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Abstract Item response theory (IRT) is a comprehensive paradigm for modeling
test performance on the item level in contrast to the more general test-level
assessment of classical test theory (CTT). Given the added flexibility provided by
item-level modeling, IRT has become the predominant theory used in high-stakes
tests such as the SAT, LSAT, and GRE. IRT not only provides an estimate of the
examinee’s ability but also describes methods to estimate the variance (in terms of
Fisher Information I = 1/V ar(θ̂)) of the ability estimate. As will be explained
and demonstrated in this chapter, however, these methods are asymptotic and are
inadequate for smaller tests with 15 or fewer questions (as might be found in a
computer adaptive test). In addition to illustrating the difference between the IRT
estimate and the true variance of the ability estimate for smaller tests, an alternative
method of variance estimation will be provided and demonstrated.

1 Basics

Although IRT provides a powerful model in which to design and assess tests, its
fundamentals are simple. For each item, the probability of a correct response is
modeled with a logistic curve (Fig. 1a) in which the x-axis represents the ability
range from −3 to 3 and the y-axis represents the probability of a correct response.
The curve is known as an item characteristic curve (ICC). The two-parameter
logistic version of the model (known as 2PL) describes the probability of a correct
response as
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Fig. 1 (a) Item characteristic curve (ICC) with difficulty b = 0; (b) Same ICC showing that the
discrimination for the item is a = 1

pi(θ) = 1

1 + e−1.702ai (θ−bi )
. (1)

The parameter b describes the item’s difficulty. Specifically, it is the point on the x-
axis where the examinee has probability 0.5 to answer the item correctly (Fig. 1a).
The parameter a is the discrimination parameter, which represents the slope of the
ICC at b. It describes how well the item ascertains the examinee’s ability above or
below the difficulty of the item (Fig. 1b).

There are other forms of the IRT model for items. Among these are the one-
parameter Rasch model, which retains the difficulty parameter but sets a = 1.
Another version is the three-parameter logistic (known as 3PL) model, which is
often used for multiple-choice items, because it includes a guessing parameter. In
this chapter, we illustrate our methods with the 2PL IRT model as defined in (1).

2 Estimation

The IRT model can be used to provide an estimate of the examinee’s ability from
their responses, when the item parameters are known. If the item parameters are
unknown, they can be estimated simultaneously with the ability measures from a
sample of examinee responses. For simplicity we assume that the item parameters
are known and focus on estimation of ability only.

Maximum likelihood estimation of ability is illustrated with the data from the
2005 National Assessment of Educational Progress (NAEP) Math Assessment.
Table 1 displays the slope (a) and location (b) parameters for six actual sample
items from the NAEP test (Beaton et al., 2011).

Table 2 shows responses to these items from four fictitious examinees (Beaton
et al., 2011). Let zi denote the indicator of a correct response, i.e.,
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Table 1 Item parameters for the six items referred to in Table 2

Table 2 Four different students’ responses to six different math questions. A correct response is
indicated by a “1” and an incorrect response by a “0”

zi =
{
0, incorrect response to item i,

1, correct response to item i.

As an example, Student C answered the first three questions incorrectly and the last
three correctly. If the six item responses are independent, the likelihood of Student
C’s ability given their observed pattern of responses is seen from (1) to be

L(θ |Z) =
6∏

i=1

(
1

1 + e−1.702ai (θ−bi )

)zi
(
1 − 1

1 + e−1.702ai (θ−bi )

)1−zi

.

Student C’s likelihood L(θ |Z) is shown as the bold curve in Fig. 2. The thinner
curves show the item characteristic curves of the six items composing the test.
Ability is measured on the same scale as the location parameter. On this NAEP
test, the range of ability is −3 to 3, with a mean of 0. An iterative Newton-Raphson-
type procedure is usually used to maximize this likelihood function to determine
the maximum likelihood estimate (MLE) of Student C’s ability. Visual inspection
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Fig. 2 ICCs and the likelihood (bold) for Student C. The likelihood is calculated by multiplying
the student’s individual ICCs (Beaton et al., 2011)

shows that Student C’s ability would be estimated by maximum likelihood to be
about −0.5.

Estimation of ability at the extreme ends of the ability scale is difficult, especially
for short tests. Consider Student A in Table 2, who answered all questions
incorrectly. His likelihood is shown in Fig. 3 (Beaton et al., 2011). No MLE exists
in this case because the likelihood has no maximum. One method for handling
estimation for this situation is to assign pre-specified values to examinees who
answer no or all questions correctly. This is the method used by the STAAR test
in Texas (STAAR, 2004). We will adopt this convention by assigning an ability of
−4 to examinees who provide all incorrect responses and an ability of 4 to those
who provide all correct responses.

3 Test Information

The test information function (TIF) is defined as the Fisher information of the entire
test as a function of ability. One can show that the TIF for the 2PL model, where
pi(θ) defined in 1, is as defined below:

T IF (θ) =
∑n

i=1
a2i pi(θ)(1 − pi(θ)). (2)

Two examples of TIFs are presented in Fig. 4a and b. These two curves represent
TIFs for tests of ten items that measure ability on a scale that is symmetric around
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Fig. 3 This plot pictures the ICCs and the likelihood (bold) for Student A. The deficiency of the
MLE is exposed in this plot as the student has answered every question incorrectly, and thus the
likelihood has no maximum

Fig. 4 (a) “Peaked” information function; (b) Rectangular information function

0, and both will produce some information of examinee ability for those with ability
between −3 and +3. However, the tests differ greatly in the shape of their TIFs.
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4 Shapes of TIFs

It is common for tests to contain more information about abilities close to the
average than at the extremes. The TIF for such a test with ten items1 is shown
in Fig. 4a. It is often desirable that a test maximize information for abilities in the
center of the scale, where examinees may be most numerous. This shape is referred
to as “peaked." On the other hand, when a population of examinees contains a
substantial number at the extremes of the scale, it may be desirable to consider
tests with other TIF shapes, such as the “rectangular” one shown in Fig. 4b.

A peaked test information function can be formed through a variety of combina-
tions of items. For instance, a test whose a (discrimination) parameters are similar
and whose b (difficulty) parameters are grouped near the center will have this shape.
On the other hand, a peaked TIF would also result from a test whose b parameters
are uniformly distributed across the scale and whose a parameters are larger for the
items in the center of the range than for those near the tails. Figure 5a displays the
discrimination and difficulty parameters of such a test along with its corresponding
TIF. Note the increase in item discrimination (a) as the difficulty (b) approaches 0.
Figure 5b shows an alternative ten-item test in which the discriminations are nearly
constant across the uniformly distributed difficulties which have had a “flattening”
effect on the TIF. The tests in Figs. 5a and b will be known as Test 1 and Test 2,
respectively, and will be used in examples later in the chapter.

Similar to the peaked TIFs, a rectangular TIF may also be formed through a
variety of item parameter combinations. For example, they may have items that
have similar a’s and uniformly distributed b’s (Fig. 5c), or they may have more
normally distributed b’s, with the items with extreme difficulty having higher a’s

Item a b
99 0.79 -2.1
101 0.92 -1.11
14 0.96 -0.61
8 1.02 -0.52
138 1.06 0.15
18 1.68 0.2
161 1.06 0.46
121 1.07 0.49
47 0.97 1.14
155 0.82 2.76

Fig. 5a A ten-item peaked test (Test 1) with uniformly distributed b parameters and a parameters
greater for b parameters near 0

1These 10 items were real items from the 2004 NAEP Math Exam.
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Item a b
82 0.45 -1.73
147 0.49 -0.72
17 0.4 -0.42
32 0.35 -0.259
117 0.47 -0.25
118 0.34 0.13
105 0.41 0.22
25 0.4 0.87
136 0.4 1.28
110 0.46 1.94

Fig. 5b A ten-item peaked test with uniformly distributed b parameters and a parameters with
less magnitude and nearly uniform across their b parameters

Item a b
85 0.99 -3.1
92 0.92 -2.11
15 0.96 -1.61
76 .902 -0.52
163 .906 0.15
144 .968 0.2
103 .906 0.46
123 .907 1.09
87 0.97 2.14
33 0.87 3.06

Fig. 5c A 10-item rectangular test (Test 3) with uniformly distributed a and b parameters

than those near the center. In general, grouping item difficulties and/or increasing
item discrimination create peaks in the TIF, while spreading the difficulties and/or
decreasing the item discrimination will flatten the TIF. Again, a test with a peaked
shaped TIF will be described as a “peaked test,” while a test with a flat (rectangular)
shaped TIF will be referred to as a “rectangular test.”

5 Uses

5.1 Standard Error

An advantage of an IRT model is that its TIF provides an approximate measure of
precision for the estimated ability conditional on its value θ :
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Fig. 6 Peaked and
rectangular TIFs
superimposed for comparison

SE(θ) = 1√
T IF (θ)

.

For example, we can see from TIF for the “peaked test" in Fig. 4a that the
information provided by the test for an examinee with ability θ = 1 is approximately
I (1) = 4, yielding an approximate standard error of the ability estimate of 1/

√
4 =

0.5. However, for a subject of ability θ = 2, I (2) = 1 yielding an approximate
standard error of 1/

√
1 = 1. Therefore, this peaked test has less uncertainty for

estimated ability of examinees of ability near θ = 1 than for those with ability near
θ = 2.

5.2 Test Construction and Selection

Another use of the TIF is in item selection and test construction. A test constructor
may use the TIFs to choose among tests that measure best for the targeted range of
abilities. Figure 6 displays the TIFs from Fig. 4a and b superimposed on one another.
If the test constructor is most interested in extremely low or high ability subjects,
a rectangular test may be preferred where the information for those examinees is
higher. On the other hand, if subjects in the middle of the ability scale make up the
target population, the peaked test may be deemed more useful.
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6 Small Sample Information of Ability Estimates from IRT
Models

As mentioned above, Fisher information measures the asymptotic precision of the
maximum likelihood estimator. Therefore, the TIF is a useful tool for standard error
estimation and item selection for large tests. An aim of this chapter is to investigate
how well it works for that purposes in short tests. Figure 7 shows the TIFs for tests
of 10 to 100 items. Each figure shows two curves:

(1) The solid curve is the “actual” test information, defined as the reciprocal of the
variance of the MLE and estimated via simulation using the following steps:

Simulation Method for True Information Estimation

(a) An array of quadrature points was created from θ = −3 to θ = 3.
(b) For each quadrature point, a third-party software namedMSTSIM52 is used

to generate 100,000 subjects of that ability as well to simulate each subject’s
responses to the test of interest.

(c) Each subject’s MLE of ability (θ̂) was calculated using MSTSIM5, produc-
ing 100,000 estimates of θ for each quadrature point.

(d) The variance of these 100,000 θ̂s (V̂ ar(θ̂)) was then estimated for each θ

in the set of quadrature points.
(e) The true information for each θ in the set of quadrature points was estimated

as Î = 1/V̂ ar(θ̂). We will denote this as the actual test information
function (AT IFSim).

(2) The dotted curve is the TIF described earlier in (2). This again is the theoretical
test information based on an infinitely long test:

As the number of items decrease, the true test information becomes more
discrepant from the TIF. In this example, tests of 100 items have information
close to what is indicated by the TIF, especially near the center of the curve, but
the difference between the two is considerable for smaller tests and for ability
levels significantly distant from the center.

However, the discrepancy between the asymptotic and small test size perfor-
mance is not present for all tests. Figure 8 compares the TIF and the true test
information for a rectangular test of ten items. The figure shows that the small
sample performance of estimators of ability from this test nearly matches that
predicted from asymptotic theory.

To review, we have seen that when a test comprises a large number of items, the
TIF is an accurate assessment of its performance. In that case, the asymptotic theory
for IRT models is useful and effective for many practical purposes, from assessing

2The FORTRAN routine MSTSIM5 (Jodoin, 2003) was used to simulate student responses and
calculate the corresponding MLEs for the given IRT models. R was then used to calculate summary
statistics (variance, bias, MSE) for these MLEs.
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Fig. 7 This figure illustrates how the actual test information (solid black line) increasingly
diverges from the theoretical test information (dashed red line) as the test size decreases from
n = 100 to n = 10

Fig. 8 This plot displays the
TIF and empirical
information for a ten-item
test. Compared to Fig. 7, the
empirical information is
much closer to the TIF which
is expected as the TIF is an
asymptotic bound of the
information

uncertainty in examinee scores to efficient construction of tests. However, there are
practical situations when only a few items can be presented to an examinee. One
such example is in large-scale assessment, such as the NAEP, where the testing time
available is limited. A second example is in multistage testing, where examinees
are routed to subsequent stages of varying difficulty based on their performance on
earlier stages of the test (Van der Linden & Glas, 2010). Each stage must necessarily
consist of a relatively small number of items, after which an ability estimate must be
made to facilitate routing. Finally, some tests produce scores on multiples subscales,
so that each one may have only a few items. These are the applications in which we
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Table 3 Computation times for the simulation method with scatterplot of computation time
versus number of items

Simulation method

Number of Items Computing Time

8 4.5min

10 5.0min

15 6.0min

16 6.2min

20 7.5min

are interested. For “small tests,” which we will formally define in a moment, we
have seen that the asymptotic theory often overestimates the true test information
especially for peaked tests.

We have seen that the method based on simulation can estimate the actual infor-
mation of the test although it comes with a considerable cost: time. Table 3 shows
the computing time of the simulation method to estimate the actual information with
100,000 simulated subjects. All computing was performed on a 4GB 2.2GHz Intel
i7 processor Apple MacBook Pro for various test sizes and 30 quadrature points.
While wait times are subjective, we see that they are at least 4.5min for an 8-
question test and increase linearly with the number of questions at a rate of .24min
per additional item.

7 Exact Method for Information Calculation

Here we provide an alternative to the asymptotically developed TIF and the time-
consuming simulation method described above. This method, which we refer to as
the exact method, can be broken down into five steps:

1. Generate all possible response patterns given the number of items.
2. Find the unique MLE for each response pattern.
3. For each true ability (discrete number of quadrature points)

(a) Find the probability for each unique MLE.
(b) Make a probability distribution given the MLE and corresponding probabil-

ity from step 3a.

MLE Probability

θ̂1 P(θ̂1|θ)

.

.

.
.
.
.

θ̂n−1 P(θ̂n−1|θ)

θ̂n P (θ̂n|θ)
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4. Compute the conditional variance using the equation

σ 2
θ̂

=
no. of MLEs∑

i=1

θ̂2i P (θ̂i |θ) −
⎡
⎣no. of MLEs∑

i=1

θ̂iP (θ̂i |θ)

⎤
⎦
2

5. Calculate the conditional information as I (θ) = 1
σ 2

θ̂

.

Example Consider a test with the following three items:

Item a b

1 1 −2

2 0.5 0

3 0.5 1

Step 1. Generate all possible response patterns given the number of items.

Response

pattern Item 1 Item 2 Item 3

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 1 0 1

7 0 1 1

8 1 1 1

Step 2. Find the unique MLE for each response pattern. (From MSTSIM5)

Response

pattern Item 1 Item 2 Item 3 MLE θ̂

1 0 0 0 −4

2 1 0 0 −1.75

3 0 1 0 −2.71

4 0 0 1 −2.71

5 1 1 0 0.92

6 1 0 1 −1.74

7 0 1 1 0.92

8 1 1 1 4
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Step 3. For each true ability (discrete number of quadrature points)
(Assume the quadrature points are −3, −2.5, −2, −1.5, −1, −.5, 0, .5, 1, 1.5,

2, 2.5, 3.) We will demonstrate the process for the first quadrature point, θ = −3,
and this process would be repeated for each of the remaining 12 quadrature points
above.

(a) Find the likelihood (probability) for each unique MLE.
For θ = −3, the probability of response pattern one (missing all three

questions) is calculated as

P(Z|θ = −3) =
3∏

i=1

(
1

1 + e−1.702ai (θ−bi )

)zi
(
1 − 1

1 + e−1.702ai (θ−bi )

)1−zi

=
(

1

1 + e−1.702×1×(−3−(−2))

)1−0

×
(

1

1 + e−1.702×.5×(−3−(0))

)1−0

×
(

1

1 + e−1.702×.5×(−3−(1))

)1−0

= 0.84580 × 0.92777 × 0.96783 = 0.7595.

The probabilities for the remaining 12 quadrature points are found in a similar
fashion.

(b) Make a probability distribution given the MLE and likelihood (conditional
probability) from step 3a.

For θ = −3,

MLE P(θ̂ |θ)

−4 0.7595

−1.75 0.1385

−2.71 0.0591

−2.71 0.0252

0.92 0.0108

−1.74 0.0046

0.92 0.0020

4 0.0004

Step 4. Compute the conditional variance using the equation

σ 2
θ̂

=
no. of MLEs∑

i=1

θ̂2i P (θ̂i |θ) −
⎡
⎣no. of MLEs∑

i=1

θ̂iP (θ̂i |θ)

⎤
⎦
2
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For θ = −3, we have

MLE P(θ̂ |θ) θ̂2i P (θ̂i |θ) θ̂iP (θ̂i |θ)

−4 0.7595 12.152 −3.038

−1.75 0.1385 0.42415625 −0.242375

−2.71 0.0591 0.43403631 −0.160161

−2.71 0.0252 0.18507132 −0.068292

0.92 0.0108 0.00914112 0.009936

−1.74 0.0046 0.01392696 −0.008004

0.92 0.0020 0.0016928 0.00184

4 0.0004 0.0064 0.0016

σ 2
θ̂

=
no. of MLEs∑

i=1

θ̂2i P (θ̂i |θ) −
⎡
⎣no. of MLEs∑

i=1

θ̂iP (θ̂i |θ)

⎤
⎦
2

= 13.226 − (−3.5034)2 = 0.952.

Step 5. Calculate the conditional information as I (θ̂ |θ) = 1/σ 2
θ̂
.

For θ = −3, I (θ̂ |θ = −3) = 1/0.952 = 1.05.
Note: in order to find the exact value for a particular ability (i.e., for use in a

confidence interval or as a standard error of an estimate), simply follow the steps
above and make the quadrature point in step 3 the desired ability.

7.1 Constraint on the Use of the Exact Method

While the exact method yields the exact information/variance for the MLE of ability
for any test for which item parameters are known, time is still an important factor.
Since the method entails calculating the MLE for every possible response pattern,
the number of MLEs to calculate doubles for each item added to the test. This
equates to an exponential increase in computation time as the number of items
increase. Table 4 shows the computing time of the exact method versus simulation
time to estimate the same value with the simulation method. Again, all computing
was performed on a 4GB 2.2GHz Intel i7 processor AppleMacBook Pro for various
test sizes and 30 quadrature points. With a computation time of 2 h, the exact method
is practically limited to tests under 20 items. However, since pure simulation is
quicker than the exact method beginning at 16 items, we will select the exact method
for tests of individual ability with 15 items or fewer.
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Table 4 The number of response patterns and computation time for the exact method in
calculating the true variance of estimates of individual ability

Exact method Simulation method

Number of items Number of response patterns Computing time Computer time

8 28 = 512 8 s 4.5min

10 210 = 1024 13 s 5min

15 215 = 32,768 3.5min 6min
16 216 = 65,536 7.33min 6.2min
20 220 = 1,048,576 2 h 7.5min

a b

Fig. 9 (a) TIF, ATIF, and ETIF for Test 1. The AT IFExact and AT IFSim overlap completely;
(b) PE for the TIF and the ATIF

7.2 Example: Standard Errors

Recall that the square root of the reciprocal of the test information function (TIF) is
the asymptotic conditional standard error of the MLE of ability (Hambleton et al.,
1991). Some standardized tests, such as the STAAR test in Texas and the CST in
California, use square root of the reciprocal of the TIF to report standard errors
for their estimates (STAAR, 2004). As we showed above, however, there can be
a considerable difference between the TIF and the actual test information. This
difference could result in standard errors and confidence intervals that incorrectly
represent the variability in the MLE, a particularly troubling problem if the intervals
are too narrow.

Figure 9a displays the TIF and the actual information for Test 1 constructed in
Fig. 5a. The actual test information is defined as the reciprocal of the true variance of
the MLE and was computed by the exact method and is referred to as AT IFExact .
For confirmation, the simulated value of the actual information was computed as
well, using the simulation method described in the introduction. This function, the
AT IFSim, is also shown in Fig. 9a and matches the AT IFExact .
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Table 5 The PE with respect
to the true SE of Test 1 from
the small item bank when the
goal is to estimate individual
ability

θ TIF ATIF PE

−3 0.58 1.12 −0.48
−2 1.50 0.86 0.74
−1 3.11 1.91 0.63
0 4.40 3.77 0.17
1 3.67 2.02 0.82
2 1.68 0.79 1.13
3 0.54 1.23 −0.56

An important note concerns the tails of the AT IFExact and AT IFSim in Fig. 9a.
As mentioned in the introduction, fixed values are assigned to subjects who obtain
perfectly correct and incorrect scores (θ = −4 and θ = 4 were adopted for this
study). Therefore, as a subject’s ability increases (decreases), a larger percent of
them begin to obtain perfectly correct (incorrect) scores and therefore receive an
MLE of 4 (−4). This in turn causes a decrease in variance as the true ability
approaches 4 (−4), thus resulting in an increase in information. The inflection point
of theAT IFExact andAT IFSim is the ability level at which subjects begin to obtain
perfectly correct (incorrect) scores.

We now examine the difference between the TIF and the ATIF more closely by
calculating the percent error (PE) between them:

PE = T IF − AT IFExact

AT IFExact

.

Figure 9b displays the PE for the TIF and ATIF (exact and from simulation) in
Fig. 9a. Table 5 displays the numerical results. Interestingly, the PE of the TIF is
as high as 113%, indicating that the TIF is calculating the information to be 113%
higher than it actually is! In a practical setting, the exact method would be used
to find the desired standard errors which may then be used in the calculation of
confidence intervals.

As an example, consider a fictional subject (Sammy) who was trying to qualify
for admission to SMU, where the minimum requirement on the entrance exam is a
θ = 2.1.

On a 15-question computer adaptive exam, he received a θ̂ = 1.0 and was faced
with the decision of whether to retake the exam. Being an asymptotic upper bound
on the information, the margin of error using the TIF is smaller than the actual
margin of error, thus leading Sammy to believe his true ability is between −0.02
and 2.02 (Table 6); he thus abandons his SMU dream and looks at other schools.
However, using the exact method (AT IFExact ), we are able to calculate the actual
standard error which yields a margin of error of 1.38 (Table 7). Sammy would now
be led to believe that his true ability is in the interval (−0.38, 2.38), which contains
2.1 and therefore gives him hope! Although he did not pass the first time, given the
actual confidence interval facilitated by the AT IFExact , Sammy receives a more
accurate measure of the test’s uncertainty and, because he believes passing is now
possible, may decide to try the entrance exam a second time.



Item Response Theory and Fisher Information for Small Tests 249

Table 6 Calculations of the margin of error and 95% confidence limits using the TIF to calculate
the SE

Name Margin of error TIF 95% Confidence interval TIF

Sammy 1.96 × √
3.67 = 1.02 1 ± 1.02 → (−0.02, 2.02)

Table 7 Calculations of the margin of error and 95% confidence limits using the exact method to
calculate the exact SE

Name Margin of error TIF 95% Confidence interval TIF

Sammy 1.96 × 1/
√
2.02 = 1.38 1 ± 1.38 → (−0.38, 2.38)

a b

Fig. 10 (a) TIFs for Test 1 and Test 2. Test 1 clearly has the higher TIF for the majority of the
ability range; (b) ATIFs for Test 1 and Test 2. Actual superiority of Test 1 is reduced when the
actual information is used

7.3 Example: Test Construction/Selection

This example assumes a practitioner would like to compare two tests, both
constructed from the NAEP item bank: Test 1 (very peaked from Fig. 5a) and Test 2
(less peaked from Fig. 5b). Figure 10a displays the TIFs from both tests and could
be used as a diagnostic tool to decide between them. Assume the practitioner would
like to identify students for a remedial math program and has thus been tasked
with finding the best test for estimating abilities between −2.5 and −1.5. Judging
from the TIFs in 10a, the practitioner would conclude that Test 1 will provide more
accurate results because the TIF (the information) is higher over the target range of
abilities. We will show, however, that this is not the right conclusion.

We have established that the TIF is an asymptotic target, but this test is only ten
items in length. Thus, the practitioner elects to use the exact method to calculate the
variance of the estimator and plots the results for both the tests in 10b. The results
show that Test 3 is the more accurate test for his target population, as it is superior
for θ < −1.3 and θ > 1.3.
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8 Conclusion

Calculation of the asymptotic information of estimates of ability in item response
theory is useful for tests with a sufficient number of questions. For tests with
few items, however, the difference between the theoretical information and the
actual information can be substantial. This chapter focused on the practical scenario
in which tests have 15 items or fewer. In these cases, the asymptotic estimate
can significantly exceed the truth, leading to significant underestimation of the
variability of an individual’s estimated ability. A relatively quick, exact method of
calculating test information can inform test construction and lead to more accurate
confidence intervals for individual ability.
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