answer 
was that “they each get a half and a quarter” and the second answer was that “they each get three 
quarters” 
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1. Imagine that six children went to a pizzeria and ordered two pizzas; the waiter 
brought one pizza at a time so that the pizzas would not get cold; how could they 
share the pizza? 

2. How many sixths would each one receive? 
3. Could they share the pizzas differently if the waiter brought both pizzas at the 

same time? 
4. If the children shared the pizzas in thirds, would they eat different amounts of 

pizza than when they shared in sixths? 

This was the first time that the researcher asked questions using fraction language. 
Most (but not all) students argued that two sixths and one third are equivalent; their 
justifications continued to rely on the quantities and the relations between them; for 
example: “it is the same amount of pizzas and the same amount of children”; “they 
shared it fairly and all the pizzas were gone both times”; “it doesn’t matter how they 
shared it” (bold used to represent the child’s emphasis). 

Most of the students’ drawings registered the correspondences between pizzas 
and children and many showed no concern with equipartitioning (see Fig. 4); when 
the parts were marked on the pizzas, the marks were used for establishing correspon-
dences. However, a few students attempted to divide circles in 3 or 6 parts before 
answering and found the task very difficult (see Fig. 1, produced by one of these 
students); these students often abandoned attempts to draw the parts and turned to 
using drawings that represented correspondences. 

The students’ explanations for the equivalence of the amount of pizza that the 
children would eat when each ate two-sixths versus one third of pizza were often not 
clearly articulated in words but could be understood by taking into account what they 
were pointing at. Nunes and Bryant (2022b) classified the students’ explanations as 
including four logical arguments:

Fig. 4 One student’s 
drawing showing 
correspondences between 
pizzas and children; there is 
no evidence of a focus on 
equipartitioning 
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(1) Identity: the quantities did not change, so the relation between the quantities 
did not change (e.g., “Because it’s the same amount of people and the same 
amount of pizzas, so they get the same amount of pizza. … They’re the same 
amount of people, the same amount of pizzas, and that means the same amount 
of fractions.”) 

(2) Inverse relation between the divisor and the quotient: the larger the number of 
pieces, the smaller the pieces (e.g., “I think, because one third, and one sixth and 
one sixth, is actually a different way in fractions, and it doubled here [pointing 
to the pizza cut into sixths] to make it littler, and halving the number [pointing 
to the pizza cut into thirds] makes it bigger”). 

(3) Fair and exhaustive division: the division was complete and fair (e.g., “If they 
have two pizzas, then they could give the first pizza to three girls and then the 
next one to another three girls. If they all get one piece of that each, and they 
all get the same amount, they all get the same amount as before. Because the 
pizzas are all gone.”) 

(4) Scalar explanation: if the denominator is twice as large, the numerator is also 
twice as large (e.g., Two sixths is the same as one third “because it’s double 
the one of that [pointing to the denominator] and it’s double the one of that 
[pointing to the numerator].” 

The results of this classification do not imply that there are different types of 
students, because students often combined the different types of justification. The 
equivalence was not obvious to all the students at first, but the discussions after 
their individual answers afforded insight into the equivalence of 1/3 and 2/6; most 
students used the idea of equivalence in subsequent tasks that required comparing 
other fractions (e.g., 1/3 and 3/9). 

Identity arguments have been associated with better performance in different tasks 
(e.g., conservation of liquids, Elkind, 1967; Arcidiacono & Perret-Clermont, 2009; 
understanding of the inverse relation between addition and subtraction, Bryant et al., 
1999). However, understanding the equivalence of ratios must go beyond problems 
in which the quantities are the same and have simply been rearranged. Thus, we 
tested students’ use of the schema of one-to-many correspondences in problems in 
which different children were sharing different pizzas. We used the following task, 
based on Streefland’s (1997) work: 

1. Imagine that a whole class of 4th graders, 36 children, went to a pizzeria and 
ordered pizzas. There wasn’t a table where all the children could sit together so 
they had to sit at separate tables. There were four tables for six people so 24 
children sat at these four tables. The 12 children left found a long table and sat 
together around it. (The children were asked to draw the tables and the children 
in correspondence for each table). 

2. The waiter took two pizzas to each of these five tables and shared them fairly 
among the children at each table. What fraction of a pizza did the children sitting 
at the tables for six get? What fraction of a pizza did the 12 children sitting at the 
long table get? Did all the children in the class get the same amount of pizza?
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(The students quickly realized that the sharing was not fair because there were 
more children at the long table and the same number of pizzas). 

3. They need to order more pizzas for the children sitting at the long table. How 
many more pizzas do they need? What fraction of a pizza will the children at the 
long table get? Did all the children get the same amount of pizza? 

This problem was presented in the last lesson of an 8-lesson teaching study 
(Nunes & Bryant, 2022b) and by then the students had adopted the use of drawings 
to represent one-to-many correspondences to support their reasoning. They were 
able to describe the 2–6 correspondence between pizzas and children sitting at the 
smaller tables and to realize that they needed two more pizzas for children sitting at 
the long table, where the pizza to children ratio was 1–6. Because they had thought 
that 2 pizzas for 6 children and 4 pizzas for 12 children meant that all the children 
around the different tables would receive the same amount of pizza, when they were 
asked to compare the fractions 2/6 and 4/12 they concluded that these are equivalent 
fractions. 

Summary. Streefland’s pioneering work, although influential in research, starts from 
a perspective that differs so fundamentally from traditional ideas in curriculum design 
and in teaching elementary school students about rational numbers that so far its 
impact on teaching practice has been limited. Research detailing the use of the action 
schema of one-to-many correspondence in teaching in ratio situations is scarce, and 
so we drew on our own past research to describe how students use the correspondence 
schema. Evidence from at least four teaching studies (Campos et al., 2014; Mamede 
et al., 2005; Nunes & Bryant, 2022b; Streefland, 1997) shows that students are able 
to connect one-to-many correspondence to ratio situations and that, when they do 
so, they demonstrate significant insight into the relations between quantities as well 
as relations between ordinary fractions. 

Connecting Ratio Situations to Rational Numbers. When students have materials 
to represent the two quantities in a ratio situation or when they use drawings that 
illustrate the correspondences between the two quantities, they typically also speak 
about the correspondences between the quantities (e.g., 2 pizzas for 6 children). 
Streefland (1987, 1997) proposed a transitional notation based on drawings before 
the use of numerical symbols such as 2/6 or 2:6. For example, when the problem was 
about some children sharing pizzas at a table, the table was represented by a circle 
and the number of pizzas was written inside the circle; outside the circle, students 
were told to write the number of children. He did not describe how this transitional 
notation combining drawings and numbers was subsequently replaced by numerical 
signs only. 

In our studies, we introduced the conventional notation in the context of the task 
in which four children were sharing three chocolates. English students are able to use 
the words “half” and “quarter” when talking about fractions. Rather than telling the 
children how to write fractions, we asked them questions with the aim of extending 
their knowledge of 1/2 to other fractions. We asked the students: “If you were sharing 
a chocolate between two people, how much would each one get? Do you know how to
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write half using numbers?” As there was always at least one student in the group who 
produced a correct fractional notation, we used the student’s answer to connect the 
notation with the situation represented and to extend it to other fractional numbers. 
A summary of how the teaching proceeded is presented below. 

• The number 1 shows the number of chocolates; the slash shows that this is a 
division; the number 2 shows how many people are sharing the chocolate. One 
divided by two means one chocolate divided by two children, and half is what 
each one gets. 

• How do you write a fraction to show that one chocolate is being shared by four 
children? The students’ answers were discussed so that the interpretation of the 
numerical signs was similar to the explanation we provided previously about half. 

• What about one chocolate shared by three children? 
• What about a pizza shared by six children? 
• What about two pizzas shared by six children? 
• What about two pizzas shared by eight children? 

After each question, the children wrote their numerical notations, discussed them 
in their small groups, showed their answers to the rest of the class, and justified 
their notations. After this teaching episode, the students solved the question about 
six children sharing two pizzas, presented in the last section of this paper. When the 
numerical representations for fractions are taught in this way, division is explicitly 
represented; the numbers do not refer to the double counting of parts nor to the 
iteration of a part as a measure of the whole, but to the ratio between the quantity 
being shared and the number of people sharing. Our conjecture is that introducing 
students to the notation p/q in this way helps them to talk and think about different 
fractions using multiplicative reasoning based on the one-to-many correspondence 
action schema. We also hypothesize that ratio situations can provide a basis for 
students to think about fractions as measures by means of the one-to-many corre-
spondence schema, which could be used to verify the number of times a unit fits 
onto the measured object. This would not be a hybrid between part-whole reasoning 
and measurement reasoning because ratio situations start from two quantities in a 
fixed ratio. Instead of two quantities in a fixed ratio, students could reason about one 
quantity and a measurement unit. 

To our knowledge, only one study (Mamede, 2016) has investigated how children 
perform in order and equivalence tasks about fractions after having been taught 
how to use numerical representations in the context of part-whole situations versus 
being taught in the context of ratio situations. Teaching of fraction notation in ratio 
situations followed the script described in the previous paragraph; teaching in the 
part-whole situation connected the fraction to the notion of p parts out of q using 
counting. Mamede’s study included four groups of Portuguese students, three taught 
about fractions for a total of approximately 70 min and one comparison group who 
received no teaching. The 1st graders (mean age 6.6 years) had not been taught yet 
about fractions in school. The group taught in ratio situations made significant gains 
from pre- to post-test in representing quantities using fractional notation as well as
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in tasks about order and equivalence of fractions. This group did not show progress 
in using fractional notation to represent part-whole relations. 

Two groups of students were taught to use fractional representation in part-whole 
situations: one group was taught to think about sharing continuous quantities and the 
other group about sharing discrete quantities. Both groups showed significant gains 
in using fraction notation irrespective of whether the quantities were continuous or 
discrete. However, they made no measurable progress in order and equivalence tasks 
nor in the use of fraction notation in ratio situations. 

The comparison, untaught group made no measurable progress from pre- to post-
test in the use of fraction notation nor in tasks about equivalence and order of frac-
tions. It is remarkable that, after relatively little teaching, the students taught in the 
context of ratio situations made measurable progress in reasoning about ratios and 
in using numbers to represent ratios. However, no transfer to part-whole problems 
was observed in this study. 

Summary. the situation/schema analysis illustrates how ratio situations can be 
approached using the schema of one-to-many correspondence, which students 
employ from about the age 6–7 years when solving multiplicative reasoning prob-
lems. Ratio situations can be used to promote the use of language and of numerical 
notations to represent the ratio between the quantities; students seem to find it rela-
tively easy to use the numerical notations and to compare fractions by thinking about 
the quantities that they represent. However, research about ratio situations is so far 
rather limited and much more research is needed to investigate how students’ thinking 
progresses and how it can be expanded to connect to other aspects of rational number. 

3.3 Intensive Quantities and Relevant Action Schemas 

Intensive quantities are inextricably related to multiplicative reasoning and rational 
numbers. According to Tolman, because intensive quantities “do not have an addi-
tive nature, their measurement must be brought about by some device in which the 
magnitudes to be measured are put into a one-to-one correspondence with a series of 
quantities having extensive magnitude” (Tolman, 1917, p. 241). Tolman’s examples 
of extensive quantities (magnitudes, in his terminology) include length, volume, and 
mass, which can be regarded as composed of smaller units of the same kind. These are 
contrasted with intensive quantities, such as temperature and density, which cannot 
be regarded in the same way as composed of smaller units. Tolman offered this 
comparison: if one adds 10 g of platinum to 10 g of platinum, this will give 20 g of 
platinum, but if one puts together two 10-g pieces of platinum, each with a density 
of 21 g per cubic centimeter, the larger piece of platinum of 20 g does not have a 
density of 42 g per cubic centimeter; its density remains at 21 g per cubic centimeter. 
The two extensive quantities, mass and volume, placed in relation to each other, are 
used to measure a third quantity, which is the intensive quantity, density.
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There is a large amount of research on intensive quantities in mathematics educa-
tion, which cannot be summarized here. It includes theoretical analyses as well as 
studies of children’s understanding of intensive quantities (e.g., Abrahamson, 2012; 
Howe et al., 2010a, 2010b; 2011; Johnson, 2014; Kaput, 1985; Nunes & Bryant, 
2008; Nunes et al., 2003; Schwartz, 1988, 1996; Simon & Placa, 2012; Singer 
et al., 1997; Stavy & Tirosh, 1996; Steffe et al., 2014a, 2014b; Thompson, 1994, 
2011; Thompson & Saldanha, 2003). Intensive quantities cause great difficulty for 
students, even when the contexts seem familiar, and the tasks appear very easy. 
For example, students are familiar with buying popcorn and chocolate in different 
amounts and paying different prices; however, when they need to consider rate cost, 
because different amounts of chocolate were bought by the same amount of money, 
they focus on the amount of money rather than on rate cost (Nunes et al., 2003). For 
brevity, research on intensive quantities is not reviewed here, but we highlight some 
of the findings. 

• Reasoning about the relations between the two extensive quantities and the inten-
sive quantities is difficult even when no calculation is required to solve a problem: 
e.g., if two children bought different amounts of popcorn for the same amount 
of money, students’ performance was not at ceiling when they were asked if one 
purchase was a better value [i.e., rate cost] than the other (Nunes et al., 2003). 

• Students find problems about intensive quantities more difficult than problems 
about extensive quantities, even when the relation between the extensive quantities 
is inverse (e.g., the more cats one has, the fewer days the same amount of cat food 
will last: Nunes et al., 2003). 

• Explicit teaching about intensive quantities cannot be taken for granted in primary 
and secondary school curricula in mathematics or in chemistry (Canagaratna, 
1992). A review of textbooks in Kuwait, US and Japan (Alajmi, 2012) and 
a comparison of teachers’ practices in teaching fractions in the US and Japan 
(Moseley et al., 2007) make no reference to intensive quantities nor to per-unit 
quantities. 

• Even when an intensive quantity is particularly relevant in work settings, mathe-
matics teaching does not explicitly focus on intensive quantities and may include 
the use of cultural tools (such as formulae) to circumvent reasoning about the 
intensive quantities (Noss et al., 2002). 

The Schema of Correspondence and Composite Units in Situations that Involve 
Intensive Quantities. When a composite unit measures an intensive quantity, two 
extensive quantities are often mentioned explicitly: for example, speed is measured 
as kilometers (or miles) per hour; the concentration of a fertilizer can be measured 
as grams per liter of water. Research has shown that children and adults (Hoyles 
et al., 2001; Kaput & West, 1994; Noss et al., 2002; Steffe,  1992; Thompson, 1994) 
often solve problems about intensive quantities by using approaches similar to those 
described for ratio situations, such as replication of pairs in correspondence and scalar 
reasoning. Thus, for reasons of space, the details of research on intensive quantities 
are not reviewed here.
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Connecting Intensive Quantities with Rational Numbers. Some intensive quan-
tities, such as the concentration of orange juice or the probability of an event, can be 
represented in two different rational number formats: ratios or fractions. Some text-
books (see review by Alajmi, 2012) use examples of intensive quantities in chapters 
about fractions (e.g., a juice made with 1/3 orange concentrate and 2/3 water) but the 
fractions were not connected to the ratios in these chapters. Although transcoding 
numerical descriptions of quantities from ratios to fractions (or vice versa) might 
seem obvious and easy, we have found that some primary school teachers were 
surprised by it; for example, when the fraction of orange concentrate in the juice was 
1/3, the teachers’ immediate reaction was to transcode this as a ratio of 1 measure 
of concentrate to 3 of water. Gabriel et al. (2013) acknowledged the potential diffi-
culty of such tasks, but unfortunately did not include relevant items in their measure 
of rational number knowledge. Duval (1999, 2006) emphasizes that one must not 
confuse rational number with any of the particular ways in which it is represented, and 
so such transcoding tasks might offer a good contribution to students’ understanding 
of rational number. 

Research about the representation of intensive quantities by using ratios or 
fractions seems scarce, but the three results below have been replicated at least 
once. 

• When intensive quantities are described as ratios, students can use the schema of 
one-to-many correspondence in action and are more successful in solving prob-
lems than when they do not use this action schema for the comparison (Nunes 
et al., 2014; Piaget & Inhelder, 1975). 

• When students answer questions about intensive quantities, performance is better 
if the problem is presented in ratio than in fraction language, irrespective of 
whether the question requires calculation or reasoning without calculation (Desli, 
1999; Nunes et al., 2006). Gigerenzer (2002) reports a similar result in the context 
of understanding probabilities, but he refers to this comparison as language based 
on frequencies (one in a hundred) or on proportions (0.01). 

• When students are taught about intensive quantities using ratio language, they 
show better post-test performance than when fraction language is used during 
teaching (Howe et al., 2011; Nunes et al., 2004a, 2004b), possibly because ratio 
language is more easily connected to the schema of one-to-many correspondences. 

Summary. In order to think and talk about intensive quantities using numbers, one 
must resort to rational numbers, either in ratio or in fraction formats. Explicit teaching 
about intensive quantities currently does not seem to be included in many mathe-
matics curricula. A search through the English National Curriculum for Mathematics 
(Department for Education, 2013; updated 2021) in primary and in secondary school 
did not find the expression “intensive quantity” (or “magnitude”), even though argu-
ments for the inclusion of intensive quantities in the curriculum were made more than 
10 years ago on the basis of a project supported by the government of the United 
Kingdom (Howe et al., 2010a, 2010b). A similar search through the US Common 
Core State Standards for Mathematics (2022) did not find these expressions either. 
The concept is certainly not new (Tolman, 1917) and neither is the concern for
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its absence in the curriculum (Travis, 1937, argued for its inclusion in engineers’ 
education). 

4 Concluding Remarks 

In the introduction to this chapter, we distinguished between the representational 
and the analytical meaning of number, and presented a brief summary of theories 
and research about how the meanings that children give to words in natural language 
develop. Our aim was to show that children first learn many words when adults 
direct their attention to referents, but that word meanings in natural language are not 
just associations between words and specific referents. Vygotsky and Piaget concur 
in rejecting associationist explanations for word meanings: both argued that the 
(representational) meanings of words are provided by thought. This notion applies 
to words whose meanings are related to classes, such as “cat”, and to words whose 
meanings are based on relations, such as “brother of”. Psychologists (e.g., Helmholtz 
and Piaget) have anchored the meaning of whole numbers on two basic schemas of 
action: one-to-one correspondence (between items in different sets and between items 
and number words in a counting system) and addition. Neither schema is sufficient 
for understanding whole numbers: counting supports the understanding of ordinal 
number and addition the understanding of both ordinal and cardinal number. The 
combination of these two schemas provides the representational meaning for whole 
numbers. 

Theories about the psychological basis for understanding rational numbers are 
fragmented so far, but there is a recognition that there is a gap between students’ 
understanding of natural and rational numbers (Van Dooren et al., 2015). Because 
rational number words are not encountered often in natural language, their meanings 
have to be taught and learned at school. In this chapter, we analyzed the represen-
tational meanings for rational numbers using the unit of analysis situation/action 
schema. Three classes of situation that can be used in teaching were considered: 
part-whole, ratio, and intensive quantities. We argue that these classes of situations 
are distinguishable because they involve different quantities and relations between 
quantities. We identified a set of schemas that are used to solve problems in these 
situations. In part-whole situations students are stimulated to carry out partitioning 
and successive partitioning and to think about part-whole relations when the parts are 
equal. In situations that involve ratios between two different quantities and intensive 
quantities students can be invited to use one-to-many correspondences and to think 
about composite units. Schemas of action contain theorems in action, which can 
be made explicit in order to promote logical reasoning about situations that involve 
rational numbers: for example, in part-whole situations, the greater the number of 
parts, the smaller the parts; in ratio situations, the larger the divisor, the smaller the 
quotient. However, the schemas that support part-whole logic are additive whereas 
the schema of one-to-many correspondence used in ratio and in intensive quantities 
situations represents multiplicative relations in action.
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Learning to connect the different situations and schemas to numerical represen-
tations of rational number draws on different ways of thinking (see also Moseley, 
2005; Post et al.,  1993). In part-whole situations, students can learn to think about a 
part as p out of q or as a unit iterated p times to measure a whole; the relation between 
the part and the whole is additive and the quantity is extensive. In ratio and in inten-
sive quantities situations, the relations between the quantities are multiplicative. In 
ratio situations, students can learn to think about one extensive quantity divided by 
another; this situation can give meaning to the slash [/] used in fractions as “division” 
and to the colon [:] used in ratios as the “correspondences” between two quantities 
that form a composite unit. Similar connections can be made in the context of inten-
sive quantities situations, which require thinking about a new concept, the intensive 
quantity per se, which cannot be measured without recourse to rational numbers. 

We conclude by suggesting that reasoning about relations between quantities 
in all three situations should be the source for the representational meaning of 
rational numbers. We interpret the research findings as indicating that it is better 
to start teaching students about rational numbers in ratio situations, which afford 
reasoning about multiplicative relations by means of the one-to-many correspon-
dence schema. Students successfully use one-to-many correspondences to solve 
multiplicative reasoning problems from about six or seven years of age. The one-to-
many correspondence schema can be used to teach the concept of composite units 
and to promote scalar reasoning. However, because there is no evidence to show 
transfer of learning from ratio to part-whole situations, the latter should be included 
in rational number teaching as well as intensive quantities. 
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Quantitative Reasoning as a Framework 
to Analyze Mathematics Textbooks 

Gülseren Karagöz Akar, Tad Watanabe, and Nurdan Turan 

1 Curriculum and Textbooks 

The word “curriculum” means different things to different people or even to the same 
people in different contexts. However, there seems to be a general agreement that it 
is important to distinguish different meanings of curriculum. 

The International Association for the Evaluation of Educational Achievement 
(IEA) has a model of curriculum. In the IEA model (Valverde et al., 2002), there are 
three levels of curriculum: intended curriculum is a set of expectations and goals for 
students that are often in the form of curriculum standards or syllabi1 ; implemented 
(or enacted) curriculum is what actually happens in classroom with respect to those 
goals and expectations expressed in intended curriculum; and attained (or achieved) 
curriculum is about goals and expectations actually learned by students. 

One important factor in students’ opportunities to learn is the textbooks that are 
used. Textbooks are generally informed by an intended curriculum and play a signif-
icant role in how the curriculum is enacted in classrooms. In this sense, textbooks 
can be considered as a bridge between intended and implemented curricula. In a 
more refined IEA model, textbooks (and other curriculum resources) are positioned 
as a potentially implemented curriculum (Valverde et al., 2002). However, with the

1 Stein et al. (2007) use the phrase “intended curriculum” to describe teachers’ plans for instruction, 
but they recognize that their use of the phrase differs from the IEA model. 

G. Karagöz Akar (B) 
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acknowledgement and advances in technology in the digital era, students’ need and 
preference for the use of digital materials is inevitable. On the other hand, “while 
technology has impacted student behaviours and distinct preferences for learning, 
one thing that has not changed is the essential need for credible content. Technology 
is useless without valid content” (Knight & Wang, 2015, p. 4) And, research point 
that “…textbooks are generally viewed as reliable tools which provide creditable 
information that supports and enhances students’ understanding of critical concepts, 
and that they present bite-size chunks of information to cement student learning” 
(a.b.i.d.; p. 1). Kilpatrick et al. (2001) also noted “what is actually taught in class-
rooms is strongly influenced by the available textbooks” (p. 36). Thus, understanding 
what is included in textbooks and how specific topics are treated may be informative 
for examining teaching and learning of those topics in various systems (Fig. 1). 

Fan (2013) suggested that research involving textbooks may be placed among 
three broad areas:

Fig. 1 IEA’s the revised tripartite model of curriculum showing mediator role of textbooks (re-
drawn from Valverde et al., 2002, p. 13) 
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1. Studies examining the textbooks themselves; 
2. Studies examining the factors influencing the textbook development; and 
3. Studies exploring how textbooks influence other factors. 

Some scholars (e.g., Remillard, 2005) have suggested the need for further studies 
of how teachers use textbooks and other curriculum resources. Reports like Zembat 
(2010) might fall into that category. However, at this point, as for Fan (2013), there 
appear to be more studies that fall into the first two groups. 

Content analysis of textbooks as research is a relatively new and still developing 
field of investigation. Some of the existing research investigated overall structures 
of textbooks, often focusing on what mathematics is taught at what grade level 
(e.g., Schmidt et al., 1997). Another group of existing studies examined the treat-
ment of a particular mathematical topic such as fractions (e.g. Son & Senk, 2010; 
Watanabe et al., 2017) or a mathematical process such as problem solving (e.g., 
Fan & Zhu, 2007; Li,  2000; Mayer et al., 1995). A few studies examined the histor-
ical trends observed in textbooks (e.g., Ross & Pratt-Cotter, 1997; Watanabe, 2014), 
how teachers evaluate textbooks (Arslan & Özpınar, 2009a) or how the textbooks are 
aligned with the national mathematics standards (Arslan & Özpınar, 2009b). Char-
alambous et al. (2010) referred to those textbook studies that examine the structures 
as horizontal analysis and those that examine the development of a particular idea 
as vertical analysis. Li et al. (2009) in contrast called the former type “macro anal-
ysis” and the latter “micro analysis.” Macroanalysis or horizontal analysis involves 
examining what mathematics is taught at what grade level, whereas microanalysis 
as a vertical analysis involves examining a particular mathematical topic or process 
across different grade levels. Although horizontal, or macro, analyses of textbooks 
give us the general sense of what topics are discussed in what grade level in the 
textbooks, they do not reveal much about the actual learning opportunities offered 
by the textbooks. On the other hand, because vertical, or micro, analyses of textbooks 
focus on a single mathematical topic, they can reveal different approaches taken by 
different textbooks, possibly from different systems. Thus, some researchers chose 
to examine textbooks by integrating both the horizontal (or macro) and the vertical 
(or micro) analysis (e.g., Charalambous et al., 2010; Li et al.,  2009). 

Often times, international textbook analyses are motivated by the differences in 
achievements in large scale international comparative studies such as TIMSS (The 
Trends in International Mathematics and Science Study) and PISA (Programme 
for International Student Assessment). As a result, textbooks from high achieving 
systems such as China, Japan, Korea and Singapore are often examined. However, the 
number of studies examining textbooks internationally is still rather small. Son and 
Dilleti (2017) reviewed 31 articles that compared textbooks between USA and five 
high achieving Asian systems published between 1988 and 2015 and found that those 
studies have examined a variety of aspects of textbooks as well as a wide range of 
topics. In the 31 articles reviewed, an implication is that no particular topic, perhaps 
with the exception of fractions, have been studied in depth. Moreover, published 
studies tended to examine more textbooks for middle and high schools than for 
early elementary schools. However, none of the studies reviewed by Son and Dilleti
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(2017) examined the treatment of whole number multiplication and division. Taking 
this as a challenge, in this chapter, we examined how the concepts of whole number 
multiplication and division are developed in the Japanese curricular materials. The 
reason for choosing the Japanese curriculum will be made clearer in the following 
section. 

Taken together, whole number multiplication and division are arguably the first 
major challenge young students face in their school mathematics. There is a general 
agreement among mathematics education researchers that multiplication and division 
are much more complex than addition and subtraction (e.g., Verschaffel et al., 2007). 
Studies have shown that students need to extend the meaning of multiplication and 
division as they progress through their study of whole number multiplication and 
division and multiplicative conceptual field (Vergnaud, 1983, 1994). Therefore, how 
international curricular materials, including textbooks, the teachers’ guide and the 
form of curriculum standards or syllabi treat multiplication and division through 
different grade levels is of interest for this chapter. 

In pursuit of this inquiry, in this paper, we offer embedding quantitative reasoning 
within the blend of both macro and micro analysis. In the following sections, we first 
explain quantitative reasoning and its constructs by providing a conceptual analysis 
of multiplication and division. Then, we offer quantitative reasoning as a theoretical 
model for the examination of curricular materials and provide an analysis of the 
Japanese curricular materials through the lenses of quantitative reasoning. We start 
by providing our rationale as to why and how quantitative reasoning might be a 
possible avenue for examining international curricular materials. 

2 Quantitative Reasoning and Whole Number 
Multiplication and Division 

To characterize quantitative reasoning, Thompson (1994) first defined quantity and 
the quantification process through quantitative and numerical operations. From 
Thompson’s perspective, “quantities are conceptual entities” such that “a person is 
thinking of a quantity when he or she conceives a quality of an object in such a way 
that this conception entails the quality’s measurability” (p. 184). Emphasizing the 
relationship between the quantity and the quantification process, Thompson (2011) 
stated, “Quantification is the process of conceptualizing an object and an attribute 
of it so that the attribute has a unit and the attribute’s measure entails a proportional 
relationship (linear, bi-linear, or multi-linear) with its unit” (p. 37). For example, 
think of the problem statement: “how many apples are there if there are 3 groups of 5 
apples in each?” One might conceive three quantities involved in this mathematical 
situation: A total amount of apples, an amount (number) of apples per group, and 
a number of groups. The three quantities involved are either extensive quantities or 
intensive quantities. Schwartz (1988) stated that all “quantities used in mathematics 
are derived from the surround by acts either counting or measuring, depending on
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whether we are quantifying discrete or continuous properties of the surround” (p. 41). 
He further defined that extensive quantities are directly measurable quantities. Exten-
sive quantities could be discrete or continuous such that once they are combined, 
the combination is again an extensive quantity (Schwartz, 1988; Thompson, 1990). 
Intensive quantities, on the contrary, are indirectly measurable quantities derived 
mostly from two extensive quantities (Schwartz, 1988; Thompson, 1990). So, inten-
sive quantities are a descriptor of a ‘quality’ of the object, and not of the amount of 
it. That is, intensive quantities “give no information whatsoever about the number or 
amount of the relevant extensive quantities…The statement of an intensive quantity 
is a statement of a relationship between quantities” (Schwartz, 1988, p. 43). So, in 
our example, the total amount of apples or the number of groups are extensive quan-
tities. whereas, the amount of apples per group is an intensive quantity. All quantities 
have referents which “…identify the counting unit or unit of measurement to which 
the number refers” (Simon, 1993, p. 236). So, in our example, “apples”, “groups” or 
“apples per group” are referents. 

Moore et al. (2009) stated that, “in order for an individual to comprehend a quan-
tity, the individual must have a mental image of an object and attributes of this object 
that can be measured” (p. 4) and such image “could be an image interpreted from a 
problem statement …” (Moore et al., 2009, p. 3). In learner’s imagination, one issue 
is very important: Thompson (1994) pointed out that an individual does not need 
to know the result of the measurement process to comprehend a quantity. That is, 
one is not necessarily in need of knowing the numbers associated with the situation. 
What is important is that the person imagines the quantities involved and how those 
quantities relate to each other entailing a measurement process. For instance, for the 
problem situation above, one might have the image that “there is a total amount of 
apples given that there are so many groups of some apples in each”. 

When we consider the aforementioned example, the scenario for multiplication 
in terms of the quantities involved will be: 

Multiplication : 
number o f apples per group × number o f groups = number o f apples (total) 

Thompson (2011) stated “…quantitative operations are those operations of 
thought by which one constitutes situations quantitatively” (p. 42) such that they 
are nonnumerical. In contrast, numerical operations, such as multiplication, are used 
to evaluate the resultant quantity (Thompson, 1994, 2011). So, in our example, one 
might consider the quantity, the total amount of apples, as a result of a multiplicative 
combination (i.e., the quantitative operation) of two quantities such as some groups 
of some amount in each (Thompson, 2011). 

Similarly, one might consider the problem situation mentioned above reversing 
the quantification process: Particularly, one might consider the quantity, so many 
groups, as a result of a multiplicative comparison (i.e., the quantitative operation) 
of two quantities such as the total amount of apples and some amount in each. In  
this situation, ‘given a total number of apples and some amount in each might result
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in so many groups’. This scenario is called ‘quotitive division’. So, the scenario for 
quotitive division in terms of the quantities involved will be: 

Quoti ti ve di  vision : 
number o f apples (total) ÷ number o f apples per group = number o f groups 

By the same token, one might consider the quantity, some amount in each as a 
result of a multiplicative comparison (i.e., the quantitative operation) of two quantities 
such as the total amount of apples and some groups. In this second situation ‘given 
a total number of apples and some groups might result in some amount in each’, 
which is called ‘partitive division’. So, the scenario for partitive division in terms of 
the quantities involved will be: 

Parti ti ve di  vision : 
number o f apples(total) ÷ number o f groups = number o f apples per group 

So, in the division scenarios above, the intensive quantity will be the quotient in 
the partitive division, whereas it will be the divisor in the quotitive division. 

In the aforementioned discussion, although we acknowledged Schwartz’s perspec-
tive on the notion of quantity especially to refer to the distinctions among exten-
sive and intensive quantities, our analysis of the curricular materials was based 
on Thompson’s (1990, 1994) notion of quantity and quantitative reasoning. In the 
following section, first we refer to the distinctions between these two perspec-
tives. Then we elaborate on how we consider quantitative reasoning as a framework 
for examining curricular materials by further examining the different meanings of 
multiplication and division from the lenses of quantitative reasoning. 

3 Quantitative Reasoning: A Theoretical Model 
for the Examination of Textbooks 

Thompson’s notion of quantity as a cognitive entity differs from Schwartz’s (1988). 
Particularly, Schwartz (1988) points out that quantities are generated by arithmetic 
(numerical) operations, which are addition, subtraction, multiplication, and division. 
Thompson (1994) distinguished numerical operations from quantitative operations. 
Thompson stated a quantitative operation is “the conception of two quantities being 
taken to produce a new quantity” (Thompson, 1990, p. 9) such that it “…is nonnu-
merical; it has to do with the comprehension of a situation” (Thompson, 1994, p. 13). 
Whereas, numerical operations are used to evaluate the value (numerical result) of a 
quantity. Thus, from Thompson’s (1990, 1994) perspective, quantities are generated 
from quantitative operations and the numerical value of quantities are determined 
by the appropriate arithmetic operations. In this paper, our analysis was based on
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Thompson’s (1990, 1994) notion of quantity and quantitative reasoning for several 
reasons as detailed below. 

First, as Thompson (1990) emphasized, identifying a particular numerical opera-
tion with a particular kind of quantity is limited in the following sense: Consider the 
example, “Jim is 15 cm taller than Sarah. This difference is five times as much as the 
difference between Abe and Sam’s heights. What is the difference between Abe and 
Sam’s heights?” (Thompson, 1990, p. 10). Although “difference” is a quantity which 
is mostly derived from the quantities compared additively whose value is found by the 
numerical operation of “subtraction” in a canonical sense, the value of the difference 
between Abe’s and Sam’s heights in this problem situation can be found by dividing 
15 by 5. Thus, division operation is used to evaluate the relationship between the 
quantities. 

Secondly, Schwartz’s (1988) characterization of quantities is based on the ordered 
pairs of the form: (number, unit). Thompson (1994) argued “To characterize quanti-
ties as ordered pairs may be useful formally, but it does not provide insight into what 
people understand when they reason quantitatively about situations, and it severely 
confounds notions of number and notions of quantity” (p. 188). 

Thirdly, Thompson’s point of view takes into consideration the problem situation 
from an individual’s perspective. As we mentioned earlier, textbooks are potentially 
implemented curricula that are expected to trigger mathematical thinking on the part 
of learners. In particular, researchers point out that analysis of quantities in problem 
situations is important. Particularly, “…the central goal is to focus on quantities and 
how they relate in situations…”, and; therefore in any instruction, there is a “… 
need to open discussions with questions that lead to discussions of quantities, not 
numbers” (Smith III & Thompson, 2007, p. 36). This is significant because learners’ 
imagination of quantities within a mathematical situation can contribute to their ways 
of thinking about the concepts they are likely to develop (Thompson, 1990, 1994, 
2011). Re-examining the problem, “how many apples are there if there are 3 groups 
of 5 apples in each” in more detail might further elaborate on the discussion. 

Learners might think in the following ways: First, they might add five three times. 
Such understanding is namely the multiplication as repeated addition. Although 
Fishbein et al. (1985) suggested that the primitive model for multiplication children 
have is repeated addition, research has shown that this notion of multiplication as 
repeated addition is a major reason that many students find transitioning from additive 
to multiplicative reasoning challenging (e.g., Greer, 1992; Thompson & Saldanha, 
2003). One way the limitation of the repeated addition model for multiplication 
becomes obvious is when students must multiply decimal numbers or fractions. 
In the repeated addition model, at least the number of times the same number is 
added must be a whole number. Thus, trying to make sense of 3/4 × 1/3 or 2.7 
× 3.8 requires something beyond the repeated addition model. Many studies have 
shown that students often have difficulties in identifying the appropriate calcula-
tion when numbers involved in word problems become fractions or decimals as 
well as developing a common misconception, or overgeneralization, that multiplica-
tion always makes bigger, and division always makes smaller (e.g., Fishbein et al., 
1985; Graeber & Tirosh, 1990). Similarly, Thompson and Saldanha (2003) argued,
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“repeated addition is a quantification technique; it is not the thing being quantified” 
(p. 104). 

Thompson and Saldanha (2003) suggested that students need to develop the 
meaning of multiplication as some number of (or fraction of) some amount. So, 
they argued that learners need to conceptualize 3× 5 considering “three fives” since 
this might trigger on their part the imagination that the product, the result of multi-
plication, is three times as large as five (or five times as large as three). That is, their 
focus is taken on to the product: 

We re-emphasize that when a curriculum starts with the idea that “×” means some number of 
(or fractions of) some amount, it is not starting with the idea that times means to calculate. It 
is starting with the idea that times means to envision something in a particular way-to think of 
copies (including parts of copies) of some amount. This is not to suggest that multiplication 
should not be about calculating. Rather, calculating is just one thing one might do when 
thinking of a product. (Thompson & Saldanha, 2003, p. 104) 

Thus, thinking of 3 × 5 as “three times as large as five” have the potential that the 
learner envisions the proportionality embedded in multiplication since the learner 
considers both the product and the factors of the product in relation to it. That is, 
the learner might think of multiplication multiplicatively such that for instance 3 × 
5 can be understood as being in multiple reciprocal relationship to 3 and 5: (3 × 5) 
is 3 times as large as 5, (3 × 5) is 5 times as large as 3, 3 is 1/5th as large as (3 × 
5), and 5 is 1/3rd as large as (3 × 5). In addition, Common Core State Standards in 
the United States (National Governors Association, 2010) suggests students should 
understand multiplication as scaling in Grade 5. 

Understanding multiplication in this way might be important for also the learning 
of division multiplicatively since division also need to be understood as relative 
size comparison (Thompson & Saldanha, 2003). Pointing to partitive and quotitive 
meanings of division by Simon (1993), Byerley et al. (2012) further argued: 

These two meanings for division do not require multiplicative reasoning. A third model for 
division, relative size, requires students to reason multiplicatively; the relative size model 
for division calls upon a comparison between the size of one quantity with respect to another 
quantity (Thompson & Saldanha, 2003). Division as relative size allows students to be able 
to reason about non-integer divisors. If division is viewed partitively, it only makes sense to 
divide a number into n equal parts if n is an [sic] whole number. (p. 359) 

We consider such understanding of division as also related with the scalar use of 
intensive quantities. For instance, for a 13.5 ft length of bookshelf, once considered 
in yards, it becomes 3.0 ft/yard such that the quantity (length) in feet is understood as 
relative to the size of one yard. Similarly, the weight of a second grader (52.5 lb, body 
weight) and an eighth grader whose weight is twice as much could be considered 
such that 2 represents the measure of the size of the weight of eighth grader relative 
to the size of the second grader (Shwartz, 1988). 

Thompson and Saldanha (2003) provided a detailed description of how someone 
might conceptualize division as relative size of one quantity with respect to another 
quantity. For the example we used, someone might reason in the following ways if 
they understand division multiplicatively: In the partitive division, a total number
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of apples (3 × 5) and some groups (3 groups) might result in some amount in each 
(5 apples per group) such that 5 is understood as 1/3rd as large as the total number 
of apples (15). That is, if we split 15 apples into 3 groups, then each part contains 
1/3rd as large as the total number of apples. In the quotitive division, a total number 
of apples (3 × 5) and some amount in each (3 apples per group) might result in 
some groups (5 groups) such that 5 is again understood as 1/3rd as large as the total 
number of apples (15). That is, the number of parts made by putting all apples into 
three-apple-sized parts is 1/3rd as large as the number of all apples. Thompson and 
Saldanha (2003) argued that once the learner realizes that in any of these scenarios 
(i.e., partitive division including sharing; and quotitive division including segmenting 
(or measuring)), the numerical result is the same, then the learner might make sense of 
why she uses division for both of them albeit “…at the level of activity they appear to 
be very different” (p. 107). Such an analysis can also contribute to “an understanding 
of referential aspects of division” (e.g., apples per group) and “an awareness of and 
connections between partitive and quotitive division” (Simon, 1993, p. 251) on the 
part of the learner. 

Thus, we argue that quantitative reasoning, albeit a cognitive construct and depen-
dent of the knower, might be useful to examine how curricular materials treat multi-
plication and division in terms of the possible ways of thinking from the perspective 
of learners. In any way, curricular materials, especially the textbooks, are mediators 
of the learning processes educators would like to observe on the part of learners. 
Particularly, we suspect that Japanese curricular materials might possess the poten-
tial to trigger the aforementioned cognitive structures regarding multiplication and 
division. In fact, Thompson and Carlson (2017) pointed out that “Japanese primary 
mathematics texts have a clear coherent focus on having students to think about quan-
tities…” (p. 446) and called on inquiring the issue further. In addition, Turan (2021) 
found that questions given in the Japanese Mathematics International textbook series 
regarding functional relationships “focus on the identification and determination of 
quantities and relationships between quantities regardless of the grade level.” (p. 228). 
Also, there is an emphasis in the Japanese teacher’s guide suggesting teachers to 
create learning opportunities for students to determine quantities and examine their 
relationships (Turan, 2021). 

Hence, taking such a call as important, in the following section, we provide some 
possible examples from Japanese Curricular materials, including Tokyo Shosheki’s 
textbooks, to examine the following questions: 

How might the Japanese curricular materials depicted in the concepts of multiplication and 
division potentially trigger quantitative reasoning? In particular, in what ways the tasks and 
problem situations might potentially trigger quantitative reasoning in Grades 2 to 4?
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4 Analysis of Japanese Curricular Materials 

In this section, we first point to some important characteristics of the Japan’s Course 
of Study (COS) and the Teaching Guide2 (Isoda, 2010) in terms of quantities and 
the operations of multiplication and division. Then, we specifically focus on some 
examples from the Mathematics International Textbook series of Tokyo Shoseki 
from Grade 2 to Grade 4. Indeed, we purposefully focused on these grade levels 
because students are expected to understand the meaning of multiplication in the 
second grade and deepen their understanding of multiplication in the third grade. 
Additionally, they are expected to understand the meaning of division in the third 
grade and deepen their understanding of division in the fourth grade. Before we 
present our findings based on the multiplication and division contents in these grade 
levels, we explain how quantities and their relationships are introduced in the COS 
and Teaching Guide, which supports our claim that multiplication and division are 
introduced within quantitative structures. 

An overarching objective for all grade levels stated in COS is that “Students will 
be able to represent and interpret numbers, quantities, and their relationships by 
using words, numbers, and mathematical expressions as well as diagrams, tables, 
and graphs” (Takahashi et al., 2008, p. 6).  In  the  Teaching Guide, under the content 
“Quantities and Measurements” it is further stated that “A quantity expresses size 
of an object” (Isoda, 2010, p. 35). The term “size” seems to refer to the measurable 
attribute of an object rather than the actual measure of it. Particularly, length, area, 
volume, weight, angle, and speed are some examples of quantities that are provided 
in the Teaching Guide. For example, area is defined as “…the size of a surface that 
extends” (Isoda, 2010, p. 35). 

In addition, there is an explicit emphasis on the operations of counting and 
segmenting within the quantification process. Particularly, it is stated that the size 
of some objects can be determined by counting and the size of some objects, such 
as length of strings or weight of water, should not be expressed by integers since 
these quantities can be divided infinitely. Also, there is emphasis on the directly 
and indirectly measurable quantities with their units. For instance, in the Teaching 
Guide, it is stated that “a unit of volume, a cubic meter (m3) is based on a unit of 
length, meter (m). One cubic meter is the volume of a cube whose edge is 1 m” 
(Isoda, 2010, p. 36). Similarly, indirectly measurable attributes such as speed and 
population density are called “…as ratios between two different quantities and are 
examples of derived units” (Isoda, 2010, p. 36). 

Specific to multiplication and division, in the Teaching Guide, for  the  second 
grade, both multiplication in equal group situations and also multiplication as 
comparison through consideration of relative size are emphasized. It is explicitly 
stated that “students can understand multiplication as the operation to determine the 
total number when given the number in a group and the number of groups, or the 
amount that is so many times as many as the base amount.” (Isoda, 2010, p. 31). Also,

2 Teaching Guide is published by the Japanese Ministry of Education, Culture, Sports, Science, and 
Technology to provide further elaboration of the national course of study. 



Quantitative Reasoning as a Framework to Analyze … 117

for the same grade level, it is further stated that students can determine the product 
by using repeated addition. Together with these, under the content of mathematical 
relations, in the second grade, “seeing a number as product of other” as well as 
“How a product changes when the multiplier increases by 1” and in the third grade, 
“…how a product changes when the multiplier increases or decreases by 1” (Isoda, 
2010, p. 44) is emphasized. Interestingly, starting from the second grade, there is 
also an explicit emphasis on the relative size meaning. For example, it is stated that 
“To understand the relative size of numbers” means to grasp a numbers’ size in terms 
of units such as tens and hundreds” (Isoda, 2010, p. 62). In particular, it is stated 
that “students are taught to grasp the entire size of a certain object by using a partial 
group of that object as a unit and then counting how many units (groups) there are.” 
(Isoda, 2010, p. 62). 

Similarly in the Teaching Guide, for  the  third grade, it is also stated that “Division 
includes the case of partitive division and the case of quotitive division. Partitive 
division finds one part of an equally divided number or quantity. Quotitive division 
finds how many times one quantity is of another quantity. The methods of calculation 
for these two are identical and, therefore, are treated as one operation” (Isoda, 2010, 
p. 31). In addition, pointing to the link between quotitive and partitive division and 
multiplication in the third grade, it is stated 

Division can be thought of as the inverse of multiplication. Therefore, as it relates to multipli-
cation, it is important to clarify which of the two values is being sought, the one corresponding 
to the multiplier or the one corresponding to the multiplicand. Partitive division is where ⛛ 
in 3 × ⛛ = 12 is sought, and quotative division is where ⛛ in ⛛ x 3  = 12 is sought. It is 
important for students to realize that when we divide in the real world, we can divide things 
in a partitive way or a quotative way; students should thereby understand that both types of 
division can be expressed by the same algebraic expression. (Isoda, 2010, p. 83) 

Also, it was mentioned that “when comparing quotative division and partitive 
division, quotative division may be easier to represent with manipulation of concrete 
materials…” (p. 83). 

Furthermore, in the fourth grade, the emphasis is put on the meaning of division 
as relative size comparison. A problem followed by an explanation is provided: 

A ribbon is 96 meters. Another ribbon is 24 meters. How many times as long is the former 
as the latter?” Here “the base quantity” and “the quantity to be compared” are known and 
“how many times” is asked. Division is also used in problems such as, “The yellow ribbon 
is 72 meters long and four times longer than the white ribbon. How many meters long is the 
white ribbon?” Here the “quantity to be compared” and “how many times” are known and 
“the unit quantity” is asked. (Isoda, 2010, p. 104) 

Similarly, in the fourth grade under the content of decimals, the meaning of multi-
plication in both equal group situations and the relative size situations is further 
emphasized. For instance, it is given that “0.1 × 3” could be determined by adding 
0.1 three times such as 0.1 + 0.1 + 0.1 through a simple representation of repeated 
addition. Similarly, “0.1 × 3” could be thought “…as a calculation for finding the 
quantity corresponding to so many times as much as the base quantity” (Isoda, 2010, 
p. 107) where the base quantity is thought as 0.1. By the same token, the meaning of
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division is introduced again as the inverse of multiplication such that it is emphasized 
that it “can be explained as either finding how many times as much or finding the 
base quantity” (Isoda, 2010, p. 107). 

All these suggest that teachers are directed with a specific and explicit attention 
to provide their students with opportunities to focus on. 

(i) what quantity is, including the nature of different quantities such as length, 
area, volume, speed etc. 

(ii) what operations are involved in the production of quantities such as counting 
and measuring (segmenting), 

(iii) how these quantities relate to each other through different arithmetic operations 
and 

(iv) how students might make sense of multiplication and division through the 
lenses of reasoning quantitatively on real life situations such as making identical 
groups as well as comparing the sizes of quantities relative to each other. 

In the following paragraphs, using particular examples, we further depict how 
quantitative reasoning is manifested in the tasks and problem situations in Tokyo 
Shosheki’s Mathematics International Textbooks. 

5 Whole Number Multiplication in Mathematics 
International Textbooks 

When multiplication is introduced to students for the first time in the second grade, 
several characteristics of the problem situations seem to be highlighted: Firstly, there 
is emphasis on the quantities involved in the problem situations. Particularly, focusing 
on both the numerical measures of the quantities and the referents of the quantities, 
students are expected to imagine the problem situations quantitatively. Throughout 
the whole text, extensive and intensive quantities in problem situations are high-
lighted in different colors to bring to the students’ attention explicitly. Secondly, 
although the main focus is on equal group meaning, times as many/much meaning 
is also introduced in the second grade. Specifically, while introducing the times as 
many meaning, although the quantities in problem situations are mostly discrete, 
both discrete and continuous (e.g., linear) representations are used. In addition, in 
problem situations, the number of objects in each group is represented and explicitly 
stated as the multiplicand, and the number of groups is represented and explicitly 
stated as the multiplier.3 Thus, multiplicand times multiplier is a shared definition 
for multiplication both for repeated addition and times as many meanings. In the

3 The actual Japanese terms used to describe multiplicand and multiplier are not the formal math-
ematical terms. Rather, they are more child-friendly terms for which there is no corresponding 
English words. 



Quantitative Reasoning as a Framework to Analyze … 119

Fig. 2 Introducing multiplication through a real-life situation (Fujii & Iitaka, 2012, Grade 2, p. 
B5) 

following paragraphs, we specifically exemplify the display of these ideas in Japanese 
Mathematics International textbooks.4 

In the second grade, multiplication is introduced by a real life situation in which 
different numbers of children are riding on different kinds of vehicles and students 
are asked to reason about the quantities involved (see Fig. 2). 

With regards to the picture given in Fujii and Iitaka (2012, Grade 2, pp. B3–B4), 
several points need to be highlighted. In the situation, not all cases are in an equal 
number of groups. For example, tea cups have different numbers of children whereas 
bicycles have equal numbers of children. We consider the picture in Fujii and Iitaka

4 The publisher, Tokyo Shoseki, does not hold the copyright of all drawings and pictures in Japanese 
Mathematics International textbooks. Therefore, throughout the chapter, we only included the orig-
inal drawings/pictures for which Tokyo Shoseki had the full copyrights. Otherwise, we either 
included a brief note in place of the original drawing/picture (e.g., “Picture of 5 sets of 2 counters 
arranged in a car” as in Fig. 2) or omitted the drawing/picture (e.g., omitted the picture of “whales” 
as in Fig. 7). 



120 G. Karagöz Akar et al.

(2012, Grade 2, pp. B3–B4), as important in two ways. First, students’ attention 
is taken to how many children are included in each ride, so that their focus is on 
quantities depicted in the picture. Second, the idea is to establish the equality of the 
groups for introducing multiplication. In the following pages of the task, this idea is 
emphasized when students are expected to put the numbers in the blank boxes and 
phrase the multiplication sentences, instead of writing expressions and equations, 
such as “⛛ children in each airplane, ⛛ airplanes, ⛛ children together” (Fujii & 
Iitaka, 2012, Grade 2, p. B5). Students are expected to focus not only on the numbers 
in the situation but also on what the numbers refer to. That is, numbers are given 
with an emphasis on the referents which enables students to focus on extensive and 
intensive quantities in the situation. For example, for different rides, quantities are 
highlighted in different colors (see Fig. 3) and students are expected to think about 
the number of children on each ride, the number of rides and the total number of 
children. Although the number of children on each ride can be considered as an 
intensive quantity, Grade 2 students might conceive the situation as “the children in 
a ride” as an extensive quantity. Still, it might lay the groundwork for students’ ways 
of reasoning about intensive quantities later on. 

Moreover, students are expected to think about how the quantities such as the 
children in each train, the number of trains and the total number of children are

Fig. 3 Color coded representation of multiplication sentences (Fujii & Iitaka, 2012, Grade 2, p. 
B6) 
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related simultaneously and focus on both the values of the measures such as 5, 3 and 
15 and of the quantities such as children per train, trains and children. Thus, they seem 
to be triggered to think about quantification processes as well as the numerical results. 
That is, they are to think of the quantity, the total amount of children, as a result of a 
multiplicative combination (i.e., the quantitative operation) of two quantities such as 
some groups (the number of trains) of some amount in each (the number of children 
in each train). 

In addition, in the second grade, both repeated addition and times as many/much 
meaning of multiplication is covered prior to students’ learning of the multiplication 
facts (multiplication table) which comes after the lesson given in Fig. 2. Particularly, 
repeated addition is given as a method of finding the answer for multiplication. Up 
to this point, students could have found the answers by counting, but the emphasis is 
understanding situations that can be represented by multiplication expressions (equal 
groups). As an instance of a situation, a picture of 4 boxes with one including 6 pieces 
of cake is given and students are asked to find out the total number of cakes, if each 
box includes an equal number of pieces of cakes. As an answer to this situation, i.e. 
the result for the multiplication of 6 × 4, students are given with the calculation of 
6 + 6 + 6 + 6 (Fujii & Iitaka, 2012, Grade 2). 

As well as multiplication in equal group situations, in the second grade, students 
are also introduced to the idea of multiplication as comparison, i.e., times as how 
many/much. In particular, in a given situation of linear measurement context, students 
are expected to find “the length of two 3 cm strips of paper put together” (Fujii & 
Iitaka, 2012, Grade 2, p. B10). The following is explicitly stated as an explanation 
to the question: 

If a piece of tape is as long as two 3 cm strips of paper put together, we can say the tape is 
2 times as long as the 3 cm tape. You can use the multiplication math sentence 3×2 to find  
the length that is two times as long as 3 cm. (Fujii & Iitaka, 2012, Grade 2, p. B10) 

What is important is that the amount of tape is expressed as “2 times as long as 
the 3 cm tape”. That is, the result of the product, i.e. 6, is emphasized relative to 
the size of one of the quantities, i.e., 3. Also, linear measurement context is used to 
introduce times as many. 

In the following pages of the task, the problems are depicted in school context 
with the use of discrete quantities, such as, total number of balls on the gym shelves, 
number of backpacks in the lockers, number of desks in a classroom. That is, as 
students learn the multiplication facts/table, the book introduces an array represen-
tation. Though what is important is that the number of groups represented in rows 
(e.g., number of shelves) and number of rows are specified to be the multiplier. In 
particular, students are asked to think 5 × 4 such that they are invited to think 5, which 
is the number of balls in each shelf, as a multiplicand and 4, which is the number 
of shelves, as a multiplier: rather than asking students to think of four groups of 
five, they are triggered to think five (in each) times four. Also, thinking of “5 balls 
per shelf” together with “four shelves” might contribute to students’ thinking of the 
quantities (i.e., 5 balls and 4 shelves) simultaneously, which can lay a foundation
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for rate of change idea later. This is also depicted in the representation which also 
focuses on the quantities with their referents. 

Similarly, in the array diagrams in the following problem situations given in 
Fig. 4, number of cakes in each group is given as the number of rows and number 
of groups of cakes is given as the number of columns. In addition, the number of 
cakes in each group is written as multiplicand and the number of groups of cakes 
is written as multipliers. Specifically, by taking students’ attention even to “what 
numbers express the quantity in one group?” (Fujii & Iitaka, 2012, Grade 2, p. B21), 
they are expected to reason on the number sentence [multiplicand × multiplier]. It 
is even more interesting that in the following pages of the task students are asked to 
write number sentences such as 4 × 3 and 3 × 4 by thinking about the following: 4 
objects in each group and 3 groups of 4 objects; 3 objects in each group and 4 groups 
of 3 objects. This suggests that there is more emphasis on the distinction between 
the multiplier and the multiplicand such that students are expected to think about 
the multiplicand as the number of objects in each group and the multiplier as the 
number of groups of objects independent from the given problem contexts. That is, 
multiplicand × multiplier is given as a structure of (# of objects per group) × (# of 
groups).

In addition, students are asked to think about how to shift for instance from 3 × 
4 to 3  × 5 and from 3 × 5 to 3  × 6 by thinking about the following. If there is one 
more group, say, increase from 4 to 5, the total number will have to increase by the 
group size such that one more group of 3 means the total will be 3 more (+ 3). This is 
important for several reasons. The students’ attention is on the change in quantities 
(i.e., amounts of increase or decrease). That is, students are triggered to think of 
copies of some amount (i.e., 3) where every time the change in number of groups 
is one. Specifically, students’ attention is on the simultaneous change in the number 
of groups (from 4 to 5) and the amount of change (the group size). This then might 
allow students to envision the proportionality embedded in multiplication since they 
can consider both the product such as 15 and the factors of the product such as 3 and 
5 in relation to it. In particular, starting from 3 × 1 and ending at 3 × 5, students 
might envision that 4 more groups (i.e., 5–1) means 4 times 3 more, so that the total 
is 5 times as large as 3. 

Although these suggest that multiplicand × multiplier might trigger “times as 
much” understanding of multiplication, Grade 2 students might not conceive the 
situation as involving copies of some amount (i.e., the number of cakes in each group) 
(Thompson & Saldanha, 2003). Still, it might lay the groundwork for students’ ways 
of reasoning about multiplication multiplicatively later on.
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Fig. 4 Multiplicand times multiplier through multiplication facts of 3 (Fujii & Iitaka, 2012, Grade 
2, p. B17)

6 Whole Number Division in Mathematics International 
Textbooks 

In Japan, division is introduced the first time in the third grade. Similar to the problem 
situations introducing the multiplication in the second grade, the third grade prob-
lems included both equal and unequal sharing situations. Particularly, as a beginning 
activity, students are expected to compare two equal and unequal sharing situations to 
highlight equal sharing as a particular situation. Again, without giving the numerical 
values, students are asked to think about the quantities and how they are shared in 
given pictures, such as unequal sharing of noodles and equal sharing of juice.



124 G. Karagöz Akar et al.

In the third grade, as an extension of the equal sharing situations, students are 
first introduced to partitive division, followed by quotitive division. There are several 
characteristics worth mentioning: First, division situations are explicitly related to 
multiplication expressions that students established in the second grade. For instance, 
in the problems, “There are 20 strawberries. If 5 children share the strawberries 
equally, how many strawberries will each child get?” (Fujii & Iitaka, 2012, Grade 3, 
p. A27), and “We have 20 stickers. If we give 5 stickers to each person, how many 
people can we give the stickers to?” (Fujii & Iitaka, 2012, Grade 3, p. A31), students 
are given the multiplication expression “number of objects for 1 person × number 
of people = total number of objects” and expected to reason about division through 
multiplication expressions as illustrated in Table 1. Secondly, the emphasis is on the 
quantities with their referents. Particularly, the situations are modeled on a table with 
three columns, where each column explicitly represents the parts of the multiplication 
expression with a focus on quantities with their referents. The first column refers to 
“number of objects for 1 person”, the second column refers to “number of people” 
and the third column represents “total number of objects”. It is worth mentioning 
that the result of division is also explicitly highlighted with pointing to the referents 
(e.g., 4 strawberries, 4 people).

Likewise, in different problem situations, referring back to the multiplication 
statement as multiplicand × multiplier, the result of partitive division is explicitly 
stated to indicate multiplicand; whereas the result of quotitive division is explicitly 
stated to indicate multiplier. Based on all these ideas, finally, the goal for students 
is to “understand that both types of division can be expressed by the same algebraic 
expression” (Isoda, 2010, p. 83). Indeed, given the same mathematics sentence, e.g., 6 
÷ 2 = 3, students are expected to articulate the two problem situations: One modeling 
partitive division and the other modeling quotitive division as shown in Fig. 5.

It is worth mentioning that similar to Fig. 5, in most of the pictorial representa-
tions in third grade, the idea behind partitive division seems to be multiplication as 
repeated addition whereas the idea behind quotitive division seems to be repeated 
subtraction. However, at this grade level, students are also introduced briefly to times 
as many/much meaning within the multiplication and division situations. Especially, 
times as many/much meaning is modeled in quotitive division situations. 

In the fourth grade, relative size meaning is emphasized in both partitive and 
quotitive division situations. Students are first given a partitive division problem in 
which they are asked to share 80 sheets of colored paper equally among 4 people as 
given below in Fig. 6. There are several issues to be raised here. First, students are 
given the division expression “total number of sheets ÷ number of people sharing 
= number of sheets for each” where the emphasis is on the quantities with their 
referents. Second, a number line representation is used to represent the quantities in 
the problem situation, i.e., number of sheets and number of people, albeit it involves 
discrete quantities. Third, within the linear representation given in Fig. 6, the process 
of sharing is emphasized to end up with the number of sheets for each person, i.e., 
the numerical value of the result of the division. A specific attention is given to 
the relative size idea that when students share 80 (i.e., the total number of sheets) 
into 4 parts (i.e., among 4 people), each part (i.e., each person) contains 1/4 of the
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Fig. 5 Modeling partitive and quotitive division for the same mathematical expression (Fujii & 
Iitaka, 2012, Grade 3, p. A33)

total number of sheets, which is 20. Therefore, even though fraction notation is not 
explicitly used, the number of sheets for each person is 1/4 as large as the total 
number of sheets. Indeed, in the rest of the problems used in this grade level, relative 
size meaning is continually emphasized with the number line representation.

Similarly, there are quotitive division situations given in the problem context of 
times as many/much. For instance, in the problem shown in Fig. 7, the length of an 
adult whale, which is 15 m long, is compared with the length of its calf, which is 
3 m long. Again, there are several issues to be raised here. First, students are given 
the mathematics sentence of 15 ÷ 3 with an emphasis on the quantities with their 
referents. That is, an adult whale’s length (in meters) and its calf’s length (in meters) 
are given. Second, a number line is used to represent the quantities in the problem 
situation, i.e., the length of the calf and the length of the adult whale. Third, the 
number line in Fig. 7, presents the process of segmenting the length of the adult 
whale into a number of parts of a given size, which is the length of its calf. A specific 
attention is given to the relative size idea that when students think of the length of
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Fig. 6 Emphasis on relatives sizes in a partitive division situation (Fujii & Iitaka, 2012, Grade 4, 
p. A31)

the calf, 3 m, as a unit of 1, then the length of the adult whale 15 m corresponds to 
5 units. Indeed, the line representation seems to explicitly indicate the idea that the 
length of a calf (i.e., 3 m) is 1/5 times as much as the length of the adult whale (i.e., 
15 m). Likewise, the length of the adult whale is 5 times as much as the length of 
its calf. Moreover, by explicitly stating the meaning of 5 as follows “5 times means 
that if we consider the 3 m as 1, 15 m corresponds to 5” (Fujii & Iitaka, 2012, 
Grade 4, p. A44), albeit implicit, it is indicated that 5 is 1/3 of 15 m. That is, the 
number of parts made by measuring the length of adult whale into three-calf-sized 
parts is 1/3 as large as the size of the adult whale. All these suggest that students 
are expected to imagine the problem situation quantitatively in terms of quantities 
and their relationships. Again, the quantity, times as many (groups), is constructed 
as a result of a multiplicative comparison (i.e., the quantitative operation) of two 
quantities such as the length of the adult whale and the length of its calf . That is, in 
this situation, ‘given the length of an adult whale and the length of its’ calf might 
result in times as many (groups of length of the calf)’. It is also important to state 
that the textbook also introduces proportionality as an aspect of understanding this 
situation. Similarly, relative size meaning is continually emphasized with the number
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Fig. 7 Emphasis on relatives sizes in a quotitive division situation (Fujii & Iitaka, 2012, Grade 4, 
p. A44)—Note that there is a picture of a big whale under “15 m” and a picture of a small whale 
under “3 m” in the original text

line representation in both modeling partitive and quotitive division problems used 
in the rest of the textbook in this grade level. 

7 Discussion 

In this chapter, we considered and utilized quantitative reasoning as a framework 
for textbook analysis. Along with our purpose to determine how curricular materials 
depicted in the concepts of multiplication and division might potentially trigger quan-
titative reasoning, we examined Japanese curricular materials including the Course 
of Study, the  Teaching Guide and the Mathematics International textbooks by Tokyo
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Shosheki. As the given examples indicated, through all Japanese curriculum mate-
rials, quantities with their referents are continually emphasized and used while intro-
ducing multiplication and division. Specifically, in the Teaching Guide not only the 
definitions and types of quantities are provided but also the need for learners to think 
about quantities while learning multiplication and division are highlighted. Indeed, 
an emphasis on quantities with their referents is important for learners to imagine 
situations of multiplication and division quantitatively. 

Learners are triggered to comprehend the relationships among the quantities 
through conceptual operations, such as counting and segmenting. In other words, 
by imagining the result of a relationship between the quantities with a focus on 
their referents, learners might come to understand the result as a new quantity. 
This might further allow them to think of multiplication and division not merely 
as numerical operations but as operations which generate quantities. Specifically, 
within the second and third grades, multiplication understanding is developed as 
multiplicand times multiplier (Watanabe, 2003) where the multiplicand refers to the 
number of objects in each group and the multiplier refers to the number of groups. 
Watanabe noted that teachers’ manuals warn teachers not to think of multiplication 
as repeated addition, rather repeated addition is represented as a way to find the 
products. So, we argue that the idea of multiplicand times multiplier seems to lessen 
the dependency on repeated addition meaning of multiplication whereas it seems 
to strengthen times as many/much meaning of multiplication. This is important 
because researchers emphasized that in order to understand multiplication multi-
plicatively, students need to develop times as many/much understanding (Schwartz, 
1988; Thompson & Saldanha, 2003). 

Similarly, division understanding is built upon the multiplication understanding 
in the third and the fourth grades: both repeated addition and times as much. In 
particular, the result of partitive division is emphasized to refer to the multiplicand 
(in multiplication) and the result of quotitive division is emphasized to refer to the 
multiplier (in multiplication). This idea seems to trigger and strengthen the rela-
tive size meaning of division. Byerley et al. (2012) emphasized the importance of 
learners’ thinking of division as relative size. They argued that the two meanings 
for division, namely partitive and quotitive division, do not require multiplicative 
reasoning, whereas a relative size meaning which requires learners to compare the 
size of one quantity with respect to another quantity allow them to reason multiplica-
tively (Thompson & Saldanha, 2003). Moreover, relative size meaning is depicted 
through the use of number line (line segment) representation regardless of the nature 
of the quantities being discrete or continuous. This is also important because although 
the number line representation is suggested to be used while teaching multiplication, 
where especially the repeated addition meaning is highlighted (Van de Walle, 2010), 
the use of number line especially for leveraging the relative size meaning of division 
on the part of learners seem to be an important characteristic of Japanese Mathematics 
International textbooks. 

All these results together with the explicit attention to both the quantities and their 
relationships in the Teaching Guide suggest that in the Japanese curricular materials 
quantitative reasoning has a proper place at least for the concepts of multiplication and
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division. So, we call for further research on examining the depiction of other math-
ematics concepts through quantitative reasoning in Japanese curricular materials. 
We also propose that different international curricular materials might be examined 
with using the lenses of quantitative reasoning. Our call also aligns with the study 
by Taşova et al. (2018), who provided a framework to analyze the extent and nature 
of (co)variational and quantitative reasoning in written curriculum, specifically the 
concept of functions in five U.S. calculus textbooks. Finally, we believe that teachers 
and teacher educators might use the tasks and problems shared in this chapter while 
introducing and assessing the different meanings of whole number multiplication 
and division. 
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Constructing Covariational 
Relationships and Distinguishing 
Nonlinear and Linear Relationships 

Teo Paoletti and Madhavi Vishnubhotla 

[T]o ground the development of algebraic thinking on the notion of functions and functional 
relationships without, in turn, grounding these on understandings of quantities and quantita-
tive reasoning in dynamic situations, is like building a house starting with the second floor. 
The house will not stand. (Thompson & Thompson, 1995, p. 98) 

1 Introduction 

Mathematics generally (Crisp et al., 2009; Sass, 2015), and algebra specifically 
(Loveless, 2013), serve as gatekeepers that have restricted student access to STEM 
fields. Thus, it is more important than ever that K-12 education supports students in 
developing foundational knowledge and ways of thinking that support their algebra 
learning. However, current algebra curricula and teaching often present an abstract, 
static, symbolic, and largely procedural mathematics (e.g., Hiebert et al., 2005; Litke, 
2020). To increase STEM opportunity, pre-algebra and algebra instruction must 
help students develop ways of thinking that are meaningful, accessible, and appli-
cable broadly across STEM fields. One of these ways of thinking is covariational 
reasoning, the ability to construct and reason about relationships between quantities 
changing together. Students are not currently being provided sufficient opportunities 
to reason about covarying quantities (Frank & Thompson, 2021; Smith & Thompson, 
2008; Thompson & Harel, 2021). As reflected in the opening quote, the lack of 
opportunities to reason about covarying quantities may explain much of students’
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difficulties with algebra; students are not being provided with a foundation on which 
to build their more formal algebra knowledge. 

In this chapter, we propose that middle school students would be better served first 
having opportunities to reason about dynamically changing quantities to construct 
basic types of covariational relationships. These covariational relationships can 
serve as the foundation for students’ activity as they begin to use multiple repre-
sentations (e.g., graphs, tables, equations) to represent such relationships. In the 
following sections, we first outline our theoretical framework, which details the 
requisite meanings students need to construct, reason about, and represent covaria-
tional relationships between continuously changing quantities. We then outline a task 
sequence we iteratively designed and tested to support students in constructing, coor-
dinating, and graphically representing covarying quantities. Throughout, we use two 
students’ activity to exemplify the productivity of this task sequence. We conclude 
by discussing implications for student reasoning and highlighting the potential for 
such activity to serve as a foundation for students developing meanings for various 
functional relationships. 

2 Theoretical Background 

Prior to presenting our task sequence, we describe constructs relevant to how students 
construct, coordinate, and represent covarying quantities. We then describe how 
students can leverage their covariational reasoning to characterize basic types of 
covariational relationships and differentiate between nonlinear and linear relation-
ships. We conclude by characterizing the requisite meanings students must maintain 
to represent such relationships graphically. 

2.1 Foundations of Covariational Reasoning 

In this section, we first describe the theoretical framework we use when characterizing 
students’ quantitative and variational reasoning. We then present our coordination of 
the frameworks from Carlson et al. (2002) and Thompson and Carlson (2017) that 
we leverage. 

2.1.1 Quantitative and Variational Reasoning 

Several researchers (see Thompson & Carlson, 2017 for a review) have begun 
to explore ways in which students’ quantitative reasoning (Thompson, 2011) 
can support their development of productive meanings for various mathematical 
ideas. Adopting this theory, we contend that quantities are conceptual entities a 
student constructs to make sense of some phenomenon. A student’s quantitative
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reasoning can involve numerical and non-numerical reasoning (Johnson, 2012; 
Moore et al., 2019), but the essence of quantitative reasoning is non-numerical 
(Smith & Thompson, 2008). There are numerous ways students can reason about 
magnitudes (see Thompson et al., 2014), but we are particularly interested in students 
conceiving of an increasing or decreasing amount of a measurable attribute of an 
object or phenomenon. Furthermore, although a student can reason quantitatively 
about static quantities (e.g., comparing two static lengths to determine the measure 
of one length in terms of the other), we attend to students’ variational reasoning about 
conceived dynamic quantities. 

In this report, we leverage and refine Thompson and Carlson’s (2017) varia-
tional reasoning framework (Table 1) based on our attempts to analyze student 
activity using this framework. Specifically, we add smooth variational reasoning, 
which entails a student reasoning about the variation of a quantity’s magnitude or 
value as changing smoothly across an interval. Such reasoning is not as sophisti-
cated as smooth continuous variation. Smooth continuous variation entails smooth 
variation with an additional anticipation that any smaller sub-interval would also 
entail smooth and continuous variation; we only characterize a student as engaging 
in smooth continuous variation if the student explicitly describes such smaller sub-
intervals. In our research, we often observed students engaging in smooth variation 
without explicitly considering or describing sub-intervals, thereby creating a need 
for a new level within the framework. We note our characterization of smooth vari-
ational reasoning is more sophisticated than gross variation and chunky continuous 
variation, as the student anticipates the quantity takes on magnitudes or values while 
changing between intervals of a fixed size (Thompson, personal communication).

We note that while Thompson and Carlson (2017) use the term levels in both their 
variational and covariational reasoning framework, these levels are not necessarily 
hierarchical. Students do not need to move sequentially up from the lowest to the 
highest level. Thompson and Carlson (2017) cautioned researchers not see these 
levels as 

a learning progression in the sense that one level should be targeted instructionally before 
the next higher level. As Castillo-Garsow et al. (2013) point out, teachers should emphasize 
smooth variation in their talk and actions whenever they can. Students will reason at the 
level they will, and if at some point in time they reason variationally at the highest level, 
they get all other levels for free. (p. 440) 

Consistent with this recommendation, we design tasks we intend to promote 
smooth variation in students’ reasoning. 

To exemplify several of the levels in Table 1, and the distinctions we make 
moving forward, we will use the Triangle/Rectangle Task. In the  Triangle/Rectangle 
Task, students are presented with a GeoGebra applet which presents an (apparently)
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Table 1 An amended version of Thompson and Carlson’s (2017) major levels of variational 
reasoning (p. 440), with changes in bold 

Level Description 

Smooth continuous variation The person thinks of variation of a quantity’s or variable’s 
(hereafter, variable’s) value as increasing or decreasing (hereafter, 
changing) by intervals while anticipating that within each interval 
the variable’s value varies smoothly and continuously 

Smooth variation (added) The person thinks of variation of a variable’s value as 
changing smoothly across an interval without considering 
sub-intervals within the interval. The person anticipates that 
the variable changes from a to b smoothly by taking all values 
between a and b without attending to sub-intervals within the 
interval from a to b 

Chunky continuous variation The person thinks of variation of a variable’s value as changing 
by intervals of a fixed size…The person imagines, for example, 
the variable’s value varying from 0 to 1, from 1 to 2, from 2 to 3 
(and so on), like laying a ruler. Values between 0 and 1, between 
1 and 2… and so on, “come along” by virtue of each being part of 
a chunk…but the person does not envision that the quantity has 
these values in the same way it has 0, 1, 2, and so on, as values 

Gross variation The person envisions that the value of a variable increases or 
decreases, but gives little or no thought that it might have values 
while changing 

Discrete variation The person envisions a variable as taking specific values. The 
person sees the variable’s value changing from a to an by taking 
values a1, a2, …,  an but does not envision the variable taking any 
value between ai and ai + 1 (i = 1, 2, …, n) 

No variation The person envisions a variable as having a fixed value. It could 
have a different fixed value, but that would be simply to envision 
another scenario 

Variable as symbol The person understands a variable as being just a symbol that has 
nothing to do with variation

smoothly1 growing triangle and rectangle (Fig. 1; https://www.geogebra.org/m/cxe 
evsyc). The two shapes have equal base lengths (highlighted in pink) defined by 
the slider value (a), which ranges from 0 to 5. The shorter slider allows students 
to change the increment with which the a-values change, from apparently smoothly 
(in increments of 0.01) to larger chunks (in increments of 1.0). We ask students to 
consider variations in each shape’s base length and area as the animations play to 
support students in conceiving of each shape’s base length and area as quantities in 
the situation.

1 We acknowledge that, due to the digital nature of the task, all quantities vary according to the 
discrete parameters set in the applet, which is why we refer to the quantities as varying (apparently) 
smoothly. Hereafter, we will use smoothly to convey the (apparently) smooth nature of the variations 
in the applets. 

https://www.geogebra.org/m/cxeevsyc
https://www.geogebra.org/m/cxeevsyc
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Fig. 1 Screenshots of the triangle/rectangle task 

Particular to students’ variational reasoning, gross variational reasoning is 
common when students begin to conceive quantities in the situation. For example, 
a student may initially conceive that each shape has an increasing area as the base 
length is increasing. If a student conceives area as varying smoothly as the slider 
increases from 0 to 5 without providing any description of how the area is changing 
within subintervals, we only classify the student as engaging in smooth variational 
reasoning. Evidence for smooth variational reasoning may entail students using 
smooth hand motions or active voice to describe how quantities are changing (e.g., 
motioning to represent an interval of changing a-values, describing “the a-value 
starts at 0 and increases until it reaches 5”). We classify a student as engaging in 
smooth continuous variational reasoning if the student anticipates and explicitly 
describes variations of area within smaller subintervals (e.g., describing what could 
be happening to area as the base length varies from 1.77 to 1.78). 

If a student is constrained to reasoning about incremental changes of a fixed size 
of the base length (e.g., 0.01, 1.0, or some other value), then we would categorize 
the student’s reasoning as entailing chunky continuous variation. It is common for 
students to exhibit chunky continuous variational reasoning when they describe how 
the area changes if the short slider is set to integer values (e.g., describing “the area of 
the triangle jumps by bigger amounts”). Although such reasoning is chunky, chunky 
reasoning is critical to differentiate between different patterns of growth (Vishnub-
hotla, 2020). Hence, several tasks are designed to support students in engaging in
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both smooth and chunky thinking. However, we always start by presenting contin-
uously changing phenomena as we concur with Castillo-Garsow et al. (2013), who 
contended: 

smooth thinking would entail a capacity to think in chunks (or, at least at its foundation, one 
chunk). In contrast, in our experience with students, chunky thinking does not seem to entail 
a capacity to think smoothly, nor does chunky thinking seem to provide a cognitive root for 
smooth thinking. (p. 36) 

With the idea that smooth thinking can entail chunky thinking, we design tasks that 
allow students to first experience and possibly conceptualize a smoothly changing 
phenomenon. Only after such opportunities do we introduce features of the applet 
that allow the quantities to change in chunks. 

2.1.2 Covariational Reasoning: Coordinating Frameworks 

As our goal is for students to coordinate and represent (at least) two varying quantities, 
we also attend to students’ covariational reasoning (Carlson et al., 2002; Thompson & 
Carlson, 2017). In this section, we first offer an overview of covariational reasoning 
and multiplicative objects. We then provide the theoretical underpinnings for how 
we design tasks to support students’ covariational reasoning by relating our interpre-
tations of Carlson et al.’s (2002) framework with Thompson and Carlson’s (2017) 
covariational reasoning framework (Table 2).

Researchers (Carlson et al., 2002; Saldanha & Thompson, 1998) have contended 
covariational reasoning is developmental. Saldanha and Thompson (1998) described 
that initially a student is likely to coordinate two quantities by thinking, “of one, then 
the other, then the first, then the second, and so on” (p. 299). Through this process, 
the student can develop an operative image of covariation that entails a relationship 
between quantities that results from imaging both quantities being tracked for some 
duration. Elaborating on their description of covariational reasoning Saldanha and 
Thompson (1998) stated: 

[Covariational reasoning] entails coupling the two quantities, so that, in one’s understanding, 
a multiplicative object is formed of the two. As a multiplicative object, one tracks either 
quantity’s value with the immediate, explicit, and persistent realization that, at every moment, 
the other quantity also has a value. (p. 299) 

Elaborating on their use of multiplicative object, which stems from Piaget’s notion 
of ‘and’ as a multiplicative operator, Thompson et al. (2017) noted, “A person forms 
a multiplicative object from two quantities when she mentally unites their attributes 
to make a new attribute that is, simultaneously, one and the other” (p. 98). Hence, 
covariational reasoning entails understanding the simultaneity of two quantities’ 
magnitudes or values in relation to each other. 

As we are particularly interested in supporting students in conceiving smoothly 
changing phenomena, we use dynamic applets that could support students in antici-
pating that quantities covary smoothly, as recommended by others (Castillo-Garsow 
et al., 2013; Johnson, 2020; Stevens et al., 2017). We agree with Castillo-Garsow
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Table 2 An amended version of Thompson and Carlson’s (2017) major levels of covariational 
reasoning (p. 441), with changes in bold 

Level Description 

Smooth continuous covariation Envisioning changes in one quantity’s or variable’s value as 
happening simultaneously with changes in another variable’s 
value, and the person envisions both variables varying via 
smooth continuous variation 

Smooth covariation (added) Envisioning changes in one quantity’s or variable’s value 
as happening simultaneously with changes in another 
variable’s value, and the person envisions both variables 
varying via smooth variation 

Chunky continuous covariation Envisioning changes in one variable’s value as happening 
simultaneously with changes in another variable’s value, with 
both variables varying with chunky continuous variation 

Coordination of values Coordinating the values of one variable (x) with values of 
another variable (y) with the anticipation of creating a discrete 
collection of pairs (x, y) 

Gross coordination of values Forming a gross image of quantities’ values varying together. 
Envisioning a loose link between the overall changes in two 
quantities’ values. The person does not envision that 
individual values of quantities go together. Instead, the person 
envisions a loose, non-multiplicative link between the overall 
changes in two quantities’ values 

Pre-coordination of values Envisioning two variables’ values varying, but 
asynchronously—one variable changes, then the second 
variable changes, then the first, and so on. The person does not 
anticipate creating pairs of values as multiplicative objects 

No coordination Having no image of variables varying together

et al.’s (2013) assertion that smooth thinking can serve as a cognitive root for chunky 
thinking, and therefore design tasks to provide students opportunities to first antici-
pate quantities changing smoothly. Specifically, we design tasks to support students 
in moving from gross coordination of values to smooth or smooth continuous covari-
ational reasoning, initially bypassing chunky continuous covariational reasoning 
(Table 2; Thompson & Carlson, 2017). Gross coordination of values (Table 2), which 
Carlson et al. (2002) referred to as coordinating direction of change, is common when 
students are first conceiving a relationship between covarying quantities (e.g., “the 
triangle’s area and base length are both increasing”). 

After students conceive of the directional changes in two quantities, they can 
further conceive the relationship via smooth or smooth continuous covariational 
reasoning. Due to our addition of smooth variational reasoning, we also amend 
Thompson and Carlson’s (2017) covariational framework to differentiate between 
smooth covariation and smooth continuous covariation (Table 2). The primary 
distinction we make is to differentiate conceiving each quantity at the smooth varia-
tional or smooth continuous variational level. We would characterize a student who 
consistently attends to simultaneous variations in two quantities across an interval,
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without describing subintervals, as engaging in smooth covariational reasoning. 
For example, a student may describe that, until a ball thrown in the air reaches 
its maximum height, the ball’s height increases and its velocity decreases without 
explicitly describing the ball’s height or velocity within any sub-interval. We char-
acterize such reasoning as smooth covariational reasoning unless a student explicitly 
describes the quantities values within sub-intervals. 

After students have had opportunities to engage in smooth (or smooth contin-
uous) covariational reasoning, we provide opportunities for students to engage in 
chunky continuous covariational reasoning (Thompson & Carlson, 2017). Partic-
ularly, we are interested in supporting students in reasoning about what Carlson 
et al. (2002) referred to as amounts of change (e.g., the change in a triangle’s area 
increases as the base length increases in equal successive amounts). Although there 
are ways students may engage in chunky continuous covariation without attending 
to the amounts of change of one quantity for equal changes in the second quan-
tity, reasoning about amounts of change is a particular form of chunky continuous 
covariational reasoning (Thompson, personal communication). In this paper, when 
we refer to a student engaging in chunky continuous covariation, we refer specifi-
cally to a student reasoning about amounts of change as described by Carlson et al. 
(2002). As we describe in the next section, such reasoning can productively interplay 
with students’ smooth reasoning as they conceive of different types of covariational 
relationships (e.g., Paoletti & Moore, 2017). 

2.2 Using Direction and Amounts of Change to Conceive 
the Basic Types of Covariational Relationships 
and Distinguish Between Nonlinear and Linear 
Relationships 

Smooth covariational reasoning can support students in conceiving of the directional 
change of two quantities. A student can conceive that as the first quantity increases 
or decreases, the second quantity increases, decreases, or remains constant. If both 
quantities are changing (i.e., the second quantity is not constant), engaging in chunky 
continuous covariational reasoning is necessary to further characterize a covaria-
tional relationship. Specifically, students can examine equal successive changes in 
the first quantity to explore whether the amounts of change of the second quantity are 
increasing, decreasing, or remaining constant. For example, in the Triangle/Rectangle 
Task, a student may conceive that, as the base length increases, the triangle’s area 
increases by increasing amounts (as represented by the consecutive trapezoids on 
the triangle in Fig. 2). For the rectangle, the student may identify that, as the base 
length increases, the rectangle’s area increases by equal amounts (as represented by 
the five consecutive rectangles in Fig. 2).

Table 3 presents the basic types of covariational relationships that a student can 
conceive by focusing explicitly on directional and amounts of change. We note that,
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Fig. 2 A screenshot of the triangle/rectangle task showing amounts of change of area for equal 
integer changes of base length

Table 3 The basic types of 
covariational relationships 

First quantity Directional change in 
second quantity 

Amounts of change in 
second quantity 

Increasing or 
decreasing 

Constant N/A 

Increasing By equal amounts 

By increasing 
amounts 

By decreasing 
amounts 

Decreasing By equal amounts 

By increasing 
amounts 

By decreasing 
amounts

due to the prevalence of students’ presuming all relationships are linear after learning 
about linear functions (e.g., De Bock et al., 2007; Esteley et al., 2010), we intention-
ally provide students repeated opportunities to construct various nonlinear relation-
ships prior to considering a linear relationship. As described in the introduction, we 
conjecture providing students opportunities to construct these basic types of covari-
ational relationships can serve as the foundation for students’ meanings for various 
nonlinear and linear relationships. Based on prior experiences, and as exemplified in 
the Faucet Task (Sect. 4.1), we found it important to provide students with repeated 
opportunities to construct and reason about different directional relationships first. 
After such experiences, students can experience an intellectual need (Harel, 2008) 
to further characterize such relationships via the amounts of change of the second 
quantity with respect to the first. 
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2.3 Representing Covariational Relationships Graphically 

In the above descriptions, we characterize students’ reasoning about quantities in situ-
ations. To represent a covariational relationship graphically, it is important to attend 
to students’ meanings for the underlying coordinate system. Lee and colleagues (Lee, 
2016; Lee et al., 2020; Paoletti et al., 2022) distinguished two types of coordination 
that result in two uses of coordinate systems in students’ thinking: spatial coordinate 
systems and quantitative coordinate systems. Spatial coordination refers to an indi-
vidual using a coordinate system to represent a physical space or phenomenon. The 
resulting spatial coordinate system organizes the space (or an analogous space) in 
which the phenomenon is conceived (e.g., a map). 

Students must construct a quantitative coordinate system to represent two quanti-
ties that are not established spatially in a physical space (e.g., temperature, pressure). 
To construct a quantitative coordinate system, a student must first establish quanti-
tative frames of reference (Joshua et al., 2015) within the situation. They can then 
disembed the quantities from the situation while maintaining an awareness of the 
situational quantities (Steffe & Olive, 2010) and project the quantities onto the quan-
titative coordinate system. Produced graphs in a quantitative coordinate system are 
not projections of physical phenomena onto the same space containing the original 
objects or phenomena. 

To construct a quantitative coordinate system in the context of area and base 
length of the triangle in the Triangle/Rectangle Task (Fig. 3a–c), a student must 
first conceive of the triangle’s area and base length as quantities. Then, intending 
to represent the quantities on a coordinate system, the student must consider repre-
senting each magnitude (or value) with a corresponding line segment. The student 
may disembed area and base length from the situation and represent them with a 
green segment on the vertical axis and a pink segment on the horizontal axis, respec-
tively (e.g., the segments on the axes in Fig. 3a–c). The student can then anticipate 
that variations in the quantities’ magnitudes (or values) correspond to variations 
in the segments’ magnitudes (or values). For example, the student may leverage 
their situational understanding to argue that if they move the slider to the right, the 
green segment will go up and the pink segment will go to the right as the area and 
base length are both increasing. As representing nonlinear quantities using linear 
segments is non-trivial (Johnson et al., 2017; Paoletti et al., accepted), we provide 
students repeated opportunities to consider how line segments could be used to repre-
sent such quantities, often using tasks similar to the ‘Which One’ task described by 
Moore and colleagues (Liang & Moore, 2020; Stevens et al., 2017).

With a quantitative coordinate system in mind, a student can then conceive of 
a point as a multiplicative object (Lee, 2016; Lee et al., 2020; Thompson, 2011) 
that simultaneously represents the two segments’ magnitudes on the axes. This point 
reflects the multiplicative object the student conceived of when reasoning covaria-
tionally by representing the two quantities’ simultaneous values at every moment. 
For example, a student may argue that moving the slider to the right will result in the
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Fig. 3 Screenshots of the triangle/rectangle task applet with a coordinate system shown

point representing (triangle’s base length, triangle’s area) in Fig. 3 moving diagonally 
up and to the right because the triangle’s area and base length both increase. 

2.3.1 Emergent Graphical Shape Thinking 

Leveraging the aforementioned descriptions of covariational reasoning, Moore and 
colleagues have differentiated between students’ static and emergent graphical shape 
thinking (Moore, 2021; Moore & Thompson, 2015). Moore and Thompson (2015) 
described emergent graphical shape thinking (hereafter emergent thinking) as: 

understanding a graph simultaneously as what is made (a trace) and how it is made (covari-
ation)… [E]mergent shape thinking entails assimilating a graph as a trace in progress (or 
envisioning an already produced graph in terms of replaying its emergence), with the trace 
being a record of the relationship between covarying quantities. (p. 785) 

Students’ conceptions of quantities, coordinate systems, and points as multiplica-
tive objects are all critical to their emergent thinking. Prior to conceiving a graph 
as an emergent trace of covarying quantities, students must construct quantities and 
consider how such quantities could be represented on a coordinate system.2 They 
must then conceive of a point as a multiplicative object simultaneously representing 
two quantities. With such a conception in mind, a student can conceive of a graph in

2 Paoletti et al. (2018) characterize ways students could engage in emergent thinking in both spatial 
and quantitative coordinate systems. 
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Fig. 4 Trace of a point simultaneously representing the triangle’s changing area and side length 

terms of an emergent, progressive trace constituted by the point’s movement dictated 
by the covarying quantities’ magnitudes represented on the axes. 

To support students’ emergent thinking, we use GeoGebra’s ‘trace’ feature to 
trace the point’s motion. For example, we have students trace the point in Fig. 3a–c 
to produce the graph in Fig. 4 representing a record of the relationship between the 
triangle’s base length and area. 

In addition to having students observe points producing emergent traces in 
multiple contexts, we leverage two other techniques to support their emergent 
thinking. First, as we have contended elsewhere (e.g., Paoletti, 2019; Paoletti & 
Moore, 2017), students’ reasoning about the same final graph as being producible 
by different traces is a strong indication of a student engaging in emergent thinking; 
hence, we often provide students with opportunities to engage in such reasoning. For 
example, in the context of the Triangle/Rectangle Task, this opportunity can entail 
having the animation play in reverse (with a going from 5 to 0). 

Second, we often leverage animations, applets, or videos with deliberate pauses. 
Such pauses provide students opportunities to explicitly attend to the two quantities 
under consideration (e.g., if the animation pauses and the quantities stop varying, 
then the point does not move). For example, we use a video of the growing triangle 
that deliberately pauses for several seconds at two a-values to provide students with 
opportunities to consider how such pauses impact their graphs. Such opportunities 
help address a common difficulty students experience with graphs, namely, reasoning 
univariationally about one quantity with respect to time (e.g., Carlson et al., 2003; 
Leinhardt et al., 1990; Paoletti, 2015). Students using such reasoning might expect 
that, if the animation pauses, the graph should contain a straight horizontal line to 
represent the pause.
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2.3.2 Differentiating Between Nonlinear and Linear Relationships 
Graphically 

Particular to differentiating between nonlinear and linear relationships, once a student 
has conceived of each type of relationship situationally (as described in Sect. 2.2), 
they can consider how such changes will constrain the movement of the segments and 
the point in the coordinate system. For example, in the Triangle/Rectangle Task, a  
student may conceive that the increasing changes in the triangle’s area will correspond 
to increasing jumps of the segment representing area along the vertical axis (shown in 
Fig. 5a). These changes will therefore create points with increasing vertical changes 
for equal horizontal changes, represented by the large green dots in the coordinate 
system in Fig. 5a. The student may then leverage their smooth covariational reasoning 
to anticipate the smooth nature of the increasing quantities to draw a smooth (concave 
up) curve representing the relationship. The student can engage in similar reasoning 
for the growing rectangle where the vertical changes are equal, thereby creating a 
straight graph (Fig. 5b). In both cases, the student understands the shape of the graph 
is dictated by the relationship between the covarying quantities, which is indicative 
of emergent thinking. 

3 Methods, Participants, and Analysis 

The results reported here are a part of a larger design-based research study (Cobb 
et al., 2003) involving six small group teaching experiments (Steffe & Thompson, 
2000). The goal of the study was to examine ways to support middle school 
students developing various mathematical ideas via their variational and covaria-
tional reasoning. We iteratively designed, tested, and redesigned tasks and a task

Fig. 5 Graphs representing nonlinear and linear relationships for the Triangle/Rectangle Task 
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sequence that was productive for this goal. In this report, we describe the final task 
sequence we designed and use student data to exemplify ways students engage with 
the task sequence. We briefly describe the subjects and data analysis below. 

3.1 Subjects and Setting 

We conducted the teaching experiments in a school in the Northeastern U.S. that hosts 
a diverse student population with over 75% students of color and over 67% students 
who qualify for free or reduced-price lunch. We chose to work with middle school 
students because they had not taken or completed Algebra I. We asked teachers to 
recommend students who would be willing to participate and could articulate their 
thinking. 

In this report, we focus on two male students, Vicente (Hispanic) and Lajos (Asian) 
(pseudonyms), as they engaged with the task sequence. The students participated in 
10 teaching episodes that mostly occurred one week apart (February through May), 
though, due to scheduling constraints (e.g., spring break), some sessions occurred 
two weeks apart. Each session lasted approximately 40 min. We only report on their 
activity in the first 8 sessions, as it is critical to their differentiating between linear 
and nonlinear relationships. Table 4 provides an overview of the 8 sessions including 
the time span and the task the students were engaged in during each session.

3.2 Data Analysis 

We employed on-going and retrospective analyses to characterize models of each 
student’s reasoning. During each phase of analysis, we conducted conceptual anal-
ysis—“building models of what students actually know at some specific time and 
what they comprehend in specific situations” (Thompson, 2008, p. 105). To accom-
plish this, we analyzed the records using open (generative) and axial (convergent) 
approaches (Strauss & Corbin, 1998). Specifically, we watched all videos and identi-
fied instances that provided insights into each student’s reasoning about, coordination 
of, or representations of varying and covarying quantities. We developed tentative 
models of each student’s mathematics with special attention to the students’ covari-
ational reasoning and emergent thinking, including the possibility that they were 
distinguishing between the different types of relationships (e.g., linear and nonlinear). 
To test these models, we returned to the previously identified instances, searching for 
supporting or contradicting instances. When evidence contradicted our models, we 
revised the models based on interpretation of latter instances. This iterative process 
resulted in viable models of each student’s mathematics. We reiterate that our goal 
in this paper is not to present complete models of the students’ mathematics but to 
use evidence from these models to exemplify the efficacy of the task sequence.
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Table 4 A summary of the teaching experiment sessions 

Session Month Task Reasoning supported 

1 February Faucet task Construct numerous directional 
relationships 

2 March Faucet task Construct a quantitative coordinate 
system and graph directional 
relationships 

3 March Faucet task Reason emergently to represent 
directional relationships 

4 March Growing triangle task Construct an increasing by increasing 
amounts relationship 

5 March Pausing triangle task 
Shrinking triangle task 

Explicitly reason emergently 
Construct a decreasing by decreasing 
amounts relationship 

6 April Growing trapezoid task Construct an increasing by decreasing 
amounts relationship 

7 April Triangle/rectangle task Construct an increasing by constant 
amounts relationship 
Differentiate between nonlinear and 
linear relationships 

8 April Triangle/rectangle task Graph nonlinear and linear 
relationships

4 Building to Nonlinear and Linear Growth: A Task 
Sequence with Student Work 

In this section, we describe most of the final task sequence that supported students 
reasoning covariationally to construct and graphically represent many of the basic 
types of covariational relationships (Table 3) and differentiate between nonlinear and 
linear relationships. For each task, we first describe the task and how it relates to 
our goals for student learning. We then present results highlighting how Vicente and 
Lajos engaged in the task and connect their activity back to our goals and theoret-
ical framework. Notably, all tasks were situated in an experientially real situation 
(Gravemeijer & Doorman, 1999) that entailed quantities we intended to be conceived 
as varying smoothly (i.e., entail smooth variation). As we are interested in middle 
school students’ initial variational and covariational reasoning, we did not design 
tasks with eliciting smooth continuous variational reasoning in mind.
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4.1 The Faucet Task: Gross Covariational Reasoning 
and Emergent Thinking 

We designed the Faucet Task (https://ggbm.at/rdxkrwek; see Fig. 6 for screenshots 
of initial applet) for two primary purposes. First, the Faucet Task provides students 
repeated opportunities to engage in smooth covariational reasoning in which one 
quantity (temperature) increased, decreased, or remained constant as the other quan-
tity (amount of water) increased or decreased, reflecting the directional relationships 
in Table 3. Second, we designed this task to have students consider how to represent 
two changing quantities as an emergent trace in a quantitative coordinate system. 

4.1.1 Students’ Quantification and Directional Covariation 
in the Faucet Task 

To support students’ quantification, at the outset of the Faucet Task, we present 
students with a GeoGebra applet intending to represent a faucet with water coming 
out (Fig. 6). Students can use red and blue sliders to smoothly turn the hot and cold 
knobs on and off. As they do so, the rectangle below the faucet smoothly increases 
or decreases in width to represent the changing amount of water leaving the faucet. 
Further, the color of the water changes to represent the water’s changing temperature 
(darker red for hotter, darker blue for colder). Initially, our goal is to provide students 
with the opportunity to construct quantities within the situation. 

After Vicente and Lajos explored the applet, the teacher-researcher (TR) asked 
them what quantities they can measure, with the intention of discussing water temper-
ature and amount of water leaving the faucet (e.g., flow rate, water pressure). Vicente 
quickly identified “temperature or direction of the knobs” as quantities we could 
consider, with Lajos adding “the degree of the [knob]”. Shortly thereafter, Vicente 
described the “speed” of the water as another quantity, which we referred to as the 
“amount of water” or “volume” throughout the rest of the task. Both students had 
constructed amount of water and water temperature as quantities in the situation.

Fig. 6 Several screenshots for Scenario A of the Faucet Task with the cold-water knob being turned 
all the way on 

https://ggbm.at/rdxkrwek
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After students describe water temperature and amount of water, the TR further 
describes the faucet system in relation to an “engineering problem.” The applet 
reflects that, situationally, if only cold water is turned on then the temperature of the 
water leaving the faucet is the constant temperature of groundwater. Similarly, if only 
hot water is turned on, then the temperature of the water is the constant temperature 
determined by the hot water heater’s settings. This conversation includes describing 
why water feels as if it is warming up when the hot knob is first turned due to the loss 
of heat of stagnant water in the hot water pipe. By describing the situation, we intend 
to provide opportunities for students to conceive a situation in which one quantity 
(temperature) remains constant while the second quantity (amount of water) varies. 

After this conversation, we begin to pose questions intended to support students’ 
covariational reasoning. For each prompt, both the hot and cold knobs start halfway 
on. We ask students to predict what will happen to water temperature and amount of 
water leaving the faucet for the following prompts, with the directional relationship 
between (amount of water, temperature) noted in brackets: 

(A) they turn the cold knob all the way on [increasing, decreasing] (i.e., Fig. 6), 
(B) they turn the cold knob off [decreasing, increasing], 
(C) they turn the hot knob all the way on [increasing, increasing], and 
(D) they turn the hot knob off [decreasing, decreasing]. 

Additionally, we ask students to explore how the same two quantities will vary 
when: 

(E) the hot knob stays off and the cold knob is turned on and/or off 
[increasing/decreasing, constant] and 

(F) the cold knob stays off and the hot knob is turned on and/or off 
[increasing/decreasing, constant]. 

Our goal is to support students in engaging in directional covariational reasoning 
with either quantity increasing, decreasing, or remaining constant reflecting each 
directional relationship in Table 3. Additionally, we intend to foreshadow for students 
the notion that graphs can be producible in different directions (i.e., support their 
emergent thinking). 

Vicente and Lajos had little difficulty describing how each quantity changes as 
the knobs are turned. For instance, addressing Prompt B, Vicente quickly described, 
“I think that it’ll only be hot water [left running]. So temperature will increase, but 
volume will decrease because it’s less water.” Addressing Prompt D, he described, 
“it’ll be more cold, like the temperature will go down. And I think less water will be 
pouring out of the faucet.” Further, when asked to address Prompts E and F, Vicente 
identified in each case that temperature would remain the same while the amount of 
water varied. For instance, addressing Prompt F, Vicente described, “Temperature is 
going to stay the same, and less water will be coming out as you turn the knob.” 

There are several notable features from Vicente’s activity. First, based on the 
active nature of his utterances describing changing quantities (e.g., “temperature 
will increase, but volume will decrease,” “less water will be coming out as you turn 
the knob”), we infer Vicente engaged in (at least) smooth variational reasoning as he
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Fig. 7 a The Faucet Task applet with an additional thermometer and pink segment below the water 
and b the next applet showing red and pink segments on the vertical and horizontal axis 

developed smooth images of change, including varying temperature, amount of water, 
and the turning of the knobs. We note that since Vicente never explicitly referred to 
sub-intervals of either quantity, we do not classify his reasoning as smooth continuous 
variational reasoning; student reasoning compatible with Vicente’s motivated our 
modification of Thompson and Carlson’s (2017) variational reasoning framework. 

Second, Vicente’s quantitative understanding of the situation supported him in 
reaching numerous (accurate) conclusions regarding the directional relationships 
between temperature and amount of water. This included situations in which one 
quantity changed as the other quantity remained constant. Third, Vicente consistently 
described how both the amount of water and temperature changed as a knob was 
turned without ever referring to sub-intervals, which is indicative of his engaging in 
(at least) smooth covariational reasoning. 

4.1.2 Students Developing Graphing Meanings Via the Faucet Task 

Once students have described each relationship covariationally, we ask a series 
of prompts designed to support students in constructing a quantitative coordinate 
system. First, we present a revised applet that includes a thermometer to gauge the 
water temperature and a horizontal pink line segment below the rectangle corre-
sponding to the rectangle’s width to represent the amount of water leaving the faucet 
(Fig. 7a).3 We present these segments for two reasons. First, the red segment provides 
students a way to describe temperature changing without referring to the color of 
the water. Second, by using vertical and horizontal linear segments to represent the 
quantities’ magnitudes, we intend to foreshadow a similar representation in the next 
applet. In that applet, we present students what we intend to be a quantitative coordi-
nate system, with temperature represented by a red segment on the vertical axis and 
amount of water represented by a pink segment on the horizontal axis (i.e., Fig. 7b).

3 Depending on time constraints, we sometimes have the thermometer and pink segment as two 
different tasks and sometimes present them simultaneously, as we did in this case. 
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Lajos and Vicente interpreted the segment lengths as representing variations in the 
disembedded quantities. Describing a situation in which the hot knob is turned on, 
Lajos described, “the temperature will increase [motioning his finger in an upward 
direction], and the pink segment [putting two fingers together then moving them apart 
horizontally] will get wider.” Lajos characterized each segments’ variation based on 
his conception of the quantities in the situation. Also, like Vicente, Lajos’s words 
(e.g., “temperature will increase”) and actions (e.g., smooth motions with his fingers) 
are indicative of at least smooth variational reasoning. 

After students describe what each segment represents situationally, we move to 
the next applet showing a red and a pink segment on the vertical and horizontal axis, 
respectively (Fig. 7b). Hoping to support students in conceiving of a quantitative 
coordinate system, the TR asks them to describe what will happen to each segment 
for Prompts A–F described above. 

After observing the applet, Lajos and Vicente described how the segments vary 
based on their understanding of how the quantities change situationally. For example, 
when tasked with describing how the segments vary for Prompt D, the following 
conversation ensued: 

Lajos The temperature will decrease and [pause] the water will decrease. 
TR So the amount of water will decrease, and you said, why will the temperature 

decrease? 
Lajos Because since the cold is still on, and temp. The hot water will, ah, you’re 

turning it off, and the cold is still on so it will decrease. 

[The TR asked Lajos to describe what that means for the segments.] 

Lajos Down. 
TR Yeah, this one [pointing to the red segment on the vertical axis] will definitely 

move down, but when you say this one [pointing to the pink segment on the 
horizontal axis] will move down, what does that mean? 

Lajos Like smaller. 
TR Smaller, so it’ll go down? 
Lajos Like to the left. 

We infer Lajos disembodied amount of water and water temperature from the 
situation as he interpreted the varying segment on each axis, which is critical to his 
constructing a quantitative coordinate system. 

After describing how each segment varies for Prompts A–F, we intend to support 
students in constructing a point as a multiplicative object simultaneously representing 
water temperature and amount of water. Hence, we present another applet that now 
includes a point in the coordinate system with a horizontal magnitude corresponding 
to the endpoint of the pink segment and a vertical magnitude corresponding to the 
endpoint of the red segment (Fig. 8a). We first have students turn the knobs and 
observe the movement of the point.

Constructing a point as a multiplicative object is non-trivial. For example, 
after Vicente and Lajos turned each knob and observed the point, the following 
conversation ensued:
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Fig. 8 a The applet with the point shown and b the applet with one emergent trace resulting from 
turning the cold on

TR So, Vicente, what do you think you’ve got about [the point]? 
Vic. I think as, as the water gets warmer [turning hot knob on], [the point] moves 

farther away from [the vertical axis]. It’s still like in the same spot but like it 
goes farther away. 

TR Ohhh, why do you think it might be moving to the right? 
Vic. Maybe, because of this [motioning the cursor over the pink segment on the 

horizontal axis]. 

Whereas previously, Vicente always attended to variations in both quantities, when 
initially making sense of the point’s motion, he only attended to the horizontal motion 
dictated by the pink segment. We often observe such reasoning when students are 
first considering how to represent two quantities on a quantitative coordinate system. 

Immediately after the above interaction, Vicente again attended to only one quan-
tity as he described the point moving left when the amount of water decreased. The 
TR attempted to draw his attention to the vertical motion of the point by providing 
a prompt analogous to Prompt C (hot on): 

TR There is some cold water right now. Does the temperature go up or 
down as I turn hot all the way on? 

Vic. It’s going to go up. 
TR It’s going to go up. So this red segment is going to go up. So, what 

do you think is going to happen to that point in terms of moving up, 
down? 

Lajos Go like [Vicente interjects, Lajos continues] away from the  [motioning 
away from the horizontal axis]. 

TR It’s going to go away because there’s more water but will it go away 
like to the right and down or to the right and up? 

Lajos & Vic. [simultaneously] To the right and up [each moving his finger in the 
air to the right then up]. 

After conceiving of the point’s movement as being constrained by the varying 
magnitudes on each axis (i.e., as a multiplicative object), each student described the 
point’s motion in the quantitative coordinate system so that the point represented the 
covarying magnitudes in this and other cases.
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Once students have conceived of the point as a multiplicative object, we support 
them in engaging in emergent shape thinking. To do this, we use the ‘Trace’ feature 
of GeoGebra to trace the point as the students again address (at least a subset of) 
Prompts A–F (Fig. 8b shows the resulting trace for Prompt A). Our goal is to support 
students in imagining the graph as being produced by the trace of the point as it 
moves based on the two quantities. Further, the variety of prompts ensures students 
have opportunities to engage with graphs tracing in multiple directions. 

After having numerous opportunities to observe how graphs are created via the 
changing quantities in the situation, we present students with several completed 
graphs (e.g., Fig. 9) and ask them to predict how the knobs began and what action 
occurred to produce the graph. Our goals are to explore how students interpret a 
graph representing covarying quantities and to examine if students consider reasoning 
emergently to describe different scenarios that create the same final graph. If the 
students do not consider more than one scenario, the TR can raise a second scenario 
as a hypothetical classmate’s solution and ask students to comment on this solution. 

Addressing the first of these tasks (Fig. 9a), Vicente accurately argued, “I think 
the hot water is going to be turned on… because it looks like the temperature is 
going up… there’s more water coming out, it’s going to the right.” After this, the TR 
posited that a pair of their classmates had argued the graph was made from turning 
hot water off and asked Vicente and Lajos if these students could have been correct. 
Responding to this, and indicative of reasoning about a single graph being traceable 
in multiple directions, Vicente immediately responded: 

[M]aybe backwards. Maybe they could be thinking about it in reverse because, so you turn 
hot off right? [TR agrees] So that means if you turn it off there will be less water, so you 
go to the left [motioning from the top right point leftwards], and the temperature is going 
to go down [tracing along the curve from the top right point down to the left].... [T]hey’re 
imagining it backwards. 

Hence, Vicente, and later Lajos, reasoned about covarying quantities to describe 
two possible emergent traces producing the same final graph. 

Additionally, each student correctly described numerous ways a straight hori-
zontal line could be produced from the situation, with Lajos arguing that “everything

Fig. 9 Two examples of 
graph interpretation tasks 
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turned off then turn hot all the way on,” would produce the graph in Fig. 9b. Hence, 
the students repeatedly engaged in smooth covariational reasoning in which temper-
ature increased, decreased, or remained constant as the amount of water increased 
or decreased, reflecting the directional relationships in Table 3. 

4.2 The Growing Triangle Task 

After the Faucet Task, we have students address the Growing Triangle Task. This  
task provides students additional opportunities to reason emergently about a smoothly 
changing phenomenon in a quantitative coordinate system. Additionally, we designed 
the task to extend their covariational reasoning by supporting them in reasoning 
about amounts of change to construct and accurately represent such a relationship. 
Specifically, we intended to support students in conceiving that the triangle’s area 
grows by increasing amounts for equal changes in its base length; this relationship 
is the first type of nonlinear covariational relationship we have students construct. 

To support students in imagining and anticipating smooth variation, we first have 
them interact with a dynamic GeoGebra applet (https://www.geogebra.org/m/yu2 
5d2my) showing a smoothly growing scalene triangle (Fig. 10a). We ask them what 
quantities they could measure in this situation. To support them in attending to and 
coordinating area and base length (i.e., to reason covariationally), we highlight the 
triangle’s base length in pink and area in green. After describing the directional 
change of area and side length, we specifically ask students to identify if, for equal 
changes in the base length, the area increases by (a) more, (b) less, or (c) the same 
amount. As described in Sect. 2.1, we included a second smaller slider which allows 
students to increase the increment by which the pink length increases (e.g., to integer 
chunks versus smoothly). We have the ‘trace’ option available so that students can 
visually identify the increasing amounts of change of area in the applet (i.e., the 
increasing size of the consecutive trapezoids shown in Fig. 10b). This feature of the 
task supports students in conceiving of increasing changes in area.

Consistent with constructing quantities in the situation, when asked what quanti-
ties they could measure, Vicente quickly described, “all sides are increasing,” and, 
as the base length increases, “the area gets bigger.” Later in the session, with the 
pink length increasing in one unit chunks, Vicente described, “[the area jump] starts 
with small and… keeps getting bigger and bigger.” After conceiving of the area 
increasing by more, Vicente and Lajos approximated values for each of the amount 
of change amounts to numerically represent the increasing changes in the triangle’s 
area, as shown in Fig. 10c (i.e., 1, 3, 5, 7, and 9 represent the amounts of change). 
Hence, while initially leveraging smooth variation (e.g., “area gets bigger”), the 
students began to leverage chunky variational reasoning as they conceived of and 
numerically represented the amounts of change of area increasing by more.

https://www.geogebra.org/m/yu25d2my
https://www.geogebra.org/m/yu25d2my
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Fig. 10 a Two screenshots of the Growing Triangle Task, b the triangle shown in the applet with 
chunky changes, and c the students’ work approximating area values

4.2.1 Graphing the Relationship in the Growing Triangle Task 

Once students describe the amounts of change in area as increasing, we present them 
with what we intend to be a quantitative coordinate system with the side length 
represented by a pink line segment on the horizontal axis. We ask them to describe 
how the increasing change in the triangle’s area will correspond to the movement 
of a segment representing area on the vertical axis. Our intent is to offer students 
repeated opportunities to reason about covariational relationships and consider how 
to represent a quantity’s magnitude (or value) with a corresponding line segment. 

Indicative of disembedding area from the situation and representing it with a 
segment’s magnitude on the vertical axis, each student described that the increasing 
changes in the triangle’s area will correspond to increasing jumps of the segment 
on the vertical axis. For instance, referring to the approximated area values, Lajos 
motioned his finger by three units in an upward direction along the vertical axis from 
a point representing the area when the side length was one unit. Lajos described that 
“the area is four…the area would go to nine [motioning his pointing finger by five 
units in an upward direction along the vertical axis from the point placed by the 
TR at (0, 4)].” While Lajos described how the segment representing area increased 
by more, Vicente simultaneously motioned his finger by one unit to the right on 
the horizontal axis, indicative of reasoning about the horizontal segment varying by 
equal amounts. We infer Lajos engaged in numeric chunky continuous covariational 
reasoning to describe how the segments varied, and hence conceived of a quantitative
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coordinate system. Further, the students extended this activity by creating points in 
the coordinate system that simultaneously represented side length and area. 

The next several prompts are designed to support students’ emergent thinking. 
After students represent specific base length and area magnitudes via points as multi-
plicative objects, we change the small slider to present the triangle growing smoothly. 
We then show the dynamic point representing the two quantities’ magnitudes in the 
coordinate system and use the ‘trace’ feature to allow the students to observe how 
the point moves with the intention of supporting the students in conceiving the graph 
as being produced by an emergent trace. 

When asked to explain why the graph contains more than the five chunky points 
shown in Fig. 11a, Vicente claimed “it’s [the point] just not skipping, it’ll go like this 
[motioning his pointer finger in a curve that passes through the five points as though 
sketching a smooth concave up curve] and Lajos added, “it’s [the point is] tracing, 
tracing slowly up [motioning his fingers in the air as though sketching a smooth 
concave up curve].” After this, each student sketched a smooth curve (Fig. 11b, c) 
joining the five points on a given handout. Further, Vicente claimed, “[the area] is not 
going to be just here and here [pointing to consecutive points shown on the graph]” 
and explained that “like [the area] could be at 50, but at some point it has to be smaller 
than that like 49, 48.” Realizing that Vicente spontaneously began to describe smaller 
sub-intervals of the changing area, the TR asked him if the area’s value must ever 
be 48.5. Possibly indicative of Vicente engaging in smooth continuous variational 
reasoning, he quickly agreed that the area must take on such a value. However, the 
TR did not provide additional follow-up questions to allow us to claim definitively 
if Vicente was engaging in smooth continuous variational reasoning.

4.2.2 The Pausing and Shrinking Triangle Tasks: Examining Students’ 
Emergent Reasoning 

To investigate the extent to which the students are attending to the two intended 
quantities and to examine their potential emergent thinking, we include two follow-
up tasks. In the Pausing Triangle Task, we present a video showing the same smoothly 
growing triangle. However, twice in this video, the triangle’s growth pauses. In the 
Shrinking Triangle Task, we present a video showing the same triangle, but with its 
side length and area decreasing from their maximum values until they are both zero. In 
each case, we intend to support the students in attending to the two changing quantities 
in the situation and considering how the new features of the situation (pauses, going in 
reverse) do or do not influence either their graph or the trace producing their graph. An 
added affordance of the Shrinking Triangle Task is that students have the opportunity 
to describe a decreasing by decreasing amounts relationship; this relationship is the 
second type of nonlinear covariational relationship we have students construct. 

Addressing these tasks, each student exhibited emergent thinking as they related 
their original graph to these new situations. For the Pausing Triangle Task, Lajos 
argued this new situation would have a different trace but produce the same graph. 
He explained, “it [the moving point] would stop for a few seconds here [marking a
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Fig. 11 a One screenshot from the Growing Triangle applet that includes a graphical representation 
and points produced by the 5 equal changes of side length, b, c Lajos’s and Vicente’s graphs, 
respectively

point on the curve in Fig. 11b] and then keeps going [tracing the pen on the curve] 
then stops [stops pen along the curve] and then keeps going [moves the pen along the 
curve].” Addressing the Shrinking Triangle Task, Lajos re-traced the original graph 
from the top right to the bottom left while claiming, “[the point] would start right up 
there and it would go reverse and go back down.” Likewise, Vicente claimed that the 
graph “would go backwards.” We infer each student was reasoning emergently as 
he created and interpreted graphs representing the triangle’s varying base length and 
area. Further, when addressing the Shrinking Triangle Task, the students explicitly
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described that the triangle’s area decreased by less for equal decreases in the base 
length. Hence, the students constructed a second type of nonlinear covariational 
relationship. 

4.3 The Growing Trapezoid Task: An Increasing by Less 
Relationship 

After engaging in the prior tasks, we hope students will begin to spontaneously 
examine the direction and amounts of change of a relationship and will leverage 
emergent thinking when prompted to graphically represent a relationship. We use 
the Growing Trapezoid Task (https://ggbm.at/jbk6kw8f) to examine this possibility. 
In this task, we present students with a smoothly growing figure that starts as a line, 
becomes a trapezoid, and increases until it results in a triangle (Fig. 12a). Although 
the resultant triangle is the same triangle as in the Growing Triangle Task, in this 
situation, area increases by less for equal changes in the pink length, which is a third 
type of covariational relationship in the task sequence. 

Relevant to the students’ quantitative and covariational reasoning, each student 
quickly responded that the “area gets bigger.” Vicente described the area increases 
by “smaller amounts,” and Lajos elaborated the consecutive amounts of change in the 
area “are smaller.” Particular to their graphing activity, the students plotted points on 
the vertical axis in a way that was indicative of leveraging a quantitative coordinate 
system. Specifically, with prompting from the TR, Vicente and Lajos worked together 
to connect the increasing amounts of change represented on the vertical axis in their 
graph in the Growing Triangle Task to corresponding decreasing amounts of change 
in this task (e.g., approximating the size of the final jump for their graph in the

Fig. 12 a The Growing Trapezoid Task and b a recreation of Vincent’s work showing area 
increasing by smaller amounts and points produced as multiplicative objects 

https://ggbm.at/jbk6kw8f
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Growing Triangle Task and using this magnitude for the first jump in this task). 
Leveraging this reasoning, Vicente plotted several points on the vertical axis that 
he conceived “jump by less.” Using these points, Vincente plotted points in the 
coordinate system representing simultaneously the growing trapezoid’s base length 
and area (Fig. 12b), which we infer represented the trapezoid’s area increasing by 
decreasing amounts for equal changes in base length. 

4.4 The Triangle/Rectangle Task 

In addition to providing another opportunity to reason emergently, the 
Triangle/Rectangle Task provides students an occasion to construct a linear covaria-
tional relationship, a fourth type of covariational relationship in the sequence. Further, 
the task provides opportunities to compare linear and nonlinear growth and consider 
how each type of relationship can be represented via graphs as emergent traces. 
In the Triangle/Rectangle Task, we present students with a smoothly growing rect-
angle next to the original triangle from the Growing Triangle Task; both figures have 
equal pink base lengths. We ask students to describe how each area is changing and to 
graphically represent the relationships between area and side length for each growing 
shape. 

Once Lajos and Vicente described that each area is increasing, the TR began to 
pose questions to investigate their covariational reasoning. For instance, after Vicente 
and Lajos described the area of the rectangle as increasing, the following conversation 
ensued: 

TR How is the area of the rectangle increasing? 
Vic. I think for the rectangle, I think that it’s increasing by, keeps increasing by the 

same amount. 
TR Increasing by the same amount? 
Vic. Yeah, ‘cause it keeps adding that one block [pointing to the smallest amount of 

change rectangle] over and over again [motions hand over successive amounts 
of change rectangles, shown in Fig. 2]. 

We infer Vicente (and later Lajos) engaged in chunky continuous covariational 
reasoning to describe the area of the rectangle increasing by equal amounts for equal 
changes in base length. 

To investigate the students’ emergent shape thinking, we then asked the students 
to graph the relationship between area and side length for each growing shape on 
a handout with the area and side length represented on the vertical and horizontal 
axes, respectively. Watching the applet with side length increasing in increments of 
1, Lajos leveraged chunky continuous variational reasoning as he used his fingers to 
indicate the segment representing the rectangle’s area would jump by equal amounts 
along the vertical axis. Justifying these equal changes along the vertical axis, he 
described, “Because all of the [smaller] rectangles (shown in Fig. 2) are equal sized, 
so it [the increase in area] has to be the same amount.” After this, Vicente also engaged
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in chunky continuous covariational reasoning as he plotted points that represented 
the area changes described by Lajos vertically and corresponding equal side length 
changes horizontally (Fig. 13a). As Vicente plotted points, Lajos described that the 
points correspond to “both of them” referring to the rectangle’s base length and area. 
After Vicente plotted the last point, the TR changed the smaller slider to change the 
applet from playing in chunks to smoothly and asked “and what if I have it playing, 
sort of, smoothly?” Immediately, and indicative of engaging in smooth covariational 
reasoning and emergent shape thinking, Lajos picked up the marker, said “it would be 
like this,” and sketched a straight line through the points Vicente plotted (Fig. 13b). 

Shortly after this, the TR prompted the students to graphically represent the 
triangle’s area and side length on the same coordinate system. The students recalled 
their work in the prior sessions to sketch a smooth concave up curve to represent 
this relationship (Fig. 13c). Hence, the students were able to leverage a combina-
tion of their chunky continuous and smooth covariational reasoning to conceive of 
both nonlinear and linear relationships. Further, they graphically represented each 
relationship via an emergent trace on a quantitative coordinate system.

Fig. 13 a Vicente’s plotted points, b Lajos finishing sketching a straight line, and c the pair’s graph 
with the curve representing the triangle’s base length and area 



Constructing Covariational Relationships and Distinguishing … 161

5 Discussion 

We first discuss contributions this chapter provides to the literature on students’ 
covariational reasoning. We then relate our task design to the theoretical framework 
and provide implications for developing other mathematical ideas. We conclude with 
areas for future research. 

5.1 Middle School Students’ Covariational Reasoning 

In this chapter, we explored the possibility of middle school students constructing and 
reasoning about basic types of covariational relationships (Table 3), which supports 
them in differentiating between nonlinear and linear relationships. Through the task 
sequence, students had repeated opportunities to construct numerous directional 
relationships. Such activity was foundational for the students’ later activity as they 
characterized covariational relationships with differing amounts of change; Table 5 
presents all of the directional and amounts of change relationships Lajos and Vicente 
constructed. Further, we described how such covariational reasoning supported 
students’ emergent reasoning as they accurately constructed and interpreted graphs 
tracing in numerous directions with varying concavities. 

Table 5 The directional and amounts of change covariational relationships Vicente and Lajos 
constructed with the first quantity in the Faucet Task being amount of water 

First quantity Directional change in second quantity 
(task where student experienced) 

Amounts of change in second quantity 
(task where student experienced) 

Increasing Constant (Faucet Task, Scenarios E 
and/or F) 

– 

Increasing, (Faucet Task, Scenario C; 
Growing Triangle Task; Growing 
Trapezoid Task) 

Increasing by the same amount 
(rectangle’s area in Triangle/Rectangle 
task) 

Increasing by more (triangle’s area in 
Growing Triangle task) 

Increasing by less (trapezoid’s area in 
Growing Trapezoid task) 

Decreasing (Faucet Task, Scenario A) – 

Decreasing Constant (Faucet Task, Scenarios E 
and/or F) 

– 

Increasing (Faucet Task, Scenario B) – 

Decreasing (Faucet Task, Scenario D; 
Shrinking Triangle Task) 

Decreasing by less (triangle’s shrinking 
area in Shrinking Triangle task)
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Throughout our presentation of the tasks, we explicitly connected our task design 
to our theoretical framing. Compatible with the Learning Through Activity frame-
work described by Simon and colleagues (e.g., Simon et al., 2018), our goal was 
to design a task sequence that supported students in gradually developing ways of 
thinking that would eventually lead to their constructing sophisticated mathemat-
ical understandings. We intend for such descriptions to serve as a resource for other 
researchers’ and teachers’ efforts at adapting these tasks or designing new tasks that 
could afford similar shifts in students’ reasoning. 

In addition to providing empirical examples of middle school students 
constructing numerous covariational relationships, we extend Thompson and 
Carlson’s (2017) variational and covariational framework to include smooth varia-
tional and smooth covariational reasoning. We provide empirical examples of middle 
school students first engaging in gross and smooth covariational reasoning prior to 
engaging in chunky continuous covariational reasoning. Consistent with the conjec-
ture of Castillo-Garsow et al. (2013), smooth reasoning seemed to entail a capacity to 
engage in chunky reasoning, with the latter reasoning supporting students in further 
characterizing their conceived relationships. These forms of reasoning interplayed 
productively with the students’ meanings for quantitative coordinate systems and 
points as multiplicative objects as students constructed and interpreted graphs as 
emergent traces, “with the trace being a record of the relationship between covarying 
quantities” (Moore & Thompson, 2015, p. 785). 

5.2 Task Design in Relation to Our Theoretical Framework 

We highlight that each part of the Faucet Task involved (almost all) of Prompts 
(A)–(F). We conjecture these repeated opportunities were critical for the students’ 
developing graphing meanings as they considered how to represent a relationship via 
a point as a multiplicative object constrained by the motions of segments on axes. 
Further, their directional covariational reasoning in the Faucet Task laid the foun-
dation for their later activity discerning the amounts of change of one quantity with 
respect to a second quantity in the tasks that followed. In these latter tasks, the students 
leveraged a combination of chunky continuous and smooth covariational reasoning 
to construct and graphically represent numerous nonlinear and linear relationships. 

We contend the ability for students to change the intervals by which an applet’s 
parameter varied from smooth to chunky was critical. By first engaging with smoothly 
changing phenomena, Vicente and Lajos developed smooth images of change. 
However, and as we contended elsewhere (Paoletti & Moore, 2017), smooth thinking 
alone is not sufficient for discerning the amounts of change of one quantity with 
respect to another. Hence, changing the parameter via the slider also supported 
students in developing chunky images of the situation, which was critical to them 
constructing the different covariational relationships in Table 5. 

Relatedly, across all students we interviewed in the larger design experiment, using 
smoothly changing phenomena supported students in developing smooth images of
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change. In contrast, we conjecture tasks which present a table of values, regardless 
of the teacher’s or researcher’s intention, are more likely to elicit (at best) chunky 
covariational reasoning from students. We contend that creating mental imagery of 
smoothly changing phenomena from a table of values is possible, but non-trivial; 
providing students with dynamic representations of smoothly changing phenomena 
is invaluable to their development of smooth variational and covariational reasoning 
(Castillo-Garsow et al., 2013; Johnson, 2020; Stevens et al., 2017). 

5.3 Implications for Developing Other Mathematical Ideas 

An immediate consequence of constructing various nonlinear and linear relationships 
is that students can experience an intellectual need (Harel, 2008) to further differ-
entiate between types of covariational relationship (or function) classes that exhibit 
similar change patterns. For example, both quadratic and exponential relationships 
can exhibit growth such that the second quantity increases by an increasing amount 
for equal changes of the first quantity. As described by Vishnubhotla (2020), once 
students identify such a similarity, they may further explore numeric relationships to 
identify patterns. Hence, once students have repeated experiences constructing and 
representing covarying quantities, other representations, such as tables of values, 
can be useful as they further differentiate between various forms of change (beyond 
linear versus nonlinear). 

To exemplify this, we turn to Vicente and Lajos’s activity described in Sect. 4.2. 
Specifically, after identifying numeric values for specific amounts of change (+ 1, 
+ 3, + 5, etc.) the pair identified that these amounts of changes were changing 
by a constant amount. As our goal in this study did not entail students developing 
meanings for quadratic relationships, we did not design tasks or prompts to explore 
this reasoning further. However, such activity supported this pair, and other students 
(Mohamed et al., 2020), in identifying the defining characteristic of quadratic growth 
(Ellis, 2011; Lobato et al., 2012). Hence, the presented task sequence has the poten-
tial to lay a foundation for students developing meanings for specific nonlinear 
relationships. 

5.4 Concluding Remarks and Areas for Future Research 

We contend that providing middle school students opportunities to reason about 
dynamically changing quantities to construct basic types of covariational relation-
ships can serve as a foundation for their developing meanings for various functional 
relationships (Thompson & Thompson, 1995). There is a further need to develop or 
adapt tasks that extend middle school students’ covariational and emergent thinking 
to support them in developing meanings for other relationships as described by other
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researchers, including quadratic relationships (Ellis, 2011; Lobato et al., 2012), expo-
nential relationships (Confrey & Smith, 1994, 1995; Ellis et al., 2015; Thompson, 
2008), and possibly even trigonometric relationships (Moore, 2014). 

In addition to designing or adapting tasks to foster students’ thinking, there is also 
a need to investigate ways to scale a task sequence like this one to be effective in larger 
settings (e.g., whole class). Based on a pilot whole class teaching experiment with 
6th-grade students, we conjecture there is a need to provide students with sufficient 
opportunities to reflect on their activity for them to develop stable meanings that 
entail covariational reasoning and emergent thinking. Such reflective activities can 
further support students in developing stable meanings for graphs, relationships, and 
various relationship classes. Hence, we call for further research on how to make 
task sequences like the one presented in this chapter both productive in whole class 
settings and usable by middle school teachers everywhere. Such research has the 
potential to impact the teaching and learning of middle school mathematics across 
the world, as such an approach can support all students in developing foundational 
knowledge and ways of thinking that are critical to their algebra learning. 

Acknowledgements This material is based upon work supported by the Spencer Foundation under 
Grant No. 201900012. We thank Allison Gantt and Julien Corven for their feedback. 

References 

Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning 
while modeling dynamic events: A framework and a study. Journal for Research in Mathematics 
Education, 33(5), 352–378. 

Carlson, M. P., Larsen, S., & Lesh, R. (2003). Modeling dynamic events: A study in applying 
covariational reasoning among high performing university students. In R. Lesh & H. Doerr (Eds.), 
Beyond constructivism in mathematics teaching and learning: A models & modeling perspective 
(pp. 465–478). Lawrence Erlbaum. 

Castillo-Garsow, C., Johnson, H. L., & Moore, K. C. (2013). Chunky and smooth images of change. 
For the Learning of Mathematics, 33(3), 31–37. 

Cobb, P., Confrey, J., diSessa, A. A., Lehrer, R., & Schauble, L. (2003). Design experiments in 
educational research. Educational Researcher, 32(1), 9–13. 

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. 
Educational Studies in Mathematics, 26, 135–164. 

Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of 
exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86. 

Crisp, G., Nora, A., & Taggart, A. (2009). Student characteristics, pre-college, college, and environ-
mental factors as predictors of majoring in and earning a STEM degree: An analysis of students 
attending a Hispanic serving institution. American Education Research Journal, 46(4), 924–942. 

De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2007). The illusion of linearity: 
From analysis to improvement (Vol. 41). Springer Science & Business Media. 

Ellis, A. B. (2011). Middle school algebra from a functional perspective: A conceptual analysis of 
quadratic functions. In L. R. Wiest & T. Lamberg (Eds.), Proceedings of the 33rd Annual Meeting 
of the North American Chapter of the International Group for the Psychology of Mathematics 
Education (pp. 79–87). University of Nevada Reno.



Constructing Covariational Relationships and Distinguishing … 165

Ellis, A. B., Özgür, Z., Kulow, T., Williams, C. C., & Amidon, J. (2015). Quantifying exponential 
growth: Three conceptual shifts in coordinating multiplicative and additive growth. The Journal 
of Mathematical Behavior, 39, 135–155. 

Esteley, C. B., Villarreal, M. E., & Alagia, H. R. (2010). The overgeneralization of linear models 
among university students’ mathematical productions: A long-term study. Mathematical Thinking 
and Learning, 12(1), 86–108. 

Frank, K., & Thompson, P. W. (2021). School students’ preparation for calculus in the United States. 
ZDM—Mathematics Education, 53(3), 549–562. https://doi.org/10.1007/s11858-021-01231-8 

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A 
calculus course as an example. Educational Studies in Mathematics, 39(1–2), 111–129. 

Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, part I: Focus on 
proving. ZDM Mathematics Education, 40, 487–500. 

Hiebert, J., Stigler, J. W., Jacobs, J. K., Givvin, K. B., Garnier, H., Smith, M., Hollingsworth, H., 
Manaster, A., Wearne, D., & Gallimore, R. (2005). Mathematics teaching in the United States 
today (and tomorrow): Results from the TIMSS 1999 video study. Educational Evaluation and 
Policy Analysis, 27(2), 111–132. 

Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying quantities 
involved in rate of change. The Journal of Mathematical Behavior, 31(3), 313–330. 

Johnson, H. L. (2020). Task design for graphs: Rethink multiple representations with variation 
theory. Mathematical Thinking and Learning, 1–8. https://doi.org/10.1080/10986065.2020.182 
4056 

Johnson, H. L., McClintock, E., & Hornbein, P. (2017). Ferris wheels and filling bottles: A case of a 
student’s transfer of covariational reasoning across tasks with different backgrounds and features. 
ZDM, 49(5). 

Joshua, S., Musgrave, S., Hatfield, N., & Thompson, P. W. (2015). Conceptualizing and reasoning 
with frames of reference. In T. Fukawa-Connelly, N. E. Infante, K. Keene, & M. Zandieh (Eds.), 
Proceedings of the 18th Meeting of the MAA Special Interest Group on Research in Undergraduate 
Mathematics Education (pp. 31–44). RUME. 

Lee, H. (2016). Just go straight: Reasoning within spatial frames of reference. In M. B. Wood, E. 
E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th Annual Meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics Education 
(pp. 278–281). The University of Arizona. 

Lee, H. Y., Hardison, H. H., & Paoletti, T. (2020). Foregrounding the background: Two uses of 
coordinate systems. For the Learning of Mathematics, 40(1), 32–37. 

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, 
learning, and teaching. Review of Educational Research, 60(1), 1–64. 

Liang, B., & Moore, K. C. (2020). Figurative and operative partitioning activity: Students’ meanings 
for amounts of change in covarying quantities. Mathematical Thinking and Learning. 

Litke, E. (2020). The nature and quality of algebra instruction: Using a content-focused observation 
tool as a lens for understanding and improving instructional practice. Cognition and Instruction, 
38(1), 57–86. 

Lobato, J., Hohensee, C., Rhodehamel, B., & Diamond, J. (2012). Using student reasoning to inform 
the development of conceptual learning goals: The case of quadratic functions. Mathematical 
Thinking and Learning, 14(2), 85–119. 

Loveless, T. (2013). The algebra imperative: Assessing algebra in a national and international 
context. Brookings. Retrieved November 19, 2021 from https://www.brookings.edu/wp-content/ 
uploads/2016/06/Kern-Algebra-paper-8-30_v14.pdf 

Mohamed, M. M., Paoletti, T., Vishnubhotla, M., Greenstein, S., & Lim, S. S. (2020). Supporting 
students’ meanings for quadratics: Integrating RME, quantitative reasoning and designing for 
abstraction. In Proceedings of the Annual Meeting of the Psychology of Mathematics Education
- North  America  (pp. 193–201). 

Moore, K. C. (2014). Quantitative reasoning and the sine function: The case of Zac. Journal for 
Research in Mathematics Education, 45(1), 102–138.

https://doi.org/10.1007/s11858-021-01231-8
https://doi.org/10.1080/10986065.2020.1824056
https://doi.org/10.1080/10986065.2020.1824056
https://www.brookings.edu/wp-content/uploads/2016/06/Kern-Algebra-paper-8-30_v14.pdf
https://www.brookings.edu/wp-content/uploads/2016/06/Kern-Algebra-paper-8-30_v14.pdf


166 T. Paoletti and M. Vishnubhotla

Moore, K. C. (2021). Graphical shape thinking and transfer. In C. Hohensee & J. Lobato (Eds.), 
Transfer of learning: Progressive perspectives for mathematics education and related fields 
(pp. 145–171). Springer. 

Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (2019). Pre-service teachers’ 
figurative and operative graphing actions. The Journal of Mathematical Behavior, 56. 

Moore, K. C., & Thompson, P. W. (2015). Shape thinking and students’ graphing activity. In T. 
Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the Eighteenth 
Annual Conference on Research in Undergraduate Mathematics Education (pp. 782–789). West 
Virginia University. 

Paoletti, T. (2015). Students’ reasoning when constructing quantitatively rich situations. In T. 
Fukawa-Connolly, N. E. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the Eighteenth 
Annual Conference on Research in Undergraduate Mathematics Education (pp. 845–852). West 
Virginia University. 

Paoletti, T. (2019). Support students’ understanding graphs as emergent traces: The faucet task. In 
M. Graven, H. Venkat, A. Essien, & P. Vale (Eds.), Proceedings of the 43rd Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 3, pp. 185–192). PME. 

Paoletti, T., Lee, H. Y., & Hardison, H. (2018). Static and emergent thinking in spatial and quan-
titative coordinate systems. In T. E. Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings 
of the 40th Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (pp. 1315–1322). University of South Carolina & Clemson 
University. 

Paoletti, T., & Moore, K. C. (2017). The parametric nature of two students’ covariational reasoning. 
The Journal of Mathematical Behavior, 48, 137–151. https://doi.org/10.1016/j.jmathb.2017. 
08.003 

Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspec-
tive: Simultaneous continuous variation. In S. B. Berenson & W. N. Coulombe (Eds.), Proceed-
ings of the Annual Meeting of the Psychology of Mathematics Education—North America (Vol. 
1, pp. 298–304). North Carolina State University. 

Sass, T. R. (2015). Understanding the STEM pipeline. Georgia State University. 
Simon, M. A., Kara, M., Placa, N., & Avitzur, A. (2018). Towards an integrated theory of math-
ematics conceptual learning and instructional design: The learning through activity theoretical 
framework. The Journal of Mathematical Behavior, 52, 95–112. 

Smith, J. P., & Thompson, P. W. (2008). Quantitative reasoning and the development of algebraic 
reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades 
(pp. 95–132). Lawrence Erlbaum Associates. 

Steffe, L. P., & Olive, J. (2010). Children’s fractional knowledge. Springer. 
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles 
and essential elements. In R. A. Lesh & A. E. Kelly (Eds.), Handbook of research design in 
mathematics and science education (pp. 267–307). Erlbaum. 

Stevens, I. E., Paoletti, T., Moore, K. C., Liang, B., & Hardison, H. (2017). Principles for designing 
tasks that promote covariational reasoning. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, & 
S. Brown (Eds.), Proceedings of the 20th Annual Conference on Research in Undergraduate 
Mathematics Education (pp. 928–936). 

Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures 
for developing grounded theory (2nd ed.). Sage. 

Thompson, A. G., & Thompson, P. W. (1995). A cognitive perspective on the mathematical prepa-
ration of teachers: The case of algebra. In C. B. Lacampagne, W. Blair, & J. Kaput (Eds.), The 
algebra initiative colloquium (pp. 95–116). U. S. Government Printing Office. 

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foun-
dations of mathematics education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sèpul-
veda (Eds.), Proceedings of the Annual Meeting of the International Group for the Psychology 
of Mathematics Education (Vol. 1, pp. 31–49).

https://doi.org/10.1016/j.jmathb.2017.08.003
https://doi.org/10.1016/j.jmathb.2017.08.003


Constructing Covariational Relationships and Distinguishing … 167

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In S. A. Chamber-
lain  & L. L. Hatfield  (Eds.),  New Perspectives and Directions for Collaborative Research in 
Mathematics Education: Papers from a Planning Conference for WISDOMe (Vol. 1, pp. 33–56). 
University of Wyoming College of Education. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation and functions: Foundational ways 
of mathematical thinking. In J. Cai (Ed.), Compendium for research in mathematics education 
(pp. 421–456). National Council of Teachers of Mathematics. 

Thompson, P. W., Carlson, M. P., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with 
magnitudes: A hypothesis about foundational reasoning abilities in algebra. In L. P. Steffe, K. C. 
Moore, L. L. Hatfield, & S. Belbase (Eds.), Epistemic algebraic students: Emerging models of 
students’ algebraic knowing (pp. 1–24). University of Wyoming. 

Thompson, P. W., & Harel, G. (2021). Ideas foundational to calculus learning and their links to 
students’ difficulties. ZDM Mathematics Education, 53(3), 507–519. https://doi.org/10.1007/s11 
858-021-01270-1 

Thompson, P. W., Hatfield, N. J., Yoon, H., Joshua, S., & Byereley, C. (2017). Covariational 
reasoning among U.S. and South Korean secondary mathematics teachers. The Journal of 
Mathematical Behavior, 48, 95–111. https://doi.org/10.1016/j.jmathb.2017.08.001 

Vishnubhotla, M. (2020). The role of covariational reasoning in pre-service teachers’ meanings 
for quadratic and exponential relationships. (Unpublished doctoral dissertation). Montclair State 
University.

https://doi.org/10.1007/s11858-021-01270-1
https://doi.org/10.1007/s11858-021-01270-1
https://doi.org/10.1016/j.jmathb.2017.08.001


A Conceptual Analysis of Early Function 
Through Quantitative Reasoning 

Amy Ellis, Zekiye Özgür, and Muhammed Fatih Dogan ˘ 

1 Introduction: Functions as Rates of Change 

The concept of function is a unifying principle in mathematics instruction (Krüger, 
2019; Panaoura et al., 2017; Steele et al., 2013), and recommendations to support 
students’ algebraic reasoning advocate the introduction of function ideas in the 
middle grades (e.g., Australian Curriculum, Assessment and Reporting Authority 
[ACARA], 2020; National Governor’s Association Center for Best Practices, 2010; 
Turkish Ministry of National Education [MEB], 2018; U.K. Department for Educa-
tion, 2009). A strong understanding of function is critical not only for success in 
algebra, but also for students who intend to study geometry, statistics, calculus, 
and other content courses essential in many STEM fields (Oehrtman et al., 2008). 
Despite the instructional emphasis on function throughout secondary school, there is 
copious evidence of students’ challenges in developing a meaningful understanding 
of function. Students exit secondary school viewing functions in terms of symbolic 
manipulations, relying on memorized rules and procedures (Carlson & Oehrtman, 
2005; Oehrtman et al., 2008; Stephens et al., 2017). Many think a relation is only a 
function if it is definable by a single algebraic formula (Carlson & Oehrtman, 2005; 
Clement, 2001; Vinner, 1983), and students can struggle to distinguish variables 
from parameters (Best & Bikner-Ahsbahs, 2017). Relations that are not continuous 
and do not have a one-to-one correspondence are often not recognized as func-
tions (Clement, 2001; Leinhardt et al., 1990; Vinner & Dreyfus, 1989), and students
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often believe that a function’s graph should be continuous, symmetric, or constantly 
increasing or decreasing (Jones, 2006; Vinner, 1983). Students also struggle to find 
outputs and inputs (McGowen et al., 2000), to generate appropriate definitions of 
functions (Panaoura et al., 2017), and to meaningfully translate across representations 
(McGowen et al., 2000). 

Many of the above documented challenges are an understandable consequence 
of instruction that treats function as a static relation, predicated on a set theoretic 
image, with an emphasis on procedural manipulation and algebraic representations. 
Set theoretic notions of function are certainly important, particularly for higher math-
ematics such as analysis, graph theory, and other topics, but we argue this should 
not be the foundation for introducing function concepts in the middle grades. As 
Yoon and Thompson (2020) discussed, instruction on function early in the twen-
tieth century emphasized variability and change (Krüger, 2019), and it was only in 
recent decades that a static treatment of function as object became prominent. Now, 
in many secondary schools across the globe, function is commonly introduced as a 
correspondence relation between sets (McCulloch et al., 2020), although some newer 
curricula have also begun to address rate-of-change approaches. For instance, this 
can be seen in Turkey (Akkoc & Tall, 2005; Yılmaz et al., 2020), in Israel and the 
U.K. (Ayalon et al., 2017), and in the U.S. (Thompson & Carlson, 2017). 

Using the correspondence definition when introducing function can encourage 
students to rely on representational cues to determine whether a given relation is a 
function. Oehrtman et al. (2008) pointed out that this treatment removes the intel-
lectual need to develop functional relationships: “To use the modern definition of 
function in an introduction to the function concept is to present students with a solu-
tion to problems of which they cannot conceive” (p. 4). Consequently, even when 
students can produce a formal definition of function, they often still hold a restricted 
concept image (Clements, 2001; Sajka, 2003; Vinner, 1983; Vinner & Dreyfus, 1989). 
Ayalon et al. (2017) argued that instead we should promote a dual view of function 
that represents not only the correspondence perspective, but also an emphasis on 
function as a representation of covariation. 

Following this recommendation, we propose that leveraging situations involving 
covarying quantities that students can observe, manipulate, and meaningfully inves-
tigate can foster their abilities to reason flexibly about function ideas as representa-
tions of dynamically changing events (Carlson et al., 2002). By quantities, we mean 
schemes composed of a person’s conception of an object, a quality of the object, 
an appropriate unit or dimension, and a process for assigning a numerical value to 
the quality (Thompson, 1994). By covariation, we refer to Saldanha and Thompson’s 
(1998) characterization. They extended Confrey and Smith’s (1994) notion of covari-
ation—as the coordination of sequences—to consider the possible imagistic founda-
tions for someone’s ability to imagine covariation. From this perspective, covariation 
entails a person visualizing a sustained image of two quantities’ values simultane-
ously. This requires coupling the two quantities to form what is called a multiplicative 
object, a conceptual object that is a uniting of two or more quantities’ magnitudes or 
values simultaneously (Saldanha & Thompson, 1998). This then enables one to attend
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to either quantity’s changing value with the understanding that at every instance, the 
other quantity also has a corresponding value (Thompson et al., 2017). 

Madison et al. (2015) characterized quantitative and covariational reasoning as 
“cross-cutting reasoning abilities that enable students to determine, describe, and 
represent patterns of change” (p. 56). As Kaput (1994) pointed out, function has 
its deepest conceptual roots in growth and joint variation. Reasoning about vari-
ation is crucial for the development of the function concept itself (Thompson & 
Carlson, 2017). Further, understanding function from a covariation perspective is key 
to mastering critical concepts in calculus and beyond, including limits, continuity, 
and average and instantaneous rates of change (Carlson & Oehrtman, 2005; Carlson 
et al., 2003; Oehrtman et al., 2008; Rasmussen, 2000; Zandieh, 2000). There is also 
a growing emphasis on a covariation approach to function in some curricula and 
instructional treatments (Cooney et al., 2010). For instance, one German curriculum 
refers to functional dependencies connected to the exploration of variation behavior 
(Krüger, 2019), and there are Israeli curricula that emphasize both covariation and 
correspondence approaches (Ayalon et al., 2017). 

Consequently, covariation is emerging as a meaningful foundation on which to 
ground functional reasoning. Leinhardt et al. (1990) argued that attending to values 
changing together is natural for students, which is supported by Confrey and Smith’s 
(1995) findings that students typically first analyze functional situations from a coor-
dinated change perspective. Similarly, Blanton and Kaput (2011) noted that “even as 
early as kindergarten, children can think about how quantities co-vary and, as early as 
first grade, can describe how quantities correspond” (p. 14). Greeno (1988, as cited in 
Leinhardt et al., 1990) reported similar findings for middle-school students. Learning 
to track two sources of information simultaneously can be useful for constructing 
ratios and rates (Ellis et al., 2020), for seeing graphs as records of constant and 
changing rate relationships (Saldanha & Thompson, 1998), and for reasoning flex-
ibly about dynamically changing events (Castillo-Garsow et al., 2013). Emphasizing 
covarying quantities in rate situations can also support students’ understanding of 
rate as a relationship, rather than as the outcome of a calculation (Herbert & Pierce, 
2012). 

Following these approaches, we offer a model for the introduction of function 
that relies on an investigation of covarying quantities. This model is situated at 
the middle-school level because we are concerned with the introduction of formal 
function instruction, rather than subsequent investigation with students who have 
already constructed functional relationships. Using linear and quadratic functions as 
an example, we describe a sequence of conceptual activities students can undergo to 
construct initial models of linear and quadratic growth.
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2 The Case of Linear and Quadratic Growth: Conceptual 
Analysis 

When considering functions from a covariation perspective, what makes a function 
linear or quadratic? Linear functions have traditionally been defined by having a 
graph that is a straight line, by having the form f (x) = ax + b, or by being a polyno-
mial function of degree zero or one (e.g., McGraw-Hill Education, 2012). Similarly, 
quadratic functions have also been defined by having parabolic graphs, by having the 
form f (x) = ax2 + bx + c, or by being a second-degree polynomial function (e.g., 
McDougal Littel, 2008). These characterizations define the phenomena of functional 
growth in terms of a function’s graph or its algebraic representation, but that presup-
poses an extant understanding of those representations and their meanings. When 
initially introducing function families, we advocate for a rate-of-change approach. 
Specifically, a relation between two co-varying quantities is linear when one quantity 
changes at a constant rate compared to the other quantity’s change, and a relation is 
quadratic when one quantity changes at a constantly-changing rate compared to the 
other quantity’s change. 

Below we introduce five conceptual acts students can undergo in order to construct 
linear and quadratic growth: (a) identify the attribute to be measured; (b) identify 
the quantities that affect the attribute; (c) imagine gross coordination; (d) imagine 
coordination of values; and (e) quantify the covariation. In order to illustrate these 
conceptual acts, we provide a specific example drawn from the context of growing 
area. In this context, students explore growing rectangles and triangles that extend in 
length from left to right (Fig. 1). Students work with a dynamic software program, 
such as Geogebra or Geometer’s Sketchpad, to drag the right side of the figure to 
increase its length, and they can also adjust each figure’s height. The relationships 
under examination are the comparison of each figure’s area to the length swept. 
These images can be adjusted to either show or hide the length and height measures 
according to the goals of the particular task. 

Fig. 1 A sweeping rectangle and a sweeping triangle
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2.1 Identify the Attribute to Be Measured 

The first conceptual act is that of identifying the attributes to be measured. In the linear 
case, the attributes are the amount of length swept and the amount of area produced 
as one drags the rectangle to sweep out length, which depends on the height of the 
rectangle. Students can sweep out different shapes, such rectangles with shorter and 
taller heights, to determine that the taller the height, the more area will be produced 
for a given amount of length swept. For the quadratic case, the attributes are also the 
amount of length swept compared to the amount of area produced, which depends 
on the height of the triangle. At this stage, determining which attributes affect the 
area should be explicitly identified, but do not yet need to be quantified. 

2.2 Identify the Quantities Affecting the Relevant Attributes 

The second conceptual act is that of identifying the quantities that affect the relevant 
attributes. In the linear case, students must quantify the amount of length swept and 
the rectangle’s height in order to produce an amount of area. One way to encourage 
this can be to ask students to come up with their own measures, such as 6 cm, 2 m, 
or 1 in. for the rectangle’s height (within our data, the students and the teacher-
researchers often shifted between units from task to task). Then, they can determine 
area amounts for various length amounts that they choose, for instance for 1 in., 2 
in., 5 in., 12 in., or 24 in. Through this process, students may notice that the area 
increases by a constant amount for every additional inch of length swept. It may be 
useful at this stage to encourage students to explore with height values other than 1 
in. (or 1 unit of any kind), because relying on a height of 1 may lead to the incorrect 
assumption that the amount of area swept is always equal to the amount of length 
swept. 

In the quadratic case, students would need to quantify both the height and the 
length, because both measures change as the triangle grows. For this reason, it may 
be effective to first provide students with a given triangle that has a 1:1 ratio of height 
to length. Students would need to be able to determine the area of a triangle, and a 
triangle with a 1:1 ratio would allow them to generalize that the triangle’s area would 
be one half the height times the length for any given length. In cases in which the 
ratio of the triangle’s height to length is not 1:1, students will benefit from being 
able to conceive the height as a ratio of the length, which we discuss in more detail 
below. At this stage, some students may notice a squaring relationship between the 
triangle’s length and area, but others may not. Students might also need support 
with appropriately determining the triangle’s area, and not, for instance, defaulting 
to determining the area using the formula for finding the area of a rectangle.
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2.3 Imagine Gross Coordination and Coordination of Values 

As students quantify and determine ways to calculate area, the idea of rate may 
begin to emerge, even if implicitly. Especially when determining area values for 
length values that increase by 1 unit, which is a common approach, students may 
use language such as “for every” or “every time”. This leads us to the third and 
fourth conceptual acts, that of imagining gross coordination and coordination of 
values. Thompson and Carlson (2017) identified six major levels of covariational 
reasoning, and as students construct covarying relationships between quantities for 
the growing figures, we have found that they may begin to do this either through 
gross coordination of values or coordination of values (Ellis et al., 2020). According 
to Thompson and Carlson (2017), gross coordination of values entails the formation 
of a gross image of quantities’ values varying together, such as, “the area increases 
as the length increases.” This act may be more prevalent in the quadratic case than 
in the linear case, due to the complexity of quantifying the relationship between area 
and length for the triangle. Students might notice in both cases that the area grows 
larger as the length grows longer, or even, in the quadratic case, that the amount that 
the area increases is growing larger as the length grows longer. 

Coordination of values entails coordinating the values of one variable, in this case 
length, with values of another variable, in this case, area, with the anticipation of 
creating a discrete collection of pairs. Thompson and Carlson (2017) indicated that 
at this level, no thought is given to intermediate values. Thus, in the linear context, 
students could indicate that the area would grow by the same amount, such as 1 m2 

or 3 m2 “every time”, but the notion of “every time” would be a discrete marker, such 
as flipping over a card, with each new flip or increase entailing an additional amount 
of area without any sense of change within the amount of length pulled. Graphs that 
students produce comparing area and length might be sets of points, without those 
points connected to form a line. In the quadratic context, coordination of values will 
be more challenging. One might see students first engaging in a nascent form of 
coordination of values by quantifying increments of length before fully quantifying 
corresponding increments of area. For instance, students might recognize that the area 
grows more for each inch of length swept than it grew the previous time, identifying 
an implicit idea of a changing rate of change without yet quantifying how the rate 
of change is changing. Students might also calculate multiple length-area pairs, but 
those pairs will remain a discrete set without attention to how area and length grows 
from one pair to the next. 

2.4 Quantify Covariation 

The fifth conceptual act is that of quantifying the covariation, which has several 
constituent parts and differs depending on whether students are constructing linear 
or quadratic growth. We discuss each in turn.
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2.4.1 Quantify Covariation for Linear Growth 

The first part of quantifying covariation for linearity is creating a ratio, by which 
we mean either a multiplicative comparison of two quantities, or a joining of two 
quantities in a composed unit (Lobato & Ellis, 2010). A multiplicative comparison 
includes a consideration of how many times as large as one thing is than another, for 
instance, determining for a rectangle with a height of 3 ft and a length of 5 ft that 
the area, 15 ft2, is three times as large as the length. A composed unit, in contrast, 
is the joining of two quantities to create a new unit, which students may then iterate 
or partition to determine other equivalent ratios (Lamon, 1994). A student could, for 
example, create a composed unit of an area-length pair, 3 ft2:1 ft, and then iterate 
that unit to form equivalent ratios such as 6 ft2:2 ft, 9 ft2:3 ft, 18 ft2:6 ft, and so 
forth. Forming a composed unit is a more rudimentary act than the development of a 
multiplicative comparison, but it is often a foundational act that can be leveraged to 
build up more robust ratio understandings. As Lobato and Ellis (2010) noted, forming 
a ratio as a measure of a real-world attribute, such as amount of area swept, requires 
isolating that attribute from other attributes (such as the amount of length swept and 
the rectangle’s height) and understanding the effect of changing each quantity on the 
attribute of interest. 

The second part of quantifying covariation is developing equivalent ratios. One  
way to support the development of equivalent ratios is to have students identify as 
many area:length pairs as they can for a given rectangle. As we noted above, this 
can initially occur through the iteration and partitioning of a composed unit. For the 
example rectangle with a height of 3 ft, for instance, students could be encouraged to 
create very large pairs (such as 636 ft2:212 ft or 3,000 ft2:1000 ft) and very small pairs 
(such as 1 ft2:1/2 ft, 0.3 ft2:0.1 ft, and 0.03 ft2:0.01 ft). This activity can encourage 
multiplicative comparisons as well, by multiplying each part of the composed unit 
to create new ratios, and by attending to the fact that the area is always three times 
as large as the length for each equivalent ratio. Students can also be encouraged to 
develop a more general strategy to determine the area for any unspecified length 
swept, x, which requires the recognition that the corresponding area will be 3x. 

The third part of quantifying covariation is creating a rate. By rate, we mean 
a reflectively abstracted constant ratio, as described by Thompson and Thompson 
(1992). If a ratio is a multiplicative comparison of two quantities, it requires viewing 
two such quantities as changing together, and treating the collection of equal ratios 
they generate as a single quantity of its own. It symbolizes the ratio structure as a 
whole while giving prominence to the constancy of the result of the multiplicative 
comparison. For instance, in order to understand the ratio 3 ft2:1 ft as a rate, one 
would need to have an image of change such that it represents an equivalence class 
of ratios, with the unit ratio simply being a convenient measure of expressing the 
growth in area for a standard unit of length. A student with this conception would 
be able to imagine any length, including an infinitesimal length, as sweeping out an 
area amount that was three times as large. 

The final conceptual act for constructing linearity is that of representing the 
constant rate of change in a general form, whether that be graphical, algebraic, or
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another form. As we mentioned above, when reasoning with coordination of values, 
students’ graphs may be collections of discrete points. As students create ratios and 
ultimately rates, their graphs may also evolve to be smooth lines. That said, given 
differences in instruction, many students may have already learned to represent any 
linear relationship as a line, regardless of their own stage of ratio reasoning. A line 
graph is therefore not a guarantee that students have constructed a rate, but one can ask 
students to think about what each point on a line represents, as well as what happens 
in between any two given points, in order to encourage the development of equiva-
lent ratios and rates. Students should also be able to ultimately express area:length 
relationships for unspecified length amounts by writing algebraic expressions such 
as A = 3L. 

2.4.2 Quantify Covariation for Quadratic Growth 

In order to quantify the covariation in the quadratic context, students must first 
quantify growth across increments. Initially, this may happen through coordination of 
values, by creating a collection of area:length pairs and then by comparing increases 
across same-size increments. For instance, consider a growing triangle with a height 
to length ratio of 1:1. Students could create multiple length:area pairs, such as (1, 
½), (2, 2), (3, 4.5), (4, 8), and (5, 12.5). By attending to the growth in area for each 
additional 1-in. length increase, one can notice that the area grows by a constantly-
changing amount: First by 1½ in.2, then by 2½ in.2, then by 3½ in.2, then by 4½ 
in.2. Quantifying the growth across increments can enable students to identify that 
the area is changing by a constantly changing amount, growing by an additional 1 
in.2 in area compared to the prior increment’s growth. Articulating that the amounts 
of area increase change at a constant rate is key for understanding quadratic growth. 

It may be natural for students to pick a standard unit of increase for the length, 
such as 1 in., and then not attend to the fact that the corresponding increases in area 
are specific to that unit of increase. This is particularly easy to do when the unit of 
increase in length is 1. As a way to combat this, one can encourage students to engage 
in repeated reasoning (Harel, 2007) by creating other collections of length:area 
pairs, but for different uniform increments of length, such as 2 in., half an inch, 
or 0.1 in.. This can also encourage the next conceptual act, which is to generalize 
across increment sizes. By generalizing across increment sizes, one recognizes that 
the ratio of change is constantly changing, regardless of the increment. What that 
value is depends on the increment size itself, but the generalizable feature is that 
the ratio always changes at a constantly-changing rate. It can be challenging for 
students to develop this generalization. In order to do so, it can be helpful to try to 
imagine changes between successive values of accumulated area and accumulated 
length, through drawing pictures and creating graphs. This can support chunky-
continuous reasoning (Thompson & Carlson, 2017), in which one envisions simulta-
neous changes between two quantities by imagining each quantity’s value changing 
by intervals of a fixed size. Ultimately, it will be useful to also support students
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to reason about very small length increments, to encourage reasoning with smooth 
continuous covariation (Thompson & Carlson, 2017). 

A closely related conceptual act is to create a constantly-changing rate of change, 
in which students must understand that the rate of the rate of change of area, when 
averaged across some increment, will remain invariant across all increments. That 
is, students can articulate that the rate of change of area is changing by a constantly-
changing rate, regardless of increment size, and that this characterizes the growth in 
area. Again, reasoning with very small increments could support the development of 
this rate of change. Further, the rate of change can be understood as dependent on 
the slope of the triangle’s hypotenuse, or the ratio of the triangle’s height to length. 
For instance, for the 1:1 triangle, the rate of increase of the area is changing by 1 in2 

for a 1-unit increase in length; the triangle’s slope is a convenient way to express a 
unit ratio. 

The final conceptual act is representing the constantly-changing rate of change in 
a general form. To do so algebraically, one can again rely on the slope of the triangle’s 
hypotenuse in developing a general expression. For instance, for a 1:1 triangle, one 
can ask students to determine the triangle’s area for any given length swept, x. First,  
one can conceive of the height in relation to the length, in this case 1x. Then the area 
is determined in relation to the length: A = ½ base * height. In this case the base and 
height are both x, so  A = 1 2 x2. In general, for any triangle with a height to length 
ratio of a:b, A = a 

2b x2. 

3 Data Examples: Students’ Reasoning with Linear 
and Quadratic Growth 

We conducted two teaching experiments, each with a pair of students, in which they 
explored the growing figures context. The first pair of students, Olivia and Wesley, 
were both eighth-grade students (age 13) who had not yet taken an algebra course. The 
second pair of students, Homer and Barney, were siblings. Homer was a rising 9th-
grade student (age 14), and Barney was a rising 7th-grade student (age 12). Homer 
had taken a beginning algebra course, but Barney had not. Both pairs of students 
engaged with both the linear and quadratic tasks. Wesley and Olivia met 10 times 
for approximately 60 min each time, and Homer and Barney met 5 times, with each 
session ranging between 60 and 90 min. We will draw on excerpts from both teaching 
experiments to illustrate students’ conceptual activities for constructing linear and 
quadratic growth.
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3.1 Identifying the Attribute and the Quantities 

The initial introduction to the growing rectangle tasks was within the context of a 
paint roller rolling out paint (Fig. 2). After drawing painted regions, we asked the 
students to consider the attributes that would affect the area of the painted rectangle. 
In order to determine the amount of area produced for both the rectangle and the 
triangle, the students pointed to the amount of length swept, and the height of each 
figure. For instance, Wesley explained that the amount of area produced depended 
on “How big it is” (pointing to the height of the rectangle), and Olivia added, “The 
distance”, meaning the total length swept. When determining how the quantities 
length and height affected the area, we asked the students to assign their own values 
to the relevant quantities. Wesley said, “I decided I would think the height would be 
1 m. So, for every 1 m it’s pulled, it [the area] gets 1 by 1 m.” 

In contrast, Homer decided to make the height of his rectangle 3 m. He explained, 
“This (pointing to the amount of area swept out with a length of 2 m) is two times 
as far as this (pointing to the amount of area swept out with a length of 1 m). Three 
times one is three, three times two is six. Six is twice as much as three.” Barney 
responded, “It’s going up the same”, which we infer he meant that the rectangle is 
adding the same amount of area for every additional meter swept. Homer agreed, 
stating, “If it’s 3 m far, three times three, it’s going up at the same rate.” By this 
agreement, we infer that Homer, like Barney, was thinking about “the same” from 
a calculational perspective. He noticed that the rectangle first had 3 m2 (for the first 
meter of length), then a total of 6 m2 (for the second meter of length), and then a total 
of 9 m2 (for the third meter of length). He had already emphasized multiplication by

Fig. 2 Drawing the painted region 
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Fig. 3 Screen capture of a movie depicting the 1:1 growing triangle 

three (“three times one is three, three times two is six”), and appeared to understand 
that the rate of increase in area was three for every meter of length pulled. 

In the quadratic case, the students also began by exploring a triangle with unspeci-
fied dimensions. This triangle looked like it had a 1:1 ratio of height to length (Fig. 3), 
and Wesley therefore assigned those values without specifying units. He said that he 
could determine the area for many different lengths by calculating “the height times 
the length divided by two”. In fact, all four students determined ways to calculate the 
area of the right triangle for lengths and heights they assigned, relying on the triangle 
area formula, area = ½ base * height. Homer also noticed a squaring relationship 
between the triangle’s length and area, by sketching a square with twice the area of 
the triangle: “It keeps squaring itself. This (the area of the square he sketched) is 
one. And then (referring to a triangle with a length and height of (2) it’s going to be 
four total, and then (referring to a triangle with a length and height of (3) it’s going 
to be nine total.” Barney replied, “So the square keeps squaring, but the triangle is 
half the square, so it’s (the length) squared divided by two.” 

3.2 Imagining Gross Coordination and Coordination 
of Values 

We saw more evidence of gross coordination in the quadratic context than in the linear 
context, which is likely due to the fact that quantifying change is more challenging 
in the quadratic context. As an example of gross coordination, after watching the 
movie of the growing triangle (Fig. 3), we asked the students to describe how the 
triangle was growing. Olivia said, “The longer it gets, the more area there is (than 
there was before).” Wesley explained, “The area grows more as you pull it (pointing 
to the length) out.” Similarly, Barney described the growing area by stating “The 
amount the triangle is growing is also growing”, by which we infer that he meant 
that the amount of area added on for each amount of length was growing larger as 
the triangle grew. At this stage, gross coordination is an appropriate way to begin to 
make sense of the triangle’s growth, and it also raises the natural question of how to 
actually quantify the nature of that growth.
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In the linear context, the students were able to reason by coordination of values 
early on. In fact, notice that in the above conversations, the idea of rate began to 
emerge, even if implicitly. For instance, Wesley pointed out that the rectangle gained 
a square meter in area for every meter it was swept. When exploring the triangle, 
Homer identified a series of areas that he compared multiplicatively, by saying “six 
is twice as much as three”, each one in relation to the length increasing by one 
unit at a time. Here it appeared that the students were coordinating the increases in 
area with length increases, but there was no evidence that they were attending to 
intermediate values between each additional meter in length. We also saw evidence 
that the students’ reasoning was discrete in their early graphs. For instance, after 
having drawn and considered a number of different rectangles, we provided the 
following graphing task to the students: “Draw a graph that shows how much paint 
has been painted so far, as the paint roller glides from left to right along the length of 
the wall.” The students created graphs based on individual points (Fig. 4a), and only 
after discussion did they decide to connect the points into a line. Olivia was the one 
exception: She created a smooth graph (Fig. 4b), and explained, “I knew it would 
line up (pointing to the tally marks she placed on each axis) because for every length 
that you’ve pulled, it should be the same amount of area.” 

The students also demonstrated a nascent form of coordination of values in the 
quadratic context. After watching a movie of a growing triangle (Fig. 3) and making 
some rough sketches comparing the area to the length, we asked the students, “Make 
a graph of it on graph paper. Do it accurately, as accurately as you can.” All four 
students plotted points to construct a graph, and then connected the points afterwards; 
Wesley’s is shown in Fig. 5. In explaining why his graph looked like it curved up, 
Wesley explained, “Every inch it goes (referring to the length), it, it goes, it covers 
more area for that inch, so it keeps getting steeper and steeper.” (Although Wesley 
had previously referred to meters, here he switched his unit to inches; the students 
often shifted between units in this manner.) Here he quantified the increments of 
length, but the corresponding amounts of area were not yet quantified beyond an

(a) (b) 

Fig. 4 Homer’s a and Olivia’s b first graphs comparing the area and length of growing rectangles 
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Fig. 5 Wesley’s graph 
comparing area and length of 
the 1:1 growing triangle 

idea that each amount of area (from one point to the next) was greater than the 
previous amount. We saw more explicit quantification and comparing in the next 
conceptual act, quantifying covariation. 

3.3 Quantifying Covariation 

3.3.1 Quantifying Covariation for Linear Growth 

Recall that the first part of quantifying linear covariation is the creation of a ratio. 
It may appear that students have developed a ratio if they can articulate a unit ratio, 
which all four students were able to do early in the teaching experiments. For instance, 
the teacher-researcher gave Homer and Barney a task to graph the area and length 
of a rectangle with a height of two ft: “I’m going to give you one that’s…2 ft tall, 
and it’s sweeping out a path like this (draws a growing rectangle similar to that 
shown in Fig. 1)…graph the area per length again for a 2 ft tall paint roller.” Both 
students graphed a linear function (see Fig. 4a for Homer’s graph), and they explicitly 
referenced both area and length for the rectangle: 

Barney: Two square ft per ft. 

Homer: Two square ft of area per-

Barney: Per length. 

Homer: Per ft of length traveled.
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Both Barney and Homer articulated a composed unit (Lamon, 1994), i.e., a joining 
of the two quantities, area and length, to create a 2 ft2:1 ft unit. Further, when the 
teacher-researcher asked the students what would happen to the rectangle’s area when 
another foot was added on to any arbitrary length, Barney responded “You’re going 
to add two more”, by which we infer he meant 2 ft2 of area. This suggests that Barney 
understood that the additional area would always be 2 ft2, regardless of how much 
length had already been swept. 

However, from this exchange alone, it is not clear whether the students had 
constructed an iterable composed unit, or could make a multiplicative comparison. 
One way to encourage iteration and multiplicative comparisons is to introduce rect-
angles of different heights. For instance, we provided the students with the following 
task asking them to draw a painted region with two different heights (Fig. 6): 

Barney decided that his paint roller would roll out a rectangle with a height of 
2 m for 2 s, and then sweep out at a height of 4 m for the next two seconds. He also 
decided to create another area-length graph for this scenario. Homer, in contrast, 
chose an initial height of 1 m, and then doubled the height to 2 m. The students 
explained their thinking:

Barney So  the first time,  it  would go up to 4 m2 at 2 ft (in length). Then it would 
go up two (more ft in length), it would add, it would go up to 12 m2 (total 
for the entire figure). I need a bigger graph. 

Homer Okay, so what I did at the beginning, I said okay. It rolls out at a meter per 
second for speed, the thing is 1 m tall to start with. So, if it rolls 2 m in 2 s, 
times 1 m, after that the area would be, after 2 s, it would have rolled 2 m, 
which would put it at 2 total m2. 

TR Okay.

Fig. 6 Task introducing two rectangles with the second height twice as large as the first 
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Homer And then after that it starts rolling, it extends to be twice as tall and paints 
for two more seconds. So in that case, it would, I lost my train of thought. 
So, it would start for the next second it would go, it would get two extra m 
squared after rolling a meter, since it’s twice as tall. It’s 2 m tall now. So if 
you roll 1 m, you get times 2 m of height, you get 2 extra m squared. And 
then for the next second, it’s the same. 

By  stating “it  would go up to 4 m2 at 2 ft”, Barney doubled his composed unit 
of 2 m2:1 m (his use of ft appeared to be a mis-speak). Similarly, Homer knew that 
after 2 s, the figure’s area would be 2 m2, and then once the height doubled, the area 
must also double, so “you get 2 extra m squared”. He could also, therefore, double 
the area as a consequence of doubling the height. 

Tasks that can encourage the development of equivalent ratios, the next step in 
quantifying covariation for linear growth, are ones that ask students to generate 
multiple area:length pairs. For instance, we provided the students with a task in 
which they could choose the rate of change of the area: “Draw a sweeping figure in 
which the rate of change of area per amount of length swept is constant. The figure 
accumulates area at _____ cm2 per _____ cm.” Olivia and Wesley chose a rectangle 
with a height of 4 cm, and Olivia wrote that the figure accumulates area at 4 cm2 

per cm. We asked her to generate other values that she could place in the blanks, 
and she iterated the composed unit 4 cm2:1 cm to create other equivalent ratios such 
as 8 cm2:2 cm and 16 cm2:4 cm. Wesley also created the ratios 12 cm2:3 cm and 2 
cm2:0.5 cm. Both students then worked together to develop more ratios, including 0.4 
cm2:0.1 cm, 0.8 cm2:0.2 cm, and 1 cm2:0.25 cm. In creating these ratios, the students 
moved beyond iterating and partitioning actions to create multiplicative comparisons. 
For instance, Olivia, relying on the composed unit 4 cm2:1 cm, determined the 16 
cm2:4 cm ratio by multiplying: “I did four times four (cm2) is 16, and so you have to 
do four times the number on the right (1 cm) to get four (cm).” Thus, Olivia mentally 
truncated the act of iterating 4 cm2:1 cm four times by directly multiplying both the 
area and the length by 4. Wesley also began to rely on multiplication, but did so by 
multiplicatively comparing the area to the length. For instance, for the 2 cm2:0.5 cm 
ratio, he took the length value, 0.5, and multiplied it by 4 to get 2 cm2. Both students 
indicated that these ratios represented the same rate of change of area per length 
swept because, as Olivia explained, “Each of them could either be reduced to or 
bumped back up to four to one.” Wesley agreed with Olivia and offered a geometric 
connection, stating that the rate of change of the area should not change because the 
height does not change: “The height doesn’t, it’s not a different shape, it’s the same.” 
Wesley also offered a generalized strategy to determine the area for any length swept: 
“If this (the length) is x, to get how much area accumulates by, you do x times four.” 

Wesley’s use of an unspecified length x, combined with the creation of ratios 
with length values less than 1 cm, suggest that it may have been possible that he 
was imagining an equivalence class of ratios, but it was unclear whether this was 
the case. Wesley’s understanding that all of the ratios were instantiated in the same 
rectangle height does suggest that he may have seen the height as a representation of 
the rate of change of area with respect to length swept, such that it does not depend
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Fig. 7 Olivia’s rectangle (a) and Wesley’s vertical line (b) 

on any specified length. Recall that creating a rate is the third part of quantifying 
covariation. 

In order to help determine whether the students had developed a rate, we provided 
them with the following task: “Now imagine that you have a line, and it’s about to start 
sweeping out an area at a rate of 3/2 cm2 per cm swept. Draw that line.” With this task, 
we explained to the students that the line was the height; we wanted to see whether 
they would simply draw a vertical line with a height of 3/2 cm, or whether they would 
need to produce a rectangle with a length. Olivia drew a vertical line segment with a 
height of 1.5 cm and an unspecified length amount, which she called x (Fig. 7a): “I did 
a line with thickness so that we could write down the height and then the length.” We 
conjecture that Olivia needed to produce a length associated with the height, because 
she did not yet have a conception of an infinitesimal amount of length. Absent this 
conception, Olivia required a given (but unspecified) length x, along with the height 
of 3/2 cm, in order to conceive a ratio of change. In contrast, Wesley drew only a 
vertical line segment with a height of 1.5 cm (Fig. 7b), explaining, “It hasn’t swept out 
any yet, but it’s about to.” He then lightly sketched both an extending horizontal line 
and an extending angled line, explaining that he could imagine the height sweeping 
out more than one possible figure. For instance, Wesley could imagine a rectangle 
with a constant rate of change of the area per length swept, but he could also imagine a 
triangle or a trapezoid, each which would have a constantly-changing rate of change. 

As evidence of the final conceptual act, representing the constant rate of change 
in general form, all four students produced smooth graphs as representations of the 
area:length relationship; a typical example can be seen in Homer’s graph of two 
different rectangles in Fig. 8. All four students could also express the area:length 
relationship for unspecified length amounts, by writing expressions such as “Area = 
4x” or “A  = 2.5L”. Developing general algebraic expressions for quadratic functions 
proved more intricate, as seen in the next section.

3.3.2 Quantifying Covariation for Quadratic Growth 

In order to encourage the first conceptual act, quantifying growth across increments, 
we first asked the students to produce a graph comparing the area to the length of 
a sweeping triangle, such as the one in Fig. 3, but with a height to length ratio of 
2:3. Olivia and Wesley calculated the area of different triangles with lengths of 1 in. 
through 5 in. and plotted points, such as (1, 1/2), (2, 4/3), (3, 3), and (4, 5 1/2), to 
create graphs (see Fig. 9 for Olivia’s graph). We then asked Olivia to characterize
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Fig. 8 Homer’s graph of 
two area: length relationships

how steep her graph was. Olivia inspected her graph, comparing increases in area 
across same-size length increments of 1 in, and noticed that for each additional 1-in. 
increase in length, the area grew by a greater amount than for the previous inch. 
Olivia tried to quantify this amount by drawing in markers on her graph (Fig. 9): 
“I’m trying to visualize it, but, yeah. The farther you go along, the steeper it becomes 
than the first one. So it just keeps getting steeper. So this (pointing to the region 
between x = 1 and x = 2) is steeper than this (pointing to the region between x = 0 
and x = 1). But this (pointing to the region between x = 2 and x = 3) is steeper than 
this (pointing to the region between x = 1 and x = 2) and this (pointing to the region 
between x = 0 and x = 1).” Olivia was unsure, however, how to quantify these area 
increases.

In order to follow up on this idea, we asked Olivia and Wesley to determine 
precisely how much new area would be added for each section of length added by 
providing the following task: “Yesterday Olivia explained why the graph of the area 
swept for the growing triangle would be a curve by describing how each new section 
or piece adds on more area than before. How much new area is added on for each 
section of length added? For example, let’s think about the 1:1 triangle we thought 
about yesterday. For each additional increment in length, how much area is being 
added?” Both students chose 1-in. increments, and calculated area values for each 
1-in. “column” on the triangle (see Fig. 10 for an example of a 1-in. “column” within 
the triangle, which was on a grid). For each column, the students calculated area 
values, ½ in2, 1½ in2, 2½ in2, 3½ in2, and so forth as the triangle swept out. (In 
Fig. 10, for instance, the highlighted column is between length L = 3 in. and L = 4 
in., and its area is 3½ in2.) The students then saw that the increase in area for each 
additional 1-in. “column” was one square inch greater than for the previous column, 
articulating an amount of area increase that grew linearly. Olivia stated, “Each time 
you increase by one column, you get an additional one unit squared in area for that 
column’s area compared to the previous column.”

Barney and Homer engaged in the same exercise, but for a triangle with a height 
to length ratio of 2:1. Barney decided to create a table of length and area values,
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Fig. 9 Olivia’s graph 
comparing length and area 
increases for a 2:3 triangle

Fig. 10 The growing 1:1 
triangle with 1-in. columns
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Fig. 11 Barney’s table 
comparing area increases for 
1-ft length increases 

increasing by 1-ft increments, and then compare the amounts of increase in area for 
each 1-ft increase in length (Fig. 11). Barney likely focused on increases in area 
because he was attempting to determine how much area was added for each 1-ft 
increase in length. Barney quickly saw a pattern, noticing that the area grew by 
three, then five, then seven, then nine: “Yeah, it’s, it’s odd numbers. It’s odd numbers 
but counting by two.” The teacher-researcher asked Barney what those numbers 
represented in terms of the triangle, and Barney answered, “That here, in between 
lengths one and two, it (the area) increases three.” Homer interjected to add, “And 
between two and three it’ll be five, three and four it’ll be seven.” 

After exploring the area increases for another right triangle with a height to length 
ratio of 2:3, Homer generalized the relationship of area increases for 1-unit increases 
in length for any triangle: “What you add more each time is twice the, twice whatever 
the area is when L equals one.” He justified this geometrically, explaining with a 1:1 
triangle that he used as a generic example (Fig. 12), “This (the first shaded triangle) is 
half of the (blue) rectangle and this is the whole rectangle. And then you add an extra 
whole rectangle at a time.” Note that Homer has articulated what we can interpret 
as constantly-changing unit rate of change, but it is not clear whether he understood 
that the area’s rate of change would be constantly changing for any increment size.

Recognizing that the rate of change is constantly changing regardless of increment 
size involves the next conceptual act, that of generalizing across increment sizes. In 
order to generalize across increment sizes, it is useful for students to be able to 
imagine changes between successive values of accumulated area and accumulated 
length. Early in the teaching experiment, Wesley and Olivia did not appear to have 
this image. For instance, when graphing the relationship between the area and length 
of a triangle, both students produced piecewise linear graphs and did not believe the 
increment size would affect the graph:

TR Would the graph look the same or different if you weren’t choosing 1 in., 2 
in., 3 in., but say you were choosing half an in., 1 in., 1 and a half in., 2 in.? 

Olivia It should look the same shape, I think.
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Fig. 12 Homer’s geometric 
justification for the rate of 
change of the area

TR Okay. What about if you were choosing, like, 0.1 in., 0.2 in., 0.3 in., 0.4 in.? 
In other words, what if in between 0 and 1 you graphed 10 points? Would 
this portion of the graph look the same or different? 

Olivia I think it’d look the same. 

Olivia did not appear to envision length swept and area swept in chunks that tacitly 
contained intermediate values. If she had, she would have been able to re-size the 
length of her chunk, imagining a different graph with more line segments. However, 
after having developed chunky-continuous covariation (Thompson & Carlson, 2017), 
the students’ beliefs about the effect of changing the increment sizes changed. For 
instance, when investigating a growing triangle with a height to length ratio of 2:5, 
Olivia again produced a graph with 1-in. increments for length, stating that “each 
line between each increment is just getting steeper.” This time, though, Olivia now 
believed that changing the increment size would change the graph: “If you made the 
increments even smaller, like into 0.1 as your first point, then I think it’d be, all the 
little lines together I think they’d make a very subtle curve, but relatively straight. So 
when I did it with the increments as 1, I see them as straight, but if they were smaller 
they might look as if they were curved to make one big curve.” 

When asked to consider other increment sizes for comparing amounts of accu-
mulated area, Olivia checked by calculating amounts of increase for 2-in. “columns” 
and discovered that although the amount of increase was different than for a 1-in. 
column, it still increased at a constantly-changing rate. Given the importance of 
encouraging reasoning about very small increment sizes, the teacher-researcher also 
asked whether they thought this phenomenon would hold true for a different incre-
ment size, such as a tenth of an in., or a thousandth of an inch. Both Wesley and 
Olivia said yes. Olivia explained, “It’s going up at a consistent rate”, gesturing to 
the triangle’s area. Similarly, Homer and Barney also decided that the area would 
grow by a constantly-changing amount regardless of the increment size, with Homer
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declaring, “It would be the same”. Homer explained that what that value would be 
would depend on the size of the first “section” of length: “For the first, whatever the 
first section is…if you were doing it every half inch, every half inch would be twice 
what the area is at the first half inch.” 

When creating a constantly-changing rate of change, the next conceptual act, we 
mentioned earlier that students must understand that the rate of the area’s rate of 
change, or the second rate of change, remains invariant across all increments. That 
rate is dependent on the slope of the triangle’s hypotenuse, specifically, the ratio of 
the triangle’s height to length. Recall the task related to Fig. 10, in which students 
had to determine how much new area is added for each additional unit of length. We 
provided additional tasks of the same nature, but for triangles with different height 
to length ratios. The students determined the constantly-changing rate of change of 
the area per unit of length for triangles with height to length ratios of 2:3, 3:2, 5:4, 
and 2:5. Engaging in this form of repeated reasoning (Harel, 2007) across multiple 
triangles supported the students’ noticing that the slope was a convenient way to 
express a unit ratio. When describing the rate of change of area, Wesley stated that 
for any triangle, “It increased by the slope.” Barney related the slope to a triangle’s 
height and length: “It’s just the ratio (of the height to the length).” Further relating 
the slope to the triangle’s area, Barney further explained, “So we’re trying to get 
from slope to area. So you’d take the slope, you’d multiply times ½, or multiply the 
denominator by 2, then multiply that by L squared.” 

In order to encourage the final conceptual act of representing the constantly-
changing rate of change in a general form, we provided the students with a triangle 
with a height to length ratio of 2:3, and asked them how they could determine the 
triangle’s area for any given length swept, L. Barney indicated that first, he would 
need to know the triangle’s height, which could be determined by considering the 
slope: “If you multiply L by two-thirds, that’s going to be what the height is. Because 
height is two out of three of L.” To determine the area, then, Barney knew that he had 
to use the formula for the area of a triangle, A = 1/2 H, which he expressed as “A 
= (2/2 L2)/2”. Barney also generalized this idea to any growing right triangle: “So 
if R stands for ratio (of height to length), it would be R L-squared over two equals 
area for triangles.” Wesley and Olivia also expressed this idea generally, considering 
a generic right triangle with a height to length ratio of a:b, which Wesley expressed 
with the equation “

(
a 
b · l ÷ 2) · l = A”. He explained, “L would be the length of, 

you know, anything. Like L would be the length of any…it’d always be the length.” 
Wesley understood the literal symbols “a” and “b” to represent specific but unknown 
height and length values, but “l” as a changing, unknown length for a triangle in the 
process of sweeping out. Olivia also explained that for an equation A = ml2, the  
constant m would be half the slope: “It would always be the slope divided by two 
times L times L.” In this manner the students were able to use the triangle’s height 
to length ratio to determine a general equation to find its accumulated area based on 
the amount of length swept.
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4 Task Design Principles for Supporting Function 
Reasoning Through Covariation 

We have developed a set of task design principles to support the conceptual activ-
ities we want students to undergo in order to develop an understanding of func-
tional growth. These design principles are intended for an introduction to functional 
reasoning, rather than for subsequent more advanced investigation into functional 
relationships. However, many of the principles are relevant for students’ exploration 
of functional relationships at all levels. We propose five principles: (a) leverage 
contexts with continuously covarying quantities; (b) develop covariation before 
allowing calculation; (c) choose exact relationships; (d) choose genuine contexts; 
and (e) provide opportunities for visualization, manipulation, and justification. We 
discuss each in turn. 

4.1 Leverage Contexts with Continuously Covarying 
Quantities 

Thompson and Carlson (2017) argued that reasoning about the values of continuously 
covarying quantities played a key role in the development of the concepts that led to 
how we conceive of function relationships today. Several of the conceptual acts we 
outlined in the previous section would be difficult to accomplish with exploration of 
quantities that did not covary continuously. For instance, consider a typical quadratic 
figural pattern, such as seen in Fig. 13 (Chua & Hoyles, 2010): 

Tasks such as these can support students’ generalizing activities, particularly in 
terms of viewing each diagram in terms of its components in a manner that relates the 
shape number to the number of squares. One can express this relationship as 2n2 + 2n

Fig. 13 Quadratic figural pattern (adapted from Chua & Hoyles, 2010, p. 71) 
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+ 1, or as n2 + (n+ 1)2, or as (2n+ 1)(n+ 1) -n, among other options. However, when 
investigating change in a discrete situation, students do not have access to an image 
of what occurs between stages. What occurs at Shape 1.5, or Shape 1.001? At best, 
a student could reason with coordination of values (Thompson & Carlson, 2017), 
creating a discrete collection of pairs. When reasoning within discrete contexts, 
students cannot change the increment size, much less make a generalization about a 
ratio of change for a given increment size. 

The form of covariational reasoning one might engage in with discrete contexts 
such as the above pattern is reminiscent of Confrey and Smith’s (1994) discussion of 
examining a function in terms of coordinated changes of x- and y-values. This allows 
a student to attend to successive states of variation, but not to imagine what happens 
in between these states, imagine change in y for any given increment of x, or imagine 
change in y as happening simultaneously with change in x as both variables vary. For 
this reason, we urge the use of contexts with continuous covariation, such as growing 
rectangles and triangles, that enable students to identify relevant attributes, determine 
ways to measure those attributes, consider change across different increment sizes, 
and ultimately construct constant and changing ratios and rates. 

4.2 Develop Covariation Before Allowing Calculation 

Reasoning covariationally can be difficult, particularly for students who have not had 
many opportunities to do so. Students may attempt to avoid covariational reasoning 
when they have access to other means of assessing situations, such as leveraging 
calculation and measurement strategies. For instance, when investigating a growing 
rectangle with a provided height value, such as 1 cm, a student could simply calculate 
successive area values and plot those points, without ever needing to reason about 
constant rates of change. One way to avoid this pitfall is to provide tasks that require 
covariation without allowing students to fall back on calculational strategies. Tasks 
that require students to attend to two simultaneously covarying quantities that cannot 
be easily measured can support this way of thinking. For the growing rectangle 
and triangle tasks, one way to encourage covariation is to provide a growing figure 
without measurements, and ask students to create a sketch of a graph comparing 
area to length before making any area calculations. In our teaching sessions, we had 
students create graphs simultaneously while watching videos of the growing figures, 
and then afterwards consider more carefully the accuracy of their graphs. 

4.3 Choose Exact Relationships 

Students who are already familiar with functional relationships and are ready to 
pursue their investigation at more advanced levels can benefit from engaging in 
tasks that explore imprecise functional situations, even if the data are not exact.
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When introducing function reasoning, however, approximate data may interfere with 
students’ abilities to construct constant and changing rates of change. In order to 
necessitate the creation of ratios and rates of change, contexts that are exactly linear 
(or quadratic, cubic, exponential, etc.) are useful for affording opportunities to appro-
priately quantify and represent change. This is one reason why we chose the growing 
rectangle and triangle tasks: the comparison of area to length is exactly linear (in the 
case of the rectangle) and quadratic (in the case of the triangle), and do not require 
approximation or estimation. 

4.4 Choose Genuine Contexts 

Scenarios that are contrived to be linear or quadratic can be difficult for students 
to reason with when beginning to explore functional relationships. We do not mean 
to suggest that students should not encounter real-world problems. As Freuden-
thal (1983) argued, meaningful mathematical activity starts with phenomena that are 
experientially real to students. A key distinction here is that the situation must be real 
to students, by which we mean, within their current experiential space (Jurdak, 2006). 
This does not have to mean that a situation would occur in real life, if the students 
can engage with it in a manner that enables them to understand, visualize, and math-
ematize the relevant phenomena (Webb et al., 2011). In fact, following Webb et al. 
(2011), contexts such as the growing figure tasks, though not real-world contexts, 
are nevertheless realizable in that they leverage situations that are imaginable and 
can be idealized to motivate powerful mathematical strategies. 

Students’ natural sense-making should not have to be a barrier to engaging with 
a situation mathematically. A classic example of this phenomenon can be found 
in Taylor’s (1989) study, which compared students’ responses to two questions on 
fractions, one asking the fraction of a cake, and the other asking the fraction of a 
loaf. Taylor found that some students made different sense of these questions based 
on the word, “cake” or “loaf”. The cake was regarded as a single entity that could 
be divided into any number of pieces, whereas the loaf was regarded as something 
that would have to be divided based on a pre-existing number of slices. For students 
who are beginning to make sense of functional relationships, we advocate the use of 
realizable contexts that are authentically linear (or quadratic, or exponential, etc.). 
The growing figure tasks are not real-world tasks, but within the premise of the tasks, 
the functional relationships are authentically linear and quadratic.
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4.5 Provide Opportunities for Visualization, Manipulation, 
and Justification 

Realizable contexts that are visualizable, imaginable, and manipulable will support 
students’ abilities to (a) identify relevant attributes and the quantities affecting them; 
(b) anticipate, imagine, and represent covariation; and (c) quantify covariation by 
constructing constant or changing rates of change. Middle grades students, in partic-
ular, may need the ability to rely on a representation that enables them to manipulate 
relevant quantities and observe the outcome of such manipulation. In the growing 
rectangle and triangle contexts, the students’ abilities to change the rectangle’s height 
and the triangle’s height-to-length ratio supported generalizations about constant and 
changing rates of change. 

Another key element of these contexts is that they enable mathematical justifica-
tion and proof. Because the growing rectangle and triangle contexts are authentically 
and exactly linear, they are able to justify why, for instance, any rectangle must have 
a constant rate of change of area to length. This enabled Wesley to generalize an 
equivalence class of area:length ratios of 4x with a rectangle of height of 4 cm, and 
it provided the students with a way to justify that any given ratio for any amount 
of length swept would be equivalent to the unit ratio, 4:1, because the height does 
not change. We consider it critical to situate students’ explorations in contexts that 
support justification, not only because justification is a key mathematical practice 
that must be emphasized at all levels of schooling (National Governors Association, 
2010; Turkish Ministry of National Education [MEB], 2018), but also because it 
supports a habit of mind that mathematics should make sense. 

5 Conclusion 

In this chapter we have argued that students’ early encounters with functional rela-
tionships should leverage situations with continuously covarying quantities. This 
does not mean, however, that a correspondence perspective should be abandoned. 
Instead, we argue for a dual view of function that addresses both covariation and 
correspondence relationships. The covariation approach changes the emphasis on 
what it means for relations to be linear or quadratic functions. Rather than defining 
functional relationships through their algebraic or graphical forms, the covariation 
approach highlights a function’s rate of change as its defining feature. Once students 
have constructed constant or constantly-changing rates of change, they can then begin 
to identify how these rates of change are represented algebraically and graphically. 
Key features, such as the degree of a function’s polynomial, the role of parameters, 
and the characteristics of a function’s graph, can all be established as a consequence 
of its rate of change.
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We identified a number of task design recommendations to support students’ visu-
alization and manipulation of continuously covarying quantities. However, visual-
izing, imagining, and representing changes in these quantities may not be easy for 
students. In particular, understanding graphs as representing a continuum of states 
of covarying quantities is nontrivial (Saldanha & Thompson, 1998), and the ability 
to reason about and represent covariation can be difficult to foster (e.g., Best & 
Bikner-Ahsbahs, 2017). This may be particularly true for quadratic relationships, in 
which the construction of a constantly-changing rate of change demands significant 
conceptual effort (Ellis et al., 2020; Fonger et al., 2020). Dynamic software can be a 
powerful tool for supporting exploration with covariation, but it is important to keep 
in mind that what experts interpret as representations of continuous change may 
not be interpreted in the same way by students. Continuity and smooth continuous 
covariation are mental operations, and as such they are developed through interaction 
between a learner and a task, simulation, or representation. 

Instructors play a key role in designing and implementing tasks, as well as in 
supporting students’ function understanding as they reason through task situations. 
The design principles we described de-emphasize calculation in the initial stages 
of engagement in order to foster covariational reasoning. Once students are ready 
to transition to representing amounts of change, beginning with an increment size 
of 1 in. the independent variable and then extending it to other increment sizes, 
particularly to increments smaller than 1, can be pivotal in supporting students’ shift 
from discrete reasoning to dynamic reasoning. Considering change across different 
increment sizes, particularly very small increments, is also useful for generalizing 
constant or constantly-changing rates of change. Teachers can also direct students’ 
attention to covariation through their questioning and focusing moves, encouraging 
students to imagine, describe, and ultimately quantify joint variation. As Carlson 
and Oehrtman (2005) described, teachers can engage in targeted questioning to ask 
students what values change and what variables influence the quantity of interest, 
to encourage clarification about specific rates of change, and to require attention to 
both variables’ values and the relationships between the changes in both quantities. 
It is through both the design and careful implementation of continuous covaria-
tion contexts that instruction can support a meaningful understanding of functional 
relationships, establishing a critical foundation for key ideas in higher mathematics. 
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1 Geometric Transformations Through Quantitative 
Reasoning 

In this chapter, we provide a conceptual analysis of the concept of isometry (trans-
lation, rotations, reflections) based on quantitative reasoning (QR). Curricular stan-
dards for mathematics in different countries (e.g., CCSSM, 2010; MEB-TTKB, 2018) 
highlight the importance of learning isometries as functions by the end of high school. 
However, the common practice for teaching geometric transformations, especially 
isometries, start with treating them as rigid motions only. Although such an approach 
seems sound, previous research reveals the difficulty of conceptualizing isometries 
as functions. We believe that treating isometries as motions only is problematic as 
geometric transformations are functions, and learners should go beyond thinking 
about motions by mathematizing them as functions. In this chapter, we provide an 
analysis of the end goal of what learners should understand or learn in order to concep-
tualize isometries quantitatively. Our analysis does not involve an articulation of a 
teaching sequence. Instead, what we propose is about the kind of conceptualizations 
learners should have to learn isometries that go beyond the motions. In so doing, 
we draw on the components of Quantitative Reasoning (QR) Theory. Investigating 
isometries via the use of QR Theory, as we noticed, is missing in the current liter-
ature. As future work, we intend to expand this analysis to provide an instructional 
sequence to help learners develop those conceptualizations of isometries.
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In the following sections, we first define geometric transformations from a math-
ematical standpoint and then build on the relevant literature to explain our ratio-
nale for investigating isometries by focusing on the QR theory. Finally, we detail 
how isometries can be conceptualized based on QR notions (e.g., multiplicative 
object, continuous covariational reasoning) and discuss curricular and instructional 
implications. 

1.1 Isometries from a Purely Mathematical Standpoint 

As part of the geometric transformations set, isometries are distance-preserving one-
to-one and onto functions that map plane to plane ( f : R2 → R2, f is 1:1 and onto) 
(Fife et al., 2019; Martin, 1982). Isometry lexically consists of iso (meaning, same) 
and metric (meaning, measure). In this sense, an isometry is a distance preserving 
transformation. This chapter will focus on isometries such as translations, rotations 
and reflections as detailed below. 

Parameters are crucial in defining isometries. For example, the parameter for 
translations is a vector, say  ||.u||. Consider translation of a specific quadrilateral 
ABCD (pre-image) on the plane that has the vector .u = (2, 0) as a parameter. This 
pre-image quadrilateral corresponds to an identical image quadrilateral, A'B'C'D', 
on the plane. The image quadrilateral consists of points that are two units (same as 
.u) away from the corresponding pre-image points (see Fig. 1a). In other words, all 
pre-image points in the form of (a, b) ∈ ABCD are mapped to image points in the 
form of (a + 2, b + 0) ∈ A'B'C'D' under such translation. If we consider the whole 
plane, any (x, y) ∈ R2 is mapped to (x', y') = (x, y) + .u under such translation.

For rotation, angle and center of rotation are the parameters. Consider rotation of 
the same quadrilateral (pre-image) which has an angle, θ = −45°, and a center point, 
P(0, 0), as parameters. This quadrilateral corresponds to another image quadrilateral 
that is identical in shape to the pre-image rotated 45° clockwise about the center 
of rotation, the origin (see Fig. 1b). Such correspondence suggests that the distance 
of pre-image points to the center of rotation stays the same as the distance of the 
corresponding image points to the center. In contrast, the orientations of the pre-
image and the image may change. Reflection, on the other hand, may have a line as 
a parameter. Reflection of the same quadrilateral ABCD by considering the x-axis 
as a parameter corresponds to the same size image quadrilateral (see Fig. 1c). The 
perpendicular distance of each pre-image point to the line of reflection is the same 
as those of corresponding image points. 

The examples shown in Fig. 1a–c are just samples representing transformations 
of parts of planes. Several interconnected key ideas make isometries special (e.g., 
Argün et al., 2014; Yılmaz, 2020) as summarized below:

• Isometries preserve distances, 
• Isometries are one-to-one and onto functions, 
• The domain and range of isometries are R2,
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Fig. 1 a Translation of ABCD using .u as a parameter. b Rotation of ABCD using origin and −45° 
as parameters. c Reflection of ABCD using x-axis as a parameter

• Isometries map the whole R2 to the whole R2, and this mapping can be 
characterized as (x, y) → (x', y'), 

• Isometries have parameters (vector for translations, angle and center point for 
rotations, and line for reflections). 

We will revisit these mathematical ideas as needed using QR throughout the 
chapter. 

1.2 Importance of Geometric Transformations 

Geometric transformations play a vital role in conceptualizing different mathematical 
concepts. Understanding geometric transformations as functions on the plane, for 
instance, is crucial (Fife et al., 2019; Hollebrands, 2003; Yanik & Flores, 2009) 
because it provides learners with opportunities to deepen their understanding of 
functions and to conceptualize transformations better (CCSSM, 2010; Fife et al., 
2019). In particular, studying geometric transformations assist learners in moving 
from R → R settings to R2 → R2 (Steketee & Scher, 2011) and engaging them 
in higher-level mathematical reasoning activities (Hollebrands, 2003). In this sense, 
learners extend their thinking of a function as a relationship between two variables, 
each referring to a real number, to thinking of function as a relationship between two 
variables, each of which is a point consisting of a combination of two real numbers 
(Steketee & Scher, 2011). 

Geometric transformations also permit learners to conceptualize congruence and 
similarity and apply them to planar figures and families of functions (Jones, 2002).



202 G. Karagöz Akar et al.

For instance, studying transformations might allow learners to realize that the graphs 
of y = axn and y = axn + b (n = 1, 2, 3, … respectively and a ∈ R, b ∈ R) are  
congruent as they can be mapped onto each other (Usiskin et al., 2003). In addition, 
a function can only have an inverse when it is one-to-one and onto, and graphs of 
a function and its inverse are symmetric with respect to y = x. Utilizing geometric 
transformations might allow learners to understand the connection between a function 
and its inverse as there is a reflection that maps the function to its inverse. In this 
sense, geometric transformations allow learners to think of algebra and geometry 
interconnectedly rather than as isolated branches of mathematics. 

Apart from such advantages, studying transformations provide learners with 
opportunities to develop conjectures and construct generalizations through critically 
thinking and imagining the relationships between variables (Yanik, 2014). 

1.3 Difficulties in Understanding Transformations 

Previous research on geometric transformations guides us in understanding learners’ 
difficulties and conceptions that make isometries problematic. Research revealed 
that learners think about transformations as motions rather than functions (Edwards, 
1991; Mhlolo & Schafer, 2013), as detailed below. 

One of the factors preventing learners from conceiving geometric transformations 
as functions is conceiving the plane as a background for geometric figures resulting 
in considering planar figures isolated from the plane. Such understanding hinders 
learners’ conceptualizations of domain and range as R2 (Yanik & Flores, 2009). 
Overcoming this difficulty is possible via understanding points as subsets of the plane 
(Edwards, 2003). This is important because when the plane is mapped onto the plane, 
everything, including the parameters of the geometric transformations (e.g., vectors, 
line of reflection, center of rotation), are also mapped as they are part of the domain, 
which is another difficulty for students to overcome (e.g., Sunker & Zembat, 2012; 
Yanik, 2006). Transformation of the whole plane is another problematic issue for 
both students and prospective teachers (Hollebrands, 2003; Yanik, 2011). Research 
in this area (e.g., Yanik, 2011) suggests that considering points on the plane as unique 
locations (Lakoff & Núñez, 2000) that are part of the domain and range and thinking 
about covariation between pre-image and image points (Steketee & Scher, 2016), 
may help learners understand isometries as functions. In this chapter, we will pay 
particular attention to conceptualizing points as representations of locations and the 
covariation of pre-image and image points. 

Research also highlights problematic areas for learners in thinking about transfor-
mations. For example, learners do not consider that a vector with its components (both 
direction and magnitude) defines translations (Yanik, 2011). They only consider the 
angle of rotation by ignoring the center as a parameter for rotations (Flanagan, 2001). 
Learners do not pay attention to vertical distances between pre-images and the line 
of reflection when operating on reflections (Hollebrands, 2004; Zembat, 2007).
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When we think about all these difficulties, an important question comes to mind: 
What would be an effective way of preventing learners from having these difficulties 
or overcoming them? We believe that engaging learners in quantitative reasoning 
based on the conceptualizations we highlight in this chapter may be a solution. 
In the following sections, we first define quantitative and covariational reasoning, 
reconceptualize the plane with respect to QR Theory, and then analyze isometries 
(translations, rotations, and reflections, respectively) in the context of QR without 
providing a teaching sequence. 

1.4 Quantitative Reasoning and Covariational Reasoning 

In his framework, Thompson (1990) describes quantity as a quality of an object 
that an individual conceives. Conceiving a quantity entails a measurement process 
based on an appropriate unit, whether implicit or explicit. More specifically, to 
comprehend a quantity, an individual must have a mental image of an object and 
its measurable attributes (qualities) (Thompson, 1994). The comprehension of the 
object with its measurable attributes is called quantification. Thompson (2011, p. 37)  
defined quantification as a “process of conceptualizing an object and an attribute 
of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship (linear, bilinear, or multilinear) with its unit”. According to 
Moore et al. (2009), “Conceiving of situations and measurable quantities of a situa-
tion” (p. 5) through ones’ mental actions as well as “both developing and reasoning 
about relationships between these constructed quantities” (p. 3) is called quantitative 
reasoning. 

Covariation is another important construct in Thompson’s theory of quantitative 
reasoning because conceptualizing a situation quantitatively and taking it as dynamic 
are important aspects of student reasoning (Thompson & Carlson, 2017). Covariation, 
here, is defined as one’s “holding in mind a sustained image of two quantities’ values 
(magnitudes) simultaneously” (Saldanha & Thompson, 1998, p. 299). Covariational 
reasoning encompasses “the cognitive activities involved in coordinating varying 
quantities while attending to the ways in which they change in relation to each 
other” (Carlson et al., 2002, p. 354). 

1.5 Understanding Points as Multiplicative Objects 
and Conceptualizing R2 Quantitatively 

We have previously mentioned that we will pay particular attention to points repre-
senting unique locations. We now describe what it means to think about a point on 
the plane quantitatively.
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A multiplicative object is an object that is formed from two quantities by mentally 
uniting “their attributes to make a new attribute that is, simultaneously, one and the 
other” (Thompson et al., 2017, p. 96). It is possible to think about a point on the plane, 
an ordered pair in the form of (a, b), as a multiplicative object in the following sense. 
The point A = (a, b) can be thought of as a cognitively uniting of two quantities’ 
magnitudes (Saldanha & Thompson, 1998; Stevens & Moore, 2017). These quantities 
are directed lengths between the origin and (a, 0), and the origin and (0, b) [in other 

words, these quantities are the vectors 

(
a 
0 

) 
and 

( 
0 
b 

) 
]. An individual needs to unite 

their magnitudes in mind to conceive (a, b) as a multiplicative object. However, one 
does not need to physically measure these quantities but think about the possibility 
of measuring them for these to be conceived as quantities. Determining, for example, 
the magnitude of the quantity (a, 0) requires one to think of the unit of measurement, 
as 1/m(a) of  ||a||, where m(a) means measure of a, and ||a|| means magnitude of a 
(Thompson, 2011) (Fig. 2). 

For example, let us evaluate the point (−5, 3) as a multiplicative object. One needs 
to unite the magnitudes of two quantities here, namely, magnitudes of the directed 
lengths between the origin and (−5, 0), and the origin and (0, 3), respectively [or 

magnitudes of the vectors .u = 
(−5 

0 

) 
and .v = 

( 
0 
3 

) 
]. Magnitude of the directed 

length between the origin and (−5, 0) is m(.u) × ||unit|| = 5 × 1 = 5 since the unit here 
is 1, whereas the magnitude of (0, 3) is m(.v) × ||unit||= 3 × 1 = 3. Hence, mentally 
uniting these two quantities’ magnitudes, 5 and 3, allows one to think of the point 
(−5, 3) as a multiplicative object. In other words, understanding the location of a 
point (e.g., (−5, 3)) in two directions simultaneously from a reference point (e.g., 
origin) is an example of the multiplicative object (Thompson, 2011). 

Conceptualizing a point on the plane, (a, b), as a multiplicative object, allows an 
individual to assimilate the following two measurable attributes:

Fig. 2 Graph of a point A(a, b) and its constituent vectors 
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(i) the distance of (a, b) to the origin—its measure can be determined via 
Pythagorean Theorem using the quantities (a, 0) and (0, b), 

(ii) the slope1 of the line passing through the origin and (a, b). 

We claim that one’s construction of any ordered pair having these attributes can 
potentially trigger the understanding that R2 is made up of all such points.2 In other 
words, the individual’s understanding of point should be generalized to all points that 
make up the plane, R2. We believe that learners should conceptualize R2 this way. 
Such generalization is possible by individual’s thinking about the following three 
conceptualizations: 

M#1. The learner conceptualizes a point (a, b) as the combination of two quan-
tities’ magnitudes (distances of (a, 0) and (0, b) to the origin) as opposed to 
conceptualizing a point (a, b) as a combination of two labels. 
M#2. The learner conceptualizes every point on the plane, R2, as having a unique 
location that manifests itself as an element of R2—there is a unique combination 
of (a, 0) and (0, b). 
M#3. The learner conceives that any point in R2 is part of R2 and similarly, any 
set of points (e.g., a geometric figure like a triangle, a line segment) is a subset of 
R

2. 

These conceptualizations are needed for learners to consider any set of points or 
geometric shapes as quantities relative to the whole, R2, rather than isolated and 
independent entities. We argue that thinking of any point on the Cartesian Plane as 
a multiplicative object as described above is vital for learning isometries. 

1.6 Conceptualizing Translations Through Quantitative 
Reasoning and Covariational Reasoning 

We first describe a geometric interpretation of translation. Assume we only focus 
on two preimage points, A and B, on the plane and a translation. These preimage 
points are mapped to corresponding image points, A' and B', under a translation T 
having a vector, .u, as the parameter.3 Note that this mapping preserves the location

1 Lobato and Thanheiser (2002) defined slope “as the rate of change in one quantity relative to the 
change of another quantity where the two quantities covary” (p. 163). Lines have slopes that have a 
constant rate of change. When two quantities covary under the condition that the accumulation of 
changes in a quantity is proportional to the accumulation of those of the other, one can understand 
the constant rate of change (Thompson, 1994). We adopted these definitions for slope throughout 
the paper. 
2 Note that we view the multiplicative object (a, b) in a dynamic sense in which “its coordinates 
represent a state of two quantities’ covariation” (Thompson et al., 2017). 
3 An individual here may think about this translation as illustrated in Fig. 3a and consider T as a 
movement of preimage points A and B to A' and B'. In this case, we can say that the individual 
focuses on the figurative aspects of the translation and conceptualizes it as a movement or sliding 
rather than a function. Here, we are not focusing on such thinking. 
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Fig. 3 a Translation of points A and B. b Comparing (A, B) to (A', B'). c Comparing (A, A') to  
(B, B') 

of B' relative to the location of A' by considering the location of B relative to the 
location of A. However, this is a geometric interpretation of translation, and the 
literature (e.g., Portnoy et al., 2006; Sinclair et al., 2012) suggests that translations 
are geometrically treated in the textbooks or in mathematics classes. If this is the 
case, how can we quantify the preservation of relative locations of the preimage and 
the corresponding image points to allow our students to move beyond geometric 
interpretation of isometries? We believe that answering this question using QR is a 
key for changing curriculum design and established practices of teaching isometries. 
We delineate this issue using the key components of QR in what follows. 

Once R2 is conceptualized as detailed previously, understanding a translation 
quantitatively requires coordination at two levels with their descriptive conditions 
(CT #1 and CT #2), as detailed below and illustrated in Fig. 3a–c. In these conditions 
“m” refers to slope.4 

CT #1. d(A, B) = d(A', B') and mAB = mA'B' . 
CT #2. d(A, A') = d(B, B') and mAA' = mBB' . 

In other words, an individual can think about preimage and image points and 
coordinate two sets of properties (the aforesaid measurable attributes of distance and 
slope) at two levels (as illustrated in Fig. 3b, c) and conclude that CT #1 and CT #2 
can only be true with a vector from the equivalence class of AA'. 

More specifically, an individual needs to consider the condition that the magni-
tudes (as a result, the values) of the first set of quantities, namely the distance between 
A and B and the distance between A' and B', are the same. In addition, the magnitudes 
(as a result, the values) of the second set of quantities, namely the slopes of the lines 
passing from AB and A'B' respectively, are also the same, mAB = mA'B' . In other 
words, the locations of A to B relative to the locations of A' to B' are the same. Such 
thinking is possible if the translation is considered for the distances among paired 
preimage points as quantities within the domain and the corresponding paired image 
points within the range. Figure 3b illustrates a comparison of the sets {A, B} and

4 One can argue that for a vector like u = (0, b) the slope is undefined. However, by saying mAB = 
mA'B' we mean that the locations of A to B relative to the locations of A' to B' are the same. The 
same logic applies to mAA' = mBB' . 
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{A', B'}—hereafter; we call such comparison as “within comparison”, which is one 
level of analysis. Moreover, the magnitudes of the third set of quantities, namely the 
distance between A and A' and the distance between B and B', are also the same. In 
addition to this, the magnitudes of the fourth set of quantities, namely the slopes of 
the lines passing from AA' and BB' are correspondingly the same, mAA' = mBB' . Such 
thinking is also possible if the translation is considered for the distances as quantities 
in between preimage-image pairs from the domain and range. Figure 3c illustrates 
a comparison of the sets {A, A'} to {B, B'}—hereafter; called as “between compar-
ison”, another level of analysis. Such two-level analysis is only possible by learners' 
coordinating these two sets of quantities (involving distance and slopes) and their 
interrelationships simultaneously. What makes the relationship between these sets 
of quantities unique is the vector from the equivalence class of AA', and this vector 
is the parameter that makes the coordination of these sets of quantities possible. 

Such analysis can initially be expanded to a subset of the plane (e.g., a set of 
discrete points, a line segment, a line, a quadrilateral, etc.). The sample points we 
focused on in Fig. 3 can be considered the endpoints of a line segment, AB, and the 
same analysis can be executed for these two endpoints. However, there is a need for 
the learner to expand this thinking to all points that make up the line segment AB. 
In other words, the learner needs to be able to choose any two points on AB, say  C 
and D, whether they are infinitely close to each other or not, and coordinate within 
and between comparisons for the quantities of distance and slopes—say d(C, D) = 
d(C', D') and mCD = mC'D' as well as d(C, C') = d(D, D') and mCC' = mDD' . 

In terms of within comparison, we can give the following articulation. The quanti-
ties involved in this coordination (e.g., d(C, D), d(C', D') as in Fig.  4) covary as such 
covariation is dependent on the covariation of preimage and corresponding image 
points (e.g., C and C' and D and D') and slopes (e.g., mCD, mC'D' ) stay invariant. 
Indeed, any two chosen points on AB (e.g., C, D) can be infinitely close to each 
other, or one converges to the other, or one becomes the other (C = D so C' = 
D'), which also suggests the continuous covariation of preimage and corresponding 
image points (in this case, C = D and C' = D'). In other words, the learner needs to 
think of continuous covariation of the quantities included in the aforesaid coordina-
tion—“one understands that if either quantity has different values at different times, 
it changed from one to another by assuming all intermediate values”5 (Saldanha & 
Thompson, 1998, p. 299).

The result of this kind of reasoning is that quantity pairs used for between compar-
ison, such as d(C, C'), d(D, D') and mCC' , mDD' , are invariant depending on the 
parameter of the translation, the vector. Hence, the individual needs to conceptualize 
the vector as the invariant relationship between the covarying quantities (aforesaid 
distances and slopes based on points C, C', D, D'). “Under a translation, students 
should understand that a line and its image are parallel and that the distances from 
each pre-image point to its image point are equal to the magnitude of the translating

5 Note that here “all intermediate values” for a student depends on their conceptions of the continuum 
as Sirotic and Zazkis (2007) pointed out that students may not conceptualize any two values as being 
connected by a continuum. 
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Fig. 4 Translation of a line segment AB

vector” (Hollebrands, 2003, pp. 65–66). Note that we have so far made our argument 
for the translation of a line segment only. The same reasoning can be expanded to a 
geometric figure or a polygon made up of several line segments (as in Fig. 5a), or to 
a planar surface (as in Fig. 5b), or to the whole plane (as in Fig. 5c).

At this point, the learners’ assimilatory structure may be ready to assimilate trans-
lations as functions. Beyond the aforesaid coordination and the articulation of the 
role of vector, the learner also needs to comprehend that every preimage point of 
the plane is coupled with a unique image point of the plane so that translation is a 
function for the learner. 

What about the domain and range of this function? Previously, we mentioned that 
the learner needs to conceptualize ‘any set of points or geometric shape as quantities 
relative to the whole, R2' based on the conceptualisations of M#1, M#2 and M#3. 
Thus, an arbitrary point of R2, like F, here is coupled with a corresponding F' from 
the R2 with the vector .u as a parameter [here, F + .u = F']. In other words, for the 
learner, the translation function should consist of ordered pairs in the form of (F, 
F') as multiplicative objects, no two of which has the same first element. Note that 
both F and F', which are already multiplicative objects themselves, are elements of 
R

2 and, therefore, (F, F') ∈ R4 (Fife et al., 2019). As a result, the domain of this 
function is the whole R2, and the range of this function is the whole R2, as illustrated 
for several representative points in Fig. 6.6 Our argument up to this point suggests 
that such construction of translation as a function might allow learners to overcome 
their difficulties about translations (e.g., considering vector as an element of both 
domain and range, the translation of the vector itself and the translation of the whole 
plane (Hollebrands, 2003; Sunker & Zembat, 2012)).

6 Note that the learner can assimilate at this point that the translation function is onto and 1:1. To 
be more specific, this function here is T−→u : R2 → R2. For  every  A'(x', y') there is a unique A(x, y), 
which suggests that the function is onto. For every A(x, y) and  B(x, y), if A /= B, then  A' /= B', which  
suggests that the function is 1:1. 
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a 

b 

c 

Fig. 5 a Translation of a geometric figure (or polygon) made up of several line segments with 
respect to a vector .u. b Translation of a planar surface with respect to a vector .u. c Translation of a 
representative set of points in the plane (to represent the whole plane) with respect to a vector .u
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(a)      (b)        (c) 

Fig. 6 A sample preimage and image points representing domain (R2), range (R2) and combination 
of both (R2) for a translation with respect to a vector .u 

1.7 Conceptualizing Rotations Through Quantitative 
Reasoning 

Assume we only focus on three preimage points, A, B, and D, on the plane and 
a rotation. These preimage points are mapped to corresponding image points, A', 
B', D', under a rotation R having a center, C, and an angle, θ, as the parameters. 
Note that this mapping preserves the location of, for example, B' relative to the 
location of A' by taking into account the location of B relative to the location of 
A. However, this is a geometric interpretation of rotation, and the literature (e.g., 
Sinclair et al., 2012) suggests that rotations, just like translations, are geometrically 
treated in the curricula or mathematics classes. The same question we raised in 
defining translation also arises here: How can we quantify the preservation of relative 
locations of the preimage and the corresponding image points to allow our students 
to go beyond geometric interpretation of rotations? We delineate this issue using the 
key components of QR in the following argument. 

Assuming that R2 is conceptualized as detailed before, understanding a rotation 
requires a coordination of the following conditions involving different quantities: 

CR#1: The distance between any two preimage points, say A and B, and the 
distance between their corresponding image points, say A' and B', are equal. 
Namely, d(A, B) = d(A', B'). 
CR#2: An arbitrary preimage point, A, and its corresponding image point, A', on  
the plane are equidistant from a unique point, called center, C. Namely, d(A, C) 
= d(A', C), etc. Note that the triangle formed by A, A', and C is isosceles. 
CR#3: Any arbitrary three colinear preimage points lying on a line having a 
particular slope have corresponding image points that are also colinear lying on
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another line with another slope in the same way7 as preimage points (as CR#1 
holds). 
CR#4: All angles formed by a preimage point (A), the center (C), and the corre-
sponding image point (A'), AC A'

. 

have the same measure θ, where θ is the 
parameter defining the angle of rotation. 

These conditions are not necessarily hierarchical nor sequential. Given this, coor-
dination of the conditions CR#1, CR#2 and CR#3 necessitate that the angle mentioned 
in CR#4 is unique. Note that we are not suggesting the combination of these condi-
tions to give a formal mathematical definition of rotation. Instead, what we suggest 
is that the quantities given in these conditions are necessary to be conceptualized in 
order to think about rotations quantitatively as further detailed below. The conditions 
provided for the other isometries later in the chapter are also mentioned in the same 
manner. 

We suggest that one way to think about rotations quantitatively requires one to 
understand and coordinate the quantities within these conditions in thinking about 
what is variant or invariant. As implied in the above conditions, these quantities are: 
the distances between preimage pairs, the distances between corresponding image 
pairs, the distances between preimage and the center and the distances between the 
corresponding image and the center, slopes of the lines passing through preimages and 
the corresponding images, the angle of center. An individual needs to think that the 
magnitudes (as a result, the values) of the distance between A and B and the distance 
between A' and B', are invariant—d(A, B)= d(A', B'). Such thinking is possible if rota-
tion is considered for the distances among paired preimage points as quantities within 
the domain and the corresponding paired image points within the range. Figure 7a 
illustrates such comparison of the sets {A, B} and {A', B'}, as previously called 
within comparison. Note that differently from translations, a comparison of the sets 
{A, A'} to {B, B'}, between comparison, does not have the same invariances: it is not 
always true that d(A, A') = d(B, B'). However, the magnitudes of the distance between 
A and C and the distance between A' and C, are invariant: d(A, C) = d(A', C) (see  
Fig. 7b).

For students to conceptualize rotations as functions from R2 to R2, the above 
reasoning needs to be expanded to all points that are colinear with A and B. In other 
words, the learner needs to be able to choose any point in between A and B that 
is colinear with A and B, say  D, whether it is infinitely close to A, and coordinate 
within comparisons for the quantities of the distances, d(A, D) = d(A', D') as well  
as d(D, C) = d(D', C) and d(A, C) = d(A', C) (see Fig.  7c). The following quantity 
pairs involved in this coordination covary: 

• d(A, D) and d(A', D')—Covariation #1 
• d(D, C) and d(D', C) &  d(A, C) and d(A', C)—Covariation #2 

Any chosen point, D, can be infinitely close to A, or it converges to A, or one 
becomes the other (D = A and D' = A'), suggesting the continuous covariation of

7 Note that the orientation may not be preserved under rotation. 
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(c)(b)(a) 

Fig. 7 Rotation of sample preimage points A, B, D with respect to center C and rotation angle of 
120° clockwise

preimage and corresponding image points.8 In other words, the learner needs to think 
of continuous covariation (Saldanha & Thompson, 1998) of the quantities included in 
Covariation #1 and Covariation #2 initially separately. Simultaneously thinking about 
(or coordinating) Covariation #1 and Covariation #2 (for infinitely many points like 
D) leads one to conserve collinearity in preimage and corresponding image points. 
Preservation of collinearity implies that there is an angle in between any ‘preimage-
center-image’ point set. Therefore, previously stated Conditions CR#1, CR#2 and 
CR#3 result in the uniqueness of this angle stated in CR#4. 

At this point, the learners’ assimilatory structure may be ready to assimilate rota-
tions as functions. Beyond the aforesaid coordination and articulations, the learner 
also needs to comprehend that every preimage point of the plane is coupled with 
a unique image point of the plane so that the rotation is a function for the learner. 
Previously, we mentioned that the learner needs to conceptualize ‘any set of points 
or geometric shape as quantities relative to the whole, R2, based on the conditions 
of M#1, M#2 and M#3. Thus, an arbitrary point of R2, like D, is coupled with a 
corresponding D' from the R2;RC,θ (D) = D'.9 In other words, for the learner, the 
rotation function should consist of ordered pairs in the form of (D, D') as multiplica-
tive objects, no two of which has the same first element. Note that both D and D', 
which are already multiplicative objects themselves, are elements of R2 and, there-
fore, (D, D')∈ R4 (Fife et al., 2019). As a result, the domain of this function is the

8 Note that the same argument can be made for points B and D. In that case, the coordination of 
following quantities is needed: d(B, D) = d(B', D') as well as  d(D, C) = d(D', C) and  d(B, C) 
= d(B', C). The following quantity pairs involved in this coordination covary: d(B, D) and  d(B', 
D')—Covariation #1; d(D, C) and  d(D', C) &  d(B, C) and  d(B', C)—Covariation #2. Any chosen 
point, D, can be infinitely close to B, or converge to  B, or same as B (D = B and D' = B'), which 
also suggests the continuous covariation of preimage and corresponding image points. 
9 Note that the learner can assimilate at this point that the rotation function is onto and 1:1. To be 
more specific, this function here is RC,θ: R2 → R2. For  every  A' (x', y') there is a unique A(x, y), 
which suggests that the function is onto. For every A(x, y) and  B(x, y), if A /=B, then  A' /=B', which  
suggests that the function is 1:1. 
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whole R2, and the range of this function is the whole R2, as illustrated for several 
representative points in Fig. 7.10 

Our argument up to this point suggests that such conceptualization of rotation as 
a function might allow learners to overcome their difficulties about rotations (e.g., 
considering center as an element of both domain and range, the rotation of the center 
itself and the rotation of the whole plane (Flanagan, 2001)). 

1.8 Conceptualizing Reflections Through Quantitative 
Reasoning 

Let us focus on two preimage points, A and B, on the plane and a reflection. These 
preimage points are mapped to corresponding image points, A' and B', under a reflec-
tion r having a line of reflection, l, as the parameter. Note that this mapping preserves 
the distances (e.g., d(A, B) = d(A', B')) but not relative locations in contrast to trans-
lations. When teaching reflections in schools, teachers mostly use paper-folding 
activities to talk about reflections as flipping-over-line activity—a movement rather 
than a special mapping (Zembat, 2007, 2010). Such treatment might not pave the 
way to thinking about reflections quantitatively or as functions. How can one quan-
tify reflections keeping the covariation of preimage and image points in mind to go 
beyond such limited interpretation of reflections? We delineate this issue using the 
key components of QR in the following argument. 

Assuming that R2 is conceptualized as detailed before, understanding a reflection 
requires a coordination of the following conditions involving different quantities: 

Cr#1: The distance between any two preimage points, say A and B, and the distance 
between their corresponding image points, say A' and B', are equal. Namely, d(A, 
B) = d(A', B'). 
Cr#2: An arbitrary preimage point, A, and its corresponding image point, A', on  
the plane are equidistant from every point falling on a line in between preimage 
and corresponding images, called the line of reflection. Namely, for an arbitrary 
A and Ci in the plane, d(A, Ci) = d(A', Ci) where all such Ci ∈ l, as illustrated in 
Fig. 8. 
Cr#3: Arbitrary three colinear preimage points lying on a line with a particular 
slope have corresponding image points that are also colinear lying on another line 
with another slope with a changing orientation that is determined by the line of 
reflection (as Cr#1 holds true).

Coordination of the conditions Cr#1, Cr#2 and Cr#3, not necessarily hierarchical 
or sequential, necessitate that the line mentioned in Cr#2 is unique. 

We suggest that one way to think about reflections requires one to understand and 
coordinate the quantities within these conditions in thinking about what is variant or

10 Note that, as is the case in translations, the center of rotation is also part of the preimage set as it 
is an element of R2—in fact, the image of the center in any rotation coincides with itself. 
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Fig. 8 Set of Ci equidistant 
from {A, A'} and  {B, B'}, 
and D that is colinear with A 
and B and D' that is colinear 
with A' and B'

invariant. An individual needs to think that the magnitudes (as a result, the values) of 
the distance between A and B and the distance between A' and B', are invariant—d(A, 
B) = d(A', B'). Such thinking is possible if reflection is considered for the distances 
among paired preimage points as quantities within the domain and the corresponding 
paired image points within the range. Figure 8 illustrates such comparison of the sets 
{A, B} and {A', B'}, as previously called within comparison. Note that similar to 
rotations and different from translations, a comparison of the sets {A, A'} to {B, B'} 
does not yield to the same-size quantities, so d(A, A') /= d(B, B').11 However, the 
magnitudes of the distance between A and Ci and the distance between A' and Ci, 
are also invariant—d(A, Ci) = d(A', Ci) where Ci ∈ l(i = 1, 2, . . .). In the context 
of reflections, this second set of quantities is to be used for between comparison. 

We have so far identified two sets of quantities that can be used for within and 
between comparisons: (1) ‘d(A, B) and d(A', B')’ for within comparison; (2)  ‘d(A, 
Ci) and d(A', Ci)’ and ‘d(B, Ci) and d(B', Ci)’ for between comparison. The learner 
needs to coordinate these two sets of quantities. Articulating the role of Ci in this 
coordination is important. 

The learner here needs to think about such Ci that are equidistant from a preimage 
point, A, and its image, A'. The same argument can be made for different preimage 
points (e.g., B as in Fig. 8) on the plane. In other words, there may be such Ci that 
another preimage point B and its corresponding image B' are equidistant from Ci (see 
Fig. 8). In order to have a unique line, Ci must have an invariant characteristic, which 
is that they must be geometrically the mid-points of the quantity pairs {A, A'}, {B, B'},

11 Note that this is not true for a preimage line parallel to the reflection line, as its image will also 
be parallel to the reflection line. 
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etc. This reasoning needs to be expanded to any point that is colinear with A and B. In  
other words, the learner needs to be able to choose any point in between A and B that 
is colinear with A and B, say  D, whether it is infinitely close to A, or converges to A, or  
becomes same as A (D = A and D' = A'), and coordinate within comparisons for the 
quantities of distances, d(A, D) = d(A', D') as well as  d(D, Ci) = d(D', Ci) and d(A, 
Ci) = d(A', Ci) (see Fig.  8). These quantity pairs involved in this coordination covary, 
suggesting the continuous covariation of preimage and corresponding image points.12 

In other words, the learner needs to think of continuous covariation (Saldanha & 
Thompson, 1998) of the two sets of quantities previously identified. Simultaneously 
thinking about (or coordinating) both sets lead one to conserve colinearity in both 
preimage and corresponding image points, respectively. Preservation of colinearity 
results in the uniqueness of the line of reflection. Hence, this line, called line of 
symmetry, consists of mid-points of all preimage and corresponding image points. 
Therefore, d(A, Ci) = d(A', Ci), d(B, Ci) = d(B', Ci), etc. 

At this point, the learners’ assimilatory structure may be ready to assimilate reflec-
tions as functions. Beyond the aforesaid coordination and articulations, the learner 
also needs to comprehend that every preimage point of the plane is coupled with a

Fig. 9 Reflection of sample 
preimage points A, B, C, D, 
E, F, G with respect to line l 

12 Note that the same argument can be made for points B and D. In that case, the coordination of 
following quantities is needed: d(B, D) = d(B', D') as well as  d(D, C) = d(D', C) and  d(B, C) 
= d(B', C). The following quantity pairs involved in this coordination covary: d(B, D) and  d(B', 
D')—Covariation #1; d(D, C) and  d(D', C) &  d(B, C) and  d(B', C)—Covariation #2. Any chosen 
point, D, can be infinitely close to B, or converge to  B, or be same as B (D = B and D' = B'), which 
also suggests the continuous covariation of preimage and corresponding image points. 
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unique image point of the plane so that the reflection is a function for the learner. 
Previously, we mentioned that the learner needs to conceptualize ‘any set of points 
or geometric shapes as quantities relative to the whole, R2, based on the conditions 
of M#1, M#2 and M#3. Thus, an arbitrary point of R2, like D, is coupled with a 
corresponding D' from the R2; rl(D) = D'. In other words, for the learner, the reflec-
tion function should consist of ordered pairs in the form of (D, D') as multiplicative 
objects, no two of which has the same first element. Note that both D and D', which 
are already multiplicative objects themselves, are elements of R2 and, therefore, (D, 
D') ∈ R4 (Fife et al., 2019).13 As a result, the domain of this function is the whole R2, 
and the range of this function is the whole R2, as illustrated for a few representative 
points in Fig. 9. 

2 Discussion 

It is essential to view isometries as functions as it is dependent on 

• conceiving of the whole plane (e.g., all points representing unique locations 
making up the plane) and its constituents (e.g., given preimages and corresponding 
images) as part of R2 × R2, 

• conceptualizations of domain and range as R2, consideration of the parameters as 
part of the transformations (e.g., vector of translation, the center of rotation, line 
of reflection), and 

• thinking about covariation between pre-image and image points (Steketee & 
Scher, 2016) to understand the nature of the involved relations. 

However, previous research informs us about the learner difficulties in these areas 
(Hollebrands, 2003; Steketee & Scher, 2011, 2016; Yanik, 2011), which seem to stem 
from the treatment of isometries as motions only. In this chapter, we have provided an 
analysis of a kind of thinking needed to understand isometries (translation, rotations, 
reflections) based on quantitative reasoning, which, we believe, lays a foundation for 
understanding isometries as functions. 

We have argued in the chapter that the conceptualization of R2 is a key that may 
allow learners to understand both domain and range of the isometries as the whole 
plane, including all of its constituents (e.g., planar figures as preimages and their 
corresponding images, parameters). Our analysis suggests that such conceptualiza-
tion of R2 is dependent on understanding any point, say (a, b), as a multiplicative 
object. This would allow learners to assimilate two measurable attributes: the distance 
of (a, b) to the origin and the slope of the line passing through the origin and (a, b).

13 Note that, as is the case in translations, the line of reflection is also part of the preimage 
set as it is an element of R2—in fact, the image of line in any reflection coincides with itself. 
Here, by (D, D') ∈ R4 we mean ((xD, yD), (xD' , yD' )) or (xD, yD, xD' , yD' ), considering D = (x, y) 
and D' = (x', y'). 
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Once R2 is conceptualized as such, understanding an isometry requires coordi-
nation of quantities at two levels with certain conditions that are specific to each 
isometry. These levels are within comparison (among distances between preimage 
couples and corresponding image couples as well as the slopes of the lines that 
connect these coupled points) and between comparison (among distances between 
preimage-image point couples and/or distances between preimage and image points 
to the parameters respectively). These comparisons involving the aforesaid quantities 
are to be coordinated for the learner to understand what varies or what stays invariant 
under the isometry at hand. The quantities (distances) involved in this coordination 
covary as such covariation is dependent on the covariation of preimage and corre-
sponding image points while colinearity is preserved. This can trigger the learners’ 
thinking of continuous covariation of the quantities included in the aforesaid coor-
dination. Such coordination will be a precursor to assimilating the isometry at hand 
as a function as the learner comprehend that every preimage point of the plane is 
coupled with a unique image point of the plane. In other words, for the learner, the 
isometry function consists of ordered pairs in the form of (D, D') as multiplicative 
objects, no two of which has the same first element. This suggests that (D, D') ∈ R4 

(Fife et al., 2019) as the domain and the range of this function is the whole R2. 
Aforesaid analysis has some implications for curriculum design. We argue that 

the following conceptualizations would benefit students in understanding isometries 
based on quantitative reasoning: 

1. Conceptualizing points on the plane as multiplicative objects, 
2. Conceptualization of R2 consisting of such multiplicative objects by coming to 

understand two measurable attributes: (i) the distance between any point on the 
plane from a reference point (e.g., origin) (ii) the location of this point relative 
to the location of reference, which can be determined by using slopes, 

3. Coordination of quantities (distances and slopes) at two levels (within and 
between comparisons) to understand what stays invariant under isometries, 

4. Understanding that these coordinated quantities (distances) covary as colinearity 
is preserved, 

5. Understanding of isometry as an invariant functional relationship (made possible 
by parameters) among multiplicative objects, ordered pairs in the form of (D, D'), 
no two of which has the same first element. 

In their analysis of the learning progression for geometric transformations, Fife 
et al. (2019, p. 8) suggests that the “covariational approach to functions” is not 
applicable to transformations as their analysis is impacted by Confrey and Smith’s 
(1994, p. 137) approach in which covariation “entails being able to move opera-
tionally from ym to ym+1 coordinating with movement from xm to xm+1.” However, 
the above list of conceptualizations in light of our analysis suggests the opposite 
as our approach adopts Thompson’s theory of quantitative reasoning (Thompson & 
Carlson, 2017, p. 424), in which “a person reasons covariationally when she envi-
sions two quantities’ values varying and envisions them varying simultaneously.” 
Though our analysis is a theoretical one and requires empirical validation with further
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research. A research-based teaching sequence that fosters these conceptualizations 
is also needed. 
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Instructional Conventions 
for Conceptualizing, Graphing 
and Symbolizing Quantitative 
Relationships 

Marilyn P. Carlson, Alan O’Bryan, and Abby Rocha 

1 Orienting to a Problem 

We ask readers to think about the context in Table 1 before beginning this chapter 
and reflect on the reasoning you use to conceptualize and represent the relationships 
you consider.

What did you think about or imagine when reading the text? Make a drawing to 
represent the situation, then use that drawing to describe how pairs of quantities, 
whose values vary, are related and change together. How many distances appear in 
the description? Try describing each distance so that it is clear which distance you 
are referencing. What details did you need in your descriptions? Which distances 
have a value that varies, and which distances have a fixed value (or measure)? Can 
you verbalize how the distance between the Tortoise and Hare changes during the 
race? How might you support students in being able to conceptualize, verbalize, and 
represent this relationship?
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Table 1 One version of the tortoise and hare task (Carlson et al., 2020, p. 17) 

A tortoise challenges a hare to a 100-m race and convinces the hare to give him a 60-m head 
start. They both are moving at a constant speed when the start gun is fired, with the hare running 
the entire race at a constant rate of 3.6 m/s and the tortoise moving at a constant rate of 0.4 m/s 
for the duration of the race

2 Introduction 

Thompson (2008a) argued that “in the United States, the vast majority of school 
students rarely experience a significant mathematical idea and certainly rarely expe-
rience reasoning with ideas” (p. 31) due to “a systemic, cultural inattention to mathe-
matical meaning and coherence” (2013, p. 57). Most U.S. students experience math-
ematics only as groups of procedures to memorize and employ (Boston & Wilhelm, 
2017; Hiebert et al., 2005; Hill, 2021; Jackson et al., 2015; Laursen, 2019; Litke, 
2020; Schmidt et al., 2005; Simon et al., 2000; Stigler et al., 1999; Stigler & Hiebert, 
2009; Thompson, 2008a, 2013). In such a setting, students typically do not develop 
mathematical practices that lead to fluency in solving novel problems; nor do they 
construct strong meanings for key ideas necessary for success in calculus and STEM 
fields. For example, early studies of students’ understanding of the function concept 
revealed weak meanings in students’ function conception (e.g., Monk, 1992; Sier-
pinska, 1992; Vinner & Dreyfus, 1989). Studies report that students view (i) a function 
graph as a picture of an event (Bell & Janvier, 1981; Carlson, 1998; Leinhardt et al., 
1990; Monk, 1992) or a static shape with specific properties (Carlson et al., 2002) and 
(ii) an algebraically defined function as a recipe for getting an answer (Breidenbach 
et al., 1992) or two expressions separated by an equal sign (Carlson, 1998). 

We call for curriculum designers, professional development leaders, course 
coordinators, and instructors to foster learning experiences that support students 
in developing productive ways of thinking and coherent mathematical meanings 
essential for understanding calculus and continuing in STEM fields. It is our goal 
that students become confident and competent mathematical thinkers and problem 
solvers. Our data supports that students who understand ideas and acquire habits of 
reasoning meaningfully will be better equipped to spontaneously engage in produc-
tive reasoning and access their knowledge when learning new ideas and solving 
problems. This perspective is aligned with Harel and Thompson’s call [as explained 
in Thompson et al. (2014)] for students to develop the “habitual anticipation of using 
specific meanings or ways of thinking in reasoning” (p. 13). For example, recent 
studies have identified ways of thinking that foster the emergence of function graphs 
as a record of a student’s conception of how the value of one quantity varies with 
the value of another (Carlson et al., 2002; Moore & Thompson, 2015) and function 
formulas as a record of how pairs of quantities’ values are related and vary together 
(Moore & Carlson, 2012; O’Bryan, 2020a; O’Bryan & Carlson, 2016). 

Our call for mathematics instructors to support students in using and trusting 
their thinking when attempting novel problems and learning new ideas echoes the
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current recommendations from professional organizations (e.g., American Mathe-
matical Association of Two-Year Colleges, 2018; National Governors Association 
Center for Best Practices, Council of Chief State School Officers, 2010; Winsløw,  
2021). However, even when targeted and sustained professional development training 
is available, and instructors use research- and inquiry-based materials, researchers 
report only minor shifts in most teachers’ instructional practices, with many instruc-
tors continuing to focus on lecture as a means of transmitting knowledge to students 
(e.g., Baş-Ader & Carlson, 2021; Jackson et al., 2015). Such teacher-centered instruc-
tion is not attentive to student thinking, nor does it reveal to teachers the variety of 
ways students are conceptualizing and reasoning about mathematical ideas. Under-
standing and assessing student progress in applying their reasoning has been shown to 
be valuable for informing teacher task selection, questions, and explanations. These 
decentering actions (Baş-Ader & Carlson, 2021; Piaget, 1955; Steffe & Thompson, 
2000; Teuscher et al., 2012) are a critical component of responsive teaching whereby 
instructors act in the moment and adapt their instruction by leveraging students’ 
thinking to successfully make progress toward a lesson’s learning goals. 

3 The Need for Conventions to Facilitate Changes 
in Pedagogy and Student Success 

Thompson and Carlson (2017) call for introductory undergraduate courses in math-
ematics to be alert to the static images many students possess for variables, function 
formulas, and graphs. They call for curriculum and instruction to reengage precal-
culus level students in trusting and using their reasoning to conceptualize quantities 
in a problem context, and then illustrate how a student’s image of how quantities 
are related can lead to constructing symbols and graphs that carry meaning for the 
one constructing them. However, during 15 years of working with and studying 
precalculus instructors in the Pathways Project, we rarely encountered an instructor 
who engaged in and valued pedagogical practices for supporting students’ devel-
opment of dynamic imagery related to function relationships and their representa-
tions. Most instructors have only experienced traditional curriculum in both their 
learning and teaching experiences. They need focused professional development to 
help them reconceptualize mathematical ideas they thought they understood and to 
reconceptualize effective teaching as focused on and affecting student thinking. 

We developed Pathways curriculum materials (Carlson & Oehrtman, 2010) to  
support instructors in fostering productive reasoning patterns in their students that 
research has revealed to be essential for students’ construction of meaningful function 
formulas (e.g. Moore & Carlson, 2012; Thompson, 1988, 1990, 1992) and graphs 
(e.g., Carlson et al., 2002; Moore & Thompson, 2015). These include specific support 
for: (i) conceptualizing and speaking about quantities and how their values vary 
together, (ii) representing how two quantities change together using a graph, and 
(iii) representing quantitative relationships with expressions and formulas. As we
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refined the Pathways course materials over time, we strove to design for coherence 
by emphasizing reasoning about and making connections between the three strands 
of school mathematics that prepare students for calculus: the mathematics of quantity, 
the mathematics of variation, and the mathematics of representational equivalence 
(Thompson, 2008a).1 We included problems, teacher notes, and other resources that 
we believed would help instructors engage students in constructing strong meanings 
for ideas from these strands in each lesson and support students in making connections 
between ideas across multiple strands. 

In scaling the use of the Pathways materials, however, we faced persistent 
challenges in shifting instructors’ pedagogical actions and perspectives on student 
learning to achieve our intended learning goals. Many instructors routinely missed 
opportunities to conceptualize how the ideas in each lesson were related to one of 
these three strands or make connections between ideas in different strands. This led 
us to reexamine the focus of our professional development training and to develop 
pedagogical conventions that we believed would support both instructor and student 
learning if enacted. We were also guided by Thompson’s (1990) elaboration of 
the role of quantitative reasoning in students’ construction of meaningful algebraic 
expressions. This led to our introducing instructional conventions over the course of 
15 years when working with instructors, including classroom observations, profes-
sional development workshops, preservice teacher courses, and training programs 
for graduate teaching assistants. For example, when students successfully reasoned 
about applied contexts, we noted instructor moves that supported students in orienting 
to the problem (Polya, 1957) and engaging in productive problem-solving behaviors 
(Carlson & Bloom, 2005). In contrast, when students struggled to make sense of 
ideas or problems, we noted pedagogical actions that were not taken that could have 
supported students in making sense of relationships in the problem. We also analyzed 
clinical interview data that suggested actions (such as drawing detailed diagrams) 
that led to students’ successfully conceptualizing quantitative relationships (Moore & 
Carlson, 2012).

1 Thompson (2008b) describes these strands as follows. The mathematics of quantity refers to 
how individuals conceptualize measurable attributes of a situation, create measurement schemes 
to quantify the attributes’ magnitudes, represent the quantities in various ways, and generalize 
aspects of these attributes. The mathematics of variation refers to how individuals imagine quantities 
with magnitudes that can vary, how they represent this variation in different ways, and how they 
draw inferences from noticing what in a relationship remains invariant as two quantities change 
in tandem. The mathematics of representational equivalence refers to how individuals think of 
arithmetic and, eventually, algebraic expressions non-computationally as “segues into structural 
properties of numbers and quantitative relationship[s]” (p. 7). These three strands are interrelated, 
and opportunities always exist to discuss elements of one strand even within contexts emphasizing 
another strand. For example, while supporting students in conceptualizing quantitative relationships 
in some given scenario it can be very natural to explore how two or more of the conceptualized 
quantities co-vary in tandem. Thompson states that “The three strands in interaction, each receiving 
appropriate emphasis, and always with the other two in the background, builds a foundation for 
algebraic reasoning that simultaneously builds a foundation for schemes of meanings that are crucial 
for understanding the calculus” (pp. 8–9). 
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Our observations revealed that even when teachers were committed to making 
their instruction more engaging and meaningful for students, they continued to rely 
on familiar instructional practices of providing vague explanations and showing 
students how to find answers. For students to build personal meanings for mathemat-
ical ideas requires that instructors create opportunities for them to construct these 
meanings and engage in productive habits of reasoning as often as possible (Harel, 
2008). Our attempts to support instructors in consistently engaging their students in 
meaningful mathematical activity that begins with their conceptualizing quantities 
and their relationships as a basis for their graphing and defining activities led to our 
introducing the instructional conventions described in this chapter. These conven-
tions include underlining phrases in a problem statement that describes quantities, 
precisely referencing quantities when speaking, constructing a drawing that depicts 
how quantities are related, physically tracking quantities as their values vary, etc. 
We introduce them to focus and structure student mathematical activity in support of 
their meaningful engagement in conceptualizing problems and learning new ideas. 

4 Elaborating Quantitative and Covariational Reasoning 

We adopt Thompson’s theory of quantitative reasoning to explicate the ways of 
thinking we desire students to construct. According to Thompson (1988, 1990, 1993, 
1994, 2011, 2012) quantitative reasoning is rooted in a disposition to conceptualize 
situations in terms of measurable attributes of objects and relationships among them. 
Quantitative reasoning then is a way of thinking about situations whereby an indi-
vidual conceptualizes measurable attributes of objects (quantities) and organizes 
relationships between these attributes to form a structured mental representation of 
the situation. Quantities are mental objects unique to an individual. The way an indi-
vidual conceptualizes a quantity and the set of quantities deemed relevant provides 
the space of implications for the reasoning an individual can engage in relative to 
a given situation (Smith & Thompson, 2007; Thompson, 1994). A key element of 
quantitative reasoning is quantification whereby an individual develops a method 
for reliably representing a conceptualized quantity’s magnitude with a numerical 
value (that is, its measure). The quantification process is critical for an individual to 
develop meaningful mathematical models because “[i]t is in the process of quanti-
fying a quality that it [the quality] becomes truly analyzed” (Thompson, 1990, p. 5).  
The nature of the conceptualized quantity matters a great deal in this process, as 
does the sophistication of the individual’s magnitude schemes (see Thompson et al. 
(2014) for a discussion of these ideas). For example, the quantity “distance between 
two people” can be quantified as a multiplicative comparison to some imagined unit 
(either a standard unit like “meter” or “inch”, or a nonstandard unit such as “length 
of the measurer’s foot” or “the length of the measurer’s pace”). Some quantities, 
however, such as the speed of a baseball pitch or the impact force of an automo-
bile striking another automobile arise via conceptualizing a quantitative operation, 
or a mental operation of comparison/coordination of other quantities the individual
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has already conceptualized (Thompson, 1990, 1994, 2011). The resulting quantity 
cannot be directly measured in the same way that “the distance between two people” 
can be directly measured. As a result, quantifying these more complex quantities 
requires a scheme dependent on the quantitative operations from which they arose 
(Johnson, 2015; Moore, 2010; Piaget, 1968; Schwartz, 1988; Simon & Placa, 2012; 
Thompson, 1990; Thompson et al., 2014). 

It is also important that students distinguish between quantities with a fixed magni-
tude and those with a magnitude that can vary. This distinction is key in conceptual-
izing mathematical models of a dynamic situation as representing the simultaneous 
covariation of two quantities’ values. An individual reasons covariationally when she 
envisions two quantities’ values varying in tandem (Carlson et al., 2002; Saldanha & 
Thompson, 1998; Thompson & Carlson, 2017), and holds in mind a sustained image 
of the two quantities’ values simultaneously (Saldanha & Thompson, 1998). 

Thompson’s (1988, 1990, 1993, 1994, 2011, 2012) theory of quantitative 
reasoning “is about a stratum of reasoning that lies beneath both applied arith-
metic and applied algebra. It is about people using ‘rigorously qualitative’ reasoning, 
where rigor derives from the intention to attend to the quantification of a situation’s 
qualities” (p. 3). The theory is most useful in considering how individuals come to 
understand quantifying qualities like heat, force, and torque—qualities that cannot 
be quantified via extensive measurement. However, for individuals to participate in 
quantifying and using this category of quantities in mathematical modeling they must 
begin by conceptualizing calculations, variables, and algebraic expressions as tools 
for representing the quantitative relationships they have conceptualized. 

Despite the body of research pointing to the essential role of quantitative and 
covariational reasoning in students’ mathematical development, there is a broad body 
of research in calculus learning that points to students’ failure to conceptualize quan-
tities, how they are related, and vary together as sources of challenges using calculus 
ideas to advance a problem’s solution (Bressoud et al., 2016; Byerley, 2019; Carlson, 
1998; Engelke, 2007; Mkhatshwa, 2020; Oehrtman, 2009; Thompson & Harel, 2021; 
Thompson, 1992; Zandieh, 2000). Our work in the Pathways Project focuses on oper-
ationalizing Thompson’s theory of quantitative reasoning so that students develop 
the beliefs, expectations, and ways of thinking necessary to participate in meaningful 
mathematical modeling for success in calculus and STEM fields. In later sections, we 
elaborate how these constructs informed our thinking and design of Pathways conven-
tions for supporting precalculus mathematics students’ engagement in quantitative 
and covariational reasoning. 

For now, we echo our claim that students’ ability to construct meaningful formulas 
and graphs rely on their using quantitative reasoning to build a structured mental 
model of quantities (measurable attributes of objects) within a situation. To make 
this claim more transparent, we ask you to revisit the Tortoise and Hare context and 
follow-up questions we presented at the beginning of this chapter. Consider again 
how the following contributed to your ability to describe how the distance between 
the Tortoise and Hare changed during the race: (i) your conception of the quantities 
described in the text, (ii) your conception of the quantities to be related and how they 
vary together; (iii) the clarity with which you conceptualized the quantities (e.g.,
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where a quantity’s measurement begins, the direction of the measurement), and (iv) 
the clarity with which you represented the quantities and their relationships in a 
drawing. 

Data from administering an item that presented the above context and asked 
students to define the Tortoise’s distance (in meters) ahead of the Hare in terms of 
the number of seconds since the start of the race revealed that very few of over 
1000 precalculus students were able to produce a correct answer. Further, data from 
administering the Mathematical Association of America’s Calculus Concept Readi-
ness (CCR) exam to 601 students from three different universities during their first 
week of calculus revealed widespread weaknesses in students’ ability to define func-
tion formulas and interpret function graphs. In addition, only 28% of these 601 
students selected the correct response (out of five multiple choice options) to an 
item that asked them to define the area A of a circle in terms of its circumference, 
C (Carlson et al., 2015). CCR data thus suggests widespread difficulties in students’ 
ability to define function formulas to relate two quantities whose values vary as they 
begin calculus. 

5 Speaking with Meaning: A Convention for Improving 
Instructors’ Communication 

Analysis of video data from instructors’ professional learning communities (PLCs) 
(also reported in Clark et al., 2008) showed instructors being imprecise in referencing 
quantities and saying what a variable, expression, graph, and function formula repre-
sented when communicating with each other. These instructors regularly made vague 
references to a volume, height, time, etc. without making clear what volume, height, 
or time they were considering. We also noticed a pervasive use of pronouns that 
made it difficult for other instructors to understand what the speaker was imag-
ining and conceptualizing when completing a problem. Their inability to be specific 
in describing and representing quantitative relationships appeared to reveal their 
weak conceptions and it was common for instructors to pretend to follow incoherent 
explanations resulting in meaningless exchanges among the instructors. 

After our pointing out the difficulties we were experiencing in following their 
explanations, we collectively negotiated a specific goal to speak more meaning-
fully when discussing ideas and problems during the PLCs. This led to the project 
leaders negotiating with the PLC members patterns of speaking that we conjec-
tured would improve communication about the mathematical ideas and how they 
are learned. We collectively decided to restrict the use of pronouns by requesting 
that all PLC members be precise in referencing the quantity they were imagining, 
including the direction of measurement, the starting point for the measurement, and 
the unit of measure. Our goal was to focus instructors’ attention on the coherence 
of their speaking and how they might be interpreted by others. We were hopeful 
that reflecting on these issues would motivate them to expend the mental energy to
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improve in their ability to speak with meaning. Since retrospective analysis of the 
PLC videos revealed that the instructors’ classroom explanations mirrored those they 
provided in the PLCs, we were hopeful that speaking with meaning would become 
normative within their classroom discussions as well. 

Our subsequent analysis of the PLC videos, after agreeing on conventions for 
speaking, revealed instructors gradually becoming more fluent in referencing quan-
tities and describing quantitative relationships. The instructors’ language steadily 
shifted (with consistent reinforcing) to their describing the quantity they were concep-
tualizing by stating what was being measured, the unit of measurement, the starting 
point for the measurement, and the direction of the measure (e.g., Juan’s distance 
in feet north of the stop sign). We further noticed that the instructors’ ability to 
precisely reference the quantities and describe how pairs of quantities are related 
was accompanied by improvements in the instructors’ ability to construct formulas 
and graphs that accurately represented the quantitative relationships described in 
a problem. When instructors expressed frustration while attempting to speak with 
meaning about a problem they were discussing, they typically had not taken time to 
conceptualize the quantities described in the problem context. 

As our work to support instructors in communicating their thinking to their peers 
continued, we gradually introduced other conventions for communication, including: 
(i) the speaker verbalizing her thinking and the rationale for her choices, rather than 
describing what she did to get an answer; (ii) all members of the PLC attempting 
to make sense of the thinking of the speaker, instead of only listening to the words 
being spoken; and (iii) all members of the PLC asking a question if something was 
unclear, instead of pretending to understand when they were unable to follow. We 
formalized the convention speaking with meaning as a research construct for our 
continued study by saying, 

An individual who is speaking with meaning provides conceptually based descriptions when 
communicating with others about solution approaches. The quantities and relationships 
between quantities in the problem context are described rather than only stating procedures 
or numerical calculations used to obtain an answer to a problem. Solution approaches are 
justified with logical and coherent arguments that have a conceptual rather than procedural 
basis. (Clark et al., 2008, p. 297) 

According to Yackel and Cobb (1996), considering how others might make sense 
of explanations requires a shift in perspective from only viewing explanations as 
something one gives or hears to making the explanations themselves an object of 
reflection. Thus, when one speaks, they concurrently imagine how their utterances 
might be interpreted. The capacity for an individual to anticipate how they might be 
interpreted has been termed decentering (Piaget, 1955; Steffe & Thompson, 2000). 
Our perspective on decentering is elaborated elsewhere (Baş-Ader & Carlson, 2021; 
Carlson et al., 2004; Teuscher et al., 2012), with these studies revealing that US 
secondary and university precalculus instructors are generally not oriented to making 
sense of students’ thinking or considering how their explanations might be interpreted 
by others. This finding is consistent with findings reported in international studies 
(e.g., TIMSS) and research on teaching (Baş-Ader & Carlson, 2021; Teuscher et al., 
2016; Thompson, 2013, 2016). As a result, our data and observations of the impact
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of instructors adopting the convention that a speaker speak with meaning and a 
listener’s attempt to make sense of another’s spoken words, revealed cognitive shifts 
in instructors’ conceptions, and substantial shifts in instructors’ conversation toward 
an improved understanding of each other’s perspective (Clark et al., 2008). 

We should note that in a few cases a PLC leader did not consistently model or 
reinforce speaking with meaning. The conversations and explanations in these PLCs 
did not shift to become more meaningful or coherent and instructors were observed 
agreeing with incorrect solutions and illogical explanations. According to Yackel 
and Cobb (1996), a sociomathematical norm refers to a normative behavior specific 
to mathematics, such as understanding what constitutes an acceptable mathematical 
solution or what counts as an acceptable mathematical behavior in a group setting. 
We reemphasize that the pattern of speaking with meaning as a new sociomathemat-
ical norm only became normative in settings where the PLC leader was consistent 
in modeling speaking with meaning and consistent in reinforcing speaking with 
meaning among the instructors. 

6 Scaling the Convention of Speaking with Meaning Across 
the Pathways Project 

After five years of research and development of Pathways interventions, the pre-
post-gains of student learning using both the validated PCA (Carlson et al., 2010) 
and Calculus Concept Readiness (CCR) exams (Carlson et al., 2015) were highly 
significant. The mean PCA scores ranged from 13.5 to 18 (out of 25), representing 
pre- post-gains of 5–9 points on average. At this stage of the Pathways project, 
we made the curricular materials and professional development available for other 
universities, creating an opportunity for us to continue documenting speaking patterns 
among new communities of Pathways users.2 The trends described previously among 
communities of new Pathways instructors, including using a single word to define a 
variable, providing calculational explanations, etc. were normative at the beginning 
of all 12 Pathways professional development workshops that proceeded a university 
deciding to adopt Pathways materials. In Table 2 we provide concrete examples of 
common speaking patterns and contrast vague speaking with what we considered to 
be speaking that is more meaningful.

2 Since our initial introduction of the term speaking with meaning, 11 new colleges/universities 
have participated in Pathways professional development. 
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Table 2 Examples of speaking with meaning compared to statements that show an absence of 
speaking with meaning 

Speaking with meaning 

Absence of speaking with meanings Speaking with meaning 

• The graph of the car’s distance falls to the 
right 

• The car’s distance south of the stop sign (in 
feet) is decreasing as the number of seconds 
since the car started moving increases 

• f (7) is 20 tells me that when I plug in 7 I get 
20 

• Since  f (7) is equal to 20, the tank had 20 
gallons of water 7 min after the tank started 
draining 

• I multiplied 1.08 by $2000 to get my answer • Since the amount I must pay is 8% more than 
the price, the amount I must pay is 1.08 
times as large as $2000 

• 24 divided by 5 is 4.8 because 5 goes into 24 
4.8 times 

• Since I need to determine how many times as 
long 24 in. is as compared to 5 in., I must 
divide 24 by 5. My answer tells me that 24 
in. is 4.8 times as long as 5 in. 

• Since the graph curves up the distance is 
getting larger from 0 to 5 

• During the first 5 s of the race, the distance 
travelled by the runner over successive fixed 
amount of time increases. This also means 
that the runner is speeding up during the first 
5 s or the race 

6.1 Speaking with Meaning in Instruction and Curriculum 

We leveraged the insights from our study of PLCs (Clark et al., 2008) in our initial 
workshops with instructors preparing to use Pathways materials at a particular univer-
sity. In doing so, we consistently modeled speaking with meaning and asked for clar-
ification when workshop participants were unclear about what quantity they were 
referencing. Imprecise quantity references that failed to describe the starting point 
of the quantity’s measurement such as “time elapsed” or “hours passed” were called 
out for clarification (e.g., “the number of minutes since 9 am”, the number of seconds 
since the car left home). When a workshop participant used pronouns or made impre-
cise statements like, “its distance is getting closer” the workshop leader might ask 
questions like, “What is getting closer?” “What distance?” “Closer to what?”, hoping 
to raise the instructor’s awareness of the need to be more specific in describing the 
distance the instructor was imagining. Our persistent probing typically generated 
a response like, “the car’s distance north of the intersection is decreasing”. The 
reinforcement of speaking with meaning in the initial workshop made the criteria 
for speaking with meaning public among all workshop participants. It is also note-
worthy that workshop participants began to ask each other for clarification when 
speaking among themselves.3 The Pathways curriculum materials further supported

3 In universities where a commitment to speaking with meaning became a social mathematical norm 
and was highly valued by the local coordinator in our initial Pathways workshop, we have since 
documented the persistence of speaking with meaning in this local community of instructors. 
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an instructor’s shift to speak with meaning by providing open-ended questions, oppor-
tunities for students to select and clearly define variables of interest, and requests for 
students to explain and justify their reasoning. The instructor materials also provide 
detailed solutions and explanations that model speaking with meaning, giving instruc-
tors clear examples of the preciseness in speaking that is needed when responding 
to specific problems and questions. Our observations of Pathways instructors’ class-
rooms reveal gradual shifts in their effectiveness in using and reinforcing speaking 
with meaning with variation in their: (i) consistency in modeling speaking with 
meaning; (ii) commitment to making speaking with meaning a classroom conven-
tion all students adopt; and (iii) consistency in asking for clarification when a student 
produces vague descriptions and/or explanations. 

6.2 Emergent Shape Thinking and Conventions 
for Meaningful Graphing Activity 

Researchers have documented students’ impoverished conceptions of graphs, 
including their conceiving of a graph as a picture of an actual event (e.g., Bell & 
Janvier, 1981; Carlson, 1998; Kaput, 1992; Leinhardt et al., 1990; Monk, 1992). For 
example, Carlson (1998) reported that high performing precalculus students inter-
preted the speed-time graphs of two cars as the paths on which the cars were driving 
and the intersection of the two graphs as a collision location. In the same study she 
reported that high performing second semester calculus students could say nothing 
more detailed about a graph’s inflection point than it being the location on a graph 
where the graph changes concavity, and when pressed to explain what the concavity 
conveyed about the quantitative relationships they responded with comments about 
the curvature of the graph. In contrast, more recent studies have revealed five levels of 
student reasoning as they attempt to construct a graph of two quantities as their values 
varied together in a non-linear pattern (Carlson et al., 2002) and have demonstrated 
the utility of students’ graphing activities as emerging from their conceptualizing 
two quantities’ values varying in tandem while imagining how the two quantities’ 
values are changing together (e.g., Carlson et al., 2002; Moore & Thompson, 2015). 

Moore and Thompson (2015) classified and contrasted students’ ways of thinking 
about graphs in terms of the thinking they used to construct the graph. They say that 
a student is engaging in static shape thinking if the student conceptualizes the “graph 
as an object in and of itself, and as having properties that the student associates with 
learned facts.” For example, a student who constructs a graph by plotting points and 
applying algebraic methods to identify roots, inflection points, maximum/minimum 
values would be engaging in static shape thinking. In contrast, a student is said to be 
engaging in emergent shape thinking when the graph’s trace emerges from the student 
considering two quantities’ values as they vary together. A student engaging in the 
first three mental actions described in the Carlson et al. (2002) covariation framework 
would be engaged in emergent shape thinking. The mental actions as characterized
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Fig. 1 A conception of a 
point as the simultaneous 
values of two quantities (a 
multiplicative object) 

in the context of a student constructing a graph of the height of water in a vase in 
terms of the volume of water in the vase entails: (i) conceptualizing two quantities’ 
values varying together (i.e., the volume of water in the vase and the height of the 
water in the vase) (MA1); (ii) conceptualizing the two quantities’ values varying 
simultaneously and continuously, while considering the direction of the variation of 
each quantity’s value (as the volume of water in the vase increases the height of the 
water in the vase increases) (MA2); (iii) conceptualizing how the values of the two 
quantities vary together by imagining a successive fixed amount of variation in one 
quantity while considering the amount of variation in the other quantity (considering 
how much the water’s height varies while considering successive fixed increases in 
the volume of water) (MA3). 

When the student has linked together two measurable attributes of the vase (the 
volume of water in the vase and the height of the water in the vase), they have 
conceptualized a multiplicative object, an object that simultaneously combines the 
attributes of two conceived quantities (Saldanha & Thompson, 1998; Thompson, 
2011). A student who has conceptualized the two quantities as a multiplicative object 
may find it useful to sometimes consider the variation in one quantity only; however, 
when doing so the student will have a persistent awareness that the other quantity’s 
value is also varying (Thompson & Carlson, 2017) (see Fig.  1). The volume of water 
in the vase (in cups) and the height of water in the vase (in inches) vary in tandem, 
and a point is used to represent the simultaneous correlated values of each quantity. 

7 Pathways Conventions for Graphing 

The Pathways Project uses specific conventions to support students in conceptual-
izing a graph as a record of how two quantities’ values vary together. Prior to intro-
ducing graphing, we engage students in using what we call the quantity tracking tool.
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While observing a dynamic event (e.g., someone walking across the room from one 
wall to another) or an applet that displays a dynamic event (e.g., a vase filling with 
water) in which at least two quantities’ values are varying, students are prompted to 
move their index fingers to track the variation in two quantities’ values. The quantity 
tracking tool, as first described in Thompson (2002), supports students in concep-
tualizing graphs as emergent traces produced from the coupling of values for two 
co-varying quantities. According to Thompson (2002), conceptualizing graphs as a 
record of simultaneous variation requires having students. 

internalize their perceptions of two quantities whose values vary, making that variation 
experientially concrete. To make covariation of quantities values experientially concrete, it 
is essential that they envision a single quantity’s variation as itself having momentary states 
and therefore that the attribute whose value varies has momentary values. (p. 206) 

When introducing the quantity tracking tool, the instructor negotiates a location 
for students’ index fingers that represents a measurement of 0 units for each quantity 
either on (or beside if negative values are being tracked) each student’s desk. The 
instructor also engages the students in deciding on a direction for moving each 
index finger when representing increasing and decreasing values.4 The instructor 
then prompts students to use one index finger to track the variation in one quantity’s 
value (e.g., the height of water in a vase in inches) as they observe the dynamic 
movement or applet. This is repeated several times, with the instructor prompting 
specific students to describe what they were imagining as they moved their finger. 
Students next pick another quantity (in the same problem context) whose value is 
varying in tandem with the first quantity (e.g., the volume of water in the vase in 
cups or the number of seconds elapsed since the waterspout was turned on). After 
the class has decided on a direction for the measurement, they track the quantity’s 
value as they again observe the dynamic event or applet. The instructor may also stop 
the event or applet and prompt students to say what they are imagining as they move 
their index fingers. The instructor then prompts students to use both index fingers to 
simultaneously track the two quantities’ values while observing the situation unfold. 
To ensure that students are engaging in quantitative reasoning, it is important that the 
instructor prompt students to explain what their finger movement represents, what 
the initial location of one or both of their index fingers represents, how they know 
what direction to move their fingers, etc. (see the next section for a detailed example 
of using the quantity tracking tool). 

It is noteworthy that use of the quantity tracking tool requires students to both 
conceptualize and track a quantity’s measurement, including where the measurement 
begins and the measurement’s direction, prior to moving both index fingers to track 
the simultaneous value of the two quantities as their values vary. The convention 
that each finger be moved up or down (or right or left) from a common starting 
point keeps students’ focus on the magnitude of the quantity’s value in contrast to

4 When initially using the quantity tracking tool students typically decide that a positive value of 
one quantity is represented by a distance upward from a starting point and that positive values of a 
second quantity are represented by a distance to the right of the same starting point, while negative 
values are downward and to the left respectively. 
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Fig. 2 Graphs emerge as 
traces 

tracing a pre-imagined shape. We also see the quantity tracking tool as providing a 
meaningful foundation for conceptualizing coordinate axes as measurement tools for 
two quantities’ values. Ours and others’ studies (e.g., Frank, 2017a, 2017b) suggest 
that students typically lose sight of the fact that each axis is a measuring tool for one 
quantity, and that every point on a graph represents the simultaneous measurement 
of two quantities. The Pathways convention of drawing dashed lines from the point 
back to the axes (as in Fig. 1) are one attempt to reinforce the conception of a point 
as the simultaneous value of the two quantities at an instance during the unfolding 
of the dynamic event. 

We encourage instructors to leverage the ways of thinking supported in the quan-
tity tracking tool as a basis for constructing graphs in their lessons. As the unfolding 
of a dynamic event is displayed in an applet or animation, instructors support students 
in seeing the graph materialize with the leading point on the emergent trace projected 
back to the axes with dashed lines (Fig. 2) and the point representing the simulta-
neous values of two quantities (with values determined from the axes). In this way 
attributes of the relationship between the covarying quantities also emerge as “prop-
erties of covariation” (Moore & Thompson, 2015, p. 786), such as whether one 
quantity increases or decreases as the other quantity increases and where and why 
this behavior may change. 

8 Implementing the Quantity Tracking Tool 

We designed an applet to assist students in conceptualizing the quantities in the 
Tortoise and Hare context. Recall that the Hare agrees to give the Tortoise a 60-m 
head start (Fig. 3).

As the instructor moves a slider smoothly to vary the number of seconds since the 
start of the race (or hits “play” and allows the slider to move automatically), each
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Fig. 3 The initial positions of the tortoise and hare

Fig. 4 Tracking each animal’s distance from the starting line 

animal’s distance from the starting line is represented as a dashed line with an arrow 
pointing to the right (Fig. 4).5 

As the applet plays, the elapsed time since the start of the race varies as does the 
amount of time remaining until the Tortoise finishes the race and the amount of time 
remaining until the Hare finishes the race. There are also five distances with values 
that vary as the race plays out. Let us assume that the instructor has begun exploring 
this context with her class and is now interested in exploring how the distance (in 
meters) the Tortoise is ahead of the Hare varies with the elapsed time (in seconds) 
since the start of the race. The conceptions and imagery students construct while 
the teacher engages them in a conversation using the applet and quantity tracking 
tool is impacted by the instructor’s effectiveness in focusing students’ attention on 
conceptualizing the relevant quantities and how they vary together. To illustrate this 
point, we provide a brief example of hypothetical instructor and student actions for 
promoting quantitative reasoning in students (see Table 36 ). Note that the questions 
posed by the instructor in the context of the applet and quantity tracking tool continue 
to promote speaking with meaning.

Constructing a graph that carries meaning for the one constructing it relies on 
the individual having in mind a goal to represent the simultaneous variation of two 
quantities’ values as they vary together. When enacting the quantity tracking tool, 
students’ attention is focused on coordinating the magnitudes and directed measures 
of quantities with values that vary in tandem. As students make decisions about the 
starting position for their index fingers, they consider the starting point (0 value) 
for each measurement. As they begin to track a quantity’s value by moving their

5 The instructor selects a specific button to indicate which two quantities to isolate when exploring 
the concurrent variation in two quantities’ values. 
6 The convention of quantitative drawing, as explained later in this chapter, can further support 
students in conceptualizing the quantities we want them to coordinate with the quantity tracking tool. 
The conventions in this chapter all support each other to maximize students’ learning opportunities. 
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Table 3 Utilizing the quantity tracking tool in a class setting with students to help them 
conceptualize relevant quantities and relationships between quantities 

Instructor actions/statements 
to students 

Student actions Follow-up 
questions/observations 

1 “Place your right index finger 
on your starting position for 
measuring the elapsed time 
since the race began.” 

Students choose a starting 
position for their fingers 

Pose questions to specific 
students: “What does the 
position of your finger 
represent?” If student say 
“time,” ask them, “What 
time?” Continue probing 
students until your weakest 
students can verbalize a 
precise description of the 
quantity (e.g., “The number 
of seconds elapsed since the 
start of the race.”) 

2 “As I move the slider on the 
applet, move your right index 
finger in a way to represent 
the number of seconds 
elapsed since the start of the 
race.” (repeat if some 
students don’t participate) 

All students move their right 
index finger to the right from 
the designated starting point 
for measuring the number of 
seconds elapsed since the 
start of the race. The motion 
is smooth and continuous. 
See Fig. 5 

Pose questions to specific 
students: “What were you 
imagining as you moved your 
finger? What does the starting 
position of your finger 
represent? What does the 
ending position of your finger 
represent? Should your finger 
be moved smoothly? 
Explain.” 

3 “To represent that the tortoise 
is a distance of 0 m ahead of 
the hare, position your left 
index finger at the same initial 
position as your right index 
finger. Positive values will be 
above this position.” 

Students position their left 
index fingers at the same 
initial position as their right 
index finger 

Students often overlook 
exploring how the distance 
that the tortoise is ahead of 
the hare varies during the 
running of the race. Ask 
students to point out where 
they “see” this quantity’s 
magnitude represented on the 
drawing 

4 “Now, place your left index 
finger on a starting position 
that represents the 
approximate distance that the 
tortoise is ahead of the hare at 
the start of the race.” 

Students place their left 
finger some distance above 
the starting reference point 

Note that some students will 
likely place their finger at the 
position that represents 0 m 
from the starting line. Ask 
these students to say what a 0 
value represents. Ask 
questions like, “Where is the 
tortoise relative to the hare at 
the start of the race?” 

5 “As I move the slider on the 
applet, move your left index 
finger in a way to represent 
the approximate distance 
between the tortoise and 
hare.” 

All students move their left 
index downward from their 
designated starting point. 
The motion is smooth and 
continuous. See Fig. 6 

If some students do not 
participate or move their 
index finger in the wrong 
direction, prompt them to 
explain their thinking; then 
replay the race being run

(continued)
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Table 3 (continued)

Instructor actions/statements
to students

Student actions Follow-up
questions/observations

6 Prompt students to model the 
tortoise’s distance ahead of 
the hare in terms of the 
number of seconds since the 
start of the  race  using both 
index fingers at the same 
time 

All students coordinate the 
motion of their right and left 
index fingers to represent the 
relationship between the two 
quantities’ values. The 
motion is smooth and 
continuous. See Figs. 7 and 8 

Since textbooks and 
instructors commonly make 
requests for students to 
represent one quantity “in 
terms of” another. It is 
important to introduce this 
language (and make sure 
students are clear on what it 
means) so students can attach 
this request to the mental 
operations of covarying the 
tortoise’s distance ahead of 
the hare with the amount of 
time that has elapsed since 
the start of the race 

Fig. 5 A student’s right hand as she uses her index finger to sweep out a duration of elapsed time 
while the animation plays

index finger, they associate a direction of movement for positive measurements and 
a direction for negative measurements (Figs. 5 and 6). 

A point on a graph in the coordinate plane is then viewed as the co-occurring values 
of the two quantities (a multiplicative object) at an instance as the two quantities’ 
values vary together (Figs. 7 and 8). 

Given the broadly documented difficulties students encounter in creating and 
interpreting graphs (e.g., Carlson, 1998; Monk, 1992) and the commonly held view 
that a point on a graph is a result of a sequence of actions (count over 4 and down 
5), shifting students to conceptualize graphs as an emergent trace of the values of 
two covarying quantities requires repeated reinforcement. Tracking the simultaneous 
variation in the two quantities’ values by physically moving one’s index fingers 
together promotes students’ conceiving of the two quantities’ values as coupled (a
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Fig. 6 A student’s left hand as she uses her index finger to sweep out the distance the tortoise is 
ahead of the hare while the animation plays 

Fig. 7 A student using her index fingers to coordinate time elapsed (in seconds) since the beginning 
of the race with the Tortoise’s distance (in meters) ahead of the Hare

multiplicative object) (Fig. 8), while considering how the values of the two quantities 
vary together.7 

7 The conceptualizations for enacting the quantity tracking tool parallels the thinking for 
constructing a graph of two quantities’ values as they vary together.
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Fig. 8 The imagery we want students to develop for a graph as an emergent trace while using the 
quantity tracking tool

9 Emergent Symbol Meaning and Conventions 
for Meaningful Symbolization Activity 

Generating a meaningful algebraic representation of a relationship between quanti-
ties’ values relies on individuals organizing quantities they find relevant in a struc-
tured mental model. Constructing a structured mental model of the quantitative 
relationships depends on the individual’s ability to conceptualize new quantities 
by relating two other quantities. As an example, one might conceptualize the relative 
size of quantity A with respect to quantity B and represent this new quantity as a 
quotient, (size of quantity A)/(size of quantity B), where the result, as well as any 
expression representing that result, is understood to be that relative size measure-
ment. Representing a quantitative structure in a drawing can be useful for advancing 
an individual’s image of a problem’s quantitative structure while laying a founda-
tion for producing a meaningful algebraic representation that relates two quantities’ 
values as those values vary.8 

8 We repeat that the conventions and ideas described throughout this chapter support each other. 
Speaking with meaning, the  quantity tracking tool, and  quantitative drawing all support students 
in using symbols meaningfully and making connections between different representations of the 
same relationship.



240 M. P. Carlson et al.

Thompson (1990, 1993, 2011) draws a careful distinction between quantitative 
operations and arithmetic operations. A person uses arithmetic to calculate quan-
tities’ values, but the choice of operations is based on the quantitative operation 
conceptualized—the way the individual has formed a new quantity in their mind as 
a relation involving two other quantities. For example, “difference” as a quantitative 
operation is an additive comparison9 between two quantities. However, a difference 
is not always evaluated using subtraction. Thompson uses the following problem 
to demonstrate this idea with a difference evaluated via division: “Jim is 15 cm 
taller than Sarah. This difference is five times greater than the difference between 
Abe and Sam’s heights. What is the difference between Abe and Sam’s heights?” 
(Thompson, 1990, p. 11). This example illustrates why the common pedagogical 
approach of training students to key on specific words like “difference” when deter-
mining the operation for combining two quantities to represent a new quantity can 
be problematic and sometimes leads to constructing symbols that do not represent 
the quantitative relationships described in the problem. 

It is also our experience that instructors often focus on the “sameness” of the solu-
tions produced by multiple solution paths instead of highlighting and emphasizing 
the unique reasoning, variety in quantities and structures conceptualized, different 
conceptualizations of problem goals, and so on. They also tend to ignore parallels 
between steps in a reasoning process (including the evaluation of various quantities) 
and the steps in a numerical or algebraic solution process (including highlighting 
which quantities are evaluated/represented at each step). Instead, they defer to alge-
braic “equivalence” even when the solutions represent unique ways of conceptual-
izing the context. The impact of this is that students receive the message that, even 
though there are multiple solution paths, there is one preferred path and algebraic 
form of a solution, which often does not foster students’ confidence in their own 
mathematical reasoning and sense-making. 

10 Quantitative Reasoning and Algebra 

It is the attempt to generalize the quantification process for a quantitative relationship 
where algebraic expressions enter the picture and where distinctions between quanti-
tative and arithmetic operations become critical. Thompson (1992, 1996) describes a 
study where fourth-grade students were free to develop their own notational methods 
for communicating their reasoning about decimal place value within activities he 
designed to encourage students to move back and forth between a situation and how 
the individual wanted to express that situation with notation. The result was that

9 An “additive comparison” is the answer to the question, “By how much does the magnitude 
(or value) of one quantity exceed the magnitude (or value) of another quantity?” In contrast, one 
category of “multiplicative comparisons” is the answer to the question, “One quantity is how many 
times as large as a second quantity?”. 
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students talked about their images of the situations presented “as they spoke about 
notational actions [italics in original]” (Thompson, 1996, p. 16). 

As a precursor to seeing an algebraic expression as representing the value of a 
quantity (in underdetermined form), two understandings are paramount. (1) The indi-
vidual has a productive conceptualization of the quantity for which he is attempting 
to represent the value. (2) The individual sees the expression that evaluates the quan-
tity, as well as its numerical value, as representing the quantity’s measurement. For 
example, imagine dropping an object from a tall building. Between two moments 
in time, the object’s height above the ground changes from 42 to 29 ft. In order to 
evaluate the quantity, the change in the object’s height above the ground, the indi-
vidual must understand that the change in the object’s height above the ground is 
a difference, and moreover there is a frame of reference (the 0 value is the ground 
and a positive value represents a distance above the ground) such that the differ-
ence from an initial value to a final value is a directed change that indicates the 
direction of the movement (upward or downward). With this conceptualization, he 
can understand that the expression “29–42 ft” represents the value of this change 
(directed difference), as does “– 13 ft”. Individuals with both understandings are 
poised to understand how the variable expression “h – 42 ft” (where h represents the 
object’s height above the ground in feet) represents the change in the object’s height 
above the ground (from its initial height) at any moment during its fall. Thus, it is 
important that students see unevaluated expressions as representing a new quantity 
that is the result of performing a designated quantitative operation, in addition to the 
final numerical value (Thompson, 2011) (see Table 4). Note that the table describes 
basic quantitative operations for sum, difference, product, and quotient. This list is 
not exhaustive. Again, we emphasize that student conceptualization of quantitative 
operations is what determines their choice of operation—not key words. And more 
complex quantities such as measurements of force, torque, work, and so on often 
require multiple levels of comparison and coordination.

Within Thompson’s theory, there is no assumption that proficiency with quan-
titative reasoning (or a disposition to reason quantitatively) is a natural outcome 
of participating in mathematics courses. In fact, research reports frequently point 
out how instruction in the United States produces students (and instructors) without 
this proficiency (e.g., Moore & Carlson, 2012; O’Bryan, 2020b; Thompson et al., 
2017; Yoon et al., 2015). As we mentioned earlier, professional development training 
designed to introduce instructors to the usefulness of quantitative reasoning and 
provide support for implementing activities to support quantitative reasoning in the 
classroom often failed. Introducing Pathways course materials have helped make 
shifts in students’ and instructors’ meanings possible, but it remains an ongoing chal-
lenge to help instructors create lessons and consistently engage students in discourse 
focused on helping students strengthen their quantitative reasoning skills. O’Bryan 
and Carlson (2016) report on one instructor who did create such a learning envi-
ronment for her students. The primary finding was that this instructor had internal-
ized a set of expectations about engaging in mathematical reasoning (especially in 
how that reasoning connected to algebraic representations of mathematical relation-
ships). It was these expectations that drove her use of quantitative reasoning and the
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Table 4 Quantities to be evaluated along with the expressions that represent those quantities’ values 

Concept Specific example General example 

Combining quantities 
additively 

Mario is 6.5 years older than 
his sister Lexi. If x represents 
Lexi’s age in years since she 
was born, Mario’s age is x + 
6.5 years 

Quantity A is measured in 
some unit and has a 
measurement of a in that unit. 
Quantity B is measured in a 
compatible unit and measures 
b in that unit. The sum a + b 
represents the measurement of 
the quantity formed by 
combining Quantity A and 
Quantity B additively 

Additive comparisons of two 
quantities 

Michael is 62 in. tall and Maria 
is 55 in. tall. Michael is 62–55 
in. taller than Maria 

Quantity A is measured in 
some unit and has a 
measurement of a in that unit. 
Quantity B is measured in a 
compatible unit and measures 
b in that unit. The difference a 
– b represents the amount by 
which the measurement of 
Quantity A exceeds the 
measurement of Quantity B 

Combining quantities 
multiplicatively 

The radius is 1.7 in. long and 
the arc length is 2.8 times as 
long as the radius. The length 
of the arc is (2.8)(1.7) times as 
long as the radius 

Quantity A is measured in 
some unit and has a 
measurement of a in that unit. 
Making n copies of Quantity A 
produces a resulting quantity 
that is n times as large as 
Quantity A, with measurement 
n · a in the unit of Quantity A 

Comparing quantities 
multiplicatively 

The height of water in an 
empty pool increased 5 in. in 
3 h as water flowed into the 
pool at a constant rate of 
change. The quotient 5/3 tells 
us the relative size of the 
height (in inches) of the water 
in the pool is, as compared to 
the number of hours since the 
water started flowing into the 
pool 

Quantity A is measured in 
some unit and has 
measurement a in that unit. 
Quantity B is measured in 
some unit and has a 
measurement b in that unit. 
The quotient a/b = c is the  
relative size of a and b, with  
the quotient c representing 
how many times as large a is 
than b (and is usually 
associated with 
conceptualizing average rates 
of change)
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activities she designed for students. O’Bryan (2018, 2020a) called these beliefs and 
expectations emergent symbol meaning (see next section). 

As students develop meanings for ideas like relative size, differences, change 
in a quantity’s value, etc., it is critical that instruction and activities encourage a 
“dialogue” within the student about the quantities conceptualized and the numerical 
methods for calculating the quantitative relationship’s value. It is also critical to 
emphasize how symbolic methods for representing this value as an unevaluated 
expression such that the order of operations parallels the calculations performed 
mirrors the steps in the reasoning process that motivated those calculations. The 
algebraic expressions then represent the same reasoning from which the quantities 
were conceptualized, but where the quantity’s value is undetermined (Thompson, 
1990, 2011). 

10.1 Emergent Symbolization 

As mentioned earlier, Moore and Thompson (2015) coined the term emergent shape 
thinking to describe reasoning about graphs so that (1) they emerge as traces of 
how two quantities change together in tandem, (2) individuals see already-complete 
graphs as having been generated as emergent traces and they can imagine the coor-
dination that produced the graph, and (3) individuals conceptualize properties of 
the relationship between the co-varying quantities through this emergent trace. They 
argue that this way of thinking about graphs is useful because “students thinking about 
graphs emergently are positioned to reflect on their reasoning to form abstractions and 
generalizations from their reasoning… not constrained to a particular labeling and 
orientation” (pp. 787–788). We emphasize that emergent shape thinking describes 
both how someone could reason about generating a graph but also describes how 
that person could interpret a graph produced by someone else. In other words, the 
individual’s graphing scheme contains an expectation about what it means to reason 
about graphs as well as actions related to producing graphs. 

We argue for a similar idea related to productive reasoning about generating and 
interpreting algebraic formulas that relate two or more quantities’ values in a situ-
ation. O’Bryan (2018, 2020a) described emergent symbol meaning10 as a similarly 
productive set of expectations, beliefs, and meanings related to generating and inter-
preting quantitatively meaningful algebraic statements. Individuals may have any 
combination of these expectations to varying degrees of sophistication, and their 
expectations may be situation dependent. The following list is expanded from the 
original definition.

10 Note that O’Bryan (2020a) uses emergent symbol meaning to describe a set of meanings and 
expectations that may guide an individual’s algebraic symbolization activity and interpretation of 
the algebraic symbols that others generate. He uses emergent symbolization when describing the 
actions an individual engages in that are motivated by these meanings and expectations. 
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1. An expectation that performing calculations or generating expressions should 
reflect a quantification process for quantities that the individual conceptualizes. 

2. An expectation that demonstrating calculations and producing expressions are 
attempts to communicate an individual’s meanings. Thus, when given a set of 
calculations or an expression/formula, we can hypothesize how the individual 
conceptualized a situation based on analyzing the products of their reasoning. 

3. An expectation that the order of operations used to perform calculations, evaluate 
expressions, and solve equations reflects the hierarchy of quantities within a 
conceptualized quantitative structure.11 

Like emergent shape thinking, we emphasize that emergent symbol meaning 
describes the motivations and goals for how an individual could reason about the 
process of developing algebraic statements and how that person could reason about 
the algebraic statements someone else produces. As with emergent shape thinking, 
students with these expectations “are positioned to reflect on their reasoning to form 
abstractions and generalizations from their reasoning” (Moore & Thompson, 2015, 
p. 787). 

O’Bryan (2018, 2020a) provides examples of how students with alternative sets 
of beliefs and expectations for their mathematical activity tended to be inattentive to 
quantities in choosing and justifying numerical operations and algebraic representa-
tions. It is worth mentioning that emergent symbol meaning is not just about framing 
a productive set of beliefs and expectations for students. We again point readers to 
O’Bryan and Carlson’s (2016) report on how an instructor who internalized these 
beliefs and expectations was positioned to support productive mathematical discourse 
and to develop tasks that allowed her to decenter relative to her students’ thinking. 
This is why we believe that introducing emergent symbol meaning as an explicit 
element of the theory of quantitative reasoning is useful. It can help orient researchers 
and curriculum designers to something important in attempts to foster quantitative 
reasoning—the beliefs and expectations students and instructors have regarding their 
mathematical activity. Without altering these beliefs and expectations we have found 
little success in shifting instructors or students to valuing and utilizing quantitative 
reasoning. See Table 5 for some examples of less and more productive beliefs about 
calculations and symbolization.

11 Numbers 1 and 3 in this list might seem quite similar, but there is a different intent. The first item 
focuses on the expectation that all calculations or parts of expressions should represent an evaluation 
process for some quantity in the situation, and thus each calculation or part of an expression can 
be quantitatively justified (and, if the individual cannot justify it, then it provides a motivation to 
reconsider how she has conceptualized the situation). The third item is about how mathematically 
equivalent expressions with different orders of operations reflect different ways of understanding 
the situation and that manipulations, including “simplifying” or rewriting an equation to solve for 
a different variable, may require reconceptualizing the quantitative structure to make sense of the 
result. 
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Table 5 Some beliefs and expectations we and others have found to be unproductive for students 
along with a similar list of more productive beliefs and expectations grounded in Thompson’s theory 
of quantitative reasoning 

Some beliefs and expectations guiding mathematical activity: calculations and symbolization 

Examples of less productive beliefs and 
expectations 

Examples of productive beliefs and 
expectations (emergent symbol meaning) 

Variables always stand in for an unknown value 
to be solved for (Jacobs, 2002; Lozano, 1998) 

A variable represents the value of a quantity 
when that value is not fixed. We also use 
variables to allow us to express the value of one 
quantity in terms of the value of another 
quantity when those values change in tandem 

Numbers and letters are paired together by 
looking for key words like sum, difference, 
and product and should match the form of 
examples in the current textbook section or 
instructor demonstrations 

Calculations and algebraic expressions reflect 
the relationships between quantities’ values as 
conceptualized by the individual. The first 
steps in mathematical reasoning are to make 
sense of the problem context and identify 
quantities and their relationships 

The equal sign in a statement is an indication 
that something must be “solved for” or 
calculated 

An equal sign indicates that you have expressed 
the value of a quantity in two ways (and thus 
the expressions on each side of the equal sign 
represent the value of the same quantity), 
including the possibility that one of those is as 
a targeted constant value. Equal signs thus 
express equality in both value and meaning (or 
equality in value between two like quantities) 

If the answer to a question is an algebraic 
expression, equation, or formula, then students 
should always and immediately simplify their 
answers as much as possible 

The order of operations for evaluating an 
algebraic expression reflects the quantitative 
structure the individual conceptualized. 
Mathematically equivalent statements do not 
necessarily indicate equivalent reasoning, and 
much information can be gained from 
examining and discussing non-simplified 
expressions (practicing and understanding the 
purpose of simplification is a separate 
mathematical idea) 

10.2 Emergent Symbolization in Instruction 
and Curriculum 

Part of supporting the development of emergent symbol meaning, and thus a propen-
sity to reason quantitatively and analyze others’ reasoning quantitatively, involves 
instructors endorsing and highlighting key differences in students’ reasoning. An 
instructor should look for opportunities to discuss the thinking that led to a student’s 
choice of operations; she could also prompt students to explain the thinking that deter-
mined the order in which calculations were performed. As students produce algebraic 
expressions the instructor should ask them to explain what specific terms and expres-
sions represent. The instructor might ask, “What quantity’s value is being represented
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on each side of the equal sign?” An instructor’s overarching goal is to support students 
in conceptualizing quantities and how they are related as a habitual way of acting for 
constructing symbols that carry meaning for the student. The instructor can foster 
students’ habitual use of quantitative reasoning by consistently requiring students to 
make a drawing that represents the quantitative structure of a problem. Our challenge 
has been to get instructors to consistently adopt these practices in both their teaching 
and own reasoning. We are developing new approaches aimed at gradually shifting 
instructors’ commitment to viewing symbols as emerging from their conceptions of 
quantities and how they are related (emergent symbol meaning) as a perspective for 
modeling dynamic situations in mathematics and science with function formulas. 

11 An Example of Unproductive Beliefs in Action 

We do not have space within this paper to provide multiple examples of how students 
without the expectations described by emergent symbol meaning operate when 
working in mathematical contexts. However, we present one brief example from 
O’Bryan (2020a). O’Bryan found that students tended to produce linear models for 
contexts where exponential models were expected. It appeared that students were 
trying to translate English goal statements using mathematical symbols without 
attending to the quantities involved or the meaning of the expressions they produced. 
For example, in trying to model the height of a plant that was 7 in. tall when first 
measured and that grew by 13% per week, a large majority of students provided the 
result shown in Fig. 9. 

Students’ explanations revealed a failure to notice that 0.13t did not represent a 
number of inches. One student, when trying to represent the height of a different 
plant that grew by 50% for two weeks and was four inches when first measured, 
produced the answer shown in Fig. 10. Even though his answer “8 in.” is incorrect 
based on the conventional meaning of percent change, what is most interesting is 
that (1) the expression he wrote, 4 + 2·½, fits the pattern in Fig. 9, (2) he noticed 
and verbalized that the expression did not produce the value he claimed it did, and

Fig. 9 Students appeared to produce answers as literal translations of English words into mathe-
matical symbols (O’Bryan, 2020a, p. 453). The circled numbers are for emphasis only and were 
not written by students 
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Fig. 10 A student’s work 
justifying a plant’s height 
after two weeks if its first 
measured height was four 
inches and it grew 50% per 
week (O’Bryan, 2020a, 
p. 451) 

(3) he chose not to try to rewrite the incorrect statement since he was confident his 
final answer was correct. 

According to Thompson (1996), 

the expression of an idea in notation provides [a student with] an occasion to reflect on what 
she said, an occasion to consider if what she said was what she intended to say and if what she 
intended to say is what she said. To act in this way unthinkingly is common among practicing 
mathematicians and mathematical scientists. Behind such a dialectic between understanding 
and expression is an image, most often unarticulated and unconsciously acted, of what one 
does when reasoning mathematically. This image entails an orientation to negotiations with 
oneself about meaning, something that is outside the experience of most school students. 
[…] [T]he predominant image behind students’ and instructors’ notational actions seems to 
be more like ‘put the right stuff on the paper.’ (p. 12) 

The effect of students’ unreflective combining of symbols leads to students 
encountering significant barriers in their future math classes. For example, the 
students’ work in Fig. 10 is likely the product of many years in mathematics classes 
without an emphasis on the quantitative significance of notational activity. Focusing 
instruction on promoting emergent symbol meaning and emphasizing important 
conventions such as speaking with meaning, emergent shape thinking, quantita-
tive drawing, careful variable definitions, etc. helps students focus their thinking 
on conceptualizing quantitative relationships. This provides the necessary founda-
tion to help shift students to viewing function formulas and graphs as two ways of 
representing how two quantities’ values vary together. 

11.1 Quantitative Drawing and Building Imagery 
for Quantitative Relationships 

As noted earlier, a major initial challenge in supporting precalculus instructors to 
maximize the impact of the Pathways research-based materials has been advancing 
their understanding of the course’s key ideas and how they are learned. This includes 
their acquiring productive conceptions of ideas of variable, function, function compo-
sition, constant rate of change, exponential growth, etc., and their viewing func-
tion graphs and formulas as ways of representing the constrained covariation of
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two quantities’ values. A second major challenge has been to support instructors in 
shifting their teaching to have a primary focus on developing and leveraging student 
thinking toward the goal of supporting their students in relying on their reasoning as 
a foundation for emerging as confident and competent mathematical thinkers. 

To provide a concrete example of an instructional shift we are trying to achieve, 
see Table 6. We contrast two Pathways instructors’ approaches to helping students 
respond to a request to define the distance that the Tortoise is ahead of the Hare 
in terms of the time (in seconds) since the start of the race. Note that we would 
describe Instructor B as engaging in quantitative drawing because conceptualizations 
of quantities and their relationships to each other are foregrounded in the conversation 
and highlighted in representations. We once more emphasize that the convention of 
quantitative drawing, with practices that include writing clear variable definitions 
and using vectors to represent a quantity’s magnitude when that magnitude can vary, 
becomes even more powerful when the instructor also emphasizes speaking with 
meaning, emergent shape thinking, and emergent symbol meaning (most of which 
are practices within these exchanges). 

The contrasting approaches in Table 6 illuminate how an instructor’s commitment 
to quantitative reasoning influences her instructional orientation, discussions, and 
questions. What we found to be surprising (and now predictable over time) is the 
strong commitment new Pathways instructors have to showing students steps for 
obtaining answers and how little value they place on helping their students use their 
own reasoning to make sense of a problem context prior to trying to write formulas 
and construct graphs. As examples of how these views surface during instruction, 
notice that Instructor A appears to be the one doing most of the thinking and her 
questions to students are almost exclusively focused on how to find the answer, what 
to write, or what to do (e.g., What is the formula for the Hare’s distance? What did you 
do to get 60 – 3.2t?). In contrast, Instructor B consistently makes requests and poses 
questions to engage students in identifying and conceptualizing the quantities in the 
problem context and considering how they are related (e.g., What are you imagining 
measuring? How should I represent the length of the race?) prior to making requests 
for students to represent quantities’ values with symbols. It is also noteworthy that 
Instructor B consistently speaks with meaning when interacting with students and is 
careful to specify the quantity when defining variables.
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12 Discussion 

Studies of precalculus instructors’ pedagogical practices have revealed a predomi-
nant focus on instructor-led demonstrations of methods for obtaining answers, with 
instructors constructing incoherent drawings and doing the majority of the speaking 
in class (e.g., Carlson & Bas-Ader, 2019; Teuscher et al., 2016). Supporting precal-
culus instructors to commit to engaging students in quantitative reasoning (and all 
that this entails), and be equipped to do so, is more complex and challenging than 
we initially imagined 15 years ago. We have been successful in some contexts, and 
less successful in others, and continue to explore and investigate approaches (such 
as the conventions described in this chapter) for supporting precalculus faculty to 
make this shift. 

Making the problem more difficult is (1) that many precalculus instructors possess 
relatively weak meanings of fundamental mathematical ideas (e.g., Baş-Ader & 
Carlson, 2021; Musgrave & Carlson, 2017; Tallman & Frank, 2018) and (2) instruc-
tors with weak conceptions of ideas they teach are unable to engage their students 
in conversations that leverage and advance their students’ thinking (Carlson & Bas-
Ader, 2019). For example, during one of our professional development workshops 
with 25 secondary precalculus instructors, the majority expressed that any statement 
with an equal sign was an equation that needed to be solved. In another context, we 
asked this same group of instructors to explain how solving an equation and eval-
uating a function formula differed. After a relatively long wait for a response, one 
instructor said she saw no difference since both are equations that need to be solved. 
As one more example, prior to intervention, many Pathways instructors conceive of 
a constant rate of change as a description of the “slantiness of a line” rather than the 
relative size of the changes in two quantities’ values. Our observations are corrob-
orated by Thompson’s research group’s studies (e.g., Byerley & Thompson, 2017; 
Yoon & Thompson, 2020) of U.S. instructors’ mathematical meanings. Elaboration 
of the difficulties these impoverished conceptions create for students are discussed 
in Thompson and Carlson (2017). 

Instructors who have only experienced traditional curricula in both their learning 
and teaching need sustained and focused support to reconceptualize mathematical 
ideas they thought they understood and to reconceptualize effective teaching as 
focused on and affecting student thinking. Our work with instructors continues to 
provide us with confidence that the culture of mathematics teaching in the U.S. 
can change and that such a change benefits students. We have observed that as 
instructors become more interested in understanding and affecting their students’ 
thinking, and reflecting on their effectiveness in doing so, they (over time) acquire 
more robust images of diverse ways of thinking that students present and improved 
insights into what productive thinking entails (Carlson & Bas-Ader, 2019; Rocha & 
Carlson, 2020). As instructors’ mathematical meanings, images of student thinking, 
and images of effective teaching develop, they are more able to effectively adjust their 
lessons and instruction to be more meaningful and coherent for students (O’Bryan & 
Carlson, 2019; Rocha & Carlson, 2020; Underwood & Carlson, 2012). Instructors
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who became committed to implementing the Pathways conventions for supporting 
quantitative reasoning are individuals who attended our workshops and shifted to 
value our focus on conceptualizing and relating quantities as a foundational way of 
thinking for generating meaningful formulas and graphs. 

It is our goal to support all instructors in engaging in meaningful reflection about 
the impact of their teaching on students’ learning. The Pathways research, devel-
opment, and professional development teams are collectively committed to quanti-
tative reasoning as providing a unifying lens for advancing and studying growth in 
instructor knowledge and instructional practices. Our commitment to this perspective 
emerged from many other attempts to improve precalculus and calculus students’ 
learning, and consistently recognizing that students’ difficulties in understanding 
ideas, constructing meaningful function formulas and graphs, etc. were rooted in 
their failure to conceptualize quantities in a problem context and then to consider 
how pairs of quantities are related and change together. 

13 Concluding Remarks 

We continue to study our effectiveness in supporting instructors’ construction of 
strong conceptions of the key ideas taught in the Pathways curriculum. Silverman and 
Thompson (2008) argue that an instructor must become aware of the mental processes 
and operations that constitute coherent mathematical understandings for reorganizing 
their mathematical knowledge and engaging in effective teaching practices. Quantita-
tive reasoning will not become a meaningful part of an instructor’s teaching practices 
until she has an image of the conceptual affordances of this way of reasoning for 
students’ learning. We have evidence that the Pathways conventions for representing 
quantitative relationships, if implemented consistently, lead to advances in students’ 
mathematical thinking, including their expectation that symbols are useful for repre-
senting quantities and relationships between quantities and that graphs emerge as a 
trace of an individual’s conception of how two quantities’ values vary in tandem. 
Our work has revealed that an instructor’s consistent implementation of the Path-
ways conventions results in both students and instructors constructing more robust 
meanings for specific mathematics ideas, and instructors showing greater interest 
in understanding student’s reasoning. These shifts were frequently accompanied 
by an increased attention on quantitative reasoning in instructors’ lesson design and 
delivery. The result is a profound shift in how students and instructors approach 
applied problems; in particular, their actions to conceptualize quantitative relation-
ships, as a foreshadowing of their construction of function formula and graphs that 
are personally meaningful to the one constructing them. 
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Mathematization: A Crosscutting Theme 
to Enhance the Curricular Coherence 

Hui Jin, Dante Cisterna, Hyo Jeong Shin, and Matthew Vonk 

Quantitative reasoning played a crucial role in the development and revolution of 
scientific knowledge in the history of science (Crombie, 1961; Jin et al., 2019a; 
Kline, 1982). It has been emphasized as an important learning goal for K-12 students 
for many years (NGSS Lead States, 2013; National Research Council [NRC], 1996, 
2000). In science education literature, the term mathematization of science, or math-
ematization in short, is often used to refer to the specialized ways that scientists 
use to quantify phenomena and construct knowledge; it emphasizes the relation-
ship between quantitative reasoning and science disciplinary knowledge (e.g., Kline, 
1982; Lehrer & Schauble, 1998). Therefore, in this chapter, we use this term to refer 
to quantitative reasoning in science. 

Researchers describe scientists’ specialized ways of using quantitative reasoning 
with different terms such as mathematical deduction (Kind & Osborne, 2017; 
Osborne et al., 2018), mathematization (Kline, 1982), postulation exemplified by 
the Greek mathematical sciences (Crombie, 1961; Hacking, 1994), and quantifica-
tion (Crombie, 1961). Nevertheless, they all emphasize a process of quantification: 
Scientists generate mathematical descriptions of phenomena in the material world.
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In those descriptions, entities (e.g., matter, energy, and force) are represented by 
algebraic symbols and numeric values; and the relationships among those entities 
are represented by mathematical equations, tables, and graphs. Scientists generate 
concepts, principles, and theories to conceptualize those mathematical relationships. 
The value of mathematical descriptions resides in their accuracy, universality, and 
deductive logic (Pereira de Ataide & Greca, 2013). Due to this value, mathematical 
descriptions allow precise predictions and generation of new concepts; they also 
provide an objective base for scientific argumentation and discussion (Holton & 
Brush, 2006; Kline, 1990; Osborne et al., 2018). Although existing literature of 
scientists’ mathematization provides concrete ideas about the quantification process, 
additional effort is needed to identify key components that differentiate that quan-
tification process from our everyday intuitive thinking. Such information will help 
teachers and researchers design more targeted instruction on quantitative reasoning. 

Researchers have investigated how students use mathematization to solve prob-
lems and explain phenomena. These studies have documented the expert-novice 
differences across physics (Bing & Redish, 2009; Chi et al., 1981; Kuo et al., 2013; 
Niss, 2017; Schuchardt & Schunn, 2016; Sherin, 2001; Tuminaro & Redish, 2004, 
2007), chemistry (Dori & Hameiri, 2003; Kozma & Russell, 1997; Schuchardt & 
Schunn, 2016; Taasoobshirazi & Glynn, 2009), and biology (Schuchardt & Schunn, 
2016). While experts incorporate conceptual understanding of scientific knowl-
edge with mathematical representations, novices tend to select mathematical equa-
tions based on surface features of the scenario and manipulate the mathematical 
symbols/equations without understanding their scientific meaning. These expert-
novice differences are largely due to the different epistemological perspectives— 
while experts view mathematics and science as integrated, students tend to see math-
ematics as a mere instrument for calculation (Bing & Redish, 2009). Additionally, 
using graphs presents significant challenge for many students. Most existing studies 
on students’ use of graphs were conducted in the context of kinematics. These studies 
show that students often misinterpret graphs as pictures (e.g., viewing a velocity– 
time graph as a picture of the object’s trajectory) and do not use scientific ideas to 
interpret the relationships presented in the graphs such as slope, trends, and patterns 
(Beichner, 1994; Kozhevnikov et al., 2007; Planinic et al., 2012). Although empirical 
studies have generated significant findings about students’ mathematization, more 
research is needed to investigate how students develop from their novice thinking to 
expert thinking is limited. 

We addressed these two needs in a Mathematical Thinking in Science project. 
We used a learning progression (LP) approach to investigate student development of 
mathematization in physical and life sciences. LPs are “descriptions of successively 
more sophisticated ways of thinking about how learners develop key disciplinary 
concepts and practices within a grade level and across multiple grades” (Fortus & 
Krajcik, 2012, p. 784). It is well-recognized that coherence in science curriculum 
leads to high-quality instruction and student achievement (Fortus & Krajcik, 2012; 
Schmidt et al., 2005). Existing literature emphasizes two aspects of curricular coher-
ence—logical coherence and cognitive coherence (Fortus & Krajcik, 2012; Schmidt 
et al., 2005; Shwartz, et al., 2008; Sikorski & Hammer, 2017). That is, curriculum,
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instruction, and assessment are aligned based not only on the logical structure and 
organization of the discipline but also on the cognitive theories about student learning 
of the disciplinary knowledge and practices. Science LPs are rooted in foundational 
theories about disciplinary knowledge and cognition. Therefore, they are powerful 
in enhancing curricular coherence (Jin et al., 2019b). 

In the project, we defined mathematization based on a historical analysis and 
Thompson’s theory of quantitative reasoning in mathematics (Thompson, 1993, 
2011, Thompson, et al., 2014). We then used a learning progression (LP) approach 
to study student development in mathematization across several topics in physical 
sciences and life sciences (heat and temperature, kinetic and gravitational potential 
energy, and elastic energy in physical sciences; the carbon cycle and interdependent 
relationships in life sciences). Our study suggests that, by using an LP approach, 
mathematization can be used as a crosscutting theme to align curriculum, instruc-
tion, and assessment. In this chapter, we summarize the major findings of this work, 
including the definition of mathematization, the LP for mathematization, and prelim-
inary evidence of mathematization as a crosscutting theme. Based on these results, 
we discuss the possibility and benefits of using mathematization as a crosscutting 
theme for building curricular coherence. 

1 Defining Mathematization 

We intended to develop a functional definition of mathematization that reflects how 
scientists used quantitative reasoning to construct scientific knowledge. To do so, 
we conducted a historical analysis. We identified and examined five events across 
physics, biology, astronomy, and chemistry. These five events include the develop-
ment of the ideal gas law, Mendel’s discovery of the laws of hybridization, Newton’s 
derivation of universal gravitation from Kepler’s law of planetary motion, the chem-
ical revolution initiated by Lavoisier, and the paradigm shift from Aristotelian to 
Newtonian theories about forces and motion. They played a critical role in the knowl-
edge development and revolution in the history of science. Our analysis focused on 
how measurement and quantification enabled the generation of fundamental ideas in 
science. Details of the analysis can be found in our previous publication (Jin et al., 
2019a). In this chapter, we summarize one event that has led to the overthrown of the 
phlogiston theory and the establishment of modern chemistry—Antoine Lavoisier’s 
chemical revolution. 

Both phlogiston theorists and Lavoisier investigated phenomena of burning, calci-
nation, and breathing. However, the ways of reasoning used in their investigations 
are vastly different. Take burning as an example. The phlogiston theorists observed 
that some materials were combustible, while other materials were not. To explain 
this observation, they conjectured those combustible materials must contain some 
type of essence. They named this essence phlogiston. The ashes after combustion 
often weigh less than the combustible material. To explain this phenomenon, phlo-
giston theorists supposed that phlogiston must escape into the air. These qualitative
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conjectures constitute the phlogiston theory: Materials that are rich in phlogiston can 
burn; when a material burns, its phlogiston is liberated into the air and only ashes 
are left. 

Unlike the phlogiston theorists, Lavoisier used quantitative reasoning to analyze 
burning. He conducted experiments in closed systems and with accurate measure-
ment. He studied burning of different materials in a closed vessel system (Holton & 
Brush, 2001). In the burning iron experiment, burning 100 grains [a unit of mass] of 
iron produced 135 or 136 grains oxide of iron. At the same time, the diminution of 
air was found to be exactly 70 cubical inches, which weighed 35 grains. Lavoisier 
analyzed the relationships among several quantities: The mass of iron, the volume 
of air, the mass of air, and the mass of oxide of iron. After many similar experi-
ments, he found a mathematical pattern: the total mass of materials is conserved in 
burning. To explain this pattern, Lavoisier proposed a new theory of combustion, the 
oxygen theory: The total mass is conserved before and after the combustion because 
oxygen is involved in combustion and the mass of oxygen should be included in the 
calculation. 

Thompson’s theory of quantitative reasoning in mathematics (Thompson, 1993, 
2011; Thompson & Carlson, 2017) offers unique insights for us to identify key 
components that differentiates Lavoisier’s and other scientists’ mathematization from 
the intuitive reasoning patterns that once appeared and then became obsolete in the 
history of science. Thompson (1993) defines quantitative reasoning as “the analysis 
of a situation into a quantitative structure—a network of quantities and quantitative 
relationships” (p. 165). In explaining this definition, Thompson emphasizes two 
ideas. First, a key characteristic of quantity is its measurability (Thompson, 1993, 
p. 165): 

Quantity is not the same as a number. A person constitutes a quantity by conceiving of a 
quality of an object in such a way that he or she understands the possibility of measuring it 
(Thompson, 1989, in press). Quantities, when measured, have numerical value, but we need 
not measure them or know their measures to reason about them. 

This concept of measurability, or measurable quantities/variables, is one compo-
nent that differentiates mathematization from intuitive reasoning. While phlogiston 
theorists focused the analysis on qualitative attributes (e.g., combustible materials 
turn into ashes; some materials are combustible, while others are not), Lavoisier 
analyzed measured variables (i.e., the mass of iron, the volume of air, the mass of 
air, and the mass of oxide of iron). As another example, consider two responses to 
the following question: “Does a person have more energy after a night’s sleep?” 

Response A: After a night’s sleep, a person will have less energy than the night before since a 
certain amount of energy stored in the person’s body has been used to support body functions 
such as heart beating and breathing. 

Student B: The person has more energy because people normally feel more energetic after 
a good night’s sleep. 

In Response A, energy is treated as a measurable quantity because the response 
is about how the total amount of energy changes and where the reduced amount of
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energy goes. Response B does not treat energy as a measurable quantity because it 
uses a qualitative reason (i.e., feeling more energetic) to explain why the person has 
more energy after a night’s sleep. 

Second, understanding relational complexity is crucial for analyzing a network 
of quantities and quantitative relationships (Thompson, 1993; Thompson & Carlson, 
2017). This understanding involves coordination of two aspects of quantitative differ-
ence: (1) difference as the amount left over after a comparison and (2) quantitative 
difference as an item in a relational structure. In this sense, understanding rela-
tional complexity is not just about obtaining the result of subtracting. It includes 
understanding the relationships among multiple differences in a structure. Thompson 
discusses relational complexity in contexts involving subtraction and addition. We 
modified and applied this component to fit scientific contexts. We define relational 
complexity as the complexity involved in the kinds of relationships that play an 
important role in scientific conceptualization. These relationships include quanti-
tative conservation, extensive versus intensive variables, change versus the rate of 
change, proportionality, exponential growth, quadratic relationships, and so on. The 
historical analysis is about quantitative conservation. Lavoisier’s notion of conserva-
tion is quantitative because it is based on calculation of numerical values measured 
in experiments. Phlogiston theorists hold a notion of ‘qualitative conservation’. They 
recognize that the ashes cannot weigh more than the combustible material. Something 
must come out from the material and that something must go somewhere. They label 
that something as phlogiston. This type of conservation is qualitative because it is 
based on humans’ perception of less or more. Unlike Lavoisier’s quantitative conser-
vation, this “qualitative conservation” does not involve numerical values measured 
in experiments or real-world situations. 

A third component involved in Lavoisier’s mathematization is conceptualiza-
tion. Lavoisier identified a quantitative relationship in his experiments—quantitative 
conservation, that is, the mass of materials before and after combustion is conserved. 
He then conceptualized this relationship into the oxygen theory of combustion: 
Oxygen is involved in combustion. If we calculate all substances involved in combus-
tion, we will find that mass is conserved before and after the combustion. In the 
history of science, many concepts, principles, and theories were conceptualized from 
quantitative relationships. They are usually counter-intuitive, and therefore present 
significant challenges to students. For example, a student who understands relational 
complexity will understand the scientific implication of the equation of kinetic energy 
(E = ½mv2) and explain that doubling the vehicle speed can lead to collision damage 
that is much larger than doubling (due to the quadratic relationship between energy 
and speed). However, a student who does not recognize the relational complexity 
involved in the same equation may know that a higher vehicle speed is associated 
with more damage, but the student would not recognize the scientific implication of 
the quadratic relationship between the speed and the energy. 

The above discussion suggests three components of mathematization of science— 
measurable variables, relational complexity, and scientific conceptualization.
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Subsequently, we define mathematization of science as abstracting measurable vari-
ables from ‘messy’ phenomena, identifying mathematical relationships among the 
variables, and using scientific ideas to conceptualize the mathematical relationships. 

2 The Learning Progression for Mathematization 
of Science 

In the Mathematical Thinking in Science project, we developed an LP for mathema-
tization in across topics in physical and life sciences: heat and temperature, kinetic 
and gravitational potential energy, and elastic energy in physical sciences; the carbon 
cycle and interdependent relationships in life sciences. We first carried out an inter-
view, where 44 students from suburban and urban high schools each completed a 
set of mathematization tasks. Based on the interview data, we developed an initial 
mathematization LP. 

Next, we conducted a large-scale field study. In the study, 57 assessment items, 
including 36 physical science items and 21 life science items were assembled into 
multiple computer-delivered tests forms, based on the courses taught by the partic-
ipating teachers. In addition, most students took 24 mathematics assessment items 
developed by Wylie et al. (2015). The mathematics items assess student under-
standing of linear functions and proportional reasoning. These two concepts are 
essential in middle school mathematics curriculum. They also constitute the foun-
dational knowledge for students to learn and conceptualize a variety of mathemat-
ical relationships in high school science. Therefore, they are used as a proxy for 
students’ mathematics baseline understanding. The test forms were administered to 
5353 students from 22 high schools in 14 US states. Among these students, 34% 
were in 11th grade, 27% in 10th grade, and 24% in 12th grade. Urban, suburban, 
and rural schools participated in the pilot study. Approximately 65% of the students 
were White, 10% Asian or Asian American, 8% African American, 8% Hispanic 
or Latino. We used students’ assessment responses to revise the LP. The assessment 
results also provide two pieces of evidence that the mathematization LP is applicable 
to topics in both physical sciences and life sciences. 

In this section, we use students’ assessment responses to illustrate the LP levels. 
Then, we provide the evidence for using mathematization as a crosscutting theme 
across science topics and disciplines. 

3 The LP for Mathematization of Science 

The learning progression contains four levels, with each level describing a charac-
teristic way of reasoning that students use to solve scientific problems and to explain 
real-world phenomena (Fig. 1). These four levels are named holistic phenomenon,
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Fig. 1 The learning 
progression for 
mathematization for 
problem-solving 

attributes, measurability, and relational complexity. Together, they present a develop-
mental trend, where students progress from intuitive qualitative reasoning to scientific 
quantitative reasoning. 

. Level 1. Holistic Phenomenon: At Level 1, students do not ‘analyze’, meaning 
that they do not identify any relevant attributes of the phenomena. Instead, they 
describe the phenomenon, or tell a story related to the phenomenon, or express 
personal feeling about the phenomenon. 

. Level 2. Attributes: Students identify relevant attributes of a phenomenon consid-
ering their everyday concepts. However, they do not ‘quantify’, meaning that they 
treat those attributes as qualitative characteristics rather than measurable quan-
tities/variables. The phlogiston theorists’ analysis of burning is an example of 
reasoning about attributes. 

. Level 3. Measurability: Students analyze phenomena in terms of measurable 
quantities/variables. They can abstract some relevant variables from the messy 
phenomena and identify some mathematical relationships. However, conceptual-
izing the mathematical relationships in terms of scientific ideas presents significant 
challenge for them. 

. Level 4. Relational Complexity: Students distinguish among different types of 
quantities/variables and understand the complex relationships among those quan-
tities/variables. The complex relationships include relationships between change 
and rate of change (e.g., velocity and acceleration), distinctions between extensive 
and intensive variables (e.g., thermal energy and temperature; mass and density), 
proportional relationship (e.g., gravitational potential energy is proportional to 
height), quadratic relationship (e.g., the relationship between kinetic energy and 
speed of a car), exponential relationship (e.g., the population size and the time), 
and so on.
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We use students’ responses in two assessment items, one in physical sciences and 
the other in life sciences, to illustrate this LP. In these responses, pseudonyms are 
used to protect the identity of the students. As presented below, the life science item 
(Fig. 2) asks students to mathematize the growth of reindeer population. In the item, 
the relevant variables are birth rate, the number of births, death rate, the number of 
deaths, the population size, and the population growth rate. The relationships among 
these variables are presented in the graph in Fig. 2. More specifically, the part about 
the exponential growth of the reindeer population shows an important mathematical 
pattern—the slope of the graph increases over time, meaning the population growth 
becomes more rapid over time, or in other words, the population growth rate increases. 
The conceptualization of this mathematical pattern is: Given adequate resources and 
an absence of predators, the reindeer population would increase exponentially for 
a long time. In such situation, while the birth rate and death rate (the number of 
births/deaths per reindeer per year) do not change, the total number of organisms 
increases, causing the rate of population growth (i.e., the absolute growth rate) to 
increase.

Table 1 presents students’ responses that were scored at each level of the LP. The 
responses at Level 1 indicate that Diego did not identify any qualitative factors or 
attributes that explain the observed pattern—the population grew faster in timespan 2 
than in timespan 1. Instead, he claimed that the observed pattern is due to reindeer’s 
intention to increase their population. Diego treated the phenomenon holistically 
and did not analyze and abstract any variables or attributes. The responses at Level 2 
suggests that Cindy identified two factors affecting the reindeer population: predation 
and starvation. She further explained how these qualitative factors affect the reindeer 
population. Cindy did not reason about any quantitative relationships or measurable 
variables. She only reasoned at a qualitative level. The responses at Level 3 suggest 
that Mike reasoned at a quantitative level. He explained that during the timespan 
2, the reindeer has adapted to their surroundings; consequently, the reindeer were 
able to increase the breeding rate significantly, which caused the reindeer population 
to increase more rapidly. This explanation focuses on the relationship between two 
measurable variables—the breeding rate and the population growth rate; the increase 
of breeding rate caused the increase of population growth rate. Although Mike began 
to reason about the quantitative relationships between measurable variables, he was 
not successful in identifying and conceptualizing the relational complexity involved 
in the problem. The responses at Level 4 show that Amber was able to identify rele-
vant measurable variables and conceptualize the complex relationships among the 
variables. Amber explained that, although individual reindeer produced offspring 
at the same rate, the total number of reindeers increased. As a result, the popula-
tion size increased exponentially. Her explanation targets the complex relationship 
among three measurable variables—the reproduction rate per individual reindeer, 
the population size, and the population growth rate.

A physical science item is provided in Fig. 3. This item assesses how well 
students identify and differentiate between heat/energy and temperature. High school 
students are expected to understand the following distinctions among heat, energy, 
and temperature (Kesidou & Duit, 1993, p. 90):
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In 1911, scientists released 25 reindeer on Saint Paul Island, a small 
Alaskan island. There were no predators of reindeer on the island. 
Scientists collected data on the reindeer population over many years. 
The graph below shows the scientists’ data. 

1. Please compare the population growth in these two timespans. 
Time span 1:  1911 to 1932 
Time span 2:  1932 to 1938 
Which of the three patterns below best describes the changes in reindeer 
population? 

A. The population grew faster in timespan 1 than in timespan 2. 
B. The population grew faster in timespan 2 than in timespan 1. 
C. The population grew at the same rate in these two timespans.  

2. Why do you think the reindeers on Saint Paul Island exhibited this pattern? 

Fig. 2 The life sciences item

Heat is the form of energy that is transported from one system to another due to temperature 
differences. From the physicist’s point of view, heat is a process variable. Therefore, it is 
wrong to state that a body contains a certain amount of heat. But it makes sense to view 
heat as an extensive quantity. If a specific amount of heat (Q1) is transported and if this is 
followed by another amount of heat (Q2) the total amount of heat transported is Q1 + Q2. 
Temperature, on the other hand, is an intensive quantity. If two bodies at temperature T are 
brought into contact, then the temperature of the two bodies is still T.
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Table 1 Middle and high school students’ responses in the life science task 

Learning progression levels Responses 

Level 4. Relational complexity Responses from Amber 
Choice: B. The population grew faster in timespan 2 than in 
timespan 1 
Explanation: the population increased exponentially because 
more individuals means that there is a greater number of 
animals capable of producing offspring. When they produce 
this amount of offspring, the population will increase, and 
then those offspring will go on to have offspring of their own, 
showing population growth 

Level 3. Measurability Responses from mike 
Choice: B. The population grew faster in timespan 2 than in 
timespan 1 
Explanation: I believe the reindeer on Saint Paul grew faster 
of the course of time span 2 because the reindeer need to be 
adjusted to their environmet [environment]. The island only 
hosted 25 reindeer to start, but as the reindeer adapted 
themselves to their surroundings, they were able to utilize 
whatever that helped them breed at a significantly faster rate 

Level 2. Attributes Responses from Cindy 
Choice: A. The population grew faster in timespan 1 than in 
timespan 2 
Explanation: they exhibit this pattern because there were no 
predators which says that they won’t die, but there are other 
problems when there aren’t predators, because they will they 
[then] die from starvation and etc. 

Level 1. Holistic phenomena Responses from Diego 
Choice: B. The population grew faster in timespan 2 than in 
timespan 1 
Explanation: they exhibited this because they wanted to 
increase their population

Note that the distinction between heat as a process variable and energy as a status 
variable is not assessed in the item illustrated in Fig. 3. The item focuses on the 
distinction between heat/energy and temperature: the former are extensive variables, 
while the latter is an intensive variable. Successful mathematization involves iden-
tifying and distinguishing variables from three observations. The first observation 
is the oven setting (or the fire), which indicates the amount of heat transferred into 
the water in the pot. Since the oven is set at high heat in Situation 1 and at medium 
heat in Situation 2, less heat is transferred into the water in Situation 2. The second 
observation is that, in both situations, the water is at the boiling stage, indicating the 
water temperature as 100 °C. The third observation is the degree of vigorousness 
in boiling, which indicates how much evaporation is going on. In Situation 1, more 
energy/heat is used to evaporate the water, so the water boils more vigorously. 

Table 2 provides students’ responses at each LP level. The responses at Level 1 
indicate that Zane did not identify any attributes or variables to support his claim
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Paulo put a pot with water on the stove at high heat. After a few minutes, the 
water started to boil vigorously. Paulo turned down the heat setting to medium, 
and the water kept boiling but less vigorously.  

1. Do you think the temperature of the water is the same in these two situations?  
A. The water temperature in Situation 1 and the water temperature in Situation 2 are the 

same. 
B. The water temperature in Situation 1 and the water temperature in Situation 2 are 

different. 
2. [Different sets of questions are shown when the student chooses A or B.]  

Choosing A: If the water temperatures in these two situations are the same, why does the 
water in Situation 2 boil less vigorously than the water in Situation 1?  

Choosing B: What evidence can be used to support the claim that the water temperature in 
Situation 1 and the water temperature in Situation 2 are different? Please explain why this 
evidence can be used to support the claim.  

Fig. 3 The physical sciences item

that the water temperatures in both situations are the same. Instead, he described 
macroscopic observations in an everyday activity—boiling water to cook pasta. The 
responses at Level 2 shows that Mia associated ‘boiling more vigorously’ with ‘being 
hotter’ and with higher temperature. As such, Mia treated temperature as hotness, 
which is a qualitative attribute and therefore is not measured and has no numer-
ical values. The responses at Level 3 show that Lucy reasoned about the values of 
temperature, indicating that she recognized measurability as a key characteristic of 
variables. However, she does not differentiate between energy/heat and temperature 
in terms of extensive and intensive variables. Instead, she assumed that more heat 
input causes the water to boil more vigorously; and that water boiling more vigorously 
has a higher temperature. However, she did learn that boiling water has a temperature 
of 100 °C. To reconcile the discrepancy, she conceptualized a new theory—water 
begins to boil at 100 °C, and the temperature of the water will keep increasing when 
the water is boiling more vigorously. This way, the input energy/heat, degree of 
boiling, and temperature are equivalent. The exemplar responses at Level 4 suggest 
that Kai was able to identify and differentiate heat/energy and temperature. Although
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more energy goes to the water in Situation 1 than Situation 2, the water temperature 
stayed the same (100 °C) in the two situations. The reason is that the input energy 
is used to make water evaporate. Because more evaporation happens in Situation 1 
than Situation 2, we observe that the water in Situation 1 boils more vigorously. 

Table 2 Students’ responses in a physical science task 

Learning progression levels Responses 

Level 4. Relational complexity Responses from Kai 
Choice: A. The water temperature in situation 1 and the water 
temperature in situation 2 are the same 
Explanation (if the water temperatures in these two situations 
are the same, why does the water in situation 2 boil less 
vigorously than the water in situation 1?): because with more 
heat the water is turning to steam more quickly, but at water’s 
boiling point no matter how much heat is added it does not 
increase in temperature in this state 

Level 3. Measurability Responses from Lucy 
Choice: B. The water temperature in situation 1 and the water 
temperature in situation 2 are different 
Explanation (what evidence can be used to support the claim 
that the water temperature in situation 1 and the water 
temperature in situation 2 are different? please explain why this 
evidence can be used to support the claim.): the evidence that 
can be used to support this claim is that they tell you 
in situation 1 the water is boiling but in situation 2 it is not 
boiling as much. this evidence can be used because boiling 
starts to occur at 100 °C but that is not just where it stops 

Level 2. Attributes Responses from Mia 
Choice: B. The water temperature in situation 1 and the water 
temperature in situation 2 are different 
Explanation (what evidence can be used to support the claim 
that the water temperature in situation 1 and the water 
temperature in situation 2 are different? Please explain why this 
evidence can be used to support the claim.): the water 
in situation 1 was boiling much more vigoriously [vigorously] 
than the water in situation 2. This means that situation 1 had 
significantly more energy to use, meaning that it was hotter 

Level 1. Holistic phenomena Responses from Zane 
Choice: A. The water temperature in situation 1 and the water 
temperature in situation 2 are the same 
Explanation (if the water temperatures in these two situations 
are the same, why does the water in situation 2 boil less 
vigorously than the water in situation 1?): your pot of water is 
on the stove, you’ve turned on the maximum heat, and the wait 
for boiling begins. You are staring impatiently at the pot when 
the water looks like it’s starting to swirl. You’re anxious to see 
the bubbles that signify that you can put your pasta into that 
water
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4 Evidence for Mathematization to Be Used 
as a Crosscutting Theme 

For mathematization to be used as a crosscutting theme, a framework of mathema-
tization must be developed to guide the development of curriculum, instruction, and 
assessment across topics and disciplines. In the project, we conducted quantitative 
analyses of the student assessment data. Our analyses provide two pieces of evidence 
that the mathematization LP is applicable to topics in both physical sciences and life 
sciences. Therefore, the mathematization LP is a potential framework to guide the 
development of curriculum, instruction, and assessment across science topics and 
disciplines. In this chapter, we describe these two pieces of evidence. 

First, we scored the item responses in terms of the four levels of the LP (score 
1 for Level 1 responses, etc.) and used the item response theory (IRT) models to 
analyze those scores. The results suggested that the mathematization LP can be 
used to evaluate student proficiency in both physical science topics and life science 
topics. More specifically, the Rasch model was used to fit dichotomous items; the 
Partial Credit model (Masters, 1982) was used for polytomous items. Results of 
the IRT analysis are presented in Wright maps (Fig. 4). The Wright maps provide 
quantified locations of item difficulties and students’ performances on the same 
scale, called the logit scale. The left side of the Wright Map displays the distribution 
of students’ performance estimates while the right side represents the distribution 
of the Thurstonian thresholds for each item. Each item has two to four threshold 
values. These values are 1, 2, 3, or 4, representing the transition between a zero 
score (responses such as “I don’t know” or random letters) and Level 1, between 
Level 1 and Level 2, between Level 2 and Level 3, and between Level 3 and Level 
4, respectively. For example, the location of the second threshold (labeled as 2) for a 
life science item, “LS18”, is close to zero logit. This suggests that students located 
at zero logit value of performance have about 50% chance of transition from Level 
2 to Level 3 for LS18.

Wright Maps allow a visual determination of whether the LP levels for math-
ematization of science were differentiated from each other. Undifferentiated levels 
in the Wright map would indicate that the scoring rubric or the LP is not empirically 
supported and should not be used to evaluate students’ performance. The two Wright 
maps (Fig. 4) provide the following evidence. For all items, the data supports the 
hypothesized order of the four learning progression levels. For most items, the data 
shows that the learning progression levels are differentiated from each other. It is also 
important to note that the data of some items do not support the distinction between 
adjacent levels. For example, for a physical science item, “PS21”, the threshold 1 and 
the threshold 2 are located remarkably close to each other. This evidence indicates 
that the transition between the zero score and Level 1 and the transition between 
Level 1 and Level 2 are not clearly distinguishable. One possible cause is that the 
small number of responses at those levels caused unreliable estimates. The distinc-
tion between levels is clear in the Wright map for the life science items, but not in 
the Wright map for the physical science items. This is probably because the physical
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Fig. 4 Wright maps of mathematization of science in life science (upper panel) and in physical 
science (lower panel)

science assessments contain more multiple-choice items and multiple-choice items 
are not as effective as constructed response items. This may also be due to that more 
topics are involved in physical science assessments. In summary, the Wright Maps 
in both the life science and physical science domains support the internal structure 
of the assessment (Wilson, 2004) that the learning progression levels provide useful 
measures of mathematization of science. 

Second, more advanced IRT modeling revealed the potential that the mathemati-
zation LP is applicable in both life sciences and physical sciences. More specifically, 
the same data was analyzed through a special type of IRT model (Shin et al., 2017) to  
investigate the relationships between students’ mathematics ability and their math-
ematization proficiency in physical/life sciences. For this analysis, the same set of 
math item parameters were used to put mathematization in physical science and 
mathematization in life science on the same scale in relation to the mathematics 
ability measure. Next, thresholds between two adjacent learning progression levels 
were computed. Table 3 provides the estimated thresholds in the life science and the 
physical science referenced to the mathematics items.

As shown in Table 3, thresholds were estimated as the median values across items 
on the logit scale (Shin et al., 2012). Thus, the differences between thresholds are 
allowed to be varied (e.g., Level 1 could have a smaller range than Level 2). For 
Thresholds 1 and 2, the values in two different disciplines were estimated to be quite
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Table 3 Estimated 
thresholds of the learning 
progression for 
mathematization 

Thresholds Life sciences Physical sciences 

Threshold 1 − 2.08 − 2.16 
Threshold 2 − 1.09 − 0.96 
Threshold 3 0.97 0.55 

Threshold 4 2.92 2.09

similar, although not identical. This pattern is not observed for Thresholds 3 and 4. 
This may be due to that many physical science items were multiple-choice items and 
that the physical science items were divided into multiple topics to fit the courses 
taught by the participating teachers. 

5 Conclusions 

Quantitative reasoning played a crucial role in the development and revolution of 
scientific knowledge (Crombie, 1961; Kline, 1982). It is also an essential learning 
goal for K-12 students (NGSS Lead States, 2013; NRC, 1996). In this chapter, we 
use mathematization of science to refer to quantitative reasoning in science, because 
it was used to refer to the specialized ways of reasoning that scientists used to quan-
tify phenomena and construct knowledge (Kline, 1982; Lehrer & Schauble, 1998). 
We conducted an analysis of five events that played critical role in the development 
and revolution of scientific knowledge. This analysis is inspired by Thompson’s 
theory of quantitative reasoning in mathematics (Thompson, 1993, 2011). We found 
Thompson’s ideas about measurability and relational complexity very useful for us to 
understand how mathematics and quantitative reasoning were used in the history of 
science. Our historical analysis suggests three components that differentiate math-
ematization from people’s everyday intuitive reasoning. These three components 
are measurability, relational complexity, and scientific conceptualization. Together, 
they illustrate a quantification process, by which scientists abstract measurable vari-
ables from messy phenomena and observations; use mathematical operations to 
identify relationships among those variables; and conceptualize concepts, princi-
ples, and theories to explain the identified relationships. By using this quantification 
process, scientists have made significant breakthroughs in the history of science (Jin 
et al., 2019a). Mathematization is also one of the six styles of scientific reasoning 
embedded in all science disciplines (Crombie, 1994; Kind & Osborne, 2017; Osborne 
et al., 2018). Like other styles of reasoning, the value of mathematization includes 
“explaining the diversity to be found within the sciences, elegantly capturing the 
forms of reasoning, and helping to identify the intellectual achievement that the 
sciences represent” (Osborne & Rafanelli, 2019, p. 530). Therefore, mathematiza-
tion, as well as other styles of reasoning, are good candidates for crosscutting themes 
to build curricular coherence.
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Schmidt et al. (2005) compared the mathematics and science standards of the 
United States with those of top-achieving countries in the Third International Math-
ematics and Science Study (TIMSS). They found that, “coherence is one of the most 
critical, if not the single most important, defining elements of high-quality stan-
dards” (p. 554). They further point out that the U.S. has a ‘mile-wide inch-deep’ 
science curriculum that covers a wide range of science topics, but the topics are not 
organized in ways reflecting the logical nature of the disciplinary content. In other 
words, the U.S. curriculum is not coherent. The current science standards, NGSS, 
present a significant improvement in curricular coherence. NGSS were developed 
under the guidance of the NRC Framework. In the Framework, the three dimensions 
of science learning (two to four core ideas in each discipline, eight scientific and 
engineering practices, and seven crosscutting concepts) are integrated to achieve the 
logical coherence in science disciplines; learning progressions for the components 
in each dimension are used to ensure the cognitive coherence in science learning. 
Moreover, the seven crosscutting concepts (patterns; cause and effect; energy and 
matter, etc.) “provide students with connections and intellectual tools that are related 
across the differing areas of disciplinary content and can enrich their application of 
practices and their understanding of core ideas” (NRC, 2012, p. 233). 

Osborne and colleagues (Kind & Osborne, 2017; Osborne & Rafanelli, 2019; 
Osborne et al., 2018) propose using the six styles of reasoning to replace the 
seven crosscutting concepts as crosscutting themes. While we agree with Saleh 
and colleagues (Saleh et al., 2019) that the crosscutting concepts have been proved 
effective when being used as a crosscutting theme, we also believe it is valuable 
to explore styles of reasoning as alternative crosscutting themes to build curricular 
coherence. After all, diversity drives innovation and advancements. A variety of 
approaches are needed to promote teaching and learning of science. For example, if 
mathematization is taught and assessed consistently across science topics and disci-
plines, students will learn to use mathematization more effectively. They will also 
develop deep understanding of the content knowledge in different topics and disci-
plines, because mathematization requires using disciplinary knowledge to explain 
mathematical relationships. 

For mathematization to be used as a crosscutting theme, evidence in both logical 
coherence and cognitive coherence should be provided. In terms of logical coherence, 
researchers have conducted extensive and thorough analysis of scientific knowledge 
and found that mathematization is embedded in the knowledge across science disci-
plines (Crombie, 1961; Kline, 1982; Jin et al., 2019a). In terms of cognitive coher-
ence, research of student understanding must be conducted to show that mathemati-
zation can be taught and assessed across topics and disciplines. Our research provides 
preliminary evidence for the cognitive coherence. We developed an LP that describes 
and evaluates student performance in terms of four levels of achievement—holistic 
phenomenon, attributes, measurability, and relational complexity. Moving up these 
levels, students demonstrate increasingly sophisticated mastery of mathematization. 
Our analyses of students’ assessment data suggest that the mathematization LP can 
be used to assess mathematization across several topics in physical and life sciences.
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Further research is needed to use the LP to guide assessment and instruction in more 
topics. 
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Applying Quantitative and Covariational 
Reasoning to Think About Systems: The 
Example of Climate Change 

Darío A. González 

1 Introduction 

Climate change is a variation in the long-term average temperature and weather 
patterns of the planet. Human activities (e.g., generation of electricity, transportation, 
or food production) release large amounts of greenhouse gases into the atmosphere, 
which trap heat and increase the average temperature of the planet. The Intergov-
ernmental Panel on Climate Change (IPCC) has warned us that exceeding a global 
warming of 1.5 ºC above the preindustrial era average could bring devastating and 
irreversible consequences to our social, economic, and natural systems. We have, at 
most, 30 years before passing that threshold (IPCC, 2018), and staying within that 
safe limit requires everyone’s commitment to support and adopt mitigation strate-
gies, which is more likely to happen when people possess knowledge about climate 
change (Sewell et al., 2017). 

Unfortunately, climate change is not an easy phenomenon to understand. First, it 
is happening at a planetary scale which makes it difficult for a single individual to 
directly experience or grasp all of its consequences. This can make climate change 
feel like a distant problem that is too large or too abstract to be tackled. Second, 
the Earth’s climate is a complex system that involves interactions between several 
components (Sun, oceans, land, atmosphere, among others) and even other systems 
(economies, societies, and ecosystems). Therefore, understanding climate change 
requires what are known as systems thinking competences (Ghosh, 2017; Roychoud-
hury et al., 2017; Schuler et al., 2018), which include the ability to think in terms
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of systems and the ability to model aspects of systems dynamics such as multiple 
interrelated variables (interconnectedness), causality loops between variables (feed-
back), and patterns of variation over time (dynamic relationships) (Riess & Mischo, 
2010). 

Mathematics can play a prominent role in helping students and teachers “expe-
rience” climate change as a tangible and real problem and develop the systems 
thinking competences needed to understand it (Barwell, 2013a, 2013b; Renert, 2011). 
However, studying the mathematics behind climate change rarely forms part of 
teacher education courses, and thus mathematics teachers may not be prepared to 
incorporate this topic in their instruction. As a result, mathematics teachers may 
not be familiar with two central concepts that are necessary to understand climate 
change: The Earth’s energy budget and the link between carbon dioxide (CO2) pollu-
tion and global warming (Lambert & Bleicher, 2013). A starting point, therefore, 
may involve helping preservice mathematics teachers (PSTs) understand these two 
constructs framed as mathematical situations. 

This chapter discusses the role of quantitative reasoning in developing an under-
standing of the energy budget as a system formed by multiple interacting compo-
nents in terms of quantities and the relationships between them. The chapter also 
discusses the role of covariational reasoning in developing an understanding of 
the energy budget’s response to CO2 pollution in terms of variation in the planet’s 
surface temperature over time (dynamic relationships). This includes making sense 
of the greenhouse effect as the covariation of two quantities with respect to time that 
obeys a circular causality relationship (feedback loop). Thus, this chapter discusses 
how quantitative reasoning and covariational reasoning can support students and 
teachers’ understanding of climate change. The chapter illustrates these claims with 
examples from two preservice mathematics teachers who participated in a study 
examining how they made sense of the mathematics involved in modeling climate 
change (González, 2017). The chapter also discusses how using climate change as a 
context for applying quantitative and covariational reasoning can attend to curriculum 
requirements (Common Core State Standards Initiative [CCSSI], 2010; National 
Research Council [NRC], 2013), as well as implications for teaching and research 
in both mathematics and science education. 

2 The Earth’s Energy Budget 

The Earth’s energy budget is a representation of how the energy flows between the 
main components of the climate system. Let us consider a simple energy budget 
model that includes three of these components: the Sun, the planet’s surface, and 
the atmosphere. The energy flows S, R, L, B, and A (Fig. 1) are quantified in terms 
of irradiance, which is defined as the energy incident to a surface per unit of time 
per unit area so that it is measured in Joules per second per square meter (Js−1m−2). 
The Sun radiates energy, in the form of light and heat, towards the Earth, most of 
which passes through the atmosphere and is absorbed by the surface (S). As the
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Fig. 1 Diagram of the Earth’s energy budget 

surface absorbs the solar radiation, it heats up and begins to radiate infrared energy, 
in the form of heat, upward towards the atmosphere (R). A small fraction of infrared 
energy (L) escapes to space, but the majority of it (B) is absorbed by greenhouse 
gases (GHG) in the atmosphere such as water vapor (H2O), carbon dioxide (CO2), 
or methane (CH4). As the atmosphere absorbs surface radiation, it heats up and 
begins to radiate infrared energy in both directions, out to space (A) and back to 
the surface (A). The latter further increases the temperature of the surface, and the 
continuous and dynamic energy exchange between the surface and the atmosphere 
represents what is known as the greenhouse effect, which has an important impact 
on the planet’s average temperature. 

The notion of radiative equilibrium is key to understanding how the energy budget 
regulates the planet’s average temperature. Let us consider the energy inflow into the 
surface (S + A) and the energy outflow from the surface (R). When S + A = R, it  
is said that the energy budget is in radiative equilibrium and the surface temperature 
remains constant. A system analogous to the energy budget would be a container 
with water flowing into it at rate r and water coming out of it at rate q. If  r = 
q, then the volume of water in the container remains constant. The water flows 
and water volume are analogous to the energy flows and temperature in the energy 
budget, respectively. The radiative equilibrium can be disrupted due to different 
factors known as climate forcing agents, which result in changes in the planet’s 
average temperature. A forcing agent of particular interest for this chapter involves 
quantifying changes in the energy flows and radiative equilibrium due to changes in 
the abundance of CO2 in the atmosphere, which is quantified as concentration—the
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volume of CO2 in the air1 relative to the volume of air—and measured in parts per 
million (ppm). The parts-per notation is a set of pseudo-units used in science and 
engineering to describe small values of concentration of substances in solutions. 

3 Conceptual Framework 

3.1 Systems Thinking Competencies 

Students and teachers need to make sense of the Earth’s climate as a system in order 
to be able to understand climate change (Roychoudhury et al., 2017). Therefore, 
understanding climate change requires systems thinking competencies, or the ability 
to recognize, describe, model, and explain complex aspects of reality as systems 
(Riess & Mischo, 2010). Several authors have proposed different models of systems 
thinking competencies; this chapter utilizes Assaraf and Orion’s (2005) Systems 
Thinking Hierarchical (STH) model, which describes eight competencies grouped 
into three hierarchical levels (Fig. 2).

According to the STH model, making sense of the Earth’s energy budget as a 
system requires the analysis and then the synthesis of that system’s components 
and processes (Levels 1 and 2 in Fig. 2). This can be accomplished by constructing 
quantities associated with those components and defining relationships between those 
quantities to model the processes relating the components, thus creating a quantitative 
structure that gives coherence to the energy budget as a whole. Quantitative reasoning 
can support the activation of systems thinking competencies because, by definition, 
quantitative reasoning is the set of “mental actions of a student who conceives of 
a mathematical situation, constructs quantities in that situation, and then relates, 
manipulates, and uses those quantities to make a problem situation coherent” (Weber 
et al., 2014, p. 24). 

In particular, the ability to identify components and processes in the energy budget 
requires the conceptualization of quantities related to measurable attributes of those 
components and processes. For instance, one needs to conceptualize the abundance of 
CO2 in the atmosphere and the energy flows between the energy budget’s components 
in terms of quantities such as concentration and irradiance, respectively, which can be 
a very challenging task considering that these quantities make use of difficult concepts 
such as energy and peculiar units of measure such as ppm and Js−1m−2 (Aneye et al., 
2019; de Berg, 2012; Liu & McKeough, 2005; Raviolo et al., 2021). Also, the ability 
to identify relationships between components requires the conceptualization of how 
the quantities associated with the components relate to each other. For instance, one 
needs to conceptualize that the energy emitted by the atmosphere, A, changes with 
changes in the energy emitted by the surface, R, or with changes in the atmospheric 
CO2 concentration.

1 The air in the atmosphere is a mixture of several gases such as nitrogen (78.09%), oxygen (20.95%), 
argon (0.93%), carbon dioxide (0.04%), and small amounts of other gases. 
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Fig. 2 The Systems Thinking Hierarchical (STH) model

The ability to identify dynamic relationships within the system and understand the 
cyclic nature of systems requires envisioning multiple pairs of quantities changing 
together over time, which requires the more specific quantitative skill of covariational 
reasoning because it encompasses “the very [mental] operations that enable one to 
see the invariant relationship between quantities in dynamic situations” (Thompson, 
2011, p. 46). For instance, one needs to conceptualize the energy, A, emitted by the 
atmosphere, and the energy, R, emitted by the surface as changing simultaneously 
over time and in a continuous loop that enhances the surface temperature. Finally, 
quantitative reasoning is required to bring quantities, relationships, and dynamic 
relationships together to organize the system’s components and processes within a 
coherent framework of relationships. Thus, quantitative and covariational reasoning 
skills play a role in understanding the energy budget as a system.
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3.2 Quantitative and Covariational Reasoning 

The theory of quantitative reasoning (Thompson, 2011) is based on the argument 
that students construct a quantity through an effortful cognitive process known as 
quantification. This process involves conceptualizing an object in a situation (e.g., 
the atmosphere), a measurable attribute of such object (e.g., the relative abundance 
of atmospheric GHG), and a unit of measure for the attribute (e.g., such as ppm). 
According to Thompson, the meaning a student constructs for a quantity is insep-
arable from the quantification process. Understanding the energy budget requires 
developing meaning for the quantities representing the abundance of GHG in the 
atmosphere and the intensity of the energy flows between the Sun, the surface, and 
the atmosphere, as well as the relationships that exist between such quantities. 

The construct of covariational reasoning finds one of its earliest definitions in the 
work of Saldanha and Thompson (1998), who characterized it as: 

Someone holding in mind a sustained image of two quantities’ values (magnitudes) simulta-
neously. It entails coupling the two quantities, so that, in one’s understanding, a multiplicative 
object is formed of the two. As a multiplicative object, one tracks either quantity’s value with 
the immediate, explicit, and persistent realization that, at every moment, the other quantity 
also has a value … An operative image of covariation is one in which a person imagines both 
quantities having been tracked for some duration, with the entailing correspondence being 
an emergent property of the image. (pp. 298–299) 

The multiplicative object in their definition is analogous to the logical conjunc-
tion “and” that joins or unites two propositions to produce one proposition that is 
true if and only if both constituent propositions are true. Concerning covariation, 
the multiplicative object joins the corresponding values of two covarying quantities 
so that the student “mentally unites their attributes to make a new attribute that is, 
simultaneously, one and the other” (Thompson et al., 2017, p. 96). Saldanha and 
Thompson hypothesized that covariational reasoning may involve developmental 
levels. This hypothesis was further developed by Carlson et al. (2002), who proposed 
the Covariation Framework to examine and assess the covariational reasoning abili-
ties of students. The framework describes, in increasing order of sophistication, five 
mental actions involved in reasoning about quantities that vary together (Table 1).

4 The Context of the Study 

This chapter makes use of the results of a larger study (González, 2017) to illustrate 
how quantitative and covariational reasoning are involved in understanding climate 
change. The larger study investigated how three PSTs made sense of the mathematics 
of climate change and consisted of two phases and a mini lesson (Fig. 3). The PSTs 
were three female students—Kris, Pam, and Jodi (pseudonyms)—enrolled in a math-
ematics education program at a large public university in the Southeast of the United 
States. By the time the study took place, they had completed two calculus courses,
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Table 1 Carlson et al.’s (2002) Covariation Framework 
Mental action Description of mental action Behaviors 
MA1 Coordinating the value of one variable 

with changes in the other 
. Labeling the axes with verbal 
indications of coordinating the two 
variables (e.g., y changes with 
changes in x) 

MA2 Coordinating the direction of change of 
one variable with changes in the other 
variable 

. Constructing an increasing straight 
line 

. Verbalizing an awareness of the 
direction of change of output while 
considering changes in the input 

MA3 Coordinating the amounts of change of 
one variable with changes in the other 

. Plotting points/constructing secant 
lines 

. Verbalizing an awareness of the 
amount of change of the output while 
considering changes in the input 

MA4 Coordinating the average 
rate-of-change of the function with 
uniform increments of change in the 
input variable 

. Constructing contiguous secant lines 
for the domain 

. Verbalizing an awareness of the rate 
of change of the output (with respect 
to the input) while considering 
uniform increments of the input 

MA5 Coordinating the instantaneous rate of 
change of the function with continuous 
changes in the independent variable for 
the entire domain of the function 

. Constructing a smooth curve with 
clear indications of concavity 
changes 

. Verbalizing an awareness of the 
instantaneous changes in the rate of 
change for the entire domain of the 
function (direction of concavities and 
inflexion points are correct)

an introduction to higher mathematics course, and a mathematics content course for 
secondary teachers. 

During phase 1 of the larger study, González explored the PSTs’ conceptions of 
two quantities, concentration and irradiance, within contexts that did not involve 
the complexity of climate change. After phase 1 and before phase 2, each PST 
participated in a 30-min-long mini-lesson to prepare them for working on those tasks. 
That mini lesson included: (i) watching a video introducing the energy budget and the 
greenhouse effect and (ii) a Q&A session during which González answered questions 
and further elaborated on the concepts seen in the video. In phase 2, the study explored

Fig. 3 The design of González’s (2017) study 
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the PSTs’ ability to make sense of relationships within the Earth’s energy budget. 
Throughout the two phases, each PST completed a total of six mathematical tasks over 
the course of four, 60-min-long, individual, task-based interviews (Goldin, 2000). 
The interviews were video recorded and transcribed for the analysis. 

This chapter contrasts the quantitative and covariational reasoning of Kris and Pam 
concerning their work on some of the tasks involved in phases 1 and 2 of González’s 
study. These two PSTs were selected because their quantitative and covariational 
reasoning showed interesting differences that illustrate the discussion in the following 
section. 

5 Quantitative Reasoning and Understanding Climate 
Change 

The discussion of results is organized into three subsections. First, there is the discus-
sion on Kris and Pam’s preliminary work on making sense of concentration and irra-
diance. The second subsection discusses how Kris and Pam’s quantitative reasoning 
is involved in making sense of the energy budget’s interacting components in terms 
of quantities and relationships between them. Finally, the last subsection discusses 
how Kris and Pam’s covariational reasoning is involved in conceptualizing dynamic 
relationships and cyclic processes within the energy budget. 

5.1 Preliminary Work: Making Sense of (Unfamiliar) 
Quantities 

Before making sense of the energy budget as a system, one needs to develop meaning 
for the quantities associated with the energy budget’s interacting components and the 
units in which those quantities are measured. González (2017) developed a sequence 
of four mathematical tasks for the phase 1 of his study where the quantities concen-
tration and irradiance emerge as solutions to particular situations. In what follows, I 
contrast the quantitative reasoning of Kris and Pam relative to their work in tasks 2 
and 4 of the sequence (Table 2). I make use of Thompson’s (1994) distinction between 
ratio and rate to discuss the ways Kris and Pam understood concentration measured 
in ppm (henceforth referred to as ppm concentration) and irradiance measured in 
Js−1m−2.

For Thompson, ratio or internalized ratio is a multiplicative comparison of two 
specific, non-varying quantities. For instance, the ppm concentration of tank A in the 
Diving Tank Task 2 is 362 ppm; this quantity can be conceptualized as a ratio in three 
ways: (i) as the multiplicative comparison of two specific measured volumes such 
as comparing 362 cm3 of CO2 with 1,000,000 cm3 of air, (ii) as the multiplicative 
comparison of a specific measured volume and one unit of another volume such as
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Table 2 The tasks involving ppm concentration and irradiance 
Diving tank task 2 Radiation task 2 

The volume concentration of gas X, denoted as Qx, in an 
air mixture is the ratio 

volume of gas X 
volume of air 

Diving tanks also contain a small volume of carbon 
dioxide (CO2). The table below shows the volumes of air 
and CO2 of two diving tanks 

Tank Air (cm3) CO2 (cm3) 
A 4,000,000 1448 
B 800,000 316 

(a) Calculate each tank’s volume concentration of CO2. 
Interpret your result in the context of this situation. 

(b)When concentrations are small, they are often 
measured in ppm (parts per million), or the number of 
parts corresponding to a particular gas in 1,000,000 parts 
of air. Calculate each tank’s ppm concentration of CO2. 

When the energy density of a metallic sheet of daridium 
increases by 2500 J/m2, the sheet’s temperature rises by 
4 ºC. In an experiment, two sheets were positioned at the 
same distance from two devices that produce radiation 
(see Figure) 

Device A radiates 750 J/s (Joules per second) toward 
sheet A and device B radiates 1200 J/s toward sheet B. 
If both sheets were at room temperature (around 15 °C) 
at the beginning of the experiment and both devices  
started radiating energy at the same time, then which 
sheet will first reach a temperature of 25 °C?

comparing 362 cm3 of CO2 with 1 m3 of air, and (iii) as the quotient 362 resulting 
from multiplicatively comparing two specific but undetermined volumes (e.g., the 
ppm concentration of a specific tank for which we do not know the volumes of 
each gas it contains). Thompson included the last comparison within the category 
of ratio because the student conceptualizes 362 as the particular case of dividing the 
volumes of CO2 and air for a specific tank so that those volumes, albeit undetermined 
or unknown, are conceived as fixed. In other words, the student does not necessarily 
conceptualize 362 as a constant multiplicative relationship between two volumes that 
can vary. 

Thompson defined rate as a reflectively abstracted constant ratio because it 
symbolizes the structure of a ratio—dividend, divisor, and quotient—as a whole and 
emphasizes the constant multiplicative relationship between the constituent quan-
tities as their values vary. Rate, therefore, is a ratio conceived as independent of 
particular measured magnitudes of the constituent quantities and represents a propor-
tional relationship between two quantities that can vary. He also argued that a mature 
concept of rate requires an understanding of the relationship between the simulta-
neous accumulation of change in two quantities that covary and the accrual by which 
the accumulation is built. For instance, the irradiance incident to sheet A in the Radi-
ation Task 2 is 125 Js−1m−2, which means that the increase in the average surface 
energy of sheet A after device A has been working for 3 s is the simultaneous accu-
mulation of three accruals of 125 J/m2 and three accruals of 1 s. Also, the student 
must realize that the relationship between the accumulated surface energy density
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and accumulated time, at any time during the experiment, is constant and equal to 
125 Js−1m−2. 

5.1.1 Concentration Measured in ppm 

Before working on the Diving Tank Task 2, the PSTs worked on the Diving Tank Task 
1 where they made sense of volume concentration. This quantity is a dimensionless 
ratio between the volume of a gas and the volume of air in which that gas is mixed. This 
task help PSTs become familiar with what concentration is used for. Thus, the Diving 
Tank Task 2 started with a reminder of how to calculate volume concentration and 
asked the PSTs to determine the volume concentration of CO2 for two diving tanks. 
The second part of the task then asked the PSTs to determine the ppm concentration 
of CO2 for those same tanks (Table 2). 

Kris’s Conceptualization of Concentration. Kris conceptualized ppm concentra-
tion as a ratio comparing a measured volume of CO2 with 1,000,000 cm3 of air. First, 
she divided  the CO2 volume by the air volume for each tank, obtaining the volume 
concentration of 0.000362 for tank A and 0.000395 for tank B. Next, she multiplied 
each one of those values by 1,000,000, to obtain the values 362 for tank A and 395 
for tank B, which she interpreted as the ppm concentration of CO2 for each tank. 
Kris explained her procedure in the following way: 

I Why did you multiply 0.000362 by 1,000,000 to get the concentration in ppm? 
K This [points at 0.000362] is the proportion of carbon dioxide out of the whole 

tank … if we take 1,000,000 cm3 of air from tank A and kind of transfer it to a 
new tank … then the proportion would be the same in the second tank. So, we 
can take this proportion [points at 0.000362] and multiply it by the volume of 
the second tank to get the volume of carbon dioxide in the second tank, which is 
that [points at 362]. 

I Why did you transfer 1,000,000 cm3 of air from tank A to a new tank? 
K In order to measure the ppm level or units, whatever, we have to see the amount of 

CO2 contained in 1,000,000 cm3 of air. So, given that it was uniformly distributed 
kind of like the first problem, putting 1,000,000 of this [points at tank A] into a  
new tank would maintain the concentration, but we would be able to more easily 
see the ppm. 

When Kris “took” 1,000,000 cm3 of air from tank A and “transferred” it to a 
second tank, she stated that “the proportion would be the same in the second tank”. 
The proportion that Kris was referring to was the value 0.000362. This suggests that 
she conceptualized the value 0.000362 as a rate describing a constant multiplicative 
relationship between two volumes that can vary. In contrast, Kris’s conceptualization 
of ppm concentration appeared more consistent with Thompson’s ratio because it 
involved a multiplicative comparison of a specific measured volume of CO2 and 
1,000,000 cm3 of air. Kris utilized the product 0.000362 × 1,000,000 cm3 to obtain 
the specific volume of CO2 (362 cm3) in her made-up tank, which suggests that she
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Fig. 4 Pam made use of 
equivalent fractions to find 
the ppm concentration 

conceptualized 362 ppm as a multiplicative comparison of two specific measured 
volumes, 362 cm3 of CO2 and 1,000,000 cm3 of air. 

Pam’s Conceptualization of Concentration. Pam’s conceptualization of ppm 
concentration was neither strictly a ratio nor a fully realized rate yet. First, Pam 
set up a fraction formed by the CO2 volume over the air volume for each tank, 
obtaining 1448/4,000,000 for tank A and 316/800,000 for tank B. Next, she found 
a new pair of fractions, each equivalent to one of the initial fractions, but with a 
denominator of 1,000,000 cm3 so that their numerators indicated the ppm concen-
tration (Fig. 4). She thus obtained 362/1,000,000 for tank A, representing 362 ppm, 
and 395/1,000,000 for tank B, representing 395 ppm. When I asked Pam to interpret 
the value 362 ppm, she said the following: 

It is kind of in that [points at the unit “ppm”]. Like, this [points at “362”] is parts per million 
… So, it’s kind of like five miles per hour. So, if you go two hours, you’re going 10 miles, 
because it’s five miles every hour. So, every million you have is 362 parts. So, if you have 
2,000,000, it’s 724 parts, because every million increase, your 362 will increase. That’s why 
I was able to do this, multiply by four. Because every million, like, every 4,000,000 you 
have, you have four 362’s. 

Let us consider her interpretation of the fraction 362/1,000,000; such fraction was 
not a quotient between two specific volumes (362 cm3 of CO2 and 1,000,000 cm3 

of air) but rather a “rule” for the simultaneous accumulation of an integer number 
n of accruals of volume of CO2 and volume of air—CO2 accumulates in accruals 
of 362 cm3 while air accumulates in accruals of 1,000,000 cm3. Although this may 
resemble the notion of rate, a closer inspection suggests that Pam conceptualized the 
accumulation as a repeated addition of accruals rather than a multiplicative relation-
ship (“every 4,000,000 you have, you have four 362’s”). That is to say, the fraction 
362/1,000,000 represented a “rule” to simultaneously add an integer number n of 
accruals of CO2 and air, hence it could not be considered a Thompson’s rate. 

5.1.2 Irradiance 

Before working on the Radiation Task 2, the PSTs worked on the Radiation Task 1 
where they were expected to find the radiation (energy) incident to a metallic sheet 
averaged over its surface, which is known as energy density and is measured in Joules



292 D. A. González

per square meter (Jm−2). They were asked to compare the energy density of two 
metallic sheets and conclude which one of them had the highest temperature. They 
conceptualized energy density as a quotient associating a fixed amount of energy 
with a unit of area. For instance, Pam claimed that sheet A was hotter than sheet B 
because the former’s energy density (3125 Jm−2) was higher than the latter’s energy 
density (2812.5 Jm−2). She then interpreted those magnitudes as follows: 

This is the same amount of space [points at “3,125” and “2,812.5”], they’re both one square 
meter. So, this one [points at sheet A] has way more Joules in that one square meter than this 
one does [points at sheet B]. So, sheet A has got more Joules going to the same amount of 
space than [sheet B]. 

After they worked with energy density, the PSTs were presented with the Radia-
tion Task 2, which required them to conceive another pair of metallic sheets receiving 
radiation at different rates. That time, they were tasked with finding out which 
sheet’s temperature was increasing the fastest, which would involve making use 
of the quantity irradiance (Table 2). 

Kris’s Conceptualization of Irradiance. Kris conceptualized irradiance as a time 
rate indicating the amount of increase in energy density per second. For instance, 
this is how she found the irradiance of sheet A and interpreted its magnitude: 

We know that for every second device A is running, 750 Joules of radiation get put into sheet 
A. … Because kind of like the other problem where we were talking about energy density, 
and we know to calculate energy density we need to divide the amount of energy by the area 
to get … the energy per unit area, area unit [sic.], and so we divided 750 by 6, which is the 
area of sheet A because it’s 2 meters by 3 meters. So, we got 125 Jm−2 [sic.] increase in 
energy density per second that device A is running. 

The excerpt suggests a conception of irradiance that I would represent in terms of 
its units as follows: 125 Js−1m−2 was conceptualized as (125 Jm−2) s−1, meaning 125 
Jm−2 increase in energy density per second. This conception resembles Thompson’s 
rate since it represents a constant multiplicative relationship between two quantities 
(energy density and time) that can vary. It also describes the accumulation of energy 
density, in accruals of 125 Jm−2, and time, in accruals of 1 s. Finally, Kris also 
related irradiance with a measure of how fast the sheet’s temperature was increasing: 
“As long as we know the increase of energy density per second, then we can tell 
immediately … which [sheet] is going to reach [25 °C] faster”. To represent her 
reasoning, she drew two increasing lines in a coordinated plane: one with slope 125 
Js−1m−2 representing the change in the energy density of sheet A with respect to time 
and another with slope 60 Js−1m−2 representing the change in the energy density of 
sheet B with respect to time (Fig. 5). Finally, she explained, “I know that more Joules 
are being added per second per area unit to sheet A than sheet B … energy density 
is going to increase faster for sheet A than it is for sheet B”.

Pam’s Conceptualization of Irradiance. Pam conceptualized irradiance as neither a 
ratio nor a fully realized rate yet. The quotient 125 Js−1m−2 was not conceptualized 
as a multiplicative comparison but rather as an additive relationship (association) 
between an amount of energy per second and one square meter. For instance, when I
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Fig. 5 Kris represented irradiance as the slope of a line

asked her to interpret the magnitude 125 Js−1m−2, she replied, “It’s like every second, 
how many Joules are to one meter [sic.]. So, after one second has been, [draws a 
rectangle formed by six squares and writes ‘125’ in each square]” (Fig. 6). Pam’s 
response and drawing suggest that irradiance was conceptualized as an additive rule 
for the accumulation of accruals of radiation rate (125 Js−1) and accruals of area 
(1 m2). Pam’s additive thinking was more prevalent when talking about irradiance 
without connecting it to temperature. When she made claims about the temperature, 
her approach was different; Pam compared the radiation rate 750 Js−1 to the radiation 
rate 1200 Js−1 and separately compared the area 6 m2 to the area 20 m2 in order to 
determine which sheets was heating up the fastest: 

Twelve hundred [Js−1] is not too far over 750 [Js−1], but there is a big difference between 
6 square meters and 20 square meters … So, if I was just looking at them, I’d be like sheet 
A because there is less surface area … Smaller things heat up faster, but if they are heated 
up at a lower rate, then it would kind of depend. 

This between-state ratio comparison—Pam compared two ratios by comparing 
those constituent quantities from the same measure space (Karagoz Akar, 2010)— 
suggests a multiplicative comparison between magnitudes of radiation rate and a 
multiplicative comparison between magnitudes of area. This is suggested when she 
stated that 1200 Js−1 “is not too far over” 750 Js−1 but that there was “a big differ-
ence” between 6 and 20 m2. I interpret those comparisons as multiplicative because 
1200/750 = 1.6 < 20/6 ≈ 3.3 but 1200 – 750 = 450 > 20 – 6 = 14, which suggests 
that Pam was comparing 1200 and 750 (and 20 and 6) multiplicatively. 

Although she made connections with temperature later, her conception of irradi-
ance remained at the level of Thompson’s ratio because she did not conceptualize 
it as a constant multiplicatively relationship between quantities that can vary. For 
example, González (2017) presented Pam with a hypothetical case in which only the 
irradiance of each sheet was known (she neither knew the dimensions nor the radia-
tion rates). When González asked Pam if irradiance provided sufficient information 
to determine which sheet’s surface temperature would first reach 25 °C, she said the 
following: 

That (irradiance) is not enough to know … because this can be one twenty-five (125 
Js−1m−2), but the area could be 20 [m2] and the rate could be 2,500 [Js−1]. You don’t
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Fig. 6 Pam’s representation of the value 125 Js−1m−2 

know anything, so I think this [draws a circle enclosing “125 Js 1m 2”] doesn’t help you 
unless you know how big [the sheet] is or you know the rate [of radiation]. 

Pam’s argument suggests that she did not recognize irradiance as a multiplica-
tive relationship between radiation rate and area that remains constant. For her, 
irradiance represented an association between specific, non-varying quantities, thus 
radiation rates and areas must be compared for every situation before concluding 
what sheet is heating faster, even when the irradiance is known. 

The conceptions that Kris and Pam developed for the quantities ppm concentra-
tion and irradiance would have an impact on their ability to understand the Earth’s 
energy budget as a system. Some of these conceptions would be productive, while 
others not so much. For instance, their conceptions of ppm concentration supported 
the conceptualization and quantification of changes in the abundance of CO2 in the 
atmosphere, and Kris’s conception of irradiance helped her relate changes in irradi-
ance within the climate system with changes in the planet’s surface temperature. In 
contrast, Pam’s conception of irradiance would prove to be a cognitive obstacle for 
understanding that relationship, as it will be discussed in the following sections. 

5.2 Making Sense of the Energy Budget as a System 
Quantitatively 

After working on simplified scenarios, the PSTs moved to working on tasks framed 
in the context of the Earth’s energy budget. This would entail making sense of it as 
a system, which required three competencies from the STH model: identify compo-
nents and processes within the system, identify relationships among the system’s 
components, and organize the system’s components and processes within a frame-
work of relationships (Fig. 2). In this section, I discuss the role of Kris and Pam’s 
quantitative reasoning in activating those competencies by helping them make sense 
of the energy budget’s components and processes in terms of quantities and relation-
ships. More specifically, I discuss how Kris and Pam’s conceptualized measurable 
attributes of the system’s components as quantities, such as the concentration of CO2 
in the atmosphere (C) or the  irradiance of the energy flows between the Sun, the
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surface, and the atmosphere (S, R, and A). I also discuss how they made sense of 
the system’s processes by establishing key relationships between those quantities, 
such as radiative equilibrium (S + A = R), energy imbalance (N = (S + A) –  R), 
and forcing by CO2 (F = f (C)). This frame of relationships represents a quantitative 
structure that supported the PSTs’ understanding of the energy budget as a system. 

5.2.1 Radiative Equilibrium and Energy Imbalance 

Before working on the phase 2 tasks (Fig. 3), the PSTs watched a video introducing 
the energy budget and had a Q&A session with the researcher to clarify questions 
about it. Then, they were asked to think about and model two important relation-
ships, radiative equilibrium and the planetary energy imbalance. In Fig.  1, S and A 
represent the energy flowing into the surface from the Sun and from the atmosphere, 
respectively, and R represents the energy flowing out of the surface or the surface 
radiation. If S + A = R, then there is radiative equilibrium since the energy is flowing 
into the surface at the same rate it is flowing out of it. This results in a constant surface 
energy and surface temperature. In contrast, if for example we had S + A > R, then 
we say that there is a planetary energy imbalance because the energy is flowing into 
the surface at a higher rate than it is flowing out it. This results in an increase in the 
surface energy and the surface temperature. If we use N to represent the magnitude 
of that energy imbalance, then this quantity can be modeled it by N = (S + A) –  R. 

Kris Conceptualizes Radiative Equilibrium and Energy Imbalance. Kris concep-
tualized the planetary energy imbalance, N, as a difference that indicates the magni-
tude by which the amount of energy absorbed by the surface exceeds the amount of 
energy released by it, as seen in the following exchange that Kris and I had regarding 
her conceptualization of N (refer to Fig. 1 while reading the excerpt): 

I How do we know if the budget is at equilibrium at the surface? 
K Well, S plus A has to equal R [writes “S + A = R”], maybe? 
I What does that mean? 
K So, that means that the energy. Well, you said that this is continuously happening 

[traces a circle with her finger over the diagram of the energy budget]. So, that 
means all these quantities [places her hand over the diagram], the inputs and 
outputs, have to be equal at any certain time. So, the inputs have to equal the 
outputs at any given time. So, that means that the energy that the Earth’s surface 
is absorbing, so that would be from the sun [points at S] and also from the 
greenhouse effect [points at A], and that has to equal the amount of energy that 
is being released [points at R]. So, I just abbreviate the greenhouse as A, and I 
added it to S, and that has to equal the amount that’s being let out [points at R]. 

I So, if these two expressions, like S plus A and R, aren’t equal, do we say that the 
budget is, is what? 

K Imbalanced. 
I So, if N measures the imbalance, would you be able to define N mathematically?
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K So, if this is the case, S plus A minus R has to equal zero [writes “S + A – R = 
0”], if that is the case. So, N is going to [writes “N = (S + A) –  R”]. I guess you 
could consider zero a type of imbalance, but it is a zero imbalance, so that would 
imply that it is balanced, so I guess this should work [draws a box around “N = 
(S + A) –  R”]. 

I So, N is a difference between inputs and the outputs. So, if N is zero? 
K Then, they are equal, which means it’s in equilibrium, radiative equilibrium. 
I Awesome. And if N isn’t zero? 
K Then, it’s imbalanced, they are not in equilibrium. 

As the excerpt shows, Kris conceptualized radiative equilibrium and N in terms 
of relationships between energy flows S, R, and A, specifically S + A = R and N 
= (S + A) –  R, respectively. It is also important to point out that, for the case of 
radiative equilibrium, Kris argued that the inputs and outputs must be equal “at any 
given time”, which suggests that she understood radiative equilibrium as a dynamic 
relationship. This hypothesis will gain more support later in the chapter and will hold 
true not only for radiative equilibrium but also for N. For now, let us further examine 
Kris’s conceptualization of N. 

The quantity N is in function of the energy flows S, A, and R, which are quantified 
in terms of irradiance with Js−1m−2 units. Therefore, it is important to examine Kris’s 
conception of N in relation to her conceptions of irradiance, which she conceptualized 
as a time rate indicating how fast the energy density and the surface temperature 
increase. The following excerpt suggests that Kris conceptualized N as a difference 
between irradiances and, consequently, she thought of it as a measure of how fast 
the planet’s surface energy and surface temperature were increasing: 

I What does that (N > 0) mean in terms of temperature? 
K That means temperature is increasing because, as we gain energy, as we saw at 

the beginning, the temperature increases. 
I Great. So, equivalently, if N is negative, less than zero. 
K That means temperature is decreasing when N is less than zero [writes “T↓ when 

N < 0”] because this [place her hand over the energy budget] is losing energy. 

It seems that for Kris N not only was a quantity defined by a difference but also 
a time rate so that N > 0 indicated an increase in the surface energy and the surface 
temperature, while N < 0 indicated a decrease in those two quantities. Moreover, 
she referred to the Radiation Task 2 when she said, “as we saw at the beginning, 
the temperature increases”, thus directly connecting N with her understanding of 
irradiance. Her conception of N, along with the relationships she constructed for 
radiative equilibrium and planetary energy imbalance (S + A = R and N = (S + A) –  
R, respectively), would later help Kris understand how CO2 pollution contributes to 
global warming. 

Pam Conceptualizes Radiative Equilibrium and Energy Imbalance. Pam also 
conceptualized N as a difference between the amount of energy that goes into 
the surface and the amount of energy that leaves it. When asked to represent N 
mathematically, she responded in the following way:
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So, it got S in it [points at S], and then minus R [points at R]. Ok, ok, alright, alright, I got 
this. So, R gets split up into L and B [writes “R”, draws two arrows emanating from it, and 
writes “L” and “B” at the end of each arrow, respectively], and then B gets down back to 
Earth [draws a downward arrow emanating from B and writes “A” at the end of it]. So, S 
minus R plus half of B [writes “S – R + ½ B”] because this is B and it gets split up [points 
at both A’s]. 

After it was pointed out that ½B = A, Pam decided to write the formula N = 
S − R + A, establishing this important relationship. Although this difference is 
mathematically equivalent to Kris’s formula for N, Pam’s conceptualization of it 
was different in an important way. This became apparent when Pam talked about her 
idea of radiative equilibrium: 

I What does balance mean for you in terms of energy? I noticed that you wrote 
down here S, R, and A. So, what would balance mean between those three letters? 

P S plus A equals R. 
I Ok, so you see S and A as inputs. 
P Yes, and it is like here is something [points at the surface] and two people are 

putting things into it [points at S and A], and one person is taking that R out of it 
(the surface) … I don’t know if S and A are equal, but I think that R is equal to S 
plus A. That is what I think of balance. 

I We’ll see that they are related in that way, but you are right: S and A are not 
necessarily equal. So, how did you realize when this [points at the diagram of the 
energy budget] is at equilibrium again? 

P When the same amount [points at S and A], when no matter what goes in [points 
at S and A], the same amount goes out [points at R]. 

First, the excerpt shows that Pam arrived at a productive (and important) definition 
of radiative equilibrium as a relationship between energy flows: R = S + A. It is  
important to construct that relationship before one can think about how the budget 
can be thrown out of equilibrium. Second, Pam continuously referred to the energy 
flows as “amounts of energy” in the excerpt. This suggests that Pam conceptualized 
N as a difference between the total amount of energy absorbed by the surface and 
the total amount of energy released by it. In other words, N is a difference between 
an increment of energy (“two people are putting things into it”) and a decrement of 
energy (“one person is taking that R out of it”) so that N is the actual surface energy. 
This appears consistent with her conception of irradiance from the Radiation Task 
2, where she conceptualized it as an amount of radiation rate (energy per second) 
associated with 1 m2. Associations of this type tend to emphasize the quantity in 
direct proportion to the ratio (energy) and silence the other quantities in inverse 
propotion to it (time and area) (Howe et al., 2010). Thus, irradiance was an amount 
of energy in Pam’s mind and N, as a difference between irradiances, was also an 
amount of energy: the surface energy to be precise. 

Similar to her work on the Radiation Task 2, Pam related N to the planet’s surface 
temperature, but the way she conceived such a relationship was not sufficiently 
accurate. When asked to interpret N > 0 in terms of the energy budget and the 
surface temperature, Pam said, “if it is positive, that means that S plus A, that means
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there is more [energy] coming in than coming out” and then added, “it means that 
it is getting hotter”. Although her claim is correct, the connection she established 
between N and temperature must be interpreted with caution because there was little 
evidence that Pam understood such connection adequately. For instance, when asked 
to interpret N < 0, she said that it represented “colder temperature”, but she also 
considered it impossible for N to be negative, as illustrated by the following excerpt 
where Pam compared the energy flows to amounts of water: 

Yeah, I guess I was thinking like, if we are talking about flows of water, you can’t take more 
water out [points at R] than you put in [points at S and A]. So, if I put in a cup of water 
[points at S and A], you can’t take a cup and a half out [points at R],  and then have a negative  
amount of water [points at the surface]. So, I didn’t think N could be negative. 

The excerpt further supports the hypothesis that Pam conceptualized N as the 
amount of surface energy, hence it cannot be negative. This suggests that Pam may 
have interpreted N > 0 as “hotter temperature” and N < 0 as “colder temperature” 
to provide answers that she thought the interviewer wanted to hear; that is, Pam’s 
reasoning had more to do with the perceived desirability of responses than with an 
understanding of the connection between N and temperature change. 

5.2.2 The Forcing by CO2 

Kris and Pam examined other relationships while working on the Forcing by CO2 
Task (Table 3). In climate science, the term forcing refers to factors that have an impact 
on the planet’s energy budget and tend to disrupt radiative equilibrium. Then, forcing 
by CO2 refers to the impact that a change in the atmospheric CO2 concentration, C, 
would have over the energy budget. Let us consider the energy budget in Fig. 1 
ignoring, for the moment, variation over time. Let us also assume that C is such that 
there is radiative equilibrium; that is, S + A = R or (S + A) –  R = 0. If C were to 
increase, then so would the atmosphere’s capacity to absorb and radiate energy (B 
and A would increase, respectively). We can thus think of the atmospheric energy 
flows B and A as functions of C. On the other hand, the solar energy flow, S, and the 
surface energy flow, R, do not depend (at least directly) on the value of C and remain 
constant. This causes an energy imbalance or forcing by CO2 with magnitude F = 
(S + A) –  R > 0.2 Kris and Pam were tasked with drawing the graph depicting the 
relationship between C and F since we can think of F as ultimately depending on 
C or F = f (C). Although Kris and Pam’s approaches followed a path similar to the 
one described above, there were important differences in relation to their quantitative 
understanding of the situation.

Kris Relates CO2 Concentration to the Forcing. To establish the relationship 
between F and C, Kris first noticed that the energy flows B, L, and A changed as

2 The forcing, F, is a change in N caused only by the change in C so that F = (S + A) –  R if 
variation in N as time elapses is not considered. For the tasks in González’s (2017) study, F can be 
interpreted as the value of N at t = 0. 
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Table 3 The Forcing by CO2 
Task Let F and C be the forcing by carbon dioxide (CO2), in Js 1 m 2, 

and the atmospheric CO2 concentration, in ppm, respectively. 
Use the diagram of the Earth’s energy budget, what you learned 
about the greenhouse effect, and the formula F = (S + A) –  R to 
determine how F changes with respect to C. Then, draw the 
graph of F = f (C)

C increased and that the energy flows S and R remained constant as C increased. 
More specifically, she noticed that A increased as C increased while S and R did not 
change. Since F = (S + A) –  R, Kris realized that F must increase as C increases, 
establishing the relationship F = f (C) and connecting it to changes in the surface 
temperature. 

If you increase the concentration of CO2, B is going to increase because there are more 
CO2 molecules to absorb the heat, so less it is going to be leaked [points at L] … OK, so S 
stays the same [pauses].  Wait,  hold on [writes “A = B/2”]. If B increases, then A is going 
to increase, and S and R stay the same [pauses]. So, [F] is going to be positive … More 
[energy] is being absorbed [points at B], so less it’s leaking [points at L], so that means more 
gets put back in [points at A] … So, that means the temperature is increasing because it is 
gaining energy. 

Kris made use of quantities and relationships to describe the processes relating 
the different energy budget’s components (e.g., “B is going to increase because there 
are more CO2 molecules” → relationship between C and B; “More [energy] is being 
absorbed [points at B], so less it’s leaking [points at L], so that means more gets 
put back in [points at A]” → relationship between B, L, and A; “So, [F] is going 
to be positive” → F = (S + A) –  R > 0). In doing so, Kris created a quantitative 
structure that gave coherence to the energy budget as a whole and “showed” how 
it works. Such structure also helped her realize that there was a link between CO2 
pollution and global warming (“So, that means the temperature is increasing because 
it is gaining energy”). This highlights the role of quantitative reasoning in developing 
an understanding of the energy budget as a system and how that system responded 
to CO2 pollution. 

Pam Relates CO2 Concentration to the Forcing. Pam encountered more difficul-
ties than Kris while working on the Forcing by CO2 Task. When Pam’s reasoning
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appeared to be stalled, González (the interviewer) saw the need to intervene to help 
Pam progress on the task. The intervention was not meant to mentor Pam but to 
suggest processes within the energy budget she could consider; this allowed him 
to explore how she made sense of those processes quantitatively. These interven-
tions during clinical interviews are methodological strategies that Moore (2010) has 
termed exploratory teaching interview, an adaptation of the teaching experiment 
methodology described by Steffe and Thompson (2000). 

One intervention consisted of giving Pam a diagram of the energy budget, similar 
to the one shown in Fig. 1, with the following values: S = 240 Js−1m 2, R = 
390 J s−1m 2, and B = 300 J s−1m 2. These values represented the energy budget’s 
initial conditions (for t = 0) and were meant to show radiative equilibrium numeri-
cally since F = (240 + 150) – 390 = 0. Then, the value B = 300 was changed to B = 
310 to simulate the effects of an instantaneous increase in C at t = 0. The following 
dialogue illustrates how Pam reacted to the exploratory teaching intervention: 
I Let’s imagine we increase the concentration of CO2 by a certain amount. This 

results in B growing from 300 to 310. So, this flow changes [point at B], this flow 
changes [point at L], and these two change [point at both A’s]. 

P They’ve just got bigger. 
I Exactly, could you now calculate the value of F corresponding to the new values 

of energy flows? 
P But I don’t know what S is now. 
I It is still 240 because we are just making changes in the atmosphere, and S does 

not depend on the atmosphere’s composition. So, S is 240 and R remains at 390 
as well. 

P Except B [writes “F = (S + A) – R”] … So, B is 310; that means A is now 155. 
So, we have 240 plus 155 minus 390 [writes “F = (240 + 155) − 390 = 5”]. 

I This value [point at 5] is a change in the energy imbalance caused by a change 
in the concentration of CO2. That is a forcing by CO2, that is the value of F. 

P Ah! So, when the CO2 increases, F increases. 
Working with particular values for the energy flows helped Pam establish relation-

ships between quantities. For instance, she noticed that B and A “just got bigger” at 
the moment CO2 concentration increased (B and A depend on C), or that the forcing, 
F, increases “when the CO2 increases” (F is in function of C). As the interview 
continued, Pam would make additional references to these relationships, suggesting 
she conceptualized a quantitative structure that helped her see how the energy budget 
works and the link between CO2 pollution and global warming: 

When the forcing by CO2 is positive, so that means there is more going in than coming out … 
Because as we go up [moves her index finger over the graph], the B gets bigger, and bigger, 
and bigger, and the L gets smaller, and smaller, and smaller. So, there is more [energy] going 
into the Earth, so it is hotter, the temperature of the Earth is hotter. 

The previous excerpt shows that Pam understood that an increase of CO2 enhanced 
the atmosphere’s capacity to absorb energy (“B gets bigger, and bigger”) and reduced 
the amount of energy escaping to space (“L gets smaller, and smaller”). Since more 
energy is trapped into the climate system, the planet’s surface temperature increases.
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5.3 Conceptualizing Dynamic Relationships and Cyclical 
Processes 

The previous sections discussed how quantitative reasoning is involved in making 
sense of the components and processes of the energy budget (system) in terms of 
quantities and relationships. After that quantitative structure was developed, the next 
step is understanding how it “behaves” over time (dynamics relationships) as a 
response to being thrown out of radiative equilibrium by an increase in the CO2 
in the atmosphere. The response also includes the process by which radiative equi-
librium is restored through a continuous energy exchange between the atmosphere 
and the surface (feedback loop). To accomplish these, two more competencies from 
the STH model are required: identify dynamic relationships within the system and 
understand the cyclic nature of systems (Fig. 2). 

5.3.1 Conceptualizing the System’s Dynamic Relationships 

Kris and Pam explored dynamic relationships in the energy budget by working on the 
Energy Budget Task (Table 4), which involved making sense of a simplified scenario 
where a unique and instantaneous pulse of CO2 is released toward the atmosphere at 
time t = 0 years. The pulse makes the atmospheric CO2 concentration, C, increase 
from C = C0 to C = C0 + .C. Let us imagine that the atmospheric energy flows B, 
L, and A (Fig. 1) change instantaneously in response to the instantaneous increase in 
C so that an energy imbalance N = (S + A) –  R > 0 is produced at time t = 0 years 
(forcing by CO2). In the formula N = (S + A) –  R, the variable F was replaced by 
the variable N to indicate that the difference now changes over time t. Therefore, the 
first part of the task was to visualize and graph the way N changes as t increases. 
Here is when covariational reasoning is required to visualize that and others dynamic 
relationships.

Let N = g(t) be the way of denoting the covariation between N and t, then N = 
g(0) > 0 indicates that the energy inflow into the surface, S + A, is larger than the 
energy outflow, R, at  t = 0. As a result, the surface energy and, consequently, the 
surface temperature will increase as t increases. As the surface warms up, it radiates 
more infrared energy toward the atmosphere (R increases as t increases), enhancing 
the atmosphere’s temperature. As the atmosphere warms up, it radiates more infrared 
energy in both directions, toward space and back to the surface (the A’s increase as t 
increases). This further enhances the surface temperature so that R keeps increasing 
as t increases. This energy feedback loop between the surface and the atmosphere, 
known as the greenhouse effect, causes R to continue to increase so that the difference 
N = (S + A) –  R decreases (asymptotically) toward zero as t elapses; this process 
is responsible for the transition toward a new radiative equilibrium. To help Kris 
and Pam develop a sense for such dynamic relationships in the energy budget, the 
following three recursive rules were given to them: Bt = (31/39) · Rt, At = ½ ·  Bt, 
and Rt + 1 = S + At.
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Table 4 The Energy Budget Task 

A change in the concentration of CO2 in the atmosphere can result in an imbalance in the Earth’s 
energy budget. This initial imbalance is known as forcing by CO2. We want to examine how the 
net planetary energy imbalance, N, and the planet’s average surface temperature, T, vary as time 
increases after the forcing. Use what you learned about the energy budget, the greenhouse effect, 
and the formula N = (S + A) –  R to infer how 
(a) N varies over time and sketch its graph. 
(b) T varies over time and sketch its graph.

Kris Conceptualizes and Graphs N = g(t). To construct the graph of N = g(t), Kris 
used the recursive rules to determine four consecutive values for B, A, and R, which 
she recorded on a diagram of the energy budget (Fig. 7). Then, she paid close attention 
to how B was increasing by decreasing amounts as t increased by 1-year increments 
and interpreted that variation in the following way: 

Ok, so what I am seeing is that we are reaching a new equilibrium because, after this initial 
increase of absorption of 320 (B increasing from 300 to 320), initially. The next cycle [with 
a capped marker, traces a circle connecting B, A, and R] is going to absorb 328, which is an 
increase of eight … The next cycle [with a capped marker, traces another circle connecting 
B, A, and R] causes the absorption to increase by an amount of 3.5, which is less than eight. 
And then, the next cycle [with a capped marker, traces another circle connecting B, A, and 
R] causes the absorption to increase by 1.417. Well, this difference right here, between 320 
and 328, is greater than the difference between these two values, the 328 and the 331.5, and 
the difference between these two [points at the B-values “332.917” and “331.5”] is less  
than those [points at the B-values “331.5” and “328”], which is less than that [points at 
the B-values “328” and “320”]. That tells me that there is eventually going to be a limit … 
Yeah, it’s going to reach a new equilibrium point somewhere. Hey, it’s going to look like our 
sensitivity function. 

Following her analysis, Kris freehandedly drew an accurate graph of N = g(t) for  
t > 0, without the need for N-values (Fig. 8). First, Kris coordinated and compared 
amounts of change in B for 1-year increments in t (MA3 covariational reasoning), 
to anticipate (and justify) the concavity of the graph and its asymptotic decrease 
towards zero. Her anticipation is clear when she said, “it’s going to look like our 
sensitivity function”, referring to a graph she drew while working on the Forcing by 
CO2 Task which resembled an exponential-decay type of curve. She also interpreted 
the asymptotic decrease toward zero as the energy budget transitioning to radiative 
equilibrium after the forcing (“it’s going to reach a new equilibrium point some-
where”), which is a key realization about the energy budget’s response to an increase 
in CO2.
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Fig. 7 Kris used recursive rules to compute consecutive values for the energy flows 

Fig. 8 Kris’s graph of N = g(t) 

Second, although Kris only talked about B increasing by decreasing amounts for 
uniform increments in t, she might have perceived that all other energy flows in the 
budget were changing by decreasing amounts. She drew an accurate graph of N = 
g(t), a quantity that depends on quantities such as A and R. Since her graph showed 
N decreasing by decreasing amounts, it was likely that Kris not only envisioned B 
increasing by decreasing amounts but also A and R. This suggests that Kris developed 
a quantitative structure that allowed her to visualize all energy flows simultaneously 
varying (decreasing or increasing) by decreasing amounts of change as t increased 
by 1-year increments. This reveal how quantitative and covariational reasoning can 
be a powerful combination to develop a coherent view of a system, such as the energy 
budget, while one can visualize it evolving dynamically as a whole.
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Pam Conceptualizes and Graphs N = g(t). Pam utilized the recursive rules to 
determine three consecutive values for B, A, and R. However, Pam experienced diffi-
culties with interpreting the variation of values to describe the way N was changing 
with respect to t. As a result, her account of the relationship N = g(t) was vague and 
limited to describing its direction of change alone (MA2 covariational reasoning). 
While reading the following excerpt, please keep in mind that Pam worked with N 
= (S + A) –  R = (240 + 155) – 390 = 5 for  t = 0: 

I OK, so you said N was five at t = 0. Would N increase or decrease after that? 
P It was five, and then it would decrease to be zero again [pauses]. Let me think 

about this one more time. So, this was the original [points at R], it was 390, like 240 
plus 150. That was when [N] was zero, and then we increased the concentration, 
just here [points at B], to affect everything else in the atmosphere ... So, at t = 0, 
N was five because at that time is when we increased [the CO2 concentration], 
and that is when N turned into five, right? So, t = 0, N was five [writes “t0: 
N = 5”]. But then, 395 got absorbed, wait [pauses] … OK! This is what I am 
thinking. We increased time zero (the CO2 concentration increased at t = 0), but 
I am pretty sure [N] would balance itself back out. 

I OK, did you learn that by watching the video? 
P That is what I heard. That is what I am thinking I got it from. 
I So, we know the energy imbalance should decrease over time. 
P Yeah, from five back down to zero. So, I think [the graph] could go from like 

here, like this was five at t = 0 [points at the top of the vertical axis]. I think it is 
going to go [with a capped marker, traces a concave-upward, decreasing graph]. 
But I think it is going to hit zero pretty quickly [with a capped marker, traces a 
decreasing line]. 

The excerpt shows that Pam envisioned N decreasing as t increased (“[N] 
would decrease to be zero again”), which represents evidence of MA2 covariational 
reasoning, and related that pattern with the transition towards radiative equilibrium 
(“I am pretty sure [N] would balance itself back out”). However, she did not adven-
ture a graph for N = g(t), which suggested that Pam needed additional support to 
visualize in what way N was decreasing with respect to time. 

González (2017) recommended to Pam that she used the formula N = (S + A) –  R 
to find values that would help her visualize how N was changing with respect to t. She 
thus determined a series of N-values and then compared amounts of change in N for 
1-year increments in t (MA3 covariational reasoning). This helped her conceptualize 
N = g(t) as a function that decreases by decreasing amounts. 

[N] decreased pretty quickly at first from five to two [points at N = 5, and then at N = 1.98] 
… like three units of that [points at Js−1m−2], Joules per second per meter square [sic.]. 
And then, it decreased by about one [points at N = 1.98, and then at N = 0.82] Joules per 
second per meter square [sic.]. So, it went from about three to about one. I am assuming [N] 
is going to decrease by a little bit, and a little bit, and a little bit, until it reaches zero again. 

After saying that, Pam freehandedly drew an accurate graph to represent N = g(t) 
(Fig. 9). With this, Pam appeared to have conceptualized the dynamic relationships
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Fig. 9 Pam’s graph of N = g(t) 

involved in the energy budget’s response to the increase in CO2. This highlights 
the role of covariational reasoning in activating the systems thinking competence of 
identifying a system’s dynamic relationships. 

5.3.2 Conceptualizing the System’s Cyclical Processes (Feedback 
Loops) 

For the second part of the Energy Budget Task (Table 4), Kris and Pam were asked 
to interpret N = g(t) in terms of changes in the planet’s average surface temperature, 
T, with respect to time, t. They were expected to draw a graph of that relationship, 
which I hereafter represent as T = h(t). To correctly interpret N, it is important to 
conceptualize it as the rate of change of the surface energy changes with respect to 
time. It is also important to visualize the energy feedback loop between the surface 
and the atmosphere as a special type of covariation between the energy flows R and 
A (Fig. 1). Let us remember that an increase in the CO2 concentration, C, results in a 
warming effect over the planet’s surface (A increases as C increases), which in turn 
results in an increase in the emission of infrared energy towards the atmosphere (R 
increases as t increases). This warms the atmosphere, producing an increase in the 
emission of infrared energy back to the surface (A increases as t increases). A higher 
A further warms the surface, enhancing T, which enhances R, which in turn enhances 
A again, and the cycle repeats. Therefore, that “circular” covariation between R and 
A represents a balancing feedback loop that enhances T over time and is responsible 
for the energy budget transitioning towards a new radiative equilibrium. 

Kris’s Conceptualization of the Feedback Loop. When Kris was asked to describe 
how T changes as t increases, she attended to the relationships between the energy 
flows R, B, and A as they change simultaneously and dynamically. One of such rela-
tionships was the covariation between R and A and the feedback loop that it repre-
sented. Notice how Kris became aware that such a feedback loop was responsible
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for T = h(t) being an increasing function and for the energy budget’s transitioning 
towards a new radiative equilibrium: 

Well, [the surface] keeps in taking. I think it is warming up because once we added more 
CO2, that is less of the emitted energy that is getting just like shut out passed the atmosphere, 
leaked from it. So then, more of it is going to be absorbed by the atmosphere … Whatever 
is absorbed by the atmosphere [points at B] is going to be absorbed back into the [points 
at the surface], well half of that plus the sun’s energy [points at S] is going to be absorbed 
by the Earth, which is going to keep increasing, as we saw with like the 400 [points at the 
R-value of “400”]. Then, from the A value [with a capped marker, traces the top half of a 
circle, going from R to A], just with the A, [the surface] absorbs 160, and then we add a new 
R-value [with the capped marker, traces the bottom half of the circle, going from A to R], 
whatever that was, and then [the surface] absorbs 164 [with the capped marker, re-traces the 
top half of the circle, going from R to A]. So, I think it is going to keep increasing [draws an 
increasing, concave-downward graph for T = g(t) that appears to have an upper limit or a 
horizontal asymptote that she labels as “new equilibrium temperature”]. 

Kris first realized that a considerable portion of the surface radiation, R, remains 
“trapped” in the energy budget through a continuous energy exchange between the 
atmosphere and the surface; this trapped energy enhances T as t increases. Kris also 
conceptualized the energy feedback loop between the surface and the atmosphere in 
terms of covariation between R and A. She conceptualized R and A as simultaneously 
increasing as t elapsed (MA2) and as obeying a circular causality relationship (i.e., 
an increase in A causes R to increase, which in turn causes A to increase again and 
so on). Kris communicated that circular causality between R and A with gestures 
such as tracing the top half of the circle, going from R to A, and the bottom half of 
the circle, going from A to R. These two realizations, the simultaneity of change and 
circular causality, appeared central to be able to conceptualize a feedback loop in 
terms of covariation between two quantities. 

Kris also drew an accurate graph of T = h(t), which showed an asymptotic increase 
towards a new higher value of temperature (Fig. 10). The shape of her graph and 
her labeling of the asymptote as “new equilibrium temperature” indicate that Kris 
realized that the energy feedback loop between the surface and the atmosphere was 
responsible for the transition toward a new radiative equilibrium. When she was asked 
about the asymptote, Kris compared amounts of change in A for 1-year increments 
in t (MA3) to justify it: 

New equilibrium temperature, approximately that [draws a mark on the vertical axis next to 
the label “new equilibrium temperature”] ... Because the difference of the temperature, or 
whatever, was the four initially. Well, we changed it to ten (A “jumps” from 150 to 160 at t 
= 0), then it went to four (A increases from 160 to 164 when t increases from 0 to 1). So, it 
is increasing at a decreasing rate. 

Kris’s MA3 covariational reasoning supported the conceptualization of the covari-
ation between R and A as a balancing feedback loop that not only enhances T = h(t) 
but also “moves” the energy budget toward a new radiative equilibrium. I am not 
claiming that Kris was aware that the energy exchange between the surface and 
the atmosphere represents a balancing feedback loop, but rather I am claiming that 
Kris inferred a balancing quality of the energy exchange between the surface and
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Fig. 10 Kris’s graph of T = 
h(t) 

the atmosphere by noticing that A increased by decreasing amounts of change as t 
increased. 

Pam’s Conceptualization of the Feedback Loop. Pam encountered difficulties with 
interpreting N = g(t) in terms of changes in the surface energy and the surface 
temperature. On the one hand, Pam interpreted the increasing direction of change of 
R, B, and A with respect to t as an indication that the surface energy and the surface 
temperature were increasing as t increased. On the other hand, Pam also interpreted 
the decreasing direction of N with respect to t as an indication that the surface energy 
and the surface temperature were decreasing as t increased. The following excerpt 
illustrates Pam’s difficulties: 

I Is the energy budget gaining energy or losing energy? 
P I think it’s losing [long pause]. Oh, it’s losing. No, it’s gaining, this is gaining … 

If we look, it keeps increasing [points at the values of R, B, and A], my numbers 
are getting bigger, and bigger. So, I think the energy budget increases. 

I Let’s see these two [values] right here [draws a box around N0 = 5 and another 
around N2 = 0.82]. For which one of those values is the energy budget gaining 
energy? 

P Well, from here to here, it is losing energy [points at N0 = 5, and then at N2 

= 0.82]. But, I thought [pauses]. I am thinking of energy balance as … these 
numbers are increasing [points at the values of R, B, and A], but the N is the 
planetary energy imbalance. Oh! So, it is decreasing. I don’t know why I said 
increasing. I mean, I know why I said increasing, but that was because I was 
reading it incorrectly. 

I Wait, what is increasing or decreasing? 
P I see these numbers increasing [points at the values of R, B, and A], but this N is 

the energy imbalance, the budget. I’ve forgotten these are pretty much the same 
thing … So, it is decreasing [draws an arrow from N0 = 5 to N2 = 0.82].
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I The planetary energy imbalance is decreasing, so it means the imbalance is getting 
smaller. 

P So, it’s coming to balance. 
I Alright. So, is this [energy] budget losing or gaining energy? 
P I want to say gaining because these numbers are getting so big [points at the 

values of R, B, and A]. 
I So, are you going with gaining, or are you going with losing? 
P The planetary energy imbalance is decreasing [pauses]. 
I Right, the imbalance is getting smaller … So, we are getting closer and closer to 

equilibrium. 
P Right, yes. 
I So, are we gaining or losing energy? 
P Aaah! [Laughs nervously]. Losing, we are losing because if we have gained energy 

[the surface] would get hotter, but it is not getting hotter because N is smaller 
so it’s cooling off. So, it was too hot because it was increased, like we added so 
much [CO2], but now it’s trying to cool itself off. So, the energy is decreasing. 

As the excerpt shows, Pam was having difficulties with deciding whether the 
surface energy and the surface temperature were increasing or decreasing as t 
increased. A possible explanation for this conflict can be traced back to Pam’s concep-
tions of the quantities S, R, A, and N. On the one hand, she conceptualized S, A, and R 
as amounts of energy entering or leaving the surface. Since R and A were increasing 
as t increased, she might have interpreted that as more energy “circulating” at the 
surface level, and thus the surface temperature must have been increasing. On the 
other hand, she conceptualized N as the magnitude of the surface energy. Therefore, 
she might have interpreted a decreasing N = g(t) as the surface energy decreasing 
as t increased. 

Pam ultimately decided that the surface energy and the surface temperature were 
decreasing because N = g(t) was a decreasing function of time. She justified her 
decision by indicating that the surface was releasing more energy than the energy 
it was absorbing. This argument revealed that Pam did not quite conceptualize the 
energy feedback loop between the surface and the atmosphere: 

Because a lot [of energy] is going in, but more is coming out, like R increases as A increases. 
So, as our A increases, R increases, but our S is staying the same, but A is always less than R, 
so more is coming out [pauses]. So, the Earth is trying to cool itself off, so the temperature 
is decreasing from here to here [sequentially points at “N = 5” and “N = 0.82”]. Yes 
[her tone expresses contentment] … We are getting more hotter here [sic.] [points at “N 
= 5” and pauses] because more is going into the Earth and less is coming out. But here 
[points at “N = 0.82”] more is going in, but more is coming out than here [points at “N 
= 5”], so it’s cooler [sequentially points at “N = 5”, “N = 1.98”, and “N = 0.82”]. It is 
getting cooler because if N is high, then the temperature is high. So, as time goes on, it’s 
normal. It’s like, we have a temperature of zero before this time starts [points at the “t” 
labeling the horizontal axis and pauses]. No, we don’t have a temperature of zero, we have 
a temperature like balance temperature, and then as t hits zero, it increases, so it’s about here 
[points at the top of the vertical axis (T-axis)], and then it cools off [with a capped marker, 
traces a decreasing, concave-downward curve as the graph of T = g(t)] until it is back in 
its balancing point [points at the right end of the horizontal axis (t-axis)].
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The excerpt suggests that Pam conceptualized R and A as increasing in tandem 
(MA2). However, she did not quite conceptualize a circular causality between those 
quantities. She appeared to be aware that the increase in A caused an increase in R 
but less aware that the increase in R also caused an increase in A. Pam’s response 
assumed R to be the amount of energy leaving the surface, ignoring that an important 
fraction of it, represented by A, is reabsorbed by the surface, thus overlooking the 
causality relationship from R back to A (“So, as our A increases, R increases, but 
our S is staying the same, but A is always less than R, so more is coming out. So, 
the Earth is trying to cool itself off”). In summary, Pam could conceptualize R and 
A as increasing in tandem but not in terms of circular causality, which represented 
an obstacle to understand the energy feedback loop between the surface and the 
atmosphere. 

The combined effect of Pam’s conception of N as the surface energy and Pam’s 
inability to conceptualize a circular causality relationship between R and A led her 
to conclude that T = h(t) was a decreasing function of time. This was illustrated in 
the previous excerpt where she said that T decreases as N decreases from 5 to 0.82 
Js−1m−2 (“so it’s cooler [sequentially points at “N = 5”, “N = 1.98”, and “N = 
0.82”]. It is getting cooler because if N is high, then the temperature is high”). Then, 
she freehandedly drew a decreasing, concave-downward graph intercepting the t-axis 
at some t > 0. She did not justify her choice of concavity and, when faced with the 
contradiction that her graph showed that T could be zero, she scratched a section 
of the graph and replaced it with a concave-upward section (Fig. 11). This suggests 
that Pam did not interpret the graph’s shape as describing the way T was decreasing 
with respect to t. Therefore, Pam was only aware of the decreasing direction of 
the relationship T = h(t) (MA2 covariational reasoning). This indicates that Pam 
concluded that the planet was “cooling off” after an increase in CO2, which represents 
an inaccurate (and contradictory) view of the real impact of CO2 pollution on global 
warming. Pam’s conclusion may open the door for misconceptions regarding global 
warming and climate change (e.g., “as soon as we stop CO2 emission, global warming 
will stop” or “as long as we keep current emission, global warming would not get 
any worse”).

Fig. 11 Pam’s graph of T = h(t) 
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6 Conclusions and Implications 

Making sense of the climate system and climate change requires what are known 
as systems thinking competencies, or the ability to understand and model real 
phenomena as complex systems (Ghosh, 2017; Orgill et al., 2019; Renert, 2011; 
Roychoudhury et al., 2017). This chapter discussed the role of quantitative and 
covariational reasoning in activating the systems thinking competencies involved 
in understanding two key concepts of climate change: the Earth’s energy budget and 
the link between CO2 pollution and global warming. Making sense of the energy 
budget involves an analysis of its components and processes followed by a synthesis 
thereof into a coherent framework of relationships. These two levels of the Systems 
Thinking Hierarchical (STH) model for competencies (Assaraf & Orion, 2005) can 
be activated through the development of a quantitative structure formed by: (i) quan-
tities associated with the energy budget’s components (concentration, C, to quantity 
abundance of CO2 in the atmosphere and irradiance to quantify the energy flows 
S, R, L, B, and A that circulate between the Sun, the surface and the atmosphere); 
(ii) relationships between those quantities to represent the energy budget’s processes 
(radiative equilibrium, S + A = R; the planetary energy imbalance, N = (S + A) –  R; 
the radiative forcing by CO2, F = f (C)); and (iii) dynamic and cyclical relationships 
describing the energy budget’s response to increasing CO2 in the atmosphere (N = 
g(t) decreases less rapidly as t increases; the circular causality relationship between 
R and A; T = h(t) increases less rapidly as t increases). The development of such 
dynamic quantitative structure required a combination of Kris and Pam’s quantitative 
and covariational reasoning abilities. 

A possible sequence to develop that quantitative structure can start with helping 
students and teacher conceptualize two unfamiliar quantities (and their units of 
measure) that commonly appear in mathematical descriptions of climate change: ppm 
concentration and irradiance. Once students and teachers have constructed meaning 
for them, they can move to conduct the analysis and synthesis of components and 
processes involved in the Earth’s energy budget. These two levels of the STH model 
include five competencies (Fig. 2), three of which predominately require the applica-
tion of quantitative reasoning: identify the system components and process, identify 
relationships among the system components, and organize the system’s components 
and processes within a framework of relationships. This framework, along with the 
meanings Kris and Pam developed for concentration and irradiance, constitutes the 
quantitative structure that shows how the energy budget works. Then, students and 
teachers can continue with the other two competencies in the synthesis level of the 
STH model (Fig. 2): identify dynamic relationships within the system and understand 
the cyclical nature of systems. These competencies are necessary to fully establish 
the link between CO2 pollution and global warming and require the application of 
covariational reasoning. 

The ideas discussed above have implications for teaching and research related 
to both mathematics education and science education. Concerning teaching, the
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chapter shows that it is possible to attend to school mathematics curriculum require-
ments while promoting climate change education. For instance, Kris and Pam had 
opportunities to activate, apply, and further develop their understanding of ratios 
and rates, functions and covariation, properties of graphs, rate of change, modeling, 
among other topics in mathematics. The tasks Kris and Pam worked on also address 
important topics and competencies described in the Common Core State Standard 
for Mathematics3 (CCSSI, 2010). This suggests that mathematics educators can be 
protagonists in promoting awareness of climate change and encouraging students to 
take action to address it. Also, emerging empirical evidence suggests that developing 
the PSTs’ quantitative and covariational reasoning while modeling climate change 
represents a starting point to prepare PSTs to incorporate this socio-scientific issue 
into their future mathematics classroom (González, 2021). 

The chapter also provides empirical evidence that quantitative and covariational 
reasoning play a significant role in supporting the understanding of at least two 
important topics in science education: the climate system and climate change. This, 
in turn, points to the importance of strengthening students’ quantitative and covari-
ational reasoning in the context of learning this concept in science classes. I would 
extend the suggestion to include preservice science teachers, who do not feel prepared 
to include climate change into their future classroom for different reasons, one of 
which is that they consider the mathematics to be too advance (Boon, 2010; Namdar, 
2018). Considering the development of preservice science teachers’ quantitative and 
covariational reasoning abilities during their preparation programs can support efforts 
to prepare them to teach climate change in their future classrooms. This is crucial 
considering that the Next Generation Science Standards (NRC, 2013) positioned 
weather, climate, and global climate change as core ideas to be taught in middle 
grades and high school science classes. 

In general, the ideas discussed in this chapter indicate that quantitative and covari-
ational reasoning can be a bridge between mathematics and science education that 
allows us to explore topics that require both bodies of knowledge to be applied. 
The chapter shows that quantitative and covariational reasoning can activate or 
mediate the development of systems thinking competencies. Authors from disci-
plines as diverse as biology, chemistry, engineering, economy, and mathematics have 
proposed that current global, complex, politically charged, socio-scientific issues 
(universal income, evolution, pandemic and vaccines, climate change, etc.) require 
STEM professionals to understand them as complex systems (Ghosh, 2017; Orgill 
et al., 2019; Renert, 2011; Richmond, 1997; Roychoudhury et al., 2017; Schuler 
et al., 2018). Therefore, it is important to further research the role that quantitative 
and covariational reasoning may have in preparing STEM professionals to deal with 
current issues that require systems thinking competencies. Furthermore, exploring 
current, global, complex, politically charged, socio-scientific issues through quanti-
tative and covariational reasoning can contribute to preparing STEM professionals, 
and citizens in general, to make informed decisions about how these issues may affect

3 These topics and competences include HS-NQ 1 through 3, HS-F-IF 2, HS-F-BF 1, and modeling 
with mathematics in general. 
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their lives and navigate diverse claims about them in the media. In this sense, quantita-
tive and covariational reasoning may have an important role to play in supporting the 
socially critical thinking of citizens, which suggests another focus of future research. 
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Operationalizing and Assessing 
Quantitative Reasoning in Introductory 
Physics 

Suzanne White Brahmia and Alexis Olsho 

1 Introduction 

Learning to symbolize and reason about the covarying relationships between abstract 
quantities, while being introduced to over 100 new physical quantities, characterizes 
a typical student’s experience in an introductory algebra-based or calculus-based 
physics course. Students who are enrolled in a physics course at the upper high 
school or early university levels are typically also enrolled in a course in algebra 2 
(functions, equations and inequalities, logarithmic and exponential relationships, and 
polynomial equations), precalculus, or calculus. There is an opportunity for math-
ematics instruction to help enrich students’ experiences mathematizing in physics 
contexts, and for physics instruction to help students develop better conceptual under-
standing of the mathematics that they use. This chapter seeks to make connections 
between the mathematics and physics worlds, inspiring instruction that can result in a 
deeper understanding and appreciation of the mathematical nuances of the symbolic 
models that describe the physical world. What follows is written to help bridge these 
two instructional worlds. 

Quantitative literacy (QL) is the ability to adequately use elementary mathematical 
tools to interpret and manipulate quantitative data and ideas that arise in individuals’ 
private, civic, and work lives (Gillman, 2005). We also note that quantitative literacy 
requires an inclination to describe real-world phenomena mathematically. Quantita-
tively literate individuals recognize the value in considering mathematics as a way to 
understand and reason about real-life situations. In this chapter we consider Physics
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Quantitative Literacy (PQL), i.e., quantitative literacy in the context of (introductory) 
physics, and argue that it is a pedagogically and intellectually fertile actualization of 
QL. 

Introductory physics uses familiar mathematics in distinct ways to describe the 
world and make meaning. To an expert, a physics equation “tells the story” of an 
interaction or process. Quantitative modeling, in which patterns are expressed using 
mathematical functions that relate physical quantities to each other, is the backbone 
of PQL. For example, when reading the equation, 

x(t) = +20 m + (−3m/s)t + 
1 

2 

(−9.8m/s2
) 
t2 

an expert may quickly construct a mental story of how the position of a projectile 
varies with time, starting 20 m above the ground and launched with a speed of 3 m/s 
vertically downward. The one-dimensional coordinate system is determined in this 
case by the physical fact that the acceleration due to gravity points downward, toward 
the earth. Part of the challenge of learning physics is developing the ability to decode 
symbolic representations in this manner. 

While the ability to describe the physical world quantitatively as exemplified 
above is a goal of introductory physics courses, little has been done to determine 
specific, assessable learning objectives related to PQL. This may be, in part, due to 
a lack of self-awareness on the part of instructors about what PQL entails, and how 
they, as experts, reason quantitatively in contexts of introductory physics. There is a 
growing body of literature that seeks to better clarify what PQL entails in introductory 
physics (Bajracharya et al., 2012; Boudreaux et al., 2020; Eichenlaub & Redish, 2019; 
Eriksson et al., 2018; Hayes & Wittmann, 2010; Huynh & Sayre, 2018; Redish, 2021; 
Torigoe & Gladding, 2011; White Brahmia et al., 2020, 2021). This section builds 
on that prior work. In order to frame improving quantitative literacy in a physics 
instructional context, we first operationalize physics quantitative literacy (PQL) in  
Sect. 2. Next, in Sect. 3, we outline introductory physics learning objectives that can 
help instructors meet the broad goal of developing students’ PQL, and suggest areas 
of overlap with concurrent mathematics courses. Lastly, in Sect. 4, we describe an 
assessment instrument we’ve developed to help instructors determine whether or not 
their instructional methods are helping students meet the PQL learning objectives. 

2 Operationalizing Physics Quantitative Literacy 

PQL relies on a blend of conceptual and procedural mathematics and physics content 
to formulate and apply quantitative models to describe the physical world. Figure 1 
shows a visual representation of the process of quantitative modeling in physics, 
beginning with observations that can lead to creation of base quantities. We define 
base quantities, such as time, position, and change in position, as those that can be 
created from observations and a single type of measurement. Quantitative modeling
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Fig. 1 Quantitative modeling in physics 

continues with the exploration of these quantities and their relationships to each other, 
resulting in derived or composite quantities (such as velocity or speed), established 
relationships between quantities, and more formal symbolic models. In this section, 
we operationalize PQL by describing quantitative modeling as outlined in Fig. 1—the 
process of mathematizing the physical world. 

The equation x(t) = +  20 m + (−3m/s)t + 1 2 
(−9.8m/s2

) 
t2 in the introductory 

vignette above is an instantiation of the kinematics equation x(t) = xo + vot + 1 2 at
2, 

which describes the time-dependent position of an object moving with constant 
acceleration a and initial velocity vo from initial position xo. It is introduced in the 
first week of almost all college-level introductory physics courses. This equation is 
a result of the quantitative modeling process in Fig. 1. The first step in the process 
is observations leading to the creation of base quantities position and time. These 
quantities appear in the kinematics equation as variables (x and t) and a parameter 
(initial position xo). Consideration of how the base quantities vary and covary leads 
to the derived quantities of velocity and acceleration, which appear as parameters vo 
and a. It also leads to characterizations of patterns between the quantities: position 
can be described as a function of time (x can be expressed as x(t)) and depends on the 
“accumulation” of displacement due to motion characterized by initial velocity vo and 
acceleration a. The result is a symbolic model, the general kinematics equation x(t) = 
xo + vot + 1 2 at

2. 
As Fig. 1 depicts, quantitative modeling occurs in a conceptually blended mental 

space. Quantitative modeling in physics is not simply “doing mathematics with 
physics quantities.” It requires a novel combination of mathematical and physical 
reasoning. Conceptual blending theory (CBT) (Fauconnier & Turner, 2002) provides 
a framework for characterizing this combination. Fauconnier and Turner describe a
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cognitive process in which a unique mental space is formed from two (or more) sepa-
rate mental spaces. The blended space can be thought of as a product of the input 
spaces, rather than a separable sum. According to CBT, development of expert math-
ematization in physics would occur not through a simple addition of new elements 
(physics quantities) to an existing cognitive structure (arithmetic), but rather through 
the creation of a new and independent cognitive space. This space, in which creative, 
quantitative analysis of physical phenomena can occur, involves a continuous inter-
dependence of thinking about the mathematical and physical worlds. Development 
of PQL involves the creation of a new cognitive space that depends on both math-
ematical and physical reasoning, but is not a simple, separable sum of these two 
spaces. 

The remainder of this section uses Fig. 1 as a guide to fully operationalize PQL. 
Section 2.1 details quantitative modeling, of which quantification is a foundation. 
In Sect. 2.2, we discuss in detail two facets of quantitative modeling that are partic-
ularly important in the contexts of introductory-level physics: reasoning about sign 
and signed quantities; and covariational reasoning with quantities. While reasoning 
about sign and covariational reasoning have been well-researched by the mathe-
matics education community, recent work by the authors and their collaborators 
suggest these modes of reasoning as used in physics contexts by physics experts 
are distinct from the analogous modes in mathematical contexts (White Brahmia 
et al., 2020). Characterization of these types of reasoning with physics quantities is 
necessary to understand quantification and quantitative modeling in physics courses, 
especially for developing assessable learning objectives. 

2.1 Quantitative Modeling in Physics 

Quantification is a facet of quantitative modeling, and generates the building blocks 
for the mathematical descriptions involved in quantitative modeling. Thompson 
defines quantification as “the process of conceptualizing an object and an attribute 
of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship... with its unit” (Thompson, 2011, p. 37). For example, a 
bus’s motion can be quantified by a velocity (combining the mathematical objects of 
ratio and vector) relative to the ground. Thompson considers quantification to be “a 
root of mathematical thinking,” and argues that learners develop their mathematics 
from reasoning about quantities. In work involving middle school algebra students, 
Ellis (2007) claims that modes of mathematical structural reasoning are more likely 
to develop when students practice with quantities that are composed of other quanti-
ties through multiplication or division, rather than the strictly numerical patterns and 
algorithms common to school mathematics. Ellis claims it is precisely these kinds 
of quantities that help develop students’ abilities to create powerful generalizations. 
White Brahmia (2019) argues that quantification is the overlooked first step in the 
modeling process in physics instruction.
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Quantification in introductory-level physics courses is typically not generative. 
Students are rarely asked to create new quantities to describe attributes. Instead, 
quantification in introductory-level physics courses is focused on the understanding 
and use of introduced quantities to describe processes and physical phenomena. 
Students are asked to participate in quantitative modeling with already-defined 
physical quantities. 

Just as conceptual understanding of mathematical operations enriches cogni-
tion, so too does understanding the meaning and calculation of introduced quan-
tities. Consider the two common framings of division as the process of sharing or 
segmenting, as described by Thompson and Saldanha (2003). Sharing is the parti-
tioning of a number into some number of equal-sized portions (e.g., 12 3 = 4 shares in 
each of 3 portions). Segmenting is portioning out a number in groups of a given size 
(e.g., 12 4 = 3 portions of size 4). Thompson and Saldanha (2003) demonstrate that 
“operational understanding of division entails a conceptual isomorphism between” 
sharing and segmenting. These framings are productive in the context of numbers 
and can help new learners to visualize the meaning of division. Moreover, they 
are productive for students in many “real-life” scenarios. Contrast, however, this 
conceptual understanding of ratio and division with the construction of velocity as 
a vector quantity. Velocity can be understood by framing division as an operation 
which relates (Thompson et al., 2014) a change in position, which is a vector, to 
a time interval, which is a scalar, and produces a quotient entirely different from 
the dividend and the divisor. Velocity as the vector rate of change of position has 
its own physical meaning. Thompson et al. (2014) argue that understanding of a 
ratio quantity created by comparing two quantities of different natures is equivalent 
to understanding “relative magnitude” and note “high-level scientific reasoning that 
involves physical quantities typically involves conceiving of relative magnitudes.” In 
our experience, many students coming out of mathematics courses lack this under-
standing. We also find that it is uncommon for physics instructors to make explicit this 
difference when introducing velocity—that division is now performed for a different 
reason than it was when calculating, for example, the duration of a process that takes 
one-fourth as long as another, 22 s 4 = 5.5 s. 

We note that PQL includes an inclination or habit-of-mind to quantify or create 
quantitative models, hereafter referred to as “models.” The modeling shown in Fig. 1 
begins with observations of the world, which may lead to quantification for individ-
uals with high QL. Ability to think mathematically is not enough; it must be accom-
panied by a recognition that the physical world can be described quantitatively, and 
an inclination to develop and understand the model. 

Observation and quantification are crucial first steps in developing models in 
physics. Modeling can also result in novel composite quantities. Acceleration is one 
such composite physical quantity: .a is the ratio of a change in velocity ..v and an 
interval of time.t . The creation of acceleration as a quantity is a result of a quantita-
tive model: Galileo famously wrestled with the mathematical decision of whether to 
describe accelerated motion with a ratio of change in velocity to distance traveled or 
change in velocity to elapsed time. His choice of the latter led to the formal concept
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of acceleration, a foundation for the subsequent Newtonian synthesis. The quan-
titative modeling demonstrated in the introductory vignette involves both a proce-
dural and conceptual mastery of the prerequisite mathematics (Redish & Kuo, 2015; 
Thompson, 2011). Gray and Tall (1994) describe this combination of procedural and 
conceptual mastery in mathematical contexts as proceptual understanding and name 
it as a target learning goal for mathematics courses. Gray and Tall (1994) highlight the 
distinction between procedural efficiency and conceptual understanding, explaining 
that “the symbol 3 4 stands for both the process of division and the concept of frac-
tion.” In the terms of Thompson and Saldanha (2003), proceptual understanding 
involves both the conceptualization of fraction, and the conceptualization and action 
of division. 

We argue that quantitative modeling also requires proceptual understanding of 
physics quantities themselves. Consider the quantity average velocity, .vav = ..x 

.t . A  
physics student with a proceptual understanding of velocity would be procedurally 
proficient at determining an object’s average velocity by dividing its displacement 
by the elapsed time, as well as understand conceptually that the ratio is a quantity 
unto itself, .vav , with its own properties and meaning. 

We also argue that to succeed in physics courses, it may not be enough to under-
stand the mathematics as taught in mathematics courses. In introductory physics, 
“flexibility” with mathematics is expected of students—they are expected to under-
stand and apply mathematics in ways that are different than they may have been taught 
in prior mathematics courses. This flexibility is a hallmark of expert-like reasoning in 
physics (Sherin, 2001; Vlassis, 2004). A physics expert is able to distinguish between 
a negative sign used to indicate the type of electric charge in surplus in a given system 
(Olsho et al., 2021), and one used to indicate the direction of a component of an elec-
tric field relative to an assigned coordinate system (White Brahmia et al., 2020); a 
product may indicate an increase or accumulation of a quantity, or the creation of a 
new quantity. Physics experts readily interpret these aspects of the mathematization 
of physical systems (Fig. 2). 

PROCEDURE PROCESS PROCEPT 
Step-by-step; 
routine problem 
solving 

Increased efficiency; 
Flexible solutions with 
Conceptual alternatives 

Ability to think about  
mathematics symbolically 

Increasing Sophistication 

Fig. 2 Proceptual development, adapted from Tall (2008)
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Familiarity with multiple representations is a foundation for modeling in physics 
(Brewe, 2008). This familiarity facilitates the expert-like habit of seeking coherence 
between varied representations of quantities and relationships. Because quantitative 
modeling requires proceptual understanding of the mathematics used to relate physics 
quantities, as well as familiarity with the physics quantities themselves, we suggest 
that students must have some experience with the multiple representations taught in 
mathematics and physics courses (e.g., symbolic, graphical, and diagrammatic). The 
ability to think abstractly about physics quantities allows for greater understanding 
of the physical phenomena or qualities that the quantities represent; for example, 
students are able to consider the meaning of the quantity “electric potential” beyond 
its algebraic representation. Familiarity with multiple representations and physics 
quantities also allows students to make useful generalizations about quantities—they 
are able to consider similarities and differences between disparate vector quantities 
such as electric field and acceleration, or scalar quantities such as mass and charge. 
A proceptual understanding of the mathematics may help develop a deeper under-
standing of the physics quantities, which can, in turn, deepen understanding of the 
mathematics (Sealey & Thompson, 2016). 

Success in a physics course requires conceptualizing models that were generated 
by someone else; moreover, students are expected to understand the symbolizing 
of quantity and covariational relationships between quantities as if they created the 
models themselves. This depth of understanding involves recognizing patterns and 
decoding symbolic models. In the following section, we explicate these cognitive 
activities by focusing on two areas of reasoning central to the quantitative models 
featured in introductory-level physics. 

2.2 Facets of Quantitative Reasoning in Introductory Physics 

In this section, we discuss two facets of quantitative modeling that are of partic-
ular importance in introductory physics: reasoning about sign and signed quantities; 
and covariational reasoning, including reasoning about compound quantities. As 
discussed earlier, reasoning about sign is of particular importance to quantification 
of base quantities in physics, while covariational reasoning plays a substantial role 
in development of quantitative models and quantification of composite or derived 
quantities. 

2.2.1 Reasoning About Sign and Signed Quantities in Physics 

Negative integers represent a more cognitively difficult mathematical object than 
positive integers do for pre-college mathematics students (Bishop et al., 2014). 
Mathematics education researchers have isolated a variety of “natures of negativity” 
fundamental to algebraic reasoning in the context of high school algebra—the many 
meanings of the negative sign that must be distinguished and understood for students
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to develop understanding (Gallardo & Rojano, 1994; Nunes, 1993; Thompson & 
Dreyfus, 1988; Vlassis, 2004). These various meanings of the negative sign, which 
will be discussed in greater detail below, form the foundation for scientific quantifica-
tion, where the mathematical properties of negative numbers are well-suited to repre-
sent natural processes and quantities. Recognition that the negative sign has different 
meanings in different contexts, and correct interpretation of the meaning of a negative 
sign in a given context—called “flexibility” with negativity by mathematics education 
researcher Vlassis (2004)—is a known challenge in mathematics education. There is 
mounting evidence that reasoning about negative quantity poses a significant hurdle 
for physics students at the introductory level and beyond (Bajracharya et al., 2012; 
Ceuppens et al., 2019; Eriksson et al., 2018; Hayes & Wittmann, 2010; Huynh & 
Sayre, 2018; White Brahmia et al., 2020). 

In physics, as in mathematics, it is convention that an unsigned quantity is a 
positive quantity (e.g., “5 μC” is taken to mean a charge of + 5 μC). While research 
indicates that students are not facile at interpreting the meaning of negative signs 
specifically, we suggest that it is the presence of an explicit sign associated with a 
quantity that results in the difficulty. Indeed, physics education researchers report 
that a majority of students enrolled in a calculus-based physics course struggled to 
make meaning of negative and positive quantities in spite of completing Calculus 
I and more advanced courses in mathematics (White Brahmia & Boudreaux, 2016, 
2017). In our discussion below, we focus on negativity and use of the negative sign 
(as by convention, that is the context in which use of an explicit sign is necessary), 
but suggest the applicability to sign and signed quantities more generally. 

Flexibility with negativity and interpretation of the negative sign in different 
physics contexts plays an important role in both quantification specifically and quan-
titative modeling more generally. Sherin’s (2001) “symbolic forms” were developed 
to explain how successful physics students interpret and create equations. Sherin 
suggested that students associate symbolic patterns with physical and mathematical 
meaning. Work by mathematics and science education researchers has expanded 
Sherin’s original list of symbolic forms (Dorko & Speer, 2015; Rodrigues et al., 
2019; White Brahmia, 2019). While mathematics education researchers identified 
a “measurement” symbolic form as consisting of magnitude, units, and exponent 
(Dorko & Speer, 2015), research in physics contexts suggests a “quantity” symbolic 
form consisting of sign, value, and units, where the sign carries physical meaning 
related to the specific quantity (White Brahmia, 2019). These two symbolic forms 
are shown in Fig. 3.

The difference between the symbolic forms speaks to the importance of sign 
when considering physics quantities. Quantities representing change, such as .v = 
vfinal−vinital (i.e., change in speed), are fundamental to introductory-level physics but 
are discussed less in mathematics course. The “quantity” symbolic form includes the 
expectation of a sign associated with each quantity, which in the case of .v informs 
whether the speed is increasing or decreasing. Expressed using the “measurement” 
symbolic form, .v would only consist of magnitude and units, and omits important 
information about the nature of the change. The inclusion of sign allows for a more 
complete description of an object’s motion.
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Fig. 3 Symbolic forms relevant to physics quantities

The meaning of the sign is of particular significance for scalar quantities, where 
the meaning may be consistent with mathematical conventions (comparison to a 
reference or zero, such as for temperature) or could be part of a model or physics 
convention (for example, heat Q is negative for a system when thermal energy is 
transferred out of that system). Introductory-level physics students also see a use of 
sign that is idiosyncratic to physics: sign as an indication of type, as with electric 
charge, where the sign of the net charge on an object indicates the type of charge 
(positive or negative) in surplus on the object (Olsho et al., 2021). 

Sign plays an important role for vector quantities as well. Vector quantities are 
always interpreted geometrically (i.e., having a magnitude and a direction) in college-
level physics courses; a negative sign associated with a vector or vector component 
thus indicates its direction, either relative to a defined coordinate system (Fx = 
−3N) or to another vector, as in the quantitative statement of Newton’s Third Law 
( .F12 = −  .F21). 

For quantitative modeling more generally, students must consider the meaning of 
negative (and positive) signs when they are used to model physical relationships or 
processes, or to compare or combine quantities. In these cases, positive and negative 
signs can be used to describe how quantities relate to each other, or as part of the 
operations of addition and subtraction—divergent uses of the same symbols. Students 
are introduced to expressions that relate quantities that oppose or are opposite to each 
other. Even when used to indicate the operation of subtraction, the negative sign has 
varied meanings in physics contexts. To describe the many meanings of the negative 
signs in the contexts of introductory-level physics, White Brahmia, et al. (2020) 
developed a framework of the natures of negativity in introductory physics, based on 
an analogous framework in the context of algebra (Vlassis, 2004). An abbreviated 
version of the physics framework is shown in Table 1. The framework outlines three 
uses or facets of the negative sign in physics: as associated with a single quantity; as  
used describe a relationship between multiple quantities; and as used to denote the 
operation of subtraction. As seen in Table 1, each of these facets is itself multifaceted, 
which is an indication of the many nuances of negativity in physics contexts.
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Table 1 Abbreviated version 
of the framework of natures 
of negativity in introductory 
physics (White Brahmia 
et al., 2020) 

(Q) Quantity (R) Relationship (O) Operation 

1. Scalar 1. Opposes 1. Removal 
(physical) 

a. Type (charge only) 2. Opposite 2. Difference 
(temporal) 

b. Change, rate of 
change 

3. Relative 
Orientation 

4. Removal 
(modeling) 

c. Comparison to 
reference 

4. Negative 
exponents 

3. Difference 
(other) 

d. Models, convention 

2. Vector component 

Boldface indicates a facet of a main nature of negativity 

Use of the negative sign to convey physical meaning is a basis of quantitative 
modeling. Even at the college introductory level, combinations of positive and nega-
tive signs are necessary to model processes and relationships. Further, the negative 
sign associated with a given quantity can have multiple correct interpretations. For 
example, when a force does negative work on a system, it can be interpreted as an 
indication that the force acts to decrease the mechanical energy of the system. The 
negative sign also indicates that the force is applied in a direction opposite to the 
direction of the displacement of the system. White Brahmia and Boudreaux (2017) 
found that students who understood that a force does negative work on a system 
when applied in a direction opposite to the system’s displacement were more likely 
to understand that a net negative work is associated with a decrease in the system’s 
energy. The researchers interpreted this result as an indication that a mathematical 
understanding about the scalar product catalyzed a more robust understanding about 
the change in system energy. This is an example of how understanding positive and 
negative signs is associated with more complete understanding of physics quantities, 
and the quantities’ meanings within physics models (White Brahmia, 2019). 

2.2.2 Covariational Reasoning in Physics 

Covariational reasoning, “the cognitive activities involved in coordinating two 
varying quantities while attending to the ways in which they change in relation 
to each other” (Carlson et al., 2002, p. 354) has been shown to be strongly associ-
ated with student success in calculus by mathematics education researchers (Carlson 
et al., 2002; Saldanha & Thompson, 1998; Thompson, 1994). Physics covariational 
reasoning plays a substantial role in physics quantitative modeling. It involves finding 
the relationship between quantities, and representing that relationship symbolically. 
These are both key facets of quantitative modeling as depicted in Fig. 1. In college-
level introductory physics courses, students are routinely asked to describe how
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quantities relate to each other, and how a change in one quantity affects another 
quantity. 

However, few studies by physics education researchers have explored how co-
variational reasoning is used in introductory physics contexts. A study reported on 
by Zimmerman et al. (2020a, 2020b) suggests that covariational reasoning in physics 
graduate students (“experts” in introductory physics contexts) differs in some ways 
from that in mathematics graduate students, as reported by Hobson and Moore (2017). 
In particular, physics experts display a number of specific behaviors—one of which 
will be described in the paragraphs below—that allow them to consider the rela-
tionship between two variables while reducing or even eliminating the formal, novel 
covariational reasoning seen in mathematics experts in similar contexts. These behav-
iors allow for physicists to engage in reasoning about the quantities themselves, as 
well as the relationship between the quantities, in a way that is not typically neces-
sary in mathematical contexts. For this reason, we call the covariational reasoning 
done by physics experts “covariational reasoning with quantities” or simply “physics 
covariational reasoning.” 

Zimmerman et al. (2020a, 2020b) have identified a number of behavior in physics 
experts that seem to facilitate covariational reasoning. In what follows we focus on 
a particular instance of the overarching physics expert behavior which Zimmerman 
et al. (2020a, 2020b) call “compiled relationships”: the use and creation of defined 
relationships between two quantities that may or may not be in the problem statement 
in order to help address the relationship between two quantities in the specified task. 
We suggest that this is a cognitive activity that is distinct in physics covariational 
reasoning, and that it allows for greater focus on the meaning of physics quanti-
ties. The use of compiled relationships as an expert behavior relies on the fact that 
there are relatively few functions that make up the models encountered in a college-
level physics course—most involve linear or inverse relationships, basic trigono-
metric functions, simple quadratics, or exponential decay. Most physical contexts 
at this level can be mathematized with just this handful of functions, with which 
expert physicists become very familiar. Therefore, physics experts come to expect 
one of these common functions, and readily mathematize tasks that involve novel 
covariational reasoning for mathematics experts—for whom any function is possible. 

The behavior encompassed by the compiled relationships category has several 
facets. Here, we define a facet which we call “automatic mathematization” 
(Zimmerman et al., 2020a, 2020b) which illustrates a key difference between the 
way physics experts and mathematics experts approach quantitative modeling tasks 
that involve covariational reasoning. Automatic mathematization is the almost-
immediate, automatic assignment of a known functional relationship between quanti-
ties. This mathematization is typically guided by the physics and draws on well-tested 
models of nature. It may be as simple as a learned rule such as “force decreases as 1 r2 ” 
or more complex, requiring identification of a physical phenomenon in a particular 
context and then mathematizing. An example of the latter was seen in interviews 
with physics graduate students who were asked to draw a graph relating intensity 
of light in liquid as a function of the depth of the water. Several of the intervie-
wees recognized that a decrease in light intensity with increasing distance from
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the light source was due to the physical phenomenon of scattering. These graduate 
students then assumed that the intensity would therefore decrease exponentially with 
increasing distance from the source, connecting the physical phenomenon of scat-
tering to the function f (x) = e−x . Zimmerman et al. (2020a, 2020b) report on several 
other physics-specific expert behaviors that were not reported on in the studies of 
mathematics graduate students by Hobson and Moore (2017), Moore (2014). They 
conclude that physics covariational reasoning is built on a proceptual understanding 
of quantities themselves, and a handful of functions. The physics expert behav-
iors described above—and others—allow physicists to make sense of the quantities, 
through their physical interpretation, and the mathematical relationships between 
quantities simultaneously. We believe that this blended sensemaking is character-
istic of physics covariational reasoning, and therefore, of quantitative modeling in 
physics. 

In this section, we have described our work exploring how experts reason quanti-
tatively. In Fig. 1 we outline the reasoning that goes into generating and interpreting 
symbolic models in physics. The quantitative modeling demonstrated in the vignette 
in the introduction exemplifies this reasoning process, where the position and time are 
quantities that emerge from direct observation and the velocity and acceleration are 
derived quantities that characterize the motion. Unlike “measures” in mathematics, 
physics quantities typically include a sign that carries its own important meaning. 
The covariational relationship between quantities is symbolized in the kinematics 
equation shown. 

By identifying these sophisticated reasoning patterns, we create targets for assess-
able PQL-related learning objectives—discussed in the next section—for students 
enrolled in introductory physics courses. 

3 Assessable PQL Learning Objectives 

Having operationalized PQL in the previous section through frameworks that char-
acterize expert reasoning, in this section we describe the development of assessable 
PQL learning objectives for the college-level introductory physics course, using 
expert PQL as a target. We note that explicit PQL learning objectives in introductory 
physics are uncommon, largely because the kind of reasoning outlined in the previous 
section is assumed by most physics instructors to be developed in the prerequisite 
mathematics courses. There is a gap between physics and mathematics instruction 
that this work seeks to help close. 

Developing learning objectives (LOs) that can help guide instructional efforts 
toward effective development of PQL builds on the sustained and productive 
department-wide efforts developing undergraduate physics course learning objec-
tives (Chasteen et al., 2011). In this section we discuss evidence-based PQL learning 
objectives, and in the next, an example of an assessment instrument that can be used 
to assess the effectiveness of instruction at meeting some of these objectives.
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3.1 Methodology 

The methodology we describe here for developing LOs discusses the overall develop-
ment process, and also includes LOs that are not associated with PQL. The remainder 
of the chapter focuses specifically on the subset of LOs associated with developing 
PQL. 

At the outset, we recognized that effective LOs articulate values shared by a broad 
group of instructors. Our first step in creating a succinct set of assessable learning 
objectives for the introductory physics sequence involved consolidating the outcomes 
of prior systematic efforts by the physics education research community, representing 
hundreds of the researcher’s hours spent collaborating with departmental colleagues. 
Past department-level efforts in the United States have focused mainly on courses 
beyond the introductory level, which rely on a proceptual understanding of calculus. 
PQL at the introductory level helps build the foundation for the calculus-thinking 
that underpins modeling in physics; we approached this project through the lens 
of conceptually understanding the mathematical foundations of algebraic physics 
models. 

In order to develop a set of LOs that are broadly appealing and recognizable to 
most instructors, we started with the existing LOs from a variety of widely respected 
sources.1 We conducted a card-sorting task with those LOs, and supplemented the 
results where appropriate. Learning scientists have used card-sorting tasks to inves-
tigate mental organization of disciplinary knowledge (Chi et al., 1981; Schoenfeld & 
Herrmann, 1982). Experts are given cards showing various content with no pre-
established groupings. They are then asked to sort the cards into groups that they feel 
make the most sense, and describe each group. The first author (SWB), a physics 
education research postdoc (whose dissertation specialization was surface science), 
and a senior astrophysics graduate student with extensive teaching and curriculum 
development experience, employed a card-sorting task with learning objectives that 
span the introductory physics course. On each card was a single objective. The 
researchers independently sorted the objectives into groups, then discussed their 
groups, and modified their sortings until they reached agreement. 

The overall structure of the resulting learning objectives is hierarchical (see Fig. 4) 
and includes a novel level not seen in other efforts—sequence-level objectives that 
span the entire introductory physics sequence. The sequence level includes a limited 
number of LOs that blend the professional science practices and physics habits-of-
mind characteristics of high-functioning STEM professionals. We recognize that this 
level of learning takes a long time and may not be measurable over the course of one 
term. It is mainly at the sequence level that we include objectives designed to develop 
skills that are strongly associated with PQL. Developing a proceptual understanding

1 We looked to the high-quality practices of NGSS and the College Board, which have been carefully 
crafted over several years, for guidance in developing our own learning objectives at the sequence 
level (NSTA; College Board, 2020). They created the individual sequence-level LOs used in the 
sorting task by gathering the LOs from the multiple sources (Beichner, 2011; Etkina et al., 2006; 
Kozminski et al., 2014; LGBT  + Physicists, 2013; SEI). 
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Fig. 4 Hierarchical structure of LOs 

of models in physics also happens slowly, over the period of multiple sequential 
courses. 

The course-level objectives include 10–15 overarching content themes that are 
specific to that course. Lastly, unit-level objectives, often thought of as the specific 
content, correspond in duration to a typical chapter in a college course. 

The introductory physics sequence-level learning objectives resulting from the 
card-sorting task are listed in Table 2. The resulting consensus includes three themes 
around which similar LOs clustered: physics habits of mind, understanding models 
and limits, and professionalism and workplace skills.

Note that there is no separation between lab and lecture course objectives. 
While some objectives lend themselves better to the lab, there is considerable 
cognitive overlap. There is compelling evidence that it takes both laboratory and 
lecture/recitation experiences for these learning objectives to be met. Labs which 
emphasize following instructions and the development of technical laboratory skills 
miss an opportunity to help students develop the ability to design ways to answer 
scientific questions (Canright & White Brahmia, 2021; Etkina, 2015). 

We share an example that is ubiquitous in physics: the inverse-square covariational 
relationship, which is central to many physics models (e.g., Coulomb’s law, Newton’s 
Law of Gravitation, light and sound intensity). The following example shows the 
learning objectives that are part of developing reasoning associated with Coulomb’s 
law, a 1 r2 force, and the associated field in an electromagnetism course (typically the 
second term in an introductory sequence), and demonstrates how the levels shown 
in Fig. 4 differ: 

• The relevant unit-level LOs include: 

– Analogy to Gravitation: Use Newton’s 3rd law to reason about the force 
vector direction along a line connecting the two interacting objects; Use the 
1 
r2 structure of the gravitational and electrical forces to reason covariationally 
about similarities in the interactions between massive objects and between 
charged objects. 

– Coulomb’s Law: State Coulomb’s Law in equation form and explain the 
covariational relationship between the electrostatic force and (1) the magnitude 
of the charges, and (2) the separation of the charges

• The relevant course-level LOs include:
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Table 2 Sequence-level learning objectives 

HM: physics habits of mind 

HM-1. Translation between physical and symbolic world: develop the inclination and ability 
to translate between the physical and symbolic worlds in an effort to quantitatively reason 
about how nature works 

HM-2. Reasoning with physical quantities: reason abstractly and quantitatively with new 
scalar and vector quantities: make physical sense of the quantities and mastering their 
mathematical structures 

HM-3. Multiple representations: create and translate between multiple representations of the 
same concept (e.g., text, equations, graphs, diagrams) 

HM-4. Problem articulation: articulate what it is that needs to be solved in a particular 
problem, what is known and represent them using a non-verbal representation 

HM-5. Perseverance: recognize that wrong turns are valuable in learning the material, recover 
from mistakes, and persisting in working to the solution even when there is no clear path to the 
endpoint 

HM-6. Sensemaking with quantity: effectively use unit reasoning, vector and scalar natures 
and limiting cases to make sense of answers 

HM-7. Order of magnitude and reasonableness: anticipate the order of magnitude to judge the 
reasonableness of measurements and calculations 

HM-8. Reasoning based on mathematical structure: look for and make use of patterns 
associated with mathematical structure to reason across contexts and scale 

HM-9. Recognizing uncertainties: be able to recognize that all measured quantities have 
inherent uncertainties 

ML: understanding models and their limits in physics 

ML-1. Making observations: form a scientific question, design and carry out experiments to look 
for patterns 

ML-2. Developing a model: analyze and interpret data while attending to uncertainty in 
measurement and construct explanations based on patterns in the data 

ML-3. Reasoning with mathematical models: develop and use mathematical models and 
explanations, construct viable arguments, engage in argumentation from evidence and 
critique reasoning of others 

ML-4. Model limitation: articulate assumptions made when applying a model, and the range 
over which a particular model is a valid description of nature 

ML-5. Model testing: design an experiment to test the model and make a prediction of the 
outcome based on it 

ML-6. Scientific judgment: analyze and interpret data from a testing experiment while attending 
to uncertainty, and make a scientific judgment about the outcome 

PW: professionalism and workplace 

PW-1. Collective intelligence: recognizing the two features of high collective intelligence, and 
monitoring social climate to optimize these features (equitable speaking turns, social sensitivity) 

PW-2. Collaboration: able to articulate affordances that a group brings to arriving at a creative 
solution, knowing what the roles are that members of effective groups t 

PW-3. Inclusion: demonstrate effective communication skills in the context of a recitation or lab 
group that results in whole-group meaningful participation

(continued)
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Table 2 (continued)

PW: professionalism and workplace

PW-4. Communicating physics: be able to communicate physics in written and oral forms 

PW-5. Independent Learning: recognizing and acting on confusion: be able to articulate 
specifically the source of confusion and taking action to move beyond that difficulty (e.g., office 
hours, group study) 

PW-6. Skepticism toward conclusions: recognize that scientific conclusions—whether from an 
outside source or from your own calculations—may be incorrect, and develop the ability to 
check these conclusions with simple calculations, 3rd party information, and/or common sense 

The PQL-specific LOs appear in bold italic

– Electric Force and Field: Apply Coulomb’s Law and the superposition 
principle to find the net force and field due to a distribution of charges 

– Sophisticated Quantities in E&M: Distinguish between the vector and scalar 
nature of EM quantities and the role of ± signs 

• The relevant sequence-level LOs include: 

– ML-3: Reasoning with mathematical models: Develop and use mathematical 
models and explanations, construct viable arguments, engage in argumentation 
from evidence. 

– HM-8: Reasoning based on mathematical structure: Look for and make use 
of patterns associated with mathematical structure to reason across contexts 
and scale. 

In the remainder of this chapter, we focus on sequence-level objectives because 
PQL develops over repeated exposure, at a different rate for all students. The expecta-
tion is that by the time students have completed the introductory sequence of physics, 
these objectives will have been met. Sequence-level objectives in turn strongly influ-
enced the course-level objectives, and the streamlining of the unit goals. We next 
look closely at the specific PQL sequence-level LOs. 

3.2 Sequence-Level Learning Objectives 

A subset of the sequence-level learning objectives that target PQL specifically is 
indicated by bold italics in Table 2. We suspect that mathematics instructors will 
find these familiar, and likely see overlap with their own learning objectives. We see 
great potential to embolden student learning, both in mathematics and in physics, 
if both disciplines can emphasize mathematical reasoning that is highly valued in 
physics. We focus here on three of the learning objectives from Table 2 to better 
clarify why they matter, and how they might overlap with mathematics instruction: 
HM-1, HM-3, and HM-6 (see Table 3).
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Table 3 Sample LOs with examples from physics 

HM-1 HM-3 HM-6 

Translation between physical 
and symbolic world 

Multiple representations Sensemaking with quantity 

. Positive and negative signs 
(e.g., electric charge, one 
dimensional velocity, 
displacement, acceleration) 

. Summation of conserved 
quantities (e.g., energy, 
momentum) 

. Unit vectors to represent 
direction of vector quantities 
(e.g., force, displacement, 
electric field) 

. Interpretation of slope and 
area under curve in graphs 
(e.g., position vs. time, 
pressure vs. volume, force 
vs. displacement) 

. Verbal interpretation of 
equations (e.g., example in 
introduction) 

. Force diagrams to represent 
direction and magnitude of 
vector quantities (e.g., 
Newton’s laws, statics) 

. Limiting cases What hap-
pens in a given model for 
very large/small and zero 
values of a quantity? 

. Dimensional analysis are 
the units of an answer 
consistent? Does a model 
make sense in the physical 
world? 

. Vector versus scalar 
reasoning does “direction” 
carry meaning for a given 
quantity? (e.g., force, 
energy, momentum, time) 

HM-1, Translation between the physical and symbolic world, is a continuous 
mental action of experts in physics, relying heavily on mathematical symbols to 
convey deep meaning. Addition and subtraction can be performed only with like 
quantities, and the operations carry different meaning than the integers that carry the 
same symbols, as was demonstrated in the introduction of this chapter. 

HM-3, Multiple Representations, is brought to life in the vignette at the opening 
of this chapter. The reliance on particular representations and the inclination to seek 
coherence between them is a hallmark of expert behavior around making sense of 
models. Equations are ubiquitous in all physics contexts. Graphical representations of 
position, velocity, and acceleration as a function of time are an instructional platform 
kinematics, bar charts are commonly used to keep track of conserved quantities, and 
vector diagrams are foundational in the studies of solid and fluid statics and dynamics. 

HM-6, Sensemaking with quantity, encompasses exploring the limiting cases 
of single and multivariable models, using the units in a calculation both to guide and 
to check for sensemaking, and exploring physical-world implication of the vector or 
scalar nature of a quantity. As an example of the latter, multiplication and division 
create entirely new quantities with unique properties. Work is a scalar product of 
two vectors (force and displacement); it is neither force nor displacement, and not a 
vector. Nonetheless, students routinely conflate work and force, not differentiating 
between the product and a factor, or a scalar and a vector. 

We have gathered a substantial amount of evidence for face validity of the 
sequence-level LOs. The language has been modified iteratively based on a series 
of interviews with faculty until the LOs reached a steady state in which they are 
both understood as intended and valued by instructors. Much work remains before 
it becomes standard practice across most institutions that undergraduate physics 
instruction is designed to meet evidence-based objectives, and measures of the effec-
tiveness of instruction are based on them. In their current form, the LOs described in
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Table 2 are used at our institutions with a broad set of instructors, with an associated 
outcome of facilitating consensus about course content, assessments, professional 
development, and modifications to courses. 

In this section we’ve demonstrated the ubiquity and importance of quantification, 
symbolizing and modeling to physics reasoning, and provided PQL learning objec-
tives that reflect their value to instruction. In what follows we describe an instrument 
that can be used to assess whether or not instruction is meeting these objectives. 

4 The Physics Inventory of Quantitative Literacy 

Despite the importance of physics quantitative literacy as a learning outcome in 
introductory physics courses, there is a dearth of instruments to assess its devel-
opment. To address this need, we developed, with collaborators Smith, Boudreaux, 
Eaton, and Zimmerman, the Physics Inventory of Quantitative Literacy (PIQL), a 
multiple-choice reasoning inventory (White Brahmia et al., 2021). Various concept 
inventories, such as the Force Concept Inventory (Hestenes et al., 1992) and the Force 
and Motion Conceptual Evaluation (Thornton & Sokoloff, 1998) in physics, and the 
Precalculus Concept Assessment (Carlson et al., 2010) and Calculus Concept Inven-
tory (Epstein, 2006) in mathematics, have raised awareness of student difficulties, 
leading to directed instructional interventions and improvements in curricula, and we 
believe that the PIQL can have an analogous impact on physics instruction. There 
are, however, several aspects of the PIQL that set it apart from concept inventories: 

1. Instead of focusing on a single physics concept or level of mathematics, the 
PIQL was developed to assess facets of mathematical reasoning (i.e., PQL) that 
are important in introductory physics, and foundational to subsequent physics 
courses. 

2. The PIQL has several “multiple-choice multiple-response” items (i.e., multiple 
choice questions for which there may be more than one correct answer, and for 
which students are asked to choose all responses that they believe are correct), 
which allow us to probe both conceptual mathematics and conceptual physics 
features of student reasoning in a given context. 

3. The PIQL is designed to assess development of PQL throughout an entire intro-
ductory physics course sequence, rather than providing a measurement of concept 
mastery for a single course. 

As the PIQL is intended to assess PQL and its development with instruction in 
physics, the items focus on the types of quantification and quantitative modeling that 
are important in introductory physics: reasoning about sign and signed quantities, 
and covariational reasoning. Covariational reasoning in particular is foundational to 
the mathematics course that is prerequisite to introductory physics courses (precal-
culus), and several PIQL items are adapted from items from the Precalculus Concept 
Assessment (Carlson et al., 2010). In addition, some PIQL items assess student 
reasoning about ratios and proportions; while this type of reasoning is related to
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covariational reasoning, we treat it as a distinct category for PIQL items. Propor-
tional reasoning represents a domain of quantification that is particularly relevant 
for introductory physics, where many models involve linear relationships and many 
quantities are ratios of other quantities (Boudreaux et al., 2020). Reasoning about 
sign and signed quantities and covariational reasoning are key to quantification and 
quantitative modeling, as described in Sect. 2. The PIQL’s focus on these facets of 
mathematical reasoning in physics contexts makes it an important metric for assessing 
whether PQL-related learning objectives are being met, particularly those in the HM: 
Physics Habits of Mind and ML: Understanding models and their limits in physics 
categories. PIQL items are not focused on procedural mathematics or calculations, 
which are also important in introductory physics and are well-served by meeting the 
mathematics prerequisites for physics. The conceptual mathematics and quantitative 
reasoning embodied in the PIQL are a foundation for the mathematics used in intro-
ductory physics courses at the college level, and are not typically an outcome of the 
prerequisite mathematics courses. 

Expert-like PQL is firmly rooted in a well-formed conceptual blend of physics 
concepts and proceptual understanding of precalculus and algebra, as discussed in 
Sect. 2; therefore, novel PIQL items were developed on the theoretical foundation 
of Conceptual Blending Theory (Fauconnier & Turner, 2002), as well as Sherin’s 
(2001) symbolic forms. Readers interested in the process of item develop-ment based 
on these theoretical frameworks should see the journal article describing the PIQL’s 
development and validation (White Brahmia et al., 2021). 

Here, we describe three items from the PIQL and relate them to the learning 
objectives described in Table 2, chosen to exemplify the LOs highlighted in Table 
3. The first item was written to probe student understanding of sign and signed 
quantities, and assesses learning objective HM-1 primarily, in addition to HM- 2, 
HM-6, and HM-8. The second involves covariational reasoning, and assesses learning 
objective HM-3 primarily, along with HM-1, HM-2, HM-6, HM-8, and ML-3. The 
third also involves covariational reasoning, focusing on evaluation of an algebraic 
limit. It primarily assesses learning objective HM-6, as well as HM-1, HM-8, and 
ML-3. 

The Electric field question (see Fig. 5) asks students to determine the meaning 
of a negative sign associated with a component of a vector quantity. In introductory 
physics contexts, the most useful and intuitive interpretation of a vector quantity is a 
geometric interpretation. Students learn that a vector is a quantity with a magnitude 
and a direction. Therefore, the sign associated with a vector component indicates 
its direction relative to a defined coordinate system. We find, however, that students 
struggle to make meaning of the sign of vector components that represent unfamiliar 
quantities (White Brahmia & Boudreaux, 2017). This is especially true for quantities 
such as electric field, and others related to electromagnetism. We believe that, for 
many students enrolled in college-level introductory physics courses, a lack of intu-
ition and experience with quantities of electromagnetism, as well as unfamiliarity 
with the mathematical abstraction of vector fields obscures the meaning of the sign. 
This is despite the fact that the meaning of the sign of a vector component is under-
stood by students in the more familiar context of mechanics. This question serves
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Fig. 5 Electric field, PIQL multiple-choice multiple-response item (top) that exemplifies a procep-
tual understanding of the “sign” aspect of White Brahmia’s “quantity” symbolic form (bottom). 
The correct response is b 

as an assessment of PQL-related learning objective HM-1 in particular: students are 
expected to translate the physical attribute of direction into a symbolic representation 
using sign. 

The Plant Growth question, shown in Fig. 6, is an item that assesses students’ 
graphical interpretation and covariational reasoning, and is based on an item from the 
Precalculus Concept Assessment (Carlson et al., 2010). The item features a graph 
with time as the independent variable, and growth rate as the dependent variable. 
Students are asked to compare not the growth rates of the two plants, but the amount 
of growth of the two plants over the period depicted in the graph. To do this, students 
could recognize that plant A grows at a faster rate for the entire time shown in 
the graph, and therefore grows more; or, a student could recognize that the area 
under each curve represents the accumulated growth of the associated plant. Both 
of these strategies require students to interpret the quantities depicted in the graph, 
and how they can use those quantities to compare a third, related quantity. This 
item is particularly relevant to sequence-level learning objectives HM-3. Students 
are expected to make sense of graphical representations of quantities: when the 
independent variable is time, and the dependent variable is a time rate of change of a 
given quantity, the area under the curve represents the accumulation of that quantity.

The Fish item, shown in Fig. 7, is also adapted from the Precalculus Concept 
Assessment (Carlson et al., 2010), and assesses covariational reasoning in an alge-
braic (rather than graphical) context. To answer, students need to determine that 
the expression given for N (t) increases with increasing t, by recognizing that the 
numerator grows more quickly than the denominator. They must also recognize that 
answering the item requires a determination of a limit, and determine the value of 
the limit of the given algebraic expression. One way to determine the value of the
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Fig. 6 PIQL item that exemplifies the covariational reasoning used in introductory physics contexts, 
and understanding of graphical representations of quantitative models. The correct answer is b

Fig. 7 Fish, PIQL multiple-choice single-response item, that assesses students’ covariational 
reasoning in an algebraic context. The correct answer is b 

limit of the expression is to rewrite the expression as 

N (t) = 
600(t + 5/6) 
0.5(t + 2) 

= 1200 
t + 5/6 
t + 2 

. 

As t gets large, the fraction approaches 1 from below; thus, as t increases, N (t) 
approaches 1200 from below. We note that while the wording of the answer choices 
is such that less rigorous reasoning can be employed to find the correct answer, 
recognition of the necessity of taking a limit is central to this item. This item is well-
aligned with learning objective HM-6: students must recognize the need to consider 
the limit of an expression for large values of t. 

Interestingly, though experts categorize the items on the PIQL as primarily using 
proportional reasoning, reasoning about sign and signed quantities, or covariational 
reasoning, both exploratory and confirmatory factor analyses of student responses on 
the steady-state version indicated that the items on the inventory were not separable 
into these constructs from the students’ perspective. This indicates that, from the
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students’ perspective, the PIQL may assess a single construct (i.e., physics quan-
titative literacy) and that the three facets of reasoning are deeply interconnected 
in physics contexts for students. Student interviews as well as targeted psychome-
tric analyses are consistent with this interpretation (White Brahmia et al., 2021). 
This supports our classification of the PIQL as a reasoning inventory, rather than 
a concept inventory, and that it is an appropriate metric for assessing PQL-related 
learning objectives, which are focused on reasoning rather than specific mathematical 
or physical concepts. 

5 Conclusion 

In this paper we define Physics Quantitative Literacy (PQL) and describe its central 
role in physics thinking. We operationalize PQL in the context of quantification 
and modeling, with a focus on covariational reasoning and reasoning about sign 
and signed quantities. We also demonstrate that PQL is not only central to physics 
learning, but has a strong overlap with concepts in algebra, and precalculus as well. 
We then describe our process for developing sequence-level assessable PQL learning 
objectives for the introductory physics sequence, and present the current version of 
those objectives. We note that mathematics educators are likely to see overlap with 
their own learning objectives for algebra and precalculus courses. It is with optimism 
for this synergistic potential between the disciplines that we include physics learning 
objectives in this chapter. Lastly, we describe an assessment instrument designed 
to assess some of these learning objectives, the Physics Inventory of Quantitative 
Literacy (PIQL), a reliable and valid reasoning inventory that assesses students’ 
physics quantitative literacy as it develops with instruction in introductory physics 
courses. Results from Classical Test Theory provide evidence for its validity and 
reliability, and both exploratory and confirmatory factor analyses suggest that it is a 
single-factor instrument. We interpret the factor analysis results as an indication that 
the PIQL tests a single construct that we call Physics Quantitative Literacy (PQL). We 
presented the PIQL as a useful metric for assessing PQL-related learning objectives, 
and as a step toward establishing metrics for learning objectives for calculus-based 
introductory physics courses. 

Students come to their STEM courses having succeeded in their prerequisite 
mathematics courses, yet they typically encounter an unfamiliar experience with the 
mathematics they “know.” Many fail to make effective connections with their prior 
learning experience in order to function in the new one. There is a strong need for a 
proceptual facility with some of the mathematics from prerequisite courses, as relied 
on in introductory mathematics-based STEM courses (like physics), to be part of the 
students’ learning progression through these courses. 

We conclude by encouraging education researchers and curriculum developers 
from mathematics and mathematics-based disciplines, like physics, to explore the 
overlap between our disciplines in the work that we do. We are teaching the same 
students. Exploring the interface of their course-taking experiences and mutually
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supporting our collective learning objectives holds potential for symbiotic learning. 
In addition, collaboration at the interface opens possibilities of realizing new learning 
outcomes that may even include a more creative and generative approach in both 
disciplines. We consider the work in this chapter to be one step in that direction. 
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