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Abstract The random-groups design is frequently used in equating and linking
scores from two tests, in which the linking functions are derived from the test scores
of two samples of the test-taker population. In this paper, we consider estimating
variances of test score population statistics for large-scale survey assessments
(LSAs), where the random-groups design is used in linking latent variable test
scores. Examples of LSAs include National Assessment of Educational Progress
(NAEP), Trends in International Mathematics and Science Study (TIMSS), and
Programme for International Student Assessment (PISA). In estimating variances
of population statistics in LSAs, the common practice takes into account the
uncertainties due to sampling and latency. In this paper, we propose a variance
estimation method as an extension of the existing procedure that takes into account
the random-groups linking. We illustrate the method using a NAEP dataset for
which a linear linking function is used in linking test scores from a computer-
based test to those from a paper-and-pencil test. The proposed method can be easily
extended when random-groups equating and linking are applied to other assessment
contexts, with linking functions being parametric or non-parametric.
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1 Introduction

In educational assessments, score linking is a general term that refers to relating
scores from different tests or test forms (American Educational Research Asso-
ciation et al., 2014). This paper focuses on the random-groups linking in which
one sample drawn from the population is administered one test form, while another
sample drawn from the same population is administered a different test form. Based
on the two samples selected from the common population, a linking function can be
derived to transform the scores of one test form to the scores on the other test form
(Kolen & Brennan, 2004).

Large-scale survey assessments (LSAs) are those used to monitor academic
performance for populations (e.g., US fourth graders). One of the most important
uses of LSAs is to track population statistics at a given time and changes in
population statistics over time, such as how countries differ in students’ mean scores
on reading or how the mean reading scores in a country or a region change over
time. Examples of LSAs include US National Assessment of Educational Progress
(NAEP), Trends in International Mathematics and Science Study (TIMSS), and
Programme for International Student Assessment (PISA).

LSAs apply item response theory (IRT) latent variable regression models to
directly estimate score distributional statistics for the population and subpopula-
tions, such as population means and the percentage of students above specified
proficiency levels (Mislevy, 1984, 1985). To provide a means to estimate population
statistics, the programs also make available plausible values for individuals sampled
from the population. Plausible values are random draws, or multiple imputations,
from the performance distribution for individuals, conditional on the IRT latent
regression model parameter estimates, response data, and contextual information
(Mislevy, 1991; Braun & von Davier, 2017). In addition, LSAs make use of
sampling weights to draw inferences from the probability-based samples to the
population of interest. See, for example, von Davier et al. (2006) and Mazzeo (2018)
on the design, sampling, and analysis of LSAs.

For LSAs, standard errors are estimated along with the population statistics.
Typically, two general sources of variance are accounted for: sampling of test takers
and latency of the test scores. The sampling variance accounts for the variability
among the units in the population. The size of the sampling variance is in part
a function of the sample design (see, e.g., Johnson & Rust, 1992). The latency
variance reflects the uncertainty due to the statistics being estimated from the test-
taker performance on a set of test questions and other auxiliary information used
in the latent variable regression models. The latency variance is also referred to
as between-imputation variance. Details on how these variances are estimated for
LSAs are reviewed in Sect. 2.

One approach to estimate the sampling variance of a statistic is to use resampling
methods such as the jackknife, balanced repeated replication (BRR), or bootstrap
methods. These resampling methods create a number of subsamples and use the
variability among the estimates from the subsamples to estimate the variance of
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the statistic. An alternative approach is to linearize the statistic (e.g., using the
delta method or Taylor series expansion) and then estimate the variance of the
linearized statistic analytically. Wolter (2007) described both approaches. Kish and
Frankel (1974) showed in simulation studies that using a multistage design with two
primary sampling units per stratum, both the jackknife and BRR gave acceptably
low bias in estimated variance for various statistics. They also showed that these
two methods gave results that were similar to those achieved via the Taylor series
linearization. Many theoretical and empirical studies have also supported that the
resampling methods perform well and result in comparable standard error estimates
as the linearization approach (e.g., Krewski & Rao, 1981; Rao & Wu, 1985; Valliant,
1990; Shao, 1996).

In this paper, we consider the random-groups design where a sample of test-
takers (referred to as the target sample) is administered assessment T, while another
sample (referred to as the source sample) is administered assessment S. The scores
from assessments S and T are estimated on the two separate latent variable scales.
In addition, the scores from assessment S are linked to assessment T via random-
groups linking. One example is to link scores from a paper-and-pencil test to a test
given on a computer (Eignor, 2007; Jewsbury et al., 2020). Other examples are the
studies in linking scores between two different LSAs (Johnson, 1998; Johnson et al.,
2005; Jia et al., 2011).

For the random-groups design, the linking function coefficients are statistics
calculated based on the source and target samples and using the test scores that
are subject to latency variance. Kolen and Brennan (2004) discussed the use of the
bootstrap to estimate the sampling variance of statistics for assessments with the
random-groups linking. However, we are not aware of any real-data applications.

When the random-groups design is applied in linking the LSA test scores,
uncertainty in the linking function is typically ignored. Mazzeo et al. (in press)
offered an approach to approximate the variance associated with the linking
function, as an additional source of variance, adding to the sampling and latency
variances typically estimated for the population statistics. Jewsbury (2019) derived
analytic equations for variance estimation of population statistics such as averages,
percentiles, and standard deviations. He suggested that the resampling methods
might be more tractable in practice to cover a wide range of statistics. In this paper,
we propose a variance estimation method that incorporates the uncertainty of the
linking function into the sampling and latency variance estimates. The proposed
method can be used to estimate variances for both linear and nonlinear statistics.
Further, the method can be used when the two samples used in linking are either
dependent or independent from each other.

In Sect. 2, we review the variance estimation approach currently used in LSAs.
In Sect. 3, we introduce the new variance estimation method, which is an extension
and modification of the existing method. We illustrate the method with a dataset
from NAEP in Sect. 4. The conclusion follows in Sect. 5.
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2 Variance Estimation in Large-Scale Survey Assessments

For complex survey data, analytical variance estimators for nonlinear statistics are
difficult to develop, and some do not have a closed form. For LSAs, one common
practice is to use the jackknife repeated replication (JRR) with replicate weights to
estimate sampling variance. Several studies (Hansen et al., 1985; Kovar et al., 1988)
have shown that JRR provides reasonable variance estimates for both linear and
nonlinear statistics. Briefly, a total of H strata are formulated, and each replicate is
created by excluding a random set of data in a stratum while keeping the remaining
subset from that stratum and all the data in the other H − 1 strata. The replicate
weights are then calculated for each of the H replicates which reflect the complex
sample design. Those replicate weights also help protect the survey participants’
information because the more detailed sampling information, such as stratification,
primary sampling units (PSUs), clusters, etc., are not needed with the availability of
the replicate weights. Details are provided in the next section. Applications include
NAEP and TIMSS.

Using NAEP as an example, we now review how the sampling and latency
variances are estimated. Let W orig represent the original sampling weights for
the full sample, and Wj represent the j th set of jackknife replicate weights,
j = 1, 2, . . . , Nr , respectively, for a total of Nr sets of replicate weights. Further,
let vi denote the ith set of plausible values which is on an arbitrary IRT scale T ,
i = 1, 2, . . . , M . Then the population statistic on scale T , denoted as t̂ (e.g.,
population average score), can be calculated as

t̂ =
∑M

i=1 t̂i

M
(1)

where t̂i is calculated using vi with weight W orig. The sampling variance of t̂ is

calculated as 1
M

∑M
i=1

∑Nr

j=1

(
t̂ij − t̂i

)2 where t̂ij denotes the statistic calculated
using vi with replicate weight Wj .

In practice, the sampling variance is often approximated based only on one set of
plausible values to reduce computational burden. For example, using the first set of
plausible values, the sampling variance can be estimated as

V̂arsamp
(
t̂
) =

Nr∑

j=1

(
t̂1j − t̂1

)2 (2)

Based on the work of Rubin (2004), the latency variance of t̂ is estimated as
follows:

V̂arlat
(
t̂
) =

(

1 + 1

M

) ∑M
i=1 (t̂i − t̂ )

2

M − 1
. (3)
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The total variance for the statistic t̂ is the sum of sampling and latency variances:

V̂artotal
(
t̂
) = V̂arsamp

(
t̂
) + V̂arlat

(
t̂
)

(4)

3 Variance Estimation to Incorporate Uncertainty
in Random-Groups Linking

As mentioned in Sect. 1, we consider that a target sample of test-takers is adminis-
tered assessment T , while a source sample is administered assessment S. Assess-
ment T results are on latent scale T , while assessment S results are on latent
scale S. The objective is to apply a linear function to link assessment S results
from scale S to scale T by aligning the mean and standard deviation (SD) of the
sample taking assessment S to those of assessment T . For example, during the
NAEP transition from paper-based assessment (PBA) to digitally based assessment
(DBA), the sample who took the PBA is the target sample, and the sample who
took the newly implemented DBA is the source sample. The linking function is then
derived to link the DBA results to the latent scale for PBA, so that the DBA and
PBA results can be compared.

For the source sample statistics that are linked to scale T , we propose a new
resampling approach for variance estimation. Under the method, the variance
consists of the sampling and measurement variance components, each taking into
consideration the random-groups linking. We first discuss the JRR method for the
estimation of the sampling variance that involves resampling both the target and
source samples simultaneously and then the estimation of the latency variance. The
proposed method is an extension of the method discussed in Sect. 2. The method
works when the two samples are dependent or independent.

To be more specific, let:

• xi represent the ith set of plausible values for the target sample on scale T ,
• θi represent the ith set of plausible values for the source sample on scale S,
• yi represent the ith set of plausible values for the source sample that has been

transformed to scale T , i = 1, 2, . . . , M .

Further, let θS and σ̂S denote the mean and SD of the source sample plausible
values on scale S, weighted by W orig, the original student sampling weights of
the source sample. Similarly, let XT and σ̂T denote the mean and SD of the
target sample plausible values on scale T , weighted by W ′

orig, the original student
sampling weights of the target sample.

The coefficients â and b̂ of the linear linking function are calculated as

â = σ̂T

σ̂S

(5)
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and

b̂ = XT − âθS (6)

Apply
(
â, b̂

)
to transform θi from scale S onto scale T :

yi = âθi + b̂, i = 1, 2, . . . ,M. (7)

Last, we calculate the statistic t̂ for the source sample on scale T using Eq. 1, with
t̂i being estimated using yi with W orig, for i = 1, 2, . . . , M .

In the text below, we describe the procedure in estimating the variance of the
statistic t̂ .

3.1 Estimation of Sampling Variance

In this section, we describe the procedure used in estimating the sampling variance
of the source sample statistic t̂ as defined in Eq. 1, which is linked to scale
T through random-groups linking. We further introduce the following notations
Wj ,W ′

j , which represent the j th set of jackknife replicate weights of the source
and target samples, respectively, j = 1, 2, . . . , Nr . In the random-groups linking
design, it is common that the two samples to be linked have the same number
of replicate weights. Therefore, in our method, we assume the source and target
samples have the same number of replicate weights (denoted as Nr here). To reduce
the computational intensity, we use only the first set of plausible values from both
samples for the calculation.

Using the j th pair of replicate weights
(
Wj ,W ′

j

)
, j = 1, 2, . . . , Nr , we

conduct the following steps of calculation:

1. Compute θSj
and σ̂Sj

, the mean and SD of the first set of plausible values for the
source sample on scale S, weighted by Wj , as well as XTj

and σ̂Tj
, the mean and

SD of the first set of plausible values for the target sample on scale T, weighted
by W ′

j ;

2. Calculate the coefficients of the linear linking function
(
âj , b̂j

)
based on Eqs. 5

and 6, with θSj
, σ̂Sj

,XTj
, and σ̂Tj

;

3. Apply
(
âj , b̂j

)
to transform θ1 of the source sample from scale S onto scale T

of the target sample, i.e. y
j
1 = âj θ1 + b̂j , where y

j
1 is the transformed plausible

values for the source sample, j = 1, 2, . . . , Nr ;
4. Calculate t̂

′
1j , using y

j
1 with replicate weight Wj , j = 1, 2, . . . , Nr .
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Fig. 1 The calculation process of sampling variance estimation for the source sample

The sampling variance of statistic t̂ can then be approximated as

V̂arsamp|linking
(
t̂
) =

Nr∑

j=1

(
t̂
′
1j − t̂1

)2
, (8)

where

t̂1 = 1

Nr

Nr∑

j=1

t̂
′
1j (9)

Figure 1 illustrates the calculation process of V̂arsamp|linking
(
t̂
)

in Eq. 8.
Alternatively, one can approximate the sampling variance of statistic t̂ as

V̂ar
′
samp|linking

(
t̂
) =

Nr∑

j=1

(
t̂
′
1j − t̂

′
1

)2
, (10)

where t̂
′
1 is calculated by using the original weights W orig and the first set of

plausible values that are linked to scale T . The scale transformation follows steps

1-3 described above while using the original student weights
(
W orig,W

′
orig

)
.

We point out that when calculating (âj , b̂j ), j = 1, 2, . . . , Nr , we pair the
replicate weights once and in their corresponding sequential order (i.e., pairing the
j th replicate weights from both the source and target samples). For the source and
target samples that are dependent, pairing the replicate weights of the two samples in
this matter properly accounts for the dependency between the samples. On the other
hand, if the source and target samples are independent, then the pairings between
the source and target samples can be random. In fact, there are Nr ! possible ways to
pair the replicate weights between the two samples. In theory, one can calculate the
variance estimate for all Nr ! sets of pairings and then take an average. In practice,
Nr ! is usually a very large number. To reduce computational burden, a practical
approach is to randomly select a subset from the Nr ! sets of pairings. Suppose the
Ns (Ns < Nr !) sets of random pairings are generated and for ith set of pairing

the sampling variance estimate is V̂ar
(i)

samp|linking

(
t̂
)
, i = 1, 2, . . . , Ns , which is
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calculated using Eq. 8. Then the sampling variance is estimated as the average of
the Ns estimates:

V̂ar
∗
samp|linking

(
t̂
) = 1

Ns

Ns∑

i=1

V̂ar
(i)

samp|linking

(
t̂
)

(11)

The choice of the value Ns is a balance between the computation intensity and the
stability of the variance estimate.

The above procedure described how to calculate the sampling variance for the
source sample statistics only. There are also situations where the statistics are
computed based on combining the source and target samples. Next, we show that
the procedure can be generalized to estimate the sampling variance for the combined
sample as well.

To do that, after getting the transformed plausible values y
j
1 , we concatenate

y
j
1 with x1 of the target sample as the combined set of plausible values, z

j
1 =(

y
j
1

x1

)

, j = 1, 2, . . . , Nr . Then the statistic of interest based on the combined

sample can be calculated using z
j
1 with weight W comb

j , which is the replicate

weights for the combined sample. Note that in practice, W comb
j are created specially

to the analysis of the combined sample. The rest of the calculation is the same as
shown in Eq. 8.

Figure 2 shows the calculation process for statistics of the combined sample.
Note that the replicate weights are paired following their corresponding sequential
order as (1 to 1), (2 to 2), etc. As discussed earlier, when the source and target
samples are independent of each other, the pairing of plausible values from the two
samples can be random.

3.2 Estimation of Latency Variance

We now discuss the procedure of calculating the latency variance of the source
sample statistics t̂ as defined in Eq. 1, which is linked to scale T through the random-
groups linking.

Fig. 2 The process of sampling variance estimation for the combined sample
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Using the M sets of plausible values from the source sample and the target
sample, we conduct the following steps:

1. Calculate θSi
and σ̂Si

, the mean and SD of the scale scores using the ith set of
plausible value in the source sample on scale S with W orig;

2. Calculate XTi
and σ̂Ti

, the mean and SD of the scale scores using the ith set of
plausible value in the target sample on scale T with W ′

orig;

3. Calculate the transformation coefficients
(
âi , b̂i

)
based on Eqs. 5 and 6 with

(
θSi

, σ̂Si

)
and

(
XTi

, σ̂Ti

)
, i = 1, 2, . . . , M;

4. Apply
(
âi , b̂i

)
to transform θi from scale S onto scale T, i.e., y∗

i =âiθi+b̂i ;

5. Calculate the statistic of interest t̂∗i , using y∗
i with W orig, i = 1, 2, . . . , M;

6. Calculate the latency variance of the source sample statistics.

V̂arlat|linking
(
t̂
) =

(

1 + 1

M

) ∑M
i=1

(
t̂∗i − t̂∗

)2

M − 1
(12)

where

t̂∗ =
∑M

i=1 t̂∗i
M

(13)

The process of calculating the latency variance is illustrated in Fig. 3.
In the above procedure, the plausible values from the two samples are paired

when calculating the linking function coefficients
(
âi , b̂i

)
, i = 1, 2, . . . , M. The

plausible values for the source and target samples are multiple imputations that
were drawn independently using two latent regression models and therefore are
independent regardless whether the two samples are dependent or independent of
each other.

There are a total of M! possible sets of pairings of the plausible values from the
two samples, with M sets of plausible values for each sample. In practice, we can
choose a subset of random pairings to reduce computation intensity. Let’s assume

Fig. 3 The calculation process of latency variance estimation for the source sample
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Fig. 4 The process of latency variance estimation for the combined sample

Ns (Ns < M!) sets of random pairings are generated, and for ith set of pairing, the

latency variance estimate is V̂ar
(i)

lat|linking

(
t̂
)
, i = 1, 2, . . . , Ns which is calculated

using Eq. 12. Then the latency variance can be estimated as the average of the Ns

estimates:

V̂ar
∗
lat|linking

(
t̂
) = 1

Ns

Ns∑

i=1

V̂ar
(i)

lat|linking

(
t̂
)

(14)

The choice of Ns is a balance between the computation capacity and reducing
variability of the variance estimation.

The above procedure to calculate the latency variance is for the source sample
statistics only. Similar to the estimation of sampling variance, we can extend the
method to calculate latency variance for the statistics based on the combined source
and target sample. To do that, after transforming the source sample plausible values

from θi to y∗
i using

(
âi , b̂i

)
, i = 1, 2, . . . , M , we concatenate y∗

i with xi as z∗
i =

(
y∗

i
xi

)
. Then the statistic of interest based on the combined sample can be calculated

using z∗
i with weight W comb

orig , which is the original weights for the combined sample.
The rest of the calculation is the same as shown in Eq. 12.

Figure 4 displays this calculation procedure for the combined sample, with the
pairing of the plausible values following a (1 to 1), (2 to 2), etc. fashion.

Finally, the total variance of the statistic t̂ is the sum of the sampling and latency
variances. When the source and target samples are dependent, the total variance is
estimated as

V̂artotal|linking
(
t̂
) = V̂arsamp|linking

(
t̂
) + V̂ar

∗
lat|linking

(
t̂
)

(15)
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3.3 Properties of the Proposed Variance Estimation Method

In this study, we consider linear linking in a random-groups design. That is, a linear
function is applied to align the mean and SD of the source sample score distribution
to the mean and SD of the target sample score distribution. Next, we show that
regardless of the sample size and other features of the source sample, its mean and
SD are fixed to be the same as those of the target sample as the expected result of
the linking. Recall the linear function has the following form:

yi = âθi + b̂, i = 1, 2, . . . , M. (16)

where â = σ̂T

σ̂S
and b̂ = XT − âθS , as defined in Eqs. 5 and 6.

Let YS and σ̂ Y
S denote the mean and SD of the transformed scores of the source

sample, then given how the â and b̂ are constructed, we have

YS = âθS + b̂ = XT (17)

and

σ̂ Y
S = â ∗ σ̂S = σ̂T (18)

The above property is true when the weights used in the calculation are the
original weights or the replicate weights. Therefore, for the estimation of sampling
variance discussed in Sect. 3.1, t̂

′
1j , j = 1, 2, . . . , Nr , for the source sample are the

same as the corresponding statistics of the target sample. According to Eq. 8, the
sampling variances of the overall mean and SD for the source sample are the same
as those for the target sample, provided the point estimates used in the formula are
also the same between the two samples.

Similarly, for the latency variance estimation, t̂∗i , i = 1, 2, . . . , M , of the source
sample are the same as the corresponding statistics of the target sample. Following
the same logic as for the sampling variance, the latency variances of the overall
mean and SD for the source sample are the same as those for the target sample.

Now for the combined source and target sample, we have plausible values zi =(
yi
xi

)
, i = 1, 2, . . . , M. Then the mean of the combined sample

Z = YSnS + XT nT

nS + nT

= XT (nS + nT )

nS + nT

= XT (19)

where nS and nT are the weighted sample size of the source and target samples.
Similarly, for the SD of the combined sample,
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σ̂Z =
√(

σ̂ Y
S

)2
nS + (̂σT )2nT

nS + nT

=
√

(̂σT )2nS + (̂σT )2nT

nS + nT

= σ̂T

√
nS + nT

nS + nT

= σ̂T

(20)

That is, the combined sample, after the scale linking, has the same mean and SD as
those for the target sample. Moreover, the variances of the overall mean and SD for
the combined sample are also the same as those for the target sample. The argument
is the same as for the source sample.

In addition, we point out that the variance estimation considering random-groups
linking does not necessarily result in a larger estimated value than those procedures
in which the uncertainty due to linking is ignored. For example, as described above,
the variances of the mean estimates are the same between the source and target
samples after linking. The property holds even when the source sample has much
smaller sample size than the target sample. For subgroups, as will be shown in the
empirical data below, it is possible to obtain a variance estimate that is smaller when
considering the uncertainty due to linking.

4 Applications

4.1 Empirical Results

In this section, we use the data from NAEP to illustrate our proposed method. A
study with the random-groups design and linear linking was implemented to link
the scores from DBA to PBA. The study involved administering the DBA and PBA
to two samples of students, respectively, namely, the DBA sample and the bridge
PBA sample. A total of 13,400 students were selected in the study to take either the
DBA or PBA. The DBA and bridge PBA samples are dependent with comparable
sizes.

Table 1 displays the comparison between the DBA and bridge PBA samples. We
can see the demographic distributions between the two samples are comparable.

The bridge PBA and DBA samples were analyzed separately using the IRT
latent regression models, and the results were expressed on two separate IRT scales.
Following the NAEP operational convention, a total of 20 plausible values were
imputed for each student in the 2 samples. In addition, for each sample, the original
weight and 62 replicate weights were provided for each student. The results for the
bridge PBA sample were estimated on the existing NAEP trend scale, where the



Variance Estimation in Survey Assessments 227

Table 1 Weighted
percentage of students by
subgroup between the bridge
PBA and DBA samples: a
NAEP dataset

Bridge PBA DBA

Gender Male 51% 51%

Female 49% 49%

Race/ethnicity White 49% 49%

Black 15% 14%

Hispanic 27% 27%

Others 10% 10%

School type Public 91% 93%

Non-public 9% 7%

Table 2 Sample sizes, standard errors of estimates of means with and without linking error: the
combined DBA/PBA sample

Group N SE SE∗ SE Ratio

All students 13,400 0.87 0.69 1.26

Male 6900 0.95 0.78 1.22

Female 6500 0.92 0.78 1.18

White 5900 1.01 0.93 1.09

Black 2100 1.30 1.18 1.10

Hispanic 3900 1.20 1.01 1.19

Asian 700 1.83 1.77 1.03

American-Indian/Alaska 200 13.89 14.07 0.99

Northeast 2000 1.85 1.78 1.04

Midwest 2300 1.99 2.01 0.99

South 5400 1.10 0.95 1.16

West 3700 1.19 1.09 1.09

mean and SD of the scale were set operationally to be 150 and 35. For the DBA
sample, the results were generated on an arbitrary IRT scale with mean 0 and SD 1.
The plausible values of these separate analyses were then used to develop a linear
linking function (Eqs. 5 and 6) which allowed for the expression of the DBA results
on the bridge PBA scale. Since the DBA and bridge PBA samples are dependent,
when calculating the sampling variance, we applied the (1 to 1), (2 to 2), ..., (62
to 62) fashion of pairing the replicate weights between the DBA and bridge PBA
samples.

Table 2 presents the standard errors of the mean estimates for the combined
DBA/PBA sample, using the proposed new method (Eqs. 8, 14, and 15). For
comparison purpose, we also include the usual NAEP variance estimates which do
not contain linking variance. Column SE contains the standard errors calculated
using our proposed methods, and column SE∗ contains the standard errors without
accounting for random-groups linking. For the race/ethnicity variable, the students
in the Native Hawaiian/Other Pacific Islander and the Two or More Races categories
are not listed in the table.
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We can see from Table 2 that for the overall mean estimate, SE
(
Xall_student

) =
0.87, SE∗ (

Xall_student
) = 0.69, with a ratio of 1.26. The change in standard errors

for subpopulation means, with and without accounting for random-groups linking,
is less than the value for the overall population. For the displayed subgroups, the
ratios range from about 0.99–1.22.

Furthermore, we observe that the ratios in standard error vary for different
subgroups, but have little relationship with the sample size of the group in question.
For example, the male and female students are about 50% of the overall population;
the ratios in standard error with and without accounting for linking errors are 1.22
and 1.18, respectively. On the other hand, White subgroup is about half the overall
population, but the ratio in standard error is 1.09. The linear linking functions were
derived based on the overall population, not the subgroups whose results were being
transformed by the function. As a result, the ratios in standard error are expected to
vary across subgroups. Analytical results of the effect on subgroup standard errors
are found in Jewsbury (2019).

4.2 Further Considerations on Latency Variance Estimation

As mentioned in Sect. 4.1, in NAEP, there are 20 plausible values for each student
in the source and target samples. When calculating the latency variance, the pairing
of the 20 sets of plausible values between source and target sample can be random
given the source and target sample plausible values are independent. For example,
one way of pairing the plausible values is to follow their corresponding sequential
order (i.e., pairing the ith set of plausible values from both the source and target
samples). As another example, one could pair the plausible values from the source
and target samples following the sequence as (1 to 2), (2 to 3), ...., (20 to 1). In
theory, there are 20! possible ways to pair the plausible values between the source
and target samples.

We point out that while the latency variance can be estimated based on a single set
of pairings of the source and target sample plausible values, averaging the latency
variance estimates over multiple sets of pairings, Ns (Ns < 20!), is expected to
improve the stability of the latent variance estimates. Using the NAEP data, we
conducted a simulation study to examine how the latency variance estimates vary
with different values for Ns .

In the simulation study, we considered five conditions, with Ns being 1, 5, 10,
25, and 50. For each of the five conditions, we calculated the latency variance
100 times, using the method discussed in Sect. 3. Figure 5 shows the box-plot
of the standard errors due to latency for the male students average score for the
100 replications. We can see that as Ns increases, the variation of the standard
error estimates decreases. The most noticeable variability reduction is from 1 to
5 random pairings. When Ns equals to 5, the difference between the maximal and
minimal standard error estimates among the 100 replications is less than 0.04. In
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Fig. 5 Box-plot of standard errors due to latency for the male students’ average score

this application, we estimated latency error based on five sets of random pairings,
considering the latency error estimation is acceptably stable given the magnitudes
of subgroup standard errors (as listed in Table 2) and that the latency standard error
estimates are typically around 0.2 to 0.4. In practice, similar simulation studies can
be helpful to specify the number of random pairings.

5 Conclusion

With complex survey data, it is desirable to have resampling methods that utilize
the existing estimation system for variance estimation. For the large-scale survey
assessments, the variance of the population statistics is estimated as the sum of
two components, the sampling and latency variances. In this paper, we proposed
a resampling method for variance estimation when random-groups linking design
is applied, incorporating linking error into both the sampling and latency variance
estimates. The method is applicable to both linear or nonlinear statistics.

We proposed the estimation procedure in the context of linear linking function.
However, the approach applies to both parametric and non-parametric linking
functions. Further, it can be applied when the linking sample are dependent or
independent.
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