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Abstract Empathic accuracy (EA), defined as the ability to accurately understand
the thoughts and emotions of others, has become a well-studied phenomenon
in social and clinical psychology. A widely used computer-based EA paradigm
compares perceivers’ ratings of targets’ feelings or affective states with the ratings of
target themselves (the true ratings) and uses correlation or its monotonic transforma-
tion as a measure of EA. However, correlation has a number of notable limitations.
In particular, perceivers may differ in their rating patterns, but still have similar
overall correlations. To overcome the limitations, we propose a Bayesian latent
variable model that decomposes EA into two separate dimensions—discrimination
and variability. Discrimination measures perceivers’ sensitivity in relation to the
true ratings, and variability measures the variance of random error in perceiver’s
perceptions. Similar to the conventional correlation, the Bayesian model is able to
measure the overall level of the association between perceiver and target, but more
importantly, the Bayesian approach can provide insights into how perceivers differ
in their EA. We demonstrate the advantages of the new EA measures in two case
studies. The proposed Bayesian model has a simple specification and is easy to use
in practice due to its straightforward implementation in popular software. The R
code is included in the supplementary material.
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1 Introduction

Empathic accuracy (EA) is defined as the ability to correctly infer the thoughts
and emotions of others (Zaki et al., 2009). In addition to the role of EA in
the development and maintenance of healthy social relationships (Sened et al.,
2017), clinical research has shown that performance in a standard EA video
task can differentiate individuals with certain psychiatric disorders from healthy
controls (Lee et al., 2011). Thus, the study of EA can help us understand general
social functioning and also help identify social cognitive impairment in clinical
populations.

There are a number of ways to examine EA, including matching categorical
assessments (Schweinle et al., 2002) or continuous real-time assessments of the
affective states of people (hereafter referred to as targets) by participants (hereafter,
perceivers) (Zaki et al., 2008). Studies of EA that focus on matching categorical
assessments between perceivers and targets often use signal detection theory in
analyses. However, continuous EA data do not allow for this type of analysis. The
focus of this study is on the analysis of EA tasks based on continuous real-time
ratings. For example, EA paradigms may include a set of brief video clips in which
targets discuss positive or negative events in their lives. Perceivers are asked to
rate how negative or positive the target is feeling when discussing autobiographical
events in real time using a 9-point scale (e.g., 1= extremely negative; 9= extremely
positive). Responses from perceivers are captured in 2–5 s epochs throughout each
video clip, and these responses are then compared to the responses of the targets,
who watched the videos of themselves and completed the same ratings task in order
to create a canonical index of “true” responses.

Traditionally, correlational analysis (and its monotonic transformation) is the
conventional and arguably most common statistical method used for analysis of the
continuous EA data. For example, based on several videos in which social targets
discussed emotional events, Zaki et al. (2009) collected ratings averaged across
5-s periods and computed the Fisher transformation of the Pearson correlation
coefficient to measure perceivers’ EA. Also, in an fMRI validation study of a
modified EA task, Mackes et al. (2018) computed the same measure and conducted
paired samples t-tests to examine the neural correlates of perceived emotional
intensity and mentalizing. However, this one-dimensional correlation approach,
which only measures the linear association between two variables, may leave out
important patterns in the data. First, unlike weight or height, EA is a latent merit
that cannot be directly measured in absolute terms. For example, in a given task,
the same rating may mean something different to different perceivers. In addition,
although all perceivers are given the same scales (such as from 1 to 9), different
perceivers may subjectively choose different ranges of their own ratings (e.g., one
person may always give ratings from 4 to 7, while another person may use the whole
range from 1 to 9). Second, there are at least two underlying behavioral dimensions
that contribute to the discrepancy between perceivers’ and targets’ ratings, including
different interpretations of the scale range and the random error in perceivers’
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ratings. These two dimensions are distinct, so it is necessary to incorporate both
of them when measuring EA. Third, correlation can only be calculated for each
stimulus separately, but an EA study typically involves a number of stimuli (such as
multiple videos under one condition). Due to all of the issues raised here, statistical
analysis based on correlation may limit the amount of information that can be gained
from EA studies.

In a broader context of modeling accuracy of human judgment, a few approaches
have been proposed as an alternative for correlation, yet these approaches typically
require additional data compared to what we have for our applications. For example,
West and Kenny (2011) proposed the truth and bias model, in which perceivers’
responses to a stimulus are assumed to be influenced by a truth force and a bias force.
To use this model, each perceiver is typically asked to provide not only a response
toward the target but also a self-judgment response. In our application, we only have
the former but not the latter. Biesanz (2010) proposed the social accuracy model,
in which accuracy of a judgment is into distinctive accuracy, the extent to which
a perceiver can perceive the distinct and unique characteristics of one person, and
normative accuracy, a measure of how a perceiver’s perception of others corresponds
to the same perceiver’s perception of an average person. This social accuracy model
is commonly used in modeling perception of traits, where a perceiver is asked to
rate different traits of other people, and the ratings of these traits for an average
person (a normative profile) are available from a larger sample or a meta-study. In
our application, a perceiver is asked to provide a continuous rating over time to
judge the emotion of a specific target. To the best of our knowledge, the normative
profile for these continuous ratings are not available.

As pointed out by an anonymous referee, one may tend to conduct the Bland-
Altman analysis (Bland & Altman, 1999) between the perceivers’ and targets’
ratings. In most of the applications, the Bland-Altman (BA) analysis aims to
evaluate whether two different devices give the same measurements of an objective
quantity. For example, in Doğan (2018), the BA method is used to evaluate whether
a venous blood gas analysis and a biochemistry panel shows the same level of
potassium in patients. However, the BA method is not appropriate for measuring
EA. First, for one specific task, the perceivers’ and target’s ratings are not expected
to be the same, because they can have different (subjective) interpretation of the
rating scale. For example, a rating of “5” for one person is not the same as a rating
of “5” for another. Furthermore, just knowing whether perceivers and targets agree
with each other may be even less informative than using correlation, since the BA
analysis does not quantify the extent to which a perceiver agrees with the target.

In this article, we introduce a Bayesian latent variable approach to model EA
response data that is based on the previous work by Cao and colleagues (Cao
et al., 2010; Cao & Stokes, 2017). The proposed Bayesian model identifies two
latent dimensions of EA—discrimination and variability—that are identifiable when
perceivers’ ratings differ from the targets’ ratings. Discrimination measures a
perceiver’s ability to distinguish changes in a target’s emotions, while a perceiver’s
variability measures the variance of random error in perceivers’ ratings (i.e., the
difference between perceiver’s and target’s ratings due to inconsistency). A smaller
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variance implies that the perceiver has a higher level of consistency in perceiving
the target. Using the proposed Bayesian model, we are able to estimate perceivers’
discrimination and variability and hence obtain more valuable information about
their EA perception than correlation, which only measures the general association
between perceivers’ and target’s ratings.

We begin by introducing the Bayesian model, including model specification and
software implementation. We then describe the advantages of the Bayesian model
using two case studies. In the first case study, we re-analyze the dataset in Devlin
et al. (2014) that consists of perceivers’ ratings of four distinct videos in which
targets discuss emotional events in their lives. In this case study, we focus on
explaining the underlying dimensions of EA and comparing the Bayesian estimates
of discrimination and variability with the standard correlational measure. In the
second case study, we analyze perceivers’ ratings of 12 original music recordings
expressing musician-targets’ renderings of four primary emotions (three recordings
per emotion), with the focus on how the underlying EA dimensions are associated
with the musicality (i.e., level of musical skill and training) of the perceivers. This
case study further demonstrates that the new measures can facilitate additional
insights on how EA perception is related to perceivers’ characteristics.

2 Methodology

In an EA study, suppose that there are n perceivers instructed to provide ratings on J

stimuli, where each stimulus has Kj units (i.e., there are Kj points in the sequence
of ratings, which can vary among stimuli). Each stimulus corresponds to a specific
target. Let xr

jk denote the raw rating given by the corresponding target for the kth
unit of the j th stimulus, j = 1, . . . , J and k = 1, . . . , Kj . Note that similar to
correlational analysis, the mean of target score will not affect the measurement on
EA. Hence, to simplify the model specification, the raw ratings xr

jk are centered for

each stimulus, where the centered rating is denoted as xjk = xr
jk − K−1

j

∑Kj

m=1 xr
jm

and is treated as the true rating. Similarly, letting yr
ijk denote the rating given by the

ith perceiver for the kth unit of the j th stimulus, then the corresponding centered

rating is yijk = yr
ijk − K−1

j

∑Kj

m=1 yr
ijm. We specify the Bayesian latent variable

model to measure EA as

yijk = βij xjk + εijk

εijk ∼ N(0, σ 2
i ), βij ∼ N(βi, σ

2
β ),

(1)

for i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , Kj . In the model, βij represents
the ith perceiver’s discrimination level on the j th stimulus, which is assumed to
follow a normal distribution with mean βi and variance σ 2

β . Note that βi is the ith
perceiver’s average discrimination level over all the J stimuli. We allow a perceiver
to have different discrimination levels for different stimulus, but assume these
discrimination levels are similar by imposing a random-effect structure on all βij ’s.
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Fig. 1 Illustration of the two latent dimensions in EA. Plot (a): a subject has an attenuated
discrimination and relatively large variability. Plot (b): a subject has a magnified discrimination
and relatively small variability

An empathic perceiver’s discrimination parameter βi will be positive, indicating
that on average, the perceiver’s response has a congruent association with the target.
A smaller value βi suggests that the perceiver’s response signal is more attenuated
compared to a perceiver with a larger βi value. Furthermore, a perceiver with a
negative βi has a response that moves in opposite direction compared to the target’s
ratings, yet these instances are generally rare in EA studies. Additionally, Model
(1) contains the random error εijk , which is assumed to follow a normal distribution
with mean 0 and perceiver-specific variance σ 2

i . The smaller the variance, the higher
the consistency in the perceiver’s ratings, so we refer to σ 2

i as the measure of the
variability in EA of the ith perceiver.

Figure 1 illustrates two examples of concept on how the two latent dimensions
of EA (i.e., discrimination and variability) contributes to the actual ratings given
by a perceiver. The black line depicts the (observed) target true ratings. The green
dashed line represents the (unobserved) expected ratings associated with a certain
discrimination level, and the red dashed line represents the (observed) actual ratings
after random errors are added to the green dashed line. The plot on the left shows
an example of ratings with an attenuated discrimination (i.e., a less distinctive
interpretation of true signals) and relatively large variability (i.e., a large deviation
between the expected ratings and the actual ratings), and the plot on the right shows
an example with a magnified discrimination and relatively small variability.

To complete the Bayesian model specification, the assignment of prior distribu-
tion is listed in the following:

βi ∼ N(1, 100), σ 2
i ∼ IG(2, 1), σ 2

β ∼ IG(2, 1), (2)

for i = 1, . . . , n. Note that the ratings have a range of 9 points, so the normal
prior on βi has a variance of 100, which is large enough to make the normal prior
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a non-informative prior. The mean of βi is 1 because without any prior knowledge,
we assume all perceivers have roughly the same interpretation as the true targets.
The prior for the variance σ 2

i is IG(2, 1), which is the inverse gamma distribution
with a shape parameter of 2 and a scale parameter of 1, so the corresponding
prior variance is infinite. Thus, the assigned priors are conventional conjugate
non-informative priors, which facilitates data-driven inference and results in fast
Bayesian computation (Sun et al., 2001). The proposed model is referred to as the
BDV Model (Bayesian model with the latent dimensions on Discrimination and
Variance). Finally, note that when there is only one stimulus in the EA study (i.e.,
J = 1), the BDV Model can be reduced to

yik = βixk + εik, εik ∼ N(0, σ 2
i ), (3)

where the priors for βi and σ 2
i are the same as in (2) for i = 1, . . . , n.

Note that the general BDV Model with J ≥ 2 is a random-effect model,
with a random slope (perceiver-specific discrimination) and a perceiver-specific
variance. The perceiver-specific variance is a novel and indispensable part of the
model because it represents a unique EA dimension. In the applications below,
we demonstrate that, compared to the same models with constant variance, i.e.,
σ 2

i = σ 2 for all i = 1, . . . , n, the incorporation of perceiver-specific variance
improves the model fits significantly. After fitting the BDV Model, we use the
posterior mean for βi and σ 2

i as the estimated discrimination and variability for
the EA of the ith perceiver.

To facilitate the implementation of the model, we include the R code in the sup-
plementary material. The code is based on “Just-Another Gibbs-Sampler”(JAGS)
model, which is an open-source program designed to run Bayesian hierarchical
model using Markov chain Monte Carlo methods (Plummer et al., 2003). With
JAGS, users specify a model and its prior specification; then a Markov chain
simulation is automatically implemented for the resulting posterior distribution.
This frees users from manually deriving the MCMC algorithm, which is the main
obstacle for the implementation of Bayesian inference in practice. JAGS is designed
to work closely with the R language. Our code uses the rjags package (Plummer,
2019) as the interface from R to JAGS. Detailed instructions are annotated in the
code.

3 Applications

3.1 Study on Social Empathic Accuracy

In our first application, we consider a study conducted by Devlin et al. (2014)
that examined the relationship between perceivers’ levels of positive emotion
and EA. Their study included n = 121 perceivers, who watched four videos
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of targets discussing emotional events in their lives. These four videos vary in
valence (positive or negative) and intensity (high or low), resulting in four non-
homogeneous videos, including high-positive, low-positive, high-negative, and
low-negative. While watching each video, perceivers provided continuous online
ratings of the corresponding target’s emotion using a 9-point scale (from 1 =
extremely negative to 9 = extremely positive). The ratings from the perceivers were
then compared with those from the targets.

To measure the EA of each perceiver, the authors calculated the Fisher transfor-
mation to the Pearson correlation between perceivers’ ratings and targets’ ratings for
each video. In other words, each participant had four EA measures, each of which
corresponds to one video. For the correlation coefficient r , the corresponding Fisher
transformation is defined as Z = (1/2) log {(1 + r)/(1 − r)}, where log denotes the
natural logarithm. While r ranges from −1 to 1, the Fisher transformed correlation
can take any value from the real line, so it is more appropriate to conduct statistical
analyses with the normality assumption based onZ than based on r . In this paper, we
refer to Z as the “r-to-Z EA estimate” and denote it to be rZ. The data from Devlin
et al. (2014) are publicly available at https://doi.org/10.1371/journal.pone.0110470.

Because these four videos varied in valence and intensity, they should be treated
as four distinct individual stimuli instead of multiple stimuli under one condition,
and we fit the reduced BDVModel (3) to each of the four video stimulus separately.
We begin with a graphical demonstration to illustrate how the two latent EA
dimensions can provide more insights on EA compared to the conventional measure
rZ. Figure 2 shows two plots, each depicting the ratings given by the target and
those by three perceivers (selected for illustrative purposes) for the high-negative
video. In each plot, the black line represents the true target’s rating, and the other
lines represent ratings of the selected perceivers watching the same video. The
estimated rZs between the target’s and perceivers’ ratings are listed in the legend,
along with the estimated discrimination and variability parameters (abbreviated as
D and V, respectively). In the top panel, the three perceivers demonstrated very
different rZ, whereas in the bottom panel, the three perceivers had similar rZ.

In the top plot of Fig. 2, the three perceivers (denoted as P1, P2, and P3)
demonstrated very different EA levels, indicated by the varying estimated rZ values
(1.51, −0.22, and 0.51). However, the correlational analysis does not explain why
the three perceivers have such dramatically different EA scores. Based on the
Bayesian estimates, we can see that P1’s greater EA (red line, r̂Z = 1.51) is due
to a higher level of discrimination (D̂ = 0.81) and smaller variability (i.e., higher
consistency, V̂ = 0.16) when rating the target. The perceiver P2 has a negative
correlation (green line, r̂Z = −0.22), which is due to the negative discrimination
(i.e., the person perceived the target’s emotion in the opposite direction, D̂ =
−0.14). In addition, P2 also has the largest variability among the three perceivers
reflecting the more obvious fluctuation of P2’s ratings (V̂ = 0.34). Moreover, P3
(blue line, r̂Z = 0.51) has a moderate EA level: compared to P1, P3 has a lower
discrimination (other than the initial drop, P3’s ratings are quite flat, not showing
the gradual decline in the target’s ratings, D̂ = 0.34) and larger variability (the
discrepancy between P3’s ratings and the target’s ratings are noticeably large in
both ends of the series, V̂ = 0.38).

https://doi.org/10.1371/journal.pone.0110470
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Fig. 2 Comparison of the target’s ratings and the six perceivers’ ratings in the high-negative video,
where rZ denotes the r-to-Z transformed correlation and D and V represent discrimination and
variance in the Bayesian model, respectively

In the bottom plot of Fig. 2, we chose data from three different perceivers (P4,
P5, and P6) to further demonstrate the advantage of utilizing discrimination and
variability to study EA over the rZ measure. In this case, the three perceivers have
similar estimated rZ values (1.03, 1.03, and 1.06). Hence, based on the correlational
analysis, these perceivers have similar EA. However, the estimates of discrimination
and variability show that their underlying EA dimensions have distinct patterns. P4
(red) has a large discrimination value (D̂ = 1.34), resulting from the fact that P4’s
ratings have a more dramatic decline than the target’s ratings. At the same time, P4
has the largest variability among the three perceivers, reflecting P4’s pronounced
shift toward negative ratings at around time units 25 and 40. In addition, P6 (blue
line) has both the smallest discrimination (D̂ = 0.45) and smallest variability (V̂ =
0.14) among the three perceivers. Other than the initial drop, P6’s ratings are mostly
flat, only spanning a narrow range of scores. Unlike the dramatic decline in P4’s
ratings and slow change in P6’s ratings, P5’s (green line) ratings follow the gradual
decline in the target’s ratings. Because of the inadequate drop in the beginning and
opposite change in the end of the series, P5 has a larger variability (V̂ = 0.38)
than P6.
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Fig. 3 Perceivers’ video-specific discrimination and variance (red = high-positive, orange = low-
positive, blue = high-negative, green = low-negative)

Based on the examples included in Fig. 2, we can see that the two latent
discrimination and variability dimensions specified in the BDV Model offer unique
information regarding EA compared to the correlation analysis. Specifically, the
proposed BDV Model is able to explain how perceivers differ in their EA and
to identify possible differences in the underlying dimensions in EA when the
correlation may show no differences.

Next, we compare the latent dimensions across the four videos. Figure 3 (left
panel) shows that perceivers had higher discrimination ability for the high-positive
video (red dots) and lower discrimination ability for the low-negative video (green
dots). These findings are in agreement with previous studies of showing greater EA
for positive videos compared to negative videos in both healthy and clinical samples
(Lee et al., 2011). As for the variability, the largest video-specific variances are from
the two low-intensity videos (orange and green dots in the right panel of Fig. 3).

As we mentioned in the last section, a novelty of the BDV Model is that it
incorporates perceiver-specific variances for random errors instead of assuming
a constant variance as in most of the conventional random-effect models. We
demonstrate the advantage of this functionality by comparing the model fit between
the BDV Model and the following random-effect model with a constant variance:

yik = βixik + εik, εik ∼ N(0, σ 2). (4)

Note that Model (4) assumes that all the perceivers have the same variability,
i.e., the same consistency level in EA. The model comparison is conducted using
the deviance information criterion (DIC), where a small value of is preferred and
a difference of more than 10 usually rules out the model with a higher DIC
(Spiegelhalter et al., 2002). The results are summarized in Table 1. The evidence
is clear and convincing that across all the four video groups, the BDV Model
(3) provides much better model fits than Model (4). This data-driven evidence
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Table 1 Model comparison between the BDV Model (3) and Model (4) using DIC

High-negative Low-negative High-positive Low-positive

BDV Model (3) 18288.58 12981.28 9318.62 20196.82

Model (4) 20758.17 14949.47 12063.96 22649.64

Table 2 Correlation between rZ and the Bayesian measures on EA

High-negative Low-negative High-positive Low-positive

Discrimination 0.74 (p < 0.01) 0.57 (p < 0.01) 0.40 (p < 0.01) 0.52 (p < 0.01)
Variance −0.63 (p < 0.01) −0.08 (p = 0.41) −0.72 (p < 0.01) −0.52 (p < 0.01)
BEA 0.99 (p < 0.01) 0.98 (p < 0.01) 0.96 (p < 0.01) 0.99 (p < 0.01)

P-values are based on two-tailed tests and included in parentheses. Significant p-values (<0.05)
are indicated in bold

supports the inclusion of the perceiver-specific variance, which further confirms that
variability is a unique dimension aside from discrimination in EA.

Finally, we compare the results from the Bayesian model with the conventional
rZ estimates. For each video, we compute the Pearson correlation between per-
ceivers’ estimated rZ estimates and the Bayesian estimates of discrimination and
variability, respectively. Furthermore, we investigate the correlation between the
rZ estimates and the estimates for βi/σi, i = 1, . . . , n, which is the ratio of
the discrimination and the square root of random error’s variance, similar to the
measure used by Cao et al. (2010). We refer to this ratio as the “Bayesian EA
aggregated estimate” and denote it as BEA. Similar to rZ, the measure BEA can
take any value from the real line.A high BEA implies that a perceiver has a relatively
large discrimination and a relatively small variability.

Table 2 shows that the association between perceivers’ rZ and BEA is consis-
tently high, with the correlation being almost 1. However, the association between
perceivers’ rZ and the latent dimensions on discrimination and variability are weak
to moderate (though most of them are statistically significant). This indicates that
the conventional correlation, as was used by Devlin et al. (2014) and most existing
literature, only provides a valid aggregate measure for EA, but it does not provide
much insight into the dimensions underlying the structure of EA.

3.2 Study on Musical Empathic Accuracy

In a study of the association between EA and accuracy of emotion recognition in
music, Tabak et al. (In press) collected data from 415 undergraduate perceivers
enrolled at Southern Methodist University. Perceivers participated in a novel music
EA task, in which they listened to and rated 12 brief music recordings expressing
the target’s (musician’s) primary emotions of joy/happiness, sadness, anger, and
tenderness (3 recordings per emotion). Stimuli were solo piano pieces created by
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six composer-pianists. Identical to the video EA task in the previous case study,
perceivers listened to the excerpts and provided continuous real-time response
evaluations of how negative or positive (1 = very negative to 9 = very positive)
they perceived the music to be. Samples were collected every 2 s. The same data
collected from the composer-pianist targets provided the “true” target ratings to be
compared with perceivers’ ratings.

EA research has typically focused on cognitive empathy, i.e., perceivers’ under-
standing of a target’s thoughts, feelings, and general mental state (Zaki et al., 2009).
However, recently Morrison et al. (2016) included an additional assessment of EA
in which they slightly altered the instructions of the task to assess affect sharing
or the extent to which a perceiver experiences the same emotion as a target (i.e.,
affective empathy). To examine the two different kinds of EA, perceivers in this
study were randomized into an affective empathy group or a cognitive empathy
group. In the affective empathy group (n = 230), perceivers were asked to provide
their own emotional response when listening to the music, whereas in the cognitive
empathy group (n = 185), they were instructed to try to understand the emotion
being communicated or expressed by the composer-pianist in the recordings.

In this application, our goal is to use the BDVModel to investigate the association
between perceivers’ EA underlying dimensions and their musical training in both
groups. Musical training has been shown to modulate emotion recognition of music
(Di Mauro et al., 2018). Our aim here is to examine whether musical training is asso-
ciated with the accurate perception of musical emotion, as operationalized according
to the musician-targets’ intent. Musical training is measured by the Goldsmiths
Musical Sophistication Index (Müllensiefen et al., 2014), a psychometric tool for
the measurement of musical attitudes, behaviors, and skills. For each group, we first
compute the correlation between the estimates of each dimension in EA and the
Gold-MSI among the perceivers. In addition, we examine the association of EA and
Gold-MSI in three conditions: (1) across all 12 music recordings (i.e., J = 12), (2)
among the 6 positive music recordings (i.e., J = 6) which consist of 3 recordings
expressing happiness and 3 recordings expressing tenderness, and (3) among the
6 negative music recordings (i.e., J = 6) which consist of 3 recordings expressing
sadness and 3 recordings expressing anger. Note that there are multiple stimuli under
each condition, and it is not straightforward to compute an overall EA measure from
the correlational analysis in this setting.

We fit the BDV Model (1) to multiple stimuli for each of the three above
conditions. We then compute the Pearson correlation between the Gold-MSI and
the Bayesian estimates of discrimination and variability, respectively. Table 3
provides the results for the affective empathy and the cognitive empathy groups.
First, for the affective empathy group, none of the association between estimated
discrimination nor variance with musical background is statistically significant. On
the other hand, for the cognitive empathy group, we find a significant association
between perceivers’ estimated discrimination and their musicality across all the
three conditions. However, the association between the estimated variability and
perceivers’ musicality is not statistically significant. In other words, higher levels
of discrimination in the cognitive assessment of musician/targets’ emotions are
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Table 3 Correlation between empathic accuracy latent dimensions and musicality

Affective group Cognitive group

Discrimination Variance Discrimination Variance

All music −0.00 (p = 0.98) −0.02 (p = 0.78) 0.22 (p < 0.01) −0.09 (p = 0.23)

Positive music 0.07 (p = 0.31) −0.01 (p = 0.90) 0.19 (p = 0.01) −0.14 (p = 0.06)

Negative music −0.00 (p = 0.50) −0.02 (p = 0.74) 0.15 (p = 0.04) −0.07 (p = 0.33)

P-values are based on two-tailed tests and included in parentheses. Significant p-values (<.05)
are indicated in bold

Table 4 Model comparison between the BDV Model (1) and Model (5) using DIC

All music Positive music Negative music

Affective group Model (1) 183732 70507 107962

Model (5) 215722 83849 131688

Cognitive group Model (1) 167756 63654 97049

Model (5) 189105 72736 116119

associated with perceivers’ relative degree of musical ability, while the level of
consistency is not. In contrast, the congruence of one’s personal emotional responses
to the musician’s expressive intentions (EA for affective empathy) is not related to
one’s training and depth of musical knowledge. Finally, in order to confirm the need
for including perceiver-specific variance, similar to what was done in the previous
application, we compare the model fit between the BDVModel (1) and the following
random-effect model with a constant variance:

yijk = βij xjk + εijk, εijk ∼ N(0, σ 2), i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , Kj .

(5)
The prior specification of model (5), other than the perceiver-specific variance,
remains the same as that in (2). The model comparison using DIC is summarized
in Table 4. It shows that for all the three conditions and for both the affective
group and the cognitive group, DIC for the BDV Model (1) is substantially smaller
than that for Model (5). The model comparison results provide strong evidence
to show that the incorporation of the perceiver-specific variance improves model
fit substantially. Whether examining one stimulus or multiple stimuli, variability,
as measured by the perceiver-specific variance of the random error in the model,
is a distinctive dimension of EA, which is inherently different from perceiver-
specific discrimination. Thus, when looking at perceivers’ EA patterns, including
both dimensions provides more detailed information about perceivers’ perceptions.
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4 Conclusion

In this article, we have proposed a Bayesian latent variable model which serves
as an alternative to the conventional correlational analysis for empathic accuracy
(EA) research using continuous real-time assessments. The proposed BDV model
has three main advantages over the correlational analysis. First, it is more sensitive
to perceiver-level differences in EA studies, as reflected in varying response
behaviors (e.g., using different ranges of the scale). Correspondingly, the BDV
Model quantifies two behavioral dimensions of EA, discrimination, and variability.
Similar to the correlational analysis, these two dimensions measure the overall EA
level for each perceiver, but more importantly, they explain how perceivers differ
in EA. Using correlation, many perceivers giving different rating patterns may have
a similar EA level, but using discrimination and variability, these differences can
be identified. Finally, while correlational analysis must be conducted independently
for each individual target, the proposed model is capable of providing an overall
EA measure where multiple stimuli are included under one condition of an EA task.
Taken together, the Bayesian approach to EA can shed light on distinctions that are
not detectable by simple correlational analysis.

There are many areas of research that can benefit from this approach. Broadly
speaking, it could be used to increase the analytical precision of any experi-
mental paradigm involving the comparison of sequential measurements on latent
perceptual responses, such as research on social cognitive deficits in individuals
with autism spectrum disorders and schizophrenia. The association of EA with
social functioning in healthy and clinical populations has previously relied on
the correlational approach to EA analysis (Lee et al., 2011). With the approach
described here, researchers may be able to identify specific dimensions of EA
that may be more or less impaired among clinical populations. For example,
the discrimination parameter could be used to elucidate the extent to which the
amplification of negative information and suppression of positive information that
characterize individuals with depression (LeMoult & Gotlib, 2019) . The increased
level of specificity could also benefit neuroscientists by examining the extent to
which different dimensions of EA are correlated with real-time neural processing
(Mackes et al., 2018). Furthermore, the BDV model can be improved in future
research by incorporating other covariates that represent perceivers’ and targets’
characteristics. In general, improving the BDV model requires a consideration of
both the quality of the model fit and its interpretability in the context of measuring
EA.

In conclusion, the proposed Bayesian EA model is more flexible in handing
perceiver-specific parameters than traditional correlational analysis. The model
specification is simple, and the computation is efficient. Annotated R code is
included to facilitate the implementation of the proposed model.



214 L. H. Nghiem et al.

References

Biesanz, J. C. (2010). The social accuracy model of interpersonal perception: Assessing individual
differences in perceptive and expressive accuracy. Multivariate Behavioral Research, 45(5),
853–885.

Bland, J. M., & and Altman, D. G. (1999). Measuring agreement in method comparison studies.
Statistical Methods in Medical Research, 8(2), 135–160.

Cao, J., & Stokes, L. (2017). Comparison of different ranking methods in wine tasting. Journal of
Wine Economics, 12(2), 203–210.

Cao, J., Stokes, S. L., & Zhang, S. (2010). A Bayesian approach to ranking and rater evaluation: An
application to grant reviews. Journal of Educational and Behavioral Statistics, 35(2), 194–214.

Devlin, H. C., Zaki, J., Ong, D. C., & Gruber, J. (2014). Not as good as you think? trait
positive emotion is associated with increased self-reported empathy but decreased empathic
performance. PloS One, 9(10), e110470.

Di Mauro, M., Toffalini, E., Grassi, M., & Petrini, K. (2018). Effect of long-term music training
on emotion perception from drumming improvisation. Frontiers in Psychology, 9, 2168.
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