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Life and Works of S. Lynne Stokes

I was born on December 16, 1950, in Corsicana, the seat of Navarro County, Texas,
where six generations of the Stokes family had lived. I was the second-born to
a family of teachers. My dad taught mathematics and physics and coached the
baseball team at Navarro Junior College, which had been established in 1946 as
he and so many others were returning from WWII. My mother taught Spanish and
agriculture, neither of which she had ever taken a course in, at the high school in
her nearby hometown, Richland. In 1952, my parents decided to pull up roots and
head to graduate school at Peabody College, now a part of Vanderbilt University,
in Nashville, Tennessee. Their families were horrified that they would move so far
away, and especially that a mom of two would take such an unconventional path.
But the GI Bill had placed higher education within reach for many families who
would now be called “first-generation,” including mine. My parents went on to earn
doctorates and have careers as college professors, he in mathematics and she in
psychology. Their last and longest stint was at Austin Peay State University, where
my dad chaired the Math Department for more than 20 years and my mom helped
train a generation of school counselors in Clarksville, Tennessee. From this exposure
and the joy they had in their careers, I decided at a young age that being a professor
was my goal.

I studied mathematics at the University of the South in Suwanee, Tennessee. One
of the faculty members, Mac Priestley, agreed to supervise me in an independent
study out of Kemeny and Snell’s book on Markov chains. From that experience, I
decided that enrolling in a statistics PhD program was the right path for me, not
realizing that it was actually probability I had been fascinated by. Luckily, I liked
statistics even better, which I realized after joining the program at the University of
North Carolina.

My years in Chapel Hill are among my fondest memories. My advisor, Norman
Johnson, was endlessly encouraging and supportive. He asked me to read Dell and
Clutter’s 1972 ranked set sampling paper, then recently published, to see if I had
any ideas on extensions for my dissertation work. Since that time, I have had the
pleasure of discussing and collaborating with many on this topic, including several
contributors to this volume.
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viii Life and Works of S. Lynne Stokes

My first job after school was in the Department of Mathematics at Vanderbilt,
which was near my family home. I was one of only two statisticians in a
large department. I soon decided I preferred real data and the company of other
statisticians, and moved on to the Patuxent Wildlife Research Center in Laurel,
Maryland. Patuxent was then a part of the US Fish and Wildlife Service and
located in a 16,000-acre refuge of beautiful forest and wetlands in the midst of
the Washington DC/Baltimore urban sprawl. There I learned from scratch about
birds, and how to model bird-banding and capture-recapture data from the talented
biometricians there, including Jim Nichols, a mentor and co-author. This is a skill
I transferred from birds to people (at Census) and back to fish and the people who
catch them (for NOAA) over the course of my career.

Patuxent changed my life in another way as well. There I met Dan Moulton,
a biologist in the bird-banding lab, where he worked between field seasons on
Laysan Island in Hawaii, where he was studying and banding Laysan ducks. During
his second 6-month field season, we corresponded by letter and audio tape. These
could be transported only by military plane or ship as they patrolled the Hawaiian
archipelago. Soon after Dan returned from Laysan, we married.

While he was away, I left Patuxent for the US Census Bureau, which was just
a short trip around the Beltway. Mary Mulry and I were hired into the Statistical
Methods Division by Paul Biemer, whom we had first met at age 20 when all three
of us were participants in an undergraduate NSF summer mathematics program at
Texas A&M. Mary, Paul, and I have been colleagues, friends, and collaborators for
50 years, and we have NSF to thank for that.

Paul had studied under H. O. Hartley, and he introduced me to sampling theory
and measurement error methods. The Census Bureau provided an unlimited supply
of real-life problems for non-sampling error research, which has remained a lifelong
interest. Fortunately for my career, errors occur whenever data are collected. This
allowed me to dabble in many fascinating application areas over the years. Two
of these areas, fisheries and education surveys, are well represented in this volume
(Brick, Andrews & Foster; Becker & Gozutok).

When Dan took a position at Texas Parks and Wildlife in Austin in 1983, 1
moved with him and worked remotely for Census, before that was common. This
arrangement was facilitated with the help of Kent Marquis, my division chief at
Census, and Carl Morris, then in the Mathematics Department at the University of
Texas. Kent and Carl had known each other at Rand, proving once again that it helps
to get lucky. Soon a faculty position opened for a statistician in the Management
Science Department at UT’s Business School, and I was again in the right place at
the right time. In my 15 years at UT, I expanded the range of problems I worked on
with colleagues in fields from finance to demography to operations research.

In 2001, I'left UT for the Statistics Department at Southern Methodist University,
after a convincing chat with my long-time acquaintance Bill Schucany. I had
first met Bill at a Conference of Texas Statisticians meeting shortly after moving
to Texas, and had received useful advice from him over the years. SMU was a
perfect place for the last 20 years of my career, providing a helpful administration,
supportive colleagues, and excellent graduate students. I chaired the department for
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one term, and then became the inaugural director of SMU’s Data Science Institute
in my last 2 years there. Several of the contributors to this volume are cherished
colleagues and former students from SMU.

My path likely would not have been so straight and well-marked if it had not
been for the opportunities that began to open up for women at just the right time
for me. I also benefited from introductions provided by supportive male mentors,
colleagues, and classmates. I entered the University of the South the first year they
accepted women (1969). My entering cohort in the Statistics Department at UNC
in 1972 were half women and half men, marking the first year that women who
were not wives of students were admitted in significant numbers. I was the fourth
woman to receive a PhD in statistics at UNC, three of whom were supervised by
Norman Johnson, who may have been influenced by his wife Regina from the UNC
Biostatistics Department. At Vanderbilt, I was the first woman to fill a tenure-track
position in the Mathematics Department, and at SMU, the first woman chair of the
Statistics Department. My network-building began in the NSF program I attended
as a 20 year old, which I believe illustrates the value of promoting diversity in such
programs for young scholars.

Dallas, TX, USA S. Lynne Stokes
May 2022
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Lynne enjoying the snow at Patuxent Wildlife Research Center, circa 1980
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Lynne enjoying Friday morning teatime at SMU in 2007
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Celebrating Betsy Becker’s election to Fellow at 2008 JSM with an Educational Statistics mentor
for both of us, Ingram Olkin

Helena Jia, Lynne, and Bingchen Liu in downtown Princeton during a meeting at ETS in 2017
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From left to right: Jessica Wickersham, Raanju R. Sundararajan, Daniel F. Heitjan, Chul Moon,
Hon Keung Tony Ng, Xinlei (Sherry) Wang, Mahesh Fernando, Monnie McGee, S. Lynne Stokes,
Sheila Crain, Jing Cao, and Charles South in Dallas, Texas, during a department faculty gathering
in May 2022
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Preface

When our colleague Lynne Stokes announced her intention to transition to emerita
status at the end of the 2022 academic year, our initial reactions were dismay—at
losing a valued colleague—and surprise—that she would walk away while still at
the top of her game. How can you retire, Lynne; what will you do? And what will
our department do without you?

After reconciling ourselves to the coming new reality, we decided that we should
do something special to commemorate Lynne’s remarkable career and recognize
this momentous life change. A symposium, we thought—but Lynne said she did
not want a symposium. Well then, a party hosting current and past colleagues and
students. No, Lynne said, no party. Perhaps an intimate dinner with the faculty? No
again. A Texas barbecue? A Lynne-themed Friday tea time? No and no. Well how
about a festschrift?

And that is how this book came to be.

So we made the rounds of Lynne’s many students, co-authors, and past and
current colleagues, who were universally eager to contribute papers in areas where
she has worked over the years. We express our sincere gratitude to all of them for
writing chapters of such high quality on a tight deadline. Special thanks are also due
to the referees, many of them authors as well, for their constructive reviews. And
we acknowledge the team from Springer Nature Group—Laura Aileen Briskman,
Kirthika Selvaraju, Faith Su, and Amelie von Zumbusch—who have gently guided
the project from inception to production.

Most importantly, we are grateful to our colleague and friend Lynne Stokes for
blessing this work and for supporting our efforts with her characteristic energy,
generosity, and humility. It is our great pleasure to present her with this book on
the occasion of her transition to the next phase of a most interesting and well-lived
life.

Waltham, MA, USA Hon Keung Tony Ng

Dallas, TX, USA Daniel F. Heitjan
June 2022

XXi



Contents

PartI Ranked-Set Sampling, Judgement Post-stratified Sampling,
and Capture-Recapture Methods

Predictive Modelling and Judgement Post-stratification .................... 3
Steven N. MacEachern and Jiae Kim

Judgment Post-stratified Sampling with Multiple Ranking: A
Comparison with Ranked Set Sampling....................................... 21
Omer Ozturk, Jennifer Brown, and Olena Kravchuk

Efficient Sample Allocation by Local Adjustment for Unbalanced
Ranked Set Sampling ... 45
Soohyun Ahn, Xinlei Wang, and Johan Lim

On the Versatility of Capture-Recapture Modeling: Counting
What We Don’t See ..ot 61
James D. Nichols

Advances in the Use of Capture-Recapture Methodology in the
Estimation of U.S. Census Coverage Error................................... 93
Mary H. Mulry and Vincent T. Mule Jr.

Part II Nonsampling Errors in Statistical Sampling

Measurement Issues in Synthesizing Survey-Item Responses............... 119
Betsy Jane Becker and Ahmet Serhat Goziitok

Two Sources of Nonsampling Error in Fishing Surveys ..................... 141
J. Michael Brick, William R. Andrews, and John Foster

Triple System Estimation with Erroneous Enumerations ................... 157
Paul P. Biemer, G. Gordon Brown, and Christopher Wiesen

Record Linkage in Statistical Sampling: Past, Present, and Future........ 187
Benjamin Williams

XXiii



XX1V Contents

Part III Educational and Behavioral Statistics

A Bayesian Latent Variable Model for Analysis of Empathic Accuracy... 201
Linh H. Nghiem, Benjamin A. Tabak, Zachary Wallmark, Talha Alvi, and
Jing Cao

Variance Estimation for Random-Groups Linking in Large-Scale
SUIVEY ASSESSINEIIES . ... .. ...ttt aaaaes 215
Bingchen Liu, Yue Jia, and John Mazzeo

Item Response Theory and Fisher Information for Small Tests ............ 233
Bivin Philip Sadler and S. Lynne Stokes

Statistical Evaluation of Process Variables: A Case Study on
Writing Tool Usage in Educational Survey Assessment ..................... 251
Yue Jia and Yi-Hsuan Lee



Contributors

Soohyun Ahn Department of Mathematics, Ajou University, Gyeonggi, Korea

Talha Alvi Department of Psychology, Southern Methodist University, Dallas,
TX, USA

William R. Andrews NOAA Fisheries, Silver Spring, MD, USA

Betsy Jane Becker College of Education, Florida State University, Tallahassee,
FL, USA

Paul P. Biemer RTI International, Research Triangle Park, NC, USA
J. Michael Brick Westat, Rockville, MD, USA
G. Gordon Brown SAS Institute, Cary, NC, USA

Jennifer Brown University of Canterbury, School of Mathematics and Statistics,
Christchurch, New Zealand

Jing Cao Department of Statistical Science, Southern Methodist University, Dal-
las, TX, USA

John Foster NOAA Fisheries, Silver Spring, MD, USA

Ahmet Serhat Goziitok Measurement and Evaluation in Education Educational
Sciences, Eregli Faculty of Education, Zonguldak Biilent Ecevit University, Zongul-
dak, Turkey

Yue Jia Educational Testing Service, Princeton, NJ, USA
Jiae Kim Department of Statistics, Indiana University, Bloomington, IN, USA

Olena Kravchuk University of Adelaide, School of Agriculture, Food and Wine,
Adelaide, SA, Australia

Yi-Hsuan Lee Educational Testing Service, Princeton, NJ, USA

Johan Lim Department of Statistics, Seoul National University, Seoul, Korea

XXV



XXVi Contributors

Bingchen Liu Educational Testing Service, Princeton, NJ, USA

Steven N. MacEachern Department of Statistics, The Ohio State University,
Columbus, OH, USA

John Mazzeo Educational Testing Service, Princeton, NJ, USA
Vincent T. Mule Jr. U.S. Census Bureau, Suitland, MD, USA
Mary H. Mulry U.S. Census Bureau, Suitland, MD, USA

James D. Nichols Department of Wildlife Ecology and Conservation, University
of Florida, Gainesville, FL, USA

Linh H. Nghiem School of Mathematics and Statistics, University of Sydney,
Sydney, NSW, Australia

Research School of Finance, Actuarial Studies and Statistics, Australian National
University, Canberra, ACT, Australia

Omer Ozturk Department of Statistics, The Ohio State University, Columbus,
OH, USA

Bivin Philip Sadler Master of Science in Data Science, Southern Methodist
University, Dallas, TX, USA

S. Lynne Stokes Department of Statistical Science, Southern Methodist University,
Dallas, TX, USA

Benjamin A. Tabak Department of Psychology, Southern Methodist University,
Dallas, TX, USA

Zachary Wallmark Department of Musicology and Ethnomusicology, University
of Oregon, Eugene, OR, USA

Xinlei Wang Department of Statistical Science, Southern Methodist University,
Dallas, TX, USA

Christopher Wiesen The Odum Institute for Research in Social Sciences, Univer-
sity of North Carolina, Chapel Hill, NC, USA

Benjamin Williams Department of Business Information and Analytics, Daniels
College of Business, University of Denver, Denver, CO, USA



Part I

Ranked-Set Sampling, Judgement
Post-stratified Sampling, and
Capture-Recapture Methods



Predictive Modelling and Judgement )
Post-stratification oo

Steven N. MacEachern and Jiae Kim

Abstract Predictive modelling has come to the forefront of statistics in recent years
as interest in forecasting the results of experiments and interventions has increased.
We now routinely see forecasts in the news media that include point predictions,
an assessment of variation to accompany the prediction and even a full predictive
distribution. In the area of ranked set sampling, Stokes and coauthors’ work on the
use of measured order statistics, and their concomitants provided a crucial step that
allows one to pass from the subjective assessment of ranks of responses within a
set to the use of covariates. The transition also allows one to make use of formal
models for a response given measured covariates to improve upon the basic ranked
set sampling estimators while retaining the robustness properties of the method.
This chapter pursues the use of predictive distributions in the context of ranked
set sampling. We find that the predictive viewpoint naturally leads us away from
imposing a strict ranking on the units in a set to expressing a distribution over ranks
for each unit in the set. In turn, this change suggests the use of judgement post-
stratification rather than ranked set sampling. It also yields novel estimators which
are shown to outperform the standard estimators.

1 Ranked Set Sampling and Judgement Post-stratification

Stokes’ pioneering work (Stokes, 1977) brought measured covariates to ranked set
sampling (RSS). Briefly restating her work and establishing notation, consider a set
of n H units that are partitioned at random into n sets, each of size H. The units are
presumed to form a random sample from some distribution. Within a given set, we
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begin with (X, Y3,),h =1, ..., H. These units are ranked on the Xy, so that X . i1
is the rth order statistic in the set. The measured response, Y|,.x, associated with
this unit is its concomitant. To draw a RSS of size n from such a population, sample
sizes ny, h = 1, ..., H, are specified, with Z}?:l ny = n. One unit is drawn from
each of the n sets; in ny, sets, the unit ranked 4 is selected. The resulting sample is a
RSS.

The earliest description of RSS appears in Mclntyre (1952) (republished as
Mclntyre, 2005). In Mclntyre’s description of the technique, ranking is based on
the subjective judgement of an experimenter who examines each set of H units,
specifying the ranks of the units in the set. Once the units in each set have been
ranked, the sample is drawn as described above and the response of interest, Y, is
measured on the n sampled units. Extending our notation to capture both set and
rank within set, the mean of the n H units is

n H
Y=@mm™Y Y Y (D

i=1 h=1

where Y;;, is the response of the unit with rank 4 in set i. Suppressing the notation
for the rank, define Y; to the be ith of the n sampled units. Provided n;, > 1 for all A,

H
Yrss = H_l Z )7/1 s (2)
h=1

where Y, is the sample mean of the n; sampled units with rank 4. The RSS
estimator is unbiased: E[¥ | Y] =Y for any collection of n H units. Furthermore,
when the units are a random sample from a distribution with mean yu = E[Y],
E[Y,s] = E[Y] = 1. The goal of RSS is to estimate 1. Stokes and Sager (1988)
cast estimation of a cumulative distribution function as estimation of a proportion
(mean) for all cut points on the real line.

RSS with estimation following (2) is robust to variation in the specifics of how
the ranks are created. When created subjectively, better ranking leads to greater
separation of the means of the rank classes (or strata), in turn leading to greater
reduction in variance relative to estimators based on a random sample from the
population. When ranks arise from a measured covariate, the same holds. Sound
experimental practice includes blinding the ranker to which units will be fully
measured. When implemented, the estimator is unbiased for u as long as the ranks
can be determined before the responses of the selected units are measured. If the
ranking process makes modest use of the measured responses, the bias is typically
small.

Judgement post-stratification (JPS) is a common variant of ranked set sampling.
To draw a JPS sample, a collection of n units is selected for full measurement
(both X and Y) from the population as described above. For each fully measured
unit, a set is filled out by independently drawing an additional H — 1 units. For
these supplemental units, only X is measured. The end result is n sets of H units.
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Within a set, X is measured for all H units, while Y}, is measured for a single
unit. Upon ranking the units, conceptually, we have the pairs (X x4y, Y|r.H1), for
r = 1,..., H. In practice, most of the responses are missing and we have only
one measured response, Y|,.y], for some r. When units are ranked on the basis of
a measured covariate, the name judgement post-stratification is a misnomer. The
name stems from the original work on the technique (MacEachern et al., 2004)
where ranking was based on subjective judgement about the units.

An equivalent description of JPS exists. As in the RSS, we could form n sets,
each consisting of H units. Instead of specifying the n,, h = 1, ..., H, we select
a single unit at random from each set for full measurement. With ranks based on
the measured covariate, the n,, h = 1,..., H, are random variables. The vector
(n1, ..., ng) follows a multinomial distribution with » trials and parameter vector
(1/H,...,1/H).

Whichever description of JPS is used, the data that are used for estimation consist
of n independent and identically distributed (IID) vectors (Y;, R;), where Y; is the
measured value and R; is the rank of the unit within its set. For estimation, we
parallel the technique of post-stratification from survey sampling. Conditioning on
the observed n;, and using the estimator in Eq. (2), an estimator for 1 can be obtained
as

H n

N -1 v -1 Zi:l Yilip
fjpst = H 1;1 = H ST 3)
where shorthand notation has I;;, = I (R; = h). The within-rank sample size is nj, =
27:1 Lin,h = 1,..., H. The resulting estimator is unbiased for u, conditional on
all of the n;, > 0. Various patches exist to define the estimator when one or more
np = 0. Frey and Feeman (2012) and Frey (2016) developed methods to reduce the
mean square error of /1,1 by allowing some conditional bias in the estimator.

To extend the technique to two rankers, the data used for estimation consist of
the vectors (Y;, Ry;, Ro;). The information from both rankers is used to form the
estimator

H n
N —1 > iz Yipin
Ajps2 =H = €]
=BT S

where pip, = [I(R1; = h) + I(R; = h)]/2. The notation p;;, reflects an empirical
estimate of the probability that the ith fully measured unit has rank /4. The method
is easily extended to more than two rankers and to rankers of differing quality.

The move from RSS to JPS has several advantages. For one, it allows the
experimenter to use a conventional design (based on a random sample from
the population), with estimates improved by the use of covariates measured on
additional units. A second advantage is that JPS can be used in situations where the
units are not actually ranked. This may be due to disagreements between multiple
rankers as in MacEachern et al. (2004), or it may be due to the presence of more than
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one informative covariate, as in Wang et al. (2006). Wolfe provided an insightful
review of RSS, JPS and related techniques (Wolfe, 2012).

2 Multivariate Order Statistics and JPS

In Wang et al. (2006), Stokes and coauthors posed the intriguing question of how
to use multiple covariates to convey information about the ranks of units for use
in JPS. Their solution is to rank on each of the distinct covariates. In the case of
a continuous bivariate covariate, (X, X»), each of the units in the set would be
assigned a pair of ranks—one for X and the other for X». This pair of ranks defines
the post-stratum (or rank class) of the unit. For a set of size H, there are H 2 post-
strata. We denote these post-strata with r = (r1, r2), where ry, o € {1, ..., H}. We
focus on a bivariate covariate but note that the technique extends to covariates of
greater dimension. Figure 1 illustrates the situation for a bivariate order statistic for
set size H = 5.

The increase in the number of post-strata from H to H? necessitates recon-
sideration of the basic post-stratification estimator (3). Marginally, each covariate
for the measured unit will have rank »; = h with probability 1/H fori = 1,2
and h = 1,..., H. The joint distribution of R leads to the stratum probability
ny = PR = r). In general, these probabilities can be found via numerical
integration if the model for (X1, X») is fully specified. Some of the 7 may be much
smaller than H 2, leading to a large probability that the estimator is undefined.

Wang et al. (2006) handled this issue by appealing to a parametric model as an
aid to estimation. The authors defined p[y) = E[Y | R = r]. The value of p[y] can be
found by numerical integration over the conditional distribution of ¥ | R. Once the

Fig. 1 Covariate pairs for a set of size H = 5. The bivariate rank vectors are (1, 1), (2, 3), (3, 2),
(4,4), and (5, 5). The ranks based on X| and X, agree for three of the five items and disagree for
two. Extreme differences in the ranks may be very rare
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stratum means are in place, they are connected to the mean of Y via the expression
w =Y . weppe- It is helpful to introduce the difference between the stratum mean
and the overall mean, §jr] = f[r] — 1. The authors suggested estimation by ordinary
least squares applied to a model for w, with observations in stratum r offset by §jy].
The data are (Y;,r;),i = 1, ..., n, and the estimator is

n
fors =n"" Y (¥ = 8ir,1) - (5)

i=1

The estimator [i,zs can be viewed in two stages: In the first, each observation
is bias-corrected by subtracting its dy]; in the second, the sample mean of the bias-
corrected observations is computed. Partitioning the sample into strata reduces the
within-stratum variances. Removing bias and then using the sample mean ensures
that each observation receives equal weight in the estimator. Together, these two
stages lead to substantial variance reduction, especially for relatively large set sizes.

In a refinement, Wang et al. (2006) suggested consideration of a weighted least
squares estimator that takes within-stratum variances into account. The within-
stratum variances are computed on the basis of numerical integration. This estimator
takes the form

i 0 2 (Yi — i)

6
Y on” ©

,awLS =

In the event that the &) and arzi are estimated, we place hats over them to
denote this. In the framework of bias-corrected estimators, fi,rs and [iy s are
excellent performers—the mean and an optimally weighted mean. Wang et al.
(2006) demonstrated superior performance of these new estimators when the class
of models (multivariate normal distributions) is correct and the parameters in the
model are known or are estimated.

The theory developed in Wang et al. (2006) implies that the weighted average of
the offsets is zero for every model for which u exists. That is,

Z T8 = 0. (7
r

This is a delicate expression, as it is naturally satisfied when both the 7, and the
d[r] are correctly specified. Asymptotically, we expect the expression to hold if we
replace these two quantities with consistent estimators of them. If not, one would
expect the expression (7) to evaluate to something other than 0, leaving us with a
Fisher-consistent estimator of a quantity near, but not exactly equal to, z.!

"Huber (1981), in his study of robustness, found a need to redefine consistency when the
distribution that generates the data might not lie in a tidy parametric family. His definition of
Fisher consistency focuses on functionals of the empirical distribution converging to a well-defined
population quantity. This quantity often differs from the nominal target of inference.
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An open question is whether one can develop estimators that are nearly as stable
as flors and [, s and yet show more robustness to violations of the model that is
implicit in their construction. In the sequel, we develop estimators that show greater
robustness to departures from the joint model for X and from the model for Y |X. In
certain circumstances, our estimators show greater stability than do those of Wang
et al. (2006).

3 Consistency of JPS Estimators

The literature on RSS and JPS demonstrates the consistency of the estimators Yigs
and fL 1 in (2) and (3), respectively, under minimal conditions. These traditional
estimators borrow heavily from the design-based perspective of survey sampling,
where (approximate) unbiasedness is prized. Small variance is the secondary
consideration. Modern work with surveys adjusts the balance, relying more heavily
on models, especially where missing data is a concern (Lohr, 2010). With this
perspective, a bit more bias is allowed, provided it is accompanied by a substantial
reduction in variance. Simulations are used to evaluate the estimators’ performance
when the model does not hold. Wang et al. (2006) pursued this path.

We work in the infinite population setting where we collect IID sets, observing
a single member of each set. As such, we envision that the data come from some
distribution which we refer to as the “true model”. In addition, there is a model used
to construct the estimator. We assume that p exists under both models. Consistency
concerns arise when the true model and that used for analysis differ.

To set the framework for our consideration of robustness, we split the models
into two parts. The first is the conditional distribution of ¥ | R. The second
is the distribution of R for the unit that is to be fully measured. The true and
analysis models may differ in one or both of these aspects. A given estimator may
be robust to differences in one portion of the model but not to differences in the
other portion of the model. We consider each of the estimators in turn, presenting a
heuristic argument for or against consistency. Our statements are to be taken loosely;
simulations appearing in a later section support our claims. Formal statements and
proofs of these results await another venue.

We briefly note that the estimators /ljpsl and [ jps2 are consistent for . These
estimators do not rely on a model, and so we need not consider the gap between the
true and analysis models. Consistency was established in MacEachern et al. (2004).

The estimators based on parametric models, {i,1s and 1,15, may or may not be
consistent. We begin with [i,rs. For a given stratum r, an offset observation, ¥ —
Or] = Y — ]+, has mean u—provided the true and analysis models agree for the
distribution of Y|(R = r) so that p [y has the same value under the two models and
the offset has been correctly specified (or will be estimated consistently). Averaging
across the strata, we see that the estimator targets the quantity p — ) 7x8[r]. The
estimator will be consistent for w if (7) holds so that the average offset is zero. It is
clear that this will be the case when the distribution on R and the conditional mean
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of Y | (R = r) are correctly specified for each of the H 2 strata. The first ensures
accuracy of the sy, while the second ensures accuracy of the dfy. Together, these
imply (7). While these conditions stop short of full agreement between the true and
analysis models, they are nearly there.

We might suspect that these conditions are essentially necessary for consistency
for ;. However, the alternative description of the estimator lends insight. Suppose
only that the conditional means of ¥ | (R = r) are correctly specified. Then the §jy)
are correct. Each debiased observation, ¥ — §|y], has mean p. The estimator is the
simple average of the n debiased observations and so is consistent for ;. Accuracy
of the my is not needed.

Interestingly, there is a third path to consistency. Suppose that the distribution
on R is correctly specified, leading to a set of 7, that are the same under true and
analysis models. Since these probabilities agree, and since, by the very definition
of &), D _p 7ed[r] = O under all models, (7) holds under the analysis model. It also
holds under the true model. The debiasing for individual observations is inaccurate
if the conditional means are incorrectly specified, but the inaccuracies cancel in
the sum. In practice, for a finite sample size, the estimator would be conditionally
biased, given the n,. However, for large samples, the n, will be approximately
proportional to the ;- and the bias will be small. In the limit, the bias disappears.
Thus, we see that [i,rs is doubly robust, needing only one of the two portions of
the model to hold to obtain consistency.

We next turn to [iyzs. This estimator targets the quantity

> 0y 2y

Zs 71505_2

As with the ordinary least squares version of the estimator, we consider the debiased
observations, ¥ — §r. The estimator is the precision weighted average of these
debiased observations, each of which has mean u, provided the df are accurate.
This ensures consistency under the condition that the conditional means of Y |
(R =) are correctly specified. Under this condition, the estimator is unbiased for
W, and it has minimum variance in the class of weighted averages of the debiased
observations if the conditional variances are also correctly specified.

Unfortunately, the argument for consistency when only the m, are accurately
specified does not go through for [i, ;5. The presence of the or_z in (8) impacts
the weighting of the various rank classes. While (7) holds,

"+ ®)

Z 7'[1-0';25[1-] =0 )
r

does not. The estimator is not doubly robust.

The arguments for consistency of the various estimators lend insight into their
performance. In all cases, we expect a better model to lead to more accurate
estimation. Having the right family of models for ¥ | (R = r) allows us to
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create a consistent estimator for the conditional distribution of response given
ranks. This leads to consistency for all of the estimators we have discussed. But
it is difficult to capture this relationship correctly. The conditional distribution is
most naturally driven by a latent model for ¥ | X. Beginning with a model of
this sort, an integration over the distribution of X | R is needed to obtain that of
Y | R. The conditional distribution of X | R relies on the joint distribution for the
covariates X. Having the right joint distribution for the covariates would also lead
to the correct stratum probabilities ry. Thus, the joint distribution of the covariates
deserves attention when creating a model to aid in estimation.

There is one situation where it is easy to get the stratum probabilities correct.
This is when there is a single (univariate) set of ranks. In this case, the construction
of the JPS leads immediately to the probability 7w, = 1/H for each of the H strata.
In turn, this leads to consistency of fi,1s based on this single set of ranks for . We
note that using the method in Wang et al. (2006), of debiasing the Y; after passing to
aunivariate summary of the covariates differs from the common practice of mapping
the covariate vector X into a fitted value, ranking on the fitted values, and then using
an estimator of the form (3).

4 Covariates or Ranks?

The use of the vector of measured covariates, X;, to induce the ranks opens up many
possibilities. One might ask whether ranking on X and X» is optimal, or whether
there is a mapping to another set of variates that leads to a better estimator. One
possibility stands out, especially when relying on a multivariate normal model for
(Y, X). The vector X can be mapped to the regression of ¥ on X and its orthogonal
complement. Under the multivariate normal model, this corresponds to an affine
transformation of the covariates, X, to a new set of covariates, say W = AX. The
first coordinate of W is E[Y | X]. The second coordinate is independent of both the
first coordinate and the response and can be dropped.

In practice, we do not expect to know the relationship between covariates and
response. With this in mind, we might estimate the relationship by fitting a model
for Y | X to our n fully observed cases. Having done so, the fitted values become
the first coordinate of W. Often, the fitted values are estimates of E[Y | W] =
ETY | X]. From here, a natural estimate of u can be obtained by averaging the fitted
values (estimated means) for all n H observations. Following this path, the ranks
have disappeared, and we are no longer in the setting of RSS or JPS.

The “covariate” approach leads to a natural estimator in the regression setting.
The model for ¥ | X is a constant variance linear regression model. The chain
of algebra below yields the estimator when the covariance matrix for X and Y is
known.

Define Y, and Xj, to be the mean of the response and the covariates for the n
fully measured units, respectively. Take X (a vector) to be the mean of the covariates
for all nH units. For the covariance matrix, with Y in position 1 followed by the
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vector X in the trailing positions, the matrix can be written in partitioned form. This
leads to X and Xy, for the covariance of Y and the vector X and the variance
matrix for the vector X, respectively. Then

. 1 n H R
fireg = —= > ) ElYinlXin]

i=1 h=1

1 n H X B X
=0 E E iy + 212222] Xin — ix)
i=1 h=1

1 n H _ - _
= m Z Z Yrs + 2:122221 Xin — Xyrs)
i=1 h=1

= ?srs + 21222_21 (X - Xsrs)- (10)

This estimator is constructed by replacing the unknown parameters with estimates
from the n fully measured units. In the event that the covariance matrix was not
known, it would be replaced by the estimated covariance from the fully measured
units. If the covariance matrix is unknown, estimates can be plugged in for the
unknown quantities.

Why would one choose to pass from the covariate X to the coarser summary of
its rank? The advantage of working with the rank-based estimators is their ability
to handle deficiencies in the assumed model for (X, Y). A well-chosen estimator
either will be consistent or will be Fisher consistent for a value very near the
truth. (Parenthetically, estimators based directly on (X, Y) may also be consistent.)
The rank-based estimators also seem to be better able to handle poorer quality
covariates, including those whose distribution is not fully stable from one set to
another. They also lead to methods with enhanced robustness for data sets with
missing covariate values and imperfect models for the missing covariates given the
observed covariates.

5 The Predictive Rank Distribution

Ranks lie at the heart of JPS, and indeed all of RSS. Focusing on a single set, we
can describe the ranks of the H units in terms of a matrix P. Each row of the matrix
corresponds to a unit in the set, each column to the rank of the unit in the set. A
perfectly ranked sample corresponds to a permutation matrix where the row for unit
h, if having rank j, is the H-vector with a 1 in position j and O in all other positions.
We use the notation pj, to represent row £ of the matrix P.

JPS and RSS rely on the rank matrix P but do not rely on an assumption
of perfect ranking. Whether the ranks come from subjective judgement or from
measured covariates, they yield a permutation matrix P, provided there are no ties
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in the ranking. In the event that there are ties, perhaps due to a pair of rankers (or
measured covariates) providing different ranking matrices, Py and P>, MacEachern
et al. (2004) suggested use of the average P = 0.5P; + 0.5P,. This is appropriate
when there is no reason to prefer one ranking over the other. Replacement of the
permutation matrix P with the average necessitates replacement of the estimator (3)
with one that allows non-indicator vectors pj,. Relying on the extensive body of
work on ratio estimation in survey sampling, MacEachern et al. (2004) suggested
the estimator in (4). This estimator effectively prorates the response across the strata
to which it may belong.

The replacement of an H x H permutation matrix P with a convex combination
over permutation matrices has been used productively in RSS by a number of
authors, primarily when concerned with creating models for imperfect rankings (e.g.
Bohn and Wolfe, 1994; Frey, 2007, while Dell and Clutter, 1972 and Fligner and
MacEachern, 2006 developed models for imperfect ranking of differing form). The
permutation matrices represent the extreme points of the set of doubly stochastic
matrices—matrices with non-negative entries whose row sums and column sums
total one. As a consequence, all other doubly stochastic matrices may be represented
as an average of permutation matrices.

The use of measured covariates for JPS allows one to build a model for the
response Y as a function of the measured covariates, X. The model may be
constructed from the data at hand, or it may have been developed in previous
studies. With more than one covariate, a regression model for ¥ on X effectively
transforms the vector of covariates into a single covariate while capturing much of
the information connecting covariate to response. If the units in a set are ranked on
the fitted value from the model when the covariate distribution is continuous, there
will be no ties among the covariate values, ranking will be unambiguous, and the
ranking matrix P will be a permutation matrix. Chen et al. (2005) took this approach
to form a logistic regression model for a binary response.

A second approach to predictive modelling seeks to provide a full predictive
distribution for Y given X. There are a variety of ways to produce such a distribution,
including Bayesian methods. Here, we consider a simple plug-in approach. Having
specified a model for Y | X, consider a set of H units. The predictive distribution of
the rank of Y, given the observed X, # = 1, ..., H, is computed. This predictive
distribution yields the rows of the predictive rank matrix, P.

For the upcoming simulation study, we rely on a multivariate normal model to
obtain the predictive rank distribution. When H = 2, calculation can be done in
closed form. The predicted means for the cases in a set are x;,r B forh = 1,2, and
the predicted variances are ayz( 1 - ,02) where oy2 is the (marginal) variance of Y

and p? is the coefficient of determination. This leads to the probability that unit 1 is
ranked smallest:

x| B —x]p x] B —x,p
P(Y, <Y x)=1-o L2 = 2L ) . (1
(Y1 < Y2 | x1,%x2) (ay s p2)> (ay =) (11)
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where @ (-) represents the standard normal distribution function. A corresponding
expression provides the probability that unit 1 is ranked largest. This leads to the

equation
xTﬂ—xTﬂ XT,B —xTﬂ
=l 217 , D il S . 12
P ( (O'y 2(1 — pz)) (ay\/2(l — 0?2 (12)

Similar calculations can be performed for unit 2 producing

we () ) o
oyy/2(1 — p?) oyy/2(1 — p?)

When H > 2, the rank probabilities result from the integral of a multivariate
normal distribution over a region defined by (hyper) planes. There is no closed-form
expression for this integral, but simulation or numerical integration techniques allow
us to approximate the integral. For our implementation, we only need the vector of
rank probabilities for the fully measured unit in the set.

To approximate the rank probabilities, we use a simple technique, described for
the case when unit 1 is sampled. We first generate Y, h = 2, ..., H, independently
from normal distributions with means XhﬂT and common variance 03(1 — ,02).
These values are taken to be the responses for the H — 1 unsampled units in the set.
We next turn to the measured unit. We ignore the observed response, Y1, and use the
model to compute the H rank probabilities from the normal distribution with mean
X ,BT and variance ay2(1 — ,02) and cut-offs from the drawn values of Y5, ..., Yg.
This gives us model-based rank probabilities for the measured unit, conditional on
Y2, ..., Y. We then repeat this process and average the results to provide pj, a
Monte Carlo approximation to the desired row of the permutation matrix, p;. For
the upcoming simulations, we used a Monte Carlo sample size of 100 repetitions. A
similar process is used if a different unit in the set is measured.

A formal description of our estimator requires a little more notation. Let Y denote
the n-vector of measured responses. Let 1 denote the H -vector all of whose entries
are 1 and 1, denote a similar vector of length n. Stack the row vectors for the n
measured units’ predictive rank probabilities in an n x H matrix, Q. Making use of
our notation, the estimator (4) takes the form

Y7o\
- -1
Wjps2 = H ( ) 1y, (14)
Jps I;LFQ

where the ratio of H-vectors in parentheses is to be interpreted as elementwise
division. For a given rank, 4, the contribution to the estimator (4) or (14) is the
ratio of two unbiased estimators—one for i in the numerator and one for mj, in the
denominator. While the 7, are known to equal 1/ H, the use of an empirical estimate
of this quantity tends to improve the estimator, as it does in survey sampling Lohr
(2010).
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Furthering the parallel to survey sampling, we consider a “regression estimator”
based on the measured Y; and using the corresponding predictive rank probability
vectors as covariates. This yields the estimator

fipss=H "1,(0T0)"'0TY. (15)

The regression provides estimates of the means of the H rank classes which are then
averaged to form the estimate of .

The combination of ranking on a single dimension and regression based on
O makes use of our knowledge of least squares regression. One of the basic
properties of the least squares regression surface is that it passes through the “point
of averages” given by the mean of the covariates (here, rank classes) and the mean
of the response. This is true both for the population level regression relationship
and regression based on a sample of data. Here, the population point of averages is
known for the predictive rank distribution—from the construction of the JPS, it is
simply H~! for each of the H rank classes. The estimand is the mean of Y. The
estimator comes from first estimating the “slope” of the regression surface and then
adjusting from the sample point of averages for the predictive rank distribution to
the population point of averages.

6 Simulation Study

This section presents the results of simulation studies comparing the performance of
the various estimators of the mean based on a JPS sample. The findings for existing
estimators are in line with the results in Wang et al. (2006). They also highlight the
value that the predictive rank probabilities bring to estimation, particularly for the
new estimator in (15).

The first study investigates the performance of eight estimators when the model
that generates the data is fully known and is exactly right. This allows us to
look at the potential performance of the estimators, exclusive of uncertainty about
the model. Large sample sizes let us compare the asymptotic performance of the
estimators.

The eight estimators are JPS1 from (3), a plug-in estimator based on the rank of
ElY | X1, X»] (LS), OLS and WLS from Wang et al. (2006), TRs from (4), JPS2
and JPS3 from (14) and (15) and REG from (10). JPS2 and JPS3 make use of the
predictive rank distribution. The estimator TRs has the same form as JPS2 but, as
in MacEachern et al. (2004), uses the two ranks from the concomitants instead of
the model-based predictive rank distribution. The REG estimator makes direct use
of the covariates.

The model is the following. There are n sets, each consisting of H units. There
are two covariates and a single response of interest. The covariates are measured
on all nH units, while the response is measured for a single unit in each set. The
vector (X1, X3, Y) follows a multivariate normal distribution with standard normal
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marginal distributions and covariances (correlations) specified in Tables 1, 2, and 3.
The varied correlations range from a strong relationship between the concomitants
and Y to a relatively weak relationship between them. Sample sizes n = 20, 50 and
100 are investigated for set size H = 2. For larger set sizes, results are presented
only n = 50 and 100. For these set sizes, some of the estimators did not exist for
some replicates. For the simulation, 10,000 replicates were used.

The tables present the relative accuracy of the various estimators to the sample
mean based on a SRS. The entries are the ratio of MSEs for the SRS relative to
the estimator in question. A number greater than 1 indicates smaller MSE for the
estimator than for SRS.

We begin with a comparison of the new estimators JPS2 and JPS3. The overall
pattern is that JPS3 is more accurate than JPS2, sometimes noticeably so. There
are exceptions, particularly for smaller sample sizes and when the coefficient of
determination is large (i.e. when the variance of ¥ | (X1, X3) is small). There is
some indication that, for a small sample size relative to set size, JPS3 may become
numerically unstable, particularly when the coefficient of determination is large (this
instability not visible in the tables).

Table 1 Simulated performance of estimators for set size H=2 relative to SRS. Entries are ratios
of MSE

(P1ys P2y, P12) | (0.9,0.9,0.65) (0.8,0.8,0.5) (0.5,0.5,0.5) (0.5,0.5,0.8)

n 20 (50 [100 (20 |50 [100 |20 [s0 [100 |20 [s50 [100
JPS1 128 [ 135 [1.32 | 1.21 [ 124 [1.22 [ 1.04 [ 1.08 | 1.08 | 1.09 | 1.15 | 1.14
LS 140 [1.43 [ 143 [131 [1.35 [1.33 [1.08 | 1.12 [ 1.12 [ 1.10 | 1.15 | 1.15
OLS 158 [1.58 [1.53 | 1.45 [1.44 142 [1.15 | 1.15 | 1.14 | 1.18 | 1.20 | 1.18
WLS 1.58 [1.59 | 1.54 | 145 |1.45 [ 142 [1.16 | 1.15 | 1.14 | 1.18 | 1.20 | 1.18
TRs 146 [1.50 [ 146 [ 135 [1.37 [1.34 [ 111 |12 [ a2 [ 113 | 18 | 117
JPS2 149 [ 151 [1.50 [ 143 [1.45 [1.42 [1.09 [1.08 [ 1.07 | 1.11 [ 1.14 [ 111
JPS3 148 [ 151 [1.51 148 [1.51 [1.52 [1.14 [ 1.17 | 1.19 [ 1.19 | 1.26 | 1.26
REG 1.99 1 1.96 | 1.95 | 1.77 | 1.73 | 1.71 | 122 | 120 | 1.21 | 1.27 | 1.30 | 1.28

Table 2 Simulated performance of estimators for set size H=3 relative to SRS. Entries are ratios
of MSE

(p1y, P2y, P12) (0.9,0.9,0.65) (0.8,0.8,0.5) (0.5,0.5,0.5) (0.5,0.5,0.8)

n 50 100 50 100 50 100 50 100
JPS1 1.56 1.62 1.38 1.40 1.08 1.12 1.20 1.22
LS 1.79 1.82 1.60 1.65 1.13 1.16 1.21 1.24
OLS 2.06 2.08 1.79 1.79 1.20 1.22 1.31 1.29
WLS 2.08 2.10 1.79 1.80 1.20 1.22 1.30 1.29
TRs 1.87 1.91 1.62 1.64 1.16 1.17 1.26 1.27
JPS2 1.93 1.97 1.78 1.78 1.10 1.10 1.19 1.19
JPS3 1.92 1.97 1.87 1.92 1.21 1.24 1.33 1.37

REG 2.83 2.84 2.28 2.25 1.27 1.28 1.41 1.42
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Table 3 Simulated performance of estimators for set size H=4 relative to SRS. Entries are ratios
of MSE

(P1y P2y, p12) | (0.9,0.9,0.65) (0.8,0.8,0.5) (0.5,0.5,0.5) (0.5,0.5,0.8)
n 50 100 50 100 50 100 50 100
JPSI .72 182 147 153 108 L15 120 |1.26
LS 213 220 182 187 115 121 123 [1.28
OLS 253 257 |210 (210 125 128 |135 135
WLS 258 262 |212 211 125 129|136 [1.36
TRs 224 (231 184 |18 [1.19 123 |120 [1.32
JPS2 238 (242 206 210 |1.10 114 122|121
JPS3 234 (240 [216 224 124 131 136 |142
REG 375 1380 277 277 132 [136 148 |1.48

With JPS3 generally outperforming JPS2, we turn to a comparison of JPS3 to
OLS and WLS of Wang et al. (2006). For JPS3, we see a pattern of increasing
efficiency relative to SRS as sample size increases. This comes from variation in the
observed predictive rank distribution—for the measured units, the distribution is not
uniform on the H rank classes. With a larger sample size, the distribution tends to
be closer to uniform. This effect is larger for larger set sizes. For large sample size,
JPS3 outperforms both OLS and WLS in all settings except the high correlation
setting. We attribute this to the effective use of the predictive rank distribution in a
context where the predictive rank distribution is fairly close to uniform.

The assumptions underlying the REG estimator are exactly right in this simula-
tion. As we would expect, making full use of this model produces a very accurate
estimator. In all cases covered by the simulation, the REG estimator has smaller
MSE than any of the JPS style estimators.

Based on this simulation study, we make these recommendations: When one
believes that a specific regression model is correct, use REG. Among the JPS style
estimators, when n is small relative to H and one has confidence in the model upon
which OLS and WLS are based, use either OLS or WLS; when r is large relative to
H and the correlation is not extremely strong, use JPS3.

The second study investigates robustness of the estimators. In all cases, the model
for Y | (X1, X») is incorrectly specified. Following Wang et al. (2006), we generate
data from a multivariate normal model for (W, W5, Y), and then compute X; =
exp (W;) for i = 1, 2. The multivariate normal has mean vector 0 and correlations
that match those in the first simulation study. The correlations between the X; and
between the X; and Y are reported in Table 4. The correlations were obtained from a
massive, 2 billion observation simulation from the joint distribution of (X1, X», ¥).
Note that, in this simulation, the bivariate rank probabilities for (X1, X») match
those for (W1, W3). This portion of the model is correct.

Table 5 presents the results of our robustness simulation for set size H = 2.
Focusing on the comparison of JPS3 to OLS and WLS, we find that JPS3 nearly
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Table 4 Simulated (log X1, log X2, ¥) | (X1, X2, Y)

correlations for P
lognormal/normal models for (o1y, P2y, P12) (Ply, P2y, P12)

(X1, X2, Y) 09 |09 |0.65 |0.6866 |0.6866 | 0.5329

0.8 |08 |05 0.6103 | 0.6103 |0.3776
05 |05 |05 0.3815 | 0.3815 |0.3776
0.65 [0.65 [0.9 |0.4959 | 0.4959 | 0.8495

Table 5 Simulated performance of the estimators for set size H=2 relative to SRS when model
does not hold. Entries are ratios of MSE. The table includes simulated correlations for (X, X3, Y)
from Table 4

(B1y- P2y» P12) | (0.6866, 0.6866, 0.5329) (0.6103, 0.6103, 0.3776)

n 50 200 [800 (3200 12800 |50 [200 800 |3200 |12800
JPS1 131 136 138 136 |132 [126 (126 [1.29 [123 |1.25
LS 142 145 (147 147 144 134 136 140 135 137
OLS 152 154 [155 152 |1.51 145 142 146 140 |1.42
WLS 152 154 155 153 |1.52 145 143 146 140 |1.42
TRs 146 150 [151 149 147 139 137 141 135 |1.37
JPS2 121 124 124 (124 (122 119 [ 1.18 120 115 |1.17
JPS3 163 170 [1.71 172 171 151 153 159 |1.52 |1.56
REG 144 146 (145 147 143 142 137 142 135 137
(Bry» P2y, p12) | (0.3815,0.3815, 0.3776) (0.4959,0.4959,0.8495)

n 50 200 [800 (3200 12800 |50 200 800 |3200 |12800
JPS1 107 109 [1.08 [1.09 |1.07 |L14 114 115 |1.15 |1.17
LS 110 L12 (L1l 112 111 | L15  L14 |[115 116 | 1.17
OLS L13 (114 (113 (13 [tz (a8 (e |17 (17 [ Las
WLS 113 (114 [ 113 (114 (2 [t (e (117 17 s
TRs L1112 (12 (112 (111 117 L16 117 117 118
JPS2 1.03 ' 1.03 [1.02 1.03 |1.02 | 1.03 1.00 103  1.02 |1.04
JPS3 L1 115 114 (115 115 117 [1.19 120 120 |1.22
REG L1 113 (112 (112 113 (116 114 115 |1.13 |1.16

always outperforms OLS and WLS. The only instance where OLS and WLS do
better is for n = 50 with weak correlations among (Y, X1, X») where OLS and
WLS are slightly better. REG performs poorly relative to JPS3, OLS and WLS.

Table 6 presents the MSE of a SRS relative to the various estimators for set size
H = 4. We note that, for this larger set size, OLS and WLS perform relatively better
than for H = 2. JPS3 performs better for strong correlations and larger sample
sizes, while OLS and WLS outperform for weak correlations and smaller sample
sizes. REG follows the pattern of OLS and WLS but does not perform as well as
these estimators.
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Table 6 Simulated performance of the estimators for set size H=4 relative to SRS when model
does not hold. Entries are ratios of MSE. The table includes simulated correlations for (X1, X3, Y)
from Table 4

(Biy» P2y, P12) (0.6103, 0.6103, 0.3776) (0.6103, 0.6103, 0.3776)

n 50 100 200 50 100 200
JPS1 1.76 1.79 1.85 1.48 1.50 1.57
LS 2.11 2.17 2.23 1.78 1.83 1.89
OLS 2.49 2.42 2.48 2.05 2.01 2.05
WLS 2.53 2.47 2.53 2.07 2.03 2.06
TRs 2.30 2.28 2.36 1.87 1.85 1.90
JPS2 1.51 147 1.51 1.36 1.31 1.34
JPS3 2.38 2.60 272 1.98 2.04 2.15
REG 1.85 1.83 1.91 1.69 1.61 1.66
(Bly» Pays P12) (0.3815, 0.3815, 0.3776) (0.4959,0.4959,0.8495)

n 50 100 200 50 100 200
IPS1 1.08 1.14 1.15 1.25 1.27 1.30
LS 1.13 1.21 1.21 1.26 1.29 1.31
OLS 1.23 1.27 1.25 1.37 1.34 1.35
WLS 1.23 1.27 1.25 1.37 1.35 1.35
TRs L18 1.23 1.22 1.33 1.33 1.35
IPS2 1.03 1.06 1.05 1.08 1.06 1.07
JPS3 1.15 1.22 1.23 1.30 1.32 1.35
REG 1.17 1.21 1.19 1.28 1.25 1.25

7 Discussion

For us, one of the most intriguing aspects of our exploration of the estimators
developed by Stokes and colleagues in Wang et al. (2006) is the double robustness
of their OLS estimator. Their clever use of debiasing followed by a simple average
(or, for their WLS estimator, a weighted average) stabilizes the weights of individual
cases in the estimator. This stabilization is especially important for smaller sample
sizes and when there are multiple covariates, where large differences in the weights
are common. The combination of stability of the estimator (small variance) with
minimal bias in a fashion that is robust to violations of the presumed model for
Y | X has proven to be extremely effective. We suspect that this robustness is an
important factor in the practical success of the method.

The estimators that we develop in this work pursue the path laid out by Stokes and
colleagues. Our new estimators focus on stability while maintaining small bias. To
control the bias, we resort to a form of dimension reduction, passing from multiple
covariates to a one-dimensional ranking. To enhance stability, we pass from a single
observed rank to the predictive rank distribution of the measured unit. Together,
these adjustments produce estimators that can be more accurate than previously
developed estimators for RSS and JPS data. In some circumstances, the gains are
striking.
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The new estimators make use of the covariate values for all units in a set to create
the predictive rank distribution. In contrast, the estimators of Wang et al. (20006)
make less use the observed covariate values. Their estimators use the covariate to
create the ranks within a set and, implicitly, to estimate the covariance matrix for
covariates and response, leading to the offsets [y. This can be accomplished with
information from only the fully measured units without reference to the unmeasured
units in a set. One can imagine that, in some circumstances, one could collect sets
that are ranked on covariates and yet observe numerical covariate values only for
the fully measured units. In such a setting, the Wang et al. (2006) estimators could
be used, while the new estimators could not be computed. We believe that these
situations would be relatively rare.

The success of all of these estimators leads us to alter our view on RSS and
JPS estimation. Most of the literature on these methods takes one of two forms. It
either makes very minimal assumptions about the mechanism that gives rise to the
data and is essentially nonparametric in nature, or it makes very strong assumptions
about this mechanism. The latter approach has generated papers that make heavy
use of strong parametric assumptions and that presume that rankings are perfect. In
nearly all cases, the explicit goal is to find the rank of a unit within a set. In contrast,
along the lines of MacEachern et al. (2004), we find that there is value in allowing
for a distribution over ranks. With the availability of covariates, this suggests that
we should devote considerable effort to building covariate-driven models for the
rank of the measured unit. Accepting the uncertainty that comes with such models
improves estimation when compared to effectively selecting a rank at random from
the predictive rank distribution and using this to create the estimator. We believe that
shifting the perspective from the creation of estimators to building sound models for
the data will, in the end, result in better estimators.

Our development of novel estimators suggests specific directions for further
research. One is to sharpen the heuristic arguments for consistency and double
robustness of the estimators in Wang et al. (2006) and to formally establish these
results. A second is to combine the debiasing that is implicit in the estimators of
Wang et al. (2006) with our predictive rank techniques. A third is to more completely
explore the impact of developing and fitting a model to the data to which it will be
applied. The use of split-sample techniques such as the jackknife (dropping a set at
a time) or half-sample methods may help control the bias that arises from multiple
uses of the same data.

There are many ways to obtain a predictive rank distribution. We have used a
simple calculation under the assumption that the model is fully known. When fitting
a class of models to data, we might turn to a plug-in estimator. Such estimators are
commonly derived from maximum likelihood, maximum penalized likelihood or
generalized estimating equations. Alternatively, we could use Bayesian methods to
account for uncertainty in the fit of a fitted model and also to account for uncertainty
in which model should be fit (c.f. Meeden and Lee, 2014).

In addition to the relatively simple setting considered here, we note that similar
techniques can be developed for many other data structures. Following Stokes and
Sager (1988), we could look at P(Y € A) for some set A, including the multivariate
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setting. We could look at a multivariate mean, or a measure of dependence between
variables. We could look at survival data where censoring is a concern. We could
look at data that lie in non-Euclidean spaces, and so on. When the following features
are present, we have a clear route on which to proceed: A measured covariate that
can be ranked (to yield a concomitant) to play the role of X, a target phrased as an
expectation to play the role of u = E[Y] and a RSS or JPS to produce the data.
Stokes and her colleagues have paved the route.
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Ranked Set Sampling
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Abstract Ranked set sampling and judgment post-stratified sampling designs
form groups among sample units using their relative positions (ranks) in small
comparison sets. This rank information governs the decision on whether to include
units in a final ranked set sample (RSS), but only supplements the primary selection
of units in a judgment post-stratifed sample (JPS). If the position information in the
comparison sets is accurate, for both designs, the samples represent the population
better than a simple random sample (SRS) of the same size. The RSS design uses the
ranking information in a more direct way. However, the RSS design induces a strong
structure in a sample, and the data so collected may not be suitable for studies where
a multipurpose analysis is desired. The JPS design is slightly less efficient, but more
flexible and enables multipurpose analyses. This paper explores the benefits of the
JPS over the RSS design of the same sample size. We show that the efficiency loss
in the JPS design can be reduced by using ranks from multiple comparison sets. The
paper presents results from an extensive simulation study to demonstrate the benefit
of the JPS design over the SRS and RSS designs when the JPS is constructed using
multiple ranking methods.
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1 Introduction

In field sampling and social science research, creating samples that are repre-
sentative of the population is important. This can be achieved by using stratified
sampling, cluster sampling, or post-stratified sampling designs. In certain cases, the
stratification variable may be subjective, rough, and imprecise, but can still provide
valuable information about the relative position of a sample unit in a small set.
Such stratification variable can be used to reduce the sampling variation, and cost
in ranked set and judgment post-stratified sampling designs. These designs stratify
the sample into groups of homogeneous observations using sample units’ relative
positions (ranks) in small comparison sets.

For a ranked set sample (RSS) of size n, one first determines a set size H
and then selects n H units at random from the population. These units are divided
into n comparison sets, each of size H. Units in the comparison sets are then
ranked from the smallest to the largest, without measurement. Ranking can be
performed on either the variable of interest assessed on a less elaborate scale or
an auxiliary variable. The unit judged to be the A-th smallest (¥|;,);) is measured in
nj, comparison sets for j = 1,...,ny, 2}721 ny = n. The measured observations
Yinj,j=1,....,np;h =1,..., H are called a ranked set sample. If n;, = d for
allh =1,..., H sothat n = dH, the RSS is called balanced, and d is called the
cycle size. If there is no ranking error, the square brackets are replaced with round
parentheses, and the Y(;,); becomes the h-th order statistic in a sample of size H.

Ranked set sampling design was introduced by MclIntyre (1952, 2005). The main
motivation in Mclntyre’s work was to enable field researchers to conduct pasture
yield (and similar) field assessments in an objective and efficient way. Takahasi and
Wakimoto (1968) developed the theoretical foundation of the ranked set sampling
design and showed that the RSS mean is always better than a sample mean of a
simple random sample (SRS). Dell and Clutter (1972) showed that even with some
ranking errors, the RSS mean is as good as, or better than, the SRS mean depending
on the quality of ranking information. Research activities in RSS designs then
expanded in different directions, including parametric and nonparametric settings.
In the parametric setting, a few representative publications are Stokes (1995), Chen
and Bai (2000), Arslan and Ozturk (2013), Hatefi et al. (2014), and Hatefi et al.
(2015). In the nonparametric setting, readers are referred to Bohn and Wolfe (1992,
1994), Hettmansperger (1995), Koti and Babu (1996), Ozturk (1999), and Fligner
and MacEachern (2006). Two books have been published on ranked set sampling
design, Chen et al. (2003), and Bouza and Al-Omari (2019). A comprehensive list
of references can be found in these publications.

The RSS research activities also considered the finite population setting. Patil
et al. (1995) constructed an RSS using sampling without replacement selection
procedure. Deshpande et al. (2006) expanded the RSS design to three different
schemes of sampling without replacement. Frey (2011), Ozturk and Jafari Jozani
(2014), and Jafari Jozani and Johnson (2011) used probability sampling and
constructed Horvitz-Thompson-type estimators. Ozturk and Bayramoglu Kavlak
(2018) constructed inference using a superpopulation model in ranked set sampling.
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MacEachern et al. (2004) introduced the judgment post-stratification design to
provide the flexibility for a multipurpose analysis of sample data. For a judgment
post-stratified sample (JPS), one first selects and measures an SRS of size n, Y;,
i = 1,...,n. For each measured unit Y;, one then selects additional H — 1 units
from the population, without directly measuring them, to form a comparison set of
size H. The units in the comparison set are ranked from the smallest to the largest,
and the rank of Y;, R; is recorded. The pairs (¥;, R;),i = 1, ..., n, constitute a JPS.

In recent years, the JPS design in an infinite population setting has generated
extensive research interest. Ozturk (2014) considered the estimation of the popu-
lation quantile and variance from a JPS. Wang et al. (2006) used the concomitant
order statistics to estimate the population mean. Frey and Feeman (2012, 2013)
constructed estimators for the population mean and variance by conditioning on
the judgment group sample sizes. These new estimators improve the unconditional
JPS estimators. Chen et al. (2014), Frey and Ozturk (2011), Wang et al. (2012),
Wang et al. (2008), and Stokes et al. (2007) constructed constrained estimators
using stochastic ordering among judgment ranking groups. The main idea in the
constraint estimators is to minimize the impact of ranking error by forcing judgment
class means to follow the stochastic order among ranking groups. In a different
direction, Ozturk (2017) constructed conditional ranks in smaller comparison sets
of size K < H given the original ranks in a larger comparison set of size H. The
impact of any ranking error on the estimator in this case was relatively small, and
less than for the estimator based on the large comparison set of size H. Ozturk
(2013) and Ozturk and Demirel (2016) used a multi-ranking approach to reduce the
impact of ranking error in judgment post-stratified and ranked set samples.

In the finite population settings, Ozturk (2016a, 2016b, 2019) constructed estima-
tors for the population mean and total for the JPS design. A JPS can be constructed
by sampling with or without replacement. It is shown that the variance estimator
of the sample mean requires a finite population correction factor when sampling
without replacement. Ozturk and Bayramoglu Kavlak (2018, 2019, 2020) developed
inference to predict the population mean and total using a superpopulation model.

In the JPS design, the ranks are constructed post-experimentally after an SRS is
chosen. Hence, it is possible to have more than one rank for each measured unit
in the SRS by permuting the n(H — 1) unmeasured units used in the construction
of comparison sets in the first created JPS. Each permutation creates n comparison
sets, each of size H, containing the measured unit. The units in the sets are ranked
again, without measurement, and the ranks of the measured units in the comparison
sets are determined. This permutation procedure can be done many times and each
permutation creates a new set of ranks for the same measured values. Ranks from
different permutations are conditionally independent given the original SRS. One
may then combine all these ranks using the Rao-Blackwell theorem by conditioning
on the original SRS.

A similar idea can be used in the RSS design, but the extension to multiple ranks
is not as trivial as in the JPS design. In the RSS design, the measured observations,
Y{n)j, are not identically distributed. Hence, the units in the comparison set
constructed after the permutation of n(H — 1) units are not iid since each comparison
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set contains one of the yy); from the original ranked set sample and this will have
a different distribution from the other units in the set. Even though the comparison
sets will be different after each permutation, the rank of yp;); will depend on the
original rank /. Hence, the idea of multiple ranks in the judgment post-stratified
sampling may not be easily extended to ranked set sampling.

There are a few other differences between the RSS and JPS designs. One of
the major differences is whether the ranking is done before or after the units are
measured for the variable of interest. In RSS, the ranking is performed before one
measures the units, and the ranks guide the measurement decision. The rank and the
measurement of a unit cannot be separated. Hence, an RSS cannot be reduced to
an SRS, unless it is unusual situation where the ranking variable is not correlated
with the measurement variable. In a JPS, ranking is performed after one measures
the units in the SRS. The ranks are not the essential part of the measured units; they
are the ranks of the variable of interest measured on a quicker scale (e.g., visual
inspection) after the construction of an SRS. Since the auxiliary (ranking) variable
is only post-associated with the response measurements, it can be ignored and a JPS
can be reduced to an SRS if desired.

Another major difference is the distributional properties of the ranks. The ranks
in RSS are pre-determined nonrandom constants. Hence, the ranking group sizes ny,
h =1,..., H, are nonrandom integers. In a JPS, the rank R; is a discrete uniform
random variable with the support on integers 1, ..., H. Hence, the judgment group
sample size vector (11, ..., ng) has a multinomial distribution with the sample size
n and the success probability vector (1/H, ..., 1/H).

One may look at the RSS and JPS designs in terms of the trade-off between
the efficiency gain of the RSS and the adaptability of JPS for multipurpose studies.
To our knowledge, this trade-off has not yet been posed and investigated. In this
paper, we provide a comprehensive study to compare the RSS and JPS designs for
their efficiencies and multiple ranking properties. In Sect. 2, we provide a detailed
description of multi-ranking in RSS and JPS designs. In Sect. 3, we review the
distributional properties of the RSS and JPS means. In Sect. 4, we present empirical
results to compare the RSS and JPS designs. In Sect.5, we illustrate the use of
RSS and JPS designs with an agricultural application example. Section 6 provides
concluding remarks.

2 Sampling Designs with Multiple Ranking Methods

We consider a finite population of size N. The population values of the variable Y
are denoted as y1, ..., y,. The mean and variance of the population are given by

1 & 1 &
S . 2 _ - 5.2
IN= ;_1 yi, Sy = N ;_l(yz YN)T.
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From this finite population, we construct RSS and JPS with multiple ranks. The
samples are constructed using the sampling with and without replacement selection
procedures. Unless stated otherwise, we always consider a finite population setting
in this paper.

RSS with Multiple Ranks We first consider an RSS selected using the sampling
with replacement (SWR) selection procedure. For cycle j and rank &, we construct
a comparison set of size H using a sampling without replacement (SWOR) scheme.
The units in the comparison set are ranked by the best ranking method available.
The unit judged to be the A-th smallest, Y|;);, is measured. For the observation
Yn)j, additional K — 1 ranks can be constructed in two ways. If there are K — 1
(K > 1) rankers or ranking variables available, the rank of Yj);, Ry|jr, among
the units in the comparison set is determined for each method k, k = 2, ..., K.
After these ranks are determined, all units in the comparison set are returned to the
population before constructing the next comparison set. Hence, the same unit may
appear in the final sample more than once, and all the observations are independent.
We note that units within a comparison set are selected using the SWOR procedure
to minimize the ranking error. The ranks using the first ranking method (k = 1)
are predetermined (nonrandom constants) to have a balanced ranked set sample,
ny =d,forh = 1,..., H. The remaining K — 1 ranks are random and may not
necessarily be balanced.

Even if there is only one ranker or one auxiliary variable to rank the units,
we can still construct an RSS with multiple ranks. For given values of 4 and j,
Y|); is measured in a comparison set. Next, we form K — 1 different comparison
sets by selecting H — 1 additional units at random from the population without
measurement, Vi, j = {Yin1j, Yeo1. ..., Yjn—1}, k =2, ..., K, and determine the
rank of Y{p);, Ry j,n, ineachsetfork =2, ..., K. The RSS with multiple ranks can
be written as

{Yimyj, Rejjon) h=1,...,H, j=1,....dik=1,...,K},

where Ry ; j is the conditional rank assigned by ranking method & given that the
observation Yj;); is assigned rank h. We note that P(Ry)j, = h) = 1. The ranks
assigned by another ranking method are random variables, but their distributions
depend on the ranks assigned by the first (best) ranking method.

An RSS with multiple ranks using a SWOR selection scheme can be constructed
in a similar fashion. The only difference is that after determining the rank of Y};;, all
H units in the comparison set are removed from the population before constructing
the next comparison set. Hence, for each ranking method, all comparison sets are
disjoint.

The final sample cannot have repeated observations and the observations are
not independent. If the population size N is large with respect to sample size n,
ranked set samples constructed using SWR or SWOR selection procedures become
approximately equivalent.
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Table 1 Illustration of RSS multi-ranker sampling with set size H = 3, cycle size d = 2, and the
number of ranking methods K = 3

Cycle (j)

BN DN — = =

h

W = W N~

Balanced RSS

(Y, Yo, Yo
(Y1, Yoz, Yo
(Y1, Y11, Y3}
(Y1112, Ypop2, Y32}
(Y112, Y212, Ypape}
(Y112, Y212, Y312}

Ranks from K methods

{1, Raj1.1, Rajia}
{2, Ryj1,2, R3)1,2}
{3, R2j1.3, Raj1,3}
{1, Rai2,1, R32.1}
{2, Rop2, R32,2}
{3, R2p2.3, Rap,3}

Ranked set sample

(Y131, 1, Roju1, Rajua}
(Y211, 2, Roj1 2, R3j1,2}
{Y311, 3, Roj1,3, R3ji3}
(Y, 1, Rop.1, Rap.1}
(Y212, 2, Rop2,25 R3p22}
{Y1312, 3, Roj2.3, R3)2,3}

The construction of ranked set samples using multiple ranking methods is
illustrated in Table 1. In this table, the third column presents the comparison sets
in which a balanced ranked set sample is constructed with the first ranking method.
It highlights that the units are ranked using ranking method 1; the bold-faced values
are measured. The fourth column lists the ranks obtained from all K (K = 3)
different ranking methods for the bold-faced values in column 3. The last column
gives the ranked set sample of size 6. In this example, each entry has three ranks
generated by three ranking methods.

JPS with Multiple Ranks We first construct a simple random sample of size n using
the SWR selection procedure and measure all n units, Y1, ..., Y,. For each Y¥;, we
then select additional H — 1 units under SWOR selection from the population to
form a comparison set V; = {Y;, Y1, ..., Yg_1}. We rank these units from smallest
to largest without measuring Y, using K different ranking methods, and identify
the rank of Y;, Ry;, for each ranking method k, k = 1,..., K, where Ryj; is the
rank of ¥; assigned by ranking method k. All units in the comparison set, including
the one we measured, are returned to the population before the construction of the
next comparison set. Hence, a JPS may have repeated observations and all ¥;, i =
1, ..., n, are independent. This process creates the sample

{Yi, Ry i =1,...

If only one ranking method is available, for each Y;, one can create K different
comparison sets, Vi; = {Y;, Yix,...,Yg_1x}fork =1,..., K, where Y}, #Y;
is the additional unit selected from the population to construct the k-th comparison
set. These sets are ranked using the ranking method and the ranks of Y;, Ry;, are
determined in Vy;, fork =1,..., K.

A JPS under the SWOR selection procedure is constructed in a similar fashion.
The only difference here is that all comparison sets for each ranking method are
disjoint, and hence, the JPS cannot have repeated observations. For small population
sizes N, observations Y;,i = 1, ..., n, in the sample are negatively correlated since
sample units are selected as an SRS without replacement.

The construction of a JPS with multiple ranking methods and under the SWOR
selection scheme is illustrated in Table 2. In this example, the sample and set
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Table 2 Illustration of multi-ranker JPS under sampling without replacement selection with set
size H = 3, sample size n = 6, and the number of ranking methods K =3

(j) | SRS | Comparison sets JPS

1 Y (Y1, Y71, Y31}, {¥1, Yo .2, Y192}, {¥1, Y263, Y12,3} {Y1, Rij1, Rojis Ry}
2 Y {Y2, Y91, Y101}, {Y2, Y202, Y82}, {¥1, Y173, Y27.3} {Y2, Ri2, R2p2, R3p2}
3 Y3 {Y3, Y111, Y121}, {Y3, Y21.2, Y220}, {Y3, Y93, Y10,3} {¥3, R1j3, Roj3, R33}
4 Yy {Yq, Y131, Y141}, (Y4, Yis2, Y232}, {¥Y4, Yia 3, Yog 3} | {Ya, Rija, Roja, R3ja}
5 Ys {Ys, Y151, Y16.1}, Y5, Y182, Y242}, (Y5, Y292, Y132} | {¥5, Ryj5, Rojs, R3s)
6 Yo (Y6, Y17.1, Yis.1}, (Y6, Y12.2, Y252}, {¥6, Y33, Y303} {Ys, Rij6, Roj6, R3j6}

sizes are 6 and 3, respectively. For each measured unit, three ranks are constructed
(K = 3). The second column presents a simple random sample of size n = 6. The
third column presents three comparison sets, Vy|;, for each Y;, one for each ranking
method. The fourth column presents the JPS with three ranks. The comparison sets
of each ranking method in Table 2, sets in block 1, 2, or 3 in column 3, are disjoint
and cannot have repeated observations. Comparison sets for the different ranking
methods (sets in different blocks) are not necessarily disjoint because the same
ranking unit can appear in more than one set in different ranking methods. Sampling
is without replacement and thus the comparison sets in different rows for the same
ranking method are disjoint. We note that the sample units will not be independent
if the population size N is small in relation to the sample size n.

3 Statistical Inference Using RSS and JPS

In this section, we provide a brief overview of statistical inference using the RSS
and JPS designs. We first assume K = 1. The estimators for the population mean
are given as the sample mean of the RSS and JPS:

i | H o4 i | A
YRSS—_HZZ [hlj» YJPSZd_Z Inly

n
Y I(Rj = h),
j=1

where I (a) is 1 if a is true, I, = I (ny > 0),dy = Y1 In,and Jy, = 1/ny it nj >
0 and zero otherwise. Both of these estimators are unbiased for the population mean
yn regardless of the ranking quality as long as a consistent ranking method is used.
If all units in the comparison sets are ranked with the same ranking methods, the
ranking procedure is called consistent. The following theorem provides variances
of the sample means under SWR and SWOR selection schemes using a consistent
ranking method.



28 0. Ozturk et al.

Theorem 1 Lel‘Y[h]j,hZ 1,---, H, j= 1,...,dand(Yj,Rj),j =1,...,nbe
RSS and JPS constructed using a consistent ranking methods, respectively.

(i) If the samples are constructed with replacement, the variances of Yrss and
Y ps are given by

1 & H

P\ &
ORss = T3 DSt Tips = 7 Var ( >Z(y[h]_yN) +E<d2 >ZS[2M,

h=1 h=1 h=1

where 3, = Var(Yi), Jin = EXup), Var(l/dy) = 2 Y0 (5!
and

112 Hklnk+1(1)]1 WN\/k—=1\/n \n—t
E<n1d3) ( +1;/ 1 ; k2t ( 1)<j—1)<t)(k_j) .

(ii) If the samples are constructed without replacement, the variances of Yrss and
Y;ps are given by

h
N—1-—n 1
2 2
=— 8§ — — - — S|

ORSS n(N — 1) N — HZ(yh] yN Z [h,h]
H H H2S2

0ips = Ci0n, H) 1 3 Siy = Y S [ + Caln, H N)
h=1 h=1

where Sy p) = Cov(Ynn, Yinp),

Ci(n, H) = - E i 2 E i
D=y gwm—n "\ ) w1t \a

I 1 1 I}
C2(}’l,H,N)= Var<d>—m H—E E .

The proofs of 012 ps in (i) and (ii) are given in Ozturk (2016a). The proof of 01% s
in (ii) is given in Patil et al. (1995). It is clear that the variance of the JPS mean
involves expected values and variances of the functions of judgment group indicator
function (/1), sample sizes (n1), and the number of non-empty judgment groups
(dy,). These quantities account for the variation due to the random sample sizes in
judgment post-stratified samples. Ozturk (2016b) shows that as the sample size n
becomes large, 012 ps approaches from above 01% 5s-




Judgment Post-stratified Sampling with Multiple Ranking: A Comparison with. . . 29

We now introduce unbiased estimators for U% PS and 01% 5s- We first define the
following quantities:

4 Ihlh’.]h.]h/ " 2
( 2) h=1 h#h’ i i=1 j=1
H n n
ZED> % DY ViYL (R =)I(R; = h),

h=1 n i=1 j##i

1 H H d d
U = Somgm 22 22 22 2 (omi = Yi)?

h=1h'#h i=1 j=1

1 H d
U;Z mZZZ(Yh]l _Yh]J >

h=1i=1 j#i

where d; = Z;Ll I(np > 1), and J;f = 1/(np — 1) if n, > 1 and zero otherwise.

Theorem 2 LetYip;, h=1,---  H, j=1,....,dand (Y;,R}),j=1,...,nbe
RSS and JPS constructed using a consistent ranking method, respectively.

(i) If the samples are constructed with replacement, d > 1 and at least one
Judgment group in a JPS has at least two observations, the unbiased variance
estimators for Yrss and Y;ps are given by

R Var (I /dy) I n\| v
2 1

= Ay ) E —var (L)1 2

Oirs = -1 T &n; “\a, )2

U*

~2 2

ORss = 4

(ii) If the samples are constructed without replacement, d > 1 and at least one
Jjudgment group in a JPS has at least two observations, the unbiased variance
estimators for YRSS and Yy pg are given by

(N = DU+ Usp)
INH-1)

63pg = Ci(n, HYU2/2 + C2(n, H, N)

L U3 UP+U3
kss= g TN

Theorem 2 provides unbiased estimators for the variance of the RSS and JPS means
for an arbitrary but consistent ranking scheme when K = 1. An approximate (1 —
«)100% confidence interval for the population mean can be constructed using the
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normal approximation:

Yrss £ ti—a/2,n—HORSS

Yyps + ti—aj2.n—HOIPS,

where 1, 47 is the a-th upper quantile of the ¢-distribution with degrees of freedom
df. The degrees of freedom df = n — H is suggested to account for the
heterogeneity among ranking groups.

There are different ways to combine the ranking information in multi-ranking
RSS and JPS designs. Ozturk and Kravchuk (2021a, 2021b) provided detailed
developments of these procedures. In this paper, we only consider one of the
approaches, in which each observation is weighted based on the agreement scores
of the K ranking methods. Let wy, ; be the proportion of K ranking methods which
assign rank A’ to the i-th observation in the sample:

K
—1 I(Ryin=h)/K, =1 H, for the RSS
whﬂi,h—EZ (Rkjin =h)/K, i =1,..., H, for the
k=1

and
1
Wi = & Z I(Ry; =h)/K, W =1,..., H, for the JPS.
k=1

We estimate the population mean by allocating each observation into ranking group
h’ based on how strong the agreement is among the K ranking methods to assign
the observation to judgment group A':

7. H d 1 if n w>0 d H
> w,h’ / w,
YRrsS.w = Z Z Z Yimiwwjin, Jww =1 "o . s My = Z Z Wh'lih-
] il i 0  otherwise Pl
ifng >0

Ho H d 1 i H

> w,h’

Yipsw = E - E E Yiwp i, Jypw =4 " nw,h’=§ E Wi s
W=l

wo Do 0  otherwise Pt

where d,, = Z,I;I,Zl I(ny p» > 0). In the expressions above, n,, j» can be considered
as the effective sample size for judgment group h’. The asymptotic distribution
of Y ps,w 1s considered in MacEachern et al. (2004) and Ozturk and Kravchuk
(2021a). The asymptotic distribution of Yz ss.w is given in Ozturk and Kravchuk
(2021b).

In this paper, we only consider the jackknife variance estimates of these
estimators. Let YI(e < Sh]u')) ( Y; P’; ) be the RSS (JPS) estimator after the observation
Yipi (Y;) and all ranks associated with it are removed from the sample. The
jackknife variance estimates are given by
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2
2 (n—1) S(—[hl)  5—(1))?
ORSS.J = fPC—nz ZZ (YRss,w - YRSS,w)
h=1 i=1

2 n
) (n—1) > (i) S0 2
ojps,Jg = fPC—nz Z(Yjps,w’ =Y, psw)
i=1

1— ﬁ SWOR selection

CcC =
fp { 1 SWR selection.

where fpc is the finite population correction factor, YI; S(E?]u)J = dLH Z,’f:] Z?:l

)?1; S([Sh]llu) and f}'}, Sw = %Z?:l Y;;’S)’w. In the jackknife variance estimates, we
used the coefficient (n — 1)2/n? since this coefficient provides smaller bias than the
usual coefficient (n — 1)/n, (Ozturk and Kravchuk, 2021a,b).

An approximate (1 —a)100% confidence interval for multi-ranking RSS and JPS

designs can be constructed using the jackknife variance estimates:

YRsS,w £ ti—a/2,n—HORSS,J

Yipsw £ ti—a/2.n—HOTPS,J-

In the next section, we compare the RSS and JPS estimators in terms of their
efficiencies and coverage probabilities for a varying degree of ranking quality and
different set sizes.

4 Comparison of RSS and JPS Designs

We performed a simulation study to investigate the contrasting features of RSS and
JPS estimators. In the simulation study, samples were generated from two finite
populations with large population size N = n 4+ 1000 and small population sizes
N = nH + 50. We considered a normal, N(u = 50,0 = 5), and a lognormal,
LN(u = 0,0 = 1), distribution. The population values of the response variable Y
were generated using the quantile functions:

yi=Fy'(i/(N+1),n=50,0 =5),and y; = F,yG/(N+ 1), u=0,0 =1),i=1,...,N,

where Fy ](y, uw,o) and F [Is,(y, i, o) are the inverse cumulative distribution
functions of a normal distribution with location parameter p and scale parameter
o and lognormal distribution with scale parameter exp(u) and shape parameter
o, respectively. The samples were generated using SWR and SWOR selection
procedures for both population sizes N = n + 1000 and N = nH + 50. The
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quality of ranking was modeled using a ranking variable X, such that X = Y + e,
where € has a normal distribution with mean zero and variance 1 and inldependent
of Y. The correlation coefficient between X and Y is given by p = Tiaa The
values of p were selected to be 0.01, 0.25, 0.5, 0.75, 0.9, 1 where values less than
1 will result in imperfect ranking. For the normal distribution, we fixed the sample
size at n = 36 and varied the set sizes as H = 2, 3, 4, 6, 12 to explore the impact
of different set sizes on the RSS and JPS designs. We purposely selected a smaller
sample size n = 36 to evaluate the approximation of the coverage probabilities of
the confidence intervals to the nominal coverage probability 0.95. The simulation
size is taken to be 5000. An R-package RankedSetSampling (Ozturk et al., 2021) is
used to compute the estimators and construct confidence intervals. The package is
available to download at https://biometryhub.github.io/RankedSetSampling.

We first investigate the efficiencies of the RSS and JPS estimators. The relative
efficiencies are defined as the ratio of the mean square errors of the RSS and JPS
estimators:

__ MSE(JPS)

RE = ————.
MSE(RSS)

A value of RE greater than 1 indicates that the RSS estimator is more efficient than
the JPS estimator. Figure 1 presents the relative efficiencies for the population size
N = n + 1000 when samples were generated using the SWR selection procedure.
The set sizes and the number of ranking methods are indicated in the legend on each
panel. The first panel shows the relative efficiency curves when both RSS and JPS
were generated with just one ranking method K = 1. It is clear in this case that
the RSS estimator is more efficient. The efficiency gain is minimal for H = 2, 3,
moderate for H = 4, 6, and substantial for H = 12. This intuitively makes sense
since large set sizes lead to many judgment groups having no measured observations
in a JPS. Empty ranking groups inflate the variance of the JPS estimator. The RE
values are similar to each other for all p values when H = 2, 3, 4, 6, except for p
when H = 12 where it increases.

Figure 1 also presents the relative efficiencies in three different panels when
different number of ranking methods (K=2, 5,10) is used. Comparing these panels
with panel 1, one can see that the gain in RE values decreases with the number of
ranking methods K. For example, the RE values in panel 1 (K = 1) are around
1.4 when p < 0.75, and it reduces essentially to 1 in panel 4 (K=10). Similar
observation can be made in panel 2 (K = 2) and panel 3 (K = 5). Under perfect
ranking, RSS is still superior to the JPS for all set sizes.

Figure 2 presents the efficiency curves for the small population size, N = nH +
50. In this part of the simulation, both the RSS and JPS were generated under the
SWOR selection procedures. The efficiency results are similar to those in Fig. 1,
with the key difference being that the R E curves are higher (lower) in Fig. 2 than in
Fig.1when K = 1and K =2 (K =5 and K = 10).

These efficiency results indicate that RSS estimator is more efficient than the JPS
estimator when the number of ranking methods is small (K = 1, 2). For the larger
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Fig. 1 Efficiency comparison of RSS and JPS designs under SWR selection for large-sized normal
distribution population

number of ranking methods (K = 5, 10), difference between the efficiency gain of
RSS and JPS estimators diminishes.

We also investigated the coverage probabilities of the confidence intervals for
the population mean. Figure 3 presents the coverage probabilities for the samples
constructed with replacement from the population of size N = n + 1000. We note
that confidence intervals are constructed using unbiased variance estimates when
K = 1. For K # 1, we used the jackknife variance estimates. The panels in the first
and second columns of Fig.3 present the coverage probabilities of RSS and JPS
confidence intervals for K = 1, 2, 5, 10, respectively. The coverage probabilities of
RSS confidence intervals can be seen to be reasonably close to the nominal coverage
probability of 0.95 when p < 0.75 and K = 2,5, 10, but they are slightly larger
when p > 0.75 and K = 2, 5, 10. The coverage probabilities in the second column
of Fig. 3 are reasonably close to the nominal coverage probability 0.95 for all p and
K values in the simulation study.
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Fig. 2 Efficiency comparison of RSS and JPS designs under SWOR selection for the small-sized
normal distribution population

Figure 4 presents the coverage probabilities for the population size N = n H +50.
In this case, coverage probabilities are again close to nominal coverage probability
of 0.95 under imperfect ranking (0 < 0.75) for both RSS and JPS and K =
1, 2,5, 10. Unlike Fig. 3, coverage probabilities are slightly inflated for both RSS
and JPS confidence intervals when p > 0.75 and K = 2,5, 10. Under perfect
ranking (p = 1), jackknife variance estimator overestimates the variances of the
RSS and JPS estimators and leads to a larger coverage probability than the nominal
coverage probability of 0.95

In the second part of the simulation study, we generated samples from the
lognormal distribution with the scale parameter exp(u)(u = 0) and the shape
parameter o = 1. The sample and set sizes were as previously n = 48 and H =
2,3,4,6, 12. All the other simulation parameters remained the same. The lognormal
distribution is strongly positively skewed. For this reason, we increased the sample
size from 36 to 48. Figures 5 and 6 present the relative efficiencies of the RSS
and JPS estimators for large and small population sizes, respectively. The pattern
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Fig. 3 Coverage probabilities of the jackknife confidence intervals under SWR selection for
normal distribution

of the efficiency curves is very similar to that for the normal population. The main
difference is in the magnitude of the efficiency gain. The efficiency curves reach to
higher values for the normal distribution. This result is consistent with the efficiency
results of ranked set samples in (Mclntyre, 1952, 2005). Mclntyre reported that
the efficiencies are higher for symmetric distributions (highest for the uniform
distribution) and decrease with skewness. Since the lognormal distribution has
strong skewness, the efficiencies are slightly lower than for the normal distribution.

Figures 7 and 8 present the coverage probabilities of the jackknife confidence
intervals of the population mean for the SWR and SWOR designs, respectively. It is
clear that the coverage probabilities for the lognormal distribution are lower than the
nominal coverage probability 0.95. The SWOR selection provides a better coverage
probability than the SWR selection. Since a jackknife confidence interval relies on
the normal approximation, the sample size n = 48 is not large enough for a good
approximation when the underlying population is strongly skewed.
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Fig. 4 Coverage probabilities of the jackknife confidence intervals under SWOR selection for
normal distribution

5 Application

In this section, we use a real-life finite population example to compare the JPS
and RSS estimators. The population consisted of 350 grapevine plants at Coombe
vineyard at the University of Adelaide, Waite campus, Australia. The vineyard is
used as a research and teaching facility. There are eight different rootstocks origi-
nally planted, on which Shiraz is grafted. These rootstocks are popular commercial
choices in South Australia. The standard vineyard management of this population
requires the monitoring and measuring of certain characteristics of vine plants. In
this paper, we consider seven characteristics; X1, trunk circumference (cm) in 2018;
X», trunk circumference (cm) in 2019; X3, shoot counts; X4, total shoots; Xs,
pruning weight (kg); Xg, cordon length (cm); and X7, total bunch numbers and
Y, nett fruit weight in 2019 (kg). Our interest was in the estimation of the mean nett
fruit yield of this population of grapevines in 2019. The variables X;,i =1, ..., 7,
were used as ranking variables in comparison sets, and hence, the number of ranking
methods is K = 7. There were missing values on some vines, and after removing the
plants having missing observations, the population size was reduced to N = 309. In
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Fig. 5 Efficiency comparison of RSS and JPS designs under SWR selection for the large-sized
lognormal distribution population

this population, the correlation coefficients between Y and X;, p; = cor(Y, X;) are
p1 = 0.240, po = 0.191, p3 = 0.310, ps4 = 0.321, p5s = 0.172, pg = 0.274, and
p7 = 0.713. The mean and standard deviation of the Y variable are 10.558 kg and
3.855 kg, respectively.

We performed another simulation study using these 309 vine plants. In each
replication of the simulation study, we generated the single-ranking judgment
post-stratified and ranked set samples with the ranking variable X7 (K = 1),
the multi-ranking judgment post-stratified and ranked set samples with X, k =
1,...,7 (K = 7), and a simple random sample. The sample sizes were selected
to be n = 30 and 48. For the sample size n = 30, the set sizes were chosen
H = 3,5,6, 10. For the sample sizes n = 48, the set sizes were H = 3,4, 6.
Samples were generated using the SWR and SWOR selection procedures. The
simulation size was 5000.

Table 3 presents the relative efficiency of the multi-ranking RSS estimator (K =
7) with respect to the other four estimators: the JPS estimator with K = 7 and
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Fig. 6 Efficiency comparison of RSS and JPS designs under SWOR selection for the small-sized
lognormal distribution population

K = 1, the SRS estimator, and the RSS estimator with K = 1. When the entries
in Table 3 are greater than one, the multi-ranking RSS estimator with K = 7 was
superior. The other efficiency results can be obtained by taking the ratio of any two
efficiency columns in Table 3. For example, the efficiency of the JPS estimator with
K = 1 relative to the SRS estimator can be obtained by taking the ratio of column
6 and column 5. When n = 30, H = 3, and the replacement is true, this efficiency
is calculated 1.246(1.321/1.060 = 1.246). The other relative efficiencies can be
computed in a similar fashion.

All entries in Table 3 are greater than one which indicates that the RSS multi-
ranking estimator with K = 7 is more efficient than JPS and SRS estimators. The
efficiencies of RSS estimator with K = 7 with respect to JPS and SRS estimators
increase with set sizes, but remain relatively constant with RSS estimator wit K = 1
(column 7). The reason for this is that the correlation coefficient between ranking
variable X7 and response is 0.729, while the other correlation coefficients are all less
than 0.321. Hence, the improvement of ranking quality due to ranking variables with
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Fig. 7 Coverage probabilities of the jackknife confidence intervals under SWR selection for large-
sized lognormal distribution population

low correlation coefficients is minimal, and the relative efficiency for multi-ranker
estimator remains relatively constant. For this particular population and ranking
methods, the JPS estimators are more efficient than the SRS estimator and less
efficient than multi-ranker RSS estimator.

We also computed the coverage probabilities of the confidence intervals based
on the judgment post-stratified, simple random, and ranked set samples for the
population mean. All coverage probabilities were reasonably close to the nominal
coverage probability of 0.95. Due to space considerations, these empirical coverage
probabilities are not reported here.

6 Concluding Remarks

Field research is expensive and time-consuming, particularly in natural environ-
ments where variables are difficult to control. If auxiliary variables are available,
they can be used to account in the analysis for the inherent variation among sampling
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Fig. 8 Coverage probabilities of the jackknife confidence intervals under SWOR selection for
small-sized lognormal distribution population

units. These auxiliary variables can be used as blocking variables if they can be
evaluated in an objective manner. In certain settings, auxiliary variables may not be
assessed accurately. Their assessment may be rough, imprecise, and subjective, but
still helpful for ordering the units in a small set independently of knowing the actual
values of the variable of interest.

Ranked set and judgment post-stratified sampling designs use this ordering
information to construct samples that are more likely to span the full range of values
in the population. It has been established in the literature that a ranked set sample
is generally more efficient than a judgment post-stratified sample. However, RSS
designs induce a strong structure in the sample. Hence, an RSS cannot be analyzed
with the inferential procedures developed for an SRS design.

The JPS design may be less efficient than the RSS design, but the sample
constructed can be reduced to a simple random sample, allowing the flexibility to
perform multiple analyses of various responses on the same data set. This becomes
useful if the data set is needed for a multipurpose study. In this paper, we show
how to reduce the efficiency loss of a JPS with respect to an RSS by constructing
multiple ranks for the response variable on each measured unit. Hence, the JPS
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Table 3 Relative efficiency JPS RSS
of the weighted RSS
estimators with K = 7 for Replace |n |H |K=7 |K=1 SRS |K=1
mean fruit yield of vine plants True 30 |3 |1.209 |1.060 |1.321 |1.018
in Coombe vineyard. Entries 30 |5 |1.283 |1.203 |1.433 |1.020
greater than one indicate that 30 |6 1335 |1.261 1.500 | 1.016
the RSS estimator with 30 (10 | 1508 1473 1724 | 1011
K =7 is more efficient
48 |3 |1.227 | 1.042 |1.352 |1.022
48 |4 1270 | 1.042 |1.419 |1.026
48 |6 |1.403 |1.155 |1.603 |1.030
False 30 |3 |1.287 |1.116 |1.407 |1.026
30 |5 [1.390 |1.224 | 1.560 | 1.025
30 |6 [1.399 |1.313 |1.575 |1.024

30 |10 |1.633 |1.619 |1.860 | 1.003
48 1.287 |1.075 |1.426 |1.028
48 |4 |1.317 [ 1.098 |1.475 |1.028
48 |6 |1.533 | 1.261 |1.757 |1.030

(O8]

design provides the flexibility for multipurpose analysis at the expense of little
efficiency loss with respect to a balanced ranked set sample. Another advantage
of the JPS design is that it is relatively straightforward to construct a multi-ranking
JPS even when there are no additional auxiliary ranking variables, and this can be
done by permuting the units selected to form comparison sets. This idea is not easily
extended to a ranked set sampling. We would recommend that the JPS design should
be considered in field sampling, especially for multipurpose studies.
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Efficient Sample Allocation by Local )
Adjustment for Unbalanced Ranked ez
Set Sampling

Soohyun Ahn, Xinlei Wang, and Johan Lim

Abstract In applications that demand cost efficiency, balanced ranked set sampling
(BRSS) is a well-established alternative to simple random sampling (SRS), which
is proved to be more efficient in estimating the population mean than its SRS
counterpart. The efficiency of BRSS can be further improved by considering
unbalanced RSS (URSS) with appropriate unequal allocation. However, with a
poor sample allocation scheme, URSS can have even worse performance than SRS.
Conditions that render a URSS design more efficient than its BRSS counterpart
have been rarely studied in the literature. For a fixed total sample size n and a
fixed set size H, we characterize a sufficient set of allocation schemes in which
estimation of the population mean from URSS is guaranteed to be more efficient
than the BRSS counterpart. We illustrate this set using a simplex diagram based
on H = 3 and compute theoretical relative efficiency over SRS under distributions
with either heavy tails or skewness. We further consider two adjustment procedures
of a URSS design that is less efficient than its BRSS counterpart. We numerically
investigate their performance under various simulation settings and apply them to
redesign less efficient URSS in realistic scenarios where BRSS is initially planned
but unequal sample sizes in rank strata are caused by the prevalent issue of missing
data.
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1 Introduction

Randomized experiments play a vital role in modern scientific discovery. In general,
they rely on simple random sampling (SRS) to recruit units, in which the efficiency
of such experiments can be improved by simply increasing the sample size. How-
ever, in situations with constrained resources, ranked set sampling (RSS) can serve
as a cost-effective alternative to SRS. RSS is a type of stratified sampling method,
which uses auxiliary rank information to form strata (Stokes and Sager, 1988). If the
experiment design considers the same number of replicates for each rank stratum, it
is called balanced RSS (BRSS); otherwise, unbalanced RSS (URSS). The efficiency
of RSS has been studied with a rich history (Chen et al., 2006 and references
therein). It is well-known that BRSS offers more precise estimation than its SRS
counterpart (i.e., SRS with the same sample size). The efficiency of BRSS can
be further improved by implementing URSS with appropriate unequal allocation.
Especially, when the underlying distribution is highly skewed, an URSS estimator
can be (much) more efficient relative to its BRSS and SRS counterparts (Ahn et al.,
2017; Chen & Bai, 2000; Bocci et al., 2010; Ozturk & Wolfe, 2004; Wang et al.,
2017). However, if the number of replicates for each stratum in URSS is not properly
assigned, its performance can be even worse than that of SRS. Conditions that render
a URSS design more efficient than its BRSS counterpart (i.e., the balanced design
with the same set size and sample size) remain largely unexplored.

Some proper allocation rules for RSS have been suggested in the literature to
achieve better efficiency than the default BRSS (Bhoj & Chandra, 2019; Chen
& Bai, 2000; McIntyre, 1952; Wang et al., 2004). Among them, the Neyman
allocation, which allocates sample units into rank strata in proportion to the standard
deviation of each stratum, is the most popular due to the optimality that it has
the smallest variance in estimating the population mean. For this reason, most
of the existing literature on URSS has focused on the Neyman allocation (Chen
et al.,, 2006; Takahasi & Wakimoto, 1968; Wang et al., 2017). However, the
Neyman allocation is “one of many” allocation schemes which are more efficient
in estimating the population mean than their BRSS counterparts. In addition, it
globally depends on the variances of all rank strata and so lacks flexibility in
practice. In other words, suppose the current sampling scheme is not the Neyman
optimal and further is less efficient than the balanced design, due to various
complications and limitations in implementation. One may want to make it become
the Neyman optimal or at least more efficient than its BRSS counterpart by some
(small local) adjustment (e.g., adding a few more samples to a few rank strata). For
the Neyman allocation, the sample size of “one” stratum depends on the variances
of all other strata, and thus, if we add more samples, we have to do so for most of
the rank strata, and this is often costly in practice.

The main purpose of this paper is to define a sufficient set of allocation schemes,
in which estimation of the population mean from URSS is guaranteed to be more
efficient than the BRSS counterpart. This sufficient set is characterized by the
sample sizes of neighboring strata so that when an allocation scheme is not in
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the set, we can easily fix it. We further propose a local adjustment procedure
based on the sufficient set that renders the resulting design more efficient than its
BRSS counterpart when it is originally not. For comparison, we also consider a
naive procedure that intends to achieve proximity to the optimal Neyman without
discarding existing observations.

This paper is organized as follows. The sufficient set of sample allocation
schemes that are more efficient than BRSS counterparts, denoted by .4, is proposed
in Sect. 2. We illustrate the set .4 using a simplex diagram and compute theoretical
relative efficiency (RE) over SRS for a fixed set size under various distributions
(with either heavy tails or skewness) in Sect. 3. In Sect. 4, we consider two local
adjustment procedures to modify a design that is less efficient than BRSS, one of
which is based on .4, while the other is not. We compare the two procedures in
terms of the number of added samples (the cost of reallocation) and the efficiency
gain per an additional sample. In Sect. 5, we apply two methods to an educational
data example. Finally, we conclude the paper with a brief summary in Sect. 6.

2 More Efficient URSS than BRSS

Suppose that we have RSS data with a set size H and a total sample size n =
Zf: 1 nh, where nj, is the number of measured units with rank /. Note that for
BRSS,n, =n/H forh = 1,---, H and let m = n/H. Here, we find a condition
for the sample allocation n = (nl ny, .. ) that makes the URSS with n more
efficient than its balanced counterpart in est1mat1ng the populatlon mean. Let {irss
denote the RSS mean estimator, where [irss = i Z ne1 Yn and Yh is the sample
mean in the A-th stratum that contains all measured units with rank /. The variance
of firss is

T
ww

V.rss(n) := Var(Jigss)(m) = —

where o[2h] is the variance of the A-th rank stratum. For BRSS, it is known that the
variance of the mean estimator is smaller than that of SRS with the same sample
size n. On the other hand, for some unequal allocation n, the URSS mean estimator
has a larger variance than BRSS or sometimes SRS estimators with the same sample
size, i.e.,

1 " Uzh o2
V.ss(m) = — Z _th] < — = Var(fisrs) < V.rss(n)
2 = om n
where m = (m, m, - -- , m) is the equal allocation for BRSS andn = mH; o2 is the

population variance.
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The optimal RSS design in estimating the population mean has been studied
in Takahasi and Wakimoto (1968), which adopts the Neyman allocation and has
the smallest variance. We denote the Neyman allocation by n = (71, 12, -+ , i)
where

5 fo]
s O

Zszl o1
and

V. rss( ) < V.rss(m) < Var(jisgs).

As mentioned in the introduction, the Neyman allocation is not the only
allocation scheme whose mean estimator is more efficient than that of BRSS.
For simplicity, we relabel the strata to have monotonicity in stratum variances:
012 < 022 < ... < 0121 and let nj, be the number of units for the corresponding
h-th stratum. Note that after relabeling, units in the A-th stratum no longer have
rank & and so we use ahz instead of a[zh]. For a fixed total sample size n and a fixed
set size H, the set .4, defined by

H o2 H 2
1 L}
M = {n: (n1,n2,....nH ‘Vrss(n) H— E_ n—h < E h =V.rss(m)],

is the collection of all sample allocation schemes that is more efficient than the
BRSS with m = n/H in estimating the population mean.
We proceed to consider the sample allocation set

o2
W:{n:(nl,nz,...,nH)‘1§@< 2 =1,2,. —1},
np Uh
which is a subset of .4, as will be shown in Theorem 1. That is, the condition in the
set .4 is sufficient to make an URSS design more efficient than the BRSS design,
but it is not a necessary condition. Note that the Neyman allocation n is included in
N because | < fijy1 /ity = opy1/op < 07%+1/°h2'

Theorem 1 (a) Ifn € A, we have V.rss(n) < V.rss(m). (b) There exists a sample
allocationn ¢ A such as V.rss(n) < V.rss(m).

Proof

(a) Without loss of generality, we assume 012 < 022 < ... < 0121 and njs are

positive real numbers.
We first prove the claim for the case H = 2. Let



Efficient Sample Allocation by Local Adjustment for Unbalanced Ranked Set Sampling 49

2 2
fny) = #{% + :—22 - %(012 + 022)} = V.rss(n) — V.rss(m), (1)

where ny = n — ny. The function is convex in n| and has zero values when

2 2
(n1,n2) = (E, E) or 201 51, 202 sn .
22 oy toy oy+o;

Thus, for every n; € (ncflz/(al2 + 022), %) or equivalently 1 < np/n; <
03 /o, wehave f(n;) < 0 that means V.rss(n) < V.rss(m).
We now prove the claim for a general H. Let

1 " o2 1 " o2 1 A
_ _ - Zh Zhoo_
f(m) = V.urss(n) — V.rss(m) = 72 Z w2 Z = 2 Z fn(np)
h=1 h=1 h=1
2
where
2 2
o o
fulng) = 2 — .
np m
A simple algebra shows that f(n) is a convex function of ny,ny, ..., ng_1.
Forh =1,2,..., H— 1, define the set
Np+1 JP% 1
Ay =1 ()1 = 2L < 2L 3)
Mh O,
and so A = ﬂf;ll Aj,. We show that for every n = (ny,na,...,ng) € AN,
f(n) < 0.Givenn = (n1,n2,...,ny) € A, we consider a sequence of
allocations m?, @ = 0, 1, 2, ... which starts with m® = n and converges to
(1/m,1/m,...,1/m). Fora = q(H — 1) + h, g = 0,1,2,..., we update
.(mffl,mijr]l) inm¢ ! = (m‘f*l,mg*], ...,m‘,‘_fl); the updated (m§, m{ )

1S

a—1 a—1 a—1 a—1
(ms m my -~ Amyomy Ay
m;,,m ) = s € Ap
h h+1 2 2

and let m® =m‘;71 for j # h,h+ 1;andm® = (m§, m§, ..., m%) € N . We
know that

. g (1 1 1>
Iimm={(—,—,..., —
a— o0 m m m
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(b)
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withm =n/H.
Now, to show the claim for general H, it suffices to show that, for every
a>1,

H H
FmN =" famy™h) < f(m) =" fu(mf)
h=1 h=1

Without loss of generality, a = q(H — 1) + h and m“ updates the /-th and
(h + 1)-th elements of m*~!. For notational simplicity, let mz_l = ny and

a—1
my = npy1 and mg = mZH = (nh + nh_H)/Z. Then

2 2

[oF o
m* 1) — f(m?) = 2 4 ZhHl <2+2)<0’4
q )= () Np Rptl  Np+ Rpyd Oh T Oht1) = ®

by applying the case H = 2. Finally, we have f(n) < 0 and so V.rss(n) <
V.rss(m).
We start with the case of H = 3 and 012 < 022 < 032. Under this case, it suffices
to find n ¢ .4 but V.rss(m) < V.rss(m).

Suppose we consider n ¢ .4 which satisfies (C1) 1 < 032 / 022 < n3/ny, (C2)
ny <np,<m=n/H < ns,

1_1 2
ni m 3

axf—r== (C3)
m ns

and

1 1 2
Pyl o
ny m 3

€2 X 5 1 < -3 (C4)
m n3

for some positive values ¢; and ¢ such as 1/c; + 1/cr = 1.

We again consider the function f(n) V.rss(n) — V.rss(m)
Sr_) funy)/H? where fy(ny) = of/ny — o2 /m for h = 1,2,3. Then,
by the conditions (C1)-(C4),

11 11
”ﬂ“”:“*<a‘;)fﬁ<a‘a>

1 11
cxfatmn) =exod (1) <03 (1= 50 )

—f3(n3)

and

—f3(n3).
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Since m < n3 gives — f3(n3) > 0,

fin) + fa(n2) - l_i_l
— f3(n3) L

=1

and thus fi(n1) + fo(n2) < —f3(n3). Finally, we have n ¢ .4 but satisfies
f(m) = V.ss(n) — V.rss(m) < 0. O

3 Graphical Illustration of the Sample Allocation Set ./

Here, we fix the set size H at 3 and use a simplex diagram to illustrate the sample
allocation set .4 proposed in Sect. 2.

First, we consider a hypothetical case with stratum variances 012 =1< 022 =
2 < 032 = 3, in which the sample allocation set .4 is plotted as a gray-shaded
region in Fig. 1. In the simplex diagram, a point (x, y,z) with x + y +z = 100
implies the percentage of each stratum size relative to the total sample size. Three
vertexes represent the allocation schemes having rates N1(100,0,0), N2(0,100,0),
and N3(0,0,100), and the line N2N3 (N1N3 or N1IN2) becomes the baseline x = 0
(y = 0 or z = 0). A series of lines have been drawn in parallel to each baseline
to mark off the percentages, and the percent scale for x (y or z) is laid out along
the line NIN2 (N2N3 or NIN3). Then, in Fig. 1, for the case with 012 =1 <

022 =2 < 032 = 3, the balanced allocation (33.3, 33.3, 33.3), the Neyman

Fig. 1 An illustration of General case

sample allocation schemes

(BRSS, balanced allocation; N2
Neyman, Neyman allocation; ',-‘\_;I 00

URSS4, an unequal allocation VAR
with np41/np =U,12+1/O‘hz) /
for a hypothetical case with
set size H = 3 and

012:1 <c722:2<a32:3.
The oval-like shape
represents the set .4 and the
gray-shaded area represents
the set A~

% N3
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1(3) distribution 1(7) distribution t(100) distribution

NS S 8§ S oM
% N3

Fig. 2 An illustration of sample allocation schemes in the sets .4 and .4y (BRSS, balanced
allocation; Neyman, Neyman allocation; URSS4, an unequal allocation with nj,41/n, = U,% 1/ ahz)
under ¢ distributions with different degrees of freedom 3, 7, co. The oval-like shape represents the
set 40. Due to the symmetry of ¢ distributions, n; = n3 so that the set .4 is reduced to the segment
on the line that is perpendicular to N1N3

Table 1 The stratum

: for the set si t Gamma
variances for the set size 5 5 3 ) 5 5
H = 3 under ¢ and gamma dt o 1) %13 “ 19 P2 P31
distributions 3 2.601 0.720 |2.601 |1 |0.111 |0.361 |1.361
7 0.885 1 0.538 |0.885 |2 |0.095 | 0.201 |0.559
100 |0.575 |0.454 |0.575 |3 |0.080 | 0.139 |0.336

allocation (24.1, 34.1, 41.8), and the allocation (16.7, 33.3, 50) according to the
rule npy1/np = a,% 1 /o}%, are plotted as points labeled “BRSS,” “Neyman,” and
“URSS4,” respectively. Further, the oval-like area surrounded by the thick curved
line is the efficient sample allocation set .4 that contains .//".

Secondly, we consider symmetric distributions and in Fig.2, we show the
sample allocation sets under f-distributions with different degrees of freedom
df = 3,7,100, whose stratum variances are given in Table 1. Note that normal
distributions are a special case of t-distributions with df = oo. Due to the
symmetric property that yields 0[21] = 0[23] and so n; = n3, the set ./ is reduced

to a segment on the line that is perpendicular to N1N3 within the set 4g. As df
increases, the ratio of variances, 0[22] /0[21] = 0[22] /0[23], decreases and the set A
becomes smaller along the line, approaching the point of BRSS.

Thirdly, we consider asymmetric distributions and show the sample allocation
sets under gamma distributions in Fig. 3. For these gamma distributions, shape and
rate parameters are both set to «, and thus they have mean 1, variance 1/a, and
skewness 2//a. We set o = 1, 2, 3, and report the corresponding stratum variances
in Table 1. Compared to symmetric distributions, there is no equality in stratum
variances, and the sample allocation set .4 is a polygon with four edges. Also, as «
increases, the skewness decreases so that the variances become more homogeneous.
This makes .#” become smaller.
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Gamma(1,1) distribution Gamma(2,2) distribution Gamma(3,3) distribution
N2 N2 N2
+100 +100 +100
2, w2 2/
7. )\ 9" ‘80 9" ‘a0
D\PCI’. <
%. = 20
2 54,
%_ = ) . | i ¥ =N
M® S S & oM N Moo S & & oM
N3 BN % N3 h

Fig. 3 An illustration of sample allocation schemes in the sets .#” and and .4y (BRSS, balanced
allocation; Neyman, Neyman allocation; URSS4, an unequal allocation with ny,41/n) = aﬁ 1 / ahz)
for gamma distributions with different « = 1, 2, 3 with mean 1. The oval-like shape represents the
set .49 and the gray-shaded area represents the set .4/

@ |0 P YRR Qeevennns Qevvvnnnn Qe veennn. ° o..
-] o
oo Qunnvrren Qrvvvnnn O vvvnnn. o R o o -9
Qe Qeverrnnn Qcvnrnnn. ° -_,',-8'- R o
© LR ° o | 8
- - L8
. o‘
3 R R
8~ | I
s - L o o
] oo
o o |
2 o.. > -
T @ | Lot o i
(TR . [} o o
o .o r o |
o ol." ‘.o
- <o df=3 2 -
- df=7 -+ alpha=1
<o df=10 -+ alpha=2
M t -+ df=100 A Gamma -+ alpha=3
T T T T T T T T T T T T
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Fig. 4 Comparison of theoretical RE of BRSS to those of various URSS schemes (URSS-NM,
the Neyman allocation; URSS1, 1/3 NM and 2/3 BRSS; URSS2, 2/3 NM and 1/3 BRSS; URSS3,
1/2 NM and 1/2 URSS4; URSS4, the scheme with nj41/n; = o, | /o) under perfect ranking

Figure 4 shows theoretical RE values of RSS mean estimators based on six
allocation schemes in the set .4, including BRSS (equal allocation), URSS-NM
(the Neyman allocation), and four other unequal allocation schemes: URSS1 (1/3
NM and 2/3 BRSS), URSS2 (2/3 NM and 1/3 BRSS), URSS3 (1/2 NM and 1/2
BRSS), and URSS4 with nj41/n, = o, ,/0}. The RE of the RSS mean estimator
Itrss with the sample allocation n over the SRS mean estimator jisgrs with the same
sample size n = Zle ny, is defined as the ratio of variances:
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R VaGises) _ o/n
V.rss(n) # Z;I:l o /np

All allocation schemes use theoretical allocation proportions to compute their REs
(i.e., non-integer sample sizes are allowed). Clearly, the theoretical REs of all
five unequal allocation schemes in the set .4" are larger than that of the BRSS
counterpart. We mention that for the ¢ distributions, as df increases, the heavy-
tailedness becomes less severe and the URSS allocation schemes get closer to the
balanced BRSS allocation, and so the lines are quite flat.

As shown in Theorem 1-(b), the set .4 is nested in the set . 4. Ideally, one may
want to figure out a sufficient and necessary condition for allocation schemes in
9. As A4 outlines a sufficient condition only, we are interested in comparing the
coverage of ./ relative to .4. In Table 2, we report the ratio of the area of .4 to
that of A9, |.4|/|-40l, as the relative probability of points lying inside the inscribed
set .4 over the set .4 for the  and gamma distributions. We denote the area ratios
as AR and AR* by considering all the real valued points and only the integer valued
points s.t. n = 21?:1 ny, respectively. Note that for the ¢ distributions, as .4 is
only a segment, AR is zero in theory. To compute AR for the gamma distributions,
we randomly generate 10,000 allocation schemes using Monte Carlo simulation and
count how many in 4" and .4j. We find that the relative size of .4 to 4 (the ratio
AR¥) is large when the sample size n is small, in which RSS has been proved to be
most useful. In addition, the ratio AR* decreases to the ratio AR, as n increases.

4 Sample Allocation Adjustment

4.1 Local Ratio Consistent and Approximate Neyman
Allocations

Based on the sufficient set .4 characterized in Sect. 2, forn = (nl, ny,...,n H) ¢
A, we propose the so-called local ratio consistent (LRC) allocation nLRC to move
n into .4 by local adjustment (i.e., adding a few samples to some of the strata). For
the purpose of comparison, we also consider a naive adjustment method that leads
to approximate Neyman (AN) allocation n4V .

The first adjustment procedure that yields n“®€ attains the local ratio consistency
via the following steps. Again, we relabel the strata to satisfy 012 < 022 <...< 012{.

1. For the current allocation n = (nl,nz,...,ny), we define, for h =
1,2,...,H—1,

2
np+1 Oy
—— and {; =

On+1

Nh+1
np ’

up =
np
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and compute these quantities.
2. Leth* = argmaxf:_l1 up and if up» > 1, add one to ny, njpx < npx + 1.

(O8]

. Leth, = argminll;lz_l1 £y and if £;, < 1, add one to ny, 41, np,4+1 < np,4+1 + 1.
4. fup, <1 <{pforh=1,2,..., H—1,stop the procedure and report the current
allocation n. Otherwise, we iterate steps 1-3.

We remark that A* and &, can not be equal to each other, because for every & =

1,2,..., H—1,if up > 1, then £; > 1; and, similarly, if £, < 1, then u;, < 1.
The second adjusted allocation n4" is based on the Neyman allocation. Letn" =
(n{v , név e n%) denote the Neyman allocation for a fixed total sample size n =

> le ny and a set size H as in the original allocation n. We then simply define the
AN allocation by

Y = N afV o nfY) = (max(n), ny), max(nd, no), -+, max(nfy, ny))
= max (nN, n),
where nV = max(n)Y, ny) with the total sample size n4Y = 3"/_ | nV. Then we
have additional samples at the A-th stratum n,llV L= max (0, nflv — ny) and additional
LRC

total samples nﬁf = Zle n}llv - Unlike n="%, there is no guarantee that nV s
in A4 or 9. However, due to more samples used and proximity to the Neyman

allocation, n4¥ is very likely to be more efficient than the initial n.

4.2 Comparison via Simulation

We generate 10,000 sample allocations from the multinomial distribution with
parameter p = (1/6, 1/3, 1/2) with a size of n = 12, 24, 48. To compare the two
adjustment methods, we compute the proportion of the allocation schemes updated
from the original schemes, the average number of additional samples, the average
RE, and the average efficiency gain (EG) per an additional sample over 10,000
replicates for each setting considered in Table 3. Note that the average number
of additional samples, RE, and EG are computed for the cases where at least one
stratum of LRC allocation is updated (i.e., n“ %€ has at least one additional sample).
The EG of n? versus n per an additional sample is defined as

RE(n?) — RE(n)
R R
+

EG(n?)

where the superscript A € {‘LRC’, ‘AN’} denotes the adjustment method of sample
allocation and n_A|r is the number of the required additional total samples by the
corresponding method A.

We assume that the data are generated from gamma distributions with equal
shape and rate parameters o € {l1,2, 3} yielding the variance 1/«. Accordingly,
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Table 3 Comparison between the original and two adjusted allocation schemes: H = 3, p =
(1/6,1/3,1/2), and 10,000 replicates. The numbers in the parentheses represent standard
deviation

o |n adj. %n¢ . A) | AVG(n%) AVG(RE) AVG(EG)
1 12 | nlRC  |5761% 1.999 (1.522) 1.887 (0.105) | 0.128 (0.064)
nAN 2.434 (1.159) 1.938 (0.074) | 0.126 (0.060)
24 | nLtRC  144.09% 2.444 (1.851) 1.902 (0.079) | 0.084 (0.066)
nAN 3.855 (1.404) 1.959 (0.057) | 0.065 (0.040)
48 | nLRC 25.66% 2.782 (2.344) 1.913 (0.058) | 0.039 (0.028)
nAN 6.518 (2.161) 1.974 (0.040) | 0.026 (0.016)
2 12 | nlRC  17081% 2.305 (1.677) 1.893 (0.049) | 0.140 (0.088)
nAN 2.069 (0.907) 1.893 (0.061) | 0.147 (0.081)
24 | ntRC  166.37% 2.811 (2.203) 1.913 (0.047) | 0.074 (0.052)
nAN 3.415 (1.263) 1.940 (0.038) | 0.066 (0.044)
48 | nktRC 55.84% 3.305 (2.492) 1.927 (0.039) | 0.035 (0.021)
nAN 5.433 (1.852) 1.957 (0.025) | 0.027 (0.017)
3 12 | nlRC | 78.86% 2.756 (1.840) 1.917 (0.038) | 0.115 (0.064)
nAN 2.134 (0.950) 1.898 (0.067) | 0.127 (0.064)
24 | nLtRC  17881% 3.418 (2.305) 1.919 (0.030) | 0.065 (0.044)
nAN 3.585 (1.318) 1.926 (0.036) | 0.061 (0.041)
48 | nktRC 73.65% 4242 (3.012) 1.921 (0.031) | 0.032 (0.020)
nAN 5.448 (1.939) 1.939(0.022) | 0.028 (0.018)

the stratum variances are (012, 022, 032) = {(0.11, 0.36, 1.36), (0.10, 0.20, 0.56),
(0.08, 0.14,0.34)}. For RSS schemes, we consider H = 3, n = {12, 24, 48} for
the original sample allocation, all with perfect ranking.

Table 3 shows that as « increases (so that the skewness decreases), the initial
sample allocations n is more frequently not in .4, and this is because the (relative)
area of the set .4~ decreases as shown in Fig.3. We also find that, if the initial
allocation is not in .4 and is adjusted to nLRC and nAY, then nf‘rRC (the number
of added samples by LRC) tends to be smaller than nj‘_N (the number of added
samples by AN). This is further confirmed by Table 4, which reports distributions
of the number of additional samples by LRC and AN and that of their difference
for the case with n = 12 and o = 1. For this reason, in Table 3, the average RE of
n’RC is smaller than that of n4" . Nevertheless, the EG per one additional sample
of nRC is larger than that of n4% in the cases. To sum up, these results show that
n &€ tends to require fewer additional samples than n4% to make the design more
efficient and is cost-effective in the sense that EG per one additional sample is larger
than n4V.
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Table 4 Distributions of no. of additional samples using LRC and AN and the distribution of the
difference in total sample size between LRC and AN with H = 3,n = 12, p = (1/6,1/3,1/2),
and the gamma distribution with @ = 1

% niRC nﬁN l’lAN _ nLRC
0(<0) 42.39 7.65 28.74 (7.12)
1 30.33 33.84 43.73

2 14.77 30.56 17.96

3 5.41 17.31 2.45

4+ 7.10 10.64 -

5 Data Example

In practice, BRSS is often the default RSS design and is frequently used due to its
simplicity in implementation and inference. However, the issue of missing data is
common in many studies and results in unbalancedness in RSS. For example, in the
following education study, there are various reasons that students or schools drop
out of assessment tests.

In this section, following Wang et al. (2017), we simulate a realistic situation,
where study designs are embedded with BRSS when recruiting experimental units
but the collected data have a URSS design at the end of the experiments due to
missingness. We use a dataset from the High School Longitudinal Study of 2009
(HSLS09) and preprocess it as in Wang et al. (2017) to examine the performance
of the two local adjustment procedures in Sect. 4. The HSLS09 data contain results
of the students’ assessments throughout secondary and postsecondary years from
the National Center for the Education Statistics (NCES) website. The 12,533
students involved are considered as the population, and the 2012 math theta scores
(X2TXMTH) are thought of as the response variable. The 2012 math theta scores
(X2TXMTH) and the 2009 math theta scores (X1 TXMTH) are used to rank students
in RSS, for perfect and imperfect ranking, respectively. The correlation between
X1TXMTH and X2TXMTH is about 0.78.

Suppose we aim to estimate the mean score to evaluate high school students’
math ability. We consider the experiment design with H = 3, n;, = m € {4, 8, 12}
for h = 1,2,3 and so n € {12, 24, 48}, but we assume that outcomes are missing
completely at random with missing rate ¢ € {10%, 20%}. We treat the resulting
sample allocation from data with missing values as the “original” URSS allocation.
Since for real data, the underlying distribution of the response variable is not known,
we estimate the stratum variances oj’s using the corresponding sample variances
based on data from the “original” allocation.

For the given URSS allocation n, we compute the integer valued Neyman
allocation n” using Wright (2012) and apply the two local adjustment methods
to obtain n“X¢ and n4". We repeat the procedure 10,000 times and compute the
performance measures introduced in Sect. 4.2. Table 5 reports the results, including
the proportion of the updated allocation schemes, the average number of additional



Efficient Sample Allocation by Local Adjustment for Unbalanced Ranked Set Sampling 59

Table 5 HSLS09 data example: comparing performance of two adjustment methods that yield
nfRC and n?V in percentage of the number of additional samples and relative efficiency. The
numbers in parentheses are standard deviations. The stratum variances oj;’s are estimated using the
corresponding sample variances based on the “original” allocation (i.e., URSS allocation caused by
missing data). The RE is the ratio of the empirical mean squared errors of 10,000 RSS estimates
over that of 10,000 SRS estimates with the same sample size

Perfect ranking Imperfect ranking
¢ |n |adj %m ¢ ) | AVG(n?) RE %m ¢ N) | AVG(n?) RE

0.1 |12 |nfRC 6759 % 1.263 (0.714) | 1.853 | 68.37 % 1.244 (0.688) | 1.437
nAY 1.794 (0.919) | 1.792 1.831 (0.929) | 1.392

24 | ntRC 17415 % 1.647 (0.478) |1.920 |73.34 % 1.645 (0.479) | 1.455

nAN 2.348 (1.187) | 1.860 2.390 (1.208) |1.438

48 | nLtRC 7941 % 2.404 (1.338) | 1.950 |78.30 % 3.298 (1.331) | 1.499

nAY 3.169 (1.615) |1.901 3.225(1.589) |1.414

02 12 | nfRC 17079 % 1.573 (0.495) | 1.902 | 70.50 % 1.589 (0.492) | 1.506
nAY 1.853 (0.914) | 1.831 1.864 (0.916) | 1.422

24 | ntRC 17930 % 2292 (1.255) | 1.937 |79.00 % 2.282(1.249) | 1.456

nAN 2401 (1.184) |1.871 2416 (1.199) | 1.418

48 |ntRC 8258 % 3.170 (2.028) | 1.946 | 82.14 % 3.161(2.022) | 1.468

nAY 3.256 (1.595) |1.943 3305 (1.611) |1.414

samples, and empirical RE, for both perfect and imperfect ranking. Here, the RE is
the ratio of the empirical mean squared errors of 10,000 RSS estimates over that of
10,000 SRS estimates with the same sample size. Again, the measures are calculated
for the cases when n“RC has additional samples to the original n. Table 5 reassures
our finding in Sect. 4.2 that on average, n iR € is smaller than nj\_N and the efficiency
gain by one additional sample in n“®C is larger than that of n4" in all designs
considered (since RE for n“X¢ is already higher than that for n4" even with fewer
additional samples). These findings are true for both perfect and imperfect ranking,
even when the stratum variances are unknown and have to be estimated from the

data.

6 Conclusion

We conclude the paper with a brief summary. We consider a set .4 of sample
allocation schemes for unbalanced ranked set sampling (URSS), which is a subset of
0, the collection of all allocation schemes giving more efficient mean estimation
than their BRSS counterparts. The set .4 is characterized by local conditions on
the sample sizes of adjacent strata, and this allows us to move a less efficient
URSS allocation scheme n into .#” by adding a few samples into a few strata. We
illustrate the set .4~ with H = 3 using a simplex diagram for various underlying
distributions. We further consider two procedures to adjust n, which yields the local
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ratio consistent (LRC) allocation n“®€ and approximate Neyman (AN) allocation

nV | respectively. We numerically compare the two methods via simulation and
find that n“®C, which locally adjusts n based on .4, tends to require fewer extra
samples and have higher efficient gain per sample than n4" . Our data example using
the High School Longitudinal Study of 2009 (HSLS09) confirms the finding from
the simulation, in which stratum variances have to be estimated from data. It also
illustrates the usefulness of the LRC method in situations when BRSS is initially
planned, but missing data causes a URSS scheme that needs to be adjusted.

Our discussion in this study focuses on the set size H = 3. For large H, the cases
with more number of rank strata, we expect that the efficient gain of LRC over AN
becomes large. It is because the AN allocation globally depends on the allocations
of many other strata and tends to require more additional samples to make the new
unbalanced design more efficient than the BRSS compared to the LRC allocation.
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On the Versatility of Capture-Recapture )
Modeling: Counting What We Don’t See i

James D. Nichols

Abstract Initial development of capture-recapture modeling occurred almost
exclusively within the disciplines of wildlife management and animal ecology.
Virtually all methods for surveying animals “miss” individuals; i.e., some
unknown fraction of animals present in surveyed areas goes undetected. In
order to draw inferences about all animals actually present, we must deal
with this nondetection. In addition, we sometimes misclassify animals as to
species, sex, reproductive condition, etc., requiring us to deal with probabilities
of misclassification. Capture-recapture models differ from many other kinds of
statistical models in that they incorporate parameters that deal with both the
process being studied (e.g., population size, survival rate, recruitment rate) and
the sampling process giving rise to the data (e.g., capture or detection probability,
correct classification probability). Many other disciplines face these same kinds
of counting errors, nondetection and misclassification. These disciplines include
epidemiology, medicine, social sciences, paleobiology, remote sensing, military
imaging, philately, space exploration, quality control, and software development.
This chapter includes a brief history of capture-recapture modeling, an introduction
to the logic underlying basic models, a discussion of nontraditional uses of these
models, and recommendations for additional potential uses.

1 Introduction

Wildlife biologists and animal ecologists realized early on that their methods for
surveying animal populations did not provide accurate counts. Animals are missed
by virtually all survey methods, and biologists were forced to develop methods that
produced not only counts of animals detected but also estimates of those present,
but not detected. Several clever approaches have been developed to deal with this
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issue of nondetection (Seber, 1982; Williams et al., 2002; Seber & Schofield,
2019), and they have seen wide use in ecology and wildlife biology for decades.
Another problem faced when surveying animal populations and communities is
misclassification. Some of the same factors that cause animals to be difficult
to detect (e.g., reliance on partial sightings or auditory cues) can also result
in misclassification. For example, an auditory bird survey may result in species
misidentification. A visual survey of a sexually monomorphic bird species may
result in sex being misclassified. A sighting survey of reproduction in manatees
may result in a reproductive female being misclassified as nonreproductive because
her young is too far away from her or obscured by her body. Methods for dealing
with nondetection have thus been modified to incorporate misclassification as well
(Pradel, 2005; MacKenzie et al., 2018).

These same problems in counting and classifying characterize other scientific
disciplines as well, but with much less corresponding effort to deal with them. Here,
I first provide a brief history of both capture-recapture and closely related occupancy
modeling. Then, I survey uses of these models in disciplines other than ecology and
wildlife biology and identify opportunities for even greater use.

2 Capture-Recapture

In this section, I provide a brief introduction to capture-recapture modeling by
describing the basic ideas underlying several classes of capture-recapture models.
Data are typically summarized as capture histories depicting whether or not an
individual was captured or detected at each sampling occasion of the study. Rather
than developing the full likelihoods for these different classes of model, I define
parameters and then write out probability structures for sample capture histories as
an abbreviated way of explaining the thinking that underlies these models.

2.1 2-Sample, Closed Population, Single State

The most basic capture-recapture estimator is based on the recognition that the
proportion of a specific type of individual or entity in a representative sample from
a population should be roughly equal to that in the population itself. Let M be the
known number of animals of a certain type in a total population of N individuals.
Then define m as the number of animals of that type in a sample of n individuals.
If the sample is representative of the population, in the sense of a similar proportion
of marked animals, then we expect:

2

z| %
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We can rearrange (1) to obtain the following estimator for N:

§="M )
m

Expression (2) is known as the Lincoln-Petersen estimator, and the prototypical
study to which it applies entails two sampling occasions separated by a short time
interval over which the sampled population is assumed to be “closed,” with no
animals entering or departing. On occasion 1, M animals are captured and marks are
applied to them. On occasion 2, another sample of n animals is captured, m of which
are found to be marked. This estimator has been independently derived a number of
times, initially by Laplace (1786), who used it to estimate the human population
of France, and later by Lincoln (1930) to estimate the number of waterfowl in late
summer to autumn in North America.

The estimator in (2) can also be viewed as a precursor to the general Horvitz
and Thompson (1952) estimator for a population total. M is the number of animals
sampled on occasion 1, and m /n estimates pp, the probability that a member of the
population of size N is caught in occasion 1:

~ M
N=—. (3)
P1
The estimator of (2) and (3) and its associated variance have been derived using both
hypergeometric (fixed sample size) and binomial (random sampling) likelihoods
(reviewed by Seber, 1982, Williams et al., 2002, Seber & Schofield, 2019).

The statistics used in capture-recapture modeling are most frequently written as
the number of animals exhibiting each possible capture or detection history. For a
2-sample study, there are only three such statistics denoted as x;;, where i = 1 if
caught on occasion 1 and 0 if not caught then, and j = 1 if caught on occasion 2,
and O if not.

x11 = m = number of animals caught on occasions 1 and 2,
X10 = M — m = number of animals caught on occasion 1 but not on occasion 2,
Xxo1 = n — m = number of animals caught on occasion 2 but not on occasion 1.

The number of animals not captured at either sampling occasion, xgg, is unknown,
and the problem of estimating total abundance, N, is equivalent to the problem of
estimating xqp.

Given that an animal is a member of the sampled population, the probabilities of
it exhibiting each observable capture history are then:

Pr(11) = p1p2,
Pr(10) = p1(1 — p2),
Pr(01) = (1 — p1)p2,
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where p; is the capture probability for sampling occasion ¢. Under this 2-sample
model, N, p1, and p, can all be estimated. It is termed a “single state” model
because all animals are assumed to have the same probabilities of appearing in a
sample (i.e., no stratification by age, sex, size, etc.)

2.2 >2-Sample, Closed Population, Single State

This approach was extended to multiple sampling occasions (Schnabel, 1938;
Darroch, 1958) for closed populations. Capture histories were modeled as in the 2-
sample case. For a study with five sampling occasions, the probability of an animal
in the sampled population showing a capture history of 01010 is:

Pr(01010) = (1 — p1)p2(1 — p3) pa(l — ps).

Each possible capture history has an associated probability such as above, and we
know how many animals exhibited the history, so we can develop a correspond-
ing likelihood and estimate the capture probabilities and abundance. Subsequent
developments included consideration of behavioral response of animals to initial
capture, heterogenous capture probabilities, and other generalizations (Otis et al.,
1978; Chao and Huggins, 2005a 2005b; Seber & Schofield, 2019).

2.3 >2 Samples, Open Populations, Single State

Capture-recapture methods were extended to “open” populations as well, where
sampling occasions could be separated by long time intervals such that gains
and losses to the population could occur between occasions (e.g., Jackson, 1933,
1939; Cormack, 1964; Jolly, 1965; Seber, 1965). These models were also based
on multinomial likelihoods and required additional parameters for survival of an
animal from one sampling occasion to the next. For example, let p; denote capture
probability for sampling occasion 7, and let ¢; denote the probability that an animal
alive at sampling occasion ¢ survives until occasion 7 + 1 and remains in the sampled
population. The conditional probability associated with capture history xp1g10 in a
5-occasion study is:

Pr(01010|release in 2) = ¢ (1 — p3)d3 pa(l — ¢4 ps). 4)

The last terms in parentheses include both the possibility that the animal survived
until 5 but was not caught and the possibility that the animal did not survive.
Likelihoods conditional on new releases in each sampling period can be used to
estimate capture probabilities and survival probabilities and, assuming that animals
that were and were not previously captured exhibit the same capture probabili-
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ties, occasion-specific abundance (see expression 3). Subsequent parameterizations
include different ways of modeling the entry of new animals into the sampled
population (e.g., Crosbie & Manly, 1981; Pradel, 1996; Schwarz & Arnason, 1996),
as opposed to simply conditioning on entries as in (4).

2.4 >2 Samples, Open Populations, Multiple States

Arnason (1972, 1973) introduced the concept of multiple states in which an
animal could be captured, where states initially represented different locations
and were later generalized to characteristics of individual animals such as age,
reproductive condition, body mass, etc. The first multistate models to be widely
used allowed capture and survival parameters to depend on age, for studies in which
sampling occasions were separated by time intervals that corresponded to the exact
interval required for an animal to make the transition from 1 age class to the next
(Manly & Parr, 1968; Pollock, 1981; Stokes, 1984). These age-specific models are
much simpler than the general models of Arnason (1972, 1973) because of the
deterministic, unidirectional nature of age transitions.

In the general multistate models of Arnason (1972, 1973), state transitions are
stochastic, necessitating additional new parameters for transitions between states
(also see Hestbeck et al., 1991; Brownie et al., 1993; Schwarz et al., 1993). Define
0;° as the probability that an animal in state r at occasion ¢ that survives until
occasion ¢ + 1 is in state s at ¢ + 1. Define S; as the probability that an animal in
state r at sampling occasion ¢ is still alive and in the sampled population at occasion
t+1, and p; as the probability that an animal in state r at occasion ¢ is captured at ¢.
Capture histories must now indicate the state of the animal at each capture. In a study
area with two locations, 1 and 2, a capture history of 0102 would indicate an animal
first captured in state/location 1 at sampling occasion 2, not captured at occasion 3,
and captured in state 2 at occasion 4. The number of animals showing this history is
denoted as xp102, and the probability that an animal released in occasion 2, state 1,
will exhibit this history and thus appear in this statistic is:

Pr(0102|release in state 1 at occasion 2)

= S)[(1 — 635 (1 — p})Sio +6,2(1 — pHS3(1 — 03H]1ps. Q)

The portion of expression (5) in brackets reflects the state uncertainty of the animal
at occasion 3 and can be viewed as a mixture model incorporating the possibilities
that the animal was in state 1 or state 2. Likelihoods are conditional on new releases
in each state in each sampling occasion.

These multistate models assume the ability to classify an animal to its appropriate
state without error at each capture, and they have been generalized to deal with state
uncertainty and misclassification (Kendall et al., 2003, 2004; Nichols et al., 2004;
Pradel, 2005). These generalizations include additional classification parameters
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and sometimes use ancillary data to reduce uncertainty in modeling the capture and
classification processes.

2.5 Occupancy Models, Closed System, Single State

Occupancy models extend the thinking underlying capture-recapture from indi-
vidual animals to a set of locations or sites. The question for a single site is
whether a focal species is present or not, and the objective of the modeling is to
estimate occupancy, the probability that a site is occupied by the focal species. The
motivation for these models is possible nondetection; surveys of sites sometimes
“miss” detecting a species, despite presence of the species at the site. A key
distinction between the occupancy problem for sites and the capture-recapture
problem for individuals within a population is that the number of sites is known
and sites can be sampled at every occasion, although the result of the sampling is
still characterized by the uncertainty of possible nondetection. Early versions of
occupancy models were developed by Geissler and Fuller (1987), Azuma et al.
(1990), Nichols and Karanth (2002), and most current modeling is based on
MacKenzie et al. (2002).

Sample units for occupancy studies may be naturally occurring units such as
ponds or woodlots, or they may be cells in a grid superimposed on a continuous
area. Each unit is surveyed on multiple occasions within a relatively short time
period (e.g., 2 weeks) over which there are no changes in occupancy. Detection
histories are analogous to capture histories and denote the sequence of detections
and nondetections at each site. The statistics resulting from such a study are the
numbers of sites exhibiting each possible detection history, e.g., x191 is the number
of sites at which the species was detected on sampling occasions 1 and 3 of a 3-
occasion study, but not occasion 2.

The modeling of the detection history data is similar to that for individual animal
capture-recapture as well. Define p; as the probability of detecting the focal species
at a sample unit on sample occasion ¢, and i as the probability that a sample unit is
occupied by the species. The probability that a surveyed sample unit shows detection
history 101 is (MacKenzie et al., 2002):

Pr(101) = ¢p1(1 — p2) ps. (6)

The probability for a site at which the species was not detected in any of the three
surveys is:

Pr(000) = ¢ (1 — p)(1 — p2)(1 — p3) + (1 —4). (7

We know the species was present for detection history 101, as it was detected, and
we assume no false positives (Eq. 6). However, history 000 admits more uncertainty,
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as there are two possibilities: the species was present and not detected or the species
was absent (Eq. 7).

2.6 Occupancy Models, Open System, Single State

Open systems are those for which changes in occupancy status of sites may occur
between some sample occasions. Define a primary sample occasion as a relatively
short period (e.g., a specific month each year) during which occupancy status of
a site is not likely to change. Multiple secondary samples (e.g., four survey days)
occur within each primary period. However, the sites are permitted to be open to
changes in occupancy between primary periods. For a study with three secondary
occasions within each of two primary occasions, a detection history of 101,000
denotes a site with detections at secondary occasions 1 and 3 of primary occasion
1 and no detections in any of the three secondary occasions of primary occasion 2.
Barbraud et al. (2003) developed an early model for such data, and the approach of
MacKenzie et al. (2003) is the basis for most current modeling.

The modeling of detection probability requires an extra subscript for the two
kinds of sampling occasions. Let p;; denote the detection probability associated
with secondary period k of primary period 7. The possibility of changes in
site occupancy requires two new parameters: & is the probability that a site is
unoccupied by the species at primary occasion ¢ + 1, given that it was occupied
at occasion ¢ (local extinction); y; is the probability that a site is occupied by
the species at occasion ¢ + 1, given that it was not occupied in period ¢ (local
colonization). The probability associated with the above detection history is thus:

Pr(101 000) = ¥1(p11(1 — pr2)p13)ler + (1 — e = pr2)(1 = p22)(1 — p23)].
(®)

The portion of (8) in brackets reflects the uncertainty about whether the species went
locally extinct at the site or instead persisted but went undetected. The likelihood is
then the product of these probabilities for the detection histories of all sites.

2.7 Occupancy Models, Multiple States, False Positives

Sometimes we may want to characterize occupied sites by ‘“state,” where state
carries additional information about an occupied site. A common situation is where
a site occupied by a species can be classified into multiple states that can be ordered
by the degree of uncertainty characterizing the state classification (Royle, 2004;
Royle & Link, 2005, Nichols et al., 2007, MacKenzie et al., 2009). For example,
assume interest in a species and an associated pathogen, such that we designate state
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0 as a site not occupied by the focal species, and state 1 as a site occupied by the
species but where no individuals of the species have been infected by the pathogen.
State 2 denotes occupancy, with pathogen infection of at least one member of the
species. In addition to these three true states, we define three observation states that
can apply to a site at any secondary occasion survey: 0 = no detection of the species;
1 = detection of the species, but no detection of the pathogen; and 2 = detection of
both the species and pathogen. Observation state O admits the most uncertainty, as
true state may be 0, 1, or 2. For observation state 1, true state may be 1 or 2. Under
the assumption of no false-positive errors, observation state 2 is unambiguous, only
occurring when true state = 2. The notation and modeling of multistate occupancy
become increasingly complex (see MacKenzie et al., 2009, 2018).

The initial development of occupancy modeling assumed no false positives,
where these refer to the investigator claiming to detect a species, when the species
is actually absent from the sample unit. False positives typically occur when the
investigator mistakes an individual or sign of one species for that of another.
For example, the pugmark (track) or scat of a large leopard may be mistakenly
recorded as that of a tiger. Royle and Link (2006) developed a general, single-season
occupancy model that incorporates both nondetection and false positives. Miller
et al. (2011) developed models that use two (or more) different detection methods
to deal with false positives, and these have been extended to multiple designs
(Chambert et al., 2015) and multiple seasons (Miller et al., 2013; MacKenzie et al.,
2018).

2.8 Software

Computations for capture-recapture estimation of focal parameters and their
variance-covariance structures are relatively complex, such that development of
software has been critical to the use of these methods. Early software focused on
specific parameterizations of capture-recapture models, whereas development of
numerical differentiation algorithms has led to more flexible software, permitting
inference for user-specified models. A variety of software packages now exists for
implementing capture-recapture analyses. For example, one website (https:/www.
capturerecapture.co.uk/software.html) managed by R. McCrea provides links to a
number of available capture-recapture packages.

Program MARK (White & Burnham, 1999; Cooch & White, 2022) implements
closed and open capture-recapture models, occupancy models, and a variety of other
models useful for inferences about demographic parameters. Program PRESENCE
(Hines, 2006) was developed specifically for occupancy models. Historically,
PRESENCE has incorporated new classes of occupancy models before other
occupancy software. Program M-SURGE (Choquet et al., 2004) was developed to
implement multistate capture-recapture models and is based on sufficient statistics,
resulting in typically faster computation times than software such as MARK, which
is based on individual capture history data. Program E-SURGE (Choquet et al.,
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2012) provides a general analytic framework for implementing multistate models in
the presence of state uncertainty.

2.9 Summary

Both capture-recapture modeling and closely related occupancy modeling have
undergone substantial evolution since their initial development for relatively simple
inference problems. Most of this development has been motivated by scientists
investigating animal populations and has focused on extensions and generalizations
to either estimate additional parameters (i.e., beyond abundance and occupancy) or
relax restrictive assumptions.

3 Beyond Traditional Applications

There have been many nontraditional uses of capture-recapture thinking and
methodology. Reviews of social science and medical applications include Bohning
(2008), Chao (2014), Bird and King (2018), and Bohning et al. (2018). The
applications discussed in this chapter are not exhaustive but are illustrative of the
diverse estimation problems to which these methods have been applied. Most of
these nontraditional uses begin with a focus on abundance of some focal entity,
combined with a recognition that the entity is frequently undercounted using the
standard survey methods of the discipline.

3.1 Human Health and Epidemiology
3.1.1 Population-Level Inferences

Uses of capture-recapture models for human health applications have a fairly long
history, with key early contributions by Wittes and Sidel (1968), Fienberg (1972),
Wittes (1974), Wittes et al. (1974), Hook et al. (1980), Hook and Regal (1982,
1992), LaPorte et al. (1992), McCarty et al. (1993), and LaPorte (1994) and useful
reviews by IWGDMF (1995a, 1995b), Hook and Regal (1995, 1999), and Chao
et al. (2001). Virtually, all of these epidemiological uses are based on data from
incomplete lists.

Some capture-recapture applications focus on single lists consisting of frequency
distributions of encounters. A single list might include the number of infected
individuals for which there was a single recorded encounter (e.g., blood test result,
hospital visit), the number with exactly two encounters, three encounters, etc.,
with the objective to estimate the number of infected individuals that were never
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encountered. For example, Polonsky et al. (2018) used single list data to estimate
the completeness, and thus effectiveness, of contact tracing.

Multiple list data are typically records of individuals infected with a particular
disease or mortalities associated with a specific disease or other cause. In closed
populations, the appearance of some individuals on one list and not another is clear
evidence of nondetection, and early uses of multiple lists entailed first matching
names that appear on multiple lists and then counting the total number of unique
individuals. This approach does not include in the total count the number of
individuals appearing on none of the lists, and inference about this number motivates
the use of capture-recapture.

Multiple list data are encoded as individual capture or detection histories
(Sects. 2.1 and 2.2), and the entire data set includes a detection history for every
individual appearing on at least one list. For example, Hook et al. (1980) analyzed
a data set consisting of three lists of individuals with spina bifida in New York
state, 1969-1974. The lists were based on (1) birth certificates, (2) death certificates,
and (3) medical rehabilitation records. Closed capture-recapture models were then
used to estimate the total number of cases and disease “prevalence,” defined as the
proportion of individuals in a population that is infected, or as the probability that a
randomly selected individual in a population is infected. Numerous applications of
capture-recapture to inferences about numbers of cases and prevalence now exist in
the scientific literature.

Multiple list data differ from animal capture data in several ways that must be
considered when selecting or developing capture-recapture models for epidemio-
logical uses. The multiple lists are analogous to the multiple sampling periods of
the animal ecologist, but unlike these animal sampling periods, there is frequently
no natural temporal ordering of list data. Time-specificity of capture probabilities
corresponds to list-specificity of detection probabilities. Certain kinds of behavioral
response models in capture-recapture are based on temporal order of sampling
occasions, and models (e.g., log-linear) for list data have been developed for more
general kinds of dependence of detection probabilities for individuals among the
different lists (see IWGDMF, 1995a, 1995b; Hook and Regal, 1995; Chao et al.,
2001; Rivest and Lvesque, 2001).

Heterogeneous capture probabilities are sometimes associated with identifiable
covariates, permitting inference based on a general Horvitz-Thompson approach
(e.g., Huggins, 1989, 1991; also see Wang et al., 2006). Several approaches
have been developed for the more difficult problem of heterogeneous capture
probabilities that cannot be readily associated with covariates (e.g., Burnham &
Overton, 1978; Chao, 1987; Norris & Pollock, 1995; Haas & Stokes, 1998; Dorazio
& Royle, 2003; Haas et al., 2006). Problems deciding whether two similar records
really match (represent the same individual) can occur when constructing detection
histories from lists, and approaches for dealing with this problem (e.g., Seber et al.,
2000; Lee et al., 2001) are similar, in some ways, to approaches for dealing with
tag loss (e.g., Arnason & Mills, 1981; Kremers, 1988; Nichols & Hines, 1993) and
misreading (e.g., McClintock et al., 2014).
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Open capture-recapture models are used to estimate survival rates, numbers of
new recruits, and abundance for populations open to gains and losses across multiple
sampling occasions. In the context of disease dynamics, multistate models for open
populations can be especially useful, where states are defined, for example, as
susceptible, infected, and recovered (SIR), a classification system used in classical
compartmental disease models (Kermack & McKendrick, 1927; Bailey, 1975;
Cooch et al., 2012). List data based on hospital visits or longitudinal data from
studies with imperfect follow-up can be used to develop detection histories for
such analyses, and estimated parameters include probabilities of state transition
(e.g., the transition from susceptible to infected) and state-specific mortality rates.
A feature of multistate capture-recapture models that is especially important for
epidemiological uses is state-specific detection probabilities (e.g., infected indi-
viduals will typically have higher probabilities of detection for hospital lists than
susceptible individuals). Uncertainty in state assignment (e.g., a false-negative or
false-positive pathogen test result) led to the development of models to deal with this
issue (reviewed by Lebreton et al., 2009), and the multi-event approach of Pradel
(2005) provides a general approach to this problem (Conn & Cooch, 2009; Choquet
et al., 2013; Benhaiem et al., 2018). Multistate capture-recapture models have been
recommended for use in estimating epidemiological state transition probabilities
and mortality rates (Jennelle et al., 2007; Cooch et al., 2012; Nichols et al., 2017),
but such uses have been relatively rare (but see Viallefont & Auget, 1999) for human
diseases.

Occupancy models have several potential uses for epidemiological studies. One
use entails viewing individuals as the sample units and focusing on presence
or absence of the disease organism (e.g., Bailey et al., 2014; MacKenzie et al.,
2018). Multistate occupancy models can be used to estimate transitions (including
infection rate) among SIR model states and state-specific mortality rates, as with
multistate capture-recapture. Pathogen tests for a random or representative sample
of individuals can be used with standard occupancy models to estimate prevalence in
the case where false negatives (nondetection) are possible (e.g., Lachish et al., 2012;
Nichols et al., 2021), and even infection intensity (Miller et al., 2012). Such testing
programs should typically include a subset of individuals that receive multiple tests
in order to deal with nondetection.

Occupancy models can also be used to model spatial dynamics of disease spread.
Data are based on tests of individuals, but now the sample unit is a location (e.g.,
a county or city), and interest is in whether any infected individuals are present
(McClintock et al., 2010; Bailey et al., 2014; MacKenzie et al., 2018). List data
could come from hospital visits, and the replication required for the most general
occupancy modeling could be obtained by treating each day or week as a sampling
occasion. The ability to deal with imperfect detection is especially important in such
studies, as detection probabilities are likely to vary among different locations (e.g.,
urban locations vs. rural locations far from medical centers).
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3.1.2 Individual-Level Inferences

Decisions about individual treatment and quarantine depend on the same diagnostic
test results that populate lists. When such tests admit false negatives and positives, it
is useful to estimate the probability that a specific individual is infected, conditional
on the test result(s). Define py,, as the probability that a test result (x; = /) indicates
individual k to be in disease state /, given that true disease state is m. Define state
zx = 1 to mean that individual k is infected and state z; = O to mean uninfected.
Then pq; is the probability of correctly detecting infection when present, and its
complement (1 — ppp) is the probability of a false negative. Similarly, pp¢ is the
probability of a false positive, incorrectly declaring an individual in state z;z = O to
be infected. Because these probabilities are conditional on the unknown true state
of the tested individual, statements about the probability of true infection are also
conditional on the underlying pathogen prevalence, . All of the above parameters
(detection/classification and prevalence) can be estimated directly using single-
season occupancy models (Miller et al., 2011; Chambert et al., 2015; MacKenzie
et al., 2018).

The conditional probability that an individual testing positive is actually infected
(“positive predictive value”) can be written as:

Ypi1
vpi+ A —¥)pio

Pr(zi = l|xp = 1) = 9

The conditional probability that an individual testing negative is truly not infected
(termed “negative predictive value”) can be written similarly as:
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P =0 =0) = .
=0l =0 = S A= v = )

(10)

Note that if prevalence parameters are likely to differ for different groups of
individuals (e.g., those exhibiting symptoms and those not), then group-specific
prevalence parameters should be estimated and used. If the probabilities of an
accurate test result [(9) and (10)] are thought to be too small for important decisions
about individual treatment, then multiple tests can be used to increase them (e.g.,
Nichols et al., 2021).

An advantage of the occupancy approach over that frequently used by epidemi-
ologists is that all of the relevant parameters can be estimated together in a joint
likelihood. The probabilities of an individual being infected are computed directly
as derived parameters, with the associated estimates of sampling variance properly
accounting for the variances and covariances of the different parameter estimates.



On the Versatility of Capture-Recapture Modeling: Counting What We Don’t See 73

3.2 Social Sciences
3.2.1 Census

Governments of most countries conduct periodic “censuses” of population size and
distribution. However, direct counts are seldom possible, and virtually all census
methods miss individuals (false negatives). Laplace (1786) was the first to derive
the estimator (2) and used it to compute the human population size of France using
two lists of citizens and their degree of overlap. Sekar and Deming (1949) appeared
to derive the estimator (2) independently of (Laplace, 1786) and (Lincoln, 1930)
and used it to draw inferences about the numbers of human births and deaths in a
district near Calcutta, India. Application of capture-recapture methods (sometimes
referred to as “multiple systems estimation” in the social science literature; Fienberg
& Manrique-Vallier, 2009; Bird & King, 2018) to problems in the social sciences
has increased in recent decades prompting methodological reviews (e.g., Bohning,
2008, Bird & King, 2018) and a book (Bohning et al., 2018).

Capture-recapture models for closed populations have been extended by scien-
tists working with the United States Census Bureau and used with post-enumeration
surveys to estimate the census undercount (Wolter, 1986, 1990; Cowan & Malec,
1986; U.S. Census, 2021). Evaluation of census coverage using post-enumeration
surveys along with capture-recapture estimation has been recommended by the
United Nations (Demographic and Social Statistics Branch, United Nations Statis-
tics Division, 2009) and is being used by various countries (e.g., UK Abbott, 2009;
Turkey, Ayhan & Ekni, 2003; Australia, Australian Bureau of Statistics, 2012). In
addition to use with standard governmental censuses, capture-recapture approaches
have been especially useful for providing inferences about “hidden” populations,
groups of individuals that are especially difficult to count using conventional
surveys, frequently because they do not wish to be counted (e.g., Sudman et al.,
1988).

3.2.2 Homeless

Homeless persons are a problematic group for conventional governmental census
methods, as they typically lack a mailing address and are not motivated to provide
census information. Fisher et al. (1994) obtained list data for homeless persons
from multiple sources including hospitals, local social service agencies, a healthcare
center designated for homeless, and hostels and used capture-recapture to estimate
the homeless population in an area of London. Their estimate was approximately
three times larger than the number of list-identified individuals. Such multiple-list
approaches have been used with capture-recapture modeling to estimate homeless
populations elsewhere as well (e.g., Baltimore, Cowan et al., 1986; Budapest,
David & Snijders, 2002). Berry (2007) used an observational approach to identify
homeless individuals in Toronto on the street during multiple sampling occasions.
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Closed capture-recapture models were used to estimate the homeless population,
and detection probabilities of about 0.2 indicated the importance of dealing with
nondetection.

An alternative approach to multiple lists is to insert some number of “marked”
(M) or “planted” individuals into the focal homeless population and then survey the
population directly, estimating detection probabilities as the proportion of planted
individuals that is detected (Eq.3). Laska and Meisner (1993) identified 103 sites
frequented by homeless persons in a region of New York City and planted persons in
a random sample of 41 of these sites. Census Bureau enumerators were then sent to
directly survey homeless persons at these sites. Detection probability was estimated
to be 0.48 and used to estimate the total number of homeless in the surveyed areas.

3.2.3 Problem Drug Users

Capture-recapture models have been used with list data on individuals to estimate
numbers of problem drug users in various locations. For example, King et al. (2014)
used four list sources, probation records, drug intervention program prison assess-
ments, drug treatment facility records, and drug intervention program community
assessments, to estimate the number of injecting drug users and heroin-associated
deaths in England. They used a Bayesian approach to incorporate prior information
into their capture-recapture modeling, obtaining estimates for England, as well as
for specific regions within the country. Both prevalence of problem drug use and
detection probabilities (probability that a problem drug user appears on at least
one list) showed substantial regional variation. Approaches based on similar list
data were used to estimate numbers of injecting drug users in Scotland (King
et al., 2013). Capture-recapture approaches to inference about problem drug use
are numerous and include inferences about the number of HIV-infected injecting
drug users in Bangkok (Mastro et al., 1994), prevalence of opiate use in Dublin
(Comiskey and Barry, 2001), prevalence of problem drug use in London (Hickman
et al., 1999) and six French cities (Vaissade & Legleye, 2008), the risk of arrest of
drug dealers and users in Quebec (Bouchard & Trembley, 2005), and the number of
heroin users in the Australian Capital Territory (Larson et al., 1994).

3.2.4 Criminal Activities

Greene and Stollmack (1981) applied closed population capture-recapture methods
to records from approximately 6000 males arrested at least once in Washington,
D.C., 1974-1975. They estimated a total criminal population of about 30,000
individual criminals. Using these same data, Greene (1984) later applied an open
population model permitting inferences about growth rate of the offender popu-
lation, survival probabilities, and average criminal career length. Bouchard et al.
(2019) used capture-recapture with arrest and rearrest record data from Quebec to
estimate the number of criminals involved with illegal amphetamine-like stimulants.
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They estimated that total arrests were only about 12% of those actually engaged
in illegal activities and subject to arrest. Bouchard (2007) used capture-recapture
methods with arrest data to estimate the number of criminal marijuana growers
in Quebec, 1998-2002. Charette and van Koppen (2016) used capture-recapture
methods to investigate selectivity in crime punishment, concluding that black male
offenders were more likely to be arrested and punished than members of other
demographic groups.

Cases of domestic violence in the Netherlands, 2006-2007, were estimated
by van der Heijden (2014) using capture-recapture methods with police register
records. Their estimates indicated that about 22% of offenders were actually
observed and recorded by police. Silverman (2014) used capture-recapture mod-
eling of multiple list data to estimate the number of victims of human trafficking in
the UK, 2013. Data on individual victims came from six lists: local authority, police
force, national government organization, nongovernment organization, National
Crime Agency, and the general public. The estimated victim population was four
to five times larger than the number of individuals detected.

Corlatti et al. (2019) studied illegal poaching of red deer in a park in the central
Italian Alps, 2007-2017. They estimated age- and sex-specific mortality rates of
deer associated with poaching and non-poaching sources using open, multi-event
models with data for tagged red deer. Their modeling included parameters for tag
loss and the possibility of misclassifying the cause of death (by poaching or not)
and provided strong evidence of higher poaching mortality for older males than any
other age-sex class.

Barber-Meyer (2010) proposed use of occupancy models with data on species
(e.g., tiger parts and products) sold illegally at souvenir shops, traditional medicine
stores, etc., within towns. Replication is provided by the multiple stores and shops
within each town. Towns were the sample units, such that occupancy estimated the
proportion of towns at which the focal species was illegally sold, and multiseason
models could be used to estimate occupancy dynamics over time. Sharma et al.
(2014) used reports of annual tiger poaching events reported by the Wildlife
Protection Society of India, in conjunction with multiseason occupancy modeling,
to estimate the prevalence of tiger poaching during periods of 3-7 years in 605
districts throughout India over a 40-year period. Results provided maps of tiger
poaching crime and information about covariates associated with such crime.

Yeo et al. (2017) used eBay postings to estimate aspects of illegal elephant
ivory trade dynamics in the UK. Each posting was identified by a description, item
number, and seller identification, permitting identification of the item in subsequent
postings. Postings were surveyed once per week for eight consecutive weeks,
March—-May 2014. Detection histories were developed for every item and used with
open-population capture-recapture models to estimate numbers of items, as well
as weekly survival (persistence in the eBay market) and entry probabilities. The
authors concluded that a large fraction of illegal ivory sale items had very low
probabilities of detection.
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3.2.5 World Conflicts

Armed conflicts throughout the world result in numbers of persons being killed
or disappearing, and “counts” of these victims are typically biased low. Capture-
recapture methods have been used with casualty list data to estimate numbers of
victims associated with conflicts in Peru (Ball et al., 2003; Manrique-Vallier et al.,
2013) and Colombia (Lum et al., 2013); number of deaths in Kosovo, March—June
1999 (Ball & Asher, 2002); and the number of persons killed by state forces in
Guatemala, 1981-1983 (Ball, 2000). For example, in the Guatemala analysis, lists of
victims were provided by the following three sources, the Commission for Historical
Clarification, the International Center for Human Rights Research, and the Catholic
Church’s Interdiocesan Project for the Recuperation of Historical Memory. The
estimated number of killings was about three times larger than the sum of victims
identified via the three lists.

Social conflict events from some parts of the world are not well reported, such
that counts of such events are typically biased low. Hendrix and Saleyhan (2015)
used closed population capture-recapture models to estimate the number of social
conflict events occurring across Africa in 2012. They obtained detection/nonde-
tection data on 1443 events from the Social Conflict in Africa Database. They
used data from two independent news agencies, Associated Press (AP) and Agence
France-Presse (AFP), compiling statistics on numbers of events reported only by
AP, only by AFP, and by both agencies. They concluded that these two news sources
captured approximately 76% of all events in Africa and that the nondetection rate
was predictably smaller for deadly events, events of a larger magnitude, and events
associated with government repression.

3.3 Quality Control

Capture-recapture models have been used for several specific problems associated
with quality control. Jewell (1985) noted that defects or errors can occur in
production of various manufactured goods, in computer software, in manuscripts,
etc. and recommended capture-recapture approaches for estimating numbers of
them. Quality control efforts typically involve inspectors or proofreaders who
examine products for defects or errors, but errors may go undetected. One approach
to estimating number of errors/defects in the face of nondetection is to employ
multiple inspectors or proofreaders. In the case of three inspectors, for example,
each error detected by at least one inspector is represented by a row of three entries
(one entry for each inspector), with a 1 denoting detection of the error by the
particular inspector and a 0 denoting nondetection. Chao and Yang (1993) used this
approach with computer code examined by multiple coders looking for errors and
estimated the number of errors remaining (undetected). White et al. (1982) used
this approach with multiple proofreaders of a large manuscript and estimated the
number of undetected errors.



On the Versatility of Capture-Recapture Modeling: Counting What We Don’t See 77
3.4 Remote Sensing

“Remote sensing” refers to use of aircraft or satellites to obtain information about
the earth. Photography and video are typically used to provide images, which are
then examined by individuals or computers in order to enumerate focal entities
(e.g., wetlands, woodlots) or compute area measurements of specific cover types.
However, such analyses of remote sensing images are usually characterized by two
types of errors, nondetection and misclassification. These errors can sometimes be
dealt with via replication provided by multiple observers in aircraft or multiple
persons processing the same image. Capture-recapture methods are then used to
estimate number of entities, for example, using the number of entities detected by
just one observer, two observers, etc. (Magnusson et al., 1978; Cook and Jacobson,
1979).

More commonly, a sample of area covered by a survey is visited by ground
observers providing direct counts and classifications, known as ground truthing. The
number of ground truth entities that is correctly detected or classified via the remote
images is then used with capture-recapture thinking to estimate detection and correct
classification probabilities (see Maxim et al., 1981; Maxim & Harrington, 1982,
1983). Veran et al. (2012) focused on the question of land cover dynamics, noting
that classification errors can be made at times ¢, £ 4+ 1, or both times, leading to
large errors in estimates of land cover state transition probabilities. They proposed
use of ground truth data with multistate capture-recapture models that included state
misclassification as a means of directly estimating land cover transitions in the face
of classification errors.

3.5 Paleobiology

Paleobiologists have long recognized that nondetection is an important issue for
analyzing fossil data (e.g., Foote & Raup, 1996). Analyses that do not account for
nondetection are subject to serious errors, as detection probabilities are thought
not only to be substantial but also to vary across time and space (Brett, 1998).
Paleobiological data consist of records of fossil taxa found via sampling at different
strata (different geologic time horizons) and locations. Capture-recapture analyses
typically treat each lower-level taxon (e.g., family) within a higher-level taxon (e.g.,
phylum) as an “individual.” Detection histories for each lower-level taxon can be
developed using spatial samples (analogous to multiple lists) within some time
stratum and area of interest, providing the data for estimation of total taxa using
closed capture-recapture models. Detection histories for focal taxa developed from
different geologic strata (time horizons) at the same sampling location, or even
worldwide, can be used with open capture-recapture models to estimate number
of taxa and rates of both local and global taxonomic origination and extinction
for lower-level taxa (Nichols & Pollock, 1983). Capture-recapture models were
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introduced to paleobiology over 40 years ago (Rosenzweig & Duek, 1979; Nichols
& Pollock, 1983; Conroy & Nichols, 1984; Nichols et al., 1986), but they have seen
only limited use (Connolly & Miller, 2001a, 2001b, 2002).

Occupancy models have multiple uses for fossil data as well, with focus on a
specific taxon, rather than a group of lower-level taxa. Detection-nondetection data
from replicate local samples can be used in conjunction with occupancy models
to estimate geographic distribution (Liow &Nichols, 2010; Liow, 2013). Detection
histories based on different time horizons from multiple locations can be used with
occupancy modeling to estimate local probabilities of colonization and extinction
as well (Liow &Nichols, 2010; Liow, 2013). Occupancy models were introduced to
paleobiologists much more recently than capture-recapture models (Liow &Nichols,
2010; Liow, 2013; MacKenzie et al., 2018), and paleobiological use of occupancy
approaches has been limited (but see Lawing et al., 2021).

3.6 Miscellaneous Applications

National databases for traffic accidents are maintained by law enforcement agencies
in many countries, but accidents are thought to be underreported, leading to many
efforts to estimate their true numbers using capture-recapture. Razzak and Luby
(1998) compiled lists of police accident records and emergency ambulance service
records over a 10-month period during 1994 in Karachi, Pakistan. Their estimates
indicated that official records accounted for 56% of traffic accident deaths and only
4% of serious injuries. Capture-recapture inferences about traffic accidents have
been used in various other locations including Nicaragua (Tercero & Andersson,
2004), Ethiopia (Abegaz et al., 2014), and Mali (Sango et al., 2016).

Beirne and Lambin (2013) studied volunteer “citizen scientists” who worked on
a project to remove invasive mink from a large area of Scotland. Their objective was
to draw inferences about volunteer retention (tendency to remain in the program)
and the factors that affected it. They described the potential utility of open capture-
recapture approaches, but collected data on volunteer activity data via telephone
every 6 months and were thus able to use known-fate models (Pollock et al., 1989).
They identified volunteer vocation and recent trapping and removal success as key
determinants of retention in the program.

Interest in vocabulary size has prompted literary scholars to count the number
of individual words that an author uses in her/his writing, but this number is likely
smaller than the number actually known to the author. Efron and Thisted (1976)
counted the number of words used once, twice, three times, etc., in samples of
Shakespeare’s writing in order to estimate the total number of words that he knew.
Words counted in the samples totaled 31,534, and capture-recapture estimators
indicated that he knew about 35,000. Capture-recapture methods have also been
used to estimate the song repertoire size of birds (Garamszegi et al., 2002).

An archaeological use of capture-recapture modeling was provided by Holst
(1981), with subsequent reanalyses using different capture-recapture estimators by



On the Versatility of Capture-Recapture Modeling: Counting What We Don’t See 79

Esty (1982, 1983) and Chao (1984). The problem was to estimate the number of
different “dies” that produced a set of 204 coins in ancient India. The data were
the number of dies that produced only a single coin in the sample, two coins in the
sample, three, etc.

Herendeen and White (2013) collected data on appearances of specific rare
stamps over the years from sources such as auction catalog, retail price lists, copies
of expert certificates, and similar records. Each stamp has an individual identifying
number. Herendeen and White (2013) viewed each year as a sampling occasion
and used closed population models to estimate the total number of stamps still in
existence.

Nichols et al. (2013a, 2013b) used capture-recapture thinking to estimate
detection and classification probabilities for military imaging systems. Vessels of
different classes (defined by size, and military vs. civilian status) were experimen-
tally positioned at different distances from two new cameras. “No vessel” was one of
the experimental possibilities as well. Resulting data were used to develop a model
for detection and classification probabilities as a function of distance and vessel
type. Capture-recapture model selection was used to infer that distance relationships
were dependent on camera type but characterized by a common slope across vessel
types (Nichols et al., 2013b).

K.H. Pollock (pers. comm.) used capture-recapture models to estimate the
number of man-made objects orbiting earth. The field of astronomy is characterized
by substantial nondetection, with detection probabilities a function of telescope type
as well as distance, brightness, and size of focal object, and a number of potential
uses of capture-recapture thinking can be envisaged.

4 Discussion

The problems of nondetection and misclassification characterize numerous types of
count data. The various applications described in Sect. 3 have hopefully supported
this assertion, and there are certainly many more applications that can be imagined.
The adoption of capture-recapture thinking has not been as rapid as might be
hoped for any of the disciplines of Sect. 3, and rate of adoption has varied among
these disciplines. For example, my impression based on literature review is that
epidemiological and human health applications are somewhat more common than
those dealing with social sciences, whereas adoption within paleobiology has been
very slow.

One possible explanation underlying this variation in rate of adoption involves
the perceived severity of nondetection and misclassification (Nichols, 2019). For
example, the development of capture-recapture thinking in the fields of wildlife
and animal ecology is likely a natural response to the well-known nondetection
problems associated with virtually all animal survey methods. Not only do surveys
miss animals, but the fraction missed can be very large. In contrast, epidemiological
and social science data based on counts of humans have historically been thought to
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be closer to truth, although this perception is changing. Indeed, some of the detection
probability estimates of Sect. 3 are quite small.

A second factor that may affect rate of adoption of capture-recapture is the
cost of incorrect counts and estimates, and thus the scrutiny that analytic results
receive. Results of epidemiological surveys and medical diagnoses are viewed as
extremely important and are often carefully reviewed, as misleading inferences can
have detrimental consequences that may be readily apparent. In contrast, inferences
in the social sciences are certainly important, but not so highly scrutinized, and
misleading inferences are less likely to be recognized. The greater the degree of
scrutiny, the greater the expected attention to analytic details and inferential errors.

Another factor that may affect rate of adoption is the funding available to a
discipline. Good funding helps ensure collaboration of statisticians, who are able to
deal with the added complexity of modeling sampling processes. Epidemiology and
human health are among the better funded scientific disciplines in most countries.

One more factor influencing methodological adoption is likely the familiarity
of scientists with capture-recapture approaches. My search for uses of capture-
recapture models for inferences about criminal activity produced a number of papers
that used capture-recapture to study the criminal activity of animal poaching. I am
guessing that the appearance of disproportionate numbers of applications for this
particular type of crime resulted from prior familiarity of scientists investigating
such crimes with capture-recapture approaches.

This relatively slow adoption of robust methods for dealing with nondetection
and misclassification begs the question: what are the alternatives to modeling these
components of the sampling process? The most common alternative appears to
be to view the problems as so small and insignificant that they can be safely
ignored. For example, this has been the case with remote sensing uses, as ground
truthing data have provided clear evidence of nondetection and misclassification.
However, estimates of these errors are frequently presented, claimed to be small,
and then ignored in analysis (see discussion in Veran et al., 2012). I suspect that this
alternative is also prevalent in disciplines where errors are not so readily estimated,
but rather assumed or claimed to be small and thus not worthy of the effort to deal
with nondetection.

A second alternative to the use of capture-recapture is to try to identify the key
sources of variation in detection probability or misclassification, to develop models
for each of these component processes separately, and then to combine these models
to provide overall inferences about detection probability and the focal parameters
that they influence. I encountered this approach at a 2011 workshop dealing with
nondetection. A biostatistician working for the Centers for Disease Control and
Prevention outlined this approach to inference about detection probability for a
focal disease. Her strategy was to develop a model for each of 10-12 sources of
variation in detection and to then combine these models into an overall model
for the sampling process. At the time of the workshop, two of these models
had been developed. In contrast to this incremental approach, capture-recapture
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requires some form of replicate sampling (e.g., multiple lists) and then directly uses
the information about nondetection available in detection history data. Detection
probability, as well as focal parameters such as numbers of cases or disease
prevalence, is estimated without the need for identification and modeling of all
factors affecting nondetection. If potential influencing factors can be identified, then
they can be treated as covariates in capture-recapture modeling, with the result that
their influence can be formally tested and, if found to be important, included in the
modeling of detection probability.

A problem related to slow adoption of capture-recapture approaches is the limited
inferences to which they are applied. The early history of capture-recapture in
wildlife and animal ecology was dominated by a focus on numbers. Capture-
recapture estimators for closed populations were used to provide estimates of pop-
ulation size for specific locations and times. However, abundance is not necessarily
interesting by itself, but rather is more usefully viewed as a state variable in studies
of dynamical processes. The primary interests are sources of spatial and temporal
variation in abundance, and the ability of human actions to influence population size.
This recognition eventually led to increased interest in capture-recapture models for
open populations that experience dynamical changes between sampling occasions.
Today’s capture-recapture studies of wildlife populations tend to focus on the
processes of birth, death, and movement, and on transition probabilities governing
changes of state within individuals. Similarly, occupancy estimates themselves are
not viewed as especially interesting, and focus has shifted to the probabilities of
local extinction and colonization that govern occupancy dynamics.

This review of nontraditional applications of capture-recapture models suggests
to me that most of these studies are focusing on numbers of focal entities. As noted
in Sect. 3.1.1, epidemiological list data from hospital visits and data from longitudi-
nal studies with incomplete follow-up can be used with multistate capture-recapture
models for open populations to draw inferences about state transition probabilities
and state-specific mortality rates required by SIR (susceptible, infected, recovered)
models. These models provide a way to deal with the state-specific detection
probabilities likely to exist in longitudinal data. For example, an individual in the
infected state at sampling occasion ¢ is more likely to be found on a hospital
list or re-encountered in a longitudinal study at that occasion than an individual
in the susceptible or recovered state. Accompanying information on public health
interventions or even individual treatments can be used with these models to directly
test the efficacy of interventions and treatments. Despite the potential utility of
multistate (Lebreton et al., 2009) and multi-event (Pradel, 2005) capture-recapture
models, I saw little evidence that these approaches are being used in disciplines
other than animal and wildlife ecology.

The primary interest of most capture-recapture applications in criminology
(Sect.3.2.4) was in numbers of criminals or victims, or in detection probability
when this equated with probability of arrest. These studies were not focused on
the influences of laws or enforcement interventions on criminal activity, or on the
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effects of crimes on victims. Contrast this with a number of the studies of wildlife
poaching crimes which included investigations of poaching-related mortality rates
(Corlatti et al., 2019), and of relationships between dynamics of poaching activity
and species distributions (Marescot et al., 2019; Moore et al., 2021), and between
ranger (enforcement) activity and poaching activity (Moore et al., 2017). I suspect
that a main reason for this difference in uses of capture-recapture for wildlife vs.
other crimes stems from the familiarity of persons focused on wildlife crimes with
these more complicated models and their utility.

With the exception of these investigations of wildlife crimes, the majority of
the nontraditional uses of capture-recapture have focused on numbers. Such studies
can be very useful when these numbers are incorporated into a larger sampling
scheme designed to test hypotheses about system dynamics or effects of potential
interventions. However, for most of the reviewed papers describing nontraditional
uses of capture-recapture, this was not the case. I believe that studies that go
beyond estimates of numbers to focus on system dynamics and key relationships
(e.g., effects of interventions or treatments) are much more likely to be useful
to both science and decision-making. Capture-recapture and occupancy models
developed for open populations are especially useful for investigating underlying
processes, and I would hope that we see the same increases in use of these models in
nontraditional applications as we did in the fields of wildlife and animal population
ecology.

In summary, studies in many disciplines are based on count data, yet counts
are frequently inaccurate because of nondetection and misclassification. The fields
of wildlife and animal ecology recognized these problems nearly a century ago
and began to develop capture-recapture approaches to deal with them. Other
disciplines began to adopt these methods and, in some cases, to modify them for
their specific applications (e.g., log-linear models for closed populations to deal
with list dependence). However, the integration of capture-recapture methods into
the toolboxes of scientists of non-ecological disciplines has been incomplete and
slower than might be hoped. In addition, the bulk of non-traditional uses of capture-
recapture models has focused on estimation of totals for counted entities. I hope that
use of capture-recapture models for nontraditional applications increases and that
such uses better exploit the open-population models that permit inferences about
dynamical processes.
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Advances in the Use of Capture- m)
Recapture Methodology in the Estimation %
of U.S. Census Coverage Error

Mary H. Mulry and Vincent T. Mule Jr.

Abstract A post-enumeration survey (PES) is an important tool for assessing
the quality of a census and gaining information about how to improve census-
taking methodology. The U.S. Census Bureau has implemented a PES to evaluate
the coverage error in each U.S. Decennial Census since 1980. A PES uses a
second enumeration implemented on a sample basis after a census and subsequently
matched to the census using a combination of computer and clerical matching.
Then, dual system estimation may be used to estimate the population size. The
difference between the PES estimate of the population size and the census total
yields an estimate of the net undercount. This chapter focuses on the methodology
and estimation of net coverage error in the 2010 Census produced by the 2010 PES.
The evaluations of U.S. censuses continue to use the PES methodology to evaluate
the coverage of the decennial census. These implementations of the PES have built
on the quality control methodology that Dr. Stokes developed for the 1990 PES.

1 Introduction

A post-enumeration survey (PES) is an important tool for assessing the quality
of a census and for gaining information about how to improve census-taking
methodology. The U.S. Census Bureau has implemented a PES to evaluate the
coverage error in each U.S. Decennial Census since 1980. There are two types
of coverage error. One type is overcount, which occurs when an enumeration is
inappropriate, such as entries that are duplicates of other enumerations, for people
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born after Census Day or for people who died before Census Day. The other type
is undercount, which occurs when a person who should be counted in the census
is not enumerated. The net coverage error, which equals the overcount minus the
undercount, provides a measure of the quality of a census.

A PES uses a second enumeration implemented on a sample basis after a census
and subsequently matched to the census using a combination of computer and
clerical matching. Then, dual system estimation, which is another name for capture-
recapture estimation, may be used to produce an estimate of the population size.
The difference between the PES estimate of the population size and the census total
yields an estimate of the net coverage error. A PES that uses dual system estimation
essentially applies a variation of the “capture-recapture” methodology designed for
estimating the size of wildlife populations to human populations.

This chapter focuses on the methodology and estimation of net undercount in
the 2010 Census produced by the 2010 PES. The data collection methods included
new quality control procedures and an estimation approach that differed from the
estimation used in the prior PES programs conducted from 1980 through 2000. The
implementation of the 2020 PES used essentially the same methodology for data
collection and estimation as that employed for the 2010 PES. However, the COVID-
19 pandemic resulted in some unexpected delays in the 2020 PES data collection
and processing. As a result, the estimates from the 2020 PES will not be available
in time to meet the publication deadline for this volume.

Dr. S. Lynne Stokes contributed to the methodology for data collection and
estimation for the Post-Enumeration Survey at different points in her career. The
discussion of the PES methodology and the evolution of its implementation to
evaluate census coverage at the U.S. Census Bureau will include descriptions of
her contributions.

The discussion in this document focuses on the evolution of design of the PES
as implemented to evaluate the coverage of the decennial censuses conducted from
1980 to 2010. These topics include the following:

* Section 1 is the introduction to the document.

* Section 2 has a brief overview of the recognition that there was a need to evaluate
the coverage of the U.S. Censuses.

e Section 3 contains a description of the dual system estimator (DSE) that is
used in estimating the coverage error in censuses, including the first attempt to
implement a PES aimed at evaluating the coverage of the 1980 Census.

* Section 4 describes the 1990 PES and the role Dr. Stokes played in the evaluation
program that informed a decision on whether to use PES estimates to adjust the
1990 Census for coverage error.

* Section 5 explains how the 2000 PES was designed to evaluate the coverage of
the 2000 Census and describes evaluations used in the decision on whether the
2000 Census should be adjusted for coverage error.

e Section 6 discusses methodological challenges in the 2010 PES.
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* Section 7 describes current research on developing methods for replacing data
collected in PES fieldwork with administrative records and third-party data for
the US population in DSEs to produce census coverage estimates.

e Section 8 is a summary.

2 Background

The U.S. Constitution requires that a census of the U.S. population be conducted
every ten years for the purpose of the apportionment of seats in the House of
Representatives among the states. Article 2, Section 2 of the Constitution, states
that the “actual enumeration” be used to allocate the seats among the states. The
current apportionment method, which was chosen by the House of Representatives,
is the Method of Equal Proportions, but other methods have been used over the years
(Spencer, 1985).

The first U.S. Census was conducted in 1790. As Secretary of State, Thomas
Jefferson’s duties included certifying the 1790 Census data. Even though Secretary
Jefferson certified the census count, both he and President Washington thought the
1790 Census had undercounted the U.S. population by several hundred thousand
(U.S. Census Bureau, 2021a). For years, the prevailing attitude was that the census
provided the best information about the size and distribution of the U.S. population.
And, even if the census was not perfect, certainly it had better coverage of the
population than any source of administrative records available at the time.

New information about the coverage of the census appeared in the early 1940s
when the Census Bureau conducted a study that compared the number of males of
military age in the 1940 Census to the number found in draft registration records.
The study used the demographic method of comparing aggregated totals constructed
by a clerical operation. The study estimated that there were 14.9% more Black males
of 21-35 years of age registered for the draft than were counted in the census and
2.8% more non-Black males in the same age category (Price, 1947).

This result led to the development of census coverage evaluation methodologies,
the first one being Demographic Analysis. The estimates produced by Demographic
Analysis are a sum of totals for subpopulations based on aggregating administrative
records from different record sources, such as birth and death records, to form an
estimate of the total population that can be compared to the total from a census. The
1950 Census was the first census to have its coverage evaluated using Demographic
Analysis (Coale, 1955). Demographic Analysis has been used to evaluate the
coverage of every U.S. Census at the national level since 1950 and is still used today
although the method and data sources have improved over the years. Demographic
Analysis does not produce estimates for subnational geographic areas such as states
and has limited race results since it uses historical data sources.

The need for estimates of census coverage for geographic and demographic sub-
groups led to the development of two other methods. One is the Post-Enumeration
Survey (PES) used by the USA and several other countries (Mulry, 2014). The other
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is the reverse record check, developed by the Statistics Canada which relies on an
administrative record system that is updated on an ongoing basis between censuses
(Statistics Canada, 2007, 2021). One of the innovations in the estimation of the
coverage of the 2010 Census came from the PES estimation procedure incorporating
the Demographic Analysis results for some hard-to-count subgroups. Section 6
gives the details.

3 Post-Enumeration Survey in 1950, 1960, and 1980

This section provides an overview of the Census Bureau’s initial attempts to
implement the PES to evaluate the coverage of the 1950, 1960, and 1980 Censuses.
A more detailed discussion appears in Mulry (2012).

A Post-Enumeration Survey (PES) is a survey conducted after a census for
the purpose of evaluating the coverage of the census. The first PES in the USA
was conducted after the 1950 Census and was motivated by the undercount of
draft-age males discovered in the 1940 Census. A PES uses two systems, which
may be samples. The Census Bureau’s implementation uses samples where one
is a sample of the population, called the P sample, and the other is a sample of
census enumerations, called the E sample. The basic strategy is that enumerators
conduct interviews at the addresses in the P sample that include collecting the
current household roster along with characteristics and where each person resided
on Census Day plus a roster of the people living at the address on Census Day. Then
a clerical operation matches the people on the P sample roster at each address in the
P sample to the Census enumerations in two phases. In the first phase, those in the
P sample that match to a census enumeration at the reported Census Day address
receive a status of Match. When the matching operation cannot decide, the person
receives a status of Unresolved, and the form is sent back to the field for interviewers
to collect more information. The E sample enumerations also receive one of three
statuses, Correct Enumeration, Erroneous Enumeration (if person was not a resident
at the address on Census Day), or Unresolved. When P sample and E sample
people receive an Unresolved status, their forms are sent for further fieldwork to
determine each person’s Census Day address. If the interviewer conducting the
second interview is unable to determine where the person lived on Census, the
person retains the status of Unresolved. Each census enumeration that retains an
Unresolved status receives an imputed probability of being a Correct Enumeration,
and P sample people with an Unresolved status receive an imputed probability of
being a Match.

The methodology for collecting and processing the data that the PES collects has
evolved over the years. The changes include almost all aspects, such as how the
samples are selected, how the P and E sample interviews are implemented, the use
of technology, and the estimation approach. Section 3.1 contains a short discussion
of the Census Bureau’s first attempts in 1950 and 1960 to conduct a PES, and Sect.
3.2 discusses the implementation of the 1980 PES to evaluate the 1980 Census. The
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Census Bureau did not conduct a PES after the 1970 Census. The Census Bureau
did implement a PES after the 1990 Census and subsequent censuses, and Sects. 4,
5, and 6 contain discussions of these implementations.

3.1 PESin 1950 and 1960

The first attempt to implement a PES was aimed at evaluating the coverage of the
1950 Census (Marks et al., 1953). The P and E samples each had about 25,000
housing units and were selected in a manner that resulted in the chosen areas
overlapping as much as possible to reduce the expense of the data collection. The
strategy was for the P sample interview to be of much higher quality than the census
interview so that the error could be estimated by comparing the results of the P
sample to the census results in the E sample. When the P sample results did not
agree with the census for the same housing unit, interviewers were sent to collect
information to resolve the discrepancies so that errors in the P sample could be
identified. Then the corrections could be incorporated into the results of the clerical
matching operation.

The strategy relied on these procedures discovering the truth in the sample areas.
Then an estimate of the population size could be formed by multiplying the total
census count by the ratio defined by the total number of people in the P sample
housing units divided by the total number of people in the census in the same
housing units as shown below:

— number of people in P sample in P — sample housing units
TruePopulation = (Census Count) x peop P P g

number of people in census in P — sample housing units

)]

Unfortunately, the results failed to meet the Census Bureau’s quality standards.
The PES estimate of population size was lower than the estimates derived from
demographic methods (Coale, 1955). The PES estimate of undercoverage was
2.1 million persons, which was 1.4% of the enumerated population, while the
demographic method estimated the undercoverage to be 5.4 million which was
3.6% of the enumerated population. The Census Bureau’s analyses found that the
“minimum reasonable estimate” of undercoverage was 3.7 million which was 2.5%
of the enumerated population. Subsequent analyses performed in preparation for
evaluating the coverage of the 1960 Census found weaknesses in both the PES data
collection and estimation and also in some of the assumptions used in producing the
demographic estimates (Marks & Waksberg, 1966). Another concern about the 1950
PES was that some PES interviewers did not follow instructions completely. The
interviewers were given a sealed census roster for each address. The interviewer’s
instructions were to open the envelope after completing the PES interview and
compare the new roster with the census roster. Then, while still on the doorstep,
the interviewer could identify differences and ask questions to identify errors in one
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or both rosters. However, there were reports that some interviewers did not ask for
a household roster on Census Day but only opened the census roster and verified it.

A second attempt to implement a PES was aimed at evaluating the coverage
of the 1960 Census. However, the design had P and E samples that were selected
independently and retained the assumption that the P sample interview would be
more accurate than the census responses in the E sample. The outcome of the 1960
PES also was not satisfactory. Reminiscent of the results from the 1950 PES, the
1960 PES estimates of population size were lower than the national-level estimates
derived from demographic methods (Marks & Waksberg, 1966).

3.2 PES 1980 and Dual System Estimation

The Census Bureau introduced a new design for a PES to evaluate the 1980 Census.
The 1980 PES implemented a new estimation method called dual system estimation,
which led to a new design for sample selection.

3.2.1 Dual System Estimation

A major part of the new design was using dual system estimation (DSE) which did
not require the assumption that the data collected for the P sample was without error
(Chandrasekar & Deming, 1949). The method had been used in programs sponsored
by the United Nations (UN) that focused on estimating population size in other
countries. Implementing the DSE, which is another name for capture-recapture,
required only that the P sample be a second enumeration of the population as
opposed to being a near-perfect enumeration that was required for the estimation
approach used in the 1950 and 1960 PESs. The estimation approach used post-
stratification, not the log-linear form of the estimator used in some applications of
capture-recapture methods.

Data collection for the P and E samples must satisfy four basic assumptions
(Chandrasekar & Deming, 1949). One is that selection for inclusion in the P sample
is independent on selection for inclusion in the E sample. This assumption means
that the census and the P sample could not share data or information. For example,
a census interviewer who also worked on the data collection for the P sample had
to work in areas that were not included in the interviewer’s census assignments.
Second, the probability of being included in the census is not correlated with
being included in the P sample. Third, each individual is unique, and records
for the individual can be identified on both lists without error. And fourth, there
are no spurious events in the E sample list or the P sample list, which for the
Census Bureau’s PES means that there are no sample records that are duplicates,
nonexistent, or not in the population of interest (Mule, 2008).

When the four assumptions hold, the following two ratios of expected values are
equal. The ratio on the left is based on the E sample and the ratio on the right is
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based on the P sample. In some capture-recapture applications, the ratio on the right
in Eq. (2) is called the detection probability:

E (Number of correct census enumerations) E (Number ofmhed people)
E (Popum size) E (Numher of sur/vgenumerations)

2

A correct census enumeration is one where the person is enumerated at the
address where the person lives and sleeps around Census Day, which is April 1
of the census year. The enumeration also is required to be data-defined, which
means that the record has enough information to identify the person uniquely. An
enumeration is classified as data-defined if it has two or more characteristics, one
of which may be a name. However, sometimes a data-defined enumeration cannot
be uniquely identified, such as when an enumeration with the minimum information
has characteristics that are common in their area. A matched person is one that has
a record in the P sample that can be matched to the person’s census enumeration.

Using Eq. (2) and algebra, an estimator of the population size can be constructed
as follows:

—
— — . (Number of survey enumerations)
Population size = (Number of correct census enumerations)

(Number ()f/mziched people)

3)

One aspect of using samples is the need to include both small and large
subpopulations, such as race and Hispanic ethnicity groups, and geographic areas
such as states and metropolitan areas. Therefore, the sample selection probabilities
will be higher for smaller population groups than for the larger groups. The
estimation needs to account for the variation in the selection probabilities by
incorporating sampling weights equal to the inverse of the selection probabilities.

The formula for the DSE based on samples uses the same formula as in Eq.
(3) with the addition of a ratio adjustment of the estimated number of correct
enumerations to the number of data-defined enumerations. However, the inclusion
probabilities are not equal throughout the population, which affects whether Eqs.
(2) and (3) hold. The remedy is to partition the population into groups where
the inclusion probabilities are believed to be equal or nearly so. The groups are
called poststrata (indexed by j), and the post-stratified estimator for an area C is
shown below. The data-defined census enumerations are those that have enough
information for the matching operation to identify them if they are in the P sample.
An enumeration is classified as data-defined if it has two or more characteristics,
one of which may be a name. Enumerations that are not data-defined remain in
the census but are excluded from the E sample. Therefore, the matching is a
three-step procedure where the first step determines if the census enumeration is
data-defined, and for those that are, the second step identifies the ones that are
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correct enumerations, and the third step determines if the P sample person matches
to a census enumeration.
The formula for the post-stratified DSE estimate of the population size for an

area C, T ﬁc , when using J poststrata is as follows:

CE, | __
DD; ETOT;

Totdlc = CEN¢; — 4
c Z}.GJ < | CEN, i “)
PTOT;
where
CENc;j = number of census enumerations in poststratum j in area C
CEN; = number of census enumerations in poststratum j
DD j = number of data-defined enumerations in the census in poststratum j
ETOT; = estimated number of data-defined enumerations in the E sample in

poststratum j
@ = estimated number of correct enumerations in the E sample in poststratum j
M = estimated number of P sample people in poststratum j that match a census
_enumeration in the correct location
PTOT; = estimated number of people in the P sample in poststratum j

3.2.2 1980 PES

The E and P samples for the PES in the 1980 Post-Enumeration Program (PEP) were
both nationwide samples that were selected in completely different ways. For the
1980 PES, the P sample used the April and August waves of the current population
survey (CPS) which is an ongoing nationwide survey that measures unemployment
and is conducted separately from the census. The combination of the two CPS waves
included about 124,000 housing units with about half from each wave. The P sample
questions appeared on a supplementary questionnaire that was administered after the
CPS questions and asked who resided at the address on Census Day. The E sample
was constructed by selecting 10 housing units from each enumeration district in the
USA which resulted in a sample size of about 110,000 (Fay, 1988). Interviewers
visited each housing unit in the E sample and verified that each person listed on the
census questionnaire for the address was a resident on Census Day. If the people
listed on the census questionnaire had moved, the interviewer sought information
about them from neighbors and at the post office (Mulry, 2012).

The clerical matching of the two samples to the census to determine who should
be on each list was cumbersome and time consuming. The census file and both
sample files needed to be available for the matching. The matching for those
who moved between the census and the PES interviews was exceptionally time
consuming.
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The results of the 1980 PES showed some undercount, but there was a contro-
versy over the best way to construct the estimate of the net undercount (U. S Census
Bureau, 1980). Some statisticians inside and outside the Census Bureau were
not confident that the implementation of the 1980 PES satisfied the assumptions
underlying the DSE. There was a concern that the estimates based on the DSE
were affected by correlation bias, so analyses assessed the impact of some of the
assumptions by constructing 12 sets of estimates. In the end, the preferred set of
PES estimates of net undercount were 1.0% for the USA, 5.7% for Blacks, 4.5% for
non-Blacks, and 0.0% for others ((U. S Census Bureau, 1980), p. 9-10). Another
concern was that the estimates of net undercount at the national level based on the
PES were lower than the estimate from Demographic Analysis which was 1.2%
for the USA. Other estimates of net undercount from Demographic Analyses were
4.5% for Blacks and 0.8% for non-Blacks (Long et al., 2003). The estimated net
undercount prompted a call to adjust the 1980 Census for the undercount using the
1980 PES data. The Census Bureau opposed adjusting the 1980 Census using PES
data and stated so in an announcement. Detroit, New York City, and the State of
New York filed a lawsuit asking that the Census Bureau be ordered to adjust the
1980 Census for undercount. These lawsuits were consolidated to the court hearing
the New York case. The judge ruled that the Census Bureau’s decision was not
arbitrary and capricious. Therefore, in the end, the 1980 Census was not adjusted
(U.S. Census Bureau, 2021).

4 1990 PES

In the aftermath of the 1980 Census, the Census Bureau decided to prepare in a
manner that would enable an adjustment of the results of the 1990 Census if such
an adjustment was deemed necessary. The preparations included a research and
testing program during the decade leading up to the 1990 Census. The program
incorporated test censuses during the decade and a dress rehearsal in 1988, each
including a PES. The testing program facilitated refining PES data collection,
processing, and estimation methodology.

One of the components of the research and testing program for the 1990 Census
was the development of computer matching software that could be used in matching
the P sample records to E sample records. The goal was to improve the quality of the
matching and to produce the matching results faster than was possible with clerical
matching. The development of the new matching software leveraged methodology
developed by Fellegi and Sunter (1969) for matching records (Jaro, 1989; Kelley,
1986). In addition, clerical staff conducted a quality control operation on a sample
of the computer matching results to assure accuracy.

Another component of the research and testing program was the development of
methods to assess the quality of the PES estimates which could be used to evaluate
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their suitability for adjusting the 1990 Census for undercount. See Hogan (1993) for
an overview of the 1990 PES methodology and Belin et al. (Belin et al., 1993) for
a discussion of the new approach to imputing enumeration status using hierarchical
modeling.

4.1 Dr. Stokes’s Contributions to Interviewer Quality Control

Dr. Stokes has made significant contributions to the study of interviewer variance
and bias. Interviewer effects on data collected in censuses and surveys can be
substantial. Interviewer variance was a major reason the 1970 Census started the
collection of census data by mail instead of personal interview (Stokes & Mulry,
1987).

Her interest in interviewer effects and quality control started when she worked
at the Census Bureau early in her career and continued during her career as an
academic. Initially, her work at the Census Bureau focused on optimizing the design
of quality control samples to detect interviews fabricated by interviewers (Biemer
& Stokes, 1989).

Fabrications of interviews during the data collection for the estimation of census
coverage error is particularly important. A reason is that one of the assumptions
underlying the DSE in Sect. 3.2.1 states that the E sample list and the P sample list
used in estimation do not contain spurious records, such as fabricated records. When
the assumption of no spurious events in data holds, the relationship in Eq. (2) that
underlies the DSE holds. Interviewing quality control is therefore essential.

Another reason that the detection of fabricated interviews is important is because
the quantity being measured is very small. A relatively small number of errors have
the potential for a substantial impact on the estimate. For the past eight censuses, the
Census Bureau has measured an error in the census count. For example, the Census
Bureau estimates that the 1990 Census count for the population was 1.6% too low
and the count for Blacks was 4.4% too low. This type of difference in accuracy is
called the differential undercount. The differential undercount is important because
key uses of the census data are for fixed-sum distributions such as the apportionment
of Congress, the drawing of districts for state legislatures, and the federal fund
allocation programs.

When Dr. Stokes started research in nonsampling error measurement in surveys,
one of her concerns was that estimation of the correlated component of response
variance usually assumed a normal distribution whereas most survey data were
categorical. The paper “Estimation of the Correlated Component of Response
Variance for Categorical Variables” (Stokes & Mulry, 1987) subsequently showed
that the assumption could cause substantial underestimation of the sample size
during the design of a study to measure the effect of interviewers.

Through continuing research on interviewer effects, Dr. Stokes made significant
contributions during the consideration of adjusting the 1990 Census numbers for
undercount. In addition, she provided the technical expertise for the evaluation of
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the effect of interviewer fabrication on the quality of the estimates of undercount.
This role was the culmination of the research she conducted under contract with the
Census Bureau.

Her work during the evaluation of the 1990 PES focused on assessing the
assumption of no fabrication of interviews in the PES data. Despite an elaborate
quality control program for the interviewing of the 1990 PES, some fabrication
of interviewers was detected during the research studies leading up to the 1990
Census (Stokes & Jones, 1989). One result of the research was that the single-person
households were the ones most likely to have fabricated interviews. The rationale
was that since there was only one household member, these were the most difficult
addresses to find someone at home. Thus, interviewers would make several attempts
to make contact, but if they were unsuccessful, out of frustration, the interviewer
would use the name on the mailbox and fill in the rest of the information. Therefore,
one recommendation at the end of the quality control evaluation was that one-person
households be checked at a higher rate than households with more than one person.

4.2 Qutcome of the 1990 PES

Estimates of the net undercount in the 1990 Census were not used to adjust the
census counts although there was litigation that reached the Supreme Count. In
1999, the U.S. Supreme Court ruled in an opinion written by Chief Justice William
Rehnquist that the census numbers used for the apportionment of seats in the House
of Representatives could not be based on samples because the Constitution required
using the “actual enumeration” from the census (Department of Commerce vs
United States House, 1999). However, the opinion did not prohibit adjusting the
census numbers for other uses. See Prewitt (2012) for a brief discussion of the
implications of the decision.

The 1990 PES estimated the net undercount of the U.S. population to be about
1.6% or about 4.0 million people. The estimate of the net undercount for Whites
was about 1.8 million people while the net undercount rate for Blacks was about
1.4 million. But because the Black population was far smaller than the White
population, the percent net undercount rate of 4.4% for Blacks was higher than for
the 0.9% undercount rate for Whites (U.S. Census Bureau, 2021b).

5 2000 Census Accuracy and Coverage Evaluation

After the controversy over the possibility of an adjustment of the 1990 Census
counts, the Census Bureau decided to create a process for deciding in March 2001
whether the coverage error in the 2000 Census numbers warranted an adjustment for
use in redistricting. The Supreme Court made its decision that prohibited adjustment
for redistricting in 1999, but the planning and research for the 2000 Census had
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started several years earlier. These preparations continued after the Supreme Court
decision in 1999 because the census numbers may have needed an adjustment for
use in other Census Bureau programs. The work included developing a process and
predefined criteria for deciding whether adjustment was appropriate. An evaluation
program, called the 2000 Census Accuracy and Coverage Evaluation (ACE), was
designed to collect and analyze data that would inform the decision. The ACE
included a post-enumeration survey and other analyses.

Dr. Stokes served on the panel “Measuring a Changing Nation: Modern Methods
for the 2000 Census” that was convened by the National Academy of Sciences. The
panel reviewed the Census Bureau’s plans for the 2000 Census and the results of
Census Tests. These plans included incorporating applications of new technology
in several operations. The Census Bureau sought review and advice concerning the
performance of the new technology used in the collection and processing of census
data and coverage measurement data in the Census Tests conducted in preparation
for the 2000 Census.

Advances in technology enabled innovations in the Census Bureau’s collection,
processing, and analysis of the census and ACE data to be completed in time to
make an adjustment decision in March 2001. Much of the technology had been
available previously but had not developed to the point where census planners could
count on it for implementation and processing on the large scale and short time
frame required to collect data from the 115.9 million housing units in the USA
(Woodward & Damon, 2001). In 2000, all census response forms, both mail and
Nonresponse Followup (NRFU) operation, were scanned by optical character and
mark recognition technologies and converted to electronic format for processing
(Kline, 2004).

The ACE interviewers used laptop computers when collecting the PES data.
Addresses for each P sample block cluster were loaded into the laptop for the
interviewer assigned to the area. Interviewers then used the laptop computers to
collect data from respondents. The laptops contained the entire questionnaire, and
interviewers were able to transmit the collected data electronically to the processing
center. The laptops enabled faster processing and analyses of the data than was
possible for the previous PES implementations that used paper questionnaires
followed by a keying operation.

The interviewing quality control operation also used laptops. An advantage
was that the original census responses for an address could be loaded into the
interviewers’ laptops. After conducting a quality control interview, the interviewer
was able to push a button, and the laptop would present a comparison between
the census household roster and the Census Day roster provided during the quality
control interview. If there were differences in the two rosters, the quality control
interviewer was able to ask questions to resolve any issues while still with the
respondent.

The biggest surprise from ACE was the discovery that the estimated number
of duplicate enumerations in the 2000 Census was much higher than expected. In
addition, mail returns that were thought to be the best responses were included in
some of the duplicates that were detected. Another finding was that the duplication
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occurred more frequently among household members under 30 than over 30.
Examples of duplicate enumerations include the following: (1) college students
being counted at both their college address and their parents’ address, (2) children
whose parents are divorced being counted at both parent’s addresses, and (3) people
who move around Census Day (April 1) being counted at both their old and new
addresses since census data collection for NRFU goes into summer.

The discovery of the problem with duplication occurred during implementation
of the process the Census Bureau had set up to arrive at a decision on whether to
adjust the 2000 Census numbers issued for a purpose other than redistricting the
seats in the House of Representatives. Further investigation found that a substantial
number of erroneous enumerations had gone undetected in the processing of the
ACE.

The Census Bureau continued to study whether to incorporate an adjustment
to the census numbers that would be used in producing the intercensal estimates
and other census products. The focus was on creating another revision, called ACE
Revision II, that would be based on additional research concerning the level of
duplication and the possibility of an adjustment for correlation bias in the DSE. At
this point, a research project, called the Statistical Administrative Records System
(StARS), created with the Census Bureau’s newly developed administrative records
database methodology, had progressed to the point of being useful in detecting
census duplicates without fieldwork. StARS was able to create a database that
covered the U.S. population by merging federal administrative records. Linking E
sample and P sample records to StARS aided in identifying duplicates and other
enumeration errors.

In the end, ACE Revision II estimates included several adjustments. The research
with StARS and a clerical matching project produced an estimate of 5.8 million
duplicates that was the basis of one of the adjustments of ACE Revision II (Mulry et
al., 2006). Because the Demographic Analysis estimates produced a ratio of males
to females that was higher than observed in the ACE, an adjustment for correlation
bias was included in the ACE Revision II estimates. The correlation bias adjustments
were created separately for Blacks and non-Blacks within three age categories: 18—
29, 3049, and 50 and over. However, an adjustment was not included for non-Black
males 18-29 years of age because the data did not support the estimation in this
category. More details about the adjustment may be found in (Bell, 1993, 2001). In
addition, errors found during several evaluation studies were corrected in the data
used in forming the ACE Revision II estimates.

The 2000 ACE Revision II estimates were the first PES estimates that measured
anet overcount in a census of the USA. Figure 1 displays the net coverage estimates
based on the PES and Demographic Analysis methodologies for the 1980, 1990,
and 2000 censuses conducted in the USA.
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Fig. 1 Percent net undercount estimates from post-enumeration surveys and Demographic Anal-
ysis for the 1980-2000 censuses. (Source: Long, Robinson, and Gibson (2003))

6 Innovations in the 2010 PES Methodology

The Census Bureau pursued several innovations in the 2010 implementation of the
PES used to evaluate the 2010 Census. The program was called the Census Coverage
Measurement (CCM). The enhancements in the CCM involved producing estimates
of the components of census coverage error, preparing to include a correction for
correlation bias in case one was needed, and using logistic regression instead of
post-stratification in the construction of the DSE to produce the estimates of census
coverage error. The 2010 CCM focused on measuring the coverage of people in
housing units. The CCM also evaluated the coverage of housing units, but those
estimates are not discussed in this document.

6.1 Components of Census Coverage Error

One innovation used the PES data to form national-level estimates of the compo-
nents of census coverage error, namely, the total number of erroneous enumerations
and the total number of people missed by the census. Creating these estimates
required data processing that differed in some ways from the processing for forming
the DSE. For example, a different imputation procedure was needed to compensate
for missing data when forming estimates of the erroneous enumerations and the
people missed.

The definitions of the four components of census coverage error for persons
in housing units are listed below (Mule, 2008). The estimation of the correct,
erroneous, and omission components included all the data-defined enumerations in
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the E sample and did not require that they have a name. This section contains a high-
level discussion of the approach to the estimation of the four components of census
coverage error. For more details about the estimation method, see Mule (2008). Bell
and Cohen (2009) also discuss the 2010 PES. Table 2 contains the estimates for the
components of coverage error.

1. Correct Enumerations. Estimates of the number of correct enumerations in the
final census count were produced at the national level using E sample data, which
was a national sample of data-defined enumerations in census housing units. An
enumeration was considered correct for component estimation if it was for a
person who was counted once and only once in the U.S. housing unit universe.
One rule was that if the person was supposed to be enumerated in a housing
unit and was included in a housing unit anywhere in the USA, then that person
was considered correctly enumerated. If such a person or unit was included
multiple times, one of the enumerations was designated correct, and the others
were classified as erroneous.

The estimation approach used a two-stage ratio adjustment to reduce the
variability of the estimates and ensure that the sum of estimates for selected
subgroups added to the total. The first stage was a ratio adjustment to the E
sample weights that was done by identifying cells, which were formed by using
characteristics such as race/ethnicity, tenure, age/sex groupings, and then ratio
adjusting the sum of the sampling weights in each cell to the total number of data-
defined enumerations in the census. The second stage adjustment was applied to
each of the first stage cells by a ratio adjustment to the total number of data-
defined census enumerations within the cell.

2. Erroneous Enumerations. The E sample also was used to produce an estimate
of the number of erroneous inclusions in the final census count using the same
estimation approach that was used to estimate the number of correct enumera-
tions. Erroneous inclusions consist of duplicate numerations and enumerations
of people who should not have been counted in a housing unit. In addition,
enumerations for persons born after Census Day and persons who died before
Census Day are considered erroneous. The CCM processing identified whether
the person should have been counted in the (1) same county but outside of the
PES sample block cluster search area, (2) different county in the same state, or (3)
different state. The erroneous enumeration estimates used the similar two-stage
ratio adjustment.

3. Whole-Person Census Imputations. The CCM program tabulated and reported the
number of whole-person imputations in housing units directly from the census.
The CCM program did not evaluate whether these imputations were correct or
erroneous. Whole-person imputations are the result of one or more steps that may
include imputing whether a housing unit is occupied, the household size, and the
characteristics of the household members.

4. Omissions. The CCM program created estimates of the number of omissions
of people in housing units from the census. The estimation of the number of
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omissions relies on the two following relationships for net error in the census
count:

Net Error = TruePopulation — Census 5)
Net Error = Omissions — Erroneous Enumerations (6)

Note that Eq. (5) can be rewritten as the following:
Omissions = Net Error + Erroneous Enumerations. @)

Substituting Eq. (5) for Net Error in Eq. (7) and some algebra yields the
following:

Omissions = (TruePopulation — Census) + Erroneous Enumerations.

®)

Finally, substituting an estimate of the TruePopulation size and an estimate of the
number of Erroneous Enumerations from the PES yields an estimator for Omissions
as follows:

Omissions = TruePopulation — Census + Erroneous Enumerations

)

6.2 Correction for Correlation Bias

Another innovation in the 2010 PES addressed the vulnerability of the DSE to
correlation bias, which arises when probabilities of a person or group of people
being included in the census and the PES sample are correlated. The remedy
was the incorporation of an adjustment for correlation bias. A version of the
ratio adjustment for correlation bias first appeared in a revision of 2000 PES
estimates. The adjustment was based on the ratio of males to females for Blacks
and non-Blacks based on Demographic Analysis estimates of the 2010 population
size derived from birth records, death records, and estimates of immigration and
emigration (Konicki, 2012; Mulry, 2014).

The correlation bias correction provides a remedy to a violation of the first
assumption underlying the DSE (see Sect. 3.2), which requires that inclusion in
the census is not correlated with inclusion in the P sample. However, heterogeneity
in inclusion probabilities for the census or P sample or both does occur across
subgroups. Some people, such as adult males ages 20-35, are hard to count and
therefore have lower inclusion rates in both the census and the P sample (Mulry,
2014 p. 50-51).
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6.3 Logistic Regression Instead of Post-stratification

Implementations of the PES from 1980 through 2000 used post-stratification in
forming the DSEs that were used to evaluate census coverage error. The post-
stratified DSE has the disadvantage of requiring an adequate number of observations
to produce a reliable estimate of the population defined by a post-stratum. This
requirement limits the number of subpopulations for which DSEs can be used to
produce census coverage error estimates.

Research during the 1990s demonstrated that PES data collected for forming
a post-stratified DSE also could be used in logistic regression models to produce
the estimated probabilities needed for constructing a different form of the DSE
(Haberman et al., 1998; Alho et al., 1993). This finding enabled creating estimates
of population size for subgroups formed using the independent variables in the
models and thereby facilitated the construction of estimates of census coverage error
for these subgroups. Because the DSEs formed using logistic regression enabled
constructing estimates of census coverage error for many more subgroups than were
possible when using the post-stratified DSE, the Census Bureau opted to pursue
implementing this approach in the 2010 PES.

The form of logistic regression estimator for the DSE uses three separate logistic
regression models: one model that predicts the probability of a record being data
defined, second that predicts the probability of an E sample record being a correct
enumeration, and a third that predicts the probability of a P sample record matching
a census record in the search area of its sample block. Then the following formula
provides a PES estimate of the population size in poststratum j in area C;:

Totalc; = Z [ﬂdd,inCE’i/nNMi] (10)
ieCj ’

where

T4d,; = probability of the i-th record being data defined.

TicE,i = probability of the i-th record in the E sample being a correct enumeration.

T, = probability of the i-th record in the P sample matching a census enumeration
in the search area of its sample block cluster.

Post-stratification requires partitioning the samples into groups that are large
enough to form reliable estimates, which possibly suppresses the variability of
the estimated probabilities of inclusion in the E and P samples because every
observation in a poststratum receives the same estimated inclusion probability.
Using the three separate logistic regression models to estimate the probabilities of
being data-defined, a correct enumeration, a nonmatch permits more variability and
possibly reduces the risk of violating the assumption that the probability of being
included in the census is not correlated with being included in the P sample. This is
the second on the list of assumptions underlying the DSE given in Sect. 3.2.
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6.4 Consultation with Dr. Stokes and Other Experts About
2010 PES Methodology

The Census Bureau sought review and advice about the 2010 PES estimation plans
from outside experts on capture-recapture methodology and dual system estimation.
They did this by engaging the Committee of Professional Associations on Federal
Statistics (COPAFS) to arrange and conduct a meeting of experts, titled the Census
Coverage Measurement (CCM) Workshop. At the meeting, a Census Bureau staff
presentation of plans preceded a discussion of the topic that included comments on
the proposed plans. The papers that Census Bureau staff prepared for the meeting
are available at https://www.census.gov/programs-surveys/decennial-census/about/
coverage-measurement/pes.html.

Dr. Stokes was invited to the meeting in recognition of her expertise in capture-
recapture estimation methodology and for her contributions concerning the design
of the quality control operation for the Census Bureau’s 1990 PES fieldwork (Stokes
& Jones, 1989; Biemer & Stokes, 1989). Her assignment was to review the plans for
the imputation for the estimates of two of the 2010 Census components of coverage
error, erroneous enumerations, and correct enumerations. The issue was which
of the two proposed methods to use for estimating the probability that a census
enumeration was correct. The cell method would assign the correct enumeration rate
observed for a cell to each enumeration in the cell. The logistic regression method
would instead assign each enumeration a probability estimated from the model.
Dr. Stokes recommended the logistic regression approach because the method for
selecting independent variables for the model was more straightforward. Although
the 2010 PES used the cell method, the plans for the 2020 PES imputation include
using logistic regression models.

Dr. Stokes leveraged her expertise to provide useful comments on many other
aspects of the plans for the 2010 PES. One suggestion grew out of a discussion
of the proposed plan to fill in missing characteristics in 2010 Census enumerations
by using the characteristics for the person that could be found in the 2000 Census
records. Dr. Stokes suggested going a step further and to consider the 2000 Census
to be administrative records and use the 2000 Census records to enumerate some
households when the household at an address appears to have the same family
structure and the people are ten years younger (U.S. Census Bureau, 2009). The
Census Bureau adopted a variation of this proposal in the 2020 Census by using
administrative records to enumerate 5.6% of the addresses in the USA (Mulry et al.,
2021).

6.5 2010 PES Estimates

The Census Bureau incorporated suggestions from the experts into the plans for
the 2010 PES. The results of implementing the new methodology in the 2010 PES
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Table 1 National estimates of net undercount by census year from PES

Net Percent net
undercount undercount
Census count | Estimate Standard error
Year | (thousands) (thousands) (thousands) Estimate (%) | Standard error (%)
2010 | 300,703 -36 429 —0.01 0.14
2000 | 273,587 —1332% 542 —0.49* 0.20
1990 | 248,710 3994* 488 1.61* 0.20

Source: The 2010 estimates are from Mule (2012) and the 2000 and 1990 estimates are from
Kostanich (2003)

The 2000 and 2010 Census counts exclude persons in group quarters and persons in Remote
Alaska

A negative net undercount or percent net undercount estimate indicates an overcount

An asterisk (*) denotes a (percent) net undercount that is significantly different from zero

The standard error estimates are model-based and based on the PES

Table 2 Estimates of the components of 2010 Census Coverage

Components of

census Standard error

coverage Estimate (thousands) | (thousands) Percent (%) | Standard error (%)
Census count 300,703 0 100.0 0
Estimates from

PES

Population size | 300,667 429 100 0
Correct 284,668 199 94.7 0.1
enumerations

Omissions 15,999 440 5.3 0.1
Net under- —36 429 —0.01 0.14
count = (PES

estimate -

census count)

Source: Mule (2012). A negative net undercount indicates an overcount

appear in Table 1, which includes the estimates of net undercount in the 2010, 2000,
and 1990 censuses in the USA. The estimates of the components of census coverage,
correct enumerations, erroneous enumerations, and omissions based on the 2010
PES are shown in Table 2.

7 Current Research

Census Bureau staff currently are looking at ways of improving DSE and census
coverage error estimates. Data from administrative records appears to be a fertile
ground for research in this area. For the 2020 Census, one innovation was the use of
data from federal and third-party sources of administrative records (ARs) to create
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high-quality household rosters for use in enumerating some households in the 2020
Census Nonresponse Followup (NRFU) operation. The main goal of using ARs in
this process was to reduce the cost of the NRFU fieldwork while maintaining its
high quality. The use of AR information reduces the number of contact attempts by
NRFU enumerators at addresses that were in NRFU because a self-response was
not received. AR rosters were used to enumerate addresses only if a self-response
was not submitted for the address during the self-response period and if one contact
attempt by a NRFU enumerator failed to resolve the status of the address. See Mulry
et al. (2021).

In recent years, statistical agencies in other counties have examined the potential
for improving DSE estimates for subgroups and their entire populations by incorpo-
rating “known” totals from administrative record systems (Bryant & Graham, 2015;
van der Heijden et al., 2018, 2020). This is feasible in countries where administrative
record systems have high coverage of the population. However, some of these
countries have minority groups that are poorly covered by their administrative
record systems; thus, these countries are looking for ways to improve estimates for
their minorities. Because the USA does not have a single source of administrative
records that covers the entire population, the Census Bureau’s research is focusing
on ways of using these approaches where the “known” totals are from Demographic
Analysis. Even though Demographic Analysis estimates are available only at the
national level, the intent of the research is to gain knowledge about the strengths
and weaknesses of the administrative records for future applications.

As part of the 2020 Census Program for Evaluation and Experiments (CPEX), the
Census Bureau is conducting the Administrative Record Dual System Estimation
Study that is building on the use of administrative records in the 2020 Census. This
project seeks to determine whether administrative records and third-party data for
the U.S. population can replace the data collected in PES fieldwork in DSEs. In
particular, the project is examining whether the use of administrative records as the
second system produces census coverage estimates that are close to the survey-based
results. Using administrative records could alleviate the need to conduct the field
data collection, develop clerical matching software, and pay the clerical matching
personnel costs to produce the DSEs for census coverage estimates. This has the
potential to reduce the cost substantially.

The Administrative Record Dual System Estimation Study builds on methods
used in other countries for deriving estimates of the population size using files
created by linking registers. The linking of registers may not produce a file that
covers the entire target population. Van der Heijden et al. (2018) discuss an
application of the expectation maximization (EM) algorithm of log-linear models
that estimates the part of the population missed by the registers. A novel application
creates estimates of the causes of accidents where the cause is recorded in both
the police and hospital registers, but the police reporting is more accurate. The
paper shows how one can use the EM algorithm to produce estimates. Van der
Heijden et al. (2020) describe an application of EM in a census context by using
multiple registers to estimate the size of the New Zealand Maori population. The
Administrative Record Dual System Estimation project is experimenting with the
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use of this EM methodology to estimate the size of race and Hispanic-origin
populations in the USA. Since race and Hispanic origin are available from responses
to the 2020 Census and from historical administrative records, estimates of the size
of subpopulations can be compared with the estimates produced by the evaluation.

8 Summary

Dr. Lynne Stokes brought her unique skill set to bear in devising methods for
estimating bias due to interview fabrication in the dual system estimator used
for estimating census net undercount. She gained an in-depth knowledge of
capture-recapture estimation when she worked at the Fish and Wildlife Service,
as demonstrated in her paper “The Jolly-Seber Method Applied to Age-Stratified
Populations” (Stokes, 1984). When she moved to the Census Bureau, she learned
about survey research methodology and the challenge of designing quality control
samples to detect interview fabrication as demonstrated in her co-authored paper
“The Optimal Design of Quality Control Samples to Detect Interviewer Cheating”
(Biemer & Stokes, 1989).

Dr. Stokes applied her background to use interviewing quality control data and
the evaluations of the 1990 PES to estimate the number of residual fabrications
remaining in the data after the quality control operation identified and corrected
some fabrications. In addition to estimating the bias at the national level, she also
constructed bias estimates for geographic and demographic subpopulations. Her
work on the quality of the PES data was critical to deliberations regarding the
adjustment of the 1990 Census.

More importantly, the method that Dr. Stokes used in estimating the residual
fabrication errors convinced the Census Bureau of the effectiveness of the quality
control operation to the point that it became an accepted practice. The Census
Bureau did not construct the estimate of the residual fabrication in the interview
data for any of the subsequent PESs. The basic approach to the PES interviewing
quality control has remained the same even though technological advancements
have enabled enhancements in the operation.

Dr. Stokes has demonstrated a flair for adapting methods developed for one
application to other uses. For example, she generalized her work on estimating the
amount of residual fabrication in a survey data set to the problems of quality accep-
tance sampling in manufacturing. The paper she co-authored with her colleague
Betsy Greenberg at the University of Texas entitled “Estimating Nonconformance
Rate after Zero-Defect Sampling with Rectification” (1992) generated substantial
interest among engineers from semiconductor manufacturing settings who adapted
the method to their projects. Drs. Stokes and Greenberg next expanded their
research topic to include the possibility of misclassification error in quality control
operations. This type of error may cause a good batch to fail or a bad batch to pass.
In their paper entitled “Repetitive Testing in the Presence of Inspection Errors,” Drs.
Stokes and Greenberg (2012) formulated a rule about how many times to repeatedly
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test a batch before considering it to fail. The rule for repetitive testing is used in
manufacturing and has numerous potential applications in surveys.

The evaluations of U.S. censuses continue to use the PES methodology to
evaluate the coverage of the decennial census. These implementations of the PES
have built on the quality control methodology that Dr. Stokes developed for the 1990
PES.
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Abstract From questions about politics to queries about candy preferences, survey
items ask about matters large and small. While statistical approaches to combining
survey estimates have been well studied, less attention has been paid to matters
of measurement comparability when survey items are being summarized via meta-
analysis. We present an overview of this problem. Meta-analyses begin with a
defined problem, and relevant studies (here, surveys) are gathered. Studies and
their measures should be scrutinized for validity and comparability as part of data
collection and evaluation. When summarizing survey items, meta-analysts must
represent item responses using indices that are comparable across surveys. However,
survey constructs and the items that tap those constructs differ in diverse ways
that challenge the meta-analyst. Cook’s concept of “heterogeneous irrelevancies”
supports the inclusion of diverse survey items in meta-analysis, but the tasks of
construct definition and operationalization are key to a successful synthesis of
items. Item variation arises from many sources—differences in construct definition,
wording of question stems, direction and labeling of response scales, and number
and labeling of response options. We describe approaches to dealing with these
features using examples from the World Database of Happiness and raise cautions
for various stages of the process.
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1 Overview

Surveys are ubiquitous. From polls of political leanings to academic inquiries
(Fanelli, 2009) to frivolous studies of candy or soda preferences (e.g., RetailMeNot
Editors, 2021), survey items ask us about matters large and small. While statistical
approaches to combining quantitative results of surveys have long been of interest
(e.g., Kish, 1994, 1999a; Morton, 1999), less attention has been paid to matters of
measurement comparability when surveys or survey items are combined in meta-
analyses. An early exception to this was Kish’s (1999b, p. 131) concern over the
measurement challenges faced in cumulating surveys multi-nationally. Of late the
scholarship on harmonization of measures has attacked this same problem.

Meta-analyses (Glass, 1976) have the goal of summarizing the “typical” outcome
of a set of studies or surveys in terms of strength, direction, and consistency of the
findings. In this chapter, we present an overview of conceptual and measurement
considerations underlying the synthesis or meta-analysis of survey items, and then
briefly characterize the set of techniques called harmonization. We review four
survey-item features that impact the quantitative synthesis of survey items. Writings
on test validity, item construction, and psychometrics guide this work. To illustrate
these ideas, we draw on the World Database of Happiness project by Veenhoven and
colleagues (e.g., Veenhoven, 2015; Veenhoven et al., 1993).

2 Introduction to Survey Synthesis

Most of the research to date on cumulating survey results has focused on the nature
of the populations to be combined and how their results should be statistically
weighted. Kish (1999b) argues that the presence of national surveys (which
expanded greatly in the late 1940s) led international entities such as the various
agencies of the United Nations to make international comparisons, even when those
might not have been statistically justifiable. This growth in cross-national work
was followed by many statistical developments including the deliberate design
of coordinated national-level studies, derivation of methods for post-stratification
weighting, and proposals for new varieties of periodic sampling plans. Kish led
the field in this arena, and in 1994 presented five types of multi-population survey
designs, based on seven aspects of design. The first three of these aspects relate
at least in part to measurement, which is our focus. Kish (2002) later pointed out
the connections between his ideas on quantitatively cumulating surveys and meta-
analysis—the enterprise of combining studies.

The early focus on statistical analyses for combinations of related surveys
may have resulted in part from the fact that early syntheses of surveys estimated
parameters based on identical or very similar survey questions. There was little
need to consider the nature of the questions asked, avoiding many conceptual
and measurement components of the synthesis process. However, such a focus
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necessarily leads to a narrowed selection of constructs and measures of those
constructs compared to what may be seen in the broader literature.

We discuss two classes of approaches to measurement challenges in meta-
analysis of surveys. One includes conceptual approaches that deal with the theoreti-
cal constructs per se and aim to formalize the meaning behind constructs of interest.
van de Water et al. (1996) refer to this as conceptual harmonization. Second are
statistical or psychometric approaches that primarily operate on item scale points,
distributions of scores, or correlations among items that aim to measure constructs
of interest. Properly covering either of these classes of approaches would require
a book rather than a book chapter, so we cover only the main aspects of these
approaches.

3 The Process of Meta-analysis

Meta-analysis involves the systematic collection of the results of series of related
studies, and the eventual quantitative analysis of those results. The process of meta-
analysis has components that parallel those of primary research (Cooper, 2017). A
simple version of Cooper’s steps includes

. Problem formulation,

. Literature search,

. Data evaluation, including representation of study findings,
. Data analysis,

. Interpretation of synthesis results, and

. Public presentation.

NN WN =

We focus on steps 1 and 3, because measurement issues arise primarily at these
points.

3.1 Step 1: Problem Formulation for Survey Synthesis

In a typical meta-analysis, a detailed question guides the synthesis process. Meta-
analyses often examine the efficacy of interventions, or strengths of relationships.
A rationale should be developed for the specific question(s) asked. A successful
meta-analysis is based on questions that are not so broad as to be unanswerable,
or so narrow that few studies (here, few surveys) address them. In applying this
consideration t