
Triple System Estimation with Erroneous
Enumerations

Paul P. Biemer, G. Gordon Brown, and Christopher Wiesen

Abstract A central assumption in population coverage error estimation is that non-
residential units are not counted (i.e., no erroneous enumerations) and, thus, the
only remaining errors are omissions. This assumption is violated in many situations,
notably in the US Census 2000, where undetected erroneous enumerations were a
primary reason that the post-enumeration survey (PES) results could not be used
in census undercount adjustments. This paper develops a latent class modeling
approach that allows for varying levels of undetected erroneous enumerations in
one of the population lists. Our approach requires three population lists which may
be the Census, the PES, and a list derived from merging records from administrative
systems. The resulting data take the form of an incomplete contingency table which
can be represented by a latent class model where the latent variable is an individual’s
true status (i.e., resident or nonresident of the population). Latent class analysis is
used to estimate the expected values of the observed cells of this table and then
to project these estimates onto the unobserved cells in order to estimate the total
number of population members. Using artificial populations, the improvement in
mean squared error using this approach is evaluated and compared to other modeling
approaches from the capture-recapture literature.
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1 Background

An important issue in estimating the number of persons residing in an area from
census data is the evaluation of census coverage error. Various techniques using
multiple input sources have been developed for estimating the error in the census
count. One widely used method is dual-system estimation (Sekar and Deming,
1949). With this approach, a post-enumeration survey (PES) of the population
is conducted, and the persons in the PES are matched to persons in the census
enumeration. For the 2000 US Census, the PES involved enumeration of the
occupants of 300,000 households in a random national sample of 12,500 housing
blocks (Hogan et al., 2002).

For the dual system estimation (DSE) approach, data from the enumeration
process and the PES are combined in a 2 × 2 table of counts cross-classifying
the presence or absence of persons in the census enumeration with their presence
or absence in the PES. The DSE approach provides an estimator of the number of
persons in the fourth cell of this table which corresponds to persons missed by both
the census and the PES. The sum of the three observed and one estimated cells of the
Census-PES cross-classification table provides an estimate of the total population
count.

Three key assumptions are made for the DSE approach:

1. Independence. The probability of inclusion of an individual on the second list
(the PES) does not depend upon inclusion or exclusion from the first list (the
census). Failure of this assumption will induce correlations between the errors
in the two lists, sometimes referred to as behavioral correlation (Wolter, 1986).
If a third list is available, the independence assumption can be tested (see, e.g.,
Bishop et al., 1975, Chapter 6). Zaslavsky and Wolfgang (1993) provide models
for dealing with the behavioral correlation in three systems.

2. Homogeneity. The probability of inclusion on a list does not vary from individual
to individual. Although this assumption is known not to hold for the population
as a whole, various strategies have been used to address the problem of
heterogeneous enumeration probabilities, including post-stratification (Sekar and
Deming, 1949) and logistic regression (Alho et al., 1993). Methods involving
three systems have been explored by Darroch et al. (1993), Fienberg et al. (1999),
and Chao and Tsay (1998). This is the correlation bias problem (see, e.g., Wolter,
1986).

3. Perfect enumeration and matching. Individuals in both lists are all population
members that can be accurately matched between the two lists, and any nonres-
idents who have been erroneously enumerated can be identified and eliminated.
Matching errors can be fairly substantial (Biemer and Davis, 1991a), and meth-
ods for dealing with these can be found in Biemer (1988) and Ding and Fienberg
(1992). Biemer and Davis (1991b) show how undetected erroneous enumerations
can seriously bias the estimates of census coverage error. Usually, the bias is
positive, resulting in overcorrecting the census counts for the undercount.
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The models considered in this paper seek to address failures of all three
assumptions to some extent, but particularly assumptions 1 and 3. The assumption of
independence may be relaxed if a third counting system is introduced, for example,
an administrative records list (ARL) of persons in the population. Although
erroneous enumerations can occur in all three systems, the problem is much greater
for administrative lists as will be discussed subsequently. Therefore, the focus in
present paper is on erroneous enumerations in the ARL. A subsequent paper (in
progress) will extend the ideas of the present paper to erroneous enumerations in all
three lists.

Erroneous enumerations (EEs) occur when individuals who are not residents of
the target population are erroneously counted as residents. EEs may be persons
who were deceased prior to Census Day, born after Census Day, or nonresidents
of the target area on Census Day. EEs also include geocoding (or location) errors,
duplicated persons, and fictitious or nonexistent persons. In the following, we will
refer to all of these entities as nonresidents regardless of their source. Further, any
nonresident who is classified as a resident will be called an EE.

In this paper, a statistical framework for dealing with undetected EEs using
a latent class modeling (LCM) approach is presented. Latent class models are
essentially log-linear models where one or more of the variables are latent or
unobservable. Since traditional capture-recapture models can also be written as
log-linear models, LCMs are straightforward extensions of the traditional capture-
recapture models. LCMs provide a convenient statistical framework for specifying
capture-recapture models with undetected EEs as well as missed residents in
all three systems. Unfortunately, the identifiability of LCM for population size
estimation has never been explored in the literature. Further, little is known about
the statistical properties of the LCM estimators in census coverage error evaluation
applications.

To simplify the exposition of the general ideas and the theory, the paper is
confined to the situation where undetected EEs are present only in the ARL. That
is, we assume the census process is successful in identifying and removing EEs
in the census and the PES. This somewhat restricted class of models represents an
important generalization over the traditional assumption of no EEs and provides a
useful alternative to other dual and triple system models for applications where the
numbers of EEs in the census and PES are small compared to the number in the
ARL. Further, study of this restricted case will provide important insights regarding
the much more complex case of EEs in all three systems, the ultimate goal of this
research.

The problem of EEs in the census process has long been recognized, and
adjustment of the DSE of N for EEs is an essential component of the estimation
process. A special survey, referred to as the E-sample (see, e.g., Hogan, 1993), is
conducted simultaneously with the PES in order to estimate the number of EEs in
the census and adjust the DSE for them. Despite these efforts, some EEs are not
identified and are included in the dual system thereby inducing bias in the estimates
of N .
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In 2000, the US Census Bureau Evaluation Followup (EFU) estimated that about
1.8 million enumerations in the PES were actually EEs (ESCAP, 2001). Further,
365,000 persons classified as EEs were in fact correct enumerations. Based on these
results, the Census Bureau concluded that the net undercount was overstated by
three to four million persons and, thus, adjustments to the census count on the basis
of the PES would substantially overcorrect the population counts in many areas. For
the 1990 Census, Biemer and Davis (1991b) reported that the level of misclassified
EEs in the 1990 PES exceeded 5% of the PES count for many areas of the country.
In the worst areas, the Northeast urban and the Midwest non-central city areas, the
EE rate exceeded 20%.

Although the availability of an ARL as the third list provides the means for
modeling the correlation between the census and the PES, the risk of including
EEs in the estimation process is substantially increased since an ARL may contain
many non-population members and duplicate persons that are difficult to accurately
identify and remove from the process. An example of an ARL that is being
considered for census undercount evaluation purposes is the Census Bureau’s
Statistical Administrative Records System (StARS; see Judson, 2000). The StARS
consists of seven merged databases including IRS returns, selective service files,
Medicare enrollment database, Indian Health Service patient file, and the HUD
tenant resident certification system. Since individuals may be on two or more
of these lists, the potential for duplicate persons on StARS is quite high. The
address information on the files may be incomplete or erroneous, thus increasing
the opportunity for geocoding errors. The files may not be completely current,
which can cause the application of the Census Residency Rules to the StARS to be
problematic. Although many EEs can be identified through intensive field follow-
up, such evaluations are costly and quite time-consuming, considering the schedule
for producing the census counts. In addition, for a large-scale implementation, the
error rate of such a field verification process is likely to be unacceptable for census
adjustment purposes.

In the next section, we introduce the notation and describe the models that will
be used in our study. This includes both models with and without EEs. Section 3
describes the estimators of the total population size that can be obtained from
the models and provides an illustration of the ideas using real data. Section 4
reports on an extensive simulation study using artificial populations which compared
the estimators under various adverse population conditions. Finally, in Sect. 5, we
summarize the results and discuss their implications for using the estimators in
census coverage error evaluation studies.

2 Models

This section briefly describes a few of the basic models in the capture-recapture
literature, elaborating on two models that will be used extensively in our work. In
addition, a new class of capture-recapture models based upon latent class analysis
is proposed, and the identifiability and utility of these models are explored.
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Let U denote the persons in a target area (i.e., the area to be enumerated by the
census). This includes the union of persons included on at least one of the three lists
as well as all residents in the area who are not included on any of the lists. Thus, U

denotes all actual residents of the target area as well as nonresidents and fictitious
persons that are erroneously included on the lists. Let P denote all persons who are
true residents of the area and should be counted. Let E denote the complement of P ,
(i.e., E = U ∼ P ), i.e., persons who are not residents of the target area and should
not be counted. The number of persons in U will be denoted by M and the number of
persons in P by N . The objective of this research work is to obtain a robust estimate
of N based upon data from the census, PES, and ARL when the members of E are
classified as in P (i.e, EEs) and the members of P are either missed or classified as
in E (i.e., omissions). As previously mentioned, in this paper we assume that EEs
enter the estimation process solely as the result of a misclassification by the ARL.

Let Xi denote a dichotomous variable defined for the ith person in U , where
Xi = 1 if person i ∈ P and Xi = 0 if person i ∈ E. We assume that Xi is
an unknown and unobservable (latent) variable for all i ∈ U . For triple system
estimation, there are three indicators of Xi corresponding to the census denoted by
Ai , the PES denoted by Bi , and the ARL denoted by Ci . Like Xi , each indicator
variable takes on the value 1 if person i is classified as in P and 0 if classified in E.
Note that the definitions of Xi and its indicators depend upon the definition of the
target area. For notational convenience, in the following, we will drop the subscript
i when it is clear we are referring to an individual in the universe.

2.1 Model Assumptions and Notation

Let πx denote P(X = 1), πA=a|X=x = πa|x = P(A = a|X = x) with analogous
definitions for πb|x and πc|x , where x, a, b, and c can be either 1 or 0. The probability
the census correctly enumerates a resident in U is πA=1|X=1, referred to as the
correct enumeration probability. An EE occurs when a person in E is classified
as in P . Thus, the probability of an EE in the census is πA=1|X=0.

Let XABC denote the (unobservable) cross-classification table for the variables
X, A, B, and C for all i ∈ U , and let (x, a, b, c) denote the cell associated with
X = x, A = a, B = b, and C = c in this table. Define πxabc = P(x, a, b, c) as the
expected proportion in cell (x, a, b, c) and note that πabc can be expressed as

πxabc = πxπa|xπb|axπc|abx. (1)

Although the XABC table is not observable, (1) is still useful to specify the cell
probability for the observable ABC table, i.e.,

πabc =
∑

x

πxπa|xπb|axπc|abx. (2)
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When all parameters in this likelihood are identifiable, they can be estimated
using maximum likelihood estimation techniques. However, the unrestricted model
(2) contains 95 parameters, but only 47 degrees of freedom are available in the
ABC table; thus, the model is substantially over-parameterized and not identifiable.
Restrictions on the probabilities will be introduced to reduce the number of param-
eters associated with the model and obtain an identifiable model. The plausibility of
these restrictions and other model assumptions for census coverage error evaluation
applications is a key issue for the modeling process.

In the next section, we consider models that assume no EEs in the census
estimation process, i.e., πA=1|X=0 = πB=1|X=0 = πC=1|X=0 = 0. These are
traditional capture-recapture models that are appropriate when the probability of
undetected EEs in the three systems is negligibly small. In that case, we can ignore
the latent variable X in the analysis and consider models for πabc rather than πxabc.

2.2 Models with No Erroneous Enumerations

In this section, we present a few classic closed population models as defined in
Pollock et al. (1990) and discuss their utility for coverage error estimation. In order
to remain consistent with census terminology, we will use the term “enumeration
probability” instead of the traditional term “capture probability” used in the capture-
recapture literature. In addition, the models are written using the notation introduced
in Sect. 2.1.

2.2.1 Model M0: Equal Catchability Model

Model M0 assumes that every individual in the population has the same probability
of being enumerated on each sampling occasion, i.e., πA = πB = πC = π1, and
enumerations at future time points are independent of previous enumerations. For
this model, πabc = πa+b+c

1 (1 − π1)
3−a−b−c. Although model M0 is very unlikely

to hold in practice, it is still important as the basis for all closed population models.
Instances where M0 has been used in practice are quite rare; however, it should be
noted that, when the enumeration probabilities are in fact equal, inference obtained
from model M0 is nearly identical to inference obtained from the next model we
will consider—namely, Mt or Schnabel’s model.

2.2.2 Model Mt : Schnabel’s Model

Schnabel (1938) originally developed the Mt model for situations where it may
be assumed that every individual in the population has the same enumeration
probability within a list, but enumeration probabilities may vary across the lists. As
with the M0 model, future enumerations are assumed to be independent of previous
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enumerations. This model does not allow heterogeneity of enumeration rates within
a list or a behavioral response to capture. For this model, πabc = πaπbπc. The next
model we consider allows enumeration probabilities for subsequent enumerations
to depend upon previous enumerations.

2.2.3 Model Mb: The Trap Response Model

For the Mb model, previously enumerated individuals can have future enumeration
probabilities that differ from previously unenumerated individuals. Consequently,
enumeration outcomes across the three lists may be correlated. The model specifies
that P(A = 1) = P(B = 1|A = 0) = P(C = 1|A = 0, B = 0) = πu. Note that
πu is the probability of enumeration for any individual not previously enumerated.
The corresponding probability for individuals previously enumerated by the census,
the PES, or both is P(B = 1|A = 1) = P(C = 1|A = 1 or B = 1) = πe. Thus,
the cell probabilities for this model can be written as products of πu, (1 − πu), πe,
and (1 − πe). As an example, P(A = 1, B = 1, C = 1) = πiπ

2
e , P(A = 0, B =

1, C = 0) = (1 − πu)πe(1 − πe), and so on.
In the population census context, correlations may be introduced between the

census and the PES due to the reactions of individuals to the census enumeration
process. For example, individuals who were enumerated in the census may have
enjoyed the experience or may determine that any fears they may have had
about the process were unfounded. This reaction might cause their probabilities of
enumeration in the PES to be higher than for individuals missed by the census—
referred to as “trap happy” behavior. Conversely, individuals whose experience with
the census enumeration process was less than favorable might engage in avoidance
or “trap shy”5t4rt-= behavior in the PES.

In general, trap shy behavior causes enumeration rates for previously enumerated
individuals to decrease, leading to overestimation of the population size. Trap happy
behavior causes enumeration rates of previously enumerated individuals to increase,
leading to underestimation of the population size. Because of its inherent limitations
for population census applications, the Mb model is extended in the next section.

2.2.4 Model MtAB : Non-stationary Behavioral Response Models

A natural extension of the Mb is the Mtb model which has both time variation and
behavioral response to the enumeration process. Although the standard form of the
Mtb model is not identifiable, a very useful and identifiable model, the MtAB model,
can be obtained by imposing a plausible restriction on the Mtb model. The index AB

on the MtAB model is used to indicate that the model contains one interaction term
representing behavioral correlation between the A- and B-lists and that the C-list is
assumed to be independent of the other two lists. Under this model πabc = πaπa|bπc

where πa|b may differ from πa .
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The motivation for this model stems from the realization that behavioral corre-
lation is likely to be much greater between the census and the PES than for either
of these enumerations and the ARL. This is because enumeration by the census or
PES depend largely on an individual’s attitude toward being interviewed and census
participation in general, whereas the listing of an individual on an administrative
record usually depends upon factors that provide more direct benefits to the
individual; examples are Social Security and Medicare benefits, unemployment
compensation, automobile ownership, payment of taxes, and so on. Therefore,
whether an individual appears on the ARL should not be greatly influenced by the
individual’s choice or ability to participate in the census or PES.

Thus, it seems reasonable to assume that being listed on the ARL is uncorrelated
with enumeration by either the census or the PES and, consequently, the interaction
terms AC and BC are relatively small and negligible. This assumption also greatly
reduces the complexity of the models. When both the AC and BC interactions are
included in the model, identifiability problems result that can only be remedied by
adding parameter constraints which tend to be implausible for census applications. It
is possible, however, to fit models that allow for correlations between enumerations
in all three lists (see, e.g., Zaslavsky & Wolfgang, 1993), and one such model will
be considered later in Sect. 4. In this paper, the Mt and MtAB models are examined
in some detail since they appear to be the most likely of the traditional closed
population models to mirror triple systems data.

2.3 Models with Erroneous Enumerations in the ARL

For the models presented in this section, several assumptions made for the tradi-
tional closed population models are relaxed. We still assume that πA=1|X=0 =
πB=1|X=0 = 0, but now we allow πC=1|X=0 > 0, i.e., EEs are allowed to enter
into the census estimation process through the ARL or the C-list. Thus, we define a
new class of population size estimation models which we refer to as L-models. The
L-model assumptions essentially parallel those made for the M-models discussed
previously except now we introduce a latent “true enumeration status" variable to
account for the possibility that nonresidents may be misclassified as residents by
their inclusion on the C-list.

The assumption of no undetected EEs in the census and PES is consistent with
traditional assumptions made for these two systems, but, as previously discussed,
these assumptions are unlikely to hold in some enumeration areas. In this regard, the
L-models we consider in this paper suffer from the same limitations as the M-models
with respect to EEs in the census and PES. The L-models should be preferred when
the majority of EEs in the estimation process are introduced through the C-list, as is
likely when the C-list is the ARL. It is possible to extend the general ideas described
here for modeling EEs in the C-list to the case where non-negligible EEs occur in
the A- and B-lists. This research is currently underway and will be reported in a
subsequent paper.
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Another issue for the L-models is the value of P(C = 1|X = 0), which is
the probability that a nonresident in the population is an EE in the ARL. Since
all models considered in this paper assume that EEs only enter into the estimation
process through the ARL, the only EEs that are of any consequence in the analysis
are those that are brought in through the ARL. This implies that, given that we
observe an EE in the data, the probability that it was introduced through the ARL
is 1. Thus, we know that P(C = 1|X = 0) = 1 and P(A = 1|X = 0) = P(B =
1|[X = 0) = 0 for all L-models considered.

2.3.1 Model L0: Equal Catchability LCM

The L0 model extends the M0 model to include EEs in the C-list. Like the M0
model, the L0 assumes that every individual in the target population has the same
probability of enumeration on all three lists. An additional parameter is included
to account for the EEs in the C-list. Let πx denote P(X = 1), πA=1|X=1 =
πB=1|X=1 = πC=1|X=1 = π1, and πC=1|X=0 = π2. Then

πxabc = πxπ
a+b+c
1 (1 − π1)

3−a−b−c + (1 + πx)π
c
2 (1 − π2)

(1−c)(1 − a)(1 − b).

(3)

This model parallels the M0 model and is the least complex of the L-models. Like
the M0 model, which is also unlikely to hold in practice, it will not be considered
further in this paper.

2.3.2 Model Lt : Non-stationary, Independent LCM

The Lt model extends model Mt to reflect EEs in the C-list. Thus, we have

πxabc = πxπa|xπb|xπc|x (4)

which corresponds closely to the classical latent class model for the ABC table
except for the structural zero in the 000 cell. If there is no correlation between the
A- and B-lists, then the Lt model should provide a good estimate of N . If there
is correlation between the A- and B-lists, then the Lt model is not appropriate,
and the quality of inference will decline as the magnitude of the AB interaction
increases. The Lt model is the least complex of the L-models that may hold, at least
approximately, in practice and so is investigated in this paper.

2.3.3 Model LtAB : Non-stationary, Behavioral Response Latent Class
Model

Among the models considered in this paper, the LtAB is the most complex LCM and
the most likely to accurately represent triple systems data. The LtAB model accounts
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for correlation between the A- and B-lists and for list-dependent enumeration
probabilities. Under this model, πxabc = πxπa|xπb|xaπc|x . Unfortunately, the
LtAB model has several parameters that are not estimable when using the full or
unconditional version of the likelihood. Additionally, the conditional version of the
likelihood, which conditions on the seven observable cells and is used in latent
class analysis, is not identifiable. Lack of identifiability implies that additional
information must be provided in order to obtain meaningful inference from the LtAB

model.
Our solution to the identifiability problem is to assume that the parameter

πX=1|C=0 is equal to a known constant, say γ . Knowledge of πX=1|C=0 means
the conditional likelihood is fully identifiable and allows all parameters of the
unconditional likelihood to be estimated. For the majority of our study, we will
assume that πX=1|C=0 = γ with negligible error. We also present an example of a
potential method for determining γ . A generalization of the LtAB model that allows
non-negligible error in the estimate of πX=1|C=0 is beyond the scope of this paper.

3 Estimation

3.1 Estimating N

Both the method of moments and maximum likelihood estimation methods have
been used for parameter estimation in the literature for capture-recapture models.
Method of moments estimates are often easy to calculate but can have undesirable
properties such as large variance or large bias. Consequently, maximum likelihood
estimates are often preferred. The standard MLE method consists of using the
conditional likelihood of the model being considered (see White and Burnham,
1999). In this method, the enumeration probabilities are estimated, and an estimate
of population size is derived using a Horvitz-Thompson estimator.

For the M-models, the estimator of N has the general form

N̂M = n

(1 − π̂000)
(5)

where n is the number of persons enumerated (all assumed to be in P ) and π̂000 is
the estimate of the proportion of persons in P in the 000 cell of the ABC table.

For the L-models, we use two methods for estimating N . One method involves
estimating π000 and πx using the conditional likelihood for the ABC table (see, for
example, Section 6.3 in Bishop et al., 1975). Denoting these estimates by π̂000 and
π̂x , respectively, leads to the estimator

N̂L = m

(1 − π̂000)
π̂x (6)
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where m is the number of persons enumerated (including EEs).
The other method uses the full likelihood by performing a search over likely

values of M . For this search method, the initial value of M is set to its minimum
value, M = m. Then, the likelihood is maximized over the other parameters
conditional on M = m. The process is then repeated for M = m + k, for
k = 1, 2, 3, . . ., and so on until the global maximum is found for all of the
parameters. The multi-modal nature of the likelihood necessitated the use of this
simple search algorithm. Let Mopt and πopt denote the estimate of M and πx from
this process. Then the estimator of N from the search method is

N̂L = Moptπopt . (7)

Bishop et al. (1975) and Cormack (1989) show how the M-models can be fit using
traditional log-linear analysis. Haberman (1979) provides a similar structure for
estimating LCMs using log-linear analysis with latent variables. For example, the
Lt model is equivalent to the following hierarchical log-linear model:

log mxabc = u + uX
x + uA

a + uB
b + uC

c + uXA
xa + uXB

xb + uXC
xc , (8)

where mxabc = mπxabc and m is the number of enumerated individuals. This
model is represented in shorthand notation by including the highest order terms
in braces, viz., {AX,BX,CX}. Likewise, the LtAB model is represented as
{AX,BX,CX,AB} with constraints as noted above.

In Sect. 4, we illustrate an application of two of the more complex models
described in Sect. 2: the MtAB and LtAB models. These models are applied to data
from a study conducted by Zaslavsky and Wolfgang (1993). Estimates from the
MtAB and LtAB models are compared to the corresponding estimates from a similar
model considered in their paper.

3.2 Illustration Using Real Data

In this section, we illustrate the properties of the MtAB and LtAB estimators using
the triple system data reported in Zaslavsky and Wolfgang (1993), hereafter referred
to as ZW. For comparison purposes, we also compare these two estimators with
a similar estimator proposed by ZW which is based upon method of moments
estimation principles.

ZW propose several models for estimating population size using triple system
data. Three sources of data were considered in their study from the 1988 Dress
Rehearsal: the census, the PES, and the ARL. These sources were labeled E, P,
and A, respectively, in their study but are re-labeled as the A-, B-, and C-list,
respectively, to be consistent with our current notation.

Among the models used by ZW, the one that most closely resembles our
MtAB model is their αEP |A model. The primary difference is that αEP |A allows
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for behavioral correlations among all three lists, while the MtAB model allows
correlation only between the A- and B-lists. Specifically, the αEP |A model forces
equality between the AB odds ratio conditioned on C = 1 and the marginal AB

odds ratio as follows:

αEP |a=1 = n001n111

n011n101
= n00+n11+

n01+n10+
(9)

while MtAB forces three-way equality between the conditional given C = 0,
conditional given C = 1, and marginal odds ratios as follows:

n000n110

n010n100
= n001n111

n011n101
= n00+n11+

n01+n10+
, (10)

where ‘+’ indicates summation over the index.
The ZW model uses the observed value of the AB odds ratio, conditioned on

C = 1 (denoted by αEP |a=1) as an estimate of the unconditioned odds ratio. ZW
first estimate

n̂00+ = αEP |a=1
n01+n10+

n11+
(11)

and, thus, an estimate of n000 is n̂000 = n̂00+ − n001. In their formulation, the
AB odds ratio conditioned on C = 0 is not restricted, and C-list is assumed to be
dependent on the A- and B-list.

The estimator of n000 from the MtAB model is

n̂000 = n

(
π̂000

1 − π̂000

)
(12)

where now π̂000 is the MLE of π000 under the MtAB model. An approximate
expression for n̂000 which can be compared the estimator based on (11) is derived
in the Appendix 1.

Variances of the estimators were estimated using traditional capture-recapture
variance estimation techniques for population size such as those described in Seber
(1982). The methodology typically used depends on the Taylor series expansion of
the Horvitz-Thompson estimate of population size. Program MARK is a software
package that calculates parameter estimates and their variances for a wide variety of
capture-recapture models (see White and Burnham, 1999) and was used to calculate
the traditional variance estimates that are presented in Table 2. Similar procedures
were used for estimates derived from the log-linear models which were fit using the
latent class analysis software, LEM (Vermunt, 1997).

Although the ZW model is theoretically similar to the MtAB model, the two
models can yield very different estimates of population size as shown below.
Further, estimates of N from the LtAB model exhibit even greater differences from
the ZW model depending upon the size of γ . To illustrate this, we fit ZW’s, the
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Table 1 Triple system data
from the 1988 Dress
Rehearsal Census in Louis,
Missouri

A B C Owners, 20–29 years Renters, 30–44 years

0 0 0 N/A N/A

0 0 1 59 43

0 1 0 8 04

0 1 1 19 13

1 0 0 31 30

1 0 1 19 7

1 1 0 13 69

1 1 1 79 72

Table 2 Estimates of n̂000 for ZW, MtAB , LtAB (γ = 0.05), and LtAB (γ = 0.10)

Parameter Estimates Standard Errors of N̂

Post-stratum EE n̂000 N̂ SE Sim Mk

Owners, 20–29 years (ZW) 0 130 358 64 17.6 NA

Owners, 20–29 years(MtAB ) 0 26 254 4.7 7.6 7.5

Owners, 20–29 years (LtAB at γ = 0.05) 9 22 241 4.3 6.8 6.4

Owners, 20–29 years (LtAB at γ = 0.10) 18 18 228 3.9 5.8 5.4

Renters, 30–44 years (ZW) 0 305 565 432 38.8 NA

Renters, 30–44 years (MtAB ) 0 58 318 9.4 13.8 14.1

Renters, 30–44 years (LtAB at γ = 0.05) 7 49 302 10.0 13.2 11.1

Renters, 30–44 years (LtAB at γ = 0.10) 14 40 286 8.5 10.9 8.8

MtAB model, and the LtAB model for two data sets in Table 1 reproduced from
ZW’s Table 1. The first three columns of Table 1 denote the eight cells of the ABC
table with the cell counts displayed in columns 4 and 5 for two groups: home owners
aged 20–29 years and home renters aged 30–44 years.

For owners, aged 20–29 years, the AB odds ratio estimate conditioned on C = 1
is about 12.9, as is the marginal AB odds ratio. When C = 0, the AB odds ratio is
about 6.8. Under the MtAB model, all AB odds ratios are about 5.8.

Table 2 provides the estimates of n000, EE, and N for the four estimators shown
in column 1, namely, ZW, MtAB , and LtAB computed at γ = 0.05 and γ = 0.10.
The “EE” column gives the number of EEs detected by the model in the 001 cell,
and the estimated number of residents given in the 000 cell is given in the column
labeled n̂000 column. Thus, the estimate of N is m+ n̂000-EE given in the column
labeled N̂ .

Three different standard errors are given for the estimates of N which are shown
in the last three columns. The first, expressed by “SE,” represents the standard error
generated by LEM.1 The second, expressed by “Sim,” is the standard error derived
by the simulation experiments described in Sect. 4. The third, expressed by “Mk,”

1LEM is a software package for fitting log-linear models with latent variables written by Jeroen
Vermunt, Tilburg University, Tilburg, the Netherlands (see Vermunt, 1997).
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is the standard error given by program MARK. For the owners, 20–29 years data,
m = 228; for the renters, 30–44 years data, m = 260.

For owners 20–29 years (top half of Table 2), the estimates of N for ZW’s
estimator is quite discrepant from the MLE estimators; however, the large standard
error for ZW’s estimate (s.e. = 64) suggests that the discrepancies are due more
to model instability rather than bias. Also note that changing from γ = 0.05 and
γ = 0.10 for the LtAB estimator has a small effect on the estimates of N suggesting
that the LtAB estimates of N are fairly robust to error in estimates of γ for these
data.

The bottom half of Table 2 corresponds to renters, 30–44 years. For these data,
the marginal AB odds ratio and the AB odds ratio conditional on C = 1 are
both approximately 34.0, whereas the AB odds ratio conditional on C = 0 is
approximately 27.4. Under the MtAB model, the estimates for all odds ratios are
9.9. The large discrepancy in the odds ratio estimates is reflected in the difference
between the estimates for n000 from the two models (the difference is 247). Again,
this difference is small relative to the standard error of ZW’s estimate (s.e. = 432).

As we did for owners, the LtAB model was fit twice using 0.05 and 0.10 as
plausible values for γ . The estimate for n000 from the LtAB model decreased by 15%
and 30%, respectively, as compared to the MtAB model. This decrease is expected,
as removing EEs from the data will lower the estimate of the population size. Note,
however, that the change in N̂ is relatively small.

In this example, the LtAB and MtAB models yielded substantially lower estimates
for n000 than did ZW’s model. These smaller estimates of n000 appear to be more
plausible as they imply census enumeration rates which are more consistent with
prior experience for these areas (see, e.g., Hogan, 1993). Our studies of artificial
populations such as those described in the next section suggest that in populations
where either ZW’s or the MtAB model assumptions maintain, estimates of n000
based on ZW and MtAB are very close. The standard errors of the MtAB estimate
are much smaller in these populations; however, suggesting the MtAB estimate is
preferable to ZW’s in populations where ZW’s model is also appropriate.

4 Assessing Estimation Accuracy Using Artificial Data

One key objective of our research is to investigate the bias and variance of our triple
system estimators of N . In particular, we are interested in examining the properties
of the Mt , MtAB , Lt , and LtAB models’ estimates of N with varying levels of EEs
in the estimation process. In addition, we wish to investigate the consequences
of misspecifying the estimation model when behavioral interactions between the
indicators are present in the data.

Analytical methods for assessing the bias and variance of the estimates from
capture-recapture models are quite complex and are often only available for
method of moments estimators. Even in that case, the formulas for the mean
square error components are often asymptotic expressions (see Seber, 1982). To
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circumvent these difficulties, current research has focused on numerical methods of
parameter estimation. Since numerical estimation methods lack analytical equations
for the parameters, estimates of bias are usually obtained by performing simulation
experiments.

In one analysis, we generated data deterministically to simulate a situation where
the entire population is sampled. Thus, the parameters specified for the population
also hold true exactly in the analysis data set. Since the population parameter values
are known and pre-specified exactly for the analysis data set, examination of bias
and variance components without the effects of sampling variance is possible. The
primary goal of this type of analysis is to study model bias when underlying model
assumptions have been violated. We refer to this type of simulation as artificial
population analysis without sampling.

Section 4.2 summarizes the results of the artificial population analysis without
sampling. The four models of interest were compared using the deterministically
generated artificial data. The formulas for generating these data are given in the
next section. Variance estimates were not calculated for this analysis since there
was no meaningful method of testing their validity.

In a second type of analysis, also described in Sect. 4.2, numerous samples were
randomly selected from an artificial population. The models or formulas under study
are then applied to each sample in order to estimate the population parameters
of interest. Since the true parameter values are known, the bias of the parameter
estimators can be accurately determined provided a sufficiently large number of
samples of a given size are generated. In addition to the estimation of bias, the
sampling distributions and the variance of the estimators can be determined so that
the coverage properties of interval estimates can also be assessed. We refer to this
type of simulation experiment as artificial population analysis with sampling.

The primary purpose of our simulation experiments is to determine the bias for
point estimates and validity of variance estimates derived from the four selected
models presented in Sect. 3. Additionally, once point and variance estimates have
been obtained, the mean square error can be computed to determine which model
for producing an estimate of N has smallest total error. An extensive simulation
experiment for the four models listed above was conducted, and results are given in
the next section.

4.1 Simulation Methodology

Generating the Artificial Data Without Sampling The data consist of the number
of individuals in each of the seven observable cells in an ABC table, i.e., all
cells except the 000 cell whose count was set to 0. Although the true number of
residents in the 000 cell is known for the artificial populations, this information was
suppressed in estimation process since it is unobserved in ABC table.

As stated, all values for the ABC table are generated using the deterministic
equation for the number of observations in cell (a, b, c) given by
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mabc = Mπxπa|xπb|axπc|x. (13)

In order to narrow the focus of the study, several of the population parameters
were held constant over all of the artificial data sets. We chose a population size
of N = 8, 000 corresponding to roughly the size of a census tract in a central
city area. We set the enumeration probability for the census at πA=1|X=1 = 0.70
corresponding to a difficult census enumeration area (see, e.g., the estimates for
renters in Table 4 or Hogan et al., 2002). The probability of enumeration for the
PES given enumeration by the census was set at πB=1|A=1,X=1 = 0.90 which
corresponds to a moderately high behavioral dependence. Finally, the probability
of being listed on the administrative list was set at πC=1|X=1 = 0.50 which
corresponds to a list with fairly poor coverage properties. Some exploration of other
values for these parameters has been undertaken within a 25 percentage-point range
of these values, and, in general, the results are consistent with those reported here.
We make no claim, however, that our results will hold beyond the range investigated.

The remaining two parameters were varied over a fairly wide range of
plausible values as determined by previous census experience. The parameter
πB=1|A=0,X=1 = 0.90, which specifies the level of behavioral correlation between
A and B, was varied over the values 0.40 through 0.90 by increments of 0.10. The
parameter γ = πX=0|C=1, which determines the number of EEs in the C-list, was
varied over the values 0.0, 0.02, 0.05, 0.10, and 0.15. All possible combinations of
parameters are considered with each possible combination yielding one artificial
data set.

Generating the Artificial Data with Sampling The data for the artificial data
analysis with sampling were derived using the same set of parameters as described
for the case without sampling. For each parameter combination, 1000 artificial data
sets were generated. Each data set was randomly generated by the following five-
step algorithm: (1) calculate the probabilities associated with the eight cells of
the ABC table (denoted πi , i = 1, . . . , 8, say) using the true parameter values

of the artificial population; (2) compute the quantities s0 = 0, sk =
k∑

i=1
πi for

k = 1, . . . , 8, (3) for residents, draw a uniform(0, 1) random number, r , and
increment the count in cell k by 1 if sk−1 ≤ r < sk , k = 1, . . . , 8; (4) repeat
step 3 for 8000 residents; and (5) add EEs to the 001 cell such that exactly 100γ

percent of the enumerations on the C-list were erroneous.

Fitting the Models For each artificial data set, all four models were fit in order to
obtain an estimate of N . The Mt , MtAB , and Lt models can be fit using only the data
from the ABC tables. As stated in Sect. 3, the LtAB model requires an estimate for γ

in order to obtain meaningful inference about N . This shifts the focus of inference
for the LtAB model from bias due to violation of model assumptions to bias in the
estimate of N due to misspecification of γ .

The parameter estimates were obtained using the unconditional likelihood of the
models of interest. The results were compared to estimates obtained using LEM
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which uses a conditional likelihood estimation approach as described in Bishop et al.
(1975). The two estimation methods provided similar inference.

The results from the analysis of the artificial data sets are given in two parts.
The first part described in Sect. 4.2 contains the results for the models that do not
require knowledge of γ to produce meaningful inference, viz., Mt , MtAB , and Lt .
Section 4.2 is devoted solely to the study of robustness of the LtAB model estimates
of N to failures of the model assumptions and misspecification of γ .

4.2 Results for the Mt , MtAB , and Lt Models

In the following tables, γ is the proportion of EEs in the C-list for the artificial
population, δ is the error in the value of γ specified in the model, and ρAB|X=1
is the degree of AB interaction in the artificial population, which corresponds to
the correlation between the A- and B-list given X = 1. In Tables 3, 4, 5, and 6,
the models being compared are listed across the top row of the tables. The model
estimate of N , the standard error of (SE column), the mean square error (MSE
column), and the percent bias of that estimate (%Bias column) are shown for each
model. All variances, biases, and MSEs were estimated directly from the simulation
results. The tables only report the results from the simulations with sampling since
the bias results for the simulations without sampling were essentially the same. As
stated previously, for all cases the resident population size being estimated is 8000.

Table 3 explores the level of bias in the Mt , MtAB , and Lt models when there
are EEs, but no AB interaction. As expected, the Lt model is capable of producing
an estimate of N that is virtually unbiased when EEs are present in the C-list. Both
the Mt and MtAB model yield biased estimates of N ; however, the bias of the MtAB

estimate is greater than the bias of the Mt estimate. The point estimates for N from
the with sampling and without sampling data are similar. The MSEs clearly show
that the Lt model performs better than the Mt or MtAB when EEs are present in the
data.

Table 4 shows the MSE components for the Mt , MtAB , and Lt models when
there are no EEs in any list, but there is an AB interaction. The values of
ρAB|X=1 correspond to the changing levels of πB=1|A=0,X=1. For example, when
πB=1|A=0,X=1 = 0.80, then ρAB|X=1 = 0.14. The MtAB model accurately estimates
N in the presence of an AB interaction. The other two models show significant bias
due to the AB interaction. The Lt model shows considerably more bias and has a
larger MSE than the Mt model. It should be noted that the Mt model tends to have
the smallest standard error of the three models and the smallest MSE when there is
no interaction or EEs present in the data and it behaves poorly when either of these
assumptions are violated.

Table 5 reports the MSE components for the Mt , MtAB , and Lt models when
there are EEs and an AB interaction. The AB interaction is set at the highest level
explored in this study, ρAB|X=1 = 0.53, which corresponds to πB=1|X=1,A=0 =
0.40. All three of the models are substantially biased and produce a large MSE when
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an AB interaction and EEs are present in the data. It appears the Lt exhibits the
largest MSE of the three models, suggesting that, despite the fact the Lt model can
account for EEs, this advantage is negated in the presence of behavioral correlation.
These tables highlight the need for a model (e.g., the LtAB model) that is capable of
fitting this.

Results for the LtAB Model Tables 6 and 7 show the key results for the
LtAB model. As mentioned previously, identifiability of LtAB can be achieved if
information on the number of EEs in the C-list is entered into the model. Therefore,
we fit the LtAB model using a known value for y and consider situations where
γ is not known exactly. For example, γ may be estimated from a study where a
random sample of the persons on the C-list is selected and sent to the field in order
to verify their residential statuses. In that case, our estimate of γ would be subject
to non-sampling and sampling errors and would not be known exactly (see the next
section). In Tables 6 and 7 we consider the effect on the model estimate of N when
y is subject to error equal to δ.

In Tables 6 and 7, the value of γ is listed in the first row of the table, and the
amount of error in y, denoted by δ, is given in the first column of the table. For
example, if γ = 0.10 and δ = 0.20, then the value of γ used to fit the model is
γ = 0.08. For a given error percentage, the estimate for N along with the percent
bias is given in the two columns below the error percentage. The tables consider
both positive and negative values of δ.

Table 6 explores the level of bias in the LtAB model when there are EEs but no
AB interaction for different values of γ . Table 7 explores the level of bias in the
LtAB model when there are EEs and an AB interaction for different values of γ .
For this table, ρAB|X=1 = 0.53 in all cases.

Both tables illustrate that the LtAB model produces a virtually unbiased estimate
of N when y is correctly specified. In addition, the estimate of N appears to be
robust to mis-specification of y. For example, even with as much as 50% error, the
estimates of N are still within 10% of the true value.

There are differences in the value of between Tables 6 and 7. These differences
occur primarily when y is large (10%, 15%) and the amount of error in y is positive
and large (i.e., δ in the range of 0.30 to 0.50). This is likely due to the fact that is
equal to 0.40 for Table 6 and 0.90 for Table 7. When πB=1|A=0,X=1 = 0.40, fewer
individuals tend to be included in the observable cells of the ABC table. Thus, the
estimate of N can take on lower values. This is true since the lower bound of the
estimate of N is equal to the number of individuals enumerated minus the number
of recognized EEs in the data.

5 Summary and Discussion

All four models we considered (Mt , MtAB , Lt , and LtAB ) produce virtually unbiased
estimates of N when a given model’s assumptions are valid. For example, when
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N = 8000, ρAB|X=1 = 0, and γ = 0, the Mt model produces an estimate for N of
7999. As the assumptions are violated, all models begin to show biased results. The
results of each model will be summarized separately.

The Mt model is the least complex of the four models that we studied in detail.
This model’s inability to account for either EEs or a behavioral correlation was
evident from Tables 4 and 5. EEs induce a positive bias in the estimate of N , while
an AB interaction induces a negative bias. When both an AB interaction and EEs
are present in the data, the biases due to these conditions tend to offset each other.
The result is that the Mt model shows less bias in the estimate of N as compared
to the MtAB and Lt models when the effect of EEs in the data is approximately
equivalent to the behavior correlation effect. Of course, this is in no way a desirable
property of the model since balancing these two errors is not under the control of
the experimenter. When correlation bias and EEs are not off-setting, the bias in the
Mt estimator can be substantial.

The Lt model is designed to estimate N when there are EEs present in the C-
list. As seen from Table 3, the Lt model produces estimates of N that are virtually
unbiased when EEs are present in the data and there is no correlation bias. As
demonstrated by Table 4, an AB interaction induces a severe negative bias in the
estimate of N . This is similar to the negative bias associated with the correlation
induced by population heterogeneity discussed in other works (see, e.g., Alho et al.,
1993). In addition, the AB interaction induces a much larger bias and MSE for
the Lt model than for the Mt model. For the values of ρAB|X=1 > 0 presented in
Table 4, the MSE for the Lt model is approximately six times larger than that for
the Mt model. As illustrated in Table 5, when both EEs and an AB interaction are
present in the data, the Mt model will likely have a lower MSE than the Lt model.
The exceptions occur when the AB interaction is small and is large. In general, it
appears as if the Lt model is not very robust to the presence of an AB interaction.

It is interesting to compare the estimates from the Mt and Lt models. As stated
above, the Lt model’s estimates of N tend to have more bias and a larger MSE than
the Mt estimates when an AB interaction is present. By comparison, the estimate
of N from the Mt model appears to be relatively robust when the proportion of EEs
on the C-list is small. Therefore, if information on y is not available and the choice
is between Mt and Lt , we recommend using the Mt model over of the Lt model,
particularly if a sizeable AB interaction is expected. The Lt model is preferred
when there is a large proportion of EEs in the C-list and γ is unknown. If γ is
known, it might be possible to improve the inference obtained by the Lt model by
incorporating an estimate of y into the likelihood.

The MtAB model is designed to estimate N when an AB interaction, but no EEs,
are present in the data. As shown from Table 4, the MtAB model produces virtually
unbiased estimates for N for a range of values for ρAB|X=1. As compared to the
Mt model, the presence of EEs induces a large positive bias in the MtAB model. As
seen from Table 3, when EEs are present in data, the MSE for the MtAB model is
approximately 2.5 times larger than that of the Mt model.

The reason for this increase can be explained by the additional parameter in the
MtAB model. The MtAB model has two parameters for enumeration probabilities
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for the B-list, πB=1|A=1,X=1 and πB=1|A=0,X=1. For the Mt model, these two
probabilities are equal, πB=1|X=1 = πB=1|A=1,X=1 = πB=1|A=0,X=1, and both
the unenumerated and the previously enumerated individuals in the B-list are used
to estimate πB=1|X=1. Thus, more information is used to estimate πB=1|X=1 and
hence N , in the Mt model which, consequently, improves its robustness to EEs.

One nice property of the MtAB model is that the degree of the AB interaction
does not effect the bias in N due to EEs. This concept can be seen by comparing the
results for the MtAB model given in Tables 3 and 4. Additionally, from Table 5, it
appears that the MtAB model outperforms the Mt model when there few to moderate
amount of EEs in the data, γ < 0.05. Thus, it appears to be preferable to use the
MtAB model over the Mt model when a moderate number of EEs are expected in the
data. Unfortunately, as illustrated in Table 5, the Mt , Lt , and MtAB models exhibit
large biases and MSEs when both EEs and an AB interaction are present in the data.
The results from Table 5 highlight the need for the LtAB model.

Of the four models given notable consideration in this study, the LtAB model
is the most likely to accurately represent the triple system data. This model can
account for both EEs in the C-list and for an AB interaction. Unfortunately, given
only the ABC table, the LtAB model is unidentifiable and requires the inclusion
of additional information to provide meaningful inferences for N. Our solution to
the lack of identifiability is to provide a value for the proportion of EEs in the C-
list, γ . By specifying γ , the LtAB model becomes fully identifiable and produces
virtually unbiased estimates for N as seen in Table 6. Moreover, as seen in Table 7,
the inclusion of an AB interaction does not affect the inference that is obtained from
the LtAB model when γ is known. Thus, our results indicate that the LtAB model
can accurately represent data with an AB interaction without affecting the nature of
the inference.

Another concern for this model is the robustness of the estimate of N from the
LtAB model to the misspecification of γ . Both Tables 6 and 7 explore the levels of
bias induced in the estimate of N when γ is misspecified. In general, the bias tends
to be low, implying that the estimates of N are fairly robust. For example, consider
the case when γ = 0.10 and an ρAB|X=1 = 0.53. For the different values of δ

presented in Table 7, the MSE for the LtAB model ranges from 1,651 when δ = 0 to
195,767 when δ = 0.50. Similarly, the bias ranges from 0.0% when δ = 0 to 5.5%
when δ = 0.50. By comparison, under this scenario, the Mt , Lt , and MtAB models
have MSEs of 1,016, 1,986,191, and 1,782,739, respectively. Even when γ is badly
misspecified, the LtAB model appears to outperform the MtAB and Lt model.

In order to fully utilize the LtAB model, a reasonable value for γ must be obtained
from a separate data source. One possible method for obtaining an estimate of γ is
to conduct a field study by drawing a random sample from the observations in cell
001 of the ABC table. In this situation, the MSE formulas in the present paper can
be expanded to include variation in the estimate of N due to estimating γ . Our
preliminary investigations of this method suggest that even in situations where there
is considerable sampling variability in the estimate of γ , the LtAB model MSE of
the LtAB model estimate is still considerably smaller than that of the MtAB model
when γ is in the range of 0.05–0.15.
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In general, when undetected EEs appear in the C-list and a reasonable estimate
of γ is available, the LtAB model performed best for estimating N . If an estimate of
cannot be obtained, then the selection of an appropriate model to use for inference
about N is less clear. It appears, however, that the MtAB and Mt models outperform
the Lt model. The selection of which model to use would depend on the nature of
data, specifically on the strength of the AB interaction and the number of EEs in the
C-list.

An alternative to using the LtAB model for dealing with EEs in the ARL is to
proceed with the MtAB model and use an estimate of γ in post hoc correction of
N̂MtAB

for EEs. Our empirical studies suggest that such corrections can produce
unbiased results in populations that are also ideal for the LtAB model. One such post
hoc estimator (derived in Appendix 2) that appears to produce very good results is

ÑMtAB
(γ ) = (1 − γ )N̂MtAB

. (14)

In practice, if an unbiased estimate, γ̂ of γ is available, using (14) after

substituting γ̂ for γ will generally reduce the bias in ˆ̃
NMtAB

; however, it is possible

that the MSE of ˆ̃
NMtAB

could increase depending upon the size of the bias reduction
relative to the variance of γ̂ .

An important advantage of using L-models to explicitly account for EEs rather
than using post hoc corrections of M-models is the ease with which L-models can be
extended to more complex situations. When EE’s appear in more than one list, post
hoc corrections for EEs are impractical due to their complexity. Latent class analysis
provides an integrated structure for modeling much more complicate scenarios than
were described in this paper. Thus, LtAB model should be viewed as a foundation
for more complex models that involve list-by-list interactions, EEs in all three lists,
and four or more lists. The current paper lays the groundwork for dealing with these
more complex situations.

Appendix 1: Derivation of MtAB and LtAB Estimators of n000

The likelihood for the MtAB model, denoted by �MtAB
= �(N, πa, πb|a=1, πb|a=2,

πc|ni,j,k) can be written as

�MtAB
= N !∏

i,j,k

nijk!(N − n+++)!π
n1++
a (1 − πa)

N−n1++π
n11+
b|a=1(1 − πb|a=1)

n1++−n11+

×π
n01+
b|a=2(1 − πb|a=2)

N−n1++−n01+π
n++1
c (1 − πc)

N−n++1 , (A.1)

where nijk denotes the cell count in cell (i, j, k) of the ABC table, “+" indicates
summation over the corresponding index, and the other notation is as defined in
Sect. 2. To find the value of the parameters that maximizes (A.1), we take the
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logarithm of this function and differentiating with respect to the parameters, set
these partial derivatives equal to 0, and solve for the parameters. Holding N constant
and maximizing with respect to the other parameters produces the following MLEs
for πa , πb|a=2, and πc and conditional on N :

π̂a|N = n1++
N

, π̂a|b=2,N = n01+
N − n1++

, π̂c|N = n++1

N
. (A.2)

Replacing these parameters in (A.1) by their conditional MLEs, the likelihood can
be written as a function of N only. Simplifying and removing factors that do not
contain N , (A.1) simplifies to

N !
(N − n+++)!N

−2N(N − n1++ − n01+)N−n1++−n01+(N − n++1)
N−n++1 (A.3)

Several approximations will be used in determining an MLE for N . First, N will
be treated as a continuous variable, and second, in order to take a derivative of
N !, Stirling’s approximation to the factorial will be used. This yields the following
approximation to (A.2):

NN+0.5e−n

(N − n+++)N−n++++0.5e−N+n+++ N−2N

×(N − n1++ − n01+)N−n1++−n01+(N − n++1)
N−n++1 .

Again, eliminating factors that do not involve N yields

(N − n+++)−(N−n++++0.5)N−N+0.5(N − n1 − n01+)N−n1−n01+ (N − n++1)
N−n++1 .

Taking the natural log of the above expression gives

−(N − n+++ + 0.5) log(N − n+++) − (N + 0.5) log(N)

+(N − n++1 − n01+) log(N − n1++ − n01+) + (N − n++1) log(N − n++1).

(A.4)

Now we can take the derivative of (A.4) with respect to N and set the resulting
expression to 0. To obtain the following expression, we use a third approximation,
viz., log(1 + α) = α where α is a small positive constant. Upon simplifying, this
yields

log

[
(N − n1++ − n01+)(N − n++1)

(N − n+++ + 0.5)(N + 0.5)

]
= 0.
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Finally, solving for N and further simplifying yields

N̂MtAB
= n++1(n1++ − n01+) + 0.5n++0 − 0.25

n1++ + n01+ + n++1 − n+++ + 1
. (A.5)

Subtracting n+++ from the above expression produces estimate of n000 that can be
compared with the estimator based on (11).

MLEs for the LtAB model can be derived in a similar fashion. Since for the LtAB

model, EEs only appear on the C-list, specifying γ is equivalent to specifying the
number of EEs, say nEE that occur on the C-list since γ = nEE/n++1. Repeating
the above steps and approximations for this model yields the following approximate
MLE for the LtAB model when γ is known:

N̂LtAB
= (n++1 − nEE)(n1++ − n01+) + 0.5n++0 − 0.25

n1++ + n01+ + n++1 − n+++ + 1
. (A.6)

Appendix 2: Derivation of the Estimator ˜̂
NMtAB

(γ )

Using the results of Appendix A, the ratio of N̂MtAB
to N̂LtAB

can be written as

N̂LtAB

N̂MtAB

= (n++1 − nEE)

n++1
×

(n1++ + n01+ + 0.5) + 0.5n++0−0.25
(n++1−nEE)

(n1++ + n01+ + 0.5) + 0.5n++0−0.25
n++1

. (A.7)

The remainder of this proof will show that the second factor on the right hand side
of (A.7), denoted by F , can be approximated by 1 for values of γ < 0.5. In that
case, N̂LtAB

≈ (1 − γ )N̂MtAB
.

To show that F ≈ 1, for small γ , we multiply and divide F by (n1++ + n01+ +
0.5). Ignoring the term −0.25 which is negligible compared with 0.5n++1, we
obtain

F =
1 + 0.5n++0

(n++1+n01++0.5)(n++1−nEE)

1 + 0.5n++0
(n1+++n01++0.5)n++1

. (A.8)

Note that (n1++ + n01+ + 0.5) > n++0, which implies that 0.5n++0
(n1+n01++0.5)

= c1,

for some constant c1 < 0.5. Thus, F = 1+ c1
(n++1−nEE)

1+ c1
n1++

. Replacing n++1 − nEE with

n++1(1 − γ ) and simplifying yields

F =
n++1(1−γ )+c1

(1−γ )

n++1 + c1
= n++1

n++1 + c1
+ c1

(n++1 + c1)(1 − γ )
.
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When γ = 0 then this expression is exactly 1. When γ = 0.5, F reduces to
n++1+2c1
n++1+c1

. Since c1 < 0.5, F ≈ 1, when n++1 is reasonably large or, in general,
for any value of γ between 0 and 0.5.
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