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S. Lynne Stokes



Life and Works of S. Lynne Stokes

I was born on December 16, 1950, in Corsicana, the seat of Navarro County, Texas,
where six generations of the Stokes family had lived. I was the second-born to
a family of teachers. My dad taught mathematics and physics and coached the
baseball team at Navarro Junior College, which had been established in 1946 as
he and so many others were returning from WWII. My mother taught Spanish and
agriculture, neither of which she had ever taken a course in, at the high school in
her nearby hometown, Richland. In 1952, my parents decided to pull up roots and
head to graduate school at Peabody College, now a part of Vanderbilt University,
in Nashville, Tennessee. Their families were horrified that they would move so far
away, and especially that a mom of two would take such an unconventional path.
But the GI Bill had placed higher education within reach for many families who
would now be called “first-generation,” including mine. My parents went on to earn
doctorates and have careers as college professors, he in mathematics and she in
psychology. Their last and longest stint was at Austin Peay State University, where
my dad chaired the Math Department for more than 20 years and my mom helped
train a generation of school counselors in Clarksville, Tennessee. From this exposure
and the joy they had in their careers, I decided at a young age that being a professor
was my goal.

I studied mathematics at the University of the South in Suwanee, Tennessee. One
of the faculty members, Mac Priestley, agreed to supervise me in an independent
study out of Kemeny and Snell’s book on Markov chains. From that experience, I
decided that enrolling in a statistics PhD program was the right path for me, not
realizing that it was actually probability I had been fascinated by. Luckily, I liked
statistics even better, which I realized after joining the program at the University of
North Carolina.

My years in Chapel Hill are among my fondest memories. My advisor, Norman
Johnson, was endlessly encouraging and supportive. He asked me to read Dell and
Clutter’s 1972 ranked set sampling paper, then recently published, to see if I had
any ideas on extensions for my dissertation work. Since that time, I have had the
pleasure of discussing and collaborating with many on this topic, including several
contributors to this volume.
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viii Life and Works of S. Lynne Stokes

My first job after school was in the Department of Mathematics at Vanderbilt,
which was near my family home. I was one of only two statisticians in a
large department. I soon decided I preferred real data and the company of other
statisticians, and moved on to the Patuxent Wildlife Research Center in Laurel,
Maryland. Patuxent was then a part of the US Fish and Wildlife Service and
located in a 16,000-acre refuge of beautiful forest and wetlands in the midst of
the Washington DC/Baltimore urban sprawl. There I learned from scratch about
birds, and how to model bird-banding and capture-recapture data from the talented
biometricians there, including Jim Nichols, a mentor and co-author. This is a skill
I transferred from birds to people (at Census) and back to fish and the people who
catch them (for NOAA) over the course of my career.

Patuxent changed my life in another way as well. There I met Dan Moulton,
a biologist in the bird-banding lab, where he worked between field seasons on
Laysan Island in Hawaii, where he was studying and banding Laysan ducks. During
his second 6-month field season, we corresponded by letter and audio tape. These
could be transported only by military plane or ship as they patrolled the Hawaiian
archipelago. Soon after Dan returned from Laysan, we married.

While he was away, I left Patuxent for the US Census Bureau, which was just
a short trip around the Beltway. Mary Mulry and I were hired into the Statistical
Methods Division by Paul Biemer, whom we had first met at age 20 when all three
of us were participants in an undergraduate NSF summer mathematics program at
Texas A&M. Mary, Paul, and I have been colleagues, friends, and collaborators for
50 years, and we have NSF to thank for that.

Paul had studied under H. O. Hartley, and he introduced me to sampling theory
and measurement error methods. The Census Bureau provided an unlimited supply
of real-life problems for non-sampling error research, which has remained a lifelong
interest. Fortunately for my career, errors occur whenever data are collected. This
allowed me to dabble in many fascinating application areas over the years. Two
of these areas, fisheries and education surveys, are well represented in this volume
(Brick, Andrews & Foster; Becker & Gozutok).

When Dan took a position at Texas Parks and Wildlife in Austin in 1983, I
moved with him and worked remotely for Census, before that was common. This
arrangement was facilitated with the help of Kent Marquis, my division chief at
Census, and Carl Morris, then in the Mathematics Department at the University of
Texas. Kent and Carl had known each other at Rand, proving once again that it helps
to get lucky. Soon a faculty position opened for a statistician in the Management
Science Department at UT’s Business School, and I was again in the right place at
the right time. In my 15 years at UT, I expanded the range of problems I worked on
with colleagues in fields from finance to demography to operations research.

In 2001, I left UT for the Statistics Department at Southern Methodist University,
after a convincing chat with my long-time acquaintance Bill Schucany. I had
first met Bill at a Conference of Texas Statisticians meeting shortly after moving
to Texas, and had received useful advice from him over the years. SMU was a
perfect place for the last 20 years of my career, providing a helpful administration,
supportive colleagues, and excellent graduate students. I chaired the department for
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one term, and then became the inaugural director of SMU’s Data Science Institute
in my last 2 years there. Several of the contributors to this volume are cherished
colleagues and former students from SMU.

My path likely would not have been so straight and well-marked if it had not
been for the opportunities that began to open up for women at just the right time
for me. I also benefited from introductions provided by supportive male mentors,
colleagues, and classmates. I entered the University of the South the first year they
accepted women (1969). My entering cohort in the Statistics Department at UNC
in 1972 were half women and half men, marking the first year that women who
were not wives of students were admitted in significant numbers. I was the fourth
woman to receive a PhD in statistics at UNC, three of whom were supervised by
Norman Johnson, who may have been influenced by his wife Regina from the UNC
Biostatistics Department. At Vanderbilt, I was the first woman to fill a tenure-track
position in the Mathematics Department, and at SMU, the first woman chair of the
Statistics Department. My network-building began in the NSF program I attended
as a 20 year old, which I believe illustrates the value of promoting diversity in such
programs for young scholars.

Dallas, TX, USA S. Lynne Stokes
May 2022
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S. Lynne Stokes’s PhD thesis

Lynne enjoying the snow at Patuxent Wildlife Research Center, circa 1980
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Mary Mulry, Paul Biemer, and Lynne at an NSF program reunion circa 1980

Lynne enjoying Friday morning teatime at SMU in 2007
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Celebrating Betsy Becker’s election to Fellow at 2008 JSM with an Educational Statistics mentor
for both of us, Ingram Olkin

Helena Jia, Lynne, and Bingchen Liu in downtown Princeton during a meeting at ETS in 2017
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From left to right: Jessica Wickersham, Raanju R. Sundararajan, Daniel F. Heitjan, Chul Moon,
Hon Keung Tony Ng, Xinlei (Sherry) Wang, Mahesh Fernando, Monnie McGee, S. Lynne Stokes,
Sheila Crain, Jing Cao, and Charles South in Dallas, Texas, during a department faculty gathering

in May 2022
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Awards and Honors

• Caren Prothro Faculty Service Award, Southern Methodist University (2019)
• Founders Award, American Statistical Association (2013)
• Dedman Family Distinguished Professor, Southern Methodist University (2013)
• United Methodist Church University Scholar/Teacher of the Year Award (2011)
• Don Owen Award, American Statistical Association, San Antonio Chapter

(2005)
• Fellow of the American Statistical Association (1998)
• Phi Beta Kappa
• Sigma Pi Sigma

Publications

Refereed Journals and Proceedings

1. “Investigating Record Linkage for Combining Voluntary Catch Reports with
a Probability Sample,” (B. Williams, L. Stokes, and J. Foster), Fisheries
Research, 251, 106301 (2022).

2. “Predictive modeling of maximum injury severity and potential economic cost
in a car accident based on the General estimates system data,” (G. Alkan, R.
Farrow, H. Liu, C. Moore, H.K.T. Ng, S. L. Stokes, Y. Xu, Z. Xu, Y. Yan, and
Y. Zhang), Computational Statistics, 36, 1561–1575 (2021).

3. “The Impact of non-sampling errors on estimators of catch from electronic
reporting Systems,” (L. Stokes, B. Williams, R. McShane, and S. Zalsha),
Journal of Survey Statistics and Methodology, 9, 159–184 (2021).

xv
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4. “Prevalence of Sexual Victimization among Female and Male College Students:
A Methodological Note with Data,” (Jouriles, E. N., Nguyen, J., Krauss, A.,
Stokes, S. L., and McDonald, R.), Journal of Interpersonal Violence, (2020).

5. “A method to correct for frame membership error in dual frame estimators,” (D.
Lin, Z. Liu, and L. Stokes), Survey Methodology, 45, 543–565 (2019).

6. “Accumulating Evidence of the Impact of Voter ID Laws: Student Engagement
in the Political Process,” (K. S. McConville, L. Stokes, and M. Gray), Statistics
and Public Policy, 5, 1–8 (2018).

7. “Cross-Cultural Issues in Teaching Ethics in a Statistics Curriculum,” (A.
Elliott, L. Stokes, and J. Cao) The American Statistician, 72, 359–367 (2018).

8. “Comparison of Different Ranking Methods in Wine Tasting,” (J. Cao and S.L.
Stokes), Journal of Wine Economics, 12, 203–210 (2017).

9. “Estimation of total from a population of unknown size and application to
estimating recreational red snapper catch in Texas,” (B. Liu, S.L. Stokes, T.
Topping, and G. Stunz), Journal of Survey Statistics and Methodology, 5, 350–
371 (2017).

10. “Just in time teaching in Statistics Classrooms,” (M. McGee, L. Stokes, and P.
Nadolsky), Journal of Statistics Education, 24, 16–26 (2016).

11. “A power analysis for fidelity measurement sample size determination,” (L.
Stokes and J. Allor) Psychological Methods, 21, 35–46 (2016).

12. Using Ranked Set Sampling with Cluster Randomized Designs for Improved
Inference on Treatment Effects.” (X. Wang, J. Lim, and L. Stokes), Journal of
the American Statistical Association, 111, 1576–1590 (2016).

13. “Analyses of Wine Tasting Data: A Tutorial,” (I. Olkin, Y. Lou, L. Stokes, and
J. Cao), Journal of Wine Economics, 10, 4–30 (2015).

14. “The National Children’s Study 2014: Commentary on a Recent National
Research Council/Institute of Medicine Report Academic Pediatrics,” Aca-
demic Pediatrics, 14, 545–546 (2014).

15. “Sample Size Calculation for a Hypothesis Test,” (L. Stokes), Journal of the
American Medical Association, 312, 180–181 (2014).

16. “Kernel Density Estimator from Ranked Set Samples,” (X. Wang, J. Lim, M.
Chen, and L. Stokes), Communications in Statistics – - Theory and Methods,
43, 2156–2168 (2014).

17. “Methods for Improving Response Rates in Two-Phase Mail Surveys,” (M.
Brick, W. Andrews, P. Brick, H. King, N. Mathiowetz, and L. Stokes), Survey
Practice, 5, 1–6. (2012).

18. “Stranger at the Gate: the Effect of the Plaintiff’s use of an Interpreter on
Juror Decision-Making,” (D. Shuman, L. Stokes, and G. Martinez), Behavioral
Sciences and the Law, 29, 499–512 (2011).

19. “Performance of Weighted Random Effects Model Estimators under Complex
Sampling Designs,” (Y. Jia, L. Stokes, I. Harris, and Y. Wang), Journal of
Educational and Behavioral Statistics, 36, 6–32 (2011).

20. “Evaluation of Wine Judge Performance through Three Characteristics: Bias,
Discrimination, and Variation,” (J. Cao and L. Stokes), Journal of Wine
Economics, 5, 1–11. (2010)
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21. “A Bayesian Approach to Ranking and Rater Evaluation: an Application to
Grant Reviews,” (J. Cao, S. Zhang, and L. Stokes), Journal of Educational and
Behavioral Statistics, 35, 194–215. (2010).

22. “Data Masking for Disclosure Limitation,” (L. Stokes and G. Duncan), Wiley
Interdisciplinary Reviews: Computational Statistics, 1, 1–10 (2009).

23. “Bayesian IRT guessing models for partial guessing behaviors,” (J. Cao and L.
Stokes), Psychometrika, 73, 209–230 (2008).

24. “A Nonparametric Mean Estimator for Judgment Post-Stratified Data,” (X.
Wang, J. Lim, and L. Stokes), Biometrics, 64, 355–363 (2008).

25. “Judgment Post-Stratification with Multiple Rankers,” (L. Stokes, X. Wang, and
M. Chen), Journal of Statistical Theory and Applications, 6, 344–359 (2007).

26. “Concomitants of multivariate order statistics with application to judgment
post-stratification,” (X. Wang, L. Stokes, J. Lim, and M. Chen), Journal of the
American Statistical Association, 101, 1693–1704 (2006).

27. “Forming Post-Strata via Bayesian Treed Capture-Recapture Models,” (X.
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and L. Stokes), Biometrics, 62, 135–141 (2006).
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34. “Acceptance Sampling with Rectification when Classification Errors are
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Technology, 33, 493–505 (2001).
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36. “Estimating the Number of Classes in a Finite Population” (P. Haas and
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37. “Success rate with repeated cycles of in vitro fertilization-embryo transfer,” (D.
Meldrum, K. Silverberg, M. Bustillo, and L. Stokes), Fertility and Sterility, 69,
1005–1009 (1998).

38. “Do Product Warnings Increase Safe Behavior?: A Meta Analysis” (E. Cox, L.
Stokes, E. Murff), Journal of Public Policy and Marketing, 25, 195–204 (1997).



xviii Awards, Honors, and Publications of S. Lynne Stokes
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40. “Considerations of Cost Trade-Offs in Insurance Solvency Surveillance Policy”
(J. Lamm-Tennant, L. Starks, L. Stokes), Journal of Banking and Finance, 20,
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48. “Developing an Optimal Call Scheduling Strategy for a Telephone Survey” (B.
Greenberg and L. Stokes), Journal of Official Statistics, 6, 421–435 (1990).
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Stokes), Journal of Wildlife Management, 48, 1053–1059 (1984).
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1. “Measuring treatment fidelity with reliability and validity across a program
of intervention research: Practical and theoretical considerations,” (Allor, J.
H. and Stokes, L.), In G. Roberts, S. Vaughn, S. N. Beretvas, and V. Wong
(Eds.), Measuring and Modeling Treatment Fidelity in Studies of Educational
Intervention, New York: Routledge Taylor & Francis Group (2017).

2. “Interviewer Effects,” in Encyclopedia of Research Methods for the Social
Sciences, M. Lewis-Beck, A. Brayman and T.F. Liao, Editors, Sage Publications
(2003).

3. “Identifying and Adjusting for Recall Error with Application to Fertility Sur-
veys,” (T. Pullum and L. Stokes), Chapter 31 (pp. 711–732), Survey Measurement
and Process Quality, John Wiley and Sons (1997).

4. “A Cost-Effective Approach for Regulating Insurance Company Solvency,” (J.
Lamm-Tennant, L. Starks, and L. Stokes), in The Financial Dynamics of the
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6. “A New Approach to Identifying Sources of Interviewer Effects in Telephone
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Methodology, Robert M. Groves, Editor, John Wiley and Sons, Inc. (1988).

7. “Ranked Set Sampling,” in Encyclopedia of Statistical Sciences, N. Johnson and
S. Kotz, Editors, John Wiley & Sons, 585–588 (1986).



Preface

When our colleague Lynne Stokes announced her intention to transition to emerita
status at the end of the 2022 academic year, our initial reactions were dismay—at
losing a valued colleague—and surprise—that she would walk away while still at
the top of her game. How can you retire, Lynne; what will you do? And what will
our department do without you?

After reconciling ourselves to the coming new reality, we decided that we should
do something special to commemorate Lynne’s remarkable career and recognize
this momentous life change. A symposium, we thought—but Lynne said she did
not want a symposium. Well then, a party hosting current and past colleagues and
students. No, Lynne said, no party. Perhaps an intimate dinner with the faculty? No
again. A Texas barbecue? A Lynne-themed Friday tea time? No and no. Well how
about a festschrift?

And that is how this book came to be.
So we made the rounds of Lynne’s many students, co-authors, and past and

current colleagues, who were universally eager to contribute papers in areas where
she has worked over the years. We express our sincere gratitude to all of them for
writing chapters of such high quality on a tight deadline. Special thanks are also due
to the referees, many of them authors as well, for their constructive reviews. And
we acknowledge the team from Springer Nature Group—Laura Aileen Briskman,
Kirthika Selvaraju, Faith Su, and Amelie von Zumbusch—who have gently guided
the project from inception to production.

Most importantly, we are grateful to our colleague and friend Lynne Stokes for
blessing this work and for supporting our efforts with her characteristic energy,
generosity, and humility. It is our great pleasure to present her with this book on
the occasion of her transition to the next phase of a most interesting and well-lived
life.

Waltham, MA, USA Hon Keung Tony Ng
Dallas, TX, USA Daniel F. Heitjan
June 2022
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Part I
Ranked-Set Sampling, Judgement

Post-stratified Sampling, and
Capture-Recapture Methods



Predictive Modelling and Judgement
Post-stratification

Steven N. MacEachern and Jiae Kim

Abstract Predictive modelling has come to the forefront of statistics in recent years
as interest in forecasting the results of experiments and interventions has increased.
We now routinely see forecasts in the news media that include point predictions,
an assessment of variation to accompany the prediction and even a full predictive
distribution. In the area of ranked set sampling, Stokes and coauthors’ work on the
use of measured order statistics, and their concomitants provided a crucial step that
allows one to pass from the subjective assessment of ranks of responses within a
set to the use of covariates. The transition also allows one to make use of formal
models for a response given measured covariates to improve upon the basic ranked
set sampling estimators while retaining the robustness properties of the method.
This chapter pursues the use of predictive distributions in the context of ranked
set sampling. We find that the predictive viewpoint naturally leads us away from
imposing a strict ranking on the units in a set to expressing a distribution over ranks
for each unit in the set. In turn, this change suggests the use of judgement post-
stratification rather than ranked set sampling. It also yields novel estimators which
are shown to outperform the standard estimators.

1 Ranked Set Sampling and Judgement Post-stratification

Stokes’ pioneering work (Stokes, 1977) brought measured covariates to ranked set
sampling (RSS). Briefly restating her work and establishing notation, consider a set
of nH units that are partitioned at random into n sets, each of size H . The units are
presumed to form a random sample from some distribution. Within a given set, we
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begin with (Xh, Yh), h = 1, . . . , H . These units are ranked on the Xh, so that X(r:H)

is the rth order statistic in the set. The measured response, Y[r:H ], associated with
this unit is its concomitant. To draw a RSS of size n from such a population, sample
sizes nh, h = 1, . . . , H , are specified, with

∑H
h=1 nh = n. One unit is drawn from

each of the n sets; in nh sets, the unit ranked h is selected. The resulting sample is a
RSS.

The earliest description of RSS appears in McIntyre (1952) (republished as
McIntyre, 2005). In McIntyre’s description of the technique, ranking is based on
the subjective judgement of an experimenter who examines each set of H units,
specifying the ranks of the units in the set. Once the units in each set have been
ranked, the sample is drawn as described above and the response of interest, Y , is
measured on the n sampled units. Extending our notation to capture both set and
rank within set, the mean of the nH units is

Ȳ = (nH)−1
n∑

i=1

H∑

h=1

Yih , (1)

where Yih is the response of the unit with rank h in set i. Suppressing the notation
for the rank, define Yi to the be ith of the n sampled units. Provided nh > 1 for all h,

Ȳrss = H−1
H∑

h=1

Ȳh , (2)

where Ȳh is the sample mean of the nh sampled units with rank h. The RSS
estimator is unbiased: E[Ȳrss | Ȳ ] = Ȳ for any collection of nH units. Furthermore,
when the units are a random sample from a distribution with mean μ = E[Y ],
E[Ȳrss] = E[Ȳ ] = μ. The goal of RSS is to estimate μ. Stokes and Sager (1988)
cast estimation of a cumulative distribution function as estimation of a proportion
(mean) for all cut points on the real line.

RSS with estimation following (2) is robust to variation in the specifics of how
the ranks are created. When created subjectively, better ranking leads to greater
separation of the means of the rank classes (or strata), in turn leading to greater
reduction in variance relative to estimators based on a random sample from the
population. When ranks arise from a measured covariate, the same holds. Sound
experimental practice includes blinding the ranker to which units will be fully
measured. When implemented, the estimator is unbiased for μ as long as the ranks
can be determined before the responses of the selected units are measured. If the
ranking process makes modest use of the measured responses, the bias is typically
small.

Judgement post-stratification (JPS) is a common variant of ranked set sampling.
To draw a JPS sample, a collection of n units is selected for full measurement
(both X and Y ) from the population as described above. For each fully measured
unit, a set is filled out by independently drawing an additional H − 1 units. For
these supplemental units, only X is measured. The end result is n sets of H units.
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Within a set, Xh is measured for all H units, while Yh is measured for a single
unit. Upon ranking the units, conceptually, we have the pairs (X(r:H), Y[r:H ]), for
r = 1, . . . , H . In practice, most of the responses are missing and we have only
one measured response, Y[r:H ], for some r . When units are ranked on the basis of
a measured covariate, the name judgement post-stratification is a misnomer. The
name stems from the original work on the technique (MacEachern et al., 2004)
where ranking was based on subjective judgement about the units.

An equivalent description of JPS exists. As in the RSS, we could form n sets,
each consisting of H units. Instead of specifying the nh, h = 1, . . . , H , we select
a single unit at random from each set for full measurement. With ranks based on
the measured covariate, the nh, h = 1, . . . , H , are random variables. The vector
(n1, . . . , nH ) follows a multinomial distribution with n trials and parameter vector
(1/H, . . . , 1/H).

Whichever description of JPS is used, the data that are used for estimation consist
of n independent and identically distributed (IID) vectors (Yi, Ri), where Yi is the
measured value and Ri is the rank of the unit within its set. For estimation, we
parallel the technique of post-stratification from survey sampling. Conditioning on
the observed nh and using the estimator in Eq. (2), an estimator for μ can be obtained
as

μ̂jps1 = H−1
H∑

h=1

Ȳh = H−1
∑n

i=1 YiIih
∑n

i=1 Iih

, (3)

where shorthand notation has Iih = I (Ri = h). The within-rank sample size is nh =∑n
i=1 Iih, h = 1, . . . , H . The resulting estimator is unbiased for μ, conditional on

all of the nh > 0. Various patches exist to define the estimator when one or more
nh = 0. Frey and Feeman (2012) and Frey (2016) developed methods to reduce the
mean square error of μ̂jps1 by allowing some conditional bias in the estimator.

To extend the technique to two rankers, the data used for estimation consist of
the vectors (Yi, R1i , R2i ). The information from both rankers is used to form the
estimator

μ̂jps2 = H−1
H∑

h=1

∑n
i=1 Yipih
∑n

i=1 pih

, (4)

where pih = [I (R1i = h) + I (R2i = h)]/2. The notation pih reflects an empirical
estimate of the probability that the ith fully measured unit has rank h. The method
is easily extended to more than two rankers and to rankers of differing quality.

The move from RSS to JPS has several advantages. For one, it allows the
experimenter to use a conventional design (based on a random sample from
the population), with estimates improved by the use of covariates measured on
additional units. A second advantage is that JPS can be used in situations where the
units are not actually ranked. This may be due to disagreements between multiple
rankers as in MacEachern et al. (2004), or it may be due to the presence of more than
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one informative covariate, as in Wang et al. (2006). Wolfe provided an insightful
review of RSS, JPS and related techniques (Wolfe, 2012).

2 Multivariate Order Statistics and JPS

In Wang et al. (2006), Stokes and coauthors posed the intriguing question of how
to use multiple covariates to convey information about the ranks of units for use
in JPS. Their solution is to rank on each of the distinct covariates. In the case of
a continuous bivariate covariate, (X1, X2), each of the units in the set would be
assigned a pair of ranks—one for X1 and the other for X2. This pair of ranks defines
the post-stratum (or rank class) of the unit. For a set of size H , there are H 2 post-
strata. We denote these post-strata with r = (r1, r2), where r1, r2 ∈ {1, . . . , H }. We
focus on a bivariate covariate but note that the technique extends to covariates of
greater dimension. Figure 1 illustrates the situation for a bivariate order statistic for
set size H = 5.

The increase in the number of post-strata from H to H 2 necessitates recon-
sideration of the basic post-stratification estimator (3). Marginally, each covariate
for the measured unit will have rank ri = h with probability 1/H for i = 1, 2
and h = 1, . . . , H . The joint distribution of R leads to the stratum probability
πr = P(R = r). In general, these probabilities can be found via numerical
integration if the model for (X1, X2) is fully specified. Some of the πr may be much
smaller than H−2, leading to a large probability that the estimator is undefined.

Wang et al. (2006) handled this issue by appealing to a parametric model as an
aid to estimation. The authors defined μ[r] = E[Y | R = r]. The value of μ[r] can be
found by numerical integration over the conditional distribution of Y | R. Once the

−2 −1 0 1 2

−2
−1

0
1

2

X_1

X_
2

Fig. 1 Covariate pairs for a set of size H = 5. The bivariate rank vectors are (1, 1), (2, 3), (3, 2),
(4, 4), and (5, 5). The ranks based on X1 and X2 agree for three of the five items and disagree for
two. Extreme differences in the ranks may be very rare
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stratum means are in place, they are connected to the mean of Y via the expression
μ = ∑r πrμ[r]. It is helpful to introduce the difference between the stratum mean
and the overall mean, δ[r] = μ[r] −μ. The authors suggested estimation by ordinary
least squares applied to a model for μ, with observations in stratum r offset by δ[r].
The data are (Yi, ri ), i = 1, . . . , n, and the estimator is

μ̂oLS = n−1
n∑

i=1

(Yi − δ[ri ]) . (5)

The estimator μ̂oLS can be viewed in two stages: In the first, each observation
is bias-corrected by subtracting its δ[r]; in the second, the sample mean of the bias-
corrected observations is computed. Partitioning the sample into strata reduces the
within-stratum variances. Removing bias and then using the sample mean ensures
that each observation receives equal weight in the estimator. Together, these two
stages lead to substantial variance reduction, especially for relatively large set sizes.

In a refinement, Wang et al. (2006) suggested consideration of a weighted least
squares estimator that takes within-stratum variances into account. The within-
stratum variances are computed on the basis of numerical integration. This estimator
takes the form

μ̂wLS =
∑n

i=1 σ−2
ri (Yi − δ[ri ])
∑n

i=1 σ−2
ri

. (6)

In the event that the δ[r] and σ 2
ri are estimated, we place hats over them to

denote this. In the framework of bias-corrected estimators, μ̂oLS and μ̂wLS are
excellent performers—the mean and an optimally weighted mean. Wang et al.
(2006) demonstrated superior performance of these new estimators when the class
of models (multivariate normal distributions) is correct and the parameters in the
model are known or are estimated.

The theory developed in Wang et al. (2006) implies that the weighted average of
the offsets is zero for every model for which μ exists. That is,

∑

r

πrδ[r] = 0 . (7)

This is a delicate expression, as it is naturally satisfied when both the πr and the
δ[r] are correctly specified. Asymptotically, we expect the expression to hold if we
replace these two quantities with consistent estimators of them. If not, one would
expect the expression (7) to evaluate to something other than 0, leaving us with a
Fisher-consistent estimator of a quantity near, but not exactly equal to, μ.1

1Huber (1981), in his study of robustness, found a need to redefine consistency when the
distribution that generates the data might not lie in a tidy parametric family. His definition of
Fisher consistency focuses on functionals of the empirical distribution converging to a well-defined
population quantity. This quantity often differs from the nominal target of inference.
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An open question is whether one can develop estimators that are nearly as stable
as μ̂oLS and μ̂wLS and yet show more robustness to violations of the model that is
implicit in their construction. In the sequel, we develop estimators that show greater
robustness to departures from the joint model for X and from the model for Y |X. In
certain circumstances, our estimators show greater stability than do those of Wang
et al. (2006).

3 Consistency of JPS Estimators

The literature on RSS and JPS demonstrates the consistency of the estimators Ȳrss

and μ̂jps1 in (2) and (3), respectively, under minimal conditions. These traditional
estimators borrow heavily from the design-based perspective of survey sampling,
where (approximate) unbiasedness is prized. Small variance is the secondary
consideration. Modern work with surveys adjusts the balance, relying more heavily
on models, especially where missing data is a concern (Lohr, 2010). With this
perspective, a bit more bias is allowed, provided it is accompanied by a substantial
reduction in variance. Simulations are used to evaluate the estimators’ performance
when the model does not hold. Wang et al. (2006) pursued this path.

We work in the infinite population setting where we collect IID sets, observing
a single member of each set. As such, we envision that the data come from some
distribution which we refer to as the “true model”. In addition, there is a model used
to construct the estimator. We assume that μ exists under both models. Consistency
concerns arise when the true model and that used for analysis differ.

To set the framework for our consideration of robustness, we split the models
into two parts. The first is the conditional distribution of Y | R. The second
is the distribution of R for the unit that is to be fully measured. The true and
analysis models may differ in one or both of these aspects. A given estimator may
be robust to differences in one portion of the model but not to differences in the
other portion of the model. We consider each of the estimators in turn, presenting a
heuristic argument for or against consistency. Our statements are to be taken loosely;
simulations appearing in a later section support our claims. Formal statements and
proofs of these results await another venue.

We briefly note that the estimators μ̂jps1 and μ̂jps2 are consistent for μ. These
estimators do not rely on a model, and so we need not consider the gap between the
true and analysis models. Consistency was established in MacEachern et al. (2004).

The estimators based on parametric models, μ̂oLS and μ̂wLS , may or may not be
consistent. We begin with μ̂oLS . For a given stratum r, an offset observation, Y −
δ[r] = Y−μ[r]+μ, has mean μ—provided the true and analysis models agree for the
distribution of Y |(R = r) so that μ[r] has the same value under the two models and
the offset has been correctly specified (or will be estimated consistently). Averaging
across the strata, we see that the estimator targets the quantity μ −∑r πrδ[r]. The
estimator will be consistent for μ if (7) holds so that the average offset is zero. It is
clear that this will be the case when the distribution on R and the conditional mean
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of Y | (R = r) are correctly specified for each of the H 2 strata. The first ensures
accuracy of the πr, while the second ensures accuracy of the δ[r]. Together, these
imply (7). While these conditions stop short of full agreement between the true and
analysis models, they are nearly there.

We might suspect that these conditions are essentially necessary for consistency
for μ. However, the alternative description of the estimator lends insight. Suppose
only that the conditional means of Y | (R = r) are correctly specified. Then the δ[r]
are correct. Each debiased observation, Y − δ[r], has mean μ. The estimator is the
simple average of the n debiased observations and so is consistent for μ. Accuracy
of the πr is not needed.

Interestingly, there is a third path to consistency. Suppose that the distribution
on R is correctly specified, leading to a set of πr that are the same under true and
analysis models. Since these probabilities agree, and since, by the very definition
of δ[r],

∑
r πrδ[r] = 0 under all models, (7) holds under the analysis model. It also

holds under the true model. The debiasing for individual observations is inaccurate
if the conditional means are incorrectly specified, but the inaccuracies cancel in
the sum. In practice, for a finite sample size, the estimator would be conditionally
biased, given the nr. However, for large samples, the nr will be approximately
proportional to the πr and the bias will be small. In the limit, the bias disappears.
Thus, we see that μ̂oLS is doubly robust, needing only one of the two portions of
the model to hold to obtain consistency.

We next turn to μ̂wLS . This estimator targets the quantity

μ +
∑

r πrσ
−2
r δ[r]

∑
s πsσ

−2
s

. (8)

As with the ordinary least squares version of the estimator, we consider the debiased
observations, Y − δ[r]. The estimator is the precision weighted average of these
debiased observations, each of which has mean μ, provided the δ[r] are accurate.
This ensures consistency under the condition that the conditional means of Y |
(R = r) are correctly specified. Under this condition, the estimator is unbiased for
μ, and it has minimum variance in the class of weighted averages of the debiased
observations if the conditional variances are also correctly specified.

Unfortunately, the argument for consistency when only the πr are accurately
specified does not go through for μ̂wLS . The presence of the σ−2

r in (8) impacts
the weighting of the various rank classes. While (7) holds,

∑

r

πrσ
−2
r δ[r] = 0 (9)

does not. The estimator is not doubly robust.
The arguments for consistency of the various estimators lend insight into their

performance. In all cases, we expect a better model to lead to more accurate
estimation. Having the right family of models for Y | (R = r) allows us to
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create a consistent estimator for the conditional distribution of response given
ranks. This leads to consistency for all of the estimators we have discussed. But
it is difficult to capture this relationship correctly. The conditional distribution is
most naturally driven by a latent model for Y | X. Beginning with a model of
this sort, an integration over the distribution of X | R is needed to obtain that of
Y | R. The conditional distribution of X | R relies on the joint distribution for the
covariates X. Having the right joint distribution for the covariates would also lead
to the correct stratum probabilities πr. Thus, the joint distribution of the covariates
deserves attention when creating a model to aid in estimation.

There is one situation where it is easy to get the stratum probabilities correct.
This is when there is a single (univariate) set of ranks. In this case, the construction
of the JPS leads immediately to the probability πr = 1/H for each of the H strata.
In turn, this leads to consistency of μ̂oLS based on this single set of ranks for μ. We
note that using the method in Wang et al. (2006), of debiasing the Yi after passing to
a univariate summary of the covariates differs from the common practice of mapping
the covariate vector X into a fitted value, ranking on the fitted values, and then using
an estimator of the form (3).

4 Covariates or Ranks?

The use of the vector of measured covariates, Xi , to induce the ranks opens up many
possibilities. One might ask whether ranking on X1 and X2 is optimal, or whether
there is a mapping to another set of variates that leads to a better estimator. One
possibility stands out, especially when relying on a multivariate normal model for
(Y,X). The vector X can be mapped to the regression of Y on X and its orthogonal
complement. Under the multivariate normal model, this corresponds to an affine
transformation of the covariates, X, to a new set of covariates, say W = AX. The
first coordinate of W is E[Y | X]. The second coordinate is independent of both the
first coordinate and the response and can be dropped.

In practice, we do not expect to know the relationship between covariates and
response. With this in mind, we might estimate the relationship by fitting a model
for Y | X to our n fully observed cases. Having done so, the fitted values become
the first coordinate of W. Often, the fitted values are estimates of E[Y | W] =
E[Y | X]. From here, a natural estimate of μ can be obtained by averaging the fitted
values (estimated means) for all nH observations. Following this path, the ranks
have disappeared, and we are no longer in the setting of RSS or JPS.

The “covariate” approach leads to a natural estimator in the regression setting.
The model for Y | X is a constant variance linear regression model. The chain
of algebra below yields the estimator when the covariance matrix for X and Y is
known.

Define Ȳsrs and X̄srs to be the mean of the response and the covariates for the n

fully measured units, respectively. Take X̄ (a vector) to be the mean of the covariates
for all nH units. For the covariance matrix, with Y in position 1 followed by the
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vector X in the trailing positions, the matrix can be written in partitioned form. This
leads to �12 and �22 for the covariance of Y and the vector X and the variance
matrix for the vector X, respectively. Then

μ̂reg = 1

nH

n∑

i=1

H∑

h=1

Ê[Yih|Xih]

= 1

nH

n∑

i=1

H∑

h=1

μ̂Y + �12�
−1
22 (Xih − μ̂X)

= 1

nH

n∑

i=1

H∑

h=1

Ȳsrs + �12�
−1
22 (Xih − X̄srs)

= Ȳsrs + �12�
−1
22 (X̄ − X̄srs). (10)

This estimator is constructed by replacing the unknown parameters with estimates
from the n fully measured units. In the event that the covariance matrix was not
known, it would be replaced by the estimated covariance from the fully measured
units. If the covariance matrix is unknown, estimates can be plugged in for the
unknown quantities.

Why would one choose to pass from the covariate X to the coarser summary of
its rank? The advantage of working with the rank-based estimators is their ability
to handle deficiencies in the assumed model for (X, Y ). A well-chosen estimator
either will be consistent or will be Fisher consistent for a value very near the
truth. (Parenthetically, estimators based directly on (X, Y ) may also be consistent.)
The rank-based estimators also seem to be better able to handle poorer quality
covariates, including those whose distribution is not fully stable from one set to
another. They also lead to methods with enhanced robustness for data sets with
missing covariate values and imperfect models for the missing covariates given the
observed covariates.

5 The Predictive Rank Distribution

Ranks lie at the heart of JPS, and indeed all of RSS. Focusing on a single set, we
can describe the ranks of the H units in terms of a matrix P . Each row of the matrix
corresponds to a unit in the set, each column to the rank of the unit in the set. A
perfectly ranked sample corresponds to a permutation matrix where the row for unit
h, if having rank j , is the H -vector with a 1 in position j and 0 in all other positions.
We use the notation ph to represent row h of the matrix P .

JPS and RSS rely on the rank matrix P but do not rely on an assumption
of perfect ranking. Whether the ranks come from subjective judgement or from
measured covariates, they yield a permutation matrix P , provided there are no ties



12 S. N. MacEachern and J. Kim

in the ranking. In the event that there are ties, perhaps due to a pair of rankers (or
measured covariates) providing different ranking matrices, P1 and P2, MacEachern
et al. (2004) suggested use of the average P̄ = 0.5P1 + 0.5P2. This is appropriate
when there is no reason to prefer one ranking over the other. Replacement of the
permutation matrix P with the average necessitates replacement of the estimator (3)
with one that allows non-indicator vectors ph. Relying on the extensive body of
work on ratio estimation in survey sampling, MacEachern et al. (2004) suggested
the estimator in (4). This estimator effectively prorates the response across the strata
to which it may belong.

The replacement of an H × H permutation matrix P with a convex combination
over permutation matrices has been used productively in RSS by a number of
authors, primarily when concerned with creating models for imperfect rankings (e.g.
Bohn and Wolfe, 1994; Frey, 2007, while Dell and Clutter, 1972 and Fligner and
MacEachern, 2006 developed models for imperfect ranking of differing form). The
permutation matrices represent the extreme points of the set of doubly stochastic
matrices—matrices with non-negative entries whose row sums and column sums
total one. As a consequence, all other doubly stochastic matrices may be represented
as an average of permutation matrices.

The use of measured covariates for JPS allows one to build a model for the
response Y as a function of the measured covariates, X. The model may be
constructed from the data at hand, or it may have been developed in previous
studies. With more than one covariate, a regression model for Y on X effectively
transforms the vector of covariates into a single covariate while capturing much of
the information connecting covariate to response. If the units in a set are ranked on
the fitted value from the model when the covariate distribution is continuous, there
will be no ties among the covariate values, ranking will be unambiguous, and the
ranking matrix P will be a permutation matrix. Chen et al. (2005) took this approach
to form a logistic regression model for a binary response.

A second approach to predictive modelling seeks to provide a full predictive
distribution for Y given X. There are a variety of ways to produce such a distribution,
including Bayesian methods. Here, we consider a simple plug-in approach. Having
specified a model for Y | X, consider a set of H units. The predictive distribution of
the rank of Y , given the observed Xh, h = 1, . . . , H , is computed. This predictive
distribution yields the rows of the predictive rank matrix, P .

For the upcoming simulation study, we rely on a multivariate normal model to
obtain the predictive rank distribution. When H = 2, calculation can be done in
closed form. The predicted means for the cases in a set are x�

h β for h = 1, 2, and
the predicted variances are σ 2

y (1 − ρ2) where σ 2
y is the (marginal) variance of Y

and ρ2 is the coefficient of determination. This leads to the probability that unit 1 is
ranked smallest:

P(Y1 < Y2 | x1, x2) = 1−�

(
x�

1 β − x�
2 β

σy

√
2(1 − ρ2)

)

= �

(
x�

2 β − x�
1 β

σy

√
2(1 − ρ2)

)

, (11)
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where �(·) represents the standard normal distribution function. A corresponding
expression provides the probability that unit 1 is ranked largest. This leads to the
equation

p1 =
(

�

(
x�

2 β − x�
1 β

σy

√
2(1 − ρ2)

)

,�

(
x�

1 β − x�
2 β

σy

√
2(1 − ρ2)

))

. (12)

Similar calculations can be performed for unit 2 producing

p2 =
(

�

(
x�

1 β − x�
2 β

σy

√
2(1 − ρ2)

)

,�

(
x�

2 β − x�
1 β

σy

√
2(1 − ρ2)

))

. (13)

When H > 2, the rank probabilities result from the integral of a multivariate
normal distribution over a region defined by (hyper) planes. There is no closed-form
expression for this integral, but simulation or numerical integration techniques allow
us to approximate the integral. For our implementation, we only need the vector of
rank probabilities for the fully measured unit in the set.

To approximate the rank probabilities, we use a simple technique, described for
the case when unit 1 is sampled. We first generate Yh, h = 2, . . . , H , independently
from normal distributions with means xhβ

� and common variance σ 2
y (1 − ρ2).

These values are taken to be the responses for the H − 1 unsampled units in the set.
We next turn to the measured unit. We ignore the observed response, Y1, and use the
model to compute the H rank probabilities from the normal distribution with mean
xhβ

� and variance σ 2
y (1 − ρ2) and cut-offs from the drawn values of Y2, . . . , YH .

This gives us model-based rank probabilities for the measured unit, conditional on
Y2, . . . , YH . We then repeat this process and average the results to provide p̂1, a
Monte Carlo approximation to the desired row of the permutation matrix, p1. For
the upcoming simulations, we used a Monte Carlo sample size of 100 repetitions. A
similar process is used if a different unit in the set is measured.

A formal description of our estimator requires a little more notation. Let Y denote
the n-vector of measured responses. Let 1H denote the H -vector all of whose entries
are 1 and 1n denote a similar vector of length n. Stack the row vectors for the n

measured units’ predictive rank probabilities in an n × H matrix, Q. Making use of
our notation, the estimator (4) takes the form

μ̂jps2 = H−1
(
Y�Q

1�
n Q

)�
1H , (14)

where the ratio of H -vectors in parentheses is to be interpreted as elementwise
division. For a given rank, h, the contribution to the estimator (4) or (14) is the
ratio of two unbiased estimators—one for μh in the numerator and one for πh in the
denominator. While the πh are known to equal 1/H , the use of an empirical estimate
of this quantity tends to improve the estimator, as it does in survey sampling Lohr
(2010).
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Furthering the parallel to survey sampling, we consider a “regression estimator”
based on the measured Yi and using the corresponding predictive rank probability
vectors as covariates. This yields the estimator

μ̂jps3 = H−11�
H (Q�Q)−1Q�Y . (15)

The regression provides estimates of the means of the H rank classes which are then
averaged to form the estimate of μ.

The combination of ranking on a single dimension and regression based on
Q makes use of our knowledge of least squares regression. One of the basic
properties of the least squares regression surface is that it passes through the “point
of averages” given by the mean of the covariates (here, rank classes) and the mean
of the response. This is true both for the population level regression relationship
and regression based on a sample of data. Here, the population point of averages is
known for the predictive rank distribution—from the construction of the JPS, it is
simply H−1 for each of the H rank classes. The estimand is the mean of Y . The
estimator comes from first estimating the “slope” of the regression surface and then
adjusting from the sample point of averages for the predictive rank distribution to
the population point of averages.

6 Simulation Study

This section presents the results of simulation studies comparing the performance of
the various estimators of the mean based on a JPS sample. The findings for existing
estimators are in line with the results in Wang et al. (2006). They also highlight the
value that the predictive rank probabilities bring to estimation, particularly for the
new estimator in (15).

The first study investigates the performance of eight estimators when the model
that generates the data is fully known and is exactly right. This allows us to
look at the potential performance of the estimators, exclusive of uncertainty about
the model. Large sample sizes let us compare the asymptotic performance of the
estimators.

The eight estimators are JPS1 from (3), a plug-in estimator based on the rank of
E[Y | X1, X2] (LS), OLS and WLS from Wang et al. (2006), TRs from (4), JPS2
and JPS3 from (14) and (15) and REG from (10). JPS2 and JPS3 make use of the
predictive rank distribution. The estimator TRs has the same form as JPS2 but, as
in MacEachern et al. (2004), uses the two ranks from the concomitants instead of
the model-based predictive rank distribution. The REG estimator makes direct use
of the covariates.

The model is the following. There are n sets, each consisting of H units. There
are two covariates and a single response of interest. The covariates are measured
on all nH units, while the response is measured for a single unit in each set. The
vector (X1, X2, Y ) follows a multivariate normal distribution with standard normal
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marginal distributions and covariances (correlations) specified in Tables 1, 2, and 3.
The varied correlations range from a strong relationship between the concomitants
and Y to a relatively weak relationship between them. Sample sizes n = 20, 50 and
100 are investigated for set size H = 2. For larger set sizes, results are presented
only n = 50 and 100. For these set sizes, some of the estimators did not exist for
some replicates. For the simulation, 10,000 replicates were used.

The tables present the relative accuracy of the various estimators to the sample
mean based on a SRS. The entries are the ratio of MSEs for the SRS relative to
the estimator in question. A number greater than 1 indicates smaller MSE for the
estimator than for SRS.

We begin with a comparison of the new estimators JPS2 and JPS3. The overall
pattern is that JPS3 is more accurate than JPS2, sometimes noticeably so. There
are exceptions, particularly for smaller sample sizes and when the coefficient of
determination is large (i.e. when the variance of Y | (X1, X2) is small). There is
some indication that, for a small sample size relative to set size, JPS3 may become
numerically unstable, particularly when the coefficient of determination is large (this
instability not visible in the tables).

Table 1 Simulated performance of estimators for set size H=2 relative to SRS. Entries are ratios
of MSE

(ρ1y, ρ2y, ρ12) (0.9,0.9,0.65) (0.8,0.8,0.5) (0.5,0.5,0.5) (0.5,0.5,0.8)

n 20 50 100 20 50 100 20 50 100 20 50 100

JPS1 1.28 1.35 1.32 1.21 1.24 1.22 1.04 1.08 1.08 1.09 1.15 1.14

LS 1.40 1.43 1.43 1.31 1.35 1.33 1.08 1.12 1.12 1.10 1.15 1.15

OLS 1.58 1.58 1.53 1.45 1.44 1.42 1.15 1.15 1.14 1.18 1.20 1.18

WLS 1.58 1.59 1.54 1.45 1.45 1.42 1.16 1.15 1.14 1.18 1.20 1.18

TRs 1.46 1.50 1.46 1.35 1.37 1.34 1.11 1.12 1.12 1.13 1.18 1.17

JPS2 1.49 1.51 1.50 1.43 1.45 1.42 1.09 1.08 1.07 1.11 1.14 1.11

JPS3 1.48 1.51 1.51 1.48 1.51 1.52 1.14 1.17 1.19 1.19 1.26 1.26

REG 1.99 1.96 1.95 1.77 1.73 1.71 1.22 1.20 1.21 1.27 1.30 1.28

Table 2 Simulated performance of estimators for set size H=3 relative to SRS. Entries are ratios
of MSE

(ρ1y, ρ2y, ρ12) (0.9,0.9,0.65) (0.8,0.8,0.5) (0.5,0.5,0.5) (0.5,0.5,0.8)

n 50 100 50 100 50 100 50 100

JPS1 1.56 1.62 1.38 1.40 1.08 1.12 1.20 1.22

LS 1.79 1.82 1.60 1.65 1.13 1.16 1.21 1.24

OLS 2.06 2.08 1.79 1.79 1.20 1.22 1.31 1.29

WLS 2.08 2.10 1.79 1.80 1.20 1.22 1.30 1.29

TRs 1.87 1.91 1.62 1.64 1.16 1.17 1.26 1.27

JPS2 1.93 1.97 1.78 1.78 1.10 1.10 1.19 1.19

JPS3 1.92 1.97 1.87 1.92 1.21 1.24 1.33 1.37

REG 2.83 2.84 2.28 2.25 1.27 1.28 1.41 1.42
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Table 3 Simulated performance of estimators for set size H=4 relative to SRS. Entries are ratios
of MSE

(ρ1y, ρ2y, ρ12) (0.9,0.9,0.65) (0.8,0.8,0.5) (0.5,0.5,0.5) (0.5,0.5,0.8)

n 50 100 50 100 50 100 50 100

JPS1 1.72 1.82 1.47 1.53 1.08 1.15 1.20 1.26

LS 2.13 2.20 1.82 1.87 1.15 1.21 1.23 1.28

OLS 2.53 2.57 2.10 2.10 1.25 1.28 1.35 1.35

WLS 2.58 2.62 2.12 2.11 1.25 1.29 1.36 1.36

TRs 2.24 2.31 1.84 1.88 1.19 1.23 1.29 1.32

JPS2 2.38 2.42 2.06 2.10 1.10 1.14 1.22 1.21

JPS3 2.34 2.40 2.16 2.24 1.24 1.31 1.36 1.42

REG 3.75 3.80 2.77 2.77 1.32 1.36 1.48 1.48

With JPS3 generally outperforming JPS2, we turn to a comparison of JPS3 to
OLS and WLS of Wang et al. (2006). For JPS3, we see a pattern of increasing
efficiency relative to SRS as sample size increases. This comes from variation in the
observed predictive rank distribution—for the measured units, the distribution is not
uniform on the H rank classes. With a larger sample size, the distribution tends to
be closer to uniform. This effect is larger for larger set sizes. For large sample size,
JPS3 outperforms both OLS and WLS in all settings except the high correlation
setting. We attribute this to the effective use of the predictive rank distribution in a
context where the predictive rank distribution is fairly close to uniform.

The assumptions underlying the REG estimator are exactly right in this simula-
tion. As we would expect, making full use of this model produces a very accurate
estimator. In all cases covered by the simulation, the REG estimator has smaller
MSE than any of the JPS style estimators.

Based on this simulation study, we make these recommendations: When one
believes that a specific regression model is correct, use REG. Among the JPS style
estimators, when n is small relative to H and one has confidence in the model upon
which OLS and WLS are based, use either OLS or WLS; when n is large relative to
H and the correlation is not extremely strong, use JPS3.

The second study investigates robustness of the estimators. In all cases, the model
for Y | (X1, X2) is incorrectly specified. Following Wang et al. (2006), we generate
data from a multivariate normal model for (W1,W2, Y ), and then compute Xi =
exp (Wi) for i = 1, 2. The multivariate normal has mean vector 0 and correlations
that match those in the first simulation study. The correlations between the Xi and
between the Xi and Y are reported in Table 4. The correlations were obtained from a
massive, 2 billion observation simulation from the joint distribution of (X1, X2, Y ).
Note that, in this simulation, the bivariate rank probabilities for (X1, X2) match
those for (W1,W2). This portion of the model is correct.

Table 5 presents the results of our robustness simulation for set size H = 2.
Focusing on the comparison of JPS3 to OLS and WLS, we find that JPS3 nearly
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Table 4 Simulated
correlations for
lognormal/normal models for
(X1, X2, Y )

(log X1, log X2, Y ) (X1, X2, Y )

(ρ1y, ρ2y, ρ12) (ρ̃1y, ρ̃2y, ρ̃12)

0.9 0.9 0.65 0.6866 0.6866 0.5329

0.8 0.8 0.5 0.6103 0.6103 0.3776

0.5 0.5 0.5 0.3815 0.3815 0.3776

0.65 0.65 0.9 0.4959 0.4959 0.8495

Table 5 Simulated performance of the estimators for set size H=2 relative to SRS when model
does not hold. Entries are ratios of MSE. The table includes simulated correlations for (X1, X2, Y )

from Table 4

(ρ̃1y, ρ̃2y, ρ̃12) (0.6866, 0.6866, 0.5329) (0.6103, 0.6103, 0.3776)

n 50 200 800 3200 12800 50 200 800 3200 12800

JPS1 1.31 1.36 1.38 1.36 1.32 1.26 1.26 1.29 1.23 1.25

LS 1.42 1.45 1.47 1.47 1.44 1.34 1.36 1.40 1.35 1.37

OLS 1.52 1.54 1.55 1.52 1.51 1.45 1.42 1.46 1.40 1.42

WLS 1.52 1.54 1.55 1.53 1.52 1.45 1.43 1.46 1.40 1.42

TRs 1.46 1.50 1.51 1.49 1.47 1.39 1.37 1.41 1.35 1.37

JPS2 1.21 1.24 1.24 1.24 1.22 1.19 1.18 1.20 1.15 1.17

JPS3 1.63 1.70 1.71 1.72 1.71 1.51 1.53 1.59 1.52 1.56

REG 1.44 1.46 1.45 1.47 1.43 1.42 1.37 1.42 1.35 1.37

(ρ̃1y, ρ̃2y, ρ̃12) (0.3815, 0.3815, 0.3776) (0.4959,0.4959,0.8495)

n 50 200 800 3200 12800 50 200 800 3200 12800

JPS1 1.07 1.09 1.08 1.09 1.07 1.14 1.14 1.15 1.15 1.17

LS 1.10 1.12 1.11 1.12 1.11 1.15 1.14 1.15 1.16 1.17

OLS 1.13 1.14 1.13 1.13 1.12 1.18 1.16 1.17 1.17 1.18

WLS 1.13 1.14 1.13 1.14 1.12 1.19 1.16 1.17 1.17 1.18

TRs 1.11 1.12 1.12 1.12 1.11 1.17 1.16 1.17 1.17 1.18

JPS2 1.03 1.03 1.02 1.03 1.02 1.03 1.00 1.03 1.02 1.04

JPS3 1.11 1.15 1.14 1.15 1.15 1.17 1.19 1.20 1.20 1.22

REG 1.11 1.13 1.12 1.12 1.13 1.16 1.14 1.15 1.13 1.16

always outperforms OLS and WLS. The only instance where OLS and WLS do
better is for n = 50 with weak correlations among (Y,X1, X2) where OLS and
WLS are slightly better. REG performs poorly relative to JPS3, OLS and WLS.

Table 6 presents the MSE of a SRS relative to the various estimators for set size
H = 4. We note that, for this larger set size, OLS and WLS perform relatively better
than for H = 2. JPS3 performs better for strong correlations and larger sample
sizes, while OLS and WLS outperform for weak correlations and smaller sample
sizes. REG follows the pattern of OLS and WLS but does not perform as well as
these estimators.
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Table 6 Simulated performance of the estimators for set size H=4 relative to SRS when model
does not hold. Entries are ratios of MSE. The table includes simulated correlations for (X1, X2, Y )

from Table 4

(ρ̃1y, ρ̃2y, ρ̃12) (0.6103, 0.6103, 0.3776) (0.6103, 0.6103, 0.3776)

n 50 100 200 50 100 200

JPS1 1.76 1.79 1.85 1.48 1.50 1.57

LS 2.11 2.17 2.23 1.78 1.83 1.89

OLS 2.49 2.42 2.48 2.05 2.01 2.05

WLS 2.53 2.47 2.53 2.07 2.03 2.06

TRs 2.30 2.28 2.36 1.87 1.85 1.90

JPS2 1.51 1.47 1.51 1.36 1.31 1.34

JPS3 2.38 2.60 2.72 1.98 2.04 2.15

REG 1.85 1.83 1.91 1.69 1.61 1.66

(ρ̃1y, ρ̃2y, ρ̃12) (0.3815, 0.3815, 0.3776) (0.4959,0.4959,0.8495)

n 50 100 200 50 100 200

JPS1 1.08 1.14 1.15 1.25 1.27 1.30

LS 1.13 1.21 1.21 1.26 1.29 1.31

OLS 1.23 1.27 1.25 1.37 1.34 1.35

WLS 1.23 1.27 1.25 1.37 1.35 1.35

TRs 1.18 1.23 1.22 1.33 1.33 1.35

JPS2 1.03 1.06 1.05 1.08 1.06 1.07

JPS3 1.15 1.22 1.23 1.30 1.32 1.35

REG 1.17 1.21 1.19 1.28 1.25 1.25

7 Discussion

For us, one of the most intriguing aspects of our exploration of the estimators
developed by Stokes and colleagues in Wang et al. (2006) is the double robustness
of their OLS estimator. Their clever use of debiasing followed by a simple average
(or, for their WLS estimator, a weighted average) stabilizes the weights of individual
cases in the estimator. This stabilization is especially important for smaller sample
sizes and when there are multiple covariates, where large differences in the weights
are common. The combination of stability of the estimator (small variance) with
minimal bias in a fashion that is robust to violations of the presumed model for
Y | X has proven to be extremely effective. We suspect that this robustness is an
important factor in the practical success of the method.

The estimators that we develop in this work pursue the path laid out by Stokes and
colleagues. Our new estimators focus on stability while maintaining small bias. To
control the bias, we resort to a form of dimension reduction, passing from multiple
covariates to a one-dimensional ranking. To enhance stability, we pass from a single
observed rank to the predictive rank distribution of the measured unit. Together,
these adjustments produce estimators that can be more accurate than previously
developed estimators for RSS and JPS data. In some circumstances, the gains are
striking.
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The new estimators make use of the covariate values for all units in a set to create
the predictive rank distribution. In contrast, the estimators of Wang et al. (2006)
make less use the observed covariate values. Their estimators use the covariate to
create the ranks within a set and, implicitly, to estimate the covariance matrix for
covariates and response, leading to the offsets δ[r]. This can be accomplished with
information from only the fully measured units without reference to the unmeasured
units in a set. One can imagine that, in some circumstances, one could collect sets
that are ranked on covariates and yet observe numerical covariate values only for
the fully measured units. In such a setting, the Wang et al. (2006) estimators could
be used, while the new estimators could not be computed. We believe that these
situations would be relatively rare.

The success of all of these estimators leads us to alter our view on RSS and
JPS estimation. Most of the literature on these methods takes one of two forms. It
either makes very minimal assumptions about the mechanism that gives rise to the
data and is essentially nonparametric in nature, or it makes very strong assumptions
about this mechanism. The latter approach has generated papers that make heavy
use of strong parametric assumptions and that presume that rankings are perfect. In
nearly all cases, the explicit goal is to find the rank of a unit within a set. In contrast,
along the lines of MacEachern et al. (2004), we find that there is value in allowing
for a distribution over ranks. With the availability of covariates, this suggests that
we should devote considerable effort to building covariate-driven models for the
rank of the measured unit. Accepting the uncertainty that comes with such models
improves estimation when compared to effectively selecting a rank at random from
the predictive rank distribution and using this to create the estimator. We believe that
shifting the perspective from the creation of estimators to building sound models for
the data will, in the end, result in better estimators.

Our development of novel estimators suggests specific directions for further
research. One is to sharpen the heuristic arguments for consistency and double
robustness of the estimators in Wang et al. (2006) and to formally establish these
results. A second is to combine the debiasing that is implicit in the estimators of
Wang et al. (2006) with our predictive rank techniques. A third is to more completely
explore the impact of developing and fitting a model to the data to which it will be
applied. The use of split-sample techniques such as the jackknife (dropping a set at
a time) or half-sample methods may help control the bias that arises from multiple
uses of the same data.

There are many ways to obtain a predictive rank distribution. We have used a
simple calculation under the assumption that the model is fully known. When fitting
a class of models to data, we might turn to a plug-in estimator. Such estimators are
commonly derived from maximum likelihood, maximum penalized likelihood or
generalized estimating equations. Alternatively, we could use Bayesian methods to
account for uncertainty in the fit of a fitted model and also to account for uncertainty
in which model should be fit (c.f. Meeden and Lee, 2014).

In addition to the relatively simple setting considered here, we note that similar
techniques can be developed for many other data structures. Following Stokes and
Sager (1988), we could look at P(Y ∈ A) for some set A, including the multivariate
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setting. We could look at a multivariate mean, or a measure of dependence between
variables. We could look at survival data where censoring is a concern. We could
look at data that lie in non-Euclidean spaces, and so on. When the following features
are present, we have a clear route on which to proceed: A measured covariate that
can be ranked (to yield a concomitant) to play the role of X, a target phrased as an
expectation to play the role of μ = E[Y ] and a RSS or JPS to produce the data.
Stokes and her colleagues have paved the route.
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Judgment Post-stratified Sampling with
Multiple Ranking: A Comparison with
Ranked Set Sampling

Omer Ozturk, Jennifer Brown, and Olena Kravchuk

Abstract Ranked set sampling and judgment post-stratified sampling designs
form groups among sample units using their relative positions (ranks) in small
comparison sets. This rank information governs the decision on whether to include
units in a final ranked set sample (RSS), but only supplements the primary selection
of units in a judgment post-stratifed sample (JPS). If the position information in the
comparison sets is accurate, for both designs, the samples represent the population
better than a simple random sample (SRS) of the same size. The RSS design uses the
ranking information in a more direct way. However, the RSS design induces a strong
structure in a sample, and the data so collected may not be suitable for studies where
a multipurpose analysis is desired. The JPS design is slightly less efficient, but more
flexible and enables multipurpose analyses. This paper explores the benefits of the
JPS over the RSS design of the same sample size. We show that the efficiency loss
in the JPS design can be reduced by using ranks from multiple comparison sets. The
paper presents results from an extensive simulation study to demonstrate the benefit
of the JPS design over the SRS and RSS designs when the JPS is constructed using
multiple ranking methods.
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1 Introduction

In field sampling and social science research, creating samples that are repre-
sentative of the population is important. This can be achieved by using stratified
sampling, cluster sampling, or post-stratified sampling designs. In certain cases, the
stratification variable may be subjective, rough, and imprecise, but can still provide
valuable information about the relative position of a sample unit in a small set.
Such stratification variable can be used to reduce the sampling variation, and cost
in ranked set and judgment post-stratified sampling designs. These designs stratify
the sample into groups of homogeneous observations using sample units’ relative
positions (ranks) in small comparison sets.

For a ranked set sample (RSS) of size n, one first determines a set size H

and then selects nH units at random from the population. These units are divided
into n comparison sets, each of size H . Units in the comparison sets are then
ranked from the smallest to the largest, without measurement. Ranking can be
performed on either the variable of interest assessed on a less elaborate scale or
an auxiliary variable. The unit judged to be the h-th smallest (Y[h]j ) is measured in
nh comparison sets for j = 1, . . . , nh,

∑H
h=1 nh = n. The measured observations

Y[h]j , j = 1, . . . , nh;h = 1, . . . , H are called a ranked set sample. If nh = d for
all h = 1, . . . , H so that n = dH , the RSS is called balanced, and d is called the
cycle size. If there is no ranking error, the square brackets are replaced with round
parentheses, and the Y(h)j becomes the h-th order statistic in a sample of size H .

Ranked set sampling design was introduced by McIntyre (1952, 2005). The main
motivation in McIntyre’s work was to enable field researchers to conduct pasture
yield (and similar) field assessments in an objective and efficient way. Takahasi and
Wakimoto (1968) developed the theoretical foundation of the ranked set sampling
design and showed that the RSS mean is always better than a sample mean of a
simple random sample (SRS). Dell and Clutter (1972) showed that even with some
ranking errors, the RSS mean is as good as, or better than, the SRS mean depending
on the quality of ranking information. Research activities in RSS designs then
expanded in different directions, including parametric and nonparametric settings.
In the parametric setting, a few representative publications are Stokes (1995), Chen
and Bai (2000), Arslan and Ozturk (2013), Hatefi et al. (2014), and Hatefi et al.
(2015). In the nonparametric setting, readers are referred to Bohn and Wolfe (1992,
1994), Hettmansperger (1995), Koti and Babu (1996), Ozturk (1999), and Fligner
and MacEachern (2006). Two books have been published on ranked set sampling
design, Chen et al. (2003), and Bouza and Al-Omari (2019). A comprehensive list
of references can be found in these publications.

The RSS research activities also considered the finite population setting. Patil
et al. (1995) constructed an RSS using sampling without replacement selection
procedure. Deshpande et al. (2006) expanded the RSS design to three different
schemes of sampling without replacement. Frey (2011), Ozturk and Jafari Jozani
(2014), and Jafari Jozani and Johnson (2011) used probability sampling and
constructed Horvitz-Thompson-type estimators. Ozturk and Bayramoglu Kavlak
(2018) constructed inference using a superpopulation model in ranked set sampling.
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MacEachern et al. (2004) introduced the judgment post-stratification design to
provide the flexibility for a multipurpose analysis of sample data. For a judgment
post-stratified sample (JPS), one first selects and measures an SRS of size n, Yi ,
i = 1, . . . , n. For each measured unit Yi , one then selects additional H − 1 units
from the population, without directly measuring them, to form a comparison set of
size H . The units in the comparison set are ranked from the smallest to the largest,
and the rank of Yi , Ri is recorded. The pairs (Yi, Ri), i = 1, . . . , n, constitute a JPS.

In recent years, the JPS design in an infinite population setting has generated
extensive research interest. Ozturk (2014) considered the estimation of the popu-
lation quantile and variance from a JPS. Wang et al. (2006) used the concomitant
order statistics to estimate the population mean. Frey and Feeman (2012, 2013)
constructed estimators for the population mean and variance by conditioning on
the judgment group sample sizes. These new estimators improve the unconditional
JPS estimators. Chen et al. (2014), Frey and Ozturk (2011), Wang et al. (2012),
Wang et al. (2008), and Stokes et al. (2007) constructed constrained estimators
using stochastic ordering among judgment ranking groups. The main idea in the
constraint estimators is to minimize the impact of ranking error by forcing judgment
class means to follow the stochastic order among ranking groups. In a different
direction, Ozturk (2017) constructed conditional ranks in smaller comparison sets
of size K < H given the original ranks in a larger comparison set of size H . The
impact of any ranking error on the estimator in this case was relatively small, and
less than for the estimator based on the large comparison set of size H . Ozturk
(2013) and Ozturk and Demirel (2016) used a multi-ranking approach to reduce the
impact of ranking error in judgment post-stratified and ranked set samples.

In the finite population settings, Ozturk (2016a, 2016b, 2019) constructed estima-
tors for the population mean and total for the JPS design. A JPS can be constructed
by sampling with or without replacement. It is shown that the variance estimator
of the sample mean requires a finite population correction factor when sampling
without replacement. Ozturk and Bayramoglu Kavlak (2018, 2019, 2020) developed
inference to predict the population mean and total using a superpopulation model.

In the JPS design, the ranks are constructed post-experimentally after an SRS is
chosen. Hence, it is possible to have more than one rank for each measured unit
in the SRS by permuting the n(H − 1) unmeasured units used in the construction
of comparison sets in the first created JPS. Each permutation creates n comparison
sets, each of size H , containing the measured unit. The units in the sets are ranked
again, without measurement, and the ranks of the measured units in the comparison
sets are determined. This permutation procedure can be done many times and each
permutation creates a new set of ranks for the same measured values. Ranks from
different permutations are conditionally independent given the original SRS. One
may then combine all these ranks using the Rao-Blackwell theorem by conditioning
on the original SRS.

A similar idea can be used in the RSS design, but the extension to multiple ranks
is not as trivial as in the JPS design. In the RSS design, the measured observations,
Y[h]j , are not identically distributed. Hence, the units in the comparison set
constructed after the permutation of n(H−1) units are not iid since each comparison
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set contains one of the y[h]j from the original ranked set sample and this will have
a different distribution from the other units in the set. Even though the comparison
sets will be different after each permutation, the rank of y[h]j will depend on the
original rank h. Hence, the idea of multiple ranks in the judgment post-stratified
sampling may not be easily extended to ranked set sampling.

There are a few other differences between the RSS and JPS designs. One of
the major differences is whether the ranking is done before or after the units are
measured for the variable of interest. In RSS, the ranking is performed before one
measures the units, and the ranks guide the measurement decision. The rank and the
measurement of a unit cannot be separated. Hence, an RSS cannot be reduced to
an SRS, unless it is unusual situation where the ranking variable is not correlated
with the measurement variable. In a JPS, ranking is performed after one measures
the units in the SRS. The ranks are not the essential part of the measured units; they
are the ranks of the variable of interest measured on a quicker scale (e.g., visual
inspection) after the construction of an SRS. Since the auxiliary (ranking) variable
is only post-associated with the response measurements, it can be ignored and a JPS
can be reduced to an SRS if desired.

Another major difference is the distributional properties of the ranks. The ranks
in RSS are pre-determined nonrandom constants. Hence, the ranking group sizes nh,
h = 1, . . . , H , are nonrandom integers. In a JPS, the rank Ri is a discrete uniform
random variable with the support on integers 1, . . . , H . Hence, the judgment group
sample size vector (n1, . . . , nH ) has a multinomial distribution with the sample size
n and the success probability vector (1/H, . . . , 1/H).

One may look at the RSS and JPS designs in terms of the trade-off between
the efficiency gain of the RSS and the adaptability of JPS for multipurpose studies.
To our knowledge, this trade-off has not yet been posed and investigated. In this
paper, we provide a comprehensive study to compare the RSS and JPS designs for
their efficiencies and multiple ranking properties. In Sect. 2, we provide a detailed
description of multi-ranking in RSS and JPS designs. In Sect. 3, we review the
distributional properties of the RSS and JPS means. In Sect. 4, we present empirical
results to compare the RSS and JPS designs. In Sect. 5, we illustrate the use of
RSS and JPS designs with an agricultural application example. Section 6 provides
concluding remarks.

2 Sampling Designs with Multiple Ranking Methods

We consider a finite population of size N . The population values of the variable Y

are denoted as y1, . . . , yn. The mean and variance of the population are given by

ȳN = 1

N

N∑

i=1

yi, S2
N = 1

N

N∑

i=1

(yi − ȳN )2.
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From this finite population, we construct RSS and JPS with multiple ranks. The
samples are constructed using the sampling with and without replacement selection
procedures. Unless stated otherwise, we always consider a finite population setting
in this paper.

RSS with Multiple Ranks We first consider an RSS selected using the sampling
with replacement (SWR) selection procedure. For cycle j and rank h, we construct
a comparison set of size H using a sampling without replacement (SWOR) scheme.
The units in the comparison set are ranked by the best ranking method available.
The unit judged to be the h-th smallest, Y[h]j , is measured. For the observation
Y[h]j , additional K − 1 ranks can be constructed in two ways. If there are K − 1
(K > 1) rankers or ranking variables available, the rank of Y[h]j , Rk|j,h, among
the units in the comparison set is determined for each method k, k = 2, . . . , K .
After these ranks are determined, all units in the comparison set are returned to the
population before constructing the next comparison set. Hence, the same unit may
appear in the final sample more than once, and all the observations are independent.
We note that units within a comparison set are selected using the SWOR procedure
to minimize the ranking error. The ranks using the first ranking method (k = 1)
are predetermined (nonrandom constants) to have a balanced ranked set sample,
nh = d, for h = 1, . . . , H . The remaining K − 1 ranks are random and may not
necessarily be balanced.

Even if there is only one ranker or one auxiliary variable to rank the units,
we can still construct an RSS with multiple ranks. For given values of h and j ,
Y[h]j is measured in a comparison set. Next, we form K − 1 different comparison
sets by selecting H − 1 additional units at random from the population without
measurement, Vk|h,j = {Y[h]j , Yk,1, . . . , Yj,H−1

}
, k = 2, . . . , K , and determine the

rank of Y[h]j , Rk|j,h, in each set for k = 2, . . . , K . The RSS with multiple ranks can
be written as

{
(Y[h]j , Rk|j,h), h = 1, . . . , H, j = 1, . . . , d; k = 1, . . . , K

}
,

where Rk|j,h is the conditional rank assigned by ranking method k given that the
observation Y[h]j is assigned rank h. We note that P(R1|j,h = h) = 1. The ranks
assigned by another ranking method are random variables, but their distributions
depend on the ranks assigned by the first (best) ranking method.

An RSS with multiple ranks using a SWOR selection scheme can be constructed
in a similar fashion. The only difference is that after determining the rank of Y[h]j , all
H units in the comparison set are removed from the population before constructing
the next comparison set. Hence, for each ranking method, all comparison sets are
disjoint.

The final sample cannot have repeated observations and the observations are
not independent. If the population size N is large with respect to sample size n,
ranked set samples constructed using SWR or SWOR selection procedures become
approximately equivalent.
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Table 1 Illustration of RSS multi-ranker sampling with set size H = 3, cycle size d = 2, and the
number of ranking methods K = 3

Cycle (j) h Balanced RSS Ranks from K methods Ranked set sample

1 1 {Y [1]1, Y[2]1, Y[3]1} {1, R2|1,1, R3|1,1} {Y[1]1, 1, R2|1,1, R3|1,1}
1 2 {Y[1]1,Y [2]1, Y[3]1} {2, R2|1,2, R3|1,2} {Y[2]1, 2, R2|1,2, R3|1,2}
1 3 {Y[1]1, Y[2]1,Y [3]1} {3, R2|1,3, R3|1,3} {Y[3]1, 3, R2|1,3, R3|1,3}
2 1 {Y [1]2, Y[2]2, Y[3]2} {1, R2|2,1, R3|2,1} {Y[1]2, 1, R2|2,1, R3|2,1}
2 2 {Y[1]2,Y [2]2, Y[3]2} {2, R2|2,2, R3|2,2} {Y[2]2, 2, R2|2,2, R3|2,2}
2 3 {Y[1]2, Y[2]2,Y [3]2} {3, R2|2,3, R3|2,3} {Y[3]2, 3, R2|2,3, R3|2,3}

The construction of ranked set samples using multiple ranking methods is
illustrated in Table 1. In this table, the third column presents the comparison sets
in which a balanced ranked set sample is constructed with the first ranking method.
It highlights that the units are ranked using ranking method 1; the bold-faced values
are measured. The fourth column lists the ranks obtained from all K (K = 3)
different ranking methods for the bold-faced values in column 3. The last column
gives the ranked set sample of size 6. In this example, each entry has three ranks
generated by three ranking methods.

JPS with Multiple Ranks We first construct a simple random sample of size n using
the SWR selection procedure and measure all n units, Y1, . . . , Yn. For each Yi , we
then select additional H − 1 units under SWOR selection from the population to
form a comparison set Vi = {Yi, Y1, . . . , YH−1}. We rank these units from smallest
to largest without measuring Y , using K different ranking methods, and identify
the rank of Yi , Rk|i , for each ranking method k, k = 1, . . . , K , where Rk|i is the
rank of Yi assigned by ranking method k. All units in the comparison set, including
the one we measured, are returned to the population before the construction of the
next comparison set. Hence, a JPS may have repeated observations and all Yi , i =
1, . . . , n, are independent. This process creates the sample

{Yi, Rk|i}; i = 1, . . . , n, k = 1, . . . , K.

If only one ranking method is available, for each Yi , one can create K different
comparison sets, Vk|i = {Yi, Y1,k, . . . , YH−1,k} for k = 1, . . . , K , where Yh,k �= Yi

is the additional unit selected from the population to construct the k-th comparison
set. These sets are ranked using the ranking method and the ranks of Yi , Rk|i , are
determined in Vk|i , for k = 1, . . . , K .

A JPS under the SWOR selection procedure is constructed in a similar fashion.
The only difference here is that all comparison sets for each ranking method are
disjoint, and hence, the JPS cannot have repeated observations. For small population
sizes N , observations Yi , i = 1, . . . , n, in the sample are negatively correlated since
sample units are selected as an SRS without replacement.

The construction of a JPS with multiple ranking methods and under the SWOR
selection scheme is illustrated in Table 2. In this example, the sample and set
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Table 2 Illustration of multi-ranker JPS under sampling without replacement selection with set
size H = 3, sample size n = 6, and the number of ranking methods K = 3

(j) SRS Comparison sets JPS

1 Y1 {Y 1, Y7,1, Y8,1}, {Y 1, Y9,2, Y19,2}, {Y 1, Y26,3, Y12,3} {Y1, R1|1, R2|1, R3|1}
2 Y2 {Y 2, Y9,1, Y10,1}, {Y 2, Y20,2, Y8,2}, {Y 1, Y17,3, Y27,3} {Y2, R1|2, R2|2, R3|2}
3 Y3 {Y 3, Y11,1, Y12,1}, {Y 3, Y21,2, Y22,2}, {Y 3, Y9,3, Y10,3} {Y3, R1|3, R2|3, R3|3}
4 Y4 {Y 4, Y13,1, Y14,1}, {Y 4, Y15,2, Y23,2}, {Y 4, Y14,3, Y28,3} {Y4, R1|4, R2|4, R3|4}
5 Y5 {Y 5, Y15,1, Y16,1}, {Y 5, Y18,2, Y24,2}, {Y 5, Y29,2, Y13,2} {Y5, R1|5, R2|5, R3|5}
6 Y6 {Y 6, Y17,1, Y18,1}, {Y 6, Y12,2, Y25,2}, {Y 6, Y8,3, Y30,3} {Y6, R1|6, R2|6, R3|6}

sizes are 6 and 3, respectively. For each measured unit, three ranks are constructed
(K = 3). The second column presents a simple random sample of size n = 6. The
third column presents three comparison sets, Vk|i , for each Yi , one for each ranking
method. The fourth column presents the JPS with three ranks. The comparison sets
of each ranking method in Table 2, sets in block 1, 2, or 3 in column 3, are disjoint
and cannot have repeated observations. Comparison sets for the different ranking
methods (sets in different blocks) are not necessarily disjoint because the same
ranking unit can appear in more than one set in different ranking methods. Sampling
is without replacement and thus the comparison sets in different rows for the same
ranking method are disjoint. We note that the sample units will not be independent
if the population size N is small in relation to the sample size n.

3 Statistical Inference Using RSS and JPS

In this section, we provide a brief overview of statistical inference using the RSS
and JPS designs. We first assume K = 1. The estimators for the population mean
are given as the sample mean of the RSS and JPS:

ȲRSS = 1

dH

H∑

h=1

d∑

j=1

Y[h]j , ȲJPS = 1

dn

H∑

h=1

JhIh

n∑

j=1

Yj I (Rj = h),

where I (a) is 1 if a is true, Ih = I (nh > 0), dn =∑H
h=1 Ih, and Jh = 1/nh if nh >

0 and zero otherwise. Both of these estimators are unbiased for the population mean
ȳN regardless of the ranking quality as long as a consistent ranking method is used.
If all units in the comparison sets are ranked with the same ranking methods, the
ranking procedure is called consistent. The following theorem provides variances
of the sample means under SWR and SWOR selection schemes using a consistent
ranking method.
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Theorem 1 Let Y[h]j , h = 1, · · · ,H, j = 1, . . . , d and (Yj , Rj ), j = 1, . . . , n be
RSS and JPS constructed using a consistent ranking methods, respectively.

(i) If the samples are constructed with replacement, the variances of ȲRSS and
ȲJPS are given by

σ 2
RSS = 1

dH 2

H∑

h=1

S2[h] σ 2
JPS = H

H − 1
V ar

(
I1

dn

) H∑

h=1

(ȳ[h] − ȳN )2 + E

(
I 2

1

d2
nn1

)
H∑

h=1

S2[h],

where S2[h] = V ar(Y[h]1), ȳ[h] = E(Y[h]1), V ar(I1/dn) = 1
H 2

∑H−1
k=1 ( k

H
)n−1

and

E

(
I 2

1

n1d2
n

)

= 1

Hn

⎛

⎝ 1

n
+

H∑

k=2

k−1∑

j=1

n−k+1∑

t=1

(−1)j−1

k2t

(
H − 1

k − 1

)(
k − 1

j − 1

)(
n

t

)

(k − j)n−t

⎞

⎠ .

(ii) If the samples are constructed without replacement, the variances of ȲRSS and
ȲJPS are given by

σ 2
RSS = N − 1 − n

n(N − 1)
S2

N − 1

nH

h∑

h=1

(
ȳ[h] − ȳN

)2 − 1

nH

H∑

h=1

S[h,h]

σ 2
JPS = C1(n,H)

{
H∑

h=1

S2[h] −
H∑

h=1

S[h,h]

}

+ C2(n,H,N)
H 2S2

N

H − 1
,

where S[h,h] = Cov(Y[h]1, Y[h]2),

C1(n,H) =
{

1

H(H − 1)
+ E

(
I 2

1

d2
nn1

)

− H

H − 1
E

(
I 2

1

d2
n

)}

C2(n,H,N) =
{

V ar

(
I1

dn

)

− 1

N − 1

{
1

H
− E

(
I 2

1

d2
n

)}}

.

The proofs of σ 2
JPS in (i) and (ii) are given in Ozturk (2016a). The proof of σ 2

RSS

in (ii) is given in Patil et al. (1995). It is clear that the variance of the JPS mean
involves expected values and variances of the functions of judgment group indicator
function (I1), sample sizes (n1), and the number of non-empty judgment groups
(dn). These quantities account for the variation due to the random sample sizes in
judgment post-stratified samples. Ozturk (2016b) shows that as the sample size n

becomes large, σ 2
JPS approaches from above σ 2

RSS .
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We now introduce unbiased estimators for σ 2
JPS and σ 2

RSS . We first define the
following quantities:

U1 = 1

E
(

I1I2
d2
n

)
H∑

h=1

H∑

h �=h′

IhIh′JhJh′

d2
n

n∑

i=1

n∑

j=1

(Yi − Yj )
2I (Ri = h)I (Rj = h′),

U2 =
H∑

h=1

HI ∗
h JhJ

∗
h

d∗
n

n∑

i=1

n∑

j �=i

(Yi − Yj )
2I (Ri = h)I (Rj = h),

U∗
1 = 1

2d2H 2

H∑

h=1

H∑

h′ �=h

d∑

i=1

d∑

j=1

(Y[h]i − Y[h′]j )2

U∗
2 = 1

2d(d − 1)H 2

H∑

h=1

d∑

i=1

d∑

j �=i

(Y[h]i − Y[h]j )2,

where d∗
n =∑H

h=1 I (nh > 1), and J ∗
h = 1/(nh − 1) if nh > 1 and zero otherwise.

Theorem 2 Let Y[h]j , h = 1, · · · ,H, j = 1, . . . , d and (Yj , Rj ), j = 1, . . . , n be
RSS and JPS constructed using a consistent ranking method, respectively.

(i) If the samples are constructed with replacement, d > 1 and at least one
judgment group in a JPS has at least two observations, the unbiased variance
estimators for ȲRSS and ȲJPS are given by

σ̂ 2
JPS = V ar (I1/dn)

2(H − 1)
U1 +
{

E

(
I 2

1

d2
nn1

)

− V ar

(
I1

dn

)}
U2

2

σ̂ 2
RSS = U∗

2

d
.

(ii) If the samples are constructed without replacement, d > 1 and at least one
judgment group in a JPS has at least two observations, the unbiased variance
estimators for ŶRSS and ȲJPS are given by

σ̂ 2
JPS = C1(n,H)U2/2 + C2(n,H,N)

(N − 1)(U1 + U2,2)

2N(H − 1)
,

σ̂ 2
RSS = U∗

2

d
− U∗

1 + U∗
2

N
.

Theorem 2 provides unbiased estimators for the variance of the RSS and JPS means
for an arbitrary but consistent ranking scheme when K = 1. An approximate (1 −
α)100% confidence interval for the population mean can be constructed using the
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normal approximation:

ȲRSS ± t1−α/2,n−H σ̂RSS

ȲJPS ± t1−α/2,n−H σ̂JPS,

where ta,df is the a-th upper quantile of the t-distribution with degrees of freedom
df . The degrees of freedom df = n − H is suggested to account for the
heterogeneity among ranking groups.

There are different ways to combine the ranking information in multi-ranking
RSS and JPS designs. Ozturk and Kravchuk (2021a, 2021b) provided detailed
developments of these procedures. In this paper, we only consider one of the
approaches, in which each observation is weighted based on the agreement scores
of the K ranking methods. Let wh′,i be the proportion of K ranking methods which
assign rank h′ to the i-th observation in the sample:

wh′|i,h = 1

K

K∑

k=1

I (Rk|i,h = h′)/K, h′ = 1, . . . , H, for the RSS

and

wh′|i = 1

K

K∑

k=1

I (Rk|i = h′)/K, h′ = 1, . . . , H, for the JPS.

We estimate the population mean by allocating each observation into ranking group
h′ based on how strong the agreement is among the K ranking methods to assign
the observation to judgment group h′:

ȲRSS,w =
H∑

h′=1

Jw,h′

dw

H∑

h=1

d∑

i=1

Y[h]iwh′ |i,h, Jw,h′ =
⎧
⎨

⎩

1
nw,h′ if nw,h′ > 0

0 otherwise
, nw,h′ =

d∑

i=1

H∑

h=1

wh′ |i,h.

ȲJPS,w =
H∑

h′=1

Jw,h′

dw

H∑

h=1

d∑

i=1

Yiwh′ |i , Jw,h′ =
⎧
⎨

⎩

1
nw,h′ if nw,h′ > 0

0 otherwise
, nw,h′ =

d∑

i=1

H∑

h=1

wh′ |i ,

where dw =∑H
h′=1 I (nw,h′ > 0). In the expressions above, nw,h′ can be considered

as the effective sample size for judgment group h′. The asymptotic distribution
of ȲJPS,w is considered in MacEachern et al. (2004) and Ozturk and Kravchuk
(2021a). The asymptotic distribution of ȲRSS,w is given in Ozturk and Kravchuk
(2021b).

In this paper, we only consider the jackknife variance estimates of these
estimators. Let Ȳ

(−[h]i)
RSS,w ( Ȳ

(−i)
JPS,w) be the RSS (JPS) estimator after the observation

Y[h]i (Yi) and all ranks associated with it are removed from the sample. The
jackknife variance estimates are given by
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σ̂ 2
RSS,J = fpc

(n − 1)2

n2

∑

h=1

∑

i=1

(
Ȳ

(−[h]i)
RSS,w − Ȳ

−([.].)
RSS,w

)2

σ̂ 2
JPS,J = fpc

(n − 1)2

n2

n∑

i=1

(Ȳ
(−i)
JPS,w,−Ȳ

(.)
JPS,w)2

fpc =
{

1 − n
N−1 SWOR selection

1 SWR selection.

where fpc is the finite population correction factor, Ȳ
−([.].)
RSS,w = 1

dH

∑H
h=1
∑d

i=1

Ȳ
−([h]i)
RSS,w and Ȳ

(.)
JPS,w = 1

n

∑n
i=1 Ȳ

(−i)
JPS,w. In the jackknife variance estimates, we

used the coefficient (n− 1)2/n2 since this coefficient provides smaller bias than the
usual coefficient (n − 1)/n, (Ozturk and Kravchuk, 2021a,b).

An approximate (1−α)100% confidence interval for multi-ranking RSS and JPS
designs can be constructed using the jackknife variance estimates:

ȲRSS,w ± t1−α/2,n−H σ̂RSS,J

ȲJPS,w ± t1−α/2,n−H σ̂JPS,J .

In the next section, we compare the RSS and JPS estimators in terms of their
efficiencies and coverage probabilities for a varying degree of ranking quality and
different set sizes.

4 Comparison of RSS and JPS Designs

We performed a simulation study to investigate the contrasting features of RSS and
JPS estimators. In the simulation study, samples were generated from two finite
populations with large population size N = n + 1000 and small population sizes
N = nH + 50. We considered a normal, N(μ = 50, σ = 5), and a lognormal,
LN(μ = 0, σ = 1), distribution. The population values of the response variable Y

were generated using the quantile functions:

yi = F−1
N (i/(N + 1), μ = 50, σ = 5), and yi = F−1

LN(i/(N + 1), μ = 0, σ = 1), i = 1, . . . , N,

where F−1
N (y, μ, σ ) and F−1

LN(y, μ, σ ) are the inverse cumulative distribution
functions of a normal distribution with location parameter μ and scale parameter
σ and lognormal distribution with scale parameter exp(μ) and shape parameter
σ , respectively. The samples were generated using SWR and SWOR selection
procedures for both population sizes N = n + 1000 and N = nH + 50. The



32 O. Ozturk et al.

quality of ranking was modeled using a ranking variable X, such that X = Y + τε,
where ε has a normal distribution with mean zero and variance 1 and independent
of Y . The correlation coefficient between X and Y is given by ρ = 1√

1+τ 2/σ 2
. The

values of ρ were selected to be 0.01, 0.25, 0.5, 0.75, 0.9, 1 where values less than
1 will result in imperfect ranking. For the normal distribution, we fixed the sample
size at n = 36 and varied the set sizes as H = 2, 3, 4, 6, 12 to explore the impact
of different set sizes on the RSS and JPS designs. We purposely selected a smaller
sample size n = 36 to evaluate the approximation of the coverage probabilities of
the confidence intervals to the nominal coverage probability 0.95. The simulation
size is taken to be 5000. An R-package RankedSetSampling (Ozturk et al., 2021) is
used to compute the estimators and construct confidence intervals. The package is
available to download at https://biometryhub.github.io/RankedSetSampling.

We first investigate the efficiencies of the RSS and JPS estimators. The relative
efficiencies are defined as the ratio of the mean square errors of the RSS and JPS
estimators:

RE = MSE(JPS)

MSE(RSS)
.

A value of RE greater than 1 indicates that the RSS estimator is more efficient than
the JPS estimator. Figure 1 presents the relative efficiencies for the population size
N = n + 1000 when samples were generated using the SWR selection procedure.
The set sizes and the number of ranking methods are indicated in the legend on each
panel. The first panel shows the relative efficiency curves when both RSS and JPS
were generated with just one ranking method K = 1. It is clear in this case that
the RSS estimator is more efficient. The efficiency gain is minimal for H = 2, 3,
moderate for H = 4, 6, and substantial for H = 12. This intuitively makes sense
since large set sizes lead to many judgment groups having no measured observations
in a JPS. Empty ranking groups inflate the variance of the JPS estimator. The RE

values are similar to each other for all ρ values when H = 2, 3, 4, 6, except for ρ

when H = 12 where it increases.
Figure 1 also presents the relative efficiencies in three different panels when

different number of ranking methods (K=2, 5,10) is used. Comparing these panels
with panel 1, one can see that the gain in RE values decreases with the number of
ranking methods K . For example, the RE values in panel 1 (K = 1) are around
1.4 when ρ < 0.75, and it reduces essentially to 1 in panel 4 (K=10). Similar
observation can be made in panel 2 (K = 2) and panel 3 (K = 5). Under perfect
ranking, RSS is still superior to the JPS for all set sizes.

Figure 2 presents the efficiency curves for the small population size, N = nH +
50. In this part of the simulation, both the RSS and JPS were generated under the
SWOR selection procedures. The efficiency results are similar to those in Fig. 1,
with the key difference being that the RE curves are higher (lower) in Fig. 2 than in
Fig. 1 when K = 1 and K = 2 (K = 5 and K = 10).

These efficiency results indicate that RSS estimator is more efficient than the JPS
estimator when the number of ranking methods is small (K = 1, 2). For the larger
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Fig. 1 Efficiency comparison of RSS and JPS designs under SWR selection for large-sized normal
distribution population

number of ranking methods (K = 5, 10), difference between the efficiency gain of
RSS and JPS estimators diminishes.

We also investigated the coverage probabilities of the confidence intervals for
the population mean. Figure 3 presents the coverage probabilities for the samples
constructed with replacement from the population of size N = n + 1000. We note
that confidence intervals are constructed using unbiased variance estimates when
K = 1. For K �= 1, we used the jackknife variance estimates. The panels in the first
and second columns of Fig. 3 present the coverage probabilities of RSS and JPS
confidence intervals for K = 1, 2, 5, 10, respectively. The coverage probabilities of
RSS confidence intervals can be seen to be reasonably close to the nominal coverage
probability of 0.95 when ρ ≤ 0.75 and K = 2, 5, 10, but they are slightly larger
when ρ > 0.75 and K = 2, 5, 10. The coverage probabilities in the second column
of Fig. 3 are reasonably close to the nominal coverage probability 0.95 for all ρ and
K values in the simulation study.
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Fig. 2 Efficiency comparison of RSS and JPS designs under SWOR selection for the small-sized
normal distribution population

Figure 4 presents the coverage probabilities for the population size N = nH+50.
In this case, coverage probabilities are again close to nominal coverage probability
of 0.95 under imperfect ranking (ρ ≤ 0.75) for both RSS and JPS and K =
1, 2, 5, 10. Unlike Fig. 3, coverage probabilities are slightly inflated for both RSS
and JPS confidence intervals when ρ > 0.75 and K = 2, 5, 10. Under perfect
ranking (ρ = 1), jackknife variance estimator overestimates the variances of the
RSS and JPS estimators and leads to a larger coverage probability than the nominal
coverage probability of 0.95

In the second part of the simulation study, we generated samples from the
lognormal distribution with the scale parameter exp(μ)(μ = 0) and the shape
parameter σ = 1. The sample and set sizes were as previously n = 48 and H =
2, 3, 4, 6, 12. All the other simulation parameters remained the same. The lognormal
distribution is strongly positively skewed. For this reason, we increased the sample
size from 36 to 48. Figures 5 and 6 present the relative efficiencies of the RSS
and JPS estimators for large and small population sizes, respectively. The pattern
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Fig. 3 Coverage probabilities of the jackknife confidence intervals under SWR selection for
normal distribution

of the efficiency curves is very similar to that for the normal population. The main
difference is in the magnitude of the efficiency gain. The efficiency curves reach to
higher values for the normal distribution. This result is consistent with the efficiency
results of ranked set samples in (McIntyre, 1952, 2005). McIntyre reported that
the efficiencies are higher for symmetric distributions (highest for the uniform
distribution) and decrease with skewness. Since the lognormal distribution has
strong skewness, the efficiencies are slightly lower than for the normal distribution.

Figures 7 and 8 present the coverage probabilities of the jackknife confidence
intervals of the population mean for the SWR and SWOR designs, respectively. It is
clear that the coverage probabilities for the lognormal distribution are lower than the
nominal coverage probability 0.95. The SWOR selection provides a better coverage
probability than the SWR selection. Since a jackknife confidence interval relies on
the normal approximation, the sample size n = 48 is not large enough for a good
approximation when the underlying population is strongly skewed.
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Fig. 4 Coverage probabilities of the jackknife confidence intervals under SWOR selection for
normal distribution

5 Application

In this section, we use a real-life finite population example to compare the JPS
and RSS estimators. The population consisted of 350 grapevine plants at Coombe
vineyard at the University of Adelaide, Waite campus, Australia. The vineyard is
used as a research and teaching facility. There are eight different rootstocks origi-
nally planted, on which Shiraz is grafted. These rootstocks are popular commercial
choices in South Australia. The standard vineyard management of this population
requires the monitoring and measuring of certain characteristics of vine plants. In
this paper, we consider seven characteristics; X1, trunk circumference (cm) in 2018;
X2, trunk circumference (cm) in 2019; X3, shoot counts; X4, total shoots; X5,
pruning weight (kg); X6, cordon length (cm); and X7, total bunch numbers and
Y , nett fruit weight in 2019 (kg). Our interest was in the estimation of the mean nett
fruit yield of this population of grapevines in 2019. The variables Xi , i = 1, . . . , 7,
were used as ranking variables in comparison sets, and hence, the number of ranking
methods is K = 7. There were missing values on some vines, and after removing the
plants having missing observations, the population size was reduced to N = 309. In
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Fig. 5 Efficiency comparison of RSS and JPS designs under SWR selection for the large-sized
lognormal distribution population

this population, the correlation coefficients between Y and Xi , ρi = cor(Y,Xi) are
ρ1 = 0.240, ρ2 = 0.191, ρ3 = 0.310, ρ4 = 0.321, ρ5 = 0.172, ρ6 = 0.274, and
ρ7 = 0.713. The mean and standard deviation of the Y variable are 10.558 kg and
3.855 kg, respectively.

We performed another simulation study using these 309 vine plants. In each
replication of the simulation study, we generated the single-ranking judgment
post-stratified and ranked set samples with the ranking variable X7 (K = 1),
the multi-ranking judgment post-stratified and ranked set samples with Xk , k =
1, . . . , 7 (K = 7), and a simple random sample. The sample sizes were selected
to be n = 30 and 48. For the sample size n = 30, the set sizes were chosen
H = 3, 5, 6, 10. For the sample sizes n = 48, the set sizes were H = 3, 4, 6.
Samples were generated using the SWR and SWOR selection procedures. The
simulation size was 5000.

Table 3 presents the relative efficiency of the multi-ranking RSS estimator (K =
7) with respect to the other four estimators: the JPS estimator with K = 7 and



38 O. Ozturk et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
9

1.
1

1.
3

1.
5

Ranking correlation coefficient

R
el

at
iv

e 
ef

fic
ie

nc
ie

s

H=2 H=3

H=4
H=6

H=12

RSS K=1, JPS K=1

0.0 0.2 0.4 0.6 0.8 1.0

0.
90

1.
00

1.
10

1.
20

Ranking correlation coefficient

R
el

at
iv

e 
ef

fic
ie

nc
ie

s

RSS K=2, JPS K=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
90

1.
00

1.
10

1.
20

Ranking correlation coefficient

R
el

at
iv

e 
ef

fic
ie

nc
ie

s

RSS K=5, JPS K=5

0.0 0.2 0.4 0.6 0.8 1.0

0.
9

1.
0

1.
1

1.
2

1.
3

Ranking correlation coefficient

R
el

at
iv

e 
ef

fic
ie

nc
ie

s
RSS K=10, JPS K=10

Fig. 6 Efficiency comparison of RSS and JPS designs under SWOR selection for the small-sized
lognormal distribution population

K = 1, the SRS estimator, and the RSS estimator with K = 1. When the entries
in Table 3 are greater than one, the multi-ranking RSS estimator with K = 7 was
superior. The other efficiency results can be obtained by taking the ratio of any two
efficiency columns in Table 3. For example, the efficiency of the JPS estimator with
K = 1 relative to the SRS estimator can be obtained by taking the ratio of column
6 and column 5. When n = 30,H = 3, and the replacement is true, this efficiency
is calculated 1.246(1.321/1.060 = 1.246). The other relative efficiencies can be
computed in a similar fashion.

All entries in Table 3 are greater than one which indicates that the RSS multi-
ranking estimator with K = 7 is more efficient than JPS and SRS estimators. The
efficiencies of RSS estimator with K = 7 with respect to JPS and SRS estimators
increase with set sizes, but remain relatively constant with RSS estimator wit K = 1
(column 7). The reason for this is that the correlation coefficient between ranking
variable X7 and response is 0.729, while the other correlation coefficients are all less
than 0.321. Hence, the improvement of ranking quality due to ranking variables with
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Fig. 7 Coverage probabilities of the jackknife confidence intervals under SWR selection for large-
sized lognormal distribution population

low correlation coefficients is minimal, and the relative efficiency for multi-ranker
estimator remains relatively constant. For this particular population and ranking
methods, the JPS estimators are more efficient than the SRS estimator and less
efficient than multi-ranker RSS estimator.

We also computed the coverage probabilities of the confidence intervals based
on the judgment post-stratified, simple random, and ranked set samples for the
population mean. All coverage probabilities were reasonably close to the nominal
coverage probability of 0.95. Due to space considerations, these empirical coverage
probabilities are not reported here.

6 Concluding Remarks

Field research is expensive and time-consuming, particularly in natural environ-
ments where variables are difficult to control. If auxiliary variables are available,
they can be used to account in the analysis for the inherent variation among sampling
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Fig. 8 Coverage probabilities of the jackknife confidence intervals under SWOR selection for
small-sized lognormal distribution population

units. These auxiliary variables can be used as blocking variables if they can be
evaluated in an objective manner. In certain settings, auxiliary variables may not be
assessed accurately. Their assessment may be rough, imprecise, and subjective, but
still helpful for ordering the units in a small set independently of knowing the actual
values of the variable of interest.

Ranked set and judgment post-stratified sampling designs use this ordering
information to construct samples that are more likely to span the full range of values
in the population. It has been established in the literature that a ranked set sample
is generally more efficient than a judgment post-stratified sample. However, RSS
designs induce a strong structure in the sample. Hence, an RSS cannot be analyzed
with the inferential procedures developed for an SRS design.

The JPS design may be less efficient than the RSS design, but the sample
constructed can be reduced to a simple random sample, allowing the flexibility to
perform multiple analyses of various responses on the same data set. This becomes
useful if the data set is needed for a multipurpose study. In this paper, we show
how to reduce the efficiency loss of a JPS with respect to an RSS by constructing
multiple ranks for the response variable on each measured unit. Hence, the JPS
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Table 3 Relative efficiency
of the weighted RSS
estimators with K = 7 for
mean fruit yield of vine plants
in Coombe vineyard. Entries
greater than one indicate that
the RSS estimator with
K = 7 is more efficient

JPS RSS

Replace n H K = 7 K = 1 SRS K = 1

True 30 3 1.209 1.060 1.321 1.018

30 5 1.283 1.203 1.433 1.020

30 6 1.335 1.261 1.500 1.016

30 10 1.508 1.473 1.724 1.011

48 3 1.227 1.042 1.352 1.022

48 4 1.270 1.042 1.419 1.026

48 6 1.403 1.155 1.603 1.030

False 30 3 1.287 1.116 1.407 1.026

30 5 1.390 1.224 1.560 1.025

30 6 1.399 1.313 1.575 1.024

30 10 1.633 1.619 1.860 1.003

48 3 1.287 1.075 1.426 1.028

48 4 1.317 1.098 1.475 1.028

48 6 1.533 1.261 1.757 1.030

design provides the flexibility for multipurpose analysis at the expense of little
efficiency loss with respect to a balanced ranked set sample. Another advantage
of the JPS design is that it is relatively straightforward to construct a multi-ranking
JPS even when there are no additional auxiliary ranking variables, and this can be
done by permuting the units selected to form comparison sets. This idea is not easily
extended to a ranked set sampling. We would recommend that the JPS design should
be considered in field sampling, especially for multipurpose studies.
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Efficient Sample Allocation by Local
Adjustment for Unbalanced Ranked
Set Sampling

Soohyun Ahn, Xinlei Wang, and Johan Lim

Abstract In applications that demand cost efficiency, balanced ranked set sampling
(BRSS) is a well-established alternative to simple random sampling (SRS), which
is proved to be more efficient in estimating the population mean than its SRS
counterpart. The efficiency of BRSS can be further improved by considering
unbalanced RSS (URSS) with appropriate unequal allocation. However, with a
poor sample allocation scheme, URSS can have even worse performance than SRS.
Conditions that render a URSS design more efficient than its BRSS counterpart
have been rarely studied in the literature. For a fixed total sample size n and a
fixed set size H , we characterize a sufficient set of allocation schemes in which
estimation of the population mean from URSS is guaranteed to be more efficient
than the BRSS counterpart. We illustrate this set using a simplex diagram based
on H = 3 and compute theoretical relative efficiency over SRS under distributions
with either heavy tails or skewness. We further consider two adjustment procedures
of a URSS design that is less efficient than its BRSS counterpart. We numerically
investigate their performance under various simulation settings and apply them to
redesign less efficient URSS in realistic scenarios where BRSS is initially planned
but unequal sample sizes in rank strata are caused by the prevalent issue of missing
data.
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1 Introduction

Randomized experiments play a vital role in modern scientific discovery. In general,
they rely on simple random sampling (SRS) to recruit units, in which the efficiency
of such experiments can be improved by simply increasing the sample size. How-
ever, in situations with constrained resources, ranked set sampling (RSS) can serve
as a cost-effective alternative to SRS. RSS is a type of stratified sampling method,
which uses auxiliary rank information to form strata (Stokes and Sager, 1988). If the
experiment design considers the same number of replicates for each rank stratum, it
is called balanced RSS (BRSS); otherwise, unbalanced RSS (URSS). The efficiency
of RSS has been studied with a rich history (Chen et al., 2006 and references
therein). It is well-known that BRSS offers more precise estimation than its SRS
counterpart (i.e., SRS with the same sample size). The efficiency of BRSS can
be further improved by implementing URSS with appropriate unequal allocation.
Especially, when the underlying distribution is highly skewed, an URSS estimator
can be (much) more efficient relative to its BRSS and SRS counterparts (Ahn et al.,
2017; Chen & Bai, 2000; Bocci et al., 2010; Ozturk & Wolfe, 2004; Wang et al.,
2017). However, if the number of replicates for each stratum in URSS is not properly
assigned, its performance can be even worse than that of SRS. Conditions that render
a URSS design more efficient than its BRSS counterpart (i.e., the balanced design
with the same set size and sample size) remain largely unexplored.

Some proper allocation rules for RSS have been suggested in the literature to
achieve better efficiency than the default BRSS (Bhoj & Chandra, 2019; Chen
& Bai, 2000; McIntyre, 1952; Wang et al., 2004). Among them, the Neyman
allocation, which allocates sample units into rank strata in proportion to the standard
deviation of each stratum, is the most popular due to the optimality that it has
the smallest variance in estimating the population mean. For this reason, most
of the existing literature on URSS has focused on the Neyman allocation (Chen
et al., 2006; Takahasi & Wakimoto, 1968; Wang et al., 2017). However, the
Neyman allocation is “one of many” allocation schemes which are more efficient
in estimating the population mean than their BRSS counterparts. In addition, it
globally depends on the variances of all rank strata and so lacks flexibility in
practice. In other words, suppose the current sampling scheme is not the Neyman
optimal and further is less efficient than the balanced design, due to various
complications and limitations in implementation. One may want to make it become
the Neyman optimal or at least more efficient than its BRSS counterpart by some
(small local) adjustment (e.g., adding a few more samples to a few rank strata). For
the Neyman allocation, the sample size of “one” stratum depends on the variances
of all other strata, and thus, if we add more samples, we have to do so for most of
the rank strata, and this is often costly in practice.

The main purpose of this paper is to define a sufficient set of allocation schemes,
in which estimation of the population mean from URSS is guaranteed to be more
efficient than the BRSS counterpart. This sufficient set is characterized by the
sample sizes of neighboring strata so that when an allocation scheme is not in
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the set, we can easily fix it. We further propose a local adjustment procedure
based on the sufficient set that renders the resulting design more efficient than its
BRSS counterpart when it is originally not. For comparison, we also consider a
naive procedure that intends to achieve proximity to the optimal Neyman without
discarding existing observations.

This paper is organized as follows. The sufficient set of sample allocation
schemes that are more efficient than BRSS counterparts, denoted by N , is proposed
in Sect. 2. We illustrate the set N using a simplex diagram and compute theoretical
relative efficiency (RE) over SRS for a fixed set size under various distributions
(with either heavy tails or skewness) in Sect. 3. In Sect. 4, we consider two local
adjustment procedures to modify a design that is less efficient than BRSS, one of
which is based on N , while the other is not. We compare the two procedures in
terms of the number of added samples (the cost of reallocation) and the efficiency
gain per an additional sample. In Sect. 5, we apply two methods to an educational
data example. Finally, we conclude the paper with a brief summary in Sect. 6.

2 More Efficient URSS than BRSS

Suppose that we have RSS data with a set size H and a total sample size n =∑H
h=1 nh, where nh is the number of measured units with rank h. Note that for

BRSS, nh ≡ n/H for h = 1, · · · ,H and let m = n/H . Here, we find a condition
for the sample allocation n = (n1, n2, . . . , nH

)
that makes the URSS with n more

efficient than its balanced counterpart in estimating the population mean. Let μ̂RSS
denote the RSS mean estimator, where μ̂RSS = 1

H

∑H
h=1 Ȳh and Ȳh is the sample

mean in the h-th stratum that contains all measured units with rank h. The variance
of μ̂RSS is

V.rss(n) := Var
(
μ̂RSS
)
(n) = 1

H 2

H∑

h=1

σ 2[h]
nh

where σ 2[h] is the variance of the h-th rank stratum. For BRSS, it is known that the
variance of the mean estimator is smaller than that of SRS with the same sample
size n. On the other hand, for some unequal allocation n, the URSS mean estimator
has a larger variance than BRSS or sometimes SRS estimators with the same sample
size, i.e.,

V.rss(m) = 1

H 2

H∑

h=1

σ 2[h]
m

≤ σ 2

n
= Var(μ̂SRS) ≤ V.rss

(
n
)

where m = (m,m, · · · ,m) is the equal allocation for BRSS and n = mH ; σ 2 is the
population variance.
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The optimal RSS design in estimating the population mean has been studied
in Takahasi and Wakimoto (1968), which adopts the Neyman allocation and has
the smallest variance. We denote the Neyman allocation by ñ = (ñ1, ñ2, · · · , ñH )

where

ñh = σ[h]
∑H

l=1 σl

· n

and

V.rss
(
ñ
) ≤ V.rss(m) ≤ Var(μ̂SRS).

As mentioned in the introduction, the Neyman allocation is not the only
allocation scheme whose mean estimator is more efficient than that of BRSS.
For simplicity, we relabel the strata to have monotonicity in stratum variances:
σ 2

1 ≤ σ 2
2 ≤ · · · ≤ σ 2

H and let nh be the number of units for the corresponding
h-th stratum. Note that after relabeling, units in the h-th stratum no longer have
rank h and so we use σ 2

h instead of σ 2[h]. For a fixed total sample size n and a fixed
set size H , the set N0, defined by

N0 =
{

n = (n1, n2, . . . , nH

)∣∣
∣V.rss(n) = 1

H 2

H∑

h=1

σ 2
h

nh

≤ 1

H 2

H∑

h=1

σ 2
h

m
= V.rss(m)

}

,

is the collection of all sample allocation schemes that is more efficient than the
BRSS with m = n/H in estimating the population mean.

We proceed to consider the sample allocation set

N =
{

n = (n1, n2, . . . , nH

)∣∣
∣1 ≤ nh+1

nh

≤ σ 2
h+1

σ 2
h

, h = 1, 2, . . . , H − 1

}

,

which is a subset of N0, as will be shown in Theorem 1. That is, the condition in the
set N is sufficient to make an URSS design more efficient than the BRSS design,
but it is not a necessary condition. Note that the Neyman allocation ñ is included in
N because 1 ≤ ñh+1/ñh = σh+1/σh ≤ σ 2

h+1/σ
2
h .

Theorem 1 (a) If n ∈ N , we have V.rss(n) ≤ V.rss(m). (b) There exists a sample
allocation n /∈ N such as V.rss(n) ≤ V.rss(m).

Proof

(a) Without loss of generality, we assume σ 2
1 ≤ σ 2

2 ≤ · · · ≤ σ 2
H and nhs are

positive real numbers.
We first prove the claim for the case H = 2. Let
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f (n1) = 1

H 2

{σ 2
1

n1
+ σ 2

2

n2
− 2

n

(
σ 2

1 + σ 2
2

)} = V.rss(n) − V.rss(m), (1)

where n2 = n − n1. The function is convex in n1 and has zero values when

(
n1, n2) =

(n

2
,
n

2

)
or

(
σ 2

1

σ 2
1 + σ 2

2

n,
σ 2

2

σ 2
1 + σ 2

2

n

)

.

Thus, for every n1 ∈ (nσ 2
1 /(σ 2

1 + σ 2
2 ), n

2

)
or equivalently 1 ≤ n2/n1 ≤

σ 2
2 /σ 2

1 , we have f
(
n1
) ≤ 0 that means V.rss(n) ≤ V.rss(m).

We now prove the claim for a general H . Let

f (n) = V.rss(n) − V.rss(m) = 1

H 2

H∑

h=1

σ 2
h

nh

− 1

H 2

H∑

h=1

σ 2
h

m
:= 1

H 2

H∑

h=1

fh(nh)

(2)
where

fh(nh) = σ 2
h

nh

− σ 2
h

m
.

A simple algebra shows that f (n) is a convex function of n1, n2, . . . , nH−1.
For h = 1, 2, . . . , H − 1, define the set

Ah =
{
(
nh, nh+1

)∣∣
∣1 ≤ nh+1

nh

≤ σ 2
h+1

σ 2
h

}

(3)

and so N = ⋂H−1
h=1 Ah. We show that for every n = (n1, n2, . . . , nH

) ∈ N ,
f
(
n
) ≤ 0. Given n = (n1, n2, . . . , nH

) ∈ N , we consider a sequence of
allocations ma , a = 0, 1, 2, . . . which starts with m0 = n and converges to(
1/m, 1/m, . . . , 1/m

)
. For a = q(H − 1) + h, q = 0, 1, 2, . . ., we update

(ma−1
h ,ma−1

h+1) in ma−1 = (ma−1
1 ,ma−1

2 , . . . , ma−1
H

)
; the updated (ma

h,m
a
h+1)

is

(
ma

h,m
a
h+1

) =
(

ma−1
h + ma−1

h+1

2
,
ma−1

h + ma−1
h+1

2

)

∈ Ah

and let ma
j = ma−1

j for j �= h, h + 1; and ma = (ma
1,m

a
2, . . . , ma

H ) ∈ N . We
know that

lim
a→∞ma =

(
1

m
,

1

m
, . . . ,

1

m

)
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with m = n/H .
Now, to show the claim for general H , it suffices to show that, for every

a ≥ 1,

f
(
ma−1) =

H∑

h=1

fh(m
a−1
h ) ≤ f

(
ma
) =

H∑

h=1

fh(m
a
h)

Without loss of generality, a = q(H − 1) + h and ma updates the h-th and
(h + 1)-th elements of ma−1. For notational simplicity, let ma−1

h = nh and
ma−1

h+1 = nh+1 and ma
h = ma

h+1 = (nh + nh+1
)
/2. Then

f
(
ma−1)− f

(
ma
) = σ 2

h

nh

+ σ 2
h+1

nh+1
− 2

nh + nh+1

(
σ 2

h + σ 2
h+1

)
≤ 0, (4)

by applying the case H = 2. Finally, we have f
(
n
) ≤ 0 and so V.rss(n) ≤

V.rss(m).
(b) We start with the case of H = 3 and σ 2

1 ≤ σ 2
2 ≤ σ 2

3 . Under this case, it suffices
to find n /∈ N but V.rss(n) < V.rss(m).

Suppose we consider n /∈ N which satisfies (C1) 1 ≤ σ 2
3 /σ 2

2 ≤ n3/n2, (C2)
n1 ≤ n2 < m = n/H < n3,

c1 ×
1
n1

− 1
m

1
m

− 1
n3

≤ σ 2
3

σ 2
1

(C3)

and

c2 ×
1
n2

− 1
m

1
m

− 1
n3

≤ σ 2
3

σ 2
2

(C4)

for some positive values c1 and c2 such as 1/c1 + 1/c2 = 1.
We again consider the function f (n) = V.rss(n) − V.rss(m) =∑3
h=1 fh(nh)/H

2 where fh(nh) = σ 2
h /nh − σ 2

h /m for h = 1, 2, 3. Then,
by the conditions (C1)–(C4),

c1f1(n1) = c1σ
2
1

(
1

n1
− 1

m

)

≤ σ 2
3

(
1

m
− 1

n3

)

= −f3(n3)

and

c2f2(n2) = c2σ
2
2

(
1

n2
− 1

m

)

≤ σ 2
3

(
1

m
− 1

n3

)

= −f3(n3).
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Since m < n3 gives −f3(n3) > 0,

f1(n1) + f2(n2)

−f3(n3)
≤ 1

c1
+ 1

c2
= 1

and thus f1(n1) + f2(n2) ≤ −f3(n3). Finally, we have n /∈ N but satisfies
f (n) = V.rss(n) − V.rss(m) ≤ 0. �

3 Graphical Illustration of the Sample Allocation Set N

Here, we fix the set size H at 3 and use a simplex diagram to illustrate the sample
allocation set N proposed in Sect. 2.

First, we consider a hypothetical case with stratum variances σ 2
1 = 1 < σ 2

2 =
2 < σ 2

3 = 3, in which the sample allocation set N is plotted as a gray-shaded
region in Fig. 1. In the simplex diagram, a point (x, y, z) with x + y + z = 100
implies the percentage of each stratum size relative to the total sample size. Three
vertexes represent the allocation schemes having rates N1(100,0,0), N2(0,100,0),
and N3(0,0,100), and the line N2N3 (N1N3 or N1N2) becomes the baseline x = 0
(y = 0 or z = 0). A series of lines have been drawn in parallel to each baseline
to mark off the percentages, and the percent scale for x (y or z) is laid out along
the line N1N2 (N2N3 or N1N3). Then, in Fig. 1, for the case with σ 2

1 = 1 <

σ 2
2 = 2 < σ 2

3 = 3, the balanced allocation (33.3, 33.3, 33.3), the Neyman

Fig. 1 An illustration of
sample allocation schemes
(BRSS, balanced allocation;
Neyman, Neyman allocation;
URSS4, an unequal allocation
with nh+1/nh = σ 2

h+1/σ
2
h )

for a hypothetical case with
set size H = 3 and
σ 2

1 = 1 < σ 2
2 = 2 < σ 2

3 = 3.
The oval-like shape
represents the set N0 and the
gray-shaded area represents
the set N
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Fig. 2 An illustration of sample allocation schemes in the sets N and N0 (BRSS, balanced
allocation; Neyman, Neyman allocation; URSS4, an unequal allocation with nh+1/nh = σ 2

h+1/σ
2
h )

under t distributions with different degrees of freedom 3, 7,∞. The oval-like shape represents the
set N0. Due to the symmetry of t distributions, n1 = n3 so that the set N is reduced to the segment
on the line that is perpendicular to N1N3

Table 1 The stratum
variances for the set size
H = 3 under t and gamma
distributions

t Gamma

df σ 2[1] σ 2[2] σ 2[3] α σ 2[1] σ 2[2] σ 2[3]
3 2.601 0.720 2.601 1 0.111 0.361 1.361

7 0.885 0.538 0.885 2 0.095 0.201 0.559

100 0.575 0.454 0.575 3 0.080 0.139 0.336

allocation (24.1, 34.1, 41.8), and the allocation (16.7, 33.3, 50) according to the
rule nh+1/nh = σ 2

h+1/σ
2
h , are plotted as points labeled “BRSS,” “Neyman,” and

“URSS4,” respectively. Further, the oval-like area surrounded by the thick curved
line is the efficient sample allocation set N0 that contains N .

Secondly, we consider symmetric distributions and in Fig. 2, we show the
sample allocation sets under t-distributions with different degrees of freedom
df = 3,7,100, whose stratum variances are given in Table 1. Note that normal
distributions are a special case of t-distributions with df = ∞. Due to the
symmetric property that yields σ 2[1] = σ 2[3] and so n1 = n3, the set N is reduced

to a segment on the line that is perpendicular to N1N3 within the set N0. As df

increases, the ratio of variances, σ 2[2]/σ 2[1] = σ 2[2]/σ 2[3], decreases and the set N
becomes smaller along the line, approaching the point of BRSS.

Thirdly, we consider asymmetric distributions and show the sample allocation
sets under gamma distributions in Fig. 3. For these gamma distributions, shape and
rate parameters are both set to α, and thus they have mean 1, variance 1/α, and
skewness 2/

√
α. We set α = 1, 2, 3, and report the corresponding stratum variances

in Table 1. Compared to symmetric distributions, there is no equality in stratum
variances, and the sample allocation set N is a polygon with four edges. Also, as α

increases, the skewness decreases so that the variances become more homogeneous.
This makes N become smaller.
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Fig. 3 An illustration of sample allocation schemes in the sets N and and N0 (BRSS, balanced
allocation; Neyman, Neyman allocation; URSS4, an unequal allocation with nh+1/nh = σ 2

h+1/σ
2
h )

for gamma distributions with different α = 1, 2, 3 with mean 1. The oval-like shape represents the
set N0 and the gray-shaded area represents the set N
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Fig. 4 Comparison of theoretical RE of BRSS to those of various URSS schemes (URSS-NM,
the Neyman allocation; URSS1, 1/3 NM and 2/3 BRSS; URSS2, 2/3 NM and 1/3 BRSS; URSS3,
1/2 NM and 1/2 URSS4; URSS4, the scheme with nh+1/nh = σ 2

h+1/σ
2
h ) under perfect ranking

Figure 4 shows theoretical RE values of RSS mean estimators based on six
allocation schemes in the set N , including BRSS (equal allocation), URSS-NM
(the Neyman allocation), and four other unequal allocation schemes: URSS1 (1/3
NM and 2/3 BRSS), URSS2 (2/3 NM and 1/3 BRSS), URSS3 (1/2 NM and 1/2
BRSS), and URSS4 with nh+1/nh = σ 2

h+1/σ
2
h . The RE of the RSS mean estimator

μ̂RSS with the sample allocation n over the SRS mean estimator μ̂SRS with the same
sample size n =∑H

h=1 nh is defined as the ratio of variances:
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RE = Var(μ̂SRS)

V.rss(n)
= σ 2/n

1
H 2

∑H
h=1 σ 2

h /nh

.

All allocation schemes use theoretical allocation proportions to compute their REs
(i.e., non-integer sample sizes are allowed). Clearly, the theoretical REs of all
five unequal allocation schemes in the set N are larger than that of the BRSS
counterpart. We mention that for the t distributions, as df increases, the heavy-
tailedness becomes less severe and the URSS allocation schemes get closer to the
balanced BRSS allocation, and so the lines are quite flat.

As shown in Theorem 1-(b), the set N is nested in the set N0. Ideally, one may
want to figure out a sufficient and necessary condition for allocation schemes in
N0. As N outlines a sufficient condition only, we are interested in comparing the
coverage of N relative to N0. In Table 2, we report the ratio of the area of N to
that of N0, |N |/|N0|, as the relative probability of points lying inside the inscribed
set N over the set N0 for the t and gamma distributions. We denote the area ratios
as AR and AR∗ by considering all the real valued points and only the integer valued
points s.t. n = ∑H

h=1 nh, respectively. Note that for the t distributions, as N is
only a segment, AR is zero in theory. To compute AR for the gamma distributions,
we randomly generate 10,000 allocation schemes using Monte Carlo simulation and
count how many in N and N0. We find that the relative size of N to N0 (the ratio
AR∗) is large when the sample size n is small, in which RSS has been proved to be
most useful. In addition, the ratio AR∗ decreases to the ratio AR, as n increases.

4 Sample Allocation Adjustment

4.1 Local Ratio Consistent and Approximate Neyman
Allocations

Based on the sufficient set N characterized in Sect. 2, for n = (n1, n2, . . . , nH

)
/∈

N , we propose the so-called local ratio consistent (LRC) allocation nLRC to move
n into N by local adjustment (i.e., adding a few samples to some of the strata). For
the purpose of comparison, we also consider a naive adjustment method that leads
to approximate Neyman (AN) allocation nAN .

The first adjustment procedure that yields nLRC attains the local ratio consistency
via the following steps. Again, we relabel the strata to satisfy σ 2

1 ≤ σ 2
2 ≤ · · · ≤ σ 2

H .

1. For the current allocation n = (n1, n2, . . . , nH

)
, we define, for h =

1, 2, . . . , H − 1,

uh = nh+1

nh

· σ 2
h

σ 2
h+1

and �h = nh+1

nh

.
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and compute these quantities.
2. Let h = argmaxH−1

h=1 uh and if uh > 1, add one to nh , nh ← nh + 1.
3. Let h = argminH−1

h=1 �h and if �h < 1, add one to nh+1, nh+1 ← nh+1 + 1.
4. If uh ≤ 1 ≤ �h for h = 1, 2, . . . , H −1, stop the procedure and report the current

allocation n. Otherwise, we iterate steps 1–3.

We remark that h and h can not be equal to each other, because for every h =
1, 2, . . . , H − 1, if uh > 1, then �h > 1; and, similarly, if �h < 1, then uh < 1.

The second adjusted allocation nAN is based on the Neyman allocation. Let nN =(
nN

1 , nN
2 , . . . , nN

H

)
denote the Neyman allocation for a fixed total sample size n =

∑H
h=1 nh and a set size H as in the original allocation n. We then simply define the

AN allocation by

nAN = (nAN
1 , nAN

2 , · · · , nAN
H ) = (max(nN

1 , n1), max(nN
2 , n2), · · · , max(nN

H , nH )
)

:= max
(
nN,n
)
,

where nAN
h = max(nN

h , nh) with the total sample size nAN =∑H
h=1 nAN

h . Then we
have additional samples at the h-th stratum nN

h+ = max(0, nN
h − nh) and additional

total samples nN+ = ∑H
h=1 nN

h+. Unlike nLRC , there is no guarantee that nAN is
in N or N0. However, due to more samples used and proximity to the Neyman
allocation, nAN is very likely to be more efficient than the initial n.

4.2 Comparison via Simulation

We generate 10,000 sample allocations from the multinomial distribution with
parameter p = (1/6, 1/3, 1/2) with a size of n = 12, 24, 48. To compare the two
adjustment methods, we compute the proportion of the allocation schemes updated
from the original schemes, the average number of additional samples, the average
RE, and the average efficiency gain (EG) per an additional sample over 10,000
replicates for each setting considered in Table 3. Note that the average number
of additional samples, RE, and EG are computed for the cases where at least one
stratum of LRC allocation is updated (i.e., nLRC has at least one additional sample).
The EG of nA versus n per an additional sample is defined as

EG(nA) = RE(nA) − RE(n)

nA+

where the superscript A ∈ {‘LRC′, ‘AN ′} denotes the adjustment method of sample
allocation and nA+ is the number of the required additional total samples by the
corresponding method A.

We assume that the data are generated from gamma distributions with equal
shape and rate parameters α ∈ {1, 2, 3} yielding the variance 1/α. Accordingly,
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Table 3 Comparison between the original and two adjusted allocation schemes: H = 3, p =
(1/6, 1/3, 1/2), and 10,000 replicates. The numbers in the parentheses represent standard
deviation

α n adj. %(n /∈ N ) AVG(nA+) AVG(RE) AVG(EG)

1 12 nLRC 57.61% 1.999 (1.522) 1.887 (0.105) 0.128 (0.064)

nAN 2.434 (1.159) 1.938 (0.074) 0.126 (0.060)

24 nLRC 44.09% 2.444 (1.851) 1.902 (0.079) 0.084 (0.066)

nAN 3.855 (1.404) 1.959 (0.057) 0.065 (0.040)

48 nLRC 25.66% 2.782 (2.344) 1.913 (0.058) 0.039 (0.028)

nAN 6.518 (2.161) 1.974 (0.040) 0.026 (0.016)

2 12 nLRC 70.81% 2.305 (1.677) 1.893 (0.049) 0.140 (0.088)

nAN 2.069 (0.907) 1.893 (0.061) 0.147 (0.081)

24 nLRC 66.37% 2.811 (2.203) 1.913 (0.047) 0.074 (0.052)

nAN 3.415 (1.263) 1.940 (0.038) 0.066 (0.044)

48 nLRC 55.84% 3.305 (2.492) 1.927 (0.039) 0.035 (0.021)

nAN 5.433 (1.852) 1.957 (0.025) 0.027 (0.017)

3 12 nLRC 78.86% 2.756 (1.840) 1.917 (0.038) 0.115 (0.064)

nAN 2.134 (0.950) 1.898 (0.067) 0.127 (0.064)

24 nLRC 78.81% 3.418 (2.305) 1.919 (0.030) 0.065 (0.044)

nAN 3.585 (1.318) 1.926 (0.036) 0.061 (0.041)

48 nLRC 73.65% 4.242 (3.012) 1.921 (0.031) 0.032 (0.020)

nAN 5.448 (1.939) 1.939 (0.022) 0.028 (0.018)

the stratum variances are (σ 2
1 , σ 2

2 , σ 2
3 ) = {(0.11, 0.36, 1.36), (0.10, 0.20, 0.56),

(0.08, 0.14, 0.34)}. For RSS schemes, we consider H = 3, n = {12, 24, 48} for
the original sample allocation, all with perfect ranking.

Table 3 shows that as α increases (so that the skewness decreases), the initial
sample allocations n is more frequently not in N , and this is because the (relative)
area of the set N decreases as shown in Fig. 3. We also find that, if the initial
allocation is not in N and is adjusted to nLRC and nAN , then nLRC+ (the number
of added samples by LRC) tends to be smaller than nAN+ (the number of added
samples by AN). This is further confirmed by Table 4, which reports distributions
of the number of additional samples by LRC and AN and that of their difference
for the case with n = 12 and α = 1. For this reason, in Table 3, the average RE of
nLRC is smaller than that of nAN . Nevertheless, the EG per one additional sample
of nLRC is larger than that of nAN in the cases. To sum up, these results show that
nLRC tends to require fewer additional samples than nAN to make the design more
efficient and is cost-effective in the sense that EG per one additional sample is larger
than nAN .
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Table 4 Distributions of no. of additional samples using LRC and AN and the distribution of the
difference in total sample size between LRC and AN with H = 3, n = 12, p = (1/6, 1/3, 1/2),
and the gamma distribution with α = 1

% nLRC+ nAN+ nAN − nLRC

0(<0) 42.39 7.65 28.74 (7.12)

1 30.33 33.84 43.73

2 14.77 30.56 17.96

3 5.41 17.31 2.45

4+ 7.10 10.64 –

5 Data Example

In practice, BRSS is often the default RSS design and is frequently used due to its
simplicity in implementation and inference. However, the issue of missing data is
common in many studies and results in unbalancedness in RSS. For example, in the
following education study, there are various reasons that students or schools drop
out of assessment tests.

In this section, following Wang et al. (2017), we simulate a realistic situation,
where study designs are embedded with BRSS when recruiting experimental units
but the collected data have a URSS design at the end of the experiments due to
missingness. We use a dataset from the High School Longitudinal Study of 2009
(HSLS09) and preprocess it as in Wang et al. (2017) to examine the performance
of the two local adjustment procedures in Sect. 4. The HSLS09 data contain results
of the students’ assessments throughout secondary and postsecondary years from
the National Center for the Education Statistics (NCES) website. The 12,533
students involved are considered as the population, and the 2012 math theta scores
(X2TXMTH) are thought of as the response variable. The 2012 math theta scores
(X2TXMTH) and the 2009 math theta scores (X1TXMTH) are used to rank students
in RSS, for perfect and imperfect ranking, respectively. The correlation between
X1TXMTH and X2TXMTH is about 0.78.

Suppose we aim to estimate the mean score to evaluate high school students’
math ability. We consider the experiment design with H = 3, nh = m ∈ {4, 8, 12}
for h = 1, 2, 3 and so n ∈ {12, 24, 48}, but we assume that outcomes are missing
completely at random with missing rate φ ∈ {10%, 20%}. We treat the resulting
sample allocation from data with missing values as the “original” URSS allocation.
Since for real data, the underlying distribution of the response variable is not known,
we estimate the stratum variances σ 2

h ’s using the corresponding sample variances
based on data from the “original” allocation.

For the given URSS allocation n, we compute the integer valued Neyman
allocation nN using Wright (2012) and apply the two local adjustment methods
to obtain nLRC and nAN . We repeat the procedure 10,000 times and compute the
performance measures introduced in Sect. 4.2. Table 5 reports the results, including
the proportion of the updated allocation schemes, the average number of additional
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Table 5 HSLS09 data example: comparing performance of two adjustment methods that yield
nLRC and nAN in percentage of the number of additional samples and relative efficiency. The
numbers in parentheses are standard deviations. The stratum variances σ 2

h ’s are estimated using the
corresponding sample variances based on the “original” allocation (i.e., URSS allocation caused by
missing data). The RE is the ratio of the empirical mean squared errors of 10,000 RSS estimates
over that of 10,000 SRS estimates with the same sample size

Perfect ranking Imperfect ranking

φ n adj. %(n /∈ N ) AVG(nA+) RE %(n /∈ N ) AVG(nA+) RE

0.1 12 nLRC 67.59 % 1.263 (0.714) 1.853 68.37 % 1.244 (0.688) 1.437

nAN 1.794 (0.919) 1.792 1.831 (0.929) 1.392

24 nLRC 74.15 % 1.647 (0.478) 1.920 73.34 % 1.645 (0.479) 1.455

nAN 2.348 (1.187) 1.860 2.390 (1.208) 1.438

48 nLRC 79.41 % 2.404 (1.338) 1.950 78.30 % 3.298 (1.331) 1.499

nAN 3.169 (1.615) 1.901 3.225 (1.589) 1.414

0.2 12 nLRC 70.79 % 1.573 (0.495) 1.902 70.50 % 1.589 (0.492) 1.506

nAN 1.853 (0.914) 1.831 1.864 (0.916) 1.422

24 nLRC 79.30 % 2.292 (1.255) 1.937 79.00 % 2.282 (1.249) 1.456

nAN 2.401 (1.184) 1.871 2.416 (1.199) 1.418

48 nLRC 82.58 % 3.170 (2.028) 1.946 82.14 % 3.161 (2.022) 1.468

nAN 3.256 (1.595) 1.943 3.305 (1.611) 1.414

samples, and empirical RE, for both perfect and imperfect ranking. Here, the RE is
the ratio of the empirical mean squared errors of 10,000 RSS estimates over that of
10,000 SRS estimates with the same sample size. Again, the measures are calculated
for the cases when nLRC has additional samples to the original n. Table 5 reassures
our finding in Sect. 4.2 that on average, nLRC+ is smaller than nAN+ and the efficiency
gain by one additional sample in nLRC is larger than that of nAN in all designs
considered (since RE for nLRC is already higher than that for nAN even with fewer
additional samples). These findings are true for both perfect and imperfect ranking,
even when the stratum variances are unknown and have to be estimated from the
data.

6 Conclusion

We conclude the paper with a brief summary. We consider a set N of sample
allocation schemes for unbalanced ranked set sampling (URSS), which is a subset of
N0, the collection of all allocation schemes giving more efficient mean estimation
than their BRSS counterparts. The set N is characterized by local conditions on
the sample sizes of adjacent strata, and this allows us to move a less efficient
URSS allocation scheme n into N by adding a few samples into a few strata. We
illustrate the set N with H = 3 using a simplex diagram for various underlying
distributions. We further consider two procedures to adjust n, which yields the local
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ratio consistent (LRC) allocation nLRC and approximate Neyman (AN) allocation
nAN , respectively. We numerically compare the two methods via simulation and
find that nLRC , which locally adjusts n based on N , tends to require fewer extra
samples and have higher efficient gain per sample than nAN . Our data example using
the High School Longitudinal Study of 2009 (HSLS09) confirms the finding from
the simulation, in which stratum variances have to be estimated from data. It also
illustrates the usefulness of the LRC method in situations when BRSS is initially
planned, but missing data causes a URSS scheme that needs to be adjusted.

Our discussion in this study focuses on the set size H = 3. For large H , the cases
with more number of rank strata, we expect that the efficient gain of LRC over AN
becomes large. It is because the AN allocation globally depends on the allocations
of many other strata and tends to require more additional samples to make the new
unbalanced design more efficient than the BRSS compared to the LRC allocation.

Acknowledgments This work was supported by the National Research Foundation of Korea
(Grant No.: NRF-2017R1D1A1B03032073).

References

Ahn, S., Wang, X., & Lim, J. (2017). On unbalanced group sizes in cluster randomized designs
using balanced ranked set sampling. Statistics & Probability Letters, 123, 210–217.

Bhoj, D., & Chandra, G. (2019). Simple unequal allocation procedure for ranked set sampling with
skew distributions. Journal of Modern Applied Statistical Methods, 18(2), eP2811.

Bocci, C., Petrucci, A., & Rocco, E. (2010). Ranked set sampling allocation models for multiple
skewed variables: An application to agricultural data. Environmental and Ecological Statistics,
17(3), 333–345.

Chen, Z., & Bai, Z. (2000). The optimal ranked-set sampling scheme for parametric familites.
Sankhya: The Indian Journal of Statistics, Series A, 62(2), 178–192.

Chen, H., Stasny, E. A., & Wolfe, D. A. (2006). Unbalanced ranked set sampling for estimating a
population proportion. Biometrics, 62(1), 150–158.

McIntyre, G. A. (1952). A method for unbiased selective sampling, using ranked sets. Australian
Journal of Agricultural Research, 3(4), 385–390.

Ozturk, O., & Wolfe, D. A. (2004). Optimal allocation procedure in ranked set sampling for
unimodal and multi-modal distributions. Environmental and Ecological Statistics, 7, 343–356.

Stokes, S. L., & Sager, T. W. (1988). Ocharacterization of a ranked-set sample with application
to estimating distribution functions. Journal of the American Statistical Association, 83(402),
374–381.

Takahasi, K., & Wakimoto, K. (1968). On unbiased estimates of the population mean based on the
sample stratified by means of ordering. Annals of the Institute of Statistical Mathematics, 20,
1–31.

Wang, Y. G., Chen, Z., & Liu, J. (2004). General ranked set sampling with cost considerations.
Biometrics, 60(2), 556–561.

Wang, X., Ahn, S., & Lim, J. (2017). Unbalanced ranked set sampling in cluster randomized
studies. Journal of Statistical Planning and Inference, 187, 1–16.

Wright, T. (2012). The equivalence of Neyman optimum allocation for sampling and equal
proportions for apportioning the U.S. house of representatives. The American Statistician,
66(4), 217–224.



On the Versatility of Capture-Recapture
Modeling: Counting What We Don’t See

James D. Nichols

Abstract Initial development of capture-recapture modeling occurred almost
exclusively within the disciplines of wildlife management and animal ecology.
Virtually all methods for surveying animals “miss” individuals; i.e., some
unknown fraction of animals present in surveyed areas goes undetected. In
order to draw inferences about all animals actually present, we must deal
with this nondetection. In addition, we sometimes misclassify animals as to
species, sex, reproductive condition, etc., requiring us to deal with probabilities
of misclassification. Capture-recapture models differ from many other kinds of
statistical models in that they incorporate parameters that deal with both the
process being studied (e.g., population size, survival rate, recruitment rate) and
the sampling process giving rise to the data (e.g., capture or detection probability,
correct classification probability). Many other disciplines face these same kinds
of counting errors, nondetection and misclassification. These disciplines include
epidemiology, medicine, social sciences, paleobiology, remote sensing, military
imaging, philately, space exploration, quality control, and software development.
This chapter includes a brief history of capture-recapture modeling, an introduction
to the logic underlying basic models, a discussion of nontraditional uses of these
models, and recommendations for additional potential uses.

1 Introduction

Wildlife biologists and animal ecologists realized early on that their methods for
surveying animal populations did not provide accurate counts. Animals are missed
by virtually all survey methods, and biologists were forced to develop methods that
produced not only counts of animals detected but also estimates of those present,
but not detected. Several clever approaches have been developed to deal with this
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issue of nondetection (Seber, 1982; Williams et al., 2002; Seber & Schofield,
2019), and they have seen wide use in ecology and wildlife biology for decades.
Another problem faced when surveying animal populations and communities is
misclassification. Some of the same factors that cause animals to be difficult
to detect (e.g., reliance on partial sightings or auditory cues) can also result
in misclassification. For example, an auditory bird survey may result in species
misidentification. A visual survey of a sexually monomorphic bird species may
result in sex being misclassified. A sighting survey of reproduction in manatees
may result in a reproductive female being misclassified as nonreproductive because
her young is too far away from her or obscured by her body. Methods for dealing
with nondetection have thus been modified to incorporate misclassification as well
(Pradel, 2005; MacKenzie et al., 2018).

These same problems in counting and classifying characterize other scientific
disciplines as well, but with much less corresponding effort to deal with them. Here,
I first provide a brief history of both capture-recapture and closely related occupancy
modeling. Then, I survey uses of these models in disciplines other than ecology and
wildlife biology and identify opportunities for even greater use.

2 Capture-Recapture

In this section, I provide a brief introduction to capture-recapture modeling by
describing the basic ideas underlying several classes of capture-recapture models.
Data are typically summarized as capture histories depicting whether or not an
individual was captured or detected at each sampling occasion of the study. Rather
than developing the full likelihoods for these different classes of model, I define
parameters and then write out probability structures for sample capture histories as
an abbreviated way of explaining the thinking that underlies these models.

2.1 2-Sample, Closed Population, Single State

The most basic capture-recapture estimator is based on the recognition that the
proportion of a specific type of individual or entity in a representative sample from
a population should be roughly equal to that in the population itself. Let M be the
known number of animals of a certain type in a total population of N individuals.
Then define m as the number of animals of that type in a sample of n individuals.
If the sample is representative of the population, in the sense of a similar proportion
of marked animals, then we expect:

m

n
≈ M

N
. (1)
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We can rearrange (1) to obtain the following estimator for N :

N̂ = nM

m
. (2)

Expression (2) is known as the Lincoln-Petersen estimator, and the prototypical
study to which it applies entails two sampling occasions separated by a short time
interval over which the sampled population is assumed to be “closed,” with no
animals entering or departing. On occasion 1, M animals are captured and marks are
applied to them. On occasion 2, another sample of n animals is captured, m of which
are found to be marked. This estimator has been independently derived a number of
times, initially by Laplace (1786), who used it to estimate the human population
of France, and later by Lincoln (1930) to estimate the number of waterfowl in late
summer to autumn in North America.

The estimator in (2) can also be viewed as a precursor to the general Horvitz
and Thompson (1952) estimator for a population total. M is the number of animals
sampled on occasion 1, and m/n estimates p1, the probability that a member of the
population of size N is caught in occasion 1:

N̂ = M

p̂1
. (3)

The estimator of (2) and (3) and its associated variance have been derived using both
hypergeometric (fixed sample size) and binomial (random sampling) likelihoods
(reviewed by Seber, 1982, Williams et al., 2002, Seber & Schofield, 2019).

The statistics used in capture-recapture modeling are most frequently written as
the number of animals exhibiting each possible capture or detection history. For a
2-sample study, there are only three such statistics denoted as xij , where i = 1 if
caught on occasion 1 and 0 if not caught then, and j = 1 if caught on occasion 2,
and 0 if not.

x11 = m = number of animals caught on occasions 1 and 2,
x10 = M − m = number of animals caught on occasion 1 but not on occasion 2,
x01 = n − m = number of animals caught on occasion 2 but not on occasion 1.

The number of animals not captured at either sampling occasion, x00, is unknown,
and the problem of estimating total abundance, N , is equivalent to the problem of
estimating x00.

Given that an animal is a member of the sampled population, the probabilities of
it exhibiting each observable capture history are then:

Pr(11) = p1p2,

Pr(10) = p1(1 − p2),

Pr(01) = (1 − p1)p2,
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where pt is the capture probability for sampling occasion t . Under this 2-sample
model, N , p1, and p2 can all be estimated. It is termed a “single state” model
because all animals are assumed to have the same probabilities of appearing in a
sample (i.e., no stratification by age, sex, size, etc.)

2.2 >2-Sample, Closed Population, Single State

This approach was extended to multiple sampling occasions (Schnabel, 1938;
Darroch, 1958) for closed populations. Capture histories were modeled as in the 2-
sample case. For a study with five sampling occasions, the probability of an animal
in the sampled population showing a capture history of 01010 is:

Pr(01010) = (1 − p1)p2(1 − p3)p4(1 − p5).

Each possible capture history has an associated probability such as above, and we
know how many animals exhibited the history, so we can develop a correspond-
ing likelihood and estimate the capture probabilities and abundance. Subsequent
developments included consideration of behavioral response of animals to initial
capture, heterogenous capture probabilities, and other generalizations (Otis et al.,
1978; Chao and Huggins, 2005a 2005b; Seber & Schofield, 2019).

2.3 >2 Samples, Open Populations, Single State

Capture-recapture methods were extended to “open” populations as well, where
sampling occasions could be separated by long time intervals such that gains
and losses to the population could occur between occasions (e.g., Jackson, 1933,
1939; Cormack, 1964; Jolly, 1965; Seber, 1965). These models were also based
on multinomial likelihoods and required additional parameters for survival of an
animal from one sampling occasion to the next. For example, let pt denote capture
probability for sampling occasion t , and let φt denote the probability that an animal
alive at sampling occasion t survives until occasion t +1 and remains in the sampled
population. The conditional probability associated with capture history x01010 in a
5-occasion study is:

Pr(01010|release in 2) = φ2(1 − p3)φ3p4(1 − φ4p5). (4)

The last terms in parentheses include both the possibility that the animal survived
until 5 but was not caught and the possibility that the animal did not survive.

Likelihoods conditional on new releases in each sampling period can be used to
estimate capture probabilities and survival probabilities and, assuming that animals
that were and were not previously captured exhibit the same capture probabili-
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ties, occasion-specific abundance (see expression 3). Subsequent parameterizations
include different ways of modeling the entry of new animals into the sampled
population (e.g., Crosbie & Manly, 1981; Pradel, 1996; Schwarz & Arnason, 1996),
as opposed to simply conditioning on entries as in (4).

2.4 >2 Samples, Open Populations, Multiple States

Arnason (1972, 1973) introduced the concept of multiple states in which an
animal could be captured, where states initially represented different locations
and were later generalized to characteristics of individual animals such as age,
reproductive condition, body mass, etc. The first multistate models to be widely
used allowed capture and survival parameters to depend on age, for studies in which
sampling occasions were separated by time intervals that corresponded to the exact
interval required for an animal to make the transition from 1 age class to the next
(Manly & Parr, 1968; Pollock, 1981; Stokes, 1984). These age-specific models are
much simpler than the general models of Arnason (1972, 1973) because of the
deterministic, unidirectional nature of age transitions.

In the general multistate models of Arnason (1972, 1973), state transitions are
stochastic, necessitating additional new parameters for transitions between states
(also see Hestbeck et al., 1991; Brownie et al., 1993; Schwarz et al., 1993). Define
θrs
t as the probability that an animal in state r at occasion t that survives until

occasion t + 1 is in state s at t + 1. Define Sr
t as the probability that an animal in

state r at sampling occasion t is still alive and in the sampled population at occasion
t +1, and pr

t as the probability that an animal in state r at occasion t is captured at t .
Capture histories must now indicate the state of the animal at each capture. In a study
area with two locations, 1 and 2, a capture history of 0102 would indicate an animal
first captured in state/location 1 at sampling occasion 2, not captured at occasion 3,
and captured in state 2 at occasion 4. The number of animals showing this history is
denoted as x0102, and the probability that an animal released in occasion 2, state 1,
will exhibit this history and thus appear in this statistic is:

Pr(0102|release in state 1 at occasion 2)

= S1
2 [(1 − θ12

2 )(1 − p1
3)S

1
3θ12

3 + θ12
2 (1 − p2

3)S
2
3(1 − θ21

3 )]p2
4. (5)

The portion of expression (5) in brackets reflects the state uncertainty of the animal
at occasion 3 and can be viewed as a mixture model incorporating the possibilities
that the animal was in state 1 or state 2. Likelihoods are conditional on new releases
in each state in each sampling occasion.

These multistate models assume the ability to classify an animal to its appropriate
state without error at each capture, and they have been generalized to deal with state
uncertainty and misclassification (Kendall et al., 2003, 2004; Nichols et al., 2004;
Pradel, 2005). These generalizations include additional classification parameters
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and sometimes use ancillary data to reduce uncertainty in modeling the capture and
classification processes.

2.5 Occupancy Models, Closed System, Single State

Occupancy models extend the thinking underlying capture-recapture from indi-
vidual animals to a set of locations or sites. The question for a single site is
whether a focal species is present or not, and the objective of the modeling is to
estimate occupancy, the probability that a site is occupied by the focal species. The
motivation for these models is possible nondetection; surveys of sites sometimes
“miss” detecting a species, despite presence of the species at the site. A key
distinction between the occupancy problem for sites and the capture-recapture
problem for individuals within a population is that the number of sites is known
and sites can be sampled at every occasion, although the result of the sampling is
still characterized by the uncertainty of possible nondetection. Early versions of
occupancy models were developed by Geissler and Fuller (1987), Azuma et al.
(1990), Nichols and Karanth (2002), and most current modeling is based on
MacKenzie et al. (2002).

Sample units for occupancy studies may be naturally occurring units such as
ponds or woodlots, or they may be cells in a grid superimposed on a continuous
area. Each unit is surveyed on multiple occasions within a relatively short time
period (e.g., 2 weeks) over which there are no changes in occupancy. Detection
histories are analogous to capture histories and denote the sequence of detections
and nondetections at each site. The statistics resulting from such a study are the
numbers of sites exhibiting each possible detection history, e.g., x101 is the number
of sites at which the species was detected on sampling occasions 1 and 3 of a 3-
occasion study, but not occasion 2.

The modeling of the detection history data is similar to that for individual animal
capture-recapture as well. Define pt as the probability of detecting the focal species
at a sample unit on sample occasion t , and ψ as the probability that a sample unit is
occupied by the species. The probability that a surveyed sample unit shows detection
history 101 is (MacKenzie et al., 2002):

Pr(101) = ψp1(1 − p2)p3. (6)

The probability for a site at which the species was not detected in any of the three
surveys is:

Pr(000) = ψ(1 − p1)(1 − p2)(1 − p3) + (1 − ψ). (7)

We know the species was present for detection history 101, as it was detected, and
we assume no false positives (Eq. 6). However, history 000 admits more uncertainty,
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as there are two possibilities: the species was present and not detected or the species
was absent (Eq. 7).

2.6 Occupancy Models, Open System, Single State

Open systems are those for which changes in occupancy status of sites may occur
between some sample occasions. Define a primary sample occasion as a relatively
short period (e.g., a specific month each year) during which occupancy status of
a site is not likely to change. Multiple secondary samples (e.g., four survey days)
occur within each primary period. However, the sites are permitted to be open to
changes in occupancy between primary periods. For a study with three secondary
occasions within each of two primary occasions, a detection history of 101,000
denotes a site with detections at secondary occasions 1 and 3 of primary occasion
1 and no detections in any of the three secondary occasions of primary occasion 2.
Barbraud et al. (2003) developed an early model for such data, and the approach of
MacKenzie et al. (2003) is the basis for most current modeling.

The modeling of detection probability requires an extra subscript for the two
kinds of sampling occasions. Let ptk denote the detection probability associated
with secondary period k of primary period t . The possibility of changes in
site occupancy requires two new parameters: εt is the probability that a site is
unoccupied by the species at primary occasion t + 1, given that it was occupied
at occasion t (local extinction); γt is the probability that a site is occupied by
the species at occasion t + 1, given that it was not occupied in period t (local
colonization). The probability associated with the above detection history is thus:

Pr(101 000) = ψ1(p11(1 − p12)p13)[ε1 + (1 − ε1)(1 − p12)(1 − p22)(1 − p23)].
(8)

The portion of (8) in brackets reflects the uncertainty about whether the species went
locally extinct at the site or instead persisted but went undetected. The likelihood is
then the product of these probabilities for the detection histories of all sites.

2.7 Occupancy Models, Multiple States, False Positives

Sometimes we may want to characterize occupied sites by “state,” where state
carries additional information about an occupied site. A common situation is where
a site occupied by a species can be classified into multiple states that can be ordered
by the degree of uncertainty characterizing the state classification (Royle, 2004;
Royle & Link, 2005, Nichols et al., 2007, MacKenzie et al., 2009). For example,
assume interest in a species and an associated pathogen, such that we designate state
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0 as a site not occupied by the focal species, and state 1 as a site occupied by the
species but where no individuals of the species have been infected by the pathogen.
State 2 denotes occupancy, with pathogen infection of at least one member of the
species. In addition to these three true states, we define three observation states that
can apply to a site at any secondary occasion survey: 0 = no detection of the species;
1 = detection of the species, but no detection of the pathogen; and 2 = detection of
both the species and pathogen. Observation state 0 admits the most uncertainty, as
true state may be 0, 1, or 2. For observation state 1, true state may be 1 or 2. Under
the assumption of no false-positive errors, observation state 2 is unambiguous, only
occurring when true state = 2. The notation and modeling of multistate occupancy
become increasingly complex (see MacKenzie et al., 2009, 2018).

The initial development of occupancy modeling assumed no false positives,
where these refer to the investigator claiming to detect a species, when the species
is actually absent from the sample unit. False positives typically occur when the
investigator mistakes an individual or sign of one species for that of another.
For example, the pugmark (track) or scat of a large leopard may be mistakenly
recorded as that of a tiger. Royle and Link (2006) developed a general, single-season
occupancy model that incorporates both nondetection and false positives. Miller
et al. (2011) developed models that use two (or more) different detection methods
to deal with false positives, and these have been extended to multiple designs
(Chambert et al., 2015) and multiple seasons (Miller et al., 2013; MacKenzie et al.,
2018).

2.8 Software

Computations for capture-recapture estimation of focal parameters and their
variance-covariance structures are relatively complex, such that development of
software has been critical to the use of these methods. Early software focused on
specific parameterizations of capture-recapture models, whereas development of
numerical differentiation algorithms has led to more flexible software, permitting
inference for user-specified models. A variety of software packages now exists for
implementing capture-recapture analyses. For example, one website (https://www.
capturerecapture.co.uk/software.html) managed by R. McCrea provides links to a
number of available capture-recapture packages.

Program MARK (White & Burnham, 1999; Cooch & White, 2022) implements
closed and open capture-recapture models, occupancy models, and a variety of other
models useful for inferences about demographic parameters. Program PRESENCE
(Hines, 2006) was developed specifically for occupancy models. Historically,
PRESENCE has incorporated new classes of occupancy models before other
occupancy software. Program M-SURGE (Choquet et al., 2004) was developed to
implement multistate capture-recapture models and is based on sufficient statistics,
resulting in typically faster computation times than software such as MARK, which
is based on individual capture history data. Program E-SURGE (Choquet et al.,
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2012) provides a general analytic framework for implementing multistate models in
the presence of state uncertainty.

2.9 Summary

Both capture-recapture modeling and closely related occupancy modeling have
undergone substantial evolution since their initial development for relatively simple
inference problems. Most of this development has been motivated by scientists
investigating animal populations and has focused on extensions and generalizations
to either estimate additional parameters (i.e., beyond abundance and occupancy) or
relax restrictive assumptions.

3 Beyond Traditional Applications

There have been many nontraditional uses of capture-recapture thinking and
methodology. Reviews of social science and medical applications include Bohning
(2008), Chao (2014), Bird and King (2018), and Bohning et al. (2018). The
applications discussed in this chapter are not exhaustive but are illustrative of the
diverse estimation problems to which these methods have been applied. Most of
these nontraditional uses begin with a focus on abundance of some focal entity,
combined with a recognition that the entity is frequently undercounted using the
standard survey methods of the discipline.

3.1 Human Health and Epidemiology

3.1.1 Population-Level Inferences

Uses of capture-recapture models for human health applications have a fairly long
history, with key early contributions by Wittes and Sidel (1968), Fienberg (1972),
Wittes (1974), Wittes et al. (1974), Hook et al. (1980), Hook and Regal (1982,
1992), LaPorte et al. (1992), McCarty et al. (1993), and LaPorte (1994) and useful
reviews by IWGDMF (1995a, 1995b), Hook and Regal (1995, 1999), and Chao
et al. (2001). Virtually, all of these epidemiological uses are based on data from
incomplete lists.

Some capture-recapture applications focus on single lists consisting of frequency
distributions of encounters. A single list might include the number of infected
individuals for which there was a single recorded encounter (e.g., blood test result,
hospital visit), the number with exactly two encounters, three encounters, etc.,
with the objective to estimate the number of infected individuals that were never
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encountered. For example, Polonsky et al. (2018) used single list data to estimate
the completeness, and thus effectiveness, of contact tracing.

Multiple list data are typically records of individuals infected with a particular
disease or mortalities associated with a specific disease or other cause. In closed
populations, the appearance of some individuals on one list and not another is clear
evidence of nondetection, and early uses of multiple lists entailed first matching
names that appear on multiple lists and then counting the total number of unique
individuals. This approach does not include in the total count the number of
individuals appearing on none of the lists, and inference about this number motivates
the use of capture-recapture.

Multiple list data are encoded as individual capture or detection histories
(Sects. 2.1 and 2.2), and the entire data set includes a detection history for every
individual appearing on at least one list. For example, Hook et al. (1980) analyzed
a data set consisting of three lists of individuals with spina bifida in New York
state, 1969–1974. The lists were based on (1) birth certificates, (2) death certificates,
and (3) medical rehabilitation records. Closed capture-recapture models were then
used to estimate the total number of cases and disease “prevalence,” defined as the
proportion of individuals in a population that is infected, or as the probability that a
randomly selected individual in a population is infected. Numerous applications of
capture-recapture to inferences about numbers of cases and prevalence now exist in
the scientific literature.

Multiple list data differ from animal capture data in several ways that must be
considered when selecting or developing capture-recapture models for epidemio-
logical uses. The multiple lists are analogous to the multiple sampling periods of
the animal ecologist, but unlike these animal sampling periods, there is frequently
no natural temporal ordering of list data. Time-specificity of capture probabilities
corresponds to list-specificity of detection probabilities. Certain kinds of behavioral
response models in capture-recapture are based on temporal order of sampling
occasions, and models (e.g., log-linear) for list data have been developed for more
general kinds of dependence of detection probabilities for individuals among the
different lists (see IWGDMF, 1995a, 1995b; Hook and Regal, 1995; Chao et al.,
2001; Rivest and Lvesque, 2001).

Heterogeneous capture probabilities are sometimes associated with identifiable
covariates, permitting inference based on a general Horvitz-Thompson approach
(e.g., Huggins, 1989, 1991; also see Wang et al., 2006). Several approaches
have been developed for the more difficult problem of heterogeneous capture
probabilities that cannot be readily associated with covariates (e.g., Burnham &
Overton, 1978; Chao, 1987; Norris & Pollock, 1995; Haas & Stokes, 1998; Dorazio
& Royle, 2003; Haas et al., 2006). Problems deciding whether two similar records
really match (represent the same individual) can occur when constructing detection
histories from lists, and approaches for dealing with this problem (e.g., Seber et al.,
2000; Lee et al., 2001) are similar, in some ways, to approaches for dealing with
tag loss (e.g., Arnason & Mills, 1981; Kremers, 1988; Nichols & Hines, 1993) and
misreading (e.g., McClintock et al., 2014).
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Open capture-recapture models are used to estimate survival rates, numbers of
new recruits, and abundance for populations open to gains and losses across multiple
sampling occasions. In the context of disease dynamics, multistate models for open
populations can be especially useful, where states are defined, for example, as
susceptible, infected, and recovered (SIR), a classification system used in classical
compartmental disease models (Kermack & McKendrick, 1927; Bailey, 1975;
Cooch et al., 2012). List data based on hospital visits or longitudinal data from
studies with imperfect follow-up can be used to develop detection histories for
such analyses, and estimated parameters include probabilities of state transition
(e.g., the transition from susceptible to infected) and state-specific mortality rates.
A feature of multistate capture-recapture models that is especially important for
epidemiological uses is state-specific detection probabilities (e.g., infected indi-
viduals will typically have higher probabilities of detection for hospital lists than
susceptible individuals). Uncertainty in state assignment (e.g., a false-negative or
false-positive pathogen test result) led to the development of models to deal with this
issue (reviewed by Lebreton et al., 2009), and the multi-event approach of Pradel
(2005) provides a general approach to this problem (Conn & Cooch, 2009; Choquet
et al., 2013; Benhaiem et al., 2018). Multistate capture-recapture models have been
recommended for use in estimating epidemiological state transition probabilities
and mortality rates (Jennelle et al., 2007; Cooch et al., 2012; Nichols et al., 2017),
but such uses have been relatively rare (but see Viallefont & Auget, 1999) for human
diseases.

Occupancy models have several potential uses for epidemiological studies. One
use entails viewing individuals as the sample units and focusing on presence
or absence of the disease organism (e.g., Bailey et al., 2014; MacKenzie et al.,
2018). Multistate occupancy models can be used to estimate transitions (including
infection rate) among SIR model states and state-specific mortality rates, as with
multistate capture-recapture. Pathogen tests for a random or representative sample
of individuals can be used with standard occupancy models to estimate prevalence in
the case where false negatives (nondetection) are possible (e.g., Lachish et al., 2012;
Nichols et al., 2021), and even infection intensity (Miller et al., 2012). Such testing
programs should typically include a subset of individuals that receive multiple tests
in order to deal with nondetection.

Occupancy models can also be used to model spatial dynamics of disease spread.
Data are based on tests of individuals, but now the sample unit is a location (e.g.,
a county or city), and interest is in whether any infected individuals are present
(McClintock et al., 2010; Bailey et al., 2014; MacKenzie et al., 2018). List data
could come from hospital visits, and the replication required for the most general
occupancy modeling could be obtained by treating each day or week as a sampling
occasion. The ability to deal with imperfect detection is especially important in such
studies, as detection probabilities are likely to vary among different locations (e.g.,
urban locations vs. rural locations far from medical centers).
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3.1.2 Individual-Level Inferences

Decisions about individual treatment and quarantine depend on the same diagnostic
test results that populate lists. When such tests admit false negatives and positives, it
is useful to estimate the probability that a specific individual is infected, conditional
on the test result(s). Define plm as the probability that a test result (xk = l) indicates
individual k to be in disease state l, given that true disease state is m. Define state
zk = 1 to mean that individual k is infected and state zk = 0 to mean uninfected.
Then p11 is the probability of correctly detecting infection when present, and its
complement (1 − p11) is the probability of a false negative. Similarly, p10 is the
probability of a false positive, incorrectly declaring an individual in state zk = 0 to
be infected. Because these probabilities are conditional on the unknown true state
of the tested individual, statements about the probability of true infection are also
conditional on the underlying pathogen prevalence, ψ . All of the above parameters
(detection/classification and prevalence) can be estimated directly using single-
season occupancy models (Miller et al., 2011; Chambert et al., 2015; MacKenzie
et al., 2018).

The conditional probability that an individual testing positive is actually infected
(“positive predictive value”) can be written as:

Pr(zk = 1|xk = 1) = ψp11

ψp11 + (1 − ψ)p10
. (9)

The conditional probability that an individual testing negative is truly not infected
(termed “negative predictive value”) can be written similarly as:

Pr(zk = 0|xk = 0) = (1 − ψ)(1 − p10)

ψ(1 − p11) + (1 − ψ)(1 − p10)
. (10)

Note that if prevalence parameters are likely to differ for different groups of
individuals (e.g., those exhibiting symptoms and those not), then group-specific
prevalence parameters should be estimated and used. If the probabilities of an
accurate test result [(9) and (10)] are thought to be too small for important decisions
about individual treatment, then multiple tests can be used to increase them (e.g.,
Nichols et al., 2021).

An advantage of the occupancy approach over that frequently used by epidemi-
ologists is that all of the relevant parameters can be estimated together in a joint
likelihood. The probabilities of an individual being infected are computed directly
as derived parameters, with the associated estimates of sampling variance properly
accounting for the variances and covariances of the different parameter estimates.
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3.2 Social Sciences

3.2.1 Census

Governments of most countries conduct periodic “censuses” of population size and
distribution. However, direct counts are seldom possible, and virtually all census
methods miss individuals (false negatives). Laplace (1786) was the first to derive
the estimator (2) and used it to compute the human population size of France using
two lists of citizens and their degree of overlap. Sekar and Deming (1949) appeared
to derive the estimator (2) independently of (Laplace, 1786) and (Lincoln, 1930)
and used it to draw inferences about the numbers of human births and deaths in a
district near Calcutta, India. Application of capture-recapture methods (sometimes
referred to as “multiple systems estimation” in the social science literature; Fienberg
& Manrique-Vallier, 2009; Bird & King, 2018) to problems in the social sciences
has increased in recent decades prompting methodological reviews (e.g., Bohning,
2008, Bird & King, 2018) and a book (Bohning et al., 2018).

Capture-recapture models for closed populations have been extended by scien-
tists working with the United States Census Bureau and used with post-enumeration
surveys to estimate the census undercount (Wolter, 1986, 1990; Cowan & Malec,
1986; U.S. Census, 2021). Evaluation of census coverage using post-enumeration
surveys along with capture-recapture estimation has been recommended by the
United Nations (Demographic and Social Statistics Branch, United Nations Statis-
tics Division, 2009) and is being used by various countries (e.g., UK Abbott, 2009;
Turkey, Ayhan & Ekni, 2003; Australia, Australian Bureau of Statistics, 2012). In
addition to use with standard governmental censuses, capture-recapture approaches
have been especially useful for providing inferences about “hidden” populations,
groups of individuals that are especially difficult to count using conventional
surveys, frequently because they do not wish to be counted (e.g., Sudman et al.,
1988).

3.2.2 Homeless

Homeless persons are a problematic group for conventional governmental census
methods, as they typically lack a mailing address and are not motivated to provide
census information. Fisher et al. (1994) obtained list data for homeless persons
from multiple sources including hospitals, local social service agencies, a healthcare
center designated for homeless, and hostels and used capture-recapture to estimate
the homeless population in an area of London. Their estimate was approximately
three times larger than the number of list-identified individuals. Such multiple-list
approaches have been used with capture-recapture modeling to estimate homeless
populations elsewhere as well (e.g., Baltimore, Cowan et al., 1986; Budapest,
David & Snijders, 2002). Berry (2007) used an observational approach to identify
homeless individuals in Toronto on the street during multiple sampling occasions.
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Closed capture-recapture models were used to estimate the homeless population,
and detection probabilities of about 0.2 indicated the importance of dealing with
nondetection.

An alternative approach to multiple lists is to insert some number of “marked”
(M) or “planted” individuals into the focal homeless population and then survey the
population directly, estimating detection probabilities as the proportion of planted
individuals that is detected (Eq. 3). Laska and Meisner (1993) identified 103 sites
frequented by homeless persons in a region of New York City and planted persons in
a random sample of 41 of these sites. Census Bureau enumerators were then sent to
directly survey homeless persons at these sites. Detection probability was estimated
to be 0.48 and used to estimate the total number of homeless in the surveyed areas.

3.2.3 Problem Drug Users

Capture-recapture models have been used with list data on individuals to estimate
numbers of problem drug users in various locations. For example, King et al. (2014)
used four list sources, probation records, drug intervention program prison assess-
ments, drug treatment facility records, and drug intervention program community
assessments, to estimate the number of injecting drug users and heroin-associated
deaths in England. They used a Bayesian approach to incorporate prior information
into their capture-recapture modeling, obtaining estimates for England, as well as
for specific regions within the country. Both prevalence of problem drug use and
detection probabilities (probability that a problem drug user appears on at least
one list) showed substantial regional variation. Approaches based on similar list
data were used to estimate numbers of injecting drug users in Scotland (King
et al., 2013). Capture-recapture approaches to inference about problem drug use
are numerous and include inferences about the number of HIV-infected injecting
drug users in Bangkok (Mastro et al., 1994), prevalence of opiate use in Dublin
(Comiskey and Barry, 2001), prevalence of problem drug use in London (Hickman
et al., 1999) and six French cities (Vaissade & Legleye, 2008), the risk of arrest of
drug dealers and users in Quebec (Bouchard & Trembley, 2005), and the number of
heroin users in the Australian Capital Territory (Larson et al., 1994).

3.2.4 Criminal Activities

Greene and Stollmack (1981) applied closed population capture-recapture methods
to records from approximately 6000 males arrested at least once in Washington,
D.C., 1974–1975. They estimated a total criminal population of about 30,000
individual criminals. Using these same data, Greene (1984) later applied an open
population model permitting inferences about growth rate of the offender popu-
lation, survival probabilities, and average criminal career length. Bouchard et al.
(2019) used capture-recapture with arrest and rearrest record data from Quebec to
estimate the number of criminals involved with illegal amphetamine-like stimulants.
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They estimated that total arrests were only about 12% of those actually engaged
in illegal activities and subject to arrest. Bouchard (2007) used capture-recapture
methods with arrest data to estimate the number of criminal marijuana growers
in Quebec, 1998–2002. Charette and van Koppen (2016) used capture-recapture
methods to investigate selectivity in crime punishment, concluding that black male
offenders were more likely to be arrested and punished than members of other
demographic groups.

Cases of domestic violence in the Netherlands, 2006–2007, were estimated
by van der Heijden (2014) using capture-recapture methods with police register
records. Their estimates indicated that about 22% of offenders were actually
observed and recorded by police. Silverman (2014) used capture-recapture mod-
eling of multiple list data to estimate the number of victims of human trafficking in
the UK, 2013. Data on individual victims came from six lists: local authority, police
force, national government organization, nongovernment organization, National
Crime Agency, and the general public. The estimated victim population was four
to five times larger than the number of individuals detected.

Corlatti et al. (2019) studied illegal poaching of red deer in a park in the central
Italian Alps, 2007–2017. They estimated age- and sex-specific mortality rates of
deer associated with poaching and non-poaching sources using open, multi-event
models with data for tagged red deer. Their modeling included parameters for tag
loss and the possibility of misclassifying the cause of death (by poaching or not)
and provided strong evidence of higher poaching mortality for older males than any
other age-sex class.

Barber-Meyer (2010) proposed use of occupancy models with data on species
(e.g., tiger parts and products) sold illegally at souvenir shops, traditional medicine
stores, etc., within towns. Replication is provided by the multiple stores and shops
within each town. Towns were the sample units, such that occupancy estimated the
proportion of towns at which the focal species was illegally sold, and multiseason
models could be used to estimate occupancy dynamics over time. Sharma et al.
(2014) used reports of annual tiger poaching events reported by the Wildlife
Protection Society of India, in conjunction with multiseason occupancy modeling,
to estimate the prevalence of tiger poaching during periods of 3–7 years in 605
districts throughout India over a 40-year period. Results provided maps of tiger
poaching crime and information about covariates associated with such crime.

Yeo et al. (2017) used eBay postings to estimate aspects of illegal elephant
ivory trade dynamics in the UK. Each posting was identified by a description, item
number, and seller identification, permitting identification of the item in subsequent
postings. Postings were surveyed once per week for eight consecutive weeks,
March–May 2014. Detection histories were developed for every item and used with
open-population capture-recapture models to estimate numbers of items, as well
as weekly survival (persistence in the eBay market) and entry probabilities. The
authors concluded that a large fraction of illegal ivory sale items had very low
probabilities of detection.
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3.2.5 World Conflicts

Armed conflicts throughout the world result in numbers of persons being killed
or disappearing, and “counts” of these victims are typically biased low. Capture-
recapture methods have been used with casualty list data to estimate numbers of
victims associated with conflicts in Peru (Ball et al., 2003; Manrique-Vallier et al.,
2013) and Colombia (Lum et al., 2013); number of deaths in Kosovo, March–June
1999 (Ball & Asher, 2002); and the number of persons killed by state forces in
Guatemala, 1981–1983 (Ball, 2000). For example, in the Guatemala analysis, lists of
victims were provided by the following three sources, the Commission for Historical
Clarification, the International Center for Human Rights Research, and the Catholic
Church’s Interdiocesan Project for the Recuperation of Historical Memory. The
estimated number of killings was about three times larger than the sum of victims
identified via the three lists.

Social conflict events from some parts of the world are not well reported, such
that counts of such events are typically biased low. Hendrix and Saleyhan (2015)
used closed population capture-recapture models to estimate the number of social
conflict events occurring across Africa in 2012. They obtained detection/nonde-
tection data on 1443 events from the Social Conflict in Africa Database. They
used data from two independent news agencies, Associated Press (AP) and Agence
France-Presse (AFP), compiling statistics on numbers of events reported only by
AP, only by AFP, and by both agencies. They concluded that these two news sources
captured approximately 76% of all events in Africa and that the nondetection rate
was predictably smaller for deadly events, events of a larger magnitude, and events
associated with government repression.

3.3 Quality Control

Capture-recapture models have been used for several specific problems associated
with quality control. Jewell (1985) noted that defects or errors can occur in
production of various manufactured goods, in computer software, in manuscripts,
etc. and recommended capture-recapture approaches for estimating numbers of
them. Quality control efforts typically involve inspectors or proofreaders who
examine products for defects or errors, but errors may go undetected. One approach
to estimating number of errors/defects in the face of nondetection is to employ
multiple inspectors or proofreaders. In the case of three inspectors, for example,
each error detected by at least one inspector is represented by a row of three entries
(one entry for each inspector), with a 1 denoting detection of the error by the
particular inspector and a 0 denoting nondetection. Chao and Yang (1993) used this
approach with computer code examined by multiple coders looking for errors and
estimated the number of errors remaining (undetected). White et al. (1982) used
this approach with multiple proofreaders of a large manuscript and estimated the
number of undetected errors.
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3.4 Remote Sensing

“Remote sensing” refers to use of aircraft or satellites to obtain information about
the earth. Photography and video are typically used to provide images, which are
then examined by individuals or computers in order to enumerate focal entities
(e.g., wetlands, woodlots) or compute area measurements of specific cover types.
However, such analyses of remote sensing images are usually characterized by two
types of errors, nondetection and misclassification. These errors can sometimes be
dealt with via replication provided by multiple observers in aircraft or multiple
persons processing the same image. Capture-recapture methods are then used to
estimate number of entities, for example, using the number of entities detected by
just one observer, two observers, etc. (Magnusson et al., 1978; Cook and Jacobson,
1979).

More commonly, a sample of area covered by a survey is visited by ground
observers providing direct counts and classifications, known as ground truthing. The
number of ground truth entities that is correctly detected or classified via the remote
images is then used with capture-recapture thinking to estimate detection and correct
classification probabilities (see Maxim et al., 1981; Maxim & Harrington, 1982,
1983). Veran et al. (2012) focused on the question of land cover dynamics, noting
that classification errors can be made at times t , t + 1, or both times, leading to
large errors in estimates of land cover state transition probabilities. They proposed
use of ground truth data with multistate capture-recapture models that included state
misclassification as a means of directly estimating land cover transitions in the face
of classification errors.

3.5 Paleobiology

Paleobiologists have long recognized that nondetection is an important issue for
analyzing fossil data (e.g., Foote & Raup, 1996). Analyses that do not account for
nondetection are subject to serious errors, as detection probabilities are thought
not only to be substantial but also to vary across time and space (Brett, 1998).
Paleobiological data consist of records of fossil taxa found via sampling at different
strata (different geologic time horizons) and locations. Capture-recapture analyses
typically treat each lower-level taxon (e.g., family) within a higher-level taxon (e.g.,
phylum) as an “individual.” Detection histories for each lower-level taxon can be
developed using spatial samples (analogous to multiple lists) within some time
stratum and area of interest, providing the data for estimation of total taxa using
closed capture-recapture models. Detection histories for focal taxa developed from
different geologic strata (time horizons) at the same sampling location, or even
worldwide, can be used with open capture-recapture models to estimate number
of taxa and rates of both local and global taxonomic origination and extinction
for lower-level taxa (Nichols & Pollock, 1983). Capture-recapture models were
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introduced to paleobiology over 40 years ago (Rosenzweig & Duek, 1979; Nichols
& Pollock, 1983; Conroy & Nichols, 1984; Nichols et al., 1986), but they have seen
only limited use (Connolly & Miller, 2001a, 2001b, 2002).

Occupancy models have multiple uses for fossil data as well, with focus on a
specific taxon, rather than a group of lower-level taxa. Detection-nondetection data
from replicate local samples can be used in conjunction with occupancy models
to estimate geographic distribution (Liow &Nichols, 2010; Liow, 2013). Detection
histories based on different time horizons from multiple locations can be used with
occupancy modeling to estimate local probabilities of colonization and extinction
as well (Liow &Nichols, 2010; Liow, 2013). Occupancy models were introduced to
paleobiologists much more recently than capture-recapture models (Liow &Nichols,
2010; Liow, 2013; MacKenzie et al., 2018), and paleobiological use of occupancy
approaches has been limited (but see Lawing et al., 2021).

3.6 Miscellaneous Applications

National databases for traffic accidents are maintained by law enforcement agencies
in many countries, but accidents are thought to be underreported, leading to many
efforts to estimate their true numbers using capture-recapture. Razzak and Luby
(1998) compiled lists of police accident records and emergency ambulance service
records over a 10-month period during 1994 in Karachi, Pakistan. Their estimates
indicated that official records accounted for 56% of traffic accident deaths and only
4% of serious injuries. Capture-recapture inferences about traffic accidents have
been used in various other locations including Nicaragua (Tercero & Andersson,
2004), Ethiopia (Abegaz et al., 2014), and Mali (Sango et al., 2016).

Beirne and Lambin (2013) studied volunteer “citizen scientists” who worked on
a project to remove invasive mink from a large area of Scotland. Their objective was
to draw inferences about volunteer retention (tendency to remain in the program)
and the factors that affected it. They described the potential utility of open capture-
recapture approaches, but collected data on volunteer activity data via telephone
every 6 months and were thus able to use known-fate models (Pollock et al., 1989).
They identified volunteer vocation and recent trapping and removal success as key
determinants of retention in the program.

Interest in vocabulary size has prompted literary scholars to count the number
of individual words that an author uses in her/his writing, but this number is likely
smaller than the number actually known to the author. Efron and Thisted (1976)
counted the number of words used once, twice, three times, etc., in samples of
Shakespeare’s writing in order to estimate the total number of words that he knew.
Words counted in the samples totaled 31,534, and capture-recapture estimators
indicated that he knew about 35,000. Capture-recapture methods have also been
used to estimate the song repertoire size of birds (Garamszegi et al., 2002).

An archaeological use of capture-recapture modeling was provided by Holst
(1981), with subsequent reanalyses using different capture-recapture estimators by
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Esty (1982, 1983) and Chao (1984). The problem was to estimate the number of
different “dies” that produced a set of 204 coins in ancient India. The data were
the number of dies that produced only a single coin in the sample, two coins in the
sample, three, etc.

Herendeen and White (2013) collected data on appearances of specific rare
stamps over the years from sources such as auction catalog, retail price lists, copies
of expert certificates, and similar records. Each stamp has an individual identifying
number. Herendeen and White (2013) viewed each year as a sampling occasion
and used closed population models to estimate the total number of stamps still in
existence.

Nichols et al. (2013a, 2013b) used capture-recapture thinking to estimate
detection and classification probabilities for military imaging systems. Vessels of
different classes (defined by size, and military vs. civilian status) were experimen-
tally positioned at different distances from two new cameras. “No vessel” was one of
the experimental possibilities as well. Resulting data were used to develop a model
for detection and classification probabilities as a function of distance and vessel
type. Capture-recapture model selection was used to infer that distance relationships
were dependent on camera type but characterized by a common slope across vessel
types (Nichols et al., 2013b).

K.H. Pollock (pers. comm.) used capture-recapture models to estimate the
number of man-made objects orbiting earth. The field of astronomy is characterized
by substantial nondetection, with detection probabilities a function of telescope type
as well as distance, brightness, and size of focal object, and a number of potential
uses of capture-recapture thinking can be envisaged.

4 Discussion

The problems of nondetection and misclassification characterize numerous types of
count data. The various applications described in Sect. 3 have hopefully supported
this assertion, and there are certainly many more applications that can be imagined.
The adoption of capture-recapture thinking has not been as rapid as might be
hoped for any of the disciplines of Sect. 3, and rate of adoption has varied among
these disciplines. For example, my impression based on literature review is that
epidemiological and human health applications are somewhat more common than
those dealing with social sciences, whereas adoption within paleobiology has been
very slow.

One possible explanation underlying this variation in rate of adoption involves
the perceived severity of nondetection and misclassification (Nichols, 2019). For
example, the development of capture-recapture thinking in the fields of wildlife
and animal ecology is likely a natural response to the well-known nondetection
problems associated with virtually all animal survey methods. Not only do surveys
miss animals, but the fraction missed can be very large. In contrast, epidemiological
and social science data based on counts of humans have historically been thought to
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be closer to truth, although this perception is changing. Indeed, some of the detection
probability estimates of Sect. 3 are quite small.

A second factor that may affect rate of adoption of capture-recapture is the
cost of incorrect counts and estimates, and thus the scrutiny that analytic results
receive. Results of epidemiological surveys and medical diagnoses are viewed as
extremely important and are often carefully reviewed, as misleading inferences can
have detrimental consequences that may be readily apparent. In contrast, inferences
in the social sciences are certainly important, but not so highly scrutinized, and
misleading inferences are less likely to be recognized. The greater the degree of
scrutiny, the greater the expected attention to analytic details and inferential errors.

Another factor that may affect rate of adoption is the funding available to a
discipline. Good funding helps ensure collaboration of statisticians, who are able to
deal with the added complexity of modeling sampling processes. Epidemiology and
human health are among the better funded scientific disciplines in most countries.

One more factor influencing methodological adoption is likely the familiarity
of scientists with capture-recapture approaches. My search for uses of capture-
recapture models for inferences about criminal activity produced a number of papers
that used capture-recapture to study the criminal activity of animal poaching. I am
guessing that the appearance of disproportionate numbers of applications for this
particular type of crime resulted from prior familiarity of scientists investigating
such crimes with capture-recapture approaches.

This relatively slow adoption of robust methods for dealing with nondetection
and misclassification begs the question: what are the alternatives to modeling these
components of the sampling process? The most common alternative appears to
be to view the problems as so small and insignificant that they can be safely
ignored. For example, this has been the case with remote sensing uses, as ground
truthing data have provided clear evidence of nondetection and misclassification.
However, estimates of these errors are frequently presented, claimed to be small,
and then ignored in analysis (see discussion in Veran et al., 2012). I suspect that this
alternative is also prevalent in disciplines where errors are not so readily estimated,
but rather assumed or claimed to be small and thus not worthy of the effort to deal
with nondetection.

A second alternative to the use of capture-recapture is to try to identify the key
sources of variation in detection probability or misclassification, to develop models
for each of these component processes separately, and then to combine these models
to provide overall inferences about detection probability and the focal parameters
that they influence. I encountered this approach at a 2011 workshop dealing with
nondetection. A biostatistician working for the Centers for Disease Control and
Prevention outlined this approach to inference about detection probability for a
focal disease. Her strategy was to develop a model for each of 10–12 sources of
variation in detection and to then combine these models into an overall model
for the sampling process. At the time of the workshop, two of these models
had been developed. In contrast to this incremental approach, capture-recapture
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requires some form of replicate sampling (e.g., multiple lists) and then directly uses
the information about nondetection available in detection history data. Detection
probability, as well as focal parameters such as numbers of cases or disease
prevalence, is estimated without the need for identification and modeling of all
factors affecting nondetection. If potential influencing factors can be identified, then
they can be treated as covariates in capture-recapture modeling, with the result that
their influence can be formally tested and, if found to be important, included in the
modeling of detection probability.

A problem related to slow adoption of capture-recapture approaches is the limited
inferences to which they are applied. The early history of capture-recapture in
wildlife and animal ecology was dominated by a focus on numbers. Capture-
recapture estimators for closed populations were used to provide estimates of pop-
ulation size for specific locations and times. However, abundance is not necessarily
interesting by itself, but rather is more usefully viewed as a state variable in studies
of dynamical processes. The primary interests are sources of spatial and temporal
variation in abundance, and the ability of human actions to influence population size.
This recognition eventually led to increased interest in capture-recapture models for
open populations that experience dynamical changes between sampling occasions.
Today’s capture-recapture studies of wildlife populations tend to focus on the
processes of birth, death, and movement, and on transition probabilities governing
changes of state within individuals. Similarly, occupancy estimates themselves are
not viewed as especially interesting, and focus has shifted to the probabilities of
local extinction and colonization that govern occupancy dynamics.

This review of nontraditional applications of capture-recapture models suggests
to me that most of these studies are focusing on numbers of focal entities. As noted
in Sect. 3.1.1, epidemiological list data from hospital visits and data from longitudi-
nal studies with incomplete follow-up can be used with multistate capture-recapture
models for open populations to draw inferences about state transition probabilities
and state-specific mortality rates required by SIR (susceptible, infected, recovered)
models. These models provide a way to deal with the state-specific detection
probabilities likely to exist in longitudinal data. For example, an individual in the
infected state at sampling occasion t is more likely to be found on a hospital
list or re-encountered in a longitudinal study at that occasion than an individual
in the susceptible or recovered state. Accompanying information on public health
interventions or even individual treatments can be used with these models to directly
test the efficacy of interventions and treatments. Despite the potential utility of
multistate (Lebreton et al., 2009) and multi-event (Pradel, 2005) capture-recapture
models, I saw little evidence that these approaches are being used in disciplines
other than animal and wildlife ecology.

The primary interest of most capture-recapture applications in criminology
(Sect. 3.2.4) was in numbers of criminals or victims, or in detection probability
when this equated with probability of arrest. These studies were not focused on
the influences of laws or enforcement interventions on criminal activity, or on the
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effects of crimes on victims. Contrast this with a number of the studies of wildlife
poaching crimes which included investigations of poaching-related mortality rates
(Corlatti et al., 2019), and of relationships between dynamics of poaching activity
and species distributions (Marescot et al., 2019; Moore et al., 2021), and between
ranger (enforcement) activity and poaching activity (Moore et al., 2017). I suspect
that a main reason for this difference in uses of capture-recapture for wildlife vs.
other crimes stems from the familiarity of persons focused on wildlife crimes with
these more complicated models and their utility.

With the exception of these investigations of wildlife crimes, the majority of
the nontraditional uses of capture-recapture have focused on numbers. Such studies
can be very useful when these numbers are incorporated into a larger sampling
scheme designed to test hypotheses about system dynamics or effects of potential
interventions. However, for most of the reviewed papers describing nontraditional
uses of capture-recapture, this was not the case. I believe that studies that go
beyond estimates of numbers to focus on system dynamics and key relationships
(e.g., effects of interventions or treatments) are much more likely to be useful
to both science and decision-making. Capture-recapture and occupancy models
developed for open populations are especially useful for investigating underlying
processes, and I would hope that we see the same increases in use of these models in
nontraditional applications as we did in the fields of wildlife and animal population
ecology.

In summary, studies in many disciplines are based on count data, yet counts
are frequently inaccurate because of nondetection and misclassification. The fields
of wildlife and animal ecology recognized these problems nearly a century ago
and began to develop capture-recapture approaches to deal with them. Other
disciplines began to adopt these methods and, in some cases, to modify them for
their specific applications (e.g., log-linear models for closed populations to deal
with list dependence). However, the integration of capture-recapture methods into
the toolboxes of scientists of non-ecological disciplines has been incomplete and
slower than might be hoped. In addition, the bulk of non-traditional uses of capture-
recapture models has focused on estimation of totals for counted entities. I hope that
use of capture-recapture models for nontraditional applications increases and that
such uses better exploit the open-population models that permit inferences about
dynamical processes.
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Advances in the Use of Capture-
Recapture Methodology in the Estimation
of U.S. Census Coverage Error

Mary H. Mulry and Vincent T. Mule Jr.

Abstract A post-enumeration survey (PES) is an important tool for assessing
the quality of a census and gaining information about how to improve census-
taking methodology. The U.S. Census Bureau has implemented a PES to evaluate
the coverage error in each U.S. Decennial Census since 1980. A PES uses a
second enumeration implemented on a sample basis after a census and subsequently
matched to the census using a combination of computer and clerical matching.
Then, dual system estimation may be used to estimate the population size. The
difference between the PES estimate of the population size and the census total
yields an estimate of the net undercount. This chapter focuses on the methodology
and estimation of net coverage error in the 2010 Census produced by the 2010 PES.
The evaluations of U.S. censuses continue to use the PES methodology to evaluate
the coverage of the decennial census. These implementations of the PES have built
on the quality control methodology that Dr. Stokes developed for the 1990 PES.

1 Introduction

A post-enumeration survey (PES) is an important tool for assessing the quality
of a census and for gaining information about how to improve census-taking
methodology. The U.S. Census Bureau has implemented a PES to evaluate the
coverage error in each U.S. Decennial Census since 1980. There are two types
of coverage error. One type is overcount, which occurs when an enumeration is
inappropriate, such as entries that are duplicates of other enumerations, for people
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born after Census Day or for people who died before Census Day. The other type
is undercount, which occurs when a person who should be counted in the census
is not enumerated. The net coverage error, which equals the overcount minus the
undercount, provides a measure of the quality of a census.

A PES uses a second enumeration implemented on a sample basis after a census
and subsequently matched to the census using a combination of computer and
clerical matching. Then, dual system estimation, which is another name for capture-
recapture estimation, may be used to produce an estimate of the population size.
The difference between the PES estimate of the population size and the census total
yields an estimate of the net coverage error. A PES that uses dual system estimation
essentially applies a variation of the “capture-recapture” methodology designed for
estimating the size of wildlife populations to human populations.

This chapter focuses on the methodology and estimation of net undercount in
the 2010 Census produced by the 2010 PES. The data collection methods included
new quality control procedures and an estimation approach that differed from the
estimation used in the prior PES programs conducted from 1980 through 2000. The
implementation of the 2020 PES used essentially the same methodology for data
collection and estimation as that employed for the 2010 PES. However, the COVID-
19 pandemic resulted in some unexpected delays in the 2020 PES data collection
and processing. As a result, the estimates from the 2020 PES will not be available
in time to meet the publication deadline for this volume.

Dr. S. Lynne Stokes contributed to the methodology for data collection and
estimation for the Post-Enumeration Survey at different points in her career. The
discussion of the PES methodology and the evolution of its implementation to
evaluate census coverage at the U.S. Census Bureau will include descriptions of
her contributions.

The discussion in this document focuses on the evolution of design of the PES
as implemented to evaluate the coverage of the decennial censuses conducted from
1980 to 2010. These topics include the following:

• Section 1 is the introduction to the document.
• Section 2 has a brief overview of the recognition that there was a need to evaluate

the coverage of the U.S. Censuses.
• Section 3 contains a description of the dual system estimator (DSE) that is

used in estimating the coverage error in censuses, including the first attempt to
implement a PES aimed at evaluating the coverage of the 1980 Census.

• Section 4 describes the 1990 PES and the role Dr. Stokes played in the evaluation
program that informed a decision on whether to use PES estimates to adjust the
1990 Census for coverage error.

• Section 5 explains how the 2000 PES was designed to evaluate the coverage of
the 2000 Census and describes evaluations used in the decision on whether the
2000 Census should be adjusted for coverage error.

• Section 6 discusses methodological challenges in the 2010 PES.
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• Section 7 describes current research on developing methods for replacing data
collected in PES fieldwork with administrative records and third-party data for
the US population in DSEs to produce census coverage estimates.

• Section 8 is a summary.

2 Background

The U.S. Constitution requires that a census of the U.S. population be conducted
every ten years for the purpose of the apportionment of seats in the House of
Representatives among the states. Article 2, Section 2 of the Constitution, states
that the “actual enumeration” be used to allocate the seats among the states. The
current apportionment method, which was chosen by the House of Representatives,
is the Method of Equal Proportions, but other methods have been used over the years
(Spencer, 1985).

The first U.S. Census was conducted in 1790. As Secretary of State, Thomas
Jefferson’s duties included certifying the 1790 Census data. Even though Secretary
Jefferson certified the census count, both he and President Washington thought the
1790 Census had undercounted the U.S. population by several hundred thousand
(U.S. Census Bureau, 2021a). For years, the prevailing attitude was that the census
provided the best information about the size and distribution of the U.S. population.
And, even if the census was not perfect, certainly it had better coverage of the
population than any source of administrative records available at the time.

New information about the coverage of the census appeared in the early 1940s
when the Census Bureau conducted a study that compared the number of males of
military age in the 1940 Census to the number found in draft registration records.
The study used the demographic method of comparing aggregated totals constructed
by a clerical operation. The study estimated that there were 14.9% more Black males
of 21–35 years of age registered for the draft than were counted in the census and
2.8% more non-Black males in the same age category (Price, 1947).

This result led to the development of census coverage evaluation methodologies,
the first one being Demographic Analysis. The estimates produced by Demographic
Analysis are a sum of totals for subpopulations based on aggregating administrative
records from different record sources, such as birth and death records, to form an
estimate of the total population that can be compared to the total from a census. The
1950 Census was the first census to have its coverage evaluated using Demographic
Analysis (Coale, 1955). Demographic Analysis has been used to evaluate the
coverage of every U.S. Census at the national level since 1950 and is still used today
although the method and data sources have improved over the years. Demographic
Analysis does not produce estimates for subnational geographic areas such as states
and has limited race results since it uses historical data sources.

The need for estimates of census coverage for geographic and demographic sub-
groups led to the development of two other methods. One is the Post-Enumeration
Survey (PES) used by the USA and several other countries (Mulry, 2014). The other
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is the reverse record check, developed by the Statistics Canada which relies on an
administrative record system that is updated on an ongoing basis between censuses
(Statistics Canada, 2007, 2021). One of the innovations in the estimation of the
coverage of the 2010 Census came from the PES estimation procedure incorporating
the Demographic Analysis results for some hard-to-count subgroups. Section 6
gives the details.

3 Post-Enumeration Survey in 1950, 1960, and 1980

This section provides an overview of the Census Bureau’s initial attempts to
implement the PES to evaluate the coverage of the 1950, 1960, and 1980 Censuses.
A more detailed discussion appears in Mulry (2012).

A Post-Enumeration Survey (PES) is a survey conducted after a census for
the purpose of evaluating the coverage of the census. The first PES in the USA
was conducted after the 1950 Census and was motivated by the undercount of
draft-age males discovered in the 1940 Census. A PES uses two systems, which
may be samples. The Census Bureau’s implementation uses samples where one
is a sample of the population, called the P sample, and the other is a sample of
census enumerations, called the E sample. The basic strategy is that enumerators
conduct interviews at the addresses in the P sample that include collecting the
current household roster along with characteristics and where each person resided
on Census Day plus a roster of the people living at the address on Census Day. Then
a clerical operation matches the people on the P sample roster at each address in the
P sample to the Census enumerations in two phases. In the first phase, those in the
P sample that match to a census enumeration at the reported Census Day address
receive a status of Match. When the matching operation cannot decide, the person
receives a status of Unresolved, and the form is sent back to the field for interviewers
to collect more information. The E sample enumerations also receive one of three
statuses, Correct Enumeration, Erroneous Enumeration (if person was not a resident
at the address on Census Day), or Unresolved. When P sample and E sample
people receive an Unresolved status, their forms are sent for further fieldwork to
determine each person’s Census Day address. If the interviewer conducting the
second interview is unable to determine where the person lived on Census, the
person retains the status of Unresolved. Each census enumeration that retains an
Unresolved status receives an imputed probability of being a Correct Enumeration,
and P sample people with an Unresolved status receive an imputed probability of
being a Match.

The methodology for collecting and processing the data that the PES collects has
evolved over the years. The changes include almost all aspects, such as how the
samples are selected, how the P and E sample interviews are implemented, the use
of technology, and the estimation approach. Section 3.1 contains a short discussion
of the Census Bureau’s first attempts in 1950 and 1960 to conduct a PES, and Sect.
3.2 discusses the implementation of the 1980 PES to evaluate the 1980 Census. The
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Census Bureau did not conduct a PES after the 1970 Census. The Census Bureau
did implement a PES after the 1990 Census and subsequent censuses, and Sects. 4,
5, and 6 contain discussions of these implementations.

3.1 PES in 1950 and 1960

The first attempt to implement a PES was aimed at evaluating the coverage of the
1950 Census (Marks et al., 1953). The P and E samples each had about 25,000
housing units and were selected in a manner that resulted in the chosen areas
overlapping as much as possible to reduce the expense of the data collection. The
strategy was for the P sample interview to be of much higher quality than the census
interview so that the error could be estimated by comparing the results of the P
sample to the census results in the E sample. When the P sample results did not
agree with the census for the same housing unit, interviewers were sent to collect
information to resolve the discrepancies so that errors in the P sample could be
identified. Then the corrections could be incorporated into the results of the clerical
matching operation.

The strategy relied on these procedures discovering the truth in the sample areas.
Then an estimate of the population size could be formed by multiplying the total
census count by the ratio defined by the total number of people in the P sample
housing units divided by the total number of people in the census in the same
housing units as shown below:

̂T ruePopulation = (Census Count) x
number of people in P sample in P − sample housing units

number of people in census in P − sample housing units

(1)

Unfortunately, the results failed to meet the Census Bureau’s quality standards.
The PES estimate of population size was lower than the estimates derived from
demographic methods (Coale, 1955). The PES estimate of undercoverage was
2.1 million persons, which was 1.4% of the enumerated population, while the
demographic method estimated the undercoverage to be 5.4 million which was
3.6% of the enumerated population. The Census Bureau’s analyses found that the
“minimum reasonable estimate” of undercoverage was 3.7 million which was 2.5%
of the enumerated population. Subsequent analyses performed in preparation for
evaluating the coverage of the 1960 Census found weaknesses in both the PES data
collection and estimation and also in some of the assumptions used in producing the
demographic estimates (Marks & Waksberg, 1966). Another concern about the 1950
PES was that some PES interviewers did not follow instructions completely. The
interviewers were given a sealed census roster for each address. The interviewer’s
instructions were to open the envelope after completing the PES interview and
compare the new roster with the census roster. Then, while still on the doorstep,
the interviewer could identify differences and ask questions to identify errors in one
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or both rosters. However, there were reports that some interviewers did not ask for
a household roster on Census Day but only opened the census roster and verified it.

A second attempt to implement a PES was aimed at evaluating the coverage
of the 1960 Census. However, the design had P and E samples that were selected
independently and retained the assumption that the P sample interview would be
more accurate than the census responses in the E sample. The outcome of the 1960
PES also was not satisfactory. Reminiscent of the results from the 1950 PES, the
1960 PES estimates of population size were lower than the national-level estimates
derived from demographic methods (Marks & Waksberg, 1966).

3.2 PES 1980 and Dual System Estimation

The Census Bureau introduced a new design for a PES to evaluate the 1980 Census.
The 1980 PES implemented a new estimation method called dual system estimation,
which led to a new design for sample selection.

3.2.1 Dual System Estimation

A major part of the new design was using dual system estimation (DSE) which did
not require the assumption that the data collected for the P sample was without error
(Chandrasekar & Deming, 1949). The method had been used in programs sponsored
by the United Nations (UN) that focused on estimating population size in other
countries. Implementing the DSE, which is another name for capture-recapture,
required only that the P sample be a second enumeration of the population as
opposed to being a near-perfect enumeration that was required for the estimation
approach used in the 1950 and 1960 PESs. The estimation approach used post-
stratification, not the log-linear form of the estimator used in some applications of
capture-recapture methods.

Data collection for the P and E samples must satisfy four basic assumptions
(Chandrasekar & Deming, 1949). One is that selection for inclusion in the P sample
is independent on selection for inclusion in the E sample. This assumption means
that the census and the P sample could not share data or information. For example,
a census interviewer who also worked on the data collection for the P sample had
to work in areas that were not included in the interviewer’s census assignments.
Second, the probability of being included in the census is not correlated with
being included in the P sample. Third, each individual is unique, and records
for the individual can be identified on both lists without error. And fourth, there
are no spurious events in the E sample list or the P sample list, which for the
Census Bureau’s PES means that there are no sample records that are duplicates,
nonexistent, or not in the population of interest (Mule, 2008).

When the four assumptions hold, the following two ratios of expected values are
equal. The ratio on the left is based on the E sample and the ratio on the right is
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based on the P sample. In some capture-recapture applications, the ratio on the right
in Eq. (2) is called the detection probability:

E
(

̂Number of correct census enumerations
)

E
(

̂Population size
) ∼

E
(

̂Number of matched people
)

E
(

̂Number of survey enumerations
)

(2)

A correct census enumeration is one where the person is enumerated at the
address where the person lives and sleeps around Census Day, which is April 1
of the census year. The enumeration also is required to be data-defined, which
means that the record has enough information to identify the person uniquely. An
enumeration is classified as data-defined if it has two or more characteristics, one
of which may be a name. However, sometimes a data-defined enumeration cannot
be uniquely identified, such as when an enumeration with the minimum information
has characteristics that are common in their area. A matched person is one that has
a record in the P sample that can be matched to the person’s census enumeration.

Using Eq. (2) and algebra, an estimator of the population size can be constructed
as follows:

̂Population size = ̂(Number of correct census enumerations)
̂(Number of survey enumerations)

̂(Number of matched people)

(3)

One aspect of using samples is the need to include both small and large
subpopulations, such as race and Hispanic ethnicity groups, and geographic areas
such as states and metropolitan areas. Therefore, the sample selection probabilities
will be higher for smaller population groups than for the larger groups. The
estimation needs to account for the variation in the selection probabilities by
incorporating sampling weights equal to the inverse of the selection probabilities.

The formula for the DSE based on samples uses the same formula as in Eq.
(3) with the addition of a ratio adjustment of the estimated number of correct
enumerations to the number of data-defined enumerations. However, the inclusion
probabilities are not equal throughout the population, which affects whether Eqs.
(2) and (3) hold. The remedy is to partition the population into groups where
the inclusion probabilities are believed to be equal or nearly so. The groups are
called poststrata (indexed by j), and the post-stratified estimator for an area C is
shown below. The data-defined census enumerations are those that have enough
information for the matching operation to identify them if they are in the P sample.
An enumeration is classified as data-defined if it has two or more characteristics,
one of which may be a name. Enumerations that are not data-defined remain in
the census but are excluded from the E sample. Therefore, the matching is a
three-step procedure where the first step determines if the census enumeration is
data-defined, and for those that are, the second step identifies the ones that are
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correct enumerations, and the third step determines if the P sample person matches
to a census enumeration.

The formula for the post-stratified DSE estimate of the population size for an
area C, ̂T OT ALC , when using J poststrata is as follows:

̂T otalC =
∑

j∈J
CENCj

⎡

⎢
⎢
⎣

DDj

CENj

ĈEj

/

̂ET OT j

M̂j

/

̂PT OT j

⎤

⎥
⎥
⎦ (4)

where

CENCj = number of census enumerations in poststratum j in area C
CENj = number of census enumerations in poststratum j
DD j = number of data-defined enumerations in the census in poststratum j
̂ET OTj = estimated number of data-defined enumerations in the E sample in

poststratum j
̂CEj = estimated number of correct enumerations in the E sample in poststratum j
M̂j = estimated number of P sample people in poststratum j that match a census

enumeration in the correct location
̂PT OTj = estimated number of people in the P sample in poststratum j

3.2.2 1980 PES

The E and P samples for the PES in the 1980 Post-Enumeration Program (PEP) were
both nationwide samples that were selected in completely different ways. For the
1980 PES, the P sample used the April and August waves of the current population
survey (CPS) which is an ongoing nationwide survey that measures unemployment
and is conducted separately from the census. The combination of the two CPS waves
included about 124,000 housing units with about half from each wave. The P sample
questions appeared on a supplementary questionnaire that was administered after the
CPS questions and asked who resided at the address on Census Day. The E sample
was constructed by selecting 10 housing units from each enumeration district in the
USA which resulted in a sample size of about 110,000 (Fay, 1988). Interviewers
visited each housing unit in the E sample and verified that each person listed on the
census questionnaire for the address was a resident on Census Day. If the people
listed on the census questionnaire had moved, the interviewer sought information
about them from neighbors and at the post office (Mulry, 2012).

The clerical matching of the two samples to the census to determine who should
be on each list was cumbersome and time consuming. The census file and both
sample files needed to be available for the matching. The matching for those
who moved between the census and the PES interviews was exceptionally time
consuming.



Advances in the Use of Capture-Recapture Methodology in the Estimation. . . 101

The results of the 1980 PES showed some undercount, but there was a contro-
versy over the best way to construct the estimate of the net undercount (U. S Census
Bureau, 1980). Some statisticians inside and outside the Census Bureau were
not confident that the implementation of the 1980 PES satisfied the assumptions
underlying the DSE. There was a concern that the estimates based on the DSE
were affected by correlation bias, so analyses assessed the impact of some of the
assumptions by constructing 12 sets of estimates. In the end, the preferred set of
PES estimates of net undercount were 1.0% for the USA, 5.7% for Blacks, 4.5% for
non-Blacks, and 0.0% for others ((U. S Census Bureau, 1980), p. 9–10). Another
concern was that the estimates of net undercount at the national level based on the
PES were lower than the estimate from Demographic Analysis which was 1.2%
for the USA. Other estimates of net undercount from Demographic Analyses were
4.5% for Blacks and 0.8% for non-Blacks (Long et al., 2003). The estimated net
undercount prompted a call to adjust the 1980 Census for the undercount using the
1980 PES data. The Census Bureau opposed adjusting the 1980 Census using PES
data and stated so in an announcement. Detroit, New York City, and the State of
New York filed a lawsuit asking that the Census Bureau be ordered to adjust the
1980 Census for undercount. These lawsuits were consolidated to the court hearing
the New York case. The judge ruled that the Census Bureau’s decision was not
arbitrary and capricious. Therefore, in the end, the 1980 Census was not adjusted
(U.S. Census Bureau, 2021).

4 1990 PES

In the aftermath of the 1980 Census, the Census Bureau decided to prepare in a
manner that would enable an adjustment of the results of the 1990 Census if such
an adjustment was deemed necessary. The preparations included a research and
testing program during the decade leading up to the 1990 Census. The program
incorporated test censuses during the decade and a dress rehearsal in 1988, each
including a PES. The testing program facilitated refining PES data collection,
processing, and estimation methodology.

One of the components of the research and testing program for the 1990 Census
was the development of computer matching software that could be used in matching
the P sample records to E sample records. The goal was to improve the quality of the
matching and to produce the matching results faster than was possible with clerical
matching. The development of the new matching software leveraged methodology
developed by Fellegi and Sunter (1969) for matching records (Jaro, 1989; Kelley,
1986). In addition, clerical staff conducted a quality control operation on a sample
of the computer matching results to assure accuracy.

Another component of the research and testing program was the development of
methods to assess the quality of the PES estimates which could be used to evaluate
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their suitability for adjusting the 1990 Census for undercount. See Hogan (1993) for
an overview of the 1990 PES methodology and Belin et al. (Belin et al., 1993) for
a discussion of the new approach to imputing enumeration status using hierarchical
modeling.

4.1 Dr. Stokes’s Contributions to Interviewer Quality Control

Dr. Stokes has made significant contributions to the study of interviewer variance
and bias. Interviewer effects on data collected in censuses and surveys can be
substantial. Interviewer variance was a major reason the 1970 Census started the
collection of census data by mail instead of personal interview (Stokes & Mulry,
1987).

Her interest in interviewer effects and quality control started when she worked
at the Census Bureau early in her career and continued during her career as an
academic. Initially, her work at the Census Bureau focused on optimizing the design
of quality control samples to detect interviews fabricated by interviewers (Biemer
& Stokes, 1989).

Fabrications of interviews during the data collection for the estimation of census
coverage error is particularly important. A reason is that one of the assumptions
underlying the DSE in Sect. 3.2.1 states that the E sample list and the P sample list
used in estimation do not contain spurious records, such as fabricated records. When
the assumption of no spurious events in data holds, the relationship in Eq. (2) that
underlies the DSE holds. Interviewing quality control is therefore essential.

Another reason that the detection of fabricated interviews is important is because
the quantity being measured is very small. A relatively small number of errors have
the potential for a substantial impact on the estimate. For the past eight censuses, the
Census Bureau has measured an error in the census count. For example, the Census
Bureau estimates that the 1990 Census count for the population was 1.6% too low
and the count for Blacks was 4.4% too low. This type of difference in accuracy is
called the differential undercount. The differential undercount is important because
key uses of the census data are for fixed-sum distributions such as the apportionment
of Congress, the drawing of districts for state legislatures, and the federal fund
allocation programs.

When Dr. Stokes started research in nonsampling error measurement in surveys,
one of her concerns was that estimation of the correlated component of response
variance usually assumed a normal distribution whereas most survey data were
categorical. The paper “Estimation of the Correlated Component of Response
Variance for Categorical Variables” (Stokes & Mulry, 1987) subsequently showed
that the assumption could cause substantial underestimation of the sample size
during the design of a study to measure the effect of interviewers.

Through continuing research on interviewer effects, Dr. Stokes made significant
contributions during the consideration of adjusting the 1990 Census numbers for
undercount. In addition, she provided the technical expertise for the evaluation of
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the effect of interviewer fabrication on the quality of the estimates of undercount.
This role was the culmination of the research she conducted under contract with the
Census Bureau.

Her work during the evaluation of the 1990 PES focused on assessing the
assumption of no fabrication of interviews in the PES data. Despite an elaborate
quality control program for the interviewing of the 1990 PES, some fabrication
of interviewers was detected during the research studies leading up to the 1990
Census (Stokes & Jones, 1989). One result of the research was that the single-person
households were the ones most likely to have fabricated interviews. The rationale
was that since there was only one household member, these were the most difficult
addresses to find someone at home. Thus, interviewers would make several attempts
to make contact, but if they were unsuccessful, out of frustration, the interviewer
would use the name on the mailbox and fill in the rest of the information. Therefore,
one recommendation at the end of the quality control evaluation was that one-person
households be checked at a higher rate than households with more than one person.

4.2 Outcome of the 1990 PES

Estimates of the net undercount in the 1990 Census were not used to adjust the
census counts although there was litigation that reached the Supreme Count. In
1999, the U.S. Supreme Court ruled in an opinion written by Chief Justice William
Rehnquist that the census numbers used for the apportionment of seats in the House
of Representatives could not be based on samples because the Constitution required
using the “actual enumeration” from the census (Department of Commerce vs
United States House, 1999). However, the opinion did not prohibit adjusting the
census numbers for other uses. See Prewitt (2012) for a brief discussion of the
implications of the decision.

The 1990 PES estimated the net undercount of the U.S. population to be about
1.6% or about 4.0 million people. The estimate of the net undercount for Whites
was about 1.8 million people while the net undercount rate for Blacks was about
1.4 million. But because the Black population was far smaller than the White
population, the percent net undercount rate of 4.4% for Blacks was higher than for
the 0.9% undercount rate for Whites (U.S. Census Bureau, 2021b).

5 2000 Census Accuracy and Coverage Evaluation

After the controversy over the possibility of an adjustment of the 1990 Census
counts, the Census Bureau decided to create a process for deciding in March 2001
whether the coverage error in the 2000 Census numbers warranted an adjustment for
use in redistricting. The Supreme Court made its decision that prohibited adjustment
for redistricting in 1999, but the planning and research for the 2000 Census had
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started several years earlier. These preparations continued after the Supreme Court
decision in 1999 because the census numbers may have needed an adjustment for
use in other Census Bureau programs. The work included developing a process and
predefined criteria for deciding whether adjustment was appropriate. An evaluation
program, called the 2000 Census Accuracy and Coverage Evaluation (ACE), was
designed to collect and analyze data that would inform the decision. The ACE
included a post-enumeration survey and other analyses.

Dr. Stokes served on the panel “Measuring a Changing Nation: Modern Methods
for the 2000 Census” that was convened by the National Academy of Sciences. The
panel reviewed the Census Bureau’s plans for the 2000 Census and the results of
Census Tests. These plans included incorporating applications of new technology
in several operations. The Census Bureau sought review and advice concerning the
performance of the new technology used in the collection and processing of census
data and coverage measurement data in the Census Tests conducted in preparation
for the 2000 Census.

Advances in technology enabled innovations in the Census Bureau’s collection,
processing, and analysis of the census and ACE data to be completed in time to
make an adjustment decision in March 2001. Much of the technology had been
available previously but had not developed to the point where census planners could
count on it for implementation and processing on the large scale and short time
frame required to collect data from the 115.9 million housing units in the USA
(Woodward & Damon, 2001). In 2000, all census response forms, both mail and
Nonresponse Followup (NRFU) operation, were scanned by optical character and
mark recognition technologies and converted to electronic format for processing
(Kline, 2004).

The ACE interviewers used laptop computers when collecting the PES data.
Addresses for each P sample block cluster were loaded into the laptop for the
interviewer assigned to the area. Interviewers then used the laptop computers to
collect data from respondents. The laptops contained the entire questionnaire, and
interviewers were able to transmit the collected data electronically to the processing
center. The laptops enabled faster processing and analyses of the data than was
possible for the previous PES implementations that used paper questionnaires
followed by a keying operation.

The interviewing quality control operation also used laptops. An advantage
was that the original census responses for an address could be loaded into the
interviewers’ laptops. After conducting a quality control interview, the interviewer
was able to push a button, and the laptop would present a comparison between
the census household roster and the Census Day roster provided during the quality
control interview. If there were differences in the two rosters, the quality control
interviewer was able to ask questions to resolve any issues while still with the
respondent.

The biggest surprise from ACE was the discovery that the estimated number
of duplicate enumerations in the 2000 Census was much higher than expected. In
addition, mail returns that were thought to be the best responses were included in
some of the duplicates that were detected. Another finding was that the duplication
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occurred more frequently among household members under 30 than over 30.
Examples of duplicate enumerations include the following: (1) college students
being counted at both their college address and their parents’ address, (2) children
whose parents are divorced being counted at both parent’s addresses, and (3) people
who move around Census Day (April 1) being counted at both their old and new
addresses since census data collection for NRFU goes into summer.

The discovery of the problem with duplication occurred during implementation
of the process the Census Bureau had set up to arrive at a decision on whether to
adjust the 2000 Census numbers issued for a purpose other than redistricting the
seats in the House of Representatives. Further investigation found that a substantial
number of erroneous enumerations had gone undetected in the processing of the
ACE.

The Census Bureau continued to study whether to incorporate an adjustment
to the census numbers that would be used in producing the intercensal estimates
and other census products. The focus was on creating another revision, called ACE
Revision II, that would be based on additional research concerning the level of
duplication and the possibility of an adjustment for correlation bias in the DSE. At
this point, a research project, called the Statistical Administrative Records System
(StARS), created with the Census Bureau’s newly developed administrative records
database methodology, had progressed to the point of being useful in detecting
census duplicates without fieldwork. StARS was able to create a database that
covered the U.S. population by merging federal administrative records. Linking E
sample and P sample records to StARS aided in identifying duplicates and other
enumeration errors.

In the end, ACE Revision II estimates included several adjustments. The research
with StARS and a clerical matching project produced an estimate of 5.8 million
duplicates that was the basis of one of the adjustments of ACE Revision II (Mulry et
al., 2006). Because the Demographic Analysis estimates produced a ratio of males
to females that was higher than observed in the ACE, an adjustment for correlation
bias was included in the ACE Revision II estimates. The correlation bias adjustments
were created separately for Blacks and non-Blacks within three age categories: 18–
29, 30–49, and 50 and over. However, an adjustment was not included for non-Black
males 18–29 years of age because the data did not support the estimation in this
category. More details about the adjustment may be found in (Bell, 1993, 2001). In
addition, errors found during several evaluation studies were corrected in the data
used in forming the ACE Revision II estimates.

The 2000 ACE Revision II estimates were the first PES estimates that measured
a net overcount in a census of the USA. Figure 1 displays the net coverage estimates
based on the PES and Demographic Analysis methodologies for the 1980, 1990,
and 2000 censuses conducted in the USA.
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Fig. 1 Percent net undercount estimates from post-enumeration surveys and Demographic Anal-
ysis for the 1980–2000 censuses. (Source: Long, Robinson, and Gibson (2003))

6 Innovations in the 2010 PES Methodology

The Census Bureau pursued several innovations in the 2010 implementation of the
PES used to evaluate the 2010 Census. The program was called the Census Coverage
Measurement (CCM). The enhancements in the CCM involved producing estimates
of the components of census coverage error, preparing to include a correction for
correlation bias in case one was needed, and using logistic regression instead of
post-stratification in the construction of the DSE to produce the estimates of census
coverage error. The 2010 CCM focused on measuring the coverage of people in
housing units. The CCM also evaluated the coverage of housing units, but those
estimates are not discussed in this document.

6.1 Components of Census Coverage Error

One innovation used the PES data to form national-level estimates of the compo-
nents of census coverage error, namely, the total number of erroneous enumerations
and the total number of people missed by the census. Creating these estimates
required data processing that differed in some ways from the processing for forming
the DSE. For example, a different imputation procedure was needed to compensate
for missing data when forming estimates of the erroneous enumerations and the
people missed.

The definitions of the four components of census coverage error for persons
in housing units are listed below (Mule, 2008). The estimation of the correct,
erroneous, and omission components included all the data-defined enumerations in
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the E sample and did not require that they have a name. This section contains a high-
level discussion of the approach to the estimation of the four components of census
coverage error. For more details about the estimation method, see Mule (2008). Bell
and Cohen (2009) also discuss the 2010 PES. Table 2 contains the estimates for the
components of coverage error.

1. Correct Enumerations. Estimates of the number of correct enumerations in the
final census count were produced at the national level using E sample data, which
was a national sample of data-defined enumerations in census housing units. An
enumeration was considered correct for component estimation if it was for a
person who was counted once and only once in the U.S. housing unit universe.
One rule was that if the person was supposed to be enumerated in a housing
unit and was included in a housing unit anywhere in the USA, then that person
was considered correctly enumerated. If such a person or unit was included
multiple times, one of the enumerations was designated correct, and the others
were classified as erroneous.

The estimation approach used a two-stage ratio adjustment to reduce the
variability of the estimates and ensure that the sum of estimates for selected
subgroups added to the total. The first stage was a ratio adjustment to the E
sample weights that was done by identifying cells, which were formed by using
characteristics such as race/ethnicity, tenure, age/sex groupings, and then ratio
adjusting the sum of the sampling weights in each cell to the total number of data-
defined enumerations in the census. The second stage adjustment was applied to
each of the first stage cells by a ratio adjustment to the total number of data-
defined census enumerations within the cell.

2. Erroneous Enumerations. The E sample also was used to produce an estimate
of the number of erroneous inclusions in the final census count using the same
estimation approach that was used to estimate the number of correct enumera-
tions. Erroneous inclusions consist of duplicate numerations and enumerations
of people who should not have been counted in a housing unit. In addition,
enumerations for persons born after Census Day and persons who died before
Census Day are considered erroneous. The CCM processing identified whether
the person should have been counted in the (1) same county but outside of the
PES sample block cluster search area, (2) different county in the same state, or (3)
different state. The erroneous enumeration estimates used the similar two-stage
ratio adjustment.

3. Whole-Person Census Imputations. The CCM program tabulated and reported the
number of whole-person imputations in housing units directly from the census.
The CCM program did not evaluate whether these imputations were correct or
erroneous. Whole-person imputations are the result of one or more steps that may
include imputing whether a housing unit is occupied, the household size, and the
characteristics of the household members.

4. Omissions. The CCM program created estimates of the number of omissions
of people in housing units from the census. The estimation of the number of
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omissions relies on the two following relationships for net error in the census
count:

Net Error = T ruePopulation − Census (5)

Net Error = Omissions − Erroneous Enumerations (6)

Note that Eq. (5) can be rewritten as the following:

Omissions = Net Error + Erroneous Enumerations. (7)

Substituting Eq. (5) for Net Error in Eq. (7) and some algebra yields the
following:

Omissions = (T ruePopulation − Census) + Erroneous Enumerations.

(8)

Finally, substituting an estimate of the TruePopulation size and an estimate of the
number of Erroneous Enumerations from the PES yields an estimator for Omissions
as follows:

̂Omissions = ̂T ruePopulation − Census + ̂ErroneousEnumerations

(9)

6.2 Correction for Correlation Bias

Another innovation in the 2010 PES addressed the vulnerability of the DSE to
correlation bias, which arises when probabilities of a person or group of people
being included in the census and the PES sample are correlated. The remedy
was the incorporation of an adjustment for correlation bias. A version of the
ratio adjustment for correlation bias first appeared in a revision of 2000 PES
estimates. The adjustment was based on the ratio of males to females for Blacks
and non-Blacks based on Demographic Analysis estimates of the 2010 population
size derived from birth records, death records, and estimates of immigration and
emigration (Konicki, 2012; Mulry, 2014).

The correlation bias correction provides a remedy to a violation of the first
assumption underlying the DSE (see Sect. 3.2), which requires that inclusion in
the census is not correlated with inclusion in the P sample. However, heterogeneity
in inclusion probabilities for the census or P sample or both does occur across
subgroups. Some people, such as adult males ages 20–35, are hard to count and
therefore have lower inclusion rates in both the census and the P sample (Mulry,
2014 p. 50–51).
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6.3 Logistic Regression Instead of Post-stratification

Implementations of the PES from 1980 through 2000 used post-stratification in
forming the DSEs that were used to evaluate census coverage error. The post-
stratified DSE has the disadvantage of requiring an adequate number of observations
to produce a reliable estimate of the population defined by a post-stratum. This
requirement limits the number of subpopulations for which DSEs can be used to
produce census coverage error estimates.

Research during the 1990s demonstrated that PES data collected for forming
a post-stratified DSE also could be used in logistic regression models to produce
the estimated probabilities needed for constructing a different form of the DSE
(Haberman et al., 1998; Alho et al., 1993). This finding enabled creating estimates
of population size for subgroups formed using the independent variables in the
models and thereby facilitated the construction of estimates of census coverage error
for these subgroups. Because the DSEs formed using logistic regression enabled
constructing estimates of census coverage error for many more subgroups than were
possible when using the post-stratified DSE, the Census Bureau opted to pursue
implementing this approach in the 2010 PES.

The form of logistic regression estimator for the DSE uses three separate logistic
regression models: one model that predicts the probability of a record being data
defined, second that predicts the probability of an E sample record being a correct
enumeration, and a third that predicts the probability of a P sample record matching
a census record in the search area of its sample block. Then the following formula
provides a PES estimate of the population size in poststratum j in area Cj:

̂T otalCj =
∑

i∈Cj

[
πdd,i

πCE,i
/

πNM,i

]
(10)

where

πdd,i = probability of the i-th record being data defined.
πCE,i = probability of the i-th record in the E sample being a correct enumeration.
πM,i = probability of the i-th record in the P sample matching a census enumeration

in the search area of its sample block cluster.

Post-stratification requires partitioning the samples into groups that are large
enough to form reliable estimates, which possibly suppresses the variability of
the estimated probabilities of inclusion in the E and P samples because every
observation in a poststratum receives the same estimated inclusion probability.
Using the three separate logistic regression models to estimate the probabilities of
being data-defined, a correct enumeration, a nonmatch permits more variability and
possibly reduces the risk of violating the assumption that the probability of being
included in the census is not correlated with being included in the P sample. This is
the second on the list of assumptions underlying the DSE given in Sect. 3.2.
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6.4 Consultation with Dr. Stokes and Other Experts About
2010 PES Methodology

The Census Bureau sought review and advice about the 2010 PES estimation plans
from outside experts on capture-recapture methodology and dual system estimation.
They did this by engaging the Committee of Professional Associations on Federal
Statistics (COPAFS) to arrange and conduct a meeting of experts, titled the Census
Coverage Measurement (CCM) Workshop. At the meeting, a Census Bureau staff
presentation of plans preceded a discussion of the topic that included comments on
the proposed plans. The papers that Census Bureau staff prepared for the meeting
are available at https://www.census.gov/programs-surveys/decennial-census/about/
coverage-measurement/pes.html.

Dr. Stokes was invited to the meeting in recognition of her expertise in capture-
recapture estimation methodology and for her contributions concerning the design
of the quality control operation for the Census Bureau’s 1990 PES fieldwork (Stokes
& Jones, 1989; Biemer & Stokes, 1989). Her assignment was to review the plans for
the imputation for the estimates of two of the 2010 Census components of coverage
error, erroneous enumerations, and correct enumerations. The issue was which
of the two proposed methods to use for estimating the probability that a census
enumeration was correct. The cell method would assign the correct enumeration rate
observed for a cell to each enumeration in the cell. The logistic regression method
would instead assign each enumeration a probability estimated from the model.
Dr. Stokes recommended the logistic regression approach because the method for
selecting independent variables for the model was more straightforward. Although
the 2010 PES used the cell method, the plans for the 2020 PES imputation include
using logistic regression models.

Dr. Stokes leveraged her expertise to provide useful comments on many other
aspects of the plans for the 2010 PES. One suggestion grew out of a discussion
of the proposed plan to fill in missing characteristics in 2010 Census enumerations
by using the characteristics for the person that could be found in the 2000 Census
records. Dr. Stokes suggested going a step further and to consider the 2000 Census
to be administrative records and use the 2000 Census records to enumerate some
households when the household at an address appears to have the same family
structure and the people are ten years younger (U.S. Census Bureau, 2009). The
Census Bureau adopted a variation of this proposal in the 2020 Census by using
administrative records to enumerate 5.6% of the addresses in the USA (Mulry et al.,
2021).

6.5 2010 PES Estimates

The Census Bureau incorporated suggestions from the experts into the plans for
the 2010 PES. The results of implementing the new methodology in the 2010 PES
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Table 1 National estimates of net undercount by census year from PES

Net
undercount

Percent net
undercount

Year
Census count
(thousands)

Estimate
(thousands)

Standard error
(thousands) Estimate (%) Standard error (%)

2010 300,703 −36 429 −0.01 0.14
2000 273,587 −1332* 542 −0.49* 0.20
1990 248,710 3994* 488 1.61* 0.20

Source: The 2010 estimates are from Mule (2012) and the 2000 and 1990 estimates are from
Kostanich (2003)
The 2000 and 2010 Census counts exclude persons in group quarters and persons in Remote
Alaska
A negative net undercount or percent net undercount estimate indicates an overcount
An asterisk (*) denotes a (percent) net undercount that is significantly different from zero
The standard error estimates are model-based and based on the PES

Table 2 Estimates of the components of 2010 Census Coverage

Components of
census
coverage Estimate (thousands)

Standard error
(thousands) Percent (%) Standard error (%)

Census count 300,703 0 100.0 0
Estimates from
PES
Population size 300,667 429 100 0
Correct
enumerations

284,668 199 94.7 0.1

Omissions 15,999 440 5.3 0.1
Net under-
count = (PES
estimate -
census count)

−36 429 −0.01 0.14

Source: Mule (2012). A negative net undercount indicates an overcount

appear in Table 1, which includes the estimates of net undercount in the 2010, 2000,
and 1990 censuses in the USA. The estimates of the components of census coverage,
correct enumerations, erroneous enumerations, and omissions based on the 2010
PES are shown in Table 2.

7 Current Research

Census Bureau staff currently are looking at ways of improving DSE and census
coverage error estimates. Data from administrative records appears to be a fertile
ground for research in this area. For the 2020 Census, one innovation was the use of
data from federal and third-party sources of administrative records (ARs) to create
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high-quality household rosters for use in enumerating some households in the 2020
Census Nonresponse Followup (NRFU) operation. The main goal of using ARs in
this process was to reduce the cost of the NRFU fieldwork while maintaining its
high quality. The use of AR information reduces the number of contact attempts by
NRFU enumerators at addresses that were in NRFU because a self-response was
not received. AR rosters were used to enumerate addresses only if a self-response
was not submitted for the address during the self-response period and if one contact
attempt by a NRFU enumerator failed to resolve the status of the address. See Mulry
et al. (2021).

In recent years, statistical agencies in other counties have examined the potential
for improving DSE estimates for subgroups and their entire populations by incorpo-
rating “known” totals from administrative record systems (Bryant & Graham, 2015;
van der Heijden et al., 2018, 2020). This is feasible in countries where administrative
record systems have high coverage of the population. However, some of these
countries have minority groups that are poorly covered by their administrative
record systems; thus, these countries are looking for ways to improve estimates for
their minorities. Because the USA does not have a single source of administrative
records that covers the entire population, the Census Bureau’s research is focusing
on ways of using these approaches where the “known” totals are from Demographic
Analysis. Even though Demographic Analysis estimates are available only at the
national level, the intent of the research is to gain knowledge about the strengths
and weaknesses of the administrative records for future applications.

As part of the 2020 Census Program for Evaluation and Experiments (CPEX), the
Census Bureau is conducting the Administrative Record Dual System Estimation
Study that is building on the use of administrative records in the 2020 Census. This
project seeks to determine whether administrative records and third-party data for
the U.S. population can replace the data collected in PES fieldwork in DSEs. In
particular, the project is examining whether the use of administrative records as the
second system produces census coverage estimates that are close to the survey-based
results. Using administrative records could alleviate the need to conduct the field
data collection, develop clerical matching software, and pay the clerical matching
personnel costs to produce the DSEs for census coverage estimates. This has the
potential to reduce the cost substantially.

The Administrative Record Dual System Estimation Study builds on methods
used in other countries for deriving estimates of the population size using files
created by linking registers. The linking of registers may not produce a file that
covers the entire target population. Van der Heijden et al. (2018) discuss an
application of the expectation maximization (EM) algorithm of log-linear models
that estimates the part of the population missed by the registers. A novel application
creates estimates of the causes of accidents where the cause is recorded in both
the police and hospital registers, but the police reporting is more accurate. The
paper shows how one can use the EM algorithm to produce estimates. Van der
Heijden et al. (2020) describe an application of EM in a census context by using
multiple registers to estimate the size of the New Zealand Maori population. The
Administrative Record Dual System Estimation project is experimenting with the
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use of this EM methodology to estimate the size of race and Hispanic-origin
populations in the USA. Since race and Hispanic origin are available from responses
to the 2020 Census and from historical administrative records, estimates of the size
of subpopulations can be compared with the estimates produced by the evaluation.

8 Summary

Dr. Lynne Stokes brought her unique skill set to bear in devising methods for
estimating bias due to interview fabrication in the dual system estimator used
for estimating census net undercount. She gained an in-depth knowledge of
capture-recapture estimation when she worked at the Fish and Wildlife Service,
as demonstrated in her paper “The Jolly-Seber Method Applied to Age-Stratified
Populations” (Stokes, 1984). When she moved to the Census Bureau, she learned
about survey research methodology and the challenge of designing quality control
samples to detect interview fabrication as demonstrated in her co-authored paper
“The Optimal Design of Quality Control Samples to Detect Interviewer Cheating”
(Biemer & Stokes, 1989).

Dr. Stokes applied her background to use interviewing quality control data and
the evaluations of the 1990 PES to estimate the number of residual fabrications
remaining in the data after the quality control operation identified and corrected
some fabrications. In addition to estimating the bias at the national level, she also
constructed bias estimates for geographic and demographic subpopulations. Her
work on the quality of the PES data was critical to deliberations regarding the
adjustment of the 1990 Census.

More importantly, the method that Dr. Stokes used in estimating the residual
fabrication errors convinced the Census Bureau of the effectiveness of the quality
control operation to the point that it became an accepted practice. The Census
Bureau did not construct the estimate of the residual fabrication in the interview
data for any of the subsequent PESs. The basic approach to the PES interviewing
quality control has remained the same even though technological advancements
have enabled enhancements in the operation.

Dr. Stokes has demonstrated a flair for adapting methods developed for one
application to other uses. For example, she generalized her work on estimating the
amount of residual fabrication in a survey data set to the problems of quality accep-
tance sampling in manufacturing. The paper she co-authored with her colleague
Betsy Greenberg at the University of Texas entitled “Estimating Nonconformance
Rate after Zero-Defect Sampling with Rectification” (1992) generated substantial
interest among engineers from semiconductor manufacturing settings who adapted
the method to their projects. Drs. Stokes and Greenberg next expanded their
research topic to include the possibility of misclassification error in quality control
operations. This type of error may cause a good batch to fail or a bad batch to pass.
In their paper entitled “Repetitive Testing in the Presence of Inspection Errors,” Drs.
Stokes and Greenberg (2012) formulated a rule about how many times to repeatedly
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test a batch before considering it to fail. The rule for repetitive testing is used in
manufacturing and has numerous potential applications in surveys.

The evaluations of U.S. censuses continue to use the PES methodology to
evaluate the coverage of the decennial census. These implementations of the PES
have built on the quality control methodology that Dr. Stokes developed for the 1990
PES.
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Measurement Issues in Synthesizing
Survey-Item Responses
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Abstract From questions about politics to queries about candy preferences, survey
items ask about matters large and small. While statistical approaches to combining
survey estimates have been well studied, less attention has been paid to matters
of measurement comparability when survey items are being summarized via meta-
analysis. We present an overview of this problem. Meta-analyses begin with a
defined problem, and relevant studies (here, surveys) are gathered. Studies and
their measures should be scrutinized for validity and comparability as part of data
collection and evaluation. When summarizing survey items, meta-analysts must
represent item responses using indices that are comparable across surveys. However,
survey constructs and the items that tap those constructs differ in diverse ways
that challenge the meta-analyst. Cook’s concept of “heterogeneous irrelevancies”
supports the inclusion of diverse survey items in meta-analysis, but the tasks of
construct definition and operationalization are key to a successful synthesis of
items. Item variation arises from many sources—differences in construct definition,
wording of question stems, direction and labeling of response scales, and number
and labeling of response options. We describe approaches to dealing with these
features using examples from the World Database of Happiness and raise cautions
for various stages of the process.
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1 Overview

Surveys are ubiquitous. From polls of political leanings to academic inquiries
(Fanelli, 2009) to frivolous studies of candy or soda preferences (e.g., RetailMeNot
Editors, 2021), survey items ask us about matters large and small. While statistical
approaches to combining quantitative results of surveys have long been of interest
(e.g., Kish, 1994, 1999a; Morton, 1999), less attention has been paid to matters of
measurement comparability when surveys or survey items are combined in meta-
analyses. An early exception to this was Kish’s (1999b, p. 131) concern over the
measurement challenges faced in cumulating surveys multi-nationally. Of late the
scholarship on harmonization of measures has attacked this same problem.

Meta-analyses (Glass, 1976) have the goal of summarizing the “typical” outcome
of a set of studies or surveys in terms of strength, direction, and consistency of the
findings. In this chapter, we present an overview of conceptual and measurement
considerations underlying the synthesis or meta-analysis of survey items, and then
briefly characterize the set of techniques called harmonization. We review four
survey-item features that impact the quantitative synthesis of survey items. Writings
on test validity, item construction, and psychometrics guide this work. To illustrate
these ideas, we draw on the World Database of Happiness project by Veenhoven and
colleagues (e.g., Veenhoven, 2015; Veenhoven et al., 1993).

2 Introduction to Survey Synthesis

Most of the research to date on cumulating survey results has focused on the nature
of the populations to be combined and how their results should be statistically
weighted. Kish (1999b) argues that the presence of national surveys (which
expanded greatly in the late 1940s) led international entities such as the various
agencies of the United Nations to make international comparisons, even when those
might not have been statistically justifiable. This growth in cross-national work
was followed by many statistical developments including the deliberate design
of coordinated national-level studies, derivation of methods for post-stratification
weighting, and proposals for new varieties of periodic sampling plans. Kish led
the field in this arena, and in 1994 presented five types of multi-population survey
designs, based on seven aspects of design. The first three of these aspects relate
at least in part to measurement, which is our focus. Kish (2002) later pointed out
the connections between his ideas on quantitatively cumulating surveys and meta-
analysis—the enterprise of combining studies.

The early focus on statistical analyses for combinations of related surveys
may have resulted in part from the fact that early syntheses of surveys estimated
parameters based on identical or very similar survey questions. There was little
need to consider the nature of the questions asked, avoiding many conceptual
and measurement components of the synthesis process. However, such a focus
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necessarily leads to a narrowed selection of constructs and measures of those
constructs compared to what may be seen in the broader literature.

We discuss two classes of approaches to measurement challenges in meta-
analysis of surveys. One includes conceptual approaches that deal with the theoreti-
cal constructs per se and aim to formalize the meaning behind constructs of interest.
van de Water et al. (1996) refer to this as conceptual harmonization. Second are
statistical or psychometric approaches that primarily operate on item scale points,
distributions of scores, or correlations among items that aim to measure constructs
of interest. Properly covering either of these classes of approaches would require
a book rather than a book chapter, so we cover only the main aspects of these
approaches.

3 The Process of Meta-analysis

Meta-analysis involves the systematic collection of the results of series of related
studies, and the eventual quantitative analysis of those results. The process of meta-
analysis has components that parallel those of primary research (Cooper, 2017). A
simple version of Cooper’s steps includes

1. Problem formulation,
2. Literature search,
3. Data evaluation, including representation of study findings,
4. Data analysis,
5. Interpretation of synthesis results, and
6. Public presentation.

We focus on steps 1 and 3, because measurement issues arise primarily at these
points.

3.1 Step 1: Problem Formulation for Survey Synthesis

In a typical meta-analysis, a detailed question guides the synthesis process. Meta-
analyses often examine the efficacy of interventions, or strengths of relationships.
A rationale should be developed for the specific question(s) asked. A successful
meta-analysis is based on questions that are not so broad as to be unanswerable,
or so narrow that few studies (here, few surveys) address them. In applying this
consideration to the synthesis of survey items, we argue that the development of
a clear question is critical so that the synthesis team does not end up with a near-
infinite set of survey sources, each examining a variation of the true target topic.
For example, the World Database of Happiness (WDH; found online at https://
worlddatabaseofhappiness.eur.nl) has a bibliography with over 15,500 publications
on the topic of happiness, and almost 23,000 distributions of responses to questions
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on happiness from all over the world. Such a collection of results would swamp an
individual meta-analyst; that is why over 100 team members have participated in the
accumulation of these results since the 1980s.1

The meta-analyst must specify appropriate population(s) of study, develop
construct definitions, and delineate an acceptable set of operationalizations of those
constructs. The process often begins with an examination of past reviews and
existing research; in some fields, scoping reviews (Munn et al., 2018) provide a
quick look at the extent of the literature. The creation of lists of keywords and
definitions of central concepts are important tasks, as is deciding on the target
populations for study, because some constructs will differ by the age, gender, or
nationality of respondents.

A key part of problem formulation is to identify the constructs to be studied
as the independent and dependent variables. Examination of relevant theories,
brainstorming with experts in the field of interest, and use of qualitative research
methods such as grounded theory (Wolfswinkel et al., 2013) may help at this stage.
Even an idea as simple as happiness may vary in its meaning across cultures
(Ye et al. (2015)) or age levels. When several related constructs are of interest
(e.g., happiness and life satisfaction in the WDH), the meta-analyst should justify
decisions to combine results across those constructs. We posit that the use of
frameworks similar to the “blueprints” used in test construction can help outline
the components of target constructs (e.g., content focus, behaviors that evidence
presence of the construct) and guide collection of desired items. For example, a
synthesis on political interest might contain items tapping both engagement/interest
and active participation, for different levels of political activity such as local, state,
and national campaigns.

Good problem formulation facilitates the creation of inclusion and exclusion
rules that help identify appropriate sources of data to address the question of interest.
Because aggregate-data meta-analyses synthesize results from completed primary
studies, the problem-formulation stage differs from the planning stages of a single
survey, or even a multi-site survey program. In a typical survey, measures of the
desired construct are developed prior to the survey’s administration. In contrast, in
meta-analyses one works with existing measures, be they scales or single items. The
meta-analyst may aim to gather information about a particular construct only to find
it has not been sufficiently studied. For example, in a synthesis of the literature on
the management of type 2 diabetes, Brown and colleagues (2016) found that few
studies had measured compliance with keeping doctor’s appointments.

1It should be noted that the WDH is not meant to serve as the source of documents for a single
survey synthesis.
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3.2 Step 3: Data Evaluation

Efforts to bring together information across independent studies of any kind
(including surveys) bring attention to the fact that individual study authors and
survey designers have generated a huge diversity of measures on the same or
similar topics. This diversity leads to challenges when results are to be accumulated.
While any number of authors have commented on the importance of dealing with
measurement issues in combining survey results (e.g., Rao et al., 2008, p. 102;
Schenker & Raghunathan, 2007, p. 1809), few provide complete solutions for the
measurement challenges inherent in the process of combining surveys.

One expects a degree of diversity in outcome measures and study design across
studies because the process of science (and the need to publish “new” research)
pushes toward uniqueness. Diversity in measures across studies (or surveys) may be
great due to differences in construct definitions, or minimal, if construct definitions,
item wording, and responses options are similar. Cook (1993) has pointed out that
a degree of diversity in measures of a construct can support generalizations. If
a varying feature of a set of items, say, strength of item-stem wording, does not
relate to how the items function (i.e., to respondent behavior), it tells us that feature
is irrelevant to the construct measured. In our example, the meta-analyst would
generalize across items of varying strength if wording strength does not relate to
response patterns. It is important to identify potential item features at the data-
evaluation stage for this reason.

In a typical aggregate-data meta-analysis, reviewers appear to rely on the
primary-study authors’ claims about what was measured. It is rare to share the
exact instruments used in published studies. Also researcher-made measures are
often used; these are nearly impossible to obtain. Thus, a great deal of trust, or
perhaps mystery, can be involved in construct definition and operationalization in a
typical meta-analysis.

In contrast when individual survey items are to be summarized, the exact words
used in those items and their response options are obvious. However, this does not
remove the necessity for the meta-analyst to assess the nature of the construct(s)
tapped, and to ask whether items from different studies measure the same construct.
This can be done by way of typical validity-study methods, such as by having
experts examine all collected items and rate each on its centrality to the construct of
interest and degree of match to the concept definition developed at step 1. These are
discussed further below. Only after the constructs are clear should the meta-analyst
proceed to the next step of trying to find mathematically sound ways of connecting
or comparing the item responses.
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4 Harmonization

In part due to this diversity, calls for coordination and (post hoc) harmonization to
enable researchers to bring together diverse measures have become more frequent
over time, even though this process is rarely reported (Griffith et al., 2015). Early
efforts have centered on harmonization as standardization, that is, on creating
comparable numerical scoring systems for variables of interest. We refer to this
as statistical harmonization, in contrast to conceptual harmonization, discussed
above as part of problem formulation. A search of all ProQuest databases for
“harmoniz* and measures” in peer-reviewed article titles suggests that attention
to harmonization of measures first appeared in the 1990s, setting aside articles on
harmonization of physical/scientific indices such as pH and blood counts (Lewis,
1990), or currency-related indices (e.g., Goeltz, 1991). The term harmonization may
have grown out of the extensive work on harmonization of laws, regulations, and
social policies (e.g., in the European common market), such as in Holloway and
Collins (1982) and many other sources.

Initial efforts aimed to make measures of demographics and socioeconomic
status more comparable. These were led by ESOMAR—the European Society for
Opinion and Marketing Research—which was motivated to aid market researchers
(and obviously other commercial entities) to identify “the true diversity of the
market place” (ESOMAR, 2003, p. 97) in Europe. Work concerned with the harmo-
nization of measures of human social and cognitive constructs first appeared in the
literatures on commerce (e.g., Quatresooz & Vancraeynest, 1992, on demographics)
and medicine.

Citations on harmonization grew in the early 2000s as attention was drawn to
health-related measures such as activities of daily living that might differ across
countries (Nikula et al., 2003) and to measures used in the Health and Retirement
Study (e.g., Angrisani & Lee, 2011) and other cross-national health surveys that
followed. Interest in the standardization and simplification of measures serves the
goals of such cross-national survey efforts. Having similar or related measures and
scoring systems facilitates cross-national comparisons (e.g., Bech, 1992, on quality
of life), and connections among measures enable researchers to administer fewer
measures, thus saving time, money, and the goodwill of participants.

Harmonization may be conducted on measures meant to be of the same construct,
or measures of related constructs. The goals of harmonization include avoiding
duplication of measurement efforts and ensuring standardization and comparability
of measures across different target populations.

4.1 What Is Harmonization?

Harmonization is a process of making definitions and measures of a common con-
struct or variable comparable. While many writings on harmonization focus on the
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translation of numerical scores to compatible scales, we argue that harmonization
must involve two components—a conceptual reckoning and clarification of what
evidence is suitable to represent the construct, or conceptual harmonization, and
a statistical or psychometric component that accounts for how measures of the
construct have been scored. The fourth principle of the National Quality Forum
(2010) states that the conceptual component should precede the decision on whether
to try to statistically harmonize.

4.2 Conceptual Harmonization

The first step in this process must be consideration of the target concepts of
the synthesis and any theoretical frameworks that may underlie the measures at
hand. The National Quality Forum argues that harmonization must account for the
population or populations to whom measures will be administered as well. This
is consistent with the idea of consequential validity of any test or measure from
the Standards for Educational and Psychological Testing (Joint Committee on the
Standards for Educational and Psychological Testing of the American Educational
Research Association, the American Psychological Association, and the National
Council on Measurement in Education, 2014). The measure should be appropriate
for all populations to whom it will be administered.

Another relevant concept drawn from the Standards is that of concept
underrepresentation—the idea that a measure taps into “less or more than its
proposed construct” (p. 12). Assessment of concept representation would be
facilitated by the use of a survey blueprint, as we describe above. Many constructs
encompass a broad range of measures and diverging conceptualizations, for
example, activities of daily living (ADL; Pluijm et al., 2005) and quality of life
(QOL; Bech, 1992). Some fields have moved toward the use of common or “core”
measures, but we argue that in syntheses, key benefits also arise from diversity in
instrument use. Cook (1993) has noted that having a diverse set of measures (or
study designs, or populations) assists with generalizability. In particular, if such
differences are not associated with study outcomes, our findings can be stated
unconditionally. Finding empirical evidence that those features do not matter means
that simpler but broader conclusions can be stated. If we narrow our constructs or
measures to a select few, we cannot even assess how generalizable our results might
be.

Some researchers have provided conceptual models for these variously measured
constructs or used frameworks such as classifications of measures (e.g., of attitudes)
into affective, cognitive (Crites et al., 1994), and behavioral aspects (Ostrom,
1969). Often theoretical models can assist the meta-analyst in judging whether
single items or longer measures “fit” a construct definition. For example, Bech
(1992) described a model for health-related quality of life based on six diagnostic
components: physical, cognitive, affective, social, economic, and ego-function
aspects (PCASEE). Bech’s Table 1 relates the six components to specific variables
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such as sleep (P), concentration (C), depression (A), and so on. However, for others
quality of life may be represented in terms of self-assessments: Joyce et al. (1999)
listed the individual’s assessment of subjective health as the manifestation of Bech’s
physical aspect, their decision-making capacities as representing cognition, warm
feelings toward others as an index of affective QOL, and so on.

Remarkably, though papers can be found with personal definitions of happiness
and well-being provided by Veenhoven, few that we examined connect to other
scholarship, and many are overly glib and simplistic about defining happiness.2

Veenhoven (2007, p. 3) states that “‘well-being’ denotes that something is in a good
state.” Veenhoven (2009) stipulated that happiness and quality of life and well-being
are the same. Further musings dissect quality of life into components, but do not
tie the ideas to other literatures that conceptualize or theorize on these constructs,
and those literatures are each extensive. Veenhoven (2009) is the most thorough,
though its provision of evidence is haphazard, with little attention to the different
populations and cultural groups that appear in the database. One finds the conceptual
basis for harmonization could be stronger in the happiness realm.

Examination of items is another component of conceptual harmonization. For
example, Wang et al. (2014) provide a compendium of items tapping health-related
behaviors across a set of surveys that aimed to be comparable to the US Health and
Retirement Study (HRS). These reveal the vast array of questions asked with content
deemed “similar enough” to be harmonized. Lengthy concordance tables are given
for items on smoking, drinking, and physical activity.

Chen et al. (2021) conducted a similar process that they called “pre-statistical
harmonization” which involved close inspection of all items, reviews of scoring
procedures, and inspection of populations assessed in surveys of behavioral symp-
toms of dementia. Individual patient data from eight samples allowed them to
also conduct statistical harmonization, including psychometric analyses using item
response theory, model-fit analyses, and examination of inter-item correlations and
cross-tabulations. Experts in the content matter at hand would be critical to this
process.

Given sufficient data, one could conduct empirical validity studies of collected
items such as investigations of inter-item correlations or factor analyses. However, if
each study contributes only a few items to the collection, such studies would require
additional new primary data. Seemingly sensible quantitative analyses should be
preceded by conceptual harmonization. Even when harmonization is a reasonable
goal, surveys intending to include comparable measures may still show notable
variation in wording and content. Some of these features are described in the
following sections.

2Other papers in Veenhoven’s extensive writings may present more thorough analyses of relevant
theories and evidence.
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4.3 Item Features Critical to Harmonization

We next consider four important survey-item features that impact the synthesis of
survey items. Findings on item writing and psychometrics guide this work. These
features are candidates for coding because they may relate to the responses of
participants and may also play a role if statistical harmonization is to take place.
We discuss:

• Variation in wording of the question stem or statement
• Number of response-option categories
• Scale direction: Unipolar vs. bipolar scales
• Nature of response options: Labeling and wording of response options

Other features may play roles in cross-survey variation in items (e.g., the use of
negatively and positively worded items, per Pilotte and Gable (1990), among many
others), but we believe these four features are most important and are moderately
easily addressed.

4.3.1 Wording of Item Stems

Differences in the wording of item stems can result in variation in the focus and the
strength of the questions asked, and affect the strength of responses from recipients.
The impact of wording in surveys is parallel to the way that test-item wording and
stem complexity affect difficulty in standard educational exams (e.g., Ascalon et al.,
2007). More extreme stem statements are expected to be harder to endorse. Schuman
and Presser (1996) discuss various aspects of wording including intensity, centrality,
and tone in several chapters in their classic book; there are too many to properly
cover here. Additionally, the exact wording differences that are important will surely
vary from one meta-analysis to another, so we mention here only the general idea
and its importance.

A multifaceted example of stem differences was reported in the RAND project
to harmonize measures of health behavior in the elderly. Examining ten different
longitudinal studies of aging, Wang et al. (2014) noted that questions about drinking
alcoholic beverages varied in the time frames they asked about, and the amounts and
specificity of beverages consumed. Items on the frequency of drinking asked about
time ranges including the last 7 days, last month, last 3 months, last 6 months,
and last year. Some asked about consumption of “any alcohol,” whereas others
differentiated wine versus beer versus spirits, and the most focused questions probed
for consumption of “normal beer” versus strong beer, or listed specific types of
liquor (e.g., wine, beer, and whiskey). Cross-national comparisons are difficult when
particular beverages are more popular and readily available in their country of origin
(e.g., sake, soju, makgeolli); such wording matters are idiosyncratic but may be key
to understanding a particular population.
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As an example, suppose we want to summarize information on the portion of
the elderly population that is engaged in heavy drinking. One might expect the
two features of time frame and amount of alcohol consumed per unit time to work
together to represent total alcohol consumption. Thus, it would be important for the
meta-analyst to capture such features during data extraction. Some meta-analyses
have used coded variables to create additional variables. For example, multiplying
the number of treatment occasions for an intervention by the typical session length
provides a total-exposure-to-treatment measure. A similar approach could be taken
for assessing alcohol consumption. To synthesize data on items that do not allow for
similar computations, the meta-analyst could ask expert raters to assess the strength
of the item-stem statements and use those assessments as moderators of diversity in
the responses.

4.3.2 Number of Response Options

Another feature of item responses that leads to between-surveys variation is the
number of response options. Differing numbers of options are the leading reason
for using the statistical harmonization methods described below, because the scales
of item scores correspond to the number of options available. In some cases, the
options are nominally or qualitatively different and for those, scale changes are
not needed. In others item responses represent an implied underlying continuum.
This distinction has implications for the choice of quantitative approaches to scale
harmonization. It is tempting to separate dichotomous items from items with three or
more options, but when an item measures an underlying continuum, the difference
between two and three or more options is simply one of the granularities of
responses. Often surveys require respondents to reply using ordinal scales with
varying numbers of categories. Others may allow for continuous responses, for
instance, by placing a mark on a line. In any case when synthesizing findings from
individual items, the meta-analyst may want to consider the number of options as
a potential moderator of between-items differences in results, as there is no way to
add response options after the fact.

To enable sensible comparisons, scale conversions have been used to rescale
individual item outcomes for ordinal- and interval-scale items, to locate them on a
common metric. Many of these are listed in handbooks for statistical harmonization
(e.g., Griffith et al., 2013), and we show several examples below. At its simplest,
rescaling may entail collapsing responses or applying simple linear transformations
of scale points; however, these can lead to potentially idiosyncratic translations
across items. More complicated approaches may require assigning labeled points
differently across studies, or adopting more sophisticated latent variable models
which involve more assumptions and computation (e.g., van den Heuvel et al.,
2020).
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4.3.3 Nature of Response Options

Responses to items may be partially or fully labeled and may be graphical,
numeric, or verbal. When survey-item responses are verbally labeled, the nature
of the responses available as answers must be considered. Response-option-label
differences have been the focus of efforts to harmonize measures across surveys,
especially in the work of Veenhoven and his team (DeJonge et al., 2017), and can
be very tricky when different formats appear across studies (e.g., what words are
associated with the array of frowning faces on pain-scale items?).

Differences in response labeling are presumed to lead to different choices
by participants, and are known to vary across different surveys, contributing to
further between-surveys variation. Thus, this feature is one that should be coded or
characterized by the meta-analyst. When a finite number of categories is offered,
response options may be fully or partially labeled; this has long been noted to
affect the reliability of responses (Endig, 1953). Similarly even when respondents
are offered a continuum to mark, labels may be specified at different points along
the length of the response line, and continuous-looking scales may be assigned
integer scores by survey software. Coding these features enables the meta-analyst to
empirically assess whether such variations in design affect participant responses.

4.3.4 Item Polarity or Direction

Some surveys use items with responses organized along continua with endpoints
that are meant to be opposites; these are bipolar items. For example, ratings may
range from “happy” to “unhappy” (or if endpoints have modifiers, “very happy”
to “very unhappy,” etc.). In contrast unipolar item responses may run from “not
at all happy” to “very happy,” with no coverage of the range representing degrees
of unhappiness. This approach to labeling may reflect a potential belief that, say,
happiness and unhappiness reflect two separate dimensions, rather than two ends
of a continuum. It may be possible to link similar option choices across items of
different polarities if verbal labels are assigned to all items.

To combine unipolar and bipolar items presents a challenge to the meta-analysis.
Using simple linear transformations (e.g., that move responses to a common scale)
will not address the fact that the endpoint of a unipolar scale may correspond more
closely to the middle of a bipolar scale than to its end. This is why numerical
transformations cannot be blindly applied without consideration of the constructs
per se that are tapped by individual items. At the very least, the polarity of items
must be coded, and it may be sensible to separately analyze items with different
polarity, unless a translation can be found that soundly matches response options
across these two item types.
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4.4 Statistical Harmonization

Hofer and Piccinin (2009) of the Integrative Analysis of Longitudinal Studies
on Aging (IALSA) project have pioneered the idea of harmonization within the
study of the psychology of aging. They and others have provided a guide to
statistical harmonization aimed largely for use in individual participant meta-
analyses (Griffith et al., 2013). Many approaches to this statistical harmonization,
along with supportive software (e.g., Adhikari et al., 2021; Fortier et al., 2011;
Winters and Netscher, 2016), have been developed. We touch on some of the most
common methods here and discuss their weaknesses.

4.4.1 Linear Transformations

A conventional method to locate item responses on a common scale is to place
the scale points of the diverse items (i.e., responses to individual items) onto a
common secondary scale by applying linear transformations. These date far back
(Hull, 1922) and have numerous instantiations. The simplest linear transformations
include linear stretching that converts primary-scale response-option scores to a
common scale running between prespecified endpoints (e.g., 1–10) and standard
linear transformations that shift scores to a scale with a known mean and standard
deviation (SD), such as the T score with a mean of 50 and SD of 10, or the well-
known z score.

4.4.2 Linear Stretching

If the number of response options of a primary scale is smaller than that of the
common scale, the transformation is done by linearly stretching the scale points
from the smaller scale onto the larger scale (e.g., moving a 5-point scale to 10-point
scale). If the number of primary-scale response options is larger than the number of
the common-scale response options, the primary scale is linearly compressed into
the boundaries of the common scale (e.g., from a 10-point scale to 5-point scale).

The equation below can be used to stretch or shrink the scale points from one
scale X to another, say Y :

Y =
[

(X − min(X)) × max(Y ) − min(Y )

max(X) − min(X)

]

+ min(Y ), or

Y =
[

X × max(Y ) − min(Y )

max(X) − min(X)

]

− min(X) × max(Y ) − min(Y )

max(X) − min(X)
+ min(Y ),(1)

where X is a scale point of the original item; min(X) and max(X) are the minimum
and maximum possible scale points of that item (not the observed min and max
values), respectively; and min(Y ) and max(Y ) are the analogous values on the
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transformed scale (Card, 2011). This is easily seen to be a linear transform Y =
a + bX where

a = − min(X) × max(Y ) − min(Y )

max(X) − min(X)
+ min(Y ) and b = max(Y ) − min(Y )

max(X) − min(X)
.

4.4.3 Linear Transformation to a Target Mean and Variance

An obvious second transformation assigns a new mean (say μY ) and variance (σ 2
Y )

to the scale responses. This is attained by using the linear transform Y = a + bX,
with

a = (μY Sx − X̄σY )/Sx and b = σY /Sx.

Target values are denoted using Greek characters to distinguish from the sample
values for the original scales.

4.4.4 Assumptions

Once the scale points across a set of items are on a common scale, a meta-
analyst can directly summarize their results across studies. The assumptions of
linear translations are that response options are equidistant (i.e., interval scaling),
that the most extreme possible responses on all items should be scored as min(Y )
and max(Y ), and that identical verbal labels do not need to be assigned the same
numerical value across items or surveys. Griffith et al. (2015) state without support
that these methods also assume normality (we doubt this condition is needed),
but rightly note that such translations may run into trouble if the measures have
very non-normal distributions (e.g., skewness due to ceiling effects). Indices used
may include mean scores if one is willing to assume an underlying continuum, or
proportions of participants scoring above (or below) a set cutoff on the new scale.

Zumbo and Woitschach (2021) endorse the concerns we raise and have raised
several additional concerns about the family of linear transforms by examining
a more stringent mathematical formalization. These authors concur with our
assessment that when a scale is fundamentally only ordinal, simplistic translations
cannot magically change that fact.

4.4.5 Example

We demonstrate using two survey questions measuring a respondent’s degree of
happiness, taken from the World Database of Happiness (Veenhoven, n.d.). The
first question is “In general, how happy would you say you are these days?” Its
response scale runs from 1 to 7 with response-option labels Not happy at all (1), Very
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unhappy, Somewhat unhappy, Neither happy nor unhappy, Pretty happy, Very happy,
and Extremely happy (7). The second question is worded slightly differently: “How
happy do you feel as you live now?” This question has four response-option labels
scored from 1 to 4: Very unhappy, Not too happy, Pretty happy, and Very happy,
respectively. We use the linear-stretching method to transform the ratings of both
scales to a common metric running from 0 to 10. After applying this method, the
ratings for response labels of the first question become 0, 1.67, 3.33, 5, 6.67, 8.33,
and 10, respectively, and those of the second question are 0, 3.33, 6.67, and 10,
respectively.

Once the original ratings are linearly transformed to the same metric, the
observed means (μ̂y) and variances (S2

y ) can be calculated for each transformed
scale with an underlying continuum by entering the transformed ratings yj and the
proportions of respondents choosing each of the ratings (P(yj )) in the following
equations:

μ̂y = E(Y ) =
J∑

j=1

yjP (yj ), (2)

S2
y =

J∑

j=1

(yj − μ̂)2P(yj ), (3)

where we sum across all J response categories, j = 1 to J . Alternatively, one may
calculate the linearly transformed mean and standard deviation directly from the
means and standard deviations of the original scales (Kalmijn, 2010). Specifically,

μ̂y =
[

μ̂x − min(X)) ×
(

max(Y ) − min(Y )

max(X) − min(X)

)]

+ min(Y ), (4)

Sy = Sx ×
(

max(Y ) − min(Y )

max(X) − min(X)

)

. (5)

The linear-stretching method has a few drawbacks especially when used to trans-
form items with verbal response labels. One is that the meta-analyst must assume
equidistance between response categories of all the scales being transformed (i.e.,
assume they have interval-scale properties). This assumption implies that the
differences between successive response-option categories are the same within
the old and new metrics. For the first question in our example, for instance, the
difference in the degree of happiness between “Pretty happy” and “Very happy”
should be the same as the difference in the degree of happiness between “Very
happy” and “Extremely happy”. This is impossible to verify as the measure is
inherently ordinal even if the underlying construct is not.

The other issue is that the transformation does not consider either the verbal
anchoring of response options or any differences in strength or focus of the question
stems. For instance, after linear stretching has been applied, the score of 3.33 on the
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common 0–10 scale is associated with both the “Somewhat unhappy” verbal label
of the first scale and “Not too happy” of the second scale, which is unsatisfying, and
implies that they have the same meaning. In contrast at the top end of the scale, 6.67
is assigned to “Pretty happy” on both items, but “Very happy” is assigned 8.33 for
the 7-point item versus 10 for the 4-point item. This lack of correspondence is both
problematic and confusing.

4.4.6 Nonlinear Transformations

Two nonlinear and nonmathematical transformation approaches can be used to avoid
these issues associated with the linear-transformation method. Both approaches are
based on using subjective judgments of individuals (e.g., coders or expert judges) to
determine corresponding values for possible response-option labels on a secondary
numerical scale. The use of raters or coders to rate prompts (e.g., Eagly & Carli,
1981) or other study features (e.g., quality features; Atkins et al., 2004; Guyatt
et al., 2008) is common in meta-analysis, and the use of ratings as moderators of
study effects is also common. Here raters are asked to evaluate the semantics of the
response-option labels.

In one approach, coders are presented with a list of all response-option labels
from the primary scales and are asked to assign values to each label on a second
common metric that is bounded by predetermined values. In the other approach from
Veenhoven et al. (1993), coders evaluate the semantics of each response-option label
after reading the question stem and the other response-option labels of the item.

In the first approach, which we call the semantic-judgment-out-of-context
method, each response option is rated irrespective of the other response-option
labels of the original item and its relative position on the common scale that contains
all other response-option labels. This approach does not take into account the
differences in the wordings of the question stems or the number or nature of the
response options of the items. A weakness of this approach is that differences in
question stems may impact how judges interpret the response-option labels being
rated. Also, the semantic intensity of a response-option label may be interpreted
differently depending on whether it is presented with many other options (e.g., seven
categories) or few (e.g., three categories).

One early application of this approach was as the first step in a longer process
of scaling items proposed by Jones and Thurstone in 1955. Respondents rated
the semantic strength of 51 phrases (response options) used to indicate like or
dislike of various foods (e.g., strongly like, tasty, bad). Each phrase was presented
independently with no stem (i.e., no prompt of a specific food), and the raters
assigned to each an integer value between −4 and 4, inclusive. Scale endpoints
were labeled with “Greatest Dislike” and “Greatest Like” and the midpoint (0)
was labeled with “Neither Like Nor Dislike.” The authors then applied a modified
version of the successive-intervals scaling method (Edwards, 1952) to determine
the values of the phrases on the common scale. Consequently, all the phrases were
placed on an interval where a neutral label has the value 0.
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With the second approach, the semantic-judgment-in-context method, coders
assign values to each response-option label considering all aspects of the original
item, including the relative position of the label, other response-option labels,
the number of response options, and the wording of the question stem. Each
individual question and its corresponding response-option labels are presented to
the coders separately. For each response option, the coders assign a value that they
consider the most appropriate on a secondary scale, say running from 0 to 10.
One coder might assign 1 for the option label “very unhappy,” 3 for “unhappy,”
6 for “happy,” and 9 for “very happy.” Another coder could rate the same labels
differently. Also, coders may assign different values to the same response-option
label when it is presented in the context of different questions (e.g., with different
question stems and accompanying response-option labels). The final ratings for each
item’s response options are computed by averaging assigned values across coders.
Consequently, response-option labels have unique values specific to each survey
item on a set secondary scale.

In the extensive project on happiness, Veenhoven et al. (1993) used this approach
to place values of the response options of nine survey items tapping happiness
on a common scale. The items had almost identical question stems but differed
in numbers and labeling of response options. Ten content experts evaluated the
semantics of response-option labels by assigning values on a 0 to 10 scale. The
means of those values across experts determined the final ratings of the response
options. If a response option appeared in multiple items, its ratings were also
averaged across items. Response options used only once retained their original rated
values. Consequently, the authors came up with a single common scale having all
possible options.

A concern with this approach is that it damps down spread that may be explained
by other item features. Consider an item with response-label ratings that all exceed
the ratings of the same labels when used with other items. Because the mean
response score will replace those higher-than-average ratings, the process has the
feature of moving extreme labels closer to the center, and in theory could reorder
verbal labels within items, especially if ratings adjacent to the focal option are
numerically close.

4.4.7 Comparisons of Approaches

Gözütok (2018) made use of survey items and their descriptive statistics (i.e., orig-
inal means, standard deviations, proportions of respondents on response options)
from Veenhoven’s World Database of Happiness collection to illustrate how three
scale-transformation methods can be used in conducting a meta-analysis. The
original response options of items were transformed to a secondary numerical
scale running from 0 to 10 by the transformation methods described above. Then
means and standard deviations of the items on the new scale were computed. The
means obtained from the transformed scales were treated as study outcomes in three
hypothetical meta-analyses based on raw-means synthesis (Bond et al., 2003).



Measurement Issues in Synthesizing Survey-Item Responses 135

In the three pseudo-meta-analyses, Gözütok (2018) included the wording of the
question stems as a moderator variable, along with other survey-item characteristics
such as number of response-category options, scale polarity (i.e., unipolar vs.
bipolar scales), and scale labeling (i.e., endpoints labeled vs. all points fully labeled).
To capture differences in the wording of question stems, he used ratings of the
strength of the statement or question about the construct (i.e., happiness). This
rating task may be done by meta-analysis coders, content experts, or a sample
of target respondents. For example, coders may assign a higher rating of strength
to the question stem “Do you feel elated?” and give a lower value to “Do you
feel happy?”. If so, part of the potential between-studies variance in the study
outcomes will be explained by the differences in question-stem strength. The
strength ratings did not relate to the mean happiness ratings in these pseudo-meta-
analyses, possibly because the actual items on happiness were very similar (i.e.,
there was little between-items variation in wording). Also concern was raised due
to an idiosyncratic rater Gözütok identified in his rater pool.

As part of the World Database of Happiness project, a great deal of work
regarding the comparability of survey items of the same construct has been done
by Veenhoven and his colleagues. Veenhoven (2008) reported on the International
Happiness-Scale Interval Study. Its participants provided interval boundaries on a
0 to 10 scale for each response-option label of a set of country-specific happiness
items. Each item stem plus its associated set of J response labels was presented to
the participants. A web-based tool called the Scale Interval Recorder (Veenhoven
& Hermus, 2006) allowed the participant to slide (J − 1) markers that defined the
boundaries between the J verbal labels that were associated with each question.
Midpoints of the resultant summarized intervals were used to represent each
response option.

This study inspired further innovations such as the continuum approach of
Kalmijn (2010), and the reference-distribution method from DeJonge et al. (2014).
The continuum approach postulates a latent happiness variable in the population. It
is assumed to be continuous and was set arbitrarily to have scores in the interval
[0, 10]. Beta-distribution shape parameters that best match the observed data are
then found. Kalmijn recommends using a beta distribution which is left-skewed to
reflect high levels of happiness in the population.

The reference-distribution method builds heavily on other harmonization meth-
ods in that it aims to define intervals to represent ranges for response options. In
the reference-distribution method, the boundaries between the response options of
the primary scale are derived from a reference distribution instead of from ratings
by judges on a scale-interval recorder. Again this approach assumes an underlying
latent distribution and uses the beta distribution that fits best to the survey results
of the responses of a given sample and item. For interested readers, details and
implications of these approaches can be found in DeJonge et al. (2017).

Other methods have been proposed to harmonize data from different survey
items. Griffith et al. (2015) provided a summary of statistical approaches used
in systematic reviews of cognitive variables. Transformation and other score-
conversion techniques were common, but these authors argue for more sophisticated
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latent variable techniques including factor analysis and item response theory that
would be difficult to achieve without individual participant data.

5 Conclusion

Methods and software tools have been developed to support the practical task
of harmonization, but few focus on the detailed conceptual components that we
argue are crucial. One exception is Fortier et al. (2017) whose step 2a concerns
variable definition. Also on the whole, the practice of statistical harmonization
remains simplistic. Griffith et al. (2015) and Zumbo and Woitschach (2021) have
argued for the use of latent variable modeling in statistical harmonization, which is
consistent with mainstream work in measurement and assessment, yet it is rarely
used. The problem for the meta-analyst is that unless extensive individual-level data
are available, these analyses cannot be conducted. For example, few surveys have
simultaneously administered more than one or two of the hundreds of items in the
Happiness Database. Also, such approaches assume that the first step of conceptual
harmonization has occurred and identified a set of measures worthy of calibration
and linking. It is unclear how often this has been done.

One possible route for meta-analysts, though a labor-intensive one, would be
to include in the meta-analysis what are called bridge studies (e.g., Perie et al.,
2005, which examined changes in the test structure of the National Assessment of
Educational Progress or NAEP). The goal would be to map different items onto one
calibrated scale. After conceptual harmonization of target items, the meta-analyst
would administer those survey items to a new sample from the population of interest.
When one considers the massive numbers of highly similar items in the World
Database of Happiness, the task seems impossible. However, if multiple subsamples
responded to smaller structured subsets of items (e.g., using incomplete blocks
designs as have been used in NAEP and other large-scale assessments), a set of
calibrations with common anchor items could allow for various forms of equating or
linking (Kolen & Brennan, 2004) to be applied. Various designs for effective linking
already exist. This would also allow for item analyses to be conducted to check on
the structure of the construct as a whole, thus enhancing the logical examinations
and construct-validity analyses done as part of conceptual harmonization.
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Two Sources of Nonsampling Error
in Fishing Surveys

J. Michael Brick, William R. Andrews, and John Foster

Abstract Two important nonsampling errors arise from nonresponse and non-
coverage. Both nonresponse and noncoverage are forms of missing data and are
potentially important contributors to the accuracy of survey estimates. This research
examines the potential effects of both nonresponse and noncoverage in the Fishing
Effort Survey (FES), a survey conducted by the National Oceanic and Atmospheric
Administration (NOAA). The difficulty in evaluating nonresponse and noncoverage
is that the values for the missing data are not available and proxy measures must
be used. Using proxies we find that noncoverage results in very large biases, while
the magnitude of nonresponse bias is negligible in comparison. Another important
finding is that the rates of missing data due to nonresponse or noncoverage are not
predictive of the magnitude of the biases.

1 Introduction

All sample surveys are subject to sampling and nonsampling errors which cause
survey estimates to deviate from true population values. Survey sampling texts
(e.g., Cochran, 1977 and Lohr, 2019) describe survey design techniques to lower
sampling errors in a cost-effective manner, but these texts provide less guidance on
reducing nonsampling errors. This research investigates two important sources of
nonsampling errors that are forms of missing data: nonresponse and noncoverage.
The effects of nonresponse and noncoverage errors in a survey used to estimate
fishing effort are examined both separately and jointly. The joint analysis provides
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insight into the relative magnitudes of the potential error and can help prioritize
efforts to improve the overall quality of the survey.

Nonresponse affects virtually all surveys and has been the subject of many
articles and texts (e.g., Groves & Couper, 1998; Särndal & Lundström, 2005, and
Stoop, 2005). Falling response rates (Atrostic et al., 2001; Williams & Brick, 2017,
and Luiten et al., 2020) both in the United States and internationally have greatly
heightened interest in nonresponse. For example, Stedman et al. (2019) question
whether low-response rates imply surveys are no longer valid research vehicles, and
Groves (2006) discusses the value of probability samples with low-response rates.

The research on noncoverage error, another form of missing data, is more diffuse
because the source of noncoverage differs across surveys. A more comprehen-
sive review is done by Lessler and Kalsbeek (1992), who discuss nonresponse,
noncoverage, and other nonsampling errors such as measurement error. Narrower
research on specific instances of noncoverage is illustrated by the work on telephone
surveys in the 1980s and 1990s (Thornberry & Massey, 1988), and then again when
mobile devices were first introduced (Tucker et al., 2007). Similarly, web surveying
has spawned research on noncoverage related to Internet access (Scherpenzeel &
Bethlehem, 2010).

Nonresponse and noncoverage both result in missing data. As a result, the two
sources of nonsampling error can be investigated, at least theoretically, using the
same structure. For example, consider the bias in a sample estimate of the mean,
ȳnm = ∑k∈snm

dkyk/
∑

k∈snm
dk , where dk is the inverse of the probability of

selection for unit k and snm is the set of non-missing data where the missingness
is due to either nonresponse or noncoverage. The bias can be written as

Bias(ȳnm) ≈ M(Ȳnm − Ȳm), (1)

where M is the percent of missing data, Ȳnm is the mean of the (possibly
hypothetical) stratum of those who would provide data, and Ȳm is the mean of the
stratum of those who would not provide data.

Another popular way of characterizing nonresponse is as a function of the corre-
lation between the probability of a sampled unit responding (its response propensity)
and the outcome variable (Bethlehem, 1988). This stochastic representation is

Bias(ȳnm) ≈ φ̄−1σφσyρφy, (2)

where φ̄ is the population propensity of providing data, σφ and σy are the standard
deviations of the propensity and y variable , and ρφ,y is the correlation between the
propensity and y. This model is not typically used for noncoverage because coverage
propensities—the probability a unit is on the sampling frame—is more difficult to
postulate as being random.

For most surveys, either nonresponse or noncoverage errors are examined, but
they are rarely examined jointly. One exception is Couper et al. (2007) who do deal
with both sources. More theoretical work, like that of Little and Rubin (2019), treat
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nonresponse and noncoverage as forms of missing data, but do not delve into the
implications of the magnitudes of the biases from each source.

Our objective is to examine the potential effects of both nonresponse and
noncoverage in a particular survey to better understand the potential implications
of each source. The findings help to better understand the optimal approach to
managing resources in this survey to improve the accuracy of the estimates. More
generally, the development of bias estimates due to each source of missing data
for the same survey will help illuminate the nature of both nonresponse and
noncoverage and suggest improved ways of thinking about these nonsampling errors
for other surveys.

2 The Fishing Effort Survey

The survey that is the focus of our research is the Fishing Effort Survey (FES)
conducted by the National Oceanic and Atmospheric Administration (NOAA). The
FES is part of NOAA’s Marine Recreational Information Program (MRIP), which
produces estimates of recreational saltwater fishing catch—estimates that are used in
managing fisheries. It is a cross-sectional, household survey that is conducted every
2 months. The key estimates are the total number of private boat and shore-based
recreational, saltwater fishing trips taken by residents of coastal states.

The FES is an address-based sample (ABS) where the addresses are stratified
into coastal and non-coastal sub-state regions defined by geographic proximity to
the coast. Within each geographic strata, addresses are matched to the National
Saltwater Angler Registry (NSAR), which is comprised of state lists of licensed
saltwater anglers. This matching creates two additional strata: license-matched
(households with one or more licensed anglers) and license-unmatched (households
that cannot be matched to NSAR). The coastal and license strata were instituted to
improve the efficiency of the sample. Within each stratum, addresses are selected in
a single stage using simple random sampling. Weights include raking to household
control totals derived from the American Community Survey (ACS) and a final
poststratification adjustment to the number of households by coastal/non-coastal
strata.

The state effort estimates of the number of shore fishing trips and boat fishing
trips from the FES are then combined with independent estimates of average
catch per trip from the Access Point Angler Intercept Survey (APAIS) to produce
estimates of total recreational saltwater catch. Since the FES only samples people
who reside in the state, an adjustment is made to the FES estimates to account for the
noncoverage of nonresident anglers. Details on the survey protocol and results for
2020 are in the FES annual report (https://media.fisheries.noaa.gov/2021-08/MRIP-
Fishing-Effort-Survey-2020-Annual-Report-V2.pdf). More details on estimation
methods are given in Papacostas and Foster (2018).

For this research, we focus on the FES conducted in Waves 4 and 5 of 2020 (July–
August and September–October time-periods) for four states where a nonresponse
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Table 1 Sample sizes, number of completes, and response rates for 2020 standard Fishing Effort
Survey and nonresponse follow-up surveys, by state

Standard survey Nonresponse follow-up Overall

State Sampled Completeda RR2b Sampled Completeda RR2b RR2a

Overall 28,650 7968 27.9% 15,993 3456 21.9% 42.4%

Florida 4222 1238 28.0% 2235 513 22.4% 42.6%

Massachusetts 6143 2010 31.5% 3160 774 24.3% 47.0%

New York 11,956 2714 26.1% 7253 1343 19.0% 39.8%

North Carolina 6329 2006 28.4% 3345 826 23.1% 43.7%
a Includes partial completes with some data that requires editing
b RR2 is the American Association of Public Opinion Research response rate 2

follow-up (NRFU) was conducted. The follow-up data are used in the analysis of
potential nonresponse bias. The NRFU followed a subsample of the nonrespondents
to the standard FES. Details of the NRFU data collection protocol are given in
Andrews (2021).

The first columns of Table 1 show the sample sizes, number of completes, and
response rates for the standard FES, where the data are aggregated over both waves
in each state. Completed surveys include those where all the information requested
is 100% reported plus partial completes which include missing or inconsistent
information that can be resolved by editing or imputation. About 85–90% of
completes require no editing. The overall response rate for the standard survey
in these states during the two waves was 27.9%. The subsequent columns show
the same information for the NRFU study. The NRFU response rate is based on
the nonrespondents sampled for the NRFU. The overall response rates in the last
columns combine the standard and NRFU data collection and are weighted to
account for the subsampling in the NRFU. The overall response is 42.4%, computed
using the AAPOR RR2 formula.

Table 2 shows the percent of households that took a fishing trip (either of any type
of fishing or by boat or from the shore) and the mean number of trips of those that did
fish by state, geographic area, and license status. We refer to the licensed-matched
stratum as “Licensed” and the remainder are “Not licensed.” These estimates are the
standard estimates that do not include the NRFU effort. The table demonstrates the
considerable variation in fishing by state, area, and license status.

3 Methods of Assessing Bias

The primary problem facing evaluations of nonresponse and noncoverage in
surveys is that the values for the missing data are not available except in unusual
circumstances. As a result, proxy measures of bias must be substituted for the
missing values so that estimates of the effects of the missing data can be computed.
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Table 2 Estimated percent of households that fished and mean number of trips, by state and
stratum

Percent Mean trips

States Any fish Boat fish Shore fish Boat Shore

All four states 11.3 6.9 8.4 6.9 8.6

Coastal county 13.1 8.8 10.4 7.0 8.8

Non-coastal 2.3 1.5 2.4 5.0 5.6

Licensed 43.7 28.7 32.9 9.9 10.0

Not licensed 8.6 5.1 6.3 5.5 8.0

Florida 17.5 10.8 13.1 7.0 9.3

Coastal county 17.5 10.8 13.1 7.0 9.3

Non-coastal – – – – –

Licensed 53.6 38.2 39.4 10.4 10.7

Not licensed 13.3 7.6 10.0 5.0 9.3

Massachusetts 8.6 5.3 6.0 6.5 6.2

Coastal county 10.1 6.4 6.8 6.7 6.5

Non-coastal 4.1 1.9 3.7 4.5 4.3

Licensed 58.6 32.8 45.1 10.4 8.6

Not licensed 6.3 4.0 4.2 5.0 4.9

New York 7.1 4.7 4.9 6.7 9.1

Coastal county 10.4 6.9 7.1 6.8 9.7

Non-coastal 1.7 1.0 1.2 5.1 3.0

Licensed 28.9 18.1 21.7 8.8 11.5

Not licensed 6.4 4.2 4.3 6.3 8.6

North Carolina 8.5 4.4 7.1 7.3 6.9

Coastal county 13.8 7.4 11.8 8.1 6.8

Non-coastal 4.4 2.0 3.5 5.0 7.0

Licensed 31.7 18.0 25.3 8.8 8.3

Not licensed 5.2 2.4 4.5 5.8 5.7

The proxy measures used in this analysis are discussed below for both nonresponse
and noncoverage.

3.1 Nonresponse Bias

We estimate nonresponse bias in two ways. First, we compare the estimates from
the standard survey to the estimates from the data including the standard and NRFU
respondents. The difference is a proxy for potential nonresponse bias. This bias
proxy assumes the combined data set is unbiased. Although this assumption is
unlikely to hold with an overall response rate of 42.4%, Groves and Peytcheva
(2008) found this method tends to produce larger estimates of nonresponse bias
than other methods.
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Table 3 Estimated nonresponse biases of percent who fished, by state and stratum

States
Percent any fish Percent boat fish Percent shore fish

NRFU Early/late NRFU Early/late NRFU Early/late

All four states 0.1 0.1 0.0 0.2 0.1 0.0

Coastal county 0.2 0.2 0.1 0.2 0.2 0.0

Non-coastal −0.6 0.2 −0.1 0.2 −0.6 0.0

Licensed 0.0 1.2 0.0 1.3 0.2 0.2

Not licensed 0.1 0.0 0.1 0.1 0.0 0.0

Florida 0.3 0.1 0.0 0.2 0.5 −0.3

Coastal county 0.3 0.1 0.0 0.2 0.5 −0.3

Non-coastal – – – – – –

Licensed 0.1 1.6 1.1 2.2 0.1 −0.1

Not licensed 0.3 0.0 −0.1 0.1 0.5 −0.2

Massachusetts −0.4 0.7 0.1 0.4 −0.5 0.6

Coastal county −0.4 0.8 0.1 0.5 −0.5 0.6

Non-coastal −0.1 0.1 0.1 0.0 −0.2 0.3

Licensed 2.5 0.7 0.2 −0.1 2.4 0.5

Not licensed −0.5 0.6 0.1 0.4 −0.6 0.5

New York 0.3 0.0 0.3 0.1 0.1 0.0

Coastal county 0.5 −0.1 0.3 0.2 0.1 0.0

Non-coastal 0.1 0.3 0.2 0.1 0.1 0.2

Licensed −0.4 3.4 −1.2 2.1 −0.2 1.9

Not licensed 0.4 −0.2 0.3 0.1 0.1 −0.1

North Carolina −0.7 −0.1 −0.4 −0.1 −0.6 −0.1

Coastal county 0.4 −0.3 −0.3 −0.4 0.9 −0.1

Non-coastal −1.5 0.0 −0.6 0.2 −1.7 −0.2

Licensed −0.5 −1.0 −1.1 −0.2 0.0 −0.9

Not licensed −0.7 0.1 −0.4 0.1 −0.7 0.1

Another proxy is to compare estimates from early respondents (those who
responded to the first mailing) to those of the combined early and late respondents
in a level of effort analysis. The assumption that this difference gives an unbiased
estimate of the bias is even less likely to hold than the NRFU assumption. Our
primary goal for these estimates is to support the development of bounds on the
potential bias in the next section.

Table 3 shows the two proxy estimates of nonresponse bias for three key
estimates: the percent of households that did any fishing during the time period,
the percent that fished from a boat, and the percent that fished from the shore.
The NRFU nonresponse bias is computed using Eq. 1, which is equivalent to the
difference between the standard estimate and the estimate that includes the NRFU
respondents as well as the standard respondents. Both the standard and NRFU
estimates went through the full set of adjustments except raking to the ACS.

The early/late bias estimate is the difference between the estimate based only on
the early respondents to those based on all respondents to the standard protocol
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(NRFU data are not included in the early/late estimates). The early estimate is
computed as a domain of the fully weighted standard estimate rather than repeating
the weighting steps for this domain.

The nonresponse bias estimates in the table are all relatively small. For example,
the 30 bias estimates for the variable any fishing (the eight estimates for each of the
four states except Florida which does not have any non-coastal areas) have a mean
of 0.2% points. It is also interesting that 10 of the 30 bias estimates are negative
because the primary bias concern for the FES is based on the hypothesis that the
survey might be subject to topic interest bias (Groves et al., 2004). This hypothesis
states that anglers would be more likely to respond to the survey than those who
do not fish, so that the extra effort (e.g., the follow-up and more mailings) would
increase the proportion of those who did not fish. Since 10 of the 30 estimates are
negative (fewer anglers in responding sample) and the sizes of the estimates are
relatively small, the NRFU data provide no evidence of substantial nonresponse
bias due to topic interest.

3.2 Noncoverage Bias

For noncoverage in the FES, we simulate the effects of not including portions
of the population because the ABS frame contains nearly 100% of all residential
addresses (Battaglia et al., 2016). As a result, the estimates from the FES are subject
to minimal noncoverage, except from nonresident anglers. Noncoverage scenarios
are simulated by excluding (1) non-coastal addresses and (2) addresses that are not
matched to the license register. These two types of restrictions of the sample have
been researched as methods to improve the efficiency of the sample.

The noncoverage bias estimates are computed as the difference between the esti-
mate restricted to either the coastal county or licensed-matched stratum (licensed)
and the full sample estimate. The bias estimates were computed by using the full
set of weighting procedures except raking, but using only the respondents from the
“covered” stratum.

Table 4 shows the percent of fishing households that are excluded under the
two scenarios. The magnitude of missing data is relatively small when coverage is
restricted to the coastal stratum. In contrast, when the data are limited to the licensed
households, the missing data rates are larger and roughly similar to those resulting
from nonresponse.

Figure 1 shows both the estimated nonresponse and noncoverage biases for the
three estimates of the percent of households that fished in each state and across the
four states. The noncoverage bias estimates are labeled “Licensed” and “Coastal”
to denote the covered part of the frame, while the nonresponse bias estimates are
labeled “Early/late” and “NRFU” as described above. The noncoverage biases are
all positive and generally large. Positive biases are expected because addresses in
licensed addresses and coastal counties fish more often than those in the non-coastal
and not licensed addresses. The magnitude of the noncoverage biases also vary
substantially among states.
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Table 4 Percent missing data, by source and state

Noncoverage

State Nonresponse Licensed Coastal

Overall 57.6 70.0 7.0

Florida 57.4 63.0 0.0

Massachusetts 53.0 70.0 11.0

New York 60.2 86.0 9.0

North Carolina 56.3 53.0 29.0

Fig. 1 Estimated nonresponse and noncoverage bias estimates for percent of households reporting
any, boat, and shore fishing
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The figure clearly shows the noncoverage biases are much larger than the
nonresponse biases. The biases from excluding addresses without a license are
especially large. For example, the overall noncoverage bias resulting from exclusion
of non-coastal addresses is 2.8% points. When addresses without a license match are
excluded, the estimated bias is 32.4% points. The corresponding nonresponse biases
are less than 0.2% points.

Another key result is that the rate of missing data is a poor indicator of the
potential bias from the different sources. For example, for the estimate of fishing
prevalence (any fish), excluding non-coastal counties in North Carolina from the
sample results in a bias that is more than 13 times higher than the nonresponse
bias despite having a much lower rate of missing data. When we examine the joint
effect of nonresponse and noncoverage, the dominant contribution of noncoverage
is apparent. Table 3 shows that nonresponse bias is very small for all the strata used
for simulating noncoverage bias (coastal and licensed). Because nonresponse bias
was so small compared to noncoverage bias, we did not directly try to simulate the
correlation between the two types of bias. If we assume the effects of the two sources
of missing data are independent, an assumption of additive biases that probably
overestimates bias, the nonresponse bias adds only slightly to the large positive
biases due to noncoverage. At least in the FES, the effect of reducing coverage
even to the coastal areas would swamp any nonresponse bias.

4 Bounds on Bias Estimates

The relatively low nonresponse bias estimates are not surprising. An earlier
NRFU study done in 2012–2013 in the same four states also found no significant
nonresponse bias. Other research also found that excluding non-coastal counties led
to higher than desired noncoverage bias and that only including licensed addresses
had substantial biases. As a result of these earlier findings, the decision was made
to cover all addresses in the FES.

Despite these findings, the response rates in the FES are still low enough that
nonresponse bias remains a concern (Stokes et al., 2021). When the fishing effort
survey transitioned from a telephone survey to a mail survey, the estimates of
the percent of adults fishing increased two- to threefold. The topic interest bias
hypothesis was viewed as a realistic cause because the sampled households could
see the whole survey immediately and understand the questions being asked.

It is important to understand the FES is subject to other nonsampling errors
such as recall error (Andrews et al., 2018). However, recall and many of the other
nonsampling errors would tend to reduce the proportion of estimated people who
fished.

Since we are interested in looking at bounds, we construct bounds on the
nonresponse bias with the topic interest hypothesis in mind. Early on Cochran
(1977) discusses bounding the estimated nonresponse bias of a proportion and con-
cluded the bounds could be “distressingly wide" if nonresponse was not negligible.
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Following this approach but only allowing the bias to be positive, consistent with the
topic bias hypothesis, we obtain the maximum possible bias in this direction. This
value is derived by assuming that all fishing households in the sample responded
(i.e., 100% response rate for fishing households) and that all nonrespondents were
non-fishing households. For example, the FES NRFU had a 45.3% response rate
across the four states, so we assume the remaining 54.7% did not fish. With this
assumption, the maximum bias is 6.1% points for any fishing, 3.8% points for boat
fishing, and 4.5% points for shore fishing. These are large biases relative to the size
of the estimates given in Table 2, but assuming a 100% response rate for those who
fish is extreme. Furthermore, even these extreme nonresponse assumptions result in
nonresponse biases that are far smaller than the noncoverage biases in Fig. 1.

The bounding approach of Montaquila et al. (2008) can be modified to give more
insight into the possible bias. Define the response propensities for those who fish
(any fish, shore fish, or boat fish) to be φ1 and for those who do not fish to be φ2 . Let
P be the proportion who fish. The expected response rate is φ̄ = Pφ1 + (1 − P)φ2.
Taking expectations of the estimated proportion (p̂ ) over both the sample design
and response mechanism, the bias of an estimated proportion is

Bias(p̂) = P(φ1φ̄
−1 − 1). (3)

See Hedlin (2020) who derives the same expression.
These equalities are used to show how the response propensity or response rate

in the any fish group (φ1) and the bias is related. We take the NRFU as the basis
for our values, with the NRFU overall response rate of φ̄ = 45.3%, and its estimate
of the proportion who did any fishing of p̂ = 0.112. Plugging in these values, we
obtain the φ1 required to produce a bias of a specified amount shown in Fig. 2. The
figure also shows shore fishing (p̂ = 0.083 ) and boat fishing (p̂ = .0.069 ) curves.
The estimate is unbiased if the responses rates are equal (φ1 = φ2 ).

The maximum positive nonresponse bias for each type of fishing is achieved
when the response rate for those who fish (any fish, shore fish, or boat fish) is 100%.
For example, for any fish, this bias is 6.1% points and is achieved when any fish
φ1 = 100%, as mentioned above. More reasonable values for φ1 are some multiple
of the response rate for those who do not fish. For example, bounds might be set
by allowing φ1 to be 1.2φ2 (a response rate of 54.4%), 1.4φ2 (63.4%), and 1.6φ2
(72.5%). In practice, even a multiple of 1.2 is unusual and would imply a large topic
interest effect.

Inspecting Fig. 2 at the points where the curves intersect these response rates
shows the biases are relatively small. For example, for shore fishing, the biases are:
1.4, 2.4, and 3.1% points, respectively. For boat fishing, the biases are smaller.

The approach used by Hedlin (2020) bounds the potential nonresponse bias
using Eq. 2 by considering different values of ρφ,y . Hedlin shows that unless the
correlation is high, the relative bias is small when the mean response propensity
(response rate) is greater than 30%.

Applying this method, we assume the people who fish have a response propensity
of φ1, and the overall response propensity is φ̄ . The correlation is
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Fig. 2 Relationship between bias of estimate of any fishing, shore fishing, and boat fishing
and response rate of those who fish, when overall response rate is 45.3% and estimated fishing
proportions are 0.112, 0.083 and 0.069, respectively

ρφ,y = P(φ1 − φ̄)
√

φ̄(1 − φ̄)P (1 − P)
(4)

If we assume the extreme bound of φ1 = 100% and substitute for the other
quantities in Eq. 4 using the NRFU values from above, the correlation for any fishing
is 0.39, for shore fishing is 0.33, and for boat fishing is 0.30. With φ1 = 1.6φ2
(72.5%), the correlations are less than 0.20 for all three statistics. In other words,
the correlations required to produce very large nonresponse biases are consistent
with very extreme response rate assumptions for the fishing households.

Throughout this evaluation, the sample and weighting methods used to reduce
potential nonresponse have not been taken into consideration. For example, the
stratification by coastal geography and by license-match status have proven to be
very effective in terms of identifying addresses with higher proportions of fishing as
shown in Table 2. If the above analysis were repeated within stratum rather than
overall, the within-stratum homogeneity of the fishing proportions and response
rates would result in even less potential nonresponse bias.

For noncoverage, the bias estimates given earlier are those that we would obtain
if no special weighting adjustments were used to reduce the bias. As a result, we
discuss the potential to reduce noncoverage biases by weighting. This serves two
purposes. First, it provides an alternative way to judge the size of the noncoverage
bias if the frame only included coastal addresses or license addresses. Second, it
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provides another angle on our research goal of exploring the relative magnitude
of the nonresponse and noncoverage biases under conditions more favorable to
noncoverage.

For the exclusion of addresses in non-coastal areas, an adjustment like that used
for nonresident anglers could be employed using data from the APAIS. However,
adjusting to a relatively small sample, such as the APAIS, is less efficient than
using totals from a census or a very large, high-response rate survey like the ACS.
Furthermore, although calibration generally reduces biases for estimates of totals, it
is much less effective for estimates of proportions such as the proportion who fish.
To be effective for adjusting estimates of proportions such as those studied here,
the calibration data would need to be broken into classes or cells with differential
coverage rates. Small surveys do not have adequate sample size to provide accurate
estimates by classes. The exclusion of those in addresses that do not match to
a fishing license is even more problematic. Asking license status in an in-person
intercept survey such as the APAIS is fraught with problems since fishing without
a license is illegal in many cases. As shown by Tourangeau and Yan (2007), this is
precisely the situation in which large biases are common.

5 Discussion

Our analysis explores both nonresponse and noncoverage biases for the FES. The
nonresponse bias analysis was feasible largely due to a nonresponse follow-up
study. Noncoverage biases were estimated by artificially excluding data that were
collected, where including only coastal areas or including only addresses with
fishing licenses are designs that have been examined in practice because they are
efficient in terms of finding anglers to complete the survey.

The nonresponse bias for the FES is relatively small except under very unex-
pected assumptions. The 2020 NRFU study and the analysis of the early and late
respondents find only small biases. This finding is consistent with an earlier NRFU
study. Both of those studies found no evidence to support the topic interest bias
hypothesis that would result in overestimates of fishing prevalence.

When bounds based on different assumptions about the response rates for the
people who fished and those who did not fish were constructed, nonresponse
bias remains small under reasonable assumptions. Substantial nonresponse bias
occurs only under the most extreme and unrealistic assumptions (such as assuming
everyone who fished responded to the survey). We also translate these response rate
assumptions into correlations between fishing and responding, showing again the
nonresponse biases are small under realistic assumptions. For the four states in this
study, the nonresponse bias for both shore fishing and boat fishing is likely to be
no greater than 1–2% points even under relatively unusual assumptions (ratios of
response rates of 1.2). This finding contrasts with the very large biases associated



Two Sources of Nonsampling Error in Fishing Surveys 153

with noncoverage in the FES. Large biases occur when the sample is restricted to
either just coastal addresses or to addresses with licenses. Weighting methods to
reduce these biases are feasible, but available external data sources are unlikely
to reduce the noncoverage biases to be close to the magnitude of the nonresponse
biases.

An important conclusion is that all missing data are not equivalent. In the FES at
least, data that are missing because of noncoverage result in much larger biases than
data that are missing due to nonresponse. The noncoverage biases are large even
though the missing data rate for the coastal estimates average 7% and go up to 30%
in North Carolina. The license noncoverage biases are much larger than even those
in the coastal stratum. Despite missing data due to nonresponse being over 50%, the
nonresponse bias is small. Clearly, missing data rates are not predictive of biases.

The important determinant of bias is the difference in the characteristics of
the missing and non-missing data. This concept is simple to understand for
noncoverage. If the percent of people who fish is very different for the covered
and non-covered, then the bias will be large and weighting adjustments are unlikely
to reduce the biases significantly. The bias estimates for the noncoverage due to
sampling only coastal areas and licensed-matched addresses were very large for the
percent who fished.

While the post-survey distinction of a respondent stratum and nonrespondent
stratum has value in formulating a bias expression like Eq. 1 for nonresponse, it is
a model that has limited conceptual appeal. If all sampled units have some chance
of responding, then a nonrespondent stratum does not exist. Instead, the response
propensity model given by Eq. 2 is more consistent with data collection experiences.
For example, multiple attempts are made to interview the same units because the
decision to participate is not fixed and may depend on a host of factors.

Another difference is that weighting adjustments for noncoverage rely exclu-
sively on external data, but nonresponse adjustments can use data collected in
the survey itself as well as external data. Typical nonresponse weighting class
adjustments transfer weights from the nonrespondents to the respondents in the
same class before calibration to external data. The survey data allow examination
of the homogeneity of the response propensities within the classes. Noncoverage
weighting adjustments also typically use classes to reduce bias, but the model for
the adjustment cannot be evaluated from the survey data itself. Thus, weighting
adjustments may be more effective for nonresponse.

These findings suggest that noncoverage may result in larger biases than
nonresponse, even when the missing data rates due to noncoverage are much lower
than those due to nonresponse. Surveys need to consider more than just missing data
rates when deciding on survey designs and levels of effort. With the FES, saving
resources by reducing coverage and using those resources to increase the response
rate to the survey would likely increase the biases of the estimates. Each survey
needs to evaluate its potential for biases, but the FES results reveal that relying on
missing data rates to do this may be very misleading.
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Triple System Estimation with Erroneous
Enumerations

Paul P. Biemer, G. Gordon Brown, and Christopher Wiesen

Abstract A central assumption in population coverage error estimation is that non-
residential units are not counted (i.e., no erroneous enumerations) and, thus, the
only remaining errors are omissions. This assumption is violated in many situations,
notably in the US Census 2000, where undetected erroneous enumerations were a
primary reason that the post-enumeration survey (PES) results could not be used
in census undercount adjustments. This paper develops a latent class modeling
approach that allows for varying levels of undetected erroneous enumerations in
one of the population lists. Our approach requires three population lists which may
be the Census, the PES, and a list derived from merging records from administrative
systems. The resulting data take the form of an incomplete contingency table which
can be represented by a latent class model where the latent variable is an individual’s
true status (i.e., resident or nonresident of the population). Latent class analysis is
used to estimate the expected values of the observed cells of this table and then
to project these estimates onto the unobserved cells in order to estimate the total
number of population members. Using artificial populations, the improvement in
mean squared error using this approach is evaluated and compared to other modeling
approaches from the capture-recapture literature.
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1 Background

An important issue in estimating the number of persons residing in an area from
census data is the evaluation of census coverage error. Various techniques using
multiple input sources have been developed for estimating the error in the census
count. One widely used method is dual-system estimation (Sekar and Deming,
1949). With this approach, a post-enumeration survey (PES) of the population
is conducted, and the persons in the PES are matched to persons in the census
enumeration. For the 2000 US Census, the PES involved enumeration of the
occupants of 300,000 households in a random national sample of 12,500 housing
blocks (Hogan et al., 2002).

For the dual system estimation (DSE) approach, data from the enumeration
process and the PES are combined in a 2 × 2 table of counts cross-classifying
the presence or absence of persons in the census enumeration with their presence
or absence in the PES. The DSE approach provides an estimator of the number of
persons in the fourth cell of this table which corresponds to persons missed by both
the census and the PES. The sum of the three observed and one estimated cells of the
Census-PES cross-classification table provides an estimate of the total population
count.

Three key assumptions are made for the DSE approach:

1. Independence. The probability of inclusion of an individual on the second list
(the PES) does not depend upon inclusion or exclusion from the first list (the
census). Failure of this assumption will induce correlations between the errors
in the two lists, sometimes referred to as behavioral correlation (Wolter, 1986).
If a third list is available, the independence assumption can be tested (see, e.g.,
Bishop et al., 1975, Chapter 6). Zaslavsky and Wolfgang (1993) provide models
for dealing with the behavioral correlation in three systems.

2. Homogeneity. The probability of inclusion on a list does not vary from individual
to individual. Although this assumption is known not to hold for the population
as a whole, various strategies have been used to address the problem of
heterogeneous enumeration probabilities, including post-stratification (Sekar and
Deming, 1949) and logistic regression (Alho et al., 1993). Methods involving
three systems have been explored by Darroch et al. (1993), Fienberg et al. (1999),
and Chao and Tsay (1998). This is the correlation bias problem (see, e.g., Wolter,
1986).

3. Perfect enumeration and matching. Individuals in both lists are all population
members that can be accurately matched between the two lists, and any nonres-
idents who have been erroneously enumerated can be identified and eliminated.
Matching errors can be fairly substantial (Biemer and Davis, 1991a), and meth-
ods for dealing with these can be found in Biemer (1988) and Ding and Fienberg
(1992). Biemer and Davis (1991b) show how undetected erroneous enumerations
can seriously bias the estimates of census coverage error. Usually, the bias is
positive, resulting in overcorrecting the census counts for the undercount.
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The models considered in this paper seek to address failures of all three
assumptions to some extent, but particularly assumptions 1 and 3. The assumption of
independence may be relaxed if a third counting system is introduced, for example,
an administrative records list (ARL) of persons in the population. Although
erroneous enumerations can occur in all three systems, the problem is much greater
for administrative lists as will be discussed subsequently. Therefore, the focus in
present paper is on erroneous enumerations in the ARL. A subsequent paper (in
progress) will extend the ideas of the present paper to erroneous enumerations in all
three lists.

Erroneous enumerations (EEs) occur when individuals who are not residents of
the target population are erroneously counted as residents. EEs may be persons
who were deceased prior to Census Day, born after Census Day, or nonresidents
of the target area on Census Day. EEs also include geocoding (or location) errors,
duplicated persons, and fictitious or nonexistent persons. In the following, we will
refer to all of these entities as nonresidents regardless of their source. Further, any
nonresident who is classified as a resident will be called an EE.

In this paper, a statistical framework for dealing with undetected EEs using
a latent class modeling (LCM) approach is presented. Latent class models are
essentially log-linear models where one or more of the variables are latent or
unobservable. Since traditional capture-recapture models can also be written as
log-linear models, LCMs are straightforward extensions of the traditional capture-
recapture models. LCMs provide a convenient statistical framework for specifying
capture-recapture models with undetected EEs as well as missed residents in
all three systems. Unfortunately, the identifiability of LCM for population size
estimation has never been explored in the literature. Further, little is known about
the statistical properties of the LCM estimators in census coverage error evaluation
applications.

To simplify the exposition of the general ideas and the theory, the paper is
confined to the situation where undetected EEs are present only in the ARL. That
is, we assume the census process is successful in identifying and removing EEs
in the census and the PES. This somewhat restricted class of models represents an
important generalization over the traditional assumption of no EEs and provides a
useful alternative to other dual and triple system models for applications where the
numbers of EEs in the census and PES are small compared to the number in the
ARL. Further, study of this restricted case will provide important insights regarding
the much more complex case of EEs in all three systems, the ultimate goal of this
research.

The problem of EEs in the census process has long been recognized, and
adjustment of the DSE of N for EEs is an essential component of the estimation
process. A special survey, referred to as the E-sample (see, e.g., Hogan, 1993), is
conducted simultaneously with the PES in order to estimate the number of EEs in
the census and adjust the DSE for them. Despite these efforts, some EEs are not
identified and are included in the dual system thereby inducing bias in the estimates
of N .
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In 2000, the US Census Bureau Evaluation Followup (EFU) estimated that about
1.8 million enumerations in the PES were actually EEs (ESCAP, 2001). Further,
365,000 persons classified as EEs were in fact correct enumerations. Based on these
results, the Census Bureau concluded that the net undercount was overstated by
three to four million persons and, thus, adjustments to the census count on the basis
of the PES would substantially overcorrect the population counts in many areas. For
the 1990 Census, Biemer and Davis (1991b) reported that the level of misclassified
EEs in the 1990 PES exceeded 5% of the PES count for many areas of the country.
In the worst areas, the Northeast urban and the Midwest non-central city areas, the
EE rate exceeded 20%.

Although the availability of an ARL as the third list provides the means for
modeling the correlation between the census and the PES, the risk of including
EEs in the estimation process is substantially increased since an ARL may contain
many non-population members and duplicate persons that are difficult to accurately
identify and remove from the process. An example of an ARL that is being
considered for census undercount evaluation purposes is the Census Bureau’s
Statistical Administrative Records System (StARS; see Judson, 2000). The StARS
consists of seven merged databases including IRS returns, selective service files,
Medicare enrollment database, Indian Health Service patient file, and the HUD
tenant resident certification system. Since individuals may be on two or more
of these lists, the potential for duplicate persons on StARS is quite high. The
address information on the files may be incomplete or erroneous, thus increasing
the opportunity for geocoding errors. The files may not be completely current,
which can cause the application of the Census Residency Rules to the StARS to be
problematic. Although many EEs can be identified through intensive field follow-
up, such evaluations are costly and quite time-consuming, considering the schedule
for producing the census counts. In addition, for a large-scale implementation, the
error rate of such a field verification process is likely to be unacceptable for census
adjustment purposes.

In the next section, we introduce the notation and describe the models that will
be used in our study. This includes both models with and without EEs. Section 3
describes the estimators of the total population size that can be obtained from
the models and provides an illustration of the ideas using real data. Section 4
reports on an extensive simulation study using artificial populations which compared
the estimators under various adverse population conditions. Finally, in Sect. 5, we
summarize the results and discuss their implications for using the estimators in
census coverage error evaluation studies.

2 Models

This section briefly describes a few of the basic models in the capture-recapture
literature, elaborating on two models that will be used extensively in our work. In
addition, a new class of capture-recapture models based upon latent class analysis
is proposed, and the identifiability and utility of these models are explored.
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Let U denote the persons in a target area (i.e., the area to be enumerated by the
census). This includes the union of persons included on at least one of the three lists
as well as all residents in the area who are not included on any of the lists. Thus, U

denotes all actual residents of the target area as well as nonresidents and fictitious
persons that are erroneously included on the lists. Let P denote all persons who are
true residents of the area and should be counted. Let E denote the complement of P ,
(i.e., E = U ∼ P ), i.e., persons who are not residents of the target area and should
not be counted. The number of persons in U will be denoted by M and the number of
persons in P by N . The objective of this research work is to obtain a robust estimate
of N based upon data from the census, PES, and ARL when the members of E are
classified as in P (i.e, EEs) and the members of P are either missed or classified as
in E (i.e., omissions). As previously mentioned, in this paper we assume that EEs
enter the estimation process solely as the result of a misclassification by the ARL.

Let Xi denote a dichotomous variable defined for the ith person in U , where
Xi = 1 if person i ∈ P and Xi = 0 if person i ∈ E. We assume that Xi is
an unknown and unobservable (latent) variable for all i ∈ U . For triple system
estimation, there are three indicators of Xi corresponding to the census denoted by
Ai , the PES denoted by Bi , and the ARL denoted by Ci . Like Xi , each indicator
variable takes on the value 1 if person i is classified as in P and 0 if classified in E.
Note that the definitions of Xi and its indicators depend upon the definition of the
target area. For notational convenience, in the following, we will drop the subscript
i when it is clear we are referring to an individual in the universe.

2.1 Model Assumptions and Notation

Let πx denote P(X = 1), πA=a|X=x = πa|x = P(A = a|X = x) with analogous
definitions for πb|x and πc|x , where x, a, b, and c can be either 1 or 0. The probability
the census correctly enumerates a resident in U is πA=1|X=1, referred to as the
correct enumeration probability. An EE occurs when a person in E is classified
as in P . Thus, the probability of an EE in the census is πA=1|X=0.

Let XABC denote the (unobservable) cross-classification table for the variables
X, A, B, and C for all i ∈ U , and let (x, a, b, c) denote the cell associated with
X = x, A = a, B = b, and C = c in this table. Define πxabc = P(x, a, b, c) as the
expected proportion in cell (x, a, b, c) and note that πabc can be expressed as

πxabc = πxπa|xπb|axπc|abx. (1)

Although the XABC table is not observable, (1) is still useful to specify the cell
probability for the observable ABC table, i.e.,

πabc =
∑

x

πxπa|xπb|axπc|abx. (2)
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When all parameters in this likelihood are identifiable, they can be estimated
using maximum likelihood estimation techniques. However, the unrestricted model
(2) contains 95 parameters, but only 47 degrees of freedom are available in the
ABC table; thus, the model is substantially over-parameterized and not identifiable.
Restrictions on the probabilities will be introduced to reduce the number of param-
eters associated with the model and obtain an identifiable model. The plausibility of
these restrictions and other model assumptions for census coverage error evaluation
applications is a key issue for the modeling process.

In the next section, we consider models that assume no EEs in the census
estimation process, i.e., πA=1|X=0 = πB=1|X=0 = πC=1|X=0 = 0. These are
traditional capture-recapture models that are appropriate when the probability of
undetected EEs in the three systems is negligibly small. In that case, we can ignore
the latent variable X in the analysis and consider models for πabc rather than πxabc.

2.2 Models with No Erroneous Enumerations

In this section, we present a few classic closed population models as defined in
Pollock et al. (1990) and discuss their utility for coverage error estimation. In order
to remain consistent with census terminology, we will use the term “enumeration
probability” instead of the traditional term “capture probability” used in the capture-
recapture literature. In addition, the models are written using the notation introduced
in Sect. 2.1.

2.2.1 Model M0: Equal Catchability Model

Model M0 assumes that every individual in the population has the same probability
of being enumerated on each sampling occasion, i.e., πA = πB = πC = π1, and
enumerations at future time points are independent of previous enumerations. For
this model, πabc = πa+b+c

1 (1 − π1)
3−a−b−c. Although model M0 is very unlikely

to hold in practice, it is still important as the basis for all closed population models.
Instances where M0 has been used in practice are quite rare; however, it should be
noted that, when the enumeration probabilities are in fact equal, inference obtained
from model M0 is nearly identical to inference obtained from the next model we
will consider—namely, Mt or Schnabel’s model.

2.2.2 Model Mt : Schnabel’s Model

Schnabel (1938) originally developed the Mt model for situations where it may
be assumed that every individual in the population has the same enumeration
probability within a list, but enumeration probabilities may vary across the lists. As
with the M0 model, future enumerations are assumed to be independent of previous
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enumerations. This model does not allow heterogeneity of enumeration rates within
a list or a behavioral response to capture. For this model, πabc = πaπbπc. The next
model we consider allows enumeration probabilities for subsequent enumerations
to depend upon previous enumerations.

2.2.3 Model Mb: The Trap Response Model

For the Mb model, previously enumerated individuals can have future enumeration
probabilities that differ from previously unenumerated individuals. Consequently,
enumeration outcomes across the three lists may be correlated. The model specifies
that P(A = 1) = P(B = 1|A = 0) = P(C = 1|A = 0, B = 0) = πu. Note that
πu is the probability of enumeration for any individual not previously enumerated.
The corresponding probability for individuals previously enumerated by the census,
the PES, or both is P(B = 1|A = 1) = P(C = 1|A = 1 or B = 1) = πe. Thus,
the cell probabilities for this model can be written as products of πu, (1 − πu), πe,
and (1 − πe). As an example, P(A = 1, B = 1, C = 1) = πiπ

2
e , P(A = 0, B =

1, C = 0) = (1 − πu)πe(1 − πe), and so on.
In the population census context, correlations may be introduced between the

census and the PES due to the reactions of individuals to the census enumeration
process. For example, individuals who were enumerated in the census may have
enjoyed the experience or may determine that any fears they may have had
about the process were unfounded. This reaction might cause their probabilities of
enumeration in the PES to be higher than for individuals missed by the census—
referred to as “trap happy” behavior. Conversely, individuals whose experience with
the census enumeration process was less than favorable might engage in avoidance
or “trap shy”5t4rt-= behavior in the PES.

In general, trap shy behavior causes enumeration rates for previously enumerated
individuals to decrease, leading to overestimation of the population size. Trap happy
behavior causes enumeration rates of previously enumerated individuals to increase,
leading to underestimation of the population size. Because of its inherent limitations
for population census applications, the Mb model is extended in the next section.

2.2.4 Model MtAB : Non-stationary Behavioral Response Models

A natural extension of the Mb is the Mtb model which has both time variation and
behavioral response to the enumeration process. Although the standard form of the
Mtb model is not identifiable, a very useful and identifiable model, the MtAB model,
can be obtained by imposing a plausible restriction on the Mtb model. The index AB

on the MtAB model is used to indicate that the model contains one interaction term
representing behavioral correlation between the A- and B-lists and that the C-list is
assumed to be independent of the other two lists. Under this model πabc = πaπa|bπc

where πa|b may differ from πa .
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The motivation for this model stems from the realization that behavioral corre-
lation is likely to be much greater between the census and the PES than for either
of these enumerations and the ARL. This is because enumeration by the census or
PES depend largely on an individual’s attitude toward being interviewed and census
participation in general, whereas the listing of an individual on an administrative
record usually depends upon factors that provide more direct benefits to the
individual; examples are Social Security and Medicare benefits, unemployment
compensation, automobile ownership, payment of taxes, and so on. Therefore,
whether an individual appears on the ARL should not be greatly influenced by the
individual’s choice or ability to participate in the census or PES.

Thus, it seems reasonable to assume that being listed on the ARL is uncorrelated
with enumeration by either the census or the PES and, consequently, the interaction
terms AC and BC are relatively small and negligible. This assumption also greatly
reduces the complexity of the models. When both the AC and BC interactions are
included in the model, identifiability problems result that can only be remedied by
adding parameter constraints which tend to be implausible for census applications. It
is possible, however, to fit models that allow for correlations between enumerations
in all three lists (see, e.g., Zaslavsky & Wolfgang, 1993), and one such model will
be considered later in Sect. 4. In this paper, the Mt and MtAB models are examined
in some detail since they appear to be the most likely of the traditional closed
population models to mirror triple systems data.

2.3 Models with Erroneous Enumerations in the ARL

For the models presented in this section, several assumptions made for the tradi-
tional closed population models are relaxed. We still assume that πA=1|X=0 =
πB=1|X=0 = 0, but now we allow πC=1|X=0 > 0, i.e., EEs are allowed to enter
into the census estimation process through the ARL or the C-list. Thus, we define a
new class of population size estimation models which we refer to as L-models. The
L-model assumptions essentially parallel those made for the M-models discussed
previously except now we introduce a latent “true enumeration status" variable to
account for the possibility that nonresidents may be misclassified as residents by
their inclusion on the C-list.

The assumption of no undetected EEs in the census and PES is consistent with
traditional assumptions made for these two systems, but, as previously discussed,
these assumptions are unlikely to hold in some enumeration areas. In this regard, the
L-models we consider in this paper suffer from the same limitations as the M-models
with respect to EEs in the census and PES. The L-models should be preferred when
the majority of EEs in the estimation process are introduced through the C-list, as is
likely when the C-list is the ARL. It is possible to extend the general ideas described
here for modeling EEs in the C-list to the case where non-negligible EEs occur in
the A- and B-lists. This research is currently underway and will be reported in a
subsequent paper.
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Another issue for the L-models is the value of P(C = 1|X = 0), which is
the probability that a nonresident in the population is an EE in the ARL. Since
all models considered in this paper assume that EEs only enter into the estimation
process through the ARL, the only EEs that are of any consequence in the analysis
are those that are brought in through the ARL. This implies that, given that we
observe an EE in the data, the probability that it was introduced through the ARL
is 1. Thus, we know that P(C = 1|X = 0) = 1 and P(A = 1|X = 0) = P(B =
1|[X = 0) = 0 for all L-models considered.

2.3.1 Model L0: Equal Catchability LCM

The L0 model extends the M0 model to include EEs in the C-list. Like the M0
model, the L0 assumes that every individual in the target population has the same
probability of enumeration on all three lists. An additional parameter is included
to account for the EEs in the C-list. Let πx denote P(X = 1), πA=1|X=1 =
πB=1|X=1 = πC=1|X=1 = π1, and πC=1|X=0 = π2. Then

πxabc = πxπ
a+b+c
1 (1 − π1)

3−a−b−c + (1 + πx)π
c
2 (1 − π2)

(1−c)(1 − a)(1 − b).

(3)

This model parallels the M0 model and is the least complex of the L-models. Like
the M0 model, which is also unlikely to hold in practice, it will not be considered
further in this paper.

2.3.2 Model Lt : Non-stationary, Independent LCM

The Lt model extends model Mt to reflect EEs in the C-list. Thus, we have

πxabc = πxπa|xπb|xπc|x (4)

which corresponds closely to the classical latent class model for the ABC table
except for the structural zero in the 000 cell. If there is no correlation between the
A- and B-lists, then the Lt model should provide a good estimate of N . If there
is correlation between the A- and B-lists, then the Lt model is not appropriate,
and the quality of inference will decline as the magnitude of the AB interaction
increases. The Lt model is the least complex of the L-models that may hold, at least
approximately, in practice and so is investigated in this paper.

2.3.3 Model LtAB : Non-stationary, Behavioral Response Latent Class
Model

Among the models considered in this paper, the LtAB is the most complex LCM and
the most likely to accurately represent triple systems data. The LtAB model accounts



166 P. P. Biemer et al.

for correlation between the A- and B-lists and for list-dependent enumeration
probabilities. Under this model, πxabc = πxπa|xπb|xaπc|x . Unfortunately, the
LtAB model has several parameters that are not estimable when using the full or
unconditional version of the likelihood. Additionally, the conditional version of the
likelihood, which conditions on the seven observable cells and is used in latent
class analysis, is not identifiable. Lack of identifiability implies that additional
information must be provided in order to obtain meaningful inference from the LtAB

model.
Our solution to the identifiability problem is to assume that the parameter

πX=1|C=0 is equal to a known constant, say γ . Knowledge of πX=1|C=0 means
the conditional likelihood is fully identifiable and allows all parameters of the
unconditional likelihood to be estimated. For the majority of our study, we will
assume that πX=1|C=0 = γ with negligible error. We also present an example of a
potential method for determining γ . A generalization of the LtAB model that allows
non-negligible error in the estimate of πX=1|C=0 is beyond the scope of this paper.

3 Estimation

3.1 Estimating N

Both the method of moments and maximum likelihood estimation methods have
been used for parameter estimation in the literature for capture-recapture models.
Method of moments estimates are often easy to calculate but can have undesirable
properties such as large variance or large bias. Consequently, maximum likelihood
estimates are often preferred. The standard MLE method consists of using the
conditional likelihood of the model being considered (see White and Burnham,
1999). In this method, the enumeration probabilities are estimated, and an estimate
of population size is derived using a Horvitz-Thompson estimator.

For the M-models, the estimator of N has the general form

N̂M = n

(1 − π̂000)
(5)

where n is the number of persons enumerated (all assumed to be in P ) and π̂000 is
the estimate of the proportion of persons in P in the 000 cell of the ABC table.

For the L-models, we use two methods for estimating N . One method involves
estimating π000 and πx using the conditional likelihood for the ABC table (see, for
example, Section 6.3 in Bishop et al., 1975). Denoting these estimates by π̂000 and
π̂x , respectively, leads to the estimator

N̂L = m

(1 − π̂000)
π̂x (6)
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where m is the number of persons enumerated (including EEs).
The other method uses the full likelihood by performing a search over likely

values of M . For this search method, the initial value of M is set to its minimum
value, M = m. Then, the likelihood is maximized over the other parameters
conditional on M = m. The process is then repeated for M = m + k, for
k = 1, 2, 3, . . ., and so on until the global maximum is found for all of the
parameters. The multi-modal nature of the likelihood necessitated the use of this
simple search algorithm. Let Mopt and πopt denote the estimate of M and πx from
this process. Then the estimator of N from the search method is

N̂L = Moptπopt . (7)

Bishop et al. (1975) and Cormack (1989) show how the M-models can be fit using
traditional log-linear analysis. Haberman (1979) provides a similar structure for
estimating LCMs using log-linear analysis with latent variables. For example, the
Lt model is equivalent to the following hierarchical log-linear model:

log mxabc = u + uX
x + uA

a + uB
b + uC

c + uXA
xa + uXB

xb + uXC
xc , (8)

where mxabc = mπxabc and m is the number of enumerated individuals. This
model is represented in shorthand notation by including the highest order terms
in braces, viz., {AX,BX,CX}. Likewise, the LtAB model is represented as
{AX,BX,CX,AB} with constraints as noted above.

In Sect. 4, we illustrate an application of two of the more complex models
described in Sect. 2: the MtAB and LtAB models. These models are applied to data
from a study conducted by Zaslavsky and Wolfgang (1993). Estimates from the
MtAB and LtAB models are compared to the corresponding estimates from a similar
model considered in their paper.

3.2 Illustration Using Real Data

In this section, we illustrate the properties of the MtAB and LtAB estimators using
the triple system data reported in Zaslavsky and Wolfgang (1993), hereafter referred
to as ZW. For comparison purposes, we also compare these two estimators with
a similar estimator proposed by ZW which is based upon method of moments
estimation principles.

ZW propose several models for estimating population size using triple system
data. Three sources of data were considered in their study from the 1988 Dress
Rehearsal: the census, the PES, and the ARL. These sources were labeled E, P,
and A, respectively, in their study but are re-labeled as the A-, B-, and C-list,
respectively, to be consistent with our current notation.

Among the models used by ZW, the one that most closely resembles our
MtAB model is their αEP |A model. The primary difference is that αEP |A allows
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for behavioral correlations among all three lists, while the MtAB model allows
correlation only between the A- and B-lists. Specifically, the αEP |A model forces
equality between the AB odds ratio conditioned on C = 1 and the marginal AB

odds ratio as follows:

αEP |a=1 = n001n111

n011n101
= n00+n11+

n01+n10+
(9)

while MtAB forces three-way equality between the conditional given C = 0,
conditional given C = 1, and marginal odds ratios as follows:

n000n110

n010n100
= n001n111

n011n101
= n00+n11+

n01+n10+
, (10)

where ‘+’ indicates summation over the index.
The ZW model uses the observed value of the AB odds ratio, conditioned on

C = 1 (denoted by αEP |a=1) as an estimate of the unconditioned odds ratio. ZW
first estimate

n̂00+ = αEP |a=1
n01+n10+

n11+
(11)

and, thus, an estimate of n000 is n̂000 = n̂00+ − n001. In their formulation, the
AB odds ratio conditioned on C = 0 is not restricted, and C-list is assumed to be
dependent on the A- and B-list.

The estimator of n000 from the MtAB model is

n̂000 = n

(
π̂000

1 − π̂000

)

(12)

where now π̂000 is the MLE of π000 under the MtAB model. An approximate
expression for n̂000 which can be compared the estimator based on (11) is derived
in the Appendix 1.

Variances of the estimators were estimated using traditional capture-recapture
variance estimation techniques for population size such as those described in Seber
(1982). The methodology typically used depends on the Taylor series expansion of
the Horvitz-Thompson estimate of population size. Program MARK is a software
package that calculates parameter estimates and their variances for a wide variety of
capture-recapture models (see White and Burnham, 1999) and was used to calculate
the traditional variance estimates that are presented in Table 2. Similar procedures
were used for estimates derived from the log-linear models which were fit using the
latent class analysis software, LEM (Vermunt, 1997).

Although the ZW model is theoretically similar to the MtAB model, the two
models can yield very different estimates of population size as shown below.
Further, estimates of N from the LtAB model exhibit even greater differences from
the ZW model depending upon the size of γ . To illustrate this, we fit ZW’s, the
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Table 1 Triple system data
from the 1988 Dress
Rehearsal Census in Louis,
Missouri

A B C Owners, 20–29 years Renters, 30–44 years

0 0 0 N/A N/A

0 0 1 59 43

0 1 0 8 04

0 1 1 19 13

1 0 0 31 30

1 0 1 19 7

1 1 0 13 69

1 1 1 79 72

Table 2 Estimates of n̂000 for ZW, MtAB , LtAB (γ = 0.05), and LtAB (γ = 0.10)

Parameter Estimates Standard Errors of N̂

Post-stratum EE n̂000 N̂ SE Sim Mk

Owners, 20–29 years (ZW) 0 130 358 64 17.6 NA

Owners, 20–29 years(MtAB ) 0 26 254 4.7 7.6 7.5

Owners, 20–29 years (LtAB at γ = 0.05) 9 22 241 4.3 6.8 6.4

Owners, 20–29 years (LtAB at γ = 0.10) 18 18 228 3.9 5.8 5.4

Renters, 30–44 years (ZW) 0 305 565 432 38.8 NA

Renters, 30–44 years (MtAB ) 0 58 318 9.4 13.8 14.1

Renters, 30–44 years (LtAB at γ = 0.05) 7 49 302 10.0 13.2 11.1

Renters, 30–44 years (LtAB at γ = 0.10) 14 40 286 8.5 10.9 8.8

MtAB model, and the LtAB model for two data sets in Table 1 reproduced from
ZW’s Table 1. The first three columns of Table 1 denote the eight cells of the ABC
table with the cell counts displayed in columns 4 and 5 for two groups: home owners
aged 20–29 years and home renters aged 30–44 years.

For owners, aged 20–29 years, the AB odds ratio estimate conditioned on C = 1
is about 12.9, as is the marginal AB odds ratio. When C = 0, the AB odds ratio is
about 6.8. Under the MtAB model, all AB odds ratios are about 5.8.

Table 2 provides the estimates of n000, EE, and N for the four estimators shown
in column 1, namely, ZW, MtAB , and LtAB computed at γ = 0.05 and γ = 0.10.
The “EE” column gives the number of EEs detected by the model in the 001 cell,
and the estimated number of residents given in the 000 cell is given in the column
labeled n̂000 column. Thus, the estimate of N is m+ n̂000-EE given in the column
labeled N̂ .

Three different standard errors are given for the estimates of N which are shown
in the last three columns. The first, expressed by “SE,” represents the standard error
generated by LEM.1 The second, expressed by “Sim,” is the standard error derived
by the simulation experiments described in Sect. 4. The third, expressed by “Mk,”

1LEM is a software package for fitting log-linear models with latent variables written by Jeroen
Vermunt, Tilburg University, Tilburg, the Netherlands (see Vermunt, 1997).
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is the standard error given by program MARK. For the owners, 20–29 years data,
m = 228; for the renters, 30–44 years data, m = 260.

For owners 20–29 years (top half of Table 2), the estimates of N for ZW’s
estimator is quite discrepant from the MLE estimators; however, the large standard
error for ZW’s estimate (s.e. = 64) suggests that the discrepancies are due more
to model instability rather than bias. Also note that changing from γ = 0.05 and
γ = 0.10 for the LtAB estimator has a small effect on the estimates of N suggesting
that the LtAB estimates of N are fairly robust to error in estimates of γ for these
data.

The bottom half of Table 2 corresponds to renters, 30–44 years. For these data,
the marginal AB odds ratio and the AB odds ratio conditional on C = 1 are
both approximately 34.0, whereas the AB odds ratio conditional on C = 0 is
approximately 27.4. Under the MtAB model, the estimates for all odds ratios are
9.9. The large discrepancy in the odds ratio estimates is reflected in the difference
between the estimates for n000 from the two models (the difference is 247). Again,
this difference is small relative to the standard error of ZW’s estimate (s.e. = 432).

As we did for owners, the LtAB model was fit twice using 0.05 and 0.10 as
plausible values for γ . The estimate for n000 from the LtAB model decreased by 15%
and 30%, respectively, as compared to the MtAB model. This decrease is expected,
as removing EEs from the data will lower the estimate of the population size. Note,
however, that the change in N̂ is relatively small.

In this example, the LtAB and MtAB models yielded substantially lower estimates
for n000 than did ZW’s model. These smaller estimates of n000 appear to be more
plausible as they imply census enumeration rates which are more consistent with
prior experience for these areas (see, e.g., Hogan, 1993). Our studies of artificial
populations such as those described in the next section suggest that in populations
where either ZW’s or the MtAB model assumptions maintain, estimates of n000
based on ZW and MtAB are very close. The standard errors of the MtAB estimate
are much smaller in these populations; however, suggesting the MtAB estimate is
preferable to ZW’s in populations where ZW’s model is also appropriate.

4 Assessing Estimation Accuracy Using Artificial Data

One key objective of our research is to investigate the bias and variance of our triple
system estimators of N . In particular, we are interested in examining the properties
of the Mt , MtAB , Lt , and LtAB models’ estimates of N with varying levels of EEs
in the estimation process. In addition, we wish to investigate the consequences
of misspecifying the estimation model when behavioral interactions between the
indicators are present in the data.

Analytical methods for assessing the bias and variance of the estimates from
capture-recapture models are quite complex and are often only available for
method of moments estimators. Even in that case, the formulas for the mean
square error components are often asymptotic expressions (see Seber, 1982). To
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circumvent these difficulties, current research has focused on numerical methods of
parameter estimation. Since numerical estimation methods lack analytical equations
for the parameters, estimates of bias are usually obtained by performing simulation
experiments.

In one analysis, we generated data deterministically to simulate a situation where
the entire population is sampled. Thus, the parameters specified for the population
also hold true exactly in the analysis data set. Since the population parameter values
are known and pre-specified exactly for the analysis data set, examination of bias
and variance components without the effects of sampling variance is possible. The
primary goal of this type of analysis is to study model bias when underlying model
assumptions have been violated. We refer to this type of simulation as artificial
population analysis without sampling.

Section 4.2 summarizes the results of the artificial population analysis without
sampling. The four models of interest were compared using the deterministically
generated artificial data. The formulas for generating these data are given in the
next section. Variance estimates were not calculated for this analysis since there
was no meaningful method of testing their validity.

In a second type of analysis, also described in Sect. 4.2, numerous samples were
randomly selected from an artificial population. The models or formulas under study
are then applied to each sample in order to estimate the population parameters
of interest. Since the true parameter values are known, the bias of the parameter
estimators can be accurately determined provided a sufficiently large number of
samples of a given size are generated. In addition to the estimation of bias, the
sampling distributions and the variance of the estimators can be determined so that
the coverage properties of interval estimates can also be assessed. We refer to this
type of simulation experiment as artificial population analysis with sampling.

The primary purpose of our simulation experiments is to determine the bias for
point estimates and validity of variance estimates derived from the four selected
models presented in Sect. 3. Additionally, once point and variance estimates have
been obtained, the mean square error can be computed to determine which model
for producing an estimate of N has smallest total error. An extensive simulation
experiment for the four models listed above was conducted, and results are given in
the next section.

4.1 Simulation Methodology

Generating the Artificial DataWithout Sampling The data consist of the number
of individuals in each of the seven observable cells in an ABC table, i.e., all
cells except the 000 cell whose count was set to 0. Although the true number of
residents in the 000 cell is known for the artificial populations, this information was
suppressed in estimation process since it is unobserved in ABC table.

As stated, all values for the ABC table are generated using the deterministic
equation for the number of observations in cell (a, b, c) given by
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mabc = Mπxπa|xπb|axπc|x. (13)

In order to narrow the focus of the study, several of the population parameters
were held constant over all of the artificial data sets. We chose a population size
of N = 8, 000 corresponding to roughly the size of a census tract in a central
city area. We set the enumeration probability for the census at πA=1|X=1 = 0.70
corresponding to a difficult census enumeration area (see, e.g., the estimates for
renters in Table 4 or Hogan et al., 2002). The probability of enumeration for the
PES given enumeration by the census was set at πB=1|A=1,X=1 = 0.90 which
corresponds to a moderately high behavioral dependence. Finally, the probability
of being listed on the administrative list was set at πC=1|X=1 = 0.50 which
corresponds to a list with fairly poor coverage properties. Some exploration of other
values for these parameters has been undertaken within a 25 percentage-point range
of these values, and, in general, the results are consistent with those reported here.
We make no claim, however, that our results will hold beyond the range investigated.

The remaining two parameters were varied over a fairly wide range of
plausible values as determined by previous census experience. The parameter
πB=1|A=0,X=1 = 0.90, which specifies the level of behavioral correlation between
A and B, was varied over the values 0.40 through 0.90 by increments of 0.10. The
parameter γ = πX=0|C=1, which determines the number of EEs in the C-list, was
varied over the values 0.0, 0.02, 0.05, 0.10, and 0.15. All possible combinations of
parameters are considered with each possible combination yielding one artificial
data set.

Generating the Artificial Data with Sampling The data for the artificial data
analysis with sampling were derived using the same set of parameters as described
for the case without sampling. For each parameter combination, 1000 artificial data
sets were generated. Each data set was randomly generated by the following five-
step algorithm: (1) calculate the probabilities associated with the eight cells of
the ABC table (denoted πi , i = 1, . . . , 8, say) using the true parameter values

of the artificial population; (2) compute the quantities s0 = 0, sk =
k∑

i=1
πi for

k = 1, . . . , 8, (3) for residents, draw a uniform(0, 1) random number, r , and
increment the count in cell k by 1 if sk−1 ≤ r < sk , k = 1, . . . , 8; (4) repeat
step 3 for 8000 residents; and (5) add EEs to the 001 cell such that exactly 100γ

percent of the enumerations on the C-list were erroneous.

Fitting the Models For each artificial data set, all four models were fit in order to
obtain an estimate of N . The Mt , MtAB , and Lt models can be fit using only the data
from the ABC tables. As stated in Sect. 3, the LtAB model requires an estimate for γ

in order to obtain meaningful inference about N . This shifts the focus of inference
for the LtAB model from bias due to violation of model assumptions to bias in the
estimate of N due to misspecification of γ .

The parameter estimates were obtained using the unconditional likelihood of the
models of interest. The results were compared to estimates obtained using LEM
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which uses a conditional likelihood estimation approach as described in Bishop et al.
(1975). The two estimation methods provided similar inference.

The results from the analysis of the artificial data sets are given in two parts.
The first part described in Sect. 4.2 contains the results for the models that do not
require knowledge of γ to produce meaningful inference, viz., Mt , MtAB , and Lt .
Section 4.2 is devoted solely to the study of robustness of the LtAB model estimates
of N to failures of the model assumptions and misspecification of γ .

4.2 Results for the Mt , MtAB , and Lt Models

In the following tables, γ is the proportion of EEs in the C-list for the artificial
population, δ is the error in the value of γ specified in the model, and ρAB|X=1
is the degree of AB interaction in the artificial population, which corresponds to
the correlation between the A- and B-list given X = 1. In Tables 3, 4, 5, and 6,
the models being compared are listed across the top row of the tables. The model
estimate of N , the standard error of (SE column), the mean square error (MSE
column), and the percent bias of that estimate (%Bias column) are shown for each
model. All variances, biases, and MSEs were estimated directly from the simulation
results. The tables only report the results from the simulations with sampling since
the bias results for the simulations without sampling were essentially the same. As
stated previously, for all cases the resident population size being estimated is 8000.

Table 3 explores the level of bias in the Mt , MtAB , and Lt models when there
are EEs, but no AB interaction. As expected, the Lt model is capable of producing
an estimate of N that is virtually unbiased when EEs are present in the C-list. Both
the Mt and MtAB model yield biased estimates of N ; however, the bias of the MtAB

estimate is greater than the bias of the Mt estimate. The point estimates for N from
the with sampling and without sampling data are similar. The MSEs clearly show
that the Lt model performs better than the Mt or MtAB when EEs are present in the
data.

Table 4 shows the MSE components for the Mt , MtAB , and Lt models when
there are no EEs in any list, but there is an AB interaction. The values of
ρAB|X=1 correspond to the changing levels of πB=1|A=0,X=1. For example, when
πB=1|A=0,X=1 = 0.80, then ρAB|X=1 = 0.14. The MtAB model accurately estimates
N in the presence of an AB interaction. The other two models show significant bias
due to the AB interaction. The Lt model shows considerably more bias and has a
larger MSE than the Mt model. It should be noted that the Mt model tends to have
the smallest standard error of the three models and the smallest MSE when there is
no interaction or EEs present in the data and it behaves poorly when either of these
assumptions are violated.

Table 5 reports the MSE components for the Mt , MtAB , and Lt models when
there are EEs and an AB interaction. The AB interaction is set at the highest level
explored in this study, ρAB|X=1 = 0.53, which corresponds to πB=1|X=1,A=0 =
0.40. All three of the models are substantially biased and produce a large MSE when
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an AB interaction and EEs are present in the data. It appears the Lt exhibits the
largest MSE of the three models, suggesting that, despite the fact the Lt model can
account for EEs, this advantage is negated in the presence of behavioral correlation.
These tables highlight the need for a model (e.g., the LtAB model) that is capable of
fitting this.

Results for the LtAB Model Tables 6 and 7 show the key results for the
LtAB model. As mentioned previously, identifiability of LtAB can be achieved if
information on the number of EEs in the C-list is entered into the model. Therefore,
we fit the LtAB model using a known value for y and consider situations where
γ is not known exactly. For example, γ may be estimated from a study where a
random sample of the persons on the C-list is selected and sent to the field in order
to verify their residential statuses. In that case, our estimate of γ would be subject
to non-sampling and sampling errors and would not be known exactly (see the next
section). In Tables 6 and 7 we consider the effect on the model estimate of N when
y is subject to error equal to δ.

In Tables 6 and 7, the value of γ is listed in the first row of the table, and the
amount of error in y, denoted by δ, is given in the first column of the table. For
example, if γ = 0.10 and δ = 0.20, then the value of γ used to fit the model is
γ = 0.08. For a given error percentage, the estimate for N along with the percent
bias is given in the two columns below the error percentage. The tables consider
both positive and negative values of δ.

Table 6 explores the level of bias in the LtAB model when there are EEs but no
AB interaction for different values of γ . Table 7 explores the level of bias in the
LtAB model when there are EEs and an AB interaction for different values of γ .
For this table, ρAB|X=1 = 0.53 in all cases.

Both tables illustrate that the LtAB model produces a virtually unbiased estimate
of N when y is correctly specified. In addition, the estimate of N appears to be
robust to mis-specification of y. For example, even with as much as 50% error, the
estimates of N are still within 10% of the true value.

There are differences in the value of between Tables 6 and 7. These differences
occur primarily when y is large (10%, 15%) and the amount of error in y is positive
and large (i.e., δ in the range of 0.30 to 0.50). This is likely due to the fact that is
equal to 0.40 for Table 6 and 0.90 for Table 7. When πB=1|A=0,X=1 = 0.40, fewer
individuals tend to be included in the observable cells of the ABC table. Thus, the
estimate of N can take on lower values. This is true since the lower bound of the
estimate of N is equal to the number of individuals enumerated minus the number
of recognized EEs in the data.

5 Summary and Discussion

All four models we considered (Mt , MtAB , Lt , and LtAB ) produce virtually unbiased
estimates of N when a given model’s assumptions are valid. For example, when
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N = 8000, ρAB|X=1 = 0, and γ = 0, the Mt model produces an estimate for N of
7999. As the assumptions are violated, all models begin to show biased results. The
results of each model will be summarized separately.

The Mt model is the least complex of the four models that we studied in detail.
This model’s inability to account for either EEs or a behavioral correlation was
evident from Tables 4 and 5. EEs induce a positive bias in the estimate of N , while
an AB interaction induces a negative bias. When both an AB interaction and EEs
are present in the data, the biases due to these conditions tend to offset each other.
The result is that the Mt model shows less bias in the estimate of N as compared
to the MtAB and Lt models when the effect of EEs in the data is approximately
equivalent to the behavior correlation effect. Of course, this is in no way a desirable
property of the model since balancing these two errors is not under the control of
the experimenter. When correlation bias and EEs are not off-setting, the bias in the
Mt estimator can be substantial.

The Lt model is designed to estimate N when there are EEs present in the C-
list. As seen from Table 3, the Lt model produces estimates of N that are virtually
unbiased when EEs are present in the data and there is no correlation bias. As
demonstrated by Table 4, an AB interaction induces a severe negative bias in the
estimate of N . This is similar to the negative bias associated with the correlation
induced by population heterogeneity discussed in other works (see, e.g., Alho et al.,
1993). In addition, the AB interaction induces a much larger bias and MSE for
the Lt model than for the Mt model. For the values of ρAB|X=1 > 0 presented in
Table 4, the MSE for the Lt model is approximately six times larger than that for
the Mt model. As illustrated in Table 5, when both EEs and an AB interaction are
present in the data, the Mt model will likely have a lower MSE than the Lt model.
The exceptions occur when the AB interaction is small and is large. In general, it
appears as if the Lt model is not very robust to the presence of an AB interaction.

It is interesting to compare the estimates from the Mt and Lt models. As stated
above, the Lt model’s estimates of N tend to have more bias and a larger MSE than
the Mt estimates when an AB interaction is present. By comparison, the estimate
of N from the Mt model appears to be relatively robust when the proportion of EEs
on the C-list is small. Therefore, if information on y is not available and the choice
is between Mt and Lt , we recommend using the Mt model over of the Lt model,
particularly if a sizeable AB interaction is expected. The Lt model is preferred
when there is a large proportion of EEs in the C-list and γ is unknown. If γ is
known, it might be possible to improve the inference obtained by the Lt model by
incorporating an estimate of y into the likelihood.

The MtAB model is designed to estimate N when an AB interaction, but no EEs,
are present in the data. As shown from Table 4, the MtAB model produces virtually
unbiased estimates for N for a range of values for ρAB|X=1. As compared to the
Mt model, the presence of EEs induces a large positive bias in the MtAB model. As
seen from Table 3, when EEs are present in data, the MSE for the MtAB model is
approximately 2.5 times larger than that of the Mt model.

The reason for this increase can be explained by the additional parameter in the
MtAB model. The MtAB model has two parameters for enumeration probabilities
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for the B-list, πB=1|A=1,X=1 and πB=1|A=0,X=1. For the Mt model, these two
probabilities are equal, πB=1|X=1 = πB=1|A=1,X=1 = πB=1|A=0,X=1, and both
the unenumerated and the previously enumerated individuals in the B-list are used
to estimate πB=1|X=1. Thus, more information is used to estimate πB=1|X=1 and
hence N , in the Mt model which, consequently, improves its robustness to EEs.

One nice property of the MtAB model is that the degree of the AB interaction
does not effect the bias in N due to EEs. This concept can be seen by comparing the
results for the MtAB model given in Tables 3 and 4. Additionally, from Table 5, it
appears that the MtAB model outperforms the Mt model when there few to moderate
amount of EEs in the data, γ < 0.05. Thus, it appears to be preferable to use the
MtAB model over the Mt model when a moderate number of EEs are expected in the
data. Unfortunately, as illustrated in Table 5, the Mt , Lt , and MtAB models exhibit
large biases and MSEs when both EEs and an AB interaction are present in the data.
The results from Table 5 highlight the need for the LtAB model.

Of the four models given notable consideration in this study, the LtAB model
is the most likely to accurately represent the triple system data. This model can
account for both EEs in the C-list and for an AB interaction. Unfortunately, given
only the ABC table, the LtAB model is unidentifiable and requires the inclusion
of additional information to provide meaningful inferences for N. Our solution to
the lack of identifiability is to provide a value for the proportion of EEs in the C-
list, γ . By specifying γ , the LtAB model becomes fully identifiable and produces
virtually unbiased estimates for N as seen in Table 6. Moreover, as seen in Table 7,
the inclusion of an AB interaction does not affect the inference that is obtained from
the LtAB model when γ is known. Thus, our results indicate that the LtAB model
can accurately represent data with an AB interaction without affecting the nature of
the inference.

Another concern for this model is the robustness of the estimate of N from the
LtAB model to the misspecification of γ . Both Tables 6 and 7 explore the levels of
bias induced in the estimate of N when γ is misspecified. In general, the bias tends
to be low, implying that the estimates of N are fairly robust. For example, consider
the case when γ = 0.10 and an ρAB|X=1 = 0.53. For the different values of δ

presented in Table 7, the MSE for the LtAB model ranges from 1,651 when δ = 0 to
195,767 when δ = 0.50. Similarly, the bias ranges from 0.0% when δ = 0 to 5.5%
when δ = 0.50. By comparison, under this scenario, the Mt , Lt , and MtAB models
have MSEs of 1,016, 1,986,191, and 1,782,739, respectively. Even when γ is badly
misspecified, the LtAB model appears to outperform the MtAB and Lt model.

In order to fully utilize the LtAB model, a reasonable value for γ must be obtained
from a separate data source. One possible method for obtaining an estimate of γ is
to conduct a field study by drawing a random sample from the observations in cell
001 of the ABC table. In this situation, the MSE formulas in the present paper can
be expanded to include variation in the estimate of N due to estimating γ . Our
preliminary investigations of this method suggest that even in situations where there
is considerable sampling variability in the estimate of γ , the LtAB model MSE of
the LtAB model estimate is still considerably smaller than that of the MtAB model
when γ is in the range of 0.05–0.15.
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In general, when undetected EEs appear in the C-list and a reasonable estimate
of γ is available, the LtAB model performed best for estimating N . If an estimate of
cannot be obtained, then the selection of an appropriate model to use for inference
about N is less clear. It appears, however, that the MtAB and Mt models outperform
the Lt model. The selection of which model to use would depend on the nature of
data, specifically on the strength of the AB interaction and the number of EEs in the
C-list.

An alternative to using the LtAB model for dealing with EEs in the ARL is to
proceed with the MtAB model and use an estimate of γ in post hoc correction of
N̂MtAB

for EEs. Our empirical studies suggest that such corrections can produce
unbiased results in populations that are also ideal for the LtAB model. One such post
hoc estimator (derived in Appendix 2) that appears to produce very good results is

ÑMtAB
(γ ) = (1 − γ )N̂MtAB

. (14)

In practice, if an unbiased estimate, γ̂ of γ is available, using (14) after

substituting γ̂ for γ will generally reduce the bias in ˆ̃
NMtAB

; however, it is possible

that the MSE of ˆ̃
NMtAB

could increase depending upon the size of the bias reduction
relative to the variance of γ̂ .

An important advantage of using L-models to explicitly account for EEs rather
than using post hoc corrections of M-models is the ease with which L-models can be
extended to more complex situations. When EE’s appear in more than one list, post
hoc corrections for EEs are impractical due to their complexity. Latent class analysis
provides an integrated structure for modeling much more complicate scenarios than
were described in this paper. Thus, LtAB model should be viewed as a foundation
for more complex models that involve list-by-list interactions, EEs in all three lists,
and four or more lists. The current paper lays the groundwork for dealing with these
more complex situations.

Appendix 1: Derivation of MtAB and LtAB Estimators of n000

The likelihood for the MtAB model, denoted by �MtAB
= �(N, πa, πb|a=1, πb|a=2,

πc|ni,j,k) can be written as

�MtAB
= N !
∏

i,j,k

nijk!(N − n+++)!π
n1++
a (1 − πa)

N−n1++π
n11+
b|a=1(1 − πb|a=1)

n1++−n11+

×π
n01+
b|a=2(1 − πb|a=2)

N−n1++−n01+π
n++1
c (1 − πc)

N−n++1 , (A.1)

where nijk denotes the cell count in cell (i, j, k) of the ABC table, “+" indicates
summation over the corresponding index, and the other notation is as defined in
Sect. 2. To find the value of the parameters that maximizes (A.1), we take the
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logarithm of this function and differentiating with respect to the parameters, set
these partial derivatives equal to 0, and solve for the parameters. Holding N constant
and maximizing with respect to the other parameters produces the following MLEs
for πa , πb|a=2, and πc and conditional on N :

π̂a|N = n1++
N

, π̂a|b=2,N = n01+
N − n1++

, π̂c|N = n++1

N
. (A.2)

Replacing these parameters in (A.1) by their conditional MLEs, the likelihood can
be written as a function of N only. Simplifying and removing factors that do not
contain N , (A.1) simplifies to

N !
(N − n+++)!N

−2N(N − n1++ − n01+)N−n1++−n01+(N − n++1)
N−n++1 (A.3)

Several approximations will be used in determining an MLE for N . First, N will
be treated as a continuous variable, and second, in order to take a derivative of
N !, Stirling’s approximation to the factorial will be used. This yields the following
approximation to (A.2):

NN+0.5e−n

(N − n+++)N−n++++0.5e−N+n+++ N−2N

×(N − n1++ − n01+)N−n1++−n01+(N − n++1)
N−n++1 .

Again, eliminating factors that do not involve N yields

(N − n+++)−(N−n++++0.5)N−N+0.5(N − n1 − n01+)N−n1−n01+ (N − n++1)
N−n++1 .

Taking the natural log of the above expression gives

−(N − n+++ + 0.5) log(N − n+++) − (N + 0.5) log(N)

+(N − n++1 − n01+) log(N − n1++ − n01+) + (N − n++1) log(N − n++1).

(A.4)

Now we can take the derivative of (A.4) with respect to N and set the resulting
expression to 0. To obtain the following expression, we use a third approximation,
viz., log(1 + α) = α where α is a small positive constant. Upon simplifying, this
yields

log

[
(N − n1++ − n01+)(N − n++1)

(N − n+++ + 0.5)(N + 0.5)

]

= 0.
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Finally, solving for N and further simplifying yields

N̂MtAB
= n++1(n1++ − n01+) + 0.5n++0 − 0.25

n1++ + n01+ + n++1 − n+++ + 1
. (A.5)

Subtracting n+++ from the above expression produces estimate of n000 that can be
compared with the estimator based on (11).

MLEs for the LtAB model can be derived in a similar fashion. Since for the LtAB

model, EEs only appear on the C-list, specifying γ is equivalent to specifying the
number of EEs, say nEE that occur on the C-list since γ = nEE/n++1. Repeating
the above steps and approximations for this model yields the following approximate
MLE for the LtAB model when γ is known:

N̂LtAB
= (n++1 − nEE)(n1++ − n01+) + 0.5n++0 − 0.25

n1++ + n01+ + n++1 − n+++ + 1
. (A.6)

Appendix 2: Derivation of the Estimator ˜̂
NMtAB

(γ )

Using the results of Appendix A, the ratio of N̂MtAB
to N̂LtAB

can be written as

N̂LtAB

N̂MtAB

= (n++1 − nEE)

n++1
×

(n1++ + n01+ + 0.5) + 0.5n++0−0.25
(n++1−nEE)

(n1++ + n01+ + 0.5) + 0.5n++0−0.25
n++1

. (A.7)

The remainder of this proof will show that the second factor on the right hand side
of (A.7), denoted by F , can be approximated by 1 for values of γ < 0.5. In that
case, N̂LtAB

≈ (1 − γ )N̂MtAB
.

To show that F ≈ 1, for small γ , we multiply and divide F by (n1++ + n01+ +
0.5). Ignoring the term −0.25 which is negligible compared with 0.5n++1, we
obtain

F =
1 + 0.5n++0

(n++1+n01++0.5)(n++1−nEE)

1 + 0.5n++0
(n1+++n01++0.5)n++1

. (A.8)

Note that (n1++ + n01+ + 0.5) > n++0, which implies that 0.5n++0
(n1+n01++0.5)

= c1,

for some constant c1 < 0.5. Thus, F = 1+ c1
(n++1−nEE)

1+ c1
n1++

. Replacing n++1 − nEE with

n++1(1 − γ ) and simplifying yields

F =
n++1(1−γ )+c1

(1−γ )

n++1 + c1
= n++1

n++1 + c1
+ c1

(n++1 + c1)(1 − γ )
.
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When γ = 0 then this expression is exactly 1. When γ = 0.5, F reduces to
n++1+2c1
n++1+c1

. Since c1 < 0.5, F ≈ 1, when n++1 is reasonably large or, in general,
for any value of γ between 0 and 0.5.
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Record Linkage in Statistical Sampling:
Past, Present, and Future

Benjamin Williams

Abstract Record linkage is a useful tool to match records across datasets when
the datasets lack a unique identifier. In this chapter, we examine the past, current,
and present uses of probabilistic record linkage with a specific interest in its
use in statistical sampling. For example, given the rise in interest and use of
non-probability data within sampling, many researchers seek to augment a non-
probability sample with a probability sample. Record linkage is a useful method
for doing such combining. This chapter will examine the ways record linkage has
been used and is currently being researched and implemented, with an emphasis on
its current and future use for statistical sampling. The chapter concludes with open
research questions for record linkage in the context of sampling, where the questions
center around the idea of creating a total error framework for linked data.

1 Introduction

Analysts broadly use the term record linkage to define the matching of records
existing in two or more datasets. Record linkage is also used for data deduplication,
but that is not the focus of this chapter. Here, record linkage encompasses other
commonly used terms for data matching, including but not limited to entity reso-
lution, data blending, data combination, document linkage, and record matching.
Originally describing the process of combining specific life event records (e.g.,
birth, graduation, marriage) in a person’s “Book of Life” (Dunn, 1946), record
linkage has grown in breadth over the past 75 years and is an active area of
statistical research. From its humble roots, record linkage has been mathematically
formalized, implemented with machine learning, and employed at numerous public
and private agencies (Herzog et al., 2007; Christen, 2019; Dong & Srivastava, 2015).
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Record linkage is of use when two or more data files refer to the same entity
yet lack a unique identifier common among all sources. In this chapter, without loss
of generality, assume there are two files to link; call these files A and B. Record
linkage relies on comparing linking variables, variables present in both A and B

which should be equivalent for matching records. Newcombe et al. (1959) note two
issues arising from comparing linking variables: (1) two records that do not refer
to the same entity may have equivalent linking variable values (e.g., Ben Williams
and Ben Leonard have equivalent first names, but may be different people), and
(2) two records that do refer to the same entity may have different linking variable
values (e.g., Benjamin Williams and Ben Williams could be the same person, but
have different recorded first names). Record linkage can mitigate these issues.

Record linkage has two primary forms: deterministic and probabilistic (Herzog
et al., 2007). A deterministic program links records across datasets via strict, pre-
determined rules concerning linking variables. An example is as follows: only link
two entities if the recorded last names are equivalent and the recorded dates are
within 2 days of each other. Deterministic record linkage can work well if there are
few or no errors in the datasets. Probabilistic record linkage relies on the distribution
of the linking variables to determine the likelihood two records match. Probabilistic
record linkage is a powerful tool when there are possible errors in the datasets.
Errors such as misspellings or incorrect recording of dates are quite common,
making probabilistic record linkage popular. For the rest of this chapter, record
linkage will refer to probabilistic record linkage.

In 1959, Newcombe et al. developed a linking score aggregating estimates of the
log-odds that the values of the linking variables agree for each potential link between
A and B (Newcombe et al., 1959). Their work was formalized in Fellegi and Sunter
(1969). The Fellegi-Sunter implementation is the classic method of record linkage.
They derived the linkage score for a pair of potential links by using the probabilities
of observing agreement patterns in true matching and non-matching pairs of records.
The expectation-maximization (EM) algorithm (Dempster et al., 1977) is often used
to estimate the parameters for the score.

Potential links with a score above an upper threshold are called matches, potential
links with a score below a lower threshold are called non-matches, and potential
links with a score between the upper and lower thresholds are called potential
matches. The thresholds, along with prespecified false-positive and false-negative
rates, comprise a linking rule. Fellegi and Sunter proved this rule is optimal in the
sense that it minimizes the probability a possible link is classified as a potential
match as opposed to a match or a non-match. The rigorous method of combining
datasets introduced by Fellegi and Sunter opened a new research context for record
linkage: statistical sampling.

When a representative sample is drawn at random from a population, inference
regarding the population can be made from inspection of the sample (Lohr, 2010).
This is a foundational tenet of statistics. However, given the pervasive availability
of big data, are large samples drawn not at random (non-probability samples) more
useful than small probability samples? See Meng (2018) for a further discussion of
this question. Indeed, large non-probability samples are easier than ever to collect,
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but often at the cost of representativeness and theoretical formulae for sampling
variability (Baker et al., 2013). Wiśniowski et al. (2020) examine the trade-offs
between non-probability samples and probability samples. They argue combining a
small probability sample with a larger non-probability sample allows one to harness
the advantages of both. In this, record linkage becomes immensely valuable.

Integrating two samples may require records to be matched between them. If
the probability sample adds auxiliary information, records from one sample likely
need to be matched to records on the other. One example of this is a capture-
recapture framework used to combine the non-probability and probability samples.
If the initial capture sample is a non-probability sample and the recapture sample
is a probability sample, the records from each sample must be matched for valid
estimation (Liu et al., 2017; Stokes et al., 2021). In such cases one may use record
linkage for matching. Another example of this is at the US Census Bureau, where
smaller secondary samples are gathered after the census which are linked to the
original data for additional inference.

In the US Census example, one of the datasets for linking is quite large, the US
Census. Since the census is much larger than the second sample, and is nearly a
complete register of the population, linking is easier as there is a high probability
that respondents to the second sample exist in the census data. If one or both of the
data files to be linked are small, relative to the population size, then the likelihood of
finding units existing in both samples could be quite small rendering record linkage
impractical and not useful.

However, given the pervasive nature in the world today, big data and datasets
nearing the size of populations of interest are becoming more common. In cases
where one or more of the datasets are relatively large, record linkage is most useful
since the probability of a sizeable overlap is higher. The overlapping units are often
where the benefit of combining samples comes from. For a treatment of identifying
the overlap between a big data source and a smaller probability sample, see Kim and
Tam (2021). Record linkage is an important tool to augmenting samples, be they
non-probability or probability. This is a critical area of future research in statistical
sampling.

This chapter examines the past and current uses of record linkage, along with
opportunities for the method in the future. We pay particular attention to the use
of record linkage in statistical sampling, especially in the sections on current and
future uses. In the coming years, record linkage will play a key role in the analysis
of non-probability samples, and open research questions exist which deserve careful
consideration. This chapter will thus conclude by laying out these questions,
discussing their critical nature, and offering paths toward solutions.

2 Past Uses of Record Linkage

Historically, record linkage has been primarily used to link records of people,
businesses, or addresses (Fellegi, 1999). Often the linking variables are comprised



190 B. Williams

Data File A Data File B

Name City Birth Marital ... Name City Birth Number ...

Year Status Year of Children

Ben Denver 1991 Y Ben Dallas 1989 1

Williams Williams

Brian Dallas 1990 N Ben Denver 1991 0

William William

... ...

Fig. 1 Example of two files to link some variable names which are the same across the files

of words (or strings). An example of two files to link is in Fig. 1. File A and B

share the variables Name, City, and Birth Year and those are the linking variables.
Suppose it is of interest to combine the files to determine the relationship between
Marital Status (only in File A) and Number of Children (only in File B).

In Fig. 1, a human analyst could reasonably determine the first entry in File A

(linking variable values: Ben Williams, Denver, 1991) matches the second entry
in File B (linking variable values: Ben William, Denver, 1991) by observing the
misspelling of Williams in the File B entry. In this toy example, the values of
the Birth Year and City linking variables are exactly equivalent, but how can the
differences in the Name linking variable be expressed? String comparator metrics
are now well-known, and some resulted from the need to compare strings for
matching purposes. Jaro (1989), Jaro (1995), and Winkler (1990) are seminal works
which produced the Jaro-Winkler comparator, a metric producing a value between
0 and 1 to determine how similar two strings are. A thorough examination of the
Jaro-Winkler comparator is in Herzog et al. (2007), and a deeper examination of
more string comparators is in Cohen et al. (2003).

In an early implementation of computer-based record linkage, Newcombe et al.
(1959) compared strings using the Russell Soundex Code, which breaks words
into phonetic codes of numbers and letters. Those authors used record linkage to
determine if health and fertility were affected by exposure to low levels of radiation.
Since exposure, marriage, births, and illness information were contained in different
files, there was a need to link them with variables common to all files. This is perhaps
the earliest example of using computers to implement record linkage, marking a
seismic shift in the ability to link large data files, since linking could be done
automatically and not solely by hand. Indeed, the advent of computer technology
is a key reason for the interest generated for record linkage beginning in the 1960s
(Fellegi, 1999).

The work of Newcombe et al. (1959) was a motivator for the formative Fellegi-
Sunter method discussed in the Introduction. After the establishment of their
method, record linkage surged in popularity. Early use cases included matching
insurance claims to medical statistics (Bell et al., 1994), immigration record
matching (Copas and Hilton, 1990), and matching records for the Census Bureau
(Mulry et al., 2006), to name but a few. If the two files to be linked are not
complete enumerations of the populations they represent, inference resulting from
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the linkage falls under the purview of sampling. For example, if the goal is to
examine the relationship between marital status and number of children, as in the
toy example from Fig. 1, because there is no complete list of everyone in the world
along with their marital status, the files represent samples of people. When inference
is made from the matches, the analyst is engaging in estimation resulting from
samples. If the files are representative samples, then the inference is valid and well
supported. Indeed, most statistical inference results from samples of data, so this is
not necessarily an issue for record linkage. However, early record linkage literature
lacks discussions regarding the assumption of representativeness in the datasets to
be linked.

Another assumption often implicitly made in early record linkage papers is that
errors in matching, e.g., false-positive and false-negative matches, do not affect the
results of subsequent analyses. In the current research of record linkage, some effort
is spent examining how these errors can affect the final analyses. Next, we discuss
this along with current research and uses of record linkage.

3 Current Research and Uses of Record Linkage

Record linkage is currently used in medicine (Hallifax et al., 2018) and insurance
(Boudreaux et al., 2015), at the Census Bureau (Abowd et al., 2019), and for big
data fusion in general (Dong & Srivastava, 2015). Christen (2019) gives a useful
and concise treatment of record linkage and includes additional current applications
for further reading. Some of these applications have been studied since the inception
of record linkage, but over time, research continues to expand the field.

One way the literature is expanding is in the methods used for record link-
age, namely, via the introduction of machine learning techniques. The continued
improvement in computing power combined with statistical techniques has allowed
machine learning methods to be employed across industries and disciplines. Record
linkage is no exception, as evidenced by Jurek et al. (2017) who introduced an
ensemble learning method for unsupervised record linkage and Christen (2008) who
developed a classification technique for record linkage involving support vector
machines. There are many examples of machine learning used for record linkage
since it can be distilled to a classification problem (match or non-match), a common
use for machine learning. In addition to machine learning, Bayesian methods have
also been introduced to record linkage. For example, Dalzell and Reiter (2016)
took a Bayesian approach and derived a method to concurrently find matches and
estimate the regression model.

In another avenue of current work, scholars are studying how the randomness
associated with probabilistic linkage affects subsequent analyses. This was dis-
cussed in Neter et al. (1965), and it continues to be an area of active research.
Recently, Chambers and Diniz da Silva (2020) noted (citing Harron et al., 2016)
analysts’ abilities to rigorously account for various biases and errors in linked data
cannot keep pace with the inception of such datasets. Given the prevalence and
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availability of big data, this is an important issue for study. Chambers and Diniz da
Silva (2020) suggest using paradata (data about the linkage process) to correct for
biases resulting from linkage errors.

An important paper regarding analyses done with linked data is Lahiri and
Larsen (2005). These authors investigated how errors in linkage affect regression
analysis done using the linked data. By handling linking errors as measurement
errors, they proposed an unbiased bootstrap regression estimator for use when
there are matching errors. Chipperfield and Chambers (2015) similarly derived
a parametric bootstrap method for evaluating categorical variables from linked
datasets. Chambers (2009) examined ways to remove bias in regression analysis
resulting from linking errors and took a specific look at logistic regression as
well. Additionally, Zhang and Tuoto (2021) developed a regression approach in the
presence of linkage errors and offered a diagnostic hypothesis test for examining
assumptions about the linkage errors. Chipperfield (2020) approaches this problem
by using bootstrap methods to replicate the linkage procedure in each replicate,
along with estimating equations, to make inference in the presence of linkage errors.
In both Briscolini et al. (2018) and Salvati et al. (2021), the authors investigate
several methods to handle linkage errors when the context is small area estimation.
Last, Kim and Chambers (2012) develop ways of correcting for the bias due to
linkage errors, including incomplete or missed links, when employing regression
after linking sample data to a register (dataset of the entire population), which was
discussed in Sect. 1.

Most work in this stream focuses on regression analyses of linked data. However,
there are other inferential methods which use linked data, such as sampling esti-
mation. Zhang (2021) recently developed several generalized regression estimators
(GREG) (see Särndal et al., 1992) for estimating totals when the sample and the
auxiliary information, used in GREG estimators, cannot be perfectly matched.
Their work builds on research from Breidt et al. (2017) who examined a difference
estimator (type of GREG estimator) when matching between samples is imperfect.

Stokes et al. (2021) similarly attempt to examine the effect of matching errors
on estimates of total. In their work, the authors employed capture-recapture
methodology where the capture sample was electronic self-reports of fish catch
(non-probability sample) and the recapture sample was a randomized dockside
intercept sample of anglers (probability sample). Record linkage was used to link
the two samples, and then estimates of total were made from the linked data. The
authors developed a theoretical model for the probability of linking specific records
and derived an expression for the approximate relative bias of an estimator as a
function of various levels of matching error (including false-positive and false-
negative errors). The works of Stokes et al. (2021), Zhang (2021), and Breidt et al.
(2017) discussed here represent a bridge to the future of record linkage in survey
sampling.
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4 Future Uses of Record Linkage and Open Questions

A bright future of record linkage in survey sampling exists in the combination of
non-probability samples with probability samples. As noted in Wiśniowski et al.
(2020), the benefits of blending a non-probability sample with a probability sample
are substantial. Elliott and Haviland (2007) did this by combining estimators from
a probability sample with a web-based non-probability sample. They note the
probability sample must be large for useful estimation. Recently, Sakshaug et al.
(2019) offered a Bayesian approach for analyzing data from a smaller probability
sample blended with a larger non-probability sample. They used the non-probability
samples to construct priors for the model and show their approach worked well
to reduce mean square error in estimates even when bias was present in the non-
probability samples, a usual concern when investigating non-probability samples.
These papers, however, do not link specific observations across datasets (samples)
but seek to harness the information from both samples to improve the overall
estimation.

Often, for inference, the non-probability sample is adjusted or weighted to have
similar characteristics as the target population or to be used as auxiliary information
(Elliott, 2009; Brus & Gruijter, 2003; Valliant & Dever, 2011). Another framework
is to link actual records appearing in two samples, one a probability sample and
one a non-probability sample. This occurs if the non-probability sample and the
probability sample are subsets of the same population with increased overlap
between the two as the non-probability sample size grows.

Specifically, call the population of interest U , the set of observations com-
prising the probability sample sp, and the set of observations comprising the
non-probability sample snp. Then sp ∈ U and snp ∈ U and as |snp| → |U | ⇒
P(sp ∩ snp) = ∅) → 0. By examining the overlapping observations between the
two samples, inference can be improved. This is how Liu et al. (2017) approached
the problem of estimating fish catch in the Gulf of Mexico when they combined
a voluntary sample of captains’ fishing reports with a random intercept of boats
returning to the dock. The overlapping trips, trips both reported and intercepted,
provide auxiliary information, namely, measurement error estimates, which is
incorporated into the estimator. This is an example of combining samples via
matching and is a great application for record linkage.

While Liu et al. (2017) operate in a capture-recapture framework, using record
linkage to combine a non-probability and a probability sample need not exist in such
a setting. Examining the overlap, the matched set of entities between the samples,
can provide accurate and useful auxiliary information to be used along with current
non-probability sampling methods such as pseudo-weights or propensity scores. As
data from non-probability samples become more available in ever-increasing sizes,
linking them to existing or new probability samples will become more and more
feasible. Regardless of the final use, record linkage certainly has a role to play.

In the future, assuming record linkage takes an increasing role in non-probability
sample inference, there are several research questions which should define the next
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era of record linkage literature. We present a few open questions which should steer
future research regarding record linkage in survey sampling.

The main research question of interest is: “what is the total error framework for
linked data?” This question is closely linked to the idea of a total survey error (TSE)
framework; see Groves and Lyberg (2010) for a thorough discussion of the TSE
framework. The TSE framework decomposes the sources of error and bias when
making inferences from surveys. This idea was recently extended in Amaya et al.
(2020) for big data. They proposed a total error framework (TEF) for analyzing
big data which has specific differences from the usual TSE framework. The authors
discuss how certain errors manifest differently when applied to big data, such as
coverage error, non-response error, and measurement error, to name a few (Amaya
et al., 2020). Meng (2018) adopts a similar framework for making inferences from
non-probability samples. He derived a formula to describe the difference between
the population and sample averages as the product of measures of data quality, data
quantity, and the problem difficulty (standard deviation of the variable of interest).
Such previous research informs a TEF for linked data.

When analyzing linked data, a new source of randomness is introduced into the
estimation which comes from linking errors. When considering a TEF for linked
data, the linkage errors form a new component in the framework. The framework can
be expressed as Total Error = Sampling Error + Non-Sampling Error + Linkage
Error. Previous work has been done to examine both sampling error and non-
sampling error in both the traditional, big data, and non-probability settings (Groves
& Lyberg, 2010; Amaya et al., 2020; Meng, 2018). These three sources of error are
broad and encompass many errors within them, e.g., non-response error is a subset
of non-sampling error. Though these subsets have been investigated for sampling
error and non-sampling error, there needs to be a partitioning of linkage error to
build the TEF for linked data.

Stokes et al. (2021) started down this path by deriving a model for the effect
linking errors have on the approximate relative bias of estimates made from
linked data. Their model considers response rates and the discrepancies in the
measurements when records are incorrectly linked. The model is generalizable and
used to examine the effect of linking errors on the bias when estimating a total.
Their work should be extended and further generalized to understand the effect of
linkage errors within a total error framework. Linkage errors are especially difficult
to partition because each linking scenario is different (Bell, 2017). Additionally, the
magnitude of the effect of different linking errors will differ depending on various
factors such as the amount of measurement error existing among matched records
and if various errors can balance each other out (e.g., false-positive errors vs false-
negative errors). Another source of linkage error that deserves further research is
coverage error resulting from false-negative or unmatched links. That is, because
some records are not linked, error arises. But this error is unique in such a context
because the probability of linking two records can depend on the linkage algorithm
(e.g., one-to-many linkage or one-to-one linkage) as well as the likelihood that other
records link to each other.
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A secondary question within the TEF for linked data has to do with estimating
matching error if one lacks training data or the ability to perform clerical review.
Training data offers a set of true links on which a record linkage algorithm can
be tested. Clerical review is the term for manual inspection of potential links to
determine if they match or not. Clerical review is usually the gold standard way to
evaluate links if the entities refer to people or addresses, such as in the example from
Fig. 1.

An example of when clerical review might be impossible is if an analyst links
health data from wearable electronic devices to a census probability sample. In that
case, manual review of links may prove too difficult to confidently mark links as
false-positives, false-negatives, true-positives, or true-negatives. This might be true
if the variables used for linking are error prone or if human judgment does not do
a good job at determining true match status. Human judgment might also not be
useful if no names or strings are used as linking variables, but instead identification
numbers or usernames comprise the linking variables. In these settings, a sensitivity
analysis for different levels of matching error will prove useful. In the future,
a rigorous framework for such sensitivity analyses or methods of expressing
confidence in the link states (match vs non-match) deserves careful thought as part
of a TEF for linked data.

Another secondary question in this framework manifests when more than two
files are to be linked. As stated earlier, the methodologies for linking two files
extend to linking three or more files. However, it is likely that the data structures
will differ for the different datasets. Each may have distinct and possibly different
error sources. It may be that when linking three files (A, B, and C), a record a ∈ A

may be a false-positive link to record b ∈ b but be a false-negative match to record
c ∈ C. If records from one dataset are allowed to link to multiple records from
the other datasets (not uncommon in record linkage), the errors and their effects can
quickly build up. The implications of linking multiple data files, which likely will be
more common in the big data climate of the day, must be considered and included
in the TEF for linked data. This issue is under consideration, as seen in Kim and
Chambers (2015).

This total error framework is critical for record linkage in survey sampling.
Record linkage as a method continues to grow and has its own set of questions
deserving inspection, such as issues of privacy (see Vatsalan et al., 2017) and
how record linkage can fit into artificial intelligence programs, but we leave those
questions to others since that is not in the scope of this chapter.

To conclude, record linkage is a technique which despite being in existence for
75 years continues to thrive. The ubiquitous nature of non-probability data in our
world demands rigorous methods to analyze it. In the overlap between big data,
non-probability samples, and statistical sampling lies record linkage. This is an
exciting time to research record linkage as it will play an important role in statistical
sampling in the future.
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A Bayesian Latent Variable Model for
Analysis of Empathic Accuracy

Linh H. Nghiem, Benjamin A. Tabak, Zachary Wallmark, Talha Alvi,
and Jing Cao

Abstract Empathic accuracy (EA), defined as the ability to accurately understand
the thoughts and emotions of others, has become a well-studied phenomenon
in social and clinical psychology. A widely used computer-based EA paradigm
compares perceivers’ ratings of targets’ feelings or affective states with the ratings of
target themselves (the true ratings) and uses correlation or its monotonic transforma-
tion as a measure of EA. However, correlation has a number of notable limitations.
In particular, perceivers may differ in their rating patterns, but still have similar
overall correlations. To overcome the limitations, we propose a Bayesian latent
variable model that decomposes EA into two separate dimensions—discrimination
and variability. Discrimination measures perceivers’ sensitivity in relation to the
true ratings, and variability measures the variance of random error in perceiver’s
perceptions. Similar to the conventional correlation, the Bayesian model is able to
measure the overall level of the association between perceiver and target, but more
importantly, the Bayesian approach can provide insights into how perceivers differ
in their EA. We demonstrate the advantages of the new EA measures in two case
studies. The proposed Bayesian model has a simple specification and is easy to use
in practice due to its straightforward implementation in popular software. The R
code is included in the supplementary material.
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1 Introduction

Empathic accuracy (EA) is defined as the ability to correctly infer the thoughts
and emotions of others (Zaki et al., 2009). In addition to the role of EA in
the development and maintenance of healthy social relationships (Sened et al.,
2017), clinical research has shown that performance in a standard EA video
task can differentiate individuals with certain psychiatric disorders from healthy
controls (Lee et al., 2011). Thus, the study of EA can help us understand general
social functioning and also help identify social cognitive impairment in clinical
populations.

There are a number of ways to examine EA, including matching categorical
assessments (Schweinle et al., 2002) or continuous real-time assessments of the
affective states of people (hereafter referred to as targets) by participants (hereafter,
perceivers) (Zaki et al., 2008). Studies of EA that focus on matching categorical
assessments between perceivers and targets often use signal detection theory in
analyses. However, continuous EA data do not allow for this type of analysis. The
focus of this study is on the analysis of EA tasks based on continuous real-time
ratings. For example, EA paradigms may include a set of brief video clips in which
targets discuss positive or negative events in their lives. Perceivers are asked to
rate how negative or positive the target is feeling when discussing autobiographical
events in real time using a 9-point scale (e.g., 1 = extremely negative; 9 = extremely
positive). Responses from perceivers are captured in 2–5 s epochs throughout each
video clip, and these responses are then compared to the responses of the targets,
who watched the videos of themselves and completed the same ratings task in order
to create a canonical index of “true” responses.

Traditionally, correlational analysis (and its monotonic transformation) is the
conventional and arguably most common statistical method used for analysis of the
continuous EA data. For example, based on several videos in which social targets
discussed emotional events, Zaki et al. (2009) collected ratings averaged across
5-s periods and computed the Fisher transformation of the Pearson correlation
coefficient to measure perceivers’ EA. Also, in an fMRI validation study of a
modified EA task, Mackes et al. (2018) computed the same measure and conducted
paired samples t-tests to examine the neural correlates of perceived emotional
intensity and mentalizing. However, this one-dimensional correlation approach,
which only measures the linear association between two variables, may leave out
important patterns in the data. First, unlike weight or height, EA is a latent merit
that cannot be directly measured in absolute terms. For example, in a given task,
the same rating may mean something different to different perceivers. In addition,
although all perceivers are given the same scales (such as from 1 to 9), different
perceivers may subjectively choose different ranges of their own ratings (e.g., one
person may always give ratings from 4 to 7, while another person may use the whole
range from 1 to 9). Second, there are at least two underlying behavioral dimensions
that contribute to the discrepancy between perceivers’ and targets’ ratings, including
different interpretations of the scale range and the random error in perceivers’
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ratings. These two dimensions are distinct, so it is necessary to incorporate both
of them when measuring EA. Third, correlation can only be calculated for each
stimulus separately, but an EA study typically involves a number of stimuli (such as
multiple videos under one condition). Due to all of the issues raised here, statistical
analysis based on correlation may limit the amount of information that can be gained
from EA studies.

In a broader context of modeling accuracy of human judgment, a few approaches
have been proposed as an alternative for correlation, yet these approaches typically
require additional data compared to what we have for our applications. For example,
West and Kenny (2011) proposed the truth and bias model, in which perceivers’
responses to a stimulus are assumed to be influenced by a truth force and a bias force.
To use this model, each perceiver is typically asked to provide not only a response
toward the target but also a self-judgment response. In our application, we only have
the former but not the latter. Biesanz (2010) proposed the social accuracy model,
in which accuracy of a judgment is into distinctive accuracy, the extent to which
a perceiver can perceive the distinct and unique characteristics of one person, and
normative accuracy, a measure of how a perceiver’s perception of others corresponds
to the same perceiver’s perception of an average person. This social accuracy model
is commonly used in modeling perception of traits, where a perceiver is asked to
rate different traits of other people, and the ratings of these traits for an average
person (a normative profile) are available from a larger sample or a meta-study. In
our application, a perceiver is asked to provide a continuous rating over time to
judge the emotion of a specific target. To the best of our knowledge, the normative
profile for these continuous ratings are not available.

As pointed out by an anonymous referee, one may tend to conduct the Bland-
Altman analysis (Bland & Altman, 1999) between the perceivers’ and targets’
ratings. In most of the applications, the Bland-Altman (BA) analysis aims to
evaluate whether two different devices give the same measurements of an objective
quantity. For example, in Doğan (2018), the BA method is used to evaluate whether
a venous blood gas analysis and a biochemistry panel shows the same level of
potassium in patients. However, the BA method is not appropriate for measuring
EA. First, for one specific task, the perceivers’ and target’s ratings are not expected
to be the same, because they can have different (subjective) interpretation of the
rating scale. For example, a rating of “5” for one person is not the same as a rating
of “5” for another. Furthermore, just knowing whether perceivers and targets agree
with each other may be even less informative than using correlation, since the BA
analysis does not quantify the extent to which a perceiver agrees with the target.

In this article, we introduce a Bayesian latent variable approach to model EA
response data that is based on the previous work by Cao and colleagues (Cao
et al., 2010; Cao & Stokes, 2017). The proposed Bayesian model identifies two
latent dimensions of EA—discrimination and variability—that are identifiable when
perceivers’ ratings differ from the targets’ ratings. Discrimination measures a
perceiver’s ability to distinguish changes in a target’s emotions, while a perceiver’s
variability measures the variance of random error in perceivers’ ratings (i.e., the
difference between perceiver’s and target’s ratings due to inconsistency). A smaller
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variance implies that the perceiver has a higher level of consistency in perceiving
the target. Using the proposed Bayesian model, we are able to estimate perceivers’
discrimination and variability and hence obtain more valuable information about
their EA perception than correlation, which only measures the general association
between perceivers’ and target’s ratings.

We begin by introducing the Bayesian model, including model specification and
software implementation. We then describe the advantages of the Bayesian model
using two case studies. In the first case study, we re-analyze the dataset in Devlin
et al. (2014) that consists of perceivers’ ratings of four distinct videos in which
targets discuss emotional events in their lives. In this case study, we focus on
explaining the underlying dimensions of EA and comparing the Bayesian estimates
of discrimination and variability with the standard correlational measure. In the
second case study, we analyze perceivers’ ratings of 12 original music recordings
expressing musician-targets’ renderings of four primary emotions (three recordings
per emotion), with the focus on how the underlying EA dimensions are associated
with the musicality (i.e., level of musical skill and training) of the perceivers. This
case study further demonstrates that the new measures can facilitate additional
insights on how EA perception is related to perceivers’ characteristics.

2 Methodology

In an EA study, suppose that there are n perceivers instructed to provide ratings on J

stimuli, where each stimulus has Kj units (i.e., there are Kj points in the sequence
of ratings, which can vary among stimuli). Each stimulus corresponds to a specific
target. Let xr

jk denote the raw rating given by the corresponding target for the kth
unit of the j th stimulus, j = 1, . . . , J and k = 1, . . . , Kj . Note that similar to
correlational analysis, the mean of target score will not affect the measurement on
EA. Hence, to simplify the model specification, the raw ratings xr

jk are centered for

each stimulus, where the centered rating is denoted as xjk = xr
jk − K−1

j

∑Kj

m=1 xr
jm

and is treated as the true rating. Similarly, letting yr
ijk denote the rating given by the

ith perceiver for the kth unit of the j th stimulus, then the corresponding centered

rating is yijk = yr
ijk − K−1

j

∑Kj

m=1 yr
ijm. We specify the Bayesian latent variable

model to measure EA as

yijk = βij xjk + εijk

εijk ∼ N(0, σ 2
i ), βij ∼ N(βi, σ

2
β ),

(1)

for i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , Kj . In the model, βij represents
the ith perceiver’s discrimination level on the j th stimulus, which is assumed to
follow a normal distribution with mean βi and variance σ 2

β . Note that βi is the ith
perceiver’s average discrimination level over all the J stimuli. We allow a perceiver
to have different discrimination levels for different stimulus, but assume these
discrimination levels are similar by imposing a random-effect structure on all βij ’s.
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Fig. 1 Illustration of the two latent dimensions in EA. Plot (a): a subject has an attenuated
discrimination and relatively large variability. Plot (b): a subject has a magnified discrimination
and relatively small variability

An empathic perceiver’s discrimination parameter βi will be positive, indicating
that on average, the perceiver’s response has a congruent association with the target.
A smaller value βi suggests that the perceiver’s response signal is more attenuated
compared to a perceiver with a larger βi value. Furthermore, a perceiver with a
negative βi has a response that moves in opposite direction compared to the target’s
ratings, yet these instances are generally rare in EA studies. Additionally, Model
(1) contains the random error εijk , which is assumed to follow a normal distribution
with mean 0 and perceiver-specific variance σ 2

i . The smaller the variance, the higher
the consistency in the perceiver’s ratings, so we refer to σ 2

i as the measure of the
variability in EA of the ith perceiver.

Figure 1 illustrates two examples of concept on how the two latent dimensions
of EA (i.e., discrimination and variability) contributes to the actual ratings given
by a perceiver. The black line depicts the (observed) target true ratings. The green
dashed line represents the (unobserved) expected ratings associated with a certain
discrimination level, and the red dashed line represents the (observed) actual ratings
after random errors are added to the green dashed line. The plot on the left shows
an example of ratings with an attenuated discrimination (i.e., a less distinctive
interpretation of true signals) and relatively large variability (i.e., a large deviation
between the expected ratings and the actual ratings), and the plot on the right shows
an example with a magnified discrimination and relatively small variability.

To complete the Bayesian model specification, the assignment of prior distribu-
tion is listed in the following:

βi ∼ N(1, 100), σ 2
i ∼ IG(2, 1), σ 2

β ∼ IG(2, 1), (2)

for i = 1, . . . , n. Note that the ratings have a range of 9 points, so the normal
prior on βi has a variance of 100, which is large enough to make the normal prior
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a non-informative prior. The mean of βi is 1 because without any prior knowledge,
we assume all perceivers have roughly the same interpretation as the true targets.
The prior for the variance σ 2

i is IG(2, 1), which is the inverse gamma distribution
with a shape parameter of 2 and a scale parameter of 1, so the corresponding
prior variance is infinite. Thus, the assigned priors are conventional conjugate
non-informative priors, which facilitates data-driven inference and results in fast
Bayesian computation (Sun et al., 2001). The proposed model is referred to as the
BDV Model (Bayesian model with the latent dimensions on Discrimination and
Variance). Finally, note that when there is only one stimulus in the EA study (i.e.,
J = 1), the BDV Model can be reduced to

yik = βixk + εik, εik ∼ N(0, σ 2
i ), (3)

where the priors for βi and σ 2
i are the same as in (2) for i = 1, . . . , n.

Note that the general BDV Model with J ≥ 2 is a random-effect model,
with a random slope (perceiver-specific discrimination) and a perceiver-specific
variance. The perceiver-specific variance is a novel and indispensable part of the
model because it represents a unique EA dimension. In the applications below,
we demonstrate that, compared to the same models with constant variance, i.e.,
σ 2

i = σ 2 for all i = 1, . . . , n, the incorporation of perceiver-specific variance
improves the model fits significantly. After fitting the BDV Model, we use the
posterior mean for βi and σ 2

i as the estimated discrimination and variability for
the EA of the ith perceiver.

To facilitate the implementation of the model, we include the R code in the sup-
plementary material. The code is based on “Just-Another Gibbs-Sampler”(JAGS)
model, which is an open-source program designed to run Bayesian hierarchical
model using Markov chain Monte Carlo methods (Plummer et al., 2003). With
JAGS, users specify a model and its prior specification; then a Markov chain
simulation is automatically implemented for the resulting posterior distribution.
This frees users from manually deriving the MCMC algorithm, which is the main
obstacle for the implementation of Bayesian inference in practice. JAGS is designed
to work closely with the R language. Our code uses the rjags package (Plummer,
2019) as the interface from R to JAGS. Detailed instructions are annotated in the
code.

3 Applications

3.1 Study on Social Empathic Accuracy

In our first application, we consider a study conducted by Devlin et al. (2014)
that examined the relationship between perceivers’ levels of positive emotion
and EA. Their study included n = 121 perceivers, who watched four videos
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of targets discussing emotional events in their lives. These four videos vary in
valence (positive or negative) and intensity (high or low), resulting in four non-
homogeneous videos, including high-positive, low-positive, high-negative, and
low-negative. While watching each video, perceivers provided continuous online
ratings of the corresponding target’s emotion using a 9-point scale (from 1 =
extremely negative to 9 = extremely positive). The ratings from the perceivers were
then compared with those from the targets.

To measure the EA of each perceiver, the authors calculated the Fisher transfor-
mation to the Pearson correlation between perceivers’ ratings and targets’ ratings for
each video. In other words, each participant had four EA measures, each of which
corresponds to one video. For the correlation coefficient r , the corresponding Fisher
transformation is defined as Z = (1/2) log {(1 + r)/(1 − r)}, where log denotes the
natural logarithm. While r ranges from −1 to 1, the Fisher transformed correlation
can take any value from the real line, so it is more appropriate to conduct statistical
analyses with the normality assumption based on Z than based on r . In this paper, we
refer to Z as the “r-to-Z EA estimate” and denote it to be rZ. The data from Devlin
et al. (2014) are publicly available at https://doi.org/10.1371/journal.pone.0110470.

Because these four videos varied in valence and intensity, they should be treated
as four distinct individual stimuli instead of multiple stimuli under one condition,
and we fit the reduced BDV Model (3) to each of the four video stimulus separately.
We begin with a graphical demonstration to illustrate how the two latent EA
dimensions can provide more insights on EA compared to the conventional measure
rZ. Figure 2 shows two plots, each depicting the ratings given by the target and
those by three perceivers (selected for illustrative purposes) for the high-negative
video. In each plot, the black line represents the true target’s rating, and the other
lines represent ratings of the selected perceivers watching the same video. The
estimated rZs between the target’s and perceivers’ ratings are listed in the legend,
along with the estimated discrimination and variability parameters (abbreviated as
D and V, respectively). In the top panel, the three perceivers demonstrated very
different rZ, whereas in the bottom panel, the three perceivers had similar rZ.

In the top plot of Fig. 2, the three perceivers (denoted as P1, P2, and P3)
demonstrated very different EA levels, indicated by the varying estimated rZ values
(1.51, −0.22, and 0.51). However, the correlational analysis does not explain why
the three perceivers have such dramatically different EA scores. Based on the
Bayesian estimates, we can see that P1’s greater EA (red line, r̂Z = 1.51) is due
to a higher level of discrimination (D̂ = 0.81) and smaller variability (i.e., higher
consistency, V̂ = 0.16) when rating the target. The perceiver P2 has a negative
correlation (green line, r̂Z = −0.22), which is due to the negative discrimination
(i.e., the person perceived the target’s emotion in the opposite direction, D̂ =
−0.14). In addition, P2 also has the largest variability among the three perceivers
reflecting the more obvious fluctuation of P2’s ratings (V̂ = 0.34). Moreover, P3
(blue line, r̂Z = 0.51) has a moderate EA level: compared to P1, P3 has a lower
discrimination (other than the initial drop, P3’s ratings are quite flat, not showing
the gradual decline in the target’s ratings, D̂ = 0.34) and larger variability (the
discrepancy between P3’s ratings and the target’s ratings are noticeably large in
both ends of the series, V̂ = 0.38).

https://doi.org/10.1371/journal.pone.0110470
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Fig. 2 Comparison of the target’s ratings and the six perceivers’ ratings in the high-negative video,
where rZ denotes the r-to-Z transformed correlation and D and V represent discrimination and
variance in the Bayesian model, respectively

In the bottom plot of Fig. 2, we chose data from three different perceivers (P4,
P5, and P6) to further demonstrate the advantage of utilizing discrimination and
variability to study EA over the rZ measure. In this case, the three perceivers have
similar estimated rZ values (1.03, 1.03, and 1.06). Hence, based on the correlational
analysis, these perceivers have similar EA. However, the estimates of discrimination
and variability show that their underlying EA dimensions have distinct patterns. P4
(red) has a large discrimination value (D̂ = 1.34), resulting from the fact that P4’s
ratings have a more dramatic decline than the target’s ratings. At the same time, P4
has the largest variability among the three perceivers, reflecting P4’s pronounced
shift toward negative ratings at around time units 25 and 40. In addition, P6 (blue
line) has both the smallest discrimination (D̂ = 0.45) and smallest variability (V̂ =
0.14) among the three perceivers. Other than the initial drop, P6’s ratings are mostly
flat, only spanning a narrow range of scores. Unlike the dramatic decline in P4’s
ratings and slow change in P6’s ratings, P5’s (green line) ratings follow the gradual
decline in the target’s ratings. Because of the inadequate drop in the beginning and
opposite change in the end of the series, P5 has a larger variability (V̂ = 0.38)
than P6.
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Fig. 3 Perceivers’ video-specific discrimination and variance (red = high-positive, orange = low-
positive, blue = high-negative, green = low-negative)

Based on the examples included in Fig. 2, we can see that the two latent
discrimination and variability dimensions specified in the BDV Model offer unique
information regarding EA compared to the correlation analysis. Specifically, the
proposed BDV Model is able to explain how perceivers differ in their EA and
to identify possible differences in the underlying dimensions in EA when the
correlation may show no differences.

Next, we compare the latent dimensions across the four videos. Figure 3 (left
panel) shows that perceivers had higher discrimination ability for the high-positive
video (red dots) and lower discrimination ability for the low-negative video (green
dots). These findings are in agreement with previous studies of showing greater EA
for positive videos compared to negative videos in both healthy and clinical samples
(Lee et al., 2011). As for the variability, the largest video-specific variances are from
the two low-intensity videos (orange and green dots in the right panel of Fig. 3).

As we mentioned in the last section, a novelty of the BDV Model is that it
incorporates perceiver-specific variances for random errors instead of assuming
a constant variance as in most of the conventional random-effect models. We
demonstrate the advantage of this functionality by comparing the model fit between
the BDV Model and the following random-effect model with a constant variance:

yik = βixik + εik, εik ∼ N(0, σ 2). (4)

Note that Model (4) assumes that all the perceivers have the same variability,
i.e., the same consistency level in EA. The model comparison is conducted using
the deviance information criterion (DIC), where a small value of is preferred and
a difference of more than 10 usually rules out the model with a higher DIC
(Spiegelhalter et al., 2002). The results are summarized in Table 1. The evidence
is clear and convincing that across all the four video groups, the BDV Model
(3) provides much better model fits than Model (4). This data-driven evidence
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Table 1 Model comparison between the BDV Model (3) and Model (4) using DIC

High-negative Low-negative High-positive Low-positive

BDV Model (3) 18288.58 12981.28 9318.62 20196.82

Model (4) 20758.17 14949.47 12063.96 22649.64

Table 2 Correlation between rZ and the Bayesian measures on EA

High-negative Low-negative High-positive Low-positive

Discrimination 0.74 (p < 0.01) 0.57 (p < 0.01) 0.40 (p < 0.01) 0.52 (p < 0.01)
Variance −0.63 (p < 0.01) −0.08 (p = 0.41) −0.72 (p < 0.01) −0.52 (p < 0.01)
BEA 0.99 (p < 0.01) 0.98 (p < 0.01) 0.96 (p < 0.01) 0.99 (p < 0.01)

P-values are based on two-tailed tests and included in parentheses. Significant p-values (<0.05)
are indicated in bold

supports the inclusion of the perceiver-specific variance, which further confirms that
variability is a unique dimension aside from discrimination in EA.

Finally, we compare the results from the Bayesian model with the conventional
rZ estimates. For each video, we compute the Pearson correlation between per-
ceivers’ estimated rZ estimates and the Bayesian estimates of discrimination and
variability, respectively. Furthermore, we investigate the correlation between the
rZ estimates and the estimates for βi/σi, i = 1, . . . , n, which is the ratio of
the discrimination and the square root of random error’s variance, similar to the
measure used by Cao et al. (2010). We refer to this ratio as the “Bayesian EA
aggregated estimate” and denote it as BEA. Similar to rZ, the measure BEA can
take any value from the real line.A high BEA implies that a perceiver has a relatively
large discrimination and a relatively small variability.

Table 2 shows that the association between perceivers’ rZ and BEA is consis-
tently high, with the correlation being almost 1. However, the association between
perceivers’ rZ and the latent dimensions on discrimination and variability are weak
to moderate (though most of them are statistically significant). This indicates that
the conventional correlation, as was used by Devlin et al. (2014) and most existing
literature, only provides a valid aggregate measure for EA, but it does not provide
much insight into the dimensions underlying the structure of EA.

3.2 Study on Musical Empathic Accuracy

In a study of the association between EA and accuracy of emotion recognition in
music, Tabak et al. (In press) collected data from 415 undergraduate perceivers
enrolled at Southern Methodist University. Perceivers participated in a novel music
EA task, in which they listened to and rated 12 brief music recordings expressing
the target’s (musician’s) primary emotions of joy/happiness, sadness, anger, and
tenderness (3 recordings per emotion). Stimuli were solo piano pieces created by



Bayesian Model for Empathic Accuracy 211

six composer-pianists. Identical to the video EA task in the previous case study,
perceivers listened to the excerpts and provided continuous real-time response
evaluations of how negative or positive (1 = very negative to 9 = very positive)
they perceived the music to be. Samples were collected every 2 s. The same data
collected from the composer-pianist targets provided the “true” target ratings to be
compared with perceivers’ ratings.

EA research has typically focused on cognitive empathy, i.e., perceivers’ under-
standing of a target’s thoughts, feelings, and general mental state (Zaki et al., 2009).
However, recently Morrison et al. (2016) included an additional assessment of EA
in which they slightly altered the instructions of the task to assess affect sharing
or the extent to which a perceiver experiences the same emotion as a target (i.e.,
affective empathy). To examine the two different kinds of EA, perceivers in this
study were randomized into an affective empathy group or a cognitive empathy
group. In the affective empathy group (n = 230), perceivers were asked to provide
their own emotional response when listening to the music, whereas in the cognitive
empathy group (n = 185), they were instructed to try to understand the emotion
being communicated or expressed by the composer-pianist in the recordings.

In this application, our goal is to use the BDV Model to investigate the association
between perceivers’ EA underlying dimensions and their musical training in both
groups. Musical training has been shown to modulate emotion recognition of music
(Di Mauro et al., 2018). Our aim here is to examine whether musical training is asso-
ciated with the accurate perception of musical emotion, as operationalized according
to the musician-targets’ intent. Musical training is measured by the Goldsmiths
Musical Sophistication Index (Müllensiefen et al., 2014), a psychometric tool for
the measurement of musical attitudes, behaviors, and skills. For each group, we first
compute the correlation between the estimates of each dimension in EA and the
Gold-MSI among the perceivers. In addition, we examine the association of EA and
Gold-MSI in three conditions: (1) across all 12 music recordings (i.e., J = 12), (2)
among the 6 positive music recordings (i.e., J = 6) which consist of 3 recordings
expressing happiness and 3 recordings expressing tenderness, and (3) among the
6 negative music recordings (i.e., J = 6) which consist of 3 recordings expressing
sadness and 3 recordings expressing anger. Note that there are multiple stimuli under
each condition, and it is not straightforward to compute an overall EA measure from
the correlational analysis in this setting.

We fit the BDV Model (1) to multiple stimuli for each of the three above
conditions. We then compute the Pearson correlation between the Gold-MSI and
the Bayesian estimates of discrimination and variability, respectively. Table 3
provides the results for the affective empathy and the cognitive empathy groups.
First, for the affective empathy group, none of the association between estimated
discrimination nor variance with musical background is statistically significant. On
the other hand, for the cognitive empathy group, we find a significant association
between perceivers’ estimated discrimination and their musicality across all the
three conditions. However, the association between the estimated variability and
perceivers’ musicality is not statistically significant. In other words, higher levels
of discrimination in the cognitive assessment of musician/targets’ emotions are
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Table 3 Correlation between empathic accuracy latent dimensions and musicality

Affective group Cognitive group

Discrimination Variance Discrimination Variance

All music −0.00 (p = 0.98) −0.02 (p = 0.78) 0.22 (p < 0.01) −0.09 (p = 0.23)

Positive music 0.07 (p = 0.31) −0.01 (p = 0.90) 0.19 (p = 0.01) −0.14 (p = 0.06)

Negative music −0.00 (p = 0.50) −0.02 (p = 0.74) 0.15 (p = 0.04) −0.07 (p = 0.33)

P-values are based on two-tailed tests and included in parentheses. Significant p-values (<.05) are
indicated in bold

Table 4 Model comparison between the BDV Model (1) and Model (5) using DIC

All music Positive music Negative music

Affective group Model (1) 183732 70507 107962

Model (5) 215722 83849 131688

Cognitive group Model (1) 167756 63654 97049

Model (5) 189105 72736 116119

associated with perceivers’ relative degree of musical ability, while the level of
consistency is not. In contrast, the congruence of one’s personal emotional responses
to the musician’s expressive intentions (EA for affective empathy) is not related to
one’s training and depth of musical knowledge. Finally, in order to confirm the need
for including perceiver-specific variance, similar to what was done in the previous
application, we compare the model fit between the BDV Model (1) and the following
random-effect model with a constant variance:

yijk = βij xjk + εijk, εijk ∼ N(0, σ 2), i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , Kj .

(5)
The prior specification of model (5), other than the perceiver-specific variance,
remains the same as that in (2). The model comparison using DIC is summarized
in Table 4. It shows that for all the three conditions and for both the affective
group and the cognitive group, DIC for the BDV Model (1) is substantially smaller
than that for Model (5). The model comparison results provide strong evidence
to show that the incorporation of the perceiver-specific variance improves model
fit substantially. Whether examining one stimulus or multiple stimuli, variability,
as measured by the perceiver-specific variance of the random error in the model,
is a distinctive dimension of EA, which is inherently different from perceiver-
specific discrimination. Thus, when looking at perceivers’ EA patterns, including
both dimensions provides more detailed information about perceivers’ perceptions.
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4 Conclusion

In this article, we have proposed a Bayesian latent variable model which serves
as an alternative to the conventional correlational analysis for empathic accuracy
(EA) research using continuous real-time assessments. The proposed BDV model
has three main advantages over the correlational analysis. First, it is more sensitive
to perceiver-level differences in EA studies, as reflected in varying response
behaviors (e.g., using different ranges of the scale). Correspondingly, the BDV
Model quantifies two behavioral dimensions of EA, discrimination, and variability.
Similar to the correlational analysis, these two dimensions measure the overall EA
level for each perceiver, but more importantly, they explain how perceivers differ
in EA. Using correlation, many perceivers giving different rating patterns may have
a similar EA level, but using discrimination and variability, these differences can
be identified. Finally, while correlational analysis must be conducted independently
for each individual target, the proposed model is capable of providing an overall
EA measure where multiple stimuli are included under one condition of an EA task.
Taken together, the Bayesian approach to EA can shed light on distinctions that are
not detectable by simple correlational analysis.

There are many areas of research that can benefit from this approach. Broadly
speaking, it could be used to increase the analytical precision of any experi-
mental paradigm involving the comparison of sequential measurements on latent
perceptual responses, such as research on social cognitive deficits in individuals
with autism spectrum disorders and schizophrenia. The association of EA with
social functioning in healthy and clinical populations has previously relied on
the correlational approach to EA analysis (Lee et al., 2011). With the approach
described here, researchers may be able to identify specific dimensions of EA
that may be more or less impaired among clinical populations. For example,
the discrimination parameter could be used to elucidate the extent to which the
amplification of negative information and suppression of positive information that
characterize individuals with depression (LeMoult & Gotlib, 2019) . The increased
level of specificity could also benefit neuroscientists by examining the extent to
which different dimensions of EA are correlated with real-time neural processing
(Mackes et al., 2018). Furthermore, the BDV model can be improved in future
research by incorporating other covariates that represent perceivers’ and targets’
characteristics. In general, improving the BDV model requires a consideration of
both the quality of the model fit and its interpretability in the context of measuring
EA.

In conclusion, the proposed Bayesian EA model is more flexible in handing
perceiver-specific parameters than traditional correlational analysis. The model
specification is simple, and the computation is efficient. Annotated R code is
included to facilitate the implementation of the proposed model.
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Variance Estimation for Random-Groups
Linking in Large-Scale Survey
Assessments

Bingchen Liu, Yue Jia, and John Mazzeo

Abstract The random-groups design is frequently used in equating and linking
scores from two tests, in which the linking functions are derived from the test scores
of two samples of the test-taker population. In this paper, we consider estimating
variances of test score population statistics for large-scale survey assessments
(LSAs), where the random-groups design is used in linking latent variable test
scores. Examples of LSAs include National Assessment of Educational Progress
(NAEP), Trends in International Mathematics and Science Study (TIMSS), and
Programme for International Student Assessment (PISA). In estimating variances
of population statistics in LSAs, the common practice takes into account the
uncertainties due to sampling and latency. In this paper, we propose a variance
estimation method as an extension of the existing procedure that takes into account
the random-groups linking. We illustrate the method using a NAEP dataset for
which a linear linking function is used in linking test scores from a computer-
based test to those from a paper-and-pencil test. The proposed method can be easily
extended when random-groups equating and linking are applied to other assessment
contexts, with linking functions being parametric or non-parametric.
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1 Introduction

In educational assessments, score linking is a general term that refers to relating
scores from different tests or test forms (American Educational Research Asso-
ciation et al., 2014). This paper focuses on the random-groups linking in which
one sample drawn from the population is administered one test form, while another
sample drawn from the same population is administered a different test form. Based
on the two samples selected from the common population, a linking function can be
derived to transform the scores of one test form to the scores on the other test form
(Kolen & Brennan, 2004).

Large-scale survey assessments (LSAs) are those used to monitor academic
performance for populations (e.g., US fourth graders). One of the most important
uses of LSAs is to track population statistics at a given time and changes in
population statistics over time, such as how countries differ in students’ mean scores
on reading or how the mean reading scores in a country or a region change over
time. Examples of LSAs include US National Assessment of Educational Progress
(NAEP), Trends in International Mathematics and Science Study (TIMSS), and
Programme for International Student Assessment (PISA).

LSAs apply item response theory (IRT) latent variable regression models to
directly estimate score distributional statistics for the population and subpopula-
tions, such as population means and the percentage of students above specified
proficiency levels (Mislevy, 1984, 1985). To provide a means to estimate population
statistics, the programs also make available plausible values for individuals sampled
from the population. Plausible values are random draws, or multiple imputations,
from the performance distribution for individuals, conditional on the IRT latent
regression model parameter estimates, response data, and contextual information
(Mislevy, 1991; Braun & von Davier, 2017). In addition, LSAs make use of
sampling weights to draw inferences from the probability-based samples to the
population of interest. See, for example, von Davier et al. (2006) and Mazzeo (2018)
on the design, sampling, and analysis of LSAs.

For LSAs, standard errors are estimated along with the population statistics.
Typically, two general sources of variance are accounted for: sampling of test takers
and latency of the test scores. The sampling variance accounts for the variability
among the units in the population. The size of the sampling variance is in part
a function of the sample design (see, e.g., Johnson & Rust, 1992). The latency
variance reflects the uncertainty due to the statistics being estimated from the test-
taker performance on a set of test questions and other auxiliary information used
in the latent variable regression models. The latency variance is also referred to
as between-imputation variance. Details on how these variances are estimated for
LSAs are reviewed in Sect. 2.

One approach to estimate the sampling variance of a statistic is to use resampling
methods such as the jackknife, balanced repeated replication (BRR), or bootstrap
methods. These resampling methods create a number of subsamples and use the
variability among the estimates from the subsamples to estimate the variance of
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the statistic. An alternative approach is to linearize the statistic (e.g., using the
delta method or Taylor series expansion) and then estimate the variance of the
linearized statistic analytically. Wolter (2007) described both approaches. Kish and
Frankel (1974) showed in simulation studies that using a multistage design with two
primary sampling units per stratum, both the jackknife and BRR gave acceptably
low bias in estimated variance for various statistics. They also showed that these
two methods gave results that were similar to those achieved via the Taylor series
linearization. Many theoretical and empirical studies have also supported that the
resampling methods perform well and result in comparable standard error estimates
as the linearization approach (e.g., Krewski & Rao, 1981; Rao & Wu, 1985; Valliant,
1990; Shao, 1996).

In this paper, we consider the random-groups design where a sample of test-
takers (referred to as the target sample) is administered assessment T, while another
sample (referred to as the source sample) is administered assessment S. The scores
from assessments S and T are estimated on the two separate latent variable scales.
In addition, the scores from assessment S are linked to assessment T via random-
groups linking. One example is to link scores from a paper-and-pencil test to a test
given on a computer (Eignor, 2007; Jewsbury et al., 2020). Other examples are the
studies in linking scores between two different LSAs (Johnson, 1998; Johnson et al.,
2005; Jia et al., 2011).

For the random-groups design, the linking function coefficients are statistics
calculated based on the source and target samples and using the test scores that
are subject to latency variance. Kolen and Brennan (2004) discussed the use of the
bootstrap to estimate the sampling variance of statistics for assessments with the
random-groups linking. However, we are not aware of any real-data applications.

When the random-groups design is applied in linking the LSA test scores,
uncertainty in the linking function is typically ignored. Mazzeo et al. (in press)
offered an approach to approximate the variance associated with the linking
function, as an additional source of variance, adding to the sampling and latency
variances typically estimated for the population statistics. Jewsbury (2019) derived
analytic equations for variance estimation of population statistics such as averages,
percentiles, and standard deviations. He suggested that the resampling methods
might be more tractable in practice to cover a wide range of statistics. In this paper,
we propose a variance estimation method that incorporates the uncertainty of the
linking function into the sampling and latency variance estimates. The proposed
method can be used to estimate variances for both linear and nonlinear statistics.
Further, the method can be used when the two samples used in linking are either
dependent or independent from each other.

In Sect. 2, we review the variance estimation approach currently used in LSAs.
In Sect. 3, we introduce the new variance estimation method, which is an extension
and modification of the existing method. We illustrate the method with a dataset
from NAEP in Sect. 4. The conclusion follows in Sect. 5.
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2 Variance Estimation in Large-Scale Survey Assessments

For complex survey data, analytical variance estimators for nonlinear statistics are
difficult to develop, and some do not have a closed form. For LSAs, one common
practice is to use the jackknife repeated replication (JRR) with replicate weights to
estimate sampling variance. Several studies (Hansen et al., 1985; Kovar et al., 1988)
have shown that JRR provides reasonable variance estimates for both linear and
nonlinear statistics. Briefly, a total of H strata are formulated, and each replicate is
created by excluding a random set of data in a stratum while keeping the remaining
subset from that stratum and all the data in the other H − 1 strata. The replicate
weights are then calculated for each of the H replicates which reflect the complex
sample design. Those replicate weights also help protect the survey participants’
information because the more detailed sampling information, such as stratification,
primary sampling units (PSUs), clusters, etc., are not needed with the availability of
the replicate weights. Details are provided in the next section. Applications include
NAEP and TIMSS.

Using NAEP as an example, we now review how the sampling and latency
variances are estimated. Let W orig represent the original sampling weights for
the full sample, and Wj represent the j th set of jackknife replicate weights,
j = 1, 2, . . . , Nr , respectively, for a total of Nr sets of replicate weights. Further,
let vi denote the ith set of plausible values which is on an arbitrary IRT scale T ,
i = 1, 2, . . . , M . Then the population statistic on scale T , denoted as t̂ (e.g.,
population average score), can be calculated as

t̂ =
∑M

i=1 t̂i

M
(1)

where t̂i is calculated using vi with weight W orig. The sampling variance of t̂ is

calculated as 1
M

∑M
i=1
∑Nr

j=1

(
t̂ij − t̂i
)2 where t̂ij denotes the statistic calculated

using vi with replicate weight Wj .
In practice, the sampling variance is often approximated based only on one set of

plausible values to reduce computational burden. For example, using the first set of
plausible values, the sampling variance can be estimated as

V̂arsamp
(
t̂
) =

Nr∑

j=1

(
t̂1j − t̂1

)2 (2)

Based on the work of Rubin (2004), the latency variance of t̂ is estimated as
follows:

V̂arlat
(
t̂
) =
(

1 + 1

M

) ∑M
i=1 (t̂i − t̂ )

2

M − 1
. (3)
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The total variance for the statistic t̂ is the sum of sampling and latency variances:

V̂artotal
(
t̂
) = V̂arsamp

(
t̂
)+ V̂arlat

(
t̂
)

(4)

3 Variance Estimation to Incorporate Uncertainty
in Random-Groups Linking

As mentioned in Sect. 1, we consider that a target sample of test-takers is adminis-
tered assessment T , while a source sample is administered assessment S. Assess-
ment T results are on latent scale T , while assessment S results are on latent
scale S. The objective is to apply a linear function to link assessment S results
from scale S to scale T by aligning the mean and standard deviation (SD) of the
sample taking assessment S to those of assessment T . For example, during the
NAEP transition from paper-based assessment (PBA) to digitally based assessment
(DBA), the sample who took the PBA is the target sample, and the sample who
took the newly implemented DBA is the source sample. The linking function is then
derived to link the DBA results to the latent scale for PBA, so that the DBA and
PBA results can be compared.

For the source sample statistics that are linked to scale T , we propose a new
resampling approach for variance estimation. Under the method, the variance
consists of the sampling and measurement variance components, each taking into
consideration the random-groups linking. We first discuss the JRR method for the
estimation of the sampling variance that involves resampling both the target and
source samples simultaneously and then the estimation of the latency variance. The
proposed method is an extension of the method discussed in Sect. 2. The method
works when the two samples are dependent or independent.

To be more specific, let:

• xi represent the ith set of plausible values for the target sample on scale T ,
• θi represent the ith set of plausible values for the source sample on scale S,
• yi represent the ith set of plausible values for the source sample that has been

transformed to scale T , i = 1, 2, . . . , M .

Further, let θS and σ̂S denote the mean and SD of the source sample plausible
values on scale S, weighted by W orig, the original student sampling weights of
the source sample. Similarly, let XT and σ̂T denote the mean and SD of the
target sample plausible values on scale T , weighted by W ′

orig, the original student
sampling weights of the target sample.

The coefficients â and b̂ of the linear linking function are calculated as

â = σ̂T

σ̂S

(5)
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and

b̂ = XT − âθS (6)

Apply
(
â, b̂
)

to transform θi from scale S onto scale T :

yi = âθi + b̂, i = 1, 2, . . . ,M. (7)

Last, we calculate the statistic t̂ for the source sample on scale T using Eq. 1, with
t̂i being estimated using yi with W orig, for i = 1, 2, . . . , M .

In the text below, we describe the procedure in estimating the variance of the
statistic t̂ .

3.1 Estimation of Sampling Variance

In this section, we describe the procedure used in estimating the sampling variance
of the source sample statistic t̂ as defined in Eq. 1, which is linked to scale
T through random-groups linking. We further introduce the following notations
Wj ,W ′

j , which represent the j th set of jackknife replicate weights of the source
and target samples, respectively, j = 1, 2, . . . , Nr . In the random-groups linking
design, it is common that the two samples to be linked have the same number
of replicate weights. Therefore, in our method, we assume the source and target
samples have the same number of replicate weights (denoted as Nr here). To reduce
the computational intensity, we use only the first set of plausible values from both
samples for the calculation.

Using the j th pair of replicate weights
(
Wj ,W ′

j

)
, j = 1, 2, . . . , Nr , we

conduct the following steps of calculation:

1. Compute θSj
and σ̂Sj

, the mean and SD of the first set of plausible values for the
source sample on scale S, weighted by Wj , as well as XTj

and σ̂Tj
, the mean and

SD of the first set of plausible values for the target sample on scale T, weighted
by W ′

j ;

2. Calculate the coefficients of the linear linking function
(
âj , b̂j

)
based on Eqs. 5

and 6, with θSj
, σ̂Sj

,XTj
, and σ̂Tj

;

3. Apply
(
âj , b̂j

)
to transform θ1 of the source sample from scale S onto scale T

of the target sample, i.e. y
j
1 = âj θ1 + b̂j , where y

j
1 is the transformed plausible

values for the source sample, j = 1, 2, . . . , Nr ;
4. Calculate t̂

′
1j , using y

j
1 with replicate weight Wj , j = 1, 2, . . . , Nr .
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Fig. 1 The calculation process of sampling variance estimation for the source sample

The sampling variance of statistic t̂ can then be approximated as

V̂arsamp|linking
(
t̂
) =

Nr∑

j=1

(
t̂
′
1j − t̂1

)2
, (8)

where

t̂1 = 1

Nr

Nr∑

j=1

t̂
′
1j (9)

Figure 1 illustrates the calculation process of V̂arsamp|linking
(
t̂
)

in Eq. 8.
Alternatively, one can approximate the sampling variance of statistic t̂ as

V̂ar
′
samp|linking

(
t̂
) =

Nr∑

j=1

(
t̂
′
1j − t̂

′
1

)2
, (10)

where t̂
′
1 is calculated by using the original weights W orig and the first set of

plausible values that are linked to scale T . The scale transformation follows steps

1-3 described above while using the original student weights
(
W orig,W

′
orig

)
.

We point out that when calculating (âj , b̂j ), j = 1, 2, . . . , Nr , we pair the
replicate weights once and in their corresponding sequential order (i.e., pairing the
j th replicate weights from both the source and target samples). For the source and
target samples that are dependent, pairing the replicate weights of the two samples in
this matter properly accounts for the dependency between the samples. On the other
hand, if the source and target samples are independent, then the pairings between
the source and target samples can be random. In fact, there are Nr ! possible ways to
pair the replicate weights between the two samples. In theory, one can calculate the
variance estimate for all Nr ! sets of pairings and then take an average. In practice,
Nr ! is usually a very large number. To reduce computational burden, a practical
approach is to randomly select a subset from the Nr ! sets of pairings. Suppose the
Ns (Ns < Nr !) sets of random pairings are generated and for ith set of pairing

the sampling variance estimate is V̂ar
(i)

samp|linking

(
t̂
)
, i = 1, 2, . . . , Ns , which is
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calculated using Eq. 8. Then the sampling variance is estimated as the average of
the Ns estimates:

V̂ar
∗
samp|linking

(
t̂
) = 1

Ns

Ns∑

i=1

V̂ar
(i)

samp|linking

(
t̂
)

(11)

The choice of the value Ns is a balance between the computation intensity and the
stability of the variance estimate.

The above procedure described how to calculate the sampling variance for the
source sample statistics only. There are also situations where the statistics are
computed based on combining the source and target samples. Next, we show that
the procedure can be generalized to estimate the sampling variance for the combined
sample as well.

To do that, after getting the transformed plausible values y
j
1 , we concatenate

y
j
1 with x1 of the target sample as the combined set of plausible values, z

j
1 =(

y
j
1

x1

)

, j = 1, 2, . . . , Nr . Then the statistic of interest based on the combined

sample can be calculated using z
j
1 with weight W comb

j , which is the replicate

weights for the combined sample. Note that in practice, W comb
j are created specially

to the analysis of the combined sample. The rest of the calculation is the same as
shown in Eq. 8.

Figure 2 shows the calculation process for statistics of the combined sample.
Note that the replicate weights are paired following their corresponding sequential
order as (1 to 1), (2 to 2), etc. As discussed earlier, when the source and target
samples are independent of each other, the pairing of plausible values from the two
samples can be random.

3.2 Estimation of Latency Variance

We now discuss the procedure of calculating the latency variance of the source
sample statistics t̂ as defined in Eq. 1, which is linked to scale T through the random-
groups linking.

Fig. 2 The process of sampling variance estimation for the combined sample
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Using the M sets of plausible values from the source sample and the target
sample, we conduct the following steps:

1. Calculate θSi
and σ̂Si

, the mean and SD of the scale scores using the ith set of
plausible value in the source sample on scale S with W orig;

2. Calculate XTi
and σ̂Ti

, the mean and SD of the scale scores using the ith set of
plausible value in the target sample on scale T with W ′

orig;

3. Calculate the transformation coefficients
(
âi , b̂i

)
based on Eqs. 5 and 6 with

(
θSi

, σ̂Si

)
and
(
XTi

, σ̂Ti

)
, i = 1, 2, . . . , M;

4. Apply
(
âi , b̂i

)
to transform θi from scale S onto scale T, i.e., y∗

i =âiθi+b̂i ;

5. Calculate the statistic of interest t̂∗i , using y∗
i with W orig, i = 1, 2, . . . , M;

6. Calculate the latency variance of the source sample statistics.

V̂arlat|linking
(
t̂
) =
(

1 + 1

M

) ∑M
i=1

(
t̂∗i − t̂∗

)2

M − 1
(12)

where

t̂∗ =
∑M

i=1 t̂∗i
M

(13)

The process of calculating the latency variance is illustrated in Fig. 3.
In the above procedure, the plausible values from the two samples are paired

when calculating the linking function coefficients
(
âi , b̂i

)
, i = 1, 2, . . . , M. The

plausible values for the source and target samples are multiple imputations that
were drawn independently using two latent regression models and therefore are
independent regardless whether the two samples are dependent or independent of
each other.

There are a total of M! possible sets of pairings of the plausible values from the
two samples, with M sets of plausible values for each sample. In practice, we can
choose a subset of random pairings to reduce computation intensity. Let’s assume

Fig. 3 The calculation process of latency variance estimation for the source sample
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Fig. 4 The process of latency variance estimation for the combined sample

Ns (Ns < M!) sets of random pairings are generated, and for ith set of pairing, the

latency variance estimate is V̂ar
(i)

lat|linking

(
t̂
)
, i = 1, 2, . . . , Ns which is calculated

using Eq. 12. Then the latency variance can be estimated as the average of the Ns

estimates:

V̂ar
∗
lat|linking

(
t̂
) = 1

Ns

Ns∑

i=1

V̂ar
(i)

lat|linking

(
t̂
)

(14)

The choice of Ns is a balance between the computation capacity and reducing
variability of the variance estimation.

The above procedure to calculate the latency variance is for the source sample
statistics only. Similar to the estimation of sampling variance, we can extend the
method to calculate latency variance for the statistics based on the combined source
and target sample. To do that, after transforming the source sample plausible values

from θi to y∗
i using

(
âi , b̂i

)
, i = 1, 2, . . . , M , we concatenate y∗

i with xi as z∗
i =

(
y∗

i
xi

)
. Then the statistic of interest based on the combined sample can be calculated

using z∗
i with weight W comb

orig , which is the original weights for the combined sample.
The rest of the calculation is the same as shown in Eq. 12.

Figure 4 displays this calculation procedure for the combined sample, with the
pairing of the plausible values following a (1 to 1), (2 to 2), etc. fashion.

Finally, the total variance of the statistic t̂ is the sum of the sampling and latency
variances. When the source and target samples are dependent, the total variance is
estimated as

V̂artotal|linking
(
t̂
) = V̂arsamp|linking

(
t̂
)+ V̂ar

∗
lat|linking

(
t̂
)

(15)
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3.3 Properties of the Proposed Variance Estimation Method

In this study, we consider linear linking in a random-groups design. That is, a linear
function is applied to align the mean and SD of the source sample score distribution
to the mean and SD of the target sample score distribution. Next, we show that
regardless of the sample size and other features of the source sample, its mean and
SD are fixed to be the same as those of the target sample as the expected result of
the linking. Recall the linear function has the following form:

yi = âθi + b̂, i = 1, 2, . . . , M. (16)

where â = σ̂T

σ̂S
and b̂ = XT − âθS , as defined in Eqs. 5 and 6.

Let YS and σ̂ Y
S denote the mean and SD of the transformed scores of the source

sample, then given how the â and b̂ are constructed, we have

YS = âθS + b̂ = XT (17)

and

σ̂ Y
S = â ∗ σ̂S = σ̂T (18)

The above property is true when the weights used in the calculation are the
original weights or the replicate weights. Therefore, for the estimation of sampling
variance discussed in Sect. 3.1, t̂

′
1j , j = 1, 2, . . . , Nr , for the source sample are the

same as the corresponding statistics of the target sample. According to Eq. 8, the
sampling variances of the overall mean and SD for the source sample are the same
as those for the target sample, provided the point estimates used in the formula are
also the same between the two samples.

Similarly, for the latency variance estimation, t̂∗i , i = 1, 2, . . . , M , of the source
sample are the same as the corresponding statistics of the target sample. Following
the same logic as for the sampling variance, the latency variances of the overall
mean and SD for the source sample are the same as those for the target sample.

Now for the combined source and target sample, we have plausible values zi =(
yi
xi

)
, i = 1, 2, . . . , M. Then the mean of the combined sample

Z = YSnS + XT nT

nS + nT

= XT (nS + nT )

nS + nT

= XT (19)

where nS and nT are the weighted sample size of the source and target samples.
Similarly, for the SD of the combined sample,
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σ̂Z =
√(

σ̂ Y
S

)2
nS + (̂σT )2nT

nS + nT

=
√

(̂σT )2nS + (̂σT )2nT

nS + nT

= σ̂T

√
nS + nT

nS + nT

= σ̂T

(20)

That is, the combined sample, after the scale linking, has the same mean and SD as
those for the target sample. Moreover, the variances of the overall mean and SD for
the combined sample are also the same as those for the target sample. The argument
is the same as for the source sample.

In addition, we point out that the variance estimation considering random-groups
linking does not necessarily result in a larger estimated value than those procedures
in which the uncertainty due to linking is ignored. For example, as described above,
the variances of the mean estimates are the same between the source and target
samples after linking. The property holds even when the source sample has much
smaller sample size than the target sample. For subgroups, as will be shown in the
empirical data below, it is possible to obtain a variance estimate that is smaller when
considering the uncertainty due to linking.

4 Applications

4.1 Empirical Results

In this section, we use the data from NAEP to illustrate our proposed method. A
study with the random-groups design and linear linking was implemented to link
the scores from DBA to PBA. The study involved administering the DBA and PBA
to two samples of students, respectively, namely, the DBA sample and the bridge
PBA sample. A total of 13,400 students were selected in the study to take either the
DBA or PBA. The DBA and bridge PBA samples are dependent with comparable
sizes.

Table 1 displays the comparison between the DBA and bridge PBA samples. We
can see the demographic distributions between the two samples are comparable.

The bridge PBA and DBA samples were analyzed separately using the IRT
latent regression models, and the results were expressed on two separate IRT scales.
Following the NAEP operational convention, a total of 20 plausible values were
imputed for each student in the 2 samples. In addition, for each sample, the original
weight and 62 replicate weights were provided for each student. The results for the
bridge PBA sample were estimated on the existing NAEP trend scale, where the
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Table 1 Weighted
percentage of students by
subgroup between the bridge
PBA and DBA samples: a
NAEP dataset

Bridge PBA DBA

Gender Male 51% 51%

Female 49% 49%

Race/ethnicity White 49% 49%

Black 15% 14%

Hispanic 27% 27%

Others 10% 10%

School type Public 91% 93%

Non-public 9% 7%

Table 2 Sample sizes, standard errors of estimates of means with and without linking error: the
combined DBA/PBA sample

Group N SE SE∗ SE Ratio

All students 13,400 0.87 0.69 1.26

Male 6900 0.95 0.78 1.22

Female 6500 0.92 0.78 1.18

White 5900 1.01 0.93 1.09

Black 2100 1.30 1.18 1.10

Hispanic 3900 1.20 1.01 1.19

Asian 700 1.83 1.77 1.03

American-Indian/Alaska 200 13.89 14.07 0.99

Northeast 2000 1.85 1.78 1.04

Midwest 2300 1.99 2.01 0.99

South 5400 1.10 0.95 1.16

West 3700 1.19 1.09 1.09

mean and SD of the scale were set operationally to be 150 and 35. For the DBA
sample, the results were generated on an arbitrary IRT scale with mean 0 and SD 1.
The plausible values of these separate analyses were then used to develop a linear
linking function (Eqs. 5 and 6) which allowed for the expression of the DBA results
on the bridge PBA scale. Since the DBA and bridge PBA samples are dependent,
when calculating the sampling variance, we applied the (1 to 1), (2 to 2), ..., (62
to 62) fashion of pairing the replicate weights between the DBA and bridge PBA
samples.

Table 2 presents the standard errors of the mean estimates for the combined
DBA/PBA sample, using the proposed new method (Eqs. 8, 14, and 15). For
comparison purpose, we also include the usual NAEP variance estimates which do
not contain linking variance. Column SE contains the standard errors calculated
using our proposed methods, and column SE∗ contains the standard errors without
accounting for random-groups linking. For the race/ethnicity variable, the students
in the Native Hawaiian/Other Pacific Islander and the Two or More Races categories
are not listed in the table.
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We can see from Table 2 that for the overall mean estimate, SE
(
Xall_student

) =
0.87, SE∗ (Xall_student

) = 0.69, with a ratio of 1.26. The change in standard errors
for subpopulation means, with and without accounting for random-groups linking,
is less than the value for the overall population. For the displayed subgroups, the
ratios range from about 0.99–1.22.

Furthermore, we observe that the ratios in standard error vary for different
subgroups, but have little relationship with the sample size of the group in question.
For example, the male and female students are about 50% of the overall population;
the ratios in standard error with and without accounting for linking errors are 1.22
and 1.18, respectively. On the other hand, White subgroup is about half the overall
population, but the ratio in standard error is 1.09. The linear linking functions were
derived based on the overall population, not the subgroups whose results were being
transformed by the function. As a result, the ratios in standard error are expected to
vary across subgroups. Analytical results of the effect on subgroup standard errors
are found in Jewsbury (2019).

4.2 Further Considerations on Latency Variance Estimation

As mentioned in Sect. 4.1, in NAEP, there are 20 plausible values for each student
in the source and target samples. When calculating the latency variance, the pairing
of the 20 sets of plausible values between source and target sample can be random
given the source and target sample plausible values are independent. For example,
one way of pairing the plausible values is to follow their corresponding sequential
order (i.e., pairing the ith set of plausible values from both the source and target
samples). As another example, one could pair the plausible values from the source
and target samples following the sequence as (1 to 2), (2 to 3), ...., (20 to 1). In
theory, there are 20! possible ways to pair the plausible values between the source
and target samples.

We point out that while the latency variance can be estimated based on a single set
of pairings of the source and target sample plausible values, averaging the latency
variance estimates over multiple sets of pairings, Ns (Ns < 20!), is expected to
improve the stability of the latent variance estimates. Using the NAEP data, we
conducted a simulation study to examine how the latency variance estimates vary
with different values for Ns .

In the simulation study, we considered five conditions, with Ns being 1, 5, 10,
25, and 50. For each of the five conditions, we calculated the latency variance
100 times, using the method discussed in Sect. 3. Figure 5 shows the box-plot
of the standard errors due to latency for the male students average score for the
100 replications. We can see that as Ns increases, the variation of the standard
error estimates decreases. The most noticeable variability reduction is from 1 to
5 random pairings. When Ns equals to 5, the difference between the maximal and
minimal standard error estimates among the 100 replications is less than 0.04. In
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Fig. 5 Box-plot of standard errors due to latency for the male students’ average score

this application, we estimated latency error based on five sets of random pairings,
considering the latency error estimation is acceptably stable given the magnitudes
of subgroup standard errors (as listed in Table 2) and that the latency standard error
estimates are typically around 0.2 to 0.4. In practice, similar simulation studies can
be helpful to specify the number of random pairings.

5 Conclusion

With complex survey data, it is desirable to have resampling methods that utilize
the existing estimation system for variance estimation. For the large-scale survey
assessments, the variance of the population statistics is estimated as the sum of
two components, the sampling and latency variances. In this paper, we proposed
a resampling method for variance estimation when random-groups linking design
is applied, incorporating linking error into both the sampling and latency variance
estimates. The method is applicable to both linear or nonlinear statistics.

We proposed the estimation procedure in the context of linear linking function.
However, the approach applies to both parametric and non-parametric linking
functions. Further, it can be applied when the linking sample are dependent or
independent.
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Item Response Theory and Fisher
Information for Small Tests

Bivin Philip Sadler and S. Lynne Stokes

Abstract Item response theory (IRT) is a comprehensive paradigm for modeling
test performance on the item level in contrast to the more general test-level
assessment of classical test theory (CTT). Given the added flexibility provided by
item-level modeling, IRT has become the predominant theory used in high-stakes
tests such as the SAT, LSAT, and GRE. IRT not only provides an estimate of the
examinee’s ability but also describes methods to estimate the variance (in terms of
Fisher Information I = 1/V ar(θ̂)) of the ability estimate. As will be explained
and demonstrated in this chapter, however, these methods are asymptotic and are
inadequate for smaller tests with 15 or fewer questions (as might be found in a
computer adaptive test). In addition to illustrating the difference between the IRT
estimate and the true variance of the ability estimate for smaller tests, an alternative
method of variance estimation will be provided and demonstrated.

1 Basics

Although IRT provides a powerful model in which to design and assess tests, its
fundamentals are simple. For each item, the probability of a correct response is
modeled with a logistic curve (Fig. 1a) in which the x-axis represents the ability
range from −3 to 3 and the y-axis represents the probability of a correct response.
The curve is known as an item characteristic curve (ICC). The two-parameter
logistic version of the model (known as 2PL) describes the probability of a correct
response as
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Fig. 1 (a) Item characteristic curve (ICC) with difficulty b = 0; (b) Same ICC showing that the
discrimination for the item is a = 1

pi(θ) = 1

1 + e−1.702ai (θ−bi )
. (1)

The parameter b describes the item’s difficulty. Specifically, it is the point on the x-
axis where the examinee has probability 0.5 to answer the item correctly (Fig. 1a).
The parameter a is the discrimination parameter, which represents the slope of the
ICC at b. It describes how well the item ascertains the examinee’s ability above or
below the difficulty of the item (Fig. 1b).

There are other forms of the IRT model for items. Among these are the one-
parameter Rasch model, which retains the difficulty parameter but sets a = 1.
Another version is the three-parameter logistic (known as 3PL) model, which is
often used for multiple-choice items, because it includes a guessing parameter. In
this chapter, we illustrate our methods with the 2PL IRT model as defined in (1).

2 Estimation

The IRT model can be used to provide an estimate of the examinee’s ability from
their responses, when the item parameters are known. If the item parameters are
unknown, they can be estimated simultaneously with the ability measures from a
sample of examinee responses. For simplicity we assume that the item parameters
are known and focus on estimation of ability only.

Maximum likelihood estimation of ability is illustrated with the data from the
2005 National Assessment of Educational Progress (NAEP) Math Assessment.
Table 1 displays the slope (a) and location (b) parameters for six actual sample
items from the NAEP test (Beaton et al., 2011).

Table 2 shows responses to these items from four fictitious examinees (Beaton
et al., 2011). Let zi denote the indicator of a correct response, i.e.,
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Table 1 Item parameters for the six items referred to in Table 2

Table 2 Four different students’ responses to six different math questions. A correct response is
indicated by a “1” and an incorrect response by a “0”

zi =
{

0, incorrect response to item i,

1, correct response to item i.

As an example, Student C answered the first three questions incorrectly and the last
three correctly. If the six item responses are independent, the likelihood of Student
C’s ability given their observed pattern of responses is seen from (1) to be

L(θ |Z) =
6∏

i=1

(
1

1 + e−1.702ai (θ−bi )

)zi
(

1 − 1

1 + e−1.702ai (θ−bi )

)1−zi

.

Student C’s likelihood L(θ |Z) is shown as the bold curve in Fig. 2. The thinner
curves show the item characteristic curves of the six items composing the test.
Ability is measured on the same scale as the location parameter. On this NAEP
test, the range of ability is −3 to 3, with a mean of 0. An iterative Newton-Raphson-
type procedure is usually used to maximize this likelihood function to determine
the maximum likelihood estimate (MLE) of Student C’s ability. Visual inspection
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Fig. 2 ICCs and the likelihood (bold) for Student C. The likelihood is calculated by multiplying
the student’s individual ICCs (Beaton et al., 2011)

shows that Student C’s ability would be estimated by maximum likelihood to be
about −0.5.

Estimation of ability at the extreme ends of the ability scale is difficult, especially
for short tests. Consider Student A in Table 2, who answered all questions
incorrectly. His likelihood is shown in Fig. 3 (Beaton et al., 2011). No MLE exists
in this case because the likelihood has no maximum. One method for handling
estimation for this situation is to assign pre-specified values to examinees who
answer no or all questions correctly. This is the method used by the STAAR test
in Texas (STAAR, 2004). We will adopt this convention by assigning an ability of
−4 to examinees who provide all incorrect responses and an ability of 4 to those
who provide all correct responses.

3 Test Information

The test information function (TIF) is defined as the Fisher information of the entire
test as a function of ability. One can show that the TIF for the 2PL model, where
pi(θ) defined in 1, is as defined below:

T IF (θ) =
∑n

i=1
a2
i pi(θ)(1 − pi(θ)). (2)

Two examples of TIFs are presented in Fig. 4a and b. These two curves represent
TIFs for tests of ten items that measure ability on a scale that is symmetric around
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Fig. 3 This plot pictures the ICCs and the likelihood (bold) for Student A. The deficiency of the
MLE is exposed in this plot as the student has answered every question incorrectly, and thus the
likelihood has no maximum

Fig. 4 (a) “Peaked” information function; (b) Rectangular information function

0, and both will produce some information of examinee ability for those with ability
between −3 and +3. However, the tests differ greatly in the shape of their TIFs.
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4 Shapes of TIFs

It is common for tests to contain more information about abilities close to the
average than at the extremes. The TIF for such a test with ten items1 is shown
in Fig. 4a. It is often desirable that a test maximize information for abilities in the
center of the scale, where examinees may be most numerous. This shape is referred
to as “peaked." On the other hand, when a population of examinees contains a
substantial number at the extremes of the scale, it may be desirable to consider
tests with other TIF shapes, such as the “rectangular” one shown in Fig. 4b.

A peaked test information function can be formed through a variety of combina-
tions of items. For instance, a test whose a (discrimination) parameters are similar
and whose b (difficulty) parameters are grouped near the center will have this shape.
On the other hand, a peaked TIF would also result from a test whose b parameters
are uniformly distributed across the scale and whose a parameters are larger for the
items in the center of the range than for those near the tails. Figure 5a displays the
discrimination and difficulty parameters of such a test along with its corresponding
TIF. Note the increase in item discrimination (a) as the difficulty (b) approaches 0.
Figure 5b shows an alternative ten-item test in which the discriminations are nearly
constant across the uniformly distributed difficulties which have had a “flattening”
effect on the TIF. The tests in Figs. 5a and b will be known as Test 1 and Test 2,
respectively, and will be used in examples later in the chapter.

Similar to the peaked TIFs, a rectangular TIF may also be formed through a
variety of item parameter combinations. For example, they may have items that
have similar a’s and uniformly distributed b’s (Fig. 5c), or they may have more
normally distributed b’s, with the items with extreme difficulty having higher a’s

Item a b
99 0.79 -2.1
101 0.92 -1.11
14 0.96 -0.61
8 1.02 -0.52
138 1.06 0.15
18 1.68 0.2
161 1.06 0.46
121 1.07 0.49
47 0.97 1.14
155 0.82 2.76

Fig. 5a A ten-item peaked test (Test 1) with uniformly distributed b parameters and a parameters
greater for b parameters near 0

1These 10 items were real items from the 2004 NAEP Math Exam.
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Item a b
82 0.45 -1.73
147 0.49 -0.72
17 0.4 -0.42
32 0.35 -0.259
117 0.47 -0.25
118 0.34 0.13
105 0.41 0.22
25 0.4 0.87
136 0.4 1.28
110 0.46 1.94

Fig. 5b A ten-item peaked test with uniformly distributed b parameters and a parameters with
less magnitude and nearly uniform across their b parameters

Item a b
85 0.99 -3.1
92 0.92 -2.11
15 0.96 -1.61
76 .902 -0.52
163 .906 0.15
144 .968 0.2
103 .906 0.46
123 .907 1.09
87 0.97 2.14
33 0.87 3.06

Fig. 5c A 10-item rectangular test (Test 3) with uniformly distributed a and b parameters

than those near the center. In general, grouping item difficulties and/or increasing
item discrimination create peaks in the TIF, while spreading the difficulties and/or
decreasing the item discrimination will flatten the TIF. Again, a test with a peaked
shaped TIF will be described as a “peaked test,” while a test with a flat (rectangular)
shaped TIF will be referred to as a “rectangular test.”

5 Uses

5.1 Standard Error

An advantage of an IRT model is that its TIF provides an approximate measure of
precision for the estimated ability conditional on its value θ :
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Fig. 6 Peaked and
rectangular TIFs
superimposed for comparison

SE(θ) = 1√
T IF (θ)

.

For example, we can see from TIF for the “peaked test" in Fig. 4a that the
information provided by the test for an examinee with ability θ = 1 is approximately
I (1) = 4, yielding an approximate standard error of the ability estimate of 1/

√
4 =

0.5. However, for a subject of ability θ = 2, I (2) = 1 yielding an approximate
standard error of 1/

√
1 = 1. Therefore, this peaked test has less uncertainty for

estimated ability of examinees of ability near θ = 1 than for those with ability near
θ = 2.

5.2 Test Construction and Selection

Another use of the TIF is in item selection and test construction. A test constructor
may use the TIFs to choose among tests that measure best for the targeted range of
abilities. Figure 6 displays the TIFs from Fig. 4a and b superimposed on one another.
If the test constructor is most interested in extremely low or high ability subjects,
a rectangular test may be preferred where the information for those examinees is
higher. On the other hand, if subjects in the middle of the ability scale make up the
target population, the peaked test may be deemed more useful.
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6 Small Sample Information of Ability Estimates from IRT
Models

As mentioned above, Fisher information measures the asymptotic precision of the
maximum likelihood estimator. Therefore, the TIF is a useful tool for standard error
estimation and item selection for large tests. An aim of this chapter is to investigate
how well it works for that purposes in short tests. Figure 7 shows the TIFs for tests
of 10 to 100 items. Each figure shows two curves:

(1) The solid curve is the “actual” test information, defined as the reciprocal of the
variance of the MLE and estimated via simulation using the following steps:

Simulation Method for True Information Estimation

(a) An array of quadrature points was created from θ = −3 to θ = 3.
(b) For each quadrature point, a third-party software named MSTSIM52 is used

to generate 100,000 subjects of that ability as well to simulate each subject’s
responses to the test of interest.

(c) Each subject’s MLE of ability (θ̂) was calculated using MSTSIM5, produc-
ing 100,000 estimates of θ for each quadrature point.

(d) The variance of these 100,000 θ̂s (V̂ ar(θ̂)) was then estimated for each θ

in the set of quadrature points.
(e) The true information for each θ in the set of quadrature points was estimated

as Î = 1/V̂ ar(θ̂). We will denote this as the actual test information
function (AT IFSim).

(2) The dotted curve is the TIF described earlier in (2). This again is the theoretical
test information based on an infinitely long test:

As the number of items decrease, the true test information becomes more
discrepant from the TIF. In this example, tests of 100 items have information
close to what is indicated by the TIF, especially near the center of the curve, but
the difference between the two is considerable for smaller tests and for ability
levels significantly distant from the center.

However, the discrepancy between the asymptotic and small test size perfor-
mance is not present for all tests. Figure 8 compares the TIF and the true test
information for a rectangular test of ten items. The figure shows that the small
sample performance of estimators of ability from this test nearly matches that
predicted from asymptotic theory.

To review, we have seen that when a test comprises a large number of items, the
TIF is an accurate assessment of its performance. In that case, the asymptotic theory
for IRT models is useful and effective for many practical purposes, from assessing

2The FORTRAN routine MSTSIM5 (Jodoin, 2003) was used to simulate student responses and
calculate the corresponding MLEs for the given IRT models. R was then used to calculate summary
statistics (variance, bias, MSE) for these MLEs.
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Fig. 7 This figure illustrates how the actual test information (solid black line) increasingly
diverges from the theoretical test information (dashed red line) as the test size decreases from
n = 100 to n = 10

Fig. 8 This plot displays the
TIF and empirical
information for a ten-item
test. Compared to Fig. 7, the
empirical information is
much closer to the TIF which
is expected as the TIF is an
asymptotic bound of the
information

uncertainty in examinee scores to efficient construction of tests. However, there are
practical situations when only a few items can be presented to an examinee. One
such example is in large-scale assessment, such as the NAEP, where the testing time
available is limited. A second example is in multistage testing, where examinees
are routed to subsequent stages of varying difficulty based on their performance on
earlier stages of the test (Van der Linden & Glas, 2010). Each stage must necessarily
consist of a relatively small number of items, after which an ability estimate must be
made to facilitate routing. Finally, some tests produce scores on multiples subscales,
so that each one may have only a few items. These are the applications in which we
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Table 3 Computation times for the simulation method with scatterplot of computation time
versus number of items

Simulation method

Number of Items Computing Time

8 4.5 min

10 5.0 min

15 6.0 min

16 6.2 min

20 7.5 min

are interested. For “small tests,” which we will formally define in a moment, we
have seen that the asymptotic theory often overestimates the true test information
especially for peaked tests.

We have seen that the method based on simulation can estimate the actual infor-
mation of the test although it comes with a considerable cost: time. Table 3 shows
the computing time of the simulation method to estimate the actual information with
100,000 simulated subjects. All computing was performed on a 4 GB 2.2 GHz Intel
i7 processor Apple MacBook Pro for various test sizes and 30 quadrature points.
While wait times are subjective, we see that they are at least 4.5 min for an 8-
question test and increase linearly with the number of questions at a rate of .24 min
per additional item.

7 Exact Method for Information Calculation

Here we provide an alternative to the asymptotically developed TIF and the time-
consuming simulation method described above. This method, which we refer to as
the exact method, can be broken down into five steps:

1. Generate all possible response patterns given the number of items.
2. Find the unique MLE for each response pattern.
3. For each true ability (discrete number of quadrature points)

(a) Find the probability for each unique MLE.
(b) Make a probability distribution given the MLE and corresponding probabil-

ity from step 3a.

MLE Probability

θ̂1 P(θ̂1|θ)

.

.

.
.
.
.

θ̂n−1 P(θ̂n−1|θ)

θ̂n P (θ̂n|θ)
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4. Compute the conditional variance using the equation

σ 2
θ̂

=
no. of MLEs∑

i=1

θ̂2
i P (θ̂i |θ) −

⎡

⎣
no. of MLEs∑

i=1

θ̂iP (θ̂i |θ)

⎤

⎦

2

5. Calculate the conditional information as I (θ) = 1
σ 2

θ̂

.

Example Consider a test with the following three items:

Item a b

1 1 −2

2 0.5 0

3 0.5 1

Step 1. Generate all possible response patterns given the number of items.

Response

pattern Item 1 Item 2 Item 3

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 1 0 1

7 0 1 1

8 1 1 1

Step 2. Find the unique MLE for each response pattern. (From MSTSIM5)

Response

pattern Item 1 Item 2 Item 3 MLE θ̂

1 0 0 0 −4

2 1 0 0 −1.75

3 0 1 0 −2.71

4 0 0 1 −2.71

5 1 1 0 0.92

6 1 0 1 −1.74

7 0 1 1 0.92

8 1 1 1 4
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Step 3. For each true ability (discrete number of quadrature points)
(Assume the quadrature points are −3, −2.5, −2, −1.5, −1, −.5, 0, .5, 1, 1.5,

2, 2.5, 3.) We will demonstrate the process for the first quadrature point, θ = −3,
and this process would be repeated for each of the remaining 12 quadrature points
above.

(a) Find the likelihood (probability) for each unique MLE.
For θ = −3, the probability of response pattern one (missing all three

questions) is calculated as

P(Z|θ = −3) =
3∏

i=1

(
1

1 + e−1.702ai (θ−bi )

)zi
(

1 − 1

1 + e−1.702ai (θ−bi )

)1−zi

=
(

1

1 + e−1.702×1×(−3−(−2))

)1−0

×
(

1

1 + e−1.702×.5×(−3−(0))

)1−0

×
(

1

1 + e−1.702×.5×(−3−(1))

)1−0

= 0.84580 × 0.92777 × 0.96783 = 0.7595.

The probabilities for the remaining 12 quadrature points are found in a similar
fashion.

(b) Make a probability distribution given the MLE and likelihood (conditional
probability) from step 3a.

For θ = −3,

MLE P(θ̂ |θ)

−4 0.7595

−1.75 0.1385

−2.71 0.0591

−2.71 0.0252

0.92 0.0108

−1.74 0.0046

0.92 0.0020

4 0.0004

Step 4. Compute the conditional variance using the equation

σ 2
θ̂

=
no. of MLEs∑

i=1

θ̂2
i P (θ̂i |θ) −

⎡

⎣
no. of MLEs∑

i=1

θ̂iP (θ̂i |θ)

⎤

⎦

2
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For θ = −3, we have

MLE P(θ̂ |θ) θ̂2
i P (θ̂i |θ) θ̂iP (θ̂i |θ)

−4 0.7595 12.152 −3.038

−1.75 0.1385 0.42415625 −0.242375

−2.71 0.0591 0.43403631 −0.160161

−2.71 0.0252 0.18507132 −0.068292

0.92 0.0108 0.00914112 0.009936

−1.74 0.0046 0.01392696 −0.008004

0.92 0.0020 0.0016928 0.00184

4 0.0004 0.0064 0.0016

σ 2
θ̂

=
no. of MLEs∑

i=1

θ̂2
i P (θ̂i |θ) −

⎡

⎣
no. of MLEs∑

i=1

θ̂iP (θ̂i |θ)

⎤

⎦

2

= 13.226 − (−3.5034)2 = 0.952.

Step 5. Calculate the conditional information as I (θ̂ |θ) = 1/σ 2
θ̂

.

For θ = −3, I (θ̂ |θ = −3) = 1/0.952 = 1.05.
Note: in order to find the exact value for a particular ability (i.e., for use in a

confidence interval or as a standard error of an estimate), simply follow the steps
above and make the quadrature point in step 3 the desired ability.

7.1 Constraint on the Use of the Exact Method

While the exact method yields the exact information/variance for the MLE of ability
for any test for which item parameters are known, time is still an important factor.
Since the method entails calculating the MLE for every possible response pattern,
the number of MLEs to calculate doubles for each item added to the test. This
equates to an exponential increase in computation time as the number of items
increase. Table 4 shows the computing time of the exact method versus simulation
time to estimate the same value with the simulation method. Again, all computing
was performed on a 4 GB 2.2 GHz Intel i7 processor Apple MacBook Pro for various
test sizes and 30 quadrature points. With a computation time of 2 h, the exact method
is practically limited to tests under 20 items. However, since pure simulation is
quicker than the exact method beginning at 16 items, we will select the exact method
for tests of individual ability with 15 items or fewer.
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Table 4 The number of response patterns and computation time for the exact method in
calculating the true variance of estimates of individual ability

Exact method Simulation method

Number of items Number of response patterns Computing time Computer time

8 28 = 512 8 s 4.5 min

10 210 = 1024 13 s 5 min

15 215 = 32,768 3.5min 6min
16 216 = 65,536 7.33min 6.2min
20 220 = 1,048,576 2 h 7.5 min

a b

Fig. 9 (a) TIF, ATIF, and ETIF for Test 1. The AT IFExact and AT IFSim overlap completely;
(b) PE for the TIF and the ATIF

7.2 Example: Standard Errors

Recall that the square root of the reciprocal of the test information function (TIF) is
the asymptotic conditional standard error of the MLE of ability (Hambleton et al.,
1991). Some standardized tests, such as the STAAR test in Texas and the CST in
California, use square root of the reciprocal of the TIF to report standard errors
for their estimates (STAAR, 2004). As we showed above, however, there can be
a considerable difference between the TIF and the actual test information. This
difference could result in standard errors and confidence intervals that incorrectly
represent the variability in the MLE, a particularly troubling problem if the intervals
are too narrow.

Figure 9a displays the TIF and the actual information for Test 1 constructed in
Fig. 5a. The actual test information is defined as the reciprocal of the true variance of
the MLE and was computed by the exact method and is referred to as AT IFExact .
For confirmation, the simulated value of the actual information was computed as
well, using the simulation method described in the introduction. This function, the
AT IFSim, is also shown in Fig. 9a and matches the AT IFExact .
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Table 5 The PE with respect
to the true SE of Test 1 from
the small item bank when the
goal is to estimate individual
ability

θ TIF ATIF PE

−3 0.58 1.12 −0.48
−2 1.50 0.86 0.74
−1 3.11 1.91 0.63
0 4.40 3.77 0.17
1 3.67 2.02 0.82
2 1.68 0.79 1.13
3 0.54 1.23 −0.56

An important note concerns the tails of the AT IFExact and AT IFSim in Fig. 9a.
As mentioned in the introduction, fixed values are assigned to subjects who obtain
perfectly correct and incorrect scores (θ = −4 and θ = 4 were adopted for this
study). Therefore, as a subject’s ability increases (decreases), a larger percent of
them begin to obtain perfectly correct (incorrect) scores and therefore receive an
MLE of 4 (−4). This in turn causes a decrease in variance as the true ability
approaches 4 (−4), thus resulting in an increase in information. The inflection point
of the AT IFExact and AT IFSim is the ability level at which subjects begin to obtain
perfectly correct (incorrect) scores.

We now examine the difference between the TIF and the ATIF more closely by
calculating the percent error (PE) between them:

PE = T IF − AT IFExact

AT IFExact

.

Figure 9b displays the PE for the TIF and ATIF (exact and from simulation) in
Fig. 9a. Table 5 displays the numerical results. Interestingly, the PE of the TIF is
as high as 113%, indicating that the TIF is calculating the information to be 113%
higher than it actually is! In a practical setting, the exact method would be used
to find the desired standard errors which may then be used in the calculation of
confidence intervals.

As an example, consider a fictional subject (Sammy) who was trying to qualify
for admission to SMU, where the minimum requirement on the entrance exam is a
θ = 2.1.

On a 15-question computer adaptive exam, he received a θ̂ = 1.0 and was faced
with the decision of whether to retake the exam. Being an asymptotic upper bound
on the information, the margin of error using the TIF is smaller than the actual
margin of error, thus leading Sammy to believe his true ability is between −0.02
and 2.02 (Table 6); he thus abandons his SMU dream and looks at other schools.
However, using the exact method (AT IFExact ), we are able to calculate the actual
standard error which yields a margin of error of 1.38 (Table 7). Sammy would now
be led to believe that his true ability is in the interval (−0.38, 2.38), which contains
2.1 and therefore gives him hope! Although he did not pass the first time, given the
actual confidence interval facilitated by the AT IFExact , Sammy receives a more
accurate measure of the test’s uncertainty and, because he believes passing is now
possible, may decide to try the entrance exam a second time.
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Table 6 Calculations of the margin of error and 95% confidence limits using the TIF to calculate
the SE

Name Margin of error TIF 95% Confidence interval TIF

Sammy 1.96 × √
3.67 = 1.02 1 ± 1.02 → (−0.02, 2.02)

Table 7 Calculations of the margin of error and 95% confidence limits using the exact method to
calculate the exact SE

Name Margin of error TIF 95% Confidence interval TIF

Sammy 1.96 × 1/
√

2.02 = 1.38 1 ± 1.38 → (−0.38, 2.38)

a b

Fig. 10 (a) TIFs for Test 1 and Test 2. Test 1 clearly has the higher TIF for the majority of the
ability range; (b) ATIFs for Test 1 and Test 2. Actual superiority of Test 1 is reduced when the
actual information is used

7.3 Example: Test Construction/Selection

This example assumes a practitioner would like to compare two tests, both
constructed from the NAEP item bank: Test 1 (very peaked from Fig. 5a) and Test 2
(less peaked from Fig. 5b). Figure 10a displays the TIFs from both tests and could
be used as a diagnostic tool to decide between them. Assume the practitioner would
like to identify students for a remedial math program and has thus been tasked
with finding the best test for estimating abilities between −2.5 and −1.5. Judging
from the TIFs in 10a, the practitioner would conclude that Test 1 will provide more
accurate results because the TIF (the information) is higher over the target range of
abilities. We will show, however, that this is not the right conclusion.

We have established that the TIF is an asymptotic target, but this test is only ten
items in length. Thus, the practitioner elects to use the exact method to calculate the
variance of the estimator and plots the results for both the tests in 10b. The results
show that Test 3 is the more accurate test for his target population, as it is superior
for θ < −1.3 and θ > 1.3.
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8 Conclusion

Calculation of the asymptotic information of estimates of ability in item response
theory is useful for tests with a sufficient number of questions. For tests with
few items, however, the difference between the theoretical information and the
actual information can be substantial. This chapter focused on the practical scenario
in which tests have 15 items or fewer. In these cases, the asymptotic estimate
can significantly exceed the truth, leading to significant underestimation of the
variability of an individual’s estimated ability. A relatively quick, exact method of
calculating test information can inform test construction and lead to more accurate
confidence intervals for individual ability.
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Statistical Evaluation of Process
Variables: A Case Study on Writing Tool
Usage in Educational Survey Assessment

Yue Jia and Yi-Hsuan Lee

Abstract For educational and psychological research and practice, the electronic
log of test takers’ interactions with test questions is referred to as process data.
Process data hold promise for making inferences about test takers’ skills, attributes,
and test-taking activities and behaviors. A key to process data analysis is to establish
procedures for evaluating the statistical properties of variables of interest derived
from such data. Using a real writing test dataset as a case study, this chapter
demonstrates the use of a three-step evaluation procedure—including descriptive
data analysis and data visualization, statistical modeling, and expert feedback—to
evaluate the distributions of process variables for their intended purposes across
multiple writing tasks and within persons.

1 Introduction

Administering mental tests using computers and other digital devices has become
a common practice. Apart from recording answers to questions, the digital test
delivery system can log the action-by-action record of test takers’ progress through
a test. This information is referred to as process data. Bergner and von Davier
(2019) framed the distinction between the process data and product data of a test,
in that the product data capture where a test taker has ended up (e.g., the correct or
incorrect solution or the response to an open-ended question), whereas the process
data describe the means to that end. Process data can then be summarized and/or
aggregated into variables of interest, such as the total time spent on a test question
or the frequency of using a digital tool (e.g., zoom, text highlight color, or digital
calculator). In this chapter, we use the term process variables to describe summaries
of a series of actions recorded in the log.
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In practice, a testing program typically designs its own platform to render a
test. Process data are used to inform the design of the testing platform (i.e., the
user interface and digital tools), to support data quality control, and to monitor
test security (Yamamoto & Lennon, 2018). Moreover, process data are used to
investigate test-taking behaviors (e.g., Lee & Jia, 2014; Lee & Haberman, 2016;
Wise, 2019). For example, Lee and Jia (2014) proposed a method of identifying
response-time thresholds that separate rapid-guessing behavior from solution behav-
ior as “the right end of a cluster of short response times whose response accuracy
fluctuated around chance level” (p. 8) before response accuracy moved toward
that of solution behavior. Expanding further from describing test-taking behaviors,
process data provide opportunities to address issues such as validity of the test score
interpretation (Kane & Mislevy, 2017). Last, in some applications, the test designers
might be interested in considering the process in answering a test question as the
product to measure latent traits (Mislevy et al., 2014).

As process variables are more widely used, it is necessary to establish sound
evaluation procedures for their intended inference. When assessing individuals with
test questions, one might be interested in understanding how test takers interact
with a specific question or how test takers’ response processes are related to their
scores on that question. These types of inferences are question-specific and are not
required to be generalizable across different test questions. On the other hand, if one
is interested in considering process variables as measures of test-taking behaviors,
there should be within-person consistency on performing those actions across the
test questions. Further, if test takers are given different test questions, then we should
seek to establish comparability of the values of process variables obtained from
individual questions.

In this chapter, we focus on the type of inference that considers process variables
as measures of specific activities a student performs with the intent to compare them
across test questions. We address the following research questions in evaluating
process variables:

1. Is there a theoretical argument to meaningfully define and interpret process
variables independently from the test questions assigned to test takers?

2. Across-question comparability: Is there empirical evidence that the values of
process variables are comparable across test questions, or do they vary by test
question?

3. Within-person consistency: Do individuals show consistency in performing
actions described by process variables on test questions assigned to them, or do
they show random actions on the test questions?

To create and analyze process variables, it is often preferable to start with a
research-based theory or cognitive model as it provides hypotheses to construct and
evaluate the variables. In our review of the literature, when researchers describe
process variables as measures of activities by a subject, there appears to be lack of
discussion on procedures for evaluating the statistical properties of such variables.
Thus, the focus of the chapter is on research questions (2) and (3), described above.
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For illustrative purposes, we describe a case study using a dataset of US 4th-
grade writing test collected by an educational survey assessment program. In the
next section, we describe the study data, the assignment of the writing tasks to
students, and the two process variables of interest and their intended inferences.
The description of data and process variables introduces the important idea of
establishing a statistical evaluation procedure with proper analysis and modeling
approaches. The results of the evaluation application appear in Sect. 3. Conclusions
and recommendations follow.

2 Method

2.1 Participants

We used a writing test dataset collected in 2017. A national representative sample
of 23,900 US 4th-grade students was selected, of whom 51% were female and 49%
male. A plurality (43%) was non-Hispanic white, 17% were Hispanic, 30% were
black, 5% were Asian, and 5% belonged to other groups. English language learners
(ELs) constituted 12% of the sample, 2% were originally ELs but were reclassified
to English-proficient, and 86% were English-proficient. For simplicity, we eschew
the use of sampling weights in this analysis. The test is considered low-stakes for
the students and schools, as no decisions about the students, teachers, or schools
depend on its results.

2.2 Assignment of Writing Tasks to Sampled Students

A total of 22 tasks were used in forming 44 test forms through a partial balanced
incomplete block (pBIB) design. More specifically, the design was “balanced,” as
each writing task appeared exactly four times, pairing with four other tasks across
the 44 forms. Further, the design assigned writing tasks to students in a manner that
“balanced” the positioning (first vs. second task given in a test form) of any task
across all forms. The forms were “incomplete,” as only two tasks out of the total 22
tasks could fit into a test form. The forms were “partial” in that a task was paired
with some but not all other tasks.

Of the 23,900 students, about 550 were assigned to each test form and about
2,200 to each writing task. The pBIB design resulted in comparable groups of
students among test forms and writing tasks.
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2.3 Process Variable Definitions

The writing tasks were presented to students in a variety of ways including text,
audio, video, and images. Before taking the writing tasks, students were asked to
take a tutorial to familiarize themselves with the way material is presented on the
computer screen and how to use the custom-developed software program, which
is similar to common word processing programs. Students’ writing responses were
scored by trained human readers from 1 to 6 against rubrics defining the relative
strengths and weaknesses of the response in relation to specified criteria, with 1
being low and 6 being high.

For the writing assessments, there is a rich body of research on creating and
interpreting writing process variables, as well as on connecting the process variables
to cognitive theory and models. For example, Baaijen et al. (2012) analyzed several
keystroke-logging measures including pause duration, length of burst, and revision.
They further inferred from those keystroke-logging measures to cognitive models of
writing. Research has also described differences in the writing process (e.g., fluency
in text production, frequencies in editing and revision, and extent of between-
sentence pauses) between stronger and weaker writers (Bennett et al., 2020; Guo
et al., 2018; Sinharay et al., 2019).

In this chapter, we consider two process variables—Formatting and Reviewing.
Both variables summarize frequency counts of digital tool usage defined at the task
level. They reflect test takers’ digital tool usage strategies, whether those strategies
aid test takers during the writing process (e.g., Anderson-Inman & Knox-Quinn,
1996) and how the strategies might be associated with writing scores. For this study,
we frame the substantive research question as whether the Formatting tool usage or
Reviewing tool usage variables can be compared among the 4th-grade students in
the study, regardless of which writing forms or tasks the students received.

Formatting tool usage included the following actions—bold (i.e., make text
bold), highlight (i.e., highlight text), italic (i.e., italicize text), underscore (underline
text and change font size), as well as indent (i.e., move paragraph farther away from
the margin) and outdent (i.e., move paragraph closer to the margin). The digital
test delivery system counted the number of such events, regardless of whether
the student later undid them. The Formatting variable was defined as the sum of
frequencies of the Formatting keyboard and mouse actions performed on a writing
task. For example, if in a writing task a student changed font five times, italicized
text two times, and indented text three times, then the value of the Formatting
variable would be 10.

The Reviewing variable represented use of the spell-checking tools and the
Thesaurus. Students accessed the spell-checker by clicking on the tool bar icon
or the drop-down menu or by right-clicking on a word identified as misspelled.
Students accessed the Thesaurus via the tool bar icon or drop-down menu. Counted
actions include the number of spell-checks by any mode, the number of Thesaurus
accesses by any mode, and the numbers of spell-check corrections and Thesaurus
replacements accepted. For example, if the student opened the spell-checking tool,
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used it to identify and correct three misspellings, and exited the tool, there would be
five actions in total.

2.4 Data Analysis Procedures

When evaluating the statistical properties of process variables, it is helpful to
consider the four basic elements suggested by Hoaglin et al. (1983): Resistance,
Revelation, Re-expression, and Residuals. Resistance refers to insensitivity to local-
ized mis-behavior or abnormal data. Revelation relies on visualization to uncover
unexpected patterns and behaviors along with familiar regularities. Re-expression
suggests transforming variables (e.g., by the log or square root) to place them on
a scale that is easier to analyze. Residual concerns statistical model comparisons
and assessment of model fit. DiCerbo et al. (2015) applies the four elements in the
discovery of evidence identification rules from both product and process data on
system thinking. Here, we propose a three-step data analysis procedure to evaluate
the two writing tool usage variables relative to the intended inference of comparing
students’ test-taking activities across tasks:

(i) Descriptive data analysis;
(ii) Statistical modeling approaches that estimate the test question effect and

within-person consistency on the values of process variables;
(iii) Feedback from question-content experts with regard to findings from the first

two steps.

Step 1: Descriptive Data Analysis
Computing descriptive statistics and preparing graphs allows us to become familiar
with the data, revealing patterns and identifying outliers for further examination. A
thorough descriptive analysis can help us generate or refine hypotheses.

Revelation relies heavily on this step. For process variables that are frequency
counts or otherwise not normally distributed, some visualization approaches and
descriptive statistics are more resistant than others. A common strategy is to
consider rank-based measures: the median, trimmed mean, and winsorized mean
for location and the interquartile range (IQR) for spread.

It is important to recognize that student actions might reflect factors unrelated
to the process one seeks to observe. For example, a high frequency of Formatting
actions might result from equipment failure or from the student using Formatting
tools for different reasons than the strategy researchers seek to discover. In such
situations, trimming extreme frequency counts would reduce irrelevant noise.

Step 2: Statistical Modeling
This step enables data analysts to describe substantive questions in terms of
statistical hypotheses about model parameters. The Formatting and Reviewing
variables are both frequency counts. As each student had two writing tasks, we
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consider the two observations from a student as repeated measurements. That is,
writing task is the between-person factor (individual writing tasks as categories of
the factor), while the position of a task within a form (first vs. second position) is
the within-person factor. One can measure within-person consistency by modeling
the correlation between the observations from the two tasks.

In this study, we have applied Poisson regression via generalized estimation
equations (GEE) (Liang & Zeger, 1986) to model the relationship between the
writing tool usage variables and writing task, task position, and the correlation
between the two measurements of the tool usage for students. GEE extends the
generalized linear model (GLM) to correlated data. We often use it when the
outcome of interest is binary or count data. The GEE approach specifies the first
two moments of the joint distribution but not its full form. One maximizes a quasi-
likelihood function to produce regression estimates that are consistent under mild
assumptions; see Agresti (2003, Chapters 4 and 11).

Let yik denote measurement k (k = 1, 2) on subject i. Further, let x1, . . . , x21
represent a vector of indicator variables for 21 of the 22 tasks, treating task “WV”
as the reference task, and let the dummy variable x22 represent the effect of the first
position (relative to the second position) in a test form. For a model describing both
task effects and task position effect, the Poisson regression with a log link function
can be specified as

E(yik) = μik, i = 1, . . . , N, k = 1, 2, (1)

with

log (μik) = β0 +
21∑

j=1

βjxj,ik + β22x22,ik, (2)

where β0 is the intercept, β1, . . . , β21 are the regression coefficients associated with
the task effects, and β22 is the regression coefficient associated with the position
effect. Note that the regression coefficients are on the log scale of yik (counts for
tool usage). Equation (2) may be extended to include the interactions of task effects
and position effect or reduced to model either task effects or position effect only.

In practice, the observed variability in frequency counts often exceeds that would
be predicted by the Binomial or Poisson distribution, a phenomenon referred to as
overdispersion (Agresti, 2003, Chapter 1). The GEE approach to Poisson regression
addresses overdispersion by estimating an additional scale parameter.

With GEE one is also required to assume a working correlation structure. GEE
regression coefficient estimates are consistent under all working correlation models
and efficient when the assumed model is correct. Several such models are in
common use: The independent correlation matrix is specified as

Corr (yi1, yi2) =
[

1 0
0 1

]

,
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and a common within-person unstructured correlation matrix is

Corr (yi1, yi2) =
[

1 ρ

ρ 1

]

.

When there are more repeated measurements per subject, more complicated models
are possible. The SAS GENMOD procedure (SAS Institute Inc., 2020) estimates
the scale and correlation parameters by the method of moments.

In applications, one may wish to consider a range of models involving different
predictors together with working correlation structures. A few evaluation criteria
are useful in identifying a best-fitting model. For instance, the QIC (Quasilikelihood
under the Independence model Criterion) statistic (Pan, 2001), a generalization of
the Akaike Information Criterion (AIC) (Akaike, 1974), can be used for comparing
relative model fit in GEE, with a smaller value indicating a better fit. The adjusted
QIC, termed QICadj, is a further adaptation that represents the amount of infor-
mation per observation. Similar adjustments are considered in psychometrics when
using information criteria (e.g., AIC, BIC, and log penalty) to compare different
item response models (e.g., Haberman et al., 2008). These criteria depend on the
number of observations; without the adjustment, small differences in their values
across different models may be exaggerated in large samples.

To examine fixed effects in a GEE under an assumed correlation structure,
one can use the generalized score test (Boos, 1992; Rotnitzky & Jewell, 1990).
For example, the generalized score statistic for the task effects in Eq. (2) is χ2-
distributed with 21 degrees of freedom (DF), and the corresponding generalized
score statistic for the task position effect has a χ2 distribution with 1 DF.

Hardin and Hilbe (2002) recommend three methods for choosing a working
correlation structure in GEE:

1. Consider a correlation structure that reflects how the data were collected.
2. Choose a correlation structure that minimizes the QIC statistic.
3. Choose a correlation structure for which the empirical sandwich SE estimates

most closely approximate the model-based SE estimates computed under the
working correlation structure.

Considering the first method, recall that the working correlation describes the 4th
graders’ behavior in terms of their tool usage. We anticipate some level of within-
person consistency and intend to estimate the extent. Consequently, an unstructured
correlation may be a more sensible choice in our study. Considering the third
method, it is noteworthy the sandwich SE estimate is the default estimate for the SE
of Poisson regression parameters in many statistical packages, including the SAS
GENMOD procedure (SAS Institute Inc., 2020). The sandwich SE estimate adjusts
the SE estimate based on the working correlation structure (which is referred to as
the model-based SE estimate) using a correction that is established from the model
residuals. The sandwich SE estimate is a consistent estimate of the SE even if the
working correlation structure is mis-specified. For these reasons, it makes sense to
consider Hardin and Hilbe (2002)’s third method when comparing GEE models that
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differ only in the choice of the working correlation structure. The model whose
sandwich SE estimates most closely resemble its model-based SE estimates is the
model that best represents the data.

With a chosen GEE model, the estimated task effects are generally of primary
interest. To assess the practical importance of the estimated task effects across all
tasks, we suggest two new measures:

• Range of Prediction (RPk), which is the range (i.e., difference between the lowest
and the highest values) of the predicted task effects at position k (k = 1 or 2)
among the 22 tasks. We treat task WV as the reference task and position 2 as the
reference position. The predicted task effects for the 22 tasks are transformed to
the frequency count scale by exponentiating the estimated model parameters:

RP1 = Range
[
exp(β̂0 + β̂1 + β̂22), exp(β̂0 + β̂2 + β̂22), . . . ,

exp(β̂0 + β̂21 + β̂22), exp(β̂0 + β̂22)
]
, (3)

and

RP2 = Range
[
exp(β̂0 + β̂1), exp(β̂0 + β̂2), . . . , exp(β̂0 + β̂21), exp(β̂0)

]
. (4)

• Relative Range of Prediction at position k (RRk) is the ratio of Range of
Prediction RPk at position k (k = 1 or 2) to the observed IQR of the frequency
counts across the 22 tasks:

RR1 = RP1

IQR
and RR2 = RP2

IQR
. (5)

Note that RRk is a global effect size measure of the task effects at position k (k = 1
or 2). In this study, the smaller the RRk values, the stronger indication that the tool
usage variables are comparable across all tasks.

Step 3: Feedback from Content Experts
As discussed earlier, it is preferable to design and create process variables from
behavioral or cognitive models. Data analysis and modeling approaches are effective
ways to check the properties of the variables for their intended uses. Communicating
empirical findings with content and cognitive experts informs the interpretation
of results and may suggest further research questions for analysis. Empirical data
discovery moreover enables content experts to refine their theoretical models.

In the case study, we aim to explore the possibility of treating the two writing
tool usage variables as measures of students’ test-taking activities. Accordingly, the
descriptive statistics and GEE models suggested in steps 1 and 2 largely focus on
evaluating cross-task comparability and within-person consistency. If the empirical
evidence suggests that a task effect is statistically or scientifically significant, a
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necessary next step would be to obtain expert opinion and consider models that
include a task-by-tool usage interaction.

3 Results

As discussed in Sect. 2, we derived two digital tool usage variables, Formatting
and Reviewing, from the writing task data. Each of the 23,900 students in the
study sample was assigned two writing tasks. Listwise deletion of individuals with
missing values on one or both tasks yielded 46,400 observations from 23,200
students for both variables in the analyses. In this section we describe the results
of our analyses.

Step 1: Descriptive Data Analysis
We first examined the descriptive statistics on the frequency distributions of the
process variables across the 22 writing tasks. Table 1 shows that the frequency
distribution of Formatting tool usage is highly skewed, with a high proportion of
subjects never or infrequently using the tools during either 30-min writing task.
The situation was similar for Reviewing tool usage. For both variables, the standard
deviations (SD) of the frequency counts substantially exceeded their corresponding
means.

Table 2 disaggregates the Formatting and Reviewing tool usage data by the
position of the writing task in the test form. For the Formatting tools, there was
a modest decrease in usage when the writing tasks appeared second. For the
Reviewing tools, the frequency counts were comparable across the two positions.

To evaluate whether the students had consistent Formatting or Reviewing tool
usages on their two assigned writing tasks, we computed both the Pearson and
Spearman correlations of the two sets of frequency counts per variable. The former
measures the linear relationship between the students’ two frequency counts, and
the latter assesses how well the relationship between the students’ two frequency
counts can be described using a monotonic function. Table 3 suggests that by both

Table 1 Descriptive
statistics for Formatting and
Reviewing: frequency counts

Variable Mean SD Min Median Max IQR

Formatting 5.6 11.1 0 2 280 7

Reviewing 7.8 10.3 0 4 148 12

Table 2 Descriptive statistics for Formatting and Reviewing by position: frequency counts

Variable Position Mean SD Min Median Max IQR

Formatting 1 6.4 11.5 0 3 280 8

2 4.9 10.7 0 1 196 5

Reviewing 1 7.9 10.5 0 4 148 12

2 7.8 10.1 0 4 141 12
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Table 3 Results of Pearson correlation and Spearman correlation between the students’ two
frequency counts for Formatting and Reviewing

Variable Pearson correlation Spearman correlation

Formatting 0.27 0.39

Reviewing 0.60 0.71

Fig. 1 Boxplots by writing task and position for Formatting, truncated at the 99th percentile
(counts=53)

correlation measures the 4th graders used the Reviewing tools more consistently
than the Formatting tools.

We visually evaluated the consistency in the two variables across all tasks with
boxplots by writing task and position. See Fig. 1 for Formatting and Fig. 2 for
Reviewing; vertical axes are truncated at the 99th percentile of the variables for
ease of demonstration. The boxes show some variability in IQR across the 22
tasks. Formatting showed a consistent position effect, but Reviewing did not. The
patterns agree with what the descriptive statistics suggested; for example, compared
to Reviewing, the Formatting tools were less frequently used with respect to the
median, but the observed counts had greater variation.

Step 2: Statistical Modeling and Testing
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Fig. 2 Boxplots by writing task and position for Reviewing, truncated at the 99th percentile
(counts=44)

The descriptive statistics and boxplots from step 1 showed that, for both of the
Formatting and Reviewing variables, the spreads of the frequency counts were
greater than the corresponding medians or means. Given that the dispersion of
the empirical data distribution was greater than a Poisson distribution would be,
an overdispersed Poisson regression was used to model both variables. For each
variable, four Poisson regression models with a log link function were used to
model the frequency counts with two working correlation structures (independent
or unstructured) in the GEE approach:

• The first set of models focused on the task effects and included 21 dummy
variables x1, . . . , x21 as predictors for 21 of the 22 tasks (the last task WV was
treated as the reference task). They were referred to as Model 1 for independent
correlation and Model 5 for unstructured correlation.

• The second set of models focused on the task position effect and included one
dummy variable x22 as predictor for position 1, assuming that position 2 was
the reference position. They were Model 2 and Model 6 for independent and
unstructured correlations, respectively.

• The third set of models considered the dummy variables (x1, . . . , x21) for tasks
and position (x22) as two main effects, as expressed in Eq. (2). They were Model
3 and Model 7 for independent and unstructured correlations, respectively.
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• The fourth set of models added the interaction terms for tasks and positions to
Model 3 and Model 7, referred to as Model 4 and Model 8, respectively, for
independent and unstructured correlations.

We estimated these models in the SAS GEMMOD procedure (SAS Institute Inc.,
2020). Sample code appears in the Appendix.

We compared the fit of the eight models using the evaluation criteria discussed
in Sect. 2.4. The generalized score tests were assessed at the α = 0.05 level. For
choosing a correlation structure in GEE, the second and third methods of Hardin
and Hilbe (2002) were applied to our study, with the expectation that unstructured
correlation is likely to be a more sensible choice to model the writing tool usage
(i.e., first method of Hardin & Hilbe, 2002). Comparing the results from the two
correlation structures (independent vs. unstructured) made it possible to empirically
investigate the impact of allowing the correlation to be nonzero on model fit.

Tables 4 and 5 present the results for Formatting. For either correlation type,
Table 4 shows that employing different predictors in the Poisson regressions did not
affect the estimated working correlation from GEE. Including both task effects and
position effect improved both QIC and QICadj, but adding the interaction terms
added little. The score test results in Table 5 confirmed that main effects were
statistically significant but interactions were not. Thus, we selected Models 3 and
7 for further comparison.

Table 4 also reveals that using the two correlation types led to very close
QICadj values for Models 3 and 7 (QICadj: −0.3830 vs. −0.3827). To compare the
empirical sandwich SE estimates with the model-based SE estimates, we examined
the differences in SE (method-based SE minus empirical SE) for the estimated
regression coefficients in Models 3 and 7. Figure 3 shows that the differences in
SE were modest (from −0.005 to 0.006) for both correlation types, but those for the
unstructured correlation were always closer to 0 (with the exception of task WP).

Table 4 GEE model comparison for Formatting: QIC, QICadj, and estimated working correlation

Model Corr type Predictors QIC QICadj Estimated working corr

1 Independent Task −17617.23 −0.3797 0.00

2 Independent Position −17470.95 −0.3765 0.00

3 Independent Task, Position −17771.38 −0.3830 0.00
4 Independent Task, Position −17813.09 −0.3839 0.00

Task*Position

5 Unstructured Task −17608.28 −0.3795 0.27

6 Unstructured Position −17455.44 −0.3762 0.27

7 Unstructured Task, Position −17760.50 −0.3827 0.28
8 Unstructured Task, Position −17801.51 −0.3836 0.28

Task*Position

Note: Model highlighted in boldface indicates the selected model for each correlation type
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Table 5 GEE model comparison for Formatting: score test results

Model Corr type Predictors DFs χ2 statistics p-values

1 Independent Task 21 125.72 <0.0001

2 Independent Position 1 282.11 <0.0001

3 Independent Task, Position 21, 1 126.81, 284.41 <0.0001, <0.0001
4 Independent Task, Position 21, 1, 21 127.54, 295.8, 21.03 <0.0001, <0.0001, 0.46

Task*Position

5 Unstructured Task 21 139.98 <0.0001

6 Unstructured Position 1 284.25 <0.0001

7 Unstructured Task, Position 21, 1 142.90, 289.35 <0.0001, <0.0001
8 Unstructured Task, Position 21, 1, 21 137.67, 297.61, 26.33 <0.0001, <0.0001, 0.19

Task*Position

Note: Model highlighted in boldface indicates the selected model for each correlation type

Fig. 3 Comparison of model-based SEs and empirical SEs for Model 3 (independent) and Model
7 (unstructured), Formatting

Figure 4 further shows that the estimated regression coefficients and empirical
SEs for the two correlation types were comparable. (We omitted intercepts, where
values are much larger, for ease of display.) Some tasks clearly had stronger task
effects on the frequency counts of Formatting than others. Because the model-based
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Fig. 4 Comparison of regression coefficient estimates and empirical SEs for Model 3 (indepen-
dent) and Model 7 (unstructured), Formatting. The regression coefficient estimates are on the
log(count) scale

SEs based on the unstructured correlation approximated the empirical SEs slightly
better, we chose Model 7 as the final GEE model for Formatting.

Tables 6 and 7 present the results of a similar analysis applied to the Reviewing
counts. For either correlation type, considering different predictors in the Poisson
regressions did not affect the estimated working correlation from GEE. Task
position effect was statistically insignificant, and adding it to the models solely with
task effects made a marginal difference in QIC and QICadj, which is not surprising
given the findings from the descriptive data analysis at step 1. As a result, we chose
Models 1 and 5 for further comparisons.

To compare the empirical sandwich SE estimates with the model-based SE esti-
mates, the differences were again computed as method-based SE minus empirical
SE for the estimated regression coefficients in Models 1 and 5. Figure 5 shows that
the differences in SE for the unstructured correlation were typically closer to 0 than
those for independent correlation. In Fig. 6, the empirical SEs for the unstructured
correlation were uniformly smaller than those for the independent correlation, which
indicates unstructured correlation was a more efficient choice than independent
correlation.
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Table 6 GEE model comparison for Reviewing: QIC, QICadj, and estimated working correlation

Model Corr Type Predictors QIC QICadj Estimated Working Corr

1 Independent Task −57963.13 −1.2491 0.00
2 Independent Position −57233.97 −1.2334 0.00

3 Independent Task, Position −57966.40 −1.2492 0.00

4 Independent Task, Position, −57967.39 −1.2492 0.00

Task*Position

5 Unstructured Task −57776.88 −1.2451 0.60
6 Unstructured Position −57062.46 −1.2297 0.60

7 Unstructured Task, Position −57782.14 −1.2452 0.60

8 Unstructured Task, Position −57786.80 −1.2453 0.60

Task*Position

Note: Model highlighted in boldface indicates the selected model for each correlation type

Table 7 GEE model comparison for Reviewing: score test results

Model Corr type Predictors DFs χ2 statistics p-values

1 Independent Task 21 275.90 <0.0001
2 Independent Position 1 0.47 0.49

3 Independent Task, Position 21, 1 275.90, 0.41 <0.0001, 0.52

4 Independent Task, Position 21, 1, 21 277.02, 0.65, 18.94 <0.0001, 0.42, 0.59

Task*Position

5 Unstructured Task 21 370.18 <0.0001
6 Unstructured Position 1 0.97 0.33

7 Unstructured Task, Position 21, 1 370.34, 1 <0.0001, 0.32

8 Unstructured Task, Position 21, 1, 21 326.98, 1.12, 18.6 <0.0001, 0.29, 0.61

Task*Position

Note: Model highlighted in boldface indicates the selected model for each correlation type

All but two tasks involved more Reviewing tool usage than the reference task,
and the task effects were more comparable across tasks for Reviewing than for
Formatting (Fig. 4). Again, the estimated intercepts for the two correlation types
were large compared to the rest of the estimates and are not shown.

In summary, using model selection criteria, significance tests, and comparisons
of model-based to robust SEs, we chose Model 5 as the final GEE model for
Reviewing.

With the final models selected for Formatting and Reviewing, we proceeded to
compare their estimated within-person correlations and task effects; see Table 8 for
a summary of results. The estimated working correlations between the students’
two frequency counts were equal to 0.28 and 0.60 for Formatting and Reviewing,
respectively. That implies greater within-person consistency for the 4th graders’
Reviewing tool usage than their Formatting tool usage. The estimated scale
parameters that were used to address overdispersion in data were equal to 4.66
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Fig. 5 Comparison of model-based SEs and empirical SEs for Model 1 (independent) and Model
5 (unstructured), Reviewing

for Formatting and 3.66 for Reviewing. Thus, the frequency counts for Formatting
were more dispersed than those for Reviewing relative to expectations from the
Poisson regressions. Both of these results are consistent with the descriptive results
in Tables 1 and 2 and the Pearson correlations in Table 3.

We computed the Range of Prediction (RPk) and the Relative Range of Prediction
(RRk) for both positions using Eq. (3) through (5). Since both RR1 and RR2 for
Formatting were greater than their respective values for Reviewing, we concluded
that Reviewing tool usage was more consistent across tasks than Formatting tool
usage.

Step 3: Feedback from Content Experts
For both variables, descriptive statistics and boxplots clearly showed that the spreads
of the frequency counts were greater than the corresponding medians or means.
Compared to the Reviewing tools, the Formatting tools were less frequently used
with respect to the median, but the observed counts had greater variation. Further,
the relative range of predicted task effects (RR1 and RR2) from GEE suggested that
Reviewing tool usage was more comparable across tasks than Formatting tool usage.
The tasks associated with relatively larger predicted task effect would be candidates
for a content expert’s input.
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Fig. 6 Comparison of regression parameter estimates and SEs for Model 1 (independent) and
Model 5 (unstructured), Reviewing. The regression coefficient estimates are on the log(count) scale

Table 8 Summary of estimated effects based on the final models for Formatting and Reviewing

Estimated Estimated IQR RP1 RP2

Variable scale correlation (counts) (counts) (counts) RR1 RR2

Formatting 4.66 0.28 7 2.57 1.97 0.37 0.28

Reviewing 3.66 0.60 12 2.77 2.77 0.23 0.23

No task-specific content features were identified to potentially explain the
observed distributional differences among the tasks. Nonetheless, we believe it is
a necessary step in the procedure to communicate the empirical data findings with
content experts and to seek feedback and validate the observations.

4 Summary and Discussion

We have discussed the novel area of analysis and modeling of process data. We
have proposed a three-stage procedure whose goal is to systematically evaluate the
distributional properties of the process variables for their intended use as measures
of students’ test-taking activities.
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Our case study presented process variables from 22 writing tasks that were
assembled into 44 test forms with two tasks per form and with test forms assigned
to comparable groups of students. We observed that within-person consistency
was good for the Reviewing tool usage variable, which exhibited a within-person
correlation of 0.60. For all of tasks, the frequency counts were comparable across
the two positions in the 60-min test forms. Boxplots suggested that the frequency
counts were comparable across tasks, which was confirmed by the modest value of
0.23 for the Relative Range of Prediction. For the Formatting tool usage variable,
there was less within-person consistency (within-person correlation of 0.28), and
there was a modest decrease in usage counts when the writing tasks appeared second
in a test form. Thus Reviewing tool usage appears to be a more reliable measure of
subject test-taking characteristics.

We proposed the Relative Range of Prediction as an effect size measure of the
variability of task effects—the smaller the Relative Range of Prediction, the more
comparable the variable is across tasks. A potential further research topic is to
develop reference values to calibrate the Relative Range of Prediction.

We emphasize that one should consider cognitive theories in defining process
variables and in interpreting their analysis results (Provasnik, 2021). Although this
chapter has largely focused on the statistical elements of analysis, collaboration with
content experts is an essential part of any such study.

The analysis methods that we have demonstrated are in common use across a
range of scientific disciplines. They are sufficiently flexible to deal with different
types of process variables and are effective in quantifying within-person consistency
and potential task effects. The three-step procedure can serve as a precursor and
address basic, important questions that researchers should pose early in a study. The
four elements of analysis suggested by Hoaglin et al. (1983)—Resistance, Revela-
tion, Re-expression, and Residuals—provide a principled way for practitioners to
choose their data visualization and statistical modeling tools.

5 Some Final Comments
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Appendix

This appendix provides sample SAS codes for fitting GEE models for the Format-
ting variable. Two specific models, Model 3 for independent correlation and Model 7
for unstructured correlation, are chosen for illustrative purposes. It is straightforward
to extend the sample codes to other models considered in this chapter.

/* Destination of SAS data sets */
libname libref "my_file_path"; *path ends with "\";

/* Define variable for analysis */
%let varlabel=Formatting;
%let var=fmt;

**Model 3: Main effects for task and position,
independent model;

%let model=M3;
proc genmod data=libref.mydata;
class personid task position;
model &varlabel.=task position/dist=poisson link=log

type3;
repeated subject=personid/within=position type=ind

corrw MODELSE ;
ods output GEEEmpPEst=&var._paramest_&model. GEEWCorr=&

var._WCorr_&model. GEEFitCriteria=&var._QIC_&model.
GEEModPEst=&var._ModPEst_&model. geemodinfo=&var._
modinfo_&model. type3=&var._type3_&model. nobs=&var.
_nbos_&model.(keep=Label N);

run;
quit;

**Model 7: Main effects for task and position,
unstructured model;

%let model=M7;
proc genmod data=libref.mydata;
class personid task position;
model &varlabel.=task position/dist=poisson link=log

type3;
repeated subject=personid/within=position type=un corrw

MODELSE;
ods output GEEEmpPEst=&var._paramest_&model. GEEWCorr=&

var._WCorr_&model. GEEFitCriteria=&var._QIC_&model.
GEEModPEst=&var._ModPEst_&model. geemodinfo=&var._
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modinfo_&model. type3=&var._type3_&model. nobs=&var.
_nbos_&model.(keep=Label N);

run;
quit;

/* Combine results and compare models */
%macro setfiles(varlabel,var,model);
proc transpose data=&var._QIC_&model. out=&var._QIC_&

model._v1;
id Criterion;
var value;
run;

data &var._WCorr_&model._v1; set &var._WCorr_&model.;
where RowName="Row1";
rename Col2=WCorr;
drop col1;
run;

data &var._modinfo_&model._v1;
set &var._modinfo_&model.;
where Label1 contains ("Structure");
rename cvalue1=Correlation;
drop nvalue1;
run;

data &var._nbos_&model._v1; set &var._nbos_&model.;
where Label contains ("Used");
rename N=Nused;
run;

proc transpose data=&var._type3_&model. out=&var._type3
_&model._v0

prefix=predictor;
var source;
run;
proc transpose data=&var._type3_&model. out=&var._type3

_&model._v1
prefix=DF;
var DF;
run;
proc transpose data=&var._type3_&model. out=&var._type3

_&model._v2
prefix=ChiSq;
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var ChiSq;
run;
proc transpose data=&var._type3_&model. out=&var._type3

_&model._v3
prefix=ProbChiSq;
var ProbChiSq;
run;

data &var._type3_&model._v4;
merge &var._type3_&model._v0(drop= _NAME_) &var._type3_

&model._v1(drop= _NAME_) &var._type3_&model._v2(drop
=_LABEL_ _NAME_) &var._type3_&model._v3(drop=_LABEL_
_NAME_);

predset=catx(’, ’,of predictor:);
run;

data &var._&model.;
merge &var._modinfo_&model._v1 &var._type3_&model._v4 &

var._nbos_&model._v1 &var._QIC_&model._v1 &var._
WCorr_&model._v1;

Model="&model.";
variable="&varlabel.";
run;

data &var._parmest_&model.;
merge &var._ModPEst_&model.(rename=(estimate=mod_est

Stderr=mod_Stderr LowerCL=mod_LowerCL UpperCL=mod_
UpperCL Z=mod_Z ProbZ=mod_ProbZ))

&var._paramest_&model.(rename=(estimate=emp_est
Stderr=emp_Stderr LowerCL=emp_LowerCL UpperCL=emp_
UpperCL Z=emp_Z ProbZ=emp_ProbZ));

D_Stderr=mod_Stderr-emp_Stderr;
model="&model.";
variable="&varlabel.";
run;
%mend setfiles;
%setfiles(&varlabel.,&var.,M3);
%setfiles(&varlabel.,&var.,M7);

**Model comparison results;
data libref.&var._allmodels;
length predictor1 $13. predictor2 $13. predictor3 $13.;
set &var._M3 &var._M7;
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QIC_perobs=QIC/Nused;
QICu_perobs=QICu/Nused;
run;

**Parameter estimates;
data &var.corrstr; set libref.&var._allmodels;
keep correlation model;
run;
data &var._parmest_allmodels;
length parm $13.;
set &var._parmest_M3 &var._parmest_M7;
run;
data libref.&var._parmest_allmodels;
merge &var._parmest_allmodels &var.corrstr;
by model ;
run;
proc datasets library=libref nolist;
modify &var._parmest_allmodels;
attrib _all_ label=’’;
quit;

**Export results;
proc export data=libref.&var._allmodels
outfile="%str(my_file_path.GEE results for &varlabel..

xlsx)"
dbms=EXCEL LABEL REPLACE;
newfile=YES;
sheet="ModelComp";
run;
proc export data=libref.&var._parmest_allmodels
outfile="%str(my_file_path.GEE results for &varlabel..

xlsx)"
dbms=EXCEL LABEL REPLACE;
newfile=No;
sheet="ParmEst";
run;
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