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Abstract Ranked set sampling and judgment post-stratified sampling designs
form groups among sample units using their relative positions (ranks) in small
comparison sets. This rank information governs the decision on whether to include
units in a final ranked set sample (RSS), but only supplements the primary selection
of units in a judgment post-stratifed sample (JPS). If the position information in the
comparison sets is accurate, for both designs, the samples represent the population
better than a simple random sample (SRS) of the same size. The RSS design uses the
ranking information in a more direct way. However, the RSS design induces a strong
structure in a sample, and the data so collected may not be suitable for studies where
a multipurpose analysis is desired. The JPS design is slightly less efficient, but more
flexible and enables multipurpose analyses. This paper explores the benefits of the
JPS over the RSS design of the same sample size. We show that the efficiency loss
in the JPS design can be reduced by using ranks from multiple comparison sets. The
paper presents results from an extensive simulation study to demonstrate the benefit
of the JPS design over the SRS and RSS designs when the JPS is constructed using
multiple ranking methods.
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1 Introduction

In field sampling and social science research, creating samples that are repre-
sentative of the population is important. This can be achieved by using stratified
sampling, cluster sampling, or post-stratified sampling designs. In certain cases, the
stratification variable may be subjective, rough, and imprecise, but can still provide
valuable information about the relative position of a sample unit in a small set.
Such stratification variable can be used to reduce the sampling variation, and cost
in ranked set and judgment post-stratified sampling designs. These designs stratify
the sample into groups of homogeneous observations using sample units’ relative
positions (ranks) in small comparison sets.

For a ranked set sample (RSS) of size n, one first determines a set size H

and then selects nH units at random from the population. These units are divided
into n comparison sets, each of size H . Units in the comparison sets are then
ranked from the smallest to the largest, without measurement. Ranking can be
performed on either the variable of interest assessed on a less elaborate scale or
an auxiliary variable. The unit judged to be the h-th smallest (Y[h]j ) is measured in
nh comparison sets for j = 1, . . . , nh,

∑H
h=1 nh = n. The measured observations

Y[h]j , j = 1, . . . , nh;h = 1, . . . , H are called a ranked set sample. If nh = d for
all h = 1, . . . , H so that n = dH , the RSS is called balanced, and d is called the
cycle size. If there is no ranking error, the square brackets are replaced with round
parentheses, and the Y(h)j becomes the h-th order statistic in a sample of size H .

Ranked set sampling design was introduced by McIntyre (1952, 2005). The main
motivation in McIntyre’s work was to enable field researchers to conduct pasture
yield (and similar) field assessments in an objective and efficient way. Takahasi and
Wakimoto (1968) developed the theoretical foundation of the ranked set sampling
design and showed that the RSS mean is always better than a sample mean of a
simple random sample (SRS). Dell and Clutter (1972) showed that even with some
ranking errors, the RSS mean is as good as, or better than, the SRS mean depending
on the quality of ranking information. Research activities in RSS designs then
expanded in different directions, including parametric and nonparametric settings.
In the parametric setting, a few representative publications are Stokes (1995), Chen
and Bai (2000), Arslan and Ozturk (2013), Hatefi et al. (2014), and Hatefi et al.
(2015). In the nonparametric setting, readers are referred to Bohn and Wolfe (1992,
1994), Hettmansperger (1995), Koti and Babu (1996), Ozturk (1999), and Fligner
and MacEachern (2006). Two books have been published on ranked set sampling
design, Chen et al. (2003), and Bouza and Al-Omari (2019). A comprehensive list
of references can be found in these publications.

The RSS research activities also considered the finite population setting. Patil
et al. (1995) constructed an RSS using sampling without replacement selection
procedure. Deshpande et al. (2006) expanded the RSS design to three different
schemes of sampling without replacement. Frey (2011), Ozturk and Jafari Jozani
(2014), and Jafari Jozani and Johnson (2011) used probability sampling and
constructed Horvitz-Thompson-type estimators. Ozturk and Bayramoglu Kavlak
(2018) constructed inference using a superpopulation model in ranked set sampling.
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MacEachern et al. (2004) introduced the judgment post-stratification design to
provide the flexibility for a multipurpose analysis of sample data. For a judgment
post-stratified sample (JPS), one first selects and measures an SRS of size n, Yi ,
i = 1, . . . , n. For each measured unit Yi , one then selects additional H − 1 units
from the population, without directly measuring them, to form a comparison set of
size H . The units in the comparison set are ranked from the smallest to the largest,
and the rank of Yi , Ri is recorded. The pairs (Yi, Ri), i = 1, . . . , n, constitute a JPS.

In recent years, the JPS design in an infinite population setting has generated
extensive research interest. Ozturk (2014) considered the estimation of the popu-
lation quantile and variance from a JPS. Wang et al. (2006) used the concomitant
order statistics to estimate the population mean. Frey and Feeman (2012, 2013)
constructed estimators for the population mean and variance by conditioning on
the judgment group sample sizes. These new estimators improve the unconditional
JPS estimators. Chen et al. (2014), Frey and Ozturk (2011), Wang et al. (2012),
Wang et al. (2008), and Stokes et al. (2007) constructed constrained estimators
using stochastic ordering among judgment ranking groups. The main idea in the
constraint estimators is to minimize the impact of ranking error by forcing judgment
class means to follow the stochastic order among ranking groups. In a different
direction, Ozturk (2017) constructed conditional ranks in smaller comparison sets
of size K < H given the original ranks in a larger comparison set of size H . The
impact of any ranking error on the estimator in this case was relatively small, and
less than for the estimator based on the large comparison set of size H . Ozturk
(2013) and Ozturk and Demirel (2016) used a multi-ranking approach to reduce the
impact of ranking error in judgment post-stratified and ranked set samples.

In the finite population settings, Ozturk (2016a, 2016b, 2019) constructed estima-
tors for the population mean and total for the JPS design. A JPS can be constructed
by sampling with or without replacement. It is shown that the variance estimator
of the sample mean requires a finite population correction factor when sampling
without replacement. Ozturk and Bayramoglu Kavlak (2018, 2019, 2020) developed
inference to predict the population mean and total using a superpopulation model.

In the JPS design, the ranks are constructed post-experimentally after an SRS is
chosen. Hence, it is possible to have more than one rank for each measured unit
in the SRS by permuting the n(H − 1) unmeasured units used in the construction
of comparison sets in the first created JPS. Each permutation creates n comparison
sets, each of size H , containing the measured unit. The units in the sets are ranked
again, without measurement, and the ranks of the measured units in the comparison
sets are determined. This permutation procedure can be done many times and each
permutation creates a new set of ranks for the same measured values. Ranks from
different permutations are conditionally independent given the original SRS. One
may then combine all these ranks using the Rao-Blackwell theorem by conditioning
on the original SRS.

A similar idea can be used in the RSS design, but the extension to multiple ranks
is not as trivial as in the JPS design. In the RSS design, the measured observations,
Y[h]j , are not identically distributed. Hence, the units in the comparison set
constructed after the permutation of n(H−1) units are not iid since each comparison
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set contains one of the y[h]j from the original ranked set sample and this will have
a different distribution from the other units in the set. Even though the comparison
sets will be different after each permutation, the rank of y[h]j will depend on the
original rank h. Hence, the idea of multiple ranks in the judgment post-stratified
sampling may not be easily extended to ranked set sampling.

There are a few other differences between the RSS and JPS designs. One of
the major differences is whether the ranking is done before or after the units are
measured for the variable of interest. In RSS, the ranking is performed before one
measures the units, and the ranks guide the measurement decision. The rank and the
measurement of a unit cannot be separated. Hence, an RSS cannot be reduced to
an SRS, unless it is unusual situation where the ranking variable is not correlated
with the measurement variable. In a JPS, ranking is performed after one measures
the units in the SRS. The ranks are not the essential part of the measured units; they
are the ranks of the variable of interest measured on a quicker scale (e.g., visual
inspection) after the construction of an SRS. Since the auxiliary (ranking) variable
is only post-associated with the response measurements, it can be ignored and a JPS
can be reduced to an SRS if desired.

Another major difference is the distributional properties of the ranks. The ranks
in RSS are pre-determined nonrandom constants. Hence, the ranking group sizes nh,
h = 1, . . . , H , are nonrandom integers. In a JPS, the rank Ri is a discrete uniform
random variable with the support on integers 1, . . . , H . Hence, the judgment group
sample size vector (n1, . . . , nH ) has a multinomial distribution with the sample size
n and the success probability vector (1/H, . . . , 1/H).

One may look at the RSS and JPS designs in terms of the trade-off between
the efficiency gain of the RSS and the adaptability of JPS for multipurpose studies.
To our knowledge, this trade-off has not yet been posed and investigated. In this
paper, we provide a comprehensive study to compare the RSS and JPS designs for
their efficiencies and multiple ranking properties. In Sect. 2, we provide a detailed
description of multi-ranking in RSS and JPS designs. In Sect. 3, we review the
distributional properties of the RSS and JPS means. In Sect. 4, we present empirical
results to compare the RSS and JPS designs. In Sect. 5, we illustrate the use of
RSS and JPS designs with an agricultural application example. Section 6 provides
concluding remarks.

2 Sampling Designs with Multiple Ranking Methods

We consider a finite population of size N . The population values of the variable Y

are denoted as y1, . . . , yn. The mean and variance of the population are given by

ȳN = 1

N

N∑

i=1

yi, S2
N = 1

N

N∑

i=1

(yi − ȳN )2.
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From this finite population, we construct RSS and JPS with multiple ranks. The
samples are constructed using the sampling with and without replacement selection
procedures. Unless stated otherwise, we always consider a finite population setting
in this paper.

RSS with Multiple Ranks We first consider an RSS selected using the sampling
with replacement (SWR) selection procedure. For cycle j and rank h, we construct
a comparison set of size H using a sampling without replacement (SWOR) scheme.
The units in the comparison set are ranked by the best ranking method available.
The unit judged to be the h-th smallest, Y[h]j , is measured. For the observation
Y[h]j , additional K − 1 ranks can be constructed in two ways. If there are K − 1
(K > 1) rankers or ranking variables available, the rank of Y[h]j , Rk|j,h, among
the units in the comparison set is determined for each method k, k = 2, . . . , K .
After these ranks are determined, all units in the comparison set are returned to the
population before constructing the next comparison set. Hence, the same unit may
appear in the final sample more than once, and all the observations are independent.
We note that units within a comparison set are selected using the SWOR procedure
to minimize the ranking error. The ranks using the first ranking method (k = 1)
are predetermined (nonrandom constants) to have a balanced ranked set sample,
nh = d, for h = 1, . . . , H . The remaining K − 1 ranks are random and may not
necessarily be balanced.

Even if there is only one ranker or one auxiliary variable to rank the units,
we can still construct an RSS with multiple ranks. For given values of h and j ,
Y[h]j is measured in a comparison set. Next, we form K − 1 different comparison
sets by selecting H − 1 additional units at random from the population without
measurement, Vk|h,j = {

Y[h]j , Yk,1, . . . , Yj,H−1
}
, k = 2, . . . , K , and determine the

rank of Y[h]j , Rk|j,h, in each set for k = 2, . . . , K . The RSS with multiple ranks can
be written as

{
(Y[h]j , Rk|j,h), h = 1, . . . , H, j = 1, . . . , d; k = 1, . . . , K

}
,

where Rk|j,h is the conditional rank assigned by ranking method k given that the
observation Y[h]j is assigned rank h. We note that P(R1|j,h = h) = 1. The ranks
assigned by another ranking method are random variables, but their distributions
depend on the ranks assigned by the first (best) ranking method.

An RSS with multiple ranks using a SWOR selection scheme can be constructed
in a similar fashion. The only difference is that after determining the rank of Y[h]j , all
H units in the comparison set are removed from the population before constructing
the next comparison set. Hence, for each ranking method, all comparison sets are
disjoint.

The final sample cannot have repeated observations and the observations are
not independent. If the population size N is large with respect to sample size n,
ranked set samples constructed using SWR or SWOR selection procedures become
approximately equivalent.
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Table 1 Illustration of RSS multi-ranker sampling with set size H = 3, cycle size d = 2, and the
number of ranking methods K = 3

Cycle (j) h Balanced RSS Ranks from K methods Ranked set sample

1 1 {Y [1]1, Y[2]1, Y[3]1} {1, R2|1,1, R3|1,1} {Y[1]1, 1, R2|1,1, R3|1,1}
1 2 {Y[1]1,Y [2]1, Y[3]1} {2, R2|1,2, R3|1,2} {Y[2]1, 2, R2|1,2, R3|1,2}
1 3 {Y[1]1, Y[2]1,Y [3]1} {3, R2|1,3, R3|1,3} {Y[3]1, 3, R2|1,3, R3|1,3}
2 1 {Y [1]2, Y[2]2, Y[3]2} {1, R2|2,1, R3|2,1} {Y[1]2, 1, R2|2,1, R3|2,1}
2 2 {Y[1]2,Y [2]2, Y[3]2} {2, R2|2,2, R3|2,2} {Y[2]2, 2, R2|2,2, R3|2,2}
2 3 {Y[1]2, Y[2]2,Y [3]2} {3, R2|2,3, R3|2,3} {Y[3]2, 3, R2|2,3, R3|2,3}

The construction of ranked set samples using multiple ranking methods is
illustrated in Table 1. In this table, the third column presents the comparison sets
in which a balanced ranked set sample is constructed with the first ranking method.
It highlights that the units are ranked using ranking method 1; the bold-faced values
are measured. The fourth column lists the ranks obtained from all K (K = 3)
different ranking methods for the bold-faced values in column 3. The last column
gives the ranked set sample of size 6. In this example, each entry has three ranks
generated by three ranking methods.

JPS with Multiple Ranks We first construct a simple random sample of size n using
the SWR selection procedure and measure all n units, Y1, . . . , Yn. For each Yi , we
then select additional H − 1 units under SWOR selection from the population to
form a comparison set Vi = {Yi, Y1, . . . , YH−1}. We rank these units from smallest
to largest without measuring Y , using K different ranking methods, and identify
the rank of Yi , Rk|i , for each ranking method k, k = 1, . . . , K , where Rk|i is the
rank of Yi assigned by ranking method k. All units in the comparison set, including
the one we measured, are returned to the population before the construction of the
next comparison set. Hence, a JPS may have repeated observations and all Yi , i =
1, . . . , n, are independent. This process creates the sample

{Yi, Rk|i}; i = 1, . . . , n, k = 1, . . . , K.

If only one ranking method is available, for each Yi , one can create K different
comparison sets, Vk|i = {Yi, Y1,k, . . . , YH−1,k} for k = 1, . . . , K , where Yh,k �= Yi

is the additional unit selected from the population to construct the k-th comparison
set. These sets are ranked using the ranking method and the ranks of Yi , Rk|i , are
determined in Vk|i , for k = 1, . . . , K .

A JPS under the SWOR selection procedure is constructed in a similar fashion.
The only difference here is that all comparison sets for each ranking method are
disjoint, and hence, the JPS cannot have repeated observations. For small population
sizes N , observations Yi , i = 1, . . . , n, in the sample are negatively correlated since
sample units are selected as an SRS without replacement.

The construction of a JPS with multiple ranking methods and under the SWOR
selection scheme is illustrated in Table 2. In this example, the sample and set
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Table 2 Illustration of multi-ranker JPS under sampling without replacement selection with set
size H = 3, sample size n = 6, and the number of ranking methods K = 3

(j) SRS Comparison sets JPS

1 Y1 {Y 1, Y7,1, Y8,1}, {Y 1, Y9,2, Y19,2}, {Y 1, Y26,3, Y12,3} {Y1, R1|1, R2|1, R3|1}
2 Y2 {Y 2, Y9,1, Y10,1}, {Y 2, Y20,2, Y8,2}, {Y 1, Y17,3, Y27,3} {Y2, R1|2, R2|2, R3|2}
3 Y3 {Y 3, Y11,1, Y12,1}, {Y 3, Y21,2, Y22,2}, {Y 3, Y9,3, Y10,3} {Y3, R1|3, R2|3, R3|3}
4 Y4 {Y 4, Y13,1, Y14,1}, {Y 4, Y15,2, Y23,2}, {Y 4, Y14,3, Y28,3} {Y4, R1|4, R2|4, R3|4}
5 Y5 {Y 5, Y15,1, Y16,1}, {Y 5, Y18,2, Y24,2}, {Y 5, Y29,2, Y13,2} {Y5, R1|5, R2|5, R3|5}
6 Y6 {Y 6, Y17,1, Y18,1}, {Y 6, Y12,2, Y25,2}, {Y 6, Y8,3, Y30,3} {Y6, R1|6, R2|6, R3|6}

sizes are 6 and 3, respectively. For each measured unit, three ranks are constructed
(K = 3). The second column presents a simple random sample of size n = 6. The
third column presents three comparison sets, Vk|i , for each Yi , one for each ranking
method. The fourth column presents the JPS with three ranks. The comparison sets
of each ranking method in Table 2, sets in block 1, 2, or 3 in column 3, are disjoint
and cannot have repeated observations. Comparison sets for the different ranking
methods (sets in different blocks) are not necessarily disjoint because the same
ranking unit can appear in more than one set in different ranking methods. Sampling
is without replacement and thus the comparison sets in different rows for the same
ranking method are disjoint. We note that the sample units will not be independent
if the population size N is small in relation to the sample size n.

3 Statistical Inference Using RSS and JPS

In this section, we provide a brief overview of statistical inference using the RSS
and JPS designs. We first assume K = 1. The estimators for the population mean
are given as the sample mean of the RSS and JPS:

ȲRSS = 1

dH

H∑

h=1

d∑

j=1

Y[h]j , ȲJPS = 1

dn

H∑

h=1

JhIh

n∑

j=1

Yj I (Rj = h),

where I (a) is 1 if a is true, Ih = I (nh > 0), dn = ∑H
h=1 Ih, and Jh = 1/nh if nh >

0 and zero otherwise. Both of these estimators are unbiased for the population mean
ȳN regardless of the ranking quality as long as a consistent ranking method is used.
If all units in the comparison sets are ranked with the same ranking methods, the
ranking procedure is called consistent. The following theorem provides variances
of the sample means under SWR and SWOR selection schemes using a consistent
ranking method.
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Theorem 1 Let Y[h]j , h = 1, · · · ,H, j = 1, . . . , d and (Yj , Rj ), j = 1, . . . , n be
RSS and JPS constructed using a consistent ranking methods, respectively.

(i) If the samples are constructed with replacement, the variances of ȲRSS and
ȲJPS are given by

σ 2
RSS = 1

dH 2

H∑

h=1

S2[h] σ 2
JPS = H

H − 1
V ar

(
I1

dn

) H∑

h=1

(ȳ[h] − ȳN )2 + E

(
I 21

d2
nn1

)
H∑

h=1

S2[h],

where S2[h] = V ar(Y[h]1), ȳ[h] = E(Y[h]1), V ar(I1/dn) = 1
H 2

∑H−1
k=1 ( k

H
)n−1

and

E

(
I 21

n1d2
n

)

= 1

Hn

⎛

⎝ 1

n
+

H∑

k=2

k−1∑

j=1

n−k+1∑

t=1

(−1)j−1

k2t

(
H − 1

k − 1

)(
k − 1

j − 1

)(
n

t

)

(k − j)n−t

⎞

⎠ .

(ii) If the samples are constructed without replacement, the variances of ȲRSS and
ȲJPS are given by

σ 2
RSS = N − 1 − n

n(N − 1)
S2

N − 1

nH

h∑

h=1

(
ȳ[h] − ȳN

)2 − 1

nH

H∑

h=1

S[h,h]

σ 2
JPS = C1(n,H)

{
H∑

h=1

S2[h] −
H∑

h=1

S[h,h]

}

+ C2(n,H,N)
H 2S2

N

H − 1
,

where S[h,h] = Cov(Y[h]1, Y[h]2),

C1(n,H) =
{

1

H(H − 1)
+ E

(
I 21

d2
nn1

)

− H

H − 1
E

(
I 21

d2
n

)}

C2(n,H,N) =
{

V ar

(
I1

dn

)

− 1

N − 1

{
1

H
− E

(
I 21

d2
n

)}}

.

The proofs of σ 2
JPS in (i) and (ii) are given in Ozturk (2016a). The proof of σ 2

RSS

in (ii) is given in Patil et al. (1995). It is clear that the variance of the JPS mean
involves expected values and variances of the functions of judgment group indicator
function (I1), sample sizes (n1), and the number of non-empty judgment groups
(dn). These quantities account for the variation due to the random sample sizes in
judgment post-stratified samples. Ozturk (2016b) shows that as the sample size n

becomes large, σ 2
JPS approaches from above σ 2

RSS .
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We now introduce unbiased estimators for σ 2
JPS and σ 2

RSS . We first define the
following quantities:

U1 = 1

E
(

I1I2
d2n

)
H∑

h=1

H∑

h �=h′

IhIh′JhJh′

d2
n

n∑

i=1

n∑

j=1

(Yi − Yj )
2I (Ri = h)I (Rj = h′),

U2 =
H∑

h=1

HI ∗
h JhJ

∗
h

d∗
n

n∑

i=1

n∑

j �=i

(Yi − Yj )
2I (Ri = h)I (Rj = h),

U∗
1 = 1

2d2H 2

H∑

h=1

H∑

h′ �=h

d∑

i=1

d∑

j=1

(Y[h]i − Y[h′]j )2

U∗
2 = 1

2d(d − 1)H 2

H∑

h=1

d∑

i=1

d∑

j �=i

(Y[h]i − Y[h]j )2,

where d∗
n = ∑H

h=1 I (nh > 1), and J ∗
h = 1/(nh − 1) if nh > 1 and zero otherwise.

Theorem 2 Let Y[h]j , h = 1, · · · ,H, j = 1, . . . , d and (Yj , Rj ), j = 1, . . . , n be
RSS and JPS constructed using a consistent ranking method, respectively.

(i) If the samples are constructed with replacement, d > 1 and at least one
judgment group in a JPS has at least two observations, the unbiased variance
estimators for ȲRSS and ȲJPS are given by

σ̂ 2
JPS = V ar (I1/dn)

2(H − 1)
U1 +

{

E

(
I 21

d2
nn1

)

− V ar

(
I1

dn

)}
U2

2

σ̂ 2
RSS = U∗

2

d
.

(ii) If the samples are constructed without replacement, d > 1 and at least one
judgment group in a JPS has at least two observations, the unbiased variance
estimators for ŶRSS and ȲJPS are given by

σ̂ 2
JPS = C1(n,H)U2/2 + C2(n,H,N)

(N − 1)(U1 + U2,2)

2N(H − 1)
,

σ̂ 2
RSS = U∗

2

d
− U∗

1 + U∗
2

N
.

Theorem 2 provides unbiased estimators for the variance of the RSS and JPS means
for an arbitrary but consistent ranking scheme when K = 1. An approximate (1 −
α)100% confidence interval for the population mean can be constructed using the
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normal approximation:

ȲRSS ± t1−α/2,n−H σ̂RSS

ȲJPS ± t1−α/2,n−H σ̂JPS,

where ta,df is the a-th upper quantile of the t-distribution with degrees of freedom
df . The degrees of freedom df = n − H is suggested to account for the
heterogeneity among ranking groups.

There are different ways to combine the ranking information in multi-ranking
RSS and JPS designs. Ozturk and Kravchuk (2021a, 2021b) provided detailed
developments of these procedures. In this paper, we only consider one of the
approaches, in which each observation is weighted based on the agreement scores
of the K ranking methods. Let wh′,i be the proportion of K ranking methods which
assign rank h′ to the i-th observation in the sample:

wh′|i,h = 1

K

K∑

k=1

I (Rk|i,h = h′)/K, h′ = 1, . . . , H, for the RSS

and

wh′|i = 1

K

K∑

k=1

I (Rk|i = h′)/K, h′ = 1, . . . , H, for the JPS.

We estimate the population mean by allocating each observation into ranking group
h′ based on how strong the agreement is among the K ranking methods to assign
the observation to judgment group h′:

ȲRSS,w =
H∑

h′=1

Jw,h′

dw

H∑

h=1

d∑

i=1

Y[h]iwh′ |i,h, Jw,h′ =
⎧
⎨

⎩

1
nw,h′ if nw,h′ > 0

0 otherwise
, nw,h′ =

d∑

i=1

H∑

h=1

wh′ |i,h.

ȲJPS,w =
H∑

h′=1

Jw,h′

dw

H∑

h=1

d∑

i=1

Yiwh′ |i , Jw,h′ =
⎧
⎨

⎩

1
nw,h′ if nw,h′ > 0

0 otherwise
, nw,h′ =

d∑

i=1

H∑

h=1

wh′ |i ,

where dw = ∑H
h′=1 I (nw,h′ > 0). In the expressions above, nw,h′ can be considered

as the effective sample size for judgment group h′. The asymptotic distribution
of ȲJPS,w is considered in MacEachern et al. (2004) and Ozturk and Kravchuk
(2021a). The asymptotic distribution of ȲRSS,w is given in Ozturk and Kravchuk
(2021b).

In this paper, we only consider the jackknife variance estimates of these
estimators. Let Ȳ

(−[h]i)
RSS,w ( Ȳ

(−i)
JPS,w) be the RSS (JPS) estimator after the observation

Y[h]i (Yi) and all ranks associated with it are removed from the sample. The
jackknife variance estimates are given by
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σ̂ 2
RSS,J = fpc

(n − 1)2

n2

∑

h=1

∑

i=1

(
Ȳ

(−[h]i)
RSS,w − Ȳ

−([.].)
RSS,w

)2

σ̂ 2
JPS,J = fpc

(n − 1)2

n2

n∑

i=1

(Ȳ
(−i)
JPS,w,−Ȳ

(.)
JPS,w)2

fpc =
{
1 − n

N−1 SWOR selection
1 SWR selection.

where fpc is the finite population correction factor, Ȳ
−([.].)
RSS,w = 1

dH

∑H
h=1

∑d
i=1

Ȳ
−([h]i)
RSS,w and Ȳ

(.)
JPS,w = 1

n

∑n
i=1 Ȳ

(−i)
JPS,w. In the jackknife variance estimates, we

used the coefficient (n− 1)2/n2 since this coefficient provides smaller bias than the
usual coefficient (n − 1)/n, (Ozturk and Kravchuk, 2021a,b).

An approximate (1−α)100% confidence interval for multi-ranking RSS and JPS
designs can be constructed using the jackknife variance estimates:

ȲRSS,w ± t1−α/2,n−H σ̂RSS,J

ȲJPS,w ± t1−α/2,n−H σ̂JPS,J .

In the next section, we compare the RSS and JPS estimators in terms of their
efficiencies and coverage probabilities for a varying degree of ranking quality and
different set sizes.

4 Comparison of RSS and JPS Designs

We performed a simulation study to investigate the contrasting features of RSS and
JPS estimators. In the simulation study, samples were generated from two finite
populations with large population size N = n + 1000 and small population sizes
N = nH + 50. We considered a normal, N(μ = 50, σ = 5), and a lognormal,
LN(μ = 0, σ = 1), distribution. The population values of the response variable Y

were generated using the quantile functions:

yi = F−1
N (i/(N + 1), μ = 50, σ = 5), and yi = F−1

LN(i/(N + 1), μ = 0, σ = 1), i = 1, . . . , N,

where F−1
N (y, μ, σ ) and F−1

LN(y, μ, σ ) are the inverse cumulative distribution
functions of a normal distribution with location parameter μ and scale parameter
σ and lognormal distribution with scale parameter exp(μ) and shape parameter
σ , respectively. The samples were generated using SWR and SWOR selection
procedures for both population sizes N = n + 1000 and N = nH + 50. The
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quality of ranking was modeled using a ranking variable X, such that X = Y + τε,
where ε has a normal distribution with mean zero and variance 1 and independent
of Y . The correlation coefficient between X and Y is given by ρ = 1√

1+τ 2/σ 2
. The

values of ρ were selected to be 0.01, 0.25, 0.5, 0.75, 0.9, 1 where values less than
1 will result in imperfect ranking. For the normal distribution, we fixed the sample
size at n = 36 and varied the set sizes as H = 2, 3, 4, 6, 12 to explore the impact
of different set sizes on the RSS and JPS designs. We purposely selected a smaller
sample size n = 36 to evaluate the approximation of the coverage probabilities of
the confidence intervals to the nominal coverage probability 0.95. The simulation
size is taken to be 5000. An R-package RankedSetSampling (Ozturk et al., 2021) is
used to compute the estimators and construct confidence intervals. The package is
available to download at https://biometryhub.github.io/RankedSetSampling.

We first investigate the efficiencies of the RSS and JPS estimators. The relative
efficiencies are defined as the ratio of the mean square errors of the RSS and JPS
estimators:

RE = MSE(JPS)

MSE(RSS)
.

A value of RE greater than 1 indicates that the RSS estimator is more efficient than
the JPS estimator. Figure 1 presents the relative efficiencies for the population size
N = n + 1000 when samples were generated using the SWR selection procedure.
The set sizes and the number of ranking methods are indicated in the legend on each
panel. The first panel shows the relative efficiency curves when both RSS and JPS
were generated with just one ranking method K = 1. It is clear in this case that
the RSS estimator is more efficient. The efficiency gain is minimal for H = 2, 3,
moderate for H = 4, 6, and substantial for H = 12. This intuitively makes sense
since large set sizes lead to many judgment groups having no measured observations
in a JPS. Empty ranking groups inflate the variance of the JPS estimator. The RE

values are similar to each other for all ρ values when H = 2, 3, 4, 6, except for ρ

when H = 12 where it increases.
Figure 1 also presents the relative efficiencies in three different panels when

different number of ranking methods (K=2, 5,10) is used. Comparing these panels
with panel 1, one can see that the gain in RE values decreases with the number of
ranking methods K . For example, the RE values in panel 1 (K = 1) are around
1.4 when ρ < 0.75, and it reduces essentially to 1 in panel 4 (K=10). Similar
observation can be made in panel 2 (K = 2) and panel 3 (K = 5). Under perfect
ranking, RSS is still superior to the JPS for all set sizes.

Figure 2 presents the efficiency curves for the small population size, N = nH +
50. In this part of the simulation, both the RSS and JPS were generated under the
SWOR selection procedures. The efficiency results are similar to those in Fig. 1,
with the key difference being that the RE curves are higher (lower) in Fig. 2 than in
Fig. 1 when K = 1 and K = 2 (K = 5 and K = 10).

These efficiency results indicate that RSS estimator is more efficient than the JPS
estimator when the number of ranking methods is small (K = 1, 2). For the larger
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Fig. 1 Efficiency comparison of RSS and JPS designs under SWR selection for large-sized normal
distribution population

number of ranking methods (K = 5, 10), difference between the efficiency gain of
RSS and JPS estimators diminishes.

We also investigated the coverage probabilities of the confidence intervals for
the population mean. Figure 3 presents the coverage probabilities for the samples
constructed with replacement from the population of size N = n + 1000. We note
that confidence intervals are constructed using unbiased variance estimates when
K = 1. For K �= 1, we used the jackknife variance estimates. The panels in the first
and second columns of Fig. 3 present the coverage probabilities of RSS and JPS
confidence intervals for K = 1, 2, 5, 10, respectively. The coverage probabilities of
RSS confidence intervals can be seen to be reasonably close to the nominal coverage
probability of 0.95 when ρ ≤ 0.75 and K = 2, 5, 10, but they are slightly larger
when ρ > 0.75 and K = 2, 5, 10. The coverage probabilities in the second column
of Fig. 3 are reasonably close to the nominal coverage probability 0.95 for all ρ and
K values in the simulation study.
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Fig. 2 Efficiency comparison of RSS and JPS designs under SWOR selection for the small-sized
normal distribution population

Figure 4 presents the coverage probabilities for the population sizeN = nH+50.
In this case, coverage probabilities are again close to nominal coverage probability
of 0.95 under imperfect ranking (ρ ≤ 0.75) for both RSS and JPS and K =
1, 2, 5, 10. Unlike Fig. 3, coverage probabilities are slightly inflated for both RSS
and JPS confidence intervals when ρ > 0.75 and K = 2, 5, 10. Under perfect
ranking (ρ = 1), jackknife variance estimator overestimates the variances of the
RSS and JPS estimators and leads to a larger coverage probability than the nominal
coverage probability of 0.95

In the second part of the simulation study, we generated samples from the
lognormal distribution with the scale parameter exp(μ)(μ = 0) and the shape
parameter σ = 1. The sample and set sizes were as previously n = 48 and H =
2, 3, 4, 6, 12. All the other simulation parameters remained the same. The lognormal
distribution is strongly positively skewed. For this reason, we increased the sample
size from 36 to 48. Figures 5 and 6 present the relative efficiencies of the RSS
and JPS estimators for large and small population sizes, respectively. The pattern
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Fig. 3 Coverage probabilities of the jackknife confidence intervals under SWR selection for
normal distribution

of the efficiency curves is very similar to that for the normal population. The main
difference is in the magnitude of the efficiency gain. The efficiency curves reach to
higher values for the normal distribution. This result is consistent with the efficiency
results of ranked set samples in (McIntyre, 1952, 2005). McIntyre reported that
the efficiencies are higher for symmetric distributions (highest for the uniform
distribution) and decrease with skewness. Since the lognormal distribution has
strong skewness, the efficiencies are slightly lower than for the normal distribution.

Figures 7 and 8 present the coverage probabilities of the jackknife confidence
intervals of the population mean for the SWR and SWOR designs, respectively. It is
clear that the coverage probabilities for the lognormal distribution are lower than the
nominal coverage probability 0.95. The SWOR selection provides a better coverage
probability than the SWR selection. Since a jackknife confidence interval relies on
the normal approximation, the sample size n = 48 is not large enough for a good
approximation when the underlying population is strongly skewed.
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Fig. 4 Coverage probabilities of the jackknife confidence intervals under SWOR selection for
normal distribution

5 Application

In this section, we use a real-life finite population example to compare the JPS
and RSS estimators. The population consisted of 350 grapevine plants at Coombe
vineyard at the University of Adelaide, Waite campus, Australia. The vineyard is
used as a research and teaching facility. There are eight different rootstocks origi-
nally planted, on which Shiraz is grafted. These rootstocks are popular commercial
choices in South Australia. The standard vineyard management of this population
requires the monitoring and measuring of certain characteristics of vine plants. In
this paper, we consider seven characteristics; X1, trunk circumference (cm) in 2018;
X2, trunk circumference (cm) in 2019; X3, shoot counts; X4, total shoots; X5,
pruning weight (kg); X6, cordon length (cm); and X7, total bunch numbers and
Y , nett fruit weight in 2019 (kg). Our interest was in the estimation of the mean nett
fruit yield of this population of grapevines in 2019. The variables Xi , i = 1, . . . , 7,
were used as ranking variables in comparison sets, and hence, the number of ranking
methods isK = 7. There were missing values on some vines, and after removing the
plants having missing observations, the population size was reduced to N = 309. In
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Fig. 5 Efficiency comparison of RSS and JPS designs under SWR selection for the large-sized
lognormal distribution population

this population, the correlation coefficients between Y and Xi , ρi = cor(Y,Xi) are
ρ1 = 0.240, ρ2 = 0.191, ρ3 = 0.310, ρ4 = 0.321, ρ5 = 0.172, ρ6 = 0.274, and
ρ7 = 0.713. The mean and standard deviation of the Y variable are 10.558 kg and
3.855 kg, respectively.

We performed another simulation study using these 309 vine plants. In each
replication of the simulation study, we generated the single-ranking judgment
post-stratified and ranked set samples with the ranking variable X7 (K = 1),
the multi-ranking judgment post-stratified and ranked set samples with Xk , k =
1, . . . , 7 (K = 7), and a simple random sample. The sample sizes were selected
to be n = 30 and 48. For the sample size n = 30, the set sizes were chosen
H = 3, 5, 6, 10. For the sample sizes n = 48, the set sizes were H = 3, 4, 6.
Samples were generated using the SWR and SWOR selection procedures. The
simulation size was 5000.

Table 3 presents the relative efficiency of the multi-ranking RSS estimator (K =
7) with respect to the other four estimators: the JPS estimator with K = 7 and
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Fig. 6 Efficiency comparison of RSS and JPS designs under SWOR selection for the small-sized
lognormal distribution population

K = 1, the SRS estimator, and the RSS estimator with K = 1. When the entries
in Table 3 are greater than one, the multi-ranking RSS estimator with K = 7 was
superior. The other efficiency results can be obtained by taking the ratio of any two
efficiency columns in Table 3. For example, the efficiency of the JPS estimator with
K = 1 relative to the SRS estimator can be obtained by taking the ratio of column
6 and column 5. When n = 30,H = 3, and the replacement is true, this efficiency
is calculated 1.246(1.321/1.060 = 1.246). The other relative efficiencies can be
computed in a similar fashion.

All entries in Table 3 are greater than one which indicates that the RSS multi-
ranking estimator with K = 7 is more efficient than JPS and SRS estimators. The
efficiencies of RSS estimator with K = 7 with respect to JPS and SRS estimators
increase with set sizes, but remain relatively constant with RSS estimator wit K = 1
(column 7). The reason for this is that the correlation coefficient between ranking
variableX7 and response is 0.729, while the other correlation coefficients are all less
than 0.321. Hence, the improvement of ranking quality due to ranking variables with
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Fig. 7 Coverage probabilities of the jackknife confidence intervals under SWR selection for large-
sized lognormal distribution population

low correlation coefficients is minimal, and the relative efficiency for multi-ranker
estimator remains relatively constant. For this particular population and ranking
methods, the JPS estimators are more efficient than the SRS estimator and less
efficient than multi-ranker RSS estimator.

We also computed the coverage probabilities of the confidence intervals based
on the judgment post-stratified, simple random, and ranked set samples for the
population mean. All coverage probabilities were reasonably close to the nominal
coverage probability of 0.95. Due to space considerations, these empirical coverage
probabilities are not reported here.

6 Concluding Remarks

Field research is expensive and time-consuming, particularly in natural environ-
ments where variables are difficult to control. If auxiliary variables are available,
they can be used to account in the analysis for the inherent variation among sampling
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Fig. 8 Coverage probabilities of the jackknife confidence intervals under SWOR selection for
small-sized lognormal distribution population

units. These auxiliary variables can be used as blocking variables if they can be
evaluated in an objective manner. In certain settings, auxiliary variables may not be
assessed accurately. Their assessment may be rough, imprecise, and subjective, but
still helpful for ordering the units in a small set independently of knowing the actual
values of the variable of interest.

Ranked set and judgment post-stratified sampling designs use this ordering
information to construct samples that are more likely to span the full range of values
in the population. It has been established in the literature that a ranked set sample
is generally more efficient than a judgment post-stratified sample. However, RSS
designs induce a strong structure in the sample. Hence, an RSS cannot be analyzed
with the inferential procedures developed for an SRS design.

The JPS design may be less efficient than the RSS design, but the sample
constructed can be reduced to a simple random sample, allowing the flexibility to
perform multiple analyses of various responses on the same data set. This becomes
useful if the data set is needed for a multipurpose study. In this paper, we show
how to reduce the efficiency loss of a JPS with respect to an RSS by constructing
multiple ranks for the response variable on each measured unit. Hence, the JPS
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Table 3 Relative efficiency
of the weighted RSS
estimators with K = 7 for
mean fruit yield of vine plants
in Coombe vineyard. Entries
greater than one indicate that
the RSS estimator with
K = 7 is more efficient

JPS RSS

Replace n H K = 7 K = 1 SRS K = 1

True 30 3 1.209 1.060 1.321 1.018

30 5 1.283 1.203 1.433 1.020

30 6 1.335 1.261 1.500 1.016

30 10 1.508 1.473 1.724 1.011

48 3 1.227 1.042 1.352 1.022

48 4 1.270 1.042 1.419 1.026

48 6 1.403 1.155 1.603 1.030

False 30 3 1.287 1.116 1.407 1.026

30 5 1.390 1.224 1.560 1.025

30 6 1.399 1.313 1.575 1.024

30 10 1.633 1.619 1.860 1.003

48 3 1.287 1.075 1.426 1.028

48 4 1.317 1.098 1.475 1.028

48 6 1.533 1.261 1.757 1.030

design provides the flexibility for multipurpose analysis at the expense of little
efficiency loss with respect to a balanced ranked set sample. Another advantage
of the JPS design is that it is relatively straightforward to construct a multi-ranking
JPS even when there are no additional auxiliary ranking variables, and this can be
done by permuting the units selected to form comparison sets. This idea is not easily
extended to a ranked set sampling. We would recommend that the JPS design should
be considered in field sampling, especially for multipurpose studies.
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