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Preface

Laser-induced breakdown spectroscopy (LIBS), which was a curiosity in the 1960s,
at the time of its inception, has grown tremendously over the past few decades, and
today, it has become a widely known, flexible, and powerful method of analytical
spectroscopy. Its popularity is due to its uniquely advantageous set of analytical
characteristics, robust instrumentation, and relative ease of use. Analytical chemists,
physicists, engineers, chemometrists, biologists, and other scientists are similarly
fascinated by the analytical possibilities or complexity of the laser–material interac-
tion processes involved in the laser-induced breakdown of materials.

In the past ca. two decades, LIBS research has apparently greatly intensified,
which is easily demonstrated by the fact that nowadays nearly a thousand scientific
publications appear in this field every year. LIBS is now one of the dominant, hot
methods in atomic spectroscopy, and the range of its analytical applications is
rapidly widening. Over the years, the results produced have been compiled and
aggregated in several books, book chapters, and dozens of review papers. Most
surveys focus on laser–matter and laser–plasma interactions, signal formation, and
various calibration methods. In terms of applications, the development was perhaps
fastest in the industry (e.g., raw material assessment, process monitoring, and alloy
analysis) and in environmental studies, as well as in remote or stand-off measure-
ment scenarios (including space exploration or analysis under extreme conditions).
In these fields, many quantitative and qualitative analytical applications explored the
potential of LIBS. Consequently, prior summaries focused on these areas.

This book is meant as a contemporary overview of the advances of laser-induced
breakdown spectroscopy in some specific application areas, which have only
become the subject of research interest most recently. Namely, in the past decade,
LIBS has found its way into the field of life sciences (e.g., biology and medical
science), as a novel diagnostic tool and a new methodology for studying elemental
distributions in biological samples. It has been successfully demonstrated that LIBS
has great potential for elemental imaging, even at the cellular level, and the qualita-
tive discrimination of organisms or tissues. Another scientific field which progresses
with giant leaps in recent years is materials science. Related sub-fields, like nano-
technology, fabrication of nanoparticles, and composite or layered materials, all
require a versatile, fast, sensitive, high spatial resolution measurement technique,
which primarily works with inorganic samples and detects elemental composition.
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As it turns out, LIBS can fit this bill also well; thus, the development of materials
science LIBS applications has also started to grow exponentially. Interdisciplinary
areas between life science and materials science can also benefit from the application
of LIBS—the studies of the uptake or distribution of nanoparticles (as a form of
contamination, or with therapeutic or diagnostic purposes) in organs, tissues, or
foodstuff can be mentioned as examples. Forensic investigations also often deal with
samples (evidence) of biological or inorganic origin; thus, advancements in the other
abovementioned two application fields can also contribute to the solution of forensic
problems.
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These thoughts led to the conclusion that a book should be dedicated to the
comprehensive overview of the results produced by the LIBS community in the
fields of biology, materials science, and forensics in recent years. This book is
application-oriented and was mainly written for scientists who are interested in
solving analytical/diagnostic/material characterization tasks with the application of
LIBS. Hence, the emphasis was placed more on the applications and less on basic
science. The fundamentals and analytical performance of LIBS are also briefly
discussed in a couple of introductory chapters, but the majority of the book deals
with the description of contemporary application results in the focus.

It is the hope of the editor that this book will kindle an interest in the readers, who
will probably mainly be biologists, chemists, medical doctors, or engineers, toward
this technique, and thus can serve as an introduction to the fascinating world
of LIBS.

Szeged, Hungary
June 2022

Gábor Galbács
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Laser-Induced Breakdown Spectroscopy 1
Gábor Galbács

1.1 Principle of Operation

A laser-induced breakdown spectrometer is an atomic emission spectrometer that
uses the small plasma generated by a high intensity, focused, and pulsed laser beam
as the atom and excitation source. For this reason, the analytical method is some-
times named lased-induced plasma spectroscopy (LIPS), but it is mostly known as
laser-induced breakdown spectroscopy (LIBS).

During the LIBS analysis of a solid sample, the laser beam is focused onto the
surface of the solid, whereas with fluid samples, the beam is generally focused inside
the sample. A high enough laser power density (irradiance) is needed to be used in
the process in order to initiate intense laser–matter interaction processes which lead
to the formation of the microplasma. In the case of conventional LIBS instruments,
the duration of the laser pulse is a few nanoseconds and the pulse energy is typically
between 10 and 100 mJ. Focusing the beam down to around a 100 μm diameter spot
produces a GW to TW power in a ca. 0.001 mm3 interaction volume. As soon as the
laser pulse reaches the sample, the absorption of the photons will increase the
temperature of the material in the focal spot very rapidly. In less than a ns, the
temperature reaches the boiling point and the ejection of sample vapor, fragments
and particles will start (this process is known as laser ablation). The ablation plume
forms so rapidly that it meets the tail of the laser pulse, thus the laser will continue to
heat the ablated material, leading to a very high temperature, in excess of 20,000 K.
This temperature is high enough to thermally atomize, excite and ionize the plume
material, thus within a few nanoseconds, it turns into a plasma (the processes leading
to the formation of the microplasma altogether are called the laser-induced optical
breakdown, hence the LIBS name). The microplasma will start emitting a strong
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emission of radiation, which is characteristic of its chemical components; the
observation of the emission spectrum allows the process to be used for analytical
spectroscopy purposes. As soon as the laser pulse ceases, the plasma will
quickly start to cool down as a result of the lack of further energy input. The high-
pressure plasma material will continue to expand rapidly into the surrounding
medium (typically air), which initiates a pressure wave (shockwave) to form and
propagate outwards. This work on the surrounding medium also contributes to the
quick decay of the plasma. The typical laser-induced breakdown (LIB) plasma
lifetime is between ca. 100 ns and some tens of μs (depending on the experimental
conditions). Due to these latter processes, the optical breakdown of the material is
accompanied by a snapping sound and a spark-like visual phenomenon. During the
cooling and expansion phase of the plume, its material will condense and fall back
onto the sample in the form of micro- and nanodroplets/particles, unless the mea-
surement is carried out in vacuum. In the case of a solid sample, the process will
leave behind a small crater on the sample surface, with a diameter somewhat larger
than the laser spot size and a shallow depth (usually a few μm). These processes are
schematically illustrated in Fig. 1.1.
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Of course, the above is a largely simplified description of the intense, complex,
and highly transient laser–material interaction taking place during the formation of
an LIB plasma. The experimental conditions have a tremendous impact on the time
scale and balance of the various processes occurring. As the present book and
chapter is application- and analysis-oriented, we will not go into the details of the
ablation and ionization processes, or associated equilibria. Interested readers are
referred to laser and plasma physics books [1, 2] or physics-oriented chapters of
some LIBS books which are devoted to the topic (e.g. in [3–5]).

The very short plasma lifetime necessitates the use of a fast, non-scanning
spectrometer for the recording of the emission spectrum, the operation of which is
tightly synchronized with the laser pulse. The delay and width of the spectrum
acquisition time window (also known as gate delay and width, the latter often is also
called integration time) must be controlled and optimized with sub-μs accuracy, so
that the radiation of the analyte species (atoms, ions, or molecules) can be captured
when they are dominant. Early in the plasma lifetime, when its temperature is
highest, the dominant emitting species are excited ions and electrons. As the latter
emit continuous Bremsstrahlung radiation, the spectrum will consist of ionic lines
and a strong continuous background. As the plasma starts to cool down, the
ion-electron collisions and recombinations will produce excited atoms which will
rule the emission a couple of microseconds after the onset of the plasma and the
continuum background emission becomes much less intense. This phase is the
typical time window for analytical LIBS measurements, when spectral lines with a
good signal-to-noise ratio (S/N) can be observed and elemental analysis can be
performed. As usual, the intensity (or peak area) of the emission lines of the analyte
will be related to the concentration of the analyte element. In the late phase of the
plasma lifetime (after, e.g., 10 μs), the collision and recombination of sample atoms
and those of the surrounding medium (e.g., nitrogen and oxygen from air) will
generate excited molecules and hence the emission spectrum will be populated
mainly by molecular bands. These processes are conceptually depicted in Fig. 1.2.
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Please note that if the laser pulse duration is substantially shorter (e.g., ps or fs) or if
the experiment is carried out under vacuum then the time scales are also significantly
shorter, as the plasma lifetime decreases [3–8].
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Fig. 1.2 General time
evolution of the light emission
of a laser-induced breakdown
plasma generated with a
nanosecond-range duration
single laser pulse.
L designates the laser pulse

In consideration of the above conditions, a typical, conventional laboratory-based
LIBS instrument consists of the following essential parts: (1) laser source emitting
high intensity, fast laser pulses, preferentially at a wavelength well-absorbed by the
sample, (2) focusing optics that focuses the laser beam onto a small spot on or in the
sample in order to reach the optical power density required for the laser-induced
breakdown, (3) a precision sample stage which holds the sample and allows it to be
moved around to select the analytical spot, (4) a light collection optics, (5) a fast-
triggerable and sensitive, non-scanning spectrometer capable of recording the UV–
Vis-NIR emission spectrum with a minimum of 100 pm spectral resolution and μs-
range integration time, (6) fast electronics (e.g., pulse delay generator) which allows
the control of the synchronized operation of the spectrometer and the incoming laser
pulse with a sub-μs accuracy, (7) a computer with a proper data acquisition and
evaluation software. This generalized setup is illustrated in Fig. 1.3. Needless to say
that there is a wide variety of LIBS setups in use, which vary in the specifications of
the system components and the geometrical layout, as dictated by the optimization
for various applications or experiments—the major varieties are discussed in the
next section. Portable LIBS instrumentation, which nowadays are more and more
popular, tend to be simpler [9, 10].

1.2 Analytical Performance

LIBS is a trace analytical method, with typical detection limits in the ppm (mg/kg)
range for metallic/alloy solid samples. For liquids and gases, the detection limits are
significantly higher. Most elements in the periodic system can be detected by LIBS
with similar detection limits, thus also light elements (a significant advantage over
e.g. XRF). If the detection gate delay and width is optimized and other experimental



conditions also facilitate this, even the isotopic composition of samples can be
determined—this is called laser ablation molecular isotope spectroscopy, or
LAMIS, a variant of LIBS [11]. The dynamic range is typically around 3 orders of
magnitude, thereby allowing LIBS to determine trace and minor components. Above
a few % concentration level the calibration plots start to saturate, unless special
measurement conditions are used, which may even allow analysis up to 100%
concentration. With the application of signal enhancement techniques, the dynamic
range can be extended by about two orders of magnitude toward lower detection
limits (into the tens of ppb range).

1 Laser-Induced Breakdown Spectroscopy 7

Fig. 1.3 Generalized layout of the essential components of a LIBS experimental setup

It is a great advantage of LIBS that any phases (solid, gas, liquid) can be analyzed
with essentially no (or very little) sample preparation prior to the measurement. In
fact, the sample surface of solids can be cleaned by preliminary laser shots (or by
discarding spectra recorded for the first couple of laser shots). This also makes LIBS
analysis fast. Since (laser) light needs to be directed toward the sample and also light,
emitted by the microplasma, is detected during LIBS analysis, therefore a true
non-contact measurement is carried out. This not only allows the analysis of
hazardous materials, e.g. in a closed sample chamber but also remote or stand-off
analysis [12]. LIBS instrumentation is relatively robust, and can be made compact
(ultra-portable) and field-deployable. It is becoming increasingly popular in many
industrial sectors [13, 14].

A LIBS spectrum consists of hundreds or thousands of narrow spectral lines and
molecular bands, thus it has a great information content. A LIBS spectrum can be
considered to be a fingerprint-like identifier of the sample, which supports many
qualitative discrimination applications (e.g., classification, identification, compari-
son of samples, diagnostics, monitoring, etc.). These applications require sophisti-
cated multivariate data evaluation techniques, but with the use of the proper



statistical approach, 90+ % accuracy can be achieved. The great information content,
the complexity spectrum is advantageous on one hand, but on the other, it also means
that quantitative applications have to be very careful with the choice of analytical
spectral lines, due to potential interferences (spectral and matrix interferences).

8 G. Galbács

The analytical (or laser) spot size generally is in the 100–300 μm range, but
micrometer-range spot sizes can also be achieved relatively easily [6]. These small
analytical spots mean that high spatial resolution analysis is possible. If the solid
sample and the laser beam is controllably moved with relation to each other
(scanning) then elemental mapping is possible of the surface of solid samples
along a trajectory or in a rectangular area [15]. Since the laser ablation process
ocurring during LIBS analysis is removing only a microscopic amount of matter
(e.g. ng to μg), the analysis can be considered to be virtually non-destructive. If the
laser beam is directed to the same spot then this ablative feature of LIBS can also be
used to “dig” deeper and deeper into the sample material, thus depth-resolved
analysis is also possible with micrometer-range depth resolution. This is most useful
for the analysis of thin layers/films.

The precision of conventional (single-pulse) LIBS analysis is not very good—
10–20% RSD values (or more) for signal repeatability are typical. This is not
uncommon for microanalytical methods (e.g., micro Raman, micro X-Ray fluores-
cence spectroscopy, solid sampling graphite furnace atomic absorption spectros-
copy) and it partly stems from e.g. the heterogeneity of solid samples and shot-to-
shot laser pulse energy variations. There are however techniques that can greatly
improve on this. Some improvement can be achieved statistically, by performing a
large number of measurements (e.g., some hundreds) across the sample surface
instead of a few. This approach can bring the signal scatter to below ca. 10%
RSD. Further, dramatic improvement can be achieved by using collinear multi-
pulse delivering techniques (with μs interpulse delays) and integrating the signal
across multiple laser shots [16]; with this approach, the signal repeatability can be
kept below 5%. To enhance the precision in quantitative applications, the use of
robust calibration techniques that rely on most of the spectrum not just on one
spectral line, like GLCM (generalized linear correlation method) or PLS (partial least
squares), is highly advisable. With the help of the combination of the above
techniques, accuracy and precision of around 1% relative have been demonstrated
for various alloys under advantageous conditions [17, 18]. All in all, reasonable
expectations for accuracy and precision are around a few percents relative with LIBS
for solid samples.

Further details about the state-of-the-art analytical performance of LIBS and
various calibration approaches can be found in other chapters across this book.

1.3 Instrumentational Details and Variants

In the sections below, an overview is given of the main variants and relations of the
major components of LIBS systems. It is not the intention to provide an in-depth
description of the technical/optical/electronic details here, but rather to present



information that can help one, e.g., to choose a commercial instrument for a given
analytical task and to support considerations toward the optimization of the perfor-
mance of a specific system. LIBS is generally considered a technically simple
analytical method; however, due to the complexity of the laser–material interaction
and the joint requirements of the components, it is worth “to look under the hood” of
LIBS systems even for those researchers, who only consider themselves users.

1 Laser-Induced Breakdown Spectroscopy 9

1.3.1 Laser Sources

The mass of ablated material and plasma shielding (the absorption of the laser pulse
by the laser-induced ablation plume) are both important for efficient LIBS signal
generation, and for these reasons ns-duration laser pulses are generally regarded as
optimum for LIBS in terms of limits of detection [19]. As laser-ablation reviews
reveal (e.g., [3, 20]), the application of ultrashort (femtosecond, fs) laser pulses
seems to have distinct analytical advantages, including more stoichiometric sample
ablation and thus more accurate analyses, reduced continuum radiation, and cleaner
crater rims in solids and thus better spatial resolution [21, 22]. This leads to more and
more fs LIBS studies being conducted; however, it is doubtful that bulky and costly
fs lasers would soon fully replace the conventional compact, robust, and economical
ns laser sources (e.g., Nd:YAG) widely used today.

The effect of the laser wavelength on LIBS performance is a complex one. In the
case of ns laser pulses, the laser wavelength should generally be selected so that the
light absorption of the sample is large. The achievable minimum laser focal spot size
is limited by the diffraction limit, which is a function of the wavelength. These two
aspects would lead one to the conclusion that UV lasers should always be preferred.
However, plasma shielding, which has a great contribution to plasma heating and
thus to the intensity of the emission spectrum, was revealed to scale with λ3. Thus in
this respect, infrared or near-infrared (NIR) wavelengths (in the range of ca.
1.0–1.1 μm) perform better [3]. Frequency upconversion by nonlinear techniques
is commonly available to produce visible or UV wavelength radiation from a pulsed,
NIR laser emission, but it causes a great reduction in pulse energy. Most LIBS
analyses of solids in air are still typically done at around 1.06 μm NIR wavelengths
(e.g., fundamental wavelength of a Nd:YAG laser). In portable systems, where eye
safety is of primary concern, 1.3–1.5 μm wavelength Er lasers are also used
[23]. Following from the above, the choice of the laser wavelength is not a trivial
one, but in general only in special cases, when the sample has an exceptionally low
absorbance in the NIR region (e.g., glasses or crystals), are Vis or UV laser
wavelengths used. Examples include 532 nm (for solids submerged in water),
266 nm or 213 nm wavelengths produced from Nd:YAG lasers or 193 nm pulses
from ArF excimer lasers.

As semiconductor laser technology becomes more and more advanced, diode-
pumped solid-state (DPSS) lasers are slowly taking over the place from flashlamp-
pumped Nd:YAG lasers in LIBS setups, because these lasers have better
specifications in most aspects, such as higher repetition rates, better pulse-to-pulse



repeatability, improved beam characteristics, durability, much reduced size, and
better energy efficiency. Another promising novel laser type for LIBS is the group
of pulsed fiber lasers, which have many attractive features also exploitable in LIBS
[24–26], including resistance to vibrations, inherently fiber-coupled output, com-
pactness and extremely high pulse repetition rates (reaching into the MHz range).
The top pulse energy of commercial fiber lasers increases every year and now is in
excess of 5 mJ, which is sufficient for most LIBS applications, thus it is expected that
these sources will find their way into the mainstream of LIBS. DPSS lasers and fiber
lasers are also of interest for applications requiring LIBS elemental mapping, as
kHz-range pulse repetition rates can result in much faster scanning speeds
[27, 28]. The compactness of DPSS and fiber lasers is also an appealing property
for portable or industrial applications, the laser being the most bulky component of
any LIBS system.
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1.3.2 Optics

The optical subsystem of a LIBS setup has two main parts: the laser focusing and
light collection optics (together, they are sometimes called beam guiding optics).
The purpose of the focusing optics is to guide the laser beam to the sample and focus
it to a small spot in order to increase the irradiance to the level needed for the
breakdown. In most cases, the laser beam reaches the sample surface at a normal
angle. Beam focusing with the use of a single (plano)convex or best-form lens with a
long focal length, or a high damage threshold, long-working distance microscope
objective are common. The minimum practical lens-to-sample distance is
ca. 20–25 mm; however, combustible samples (e.g., plastics or organics) can easily
produce “flames” in air higher than this, which necessitates an increase of the
distance to avoid damage and the deposition of debris to the focusing optics.
Extremely long focal length focusing optics are in use in stand-off LIBS setups
[12]. All transmission optical elements in the focusing system need to be coated with
an anti-reflection coating in order to maximize the pulse energy available on the
sample surface and to minimize back-reflection of laser light into the source. In
sophisticated setups, a Faraday isolator can also be incorporated to further eliminate
the back-propagation of the laser beam. In principle, beam guiding can be conve-
niently done by using optical fibers; however, the maximum fluence an optical fiber
material can accept without damage (damage threshold) and nonlinear processes,
such as Brillouin scattering, is limited, thus the use of free-space focusing optics in
LIBS is still far more common (except in some remote LIBS systems).

It is also relevant how the sample surface is brought into focus, especially if the
sample has an irregular surface or is moving. Here, the depth of focus also becomes
important. The depth of focus, usually characterized by the Rayleigh range, is
proportional with the wavelength and the square of the ratio of the focal length to
the input beam diameter [5]. If the depth of focus is small (which usually comes
together with tight focusing and short focal lengths) then there is a high gradient of
beam power density as a function of sample-to-lens distance. This translates into a



high signal scatter if the distance changes, which strongly affects analytical accuracy
and precision. The intent to maintain a reasonable depth of focus leads to that most
LIBS setups do not employ laser beam focusing to a smaller than around 100 μm
diameter spot and tend to use a longer focal length optics (f ≥ 100 mm). Focusing
below the sample surface is typically also considered advantageous, as it produces
more stable signals and can prevent air sparks above the sample. It can also be
mentioned that, of course, using a collimated laser beam with a properly high laser
fluence can eliminate the nuisance associated with focusing; however this is
discouraged by the potential damage to the beam delivering optical elements.
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Bringing the sample in focus can be done in several ways (in addition to the
manual adjustment of the lens-to-sample distance until the signal is highest or the use
of a simple mechanical stop which is typical of portable, manual LIBS systems).
Often an optical feedback signal is employed that indicates if the sample is in the
right distance: this can be done by using, e.g., (1) a beam of an auxiliary diode laser
and picking up the reflected beam by a photodiode, (2) a time-of-flight or reversed,
short distance laser range finder, (3) an imaging digital camera or (4) autofocus
optics. These optical solutions are very practical, but they are slow, which is a
hindrance in scanning LIBS experiments and also assume that the sample has a
certain level of reflectivity.

The light collection optics, as the name suggests, collects and steers a fraction of
the emitted light to the spectrometer. Since the light emission of the plasma is
non-directional, therefore the emission has to be collected at a solid angle as large
as possible, meaning that relatively large collection lenses or mirrors are typically
used. Considering that analytical measurements usually dictate the recording of the
spectrum in a broad, at least 400–600 nm wide, spectral window, chromatic aberra-
tion of transmission optics can cause a difference in the efficiency of light collection
(please note that there are no achromatic lens combinations for wavelengths below
ca. 300 nm). This translates into a strong dependence of sensitivity as a function of
wavelength (and contributes to the spectrometer instrumental function). This aber-
ration can be avoided if reflective optics (e.g., concave mirrors or reflective telescope
arrangements) are used to collect the emitted light. The light collected is often
focused into an optical fiber which guides it to the spectrometer; the most efficient
way of doing this is to use a two-lens arrangement (Fig. 1.4).

One also has to consider the observation angle of the collection optics. In most,
simple LIBS setups, the collection optics is placed at a ca. 45° angle to the surface
normal, which arrangement is practical in as much as it offers ample space for the
collection optics. However, it has the drawback that if the sample distance or the
height of the plasma plume varies during measurements then the collection effi-
ciency will also fluctuate. A more practical approach is to use a collection optics
co-axial with the beam guiding optics and separate the two beams by a pierced
mirror or a dichroic mirror. A common arrangement uses the same lens for focusing
the laser beam to a spot (beam guiding) also for light collection—however, this
approach will make the usefulness of an antireflection coating on the focusing lens
questionable (consider that these are optimized for a narrow wavelength range and



anyway have an influence on the transmitted spectrum). These options are also
depicted in Fig. 1.4.
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Fig. 1.4 Some typical, meaningful optical setups used in LIBS practice. Setup 2 to 4 is installed in
most commercial laboratory systems. Setup 3 and 4 can be best adapted to work in stand-off
measurement scenarios. Setup 3 has the advantage that collection efficiency of the broadband
(UV to NIR) plasma emission does not suffer from chromatic aberrations that is characteristic of
transmission optics

1.3.3 Sample Presentation

Most commonly, solid samples are analyzed by LIBS, thereby exploiting its capa-
bility to avoid the usually tedious, lengthy, and trace analytically concernful sample
digestion procedures usually required by other atomic spectroscopy methods. Small
solid samples are typically simply fixed to a microscope slide using a double-sided
adhesive foam tape, and placed on a manual or motorized sample stage. Powdered or
fine-grained solid samples are usually either pelletized using a hydraulic press (with
or without a binder) or simply directly smeared onto an adhesive tape and then
handled analogously to bulk solids. The latter presentation approach, although
simple, has the disadvantage that the shockwave generated by the ablation can
blow away (rearrange) some of the grains on the adhesive tape. For especially fine
powders (e.g., nanoparticles), a novel approach called optical catapulting [29, 30]
can also be employed, in which the layer of particles on a rigid substrate are
mobilized by the shockwave generated by a pulse from a defocused secondary
laser hitting the substrate from the back.

The analysis of bulk liquids by LIBS is challenging for several reasons. For
example, the surface and the presence of bubbles or suspended particles within the



liquid will disturb laser beam focusing, and complicates the collection of plasma
emission. In addition, a liquid-phase sample has a significantly higher density and
stronger cooling effect than a gas, and thus imposes a stronger quenching compared
to a plasma created on a solid and expanding into air. As a result of this, plasmas
created in liquids have lower temperature, lower emission intensities, and shorter
lifetimes and as a consequence, their analytical usefulness is limited. Another sample
presentation option is the conversion of the liquid sample to a wet aerosol or liquid
jet by a nebulizer [31], which provides better analytical performance, but at the
expense of some inconveniences (e.g. smaller sample throughput, greater exposure
to a sample mist in an open system, etc.). The liquid can also be converted to a solid
by evaporation or freezing, which has the advantage that it requires only a very small
droplet (μL or less). However, care has to be exercised to avoid spectral interferences
from the co-ablated substrate material (e.g., glass, metal, wood, etc.). In case of
evaporation, the coffee-spot effect (uneven lateral distribution of the solid deposits)
also has to be minimized, which can be done by the spatial localization of the
droplet, by prefabricating small “pits” in the substrate [32].
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LIBS gas or solid particle aerosol sample presentation is usually a relatively
simple task, which—at least in the laboratory—requires the use of a flow-through
sample chamber. This approach requires a large number of repeated measurements
for the statistically relevant sampling [33, 34]. In the case of aerosols, the sample
presentation can also be done in the way that particles are collected on a filter prior to
LIBS analysis. This technique improves sampling statistics, but is also subject to
potential spectral interferences from the substrate material [35, 36].

In conventional LIBS analytical measurements, a sample chamber (a closed
sample chamber with an optical window on top to allow access for the laser focusing
and light collection optics) is traditionally not used, simply because it imposes
limitations on the sample size and geometry, and also decreases sample throughput.
However, the use of a sample chamber is more and more often considered, especially
in commercial instruments. This is mainly due to safety reasons (the exposure of the
analyst to hazardous samples or their ablation products is minimized and also allows
the installation of an efficient suction system), but it also offers a possibility to
control the composition and pressure of the gas environment in the chamber for
analytical benefits. In some proprietary LIBS systems (e.g., that of Applied Spectra
Inc., USA), which can also be used in the laser ablation sample introduction mode
(in tandem LIBS and LA mode), the use of a carrier gas flow and a small volume
chamber is a necessity anyway.

Considering the long time (several hours) usually needed for the imaging, the use
of a cooling or cryogenic sample holder should be considered in the case of
biological samples, as without cooling, the microbiological degradation of the
sample can cause analytical errors. To handle such samples, commercial sample
holders with thermoelectric cooling, similar to the ones used in microscopy, can be
employed.

Most LIBS measurements also require a precision mechanical 3D stage for
sample positioning and presentation under the laser beam; if elemental mapping is
also planned then this stage must be motorized and software controlled. Please note
that imaging LIBS applications, especially for biological samples, have a whole



range of requirements for sample presentation and preparation. For details of these
requirements, please see, e.g., [27, 28].
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1.3.4 Spectrometer

As it was alluded to above, a non-scanning, high sensitivity, fast-triggerable, high-
resolution spectrometer is needed for LIBS spectroscopy, due to that has to be able to
record the emission from a highly transient plasma. Major considerations toward the
choice of the spectrometer for a LIBS setup have to be directed toward spectral
resolution, spectral coverage, and sensitivity. This list is also complemented with the
data transfer speed, if high repetition rate measurements are planned (e.g., in
industrial monitoring or elemental imaging applications). Thus, as with so many
things, a compromise has to be made when selecting a LIBS spectrometer too.

Fiber optics interfaced spectrometers with charge-coupled device (CCD) or
complementary metal-oxide semiconductor (CMOS) detectors are most common
in LIBS, equipped either with a linear or 2D detector array (intensified with a
microchannel plate, or non-intensified). Linear array spectrometers usually have
the Czerny–Turner configuration, whereas 2D arrays (“cameras”) can be found in
Echelle spectrometers. Compact spectrometers incorporating linear array detectors
with 2048 or 3684 pixels typically provide a quite good sensitivity, but a combina-
tion of spectral resolution (0.05–0.1 nm) and spectral coverage (100–150 nm) they
offer is sub-optimal for LIBS spectrum recording, hence are preferred in portable or
cost-conscious instruments, in a multi-channel configuration. Echelle spectrometers
with 2D detector arrays can provide very good spectral resolution (ca. 0.01–0.03 pm)
along with a more or less complete UV–Vis spectral coverage, but have a substan-
tially poorer (as much as 10–100 times lower) sensitivity.

The above types of spectrometers account for well over 95% of the LIBS systems,
but two further designs should also be mentioned here. One is the Paschen-Runge
spectrometer arrangement with photoelectron multiplier (PMT) detectors set at
discrete wavelengths. This arrangement is very bulky though and inflexible thus is
in use in some industrial setups only which work with a pre-defined set of analytical
lines [13, 19]. The other, more prospectful spectrometer design is the spatial
heterodyne (SH) spectrometer, which combines dispersion- and interference-based
techniques. It can be built with no moving parts, in a very compact format, either
optimized for spectral resolution or for sensitivity. In this spectrometer, an interfer-
ence pattern (Fizeau fringes) is recorded by an imaging detector array and evaluated.
The analytical potential of SHS in LIBS spectroscopy has already been demonstrated
in a few scientific studies [37–40] and results therein suggest that SH-LIBS will find
more and more applications in the future.

1.3.5 Synchronization

The synchronization of the laser with the spectrometer is an important system aspect.
In commercial LIBS instruments, this is already implemented in one way or the



other, but in the case of a lab-built system, some considerations have to be made. In
the case of ns laser pulses, 0.1–1 μs time resolution for this synchronization is
sufficient, but in the case of ultrashort laser pulses, at least one order of magni-
tude better timing accuracy is required due to the much shorter plasma lifetime. All
electronic/optoelectronic instruments, lasers and spectrometers included, possess an
inherent “wake-up” time (the delay experienced between the incoming trigger pulse
and the start of the actual action of the device, e.g. output of the laser pulse or start of
the recording of the spectrum), and it may be even longer than the allowable gate
delay in LIBS experiments (e.g., ≤1–2 μs). Modern lasers almost always have an
electronic “laser trigger out” output signal, which indicates the release (onset) of the
laser pulse and often also a “laser trigger in” signal, which can initiate the release of
the pulse. Similarly, modern CCD or CMOS spectrometers also have a “hardware
trigger in” input signal, which can initiate the start of the spectrum recording. Most
spectrometers have a built-in, software-controlled delay generator, which can accu-
rately delay the start of the spectrum acquisition with respect to the “hardware trigger
in” signal (after the wake-up time, which is the minimum possible delay). If the
wake-up delay of the spectrometer is shorter than the required LIBS gate delay, then
the laser can be hooked up to the spectrometer so that the laser is fired first and the
spectrometer receives its trigger signal from the laser. The gate delay can be then
optimized by adjusting the internal delay generator of the spectrometer. If the
spectrometer has a too long wake-up delay then the spectrometer has to be
pre-triggered, that is it should receive the trigger signal earlier than the release of
the laser pulse. Since this can usually not be provided by the laser, therefore an
external programmable pulse generator has to be used with two outputs to trigger the
start of the laser and spectrometer with a pre-calculated time difference. In these
cases, the gate delay has to be controlled by the settings on the external pulse
generator. In simple, conventional LIBS experiments, the process can be manually
controlled.
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Further considerations related to the timing of LIBS experiments are required in
some special instrumental situations. For example, if remote/stand-off measurement
is to be performed then the propagation time of the laser pulse and the emission
signal to and from the target also has to be considered and factored into the triggering
scheme—this becomes an issue only if the distance is very long, if the plasma
lifetime is very short (e.g., fs pulses) or if long optical fibers are involved. In the
case of LIBS elemental mapping applications, the control of the sample translation
stage (and the autofocus sub-system), as well as the spectrometer-to-computer data
transfer rate also has to be incorporated in the timing scheme and automation is also
required.

1.3.6 Data Processing

In most LIBS instruments, the processing of the spectra which were transferred to the
computer is done after collecting all measurement data. Data transfer rates between
the computer and the spectrometer come into play in applications employing high
repetition rate measurements (e.g., LIBS imaging applications or in industrial



monitoring), which produce a huge amount of data, that can definitely not be stored
in the onboard buffer memory of the spectrometer. High-speed connectivity options,
such as LAN or USB 3 can be considered, but in most cases only direct streaming of
the data to the computer, with the help of a fast buffer memory, is feasible. In order to
appreciate the amount of data produced in some demanding LIBS applications, one
can consider that storing a full UV–Vis-NIR spectrum (e.g., from 200 to 1000 nm)
even with the minimum acceptable spectral resolution (0.05–0.1 nm) and only 16-bit
intensity resolution requires over ca. 20 kB data. If an area equivalent to the size of a
microscope slide is imaged by scanning with just 100 μm lateral resolution in a
single layer or if a continuous industrial monitoring is performed for 24 h with a
frequency of just 0.5 Hz then already over 3.5 GB data is produced. The problem is
of course not the storage of this amount of data, but a timely capture and, later of
course, the calculation-intense processing.
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Most commercial LIBS instruments today offer some software help with a built-
in database for the interpretation and evaluation of the collected spectra. The
capabilities and features of the software vary from company to company (e.g.,
background correction, plotting, calibration, line assignation, chemometric evalua-
tion, etc.), but their operation almost always relies on the use of a built-in spectral
atomic line database, which are typically also freely available online. Among the free
resources available, the most popular is the NIST Atomic Spectra Database [41], but
the Kurucz Atomic Spectral Line Database [42] is also worth mentioning. Recently,
an online LIBS spectrum simulation tool is also available to help spectrum modeling
and comparison [43]. Periodicals, such as the Journal of Physical and Chemical
Reference Data [44], or classic books with compiled lists of identified atomic plasma
emission spectral lines can also be considered as primary information sources.

1.4 Trending Applications and Outlook

The LIBS literature is vast: in recent years nearly about a thousand new papers
appear in the field per annum and the marching of LIBS has already started about six
decades ago. . . This large scientific output makes LIBS a hot topic in the atomic
spectroscopy field, or “a super star” [45]. It is only possible because this spectros-
copy has matured to the point that a huge variety of analytical applications
are already being developed in addition to fundamental studies. This overwhelming
amount of results does not allow one to easily overview all applications briefly.

However, an illustration of the productivity and versatility of LIBS can be
provided by the long list of just the review papers that have been published in the
past two decades, on tutorial, instrumentational and analytical topics (Table 1.1).
Another way to illustrate the unique set of analytical capabilities/features LIBS
sports is shown in Table 1.2, which presents some popular application fields and
indicates the analytical merits of LIBS that is prominently useful in that particular
field. This table also provides a quick survey of the trending applications. The one
field in which LIBS can not meaningfully compete with other atomic spectroscopy
methods in general is the accuracy and precision of quantitative analysis, which is
mainly due to its solid sampling and microanalytical character. At the same time,
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Table 1.1 Topical, tutorial, or critical reviews published on LIBS in the past 25 years

Topic/type Reference

Fundamentals and
applications

D.A. Rusak, B.C. Castle, B.W. Smith, et al. Crit. Rev. Anal.
Chem. 27 (1997) 257–290

Applications K. Song, Y. I. Lee, J. Sneddon, Appl. Spectrosc. Rev. 32 (1997)
183–235

Aerosol analysis M.Z. Martin, M-D. Cheng, R.C. Martin, Aerosol Sci. Technol.
31 (1999) 409–421

Quantitative microanalysis E. Tognoni, V. Palleschi, M. Corsi, et al. Spectrochim. Acta B
57 (2002) 1115–1130

Instrumentational
developments

K. Song, Y.I. Lee, J. Sneddon, Appl. Spectrosc. Rev. 37 (2002)
89–117

Comparison of analytical
performance

J.D. Winefordner, I.B. Gornushkin, T.Correll, et al. J. Anal.
At. Spectrom. 19 (2004) 1061–1083

Applications W-B. Lee, J. Wu, Y-I. Lee, et al. Appl. Spectrosc. Rev., 39 (2004)
27–97

Dual-pulse LIBS J. Scaffidi, S.M. Angel, D.A. Cremers, Anal. Chem. 78 (2006)
24–32

Double-pulse LIBS V.I. Babushok, F.C. De Lucia Jr., J.L. Gottfried, et al.
Spectrochim. Acta B 61 (2006) 999–1014

Stand-off analysis B. Sallé, P. Mauchien, S. Maurice, Spectrochim. Acta B
62 (2007) 739–768

Overview and applications C. Pasquini, J. Cortez, L.M.C. Silva, et al. J. Braz. Chem. Soc.
18 (2007) 463–512

Diagnostics of LIB plasmas C. Aragón, J.A. Aguilera, Spectrochim. Acta B 63 (2008)
893–916

Explosives analysis J.L. Gottfried, F.C. De Lucia. Jr., C.A. Munson, et al. Anal.
Bioanal. Chem. 395 (2009) 283–300

Capabilities, limitations D.A. Cremers, R.C. Chinni, Appl. Spectrosc. Rev. 44 (2009)
457–506

Diagnostics, plasma-particle
interactions

D.W. Hahn, N. Omenetto, Appl. Spectrosc. 64 (2010) 335–366

Environmental, art, and
space applications

R. Gaudiuso, M. Dell'Aglio, O. De Pascale, et al. Sensors
10 (2010) 7434–7468

Calibration-free LIBS E. Tognoni, G. Cristoforetti, S. Legnaioli, et al. Spectrochim.
Acta B 65 (2010) 1–14

Effect of atmospheric
conditions

A.J. Effenberger Jr., J.R. Scott, Sensors, 10 (2010) 4907–4925

Radiative modeling of LIB I.B. Gornushkin, U. Panne, Spectrochim. Acta B 65 (2010)
345–359

Applications A.P.M. Michel, Spectrochim. Acta B 65 (2010) 185–191

Perspective overview of
LIBS

R.E Russo, T.W. Suen, A.A. Bol'shakov, et al. J. Anal.
At. Spectrom. 26 (2011) 1696–1603

Plant material analysis D. Santos Jr., L.C. Nunes, G.G.A. de Carvalho, et al.
Spectrochim. Acta B 71–72 (2012) 3–13

Biomedical applications S.J. Rehse, H. Salimnia, A.W. Miziolek, J. Med. Eng. Technol.,
36 (2012) 77–89

Biological applications J. Kaiser, K. Novotny, M.Z. Martin, et al. Surf. Sci. Rep.
67 (2012) 233–243
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Table 1.1 (continued)

Topic/type Reference

Fundamentals, applications,
challenges

F. Anabitarte, A. Cobo, J. M. Lopez-Higuera, ISRN Spectrosc.
(2012) 285240

Spectrochemical analysis by
LIBS

A.K. Pathak, R. Kumar, V.K Singh, et al. Appl. Spectrosc. Rev.
47 (2012) 14–40

Instrumentation,
methodology, applications

D.W.Hahn, N. Omenetto, Appl.Spectrosc. 66 (2012) 347–419

Geochemical and
environment analysis

R S. Harmon, R.E. Russo, R.R. Hark, Spectrochim. Acta B
87 (2013) 11–26

Analytical chemistry by
LIBS

F.J. Fortes, J. Moros, P. Lucena, et al. Anal. Chem. 85 (2013)
640–669

History of the early years of
LIBS

M. Baudelet, B.W. Smith, J. Anal. At. Spectrom., 28 (2013)
624–629

Geological materials
analysis

S. Qiai, Y. Ding. D. Tian, et al. Appl. Spectrosc. Rev. 50 (2014)
1–26

Chemometric data
evaluation practices

J. El Haddad, L. Canioni, B. Bousquet, Spectrochim. Acta B
101 (2014) 171–182

Portable instrumentation ad
applications

J. Rakovsky. P. Cermák, O. Musset, et al. Spectrochim. Acta B
101 (2014) 269–287

Biomedical applications V.K. Singh, V. Kumar, J. Sharma, et al. Mater-Focus, 3 (2014)
169–182

Archeometric applications V. Spizzichino, R. Fantoni, Spectrochim. Acta B 99 (2014)
201–209

Water quality monitoring X. Yu, Y. Li, X. Gu, et al. Environ. Monit. Assess. 186 (2014)
8969–8980

Critical review (DP-LIBS) E. Tognoni, G. Cristoforetti, J. Anal. At. Spectrom. 29 (2014)
1318–1338

Critical review G. Galbács, Anal. Bioanal. Chem. 407 (2015) 7537–7562

Femtosecond LIBS T.A. Labutin, V.N. Lednev, A.A. Ilyin, et al. J. Anal.
At. Spectrom., 31 (2016) 90–118

Nuclear technology
applications

C. Li, C.-L. Feng, H.Y. Oderji, et al. Front. Phys. 11 (2016)
114214

Sample treatment and
preparation

S.C. Jantzi, V. Motto-Ros, F. Trichard, et al. Spectrochim. Acta B
115 (2016) 52–63

Soil analysis G.S. Senesi, N. Senesi, Anal. Chim. Acta 938 (2016) 7–17

Molecular isotopic analysis A.A. Bol'shakov, X. Mao, J.J. González, et al. J. Anal.
At. Spectrom. 31 (2016) 119–134

Nuclear fusion applications C. Li, C.L. Feng, H.Y., et al. Front. Phys. 11 (2016) 114214

Food analysis M. Markiewicz-Kecsycka, X. Cama-Moncunill, et al. Trends
Food Sci. Technol. 65 (2017) 80–93

Novel applications AJ. Bauer, S.G Buckley, Appl. Spectrosc. 71 (2017) 553–566

Comparative review A. Bengtson, Spectrochim Acta B 134 (2017) 123–132

Plant analysis X.-L. Yu, Y. He, Appl. Spectrosc. Rev. 52 (2017) 605–622

Signal enhancement
approaches

Y. Li, D. Tian, Y. Ding, et al. Appl. Spectrosc. Rev. 53 (2018)
1–35

Chlorine determination in
cement

S. Millar, C. Gottlieb, T. Günther, et al. Spectrochim. Acta B
147 (2018) 1–8

Analytical performance J. Laserna, J.M. Vadillo, P. Purohit, Appl. Spectrosc. 72 (2018)
35–50
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Table 1.1 (continued)

Topic/type Reference

Signal enhancement Y. Li, D. Tian, Y. Ding, et al. Appl. Spectrosc. Rev., 53 (2018)
1–35

Elemental imaging B. Busser, S. Moncayo, J.-L. Coll, et al. Coord. Chem. Rev.
358 (2018) 70–79

Cultural heritage and
archeology

A. Botto, B. Campanella, S. Legnaioli, et al. J. Anal.
At. Spectrom., 34 (2019) 81–103

Human and animal health R. Gaudiuso, M. Noureddine, A.A-S. Zienab, et al. Spectrochim.
Acta B 152 (2019) 123–148

Calibration strategies V.C Costa, D.V. Babos, J.P. Castro, et al. J. Brazilian Chem. Soc.
31 (2020) 2439–2451

Archeology F. Ruan, T. Zhang, H. Li, Appl. Spectrosc. Rev. 54 (2019)
573–601

Bacterial classification S.J. Rehse, Spectrochim. Acta B 154 (2019) 50–69

Organic compounds J. Moros, J. Laserna, Appl. Spectrosc. 73 (2019) 963–1011

Elemental imaging L. Jolivet, M. Leprince, S. Moncayo, et al. Spectrochim. Acta B
151 (2019) 41–53

Coal analysis S. Sheta, M.S. Afgan, Z. Hou, et al. J. Anal. At. Spectrom.,
34 (2019) 1047–1082

Comprehensive review S.K.H. Shah, J. Iqbal, P. Ahmad, et al. Rad. Physics Chem.
170 (2020) 108666

Agricultural applications K. Yu, R. Jie, Z. Yanru, Art. Intell. Agricult. 4 (2020) 127–139

Self-absorption effects R. Fatemeh, G. Cristoforetti, E. Tognoni, et al. Spectrochim. Acta
B 169 (2020) 105878

Soil analysis P.R. Villas-Boas, M.A. Franco, L. Martin-Neto, et al.
Euro. J. Soil Sci. 71 (2020) 805–818

Geology C. Fabre, Spectrochim. Acta B 166 (2020) 105799

Soil analysis G.S. Senesi., Int. J. Earth. Environ. Sci. 5 (2020) 172

Bioimaging of plant tissues P. Modlitbová, P. Pořízka, J. Kaiser, TrAC Trends Anal. Chem.
122 (2020) 115729

Portable and handheld
instruments

G.S. Senesi, R.S.Harmon, R.R. Hark, Spectrochim. Acta Part B
175 (2021) 106013

Human and animal soft
tissues

Q. Wang, W. Xiangli, G. Teng, et al. Appl. Spectrosc. Rev.
56 (2021) 221–241

Elemental imaging A. Limbeck, L. Brunnbauer, H. Lohninger, et al. Anal. Chim.
Acta 1147 (2021) 72–98

Industrial materials J.D. Pedarnig, S. Trautner, S. Grünberger, et al. Appl Sci.
11 (2021) 9274

Hybride LIBS+Raman+LIF V.S. Dhanada, D.G. Sajan, V.B. Kartha, et al. Appl. Spectrosc.
Rev. 56 (2021) 463–491

General review L.-B. Guo, D. Zhang, L.-X. Sun, et al. Front Phys. 16 (2021)
1–25

Chemometrics in plastic
sorting

E.R.K. Neo, Z. Yeo, J. Low, et al. Resour. Conserv. Recycl.
180 (2022) 106217

Cancer diagnosis M.N. Khan, Q. Wang, B.S. Idrees, et al. Front. Phys. 10 (2022)
821057

In situ atmospheric analysis Q. Zhang, Y. Liu, At. Spectrosc. 43 (2022) 174–185

CF-LIBS Z. Hu, D. Zhang, W. Wang, et al. TrAC Trends Anal. Chem.
152 (2022) 116618
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LIBS excels in qualitative discrimination, remote/stand-off analysis, or elemental
distribution studies.
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It can be concluded that LIBS has established itself in the past decades as a
versatile and powerful spectroscopy method, which is capable of far more than
elemental analysis. New signal enhancement and data evaluation techniques are
being continuously developed and novel application fields are explored every year.
This is also illustrated by the topic of this very book, which focuses on novel
biological, forensic, and materials science applications.

The future also looks bright for LIBS, as its capabilities fit the trend of the need
for microanalytical methods that are “industry or field-ready” or can contribute to
life science applications. The advancement of photonics and chemometric data
evaluation approaches is also clearly up its alley.
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Over several decades, analytical chemistry has provided alternatives for the analysis
of food, environmental samples, and technological materials, aiming at their ele-
mentary characterization [ ]. The scientific literature in the area shows applications
related to instrumental analytical techniques based on atomic absorption (AA) and
emission (AE). Among the most widespread techniques for chemical sample analy-
sis is inductively coupled plasma optical emission spectrometry (ICP-OES)
[ ]. ICP-OES requires the introduction of the sample typically in the form of a
homogeneous liquid solution that must have some favorable characteristics for the
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analysis, such as both low dissolved solids (typically less than 1%) and low acidity
(in the order of 10% at most) [3].
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The process of transforming a solid sample into a homogeneous aqueous solution
is called acid digestion and can be carried out with the aid of concentrated or diluted
acid mixtures [4]. The most used reagents are nitric (HNO3) and hydrochloric (HCl)
acids, as well as hydrogen peroxide (H2O2) combined with HNO3. Digestion is
complete after subjecting the sample and acid mixture to high temperatures and
pressures [5]. The main goal is to make the constituent elements of the sample
available in a dilute acid liquid medium, thus allowing their determination largely
free from matrix interferences [3]. Furthermore, with the preparation of samples
through acid digestion procedures, it becomes possible to carry out external calibra-
tion in the practical way of using aqueous solutions.

In several examples that employ solid samples (inorganic or organic), the
requirements presented in the previous paragraph are met using simple procedures.
Most food samples (meat, vegetables, fruits, flours, among others) and some envi-
ronmental samples (sediment and soil) are examples of solid samples that can be
converted in their entirety into liquid solutions after acid attack. The success of this
conversion will depend on some parameters such as the sample mass and acid
mixture ratio, time, and type of heating, such as conventional (convective) and
assisted by microwave radiation [6]. However, some analytical matrices are
extremely complex, recalcitrant or refractory, posing considerable challenges for
the dissolution procedure. In many situations, it is necessary to use more oxidizing
acids, such as sulfuric acid (H2SO4) and more aggressive reagents, such as
hydrofluoric acid (HF) in the case of samples with high silicate contents [3]. In
addition, sample preparation time can extend from a few minutes to several hours,
compromising analytical throughput.

Thus, there is a need to propose analytical procedures that combine accessible
techniques, high throughput, lower limits of detection, adequate values for accuracy,
precision, and reduced cost per analysis. A viable alternative is the direct analysis of
solid samples, such as using a laser [7]. This chapter is related to this theme and here
we will try to approach the main characteristics related to the direct quantitative
analysis of solid samples using laser-induced breakdown spectroscopy (LIBS) [8, 9].

LIBS is an analytical technique that emerged in the 1960s and became wide-
spread from around 2000 onward, which can be applied for the direct analysis of
samples of different nature, such as technological (glasses, alloys), radioactive,
dangerous (explosives) and those with difficult access, such as soil of the planet
Mars and direct analysis of deep waters. Most LIBS applications refer to the analysis
of alloys [10], polymeric, agricultural, and geological materials [11]. These aspects
will be addressed in the sections of this chapter and more attention was dedicated to
solid samples. In the case of liquid and slurry samples, some examples are discussed
by encapsulating the sample in a suitable substrate.
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2.2 Description of the Main Matrix Effects in LIBS

In the last decades, the technological approaches that allowed direct solid samples
analysis improved significantly. Nowadays, LIBS is one of the most used and
reported technique in the scientific literature for this purpose [12]. However, besides
advantages associated with LIBS technique, the analyst needs to deal with a huge
challenge: matrix effects [9]. Actually, matrix effects are an analytical problem
mainly associated to several analytical instrumental techniques, not exclusively,
but mainly those that employ solid sample analysis. Several authors, such as
Cremers and Radziemski [13] and Hahn and Omenetto [14], already discussed
these topics. Radiziemski and Cremers [11] for instance, described several aspects
that can compromise quantitative analysis: (1) microhomogeneity of the samples,
(2) uniformity of the surface, (3) chemical matrix composition, and (4) physical
matrix effects.

The chemical composition of the matrix is one of the most critical aspects of LIBS
analysis because it influences the emission phenomenon of the analyte. Samples with
organic composition (blood, biological tissues, biological microparticles) [15] o
inorganic, as forensic samples such as explosive materials and soil fingerprinting,
ceramic and nanomaterials [16] may lead to different and harmful matrix effects in
the emission signal during the quantitative analysis [17]. The presence of easily
ionizable elements (EIEs) in the sample matrix also can lead to chemical matrix
effects due to changes in electronic density in the plasma, which shift the ionization
equilibrium and compromise the accuracy of the results [18].

The physical properties of the sample are other important aspects that must be
considered in LIBS analysis. Differences in these properties, such as humidity,
heterogeneous particle size, thermal conductivity, absorption coefficient at the
laser wavelength, sample temperature, heat of vaporization, uneven surface, pressure
applied to sample to prepare pellets (if required), among others, may influence the
amount of ablated mass, plasma formation and affect the vaporization, atomization
and ionization processes [17–19].

The analysis of alloys was one of the first LIBS applications rapidly reported in
the literature due to the sample characteristics. Sabsabi and Cielo [20] for instance,
used LIBS for aluminum alloys quantitative analysis and determined Cu, Mg, Mn,
and Si and employed external calibration. Afterward, Santos et al. [21] presented a
review about the application of LIBS for macro- and micronutrient determination in
leaves, roots, fruits, vegetables, wood, and pollen samples focusing on nutritional
purposes. The authors discussed and compared univariate and multivariate calibra-
tion approaches. This comparison was also presented by Braga et al. [22] for metal
determination in pellets of plants.

Matrix effects are evidence of the challenges in direct solid sample analysis by
LIBS, mainly when the technique is used for quantitative analysis. An adjustment in
experimental parameters, such as laser defocusing and changing the spectrometer



delay, may contribute to minimizing matrix effects, as was mentioned byWang et al.
[23]. However, some calibration strategies have stood out as a simple and efficient
way to minimize or overcome matrix effects even in cases of complex samples [24].
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Methods such as matrix-matching calibration (MMC), standard addition (SA),
and internal standardization are mostly used when the goal of the analysis is the
elemental determination. On the other hand, with intention of exploring other (and
new) approaches, using different emission lines (and different sensitivities), reduced
number of calibration samples compared to traditional calibration methods and
employing physicochemical properties of laser-induced plasma species, novel cali-
bration methods have been developed to minimizing matrix effects. The term
calibration sample will be used in this and subsequent sections to describe samples
that have known analyte concentration obtained by a reference or confirmatory
method. It is important to mention that matrix effects will be never eliminated
from an analytical chemistry method, and they are more intense in direct solid
sample analysis. In addition, matrix effects can be also responsible for the lack of
linearity in several LIBS applications. These methods are called non-traditional
calibration strategies and will be discussed in the next sections [25].

Several authors highlight the importance of the matrix-matching approach in the
calibration methods. In most cases, to ensure accurate and precise results in LIBS
solid samples analysis, the physicochemical properties of the analyzed samples must
be similar to samples used to build a calibration model, which is interesting because
demonstrate the importance of considering the sample matrix to solve matrix
effects [25].

It is a fundamental question in LIBS quantitative analysis, whether it is possible to
obtain accurate analytical results without taking into account the differences in the
matrix and the physicochemical properties of the calibration samples and the
samples with unknown concentrations. A discussion of this question and potential
answers are provided in this chapter.

2.3 Traditional Calibration Strategies Applied to LIBS

2.3.1 Matrix-Matching Calibration (MMC)

Calibration is still challenging for direct solid analysis [14, 26]. As discussed before,
calibration in LIBS analysis is matrix dependent and limited by matrix effects
originated from differences in the physical/chemical properties (i.e., density, poros-
ity, moisture content, light absorption at the laser wavelength, surface roughness,
etc.) among standards and samples. These dissimilarities can lead to different
ablation behavior, hence resulting in an inadequate calibration that may provide
biased results and compromise the accuracy, precision, and sensitivity of the analyt-
ical procedure [8, 27].
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It is well known that calibration is an indispensable step in any quantitative
analytical procedure [28]. Traditionally, calibration is based on recording a series
of standards (calibration samples) to determine the correlation between the instru-
mental response and analyte concentration allowing to obtain the calibration func-
tion (usually linear) of which the analyte concentration at unknown samples is
obtained [29]. External univariate calibration using matrix-matched standards is
the most common approach in LIBS analysis. Ideally, the MMC aims an appropriate
chemical and physical match between the calibration samples and the samples with
unknown concentrations [25].

Alternatives to obtain appropriate calibration samples are certified reference
materials (CRMs) and laboratory-prepared “home-made” standards by mixing
samples or synthetic standards based on the main sample matrix component using
similar materials (e.g., salts and oxides). The general preparation processes involve
milling the sample material, spiking it with suitable elements, mixing to homogeni-
zation, diluting, drying if necessary, and pressing it into a pellet. The calibration
samples are prepared in an adequate diluent such as cellulose powder [30, 31], salts
[31–33], or original samples [34] as well as paraffin wax [35] and polyvinyl alcohol
(PVA) [36, 37] for liquid matrices. Other materials have been explored, for example,
Silvestre et al. [38] prepared synthetic standard materials by adding increasing
concentrations of K and Mg in wood, filter paper, and babassu mesocarp for further
plant sample analysis by LIBS. However, it is important to point out that preparing
highly matrix-matched standards is a difficult task in practice. Nevertheless, CRMs
are expensive, its availability is limited, and do not either cover the different types of
matrices or range of concentrations. Despite that, MMC is a traditional calibration
approach that works for a variety of samples, especially for simple matrix content.
With respect to this, Table 2.1 shows some applications using the MMC procedure
for different samples.

For instance, de Carvalho et al. [42] demonstrated the applicability of LIBS for
the determination of elemental content in pharmaceutical tablets. Calibration
samples were obtained by mixing different samples with known reference values
at different ratios, diluting with cellulose powder, and the resulted mixtures were
homogenized using a cryogenic mill. The homogenized products were pressed into
pellets and analyzed by LIBS. The results obtained for Ca, Cu, Fe, Mg, Mn, P, and
Zn by the proposed LIBS method were in concordance with those obtained by the
reference method involving microwave-assisted acid digestion and ICP-OES
analysis.

Babos et al. [31] developed a quantitative method for the determination of Ca and
P in mineral supplements. For calibration purposes, two different strategies were
assessed: (1) six reference materials with different concentrations of the elements,
and; (2) six solid standards prepared by diluting a reference material of mineral
supplement using Na2CO3. The proposed methods were compared with other
univariate calibration strategies and the results validated using reference values
(reference material or ICP-OES data). Promising results (trueness around 90%)
were achieved using the MMC, but the matrix effects were even better reduced by
combining MMC and internal standardization using a carbon spectral line.
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Millar et al. [32] studied the determination of Cl content in cement-bound
materials by LIBS. The calibration curve was prepared using the incremental
addition of water and NaCl to Portland cement. For the validation, test samples
were obtained by adding different chlorine sources, e.g. NaCl was substituted by
KCl, LiCl, or CaCl2. Both calibration samples and test samples were dried at 105 �C,
ground to a maximum particle size of 0.09 mm and pressed into pellets prior to LIBS
analysis. Good accuracy results were reported for most samples, by comparing LIBS
results to those obtained from potentiometric titration after acid digesting the
samples. However, chlorine concentrations were systematically overestimated for
some samples which were attributed to matrix effects.

The feasibility of using the original samples set for MMC method was
demonstrated by Babos et al. [24]. The authors aimed to determine Al and Pb in
electronic waste samples comparing different calibrations strategies. For the MMC
procedure, the calibration curves ranged from 3.1 to 55 g kg�1 for Al and from 0.7 to
11.6 g kg�1 for Pb using four waste printed circuit boards (PCBs) as solid standards.
These solid samples were previously digested using a mixture of acids in order to
obtain reference values using ICP-OES. In addition, the authors obtained more than
400 spectra for sample in order to minimize sample microheterogeneity. The pro-
posed method was validated using reference concentrations (ICP-OES data). True-
ness (accuracy) values in the range from 99 to 116%, and relative standard deviation
(RSD) values 4% were obtained.

More recently, a new MMC approach has been proposed based on a data
pre-processing method namely adaptive subset matching (ASM) [43]. ASM first
establishes a set of calibration models using the similarity of sample matrix
properties. Therefore, for an unknown sample, it assigns the most suitable calibration
model corresponding to the matrix properties to predict the analyte concentration.
This procedure is performed by comparing the errors of each model. The model that
presents the lowest error is assigned to the sample. The authors assessed the
performance of the method on 90 coal samples, including 41 CRMs and 49 commer-
cial. In order to minimize calibration error, coal powders were air-dried and pressed
into pellets before LIBS analysis. Two multivariate regression methods, multiple
linear regression (MLR) and partial least squares (PLS) regression, were performed
to evaluate the effectiveness of ASM. Both methods were improved in combination
with ASM, which efficiently reduced chemical matrix effects and improved LIBS
quantification performance.

2.3.2 Internal Standardization

Internal standardization (signal normalization by an internal standard) is widely used
in spectroanalysis and in some cases it is considered a calibration strategy. Due to its
wide application in LIBS, authors of this chapter provide a discussion about this
approach. To enable the possibility of using certain elements as an internal standard
(IS) in analytical emission spectroscopy, some requirements need to be fulfilled prior
to analysis, such as the element cannot be present in the sample at a considerable



concentration and, the emission line from the element of interest and the IS candidate
should be free of self-absorption and spectral interference. Then, the IS needs to be
added to the test samples and calibration samples in a proper way. Another practical
and useful possibility is to employ an element that is already present in the samples
and standards at a high concentration (thus its concentration can be considered more
or less constant), such as C (in the case of organics) or Fe (in the case of steel). In
addition to this, the physical and chemical characteristics of the internal standard and
analyte should also be similar (e.g., excitation or ionization energy) [44].
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The main goal of this strategy is to track and minimize instrumental and plasma
fluctuations, matrix effects by rationing the analyte signal to that of the IS. Basically,
it uses the division of the peak intensity or area of the emission line related to the
analyte by the peak intensity or area of a selected emission line related to the IS. The
IS has to be added to (or present in) all calibration and unknown samples in the same
concentration. The calibration is actually executed in the same way as in external
calibration, but the signal ratio is considered to be the analytical signal.

Elements that are expected to be absent or, at least, their concentration would be
lower than limits of detection (LOD) and quantification (LOQ) can be added as
potential ISs, such as yttrium (Y) [45, 46], scandium (Sc) and bismuth
(Bi) [45]. Since the concentration of the IS in the whole set of samples is to be
kept at the same level, it is expected that the signal of it only changes due to
variations that the analyst desires to minimize or eliminate. Regarding LIBS analy-
sis, selecting an IS is even more difficult, being almost impossible to use any element
properly as an IS [47]. Despite that, the use of IS elements is desirable in LIBS
analysis because it does help to minimize signal fluctuations caused by matrix or
instrumental effects. This type of normalization of the signal using an IS element was
applied in several cases in LIBS analysis and in some cases elements that are
naturally present in constant concentration in the samples are used as IS (for
example, C).

Sperança et al. [45] assessed the possibility of using Y, Sc, and Bi as IS in the
determination of Al, Cr, Fe, Mg, Mn, and Ni in Cuban nickeliferous minerals using
LIBS. For this, 0.1 g of each element (Y, Sc, and Bi) were accurately weighted in a
slurry made with the samples and water and, this mixture was encapsulated in
PVA (polyvinyl alcohol), a water-soluble polymer. The authors concluded that Y
was the best choice as IS in this study reached a low standard error of validation
(SEV) for the elements assessed. In another study, Zn was assessed as IS in the
evaluation of soft tissues where the laser-tissue interaction was investigated based on
the Zn signal response as the authors optimize the system [48]. Another manner to
use internal standardization strategy in LIBS analysis is the use of an inner element,
naturally present in the samples [49] or added for another reason, such as C from
polymer used for encapsulating the sample and cellulose powder to improve the
cohesion in pellets formation [36]. This strategy is feasible when the constituent of
the sample that may be used as IS has the same concentration in the whole set of
samples, such as C in an organic matrix (e.g., fresh vegetables) [49]. Andrade et al.
[36] determined essential and toxic elements in suspended fertilizers using LIBS. For
this, the authors encapsulated the samples using PVA and tested C emission signal as



IS, in which a constant mass of PVA was added in each sample. In this study, several
normalization modes [50] were assessed for five elements (Cu, K, Mg, Mn, and Zn)
and, specifically for Mg and Mn, the normalization mode that had the best results
was from the ratio of the peak area normalized by the C emission signal (r of 0.9801
and 0.9834, respectively).

34 J. P. Castro et al.

2.3.3 Standard Addition

Solid samples that present a complex matrix can significantly influence the laser
pulse-sample interaction and, consequently the analyte emission signal. Thus, it can
be difficult to obtain a correlation between the concentration and the emission signal
of the analyte in the set of calibration samples and, in the analyzed samples of
unknown concentration. In the multiple standard addition (SA) calibration method, a
calibration curve is obtained for each unknown sample. As the same sample matrix is
present in all calibration samples, the magnitude of matrix effects will be the same
[2, 25].

Solid calibration samples in the SA procedure are prepared by adding increasing
concentrations of the analyte using a salt, oxide, CRM, or aqueous solutions
containing the analyte, to a fixed amount of sample. Five spiked samples are
typically prepared per sample. When the addition of the analyte to the solid sample
is done using a solid standard (a salt, for example), it is necessary to add a blank
(which can be a binder) to make the sample mass up to a fixed amount so that the
sample dilution will be constant in all samples. Furthermore, an efficient homogeni-
zation step of the sample and added analyte is required using an appropriate mill, in
order not to compromise the precision of measurements. When the addition of the
analyte to the solid sample is made using aqueous solutions, the steps of homogeni-
zation and drying of each prepared standard for further analysis are also necessary
[51, 52]. Figure 2.1 illustrates an analyte addition procedure in the used calibration
samples and the obtained multiple SA calibration curve.

The SA calibration strategy has some limitations. A significant number of
additions have to be prepared and analyzed per sample. In addition, an efficient
sample homogenization step is also necessary, resulting in low analytical throughput
and additional costs. This calibration strategy is employed in quantitative analysis
using LIBS [25]. An important aspect is to verify that the analyte signal remains in
the linear proportionality range (signal saturation is avoided), but the slope of the
addition plot is also significant. However, several elemental determinations using the
analysis of solid samples with complex matrix by LIBS are described in the literature
using SA as a calibration strategy, with acceptable analytical performance
parameters.

Soils are a good example of samples with a chemically complex matrix, due to the
variability of their composition associated with their geographic distribution
[53]. Thus, SA was evaluated for the determination of Pb in soils, with different
procedures for addition and homogenization of the analyte being reported in the
preparation of solid standards for calibration [51, 53]. Yi et al. [53], prepared soil



suspensions containing aqueous Pb(NO3)2, which are homogenized using ultra-
sound, vacuum dried, ground in a mortar, and then pelleted for LIBS analysis.
However, Wu et al. [51] added increasing concentrations of Pb using Pb(NO3)2 to
the soil samples and then, diluted with soil samples collected at a depth of 3 m.
Subsequently, they added water and homogenized the samples with a magnetic
stirrer, dried and pressed them into pellets for further analysis. Note that the addition
of the standard containing the analyte to the sample must be done carefully, so that it
is homogeneously distributed in the sample and precision is not compromised.
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Fig. 2.1 Pictorial description of the SA procedure, which includes adding a standard (Std.)
containing the analyte to the sample

Other analytes were also determined in solid samples by LIBS using SA calibra-
tion: (1) determination of Cu and Mn in the medicinal plant glycyrrhiza, using six
solid calibration samples and Sr as internal standard [52]; (2) determination of Ca in
coral skeleton, where nine calibration samples were used, six Ca I emission lines
and, the intensity of a Sr II line were evaluated to normalize the intensity of the Ca I
lines [54]; (3) quantitative analysis of Mentha piperita L. to determine Ba and Mn,
using five calibration samples prepared by adding the analytes from an aqueous
solution, and evaluating the precision and accuracy of metal determinations from the
calibration curves obtained by the intensities of the emission lines of the analytes
without normalization and normalized by the background, and by the lines of the Sr



internal standard, namely Sr I 460.73 nm (for Ba) and Sr II 407.77 nm (for Mn) [55];
among other examples.
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Among the examples presented, it appears that several of them use the synergy
between the SA and internal standardization calibration strategies to overcome the
strong matrix effects and corrections of spectral fluctuations, using an appropriate
internal standard [52, 54, 55].

The SA is a traditional calibration strategy that uses the sample itself for calibra-
tion adding the analyte to the sample at gradually increasing mass [56, 57]. However,
besides of its advantages, this strategy requires a long time to prepare the calibration
solid standard for each sample, which compromises the analytical frequency
throughput. Therefore, it became not attractive and feasible for routine analysis,
considering if an amount of sample needs to be analyzed.

This disadvantage led to the consideration of many other studies as an alternative
to SA. One-point gravimetric standard addition (OPGSA) was proposed for matrix-
matched standards to improve the LIBS analytical performance. For this strategy,
only one calibration point is needed [31].

The linear model is calculated using two mixtures: (S1) sample plus blank
(diluent) and, (S2) sample plus standard with known concentration of the analyte,
e.g., certified reference material or salt. During the sample preparation, it is neces-
sary that the sample:diluent and sample:standard ratios are the same, and a minor
dilution factor can compromise the sensitivity for the determination of the analyte.

The concentration of the analyte in the sample employing this strategy is obtained
by extrapolation of the calibration curve, as shown in Fig. 2.2. The x-axis
corresponds to the mass of the analyte in the sample: 0 for S1 (sample + blank
(diluent)) and, for S2 the mass of the added standard (known). On the y-axis is
plotted the intensities of the selected emission line of the analyte for both pellets.

When the linear regression of both points is determined, the respective slope and
linear coefficient (intercept) are used in Eq. 2.1 [31].

Csample ¼ j Intercept j
Slope

ð2:1Þ

As only two calibration points are used, it is necessary to evaluate if the slope of
the proposed method is statistically significant at a 95% of confidence level ( p-value
<0.05). This evaluation is performed comparing two variances: mean of squares of
regression (MSR) and mean of squares of residue (MSr). These variances are
compared through the F-test. The calculated F value (ratio between the variances
described) is compared with the tabulated one, and it is required that the calculated
should be at least 10-fold higher than the tabulated value ( p value <0.05).

The proposed strategy is an efficient alternative to compensate matrix effects in
solid analysis by LIBS and the data treatment is simpler than MEC (Multi-energy
calibration, see next section), because only one emission line is used. However, the
OPGSA sometimes presents limitations as the choice of an appropriate blank, and
requires an efficient homogenization of the standards, which becomes the sample
preparation for this strategy laborious [31, 58]. In addition, the linearity of the



proposed method must be checked, then the operator can verify first this condition
using at least five calibration samples. This strategy can be useful for routine
analysis, where the sample matrix is well known and presents low variability.

2 Quantitative Analysis 37

Fig. 2.2 Graphical description of the OP-GSA calibration strategy

This strategy was applied for the determination of Ca and P in mineral
supplements [31] and, for the determination of B, Fe, Dy, Gd, Nd, Pr, Sm, and Tb
in electronic waste samples employing LIBS [58], showing the efficiency and its
applicability to minimize matrix effects in complex samples.

2.4 Nontraditional Calibration Strategies

2.4.1 Multi-Energy Calibration

A LIBS spectrum is rich in information, and it can present several emission lines for
a given analyte due to the various electronic transitions that occur between the
fundamental and excited levels for a given element. So why not use all these analyte
emission lines, with different sensitivities, to propose a calibration model for each
analyzed sample? This is exactly what multi-energy calibration (MEC) proposes to
obtain the calibration model: simultaneous use of several wavelengths of the analyte
and only two calibration samples using the unknown sample itself.
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Fig. 2.3 Illustration of the LIBS emission spectra obtained from the analysis of the two calibration
samples required per unknown sample and a linear MEC model highlighting an emission line (λ5)
with spectral interference

The MEC was initially proposed by Virgilio et al. [59], for elemental determina-
tion employing spectroanalytical techniques as ICP-OES, microwave-induced
plasma optical emission spectrometry (MIP-OES), and high-resolution continuum
source flame atomic absorption spectrometry (HR-CS-FAAS). In 2018, Babos et al.
[60] reported the first study using MEC in the quantitative analysis of solid samples
by LIBS.

Only two calibration samples per unknown sample are required to obtain the
calibration model, which are prepared using: (1) one standard containing the analyte
added to a given amount of sample and the other (2) a diluent (blank) added to the
same amount of sample. The sample:standard and sample:diluent (w  w) ratio should
be the same, and normally is 50:50 ratio (w  w). However, this proportion must be
evaluated in some situations, so that it does not obtain a large dilution factor of the
solid sample and does not compromise the monitoring of low sensitivity analyte
emission lines. As the same amount of sample is present in the two calibration
samples, a matrix-matching takes place [25, 59, 60].

The standard containing the analyte to be added in preparing the calibration
samples can be a salt, oxide, CRM, or a sample with an analyte reference value,
among others. The diluent (blank) can be a major constituent of the sample matrix,
an appropriate binder or a sample that does not contain detectable analyte contents in
its composition. As the addition of the standard and blank are made to solid samples,
and in order to obtain precise and accurate measurements and not compromise the
analytical parameters of the method, an efficient homogenization procedure must be
performed before pelleting the two standards [25, 60].

In addition to obtaining an efficient matrix-matching, another advantage of using
MEC is the possibility to identify analyte emission lines with spectral interference. In
the MEC model, the interfered emission lines are identified as outliers (nonlinear
trend). So it must be evaluated and removed from the linear model so that it does not
compromise the accuracy of the analyte determination [25, 60]. Figure 2.3 illustrates
the obtaining of the emission spectra of the two required calibration samples, and an
MEC model with an emission line with spectral interference (outlier: emission line
number 5, λ5).
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To obtain the linear MEC calibration model, the intensity values monitoring the
different emission lines of the analyte in the standard prepared by adding a standard
to the sample are used as independent variable (x-axis), and as dependent variable (y-
axis) the analytical signal obtained by monitoring different analyte emission lines in
the mixture prepared by adding the diluent to the sample. Using least squares
regression, a linear model is obtained, where the slope (angular coefficient) of the
model can be obtained. Using the slope value obtained and the added (known)
analyte concentration in the standard preparation, it is possible to determine the
analyte concentration in the analyzed sample [59], as follows (Eq. 2.2):

Concentrationanalyte ¼ �
1� slope

ð2:2Þ

Several applications are reported in the literature using LIBS for quantitative
analysis and employing MEC as a calibration strategy. In food analysis, MEC was
evaluated in the determination of Ca, K, and Mg in dietary supplements using
microcrystalline cellulose as blank and binder; and performing a study of the
influence of different concentrations of analytes added during the preparation of
the standard containing sample:standard [61]. In two other studies, MEC-LIBS was
evaluated in the analysis of solid mineral supplements for cattle to determine Ca, Cu,
Fe, Mn, and Zn, using Na2CO3 as blank and 50:50 (w  w) ratio in the preparation of
two standards required [60]. In the second study, the authors determined Ca and P
using Na2CO3 as blank, 80:20 ratio (w  w) in the preparation of calibration mixtures.
In addition, identifying an emission line of P I 253.39 nm interfered by the emission
of Fe I 253.41 nm [31], both studies obtained satisfactory trueness in the range from
80 to 120%.

MEC was used for the determination of Cr and Ni in nickeliferous ores. Sodium
carbonate (Na2CO3) was used as blank and diluent, and Cr and Ni nitrates as
standards [62]. Carvalho et al. [63] determined Al, Fe, and Ti in high-silicon-content
samples. In this study, a CRM containing the analytes was used to prepare the
calibration sample, SiO2 used as blank, and lithium borate flux used in the standards
fusion procedure to obtain fused glass discs for LIBS analyses; in addition, B and Li
emission lines were evaluated as IS [63].

Electronic waste was analyzed by LIBS to determine strategic, base, and rare
earth elements (REE), present in the composition of electronic components and
evaluating the advantage of matrix-matching via MEC. In the analysis of liquid
crystal display from mobile phones to determine In, the two calibration samples
required per sample in the MEC were prepared using SiO2 as a blank and micro-
crystalline cellulose as a binder in the preparation of the pellets, and one of the five In
emission lines monitored presented spectral interference, identified as outlier in the
calibration model and removed from the model [64]. In another work, samples of
exhausted computer hard disk magnets were analyzed to determine REE (Dy, Gd,
Nd, Pr, Sm, and Tb) and base (B and Fe) elements of these components by LIBS.
Due to the high Fe concentration (approximately 60% (w  w)) in these samples and



the several Fe emission lines with great potential to interfere with the REE emission
lines, the two prepared standards used the ratio 42:58 (w  w) [58].
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An iterative multi-energy calibration (IMEC) method was proposed by Li et al.
[65] for online Ni-based alloy smelting process monitoring by LIBS. In this study,
IMEC used four Al emission lines and an appropriate algorithm to propose the
quantitative models. Thus, the potential of this calibration strategy in providing
quantitative results with satisfactory analytical parameters in online LIBS
applications was demonstrated.

2.4.2 One-Point and Multi-Line Calibration

As it is known from the Boltzmann equation, the emission intensity is proportional to
the spectroscopic parameters of a given emission line, experimental constant, plasma
temperature, and the concentration of analyte in the sample. In this context, the
one-point and multi-line calibration (OPMLC), reported by Hao et al. in [66],
proposes a linear calibration model monitoring several analyte emission lines in
the sample with unknown concentrations and, only a single calibration sample for
analyte determination by LIBS.

Similar to the MEC, in the OPMLC emission lines with different sensitivities are
monitored for the proposition of the calibration model. However, in OPMLC only a
single calibration sample is required for all samples with unknown concentrations
analyzed. This calibration sample must present a matrix similar to all samples that
will be analyzed to occur matrix-matching. In addition, the concentration of analytes
in the calibration sample cannot be very different from the concentrations that are
expected to be determined in the analyzed samples, if the concentration is much
higher or lower, the accuracy of the determinations may be compromised [25, 66].

The linear OPMLC calibration model is obtained using least squares regression,
with the independent variable (x-axis): intensity values monitoring the different
analyte emission lines in the calibration sample, and as dependent variable (y-
axis): the intensities values obtained by monitoring different analyte emission lines
in the sample with unknown concentration. Figure 2.4 illustrates a linear OPMLC
model.

From the slope obtained, and the known analyte concentration value, in the
calibration sample, it is possible to determine the analyte concentration in the sample
[66], as follows (Eq. 2.3):

Concentrationanalyte ¼ slope� standard analyte concentration ð2:3Þ
OPMLC is a very interesting univariate calibration strategy to be evaluated in the

elemental determination by LIBS in unknown samples that do not show great
variability in analyte concentrations (e.g., in certain industrial processes). Further-
more, it is a very promising strategy in the development of analytical methods where
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there are few samples available to be used in the set of calibration samples, as it
requires a single calibration sample [25].
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Fig. 2.4 Illustration of a
linear OPMLC model
monitoring five emission lines
(λ) for an analyte in the
sample and calibration sample

Some studies in the scientific literature report the use of OPMLC in the elemental
determination by LIBS. In the introductory study of OPMLC [66], the authors
determined Cr, Mn, Ni, and Ti in low-alloy steel samples, to minimize instrumental
fluctuations in the acquisition of LIBS emission spectra, and they used Fe emission
lines as internal standard. Thus, models with an acceptable coefficient of determina-
tion values (R2 � 0.8833) were obtained for all analytes and, average relative errors
for determination in the range from 9 to 36%.

In the direct determination of macronutrients Ca, K and Mg in cocoa seeds by
LIBS using OPMLC, RSD values �26% were obtained for all analytes [67]. In the
determination of Al and Pb in six waste printed circuit boards (PCB) samples,
OPMLC models were obtained by monitoring four and two analyte emission lines,
respectively. Root mean squared error of prediction—RMSEP values of 5.0 g kg�1

Al, 0.91 g kg�1 Pb and, RSD values 25% were obtained [24].
Furthermore, in the determination of P in fertilizers and Al in plant tissue, the

authors used three P I lines at 213.62, 214.91, and 215.41 nm in the proposition of
the OPMLC model [68]. However, for Al determinations, the authors used an
interesting strategy to obtain the OPMLC model, using the emission intensities
measured at five wavelengths located in the wing of the Al I emission line at
308.22 nm (308.01, 308.07, 308.12, 308.17, and 308.22 nm). This strategy was
employed to overcome the limited number of interference-free Al emission lines.
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2.5 Single-Sample Calibration

Obtaining a regression model from a previously selected set of calibration samples is
the most common practice to further determine the analyte concentration in an
unknown sample. However, in the single-sample calibration (SSC) proposed by
Yuan et al. [69], a single calibration sample of a similar matrix to other samples is
used to provide matrix-matching, which has reference values of the concentration of
the analyte and other elements that constitute the standard to be used in the
determination of the analyte. The simple correlation (Eq. 2.4) used to calculate the
analyte concentration in the analyzed sample (Canalyte) considers the concentration
and emission intensities of the analyte and n other elements monitored in the
calibration sample (Cstandard analyte, Cn

standard element, Ianalyte standard and Inelement standardÞ,
in addition to the emission intensities of the analyte and n others elements monitored

in the analyzed sample Ianalyte sample and In ) [69]:

Canalyte ¼
standard analyte� analyte sample

Ianalyte standard

Pn
i¼1

Cn
standard element�Inelement sample

Inelement standard

ð2:4Þ

Nevertheless, in SSC additional care must be taken to use emission lines free from
spectral interference that will be used in the correlation [69].

2.5.1 Slope Ratio Calibration and Two-Point Calibration Transfer

Nunes et al. [70] proposed the slope ratio calibration (SRC) strategy, which is based
on a single solid calibration sample. The fundamentals of the method are as follows.
The analyte emission intensity (I ) is directly proportional to the analyte amount in
the ablated mass (m), where I ¼ k1�m; also being proportional to the number of laser
pulses (Np) in the case of signal accumulation via m ¼ k2�Np. Therefore, sample
ablation efficiency (k2) and analyte atomization/thermal excitation/optical efficiency
of the system (k1) can be described by a proportionality factor (K ) between I and Np

(I ¼ K�Np). In general, this strategy is related to the increase of the ablated sample
mass with the number of accumulated laser pulses.

The single solid calibration sample can be a CRM or a reference sample with
known concentration of the element of interest. In addition to that, an unknown
sample with the element of interest is also used. Therefore, two linear models are
built by plotting the analyte emission intensities (dependent variable) as a function of
the number of laser pulses accumulated for both samples (independent variable).

The concentration of the analyte in the test sample (Csample) is calculated
according to the ratio between the slopes of standard (bstd) and the test sample



b

(bsample) values and, the known analyte concentration in the standard (Cstd) using
Eq. 2.5:
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Csample ¼ sample

bstd
� Cstd ð2:5Þ

This strategy was evaluated for the determination of macro- and micronutrients in
plant leaves with NIST 1547 as standard, using between 5 and 30 laser pulses per
site for calibration. The accuracy was assessed from the analysis of CRMs and the
comparison with the results by ICP-OES after microwave-assisted acid digestion,
with agreement at the 95% confidence level.

Another interesting calibration method similar to SRC was proposed by Castro
et al. [58], named as two-point calibration transfer (TPCT). It is derived from the
SRC approach with only one difference: the models are calculated using two points
(TP) of accumulated laser pulses. In TPCT only two sets of accumulated signals are
used for sample with unknown analyte concentration and standards or reference
samples (with known analyte concentration). Therefore, two linear models are
obtained monitoring two analytical signals from set 1 and set 2.

In LIBS, hundreds of spectra are obtained for a representative analysis, so it is
possible to obtain two sets of spectra and sum the spectral information from both. It
is important that set 2 must be at least twice as large as set 1. As the model is
calculated with two points, an F-test is performed to note the variances related to
residues and the regression. Therefore, F-values are calculated from the MSR and
MSr, if the Fexperimental/Ftabulated is � 10 ( p value <0.05), the model is considered
valid statistically (regression is higher than and different of residue). The concentra-
tion of the analyte in the test sample is calculated equal to the SRC using Eq. 2.5.

This strategy was evaluated for the direct analysis of hard disk magnets with
determination of REE. The accuracy was calculated using the reference
concentrations (ICP-OES results) [58]. TPCT has also been successfully employed
by Gamela et al. [67] in the determination of Ca, K, and Mg in cocoa beans, by Costa
et al. [71] for the determination of Pb content in recycled polypropylene from car
batteries and, by Babos et al. [24] for determination of Al and Pb in waste PCB.

A limitation of both strategies (SRC and TPCT) is the choice of the standard for
calibration. The laser-sample interaction depends on the physicochemical
characteristics of the sample (sample particle size, porosity, and density of the
pressed pellets), the laser properties (wavelength, pulse duration, repetition rate,
energy) and optical design (lens-to-sample distance). As the test sample and standard
are measured using the same instrumental parameters, the accuracy in the calibration
depends on the similarity between both samples (test and standard samples) for a
perfect matrix-matching. In general, both strategies minimize the matrix effects,
there is a simplicity in the data processing and, for the TPCT the linear model is built
with two points being also an advantage over the SRC. Figure 2.5 shows a hypo-
thetical example for both strategies.

Both SRC and TPCT are useful for homogeneous samples as those described in
this section. In addition, it is always important to run confirmatory measurements



using a reference technique as ICP-OES after proper sample preparation. As can be
noted, these strategies are useful for routine analysis where the sample matrix only
varies slightly.
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Fig. 2.5 Illustration of the
concepts of the slope ratio
calibration and two-point
calibration transfer methods
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2.5.2 Inverse Calibration

Generally, univariate calibration models used in LIBS employ simple linear regres-
sion to estimate the relationship between an independent and a dependent variable,
which usually correspond to the concentration and the analytical signal, respectively
[25]. Univariate calibration relates two variables, x and y, through a model to predict
one variable based on the other in a second step. The direct model has been widely
used to build quantitative models to predict absolute mass or concentration from an
instrumental measure that employs spectroscopic techniques such as LIBS. A linear
relationship between x and y can be considered from Eq. 2.6 [72]:

yi ¼ b0 þ bixi þ εi ð2:6Þ
where b0 and bi are the coefficients and εi, the error.

This model is often used in LIBS and it is called a direct model. The direct
model’s concentration is the independent variable, and the analytical signal is the
dependent variable. In the direct model of y over x, the measures of x are assumed to
be error-free. Duponchel et al. [73] evaluated direct and also inverse models for the
determination of Ca in soils and Na in glasses. In the inverse model used by the
authors, concentration is the dependent variable, and analytical signal is the inde-
pendent variable. In the inverse linear regression of x on y, measurements of y are
assumed to be error-free from Eq. 2.7 [72].

x ¼ β0 þ yβi þ ε ð2:7Þ
When this inversion concerning the dependent and independent variables

happens, the values of the intercept and slope of the analytical curve are different.
When a test sample is analyzed, the predicted concentrations are different; it shows
that the prediction of analyte concentration depends on the chosen model. In this
study, the inverse model showed the lowest root mean square error of calibration
(RMSEC) and RMSEP. Therefore, comparing direct and inverse models is interest-
ing to find the best strategy for the considered data set. The authors also add that the
smaller the signal-to-noise ratio (SNR), the greater the differences. Additionally,
researchers are advised to use the inverse models when the number of calibration
samples is low.

2.5.3 Fluence Calibration

Different non-traditional calibration strategies were already presented here. It could
be observed that among the novel calibration methods, MEC uses several emission
lines for the acquisition of analytical signal and OPGSA, SSC, SRC and TPCT use
one or two calibration samples to build a calibration curve or linear model [25], but
what happens if an instrumental parameter could be used to develop a calibration
strategy?
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In this sense, fluence calibration (FC) was developed to minimize matrix effects
for quantitative LIBS analysis. Laser pulse fluence is an important instrumental
parameter in LIBS, because the efficiency of the laser-sample interaction and the
vaporization, atomization, ionization process is also dependent on this
parameter [74].

Laser (pulse) fluence is the laser energy delivered per unit area (J cm�2) and when
the fluence value is increased, the plasma temperature also increases, a larger amount
of sample is ablated and more analytes are vaporized, atomized, ionized into the
plasma [14, 74]. Taking into consideration this relationship between laser pulse
fluence and sample mass ablated, FC was developed.

Fluence calibration is based on the use of a single calibration sample (as other
aforementioned non-traditional calibration methods) to obtain a linear model at two
different laser fluences. Then pellets of this single calibration sample (with the
known concentration of the analyte) and of the samples are measured at the same
two laser fluences. Authors emphasized that during the application of this FC
method, the change of laser fluence has to be obtained via varying the laser pulse
energy besides keeping the laser spot size fixed. The linear model is obtained from
the emission signals plotted in the x-axis (signals obtained for calibration sample,
independent variable) and in the y-axis (signals obtained for samples with unknown
concentrations, dependent variable) and, from Eq. 2.8 it is possible to calculate the
analyte concentration:

Csample ¼ slope� Cstandard ð2:8Þ
where Csample is the analyte concentration determined in the sample, slope value is
obtained from the linear model and Cstandard is the known analyte concentration in
the calibration sample [75].

In the FC method, both standard and sample are exposed to different laser pulse
fluences, i.e., different plasma conditions and this exposition lead to similar plasma
conditions for both standard and sample (and of the process that occurs in the plasma
as vaporization, atomization, and ionization) which is one of the factors responsible
for minimizing matrix effects and ensure accuracy and precision of the results [75].

The first paper reported in the scientific literature combining FC and LIBS
(FC-LIBS) by Machado et al. [75]. In this study, the authors evaluated the perfor-
mance of FC for the determination of Al and Pb in PCB waste and Al, K, Mg, Na,
and P in fertilizer samples. The laser fluence values were optimized for each sample
matrix and spot size was fixed at 50 μm. The best combinations were achieved using
2546 J cm�2 and 4074 J cm�2 for PCB samples and 2546 J cm�2 and 4584 J cm�2

for fertilizers samples. In several LIBS instruments, it is easily possible to prepare
laser conditions with different setups in order to obtain distinct fluences. Using these
optimized fluences, excellent accuracy and precision results were obtained during
the analysis of PCB and fertilizer samples. The selection of the calibration sample
was an important aspect to be considered to reach adequate accuracy and precision



using FC-LIBS. Moreover, considering the linear model with two-point, F-test was
calculated for each model to evaluate its significance (as previously described).
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It was observed that depending on matrix complexity, the performance of the
calibration method depends on physicochemical properties and the analyte concen-
tration in the calibration sample and samples. The authors also evaluated FC without
a matrix-matching approach, using calibration sample prepared mixing salts for PCB
and fertilizer samples. Even considering the absence of sample matrix in the
calibration sample, good accuracy and precision were obtained for Al in two PCB
samples and Al and P in two fertilizer samples. It is completely desirable to have a
universal standard for calibration, but for strategies that use only one standard,
factors such as different elements, their concentration (in the standard and samples),
and sample matrix can influence the obtaining of satisfactory results. Therefore new
FC-LIBS applications may bring more knowledge about the influence of these
factors in the accuracy of the results. It is important to highlight the FC advantages,
such as the capability to overcome matrix effects, simplicity, faster pellet preparation
(use of only one calibration sample), fast data acquisition, and data treatment for the
direct analysis of complex solid samples.

As a final remark in this section about non-traditional calibration strategies, the
LIBS user can first test MEC to verify the presence of spectral interference on the
emission lines selected for the determination of the analyte. These lines can be
removed if the interference is confirmed. Then, other strategies can be also tested as
OPMLC, SRC/TPCT, or FC. Furthermore, it is important to mention that some
strategies, such as TPCT, assume a linear relationship between the analyte signal and
its concentration. In this case, some confirmatory determinations must be performed
using reference techniques such as ICP-OES. Another aspect to be emphasized is the
fact that these nontraditional calibration strategies are very useful for routine analysis
(in metallurgical applications, for instance) where the sample matrix is stable and
well known.

2.6 Multivariate Calibration

Multivariate calibration tools have been widely applied in LIBS to improve the
accuracy of quantitative analysis [25, 76]. This type of calibration is used when an
element cannot be determined with only one parameter obtained from the spectral
data [77]. Multivariate calibration has some advantages such as (1) it can take full
use of LIBS spectral information and improve the precision and accuracy of the
measures; (2) it is possible to determine the analyte in the sample even in the
presence of the interferent, since the interferent is also included in the calibration
model [25]. The most popular multivariate calibration methods for LIBS quantitative
analysis involve multiple linear regression (MLR), principal component regression
(PCR), partial least squares (PLS), and artificial neural networks (ANN) [25]. It is



important to mention that multivariate calibration is unable to solve all analytical
problems, but can bring useful applications, as can be noted in the next lines.
According to the Web of Science, since 2010, the number of publications on LIBS
analysis with multivariate calibration has been increasing significantly, and among
the methods mentioned, PLS is the most widely used, as shown in Fig. 2.6.
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2.6.1 Multiple Linear Regression

The aim of MLR is to model the linear relationship between a dependent variable
(response) and multiple independent variables by regression functions. In MLR, the
interferents, impurities, and effects of baseline are treated without problem if they are
present in all samples in the calibration dataset. On the other hand, a huge limitation
is the number of variables, and this number should be lower than the number of
samples to enable the calculation of matrix inversion to obtain the regression vector.
Thus, it is necessary to make a variable selection and choose some emission lines for
the target element. Moreover, for a good model, besides the limitation of the number
of variables, these chosen variables cannot have a huge correlation among them,
because this can also cause difficulties in the matrix inversion [78].

In a study by Ayyalasomayajula et al. [79], LIBS and MLR were used to quantify
the total carbon concentration in soil. For the variable selection, the authors
employed the ratio of C (247.48 nm) with Fe lines (246.51 and 247.48 nm). The
results showed that the LIBS and MLR combination can be successfully applied to
the quantitative measurement of C in soil with a small error. Wang et al. [80]
assessed univariate (MMC and IS) and multivariate (MLR) calibration strategies to
determine Pb in tea leaves by LIBS. The MLR presented better quantitative perfor-
mance than the other two univariate strategies. As mentioned before, the MLR
models use more information to predict the concentrations of the element of interest
improving the performance of quantitative analysis by LIBS.

Sperança et al. [81] determined Ti in sunscreen using LIBS, where several
calibration strategies were applied, being MLR the best option (according to refer-
ence values provided by ICP–OES analysis). The authors selected two titanium
emission lines: Ti I 498.17 nm and Ti I 499.11 nm. Other applications with good
results using MLR and LIBS include the determination of elemental impurities in
plastic [82] and determination of P in fertilizer [83].

2.6.2 Principal Component Regression

PCR is a regression based on the same decomposition as PCA. First, PCR
decomposes matrix X with n samples and p pixels or variables (in this case, the
number of emission lines recorded in a LIBS spectrum). After this decomposition,
the scores and loadings are used to calculate the regression coefficients b for the
prediction of a vector ŷ with n rows, that is, each row will correspond to a predicted
concentration of the element of interest. PCR and PLS have similar mathematics
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involved, hence the performance of these tools tends to be also similar. The main
difference is that PCR does not relate the scores of matrix X with the concentrations,
while PLS connects the T scores ofXwith theU scores of vector y [76, 78]. A lower-
case letter means vector. Due to similar mathematics of PCR and PLS, the perfor-
mance of both models is compared in many studies [25, 76].
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PCR has already been used in combination with LIBS for the determination of Pb
in recycled polypropylene from car batteries [71], to the analysis of Fe in iron ore
[84], to the determination of Cr, Mn, Ni, and Si in high-alloyed stainless steels [85],
among others [25]. Devangad et al. [86] determined Mn in glass matrices combining
PCR. In this study, PCR models reached optimum method LOD and RMSEP of 0.02
and 0.54 w/w%, respectively, in a set of samples with a Mn concentration ranging
from 0.77 to 11.61%. Takahashi et al. [87] used PCR to quantify the composition of
brass alloys submerged in water using LIBS. The authors determined Cu and Zn, and
PCR showed an RMSEP of 2.7 and 2.8%, respectively.

2.6.3 Partial Least Squares

PLS is a regression method that uses a selected number of latent variables to
decompose the matrix X (independent variables) with n samples and p variables as
well as the vector y (dependent variables) with n rows (reference concentration). The
parameters of PLS can be obtained using calibration sample set, and there is no
matrix inversion involved in the calculation, hence it has only a calculation error,
thus high accuracy, fast execution, and a good predictive ability [77].

PLS tool is a powerful chemometric algorithm for multivariate calibration, but
several important details must be observed for its correct application. The first, and
more general one, is the overfitting when too many latent variables are used,
showing a strong capability of predicting the concentrations of the samples used in
the calibration, but the poor capability of predicting an unknown sample. In the case
of PLS, the number of latent variables is optimized through cross-validation, and this
helps to avoid under- or overfitting [77]. Another problem, not much reported but
can occur, is present when the regression vector incorrectly correlates emission lines
of elements. For instance, the algorithm correlates emission lines from Ca to predict
Al concentration. It is, therefore, advisable for the analyst to examine the regression
vector and confirm the correctness of the information [25].

In terms of application, PLS is employed to the most diverse types of samples in
combination with LIBS including ceramics [88], polymers [71, 89], alloys [50], hard
disk magnets [58, 90], medicinal herbs [91], among others [25, 76]. In this sense,
Goueguel et al. [92] proposed PLS calibration models along with full LIBS spectra
to predict soil texture (clay, silt, and sand percent). The authors reached prediction
errors of 10% for sand and 3% for clay using PLS-based calibration models.

In a study published by Costa et al. [93], polycarbonate (PC) and acrylonitrile-
butadiene-styrene (ABS) concentrations in blends from waste electrical and elec-
tronic equipment (WEEE) were determined. The authors prepared a calibration



curve using 11 calibration solid standards with a varying PC/ABS concentration in
10 w/w% steps. The predictive capability of PC and ABS using PLS models in this
application showed standard error of cross-validation to be 5.6%. The prediction of
concentrations was confirmed using differential scanning calorimetry (DSC).

2 Quantitative Analysis 51

Ding et al. [94] determined potential toxic elements (Cu, Zn, Cr, and Ni) in soil
employing interval PLS (iPLS). This strategy divides the whole spectrum into
n intervals and evaluates each one separately to detect which part is more accurate
for the prediction of the concentration of analytes. In this study, the authors divided
the full spectrum into 10–90 subintervals, varying from 10 to 100 emission lines.
Compared to the PLS model using the full spectrum, the iPLS model showed a
higher coefficient of determination values (R2) and lower prediction error for Cu, Zn,
Cr, and Ni.

2.6.4 Artificial Neural Networks

Comprehension, reasoning, perception, communication, and learning are some
capabilities of ANN, imitating the structure of a human brain. This method can
handle nonlinear, noisy, or imprecise data quite well. It is a nonlinear functional
mapping between an input and an output data space. This network operates using a
large number of “neurons” (parallel-connected simple arithmetic units), which can
be defined as a nonlinear, parameterized, and bound function (examples include
sigmoidal and Gaussian functions). The neurons operating on the same input
variables are organized in layers, while the weights (combination of the nonlinear
functions) are represented as lines, connecting units in different layers. There are
three types of layers: input, hidden, and output. The input layer is the data given to
the network, the hidden layer is the intermediate computation, and the output layer is
the response relative to the input. Therefore, the aim of the neural network is to
transform the inputs into meaningful outputs, extracting important features [76, 78,
95].

In the case of LIBS, the inputs are spectra. The ANN models are optimized to
obtain the best representation of the output set (concentration of analyte) with a
number of known samples (training set). In the training dataset, there is a set of
inputs with their respective desired outputs. A function modifies the weights of the
network until the resultant error is less than a predefined error, so the network infers a
relationship between the inputs and outputs. With this relationship, the ANN can
make predictions for an unknown sample [96].

Ferreira et al. [97] determined Cu in soil samples using ANN as calibration
strategy for LIBS. The variable selection (for ANN training) was made by simple
linear regression and wrapper performance in order to select the wavelengths with
the best linear correlation with Cu. ANN used a multilayer perceptron (MLP) and the
results presented good accuracy, proving to be an efficient strategy for Cu determi-
nation in a heterogeneous set of soil samples. Other studies related to soil analysis
and LIBS using ANN as calibration strategy have also been reported in the literature
[98–100].
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Another application in the literature is with the metallic alloys [101–103]. In this
sense, Inakollu et al. [104] performed a comparative study between traditional and
ANN calibration for the analysis of different Al alloys by LIBS. The authors used
some emission lines for the elements of interest (Cu, Cr, Mg and Mn) and, besides
that, they also used the intensity ratio of the spectral lines of these elements
compared to an Fe line. In this case, the concentration of the element relative to a
reference element (Fe, as an example) can be found. In 75% of the cases, the
predicted concentration values using the intensity ratio of the elements by ANN
presented better results than the traditional calibration, with values closer to those
determined through reference method.

In a recent study with forensic nuclear materials, LIBS and ANN were applied
jointly by Bhatt et al. [105]. The authors used LIBS in air at atmospheric pressure for
the quantification of trace levels of uranium in cellulose (in order to mimic a typical
scenario of illicit nuclear and radiological material) and uranium-bearing mineral
ores. The multivariate calibration using ANN (using the back-propagation algo-
rithm) was successfully employed using weak and resonant uranium lines. Other
studies dedicated to ANN and LIBS were applied to online measurement for the
gross calorific value (GCV) of coal [106], quantitative determination of Ca, K, and
Mg in the roots [107], and in the determination of trace elements in geological
samples [108].

2.6.5 Calibration Based on Linear Correlation

In 2001, Galbács et al. introduced a new calibration method based on spectrum
comparison using the linear correlation formula (linear correlation calibration
method, LCM) [109]. This method can be advantageously applied to all multi-
component solid samples containing chemical constituents in comparable
concentrations (minor and major components). The LCM method produces a cali-
bration plot with the value of the linear correlation coefficient on the y-axis calcu-
lated by the comparison of the spectrum of one of the components in the sample in
the pure form to the spectrum of a series of calibration samples containing the
analyte at various relative concentrations (e.g., on the x-axis, the mass fraction of
the analyte would run from 0 to 100%). It was shown that the calibration curve
produced in this way will always be monotonous and monovalent and that it can be
very well fitted with a quadratic or cubic polynomial function. The method can be
simply extended to multi-component (N ) samples, by producing the calibration
curves for N-1 components.

The main advantage of the LCM method is that given the complete immunity of
the linear regression coefficient to the linear transformation of any of the involved
datasets (samples or standards), the calibration curves can be stored and used for a
long time, e.g., in portable instruments. It is important to consider that in most cases,
an instrumental drift or aging will result in the change of sensitivity or background,
hence affecting the data by a near-linear transformation. The analytical precision and
accuracy are also largely improved, thanks to the fact that the calibration is based on



the complete spectrum, not, e.g., only the intensity of a single spectral line. It was
shown that the repeatability of the data points in the calibration plot is at least ten
times better than with univariate calibration.
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The LCM method was first developed and demonstrated for LIBS, applied to the
accurate analysis of various alloys (e.g., brass, aluminum alloys, gold alloys, etc.)
[109, 110]. Later, the same research group extended the applicability of the method
to trace analysis of solid and liquid samples by the transformation of the x-axis. This
extended version of the method was called Generalized Linear Correlation Method
(GLCM) and was successfully demonstrated to work not only for LIBS, but also for
UV-Vis absorption spectroscopy and ICP-MS [111]. The relative error in concentra-
tion determination generally ranged from 0.1% to 5%.

2.6.6 Data Fusion

With the fast development of new chemical analysis procedures, along with modern
high-throughput technologies, the data generated has been increasingly larger,
complex, and multivariate. The era of big data poses difficulties for extracting
value information from a huge volume of data and, according to Meng et al. [112],
they are related to “5 V” characteristics: volume, variety, velocity, veracity, and
value [112].

In the cases of chemically rich samples, a single measurement method can be
unable to extract all the useful information. Combining data from complementary
analyses is an alternative way to enhance the extracted knowledge about sample
features. In practice, however, increasing availability of multiple data using different
acquisition methods brings new challenges to traditional data processing methods
that assume independent variables [113]. Indeed, conventional statistical methods
are unable to produce reliable, valuable, and accurate information from massive data.
On the other hand, besides the information explosion, modern technologies intro-
duce us to several data processing methods to obtain more informative, objective,
and accurate information than the original big data [112].

There is always much interest from the scientific community in gathering hetero-
geneous information systems through a consistent data integration interface.
Chemometrics has proven to be a powerful tool in data science for grouping
convergent outputs as well as for retrieving hidden chemical information in multi-
variate data [113, 114]. Data fusion is a method of concatenating multiple blocks of
data from different records into a single, consistent, and clean representation [115].

Ways of the successful implementation of data fusion may differ from system to
system, due to the various levels of complexity. Three main possibilities are gener-
ally explored: low-, mid-, and high-level data fusions [116]. These approaches are
similar, differing mainly in the treatment stage of each data source aligned to
standardization, preprocessing, and variable selection (if necessary). The choice of
the best method to be performed depends on the goal, measurement procedures used,
sample matrix, volume, and type of data to combine. The simpler approach is the
low-level method that assumes the direct fusion of multiple raw data to obtain a



regression model. Limitations reported for this method include big data sets and
predominance of one data over other measure systems. In this case, mid-level data
fusion brings the solutions to these limitations, in which it first extracts the relevant
features from each data source individually and then these variables are merged into
a single matrix. The reduction of the data array and selection of important variables
from each data block facilitates the interpretation of the results and the visualization
of the contribution from each fused measure source. Finally, the method known as
high-level data fusion is accomplished at the decision results obtained from multiple
data sets to produce a unique solution [116–118].
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Chemometric techniques have been indispensable in the progression of data
fusion methods and in the search for quality data. For instance, descriptive models
using PCA are carried out for a preliminary exploratory analysis. Classification
models include linear discriminant analysis (LDA), k-nearest neighbors (kNN),
soft independent modeling of class analogy (SIMCA), partial least squares discrimi-
nant analysis (PLS-DA), and supervised learning algorithms such as support vector
machine (SVM) and ANN. For the prediction purpose, PLS is the most sought-after
method, but other less popular approaches have been investigated, including PCR,
MLR, and SVM regression [116].

Data fusion is a relatively novel subject in LIBS analysis, and it has been
increasingly applied to the qualitative and quantitative analysis of a variety of
matrices. In the concern about food authenticity and classification, LIBS was
combined with UV-Vis absorption spectroscopy for the discrimination of
41 Greek olive oils based on their cultivar origin. LDA and gradient boosting
algorithms were used to create the prediction models and found to provide excellent
classification, resulting in a 96% training accuracy and 94% for external validation
[119]. In the same respect of food analysis, Gamela et al. [120] assessed the
complementary information of LIBS and wavelength dispersive X-ray fluorescence
(WDXRF) for the macronutrients determination in bean seed samples. The data
fusion strategy in the low level was proposed using MLR and leave-one-out cross-
validation. This method showed a lower standard error of cross-validation (SECV)
and better accuracy, precision, and robustness compared to those univariate calibra-
tion models for each technique individually [120]. Gamela and coworkers also
reported the combination of LIBS and energy dispersive X-ray fluorescence
(EDXRF) using PLS chemometric technique for low-level data fusion [121]. The
concentrations of K were determined in cocoa beans ranging from 6053 to
8339 mg kg�1, and the proposed model presented good results, as low SECV
(0.09%), LOD (0.2%), and acceptable trueness (85–120%).

LIBS and XRF techniques were also combined and used in monitoring the
chemical composition of electronic waste samples. Andrade et al. [122] proposed
the determination of Cu in 40 fragments of PCB samples, and low-level data fusion
was run using PLS regression. The results were compared with the reference
concentrations (ranging from 13 to 45% w w�1 Cu) obtained after microwave acid
extraction and ICP-OES determinations, and the trueness was in the range of 81 to
119% using leave-one-out cross-validation [122]. Other applications including the
information from LIBS and XRF techniques were reported for the direct analysis of



human hair samples [123]. A total of 127 samples were evaluated using both
analytical techniques, and data fusion was used to build a classification model.
The authors proposed the combination of 17 classifiers, that is PLS-DA, kNN, the
Mahalanobis distance (MD), sinθ, cosθ, Q-residual (Q res), divergence criterion
(DC), the Euclidean distance, determinant, inner product correlation, unconstrained
Procrustes analysis (PA), constrained PA (for 2 classifiers), and the extended
inverted signal correction difference (EISCD) (for 4 classifiers). The data fusion
improved the figures of merit for the classification, confirming that LIBS and XRF
spectral features are complementary to each other. The method trueness ranged from
99.2 and 100% in comparison with 94.5–99.2% for WDXRF and 99.2% for LIBS,
individually.

2 Quantitative Analysis 55

Studies have been reported using LIBS combined to other spectroscopy
techniques. Of particular interest in environmental analysis, outputs from LIBS
and near-infrared spectroscopy -NIRS were combined to produce regression models.
In a study published in 2019 de Oliveira et al. [124] assessed the inorganic compo-
sition of forage plants, and data fusion models for Ca, Fe, K, Mg, and Mn using PLS
showed better figures of merit than any of the two individual techniques [124]. Using
the same two techniques coupled with XRF and mid-infrared spectroscopy (MIR),
Xu et al. [125] proposed a multi-sensor fusion for monitoring several soil properties
such as soil organic matter (SOM), pH, total N, available K, and available P. The
prediction capability of data was assessed using different combinations decreased as
follows: MIR > NIR > LIBS > XRF [125, 126] assessed the detection of SOM
content by LIBS and Fourier transform mid-infrared (FT-IR). This study
demonstrated the combination of these complementary techniques using various
chemometric algorithms (i.e., PCA, PLS, SVR, and ANN). The quantitative predic-
tion ability of the method was assessed using a low-level and mid-level data fusion.
The findings from SVR, ANN models indicate that either calibration strategies are
promising for monitoring organic matter in soil samples. Nevertheless, mid-level
data fusion of the LIBS and FTIR-ATR spectra based on the latent variables of PLS
drastically improved the SOM prediction accuracy [126].

Interestingly, Manrique-Martinez et al. [127] proposed the strategy of data fusion
between LIBS and Raman for the investigation of samples in binary mixtures, as a
part of simulation in planetary exploration missions. Two different sulfates
(epsomite and anhydrous sodium sulfate) and a chloride (hexahydrate magnesium
chloride) were used to prepare 27 binary mixture combinations. These samples were
analyzed using both techniques and multivariate analysis was performed on Raman,
LIBS, and Raman combined with LIBS using low-level fused data sets. As
demonstrated in other studies, data fusion method showed better analytical perfor-
mance and more accurate results when compared with individual sets [127].

2.6.7 Other Multivariate Approaches

The literature also presents other calibration and exploratory analyses using LIBS.
For instance, Araújo et al. [128] proposed a method for Ca, K, and Mg determination



in human mineral supplements and Al, Cu, and Fe in PCB using unfolded-PLS with
residual bilinearization (U-PLS/RBL). Castro et al. [90] used parallel factor analysis
(PARAFAC) for spectral interference identification and removal focusing WEEE
[129] precious elements (Ag and Au) determination.
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2.7 Hyperspectral Images

The principle of hyperspectral imaging is based on the fact that all materials, due to
the difference in their chemical composition and inherent physical structure, reflect,
scatter, absorb and emit electromagnetic energy in distinct patterns at specific
wavelengths. This feature is called a spectral signature or spectral fingerprint, or
simply spectrum. A spectral signature is a unique feature of an object. For a given
material, if the percentage of reflectance, absorbance, or transmittance, is plotted
against wavelengths, the resulting curve is referred to as the spectral signature of that
material. In essence, the spectral signature can be used to characterize, identify and
discriminate between classes of any materials in each pixel of the image [130].

According to Wu and Sun [131], the spectral hypercube is composed of voxels
(also called vector pixels) containing spectral information (of λ wavelengths) and
also bi-dimensional spatial information (of x lines and y columns). Thus, the
hyperspectral cube consists of a series of contiguous sub-images one after the
other at different wavelengths, so each sub-image provides the spatial distribution
of the spectral intensity at a given wavelength. This means that a hyperspectral image
described as I(x,y,λ) can be seen as a separate spatial image I(x,y) at each individual
wavelength or as a spectrum I(λ) at each individual pixel (x,y) [139]. Thus, this
technology allows, through the generation of concentration maps, the determination
of the local composition of the species of interest throughout the spatial structure of
the sample. With this local description of chemical information, it is possible to
obtain, for example, data on the homogeneity and distributions of constituents and to
interpret and monitor processes that may occur on the surfaces of certain samples.
Furthermore, the use of spectral images has proved to be an important tool for the
acquisition of chemical information in non-homogeneous media and its main advan-
tage is the minimum preparation and handling of samples.

A hyperspectral image can be formed by hundreds of thousands of measurements
and one of the main problems with this approach is the requirement to process so
much data without a minimal loss of quality and quantity of information. In the case
of the LIBS technique, each pixel corresponds to an emission spectrum, and since
there are LIBS spectrometers that have the ability to monitor thousand wavelengths,
which will generate the same number of emission spectra matrices. The use of data
compression techniques such as PCA may satisfactorily solve this problem [132].

The use of hyperspectral images in chemical analysis began in the 1970s, mainly
with applications in remote sensing; however, it was only many years after, this tool
started to be used in several other different applications such as pharmaceutical
research and production, food science, food quality assurance, forensic science,
biochemistry and biomedicine, cultural heritage, among others [133]. In the case



of forensic science, hyperspectral imaging can allow investigators to analyze chemi-
cal composition and simultaneously visualize the spatial distribution of a given
sample at a crime scene. According to Edelman et al. [134], recent technological
developments in fast, portable, and high-resolution acquisition systems, such as
LIBS, are facilitating the use of hyperspectral images in forensic science, since, in
most cases, it is possible to obtain chemical information with little sample manipu-
lation and, in addition, the acquisition of spectra can be performed in the field,
minimizing the need to take the sample to a laboratory [134].
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Another interesting application of LIBS with hyperspectral imaging was reported
by Wu et al. [135]. In this work, the authors developed a fast and efficient way to
detect pesticide residues (thiophanate-methyl) in mulberry fruits. PCA and PLS were
used to qualitatively and quantitatively analyze the data obtained from fruit samples
with different concentrations of thiophanate-methyl. The authors conclude that the
use of LIBS technology in combination with hyperspectral images for the detection
and identification of residues of the thiophanate-methyl pesticide is feasible, and the
best results were provided by the PLS model using optimal pre-processed
variables [135].

Therefore, spectral images prove to be a promising, efficient, and reliable tech-
nology, which can be used, in conjunction with LIBS [136], to replace other
analytical methods, especially in situations where the sample cannot be fully con-
sumed, such as in forensic analysis. By combining spatial and spectral details in one
data set, the hyperspectral imaging technique can simultaneously acquire spatial
images in many spectrally contiguous bands to form a 3-D hyperspectral cube, and it
is considered to have the ability to complement the advantages of spectroscopy and
imaging techniques. Predicted values of pixel-level quality or safety attributes can
then be used to generate the attribute distribution map, leading to better characteri-
zation and better quality and safety assessment results. Currently, there are still many
challenges to be tackled, e.g. computing speed, hardware limitations, and high cost
before this techniue can be fully exploited. At present, spectral imaging studies often
aim at identifying optimal wavelengths for designing a low-cost multispectral
imaging system.

2.8 Conclusions and Perspectives

The use of LIBS in the direct quantitative analysis of several types of samples is
promising, as the previous steps of sample preparation and handling are considerably
simplified. However, the challenges related to the calibration of the obtained signals
require special attention from the analyst and strategies aimed at matrix compatibil-
ity can be employed, sharply reducing the matrix’s contribution. Due to the preva-
lence of LIBS, several review articles have been published on this topic [137]. A
review of calibration strategies used in conjunction with LIBS was published by
Costa et al. [25]. An important review was published by Lazic and Jovicevic [138] to
present sample preparation strategies for liquid samples designed for quantitative
determinations. Jantzi et al. [139] presented a complete review addressing



pretreatments of solid samples aimed at qualitative and quantitative analyses in
2019. In the same year, Costa et al. [140] also published a review on this topic, in
which the authors addressed many aspects of LIBS, including history, fundamentals,
sample preparation, chemometrics, and the application of LIBS in various fields of
science [140].
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The circle of LIBS applications is already vast and is still growing fast in the last
decade. The outlook for the application of LIBS in industrial processes and product
monitoring is very promising. In addition, it is possible to obtain point information
from extremely small samples. An important aspect to emphasize is the fact that the
information obtained using LIBS has a potential to cooperate with other instrumental
techniques. LIBS, for instance is able to detect all elements from light (Z < 11) to
heavy ones and can be used to analyze practically any type of solid samples
(conductive or not) in several challenging conditions (e.g. space or underwater
exploration). In addition, as a huge amount of data is collected it is mandatory in
several cases to use chemometric tools in order to better exploit the data collected
and to identify and eliminate signals from concomitants.
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Calibration-Free Quantitative Analysis 3
Igor Gornushkin

Calibration-free methods in laser-induced breakdown spectroscopy, CF LIBS, serve
as an alternative to calibration-based LIBS techniques. Their major advantage is the
ability for fast chemical analysis in situations where matrix-matched standards are
not readily available (as, e.g., in the analysis of biological materials and remote
analysis) or amount of samples are limited. Their main applications are in the
industry, geology, biology, archeology, and even space exploration. This chapter
overviews the principle of operation and performance of CF LIBS techniques.

3.1 Radiative Transfer Equation

Consider a ray of light propagating through a layer of plasma with thickness Δx
without scattering [1, 2]. During propagation, the incident intensity Iν increases due
to emission and decreases due to absorption

ΔIν ¼ ενΔx� κνIνΔx ð3:1Þ
where εν and κν are the emissivity and absorption coefficients, respectively. Under
conditions of local thermodynamic equilibrium (LTE), the emission and absorption
coefficients are linked through Kirchhoff’s law εν¼ κνBν, where Bν is the blackbody
function. For simplicity, the dependence of the variables upon the temperature,
frequency, and coordinate is not shown. Note that intensity is a surface characteris-
tic; it is a flux of electromagnetic energy passing through a unit area per unit time and
unit frequency interval within a unit solid angle while emissivity is a volumetric
characteristic characterized by the electromagnetic energy emitted by a unit volume
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¼ s0
P xð Þe dxþ CeR R R

into unit solid angle per unit time and unit frequency interval. Tending Δx to zero,
Eq. (3.1) transforms to
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Fig. 3.1 Integration along
the line of sight

dIν=dxþ κνIν ¼ κνBν ð3:2Þ
or, introducing new variables y ¼ Iν, k(x) ¼ κν, and P(x) ¼ κνBν to

dy=dxþ k xð Þy ¼ P xð Þ
This is an ordinary differential equation of the first order whose solution is found

by the multiplication of both parts by u ¼ e
R
k(x)dx

e

Z
k xð Þdx dy

dx
þ k xð Þe

Z
k xð Þdx

y ¼ P xð Þe

Z
k xð Þdx

Noting that the left part is the full differential d(uy)/dx, the equation integrates to

give uy ¼ R P xð Þe
R

k x0ð Þdx0dxþ C or

y ¼ e
�
Z

k xð Þdx Z
P xð Þe

Z
k x0ð Þdx0

dxþ Ce
�
Z

k xð Þdx
ð3:3Þ

To apply this solution to a physical situation, let us integrate Eq. (3.3) from point

s0 to point s located at the outer boundaries of a plasma along direction Ω
!
; the

integral accounts for the contribution to intensity of all elementary elements dx along
path s0 ! s (Fig. 3.1).R s R x R s

y¼e
�

s0
k xð ÞdxR s

s0
P xð Þe s0

k x0ð Þdx0
dxþ Ce

�
s0
k xð Þdx

R s �
R s

x
k x0ð Þdx0 �

R s

s0
k xð Þdx:

Here the relation x
s0
� s

s0
¼ � s

x was used. After returning to the original

notation, it becomes
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Iν ¼
Z s

s0

κνBνe
�

s

x
κν x0ð Þdx0

dxþ Iν0e
�

s

s0

κν xð Þdx

The first term on the right side of this equation describes the radiation which is
born and partially absorbed along path s0 ! s. Second term describes intensity I0ν
from an external light source that enters the plasma at point s0 and is attenuated along
path s0 ! s. In the absence of sources of external radiation, I0ν ¼ 0 and the final
solution of Eq. (3.2) becomes

Iν ¼
Z s

s0

κνBνe
�

Z s

x
κν x0ð Þdx0

dx ð3:4Þ

If the plasma is homogeneous, the absorption coefficient κν does not depend on
the x-coordinate and can be taken off the integral signs. If, in addition, the plasma is
isothermal, the blackbody function can also be taken out of the integral sign. Hence,
for a homogeneous isothermal plasma, integration of the remaining terms yields the
expression

Iν ¼ Bν 1� e�κνl
� � ð3:5Þ

where l ¼ s � s0 is the pathlength through plasma in direction Ω
!
.

If, in addition, the plasma is optically thin, meaning the product τν ¼ κνl, called
the optical density, is negligibly small, τν � 1, the exponent in Eq. (3.5) can be
expanded into a Taylor series and, retaining only the first term in the series, one
obtains

Iν ¼ τνBν ð3:6Þ
This expression for a homogeneous, isothermal, and optically thin plasma at local

thermodynamic equilibrium (LTE) forms a basis for the so-called “Boltzmann plot
method”, which is used in spectroscopy for determining plasma temperature and
finding plasma composition via calibration-free (CF) analysis.

3.2 CF LIBS by the Boltzmann Plot Method

The Boltzmann plot (BP) method is based on a simplified model of the laser-induced
plasma, in which the plasma is assumed to be (1) isothermal, (2) uniform,
(3) optically thin at chosen atomic/ionic transitions, and (4) stationary. None of
these conditions is fully satisfied in real plasmas; however, the assumption can still
be a reasonable approximation if a well-planned measurement routine is adopted.
Conditions (1) and (2) can be met by choosing a correct gate time for the detection of
LIBS spectra: a start of the gate should be delayed with respect to the laser pulse to



let the plasma thermalize (i.e., equilibrate translational temperatures of electrons and
heavy particles), and its duration should not be too short to allow collecting enough
light, and yet not too long to assure negligible variation in plasma parameters.
Condition (3), of the optical thinness, can be provided by a careful choice of
analytical lines, i.e., well-resolved lines with moderate transition probabilities
(although, to a certain extent, intensities of optically thick lines can be corrected
by combining expressions 3.5 and 3.6). Finally, condition (4), stationarity, is
provided, again, by a short gating of plasma emission; such that the plasma
parameters (size, temperature, and electron density) are nearly frozen within its
duration.
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3.2.1 The Boltzmann Plot Equation

Equation (3.6) from the previous section is the working equation for the BP method.
It is transformed into a more convenient form by substituting into it the expressions
for a line absorption coefficient, κν, and blackbody function, Bν [2]:

κν ν, Tð Þ ¼ hν
c

niBij � njBji

� �
Pν νð Þ ð3:7Þ

and

Bν ¼ 2hν3

c2
1

ehν=kT � 1
ð3:8Þ

Here, h and c are the Planck constant and the speed of light, ni and nj are the
number densities of the lower and upper transition states, correspondingly, Bij and Bji

are the Einstein coefficients for absorption and stimulated emission, and Pν(ν) is the
unity-normalized line shape function that is assumed to be the same for both
absorption and emission. Using the relationships between Einstein coefficients,
giBij¼ gjBji and Bij ¼ gj

gi
c3

8πhν3 Aji, and the Boltzmann formula for population densities

of excited states at LTE, ni ¼ n gi
U Tð Þ e

�Ei=kT , the substitution of (3.7) and (3.8) into

(3.2) yields, after simple algebra, the intensity of the optically thin line for a
transition j ! i

Iν νð Þ ¼ hν
4π

Ajin
zð ÞlPν νð Þ gj

U zð Þ e
�Ej=kT ð3:9Þ

where n(z) is the number density of ions in charge state z (z ¼ 0, 1, 2, . . .), gj and Ej

are the degeneracy and energy of the upper excited state j, k is the Boltzmann
constant, and U(z) is the ion partition function (the dependence of U(z) upon temper-
ature is omitted). Integrating Eq. (3.9) over a line profile and a full solid angle and
noting that

R
linePν(ν)dν ¼ 1 and ν � ν0 across the line profile, where ν0 is the

frequency of the line center, the expression for the line integral intensity, I (W m�2),
is obtained
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Iji ¼ hν0n
zð Þl

gjAji

U zð Þ e
�Ej=kT ð3:10Þ

This expression can be linearized as

y ¼ mxþ d ð3:11Þ
by taking the logarithm of both sides of Eq. (3.10), grouping and rearranging terms

using y ¼ ln Ijiλ0
gjAji

� �
, x ¼ Ej, m ¼ � 1

kT , and d ¼ ln chl
U zð Þ n

zð Þ
� �

. The relation λ0 ¼ c/

ν0 is used to switch between the frequency and wavelength. Equation (3.11) is the
Boltzmann plot equation whose slope m is inversely proportional to the plasma
temperature and intercept d is proportional to the logarithm of the number density
n(z). This equation is conveniently used for the determination of plasma temperature.
For this, a suitable set of spectral lines with upper state energies x¼ Ej is chosen and
the linear regression of y on x yields the line with a negative slope �1/kT. For better
accuracy, the plot based on Eq. (3.11) should span an as large as possible range of
excitation energies.

3.2.2 Number Density of Species

The number density of species n(z) can be found from the value of the intercept d in
Eq. (3.11). Indeed, raising the exponent into power d, one obtains ed ¼ chl

U zð Þ n
zð Þ or,

after rearranging,

n zð Þ ¼ U zð Þ

chl
ed ð3:12Þ

In principle, this equation can be used for determining the physical values of
number densities. However, in doing so, all terms in Eq. (3.11) should be expressed
in physical units with the special attention to the use of the same consistent system of
units for all variables. The latter requirement stems from a non-physical character of
transcendent functions, like the logarithm or exponent, when they are applied to
dimensioned arguments. Therefore, Eq. (3.12) is rarely used stand-alone mainly
because measuring plasma emission in absolute intensity units, i.e., W m�2, is an
unwanted and difficult task.

Note that Eq. (3.12) provides the number density of a species in a certain
ionization state, i.e., neutral, or singly (doubly, etc.) ionized. To find the total number
density, all ionization states must be accounted for. This is done by using the Saha
equation

nen zð Þ

n z�1ð Þ ¼
2U zð Þ

U z�1ð Þ
2πmekT

h2

� �3=2

e�
χ�Δχ
kT ð3:13Þ



whereU(z) andU(z 1) are the partitions functions of ions in charge states z and z 1,

i
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� �
me and ne are the mass of an electron and electron number density, and χ and Δχ are
the ionization energy and its depreciation due to the Debye shielding. Naming the
right part of Eq. (3.13) to S(T ) and assuming, for simplicity, only a singly ionized
plasma (z ¼ 1), the number densities of the complementary neutral and ionized
species are found from

n0 ¼ nþne=S Tð Þ
nþ ¼ n0S Tð Þ=ne

ð3:14Þ

Either equation can be used for finding its counterpart, depending on which
species, atoms, or ions are used for the construction of a BP. The total number
density is then calculated from ntot ¼ n0 + n+. As follows from Eq. (3.14), the prior
knowledge of the electron number density ne is required. Typically, the electron
number density is found from widths of suitable spectral lines assuming the domi-
nant pressure broadening is due to the Stark effect. The expression for the Stark
broadened FWHM (full width at half maximum) is found in [2, 3]

Δλstark ¼ 2 1þ 1:75 � 10�4n1=4e α 1� 0:068n1=6e T�1=2
� �h

� 10�16wne ð3:15Þ

where w and α are the electron and ion impact broadening parameters and 10�16 is
the scaling factor for ne expressed in units (1016 cm�3). Considering the dominant
role of electrons in line broadening and the weak dependence of Δλstark upon the
temperature, Eq. (3.15) is often reduced to

Δλstark ¼ 10�16wne ð3:16Þ
This expression does not imply the knowledge of plasma electron temperature;

only electron impact parameter w and measured width Δλstark of the Stark-broadened
line profile are required. The Stark broadening parameters for lines of elements from
hydrogen through calcium can be found in Griems’ tables [3] and for other elements
in the periodic literature and reference data sources, e.g., Konjević et al. [4, 5] who
consistently, over the years, is extending the database of Stark broadening
parameters. Finding the width of the Stark-broadened line may present some diffi-
culty because this profile may be distorted by other broadening mechanisms, e.g.,
instrumental broadening or thermal (Doppler) broadening. In that case, a
deconvolution of the Stark profile from the observed line profile may constitute a
substantial difficulty.

3.2.3 CF LIBS by Boltzmann Plot Method

Provided the conditions given in the former chapter are fulfilled, a simplified model
of laser-induced plasma can be used, which suggests that atomic/ionic excitations are



distributed according to the Boltzmann statistics and rates of ionization and recom-
bination processes are balanced via the Saha equilibrium in Eq. (3.13). The model
yields a semi-logarithmic linear dependence (3.11) of the line integral intensities,
factorized by transition characteristics, upon the line excitation energies. The slope
of this function is �1/kT while the y-intercept (at zero excitation energy) is propor-
tional to the number density via Eq. (3.12). This dependence is dubbed “the
Boltzmann plot” and the plane, defined by its axes, “the Boltzmann plane.” To
find the concentration of all species, the Boltzmann plot (BP) should be constructed
for all of them. The latter implies that each species should be represented by at least
one line or a data-point on the Boltzmann plane. To relate the composition of the
laser-induced plasma to that of the sample, two assumptions are made: the laser
ablation is stoichiometric, and all plasma species are in their pure elemental forms.
The latter means that plasma chemistry does not affect the concentrations.
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Drawing the line requires at least two points; if only one point is available, the line
drawn through this point must be parallel to other lines with slope �1/kT. Thus, a
one-point BP is “subdued” to many-point BPs and the exact position of that point on
the BP-plane is crucial for finding a correct concentration of an element represented
by only one point. One can call a one-point BP the “slave BP” and a many-point BP
the “master BP.” The position of the y-intercept of the one-point BP also crucially
depends on how accurately the master BP is drawn. These considerations are correct
if all plasma species have the same temperature, i.e., at LTE.

The first algorithm for calibration-free (CF) LIBS was proposed by Ciucci et al.
[6] and then numerously reproduced and improved by other authors [7–11]. Reviews
of analytical applications of this algorithm can be found in [12–15]. As quantitative
analysis operates usually with relative concentrations rather than number densities,
Eq. (3.10) must be modified. A factor F is introduced, which accommodates
fundamental constants and accounts for a solid angle of light collection, path length,
and total (constant) mass of plasma species. Using λ0¼ c/ν0 this equation transforms
to

Iji ¼ Fc zð Þ
s

U zð Þ
s

gjAji

λji
e�Ej=kT ð3:17Þ

where Iji is the intensity of radiation at transition j ! i , λji is the central wavelength
of this transition, c zð Þ

s is the mass concentration of neutral or ionic particles of sort s,
and U zð Þ

s is the partition function of these particles. This equation is further linearized
into form (3.11) with the same entries for x, y and m, only the value of the intercept

modifies to ds ¼ ln Fc zð Þ
s

U zð Þ
s

� �
. Typically, BPs for all plasma species are constructed

using spectral lines of atoms. Assuming a singly ionized plasma, relative
concentrations of atoms, c0s , and their complementary ions, cþs , are found from
values ds of the BP intercepts and relations (3.14), which are expressed in terms of
the concentrations rather than number densities
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c0s ¼
U0

s

F
eds

cþs ¼ U0
s Ss Tð Þ
Fne

eds
ð3:18Þ

Demanding all relative concentrations summing up to unity, s c0s þ cþs ¼ 1,
factor F is easily found from

F ¼
X
s

U0
s e

ds 1þ Ss Tð Þ
ne

� �� 	
ð3:19Þ

and the concentration of species, cs ¼ c0s þ cþs , are found using (3.18) with the now
known factor F. As follows from Eqs. (3.18) and (3.19), the knowledge of electron
number density is crucial for the implementation of this method.

3.2.4 CF LIBS by Saha-Boltzmann Plot Method

It is possible to combine separate BPs for neutrals and ions into a single plot that is
called a Saha-Boltzmann plot (SBP). This plot spans over a large range of excitation
energies that exceeds the ionization energy of an element, for which the plot is
constructed. The larger range provides a more accurate measurement of the temper-
ature and intercepts and, hence, more accurate results of CF LIBS analysis.
Examples of the use of the Saha–Boltzmann plot for temperature evaluation in
LIBS plasmas can be found in the literature [16–20].

It is straightforward to extend the formalism of BP analysis to SBP analysis. To
begin with, for a singly ionized plasma, Eq. (3.17) is replicated for atomic, j! i , and
ionic, l ! k, transition

Iji ¼ Fc0s
U0

s

gjAji

λji
e�Ej=kT

Ilk ¼ Fcþs
Uþ

s

glAlk

λlk
e�El=kT

ð3:20Þ

Substituting the second equation of (3.14), into the second equation of Eq. (3.20),

cþ ¼ c0S Tð Þ
ne

with S Tð Þ ¼ 2Uþ
U0

2πmekT
h2

� �3=2
e�

χs�Δχ
kT and taking the logarithm in two parts

of Eqs. (3.20), two linear equations with respect to Ej and El are obtained
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ln
I0jiλji
gjAji

¼ ln
Fc0s
U0

s

� Ej

kT

ln
Iþlkλlk
glAlk

� �
� ln

2
ne

2πmekT

h2

� �3
2

 !
¼ ln

Fc0s
U0

s

� �
� χs þ El � Δχ

kT
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Both equations have form of Eq. (3.11) with

x, yf g ¼ Ej, ln
I0jiλji
gjAji
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for atomic lines and
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for ionic lines and the common intercept ds ¼ ln Fc0s
U0

s
at x ¼ 0. The rest of the

procedure is identical to that in the BP method; the F-factor and concentrations are
found from Eqs. (3.18) and (3.19).

It should be emphasized again that the knowledge of ne is essential for a retrieval
of concentrations c0s and c

þ
s . The electron density is used in (3.21) for calculating the

y-values of the ionic portion of the SBP and in (3.18) for calculating the complimen-
tary concentrations of ions. Also, calculating y’s for the ionic SBP requires knowl-
edge of plasma temperature, T. In practice, SBPs are constructed in an iterative
manner: a trial value of T is assumed and procedure (3.21) runs until the variation in
T between consecutive runs becomes smaller than a predefined epsilon.

3.2.5 Correction for Self-Absorption

Equation (3.6) that creates a foundation for the BP and SBP methods is an approxi-
mate solution of the radiative transfer equation under the assumptions of a uniform
and optically thin plasma. The approximation is accurate up to the second term in the
Taylor series e�τ � 1 � τ + O(τ2), τ < 1. An error of this approximation, 100�
e�τ� 1�τð Þj j

e�τ , is 0.5% for τ ¼ 0.1, 2.3% for τ ¼ 0.2, 18% for τ ¼ 0.5, and 75% for
τ ¼ 0.9. If Eq. (3.6) is used with values of τ exceeding 0.1� 0.2, it will impose large
errors upon the determination of the plasma temperature from slopes of BP or SBP,
and, consequently, on values of relative concentrations determined from the BP or
SBP intercepts. Therefore, a correction for optical thinness is required for such high
values of τ.

Many methods have been proposed for self-absorption (SA) correction [7–11]. A
general idea is to replace the intensity of an optically thick spectral line by the
equivalent intensity of the same line but under optically thin conditions. This means



that each photon generated along a line of observation and having frequency inside
the spectral line profile, passes through the plasma without being absorbed. This
situation is illustrated in Fig. 3.2 where pathlength L is split into small intervals li
such that κli � 1 for each interval. The intensity generated along a full pathlength
L equals Bκ∑ili¼ BκL provided each interval emits photons independently of others.
Such a situation is non-physical as soon as κL becomes greater than one because in
this case, the line intensity exceeds a blackbody limit. This hypothetical procedure of
splitting the pathlength into optically thin non-interacting elements serves only for
replacing the intensity of the optically thick line Iobs with the equivalent intensity of
the optically thin line Ieq to satisfy the condition of optical thinness needed for the
construction of a BP or SBP.
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Fig. 3.2 Illustration of the principle of self-absorption correction. Adapted from [10]

All methods of self-absorption (SA) correction for a uniform, isothermal plasma
are based on manipulating with Eqs. (3.5) and (3.6). For example, Praher et al. [11]
rewrote the expression

Iobs λð Þ ¼ B 1� e�τ λð Þ
� �

ð3:22Þ

for the observed optically thick line in a form

Iobs λð Þ ¼ I λ0ð Þ 1� e�τ λ0ð ÞP λð Þ=P λ0ð Þ� �
τ λ0ð Þ ð3:23Þ

by using a relation B ¼ I(λ)/τ(λ) in Eq. (3.6), factorizing the optical density into a
wavelength-independent and a wavelength-dependent terms K and P(λ)

τ λð Þ ¼ K � P λð Þ ð3:24Þ
and applying simple relations K ¼ τ(λ0)/P(λ0) and I(λ)/τ(λ) ¼ I(λ0)/τ(λ0). Here, P(λ)
is the spectral line profile of the optical transition, and λ0 is the wavelength of the line



center. Assuming a Lorentzian profile P λð Þ ¼ 2Δλ
4 λ�λ0ð Þ2þΔλ2

for the Stark broadened

transition and using (3.23), a series of profiles Iobs(λ) is calculated for different values
of τ(λ0). Then, the ratios of spectral widths
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RW τ λ0ð Þ½ � ¼ Δλobs=Δλeq � 1 ð3:25Þ
and areas

RA τ λ0ð Þ½ � ¼
Z

Iobs λð Þdλ=
Z

Ieq λð Þdλ 	 1 ð3:26Þ

of the optically thick and equivalent optically thin profiles are calculated as functions
of τ(λ0) to produce a functional dependence of RA upon RW for each value of τ(λ0),
RA ¼ f(RW). Further, the width Δλobs and integral intensity

R
Iobs(λ)dλ are measured

whereas the width Δλeq of the equivalent optically thin line is determined from an
electron density measured via (3.16). Finally, from the known value RW ¼ Δλobs/
Δλeq the corresponding value of RA is found using RA ¼ f(RW) and the sought-for
value of the equivalent integral intensity of the optically thin line is obtained from

Z
Ieq λð Þdλ ¼

Z
Iobs λð Þdλ=RA ð3:26Þ

This approach has been extended in [10] to using the more general Voigt profile
function instead of the Lorentzian.

3.2.6 Factors Affecting the Accuracy of CF LIBS

3.2.6.1 Line Overlap and Deconvolution
CF algorithms require integral intensities of single stand-alone lines whereas finding
such lines in dense spectra (e.g., the spectrum of iron) can be problematic due to a
limited resolution of optical spectrometers and overlap of emission lines. Thus, the
accuracy and reliability of CF analysis critically depends on the ability of data
processing software to resolve (deconvolve) overlapping lines. From a mathematical
point of view, deconvolution is an ill-posed problem meaning that it does not provide
a unique solution within error bounds of experimental data. Over the years, many
methods have been developed that helped solving the problem of deconvolution of
single lines from the envelope of lines [21, 22].

So, the question is: how stand-alone lines can be decoupled from interfering
lines? The solution depends on whether the lines are optically thin or thick. For
optically thin overlapping lines, the overall intensity is given by the arithmetic sum
of individual line profiles
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Fig. 3.3 Illustration of different strategies of retrieving stand-alone lines (thin green lines) from the
overlapped profile (thick red line). (a) decoupling via (3.27); (b) decoupling via (3.28). Thick dotted
line is the best-fit profile. The insets show the residual errors. Adapted from [10]

IΣðλÞ ¼ ΣiIiðλÞ ¼ BΣiτiðλÞ ¼ B
X

i
KiPiðλ, ΔλiÞ ¼

X
i
K 0

iPiðλ, ΔλiÞ ð3:27Þ

where K 0
i ¼ BKi is the amplitude of the line profile with Ki defined in (3.24),

Pi(λ,Δλi) is the individual profile (e.g., Lorentzian, Gaussian, Voigt), and Δλi is
the corresponding line width. Each stand-alone line can be retrieved by a standard
decoupling procedure by fitting the envelope consisting of several lines by an
arithmetic sum of individual line profiles. For example, N overlapping Lorentzian
profiles would require 2 � N fitting parameters.

For optically thick, overlapping lines the situation is different. In this case, the
overall intensity is determined by individual contributions which sum up in the
power of the exponent

IΣ λð Þ ¼ B 1� e�Σiτi λð Þ ¼ B 1� e� i
KiPi λ, Δλið Þ ð3:28Þ

and this equation should be used to retrieve stand-alone lines. The number of fitting
parameters increases by one (B) neglecting its variation within a fitted spectral
interval. Figure 3.3 illustrates two retrieval strategies for four computer-generated
overlapping lines that have maximal optical densities in line centers between 2 and 5:
(1) fitting the full profile using (3.27), and (2) fitting the full profile using (3.28). It is
seen that both methods provide a satisfactory fit with residual errors of about 
10%;
however, the individual parameters of the retrieved lines are markedly different as is
inferred from Table 3.1.

If it is not known in advance whether overlapping lines are optically thin or thick,
using Eq. (3.28) is a better option as it works in both optically thin and optically thick
situations.



Table 3.1 Relative per-
cent errors of reconstruction
for the widths and integrals
of spectral lines
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Via (3.27) Via (3.28)

Ca I, nm Width Integral Width Integral

428.30 5.3 8.8 4.2 1.8

428.94 10.9 1.3 13.9 11.5

429.90 20.8 30.1 6.5 6.3

430.77 3.0 2.1 5.0 3.4

Fig. 3.4 Synthetic line generated on grids with (a) 36 pix/mm and (b) 84 pix/nm (typical resolution
of an echelle spectrometer with ICCD). Adapted from [10]

Table 3.2 Relative % errors of CF SBP analysis with low and high spectral resolutions; numbers
below symbols are concentrations of elements in a synthetic sample

Ca Al Mg Si Fe Mn Ti Cr

Resolution 27.32 22.01 16.16 8.52 19.03 6.35 0.22 0.40

36 pix/mm 5.1 11.3 1.1 3.4 1.3 12.8 9.1 15.0

84 pix/mm 0.3 0.1 0.6 0.1 1.1 1.1 0.1 2.5

3.2.6.2 Noise
Noise found on experimental spectra obstructs the true positions of line centers and
deteriorates the quality of line fitting. If noise is weak and lines are clearly percepti-
ble, no de-noising is needed as this procedure distorts the original spectral signal.
However, at high levels of noise, de-noising may provide a more accurate retrieval of
widths and integrals of spectral lines. Standard denoising techniques are Savitzky-
Golay [23] and Fourier-filtering [24]; more advanced ones are principal component
analysis (PCA) [25] or wavelet transform [26].

3.2.6.3 Spectral Resolution and Line Fitting
The accuracy of line fitting and, consequently, retrieval of line widths and integrated
intensities crucially depends on the spectrometer resolution and number of detector
pixels. This point is illustrated in Fig. 3.4 and Table 3.2, which show the fitted line
profiles and result of CF SBP analysis performed with low and high spectral



resolutions. The relative errors are around 1% for the high-resolution spectrum
(84 pix/mm) and raise to 15% for the low-resolution spectrum (36 pix/mm).
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Obviously, with more pixels per a line, a more accurate fitting of the line profile
function can be achieved and, consequently, a better accuracy CF analysis can
be obtained. Numerous algorithms exist for the fitting procedure, all requiring a
good initial guess for the parameters. Fitting the spectroscopic functions (i.e.,
Gaussian, Lorentzian, and Voigt) is typically done by non-linear least-squares
algorithms such as the trust-region-reflective [27] or Levenberg-Marquardt [28].

3.2.6.4 Electron Density
Accurate evaluation of the electron number density (ne) is crucial for the accuracy of
CF analysis. Table 3.3 shows the relative errors of CF analysis performed with a
synthetic spectrum and artificially incremented or decremented values of ne’s. One
sees how errors in ne result in significant errors of quantitative CF analysis. There-
fore, careful selection of suitable lines for accurate retrieval of ne is very important.
These lines must be (1) optically thin, (2) free of spectral and instrumental
interferences, and (3) having accurate values of Stark broadening parameters.

The electron number density can be most accurately evaluated from hydrogen
lines Hα at 656.28 nm and Hβ at 486.14 nm [29], which are typically present in LIBS
spectra obtained under atmospheric conditions where hydrogen comes from the air
moisture even if it is not present in the sample. These lines exhibit a linear Stark
effect and are typically much broader than an instrumental slit function that makes
deconvolution from the slit function unnecessary. If hydrogen lines are not available,
the electron number density can be determined from other lines with trustworthy
Stark broadening parameters.

3.2.6.5 Plasma Non-uniformity
Results of a CF method, which assumes a uniform and isothermal plasma, can be
compromised by the factual non-uniformity of real plasmas. To estimate this effect,
CF SBP analysis was performed on synthetic spectra emitted by the multilayered
plasma consisting of N layers with a parabolic temperature profile [10]

Table 3.3 Relative % errors of CF SBP analysis using erroneous electron densities; numbers
below chemical symbols show concentrations of elements in synthetic sample. Results with exact ne
are in bold

Ca Al Mg Si Fe Mn Ti Cr

|Δne/ne| % 27.32 22.01 16.16 8.52 19.03 6.35 0.22 0.40

0 1 0.7 0.9 0.5 1 0.7 2.7 1
7 0.9 1.8 2.0 1.6 2.8 6.2 3.8 0.9

33 2.8 11.4 7.9 7.3 7.8 26.4 17.2 2.8

67 8.1 30.0 14.3 9.3 18.4 47.6 33.9 8.1
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Table 3.4 Relative % errors of CF SBP analysis with no temperature gradient and with parabolic
temperature gradients; % concentrations are given below chemical symbols. Results with no
temperature gradient are in bold

Ca Al Mg Si Fe Mn Ti Cr

T-gradient 27.32 22.01 16.16 8.52 19.03 6.35 0.22 0.40

None 0.87 1.16 0.54 0.61 0.33 0.62 3.24 0.43
Small 2.33 3.38 0.25 5.53 1.66 2.56 5.67 11.52

Large 6.75 30.62 76.69 42.28 14.66 22.82 5.44 84.66

TN ¼ T0 þ Tl � T0ð Þ xN � l=2ð Þ2
l=2ð Þ2 ð3:29Þ

where xN E [0, l], l is the pathlength, and T0 and Tl are the temperatures in plasma
center and plasma edge. The plasma density across the plasma was considered
uniform and the intensity emitted by each layer was calculated recurrently from

IN ¼ IN�1e
�τ TNð Þ þ B TNð Þ 1� e�τ TNð Þ ð3:30Þ

The results for the two temperature gradients: small (Tl ¼ 9000 K,
T0 ¼ 11000 K ) and large (Tl ¼ 5000 K, T0 ¼ 15000 K ) are shown in Table 3.4.
The small gradient causes still acceptable increase in errors as compared to gradient-
free CF analysis whereas the large gradient produces errors up to 80% that make the
CF SBP analysis semi-quantitative.

The effect of plasma non-uniformity on results of conventional LIBS analysis
was studied by Mercadier et al. [30] on the example of carbon-based materials.

3.2.7 Performance of CF LIBS

The performance of CF LIBS is best demonstrated on synthetic spectra, which can
be generated for truly uniform and isothermal plasma (required by the CF model)
with precisely known concentrations and spectroscopic parameters of lines. The task
is to solve an inverse problem, i.e., to retrieve concentrations of elements using a CF
algorithm applied to synthetic spectra. Such a job is performed in [10] on the
example of spectra generated for ten slag samples with concentrations of elements
corresponding to real samples. To make simulations more realistic, complicating
effects were introduced: a finite spectral resolution (84 pix/nm) and Gaussian noise
with an amplitude of 0.2% of a maximum spectrum intensity. The result of CF SBP
analysis is presented in Fig. 3.5a in the form of a certified-found plot. Even for such
an idealistic situation, the points show noticeable scattering around the line of perfect
correlation (the 45-degree line). Relative errors for major elements (conc. >1%)
range between 0.1% and 10% and for minor elements (conc. <1%) between 1% and
40%. The errors are due to slightly inaccurate line decoupling, insufficient



compensation of self-absorption, and loss of information due to spectra denoising.
Relative standard deviations due to random noise are 1–10%.
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Fig. 3.5 (a) Results of CF SBP analysis using synthetic spectra of slag samples; (b) Certified-
found plot for real slag samples. Inset shows magnified lower parts of the plots. The solid lines in
both plots correspond to the ideal correlation between the certified and determined values. [Data in
(b) is courtesy by S. Eschlböck-Fuchs and J.D. Pedarnig from Johannes Kepler University in Linz,
Austria]

The picture becomes less optimistic when the SBP CF algorithm is applied to real
slag samples having the same concentrations as the synthetic samples; the result is
shown in Fig. 3.5b. The error in concentrations raises to 5–40% for major elements
and 40–80% for minor elements; the relative standard deviation increases to 5–20%
(in average). The same error margins for CF LIBS analysis of steel slag samples are
reported by Kolmhofer et al. [31].

This example demonstrates the typical margins for accuracy and precision of CF
analyses. The lower margins correspond to the ideal situation, in which spectra fully
correspond to the mathematical model of the CF method. For “real life” margins,
complications arise from the mismatch between the object (plasma) and its repre-
sentation (the model), measurement errors, and imprecise values of parameters taken
from spectral databases. The results of CF analysis also strongly depend on the type
of a sample, excitation and light collection conditions, and correct choice of analyti-
cal lines. Even though remarkably good results are often reported in the literature for
SBP or BP CF LIBS, it will not be an exaggeration to say that quantitative analysis
by this method is possible mainly for concentrations at a percentage or higher levels.
For lower concentrations, the results are mainly semi-quantitative where
uncertainties may reach a hundred or hundreds of percent. Several reasons for that
are given in the next section.

The overall performance of BP or SBP CF analyses of elements in various
samples can be judged from Table 3.5. where the literature data are collected and
split into groups depending on concentrations of elements analyzed. One group
represents errors in the determination of major elements with concentrations above
1% and the other errors in the determination of minor elements with concentrations
below 1%. Errors within each group are determined by
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Table 3.5 Percent error of determinations of major and minor elements (bold font) in different
samples by CF LIBS. Shown in parentheses are the numbers of elements analyzed within each
concentration group

Sample δ major elements δ minor elements Reference

Aluminum alloys 19 (2) 8 (5) [6]

10 (4) 25 (3) [32]

8 (3) -- [33]

4 (7) 42 (1) [34]

Bronzes and copper alloys 7 (9) 48 (10) [35]

26 (17) 116 (2) [36]

12 (4) -- [37]

Steel, iron-based alloys 6 (13) 69 (1) [9]

Precious alloys 2 (13) -- [38]

Soils and rocks 16 (18) 14 (14) [39]

11 (7) 61 (4) [40]

2 (4) 2 (6) [41]

Meteorites 7 (14) 18 (6) [42]

Corals 1 (1) 12 (5) [43]

δ ¼ 100
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
Ci �Mi

Ci

�2
vuut ð3:31Þ

where N is the number of elements in this group and Ci and Mi are the certified and
found concentration, correspondingly. One sees that in general, errors are signifi-
cantly higher for small concentrations than for large ones, sometimes even
exceeding 100%.

3.2.7.1 Sources of Errors in BP (SBP) Method
A laser-induced plasma is a dynamic event; both the plasma temperature and
electron density decrease nearly exponentially in time. If data are collected with a
long- or non-gated detector, the plasma temperature will rapidly change within the
observation time and no definite temperature can be assigned to the plasma. There-
fore, the temperature retrieved from the slope of the BP or SBP will, in this case, be
some “effective temperature” that does not correspond to a physical plasma state.
This breaks the condition of stationarity and compromises the validity of the model
which requires well-defined values for both T and ne.

Another potential source of error when using improperly long acquisition gate
widths is associated with different behavior of ionic and atomic lines during
plasma evolution: when the plasma is hot, ionic lines dominate the spectrum;
when it cools down, atomic lines become stronger. This means that atomic and
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ionic portions of SBP may have different slopes and, correspondingly, yield
different temperatures. This also compromises the validity of the CF model.

Measurement error due to line self-absorption, even though this effect might have
been corrected, is another important source of error in CF LIBS [44].

Errors in measurements of the slit and spectral response functions as well as the
deconvolution procedure impose errors on results of CF analysis.

Not accounting for light collection geometry may also result in error. It is commonly
assumed that the radiation is collected along a single line of sight piercing the
plasma. The assumption is not justified for collection of light by a lens or optical
fiber from an extended plasma plume [45].

A good quality of a master BP (SBP) is crucial for accuracy of CF analysis because
the slopes of slave BPs (SBPs) reproduce the master slope. It is important to
construct the master BP (SBP) using lines of that specie, which dictates the
plasma properties; the y-intercept of a BP (SBP) built for this specie will
determine the overall accuracy of analysis.

In both BP and SBP methods, error comes from a summation of elemental
concentrations to 100%; this implies that small relative errors at high
concentrations transform into large relative errors at low concentrations.

Other sources of errors that affect results of CF LIBS analysis are considered in [32].

3.3 Monte Carlo LIBS

The MC LIBS method is based on matching synthetic and experimental plasma
spectra. The model assumes a uniform, isothermal, and stationary plasma, which, in
this case, does not need to be optically thin; which is a difference from the BP (SBP)
method. Another important difference is that errors on large and small
concentrations are not entangled as in the BP (SBP) method; they are independent.
Therefore, low concentrations can be determined with the same accuracy as high
concentrations. Besides, the MC approach does not require a deconvolution of
overlapped spectral lines or correction for self-absorption; these effects are automat-
ically accounted for at the stage of spectra generation. In the meantime, all
limitations due to imperfections of the mathematical model and correctness of
spectroscopic data remain the same.

3.3.1 Setting the Problem

As in the BP (SBP) method, the plasma is assumed to be isothermal and uniform at
local thermodynamic equilibrium (LTE) and is described by a set of Eqs. (3.1)–
(3.10). The goal of this approach is to generate a synthetic spectrum using Eq. (3.5)
and match it with an experimental spectrum by varying fitting parameters. The fitting
parameters are concentrations of species, plasma size, and plasma temperature. The
approach is calibration-free because it retrieves concentrations from spectral data
without using standards.
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A Monte Carlo (MC) algorithm minimizes a cost function that signifies the
difference between synthetic and experimental spectra. During the minimization,
physical parameters of the model (T, ni, ne) are varied and gradually approach the
analogous characteristics of the experimental plasma. After finding the minimum,
the sought-for parameters of the experimental plasma are read from the model.
Mathematically, the problem is expressed by [46]

f I , Ið Þ ¼ minD f I , Ið Þ½ �, D

¼
1013 	 ni cm�3½ � 	 1019, i ¼ 1::N

5000 	 T K½ � 	 20000

0:001 	 R cm½ � 	 0:1

8><
>:

9>=
>; ð3:32Þ

where f(Iex, Isyn) is the cost function to be minimized; Iex and Isyn are the experimen-
tal and synthetic spectra (dependency of Iex and Isyn upon λ, ni, T is omitted), andD is
the (N + 2)-dimensional search domain, where N is the number of chemical elements
considered in the model. The absolute value of the cost function is a measure of
adequacy of the model for the description of experimental plasma.

3.3.2 Cost Function

A cost function can be any suitable metric that is sensitive to a difference between
two sets of data. For example, one can use a correlation coefficient for the construc-
tion of the cost function

f C Iex, Isynð Þ ¼ 1� Iexi � Iex Ii � IsynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Iexi � Iex
� �2P

Isyni � Isyn
� �2q ð3:33Þ

Here, Iexi and Isyni are the intensities of the experimental and synthetic spectra at
wavelengths λi and Iex and Isyn are their corresponding averages over a wavelength
range. Function (3.33) is sensitive to mutual positions and intensities of spectral lines
on two compared spectra and depends on the cosine of an angle between two vectors.
The vectors represent synthetic and experimental spectra in a multidimensional
space ℝM where M is the number of spectral points (λi, i ¼ 1. . .M ). If the vectors
are collinear, the two spectra perfectly match and fC(I

ex, Isyn) ¼ 0. The contribution
of an element to the cost function depends on its concentration and number of
spectral lines available for this element. To equalize contributions to the cost
function from all elements, weights wk are added in Eq. (3.33)
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f CW Iex, Isynð Þ ¼ 1

�

P
k
wk
PMk

Lk
Iexi � Iex
� �

Isyni � Isyn
� �

P
kwk
PMk

Lk
Iexi � Iex
� �2h i1=2 P

kwk
PMk

Lk
Isyni � Isyn
� 2

h 1=2

ð3:34Þ
To calculate wk, equal weights (W ) are first assigned to all elements regardless of

their concentrations. W ¼ 1/N with N being the number of elements. The contribu-
tion of each spectral line of a given element is then calculated based on the integral
intensity of this line divided by the sum of integral intensities of all lines belonging to
this element: wnpn ¼ W � ðSnpn=

P
pn
SnpnÞ, n ¼ 1, . . .N, pn ¼ 1 . . .Pn where Snpn is

the integral intensity of line pn of element n, and Pn is the number of lines available
for this element. The integral intensities of all lines are recovered from the experi-
mental spectrum. A full spectral grid is split into K spectral fragments so that Lk and
Mk, k ¼ 1, . . .K denote the lower and upper boundaries of a particular fragment k.
Each fragment may contain one or several lines of the same or different elements.
The weight of each fragment is then determined by a simple relation wk ¼P

n,pn
wnpnSnpn=

P
n,pn

Snpn .

3.3.3 Monte Carlo Algorithm

The appearance of graphics processing units (GPU) on the market dramatically
accelerated the execution of Monte Carlo algorithms by means of massive
parallelization of computational codes. One such algorithm is proposed in
[46]. Many initial random combinations (configurations), NC, of plasma parameters
(ni, T, and R) are taken from box D in Eq. (3.32) and used for the generation of NC

synthetic spectra. Each configuration is represented by a point in box D that has a
volume VD in a phase space of plasma parameters. Values of the cost function are
calculated for these initial configurations, and a smaller subsetNb of points (Nb�NC)
is chosen that corresponds to Nb smallest values of fCW(I

ex, Isyn). Boxes of smaller
volumes, V 1ð Þ

b < VD, are then built around each such point. In the next iteration step,
a fraction αNC of configurations is taken from the original box VD while another
fraction, (1 � α)NC, is taken from the smaller boxes V 1ð Þ

b , where 0 < α < 1. After
calculating the cost functions for the new set of configurations, new Nb points are
chosen for the smallest values of the cost function and new Nb boxes are built around
those points such that V 2ð Þ

b < V 1ð Þ
b < VD , and so on. As a result, a configuration is

found that yields the global minimum of the cost function avoiding the danger of
being trapped around some local minimum. The adjustable parameters of the
optimization are the total number of configurations NC, number of boxes Nb, rate
of reduction of volumes Vb, and fraction of configurations α taken from small, V jð Þ

b ,
and large, VD, boxes.
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3.3.4 Performance of MC LIBS

As with the BP (SBP) method, the inherent performance of the MC method can best
be demonstrated with synthetic spectra. In [47], a synthetic spectrum was generated
that contained 74 spectral lines from eight elements of a steel slag sample (their
concentrations are given in Table 3.6). Complicating effects imposed on the spec-
trum were the finite spectral resolution (84 pix/nm) and random Gaussian noise with
an amplitude of 0.05% of the maximum spectrum intensity. Treating these spectra as
experimental ones, the task is to reconstruct the composition of the sample by the
MC method and compare it with true values. The convergence of the MC algorithm
is illustrated in Fig. 3.6a. The algorithm scans six orders of magnitude in
concentrations, two orders in radii, and 10000 K range in temperatures. Starting
11 times from a random configuration, the cost function consistently converged to a
minimum value of 0.051 
 0.001. Running 50 iterations took ~5 min on the GPU
NVIDIA Tesla K40 examining 500000 configurations per iteration. The certified-
found correlation plot for the artificial slag sample is shown in Fig. 3.6b and the
corresponding accuracy and precision are provided in Table 3.6.

The points in Fig. 3.6b show a little scatter around a 45-degree line and Table 3.6
implies that the relative errors for major and minor elements are below 1% (except
for silicon). Relative standard deviations due to random noise and stochasticity of the
algorithm are always below 10%. Accuracy and precision are slightly worse for
elements represented by a small number of lines (e.g., only one line was used for Si)

Table 3.6 Accuracy and precision of MC analysis of artificial slag sample; % concentrations are
given below chemical symbols

Ca Al Mg Si Fe Mn Ti Cr

27.32 22.01 16.16 8.52 19.03 6.35 0.22 0.4

% Rel. Error 0.21 0.07 0.94 3.74 0.28 0.04 0.16 0.73

% RSD 0.73 1.28 2.15 4.0 1.56 1.79 1.72 7.43

Fig. 3.6 (a) Convergence of cost function with number of iterations for 11 runs with random
starting point; (b) Certified-found correlation plot for slag sample with synthetic spectrum; the x-
and y-scales are the number densities in cm�3. Unpublished results [47]



or weak lines (Cr in this example). Overall, the MC algorithm demonstrates better
accuracy and precision than the BP or SBP algorithm when working with synthetic
spectra. Also, the MC algorithm allows the determination of low concentrations with
the same accuracy and precision as high concentrations, thanks to the independent
character of errors.
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Fig. 3.7 (a) Certified-found correlation plot (upper panel) and relative errors (lower panel) of
MC-LIBS analysis; (b) Certified-found correlation plot (upper panel) and relative errors (lower
panel) of SBP CF-LIBS analysis. Adapted from [46]

Analysis of real samples by the MC algorithm does not, however, yield better
results than the BP (SBP) algorithm. An example of such an analysis is given in
[46]. LIBS spectra were obtained from 22 samples made of metal oxides CaO,
Fe2O3, MgO, and TiO2 and simulated steel slags. The comparative results for MC
and SBP analyses are given in Fig. 3.7.

This example shows that the accuracy of MC- and CF-LIBS methods is similar
for this type of samples. More precisely, the maximum relative errors of MC
(as compared to CF) LIBS are 25% (30%) for CaO, 65% (45%) for Fe2O3, and
75% (65%) for MgO. For TiO2, whose concentrations are lower than concentrations
of other oxides, the prediction errors increase to 90% (80%). The relative errors of
MC and CF LIBS analyses correlate on a sample-to-sample basis. Factors affecting
the accuracy and precision of both calibration-free methods are, presumably, the
matrix effect and non-stoichiometric ablation, sample inhomogeneity, and shot-to-
shot fluctuations of emission signals. Another head-to-head comparison of MC- and
CF-LIBS has been done by Herrera et al. [48] on the example of analysis of
aluminum samples under vacuum conditions. Based on the relative error of analysis
it was concluded that the results from both approaches fall into the semi-quantitative
category with 30–200% relative error. This study revealed that under vacuum



conditions the model of uniform isothermal plasma is unsuitable for calibration-free
analysis by either BP (SBP) or MC methods.
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When comparing the advantages and disadvantages of the BP (SBP) and MC
calibration-free approaches, the following can be emphasized. The CF LIBS method
cannot be made a fully automated algorithm; it is a highly user-dependent technique,
which requires proficiency in identification of suitable spectral lines. It heavily relies
on the quality of the master BP (SBP) and ability of the algorithm to reduce the
effects of self-absorption and correctly retrieve plasma temperature and electron
density. The MC-LIBS approach, on the other hand, although more intricate in the
formulation and stochastic, is less user-involved and can be fully automated. On the
negative side, the Monte Carlo optimization may take more time to process a
spectrum; from several minutes to tens of minutes depending on the type of a
CPU or GPU used and number of elemental concentrations to be iterated. Both
methods require knowledge of relevant spectroscopic and physical parameters for all
species involved in the calculations. In general, performance of both methods is
inferior to that of calibration-based analysis, mainly because of the limitations
imposed on the underlying plasma models. The methods are best suited for
applications, in which standard-based analysis is not feasible and requirements for
accuracy and precision are relaxed.

3.4 Other Calibration-Free Methods

Over the years, several modifications of CF LIBS were proposed, all based on the
model of a uniform isothermal plasma at local thermodynamic equilibrium (LTE).
An algorithm was developed with special attention to plasma uniformity and optical
thinness for CF LIBS analysis of steel slags and other industrial materials
[11, 49]. The effects of non-uniformity of laser-induced plasma on plasma tempera-
ture and concentrations determined by the BP method were analyzed in [50]. An
attempt to account for plasma gradients was made in [51] by assuming two-zone
plasma, each zone at its own density and temperature. A heuristic two-shell plasma
model was developed in [52] to study the influence of plasma non-uniformity on
emission spectra and geometric effects. An approach was proposed to find
concentrations of analytes by matching experimental and synthetic spectra [53].

3.4.1 Spectrum-Matching Algorithms

An automatic method for standard-less LIBS was developed in [53] that allowed for
rapid multi-element analysis without using the Boltzmann plot. The plasma spec-
trum was represented by a system of simultaneous algebraic equations

x1I1 λkð Þ þ x2I2 λkð Þþ: . . .þ xnIn λkð Þ ¼ e λkð Þ ð3:35Þ
which formed an overdetermined system
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Fig. 3.8 Correlation between
certified and found
concentrations in mineral
samples (andesites, dacites,
and scarns). Data from [53]

I1 λ1ð Þ I2 λ1ð Þ . . . In λ1ð Þ
⋯
I1 λp
� �

I2 λp
� �

. . . In λp
� �B@ CA �

x1
. . .

xn

B@ CA ¼
e λ1ð Þ
⋯
e λp
� �B@ CA ð3:36Þ

where Ii(λk) is the intensity calculated via Eq. (3.5), n is the number of species,
k ¼ 1. . .p, p � n is the number of detector pixels, and x1. . .xn are the coefficients
proportional to number densities of species. This system was solved by a singular
value decomposition algorithm and concentrations ci of the analyzed species were
found from the condition of summing all the concentrations to unity

1=Fð Þ �
X

i
xi ¼

X
i
ci ¼ 1 ð3:37Þ

where F is the constant parameter that accounts for the optical efficiency of the
collection system and plasma density and volume.

This method shows faster convergence than the MC method but, due to condition
(3.37), it is still prone to the same problem as the BP (SBP) method: small errors on
large concentrations impose large errors on small concentrations. The performance
of the method is illustrated by Fig. 3.8 on the example of analysis of minerals
[53]. Five elements in six mineral samples were determined at the percentage level of
concentrations, with 10–40% errors for high concentrations (>10%) and higher
errors of 25–50% (sometimes even >100%), for lower concentrations (0.1–10%).

3.4.2 Single-Standard Calibration Algorithms

With the intention of improving the performance of CF LIBS, some techniques
combining CF LIBS and one-point calibration have also been proposed. These
techniques, although technically do employ a calibration standard, are still closer



to CF techniques than to conventional calibration techniques because in the end they
can provide concentrations for elements without constructing a calibration curve. It
is also worth mentioning that providing a single standard with a matrix like other
samples is a requirement that can usually be met even in the analytically most
challenging cases.
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3.4.2.1 Inverse CF LIBS
The single-standard inverse CF LIBS technique was developed in [54], in which a
certified sample was used to determine the plasma temperature by iterating its value
and minimizing the relative error between the certified ccerti and calculated ci
concentrations

Δwi Tð Þ ¼ ccerti � ci Tð Þ�� ��
ccerti

ð3:38Þ

The concentration of element i is calculated by using

ci Tð Þ ¼ niMi=
X

j
njMj ð3:39Þ

where nj and Mj are the number densities and atomic masses, correspondingly. The
number densities are calculated via Eqs. (3.10) and (3.13) and the mass conservation
equation nj ¼ n0j þ nþj , where n0j and nþj are the number densities of neutral and
ionized species, respectively. Hence essentially, the standard is used to train the CF
algorithm to give the most accurate estimates of elemental concentrations in the
standard and then, assuming the same plasma temperature, CF analysis can be
extended to other similar samples and/or elements.

In this method, scaling factor F, which is present in Eq. (3.17), is unnecessary
because it cancels out upon taking the ratio in expression (3.39). In contrast to BP
(or SBP), this approach allows using a single line per element, provided the line is
well chosen. Oppositely, it can be used to preselect lines that yield the most accurate
estimate of concentrations in the standard. The method has shown a satisfactory
agreement with results of full calibration-based analysis when applied to
archeological samples [54]. Its limitation though could be in imposing the tempera-
ture determined with the certified sample to other samples with unknown
concentrations.

3.4.2.2 One-Point Calibration LIBS
One-point calibration LIBS (OPC-LIBS) was developed in [55]. The idea of this is to
correct each point on the BP by an additive factor, which is determined from the BP
constructed for a sample with known concentrations. The algorithm is as follows.
First, the traditional CF method, Eqs. (3.10)–(3.19), is applied to a standard sample
to retrieve approximate concentrations cs from the BP intercepts at Ei ¼ 0; the
subscript s ¼ 1. . .n enumerates elements. Second, a correction
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y0 ¼ yþ Δy ð3:40Þ
is applied to all initial points y on the Boltzmann plane using relations derived based
on Eqs. (3.10)–(3.11)

ys λið Þ ¼ ln
Is λið Þ
Ps λið Þ
� 	

¼ ln
cs
Us

� �
� E λið Þ

kT

y0s λið Þ ¼ ln
Is λið Þ
P0
s λið Þ

� 	
¼ ln

c0s
Us

� �
� E λið Þ

kT

ð3:41Þ

Here, c0s are the certified concentrations, E(λi) is the upper energy of the atomic
transition with wavelength λi, and Ps(λi) ¼ F(λi)Aigi and P0

s λið Þ ¼ F0 λið ÞAigi are the
numeric factors for the original and corrected BPs, correspondingly. Symbols F(λi),
Ai and gi stand for the numerical factor accounting for the path length and collection
efficiency, transition probability, and degeneracy of the upper transition state,
respectively. Obviously,

Δys λið Þ ¼ y0s λið Þ � ys λið Þ ¼ ln c0=cð Þ ð3:42Þ
and the numeric factor for the “true” BP, which yields correct concentrations in the
certified sample is found from the relation (3.41)

P0
s λið Þ ¼ Ps λið Þe�Δys λið Þ ð3:43Þ

Finally, this factor is applied to correct all points on the Boltzmann plots, which
are constructed for unknown samples

y00s λið Þ ¼ ln
I 00s λið Þ
P0
s λið Þ

� 	
ð3:44Þ

where I 00s λið Þ is the integral intensity of the line with central wavelength λi of element
s from the unknown sample. The application of the OPC-LIBS procedure to the
analysis of five bronze samples, four of which were treated as unknowns, yielded a
close agreement with the nominal concentrations (Fig. 3.9).

The advantage of this technique is that it disregards possible inaccuracies in
transition probabilities thanks to combining factor F and product gA into factor P.
This factor is found empirically using the standard sample, which, however, still
needs to be compositionally close to analyzed samples to avoid matrix effects as
much as possible.
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Fig. 3.9 Comparison of the concentrations calculated by OPC-LIBS (stars) and by conventional
LIBS (squares) vs. the known concentrations. Inset shows the magnified low concentration range.
Data adapted from [55]

3.4.2.3 C-Sigma Technique
The C-Sigma single-point calibration technique by Aragón and Aguilera [56, 57]
employs a generalized curve-of-growth approach that embraces lines of various
elements at different concentrations. The optical density κλl in Eq. (3.5), which
describes the uniform isothermal plasma at LTE, is factorized into several terms
and the whole equation is integrated over the line profile

W ¼ B

Z
Line

1� e�κλ λð Þl
� �

dλ ¼ B

Z
Line

1� e�Csk
zð Þ
s r zð Þ

s NlVs,j λð Þ
�

dλ ð3:45Þ

Here, B is the blackbody function (3.8) that assumes no λ-dependence across the
line profile, Cs is the mole concentration of specie s, N is the total number density of
all species in the plasma, l is the pathlength, and Vs(λ) is the Voigt profile function for
transition i ! k of element s with a unit integral. Factors r zð Þ

s relate the total number
density of element s to the number densities of its atomic (n0s ) and ionic (nþs )
components
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r0s ¼
n0s
ns

¼ 1
Sþ 1

rþs ¼ nþs
ns

¼ S
Sþ 1

ð3:46Þ

where S ¼ 2Uþ
s

neU0
s

2πmekT
h2

3=2
e�

χs�Δχ
kT is the term in the Saha Eq. (3.13). It follows from

(3.46) that n zð Þ
s ¼ nsr zð Þ

s . Factors k zð Þ
s in (3.45) stand for the wavelength- and

concentration-independent term in the absorption coefficient, κλ λð Þ ¼ k zð Þ
s n zð Þ

s Vs λð Þ,
corrected for stimulated emission

k zð Þ
s ¼ e2λ20

4ε0mec2
f ik

gie
�Ei=kT

U zð Þ
s

1� e�
Ek�Ei
kT

� �
ð3:47Þ

Here, me and e are the elementary mass and charge, ε0 is the permittivity of free
space, fik is the oscillator strength, Ek and Ei are the upper and lower energies of a
transition with central wavelength λ0, and gi is the degeneracy of the lower transition
state. A graph of W/B versus product Csk

zð Þ
s r zð Þ

s produces a family of curves for
different values of damping parameter, a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ln 2ð Þp
ΔλL=ΔλD, on which the Voigt

function depends or, for that matter, for different values of Lorentzian widths ΔλL
assuming the Doppler width, ΔλD, to be constant. The authors of [56, 57] noticed
that after normalizing both the abscissa and the ordinate of this graph by ΔλL, the
family of curves merges into nearly a single graph.

Furthermore, the absorption coefficient is expressed via the absorption cross-
section, σs,i λð Þ ¼ κλ λð Þ=n zð Þ

s,i , where n
zð Þ
s,i is the number density of atoms absorbing at

transition i ! k, and the quantity k zð Þ
s r zð Þ

s =ΔλL is interpreted as the line absorption
cross section averaged over the line profile. For this to be true, a dubious condition
ns=n

zð Þ
s,i � 1 (i.e., all species of sort s are concentrated at the absorbing level i of

ionization state z) must be satisfied:

σl � σ zð Þ
s, i ¼

1
ΔλL Line

σ zð Þ
s,i λð Þdλ ¼ 1

ΔλL Line

κλ λð Þ
n zð Þ
s,i

dλ
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zð Þ
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ΔλLn
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� k zð Þ

s r zð Þ
s

ΔλL
ð3:48Þ

Strictly speaking, the expression 1
ΔλL Lineσ

zð Þ
s,i λð Þdλ represents the average absorp-

tion cross-section only if the integration is taken over the interval λ0 
 Δλ/2 and not
over the whole line profile. Then, in the optically thin limit, κλ(λ)l � 1, Eq. (3.45)
normalized by ΔλL yields

FðCsσlÞ � W
BΔλL

¼ Csk
ðzÞ
s rðzÞs Nl
ΔλL

Z
Line

Vs,jðλÞdλ ¼ Csσl Nl ð3:49Þ

The graph of W/BΔλL vs Csσl is dubbed a “C-Sigma” graph and because it is not
specific to an element, it can be considered as a multi-element calibration curve,



which is valid for different spectral lines of different elements under the assumption
of a weak-to-moderate self-absorption. The latter condition puts quite a severe
restriction on a choice of spectral lines that may be suitable for a C-Sigma analysis.
Unfortunately, the authors of [56, 57] do not provide an explicit form of function
F(Csσl) for the optically thick case.
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Fig. 3.10 Comparison of the
predictions of the one-point
calibration (OPC), calibration-
free inverse (CFI), and
C-Sigma (Cσ) techniques
versus the nominal
concentration of elements Cu,
Zn, and Sn in brass samples.
Adapted from [58]

The method suggests finding the plasma temperature from the linear part of the
C-Sigma graph (as with the conventional Boltzmann plot) and plasma electron
density from the Stark broadening of a suitable line via Eq. (3.16). Then, knowing
the concentrations, the cross-section σl is calculated via Eqs. (3.46–3.48) while the
unknown parameter Nl and the other, instrumental parameter (omitted in Eq. (3.45)
for simplicity) are calculated in an iterative manner by best fitting the calculated and
experimental entries in Eq. (3.49). Having just one standard, the unknown
parameters are determined from the Cσ-graph constructed for elements with
known concentrations and then, on a second step, the concentrations in unknown
samples are determined by adjusting the corresponding Cσ-values such that experi-
mental values of W/BΔλL hit the already known Cσ-graph.

3.4.2.4 Comparison of Single-Standard Techniques
A direct comparison of the three single-standard algorithms was performed in [58]
for the case of analysis of brass samples. It was found that the OPC technique
performs best with 15% average error against 19% error for the S-Sigma and 53%
error for the CF-inverse techniques. These results are graphically shown in Fig. 3.10.

3.5 Summary

Calibration-free algorithms compete with calibration-based ones; however, the latter
are usually more reliable and preferred if high accuracy and precision are needed.
Such the preference stems from the inherent deficiency of all calibration-free models,
which require the transient laser-induced plasma to be stationary, uniform,



isothermal, and not too dense optically. On the other hand, calibration-based models
also prescribe a certain type of a behavior to a calibration plot (e.g., linear or a curve-
of-growth type) that also may result in errors when interpolating points between
calibration grid points. In this respect, multivariate standard-based calibration
approaches, either linear or non-linear, can be more robust.
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Meanwhile, calibration-free algorithms have a high potential for further
development through the improvement of underlying plasma models. Considering
the ever-increasing computer power that becomes available every year (e.g., multi-
core multi-thread central processing units and powerful graphical processing units),
more complex models which describe a dynamic, non-uniform, optically thick
plasma, may become feasible to simulate. In this respect, direct stochastic methods,
like the Monte Carlo CF LIBS described above, can be very promising; partly
because they do not require solving ill-posed problems such as line deconvolution
or correction for self-absorption.

Very promising are also the methods with the use of a minimum number of
standards, one being the limit. Although not truly calibration-free, calibration with
just one standard significantly improves the results of CF LIBS analyses.
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Laser-induced breakdown spectroscopy (LIBS) has been around for about six
decades. Although in the early years it was more of a curiosity than an analytical
method due to some technical complications, but since the 1990s it has evolved and
spread slowly but steadily and by today it has become the established versatile and
powerful analytical method known by many spectroscopists. LIBS enjoys a strong
interest from not only researchers active in fundamental research, but also in many
industrial, medical, and other technical applications, some of which are very special.
Naturally, over the course of so many years, a lot of effort have been made, not
unsuccessfully, to improve the analytical performance of LIBS. This chapter is
dedicated to this progress as it attempts to briefly account for the main efforts and
current state of the art of LIBS analytical performance.

Needless to say that many of the fields touched upon are interrelated, e.g., signal
enhancement also supports achieving a better spatial resolution in elemental imaging
or lower limits of detection in quantitative analysis, and some improvements are
not specific to LIBS but are the products of an adaptation of technologies and
methodologies also employed in other spectroscopies. However, all these
improvements are seen as contributions toward the same goal: advancing analytical
LIBS spectroscopy and hence will be briefly covered in this chapter. Please note that
due to the large variety and abundant literature on related topics, only a description
of the general approaches and an outline of achievable best performance will be
provided, without attempting to be exhaustive. The focus is on typical LIBS systems
that use nanosecond duration laser pulses. The content of the chapter is organized
according to the main analytical merits of LIBS. Five of these characteristics are
discussed: signal enhancement (limits of detection), dynamic range, signal repeat-
ability and correction, spatial resolution, and measurement distance. The intention of
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the authors is to provide tentative information about the methodologies and the
overall performance. Readers interested in details are referred to specific reviews.
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4.1 Signal Enhancement (Limits of Detection)

Several physical approaches have been described in the literature which aim at the
improvement of the sensitivity of LIBS analysis by enhancing the analytical signal.
Of course, the final goal of these efforts is to improve the limits of detection, by
enhancing the signal-to-noise ratio (S/N). General overviews of these signal
enhancement approaches have been recently provided by Li et al. [1] and Fu et al.
[2]. A common aspect of all these techniques is that they either employ external
conditioning of the LIB plasma by some physical means, or convert the sample into
another phase or form that is easier to break down. Please note that simple sample
preconcentration approaches that are not LIBS-specific (e.g., enrichment of liquid
samples by extraction or partial evaporation) are not covered.

4.1.1 Plasma Conditioning by Means Other than Lasers

4.1.1.1 Ambient Gas
Most LIBS experiments are performed in air at atmospheric pressure for obvious
practical reasons, but the effect of the gas environment (ambient gas composition
and pressure) on the LIBS analytical signal has long been studied. This research has
been fueled by not only fundamental research interest but also by the needs of special
applications including, e.g., space exploration or monitoring of industrial equipment.

Results generally indicate that lowering the pressure of the surrounding gas, from
760 to a few Torr, usually increases the LIBS signals, improves the S/N, and
increases the resolution of the spectral features (as a result of less pressure and
Stark broadening of spectral lines), and less ablation debris is deposited around
craters, which can also contribute to a better spatial resolution in elemental imaging.
These advantageous effects are caused by the combination of several processes,
which can be best exploited by ns laser pulses. Lowering the pressure causes a higher
rate of plasma expansion, which in turn gives rise to less plasma shielding, resulting
in a significantly increased ablation rate and longer plasma lifetime. In terms of
ambient gas quality, mainly the use of nitrogen, oxygen, helium, argon, neon, and
carbon dioxide have been tested in the literature. These alternative ambient gases
have different thermal conductivity, ionization energy and produce different colli-
sion rates, thus strongly affect the ablation and excitation processes and the temporal
evolution of plasma. The use of noble gases have the added benefit of providing an
inert atmosphere which can help lowering spectral interferences (e.g., produced by
absorption of molecular gases forming in the ablation plume [3]). Although there is
some dispute in the LIBS literature with respect to what the most beneficial ambient
(or buffer) gas is, but generally argon and helium are the two most often proposed



gases. Typically LIBS signals are reported to be generally boosted by a factor of 2–5
in these noble gases; however, most recently a He/Ne/Ar mixture was reported to
provide as much as a factor of 9 improvement [4]. The downside of this approach is
that it necessitates the use of a gas-controlled ablation chamber, which complicates
the setup and its application is usually limited to smaller samples and the laboratory.
One workaround to this is the use of synchronized buffer gas jets to just flush the
sample surface when and where the laser pulse strikes [5]. A thematic review on the
topic was written by Effenberger and Scott [6].
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4.1.1.2 Sample Heating
A more or less obvious approach to increase the temperature of the LIB plasma and
hence the emission signals is to apply (contact) heating to the solid sample. This
increases the ablation rate as it lowers the ablation threshold, thus more laser pulse
energy will remain to heat the plasma. This approach can be employed only to
non-volatile (refractory) samples without risking a fractionation of elements. The
same reason also dictates that typically a maximum of a few hundred of degrees
sample temperature elevation can be used, which generally leads to a modest signal
enhancement of up to a factor of 5. The effect has been studied for different samples,
including but not limited to glasses [7], soils [8], and alloys [9, 10], and was found to
vary in magnitude from element to element.

4.1.1.3 Spatial Confinement
The spatial confinement of the LIB plasma is one of the simplest signal enhancement
techniques. In this approach, the plasma plume, and the shockwave that accompanies
it under ambient conditions, is not allowed to expand freely, but is constrained in a
semi-closed cavity with rigid walls. Parallel plates, hemispherical, cylindrical, and
rectangular cavity geometries have been tested [11–15], and the hemispherical one
was found to be optimal. The cavities can be made of different materials (e.g., quartz,
metal, PTFE), often with polished/reflective internal walls in order to facilitate light
collection, and typically have a few millimeters internal size. Under these conditions,
the expanding shockwave is reflected back from the wall of the cavity and its
pressure will perform work on the plasma (compresses it) thereby increasing its
temperature, which leads to signal enhancement, up to a factor of about 10. The
timing of the signal detection has to be carefully adjusted to match the timescale of
the effect, which is determined by the size of the cavity and the rate of propagation of
the shockwave. Relative signal enhancements usually can only be realized in the
μs integration time regime. On a related note, it is also hypothesized that when
multiple laser pulses are delivered to the sample in a regular LIBS experiment, e.g.,
in depth-resolved measurements, then the ablation crater itself also provides a
limited plasma confinement, thereby leading to some signal enhancement for later
coming pulses [16, 17]. In general, an easy-to-see nuisance with the confinement
signal enhancement approach is the necessity to clean the cavity after each trace
analysis.
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4.1.1.4 Magnetic Field
The application of an external magnetic field aligned with the surface normal exerts
Lorentz force on the movement of electrons and ions, which slows down plasma
expansion, causing a reduction of the volume of the plume (“magnetic confine-
ment”). This leads to an increased electron concentration, higher collision frequency,
higher plasma temperature, and eventually higher emission intensities. The magni-
tude of the effect scales with the strength of the magnetic field, thus it is usually done
using a field strength of at least 0.5–0.6 T. The easiest way to apply this signal
enhancement approach is to use a ring magnet, which is placed on the surface of the
solid sample, centered around the analytical spot. This comes with the added benefit
of providing both spatial confinement and magnetic field enhancement. The reported
overall signal enhancements amount to a factor of max. 6–8 for ionic lines (neutral
lines are less intensified) [18, 19], although as it was pointed out, this could, in
principle, be further enlarged by employing an even stronger static magnetic field or
by using a pulsed field [20, 21]. All in all, this signal enhancement approach is not
very practical, due to similar reasons as the ones outlined for spatial confinement,
although solenoid-based field application is theoretically possible. Problems with
field strength and orientation repeatabilities also do not help its application. It was
also reported that with ferroelectric samples, it may even produce decreased
signals [22].

4.1.1.5 Microwave Irradiation
The lifetime of the LIB plasma can be significantly increased, and its line emission
enhanced, if the plasma is exposed to microwave radiation as it can significantly
increase the rate of collisions mediated by electrons. This leads to a strong signal
enhancement if time-integrated detection is used and the gate width (integration
time) is adjusted accordingly. Studies on various solid samples and several elemental
as well as molecular analytes indicate that as much as one or two orders of magnitude
signal improvement can be achieved by this approach (e.g., [23–25]). Please note
that this, similarly to several other signal enhancement techniques, only translates to
a significantly smaller level of improvement in terms of limits of detection, as the
background (noise) is also enhanced. Recently it has been also shown that
microwave-assisted LIBS can also give rise to a decrease of self-absorption effects
thereby extending the dynamic range [26]. Obviously, adding a pulsed, focused kW
microwave generator to the LIBS setup largely complicates it, therefore this is one of
the less popular, although very effective, signal enhancement techniques. A way to
mitigate the associated technical nuisances was provided in a study by Tampo et al.
[27], who demonstrated that remote microwave-assisted LIBS analysis is also
possible, if a remotely operated, but sample-adjacent wired loop antenna delivers
the microwave pulse.

4.1.1.6 Electrical Discharge Assistance
A high voltage electrical discharge (spark) ignited between two electrodes through
the laser ablation plume in a LIBS experiment can also be employed to boost the
emission signal intensity. In this approach, the spark discharge powered by a high



voltage capacitor re-excites (heats further) the microplasma thereby elongating the
plasma lifetime and increasing the emission. For this effect to work, the operation of
the spark and laser have to be properly synchronized. As the onset of a spark
discharge alone is a random process, thus the practical realization of spark-assisted
LIBS requires a so-called laser-triggered spark gap, in which the formation of the
LIB plasma itself triggers the ignition of the spark discharge. The presence of
charged particles in the plasma significantly lowers the breakdown voltage of the
electrode gap, thus as soon as the LIB plasma on the sample is formed, the high
voltage discharge strikes [28]. An enhancement of up to two orders of magnitude in
the signal-to-noise ratio can be achieved this way. It was found that the signal
enhancement is greater for ionized species than for neutrals and the emission signal
also increased with the discharge voltage and laser fluences [29]. An effect of a
similar magnitude was also demonstrated to work in steady-state and pulsed glow
discharges [30], where the reduced pressure also contributes to the improvement of
performance.
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4.1.1.7 Utilization of Nanoparticles
Applying plasmonic (e.g., Ag or Au) nanoparticles (NPs) deposited on the surface of
a solid sample, or preparing a substrate with similar nanoparticles (or nanostructures)
and depositing and drying a liquid sample on top of it is another widely researched
approach for LIBS signal enhancement. This approach (nanoparticle-enhanced
LIBS, NELIBS) has been proposed de Giacomo et al. [31, 32] and his group is
also the most active and innovative in its application and in the exploration of the
underlying mechanism. It has been established so far that this way, under optimized
conditions, up to two orders of magnitude emission signal enhancement is possible
for solids (for liquids, the enhancement is smaller). The effect is attributed to
electromagnetic field enhancement due to the formation and coupling of surface
plasmons on the NPs formed upon the approach of the high-intensity laser pulse,
which in turn results in a higher sample ablation rate, higher plasma temperature, and
multiple plasma ignition points, which all contribute to the lowering of the detection
limit. It was also found that there is a certain optimum surface NP mass concentra-
tion and interparticle distance in order to facilitate the coupling of the surface
plasmons but to avoid their aggregation/stacking. Furthermore, the laser fluence
should also be kept low, so as to keep the NPs in play as long as possible during
ablation and to include as many as possible NPs in the process; as a result of this,
millimeter range spot sizes are often used in NELIBS.

It follows from the above that the proper NP deposition is a crucial step of the
technique, nevertheless, good results are claimed to be obtainable by a simple
sample preparation procedure (for solid samples), which involves the creation of a
large diameter, shallow crater in the substrate and then depositing a droplet of NP
suspension into the crater, followed by drying. The magnitude of the effect also
depends on the conductivity of the sample/substrate [33]. It is also worth mentioning
that nanostructured substrates (e.g., modified commercial SERS substrates) have
also been successfully used for liquid NELIBS analysis [34] and that most recently,
strong signal LIBS enhancement was also observed for gas samples which contained



NPs suspended in them [35]. Further information about the NELIBS approach can
also be found in Chap. 8 of this book.
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4.1.2 Plasma Conditioning by Additional Laser Pulses

4.1.2.1 Double-Pulse and Multi-Pulse LIBS
LIBS analytical signals can also be boosted if not only one but two coaxial laser
pulses, with some interpulse time delay between them, are used. According to this
concept, if the second pulse arrives within the lifetime of the plasma generated by the
first pulse, the second pulse will be efficiently absorbed by the plasma and rekindle
it, thereby increasing the emitted, time-integrated analytical intensities. Spectrum
acquisition usually starts after the arrival of the second pulse, with some delay. This
double-pulse LIBS (DP-LIBS) concept has been actually proposed quite early in the
development of LIBS [36, 37], but it could not be routinely realized for several
decades due to technical difficulties. Today, owing to the wide availability of
reliable, well synchronizable solid-state laser sources, DP-LIBS is a widely accepted
and used LIBS technique, which provides substantial (up to 50–60 times) enhance-
ment of signal intensities. This translates into at least an order of magnitude
reduction in the limits of detection. Improvements in the linear dynamic range
have also been observed.

Detailed studies revealed that the mechanism behind the signal enhancement is
usually not purely based on plasma reheating, but also on that (i) the second co-axial
laser pulse reaches the sample surface and causes sample ablation, thus contributing
with ablated matter to the plasma and (ii) the second laser pulse reaches a preheated
sample surface. Without going into much detail here, it is just worth mentioning that
laser parameters, especially pulse duration and laser wavelength but also pulse
energy ratios, are of paramount importance in DP-LIBS. This is due to the fact
that plasma laser heating was found to be proportional with λ3 and that plasma
lifetimes, and thus the required interpulse delays, are also orders of magnitude
shorter with, e.g., fs pulses than with the conventional ns pulses (nanoseconds
instead of microseconds). Some research even indicates that combining short second
pulses with exceptionally long first pulses (e.g., tens of μs or even ms) provides
specific advantages [38]. Details of DP-LIBS processes and technicalities can be
found in a large number of scientific papers, review papers and book chapters
dedicated to this technique (e.g., [39–42]).

DP-LIBS was found to be particularly useful in bulk liquid sample analysis or
when solid samples submerged in water are analyzed. The reason for this is that in a
liquid environment (mainly water), the formation of plasma with a single laser pulse
is largely hindered by the much lower compressibility and far better heat conductiv-
ity of a liquid than those of a surrounding gas atmosphere (e.g. air). This results in
substantially increased breakdown thresholds, shorter plasma lifetime, and lower
plasma temperature, not to mention the fluctuations in focusing and light collection
efficiencies of the setup caused by the liquid body. As a consequence of these effects,
the performance of conventional (single pulse) LIBS is largely hampered; which



manifests in poor LODs and large signal scatters. In the case of DP-LIBS, conditions
can be tuned so that the plasma can expand in the bubble of vapors generated by the
first pulse, thus the analytical performance will be significantly improved compared
to the single pulse case [43–45].
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Fig. 4.1 Common double-pulse LIBS (DP-LIBS) beam configurations. Numbers indicate the
order in which the pulses reach the sample

It is also worth mentioning that although colinear DP-LIBS is the most practical
and common, but other variants also exist and are used, mostly in fundamental
studies. These include the orthogonal and cross arrangements also seen in Fig. 4.1,
which all provide similar signal enhancement, but utilize different laser-sample and
laser–plasma interactions. The importance of the orthogonal pulse configuration is
that only one of the pulses is ablative. In the pre-heating configuration, the signal
enhancement is caused by the sample heating achieved by the first pulse, whereas in
the pre-ablative combination, the second pulse heats/breaks down the plume pro-
duced by the first pulse. The number of combinations, in terms of beam
configurations and laser parameters, is quite large, hence the DP-LIBS scene is
diverse.

Last, but not least, the multi-pulse LIBS (MP-LIBS) technique should also be
mentioned. This principally works by the same concept as collinear DP-LIBS, but
uses more than two pulses (e.g., up to 11) and a time-integrated detection across the
bursts of several laser pulses. This approach can achieve over an order of magnitude
lower limits of detection and several times better signal repeatability than DP-LIBS,
for spectral lines with small and medium excitation energy (<7 eV). The dynamic
range is also expanded substantially (the upper concentration level in some cases
even reaching 100%) by generating plasma conditions that reduce self-absorption.
The MP-LIBS approach was first proposed by Piepmeyer and Malmstadt [36], but
was only catching on onward from about 2000, and since then an increasing number
of studies have explored it (e.g., [46–49]). The technical appeals of the MP-LIBS
include that it has far more permitting synchronization criteria than DP-LIBS: it can
be done using an ms integration time CCD spectrometer and a free-running high
repetition rate laser (e.g., DPSS or fiber laser) or pulse bursts from a passively
Q-switched solid-state laser source.



108 G. Galbács et al.

4.1.2.2 Resonance-Enhanced LIBS
It is also possible to use plasma modification with a secondary pulse from a tunable
laser (e.g., dye laser) directed into the plasma plume in a colinear or near colinear
configuration. In this, so-called resonance-enhanced LIBS (RE-LIBS), approach, the
wavelength of the second pulse is tuned to a resonant atomic transition of one of the
large concentration matrix elements (e.g., Fe in a steel matrix, or Al in an aluminum
alloy, etc.), thereby generating an efficient plasma heating effect. A higher plasma
temperature then leads to an increased emission signal for the analytes. A factor of
about five signal enhancement was documented for several sample types. The
RE-LIBS approach was explored in detail almost exclusively by Cheung and
co-workers (e.g., [50–53]). In spite of its need for a costly and bulky additional
tunable laser source, the RE-LIBS has the obvious advantage over to the similar
LIBS-LIF (described in the next section) that it has multielement capability; in the
same matrix (e.g., range of alloy samples) several elements can be determined
without the need for re-tuning the laser.

4.1.2.3 LIBS-LIF
In some sense, the LIBS-laser induced fluorescence (LIBS-LIF) technique has a
similar premise to that of RE-LIBS in as much as a second laser pulse is used for
further excitation. An important difference is however that here the wavelength of
the second pulse is tuned to a transition of the analyte. The experimental setup
typically follows an orthogonal arrangement. It is important to see that the ablative
first pulse generates a plasma plume, which only provides the cloud of free analyte
atoms (e.g., the plume is an atom source), whereas excitation from the second laser
pulse generates laser-induced fluorescence. Hence the name, LIBS-LIF. The
approach has the flexibility that not only ground state atoms, but also excited ones
can be measured. The analytical capabilities of LIBS-LIF have been successfully
demonstrated in several configurations, for different sample types and analytes and
generally it was capable to produce sub-ppm limits of detection for various metallic
elements (e.g., [54–56]), which is at least a two orders of magnitude improvement
over SP-LIBS. This means that it is a highly effective signal enhancement approach;
however, it requires a bulky additional tunable laser source, and does not provide
multielement capability, as the secondary laser needs to be re-tuned for each and
every analyte.

4.1.3 Phase Conversion Approaches

Liquid samples are very common in analytical practice. They are easy to manipulate
in the laboratory (e.g., to homogenize, mix, dose, enrich, etc.) and are also the result
of many sample preparation steps in atomic spectroscopy, therefore their liquid LIBS
analysis has always been investigated extensively in the literature. The fact that
LIBS utilizes a focused laser beam with a focal spot size in the μm range, also
has moved the imagination of researchers, as theoretically offers microanalysis on
μL-range (or even nL-range) volume liquid samples. However, LODs in bulk liquid



sample analysis are hampered by conditions much more unfavorable for the forma-
tion of a laser-induced breakdown plasma in liquids than on solids, as it was briefly
alluded to above in Sect. 4.1.2.1. Consequently, intense research efforts have been
going into converting liquid samples to other, easier to analyze phases.
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Aerosol and liquid jet generation from liquids can be done by using nebulizers,
which are mature constructions widely used in atomic spectroscopy. This conversion
can help to boost LIBS liquid analysis, because the plasma can form on the surface of
liquid droplets or narrow streams, therefore the plasma formation and its expansion
can take place in air, under conditions more or less similar to solid samples.
Examples of the use of this approach are present widely in LIBS literature, e.g., in
refs. [57–60] or more recently in [61]. Significantly improved analytical perfor-
mance, compared to direct bulk liquid analysis, was achieved this way, however at
the expense of making the experimental setup cumbersome. It can also be mentioned
that a direct comparison of LIBS performance and practicality with conventional
atomic spectroscopy methods (e.g., ICP-OES, ICP-MS, GFAAS) in this approach is
the most difficult to avoid and in spite of all efforts, LIBS hardly ever comes out as
the winner from this comparison.

The conversion of liquids to solids is perhaps the most popular of all conversion
techniques, due to that it is temptingly simple. Many alternatives of this have been
successfully tested, including freezing (e.g., [62]), evaporation to dryness on a solid
substrate (e.g., [63–65]), adsorption and drying on a porous substrate like filter paper
[66, 67], electrospun fibers [68], wood pellets [69] or nanographite [70], and others,
as well as using a reagent to form a precipitate [71]. Along this idea, even seperation
or selective enrichment of metal ions via sorption on selective membranes have been
shown to be exploitable [72–74]. In all cases, the drying of the prepared substrate is
important, as the presence of water in solid samples (moisture) is well known to have
a signal suppression effect in LIBS [75–77].

However, these simple approaches have serious pitfalls that are very hard to
overcome if quantitative analysis is attempted. For example, a liquid droplet tends to
spread across the adsorbent/substrate by wetting or capillarity effects, thereby
producing an irregular spot (“coffee spot”) usually much larger in diameter than
the laser spot size. This does not promote quantitative sample ablation. To prevent
this spreading, the use of machined or laser-ablated small “pockets” (semi-spherical
pits with a diameter comparable to the laser spot diameter) in the substrate have been
proposed (e.g., [63, 64]) which incidentally may also act as a small cavity that can
contribute to the signal enhancement by providing spatial confinement. Another way
to mitigate this problem is the application of a hydrofobic coating on the substrate
prior to the droplet placement which, along with a gentle heating, can aggregate the
dissolved matter into a microscopic spot (e.g., [78, 79]). Spectral interference from
the substrate can still be a problem, but if not then it may be that the ablation depth is
smaller than the thickness of the deposit, which again stands in the way of quantita-
tion. Please also note that when the dissolved material precipitates upon the action of
drying then the compactness of the deposited material can be poorly reproducible
and the effect of the matrix on the ablation and signal generation process will be
huge. If the liquid to solid conversion is done in a way that, e.g., the substrate is



soaked in the solution sample then some of the above pitfalls can be avoided, but
other concerns spring forth instead; for example, whether the distribution of the
analyte will be homogenous across the substrate or not, or if the capacity of the
sorbent has been exceeded or not.
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4.1.4 Combination of Methods: Top Performance

Some of the signal enhancement approaches described above are more efficient than
others (e.g., NE-LIBS, DP/MP-LIBS, and LIBS-LIF have the greatest potential, as
they can provide an enhancement factor as large as 100 or more; however, the
improvement in detection limits is usually significantly lower than this). Although a
few of the physical signal enhancement approaches are technically mutually exclu-
sive, but logically their majority is available for a combination, thereby allowing a
top performance in terms of limits of detection (LOD). This is an appealing oppor-
tunity even though this brings about some loss of practicality—obviously, the
instrumental setup gets complicated, sometimes costlier, portability deteriorates
and in most of the cases it imposes limitations in terms of sample shape and size
(e.g., dictates the use of a chamber or cavity). Needless to say that the use of a noble
gas atmosphere and spatial confinement are the technically easiest to combine with
other methods, although they provide modest signal benefits alone. A lot of studies
have been described in the literature over the years which used the combination of
two or more techniques—these enabled bringing the LODs down into the ppb (μg/
kg, or μg/L) concentration range or even lower from the 10–100 ppm (mg/kg, mg/L)
levels of conventional LIBS, depending on the experimental setup, the analyte
element, the sample phase, the emission line detected, etc. Here, we only mention
one particularly successful combined approach as an illustration.

In 2017, Dong et al. reported about the ultrasensitive, ppt-level determination of
Cu and Cd in aqueous solutions by combining nanoparticle enhancement and
magnetic confinement [79]. A microscope slide glass substrate was uniformly coated
with superhydrophobic liquid agent mixed with a standard Au nanodispersion in an
optimized 10:1 ratio using spray coating. Microliter-volume droplets of liquid
samples could then be placed and dried onto this substrate and the coating kept the
content of the sample solution aggregated in a very small spot (ca. 200 μm),
comparable to the laser spot size, when dried. A ring magnet with a conical cavity
was then placed onto the substrate, centered around the sample spot. The ring
magnet was kept in place by having a ferrous metal plate underneath the glass
slide. The laser beam and light collection were uniaxial, along the surface normal of
the substrate. One hundred and fifty millijoule pulse energy from a 1064 nm Nd:
YAG laser was applied during the experiments. This approach provided a nearly five
orders of magnitude signal enhancement and good quality calibration curves in the
range from 20 ppt to 500 ppb. Signal normalization to the Au signal was also
employed as it helped to decrease the signal scatter to 7.3% RSD.

Table 4.1 provides an overview of the state-of-the-art LIBS limits of detection in
solid samples, the most common sample type. Due to the great differences in
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experimental conditions (e.g., setup, signal enhancement techniques, transition,
etc.), we have not made any attempts to normalize the data; they are only meant as
a compilation of the best-reported LOD values for each element and their references.
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As a final comment on signal enhancement approaches, it is worth mentioning
that most studies in the literature report enhancement factors and scarcely take the
trouble of assessing the LOD value (concentration), especially with solid samples.
The problem is that the enhancement factor is a relative figure of merit, therefore the
level of actual performance depends strongly on the reference. This makes the
comparison or the judgment of the absolute level of performance hard. For example,
it is well documented that high-time resolution detection using an Echelle spectro-
graph with an intensified CCD detector has a poorer signal-to-noise ratio than time
integrating detection with a spectrometer using a linear CCD detector. Thus the
optimized signal with the former detection scheme may be much lower than the
signal recorded with the latter, thus timing critical approaches may behave quite
differently depending on the detection scheme. Similarly, signal enhancement is
relatively easy to produce for liquid samples, where the conventional LIBS signal
reference is so small, but it does not always make the signal enhancement practical.
Last, but not least, bringing the LODs into the ultra-trace analytical range (ppb or
below) also means that sample preparation and measurement requirements will also
be harder due to the risk of sample contamination or analyte losses, which may cause
the loss of appeal of LIBS altogether.

4.2 Dynamic Range

The linear dynamic range of conventional LIBS measurements is generally around
three to four orders of magnitude, spanning roughly from a few ppm to a couple of %
concentations [125]. This already requires an optimization of data acquisition
parameters, such as a good choice of the spectral line of the analyte and the detection
gate delay and width [126, 127], as the transition from an optically thin to optically
thick (self-absorbing) plasma causes the calibration plots to level up. In general, a
sensitive analysis that can be characterized by a reasonably linear calibration plot
dictates the use of strong, but not resonance lines and short, around 1 μs gate delay
and gate width values (for nanosecond LIBS). The linear dynamic range can be
extended downwards with the application of a signal enhancement technique, that
lowers the limit of detection—see, for example, the most sensitive case with over
five orders of magnitude range secribed in Sect. 4.1.3. Upwards extension may also
be possible under special circumstances, such as in vacuum or when double- or
multi-pulse LIBS is used. Under these conditions, the reduced pressure (in DP-LIBS
it is present behind the outwards propagating shockwave generated by the first pulse)
suppresses self-absorption and successful linear calibration for certain elements and
transitions were demonstrated for up to some tens of % concentration with DP-LIBS.
Multi-pulse LIBS, which uses time-integrated signal detection for over several laser
pulses released in a burst, creates an even more special measurement condition,
which is superior from the point of view of dynamic range. MP-LIBS not only



lowers the limit of detection but also expands the upper linear concentration limit to
nearly 100% under favorable conditions. This allows for a dynamic range of at least
six orders of magnitude [48, 128, 129].
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4.3 Signal Repeatability and Correction

Conventional LIBS signals are known to have a quite high scatter; relative standard
deviations, based on five to ten repeated measurements, are two-digit % values in
most practical applications. This is due to that the signal formation in LIBS is very
sensitive to the fluctuation of laser parameters and to the micro-inhomogeneity of
samples. Unfortunately, signal scatter directly influences the achievable LOD
values, thereby limiting the detection performance. Some improvements in this
figure can, at the cost of practicality, be achieved statistically, e.g., by performing
a large number (e.g., several hundreds) of repeated measurements.

Matrix effects, especially for solid samples, also hamper LIBS performance—
similarly to other solid sampling analytical methods. Signal suppression caused by
the sample matrix (or rather the differences between any calibration standards and
samples in this regard) will negatively influence the accuracy of the determination.
With the intention of correcting for such signal suppression, various calibration
methodologies have also been developed and/or tested for LIBS use (please see, e.g.,
Chap. 2 of this book). Some classical approaches useful to mitigate matrix effects,
which were developed for liquid samples (e.g., multiple standard addition) are
unfortunately quite difficult to apply for solid samples, the primary sample type
for LIBS.

Due to the above reasons, a lot of effort in the literature went into developing
signal normalization approaches, with the intention to improve the repeatability,
LODs, and accuracy of analysis, sometimes also characterized by the linearity of the
calibration plot (value of linear regression coefficient). Different reference signals
were derived for the purpose—here, we give a brief overview of the concept of the
most popular approaches. Please note that only those are covered which can be easily
implemented, thus variants that require exotic hardware components are not consid-
ered. Although the above quantitative issues also influence LIBS performance in
qualitative discrimination analysis, which alone employs extensive signal
preprocessing (e.g., scaling, data normalization, factorization, deconvolution, etc.),
but these are also not covered here as the focus is on those approaches that rely on a
reference signal related to a physical or material quantity. Readers interested in the
details of LIBS signal normalization are referred to reviews dedicated to the topic
[130–132].

4.3.1 Internal Standardization

The analytical signal from a sample component (internal standard), that is added to
or is present in all samples studied, is widely used as a reference signal in



spectroscopy. The underlying concept is the assumption that whatever fluctuation
affects the analyte signal will also influence the signal of the reference component.
This normalization technique was already applied in one of the very first LIBS
studies too, as early as in 1964 [133]. The internal standard element and the spectral
line chosen theoretically have to conform with several rules (e.g., similar evapora-
tion and ionization energies of elements, similar excitation energies and intensities
for the analyte and internal standard spectral line, etc.), which were discussed in
detail with respect to LIBS by, e.g., Hahn and Omenetto [125]. The fulfillment of
these selection rules is very difficult, and if it is also considered that standard
addition is complicated for solid samples which are the most typical samples in
LIBS analysis, one can conclude that internal standardization is not an ideal
approach to correct for signal fluctuations or matrix effects in LIBS.
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In spite of this, many studies reported the successful application of this technique,
usually by using an element already present in the sample at a reasonably high
concentration, such as Sr for Ca determination in an aqueous sample via the filter
paper preconcentration method [66], Fe for Ni and Cr determination in stainless steel
[133], C for the analysis of several trace elements in fresh vegetables [134], Ba for U
determination in barium-borosilicate samples [135], just to name a few. Spiking the
samples with a standard solution is less common, but was also successfully
demonstrated to work with, e.g., soft tissues [136] or for liquid samples followed
by liquid to solid conversion by freezing [137]. It has to be added though that the
researchers using internal standardization often follow a trial-and-error approach for
the selection of the standard element and spectral line [135, 138], with either the
linear correlation coefficient of the calibration plot or the signal repeatability as the
objective function. More recently, automatic algorithms for the selection of internal
standard lines have also been suggested [139, 140]. Nevertheless, the consensus is
that internal standardization can not be applied as a general strategy, but has to be
carefully tested under the specific conditions of the analysis.

4.3.2 Laser Pulse Energy

It is a well-known fact in LIBS that laser fluence (or pulse energy if, as usual, the spot
size is constant) directly influences the observed spectral intensities—higher fluence
generally means higher ablation rate and also higher spectral intensities up to a
certain level [141]. Higher pulse energy generally produces a higher temperature
plasma, which in turn generates higher emission intensities. This means that if the
laser pulse energy fluctuates in a LIBS experiment then it also affects the scatter of
the LIBS signal. The effect is stronger for lines of higher excitation potential (e.g.,
ionic vs. atomic lines) due to that the excited state population is more sensitive in the
former case to the plasma temperature. Pulsed Q-switched lasers usually have a
couple of RSD% pulse-to-pulse energy fluctuations. Consequently, the simple
approach to monitor the laser pulse energy during the experiments and to use it to
normalize the signal for improving on LIBS signal repeatability was suggested in the
literature several times. Unfortunately, the relationship between the laser fluence and



spectral intensities is usually not linear, and depends on the concentration of the
analyte, the transition (c.f. self-absorption effects), and the fluence. Thus, not
surprisingly, pulse energy normalization generates mixed results in terms of repeat-
ability improvement. For example, Yue et al. [142] found a factor of 5 improvement
for Mg ionic lines, but a factor of 3 deterioration for Mg atomic lines in aluminum
alloys. At the same time, Oh et al. [143] and Huang et al. [144] found no improve-
ment when pulse energy normalization was employed in slurry and alloy samples,
respectively. It can be concluded that laser pulse energy normalization is not a
reliable method.
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4.3.3 Total Emission

The total LIBS emission intensity, integrated over the full spectral window of the
spectrometer or recorded by a photodiode, was proposed as a reference for signal
correction for the first time by Bolger [145]. Body and Chadwick investigated the
approach in detail and found that there is a correlation between total emission and the
laser pulse energy [146]. This approach is easy to implement, although it produces
unconventionally small normalized analytical signals. In general, this approach was
found to be useful during the analysis of several sample types, including martian
rocks [147], soils [148] or alloys [149], for the improvement of the linearity of
calibration plots or for the correction of pulse-to-pulse signal variations.

4.3.4 Continuum Radiation

Signal normalization to the continuum background radiation, either derived from the
average measured intensity next to the analytical line or from the integral intensity
for the fitted full-spectrum background, was also proposed in the literature to
improve signal repeatability and calibration linearity. The concept was first
described by Xu et al. [150] and later adopted by many research groups with
mixed results (e.g., [151–154]). Although some studies demonstrated that there is
indeed a correlation between the continuum emission and the plasma density, and
the amount of emitters in the plasma [155], but fundamentals of the methodology
were later criticized and the lack of generalizability was declared from a theoretical
point of view [131, 132, 156]. Without going into details here and only considering
experimental conditions, it seems to be clear that usually the goal of LIBS signal
optimization is to minimize the background (continuum) emission and maximize the
analytical signal (improve S/N), thus relying on a signal normalization that employs
a very small reference signal is not really feasible. In addition to this, in the case of
complex samples and an insufficient spectrometer spectral resolution (in other
words: in real-world analytical situations) establishing this reference signal in the
pure form is also challenging.
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4.3.5 Acoustic Wave

The laser-induced breakdown of a solid in air (at atmospheric conditions) is known
to be accompanied by a snapping sound (acoustic wave), which is the result of the
ablated vapor causing a compression shock in the surrounding gas while traveling
away. At the same time, the recoil pressure caused by the ablation process will also
cause a transverse vibration of the solid that propagates along the surface. The
detection of this acoustic wave can be done by a microphone either placed in the
surrounding gas or by contacting the solid surface. The amplitude of the acoustic
waveform has been shown to be proportional to the ablated mass [157–159],
therefore was deemed to be useful as a reference signal for LIBS signal normaliza-
tion, if the experimental setup is sound-proofed properly.

Acoustic signal normalization was demonstrated to improve the linearity of LIBS
calibration plots (r2 > 0.98) and signal repeatability (reduced to below 9% RSD) for
various solid and liquid samples [160–162]; however, Cheung and Yeung also
pointed out that the acoustic signal has a strong laser fluence depedence due to
plasma shielding, which leads to the non-linear correlation function at high fluences
[160]. Further information on the acoustic waves generated in LIBS experiments can
be found in Chap. 11 of this book.

4.3.6 Plasma Parameters

One further possibility for signal normalization is the use of plasma diagnostic
parameters, such as the plasma temperature and electron density as reference signals.
It is based on the logical connection between plasma parameters and emission
characteristics. In studies following this normalization approach, plasma parameters
are derived from the LIBS emission spectra, using the classical Boltzmann and Saha
equations and assuming local thermodynamic equilibrium (LTE). Normalization
with plasma parameters was shown to reduce signal fluctuations and improve the
linearity of calibration curves in several studies [153, 163, 164]; however, it also
failed in some other cases [165]. Please note that calibration-free LIBS, which has
become very popular in certain applications in the past two decades, is directly based
on the application of plasma parameters to model plasma composition, therefore can
be considered to be a sibling of this normalization technique. With regards to this,
please see Chap. 3 of this book.

4.4 Spatial Resolution

Localized analysis of solid samples with high spatial resolution is a strong suit of
laser ablation techniques, LA-ICP-MS and LIBS alike. Elemental mapping (imag-
ing) of a solid sample is also strongly related to this topic. The best performance of
localized LIBS analysis is a complex issue, which not only relates to the laser and
optical setup but also the LOD that the specific application requires. On one hand, as



the analytical spot size is decreased, the laser power density delivered to the sample
surface increases (in an idealistic optical focusing system) which increases the
plasma temperature which in turn should help to increase the plasma emission, but
at the same time the amount of ablated matter (and analyte), which strongly
determines the signal, will decrease. In addition to this, as optical focusing systems
get more and more complicated in a pursuit of a tighter focal spot (e.g., beam
expansion, microscope objectives, etc.), more pulse energy is lost on the optical
elements. Below a couple of ten micrometers, the laser beam delivery optics usually
incorporate a pinhole, which also strongly contributes to the loss of pulse energy,
that further deteriorates the analytical signal. In addition to this, the diffraction limit
is also a function of the wavelength, thus the minimum spot size is also related to the
laser wavelength. On top of this, if the light collection optics is uniaxial with the laser
beam then further complications and signal losses can be expected due to the
complex requirements for the setup. If localized analysis is to be achieved in the
frameworks of elemental mapping, then further issues, related to the depth of focus,
sample positioning and data acquisition speed and more, also emerge. These and
other issues related to the spatial resolution of LIBS analysis are detailed in LIBS
reviews (e.g., [166, 167]) and some chapters of this and other LIBS books (e.g.,
Motto-Ros et al. [168]).

4 State-of-the-Art Analytical Performance 117

At present, the best spatial resolution widely used in LIBS is around 10 μm. It was
also demonstrated that the sub-micrometer range is also attainable, but this resolu-
tion usually already necessitates the use of some signal enhancement technique.
Efforts to improve the lateral resolution currently follow three, distinctly different
approaches. Micro-LIBS (μ-LIBS) setups employ nanosecond pulse duration UV
lasers with sub-mJ pulse energies and a microscope objective in order to keep the
diameter of ablation craters low, around a few micrometers (e.g., [169–171]).
Femtosecond LIBS setups can utilize the fast laser-matter interaction and produce
cleaner, smaller ablation craters. This comes at the cost of analytical sensitivity due
to the short lifetime of fs LIB plasmas and the lack of plasma shielding with
ultrashort laser pulses, but it produces craters in the micron or sub-micron range
[172]; the smallest analytical spot ever achieved was 450 nm [173]. The third
approach is called near-field enhancement (NFE-LIBS), in which a very sharp
metal tip (e.g., silver) is brought in close vicinity of the sample surface and
illuminated by a laser beam which generates a localized surface plasmon resonance
in the tip and strongly enhances the incident electromagnetic field. This results in a
great signal enhancement and sub-micrometer ablation craters with analytically
useful LIBS signals [174]. The inconvenience of the approach is that it works best
in vacuum and the tip material gets contaminated and may contribute to the sample
spectrum.

4.5 Measurement Distance

Laser spectroscopy techniques have the unique ability that the samples can be
interrogated from a distance, as the laser excitation beam has good directionality
and the emitted light can also be easily collected and transferred over a great



distance. LIBS is also part of this family, thus its quantitative and qualitative features
can also be utilized remotely, to the benefit of various special applications, including,
e.g., mining (prospecting), environmental or industrial monitoring, security, space
exploration, underwater archeology and more.
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Usually, LIBS measurements over a distance can be executed in one of two ways,
based on which these are grouped as remote or stand-off measurements [175]. In
remote LIBS analysis, breakdown-inducing laser light and plasma emission is
carried by long fiber optic cable(s) and focusing and collection optics are attached
to the far end of the fiber(s). Beam handling is easy, the distance can be quite long,
environmental effects have very little influence, but the performance is limited by the
damage threshold and Brillouin scattering of the fiber material, which restricts the
conveyable fluence. In the so-called stand-off analysis mode, both the laser and
emission beams are propagating in free space. This approach, which is the only
option in certain applications (which require the survey of unknown, distant
samples), has the drawback that the sample has to be in the line-of-sight. In addition
to this, light collection efficiency (sensitivity) strongly decreases with the distance
and environmental conditions (e.g., air turbulences, airborne dust, precipitate, etc.)
also have a great influence on the performance. Consequently, the distance in stand-
off LIBS is usually relatively modest (rarely more than a few tens of meters)
[176, 177]. At the same time, using ultrashort laser pulses (fs) and TW intensities
in stand-off LIBS has the benefit of exploiting the so-called filamentation effect,
which is the periodic self-focusing refraction and self-attenuating diffraction of a
laser beam propagating in a medium [178]. This can expand the operational distance
to hundreds of meters, the top value so far being 180 m [179]. In order to increase
sensitivity and hence the achievable distance, there also is a possibility to use the
double-pulse LIBS methodology with either the fiber optics remote analysis mode
(e.g., Fobar et al. [180]) or in the stand-off mode [181]. In the stand-off mode, the use
of spatial heterodyne detection [182] can also give a boost. It also has to be
mentioned that the challenge (and the sensitivity required) greatly differs in different
applications, ranging from the detection of a pure metal to the identification of
explosive traces.

In conclusion, the general state-of-the-art in LIBS mesurements over distance is
about a couple of hundreds of meters, which compares favorably to the performance
of other laser spectroscopies (e.g., Raman scattering or laser-induced fluorescence
spectroscopy) [176].
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Nanoparticles are used in the clinic as contrast agents [1], drug carriers (as Doxil
Caelyx [2], or Abraxane [3]), or theranostic agents gathering imaging and therapy
purposes (as AGuIX [4]). They are generally developed to overcome some
limitations of available active molecules, including inadequate stability, lack of
specific targeting, undesired toxicity, poor water solubility, or inappropriate distri-
bution profile. The administration routes of nanoparticles are varied, including the
conventional oral and systemic routes, but local and topical administrations also
occur.

Hence, their complete characterization is necessarily performed in animals before
reaching the clinic, similarly to any drug or contrast agent. Therefore, data about the
administration, distribution, metabolism, and elimination (together also called
ADME) are collected during these preclinical studies and all this information
relevant to the clinical trial is compiled in a regulatory Investigational Medicinal
Product Dossier (IMPD).

The investigation of ADME requires tracking the nanoparticle or its metabolites
once administered to an animal. One of the easier ways to track a compound in
animal studies could be to couple it with a contrast agent moiety, such as a
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fluorescent dye. However, any additional modification of the nanoparticle may alter
or change either its size or its charge, with a potential direct impact on the kinetics.
Accordingly, the collection of ADME information without chemical modification of
the nanoparticle is of major importance. In addition to radio-isotopic studies, ele-
mental imaging can also provide insightful data related to the distribution of the
nanoparticles at the organ level, but also about their pharmacokinetics and metabo-
lism. In this chapter, we will present an overview of the possibilities offered by LIBS
elemental imaging for such preclinical investigations.
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5.1 Experimental Set-up

To investigate biological samples using LIBS, the single shot ablation occurs in
general via a focused nanosecond laser pulse which ablates a few nanograms of
biological matter and excites it in the plasma plume. The light emitted by the plasma
is collected through optical fibers and analyzed by one or more spectrometers
(Fig. 5.1). The use of several spectrometers with specific spectral ranges allows

Fig. 5.1 LIBS set-up and representative emission of a sample containing boron. Adapted from
Motto-Ros V. et al. [5, 6]



the identification of various elements simultaneously. Complementary details about
LIBS instrumental set-up are described in more detail in a recent review [7].
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5.2 Sample Preparation and Endogenous Element Detection

Sample preparation is a key step and should be performed with particular attention to
ensure the quality of the measurements and the accuracy of the detected signal. The
first LIBS elemental imaging experiments on biological tissues were performed on
frozen sections with limited spatial resolution [5, 8, 9]. A major improvement has
been obtained when samples were embedded in rigid matrices such as epoxy resins
[10]. The benefit of this approach is twofold: the hardening of the sample improved
the resolution, and the pre-analytical steps of dehydration removed any residual
presence of water which improved sensitivity. Elemental images were obtained after
performing investigations directly on epoxy blocks [10] or on thin sections [11], and
allowed achieving high-spatial resolution (<10 μm) and the 3D-reconstruction of
entire organs after screening. Epoxy resin embedding is not the gold standard for
processing clinical samples, thus we started working on the elemental imaging of
paraffin-embedded specimens. As compared to epoxy, paraffin is soft and possesses
a very-low melting temperature. These two characteristics significantly alter the
achieved lateral resolution of the obtained elemental images; however, paraffin-
embedded samples could be very large in size (up to ca. 2 � 2 cm), and can be
analyzed with complementary techniques such as histology [12, 13]. An increase in
resolution was considered unachievable; however, a nano-laser probe double-pulse
system was used to detect the subcellular distribution of indium phosphide
nanoparticles within frozen single cells [14]. The InP nanoparticles were identified
by LIBS analysis at the main emission line of indium (In I 410.2 nm) and
co-localized with the lysosomal compartment. The analysis of subcellular organelles
with a submicrometric resolution (500 nm) with an absolute limit of detection
<20 fg/pulse is a breakthrough that paves the way for numerous applications in
biology. A full organ could be explored in reconstructed 3D analysis with the
imaging of consecutive and adjacent sections, or with another strategy consisting
of in-depth 3D profiling [11].

In order to clearly identify the biological matter, elements that are homogenously
distributed within the tissue could be used to evidence the shape and the main
structure of the sample, similarly to conventional histological analysis. Among the
endogenous elements used in this perspective, carbon [15], sodium [16, 17], calcium
[11], or phosphorus [12, 13, 18] may serve as background elements that will reveal
the general histology of the tissue. We consider phosphorous (P) as an ideal
candidate for imaging the tissue architecture, since its emission line at 213.61 nm
is devoid of interferences from other elements, but also because phosphorous is a
ubiquitous element present in the nucleus and in the membrane of every cell. As a
consequence, the imaging of phosphorous indirectly reflects the cell density of the
tissue. Using specific sample preparation, the main vascular network can also be
evidenced with the collection of iron signal that may reflect the iron contained in



hemoglobin in tissues that have not been cleared before LIBS analysis (Fig. 5.2)
[10, 19].
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Fig. 5.2 Multi-elemental image of a rat kidney after intravenous injection of Au NPs. Merged
image composed of the combination of three false color elemental images for Au (yellow), P (blue),
and Fe (red). These animal experiments were approved by the local ethics committee under
agreement A21231016EA. Taken from Spectroscopy, Volume 35, Issue 2, Pages: 34–40 with
permission from the MJH LIfe Sciences Group

5.3 Nanoparticle Tracking

The identification and the biological localization of metal-based nanoparticles have
been described at the organ scale as early as in 2012 [5]. The design of the
experiments may allow to observe the kinetics of distribution in a given organ
[17], the pharmacokinetic in the blood [20], or the presence of protein corona
[21]. In these two last examples, the LIBS analysis is performed directly on blood/
serum drops. Such chronologic pharmacokinetic studies are possible when tissue
sampling is performed at different time points after the administration of the metal-
based nanoparticles.

The analysis of the main organs of elimination, i.e., the liver and the kidneys, is
facilitated by the high local accumulation of the compounds (Fig. 5.3). Large
nanoparticles are predominantly eliminated by the liver route, while the smallest
(< 10 nm) or the degraded nanoparticles are eliminated through the renal route.
Chelating nanoparticles, as calcium-responsive contrast nanoparticles, were



evidenced in the cortex of the kidneys due to the transient local accumulation of the
nanoparticles in this organ, and this uptake was correlated to the MRI investigations
performed after intravenous administration of the nanoparticles [16].
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Fig. 5.3 Elemental images of a mouse kidney after intravenous injection of Gd-NPs, represented in
false color. The improvement of the image accuracy can be observed over time from 2011 to 2017,
together with the increased number of pixels. These animal experiments were approved by the local
ethics committee under personal agreements with L. Sancey

If, in addition to the detection of a single specific element of the nanoparticle, two
or more elements could be identified simultaneously, information about the metabo-
lism could also obtained [9, 10] As an example, the absence of metabolism (i.e.,
absence of degradation) has been evidenced in vivo for Gd/Si nanoparticles using
LIBS investigations in mouse kidneys, which has been confirmed by conventional
and complementary techniques, such as fluorescence imaging and mass
spectroscopy.

For oncology applications, the detection of the nanoparticle at the tumor site
could also be necessary for the optimization of the treatment schedule, and for
improving the evaluation of the anti-tumor effects of the treatment. In this perspec-
tive, the presence of metal nanoparticles has been observed in tumor sections to
objectivate the homogeneity of uptake within the tumor, using radiosensitizing
nanoparticles made of Gd [22] or Au [23, 24], or to evidence the localization of
the nanoparticle at the tumor site versus the healthy surrounding tissues, in the case
of LaF3:Ce nanomaterials [25]. However, not only metal-based nanoparticles can be
identified: low-Z metalloid compounds, such as boron (B)-containing
nanocomplexes can also be observed within tissues in general and within tumor
sections in particular. In the manuscript of Kalot et al., the authors reported the
benefits of using innovative boron-rich compounds for a specific type of radiother-
apy based on the activation of 10B isotopic activation by neutrons, also known as



boron neutron capture therapy (BNCT). After treatment and neutron exposure, the
tumors were collected for analysis, and the tumor sections were studied for the
presence of boron using LIBS, several days after the administration of 10B-enriched
compounds. LIBS results provided evidence of the long-term retention of boron-rich
compounds in tumors.
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The identification of nanomaterials could also be achieved in medical samples, in
formalin-fixed paraffin-embedded (FFPE) samples [26]. The FFPE embedding pro-
cedure is the gold standard procedure for fixing and preserving human tissues
collected for diagnostic purposes. It is performed in every hospital for most of the
biopsies, and it will advantageously allow the (immuno)-histological observation of
the samples. As LIBS investigation requires very low amounts of matter, we believe
that LIBS and histopathology analyses are complementary and should be used
together to strengthen the diagnosis for specific specimens and clinical cases for
which the elemental content could provide useful information to the clinician. Use of
this concept has been reported for skin samples. In different skin cancer types, LIBS
imaging revealed the heterogenous distribution of various endogenous elements in
the tumor itself, but also in its microenvironment [13]. In another study, LIBS
analysis of a subcutaneous granuloma revealed a very strong accumulation of Al
in the specimen. The medical applications of LIBS imaging are very wide and
include the analysis of local cutaneous reactions, pigmented lymph nodes, or
biopsies containing exogenous particles [12].

5.4 Conclusions

Elemental imaging is a very powerful tool for the preclinical investigation of
nanomaterials. When performed using LIBS, elemental imaging is a fast process
that requires moderate sample preparation. LIBS imaging is now operational for
working on any kind of tissue, but also on liquid droplets, at room temperature and
ambient atmosphere in most of the cases. More complex systems, using nanoparticle
enhancement [21, 27], or controlled temperature and atmosphere, may be necessary
to track nanoparticles at very low concentrations, especially in biological fluid
droplets, or when working with subcellular lateral resolution [14]. All these recent
efforts have pushed LIBS imaging technology and procedures to levels that may
bridge the gap between physics and biology laboratories, opening avenues for a
wider use of LIBS in biological preclinical studies.

Ethical Approval All animal experiments were performed in accordance with national legislation
and European guidelines, and with the approval of the institutional and national (“Ministère de
l’Enseignement Supérieure et de la Recherche”) animal ethics committees (#A21231016EA and
APAFIS #00473.01_B691230303).
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Imaging of Biological Tissues 6
Pavel Pořízka, Pavlína Modlitbová, and Jozef Kaiser

6.1 Introduction

Investigation of biological samples relies on state-of-the-art instrumentation
providing high performance namely in terms of sensitivity and spatial resolution.
Optical microscopy is often complemented with other techniques to reach a more
complex understanding of investigated phenomena. For those purposes, techniques
of analytical chemistry are beneficially used to assess the elemental and molecular
composition. The persisting trend in the development of instrumentation and meth-
odology drives away from the direct analysis of sample bulk. However, the bulk
chemical analysis through wet chemistry brings the main limitation. The necessity of
acid digestion of the sample results in the loss of valuable information about the
distribution of elemental/molecular content within the sample.

It has been repeatedly proven that individual diseases manifest themselves also in
a significant change in the chemical composition of bodily fluids or tissues [1]. Fac-
tual localization of the local singularities in chemical composition and its correlation
with changes and degradation of cells is necessary. Providing chemical information
with a cell-level resolution is a goal of the spectroscopic community that will have a
significant impact on the understanding of disease initiation and proliferation
throughout the tissue. Thus, the detection of abundance/deficiency of individual
elements/molecules is of paramount interest to biologists. Finally, it must be stressed
that in this chapter we restrict our interest to biological tissues, namely soft and hard/
calcified tissues. Obviously, imaging the distribution of elements within other
biological tissues also found numerous applications that are briefly mentioned and
reviewed as well.

Lasers have a broad range of use for therapy and diagnostics of biological tissues
[2] with extensions to various medical fields (e.g., dentistry, surgery, dermatology)
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[3]. The laser-tissue interaction is a well-investigated phenomenon in individual
applications for which the laser parameters (e.g., laser wavelength, pulse energy, and
duration) are optimized [4]. For diagnostic purposes, the laser parameters are varied
to the point when they induce desired characteristic response from the investigated
tissues. Determination of elemental composition within the laser spot region
demands increasing the laser irradiance over the ablation threshold to reach break-
down and plasma formation (GW/cm2). Laser ablation is, thus, used for material
sampling and its characterization is done through the optical emission spectroscopy
of laser-induced plasma (LIP) radiation. Pulsed ablation of tissues is well-described
in classic literature [5] and will be dissected further in the text.
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Laser ablation is typically coupled with optical emission spectroscopy or mass
spectrometry while qualitative and quantitative elemental analysis of a sample is
obtained. The laser ablation inductively coupled plasma optical emission spectros-
copy and mass spectrometry (LA-ICP-OES/MS) is the gold standard in terms of
imaging and, thus, the main representative among other techniques of the field in
analytical spectroscopy. However, laser-induced breakdown spectroscopy (LIBS)
proved to be a suitable alternative due to recent advances in instrumentation and
methodology.

LIBS has established its position among other techniques due to its supreme
sample throughput and related laser pulse repetition rate. Here we consider the
repetition rate as the main benefit of LIBS providing a high number of analyses
(spectra) per unit time. Moreover, the LIBS analysis takes a fraction of time also with
more robust and less complicated instrumentation when compared to LA-ICP-OES/
MS. This makes LIBS a suitable candidate for deployment in various applications
with a potential for in-situ analysis of plants and even direct analysis during surgery
[6, 7].

The implementation of LIBS to the analysis of various biological samples
increasingly attracts attention. Moreover, recent advances have led to promising
results in medical and clinical applications which have been a rapidly expanding
field since the beginning of this decade (see Sect. 6.4). In general, LIBS provides
information about organogenic (e.g., C, O, H, N, P) and macro nutrient elements
(e.g., Ca, Mg, K, Na) while lacking considerable sensitivity to reach some biologi-
cally relevant minor and trace elements (e.g., Zn, Cu). This analytical performance
predetermines LIBS as a complementary technique to LA-ICP-MS which in turn
excels in the detection of traces. Their joint utilization has already been studied in the
case of bio-tissues, e.g., plants [8], hard tissues (animal teeth) [9], and soft tissues
(human tumors) [10]. However, LA-ICP-OES/MS techniques are considered to be a
reference to LIBS, which is a contrast to their joint use. Despite that paradox, LA-
ICP-related publications provide a vital source of inspiration for further development
of LIBS instrumentation and methodology [1, 11–15].

In this chapter, we will focus primarily on the elemental analysis of biological
samples (soft and hard/calcified tissues) when the mapping of large-scale areas is
involved. Hence, we will refer to the elemental mapping of biological sample surface
as the so-called elemental bioimaging or just imaging in a broader sense. Also, LIBS
analysis of other biological tissues (namely plants) is briefly discussed with related



literature. The description of LIBS instrumentation and progress in analytical per-
formance is shown together with concepts of bioimaging (including 3D imaging),
and novel approaches to correlative imaging. Remarks on the parameters involved in
laser-tissue interaction and sample preparation are also given along with a broader
discussion. Then, good practices in data processing are listed in terms of sample
discrimination and quantification; basic univariate and advanced multivariate
(chemometrics and machine learning) algorithms are mentioned. Finally, imaging
of animal and human tissues is dissected with the vision to medical/clinical
applications. The chapter is concluded with hints of future perspectives and trends
in the development of the field of LIBS bioimaging.
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This chapter builds on existing results in current scientific literature. Thus, the
reader is referred to respective bioimaging chapters in other LIBS reviews [3, 16–
19]. Other literature sources related to the fundamentals of LIBS and its broad
applications [20–24], laser-tissue interaction [4, 5], and the use of lasers in medical
and clinical applications [2] are also recommended for further reading.

6.2 Laser Ablation of Tissues

6.2.1 Laser Parameters Involved in the Ablation of Tissues

In this chapter, we do not intend to describe the mechanisms of laser-tissue interac-
tion and consequent laser ablation in detail. Presented review was collected from
LIBS-related literature and summarizes selected results and conclusions. Moreover,
the reader is referred to a more extensive description in other publications [2, 4, 5]. If
not stated otherwise, those references were primarily used in this section.

Naturally, the quality of laser-tissue interaction is determined by optical
properties of involved soft/hard tissue and the parameters of the laser radiation.
First, the composition of soft tissues is dominated by water (50–95%), collagen,
hemoglobin, and melanin. Second, hard tissues are composed namely from hydroxy-
apatite (~96%), and water. From the optical point of view, the wavelength-
dependent absorption coefficient of listed building materials is the most important
parameter [5] as shown in Fig. 6.1 for the case of soft tissues. Refer to [4] for the
absorption coefficient of hydroxyapatite (hard tissues). It is presented as the most
critical property to sustain an optimal energy deposition and desired tissue ablation.

The absorption coefficient is of interest to LIBS in three ranges (UV, VIS, and IR)
which relate the material properties with the laser source used for ablation. A Nd:
YAG laser generating ns laser pulses on fundamental and harmonic wavelengths
(1064, 532, and 266 nm) is typically used for this task in LIBS. In general, the
absorption of listed tissue compounds is the lowest in IR range and rises in the UV
(Fig. 6.1). This includes the case of hydroxyapatite which is not shown in this figure.
Water, an important component of soft tissues, has a high increase in the absorption
coefficient in the UV and IR ranges, which corresponds to fundamental (1064 nm)
and fourth harmonic (266 nm) wavelengths of Nd:YAG. Melanin, dominating
chromophore in pigmented tissues (e.g., skin), has a high absorption coefficient in



VIS range where Nd:YAG laser operates on its second harmonic wavelength
(532 nm). Thus, the selection of laser wavelength is a crucial step before LIBS
analysis.
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Fig. 6.1 Optical absorption coefficients for selected tissue compounds from 0.1 to 10 μm wave-
length range. Hb and HbO2 correspond to deoxygenated and oxygenated hemoglobin. Obtained
from [5] with no permission needed from ACS publications

Harmonics generation is an option to change the wavelength of a pulsed laser, but
it is a costly one and it leads to a significant decrease in the peak pulse power. It must
be stressed that higher energy is necessary also for the laser ablation with higher
harmonics, which is evident when printing relevant irradiances as a function of pulse
duration (Fig. 6.2). Selected references with a focus on soft tissues are listed in
Table 6.1. Contemporary state-of-the-art LIBS analysis of tissues is dominated by
the use of fundamental Nd:YAG wavelength. This is in contrast with the optical
absorption coefficients of individual tissue compounds. The fundamental and fourth
harmonic wavelengths of an ns-pulsed Nd:YAG laser (1064 vs 266 nm, respec-
tively) were compared in the ablation of murine kidneys [26]. The results of this
study pointed toward the advantageous use of 1064 nm for soft tissue ablation as it
provided more reproducible ablation and a tighter crater size. The authors suggested
that the reason for this was that tissue is transparent to IR radiation, so it is ablated
indirectly by the plasma generated on the substrate (150 μm thick cryo sections on a
glass slide). Moreover, the increased absorption of the tissue to UV can lead to a
broader collateral damage in a broader range. At the same time, the wavelengths of
an fs laser (343 and 1030 nm harmonic wavelengths) were selected for the LIBS



analysis of murine melanoma (40 μm thick sections on a silica substrate) [47]. Their
comparison showed similar results as those with the ns-laser ablation—UV wave-
length (343 nm) showed higher fluctuations due to inhomogeneity of the tissue and
IR wavelength (1030 nm) tended to ablate the tissue indirectly by the ablation of the
substrate. The comparison between fs and ns laser pulses is thus appealing for further
research while fs lasers are getting more and more affordable and thus are becoming
popular in the LIBS community.
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Fig. 6.2 Laser-tissue interaction in terms of pulse duration and irradiance. The circle roughly
indicates region of laser-induced plasmas (LIPs) on soft tissues with ns (1064, 532, 266 nm) and fs
(1030 and 515 nm) laser sources. Data points were collected from selected literature focused on
LIBS analysis of soft tissues. The zoomed region contains references to relevant publications from
Table 6.1. Other information on laser-tissue interaction can be found elsewhere [4]

Optimization of a LIBS system prior to the analysis is mandatory, however, the
optimization of pulse wavelength (UV, VIS, or IR) and pulse duration (fs, ps, and ns)
is rare due to complications in the instrumentation. On the other hand, optimization
of other experimental parameters (e.g., laser pulse energy, defocus) was discussed in
the majority of publications. There is a need for finding the right trade-off between
sensitivity and lateral resolution when balancing the amount of ablated material. To
achieve the best possible performance, several approaches based on finding the
highest signal-to-noise ratio (SNR) were suggested [27, 44]. The optimization in
these cases was mostly focusing on the feedback of selected analytes (in the sense of
SNR) and the shape and size of the ablation crater. It is advised to implement other
optical techniques (e.g., plasma imaging [51] and shadowgraphy [52]) also within
the parameter optimization pipeline.



Sample Pretreatment (nm) (ns) (GW/cm2) Ref.
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Table 6.1 List of selected publications with focus on the bioimaging of soft tissues or their
analysis in the focus. Data assigned with asterix were not directly given in the referred publication
and were estimated from existing information or from similar works of the related research group.
Selected publications are ordered from oldest to newest

Spot
Wavelength Duration size

(μm)
Irradiance

Murine kidney Cryo cutting 1064 5 50 152.9 [25]

Murine kidney Cryo cutting 1064 5 40 79.6 [26]

Murine kidney Epoxy resin 266 5 25 32.6 [27]

Murine kidney,
tumor

Cryo cutting 1064 5 50 40.8 [28]

Human tumor Cryo cutting 266 10* 40 171.2 [10]

Murine kidney Epoxy resin 266 5 10 203.8 [29]

Murine kidney Epoxy resin 1064 5 30 14.2 [30]

Murine tumor FFPE 1064 5 50 152.9 [31]

Murine tumor FFPE 1064 5 30* 141.5 [32]

Murine kidney Epoxy resin 1064 5 5 509.6 [33]

Skin, lungs, lymph
nodes

FFPE 1064 5 66 23.4 [34]

Skin FFPE 1064 5 50 20.4 [35]

Murine tumor Cryo cutting 266 10 60 46.7 [36]

Murine kidney,
spleen, liver, tumor

Epoxy resin 1064 5 5 509.6 [37]

Cutaneous tumor Cryo cutting 1030 0.55 65 13.7 [38]

Murine tumor FFPE 1064 10* 100 7.6 [39]

Murine tumor, cell
culture

Cryo cutting 1064 8 25* 25.5 [40]

Brain tumor, cell
culture

Cryo cutting 1064 8 25 25.5 [41]

Cells Freeze-dried 515 0.5 0.5 81.5 [42]

Lung tumor Cryo cutting 1064 10 45* 408.9 [43]

Murine kidney FFPE 532 5 100 1.3 [44]

Brain FFPE 1064 10* 45 44.0 [45]

Cutaneous tumor FFPE 532 5 100 1.3 [46]

Cutaneous tumor Cryo cutting 343 0.55 15 720.6 [47]

Lung tumor FFPE 1064 10* 50 101.9 [48]

Leporine lymph
nodes and thyroid
glands

Tissue
smear

1064 5 22* 1997* [49]

Brain tumor FFPE 1064 5 22* 1997* [50]

6.2.2 Sample Preparation

It is a cliché that there is no need for sample preparation prior to the LIBS analysis of
biological tissues. Soft and hard tissues have to be prepared following one or the



other ways reviewed elsewhere [53]. The preparation of hard tissues seems straight-
forward as the most common approach is epoxy embedding, cutting and fine
polishing. The preparation of soft tissues is demanding (consider e.g., the handling
of the tissue after biopsy) and two most common approaches used (Table 6.1) are
(1) freezing at a cryogenic temperature and (2) formaldehyde fixing and paraffin
embedding (FFPE). The latter seems to be more feasible and more convenient for
manipulation when enabling the LIBS analysis of cross-sections [44] and direct bulk
[46]. The FFPE is the standard procedure in pathology and LIBS has a potential to
provide relevant information, but it has to be kept in mind that this kind of sample
preprocessing might alter the elemental composition of the tissue and the distribution
of elements therein [54].
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6.2.3 From the Concept to 3D Bioimaging

The concept of imaging, Fig. 6.3, is a simple application of LIBS when the sample
material is ablated from its surface at different positions. In each position, a plasma is
generated, and its characteristic radiation is collected by means of optical emission
spectroscopy. Obtained spectra are then processed, and estimated intensities of
selected spectral lines are printed in images showing the distribution of related
elements across the sample surface. Bioimaging approaches are boosted by the
advantages of LIBS in general, such as multi-elemental capability, minimal need
for sample preparation, high-lateral resolution, and sensitivity. However, those
benefits seem contradictory to each other when tuning the experimental settings
(e.g., spot size, pulse energy, atmosphere) and optimizing the best possible

Fig. 6.3 The concept of bioimaging, showing the optical image of epoxy embedded murine incisor
(top left), mesh of points in X,Y raster (center), and depicted Ca image (bottom right). The
infographics show the total number of pixels and analyzed area, and step size and repetition rate.
Authors’ unpublished data



performance (e.g., signal to noise ratio, signal to background ratio). Individual issues
will be further dissected with respective suggestions.
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Fig. 6.4 Improvement of the analysis of hard tissues (murine incisor and adjacent jawbone
embedded in epoxy resin) in terms of repetition rate and lateral resolution. Authors’
unpublished data

LIBS imaging is a dynamically evolving field that has recently been driven
mainly by the demand from the mining industry [55] and clinical analysis [46]. To
give an extreme example of LIBS repetition rate capability, the state-of-the-art
instrumentation provides an extreme performance in the analysis of mine drill and
cores with 1 kHz repetition rate [56]. Further development of instrumentation for
bioimaging will routinely allow elemental imaging with more than 100,000 pixels
per sample. For a large-scale sample, the collection of a megapixel image
(containing one million spectra) can currently be done within 2 h and 45 min with
a 100 Hz laser used. Thanks to this promising performance, LIBS can be used as a
fast-prescreening tool in tissue diagnostics before a more precise or sensitive tech-
nique is used. However, this tremendous repetition rate yields a high amount of data
which requires more intricate data storage and handling (Sect. 6.3.3). The megapixel
image will turn into 4.1 GB of data with a simple line CCD detector of a Czerny-
Turner (with 2048 pixels per spectrum and 16 bit depth per pixel).

In modern LIBS tissue diagnostics, the desire is the highest possible lateral
resolution (~10 μm) which reaches the cell level. This spot size leads to the ablation
of a low amount of mass and, thus, a low number of emitting species within the LIP.
In turn, a higher lateral resolution is usually reached with the decrease in sensitivity
and loss of detection capability in the ppm range. This tradeoff is a matter of system
optimization. The ablation spot size in the range of 10–30 μm was found as a
reasonable tradeoff when yielding satisfactory results even in the ablation of soft
[33, 37] and hard tissues [57]. The improvement in lateral resolution over past years,
Fig. 6.4, brings more biologically relevant information with finer details in the
heterogeneous structure of tissues. To the best of our knowledge, the highest lateral



resolution reached in LIBS bioimaging is on the sub-micron level (~500 nm) [42]. In
that study, a combination of fs and ns laser pulses (in the orthogonal double-pulse
arrangement) was used to image the distribution of InP nanoparticles (NPs) within a
single cell (deposited in wells on quartz wafers).
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Fig. 6.5 Consequent images of Ca within a bulk of Squamous Cell Carcinoma sample leading to
the 3D imaging. The images were obtained by repeated LIBS analysis of consequent sections of
paraffine block. The micrometer values refer to the depth from the samples surface (0 μm); the scale
shows relative intensity of Ca II 393 nm line. Obtained from [46] while no permission needed from
the Royal Society of Chemistry publishing

LIBS enables fast analysis of sample surfaces. Then, the whole sample (e.g.,
model plant) can be ablated in several layers and signal accumulated along the depth
reveals “total” (3D) distribution of elements therein [58]. This feature is often used in
the so-called 3D imaging where individual layers of the sample surface are conse-
quently ablated. This approach is an extended use of standard depth profiling and
gives further information for the sample investigation. The 3D imaging was already
demonstrated on the pesticide penetration into the maize leaf [59]. In past years, 3D
imaging was used to analyze layers of murine kidney [33], murine brain [45], and
even human cutaneous tumor (squamous cell carcinoma) [46] (Fig. 6.5).

6.3 Data Processing

6.3.1 From Qualitative to Quantitative Imaging

In general, LIBS governs multi-elemental capability and enables the detection of
organogenic elements (e.g., C, O, H, N, P), macro nutrient elements (e.g., Ca, Mg, K,
Na), and potentially trace elements (e.g., Zn, Cu). The detection of endogenous
metals (i.e., macro- and micro-nutrient elements) is indispensable for the so-called
metallomics, i.e., the detection of relevant metals as biomarkers within the tissue and
estimation of the change in their abundance. It was repeatedly confirmed that any
disbalance in the endogenous metal content (deficiency or excess) influences the
functioning of tissues and may lead to various diseases, including cancer [3, 16,
18]. Moreover, the detection of exogenous metals (i.e., metals artificially



administered to the tissue) also found its place in biological/medical applications
(e.g., indirect biomarkers and labels of selected proteins, toxicology).
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Many scientific works in the past focused on the analysis of well-selected spots
(line scans or small maps) owing to the limitations in the instrumentation perfor-
mance (repetition rate and incapability of large-scale mapping). However, proper
selection of characteristic regions of the investigated sample led to interesting results
that paved the way for further LIBS development in imaging. In the beginning, the
ablation of hard tissues was more attractive in the LIBS community owing to its
more convenient laser-tissue interaction and consecutive ablation. The body of work
by Samek et al. showed the potential of LIBS in human teeth analysis; including the
pioneering work on the quantification of trace metals [60], matrix-matched calibra-
tion of Al, Pb, and Sr [61], and classification of healthy and carious teeth [62]. Later,
the group of Kaiser et al. delivered the line scan of Sr and Ba (Ca served as internal
standard for both elements) in prehistoric bear tooth [9], LIBS imaging of Ca and P
of snake vertebrae complemented X-Ray Computed Tomography (XCT) scan [63],
and small-size mapping of Ca and P as age-related changes in the chameleon teeth
[64]. Presented publications can be considered as classical LIBS literature. More-
over, further publications showed other significant benefits of LIBS, e.g., in dentistry
[65]. The early detection of caries was proved feasible based on the ratio of Zn and
Ca content within the tooth [66].

The LIBS-related research in the case of soft tissues is predominantly focused on
the diagnostics of cancer [3]. As LIBS generally lacks the detection capability for
trace elements, the interest is mainly in the semiquantitative analysis of abundance of
major nutrition elements (e.g., Ca, K, Mg, and Na) with trace elements (e.g., Fe, Cu,
and Zn) being seldom presented. The changes in elemental composition were found
beneficial in the discrimination of healthy and diseased tissues in many cases, e.g.,
hemangiosarcoma and normal liver [67], breast and colorectal cancers [68], and
breast cancer [69]. A similar approach was then used to differentiate cancerous
tissues in large-scale imaging (see further in the text). The next step in the data
analysis is the implementation of chemometric algorithms and machine learning
(Sect. 6.3.3).

Quantification is a persisting burden of LIBS analyses limiting its extensive use in
real-life applications. The main drawback of quantitation in the case of tissues is the
absence of matrix-matched standards. Their preparation from real-life samples is
limited, while grounding and homogenization of the tissue and spiking it with
selected analyte is contradictory to direct imaging of sectioned samples. Production
of relevant reference samples is, thus, a subject of many research groups [70].

The case of hard tissues is rather straightforward when matrix-matched standards
can be prepared directly from calcium carbonate, calcium oxalate, or hydroxyapatite.
First, calcium carbonate was used for production of reference pellets spiked with
traces of Al, Pb, and Sr to calibrate the quantitative LIBS analysis of juvenile teeth,
adult teeth and bones [61]. Laser pulse energy, electron number density, and electron
temperature were monitored during the experiment to ascertain fluctuations in signal
feedback and to mitigate potential differences in physical properties between matri-
ces of collected calcified tissues and artificial reference samples. Constructed



calibration curves for individual analytes (Al, Pb, and Sr) were internally
standardized to the Ca line intensity and reached detection limits above ppm range
(15, 95, and 30 ppm, respectively). Second, calcium oxalate was spiked with Cu,
Mg, Sr, and Zn to provide reference standards in the analysis of human kidney stones
while reaching tens to hundreds ppm detection level [71]. Third, hydroxyapatite
reference samples were spiked with Co, Mn, Ni, Sr, and V prior the quantitative
mapping of human teeth [72].
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Soft tissues present a more intricate way of matrix-matched standards prepara-
tion. Various approaches of soft tissue preparation were utilized (e.g., homogenized
pellets, inkjet solution printed on paper, gelatin gel) while the analyte content was
administered through spiking [70]. The group of Motto-Ros produced a series of
publications in which the quantification of Gd in murine kidneys was subjected. A
rather controversial approach was used in their former study where solutions of Gd
NPs were simply put on petri dishes and analyzed with the LIBS under the same
conditions as soft tissues [26, 28]. More elaborate preparation followed when
reference samples from EPON (1:1 mixture of diglycidyl ether and
dodecenylsuccinic anhydride, density of 1.22 g/L) were spiked with dispersion
containing Gd NPs [27, 29]. This approach provided matrix-matched standards
and, in turn, enabled to quantify the content (up to 15 mM per spot) in the series
of measurements monitoring the uptake and clearance of Gd NPs through murine
kidneys.

The obstruction with matrix-matched standard preparation leads many
researchers to utilize calibration-free approaches for quantification of LIBS data
(CF-LIBS) [73]. The CF-LIBS demands the knowledge of plasma temperature
which has to be accurately estimated for all elements present in the sample. There-
fore, it is necessary to detect broader spectral ranges encompassing multiple spectral
lines of individual elements to construct Boltzmann plot or even Saha-Boltzmann
plot. CF-LIBS was used in the analysis of human hair and nails [74], and gallstones
[75]. Most recently, CF-LIBS was used to quantitate Ba, Ca, Mg, and Sr in deer
bones with a reasonable fluctuation reaching 10% [76].

6.3.2 Correlative Imaging

Elemental images of sample surfaces obtained through LIBS analysis are suitable for
their comparison with other spectroscopic, microscopic, and even tomographic
techniques. Such an approach is collectively called correlative imaging (also called
hyphenated or complementary analysis) and attracted a great deal of attention in past
years. In fact, the joint utilization of various techniques to yield complementary
results is well described in several reviews elsewhere [12, 77]. The correlative
imaging demands for a parallel processing of large data sets, which creates an
increased computation burden. The recent progress is related to the advancement
in data mining (including machine learning) providing more convenient ways of data
handling and processing [78, 79].
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As already stated, the combination of LIBS with LA-ICP-MS extends the perfor-
mance capacity of both techniques when overshadowing drawbacks of one tech-
nique by advantages of another. This combination provides multi-elemental
capability in its full sense, enabling the detection of major and macro-elements by
LIBS and traces, as well as isotopes, by LA-ICP-MS. This approach was already
used more than a decade ago for imaging Mg and Pb in sunflower plants [8], and Sr
and Ca in prehistoric bear tooth [9]. It is worth mentioning that in those publications,
the performance of LIBS and LA-ICP-MS was rather compared than complemented.
A more recent work [10] showed the full potential of joint use of LIBS (C, H, K, O,
and N) and LA-ICP-MS (Cu, Fe, P, Pt, and Zn) in an analysis of human tumor.
Obtained images complemented the elemental information about the heterogeneity
of the tumor and were compared with optical images of the tissues after hematoxylin
and eosin (H/E) staining. The tandem use of LIBS and LA-ICP-MS is being
optimized; however, their direct combination in one system is still obstructed with
differing optimal ablation parameters of each technique. The combination of LIBS
with XRF is, thus, more convenient while the non-destructive use of XRF may be
used on the sample prior LIBS analysis [80]. It was shown that both techniques can
be used in tandem complementing each other as well as cross-reference manner as
demonstrated on the quantitation of Ca, Fe, K, Mn, P, and Si in a dried sugar cane
leaf [81].

The combination of LIBS and Raman spectroscopy enables to provide complete
chemical information (elemental and molecular, respectively). The main drawback is
in the low repetition rate of Raman spectroscopy in general. The Raman signal is
basically very weak with high fluorescence, thus longer expositions (~1 s) per spot
are necessary. Methodological approaches are developed to overcome those
limitations and in Raman spectroscopy the mapping and imaging approach must
be differentiated [82]. In the point-by-point mapping, whole Raman spectra are
detected in each spot showing various Raman shifts with respect to the investigated
molecular bonds. On the other hand, Raman imaging provides a direct image of the
selected Raman shift from the complete sample surface, but the other spectral
information is lost. To the best of our knowledge, the LIBS and Raman techniques
have not been used in the manner of correlative large-scale imaging of biological and
other samples. However, it has to be mentioned that the joint use of LIBS and Raman
was proved feasible and potentially beneficial, e.g., in the discrimination of algae
[83] or bacteria [84].

The use of spectroscopic and tomographic techniques is a novel approach poten-
tially providing complete information about the investigated sample. For those
purposes, the use of LIBS and X-ray computed tomography (XCT) seems like a
vital match. This combination has already been proved feasible in our recent
publications [57, 85]. In our recent publication, LIBS and XCT were jointly used
for the analysis of murine incisors [57]. Obtained results contributed to the finding of
two distinct types of dentins: cementum versus enamel-facing dentin. The elemental
analysis (with a focus on Ca and Mg) was extended with chemometrics, and
hyperspectral images were processed through principal component analysis (PCA)
and characteristic spectra were clustered through k-means clustering. XCT



volumetric data showed a change in the absorption coefficient in individual matrices/
parts of the incisor (i.e., enamel, both dentins, and bone). The XCT image correlated
with the LIBS elemental one and cluster images while setting a proof for the
existence of two types of dentins (Fig. 6.6).
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Fig. 6.6 (a–f) LIBS and XCT analysis of murine incisor. Obtained from [57] with permission and
altered. Permission provided from John Wiley and Sons under contract number 5245561066199

6.3.3 Multivariate Data Analysis for Imaging Purposes

Collected LIBS data carry characteristic information about investigated sample or
relevant position on the sample, the so-called elemental fingerprint. As it was shown
above, fine changes in spectral response of selected elemental lines can be related to
unique differences between various tissues. However, understanding typical LIBS
spectra is tedious namely for their high dimensionality and redundancy
[79]. Chemometric and machine learning algorithms are becoming a standard in
analytical chemistry [86], incl. LIBS data processing. Those algorithms improve the
performance of clustering of characteristic spectra (e.g., related to healthy or dis-
eased tissue) or even classification when the learning process is supervised. Machine
learning algorithms were already implemented for the classification of various
biological tissues. LIBS and Raman spectra of bacteria were joined together and
clustered through Self-Organizing Maps (SOM) classifier after PCA dimensionality
reduction [84]. LIBS spectra of deer bones were classified with the use of Artificial
Neural Network (ANN) classifier [76]. It is noteworthy that PCA was combined with
Linear Discriminant Analysis (LDA) to classify porcine samples (soft and hard
tissues) [87].
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Fig. 6.7 Hyperspectral cube obtained from the analysis of the whole sample. Each [X,Y] position
is represented by a related LIBS spectrum. Each layer of high-dimensional data cube provides an
elemental image on selected wavelength

The clustering/classification of soft tissue spectra has been repeatedly
demonstrated; this is especially appealing in cancer research and other clinical
applications. Many feasibility studies were delivered when discriminating healthy
and cancerous tissues; e.g., Support Vector Machines (SVM) in the case of lung
tumor [43]; LDA, SVM, and ANN were used for the identification of parathyroid
gland [49]; SVM and Random Forrest (RF) algorithms were used to cluster brain
tumor spectra [50].

The transition from point-by-point analysis to large-scale imaging results in the
so-called hyperspectral data cube (Fig. 6.7). The data cube contains high-
dimensional data that are organized into a data matrix (spectra as rows, wavelengths
as columns) and assigned with metadata (e.g., x, y, and z positions). This simple data
handling provides a data structure suitable for further application of machine
learning algorithms and consequent clustering or classification of characteristic
tissue spectra. The discrimination of melanoma and dermis spectra was proved
feasible on mapping (200 � 200 spots with 15 μm steps) of murine skin tumors
[47]. The wide spectral range (240–350, 340–450, and 720–800 nm) was downsized
with the maximum likelihood technique and selected intensity ratios were then fed to
an SVM classifier. Finally, to the best of our knowledge, our group was the first to
deliver segmentation of hyperspectral cube (275–290, 380–405, 575–595, and
760–785 nm) obtained from the analysis of human cancer tissues (cutaneous
cancers; such as malignant melanoma, basal cell carcinoma, and haemangioma)
[46]. The data cube was processed with SOM classifier when showing regions of
diseased tissues. Further research and optimization of machine learning
(ML) algorithm is necessary in any of the selected publications. There is a clinical
need for accurate differentiation of healthy and diseased tissues with highlighted
boundary of cancer showing its proliferation throughout the tissue. Thus, this
demands a fine-tuning of the ML model prediction and robust thresholding between
characteristic spectral responses. However, understanding the performance of ML
models is mandatory prior to any further step [78].
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Since 2008, the Melikechi group has invested considerable efforts in data
processing of LIBS analysis of various blood samples. In their first work [88],
they provided a basic visualization of data (mice blood, organic compounds, and
proteins) and their distinct separation in PCA space. After the initial success, more
sophisticated studies were delivered; e.g., discrimination of healthy and ovarian
cancer-prone mice through SVM of LIBS spectra [89]; classification of blood
samples from healthy and melanoma-prone mice through LIBS and various
classifiers (e.g., LDA, SVM) [90]. Then, Chen et al. analyzed human whole blood
samples to guestimate potential occurrence of cancer, lymphoma [91, 92].

6.4 Applications

Broad utilization of LIBS technique led to other bio-applications that are out of
scope of this chapter. The investigation of medical samples is also related to the
analysis of body fluids and liquids [3]. Considerable attention is also attracted by the
potential utilization of LIBS in the detection, classification, and quantification of
bacteria and other pathogens [93]. It is also worth mentioning that LIBS provides
certain detection power in food analysis [94].

The use of LIBS in biological and medical/clinical applications has already been
reviewed [3, 16–19, 65]. Thus, we aim to build on those reviews while offering
another perspective to the discussion. Related bioimaging applications are concerned
with the detection of elements, mostly metals, that are either naturally present in
tissues (i.e., endogenous elements) or administered artificially to tissues (i.e., exoge-
nous elements). In the following paragraphs, selected LIBS research is presented
showing its capability to provide valuable information with sufficient sensitivity
(reaching ppm level) and lateral resolution (10–100 μm).

6.4.1 Environmental and Plant Tissue Analysis

LIBS is also often used for environmental monitoring and analysis of plants [80, 95,
96]. As in the case of other bio-samples, the detection of macro and micro-nutrients
was found to be important. Any change in their abundance within sample bulk (root,
stem, leaf) can be correlated with the model-plant growth. There are numerous works
that estimate the impact of fertilization and artificially induced stress (e.g., drought,
nutrition deficiency, toxicity due to the presence of heavy metals and nanoparticles).
Research is generally conducted in terms of qualitative comparison of characteristic
spectra collected from various positions in plant organisms. Researchers showed that
LIBS could contribute to the analysis of, e.g., wood preservatives [97], the impact of
draught stress on gardenia and wheat [98], and Cr(VI) toxicity impact on wheat
seedlings [99]. Moreover, quantification of macro-elemental concentration was also
provided through chemometrics [100, 101]. The most recent work by Martin et al.
[101] manifested the use of partial least squares regression (PLSR) for the determi-
nation of major elements (Ca, K, Mg, P, S, and Si) in switchgrass with an accuracy



reaching over 90%. LIBS results were compared to ICP-OES reference data and its
capability for high-throughput analysis was recognized. Moreover, the combined use
of LIBS and X-ray fluorescence (XRF) spectroscopy was proved beneficial for the
determination of macro-elements (Ca, Fe, K, Mn, P, and Si) in dried sugar cane
leaves [81]. Thus, LIBS has a clear potential to become a reliable technique for
assessing feedstock quality (elemental composition) [96].
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The laser ablation of plants shows a lower complexity in laser-plant interaction
(due to the relatively hard matrix of plant tissues). Related LIBS experiments are
relatively more straightforward in terms of sample preparation (samples grown in
soil or in aqueous medium/hydroponic conditions) and handling (from grounding of
dried plant to in-vivo analysis). The possibility to grow model samples with a high
number of replicates is basically unlimited without any restrictions caused by ethical
issues (as opposed to the case of animal and human samples). Despite all the listed
advantages, the number of studies involved in large-scale imaging of plants with a
high lateral resolution is considerably low [18, 19, 96]. Pioneering papers delivering
the first mapping of plant tissues are dated to 2007. Kaiser et al. [102] studied
hyperaccumulation of Pb and Cd within sunflower plants by using an fs LIBS. The
plants were grown in hydroponic dispersion of various salts, which is typical for
toxicology studies. Such an approach enables a fast growth of plants (within several
days) with detectable content of toxic metals and a reasonable size of the whole plant
(spread across the microscopic slide). In this study, LIBS was supported by X-ray
radiography to provide high-resolution imaging of Pb and Cd within the plant leaves.

Since then, LIBS has proved to be an adequate tool for plant elemental imaging
when showing the distribution of elements throughout the whole sample. Both in situ
and in vitro analysis of plant tissues were demonstrated on maize leaves [59] via
extension to 3D imaging. The body of work of Kaiser et al., reviewed among others
in [19], significantly contributed to the development of LIBS as a complementary
tool to standard plant toxicology. The development of micro-scale LIBS was
manifested by Modlitbová et al. [103] when the performance of LIBS with
100 and 25 μm spot sizes was compared. Figure 6.8 illustrates the results used to
elucidate the uptake, accumulation, and translocation of Cd-based quantum dots
(Cd QDs) and Cd salts as a reference. The samples of white mustard were prepared
in the short-term toxicity test (72 h) and were grown in a hydroponic dispersion.

A recent publication by Modlitbová et al. [58] presents LIBS as a straightforward
tool for plant biologists which is capable to provide large-scale images. In this work,
the typical pipeline of sample preparation and consequent analysis was shown in
detail on cabbage. The model plant was grown in the hydroponic dispersion of
Y-based upconversion nanoparticles (UCNPs) and Y salts as a toxic reference.
Obtained results suggest the UCNPs to be relatively harmless to the model organism
in low concentrations with root as the main storage organ and limited translocation to
other parts of the plant (stem or leaf).
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Fig. 6.8 (a) (1) Photograph of S. alba plant exposed to CdCl2 at the nominal concentration 200 μM
Cd before LIBS measurements. (2) LIBS maps constructed for Cd I 508.56 nm (3) Overlap of the
original photograph of the plant with LIBS map. (b) (1) Photograph of S. alba plant exposed to
CdCl2 at the nominal concentration 200 μM Cd before micro-LIBS measurements together with



Fig. 6.8 (continued) marked spot analyzed by micro-LIBS (a,b,c,d,e); (2) Micro-LIBS maps
constructed for the Cd I 361.05 nm line; (3) Overlap of the original photograph of the plant with
micro-LIBS maps. The scale shows the total emissivity of the selected emission lines. Obtained
from [103] with permission for reuse from Elsevier publishing under license number
5245750991187
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6.4.2 Bioimaging of Endogenous Elements

The bioimaging of endogenous elements can be considered as the direct detection
(label-free) of biomarkers within investigated tissues. It was demonstrated that trace
(e.g., Cu, Zn) and even macro elements (Ca, K, Mg, and Na) could be related with
biological changes and diseases of tissues as they are manifested through the
changes in chemical composition. Their essential presence and approaches to exploit
changes in their abundance for the sake of various applications were already
presented above.

The development of hard tissues is related to the calcification of soft tissues and
formation of hydroxyapatite. The process of calcification is moderate in the presence
of Mg. Thus, the presence of Ca, Mg, and P and their abundance is the most
significant for any investigation of hard tissues. In our recent study, we have used
LIBS for bioimaging of murine teeth (maxillary and mandibular incisors, and
molars) [57]. In this work, LIBS was used among other techniques (incl. XCT) to
uncover biological phenomena beyond the odontoblast development and led to a
discovery of two distinct kinds of dentin tissues induced during the teeth growth of
selected mice strains (DSPP-cerulean/DMP1-cherry) and mutants (Spry2+/�;Spry4�/

�). LIBS analysis contributed with fine elemental images (30 μm lateral resolution)
of Ca and Mg. The finding of two dentin structures was supported by the use of PCA
with k-means clustering showing two distinct clusters in the area of enamel and
periodontal ligament.

Imaging of cancerous soft tissues revealed the importance of the detection of
endogenous metals by LIBS. First, LIBS (C, H, K, Na, and O) was used in tandem
with LA-ICP-MS (Cu, Fe, P, Pt, and Zn) to provide complementary bioimaging of
human tumor tissues [10]. Second, various cancerous tissues were analyzed by LIBS
to show distribution images of selected elements, e.g., Ca, Fe, Mg, Na, P, and Zn in
malignant melanoma, Merkel cell carcinoma, and squamous cell carcinoma [35]; C
and Mg in murine melanoma [38]; C, Ca, K, Mg lines and CN bands for discrimina-
tion of murine melanoma [47]; Al, Ca, Cu, Fe, Mg, Na, and Si for the estimation of
lung cancer boundary [48]. Capability of 3D bioimaging was confirmed in the case
of Ca, Cu, Mg, Na, and P in murine brain [45], and Ca, K, Mg, and Na in squamous
cell carcinoma [46]. Our recent work [46] showed the capability of LIBS to image
cutaneous cancer margins through direct imaging of biomarkers (namely Mg) as
well as through SOM clustering. The increased content of Mg in the cancer region of
malignant melanoma and basal cell carcinoma was in contrast with Mg deficiency in
the region of benign hemangioma.
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6.4.3 Bioimaging of Exogenous Elements

The bioimaging of exogenous elements can be further divided into two main fields of
interest. First, the study of the fate of artificially administered metallic NPs within an
organism and the detection of foreign metals present in the organism due to
environmental pollution or unhealthy lifestyle (e.g., smoking). Second, the detection
of specifically bound nanoparticle labels in the frame of immunochemistry.

NPs are typically used as specific labels, contrasting agents, or drug carriers.
Thus, monitoring their fate within the organism, accumulation in organs and natural
clearance is of interest also to LIBS bioimaging. Motto-Ros introduced a series of
publications with the focus on the detection of Gd-based NPs in murine kidneys [27–
29] and with the extension to 3D bioimaging [33]. It was shown that NPs tend to
accumulate in the outer part of kidney (cortex). Their clearance was monitored in
several mice species over a week period. In another study, the accumulation of Au
NPs and renal clearance was investigated through LIBS and synchrotron XCT
[37]. The Au-based NPs first targeted the U87MG brain tumor in mice, as visualized
in XCT volumetric data. Then, harvested organs (spleen, liver, and kidney) were
imaged with LIBS. The use of LIBS for the detection of NPs as enhancers in
radiation therapy was also demonstrated. Detappe et al. [32] showed the detection
of silica-based gadolinium chelated nanoparticles in murine tumor. In recent studies,
LIBS has been used for the detection of 10B atoms in U87MG and U251MG brain
tumors [40] and LaF3:Ce NPs in F98 brain tumor [41]. The aforementioned studies
were delivered with a high lateral resolution reaching 10 μm. Further improvement is
limited with standard ns laser sources, thus, fs laser was used to obtain the resolution
below 1 μm in the imaging of InP NPs within cells [42]. Finally, it is worth
mentioning that LIBS was used to detect Al, Cu, Ti, and W in various soft tissues
(skin, lymph nodes, and lungs) [34]. The presence of those elements was of foreign
origin (e.g., residual debris after surgery) and was relevant to the cases of individual
patients.

LIBS essentially struggles with a trade-off between sensitivity and lateral resolu-
tion. However, reaching the cell-level resolution with sufficient sensitivity to trace
metals is the main analytical challenge [18]. Various techniques are being developed
to avoid the performance drawbacks of LIBS, e.g., characteristic labeling of tissues
with nanoparticle tags for indirect detection of biomarkers [104]. The so-called
Tag-LIBS was originally suggested by the group of Melikechi. They used two NP
tags for indirect, yet specific detection of ovarian cancer (CA 125 marker) and leptin
hormone in the basic multiplexing scheme [105]. Further works then exploited the
advantages of Tag-LIBS; e.g., detection of CdTe quantum dots labeled
metallothionein spread on polystyrene surface [106]; detection of streptavidin-
coated Ag NPs as labels of human serum albumin [107]; detection of Au NPs as
labels of Escherichia coli in lateral flow assay (no imaging) [108]. In our recent
work, we have compared the performance of upconversion scanner and LIBS in the
detection of HER2 biomarker of human breast cancer cells [104]. The Y-based
upconversion NPs (UCNPs) showed an excellent specificity as tested on HER2-
positive BT-474 cells and HER2-negative MDA-MB-231 cells. In general, LIBS



proved to be an adequate alternative to fluorescence and upconversion scanners for
its comparable detection limits, higher dynamic range and no need for crafting of
fluorescent-active labels.
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6.5 Conclusion and Future Perspectives

As was repeatedly discussed in this chapter and highlighted in many publications,
LIBS offers a vital alternative to other analytical techniques in the multi-elemental
analysis of biological tissues on a large scale. It is primarily not intended to substitute
other analytical techniques but to complement them and in turn to provide a more
complete information about the investigated samples, to uncover the biological
phenomena in their complexity. Thus, the tandem use of LIBS with LA-ICP-MS,
Raman spectroscopy, or even XCT was found beneficial. However, the so-called
correlative imaging most commonly relates LIBS elemental images with optical
microscopy, e.g., images from histopathology.

A steady improvement of the LIBS instrumentation is aimed at its main benefits,
i.e., high-throughput (above 100 Hz to units of kHz) and lateral resolution (below
10 μm). The analytical sensitivity is sacrificed for the sake of said benefits when the
best possible detection limit is at the ppm level. Such sensitivity is sufficient for the
detection of major and minor elements when also reaches traces for certain experi-
mental parameters. This unique trade-off in analytical performance makes LIBS a
potential prescreening tool for fast diagnostics of a higher number of samples.

Further improvement in sensitivity is expected with the constant improvement of
utilized instrumentation (e.g., higher throughput of spectrometers, higher quantum
efficiency of detectors). However, providing an accurate quantitative analysis is
mandatory to strengthen the position of LIBS as a mature technique of analytical
chemistry. So far, most of the research works have been concerned with qualitative
or semi-quantitative analysis (i.e., showing relative change in the intensity on the
sample surface). Production of matrix-matched standards is limiting the quantitation.
Usual approaches match the chemical similarity, but not the physical matrix (physi-
cal properties, e.g., hardness). Recently, the lack of matrix-matched standards has
been mitigated with the use of multivariate regression models and calibration-free
algorithms.

LIBS is suitable for bioimaging of endogenous and exogenous elements in
various applications, ranging from bioaccumulation of metals to medical/clinical
use and immunochemistry. Despite the improvement of LIBS instrumentation, the
number of publications presenting large-scale imaging of soft and hard tissues is
rather low. The main limiting factors are advanced instrumentation control, tedious
sample preparation and optimization of complex, mutually dependent parameters
influencing laser-tissue interaction and consecutive laser ablation. Despite these,
LIBS presented sufficient detection limits in the case of NPs which were beneficially
used for enhancement of tumor radiotherapy and specific marking of selected
proteins within tissue. The use of nanometallic labels makes LIBS a promising
alternative to standard immunochemistry techniques.
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LIBS bioimaging results in a large hyperspectral cube that carries multi-elemental
information that can be related to individual spots on the sample surface. The simple
projection of elemental maps over the sample surface is substituted with more
sophisticated approaches. Advanced statistical algorithms are implemented to dis-
criminate individual matrices of the sample (i.e., healthy and diseased tissues). Thus,
future efforts will strive to deliver machine learning pipeline for a robust segmenta-
tion of elemental images which will significantly extend current state-of-the-art data
processing in various applications (e.g., pathology, developmental biology).

Conclusions presented in reviewed literature sources are usually based on results
of feasibility studies where only a small number of samples were analyzed. Such
analyses uncover the potential of LIBS in various fields of interest; however, they are
not fully convincing in terms of clinical use. It is therefore necessary to focus on
analysis of series of samples to confirm causalities between significant chemical
changes in tissues and related characteristic spectral response, i.e., cohort studies.
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Qualitative Classification of Biological
Materials 7
Nikolai Sushkov

It is widely known that eye vision gives us the lion’s share of the information about
the environment, and image is the most efficiently perceived type of information.
However, text and numbers, which are easier to create and operate with, have been
the basis of science for centuries. They are probably indispensable in many cases, but
both the explanatory and predictive capabilities benefit from the use of images in the
broad sense of the word. The final result which is often sought is a “qualitative”
decision, which is a choice between two or several categories (“yes”/“no”, “low”/
“medium”/“high”, “meat”/“fish” etc.). This gives rise to classification methods,
which are designed to convert (numerical) data into categorial variables.

Despite that the LIBS analysis of biological samples became widespread only in
the second decade of the current century, the first studies in this direction date back
to the early years of LIBS. This also applies to the use of classification and discrimi-
nation methodology. Now there is a large demand in such studies in different parts of
science and economy.

As it is detailed in other sections of this book, LIBS offers advantages such as the
rapidity of measurements, little sample preparation, reduced destructivity, the possi-
bility of stand-off analysis, and relative cheapness and simplicity of experimental
setup. Very importantly for the analysis of biological samples, LIBS (unlike XRF)
offers good sensitivity towards light elements (H to Na). As in other emission
spectroscopic techniques, the lines of alkaline and alkaline earth elements are also
easy to observe in laser-induced plasmas. Since these very elements are the main
constituents of living tissues, LIBS serves well the analysis of such samples.

The use of LIBS for the qualitative discrimination of biological samples may
sound somewhat strange to the reader, because the identity of organisms is primarily
defined by their molecular composition (DNA, proteins, etc.). From this point of
view, molecular spectroscopic techniques such as Raman spectroscopy would seem
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more suitable for the purpose. However, the content of different chemical elements
in living tissues varies over a very wide range, which means that LIBS data have a
good potential for qualitative analysis, classification, and discrimination purposes,
provided that a proper mathematical data treatment is applied. We hope this will be
clear from the further parts of this chapter.
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7.1 Preliminary Considerations

Despite the versatility of modern LIBS applications [1], one should still admit that
LIBS is best suited for the analysis of solid inorganic samples like alloys or rocks.
However, its unique technical advantages promoted its use for the examination of
biological materials which have intrinsic properties somewhat hampering the
obtaining of high-quality data.

It is widely known that biological materials (except the so-called calcified tissues
like bones or teeth) contain large quantities of water, often more than 50%. This
causes LIBS signal intensities to drop significantly, since the ablation efficiency is
usually lower for moist materials compared to dry materials with the same composi-
tion [2]. Water requires a considerable energy to be vaporised, so that a 10 μm thick
film of water requires ~25 mJ to be evaporated over an area of 1 mm2. Ablation is
also favoured by the formation of moderate quantities of aerosol above the sample
surface, but this phaenomenon is suppressed in the presence of water [3]. Biological
materials, being very complex structures, are intrinsically inhomogeneous. For this
reason, atomic emission signals may vary significantly not only due to the variations
of chemical composition across the spatial coordinates but also due to varying
ablation conditions. These factors lead to lower signal-to-noise ratios and worse
repeatability of spectra compared to those of, say, metal samples. However, this
factor should not be overestimated. In one of our experiments with conventional
nanosecond lasers, the intensity of the C I 247.856 nm peak in a zooplankton sample
had 3.5% relative standard error of mean (RSEM); in a plant sample, it was 2.5%.
For the Fe I 330.648 nm line in an iron sample, we obtained RSEM of 1.4%, thus just
around two times less. On the other hand, in some applications (like imaging), it is
generally not possible to accumulate signals from multiple laser shots, which means
that signal uncertainties will be quite large.

Attention should also be paid to the laser wavelength which is used to excite the
plasma. It is generally true that the extinction coefficient is reciprocally proportional
to λ4 [4]. Figure 7.1 illustrates this relationship for ovalbumin [5]. The larger the
coefficient, the more energy from a laser pulse is going to be absorbed by sample, the
more material is going to be ablated, and the stronger the plasma emission is.
Although the exact wavelength dependence may be different for short, high-intensity
laser pulses, shorter laser wavelengths still appear to be more suitable for analysis
than longer ones. For ovalbumin, the extinction coefficient at 270 nm is 20 times
larger than at 530 nm and 29 times larger than at 1060 nm. This means that, for Nd:
YAG lasers, the fourth harmonic (266 nm) is more suitable than the fundamental one
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(1064 nm).1 This increasing emissivity is particularly important for biological
samples, which are easily damaged by laser pulses, because less shots will have to
be accumulated for a desired signal-to-noise ratio. Increasing the pulse energy is not
a good solution, since it aggravates sample destruction. Sample heating is believed to
be less pronounced when UV lasers are used [4]. On the other hand, there are
indications [7] that UV-induced plasmas can be colder than IR-induced ones and
also suffer from incomplete atomization of the ablated samples. This may be
explained by relatively more efficient interaction of IR light with the vaporised
sample (inverse Bremsstrahlung), resulting in plasma reheating.
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Fig. 7.1 Extinction coefficient for ovalbumin as a function of wavelength [5]

In addition, the diffraction limit for the minimum laser spot size is proportional
with the wavelength [7], thus a UV laser may provide a smaller irradiation spot
which can result in a significantly higher fluence compared to an infrared (IR) laser
operating at the same pulse energy. The other consequence is the gain in spatial
resolution which is important for imaging applications. Many commercial LIBS
instruments are equipped with 266 nm Nd:YAG lasers. However, infrared lasers are
nevertheless widely used in LIBS applications, including biology-related studies.
For example, imaging is done with infrared lasers in 62% of the studies [8]. This is
probably because the use of the fundamental wavelength necessitates the simplest
optical setup and also retains more of the pulse energy (frequency upconversion has
a substantial loss in pulse energy).

1It is interesting to compare the quantum energies (4.67 and 1.17 eV, respectively) with the energies
of C–C, C C, and C–H bonds (3.61, 6.36, and 4.28 eV, respectively) [6].
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Fig. 7.2 Normalised intensities of atomic and ionic emission lines for principal elements in
biological matrices versus temperature in kelvin (computed for Ne 5 1016 cm�3)

Here we would like to give the reader an idea about the behaviour of emission line
intensities of elements that are most often encountered in the analysis of biological
specimens, such as Na, K, Li, Mg, Ca, Sr, Al, Fe, C, P, B, Si, and H. Figure 7.2
shows the dependencies of line intensities as a function of plasma temperature.
Although at a given emitter number density, line intensity tends to grow exponen-
tially with temperature, ionisation then causes the number density to drop, so that the
resulting function has a maximum which is located around 6000 K for easily
ionisable elements, shifting to higher T for less ionisable elements and higher line
excitation energies. High temperatures favour the observation of ionic lines. Fig-
ure 7.2 makes it clear that the observation of the largest possible number of elemental
lines from a biological specimen can only be achieved by choosing compromise
experimental conditions. For example, non-metals that make up the matrix are best
observed at around 10,000 K when the signals of alkaline metals can be already of
relatively modest intensity (transition probabilities are not taken into account here).

An important point is the duration of laser pulse, which can be in the nano-, pico-,
or femtosecond range. The principal point is whether the laser pulse has ended by the
moment when the surface gets shielded by sample vapour. In the case of nanosecond
ablation (laser pulse duration of several nanoseconds or longer), the pulse is suffi-
ciently long to be partially blocked by the emerging plasma, i.e., only a part of the
pulse energy is spent to ablate the sample, while the other part reheats the plasma.



Due to relatively low power density of the radiation, the surface is first heated, then it
melts and evaporates. The appearance of the resulting craters reflects these pro-
cesses, featuring molten edges and hemispherical bottom. On the contrary, femto-
second ablation [9], with its typical laser pulse duration on the order of 100 fs, does
not cause surface melting. It is believed that electrons are first expelled from the solid
material by the laser beam’s electromagnetic field, and then the surface “explodes”
due to mutual electrostatic repulsion of the resulting positive ions. The resulting
craters have a shape that resembles a vertical well without collars on the edges. Other
mechanisms are also proposed to describe femtosecond ablation. Interested reader
can be referred to a detailed review [10]. Regarding bioanalytical applications,
femtosecond ablation is important because of its lower ablation threshold, reduced
sample damage, and improved spatial resolution [11]. Since the parameters of
femtosecond plasmas are different from those of nanosecond plasmas, different
spectral signatures are obtained which is important for classification purposes. On
the other hand, the signal-to-noise ratio is usually low [12, 13].
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The form in which analysed samples are present and procedures for sample
preparation [14] are crucial points not only for scientific studies but also for future
practical implementation in clinical or field settings. Sometimes biological samples
are suitable for analysis without any preparation (especially leaves or bones).
However, care must be taken to ensure that the samples’ surface is flat and that
there are no surface contaminations (including, e.g., a waxy layer on the surface of
leaves). In this regard, it is useful to deliver multiple laser shots to the same spot
(if possible) in order to ensure that the bulk matrix is accessed by the laser.
Otherwise, pellets are the most widely used sample form in LIBS experiments
[15–18]. Loose powders are usually highly disturbed by the plasma shockwave;
this is why it is practical to fix them on double-sided sticky tapes. If a material
generates dust during ablation, it is good to lower the laser pulse frequency to 1–2 Hz
in order to avoid breakdown on the generated aerosol and thus, improve the signal
stability [7]. Although pellets require much material and, consequently, much time
for sample preparation (e.g., grinding of dried plants or culturing of bacteria in a
growth media with subsequent purification and isolation, etc.), they are easy to
handle and provide a robust source of high-quality spectra, because they can be
quite uniform in composition and normally can withstand many laser pulses neces-
sary for signal accumulation. The reduced moisture content, characteristic of pellets
prepared from lyophilised material, helps to obtain a brighter plasma compared to
moist samples. However, lyophilisation is an expensive and lengthy procedure.
Additionally, too dry samples might yield very brittle and mechanically unstable
pellets. In this case, binders [18] like microcrystalline cellulose or polyvinyl alcohol
may be used, bearing in mind that this is potential source of sample contamination
and the resulting dilution leads to a reduction in signal intensities. Useful advice on
pelletising techniques can also be found in handbooks on X-ray fluorescence
spectroscopy (XRF) [19].
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7.2 Molecular Emission Studies

Apart from atomic and ionic emission lines, laser plasmas of organic matrices also
exhibit distinct molecular signals. These are usually diatomic molecules, and the
most prominent spectra are observed for CN and C2. Bands of OH and NH are
usually much weaker. For calcium-rich samples, strong bands of CaO, CaCl and
possibly CaOH are also often observed.

In principle, two ways of molecule formation are possible: first, they may be
fragments of the molecules of the ablated material; and second, they may be formed
from single atoms through plasma chemical reactions (simple recombination or more
complex processes). Two questions may arise: first, can molecular emission signals
be used to discern biosamples from inorganic carbon-containing materials (e.g.,
activated charcoal)? And second: if yes, then can they be used to discriminate
among different biosamples? The answers to these questions are not evident, as
we will attempt to demonstrate this below.

One of the first studies in this direction is the 2006 article by M. Baudelet et al.
[12]. The authors compared spectra produced by nano- and femtosecond ablation of
Escherichia coli (E. coli), deposited on a Whatman nitrocellulose filter. Discussing
the intensity ratios of CN violet, Swan C2 bands and the C I line at 247.86 nm, they
claimed that the higher molecular-to-atomic emission ratios which are obtained in
femtosecond LIBS indicate that more native C-C and C-N bonds are retained in the
plasma. This conclusion appears to be dubious, because the difference in ratios could
rather be explained by the simple fact that the temperatures are lower in the
femtosecond plasma, thus the C I line with Ei ¼ 7.68 eV should lose much more
intensity (compared to nanosecond plasma) than the easily excited CN and C2

transitions (Ei around 3.2 and 2.5 eV, respectively [20]). However, kinetics of CN
emission shows that the radicals can indeed be produced from the ablated specimen’s
functional groups. This can be detected by performing a time-resolved study of
molecular emission (a series of measurements with different acquisition delays with
short gates). According to the authors, if the molecules originate directly from the
sample (as C2), the maximum signal is obtained at the earliest delay and decays
monotonically with time, following an exponential law (which can be modelled by
kinetic equations). Conversely, if they result from plasma chemical reactions (like
CN from graphite), there will be an initial intensity growth to a maximum followed
by a relatively slow decay. Thus, C-N containing substances (including virtually all
biological materials) can be discerned from other carbon-containing chemicals.

An interested reader can obtain further details in [17, 21–24]. However, this
approach is quite laborious, while not very informative. Judging from the literature
and the author’s own experience, molecular emission bands do not open broad
horizons for discrimination. Thus, the main strength of LIBS should be used—
namely, atomic emission.
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7.3 Chemometric Approaches Used for the Discrimination
of Biosamples

Modern LIBS setups and instruments yield an enormous amount of spectral infor-
mation within a short amount of time. Therefore, it is advisable to analyse it with the
help of mathematical machinery of chemometrics. If the task is to find distinct
classes in a set of samples without any prior information on class memberships
(“unsupervised learning”), then this is called a classification problem. If there is
already a set of pre-defined classes, and the task is to decide to which of them a new
sample should belong (“supervised learning”), then this is a discrimination problem.
However, in most cases, we will use the both terms interchangeably. Although this
topic is detailed in the other relevant sections of this book, here we would like to
mention the key points about the major techniques used for the classification
and discrimination of biological samples. These are: principal component analysis
(PCA); techniques based on the projection on latent structures or “partial least
squares” (PLS); discriminant function analysis (DFA); the k-nearest neighbour
method (kNN); soft independent modelling of class analogies (SIMCA); support
vector machine (SVM); classification tree (CT); random forest (RF) and neural
networks (NN).

Data to be analysed are supplied in the form of matrix X with i rows and
j columns (i � j); usually they correspond to i analysed samples and j predictors.
In LIBS, the predictors are emission wavelengths (as discrete values corresponding
to detector channels); in chromatography, they can be retention times, etc. Thus,
many chemometric approaches are formulated as matrix decomposition problems,
i.e., the matrix X needs to be presented as X¼ TPt + E, where T (i� a) is the scores
matrix, whereas P ( j � a) is the loadings matrix (Pt means transposed P), and E is
the residual matrix. Here, a is the number of latent vectors (LV) which can be
different. Each LV describes a certain (spectral) feature that ideally (but not neces-
sarily) corresponds to a chemical component (spectra of mixtures in X are converted
into spectra of a few individual components in P). Thus, working with the values of
a exceeding this number does not make sense, even though the accuracy of descrip-
tion increases with a (as the norm of E gets smaller). If signals are found in a same
LV, then they correlate with each other to some extent. There may also be spurious
correlations, especially when there are more predictors than samples. However, this
is almost always the case with LIBS spectra (if full spectra are used without selecting
a relatively small number of peaks); and it is important to remember that correlation
does not necessarily mean a causal relationship. The way in which the LVs are
derived and their properties depend on the particular technique.

Before the actual chemometric operations, it is often useful to perform data
pre-treatment (this is sometimes included in ready-to-use packages/modules; it is,
therefore, advisable to read documentation and/or the source code in order to know
exactly what is being done by the software). This includes baseline subtraction
(manual or using, e.g., standard normal variate, SNV, or Whittaker algorithm)
[25, 26], smoothing (useful with broad spectral profiles, but dangerous when there
are just a few data points per peak), removal of outliers (e.g., Grubbs’ criterion [27]



and many other algorithms). Data are often centred and normalised. Centring means
that the mean of X is subtracted from each column (sometimes this operation is done
with rows). This is suitable for decompositions which do not imply a constant term.
Normalisation implies that each column is multiplied by a weight coefficient, which
is often the reciprocal of the standard deviation of that column. This is needed in
order to equalise the contributions of data recorded in different scales (e.g., Raman
and LIBS spectra if present together). The combination of centring and
normalisation is called autoscaling [28].
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Fig. 7.3 Left: an example of scree plot (the author’s own work). Right: PCA score graph for
qualitative discrimination of pure beef, chicken, and pork meat species (adapted from [31] with
permission from Elsevier)

PCA [28–30] is historically the first (1901), the simplest, and surely the most
widely used chemometric technique. The matrix decomposition can be understood
as a transformation of coordinates in a multidimensional space. Each sample is
represented by a point in the space of predictors, so that all samples make up a
cloud of points. The PCA algorithm finds a direction along which this cloud is
prolate (the direction of maximum dispersion), and rotates the coordinate system
accordingly. The new origin of coordinates is placed at the centre of gravity of the
cloud. Then, the second most important direction of scattering is found, and a new
coordinate is drawn along this direction. This operation is repeated until there is only
a chaotic scattering of points. Anyway, there cannot be more coordinates (i.e., LVs)
than samples. LVs are chosen to be orthogonal, so that there are no correlations
between them. In PCA, the LVs are called principal components (PCs). In practice,
the fullest possible set of PCs is often calculated, and then the decision should be
made about how many PCs bear useful information; all the other PCs are then
believed to describe noise. The simplest way to make this decision is to study the
so-called scree plot of PCA eigenvalues. The eigenvalues correspond to the lengths
of respective LVs in the multidimensional space. In Fig. 7.3 (left), the data matrix
seems to have three PCs.

Studying low-dimensional projections of the principal component space (score
plots) is useful for discovering data structure. Similar samples will group together on
the plots and form clusters. The larger the distance between points is, the larger is
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their chemical difference (Fig. 7.3, right). The ideal situation is when the distance
between clusters is much larger than their own dimension. The clustering quality can
be assessed by different methods. For example, the so-called silhouette metric [32] is
defined as
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Sil ¼
X

k
Ckj j

X

i2Ck

i � i

max ai, bið Þ ,

where ai is the mean distance of a given point i from other points within a cluster Ck,
and bi is the mean distance from i to all points outside that cluster. Silhouette values
vary from �1 (the worst case, no clusters) through 0 (overlapping clusters) to +1
(distinct compact clusters).

PLS as such is used for multivariate calibration, i.e., there should be two blocks
of data: the predictor matrix X, and response matrix Y (e.g.,X contains the spectra of
samples, and Y the concentrations of components therein). The algorithm can be
presented as two PCA procedures run on these two blocks. The matrices are
decomposed as X ¼ TPt + E, and Y ¼ UQt + F. These operations are not
independent, since the score columns obtained for Y (u1, etc.) are used for the
decomposition of X (t1 is replaced by u1). In the next step, when Y is decomposed,
u1 is replaced with t1. Thus, the data structures of X and Y influence each other. In
this way, a calibration model is built that can predict Y values based on X data.

PLS discriminant analysis (PLS-DA) is a modification of PLS where Y is a
column vector filled with categorial values (class designations, e.g., 0 and 1). If there
are more than two classes, then the algorithm should be repeated as a yes/no question
asked about the membership in each of them. Thus, the classification problem is
re-formulated as a regression problem (and the calibration dataset becomes a
learning dataset). The performance of classification is best checked using a
so-called external validation dataset, i.e., samples which were not used for calibra-
tion. The results can be presented as a truth table, which contains the rate of true
positives, TP (correct positive assignments of samples to their respective groups);
false positives, FP (samples classified to be in a group but in fact belonging to other
groups); true negatives, TN (non-member samples excluded from the respective
group), and false negatives, FN (samples classified to be outside a group but in fact
belonging to it). These four rates are combined to give sensitivity, which is
TP/(TP + FN), and specificity, which is TN/(TN + FP). Accuracy is the ratio of the
correctly labelled objects to the whole available number of objects, i.e., (TP + TN)/
(TP + FP + FN + TN). The overall performance of classification is assessed by
calculating weighted averages for these values across groups [33–35].

DFA, also known as linear discriminant analysis (LDA) or normal DA (NDA), is
a classification approach. A linear function of the experimental variables (discrimi-
nant function, DF) is sought, which maximises the difference between the known
classes. For example, if two clusters of points are considered in a bi-dimensional
space (x1, x2), then this function will define a line that goes between the clusters
(considered to be normally distributed) so that the projections of points of the first
cluster on that line will be as far as possible from the projections of points of the



second cluster. This projection is called a score, given by D ¼ w0 + w1x1 + w1x2
(a line equation with weights w0, w1, w2). If, for a particular point (object), D is
below a certain value, then it belongs to one of the classes, and to the second if
otherwise. For standardised data, w0 ¼ 0 and the boundary value of D is zero. For a
discrimination between N clusters, N–1 functions are constructed. Ideally, there
should be four to five times as many samples as variables [34, 36–38].
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In the kNN method, the distances between an unknown object and k nearest
objects of the training set are compared. The distance measure is usually Euclidean
but may be different. The object is classified in a particular group if the majority of
those k objects belong to this group. Usually, values of k equal to 3–5 are preferable,
but this parameter is subject to optimisation [37].

SIMCA is also used for classification and is based on the consideration of the
similarities of objects rather than their particularities. Each class from the learning
dataset is modelled independently from the others. If the matrix X contains only
samples that belong to a certain class, then the task is to decide whether a new sample
will join the class or not. PCA is applied to X. Depending on the number of PCs
chosen, each data point will be described by the sum of two vectors, one laying in the
PCs hyperplane, and the other one which is perpendicular to this hyperplane. The
lengths of these vectors have a chi-square distribution and can be combined into a
statistic that has the same distribution. Thus, the critical value of the statistic can be
calculated which determines the class membership. If, for a new point, the critical
value is not overrun, then the point is considered as a new member of X [37].

The main idea behind SVM classification is finding the hyperplane that best
separates the data into classes so that the distance between the closest data points
of each class and the hyperplane is maximised. These closest data points are called
support vectors. This is not always strictly possible, so that some samples are
misclassified. To account for that, the cost (penalty) parameter is introduced. Kernel
functions can be applied to nonlinearly transform the data and improve the linear
separability of classes. Further details can be found in [39, 40].

CTs are widely used by LIBS practitioners nowadays. This method implies that
the features of studied objects are represented as multidimensional vectors, and the
set of available classes is also defined. The aim is to construct a function (called
classifier) which will translate the space of feature vectors into the space of classes.
This function is a set of partitioning (splitting) rules which are often formulated as
inequalities and are organised as a decision tree, i.e., they form a branched structure
with several levels. A feature vector is first supplied to the root node of the tree, the
first splitting rule is evaluated, whereupon the vector goes further along one of
several branches depending on the result. For example, a rule may be
formulated as: “Is x2 greater than 5?”, and the vector goes either along the “yes”--
branch or along the “no”-branch depending on the answer. Further questions give
rise to further nods and leaves of the tree. When the vector reaches a leaf (a terminal
node), this means that the final class assignment is made.

Defining the rules is the crucial point. To this end, a learning set (a set of feature
vectors with known class assignment) must be available. Classification rules are
developed so that the largest decrease in diversity of the classification label within



each partition is attained (auxiliary impurity functions are used to define this increase
in homogeneity). This can be done manually, but the process can be facilitated by
computer programs such as CART (Classification and Regression Trees). The
partitioning rules themselves can be directly interpreted in a physical or chemical
sense [41, 42].
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RF is an extension of the CT method which uses multiple trees instead of one. The
most widespread algorithm is the following. For a learning set of N samples with
M-dimensional feature vectors, only m features out of M are randomly selected. A
random subset with replacement (of the size N) is selected from the learning set.
Then, a CT is constructed on this subset, taking into account only m features. This
procedure is repeated and results in a number of trees; each of them gives its own
classification result for a given object, and the final result is obtained by taking, e.g.,
the majority vote. RF often yields higher classification accuracy than CT and is
useful when a large number of features and classes are available. On the other hand,
the rules become much harder to interpret, and the demand in computational
resources is increased [43].

NNs have recently become a very fashionable instrument for data analysis,
classification, and prediction. They are loose models of animal brains. Each compu-
tational neuron receives a signal (i.e., a number) and applies to it a pre-defined
mathematical transformation (usually nonlinear, called an activation function),
whereafter the signal is transferred further, to other neurons. The learning process
implies the adjustment of the parameters of the activation functions. After learning,
an NN can be used for classification, feature recognition, etc. [37].

Of course, the above ones are only the most frequently used algorithms. We
would like to draw the readers’ attention to less fashionable, but indeed very useful
techniques such as independent component analysis (ICA) [44], non-negative matrix
factorisation (NMF) [45, 46] and a large family of data fusion techniques such as
consensus PCA (CPCA) or common components and specific weights analysis
(CCSWA, or ComDim) [47, 48].

In the following, further narration is organised around the major kingdoms and
other taxonomic entities and groups of living organisms, namely: microorganisms,
including viruses, bacteria, microscopic fungi and protozoa; plants; animal and
human tissues.

7.4 Microorganisms

Studies on the discrimination of microorganisms by LIBS have been largely
motivated by concerns on biological and bacteriological threats after the events of
11 September 2001 in the United States and subsequent lethal attacks of Bacillus
anthracis (anthrax agent) transmitted via the U.S. Postal Service. The first publica-
tion on LIBS for the detection of bacteria has been released by the workers for the
French Ministry of Defence in 2003, followed closely by the U.S. Army in less than
two months. Of course, civilian applications can also be imagined, like bacteriologi-
cal monitoring in medicine or online monitoring in the food industry [15, 49, 50]. A



number of topical reviews exist in the literature, among them are the recent excellent
2019 reviews by S.J. Rehse (on bacterial detection) [13] and R. Gaudiuso et al.
(on medical and veterinary applications) [51]. Due to reasons described above,
bacteria are currently the most systematically studied organisms in terms of classifi-
cation by LIBS.
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The article by Stéphane Morel et al. “Detection of bacteria by time-resolved laser-
induced spectroscopy” [15], appears to be the first study on this topic. The authors
point out that, for the determination of hazardous microorganisms, an analytical
method is required that would reduce the risks of the contamination of operator or
potential sample pollution. It is also required that an early-warning system be
available and used to adopt suitable protective measures before triggering more
sophisticated, but more time-consuming tools for the accurate identification of
microorganisms. LIBS lends itself for this purpose. It has to be noted that the
identification of bacteria imposes additional requirements on the analysis, as the
determination preferably has to be done from an aerosol, and not from a solid
surface, and possibly without preconcentration. However, in this particular study,
procedures were carried out with bulk samples for the sake of simplicity. Thus, the
radiation of a 1064-nm 100-mJ Nd:YAG laser was focused at the surface of bacterial
pellets. The authors tried to use CN molecular emission signals as indicators of the
presence of amino acid structures in the analysed material but had to deem this
impossible because of CN production from atomic species through plasma chemical
reactions. On the other hand, they managed to discriminate different species of
bacteria and tree pollen from each other using the phosphorus to carbon ratio (P I
and C I lines at 253.560 and 247.856 nm, respectively, were used). This was the
simplest approach to classification which did not involve any sophisticated mathe-
matical data treatment. This study was expanded later by developing an aerosol
delivery system to demonstrate that time-resolved LIBS can be used to detect
biological aerosols [16]. However, no biosamples have been analysed with the
aerosol generation unit, as only model experiments were made with natural mineral
waters.

Hybl et al. [52] have made the crucial step by examining several common
biological agent simulants and interferents (bacterial spores Bacillus globigii, grow-
ing media, fungal spores such as penicillium or smut, and pollen) with the help of dry
aerosol generation units, one based on laser-induced shock wave, the other one
based on a loudspeaker. PCA analysis of selected spectral signals made it possible to
discriminate the four sample groups in a three-dimensional subspace; the most
dispersed class was obtained for tree pollen. The authors pointed out, however,
that since the laser ablation volume is very small (around 1 mm3), a rapid online
LIBS monitoring would be a challenging task, since about 20 L of air per minute
would have to be probed.

Dixon and Hahn [53] investigated the feasibility of using LIBS for the detection
of bacterial spores suspended in water and aerosolised. The detection was based on
ionic calcium lines. It was not possible to detect ionic magnesium or neutral sodium
lines, and CN molecular emission as well. But since Ca content in a single spore
depends on its growth condition, it did not seem to be a valid basis for discrimination



if single-spore, single-shot spectra were considered. The overall conclusion was that
although the very detection of spores was feasible, no rapid detection of elemental
mass loadings appeared consistent with the analytical capabilities of LIBS. Admit-
tedly, it is unclear why the authors have chosen to monitor ionic Ca and Mg lines
given the long detection delay they worked with (40 μs); neutral element emission
could possibly give better results. The presence of N2

+ signals instead of CN
emission probably indicates that the (decarbonised) air surrounding the spores
contributed too much to the spectra (the pulse energy was 275 mJ). This is partially
confirmed by the fact that CN bands did appear when CO2-containing air was
ablated.
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Boyain-Goitia et al. [54] envisaged single-particle LIBS and Raman analysis of
pollen (yellow lily, dark lily, and marguerite). It was shown that bioaerosols can
indeed be differentiated from particles of other origin, but large shot-to-shot
variations made a unique assignment between an observed spectral pattern and a
specific pollen type elusive. The authors suggested that a reference library of
experimental spectra be created before reliable detection and identification can be
done reliably in real time. Continuing this work, Beddows and Telle [55] tried to
address the problem of common aerosol interferences in urban air by comparing
LIBS measurements with the data from a mobile single-particle aerosol mass
spectrometer (ATOFMS). They also provided a detailed and fruitful discussion of
approaches to aerosol analysis available at that moment. Interestingly, self-triggered
LIBS mode is described, when the pulse energy is adjusted so that the breakdown
occurs only on the airborne particles, and the detection is triggered by a fast PIN
photodiode. Ions that lower air breakdown threshold are removed by a pin electrode
placed close to the laser focus. The authors expressed their scepticism about the use
of LIBS for bioaerosol analysis and suggested that a hyphenated technique, like
LIBS-Raman of LIBS-LIF (laser-induced fluorescence), be tried for the application.

The study by Samuels et al. [50], also one of the first in the field, describes a
successful PCA-based discrimination of bacterial spores, moulds, pollens, and
proteins, deposited on silver porous filters. Their subsequent work dealt with the
same biomaterials but also involved phosphorus-containing chemical weapon
simulants and landmine casings. Similarly to Morel et al. [15], C/P ratio was
employed for discrimination. As an alternative approach, comparison with library
spectra by means of linear correlation coefficient was carried out. Later [56], they
also proposed the tagging of bacterial spores by exotic metals, such as Sc and Eu,
using preferential binding. Munson et al. [57] continued this work, adopting a
similar experimental approach, and applied PCA, SIMCA (see above), and linear
correlation-based library search to discriminate bacteria and interferents. Not only
peak intensities, but also their ratios (like C/P) were used in modelling. A double-
pulse standoff LIBS system for the detection of versatile hazardous materials,
including explosives and bacilli, was later developed [58]. Kim et al. [59] also
attempted to use phosphorus and calcium signals to discriminate between bacteria,
including E. coli, but it seems that their identification of spectral lines was inaccurate
due to biased spectrograph wavelength calibration. Calcium is also important
because its concentration is known to be higher in Gram-negative bacteria which



have an additional outer membrane; the cohesion of its proteins is maintained by
divalent cations. This idea is highlighted by Baudelet et al. [17], who proposed to
combine the intensities of all elemental lines from a spectrum and thus obtain
“elemental profiles” for each sample; then each sample will be represented as a
point in the multidimensional space with as many axes as available chemical
elements, and the points will form separate groups according to their chemical and
biological identity. The groups are defined by the direction of corresponding multi-
dimensional vectors. The approach was called “trace element hyperspace classifica-
tion” (TEHC).
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Stand-off LIBS detection of biological and chemical warfare agent surrogates was
first attempted in 2008 [60]. The distance was 20 m, and a PLS-DA algorithm was
used for the identification. Although the results were generally encouraging, consid-
erable false negative and false positive detection values were reported.

J. Diedrich et al. [61] studied three strains of Escherichia coli, one strain of
environmental mould, and one strain of Candida albicans yeast by nanosecond
LIBS. All microorganisms were analysed while still alive and with no sample
preparation. DFA (see above) was used to discriminate between the biotypes and
E. coli strains. The discrimination efficiency was fairly high. The authors stressed the
possibility of discrimination between non-pathogenic and pathogenic E. coli strains.
In the same year, this methodology was applied to several pathogenic and
non-pathogenic E. coli strains in a separate study [62], which corroborated and
expanded the previous results. It was also shown that strains cultured in different
media can be identified and efficiently discriminated, being more similar than
different strains cultured in identical media. Relatively small laser pulse energy
was used to ablate the bacteria which were placed on agar surfaces. Nineteen
emission lines of Mg, Ca, P, K, Na, and C were selected and their intensities
(areas) were subjected to DFA analysis. The (relative) concentrations of calcium,
potassium, and phosphorus were the main drivers of discrimination. In a follow-up
article [36], studies were extended to include Pseudomonas aeruginosa
(P. aeruginosa) strains, which were readily discriminated from E. coli. Moreover,
it was shown that the classification apparently relies on the composition of cell
membranes: bacteria of a same strain grown on different culture media had very
similar spectra, but those grown on McConkey agar containing bile salts, known to
cause the disruption of cell membranes, formed a separate cluster. Later [63] it was
demonstrated that the effect of bile salts is not monotonous: low concentration
(0.01%) actually increased the calcium content in P. aeruginosa, but the Mg content
decreased. Higher concentration (0.4%) resulted in a significant drop in Ca content,
but for Mg, there was only a slight decrease. The spectra were recorded in an argon
atmosphere. This was an indication that LIBS can be used to probe and quantify
Gram-negative outer membrane biochemistry. Even in the bile-containing medium,
it was still possible to discern between different genera of bacteria (90% accuracy).

In 2009, Rehse and Mohaidat [64] studied the effect of ambient gas on discrimi-
nation quality. As a pilot study, brass samples were analysed, and then the approach
was tested on E. coli (Gram-negative bacterium) and Staphylococcus mutans (Gram-
positive bacterium). Spectra in argon and helium were acquired sequentially, and the



intensities of pre-selected spectral lines formed a doubled set. There was an enhance-
ment in DFA discrimination based on such sets (increase in the distances between
group centroids), compared to calculations using only data for a single ambient gas.
Thus, the absolute accuracy of bacteria discrimination was increased from 97 to
100%. This latter method is advantageous when the samples are highly similar to
each other.
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A further work by the same research group [65] focused on the problem of
co-presence of different bacteria. It has been shown that in a mixture of two bacteria
(Mycobacterium smegmatis and E. coli), accurate identification was possible down
to an 80:20 mixing ratio; lower mixing proportions lead to stepwise loss of selectiv-
ity, but at no time were the spectra classified as anything other than one of the two
species comprising the mixture. The authors also studied the effect of dilution of
bacterial suspensions on classification and concluded that approximately 2500
bacteria were required for accurate identification.

The further scientific question is whether the identification of bacteria depends on
their metabolic state or not. Studies of E. coli and Staphylococcus viridans [66]
suggest that the answer is no. Live, starved, killed and UV-stressed bacteria are still
classified correctly. In [67], the authors made a step further and modelled the
identification of bacteria in a clinical specimen (urine). In general, the reported
truth tables witnessed a good classification accuracy, which was not affected by
small amounts of a contaminant strain likely to be present in a clinical specimen.
Leave-one-out (LOO) cross-validation was reported to yield artificially high accu-
racy compared to external validation—a situation which is often described in
chemometrics-related studies. Sequential use of two DFA models has been proved
to increase accuracy: a “coarse” (e.g., genus-level) model is followed by a “finer”
(e.g., species-level) one to eventually obtain an accurate identification at the desired
level.

Multari et al. [68] studied the discrimination of lyophilised methicillin-resistant
Staphylococcus aureus (MRSA) and E. coli strains by arranging a blind test with
researchers who did not know the identity of samples they dealt with. The
researchers managed to successfully differentiate all the provided samples based
on their emission spectra. A sequential PLS2-based classification algorithm was
used. The importance of Ca and Mg content has been highlighted. A similar
approach was successfully tested with bacteria grown on a blood agar [69]. Later
on, the same team tested the performance of LIBS in the detection of microbiological
contaminants on food surfaces [70]. They focused on E. coli and Salmonella
enterica; the tested substrates were eggshell, milk, bologna, ground beef, chicken,
lettuce, metal drain strainer, and cutting board. The authors were making no claim
that absolute detection of a biological target has been accomplished; the methods
were only claimed to be applicable to the differentiation of samples within a
pre-defined sample group. It is reported that the two bacterial species could be
discerned from each other and from uncontaminated surfaces. The influence of the
metabolic state of bacteria (viable or heat-killed) has been also studied.

Regarding the perspective of identifying bacteria in environmental samples, it is
important to assess the effect of trace mineral content and pH of a sample upon the



reliability of classification results. This was the subject of the study by G. Gamble
et al. [18], who emphasised the role of pH in gauging the ion-retaining capacity of
cell membranes. Bacterial spectra were classified using PCA and Mahalanobis
distance analysis (MDA). The authors have found that the classification results
depended upon the type of water with which the bacteria were rinsed before
freeze-drying and pelletisation: deionised; deionised, nitrogen-purged; reverse
osmosis; tap; phosphate buffered saline; and TRIS-buffered water (TRIS ¼ tris
(hydroxymethyl)aminomethane). In general, the clusters on PCA score graphs
displaced when the water type changed. However, this did not usually lead to
confusions in the identification of species. Interestingly, the authors used micro-
crystalline cellulose (2.6 times sample weight) to facilitate pelletisation; the resulting
pellets were interrogated by a 266-nm laser.
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In the study [34] published in 2013, the authors pointed out that there was no
consensus among researchers at that moment on whether the use of entire LIBS
spectrum or of selected variables (wavelength ranges) provides optimal classification
of unknown spectra. It was also not clear which chemometric technique, if any, was
best suitable for bacterial identification. The study involved the comparison of
PLS-DA with DFA on differently selected datasets. The conclusion was that DFA
was more suitable for a genus-level classification of a completely unknown sample,
while PLS-DA was able to discriminate more similar spectra at the level of species or
strains. The use of complex ratios of elemental line intensities for the training of the
models was proved to increase their performance.

A different mounting protocol was tested in 2015 [38]. The bacteria under study
were suspended in water and then deposited on standard nitrocellulose filter paper to
create flat and uniform bacterial pads. In contrast to the authors’ previous studies, a
collection system based on two parabolic mirrors was used. This required a more
sophisticated laser-based sample height alignment system. The introduction of filter
paper (instead of agar, which does not add any substantial contribution to spectra)
limited the image intensifier amplification due to a strong carbon emission at
247.86 nm. Despite that, the overall classification performance of the method, with
data processing done by DFA and PLS-DA, was better compared to previous
studies. The new protocol made it possible to reduce sample preparation by remov-
ing the necessity of centrifugation, but also introduced difficulties related to the filter
paper as a substrate.

D. Malenfant [35] studied the detection limits for the LIBS determination of
bacteria and found it to be no less than 50,000 cells per single laser pulse.
Experiments with growing substrates intentionally contaminated with zinc and
magnesium have shown that the former is accumulated by E. coli; conversely, no
accumulation was observed for magnesium. Heat or UV killing of bacteria has been
reported not to significantly affect the discrimination between different bacterial
species. Importantly, a centrifuge filtration insert has been designed which helped to
concentrate all bacteria from a suspension to a particular 150-micron diameter
location on a filter paper. This pre-concentration approach can considerably push
down the detection limit in the future.
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A discrimination of E. coli strains was reported in 2020 [71]. The authors found
that the Na/K ratio is a highly significant feature for discrimination of the strains with
an accuracy of more than 90%.

Somewhat apart from the above-described experiments stands the study by Lewis
et al. [72], who investigated the possibilities for the discrimination of bacteria in
bauxite soils of Jamaica. In this interesting work, femtosecond LIBS was combined
with PCA and PLS to differentiate among bacteria from both un-mined and
rehabilitated bauxite soils. Aqueous soil extracts were prepared, and then Luria-
Bertani agar was inoculated by a portion of an extract. The resulting colonies were
identified by polymerase chain reaction and Gram-staining, i.e., no model
microorganisms were used. In the LIBS spectra, the principal peaks were identified,
and their integrated intensities served as a basis for chemometric analysis. Different
species of bacteria formed distinct clusters on score plots, especially on those
obtained by PLS. On the PCA score plots, geographical site-related groups could
also be observed. As usual, Ca and Mg emission played a key role in the
discrimination.

A related paper [73] deals with the detection of S. enterica (more precisely, of its
serovar Typhimurium) in food. Since this infection prevails in raw meat and dairy
products, thus liquid media such as milk, chicken broth (CB), and brain heart
infusion (BHI) were studied. The liquids were inoculated with the bacteria and
then placed on silicon wafers which were analysed by LIBS after drying. DFA
was utilised for the discrimination between pure and inoculated food, as well as
between different concentrations of bacteria. It has been found that LIBS could
detect bacteria present at 105–106 CFU/mL concentrations in all the studied media.
Although comparative experiments, based on quantitative polymerase chain reac-
tion, demonstrated its ability to detect as little as 10–100 CFU/ml in BHI and CB,
respectively, this assay could not detect Salmonella from milk (at least with the
experimental technique the authors used).

Snyder et al. [74] in 2008 used LIBS to discern between two biological agent
surrogates (Bacillus atrophaeus and ovalbumin) and potential interferent
compounds (mould spores, humic acid, house dust, and Arizona road dust).
Mixtures of these were also examined. This study presents one of the first
applications of advanced chemometric machinery, namely, neural network
(NN) analysis, complemented by multiple linear regression (MLR), to the field.
The samples were deposited as solutions into craters on aluminium disks, allowed to
dry, and interrogated with laser pulses. Both quantitative and qualitative models
were developed. The accuracy of NN classification was assessed based on the
percentage of false negative predictions. The authors stated that the detection of
100 CFU (colony forming units) of bacilli was possible. On the other hand, there
were significant interferences from humic acid and mould.

Saari et al. [75] applied an interesting experimental approach that involved an
electro-dynamic balance to trap aerosol particles, which were generated from an
aqueous suspension of fungal and bacterial spores, and subsequently record LIF and
LIBS spectra. Calcium, potassium, and sodium were readily measured, and the
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species were efficiently discerned using the K/Na vs. Ca/Na graph (Fig. 7.4).
Bacteria proved to contain much ( 1000 times) more Ca than moulds.
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Fig. 7.4 The discrimination of fungal and bacterial spores (Aspergillus versicolor, Penicillium
brevicompactum, and Bacillus aureus) using the normalised Ca/Na and K/Na signals [75] Copy-
right # The American Association for Aerosol Research, https://www.aaar.org//. Reprinted by
permission of Taylor & Francis Ltd., http://www.tandfonline.com, on behalf of The American
Association for Aerosol Research, https://www.aaar.org/ [75]

A research group from Spain [76] used NN to identify and discriminate several
bacteria strains (P. aeruginosa, E. coli, and Salmonella typhimurium). To this end,
they used a pre-compiled spectral library to train the NN. It has been shown that the
growth medium (three types of agars were studied) does not affect the accuracy of
identification. Later, the approach was used for 40 bacterial strains causing hospital-
acquired infections (HAI), including multi-drug resistant strains [77]. Interestingly,
the E. coli spectrum shown in this publication is much different from the analogous
spectrum in [76], which may be due to a change in detection parameters. In a related
work [78], kNN enabled the discrimination between E. coli and S. aureus.

This methodology was later expanded into a study [79] devoted exclusively to
medically relevant Candida yeasts, aiming at strain discrimination. Twenty-one
strains belonging to seven species of Candida were included in the study. Thin
layers of suspensions dried in Petri dishes were interrogated by LIBS. The spectra
were normalised to the intensity of the Hα line (at 656.28 nm) to decrease intensity
variations. Neural network developed in the Matlab environment was used for the
classification. The emission spectra present a handful of molecular and atomic

https://www.aaar.org//
http://www.tandfonline.com
https://www.aaar.org/


emission signals, most of them, however, belonging to non-metallic species (C2, CN,
N2, N2

+, CN, N+, NH, O+, and H, together indicative of a quite high plasma
temperature), with almost no signs of metal emission lines. Nevertheless, strain
classification was impeccable.
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Identification of bacteria has also been regarded as an instrument of astrobiology.
In connection with this, Sivakumar et al. [80] investigated the discrimination
between live and dead E. coli. Both nanosecond (10-ns Nd:YAG, 1064 nm,
20 mJ) and femtosecond (150-fs Ti-sapphire, 775 nm, 1.4 mJ) lasers were used,
and spectra were acquired in a helium atmosphere. The spectra were analysed by
means of PCA and SIMCA. The results show that autoclaving and sonication
changed the spectral signatures of bacteria. Especially significant were changes in
the fs-LIBS signals of K, P, Na, Ca, and Mg, which dropped strongly after
autoclaving. Sonication caused the signals of Na, P, and Ca to drop moderately,
whereas K and Mg were barely affected. Considerably different were the results of
ns-LIBS, where sonicated samples always gave the most intense signals, followed
by live, and then by autoclaved cells. The authors have drawn attention to the fact
that the cell damage increased the viscosity of analysed media which led to changes
in experimental conditions. It is believed that the use of an internal standard could
possibly improve the situation.

Somewhat similar study was published by Farid et al. [81] in 2018 and dealt with
the effect of graphene oxide (GO), which is known to cause cell membrane disrup-
tion, on E. coli and S. aureus. They also reported the decrease of P, Mg, Ca, Na, and
K signals with addition of GO, while their concentration in the supernatant solution
drastically increased.

An interesting study was published by Prochazka et al. [82], who examined five
Staphylococcus and one E. coli strains by LIBS and Raman spectroscopy. Data
analysis was done with PCA and Kohonen self-organising maps (SOM, a special
variety of NN). LIBS provided better PCA-based classification compared to Raman,
but this was vice versa with SOM. Merging the data from both techniques yielded
the best classification. Carotenoid and potassium signals seemed to drive the separa-
tion of the methicillin-resistant S. aureus cluster in PCA score plots (Fig. 7.5).

Cisewski et al. [39] proposed an approach for the classification of sporulating
bacteria strains and confusant substances (baking powder and baking soda). The idea
was to apply a wavelet transformation to reduce data dimensionality and then

Fig. 7.5 PCA score plots for five Staphylococcus and one E. coli strain, (a) LIBS data; (b) Raman
data; (c) merged LIBS + Raman data. Adapted from [82] with permission from Elsevier



classify the spectra using SVM (see above). Thirty percent of the available data was
not used in modelling and served as a validation dataset. Misclassification rates were
0.6% for confusant powders and 3.3% for Bacillus spore powders. The authors also
briefly discussed how the models could be trained for use with multiple different
LIBS systems. In [83], LIBS and Raman data were fused to improve the SVM
classification of bacteria.
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7.5 Viruses

Viruses are the lowest, non-cellular form of life. Studies related to LIBS analysis of
viruses are very scarce. This is largely because of the lack of metals in their chemical
composition, since viruses are essentially encapsulated nucleic acid molecules. In
spite of this, a few studies do exist on the topic.

The first work in this direction is apparently that by J.L. Gottfried, published in
2011 [49]. This scrupulous investigation was aimed at discovering the potential of
LIBS to discriminate biological and chemical threat simulators prepared on multiple
substrates and in the presence of interferents. Most studied materials were
bacteria-related, but there also was MS-2 bacteriophage as a simulant of other
viral agents like the Variola virus, which is a smallpox agent. The authors
investigated the capability of PLS-DA models to discriminate infectious agents on
steel, aluminium, and polycarbonate in the presence of interferents such as limestone
and ovalbumin. Thin layers of infectious agents were prepared by drying the
respective suspensions on the substrate plates, and single-shot spectra were subse-
quently collected. Although good results were obtained in some cases, but a consid-
erable confusion was provoked by substrates and interferents. Interestingly, the
authors mention that their samples differed in transmittance of the incident radiation
(1064 nm), so that some of them prevented the formation of substrate spectrum. This
certainly has to do with absorbance coefficients, the point which we discussed above.
The authors also point out that the analysis would be more robust if a standardised
substrate was used—e.g., if swipes were taken from the studied surfaces. On the
other hand, in this setting, stand-off analysis would be impossible.

Another group [84] examined four strains of UV-killed hantavirus as dilutions on
glass slides. The importance of substrate choice was pointed out: glass slides worked
better than agar (this may have been due to better laser ablation conditions on glass).
The chemometric method used was PLS1 as implemented in the Camo Unscrambler
software. In contrast to other pathogens, viruses could not be differentiated by PLS1
alone, so the authors used a predictive flow approach. One of the strains was
removed from the analysis, and the three remaining strains were then differentiated.
It is, however, unclear what particular spectral features enabled this differentiation
(the greatest variances in the model occurred for C, H, N, and O). In a more recent
work [85], the same group envisaged the detection and identification of infectious
agents in human blood, using the PLS-DA algorithm. Infectious agents, with which
the blood was spiked, included bacteria (Yersinia pseudotuberculosis and S. aureus),
Trypanosoma cruzi parasite, and the human immunodeficiency (HIV) virus.



Whatman paper/ashless paper filters and glass microfibre filters were used as
substrates (see also [86]). The samples were interrogated with a 1064 nm/
13 ns Nd:YAG laser. Interestingly, this study compares conventional laser beam
focusing with a so-called “long-spark” configuration, when a cylindrical lens was
used for focusing. The result of this optical setup is a long, narrow plasma that can be
considered uniform in a large portion of its length (in the axial direction) [87, 88]
and, importantly, produces much more ablated material than a conventional spheroi-
dal plasma. This helps to increase the sensitivity and the signal-to-noise ratio when
spatial resolution is not important, provided the pulse energy is high enough. In this
particular study, 1.4 mm2 of filter surface was ablated with a cylindrical lens,
whereas only 0.031 mm2 with a spherical one. The authors assessed the limits of
detection (LOD) and found it to be 10 cells, parasites, or viral copies per 1 mL of
blood. Provided that the volume of a bacteria (S. aureus) is of the order of 1 μm3 [89]
and hence its mass is around 10�12 g, this LOD means that bacterial species were
detected at 10�5 ppm concentration, and viruses at 10�7

–10�8 ppm in a chemically
very similar medium. Meanwhile, the handbook by Cremers and Radziemski [90]
states the LOD for sodium (which has its own highly characteristic and very intense
lines) in a 10 M LiCl aqueous solution to be of the order of 10�2 ppm. This
comparison raises the concern that the chemometric algorithm has been overtrained
at some point in the study.
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The most recent work of this group [91] is devoted exclusively to viruses,
namely, HIV and hepatitis C (HCV) viruses. Using the approach developed in the
above-discussed study, the authors have been able to discern the two viruses in
clinical blood samples.

7.6 Plants and Related Materials

Studies dedicated to the classification of plant samples are quite numerous [92]. Here
we do not mention those of them which are related to the monitoring of environ-
mental pollution or deep-processed food products [93]. Plants are analysed either “as
is” (e.g., leaves or wood cuts) or in the form of pellets prepared from ground
material [94].

In 2002, a research team from Florida reported the implementation of an online
LIBS-based system for the analysis of wood products treated with copper chromated
arsenate (CCA) [95]. This wood preservative, though efficient (over 70% of the
volume of all treated wood products sold in 1996 were treated with CCA), has been
recognised dangerous since 2003 due to the release of arsenic to the environment.
The recycling and disposal of CCA-treated wood required a valid means for sorting,
and a LIBS-based facility was regarded as a plausible solution for this task [96]. The
authors [95] have chosen the chromium line at 424.5 nm as a CCA indicator.
Classification was based on the peak-to-base ratio for this line with the threshold
value set to 2.2. Accuracy of 100% and 98.9% was reported for the identification of
treated and untreated wood, respectively, if 10 laser shots were averaged for each
sample. Rotten and soaked wood was difficult to classify due to significant changes



in plasma parameters. This problem could be tackled by increasing the laser pulse
energy. An analogous XRF facility could distinguish between CCA-treated wood
and wood treated with non-arsenical alternative chemicals [97]. A surprising feature
of LIBS was the ability to detect stains that were not visible to the human eye, while
XRF tended to “see through” them. An early work on the determination of
contaminants in wood by Uhl et al. [98] is also worth mentioning. Wood analysis
has also been the focus of the study by Martin et al. [99], who used PCA to classify
wood samples according to the preservative with which they were treated. Later
[100], they have shown that LIBS spectra of a core obtained from longleaf pine in a
scanning manner can reveal the changes in chemical composition due to a fire event.
PC analysis was employed to facilitate data interpretation. Importantly, the spectra
were intentionally not taken from the fire scar area to ensure that the analysis reveals
physiological mechanisms resulting from the fire stress.
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In 2007, Xu et al. studied the LIBS spectra of barley, corn, and wheat grain dusts
in a remote analytical setting (4.7 m) using a femtosecond laser. While the spectra
were quite similar, spectral line intensity ratios (e.g., Mg I (285.17 nm)/Si I
(288.16 nm), Na I (588.99 nm)/Ca I (422.67 nm), Mn I (403.31 nm)/CN
(388.25 nm) etc.) were different for each of the samples. No advanced chemometric
data treatment was attempted [101, 102]. Bossu et al. [103] used fs-LIBS to detect
trace elements in sophora leaves and found that their concentration correlates with
the level of air pollution in the respective geographical area.

Rai et al. [104] used LIBS to compare the chemical composition of ripe and
unripe fruit peel aqueous extracts and found that unripe fruits were relatively rich in
Mg but poor in K. Interestingly, the plasma was generated on the surface of bulk
liquid samples, and in the liquid jet as well. No elaborate discussion of these
technical details has been given. A similar approach was adopted in their subsequent
work as well [105]. Zhang et al. [106] compared the concentrations of Ca, Na, K, Fe,
Al, and Mg in three kinds of vacuum freeze-dried fruit samples (apple, Chinese
gooseberry, and strawberry). It has been found that in apple samples, the relative
content of Na was the highest, whereas that of Ca was the lowest. The three plants
also differed in the content of K, Fe, Mn, and Mg.

Discrimination of coffee from different manufacturers was shown to be plausible
in [107]. This article also contains many other examples of LIBS uses in industrial
and security applications.

In 2010, Pereira et al. [108] evaluated the effects of the bacterium Candidatus
Liberibacter asiaticus (CLas) on inoculated citrus plants. This bacterium is one of the
causal agents of citrus greening, also known under the Chinese name
“Huanglongbing”, which causes serious problems in citrus cultivation all over the
world. The authors grafted infected buds to healthy trees of known age and obtained
the LIBS spectra of their leaves over the course of 8 months. A logarithmic
transformation was applied to the spectra in order to equalise the contributions of
weak and strong signals. The data were also mean-centred. PCA and SIMCA were
used for the classification between infected trees and healthy trees. The authors were
able to carry out this classification with reasonable accuracy (96 and 100% for
healthy and inoculated citrus trees, respectively, in the first 3 months of the



experiment, and 74/88% in the eighth month), which was superior to quantitative
polymerase chain reaction (qPCR) results. It is important to mention that the infected
trees with negative qPCR results were also considered as diseased. The authors
emphasised the role of zinc, manganese, and iron in the discrimination. Other
authors also found the lines of Fe, Ca, Mg, and K to be important for the detection
of various diseases of citrus trees [109, 110]; however, the 22 principal components
used for the classification seem to be an overdo in most situations [109].
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Huanglongbing is also dealt with in [111], where a collinear double pulse
configuration with 700 ns delay between 171 and 180 mJ pulses (λ ¼ 1064 nm)
was used to interrogate the samples of navel oranges. Continuous wavelet transform
(CWT) was used to extract emission peaks. Two classification models were com-
pared, both exhibiting good performance. It has, however, remained unclear what
spectral features were responsible for the classification. Another study [112] was
based on the analysis of tree phloem (sapwood) rather than leaves or fruits. A special
ablation regime, effected by 4-ns three laser shots with 10 μs inter-pulse delays, was
used to enhance plasma emission. As a simple way to explore spectral differences,
subtraction of spectra was considered. The data was coarsened by adding up adjacent
points; then, 38 peaks, highlighted by spectra subtraction, were selected, and this
small dataset was used for PCA and DFA. In general, high classification accuracy
was observed. Discrimination of genetically very close accessions of sweet orange
using the so-called classification via regression (CVR) is described in [113].

The authors of the research dealing with tobacco infected with tobacco mosaic
virus (TMV) [114] have emphasised the importance of moisture content for the
discrimination between healthy and infected plants. Moisture was shown to mask the
emission of Fe, Mn, Sc, Sr, Ba, and Li, along with some lines of other elements, in
fresh samples as opposed to dry ones, and to increase the RSD of intensity from 5–15
to 30–60%. The clustering quality in PCA changes accordingly (Fig. 7.6).

Fig. 7.6 PCA score plots for spectral datasets based on fresh tobacco samples (a) and dried
samples (b). Adapted from [114]



Admittedly, different laser wavelengths were used for fresh and dried samples
(532 and 1064 nm, respectively). After variable selection, PLS-DA and SVM
models were built with the latter significantly outperforming PLS-DA in accuracy
(94 vs. 89% for prediction).
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Ranulfi et al. [115] studied the effect of GSFR disease (green stem and foliar
retention) on the spectra of soybean. Student’s t-test was used to identify spectral
signals with most differences between healthy and infected plants. CVR and PLS
regression were also used. The authors concluded that healthy plants were relatively
rich in Ca and Mg and relatively poor in K, and vice versa for the infected soybean.
A recent contribution related to soybean seeds can be found in [116].

Martin et al. [117] used LIBS to detect metals such as Mg, Pb, Ca, Zn, and Cd in
Festuca arundinacea (tall fescue) leaf tissue samples. The implication was that LIBS
could serve to control forage quality and to monitor the progress of
phytoremediation of contaminated soils. The authors were also interested in whether
the presence of a common fungal endophyte such as Neotyphodium sp. could affect
the concentration of metals in the leaf tissue, but the results were not persuasive due
to an insufficient number of samples. A similar study involved scented
geranium [118].

In their scrupulous study, Martelli et al. [119] used LIBS with an excimer ArF
laser (λ ¼ 193 nm) to differentiate wheat tissues during the gradual ablation of
grain in real time, without any sample preparation. The authors first collected LIBS
spectra (230–930 nm) of hand-isolated tissues. The spectra were baseline corrected
and normalised to the intensity of the C2 Swan molecular emission (516.52 nm) to
compensate for any experimental fluctuations or laser-matter interactions (plasma
temperature, crater depth, and tissue density). A method called moving-window
two-dimensional correlation (MW2D) was utilised to analyse compositional
changes as a function of the number of pulses during the ablation of a grain and to
identify the number of pulses necessary to access a particular tissue. Ca II
(396.85 nm)/Ca I (422.67 nm) and Mg I (285.22 nm)/Mg II (279.55 nm) emission
intensity ratios were used as guides for this procedure. In this fashion, the depth
“coordinates” of five tissues, namely: pericarp (PE); seed coat (SC); nucellar epider-
mis (NE); aleurone (AL), and starchy endosperm (END), were identified. Thus, a
subsequent PLS-DA analysis was possible (Fig. 7.7), in which five classes and five
latent variables were considered. A high percentage of correct classification was
observed for PE, SC, AL, and END. As for NE, this layer was quite thin and was
therefore often misclassified. The ablation rate (per laser pulse) for each of the layers
could then be calculated and related to the tissue cohesion. Seed coat was found to be
the most cohesive material with the lowest ablation rate. This approach was also
used in the subsequent work related to the interrelations between the cohesion of
wheat grain tissues and their LIBS signatures [120].

Schenk and Almirall [121] investigated the options for classifying unprocessed
cotton according to its geographical origin in connection with serious fraud issues.
The samples were milled, spiked with a solution of scandium, which served as an
internal standard, dried, and pelletised (Sc content in the pellets was 400 ppm, and its
ionic line at 361.3 nm was used for the standardisation). A discrete set of element



emission lines was considered, namely, nine lines of Al, Ba, Ca, Cr, Cu, Fe, Mg, and
Sr. The three-dimensional PCA score plot revealed that the samples formed (some-
what overlapping) clusters according to their provenance. Linear discriminant anal-
ysis (LDA, or DFA) yielded more that 97% correct classification rate when
classifying by broadly defined regions (south/southwest or south/southeast of the
United States), and more than 81% when the state of origin is used as the classifica-
tion criterion.
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Fig. 7.7 Regression vectors obtained by the PLS-DA to predict wheat tissues: pericarp (PE), seed
coat (SC), aleurone layer (AL), and endosperm (END). Reprinted with permission from
[119]. Copyright 2010 American Chemical Society

Beldjilali et al. [122] found the aluminium and silicon concentrations in potato
skin to be much higher than in the flesh. This may have been caused by the close
contact of potato skin with soil.

Ferreira et al. [123] used the so-called random subspace method in principal
components space (RSM-PCS), along with two other related mathematical methods
used to construct decision trees, to discriminate Brazilian roasted and ground coffee
(RGC) according to its global quality (GQ) indexes. The spectral range around
680 nm was reportedly particularly useful for this sort of discrimination. The three
methods allowed a good classification accuracy (around 84%). However, it is not
clear which particular spectral feature provides the basis for the discrimination.

In 2012, Kim et al. [124] attempted to distinguish between pesticide-
contaminated (10 ppm parathion C10H14NO5PS or fosetyl-aluminium
C6H18O9P3Al) from pesticide-free samples of rice and spinach using PLS-DA.
Relative intensities of the observed ionic and atomic emission lines stand in accor-
dance with high laser pulse energies used in this study (80–140 mJ). Two-class
PLS-DA model provided readily distinguishable clusters when applied both to
pesticide-free standard and real samples of rice and spinach. In a similar way, it
was possible to detect pesticide contamination, especially in spinach. It should be
noted that spinach was spiked with fosetyl-aluminium, whereas rice—with para-
thion. However, it is not clear which spectral features make the discrimination
possible. It could be very sensitive Al lines in the case of fosetyl-Al, but the
mechanism of the parathion detection, given its low concentration, is hard to explain.

Tripathi et al. [125] studied the distribution of several elements, including silicon,
in wheat plants. They have managed to discern the vegetative organs (leaf, leaf



sheath, and stem) from the fertile organs (awn, lemma, and rachilla) based on a PCA
score plot. Similar tasks were faced in [126]. The possibility to detect turmeric
adulteration based on the signals of artificial colorants has also been shown [127]. In
[128]. it has been demonstrated that saffron, marigold, safflower, and turmeric can be
readily classified with the help of LIBS-based PCA score plots (Fig. 7.8). In this
regard, LIBS was better than NIR and Raman spectroscopy. This was the basis for
the further development of a quantitative PLS method for the determination of
adulterants. A similar comparison of spectroscopic techniques has been carried out
by Ercioglu et al. [129], who studied the spectra of nine aromatic plants, commonly
used in cooking. In this case, NIR was superior to LIBS in terms of PCA classifica-
tion, which could partially be explained by the fact that five of the herbs belonged to
the same family (Lamiaceae, or deadnettle family).
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Fig. 7.8 The discrimination of saffron-like adulterants by LIBS using PCA score plots. Copyright
by Springer Nature [128]

Kunz et al. [130] used the Na I (588.99 nm)/K I (404.72 nm) intensity ratio in
plants, obtained by fs-LIBS, as a marker of drought stress. Bhatt et al. [131]
compared organic and conventionally grown cauliflower and broccoli by
using 96 mJ ns-LIBS using both univariate and multivariate (PCA) approaches
and found no significant differences between the two growing strategies. Singh
et al. [132] managed to discern four species of cucurbit by PCA. It has also been
shown possible to detect chlorpyriphos on apples with the help of PCA
[133, 134]. Bilge et al. [135] suggested the use of the Ca/K ratio for the discrimina-
tion between natural and fortified wheat flour. PLS-DA was utilised to discriminate
between pure corn or sorghum flour and their mixtures [136]. Interestingly, the flour
(which is known to be difficult for pelletising) was hydrated with deionised water
and hot pressed for 4 min at 150 �C to obtain dry sheets.
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It is widely known that one of the important aspects of international trade is fraud
detection, especially when products of agricultural industries (from raw materials to
wines, pharmaceutical substances, etc.) are concerned. In fraud detection, identifica-
tion of the geographical origin (GO) of a product is often crucial. Luckily, this task
can often be more or less easily addressed by the acquisition of the respective trace
element profiles which depend on GO due to variations in soil chemistry or fertilisers
in use, and also due to differences in subspecies or cultivars of plants that are grown
in different regions. Additionally, a cruder forgery such as the addition of foreign
materials to a product (adulteration) should be detected. LIBS or vibrational spec-
troscopy techniques such as Raman spectroscopy or different variants of infrared
spectroscopy (e.g., near-infrared, NIR, or mid-infrared, MIR) lend themselves for
these purposes. The combination of the data provided by these techniques should
give advantages regarding the completeness of sample characterisation, LIBS being
responsible for the elemental composition, while vibrational techniques yielding
information at the molecular level. This statement, however, should be taken cau-
tiously just because atomic emission spectra usually comprise much more signals
than vibrational spectra, the first being composed of single transitions, the second
being composed of wide bands which often overlap with each other. Thus, atomic
spectra can be no less informative than molecular ones.

The study by Eum et al. [137] is an example of the LIBS+NIR combination. They
focused on samples of milk vetch roots, which are widely used in formulations of
oriental herbal medicines, and attempted to distinguish Korean domestic products
from imported ones. The SVM-based classification using only NIR information
resulted in discrimination accuracy of 91.5% (vs. 73.1% for LIBS data). If the data
are fused using support vector regression, the accuracy improves to 95.8%. It should
be noted that the NIR-based classification is apparently driven by quite subtle
differences in the 8400–7700 and 7000–6000 cm�1 domains. As for LIBS,
35 selected spectral intensities were utilised, including resonance lines of Na, Ca
and K. Magnesium was the main driver of the classification. According to our
experience, the results could have been better if the resonance lines were omitted,
because they are prone to self-absorption and thus their intensity does not depend
linearly on the content of respective elements. SIMCA, kNN, extreme learning
machine (ELM), and RF were used by Liu et al. [138] to study the authenticity of
kudzu powder (Chinese medicine).

Yang et al. [139] studied the influence of sample preparation method on the
classification performance of SVM. The best results of the GO identification of rice
were reported for the protocol with no sample pre-treatment (grains were just placed
in beaker, and the surface was flattened with a blade). Full spectra were not used;
90 spectral lines were selected instead. In the subsequent work [140], they compared
the performance of PCA, decision trees (DT), random forest (RF), PLS-DA, LDA,
and SVM for the same task. The following order of classification accuracy has been
obtained: SVM > LDA > RF > PLS-DA > DT. In terms of operation time, SVM
was, however, the most demanding technique, with the following results:
SVM > RF > PLS-DA > DT > LDA. As a result, the authors have proposed
LDA (DFA) as the optimal algorithm for rapid, real-time, and in situ measurements.
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In [141], the authors used wavelet transform for the noise-reducing pre-treatment
of LIBS spectra of coffee powder in the form of pressed pellets. Four varieties of
China-grown coffee were studied. Seventy-five percent of the obtained spectra
which had the lowest RSD of the signal intensities measured at the C I 247.86 nm
were selected for further consideration, while the rest was discarded. The employed
chemometric methods included PCA, PLSR, radial basis function neural network
(RBFNN), and SVM. PCA was used to select the 20 most important wavelengths. It
has been shown that the use of full spectra gives only slightly better classification
results than the selected data, a fact that justifies variable selection since it greatly
reduces the computational load.

Sezer et al. [142] evaluated the potential of LIBS and chemometrics for the
detection of coffee adulteration by roasted chickpea, corn, and wheat. There was a
good cluster separation on the PCA score plot (Fig. 7.9a). Judging from the respec-
tive loadings (Fig. 7.9b), Ca and probably Na emission seem to be the clustering
drivers. The other study by the same group [143] dealt with pistachio adulteration by
green pea and spinach. Quantitative PLS-based analysis of artificial binary mixtures
has also been carried out. In both studies, laser breakdown was created in the air near
the sample surface, which was apparently done to reduce sample destruction. There
are also indications [144] that Ca depth profiles in arabica and robusta coffee are
different, Ca being surface-concentrated in grains of arabica; its bulk concentration
also appears to be higher than in robusta.

Quality control is another major field with a huge demand in analytical
instruments and analytical methodology. Silva et al. [145] considered the detection
of the so-called BGS (black, green, and sour grain) defects in coffee by LIBS and
NIRS, emphasising the role of molecular emission signals.

In 2019, Liu et al. [146] compared the performance of PLS-DA, SIMCA, and
extreme learning machine (ELM), which is a kind of a neuron network, for the
identification of genetically modified maize. The authors reported an excellent
identification rate for all the models, especially for the ELM model based on PCA
loadings, which yielded 100% accuracy in both calibration and prediction sets.
Variable selection was also attempted, and the results were compared for the models
based on selected spectra, on the one hand, and for the models based on full spectra,
on the other hand. The latter models yielded somewhat higher identification accu-
racy, but this gain was not significant (especially bearing in mind the loss in
computation speed). The authors claimed that CN emission intensity was the key
variable for the identification. However, as the spectra were taken in air, this
statement could require an additional consideration.

Porto et al. [147] used PLS-DA to discriminate between sugarcane genotypes
(susceptible and resistant to sugarcane borer). Sharma et al. [148] investigated
compositional changes in rice grains resulting from false smut infection. A simple
comparison of spectral intensities was carried out, revealing that Ca, Mg, Si, Cu, and
Fe signals were lower in infected samples. This was corroborated by wavelength-
dispersive X-ray spectroscopy (WDXRF). A similar study was dedicated to papaya
roots infected by nematodes [149], diseased ber fruits [150] and medicinal herbs
[151]. The two latter studies involved PLS-DA on full-length LIBS spectra. Feng
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Fig. 7.9 Score plot (a) and loadings plot (b) of PCA analysis for Coffee arabica, chickpea, corn,
and wheat samples. Copyright by Elsevier [142]



et al. [152] dealt with the classification of privet, sweet viburnum, and bamboo
leaves. PCA-MD (Mahalanobis distance) and PLS-DA were used. The latter method
has been reported to be more accurate on the test set, compared to PCA-MD. In a
related work [153], they also used LDA (DFA) and SVM, with the latter slightly
more efficient than LDA. The interest in the detection of diseases can be further
illustrated by [154], where the so-called low-, mid-, and high-level fusion of data
from different spectroscopic techniques was considered. This point is so far rarely
discussed in the literature on the analysis of biological samples. PCA was used to
highlight key features in hyperspectral images, MIR, and LIBS spectra. Autoencoder
(AE) has also proved to be efficient in feature extraction and data compression.
High-level fusion-based classifiers (SVM, logistic regression (LR), and NN) have
been shown to give the best accuracy. As the number of samples was limited (30),
NN could not exhibit all its strengths. A summary of analytical and data processing
techniques employed for the quality control of natural medicines can be found
in [155].
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An ingenious sample preparation protocol, based on the conversion of liquid
samples into solid polyvinyl alcohol (PVA) matrices, suitable for LIBS analyses, has
been used for classifying sugarcane leachates in terms of impurity contents (0–5% or
8–10%) by means of PCA and the fusion of 17 classifiers such as PLS-DA or
K-nearest neighbours (KNN) [156, 157]. Recently, Zhao et al. [158] studied the
classification between eight varieties of ginseng (four kinds from two geographically
close places; two samples were identical except the age). The analytical techniques
were represented by hyperspectral imaging and LIBS, and the results were consid-
ered both separately and in the fused form. PCA scatter plots showed the best
clustering in terms of sample age; the grouping according to GO was less persuasive;
the species-based grouping yielded well-defined, but overlapping, clusters. It has
been stated that the species discrimination was driven by aluminium signals,
whereas GO and age were related to P and Ca, respectively. The identification of
tea varieties and their GO using NNs is described in [159].

7.7 Animal and Human Tissues

The analysis of samples of animal and human origin is a vast and quickly developing
field to which the world’s leading LIBS research groups make their contributions.
The main focus obviously lies on the discrimination between healthy and pathologi-
cal tissues, primarily malignant tumours. Thus, the majority of the publications are
related to cancer diagnostics (the first study in this direction dates back to 2004
[160]) and to some other medicine-motivated topics, including the studies of calculi
and stones, nails, hair, teeth, bones, monitoring trace elements in tissues and
biological fluids, imaging of biological specimens, archaeological and forensic
issues, etc. Moreover, there is a recent comprehensive 2019 review of medical and
veterinary applications of LIBS by Gaudiuso et al. [51], although a number of new
studies have appeared since then, e.g., [161–172]. Therefore, in the following



considerations, we will just highlight selected studies that are not directly related to
medicine.
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Interestingly, one of the contributions related to the analysis of animal material is
at the same time motivated by the above-mentioned Huanglongbing problem
[173]. The disease is transmitted by two species of psyllids (sucklings) which host
the putative phytopathogen CLas (see above). The goal of this study was to find
biochemical differences between healthy and infected psyllids. The insects were
analysed with the help of a LIBS setup which included a microscope; each 1064-nm,
40-mJ laser shot consisted of a train of three micro-pulses with a 10–25 μs between
them. The data processing was similar to the approach adopted in [112]. The authors
claimed to have been able to discern the insects using 13 selected spectral signals.
Admittedly, the results could have been more persuasive if the quality of the
obtained spectra (in terms of, e.g., spectral resolution, which was 0.3 nm) had
been higher.

In an early 1998 work, Kim et al. [174] used a 790-nm femtosecond laser and
showed that porcine bone and spinal cord can be discerned by using the ratio of
emission intensities at 615 and 575 nm which is significantly higher in bone. Given
the spectral resolution of their experimental setup, this roughly corresponded to the
ratio of the intensity at Ca I 616.217 line to the continuum at 575 nm.

The important study by Yueh et al. [175] dealt with the discrimination of chicken
organs (brain, lung, spleen, liver, kidney, and skeletal muscle). The samples were
analysed in the frozen form, so the experimental setup was modified accordingly.
The laser pulse energy was notably as low as 5 mJ (λ ¼ 532 nm); though untypical
for most studies described in the present chapter, the experimental conditions
adopted by the authors ensured a good signal-to-noise ratio. Cluster analysis was
carried out by DFA on PCA-compressed data, followed by hierarchical cluster
analysis (HCA). PLS-DA and NN were also used. All this was performed on
21 selected analyte lines. The results were reasonably good for the calibration set,
i.e., the authors could clearly distinguish the tissue types as visualised by hierarchical
dendrograms, but the validation set presented many misidentified cases. Problems
were reported concerning the performance of NN.

Li et al. [176] studied pork tissues, or, more precisely, different parts of body (fat,
skin, ham, loin, and tenderloin muscle tissues). The samples were randomly obtained
from six different animals (thus 5 � 6 ¼ 30 samples). PCA, kNN, and SVM results
were considered for classification. First, the discrimination was performed between
consolidated classes of fat, skin, and muscle tissues with very good results (accuracy
99.8%, sensitivity over 0.995, specificity over 0.998). Then, highly similar ham,
loin, and tenderloin were classified. The best results for these “refractory” samples
were achieved with SVM (accuracy 76.8%, sensitivity over 0.742, specificity over
0.869). Three-dimensional PCA score plot shows that the three muscle types are
almost indistinguishable, but the use of 6 PCs improves the situation. An unusual
acquisition delay, as much as 3 μs, was chosen, which could have favoured the
recording of the emission of neutral atoms. Another unusual decision is the spectra
normalisation by the intensity of sodium resonance line, which is questionable since



this line is usually too much affected by unstable ionisation degree and self-
absorption.
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Kanawade et al. [177] examined fat, muscle, nerve, and skin taken from pig
heads. They used an ArF excimer laser to excite plasma. LDA (DFA) was used for
the classification; the leave-one-out approach was utilised for validation. The latter is
known to produce artificially high values of classification accuracy, external valida-
tion sets being the preferred way for the accuracy assessment; but of course,
additional validation samples are not always easy to procure. The quality of classifi-
cation was assessed by Receiver Operating Characteristic (ROC). Although the
obtained data clusters overlapped significantly on PCA score plots, a successful
LDA differentiation has been reported. The temporal acquisition parameters are not
reported, but the presented spectra reveal a hot and dense plasma. These studies were
continued in subsequent works of the same group of researchers, in which line
intensity ratios were also used for classification [178, 179].

Abdel-Salam et al. [180] showed the effect of hatching on the elemental compo-
sition of avian eggshells. The reported changes in the concentrations of Mg, Na, and
Ca were explained by the consumption of these elements by the growing embryo.
Further works by the same authors [181, 182] showed that the Mg II (280.26 nm)/
Mg I (285.22 nm) and Ca II (373.69 nm)/Ca I (428.9 nm)2 ratios in calcified tissues
(tooth enamel, shell, and eggshell) presented strong positive linear correlation with
the hardness. In principle, this could be used for the discrimination of such tissues
when the number of materials likely to be encountered is limited (e.g., in dentistry
[183, 184]. The approach has also been applied to link the age of a hen to the surface
hardness of eggs it laid [185]. This series of works was continued by the study of
buffalo bull semen. It has been shown that the content of Ca, Mg, and Fe in seminal
plasma (ablated on an ashless filter paper) are season dependent, being higher in
winter. These elements are directly related to sperm parameters [186].

The same authors later endeavoured the analysis of milk from different animals
(buffalo, camel, goat, and sheep). They found that Ba/Ca and Sr/Ca ratios were
different, tending to be higher in buffalos and lower in sheep [187]. Higher sodium
content, which was also correlated with somatic cell count (SCC, a mastitis diagnos-
tic marker), was found in the milk of mastitis-infected cows as opposed to healthy
animals. Conversely, the calcium signals were lower. LIBS results were also
supported by laser-induced fluorescence (LIF) studies [188]. A positive correlation
of SCC, CN, and C2 emission intensities was also reported [189]. In a similar way, it
was found that these molecular bands in chicken meat become weaker during its
storage [190].

The study by Bilge et al. [31] dealt with meat adulteration and thus involved the
classification of pork, chicken, and beef. The samples were minced, dried, Soxhlet
de-fatted, ground and pelletised. An extensive pre-processing of spectra involving
Whittaker filtration was carried out. PCA score plots proved that the classification is

2This choice of Ca lines is good in view of avoiding self-absorption effects.



feasible (see Fig. 7.3, right). The studies were further extended to the detection of
chicken and pork adulteration in beef sausages and salami products [191].
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In 2021, Manno et al. studied the effect of cold and hot tea [192] and coffee [193]
on the structure and elemental profile of teeth both in vitro and in vivo (in rats). For
this purpose, elemental intensity ratios of P, Mg, Zn, Sr, and C to Ca were used.
LIBS was also supported by XRF and scanning electron microscopy (SEM). An
interesting use of LIBS and NNs was demonstrated in [194], where deer bones from
different individuals were discriminated and reassembled. A similar approach was
adopted by other researchers, but with archaeological human bones [195], and both
human and animal bones from a Palaeolithic site [196].

A study conducted by Sushkov et al. [197–199] was devoted to zooplankton
organisms (viz. several taxa of sea crustaceans) which were previously found to
accumulate trace elements like lithium, arsenic and uranium [200]. The goal was to
investigate correlations between the signal of Li and other elements, on the one hand,
and molecules comprising the tissues, on the other hand, in an attempt to shed light
on causes and mechanisms underlying the phenomenon. To this end, LIBS and
Raman spectra were recorded and compared. Twenty-nine zooplankton samples,
representing four animal taxa, were analysed. LIBS spectra of dried and pelletised
samples were measured using a commercial instrument (J-200 Tandem LA-LIBS by
Applied Spectra, USA; excitation laser: 266 nm Nd:YAG, 20 mJ).

PCA eigenvalues suggested five principal components (PCs) for the dataset. The
first PC absolutely prevailed over the others in terms of explained variance (92%).
The loadings were dominated by resonance lines (Na I, K I, Ca II) and other intense
transitions prone to self-absorption. The authors deemed reasonable to cut out
(or “mask”) these ranges. After masking, the decomposition yielded six PCs, with
the first PC accounting for 71% of variance. Thus, more informative components
were obtained, which resulted in an improved clustering in score graphs (Fig. 7.10a,
b). Besides visual inspection, the discriminative performance of the models was
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Fig. 7.10 Score plots of PCA decompositions: LIBS spectra before (a) and after (b) masking of
strongest signals [197, 198]



assessed using the silhouette metric (see Sect. 7.3) and was found to improve from
0.34 to 0.62. Arrow worms could not be separated from Calanoida, because their
main feature is the presence of certain amino acids that could not be detected by
LIBS. The only sample of sea snails was always far from the rest of the animals due
to its high Ca content. The “best plane” also shifted back from 5–1 to 2–1 due to
avoiding excessive influence of resonance lines on the explained variance.
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7.8 Conclusion

In this chapter, we attempted to deliver a representative review of the development of
LIBS-based qualitative classification and discrimination of biological samples dur-
ing the last two decades. The first studies, published in 2003, were motivated by
biological warfare concerns, but later, the interest of researchers shifted to the field of
biochemistry and medicine. Several years after that, the world saw the rapidly
emerging number of LIBS applications to cancer research and treatment. Plant
discrimination also turned out to be important in view of the needs of industry and
trade (adulteration and mislabelling issues, identification of plant diseases). Obvious
progress in all these fields has been achieved, which would be impossible without
the introduction and popularisation of chemometric algorithms (mainly PCA, PLS,
and DFA) as everyday tools of analytical chemists. Now there is no question whether
biological samples can at all be discriminated by LIBS, and differences as subtle as
inter-strain variations of chemical composition of bacteria have proved to be detect-
able. Despite that, it should be mentioned that in many cases, the published studies
are too much application-oriented, so that LIBS itself is regarded just as an easy-to-
use instrumental technique without paying much attention to spectroscopic issues,
from the optimisation of experimental parameters (pulse energy, laser wavelength,
temporal acquisition parameters, number of surface cleaning pulses) to the identifi-
cation of spectral lines. We believe this to be a problem that slows down the
accumulation of sound and reliable scientific results and gives rise to unrealistic
claims. In these studies, an excessive attention is sometimes paid to chemometrics,
presumably in a hope that it would compensate for hardware-related drawbacks.
Maybe this can be understood (but not tolerated) when a new discipline rapidly
develops and brings about inflated expectations because its limitations are not yet
clear for everyone. However, LIBS (possibly in combination with other related
experimental techniques such as Raman spectroscopy or laser-induced fluores-
cence), supported by proper chemometric data treatment, has a good potential to
get regulatory approval in different parts of economy and become a part of our
everyday life.
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Nanoparticle-Enhanced Laser Induced
Breakdown Spectroscopy (NELIBS)
on Biological Samples

8

Alessandro De Giacomo and Marcella Dell’Aglio

8.1 Introduction

The use of plasmonic systems based on metallic nanoparticles (NPs) has been
largely used for analytical spectroscopy in the last decades, because it allows
extremely high sensitivity and very low limits of detection (LOD). In the case of
Laser-Induced Breakdown Spectroscopy (LIBS), the use of NPs deposited on a solid
sample surface enables the interaction of the plasmonic system of metallic NPs with
the ablated matter during ns-laser pulse irradiation (nanoparticle enhanced laser-
induced breakdown spectroscopy, NELIBS) [1] inducing better atomization and
excitation of the sample.

The fundamental mechanisms allowing the LIBS signal enhancement are
reported in previous papers [1, 2]. Briefly, when metallic NPs are deposited on the
sample surface, laser irradiation is more effective as a consequence of the coupling
of the electromagnetic field of the laser with the one produced by the plasmonic
system. In [1] it has been observed that although the laser irradiance is beyond the
breakdown threshold of the sample to form the plasma, the NPs do not vaporize
during the laser pulse and allow the electromagnetic field enhancement effect along
with the all pulse duration and, in turn, the effective interaction of the plasmonic
system with the high density ablated matter in the first stage of expansion. A sketch
of the NELIBS working principle is reported in Fig. 8.1.

The observed main characteristics are the following:
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Fig. 8.1 A sketch of the NELIBS working principle

Same amount of removed matter per laser shot as in traditional ablation
(b) Higher atomization yield of the ablated matter
(c) Better laser pulse energy distribution on the sample
(d) Multiple ignition points for plasma induction
(e) Enhancement of the plasma emission signal up to two orders of magnitude
(f) Decrease of the limits of detection

The enhancement of the emission spectra with NELIBS, defined as the ratio
between emission line intensity of NELIBS and LIBS (in a single pulse arrange-
ment), is strongly related to the efficiency of the plasmonic coupling between the
NPs. This means that 2D deposition with a suitable inter-particle distance is required.
According to the plasmon theory, the distance between spherical NPs should be less
or comparable to the NP diameter. In the case of NELIBS where high energy pulse is
employed, the inter-particle distance should be modulated in order to have the best
compromise between the enhancement of the electromagnetic field and the conser-
vation of the NPs system during laser irradiation. The latter means, as an example,
that if too high laser irradiance is employed NPs undergo optical breakdown
decreasing the enhancement effect on the plasma emission.

Generally, the deposition of NPs is accomplished by depositing and then drying a
drop of colloidal solution directly on the sample surface. The concentration of the
colloidal solution needs to be optimized in order to achieve a 2D layer of NPs with
suitable inter-particle distance [3] as shown in Fig. 8.2.

The deposition of the NP system on the sample surface is the most difficult
operation of NP-enhanced laser ablation because during the drying of the droplet,
aggregation and stacking of NPs should be avoided in order to maximize the
NELIBS effect [2]. Figure 8.2 shows the effect of NPs surface concentration on
NELIBS enhancement factor. At very low concentration, the moderate enhancement
is probably due to NPs acting like thermally- insulated defects. Once a certain
concentration is exceeded, plasmon coupling with the laser field occurs, and the
enhancement increases exponentially up to another critical concentration value.



Beyond this concentration, the enhancement decreases as a consequence of NP
aggregation and sample shielding.
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Fig. 8.2 Effect of NP surface concentration on the NELIBS enhancement factor GOES

NELIBS has been applied in several applications [2, 4, 5] and one of the most
interesting uses of such a technique is the elemental analysis of biological samples.
As a matter of fact, traditional LIBS does not have a high sensitivity when applied on
biological samples because of the high ionization energy of matrix elements (C, N,
H) that tends to quench the plasma and therefore spectrum accumulation is needed to
reach a suitable signal-to-noise ratio (S/N). Since the latter requires amounts of
samples that are not always available in real applications it can hamper the employ-
ment of LIBS technique. NELIBS can bypass these inconveniences just employing a
single laser shot for the analysis, due to the advantages mentioned above.

In the following sections, a set of examples will clarify the promising advantages
of NELIBS with respect to conventional LIBS in the case of biological samples.

8.2 Experimental

The experimental set-up of NELIBS technique is similar to the one of classical LIBS
and it consists of a laser source, a spectrograph coupled with an intensified detector
and optics for focusing the laser beam and for collecting the emission signal as
sketched in Fig. 8.3 and already described in detail in [3–5].

Although the instrumentation of NELIBS is the same as LIBS, the operative
protocol should take into account several issues. The laser spot should be as large as
possible in order to involve a relevant number of NPs. This means that micro-LIBS is
not immediately applicable for obtaining enhancement when NPs are employed. A
spot size larger than 200 μm is strongly recommended. For example, in the specific
case of NELIBS of liquid samples, for which a drop of solution is deposited on a
dried NPs layer and only one laser shot is fired, to obtain the higher removal of the
sample as possible, the dimension of laser spot should be comparable to the entire



dry sample area in order to vaporize the whole deposited sample. The laser irradiance
should be selected so that the breakdown of the NPs can be avoided.
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Fig. 8.3 Typical experimental setup for NELIBS

For what concerns the detection, it is important to remember [2] that the laser-
induced plasma, when NPs have been deposited on the sample surface, has different
dynamics as well as a greater size with respect to the plasma obtained with conven-
tional LIBS as reported in Fig. 8.4.

As a consequence of these differences in the spatial distribution of emitters in the
NELIBS and LIBS plasma, the detection optics should be optimized accordingly.
For this reason, the use of a large optical field of view for collecting plasma emission
allows exploiting the NELIBS advantages better than the use of a small aperture
optical fiber.

Beyond these instrumental suggestions the deposition of the colloidal solution
drop and the chemical quality of the NPs, as mentioned above, is of great importance
for having a reproducible experiment.

NPs must be as pure as possible and this is why NPs produced with Pulsed Laser
Ablation in Liquid (PLAL) [7] are strongly recommended. Moreover, the eventual
use of capping molecules for stabilizing the NPs or spacers should be evaluated
carefully in order to avoid interference with the sample or false detection of trace
elements contained as an impurity in the NPs or on the chemicals used in the
colloidal solution. The typical NELIBS sample preparation is shown in Fig. 8.5: a
set of laser pre-shots is suggested if the substrate/sample is a metal [2, 5]. Then the
deposition and drying of the colloidal solution can be performed. Finally, a laser shot
can be fired if the sample is the substrate itself or, before firing the laser shot, a liquid
sample can be deposited with drop casting on the dried NP layer as will be discussed
in the next section.

To improve the quality of colloidal deposition and to obtain an optimal deposition
of the plasmonic system on the sample surface, some authors suggested the use of
modified SERS (surface-enhanced Raman scattering) substrates for NELIBS on
liquid samples [8] or the employment of nanostructured substrate if the substrate
itself is the sample to be analyzed with NELIBS [9].
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Fig. 8.4 Comparison of laser-induced plasma images and integrated intensities of a sample
solution of PbCl2 dried on a glass substrate during (a) NELIBS and (b) LIBS. (1 μL o
[PbCl2] ¼ 1 ppm; delay time from the laser pulse ¼ 1.3 μs; gate width ¼ 500 ns; laser
fluence ¼ 16.3 J cm�2; in the case of NELIBS, 1 μL of AuNPs solution (particle diameter: of
20 nm) 0.04 mg mL�1 dried on glass was used). Reprinted with permission from [6]. Copyright
2016 American Chemical Society

Fig. 8.5 Typical sequence of step during NELIBS sample preparation: laser pre-shots, deposition
of 2 μL of colloidal solution, letting the solvent to evaporate, firing of the laser shot

In any case, the plasmonic system in terms of the number of plasmonic elements
must be selected with a preliminary experiment for understanding the best experi-
mental surface concentration for having the best inter-particle distance between NPs
and therefore the maximum NELIBS enhancement.
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8.3 NELIBS on Biological Fluids

Liquid samples are generally analyzed by LIBS followed by converting the liquid
matrix into a solid one via several possible approaches [10]. The most common and
easiest way is to dry the liquid sample on a suitable substrate. In the case of NELIBS
approach, the NPs system is deposited on a substrate (glass or Teflon) with drop
casting of a colloidal solution. After that the colloidal drop is suitably dried, the
surface of the substrate is covered with a layer of NPs. At this stage, a few microliters
of the liquid sample is deposited and dried on the NP bed to make it ready for the
LIBS measurement as shown in Fig. 8.6.

A laser spot of diameter comparable to the dried sample spot is recommended in
order to turn all samples in the plasma phase. Figure 8.6 shows how all the dried
solution was completely ablated after one laser shot. By acquiring the plasma
emission and further analyzing the emission spectra, a sub-ppm metal detection
and quantification can be obtained with NELIBS on the microdrop. As a general
example, Fig. 8.7 shows the calibration curve built with water solutions of AgNO3

and performed with NELIBS by employing ultrapure AuNPs. It is important to
underline that at the concentrations reported in Fig. 8.7 the silver signals were not
detected with LIBS since those values were far below the LOD.

The importance of transferring this technique to a biological fluid sample is
evident. In refs [6, 11], the residual metals on the reaction center of the protein
from a bacterium after several cycles of dialysis has been investigated by NELIBS.
Because of its multispectral capability, NELIBS allows the simultaneous detection
of metals in a few microliters of sample solution [6]. In these experiments, while the
dialysis had removed the most of metal under examination, lithium was still detect-
able and quantifiable also after several cycles of dialysis. Figure 8.8 shows the frame
of spectrum corresponding to the Li I line at 670.8 nm obtained with LIBS and
NELIBS.

Another important example is the detection of heavy metals in human serum,
used to simulate the detection of heavy metals in human blood. In the experiment
reported in Fig. 8.9, just 2 μL of human serum (treated with a known concentration
of lead) was deposited on the NPs coated substrate. In a so little amount of sample,
basically equivalent to a mosquito bite, NELIBS has been able to quantify tens of

Fig. 8.6 NELIBS for microdrop analysis: images of sample preparation steps before and after the
NELIBS measurement (the drop was deposited on parafilm located on glass to avoid glass element
interferences in the plasma emission spectra)



ppb of lead in a single shot experiment. On the contrary, no emission lines
corresponding to Pb have been observed with conventional LIBS. This example
opens the way to apply NELIBS for fast medical diagnostics related to the detection
of metallic pollutants in blood. As a matter of fact, a so little amount of sample can be
retrieved just with a sting instead of traditional blood sampling.
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Fig. 8.7 Calibration curve of Ag in the concentration range between 0 and 6 ppb. In the inset, the
spectrum around the Ag I 328.07 nm line is shown for 11.7 ppb and 0.35 ppb of Ag concentrations.
Experimental conditions: 1 μL of AgNO3 sample solution, laser fluence 12 J cm�2, 1 μL of AuNPs
(particle diameter: 20 nm) 0.03 mg mL�1. Reprinted with permission from [6]. Copyright 2016
American Chemical Society

In both these examples the advantages of NELIBS are due to a set of synergic
advantages [6]:

1. Electromagnetic field enhancement allows a higher local irradiance that in turn
allows for a better atomization, avoiding the problems connected to the presence
of organic matter.

2. In the case of blood analysis, where heavy metals are mostly present in the ionic
state, it may be considered the preferential absorption of ions on the NPs surface
when drops of blood are deposited on the NPs layer with a consequent accumu-
lation of ions that will be involved in the plasma phase.

3. Vaporization of the NPs within the sample produces additional electrons that
sustain the plasma longer than that produced in the case of classical ablation of a
small sample.
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Fig. 8.8 Comparison between NELIBS and LIBS Li signal in 1 μL of solution of the reaction
center from the purple bacterium Rhodobacter sphaeroides at a concentration 10�5 M. Experimental
conditions: laser fluence 20.4 J cm�2, 1 μL of AuNPs (particle diameter: 20 nm) 0.06 mg mL�1]
Reprinted with permission from [6]. Copyright 2016 American Chemical Society

In Fig. 8.4, the integrated overall plasma emission for a 2 μL of solution is
reported. The figure clearly shows the main differences between the conventional
LIBS approach and the NELIBS one, where the plasma appears more intense and
larger than the one obtained with LIBS at the same experimental conditions. The
large spatial distribution of emitters in the NELIBS plasma also demonstrates the
longer duration of the plasma lifetime as a consequence of the higher number of
charged particles.

8.4 NELIBS on Plant Tissues

The first time NPs were used for enhancing the LIBS emission signal was for metal
detection in leaves [12]. As it is well known, samples containing a substantial
amount of water in the matrix strongly decrease the LIBS sensitivity because part
of the laser pulse is spent to vaporize the water and mechanical effects. This makes
investigators to convert the sample in a different matrix, like pellets produced after
the drying of the fresh sample [10]. Instead of this, the use of NPs dried directly on
the fresh sample surface allows LIBS measurements without an extensive sample
pretreatment, since the NPs strongly improve the conversion of the laser pulse
energy in atomization and excitation overcoming the drawbacks of the ablation on
a sample with water and organic matter in its matrix. As an example, Fig. 8.10 shows
the LIBS and NELIBS spectra obtained with an experiment on a common fresh leave



from a Brassaia actinophylla. Figure 8.10 shows the typical LIBS spectrum that, as a
consequence of the high content of water in fresh leaves, is characterized mainly by
continuum radiation. In contrast to that, the spectrum obtained with NELIBS clearly
shows a discrete emission spectrum with typical emission lines relative to the metal
included in the leaves, as Mg, Si, and Fe reported in Fig. 8.10.
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Fig. 8.9 NELIBS of human serum artificially contaminated with PbCl2 at different concentrations:
74 ppb, 740 ppb, and 7400 ppb. Note that the detector gain is different for each measurement in
order to optimize the emission signal. Experimental conditions: laser fluence 20.4 J cm�2, 1 μL of
Au colloidal solution (NP diameter: 20 nm) with a concentration of 0.08 mg mL�1. Reprinted with
permission from [6]. Copyright 2016 American Chemical Society

This example clearly shows the possibility of applying this technique for the
direct detection of contaminants in fresh samples for agricultural applications. In
[13] the authors succeeded in detecting phosphorous as a tracer of pesticides on the
skin of fresh apples at very low concentrations by depositing 80 nm AgNPs directly
on the sample (see Fig. 8.11a. In the same paper, the authors also measured the
content of Cadmium on fresh lettuce as shown in the spectrum reported in
Fig. 8.11b).

8.5 NELIBS of Amyloid Fibrils

NELIBS has been employed for measuring, with very low detection limits, the
absorbed metals in a small portion of the amyloid fibrils. For the NELIBS applica-
tion on the amyloid fibrils system, the NPs are produced by gold thermal reduction
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directly on the fibrils [14, 15]. In this way, reproducible distribution of AuNPs on the
sample is obtained, strongly improving the NELIBS reproducibility for the analyti-
cal task. The distribution of the NPs on the fibrils is shown in Fig. 8.12.
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Fig. 8.10 NELIBS and LIBS spectrum on a fresh leave of Brassaia actinophylla (New Zealand).
Experimental conditions: laser wavelength 532 nm, delay from the laser pulse ¼ 800 ns; gate
width 5 μs, laser fluence 4 J cm�2, 6 μL of AgNPs (particle diameter: 20 nm) 0.02 mg mL�1

Fig. 8.11 Pollutant elements spectrum with NELIBS and LIBS on fresh sample as reported in
[13]. (a) Phosphorous on fresh apple and (b) Cadmium on fresh lettuce

The interest in AuNP-amyloid fibrils recently is getting the interest of researchers
for several applications like water purification, heterogeneous catalysis, materials
templating, nutrition applications, etc. Beyond the rapid quantification of metals in
the above-mentioned applications, amyloid fibrils also represent a good test for
NELIBS for investigating, from a more general point of view, the capability of
optimizing laser ablation based techniques on biological systems for trace metal



element quantification. As an example the formation of amyloid fibrils in neurode-
generative diseases due to the metal binding [17] has important implications in the
diagnostics of such diseases and analytical techniques able to detect ppb level of
metal in an extremely little amount of sample can be useful in biological and medical
applications. The analytical performances of NELIBS on this kind of system can be
investigated from a quantitative point of view, taking the advantage that the amyloid
fibrils have a strong affinity to metals and so it is possible to tune the concentration of
metal in the fibrils by changing the concentration of the solution where the fibrils
system is immersed. Therefore the NELIBS experiments were performed to test the
limit of detections obtained with AuNPs embedded in the amyloid fibrils. Metal
solutions, at different known concentrations, were dried on AuNPs-amyloid fibrils
layer, previously deposited on a parafilm substrate located on a glass slide. Fig-
ure 8.13 shows the NELIBS and LIBS spectra in the spectral region between 520 and
521 nm from [16]. By the inspection of the spectra, two important peculiarities of the
NELIBS can be observed. The first is that, like in the cases of the study examined in
the previous sections, NELIBS allows the detection of Cr at a concentration below
the LOD of conventional LIBS. The second is that also the molecular band due to the
ablation and recombination of the elements constituting the fibrils are strongly
enhanced (about one order of magnitude in the reported example). This enhancement
on the molecular emission has been already reported in [18] where molecular
emission band enhancement was investigated during NELIBS on metallic alloys.
Although molecules generally are formed at the late stage of plasma evolution [19],
when plasma cooling occurs, this enhancement is probably due to the more efficient
ablation when the electromagnetic field of NPs couples with the incoming laser pulse
field allowing better atomization of the ejected material.
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Fig. 8.12 Representative TEM of AuNP-amyloid fibrils deposited on microscopy grids. Reprinted
from [16] with permission from Elsevier

Figure 8.14 shows the examples of metal detection and the relative calibration
curves on AuNPs-treated amyloid fibrils doped with various metals (Cr, Pb, Cd, Tl).
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It is notable that while NELIBS allows ppb-level detection, the emission signal with
LIBS was not detectable.

216 A. De Giacomo and M. Dell’Aglio

Fig. 8.13 Plasma emission spectra: (a) LIBS on parafilm located on glass, LIBS on glass and
NELIBS on AuNPs-amyloids dried on parafilm located on glass; (b) NELIBS of Cr(NO3)3 solution
on AuNP-amyloids and (c) LIBS of Cr(NO3)3 solution on amyloid fibrils. The Cr concentration was
0.1 ppm and the sample volume was 2 uL. The insets report the enlargement of the spectral region of
the emission lines of Cr. (Experimental parameters: laser wavelength ¼ 532 nm, pulse energy of
450 mJ, laser spot size ¼ 2.2 � 0.2 mm, laser fluence ¼ 11.84 J/cm2; delay time from the laser
shot 800 ns, gate width 10 μs.). Reprinted from [16] with permission from Elsevier
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Fig. 8.14 Calibration curves of Cr, Pb, Tl, and Cd. The linear fit with the R-square and the LOD
for each element are also reported. (Experimental parameters: laser wavelength ¼ 532 nm, pulse
energy of 450 mJ, laser spot size ¼ 2.2� 0.2 mm, laser fluence¼ 11.84 J/cm2; delay time from the
laser shot 800 ns, gate width 10 μs.). Reprinted from [16] with permission from Elsevier

8.6 NELIBS for the Sensing of NP-Protein Corona

Beyond the use of NELIBS for trace elements, NELIBS has been recently proposed
as a sensor for the investigation of NP–protein structure. The protein corona forma-
tion is a dynamic process [20] depending on the binding affinities and rates of
absorbed protein on NPs which in turn can be of different types (composition,
size, surface charge). Nanoparticle protein corona formation plays an important
role in several biological applications. The most common way to detect the protein
corona formation is the use of chemical-physical techniques like Dynamic Light
Scattering (DLS) and ζ-potential analysis with Laser Doppler Electrophoresis (LDE)
for the determination of size and surface charge of protein–NP conjugate, respec-
tively. In [21] the authors have investigated the AuNP–protein conjugates
employing two proteins with different molecular mass and therefore different
sizes, Human Serum Albumin (HSA) and Cytochrome C (CytC). These two
proteins, having both strong affinities for the AuNPs surface due to the bonding
between the single free exterior thiol (associated with a cysteine residue) and gold,
form stable nanoparticle protein corona. The effect of the concentration of protein on
the structure of AuNP–protein conjugate is sketched in Fig. 8.15: increasing the



protein concentration at fixed AuNPs concentration, the number of proteins covering
the AuNP surface increases until it reaches a constant value useful for occupying the
whole AuNP surface. Beyond this value, further increase of protein concentration
will not vary the number of proteins covering the NP surface.
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Fig. 8.15 Sketch of AuNP–protein conjugate formation as a function of the protein concentration

The technique proposed is based on the fact that the NELIBS enhancement is
dependent on the strength of the electromagnetic field induced by the plasmons of
the deposited NPs. The electromagnetic field is strongly affected by the surface
coverage on the NP since it can affect the interparticle distances between the NPs
after the drying on the substrate. For these reasons, NELIBS enhancement on
titanium substrate has been measured by using different protein/NP concentration
ratios in order to observe the dependence of the signal enhancement on the number
of proteins in the colloidal solution of AuNPs. In particular, the dependence of the
signal enhancement on protein–NPs interaction is investigated for sensing the
structural characteristics of AuNP–protein conjugate in terms of protein content
absorbed on the NP surface. This inverse approach to NELIBS demonstrates
NP-enhanced laser ablation, although based on high irradiance laser-matter interac-
tion and the breakdown process, it is extremely sensitive to the colloids employed
and in turn it opens the way to potentialities beyond elemental analysis.

In the following experiment, the authors prepared a set of solutions while keeping
the concentration of AuNPs in the solution constant and adding different
concentrations of proteins [21]. It should be noted that all these experiments were
performed by using AuNPs produced by PLAL which are stable without any
stabilizer since the latter can interfere with the protein absorption on the gold surface.
The investigation of the interaction of the protein directly with the naked surface of
the NP was therefore possible. For the measurements, a drop of each prepared
solution at different protein concentrations was used for the NELIBS experiment
on a titanium substrate. The NELIBS spectra at different protein concentrations as
well as the LIBS spectra are reported in Fig. 8.16 to show the principle of the
measurement. By the inspection of the figure, it is possible to observe the effect of
the protein–NP conjugate on the signal enhancement and also the already discussed
NELIBS enhancement with respect to LIBS. Different protein concentrations induce
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different enhancements. Actually, by plotting the enhancement as a function of
added protein concentration, it is possible to see a trend strictly linked to the AuNP–
protein conjugate structure in terms of the number of proteins covering the AuNP
surface. Figure 8.17a shows the NELIBS enhancements as a function of the number
of proteins added in the solution. The results regarding the two selected proteins,
HSA and CytC, are reported for comparison.
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Fig. 8.16 A frame of the emission spectrum of titanium at two different HSA protein
concentrations with NELIBS and with LIBS directly on the titanium sample. (Experimental
parameters: laser wavelength ¼ 1064 nm, pulse energy of 360 mJ, laser spot size ¼ 1.7 � 0.2 mm,
laser fluence ¼ 15 J/cm2; delay time from the laser shot ¼ 1 μs, gate width ¼ 5 μs,
[AuNPs] 10.5 nmol L�1, nanoparticle diameter 13 nm)

Simultaneously, in Fig. 8.17b and c have reported the diameter of the AuNP–
protein conjugate determined with the DLS and the ζ-potential as a function of the
number of added protein units. These techniques are the conventional methods for
determining the protein corona formation. The size and the surface charge of the
NP–protein conjugate change with respect to those of naked NP, until the whole NP
surface is completely covered with proteins in dependence on the NP and protein
unit size. Once the NP surface is completely covered, size and surface charge of the
conjugate will not be considerably affected by further increase of the protein
concentration. By the comparison of the reported techniques in Fig. 8.17, it i
notable that NELIBS enhancement shows a marked peak in correspondence of the
number of protein units needed to form a single corona around NP. This number of
proteins can be determined for a fast comparison from the behavior of the size and
the ζ-potential or from a geometrical model. More details can be found in [21] where
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Fig. 8.17 (a) NELIBS enhancement, (b) hydrodynamic diameter and (c) ζ-potential data reported
as a function of the number of proteins for two different sets of samples obtained adding HSA or
CytC at the solution with fixed concentration of AuNPs (10.5 nmol L�1). . (Experimental
parameters: laser wavelength ¼ 1064 nm, pulse energy of 360 mJ, laser spot size ¼ 1.7 � 0.2 mm,
laser fluence ¼ 15 J/cm2; delay time from the laser shot ¼ 1 μs, gate width ¼ 5 μs, AuNPs
diameter 13 nm). Reprinted from [21] with permission from Elsevier



it is also explained how to calculate the number of proteins units needed to form a
single corona from the geometrical point of view. Moreover, as previously men-
tioned, in Fig. 8.7 the trends of the enhancements as well as those of sizes and
surface charges of two NP–protein conjugates, AuNP–HSA and AuNP–CytC, are
also reported. By the inspection of Fig. 8.17a, it is clear that the concentration at
which the corona is formed is peculiar of the specific NP–protein conjugate and
consequently the number of CytC (low molecular mass protein, 12 kDa), required
for forming protein corona is higher than that required when HSA protein (molecular
mass protein, 66.5 kDa) interact with AuNPs. The results experimentally determined
with NELIBS are finally in good agreement with the number of proteins taking part
to the protein corona as calculated with geometrical models [21] and as determined
from DLS and ζ-potential measurements, for both analyzed conjugates.
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In conclusion, it has been observed that the Ti-NELIBS enhancement strictly
depends on the NP–protein structure and therefore on the plasmonic organization
reached after the NP deposition process on the Ti substrate.

8.7 Perspective

The use of nanostructures for enhancing laser ablation-based analytical techniques is
a new field and the number of scientific publications on the topic increases year after
year. Although several efforts have been made to understand the basic mechanisms
leading to emission enhancement, many aspects of nanoparticle-enhanced ablation
still need to be elucidated.

The sample preparation also has to be optimized for improving reproducibility
and, at the same time, keeping the operation as simple as possible.

Several applications of NELIBS have been reported recently in the literature and
among these, the use of NELIBS for biological applications looks particularly
promising, especially considering the fast response and low sample requirement.
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Analysis of Forensic Trace Evidence 9
Anikó Metzinger and Zsolt Szoldán

9.1 Introduction

Forensic science or criminalistics involves and draws upon a wide variety of
scientific disciplines which are applied during the investigation of criminal and
civil laws. Forensic science is a tool of the enforcement of laws and regulations,
improving public safety and helping to solve cases to policemen. This field covers
the document and questioned document examination, engineering, linguistics,
pathology, DNA analysis, fingerprinting, electronic/digital media, anthropology,
entomology, toxicology, economics, accounting, serology, chemistry, odontology,
geology, botany, psychiatry, and behavioral science, physics, biometrics, bloodstain
pattern identification, tool mark identification, hair and fiber analysis and firearms
identification as well. Because forensic science has the above-mentioned important
tasks and has to deal with irreplaceable evidence, forensic scientists use cutting-edge
analytical methods and evaluation techniques. Forensic scientists have to collect,
preserve and analyze evidence given by policemen and are often challenged in court
and have to give an expert witness testimony.

In this chapter, we give an overview of a narrow part of forensic science, which
deals with physical trace evidence (the size of the remains in the microscopic range).
Actually, anything can be a physical trace evidence, thus it is not possible to list
every kind of recovered material. Physical trace evidence categories are listed below:

• Fingerprint
• DNA
• Glass: automobile, buildings windows, beverage glasses, household glasses
• Paint: automobile, tools, wall paints
• Geological materials: soil, rock, stone, minerals
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Biological samples: wood, insects, pollens
• Human samples: hair, blood, fingernail, organs, saliva, semen, skin
• Banknotes and documents: ink, paper, toner, signature
• Drugs: synthetic precursors, final product, packaging, tools for a drug laboratory
• Fibers: natural and synthetic
• GSR and ammunition
• Plastics, polymers, rubbers
• Impressions: tool marks, shoeprint, tire markings, bite marking
• Explosives and post-blast residues
• Petroleum products

A vital part of the investigation is the proper collection, preservation, and storage
of physical trace evidence because of its small size and nature (e.g., biological
samples like blood, DNA). It is crucial to avoid any contamination during the search,
collection, and of course during the examinations. The sample preparation methods
and analysis are also important because the small quantity of the evidence, therefore
those analytical methods that need no, or minimal sample preparation are ideal.

In case of the examination of physical trace evidence the aim is the identification
(determine the identity of the material) or comparison (determine if the compared
samples have a same origin or not) based on results obtained by analytical methods,
which requires strict and validated analyzing protocols. During the whole process,
from the collection to the analysis, various errors endanger the integrity of informa-
tion or sample. For instance, there could be a human error committed by the person
(CSI policeman, forensic scientist, analyst, etc.) during sample handling, but the
applied, comparative methods can also be erroneous. In other instances, the condi-
tion of the physical trace evidence generates an error—a trace evidence is often of
heterogeneous composition or can be much more contaminated than the “known
sample” (material of a known source that presumably was uncontaminated during
the commission of the crime; samples with a known composition, identification,
type, or source used for comparison), thus their comparison may lead to the
conclusion that they are different. The handling error is the one that is the easiest
to avoid. If the examiners follow strict rules and standardized methods (e.g., ASTM),
these can be minimized. The final results of the formal written report can be different
from country to country depending on their law system, technical equipment, and
presence or absence of databases. Based on these criteria, the evaluation approach
can vary in a wide range. If the law system requires it and the forensic institutes have
databases, likelihood ratio and Bayesian approach (e.g., in DNA analysis) can
be used.

During the examination of physical trace evidence, typically only microanalytical
methods can be used, which can work with very small sample amounts (μg of solids,
μL or a droplet of liquids, one fiber, etc.) and have a high spatial resolution. In
addition to this, forensic scientists also use common analytical techniques, pattern
recognition, and comparison software which were modified or specifically devel-
oped for forensic use. Examples include shoeprint, fingerprint comparison and face
recognition software. Analytical reference databases are also of great importance,



e.g., for automobile paint: PDQ (Paint Data Query), for ballistics analysis: NIBIN
(National Integrated Ballistic Information Network), for DNA tests: CODIS (Com-
bined DNA Index System), for fingerprint analysis: IA-FIS (Integrated Automated
Fingerprint Identification System), for handwriting examination: FISH (Forensic
Information System for Handwriting), for ink and dye recognition: International
Ink Library, for shoeprints pattern recognition: SoleMate, for drugs identification:
Ident-A-Drug, etc. The analytical methods most often used in forensic investigations
are listed below [1]:
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• Scanning electron microscopy (SEM)
• Polarized light microscopy
• Atomic force microscopy (AFM)
• X-ray fluorescence spectroscopy (XRF)
• Scanning electron microscopy-energy dispersive X-ray spectroscopy

(SEM-EDX)
• Inductively coupled plasma-mass spectrometry (ICP-MS)
• Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)
• Atomic emission spectroscopy (AES)
• Neutron activation analysis (NAA)
• Fourier transform infrared spectroscopy (FTIR)
• Raman spectroscopy
• Ultraviolet/visible spectroscopy (UV/Vis)
• X-ray diffraction (XRD)
• Nuclear magnetic resonance spectroscopy (NMR)
• Fluorescence-spectroscopy
• Mass spectrometry (MS)
• Ion mobility mass spectrometry (IMS)
• Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

(MALDI-TOF)
• Capillary electrophoresis (CE)
• Gas chromatography (GC)
• Ion chromatography (IC)
• Liquid chromatography (LC)
• Thin layer chromatography (TLC)
• Differential thermal analysis (DTA)
• Pyrolysis gas chromatography (PGC)
• Thermogravimetric analysis (TGA)

All methods have advantages and disadvantages, thus usually more than one
technique is used for the analysis of evidence. In the world of forensic analysis,
analytical methods are selected based on the necessary sample preparation time,
sample consumption needs (destructiveness), cost per analysis, ease of use and, of
course, the analytical figures of merit. When elemental analysis is needed, the
methods of SEM-EDX, LA-ICP-MS, and XRF are of primary importance; however,
the first two are time-consuming and/or expensive and difficult to use, whereas XRF



cannot analyze light elements. Recently laser-induced breakdown spectroscopy is
emerging as a powerful and practical alternative elemental analysis tool.
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For the elemental analysis of the physical trace evidence, forensic scientists use a
wide variety of methods, for example, ICP-MS, XRF, and SEM-EDX. Beside these
well-known and broadly used methods, a relatively new technique, laser-induced
breakdown spectroscopy (LIBS) begins to gain ground, which has an advantageous,
unique set of analytical characteristics. For example, any samples, regardless of their
consistency, can be measured quickly, in situ. The method is microdestructive and
requires less than a μg sample mass, with minimal sample preparation. The small
dimensions of the LIP plasma allow the execution of spatially resolved
measurements. LIBS spectroscopy provides highly characteristic, “fingerprint-like”
spectra, which can be used for qualitative analysis efficiently. The examination of
light elements is not a problem for the method either, for example, sodium, potas-
sium, calcium, magnesium, chlorine, fluorine, or even hydrogen can be detected with
good sensitivity [2, 3]. In-field, real-time measurements are also possible by using
compact spectrometers [4–6]. Detection limits of LIBS spectroscopy range from
ca. 1 to 100 ppm, depending on the sample, the analyte, the matrix, and the
experimental configuration [7, 8]. These detection limit values are suitable for
trace analytical applications and even for most solid-sample industrial and environ-
mental applications; however, they do not count as outstanding data in atomic
spectroscopy. However, it should be noted that the absolute detection limit values
of the method, e.g., the sample consumption, actually fall in the pg-fg range, which is
comparable to that of the most sensitive solid sampling atomic spectroscopy
methods (e.g., LA-ICP-MS). Detection limits can even be significantly improved
by up to two orders of magnitude under special excitation conditions (e.g., two- or
multi-pulse LIBS, different gas atmospheres, spatial or magnetic confiments, etc.).
The linear dynamic range is limited from above by self-absorption (especially for
“strong” spectral lines) to approx. 1–3 wt.% concentration. The linear dynamic range
in general LIBS systems is thus 3–4 orders of magnitude wide, which can also be
extended by special techniques.

9.2 LIBS Analysis of Various Types of Forensic Evidence

9.2.1 Glass

Glass, defined as “an inorganic product of fusion that has cooled to a rigid condition
without crystallization” is frequently and widely used material in everyday life, like
windows (e.g., buildings, automobiles), household glass, and beverage containers
and it has many different preparation types (e.g., flat, float, toughened, laminated
glass) [9, 10]. Because of its widespread use, glass is often the subject of forensic
examinations. It has great relevance in cases like hit and run accidents, burglary,
vandalism, and car theft, where the fragments can link persons to each other or
locations to persons (suspects). The tiny glass fragments, splinters (mm and sub-mm
range) can be ejected from the broken glass object in all directions (backward and



toward the direction of the breaking force as well) more than three meters and can be
transferred onto anything, like clothing, shoes or hair of a person. The number of
transferred glass particles depends on the area of damage, type of the glass, position
of the offender to the glass object, nature of the clothing, applying multiple blows or
a single blow, etc. The number of recovered glass particles/fragments/shards from
clothing, shoes, hair, tools, and other objects depends on the size of the glass object,
the weather, the nature of the clothing, length of time that has passed between the
time of the arrest and the collection of the clothing, on the lifestyle of the person, or
whether the clothing was washed or not, etc. [11].
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Fig. 9.1 Microscope image of glass microfragments during RI measurements, using the oil
immersion/temperature variation technique

Historically, forensic glass analysis is based on refractive index (RI), dispersion
(it is the change in RI with a change in wavelength of illumination), and density
analysis [12]. The first neutron activation analysis of glass took place only in 1991
and this was soon followed by ICP-MS measurements [13, 14]. Nowadays, the most
commonly applied methods are refractive index measurements and elemental analy-
sis like micro-XRF and laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS), as well as SEM-EDX (Fig. 9.1) [15–18]. LIBS provides an essential
advantage over SEM-EDX and LA-ICP-MS. It can sensitively detect the elements
that are common in glasses, such as the light elements (Li, Na, K) and those which
are difficult to measure with other methods (Ca, Fe), too.

El-Deftar et al. determined the elemental composition of 14 laminated and
6 non-laminated architectural window glasses, collected from real crime scenes by
LIBS. The experiments were done under argon atmosphere. They found that the
repeatability of intensity ratios is far better than that of peak intensities. The
discrimination potential of LIBS was also compared to LA-ICP-MS, micro-XRF,



and SEM-EDX. With the three-sigma rule, the achieved discrimination accuracy was
88.6%, which means 68 sample pairs were found to be indistinguishable out of 595.
These 68 pairs were then compared with the help of ANOVA followed by Tukey’s
HSD test which yielded 20 indistinguishable pairs and they got 95% discrimination
accuracy with LIBS (96.6%, by LA-ICP-MS: 97.8%, μXRF:96.1%, RI: 81.5%).
With the combination of RI and LIBS results, the final accuracy of discrimination
was 98.3%. This result was comparable to that of other methods (LA-ICP-MS:
98.5%, μXRF: 98.0%) [19].
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A comprehensive study was made by Almirall et al. about different types of
glasses that are relevant and often occur as physical trace evidence in forensic
analysis. They analyzed automobile glass samples on the float and non-float side,
automobile headlamps, brown beverage glasses, and automobile side-mirror
samples. Almost in all cases they determined the elemental composition with
LIBS (using argon gas atmosphere) and/or LA-ICP-MS and measured the refractive
index as well. After the laser–matter interaction, SEM images were also recorded of
the ablation craters in order to observe the damage caused by laser. Results showed
that LIBS spectra of float glasses were very similar to each other, at least considering
the presence of the most intense emission peaks. Because of the high degree of
similarity, correlation and multivariate statistical methods were unsuccessful to
discriminate the samples. Thus, for comparison, line intensity ratios (single day
RSD% varied between 0.8 and 15.0%) were used. In summary, with the combination
of RI and LIBS data, a better than 90% discrimination power can be achieved in
almost all datasets (at 90% confidence limit). In the case of headlamp glasses, the
discrimination efficiency was 100%. These results (a total of 1270 pairwise
comparisons) decreased to 79.9% at 99% confidence level. With the combination
of LA-ICP-MS and RI, the discrimination results were even better, 99% at 90%
confidential level and 97.5% at 99% confidential level [20].

Naes et al. studied the discrimination power of LA-ICP-MS, micro-XRF and
LIBS in case of automobile glasses. They used a sample set consisting of
41 fragments (side window, rear window, windshield window) from 14 different
vehicles and they only analyzed the non-float surface. For data analysis 22 emission
lines, represented in all samples, of 9 elements (Ca, Fe, Al, K, Mg, Na, Si, Sr, and Ti)
were chosen. They used peak area instead of peak high or peak intensity, because it
gave higher precision. For assessing the discrimination power, all combinations of
peak area ratios (231 combinations) were tested using t-test at the 95% confidence
level and only 10 were retained. Only five sample pairs were indistinguishable by
LIBS, eight by micro-XRF and five by LA-ICP-MS. These samples were coming
from the same vehicle and the windows were possibly manufactured in the same
plant and time. Based on the results, 99% discrimination power were calculated in
case of all methods. In case of LIBS, the applied 266 nm wavelength gave an
excellent precision for all elements and ratios. Based on their experience of this
study they suggest 10 peak area ratios for LIBS glass discrimination studies, which
helped to eliminate false exclusions and reduce false inclusions: 394.4 nm/330.0 nm
(Al/Na), 766.5 nm/643.9 nm (K/Ca), 394.4 nm/371.9 nm (Al/Fe), 438.4 nm/
766.5 nm (Fe/K), 534.9 nm/766.5 nm (Ca/K), 371.9 nm/396.2 nm (Fe/Al),



766.5 nm/645.0 nm (K/Ca), 394.4 nm/460.7 nm (Al/Sr), 460.7 nm/766.5 nm (Sr/K),
and 818.3 nm/766.5 nm (Na/K) [21].
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Mcintee et al. also investigated the discrimination power of LIBS for automobile
float glasses. Beside LIBS, they also analyzed the samples with LA-ICP-MS and RI
and combined the data. The analyzed glass samples were automobile side and rear
windows collected from 23 automobiles which resulted in 253 pairwise
comparisons. The experiments were performed under argon gas atmosphere and
on the float side of the glasses, which contains tin. For the data evaluation, 18 emis-
sion lines and 12 emission line ratios were chosen. The discrimination power of
LIBS, RI, and LA-ICP-MS data was performed with Tukey honestly significant
difference (HSD) test. LIBS was found to achieve 92.9% discrimination power at a
90% confidence level and 82.2% at 99% level of confidence without RI values. With
the addition of RI values, these results improved to 98.0 and 95.6%, respectively. In
the case of LA-ICP-MS, the discrimination power was 100% both at 90% and 99%
confidence level without RI values [22].

In a study by Bridge et al. 27 automobile glass samples, 15 automobile headlamp
samples, 15 brown beverages glass samples, and 34 automobile side/mirror samples
were analyzed. In order to enhance the emission, argon gas was applied. For the
statistical analysis, the Tukey HSD test, emission line ratios, isotope ratios, and RI
values were applied. They tested the discrimination power without and with RI
values. The aim of the Tukey test was to ensure that the probability of a Type I error
is constant. They also used ANOVA for the evaluation of variance in the compared
features. In case of the evaluation of LIBS-RI and LA-ICP-MS-RI data combination,
they used the Pearson product-moment correlation. In order to get more reliable
results, precision was also calculated both by LIBS and LA-ICP-MS. The calculated
average RSD% for the peak intensity ratios was 6.5 � 1.4%, while in the case of
peak ratios determined over 3 days was 24.5 � 29.2%. The precision was also
determined by LA-ICP-MS and only the between-day value was significantly better
than for LIBS. In every case, LIBS combined with RI values gave a better discrimi-
nation power than only LIBS. In the case of automobile headlamps and beverage
glasses, the discrimination efficiency was almost 100% without the RI, but in the
other two cases it was only 74.4% and 56.2%, but the additional use of RI values
increased the number of correctly identified samples [23].

In a freshly published article, 17 laboratories decided to collaborate in three
interlaboratory exercises. They assessed the discrimination power of RI and elemen-
tal analyses (LIBS, XRF) in forensic glass examination. In all cases, the analyzed
glass samples were chosen from the collection of Florida International University,
which contains laminated windshield glasses. The chosen 31 samples have a very
similar elemental composition (22 could not be distinguished by LA-ICP-MS). For
LIBS measurements, no ASTM standard method is available, thus the laboratories
followed their own protocols, in case of the other methods the ASTM standards were
followed. The laboratories examined the glass samples by LIBS, used the three-
sigma match criterion based on elemental ratios, but the chosen emission lines (Si,
Al, Mg, Ca, Na, K, Sr, Fe, Ti, Ba) were different. The interpretation of the results had
significant differences between the laboratories based on their measuring and



evaluation procedures. By every method, there was false inclusion, but the highest
rates were given by RI. In case of LIBS and XRF, this rate was lower and only in
cases where the model/make/year of the automobiles were the same. Only XRF gave
false exclusions in one exercise. This interlaboratory study pointed out that the
evaluation of results is different in the countries, there is no standard procedure,
which can be caused by differences in the law system, instrumentation, experience,
and the presence or lack of a database [24].
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Merk et al. applied a combined Raman/LIBS system for the analysis of automo-
bile glasses and used multivariate data analysis for the evaluation. The sample set,
which was collected from real cases, contained 16 samples (15 car windows and 1
bus headlight). Amongst the window samples there were laminated and security
glasses as well. SEM-EDX and micro-XRF measurements were applied as reference.
The authors applied PCA for the evaluation and used only a part of the spectra, in
case of Raman the range of 70–3980 cm�1 (at 532 nm) and 50–1750 cm�1

(at 785 nm), in case of LIBS, the chosen range was 200–630 nm. LIBS emission
peaks (Al: 308.215 nm, 394.401 nm, 396.152 nm, Ba: 455.403 nm, 493.408 nm,
614.171 nm, Fe: 238.204 nm, 259.939 nm, 260.708 nm, Mg: 277.983 nm,
285.213 nm, 518.360 nm, Sr: 407.771 nm, 421.552 nm, Ti: 323.452 nm,
336.121 nm, 337.280 nm) were transformed to standard normal distribution and
used the center wavelength. For the evaluation of the discrimination, they calculated
the decisive Mahalanobis distance for all methods. In case of LIBS, four principal
components were needed and achieved a very good discrimination power, only 1
pair out of 120 pairs was indistinguishable. This value was somewhat poorer in the
case of Raman (3 pairs were indistinguishable). The combination of the Raman and
LIBS data set resulted in the same discrimination power as with pure LIBS data, but
the distances between sample clusters were larger. The results of micro-XRF (98 dis-
tinguishable pairs) and SEM-EDX (25 distinguishable pairs) were much worse than
the results obtained by LIBS and/or Raman [25].

In a freshly published article, Galbács et al. used multivariate chemometric data
evaluation methods for LIBS data and combined LIBS and RI data in case of four
types of glasses. The 127 tested glass samples belonged to the type of fused silica
(optical glass), flint (crystal and optical glass), borosilicate (headlight shield and
laboratory glass) and soda-lime (float, container, patterned and security glass)
glasses. They applied four well-established multivariate statistical methods for
LIBS data (linear discriminant analysis, quadratic discriminant analysis, classifica-
tion tree and random forest) with and without data compression (principal compo-
nent analysis). In case of the glass type classification six spectral lines, namely Ca I
422.7 nm, B I 249.7 nm, Pb I 405.8 nm, K I 766.5 nm, Al I 309.2 nm, and
Ba II 455.4 nm were chosen. Soda-lime glass is the most common glass type and
has a great practical importance thus this group was analyzed further. In case of RI
measurements, significant overlaps can be observed between the data. LIBS data
showed good repeatability; thus, the evaluation was carried out without normaliza-
tion or scaling. LIBS spectra were separated into training and validation sets. The
achieved cumulative accuracies for the training sets were between 89% and 93% for
all four methods, the best results were given by random forest and linear discriminant



analysis methods. In case of the validation data sets, random forest (88.8%)
surpassed linear discriminant analysis (85.9%). Lastly, the pairwise comparison
was tested as well, where the final results were enhanced with RI pre-screening,
this means if the match of the two samples was not unique but involved various
database samples, a second step was carried out, which was the chemometric
evaluation of LIBS data. The accuracy was around or above 80% for all methods
and classification tree and random forest gave the best results, 95.0% and
93.5% [26].
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9.2.2 Paint

Paint is an almost as common evidence as glass due to its widespread use. Paint
appears in cases like hit-and-run accidents, traffic accidents, burglary, vandalism in
the form of chips, smears, drips, splashes, and sprays. It is heterogeneous thus; the
analysis of paints is challenging. Forensic scientists, therefore, apply several analyti-
cal methods for their examination, like microspectrophotometry (MSP), FTIR,
Raman spectroscopy, SEM-EDX, micro-XRF, and LA-ICP-MS, but the first step
is always the observation under a microscope, also analyzing the cross section [27–
39]. In case of paint chips (a small piece of paint that has broken off of something
and usually has a layered structure), indirect and direct physical match, as well as
layer order, layer structure, and colors are to be determined.

One of the most analyzed paint samples are automotive paints, which occur in
cases of hit-and-run accidents, car accidents, or intentional damages caused by a
sharp object (e.g., key). This type of paint contains three main components (binder,
pigment, solvent/additives), and the paint chips have at least 3–4 layers (primer,
surfacer, basecoat, clearcoat). The binder is usually an organic polymer. Among the
pigments, inorganic (black and white) and organic ones can be equally found. There
are effect pigments (e.g., absorption pigments, metal effect pigments, pearlescent
pigments) as well, which produce special optical effects (Fig. 9.2) [40].

McIntee et al. investigated the discrimination power of LIBS in case of automo-
bile paint samples, which were taken from different manufacturers, models, and
production years, and were separated into sets, based on their effect on pigment
presence, color, and number of layers. It is important to mention that this study
focused on comparison and discrimination of only the samples which had the same
color, same number of layers, and similar presence or absence of pigments. For the
sample preparation, they removed the paint chip from the substrate and mounted it
on poly-isobutylene. Seven different colors, red, black, blue, tan, green, white (most
difficult), and silver, were analyzed. They evaluated the log10-scale spectral
intensities with nonparametric permutation tests and parametric Wald tests in order
to determine the discrimination efficiency and Type I error. The results based on
nonparametric permutation test gave an overall 89.83% discrimination power with
4.44% Type I error. The discrimination efficiency in case of inter-sample discrimi-
nation was almost 100% in all cases, except with black and white samples. In case of



red, tan, and green color groups, some intra-sample discrimination occurred.
Parametric analysis achieved a lower discrimination power [40].
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Fig. 9.2 Cross section microscope images of paint chips with a defined layer order. In the image on
the left, both the known sample (right side) and recovered sample (left side) can be seen

Sigman et al. also investigated the applicability of LIBS to the discrimination
analysis of automobile paint samples. The applied methods were XRF, SEM/EDX,
LA-ICP-MS, and LIBS. Two sampling approaches were tested but only the one
deemed satisfactory and reproducible was later used. They used the “drill-down”
procedure as McIntee et al. [40], meaning that they started to ablate the sample
perpendicular to the clearcoat surface. The discrimination was performed by hypoth-
esis testing at a 0.05 significance level using parametric and non-parametric statisti-
cal methods and Type I error was determined as well. In case of MANOVA
(Multivariate Analysis of Variance) data analysis, the spectra were baseline
corrected and 14 wavelengths were chosen. They also selected different paint groups
based on color (black, blue, green, red, silver, tan, and white), layer number, and
pigments. The total number of analyzed samples was 200 but not all of them were
analyzed by every analytical method. LIBS had a discrimination accuracy of 90%
(10% Type II error) at 5% Type I error rate, but among the white group this value
was a little lower, only 86.6%. Comparing the results with the other methods, only
LA-ICP-MS (100%) gave better values, XRF and SEM-EDX gave lower, 85%, and
73% discrimination accuracy. For discrimination, they choose 14 emission peaks for
MANOVA test and it gave 84.4% discrimination accuracy. When they used the



whole LIBS spectrum and applied the HQI or Z® similarity metric, they achieved
89.8% discrimination accuracy [41].
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9.2.3 Paper and Ink

During the course of questionable document analysis, be it printed, copied or
handwritten document, forensic scientists examine both the paper and ink (which
can be a solid, liquid, pen ink, etc.). In this examination, the subject of study is the
dating, paper, document alterations, erasures or obliterations, signature authenticity,
examination of typewriting and authenticity. Beside the physical characteristics, the
chemical composition of the paper and ink are examined as well. The most important
aspect is the identification and discrimination of the chemical composition of inks
and paper, to which the applied analytical methods are FTIR, Raman, XRF,
LA-ICP-MS, MS, GC-MS, SEM, SEM-EDX, TLC, CE, and HPLC [42–62]. Ink
formulations generally contain two main components: the colorant (dyes or
pigments) and the carrier (oils, solvents, resins), but many other components like
driers, plasticizers, waxes, greases, soaps, and detergents can also occur (Fig. 9.3).
The examination of inks is challenging not only due to their complex composition,
but also because, e.g., liquid inks penetrate the paper, thus a combined spectrum is
recorded.

Elsherbiny and Nassef studied the wavelength dependence (532 and 1064 nm) of
LIBS results for questioned document analysis, especially in the case of black gel
inks (30 samples from 10 brands were tested). Gel pen inks are the most examined
pen types in forensic science. This kind of ink, especially in black color, is difficult to
tell apart by conventional methods (e.g., IR and Raman spectroscopies); thus, the
aim was to test the discrimination power of LIBS for individual pens and for brand
and batch variations. Because the ablation of ink and paper takes place in parallel,
therefore the spectrum of the clean paper was always subtracted from the spectrum of

Fig. 9.3 Microscope image
showing an intersection of
laser printed and ballpoint ink
marked lines



inked paper. Relative standard deviation was calculated for three spectral lines,
which gave rise to a value of 8.44% for Cu I 327.4 nm, 7.88% for Cr I 359.4 nm,
and 8.67% for Mn II 250.6 nm. The discrimination was based on the appearance of
Mn, Ni, Cr, Cu, and/or Mg lines and 88% discrimination accuracy was achieved. In
case of the NIR wavelength, the same pulse energy was not enough to achieve as
good SNR than in the case of 532 nm, it had to be increased. With the higher pulse
energy, they could achieve 91% discrimination accuracy. After the LIBS analysis,
they recorded SEM images of the ablation craters and found that at 532 nm, the
craters are deeper than at 1064 nm. The study concluded that there is no big
difference between the discrimination power of the two wavelengths, both can be
applied effectively [63].
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Cicconi et al. did a detailed study on papers and ink, where four sets of samples
were compiled with separate research goals. The first set contained 14 commercial
ballpoint inks (8 black, 4 blue, 1 red, and 1 green) which were used only on one type
of office paper. They identified Ca, Si and Al in the paper and Cu, Zn, Mn, Ni, Pb,
Fe, and Cr in the inks. Not all chosen elements were observable in every inks.
Finally, 19 lines were selected for further evaluation, a signal normalization scheme
based on carbon was used. Principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) were used and they could distinguish all black inks. The second
set contained 8 black pens from the first set, but here 10 different paper types were
tested (printing papers, notebook papers, envelopes, and recycled papers). The
evaluation was more difficult due to the differences in the ablation characteristics
of different papers. Using four PCA components, they could completely separate
four inks, and with a further PCA component, they could separate one more ink from
the others. PCA plots showed greater scatter than in the first case, where only one
paper was used. By the use of LDA, four inks could be correctly classified (the same
four as with PCA when using four variables). In summary, the overall ink discrimi-
nation power decreased from 100% to 89% when they occurred on different papers.
The third set contained a former blind test’s samples, three ballpoint pens, and one
gel pen and two pieces of printing paper. In this set a further aim was to determine
the chronological order of deposition of the inks in case of four lines. First, the paper
and the three inks were analyzed in a pure spot to get the individual spectra from all
samples. With the applied method (ratio of peak intensities), the determination of
chronological order was successful in four cases out of six. With the help of PCA,
they could not significantly improve the success rate. What makes this analysis
difficult is that the ablation depth may be different for different inks (e.g., varying
portion of the two layers would co-ablate). The fourth set was also a former blind
test, which contained three printed pages with three signatures made with different
pens. The aim, in this case, was to verify if all the signatures were coming from the
same pen and if the toners were the same or not. It was possible to establish that from
two pages out of three were printed using different toners and on the second page the
signatures were different from the other two pages [64].

Hilario et al. tested the efficiency of LIBS combined with chemometrics in the
field of hand-written documents. The examined sample set contained 6 black and
11 blue ball-point type pens from different manufacturers. The applied paper was a



cheque paper from a bank and the aim was to differentiate between similar colors.
ICP-OES was used for reference measurements, after digesting the inks with a single
reaction chamber microwave oven. Based on the needs of daily forensic routine,
only a small number of pulses were used. For the discrimination of similar colors,
PCA was applied on the whole spectrum. This combination did not give a good
differentiation, so the average spectra were analyzed first and from those different
spectral ranges were chosen for the discrimination (the best were 212–228 and
324–328 nm, where the atomic emission lines of Cu are located). After this compar-
ison, a real situation test was performed. Using a pen, the number “10” was written
on the paper and another “0”was added with a different pen of the same color. Based
on the difference in their Cu concentration, LIBS was able to distinguish between the
pens (their inks) [65].
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Oujja et al. used LIBS for the identification of inks and structural characterization
of contemporary artistic prints. They used two types of model prints on paper. The
first layer of ink was applied on the paper and the second was overlaid onto the first
layer. The chosen colors were black and blue based on their prevalence. The
elemental composition of prints was obtained from their manufacturer. In the
study, first LIB spectra were recorded for the substrate and for the individual inks
on the substrate in order to successfully identify when the ablation of a new layer of
ink had started. LIBS was able to differentiate between the same colors [66].

Sarkar et al. tested the discrimination efficiency of LIBS for the identification
of different types of paper. Their aim was to perform an instant identification of
confidential documents based on a LIBS spectral library which contains spectra of
papers used for government work. For the study, they used papers of the Department
of Atomic Energy (DAE, India). They had a collection from the past 10 years and
these 10 papers were the base of the sample set. Because of the same main
components, statistical methods were needed for the discrimination. The achieved
discrimination accuracy was near 99% with linear correlation and non-parametric
rank correlation [67].

Kula et al. examined inks from 34 blue, 30 black, and 21 red writing instruments
(ballpoint pens, gel pens, porous pens and rollerball pens) with LIBS. The
manufacturers were from different countries (USA, France, Japan, Korea, and
Poland) and different kinds of papers (five brands made by three producers) were
also tested. During the optimization of the setup was found that the first laser shot
already penetrated through the ink and ablated the paper as well, thus it was decided
to scan the ink lines and to make an average spectrum. The repeatability of signal
intensities was poor and it was attributed to the laser intensity fluctuations and
sample heterogeneity. After paper analysis it was determined that there are only
quantitative differences between the tested papers, the elemental composition of
them is almost the same, thus only one paper was selected for further analysis.
Spectral ranges were selected which were relatively free from the paper spectrum
(320–420 nm, 505–530 nm, 560–600 nm, 660–715 nm). In case of ink analysis, the
researchers started with the examination of intra-ink variation. For these
experiments, 8 blue ballpoint pens, 3 black gel pens, and 3 red gel pens were chosen
and no significant differences were found between the same brand and manufacturer.



The paper spectrum was subtracted from each sample spectrum, in which they
assigned spectral lines to belong to Cr, Ba, Fe, Cu, Li, Mn, Mo, Ni, and W. Based
on the elemental composition, 10 groups could be formed from blue samples. In case
of black inks, 11 groups could be made. The discrimination power was calculated as
the ratio of the number of the discriminated pairs to the number of all possible pairs
of inks of a given color. The achieved discrimination power was 83%, 82%, and 61%
for blue, black, and red inks. An inter-laboratory test was also performed where they
had to analyze three writings, out of which two were made with the same ink. The
identification was made possible by the detection of Cu lines, which were only
present in the spectrum of two samples [68].
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Printing inks were analyzed by Subedi et al. by a tandem LIBS and LA-ICP-MS
system. They analyzed the inks of 9 black laser toners, 10 colored inkjet samples,
12 colored offset samples, and 12 intaglio inks from different manufacturers. In case
of black inks, numbers and letters were printed, and in case of the colored inks, a test
page was printed where all the colors could be found individually. The offset
samples were collected from Lincoln visa (printed form) and as a paste and intaglio
inks from banknotes. Beside LIBS, LA-ICP-MS and a tandem LIBS/LA-ICP-MS
system were also tested. Based on LIBS spectra, they concluded that the inkjet set
contains less elements than toners, offset, and intaglio. For example, Li was only
detected in inkjets that contained Na and K as well. Toners contained Na, K, Ca, Mn,
Fe, Ti, Zr, Nb, Sn, Hf, and Sr. The quantitative analysis was challenging because no
standard is available for inks, thus standard solutions were used. LIBS was found to
well supplement LA-ICP-MS, because LIBS was able to discriminate samples via
the detection of Na, Ca, K, and Si, elements not easily measurable by ICP-MS. The
tandem setup increased the discrimination efficiency in all cases [69].

Król et al. studied the elemental composition of polish banknotes by XRF and
LIBS. They analyzed banknotes printed before and after 2014 by the National Bank
of Poland. All experiments were done without any sample preparation and several
areas (microlettering, serial number, Romanesque rosettes, crowned letter, rosette,
metallic overcoating) were examined and they found out that no pure paper can be
found on the old banknotes. After the optimization of the laser parameters, they
tested the repeatability between various sample areas as well, and found it to be
between 11.1 and 41.6%. After these results, they decided to average the
measurements and in one measuring area they moved the sample only slightly.
The spectrum of the banknote paper was richer than the office paper, with assigned
lines of Ti, Ca, Na K, Al, and Cr. They investigated the influence of contamination
on the LIBS spectra too and found that while the spectra of brand-new banknotes did
not differ from each other, but those of used banknotes did. Generally, considering
the whole area of banknotes, the following elements were identified: Ca, Fe, Ti, Ba,
Co, Cr, Cu, Mn, Ni, Zr, Mg, and V. Only Mn could be found on all of the banknotes.
In case of old banknotes, Ba was not detectable, whereas from new banknotes Fe, Cr,
Cu, Ni, and V were absent. For some areas, XRF gave a richer spectrum and LIBS
for some others. Based on statistical analysis (Kruskal-Wallis one-way analysis of
variance by ranks), the black serial number area was determined as the most
discriminatory part of the banknotes. After the original banknotes’ analysis, a case



study was performed where four different specimens of 10, 20, 50, and 100 złoty
notes were examined which were suspected to be counterfeit. In all cases, they could
discriminate between counterfeit and authentic ones. Based on the spectra, it was
noticeable that the investigated “banknotes” were printed onto an office paper. They
could not find Co, Cr, and Ni lines, but found Al which confirmed that the four
samples were counterfeit [70].
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In a study by Metzinger et al., papers and print types were discriminated based on
their LIBS spectra. In this study, 54 samples were analyzed, six different kinds of
paper (office paper, color paper, non-bleached paper) and eight printers (color and
black inkjet and laser printer). For data evaluation comparative functions like linear
correlation coefficient (LCC), overlapping integral (OI), sum of squared deviations
(SSD); and advanced statistical methods such as multivariate curve resolution
(MCR-ALS), decision tree (CT), and discriminant analysis (DA) were tested.
Based on the LIBS results, 2048-element data matrices were used for the evaluation,
both for UV and Vis spectral range (channels). The discrimination power was tested
using the individual channels and also using the combination of the two. Micro-
scopic images were taken before and after the laser shots. In these images, we
observed that compared to inkjet printing, where both the ink and paper were
ablated, in case of laser printers the laser beam only had an influence on the toner
layer (Fig. 9.4). The ablated spot was much larger than the toner particles or ink
droplets, thus the sampling could be considered to be representative. The approach
was to first identify the paper type, then the printer. In this case, at least two LIBS
spectra are needed, one for the pure paper and one for the printed area. When
applying the advanced statistical methods, only one LIBS spectra was used. The
statistical evaluation was done without any background correction. In case of
comparative functions, masking and data reduction were also applied. With the
use of a spectral mask, only the spectral range parts were retained which contained
useful information for discrimination, the most varying parts of the whole spectrum.
In the case of papers, the comparative functions were only able to discriminate one
paper, which had the most homogeneous structure, the others were found to be
indistinguishable from each other. Based on these results, the discrimination of
prints was performed only at the above-mentioned homogeneous paper. Laser
printers could be reliably discriminated from each other and from inkjet printers as
well, by using all functions, but SSD gave the best results. LC had the best
repeatability values and all functions had a better performance in the UV range. In
case of inkjet papers, the discrimination power was poor due to the fact that the ink
penetrated into the paper. In the case of DA and CT, prior data compression was
performed by the MCR-ALS method. The discrimination power for DA and CT was
96.3% and 83.3% (UV), 88.9% and 60.4% (Vis), and 83.3% and 70.8% (UV-Vis)
for papers and print. Results obtained with MCR-ALS-CT were the following:
83.3% and 59.3% (UV), 68.5% and 59.3% (Vis), and 77.8% and 51.9% (UV-Vis)
for papers and prints, so the UV range had better discrimination power [71].
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Fig. 9.4 Cross-sectional microscope image of printed papers (above: inkjet printer, below: laser
printer) after laser ablation

9.2.4 Adhesive Tapes

Discrimination of different kinds of adhesive tapes is also an important task of
forensic investigations. The residue of a wide variety of adhesive tapes can occur
in drug cases, kidnapping, rape cases, and explosions. The main components of
adhesive tapes are the adhesive layer and the backing layer, which composition
depends on the application. In the case of packaging tapes, the backing is usually
polypropylene or polyethylene. Duct tapes contain an additional strengthening mesh
layer that can be made from cotton, polyester, nylon, rayon, or fiberglass. Adhesive
tapes also contain several additives such as colorants, fillers, cross-linkers,



plasticizers, and stabilizers. Typically, forensic scientists have to compare the
adhesive tape residue secured in the crime scene with known samples seized from
the suspect. For this purpose, several analytical methods, such as XRF, SEM-EDX,
pyrolysis-GC-MS, FTIR, Raman, and LA-ICP-MS, can be used [72–80]. These
methods are needed only if no significant difference can be seen between the objects
under an optical microscope (Fig. 9.5).
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Fig. 9.5 SEM images of electrical tapes from different brands. Differences between the surfaces
can be well observed

Martinez-Lopez et al. investigated the elemental composition of packaging tapes
by LIBS and LA-ICP-MS. The measured sample set contained eight packaging tapes
from two countries and six manufacturers. Emission spectral lines were chosen for
the study which had no known interferences but could be measured with a good
repeatability and large SNR. For the discrimination, three comparison methods were
tested: spectral overlay, two-component principal component analysis (PCA) and
comparison criteria. For PCA and spectral overlay, the integrated peak areas were
used. In the case of PCA the following atomic emission lines were chosen: Ca
422.7 nm, Cr 520.6 nm, K 766.5 nm, Li 670.8 nm, Na 589.0 nm, Ti 334.9 nm, and
Zn 481.1 nm. Three different comparison criteria were applied (range overlap,
Kmean � 4σ and Kmean � 5σ). In the case of spectral overlay, first a spectral
normalization was applied and the presence or absence of the chosen seven emission
lines was observed. Only two samples were indistinguishable from each other. The
normalization was found to be very important with regard to the outcome. In case of
comparison criteria, the best results were achieved by using the Kmean� 5σ criterion.
Just by using the spectral overlay, with the best comparison criteria the same two
samples were undistinguishable after normalization. Before normalization four
sample pairs were not distinguished. To compare the results of LA-ICP-MS and
LIBS based on PCA, it can be declared that both techniques formed the same groups,
contained the same samples and the others were grouped individually. In the case of
LA-ICP-MS all the samples could be discriminated from each other based on the
presence of Nb, Fe, and Zr, but LIBS found two samples indistinguishable. Overall,



LA-ICP-MS could distinguish all eight samples, while LIBS could only do seven.
The RSD was under 10% in both cases [81].
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9.2.5 Fingerprints

Fingerprints are among the oldest subjects of forensic examination. The human
finger has a series of ridges and furrows whose arrangements have a significant
variation and this allows their identification (Fig. 9.6).

Fingerprints are the impressions left on surfaces by the friction ridges on the
finger of a human. Fingerprints have three types: visible (print left by an ink-coated
finger), plastic (a mechanical impression in wax or another soft material), and latent
(impression of oils from the finger on a surface). Traditionally, fingerprint is detected
and collected with the application of “fingerprint powder.” The dusted fingerprint
can be lifted with an adhesive plastic sheet and evaluated by eyes. The forensic
scientist marks the ridges, furrows, arches, loops, and whirls and compares the
known sample and the fingerprint found on the crime scene by eyes under a small
magnification microscope or with a software.

Taschuk et al. tested LIBS for the detection and mapping of latent fingerprints.
The test fingerprints were made by one of the authors (right thumb). First, the thumb
was brushed against the forehead and then rolled against a previously cleaned Si
substrate (wafer). Silicon was selected as a substrate because it has a smooth surface
and a strong emission line in the spectral range detected. Sodium was expected to be
detected and for each laser pulse. Na I 589.2 nm and Si I 576.2 nm signal-to-noise
ratios were calculated. For the 1D analysis, they collected 100 spectra with 50 μm
step size along a 5 mm distance. In the case of 2D analysis, a 1 mm by 5 mm region
was tested. They demonstrated that latent fingerprints can be detected and mapped
by femtosecond micro-LIBS, but this method has many difficulties (damaged
fingerprint, re-deposition of ablated materials, detection time, to produce a whole
fingerprint, the elemental composition of the substrate) and needs to be investigated
further [83].

Fig. 9.6 The six common
fingerprint classes [82]



9 Analysis of Forensic Trace Evidence 241

Yang and Yoh used LIBS for the reconstruction of chemical fingerprints that
were time-delayed and overlapped. For the sample preparation, fingerprints were
collected on aluminum plates from four men. The overlapping fingerprints were
made with 10-, 20-, 30- and 40-min time delay. The LIBS analysis followed the
sample preparation immediately to avoid any environmental contamination. For
validation Raman scattering was used. To detect the latent fingerprint, one LIB
spectrum was constructed from the average of 100 spectra taken at individual points
of the latent fingerprint. Based on NIST atomic database, CN molecular lines and
Mg, K, Na, and Ca atomic and ionic lines were assigned. It was postulated that CN
bands are good indicators of time-delayed aging. Because of drying, dehydration,
degradation, and migration, the number of double and triple CN bonds increases
over time. Based on this statement, only the 384–390 nm spectral range was
observed. The assumption was confirmed by LIBS, as the spectra showed a slight
increase over time (150% increase after 60 min). Several organic components were
detected in the fingerprint by Raman measurements, such as glycine, serine, acetic
acid, aspartic acid, pyruvic acid, and lactic acid. Raman measurements confirmed the
increase of the number of double and triple CN bonds. After 60 min, the intensity of
amino acid, fatty acid, oil and CN band did not change. Two multivariate analysis
methods, PCA, SIMCA, and PLS-DA were successfully applied to classify the latent
fingerprints in the correct time of imprints (>90% accuracy), when the source was
the same. With the help of the aging factor and the multivariate methods, they could
successfully reconstruct overlapped fingerprints [84].

9.2.6 Gunshot Residue and Ammunition

Gunshot residues (GSR) is “The total residues resulting from the discharge of a
firearm. It includes both gunpowder and primer residues, plus metallic residues from
projectiles, fouling, etc.” It is a mixture of organic and inorganic materials [85]. The
origin of GSR can be the primer, propellant, lubricant, bullet, bullet jacket, cartridge
case, or gun barrel. The presence of GSR on a person’s hand shows that this person
fired a gun. The general aim of GSR analysis is the identification of the potential
shooter, the determination of firing distance, and to determine if the case is a
homicide, suicide, or an accidental shooting. Because of the complex composition
of the gunpowder and the cartridge, organic and inorganic GSR can be found as well
[86]. Organic GSR can originate from explosives, gunpowder, and additives, and
inorganic GSR can originate from the primer and the combustion of the propulsive
charge [87]. At the moment, SEM-EDX combined with a special software is used for
the search and analysis of inorganic GSR particles, when forensic scientists looking
for particles that are a combination of lead, barium, and antimony with a spherical
morphology. For organic GSR the most applied methods are liquid chromatography
coupled to a mass analyzer (LC-MS), capillary microextraction of volatiles-gas
chromatography-mass spectrometry (CMV-GC-MS) [88], and capillary electropho-
resis (CE) [88, 89]. The identification of ammunition is usually done by matching



striation patterns. An alternative approach can be elemental analysis, because often
only fragments are recovered (Fig. 9.7).
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Fig. 9.7 SEM images of gunshot residue particles

Goode et al. applied LIBS for the detection of gunshot residue on the skin of the
shooter. For sample collection, they used a double-sided adhesive tape which was
pressed to the hand of the shooter and then directly analyzed. Three different
situations were evaluated, (a) clean hand (blank), (b) the shooter’s hand (after 1, 3,
and 10 shots), and (c) from the shooter’s hand, but after washing with soap. In case
(a) only sodium, calcium, and atmospheric lines were identified in the LIBS spectra,
whereas in case (b) barium and lead emission lines were also found. After washing
the hand with soap and water, GSR could be still detected by LIBS, but with a highly
decreased intensity [90].

Dona-Fernandez et al. investigated the applicability of LIBS in the real-time
detection of GSR particles and they compared the results with SEM-EDX. For the
experiments, a newly developed portable LIBS system (iForenLIBS by Indra
Systems) was used. The aim of the development of this equipment was to reduce
the collection and analysis time of GSR. The advantage of this system is that it is
applicable in the field (on the crime scene) to various substrates like stubs, cotton
swabs, etc. and that the analysis time can be reduced. Samples were collected from
“no shooters,” police officers, uniforms of police officers and materials from a scene
evidence collection carried out according to international standards. The whole
sample set represented many different scenarios (e.g., handling firearm without or
after shooting, after making one or more shots, before and after handwash, etc.). The
first step was to analyze all the samples with SEM-EDX and divided into groups
(number of GSR particles: >100, 100–21, 20–11, 10–4, 3–1, 0), based on the
number of GSR particles on the samples. The average percentage of the analyzed
sample surface was 41%. The average number of shots to get true positive results
(varied between 16 and 98) was inversely proportional to the number of GSR
particles containing the sample. Out of 90 samples, LIBS could correctly identify
82. In cases where the stubs contained at least three characteristic GSR particles,



LIBS had a 100% success rate. In the case when the number of GSR particles was
between one and three, LIBS gave five false negative results and three false-positive
results in the group which contained samples with zero GSR particles. After
re-analyzing the 22 samples with SEM-EDX (after LIBS measurements), it was
established that all particles under 2 μm diameter were completely ablated by laser-
generated plasma. If the particle size was larger than 1 μm, the detection of single
GSR particles was stated possible [91].
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Rosenberg et al. investigated GSR on the hand of a shooter using LIBS. Their aim
was to determine the duration of time after the shot was taken until the GSR is still
detectable. For the GSR collection, they used 3M 5490 PTFE extruded film sealing
tape and pressed the tape multiple times to the person’s hand. A blank library was
created with the help of 25 volunteers. Three shooters shot six times and after that
only one shooter was chosen for sample collecting. After the shot, shooters were
asked not to wash their hands for 1 week, when a sample was taken again. Because
the spatial distribution of GSR particles is heterogeneous on the hand and therefore
on the tape, LIBS signal averaging across an area will cause a signal dilution and a
decrease of the signal-to-noise ratio. For this reason, a protocol had to be introduced,
which was based on the net intensity of the Ba 455.403 nm emission line; if it was
greater than a certain calculated signal detection limit at any location, then the
sample was considered positive. Applying this evaluation protocol to a tape area,
it was found that the results become inconsistent after 120 h, but if only one laser
pulse was applied, the lifetime (validity) of the GSR extended to 192 h. An
exponential decay model was also proposed, and it projected the lifetime to be
about 126 h. Naturally, this time depends on the instrumentation, experimental
conditions and the life conditions of the shooter [92].

Tarifa and Almirall investigated the possibility of fast detection and characteriza-
tion of organic and inorganic GSR on the hands of suspects by CMV-GC-MS and
LIBS. They collected samples from hands (of shooters, of police officers after
shooting, of non-shooters from the campus) with moistened double-sided cotton
swabs. ICP-OES was chosen as a reference method for the confirmation of the
presence of Ba, Pb, and Sb. In case of LIBS, calibration curves were generated
(0.5–300 ppm) for all target elements chosen from literature reports (Al, Ba, Ca, Co,
Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sn, Sr, Ti, Zn, Zr). The obtained
absolute LODs were between 0.071 ng and 18 ng, with the exception of P (33 ng). In
the blank cotton swabs, the following elements were detected: Al, Ba, Ca, Fe, K, Mg,
Mn, Na, and Sr. Samples from the non-shooters contained Al, Ba, Ca, Cr, Cu, Fe, K,
Li, Mg, Mn, Na, Ni, P, Pb, S, S, Sr, Ti, Zn, and in two cases also Pb, because these
persons worked on a construction site at the time of the sampling. In the samples
taken from nine police officers, LIBS detected both Ba and Pb in six cases. The
combination of organic and inorganic results gives a more effective discrimination,
because the organic analysis can confirm the presence of diphenylamine and nitro-
glycerin in all cases where Pb and Ba were found. Beside Ba, Pb, and Sb, other
elements like Cu, K, P, and Ni were also proposed to be an indicator of GSR,
because the quantity of these elements on the shooters’ hands was more than double
of what was found in samples taken from non-shooters [88].
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Silva et al. used a screening analysis method for the detection of GSR by LIBS.
With the help of 9 volunteers, they accomplished 51 tests of shots, where the number
of shots varied from 1 to 5 and 12 types of ammunition were tested. For the sample
collection, an adhesive tape was used by pressing the tape (pressing and removing
the same piece 10 times) to the volunteer’s hand (dorsal region) after every shot.
They also investigated the persistence of the GSR on hands after washing them (after
16 h). For this sample collection, a liquid polymeric resin was used. For the blank
sample collection, they asked 15 volunteers, who had never shot a weapon in their
life, to help. The false-positive results were also tested by collected samples from
three brake mechanic’s hand. Five spectral regions, with Ba and Pb lines, were
chosen for the evaluation and the spectra were normalized to the maximum intensity.
No background correction was employed. Unfortunately, Sb was not detectable in
the spectra. In the case of non-shooters, only Ca, Na, and K were detectable. In the
spectra of shooters, intense Ba and Pb lines were observed, but Ca and Na were still
detectable. After washing the hands, Pb and Ba were still detectable but less
intensely. No difference was observed in the efficiency of the two sampling methods
(tape and resin), but the applicability of resin is more difficult, time-consuming, and
the surface of the resin is more irregular. In case of brake mechanics, intense Ca and
Ba lines were observed, but Pb was missing from the spectra. SIMCA classification
was successfully implemented. All samples collected from shooters (before and after
washing their hands) were correctly classified, without any false negative results.
The samples from brake mechanics were also included in the shooter class, but the
samples from non-shooters were not classified as shooters. It was concluded that
contaminations on the hand in some professional activities can produce a false-
positive result, thus the analysis needs to be complemented with SEM imaging [93].

9.2.7 Soils

The soils’ physical, mineralogical, biological, and chemical properties differ signifi-
cantly on different geographical locations, so soil traces are useful and well-known
evidence. Unfortunately, the basic physical and chemical properties (color, particle
size distribution, carbonate content, etc.) of soils do not have enough discrimination
power. The analysis of the mineralogical composition is a relatively long and
complex procedure. From a microbiological point of view, soil traces are often
contaminated during transfer and can also change during the time that elapses
between the sample collection and trial. In contrast to this, the elemental profile of
soil is stable over time. Trace, minor, and major elemental components of soil
samples from minerals, organic and anthropogenic materials contribute to the
characteristic elemental profile of each geographical location.

Jantzi and Almirall performed a discrimination study and concluded that samples
removed from different sites can be discriminated on the basis of elemental profiles
obtained by both LIBS and LA-ICP-MS using statistical techniques. For quantitative
analysis, calibration standards were prepared using clean sand spiked with a wide
range of concentrations of elements. The homogenized soil and standard samples



were pelletized, the intensity of emission lines was background-subtracted and
normalized to the internal standard line of Sc II 361.4 nm. Precision of the
concentrations obtained with LIBS compared well to the precisions observed for
LA-ICP-MS. Although LIBS limit of detection values are approximately two to
three orders of magnitude those of LA-ICP-MS, the LODs of both methods were
well below the certified concentrations in NIST reference soil materials. For dis-
crimination studies, the following emission line ratios chosen were: Sr II 421.6/
Ti I 336.1, Ba II 493.4/Mg I 517.3, Ca I 643.9/Mg I 518.4, Fe I 495.8/Mg I 518.4,
and Li I 610.4/Mg I 517.3 nm. The LIBS method successfully discriminated samples
from two different sites in Dade County, FL. Analysis of variance, Tukey’s post hoc
test, and Student’s t-test resulted in 100% discrimination with no Type I or Type II
errors. Principal components analysis (PCA) resulted in clear groupings of the two
sites and a correct classification rate of 99.4% was obtained with linear discriminant
analysis (LDA) as well [94].
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Woods et al. investigated the efficiency of different elemental analysis methods
for forensic soil examination. They tested three methods, namely LIBS, XRF, and
SEM-EDX. The sample set contained surface and sub-surface soil samples from
9 sites around the Canberra area and from 17 samples stored in the CSIRO National
Soil Archive (Australia). The soil specimens were oven-dried, lightly crushed and
dry sieved. The <38 μm fraction was used for analysis without any other separation
procedure. The analysis was performed on compressed soil discs made from 10 mg
sample. The discrimination analysis was performed based on using elemental peak
ratios proposed by Jantzi and Almirall in [94]). These peak ratios resulted in
31 indistinguishable pairs out of 406 (92.4% accuracy). The majority of pairs
indistinguishable by LIBS originated from Canberra (in 30 km diameter) soils
(18 indistinguishable pairs out of 66; 72.7% accuracy). The other two tested analyti-
cal methods showed slightly higher discrimination power: XRF 98.5% (five indis-
tinguishable pairs), SEM-EDX 99.5% (two indistinguishable pairs) [95].

Jantzi and Almirall introduced a new preparation technique for small amount
samples. Soil specimens from Miami–Dade County (FL, USA) were prepared with
the pellet and the adhesive tape mounting methods. For this study, a home-built
LIBS system was used. During the adhesive tape mounting method, the samples
were sieved (150 μm pore size), mixed with spiked calibration standards and
reference materials, were affixed with Scotch removable poster tape onto a glass
cover slip. All samples were analyzed by both LIBS and LA-ICP-MS. The precision
of the tape-mounted specimens analyzed by LA-ICP-MS was better than by LIBS,
but the LIBS method provided a sufficient level of precision for forensic
comparisons. The main technical problem was the thin layer of soil, which only
tolerated only a few laser pulses at the same spot, therefore a line scan was applied
instead. During the pellet-mounting procedure, pulverizing by a ball mill or shaking
and homogenizing using a vortex touch mixer was tested. The vortex touch mixer
seemed to be a better solution, because it was faster and broke up the aggregated soil,
so the texture and mineral structure remained unaltered. At last, the precision (RSD
%) for non-milled soil was better in many cases, than for the milled soil. The
following emission line intensity ratios were used for discrimination: Ca I 643.9/



Fe I 360.9, Cr I 360.5/Sr II 421.6, Fe I 495.8/Li I 670.8, and Ba II 493.4/Fe I 360.9.
Using these ratios, the authors got nearly identical results with the different (pellet/
tape-mounting) sample preparation methods. The discrimination power was higher
than 94% in both cases with multivariate discrimination analysis. The new, speedy,
and non-destructive preparation technique consumes only a small portion of the soil
in the analyses. In addition, the tape-mounted soils can even be stored and
re-analyzed later by other analytical techniques [96].
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Xu et al. combined and tested LIBS and FTIR-ATR for forensic soil analysis. The
100 soil samples used for the study were collected from five major regions of China.
The sample preparation method was sieving (<2 mm) and pelletization. The atomic
and/or ionic emission lines of Si, Mg, Al, Ca, N, O, and K were selected for the
statistical analysis. In the case of FTIR-ATR study, the following bands with high
FTIR-ATR intensity variations were selected: O–H stretching, O–H/N–H stretching
(carboxyl, alcohols and phenols/amine and amide, hydroxyl groups), C¼C/C¼O
stretching (amides, COO�/aromatics/O–H stretching), CO3

2� (carbonates), Si–O
stretching (silicates), NH2 out of plane (primer amin). Based on combining the PCA
analysis of raw LIBS and FTIR-ATR spectra the main soil type of China’s five major
regions could be clearly distinguished from each other. Furthermore, the authors also
presented an application of the method to two case studies connected to drownings
after falling into a river, which demonstrated that the method can not only be used on
soils, but also on recent sediments [97].

9.3 Conclusions

As the publications prove, LIBS is a feasible and practical alternative to
LA-ICP-MS, micro-XRF, and SEM-EDX for almost every kind of physical trace
evidence. LIBS needs less sample preparation, analysis time, and cost of examina-
tion, and it is easier to use. These are very important characteristics in forensic
science. The most investigated samples are inks, papers, and glasses and there are a
few studies on adhesive tapes, textile fibers, paints, geological and biological
samples too. In case of glass analysis, LIBS results can be successfully combined
with other techniques like Raman and refractive index measurements. These
publications also have shown that more systematical and extensive research is
needed. There are no standardized evaluation methods yet, usually the pairwise
comparison is applied. The most applied statistical methods used in comparisons
are principal component analysis, linear discriminant analysis, and Student’s t-test.
There is no consensus that for the evaluation of the net peak area, net peak intensity
or net peak high should be used or the whole spectra. In some publications, scientists
are using background correction or masked spectra. Of course, these decisions were
made based on the results, but it is not easy to compare the different results because
no fixed evaluation method yet.

Another field to be explored is the sample size. In most cases, glass, paint,
ammunition, and adhesive tape experiments are done with “macro” sample sizes
and not with a sub-mm sample size. In real life, forensic scientists have to examine



the above-mentioned sample types usually in the μm size range. To determine the
smallest sample size which is measurable by LIBS, further experiments are needed.
The determination of the smallest measurable sample size is crucial also because
forensic scientists have to keep the evidence for further analysis. It can also be
mentioned that at present there are no ASTM standards available for LIBS as
opposed to micro-XRF, SEM-EDX, or LA-ICP-MS analysis. Nevertheless, LIBS
definitely has a good potential for becoming an analytical method routinely applica-
ble in forensic science for the examination of physical trace evidence.
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Advanced Polymer Characterization 10
Zuzana Gajarska, Lukas Brunnbauer, Hans Lohninger,
and Andreas Limbeck

10.1 Introduction

Since their invention in the early twentieth century, synthetic polymers have become
one of the most widely used and universally applicable materials in our modern
world [1]. Without this material type, many of the things we use and do naturally on
a daily basis would not be possible. The main reason for the prosperous rise of
synthetic polymers is their unique physical and chemical properties easily tunable by
a simple change of the monomers used for the synthesis or additives applied (e.g.,
plasticizers, antioxidants, antistatic agents, lubricants, flame retardants, colorants, or
inorganic pigments [2]). This flexibility in properties opened applications in many
different fields. Nowadays, polymers are applied not only as (one-way) packaging
materials for consumer goods, and construction materials [3] but have also found
their way into more demanding fields such as the semiconductor [4, 5] and coating
industry [6–8], where they are often employed as an encapsulation material or
protective layer. In this case, the primary purpose of the polymer is to prolong the
material or device lifetime by protecting it from environmental influences such as
humidity, UV radiation, or corrosive gases. Besides all the advantages polymers
have to offer, the awareness of the ecological problems this material is causing has
drastically increased in the last few years. At the end of their life cycle, polymers
often end up in landfills, are incinerated, or end up in the environment in the form of
microplastics [9]. The efforts to adapt appropriate recycling and waste management
strategies for polymers have intensified lately [10, 11].

To ensure the safe application of polymers and enable the development of novel
polymer types, a comprehensive characterization and analysis of this material is
required. In the last few years, a wide range of different analytical techniques have
been applied to characterize polymers, many of them finding their way to routine
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analysis in the industry. The most common tasks in polymer characterization include
discrimination, classification and identification of different polymer types, and
investigation of polymer degradation. Besides the characterization of the polymer
network itself, monitoring of additive or unwanted contamination levels present is
also of significant interest. Common techniques used for the analysis of polymers
include Fourier Transform-Infrared (FT-IR) [12] spectroscopy and Raman spectros-
copy, Pyrolysis—Gas Chromatography-Mass Spectrometry (Py-GC-MS) [13],
Thermo Gravimetric Analysis/Differential Thermal Analysis (TGA/DTA) [14],
and Matrix Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry
(MALDI-TOF-MS) [15] each enabling measurement of specific polymer properties.
Providing polymer-specific information, FT-IR and Raman spectroscopy are widely
applied to classify and discriminate different polymer types [16–18] or investigate
the degradation behavior of polymers [16, 17]. Other techniques used to characterize
polymer degradation include Py-GC-MS [13] and TGA/DTA [16, 18]. Even though
these techniques all provide unique insight into polymer properties, naturally, all
analytical techniques also come with certain limitations. TGA/DTA and Py-GC-MS
are techniques that only have access to bulk properties of the sample under investi-
gation, whereas FT-IR, Raman spectroscopy, and MALDI-TOF-MS enable laterally
resolved analysis of the sample surface. However, information about changing
properties related to the depth within the sample is not easily accessible with any
of the techniques mentioned above. Additionally, none of these techniques allows
the measurement of inorganic additive levels in polymers. Therefore, to satisfy the
need for comprehensive characterization of polymer materials, it is necessary to
improve existing analytical approaches and techniques. Furthermore, the develop-
ment and application of novel analytical procedures that are not conventionally used
for polymer analysis can be favorable.
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In this chapter, we focus on the benefits LIBS offers when it comes to the
characterization of polymer samples. LIBS is usually considered an analytical
technique used for elemental analysis to detect all elements of the periodic table.
Besides elemental information, under certain circumstances, LIBS can also provide
molecular information from the sample under investigation, originating either from
incomplete atomization or recombination in the laser-induced plasma [19–21]. The
molecular information (e.g., C2, CN, OH, . . .) combined with the possibility of
directly detecting the main common constituents of polymers C, H, N, and O
(Fig. 10.1) proves to be beneficial for specific fields of polymer characterization.
Using the information obtained from LIBS spectra combined with the unique
capabilities of LIBS (e.g., imaging, depth profiling, online measurements, lack of
sample preparation) results in an analytical technique with powerful characteristics
for polymer analysis.

In the following chapters, we present topics where a lot of research is focused on
developing novel applications of LIBS for polymer analysis, highlighting the
benefits of this technique.
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Fig. 10.1 Representative LIBS spectrum of a polymer with typical spectral features marked

10.2 LIBS for Polymer Discrimination/Classification

As mentioned above, LIBS spectra of polymers are mainly dominated by the atomic
emission lines of C, H, O, and N. These are often accompanied by the emission
bands of molecular fragments, such as C2 and CN, arising either from the incomplete
atomization of the sample or from recombination of the ablated species with other
species present in the plasma plume [22]. Moreover, some polymers contain addi-
tional elements such as Cl and F, but also S and P. A brief overview of the main
atomic and molecular emission signals commonly employed for the LIBS-based
analysis of polymers is provided below (Table 10.1 and Fig. 10.2). It should be
pointed out, that if analysis is carried out under an ambient atmosphere, O and N
signals cannot be attributed to the polymer itself and identification/classification of
polymers is restricted to other elements. More details about the evolution of signals
in the LIBS plasma of organic molecules can be found in the work of Moros and
Laserna [23].

As demonstrated in Fig. 10.3, the similar elemental composition of different
polymers results in their almost identical elemental patterns/fingerprints and thus a
great similarity of their LIBS spectra, which has long been considered as a major
challenge in the LIBS-based discrimination of polymers. Nevertheless, the idea of a
rapid, stand-off polymer identification not limited by the polymer thickness or color
remained very attractive. Thus, many research groups tried to come up with a
chemometric approach that could overcome the limitations of spectral similarity
and make the polymer identification by means of LIBS available. Although much
work has been done in the field already, certain aspects such as the lack of classifier
robustness in real-life scenarios or the influence of polymer additives on classifica-
tion efficiency have not been fully addressed [26] and shall get more attention in the



Table 10.1 Summary of
the emission
lines/bands commonly
employed for polymer
identification [ , ]2524

future. Additionally, the recently emerging field of microplastic analysis unlocks
new application potentials but also represents a challenge regarding the experimental
design (analysis of single particles instead of conventionally performed
investigations of compact bulk samples).
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Type of species Species Emission lines/bands [nm]

Atomic C 193.09
247.86
387.64
426.72
723.64

H 486.13
656.29

O 777.19
777.42
777.54

N 744.35
746.83
746.92

Cl 725.66
741.41
754.7
837.59

F 685.60

Diatomic/molecular C2 473.65
516.42
563.55

CN 359.04
388.29
421.58

All the methods proposed for the LIBS-based identification of polymers utilize
the fact that the different polymer types have different elemental ratios, which results
in subtle differences in the polymer-specific signal intensities. Thus, the first works
in the field tried to differentiate polymers based on the ratios of single emission lines
(such as C/H or C2/C) [27–29] or employ simple statistical methods such as linear
and rank correlation to compare the entire LIBS spectra of unknown polymers to a
spectral library [30, 31]. Nevertheless, recent advances in instrumentation and
computational power have led to an even greater spectral resolution and an increas-
ing availability of high-precision data, which triggered the application of more
advanced chemometric techniques. Further, the growing presence of machine
learning boosted the achievable results even more. Thus, techniques such as princi-
pal component analysis (PCA), support vector machines (SVM), random forest
classifiers (RF), or artificial neural networks (ANN) became dominant in the field.
As a detailed description of the correlation methods was already presented in the
work of Anzano et al. [32], we dedicate this chapter to the most recent chemometric
methods employed for the LIBS-based identification of polymers. The following



sections aim to provide a short introduction of the multivariate space of LIBS and the
most common machine learning algorithms applied in the field.
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Fig. 10.2 An overview of the spectral features commonly employed for polymer identification.
ABS acrylonitrile-butadiene-styrene copolymer, PA polyamide, PC polycarbonate, PE polyethyl-
ene, PMMA poly(methyl methacrylate), PVC poly(vinyl chloride), PI polyimide, PAN polyacrylo-
nitrile, PVP polyvinylpyrrolidone

Considering each detected wavelength as a dimension, each LIBS spectrum can
be represented as a point in a multidimensional space, and the mutual distance of the
individual points can be used as a measure of spectral similarity. Thus, points
representing similar spectra are located closer to each other, whereas points
representing spectra with major differences are positioned further apart. Clearly, a
discrimination of the different polymer types becomes possible only if the points
representing a particular polymer class gather in a constrained region of the space,
forming a cluster well-separated from the others (illustrated in Fig. 10.4). Depending
on the structure of the polymer clusters, any type of discriminating surface is
conceivable, from a linear hyperplane to a complicated nonlinear hypersurface.
The complexity of the discriminating (hyper)surface will control the type of utilized
classifiers—from a simple partial least square discriminant analysis (PLS-DA) in the
case of linear separability to random forest or neural networks in the case of
non-linearly separable classes.

As mentioned above, the location of the individual points is determined by the
intensities of the individual emission signals, which are, in turn, heavily dependent



on the instrumental setup and measurement conditions. This is demonstrated by
Fig. 10.5, showing LIBS spectra of the same polymer sample acquired under
different combinations of gate delay and atmosphere.
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Fig. 10.3 LIBS spectra of four different polymer types demonstrating the identification challenge.
PI polyimide, PE polyethylene, PA polyamide, PC polycarbonate

Fig. 10.4 Points representing a single polymer type would ideally gather in one region of the data
space well-separated from others. PI polyimide, PE polyethylene, PA polyamide

Clearly, such sources of spectral variation complicate the identification of spectra
representing a single polymer type. Therefore, the experimental settings shall be kept



constant over the entire analysis. Ideally, they would be optimized to emphasize the
emission signals related to the studied polymer types. For a more detailed discussion
on the topic, we refer the readers to the recent work of Chamradova et al. describing
the effect of different atmospheres on the LIBS spectra of six polymer types [20] and
the work of Gajarska et al. [33], providing an insight into a systematic optimization
of three experimental conditions (laser energy, gate delay, and atmosphere) with
respect to the identification of 20 different polymer types.
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Fig. 10.5 LIBS spectra of polystyrene obtained under different combinations of gate delay and
atmosphere. The regions in gray represent polymer-relevant spectral features [33]

However, not even the optimal experimental settings guarantee a constant nature
of the signal. The shot-to-shot fluctuations well-known in the LIBS community often
distort the representativeness of the spectra belonging to the same polymer type,
which might result in poor classifier performance. Therefore, various normalization
methods, such as normalization by the total spectral intensity [34] or normalization
by C(I) 247.85 nm line [35–38], can be applied. As an improper choice of normali-
zation method can disturb the relationships in the data, it is highly recommended to
perform this step with a considerable amount of caution. A more detailed description
of the assumptions, advantages, and disadvantages of the different normalization
methods can be found in the work of Guezenoc et al. [39].

In addition to the experimental conditions, the efficiency of the classification can
be greatly influenced by the variables used to define the multivariate space. If all the
variables measured during LIBS analysis are used, the resulting space is
high-dimensional, and the great majority of dimensions represent noise or signals
irrelevant to the polymer discrimination. This might result in a problem, as in such
high-dimensional spaces, data become located in the outer shells of the space, and
the distance measures no longer reflect the similarity [40]. Additionally, the
increased number of variables often results in a greater number of parameters to be
estimated during the training phase, which prolongs the computational times and
increases the risk of over-fitting. Therefore, it is often reasonable to select only a



subset of variables relevant for the discrimination of the individual classes. As
discussed earlier, in the field of polymer analysis, it is common to use emission
signals of atoms such as C, H, O, and N (possibly additional ones depending on the
elemental composition of the polymer types subjected to the analysis) and of
molecular fragments such as C2 and CN. These can be extracted from the raw
spectra in the form of single emission intensities, intensity regions representing
peak areas, or other (nonlinear) combinations of the original variables representing
characteristic features of the spectra (these are the so-called spectral descriptors)
[41]. Alternatively, one can start with variables covering the entire spectral range and
apply variable selection methods (e.g., variable selection of random forests) to
algorithmically find those which are relevant for the discrimination. Another possi-
bility is to use principal component analysis (PCA) to condense the most important
content of the entire spectra in a small number of uncorrelated variables called
principal components.
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Fig. 10.6 Visualization of high-dimensional data (here: 3D) by their projection onto a
2-dimensional plane spanned by two principal components. PI polyimide, PE polyethylene, PA
polyamide, PC polycarbonate

After these steps, one ends up with an observation matrix where each row
represents a single observation (LIBS spectrum) and each column a single variable
(e.g., single emission intensity or spectral descriptor). Before subjecting the data to
further analysis, it is often reasonable to scale the individual variables (columns) to a
mean of 0 and standard deviation of 1 to ensure the comparability of their influence
(in the case of dimensionality reduction by means of PCA, this step would be
performed prior to the PCA).

As the resulting data matrix is quite abstract, exploratory data analysis (EDA)
techniques such as PCA are commonly employed to obtain a visual representation
(and thus a better understanding) of the data. PCA, for instance, enables for a
projection of the high-dimensional data onto a two-dimensional subspace (the
computer screen) (Fig. 10.6) in a way to retain the maximum amount of variation/
information in data [42]. In the field of polymer identification, this approach has been
commonly employed to inspect the separation of the individual classes before the
application of a classifier. As an example, Costa et al. performed PCA analysis
before using KNN and SIMCA for the classification of 6 polymer types commonly
found in e-waste [43]. Stefas et al. used PCA to inspect the separation of ABS
samples containing different additives (e.g., fillers, flame retardants, etc.) before
applying an LDA classifier [26]. Junjuri et al. employed PCA together with the 2D



scatter plots of H-CN and C2-CN to examine the separation of five postconsumer
plastic types before training an artificial neural network [38]. Furthermore, the works
of Unnikrishnan et al. [44], Costa et al. [45], and Shameem et al. [46] employed PCA
as the main method to assess the potential of the polymer classification. In addition to
PCA, few other unsupervised chemometric methods, such as hierarchical cluster
analysis (HCA) [47], k-means clustering [34, 48, 49], or self-organizing maps
(SOM) [34], have been used to gain a greater insight into the data and investigate
the underlying relationships.
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Although PCA provides a very useful representation of the data, the ultimate goal
of the analysis is the identification of new/unknown samples, which can only be
achieved by using an algorithm (“classifier”) trained on a set of polymer LIBS
spectra of known polymer types. In the multivariate space analogy, the training of
a classifier can be imagined as finding a set of boundaries from the locations of
points representing the polymers with a known identity. These boundaries will
divide the space into several subspaces where a particular class has the highest
probability to occur. Allocation of a new sample in this space will end up in a
particular subspace which will decide on its class label.

The fact that different types of classification algorithms have been developed over
the years has its reason: each classifier type has advantages and disadvantages and,
more importantly, is based on certain assumptions about the data (e.g., linear or
nonlinear separability), which pose a limitation on the scenarios to which it can be
applied. Thus, there is no such thing as a single algorithm outperforming all other
ones in each classification task of the world, which is well-represented by the wide
range of classification algorithms covered in the polymer identification literature.
The following lines aim to provide a brief introduction to the working principle of
the most commonly employed classifier types, along with specific examples of their
application in the field of LIBS-based polymer analysis.

10.2.1 Linear Classifiers

Linear classifiers use a line, plane, or hyperplane (depending on the dimensionality
of the space) to separate the individual classes. Given the linear separability, there
are often many different hyperplanes satisfying this criterion. Clearly, one aims to
find the one which would result in the best separation of the classes (and could be
applied/generalized well onto the new samples). Here, it is the definition of the “best
hyperplane,” which is different for different algorithms. For instance, in the case of
Fisher’s linear discriminant analysis (LDA), the best separating hyperplane is the
one that maximizes the ratio of between-class distances to within-class distances. In
the case of partial least squares discriminant analysis (PLS-DA), the discriminant
function is not based on the spectral variables but rather on their linear combinations
to avoid problems with correlation. The linear support vector machine algorithm
searches for an optimal hyperplane that is not infinitesimally thin (in contrast to LDA
and PLS-DA). Along with their simplicity, linear classifiers offer short training and
prediction times and ease of scaling to large datasets. Furthermore, these classifiers



perform well in high-dimensional spaces where nonlinear classifiers tend to overfit.
In the field of polymer identification, LDA was successfully employed for the
discrimination of ABS (acrylonitrile butadiene styrene) containing carbon black
and different types of fillers (e.g., Mg(OH)2, SiO2, barite) and brominated flame
retardants (e.g., decabromodiphenyl ethane (DBDPE), tetrabromobisphenol
(TBBPA)). As the authors state, the classification of these compounds is relevant
for the recycling of e-waste/WEEE, which is one of the fastest-growing waste
streams in the E.U. [50]. Another example of linear classification was presented by
Junjuri et al., who employed PLS-DA to discriminate 10 types of postconsumer
plastics provided by a local recycling vendor [36]. In this case, the authors compared
the performance of two classifiers, one based on the entire spectral range and one
only on a few prominent wavelength features (C 244.32–251.07 nm, CN
376.44–388.59 nm, C2 509.49–517.6 nm, and H 652.41–659.56 nm). Even though
the latter one used only 7.3% of the entire spectral information, it could provide
competitive classification accuracies. Additionally, Liu et al. used PLS-DA in
combination with spectral windows (SW-PLS-DA) to classify plastic bottles made
from different polymer types [51]. As the authors stated, the selection of spectral
windows based on the continuous wavelet transform (CWT) has the advantage of
incorporating more spectral information than conventional methods while reducing
the influence of noisy variables, which lowers the risk of over-fitting. The authors
reported higher accuracy and shorter classification time of their approach compared
to that of the regular PLS-DA, SVM, and RF classifiers.
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10.2.2 Kernel Support Vector Machines

In many cases, linear separation of the data is not possible. One of the ways to deal
with such situations is the addition of a new (nonlinear) dimension to the existing
space such that in the expanded space, the data becomes linearly separable. In the
case of SVMs, there is a mathematical trick that allows training a classifier in a
non-linearly transformed space without having to construct it explicitly. This
approach is commonly called the “kernel trick” and is utilized in kernel SVMs, a
version of the linear SVMs allowing to learn more complex nonlinear decision
boundaries (Fig. 10.7). On the downside, such more complex approaches often
require the tuning of hyperparameters, demand more memory, and exhibit longer
run times.

Support vector machines with a radial basis function (RBF) kernel were success-
fully applied in the work of Yu et al., aiming for the identification of 11 polymer
types. The authors based their analysis on 15 emission lines, including C, H, O, N,
Mg, Ti, Ca, Al, K, Na, Cl, F, CN, and C2. In order to increase the influence of the
polymer-relevant signals on the outcome, they multiplied the spectral lines of O I
777.41 nm, CN (0, 0), C2 (0, 0), and N I 746.87 nm by weight factors determined by
PCA [35].
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Fig. 10.7 Top left: the two classes (red and blue) cannot be separated by a linear discriminant
function. Top right: the space has been transformed by using a simple polynomial function, which
leads to a linearly separable dataset. Bottom: back-transforming the hyperplane to the original data
space leads to a nonlinear separating function

10.2.3 Artificial Neural Networks

Another type of supervised machine learning algorithm applied in the field of LIBS-
based polymer analysis is artificial neural networks (ANNs). From a general per-
spective, ANNs can be considered as nonlinear mappings of the spectral descriptor
space to the space of polymer classes. While there is a considerable amount of
different ANN models, the following lines are focused on introducing the most
common one, the so-called multi-layer perceptron or back-propagation network. The
principal structure of a back-propagation network consists of several layers of
processing units (so-called “neurons”), which are fully connected in the sense that
each neuron in each layer influences all neurons in the subsequent layer. The signal
propagates from the input layer (the values of the spectral descriptors) via one or
several hidden layers to the output layer (representing the polymer classes). The
individual neurons exhibit nonlinear transfer functions (e.g., a hyperbolic tangent



function). The transfer of a signal from one neuron to another is weighted by
multiplicative weights, which are adapted during the training phase in a way that
the error in the output layer becomes minimal.
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The training of the network begins with random initialization of the weights.
Using the input (the variables of a sample in the training set) and the set of initial
weights, one can calculate the output. Based on the deviation of the calculated value
from the true output value, the weights are adjusted recursively from the output to the
input layer. All the training data are presented to the network over many training
cycles (epochs), adjusting the weights until the system achieves a stable state, or a
maximum number of epochs is reached. This process of adapting the weights is
called back-propagation of errors (hence the name “back-propagation networks”)
[52, 53].

ANNs were used in the work of Boueri et al., who employed a 3-layer perceptron
to identify eight polymer types. After initial optimization, the input layer comprised
of 13 neurons representing normalized intensities of C, Mg, Ti, CN, Ca, Na, H, F, Cl,
N I, Cl, K, and O, the hidden layer (acting as a feature-extraction step) comprised of
12 neurons and the output layer contained eight neurons representing the individual
classes/polymer types. The authors conclude that LIBS combined with ANNs has
the potential to complement NIR spectroscopy (especially in the case of dark-
colored polymers). Nevertheless, the effect of additives on the identification
represents a challenge. Additionally, according to the authors, it would be required
to train the neural network on a greater dataset containing various materials from
industrial environments and daily life [37]. Another example of a three-layered feed-
forward-backward propagation ANN was presented in the work of Junjuri et al. [38],
who employed femtosecond (fs) LIBS for the identification of five plastic types
obtained from a local recycling unit. In this case, the authors investigated five
different spectral windows (ranging from entire spectra to only C and H lines)
with respect to their effect on the average correct classification rate and the classifi-
cation time. According to the results, the spectral window comprised only of C and H
emissions (2.5% of the total data) could provide comparable performance to the one
covering the entire spectral range while taking a considerably lower amount of time.
According to the authors stated, this could be possible due to the minimal influence
of the ambient atmosphere (the result of fs-LIBS) and the inherent presence of C and
H in all of the studied polymer types.

10.2.4 Random Forests

Random forests (RF) have turned out to be a reliable and powerful classification tool.
The principal idea behind RFs is the combination of many weak learners (i.e.,
classifiers, which deliver only poor and unstable results by showing high variance
in their answers) into a much stronger ensemble [54]. The individual classifiers
(“weak learners”) are decorrelated decision trees (typically CARTs—classification
and regression trees) which are trained using a randomly selected subspace of the
descriptor/variable space. The training set for each individual tree is derived from the



original dataset by a random sampling with replacement (bootstrap), which further
enhances the decorrelation of the individual trees. Each of the trees “votes” for the
final outcome and combination of votes (usually majority) is employed to determine
the classification output. Random forests have been successfully used in the work of
Pagnin et al. [55] aimed at the spatially resolved classification of modern art
materials.
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10.2.5 K-Nearest Neighbors and Soft-Independent Modeling Class
Analogy

Two additional supervised classification methods, namely k-nearest neighbors
(k-NN) and soft-independent modeling class analogy (SIMCA), were employed in
the work of Costa et al. for the identification of 6 polymer types commonly found in
e-waste [43]. Whereas in the case of k-NN, the identification of the samples is based
on the identity of the k points closest to the unknown point (in the multivariate space)
[56, 57]. SIMCA creates a “box model” based on the principal components for each
class and calculates the similarity of the unknown point to each class by comparing it
to the class box models [58]. While the k-NN model is deterministic and always
results in the assignment of a class label, SIMCA is probabilistic and assigns class
labels only to samples with a sufficient probability of belonging to one (or multiple)
classes.

Finally, Table 10.2 gives an overview of the different multivariate approaches
reported in the literature and the investigated polymer types.

10.3 LIBS for Quantitative Metal Analysis in Polymers

There are many different properties of polymers that play an essential role in their
application. Most of them are physical and mechanical properties such as strength,
toughness, resilience, and lack of both thermal and electrical conductivity. Addition-
ally, chemical properties are of great interest as well. Here, chemical inertness has to
be mentioned as a favorable property useful in many applications [64]. The desired
properties of a polymer material are often fine-tuned using a wide range of different
organic and inorganic additives acting as, e.g., plasticizers, flame retardants,
colorants, and UV stabilizers [2]. Therefore, determining additive levels by measur-
ing the metal content is crucial to assure the specifications of a material. Besides the
bulk metal content, the spatial distribution of additives is also of interest to ensure the
required homogeneity.

Metal content in polymers is not only important in the field of material sciences
but is also crucial in environmental and life science. For polymers used as packaging
material for food and cosmetics, the content of toxic species (e.g., heavy metals)
must be certified and fall below a defined threshold value. When recycling polymers,
metal content also plays an important role influencing the applicability of the
recyclate [65]. Additionally, the trace metal content of microplastics is also of
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(continued)
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Table 10.2 Overview of the approaches employed for the LIBS-based identification of polymers

Nr. of
polymer
types

Statistical
methods

PET, HDPE, PVC, LDPE, PP, PS 6 Linear + rank
correlation

[30]

PET, HDPE, PVC, LDPE, PP, PS 6 Linear + rank
correlation

[31]

PET, PE, PVC, PP, PS 5 Line ratios [29]

PET, PE, PP, PS 4 Distance
measures,
correlation

[59]

HDPE, LDPE, PP, PS, PET, PVC, PTFE, PA,
cellulose, rubber

10 Linear + rank
correlation,
MNC

[60]

Unsupervised
methods

PE, PP, POM, PVC, PTFE, POE, PA, PBT, ABS,
PS, PC, PDMS

12 Line ratios,
PCA

[61]

PET, PE, PP, PS 4 PCA [44]

PET, PE, PP, PS 4 PCA [46]

LDPE, HDPE, recycled HDPE 3 PCA [45]

microplastics – PCA [62]

LDPE, HDPE, PP, PS, PET 5 PCA, HCA [47]

ABS, PLA, PE, PAK, PVC 5 PCA, k-means [48]

ABS, PVC, PA, PMMA, PC, PE, POM, PP, PS,
PTFE, PU

11 k-means [49]

ABS, PA, PMMA, PVC, PC, PE, POM, PP, PS,
PTFE, PU

11 k-means, SOM [34]

Linear
classification

HDPE, LDPE, PET, PP, ABS, PC, PS, HIP,
PPCP

9 Correlation,
PLS-DA

[36]

PVC, PU, PTFE, PS, PP, POM, PMMA, PE, PC,
HDPE, ABS

11 VI-PLS-DA [63]

PET, HDPE, PP 3 SW-PLS-DA [51]

ABS + additives – LDA [26]

Nonlinear
classification

PTFE, PU, PS, PC, PVC, ABS, PMMA, PA, PP,
PE, POM

11 ASW-SVM [35]

PP, PVC, PTFE, POM, PE, PA, PC, PMMA 8 ANN [37]

PET, HDPE, LDPE, PP, PS 5 ANN [38]

polymer binders 3 RF [55]
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significant interest. Besides the ecological impact microplastics themselves have on
an ecosystem, the uptake or release of heavy metals may increase the harm these
particles carry [66].
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Table 10.2 (continued)

Nr. of
polymer
types

ABS, PS, PE, PC, PP, PA 6 k-NN + SIMCA [43]

ABS, PS, EvAc, EvOH, PA, PAN, PBT, PC, PE,
PEEK, PET, PI, PMMA, POM, PP, PPSU, PSU,
PU, PVC, silicone

20 k-NN + PCA [33]

Abbreviations: ABS acrylonitrile-butadiene-styrene copolymer, EVAc ethylene-vinyl acetate copol-
ymer, EvOH ethylene-vinyl alcohol copolymer, HDPE high-density polyethylene, HIP high impact
polystyrene, LDPE low-density polyethylene, PA polyamide, PAK polyester alkyd, PAN polyacry-
lonitrile, PBT poly(butylene terephthalate), PC polycarbonate, PDMS polydimethylsiloxane, PE
polyethylene, PEEK polyetheretherketone, PET poly(ethylene terephtalate), PI polyimide, PLA
polylactide, PMMA poly(methyl methacrylate), POE polyoxyethylene, POM polyoxymethylene,
PP polypropylene, PPCP polypropylene co-polymer, PPSU poly(phenylene sulfone), PS polysty-
rene, PSU polysulfone, PTFE polytetrafluoroethylene, PU polyurethane, PVC poly(vinyl chloride),
PVP polyvinylpyrrolidone

Conventional approaches for determining the elemental content of polymer
samples are usually based on transferring the polymer into a solution with a
subsequent liquid inductively coupled plasma mass spectrometry (ICP-MS) or
optical emission spectrometry (ICP-OES) analysis. Due to the aforementioned
chemical inertness of many polymer types, conversion of the polymer under investi-
gation into a solution is usually challenging and requires complex sample prepara-
tion procedures, often including microwave-assisted digestion or combustion
[67, 68]. These steps require manual sample handling prone to errors and contami-
nation, and harsh and hazardous chemicals unfavorable both from ecological and
economical points of view. Additionally, in modern industries fast monitoring of
process parameters is desired which is not compatible with time-consuming sample
pretreatment. Therefore, the development of novel approaches for the analysis of
metal contents in polymers is required.

Direct solid sampling techniques allow the analyst to circumvent these
limitations. For example, techniques such as X-ray fluorescence spectroscopy
(XRF) [69, 70] and laser ablation ICP-MS (LA-ICP-MS) [71–73] have already
been successfully applied for the quantitative analysis of metals in polymers.
However, when employing direct solid sampling techniques for quantitative analy-
sis, other challenges must be addressed to ensure accurate and precise results. For
example, these techniques are inherently susceptible to matrix effects meaning a
variable absolute signal response based on the bulk composition of the sample. This
is especially problematic in the case of polymers, where a large variety of matrix
compositions can be encountered.
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Even though certified reference materials (CRMs), which can be employed as
matrix-matched standards, are available for some commonly used materials and
samples encountered in routine analysis, often only a restricted number of elements
are included, and the prevailing concentration levels are limited. Therefore, the need
for matrix-matched standards poses a severe limitation to the universal applicability
of LIBS for quantitative analysis. In the following chapter, the approaches reported
in the literature for quantitative assessment of prevailing metal contents in polymers
using LIBS will be discussed.

10.3.1 Univariate Approaches

A conventional approach of using matrix-matched standards combined with LIBS
analysis to determine Sb in plastics from e-waste is reported by Aquino et al. [74]. Sb
can be found in polymers due to Sb2O3 being used as a flame retardant. Due to its
toxicity, monitoring of Sb levels of polymers is crucial for recycling strategies since
heavy metal levels usually must be below a certain threshold in the recycled product.
In this work, the authors prepare matrix-matched standards by spiking acrylonitrile–
butadiene–styrene (ABS) and polycarbonate (PC) with different levels of Sb. The
authors used the carbon signal as an internal standard to provide the best result for
the calibration curve. Several different sample types were analyzed and quantified
with the prepared calibration curve with reported recoveries in the range of 63–83%.
Even though recoveries are not comparable to an analysis consisting of digestion
followed by ICP-MS/OES analysis, this work demonstrates the ease of use of LIBS
as a direct solid sampling technique providing sufficient sensitivity for the fast
analysis of polymer e-waste. Another work dealing with Sb quantification in
polymers using LIBS was published by Lazic et al. [75]. The authors investigated
a wide range of polymer samples where Sb concentration was determined a priori
using XRF. After careful optimization of measurement parameters and normaliza-
tion to the C signal, a correlation between the Sb signal and Sb content was observed
for all investigated polymer samples. Similarly, in the work of Fink et al. [76], the
concentration of 8 metals was analyzed in conventional thermoplastic polymers.
Reference contents were determined using XRF. Again, the authors demonstrated a
correlation between the metal content and the corresponding signal after normaliza-
tion to the C signal. Besides other reasons, the relatively high uncertainties observed
were attributed to matrix effects occurring when analyzing different polymer types,
which are not fully compensated by normalization. A similar work was carried out
by the same group quantifying Br in thermoplastic polymers [77]. A work where a
certified reference material was used to build univariate calibration curves for S and
Zn from LIBS data was published by Jasik et al. [78]. The authors prepared standards
with contents of the elements of interest by mixing two reference materials in
different ratios and pressing the obtained granulate mixtures into pellets. Satisfying
quality calibration curves with LODs of 50 μg/g for S and 215 μg/g for Zn were
obtained.
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Bonta et al. presented a somewhat flexible approach for preparing polymer
standards applicable for quantitative LIBS analysis [79]. In this work, standards of
3 different polymer types (PI, PVP, and PMMA) were prepared containing different
levels of Co, In, and Pt in the low μg/g range and Na, Sr in the high μg/g range. For
this purpose, polymer powders were dissolved in an appropriate solvent, and the
obtained solutions were spiked with the elements of interest. Thin films were
produced using spiked polymer solutions via spin-coating on high purity Si-Wafer.
These in-house prepared standards were thoroughly characterized, and imaging
experiments confirmed their homogeneity. This approach of standards preparation
is rather flexible and versatile and may easily be extended to other polymer types and
analytes of interest.

The need for matrix-matched standards poses a significant limitation when it
comes to analyzing polymers. Since polymers come in a wide range of different
types with additives highly influencing the material’s properties, matrix effects
encountered in different polymer samples differ significantly [72]. Therefore, to
assure reliable quantitative measurements, matrix-matched standards are required for
each polymer type/additive combination [71]. For many analytical questions, infor-
mation about the exact composition of the polymer under investigation is not
available, and therefore, the conventional approach of applying matrix-matched
standards for quantification is not feasible. This limitation can be found, e.g.,
when analyzing metal content in microplastics or dealing with complex high-
performance polymers found in different industries. In the case of microplastics, it
is evident that the polymer type and additives present in a single particle are usually
not known. Additionally, aging of the polymer may also significantly change matrix-
effects occurring during analysis, hindering the application of matrix-matched
standards. High-performance polymer samples used, e.g., in the semiconductor
industry, usually consist of a wide range of different additives required to fulfill
the demanding specifications of the industry. In this case, the exact composition of
applied polymers is usually considered a trade secret.

In the field of LIBS, several other approaches have been recently investigated to
obtain quantitative results without employing matrix-matched standards such as
Calibration Free LIBS (CF-LIBS) [80], or multivariate approaches discussed in the
following chapter.

10.3.2 Multivariate Approaches

Recently, the LIBS community has experienced a growing interest in using multi-
variate data evaluation approaches and machine learning for quantitative analysis. In
this case, not only the signal from the analyte of interest is used to build a linear
calibration model for quantification, but additional information available in the LIBS
spectrum is used to obtain more precise and accurate calibration models [81–
83]. This approach has also found its way into the field of quantitative metal analysis
in polymers using LIBS, significantly improving the performance and enabling the
analysis of polymers with an unknown matrix.
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The central concept of this multivariate approach is the combination of polymer-
specific LIBS signals, which can be used to distinguish between different polymer
types, with the signals of the analyte of interest to build a model allowing reliable
quantification in different polymer types. Follow-up work by Fink et al.
demonstrates the applicability of this approach [84]. The metal content of different
thermoplastic polymer samples was first determined using XRF analysis and then
analyzed using LIBS. The authors compared different data evaluation strategies
applied to their dataset, including a simple correlation of the analyte signal with
the metal content and a correlation of the normalized analyte signal with the metal
content. Additionally, a PLS model was applied to the dataset, and a test sample set
was evaluated to confirm the performance.

Bonta et al. investigated a similar approach, using data of standards of three
different polymer types [79]. A tandem LA-ICP-MS/LIBS setup is employed as the
sensitivity can be significantly enhanced by ICP-MS detection of certain elements of
interest while polymer-specific signals and elements easily detected by LIBS are
recorded simultaneously. To investigate the performance of multivariate calibration
approaches, conventionally, a dataset is split into a training and a testing dataset
requiring a larger number of standards. This was also considered by preparing
15 standards for each polymer type. In the data evaluation procedure, in a first
step, the capability of LIBS to distinguish between the three polymer types under
investigation using PCA was shown. Next, the LIBS dataset containing information
about the polymer type and the analytes of interest detected in LIBS is combined
with the ICP-MS data. Using half of the obtained data as a training dataset, a PCR
model is built to estimate the analyte concentration of interest in the three different
polymer types. Evaluating the second half of the dataset considered a test dataset, the
performance of the obtained PCR model can be evaluated. The results show excel-
lent performance with an average deviation of only 4.4% of the nominal concentra-
tion within the test data. Therefore, the presented approach enables reliable
quantitative analysis within this set of three investigated polymers. In the outlook,
the authors suppose that increasing the number of polymer types within this multi-
variate model may result in a calibration model that is universally appliable for
quantitative analysis of polymers in general, eliminating the need for matrix-
matched standards.

The outlook of the previously described work was investigated by Brunnbauer
et al. [85]. Here, the main goal of the work was to explicitly investigate the
capabilities of LIBS for quantitative metal analysis in unknown polymer types or
polymer types with an unknown composition where conventional matrix-matched
quantification is inherently not possible. Therefore, the authors built a library
consisting of standards of 8 different polymer types (Acrylic, PAN, PI, PMMA,
PSU, PVA, PVC, and PVP) containing K in the low μg/g range similarly to what was
described by Bonta et al. [79]. In a first step, the authors demonstrate that each set of
standards of a polymer type can be used to build a conventional univariate calibra-
tion model to quantify this specific polymer type. Again, the slopes of the individual
calibration functions were quite different, indicating severe differences in the abla-
tion rate and excitation efficiencies of the investigated polymers. A relative error of



7–17% is reported using conventional matrix-matched quantification. The variation
of the slopes of the calibration curve of each polymer type cannot easily be
compensated by different normalization approaches (e.g., normalization to the C
signal, normalization to the ablation rate, or normalization to the C content).
Therefore, when performing nonmatrix matched quantification, meaning the metal
content of a polymer type is calculated using the calibration function of a different
polymer type, may result in relative errors up to 2105% (e.g., when evaluating PVC
using PI standards). Nevertheless, for some combinations, reliable quantitative
analysis is possible using non-matrix-matched quantification (e.g., evaluating PVA
using PMMA standards results in a relative error of 11%). This means, in theory,
reliable quantitative analysis of polymers is possible using non-matrix-matched
quantification. However, suppose the polymer type or the exact composition of the
sample is not known. In that case, the expected error cannot be estimated as the
selected calibration function used for non-matrix-matched quantification may be
compatible with the sample under investigation or not. To quantify metal content in
an unknown polymer sample, the authors proposed using a LIBS-based Partial Least
Squares (PLS) model including polymer-specific LIBS signals. Therefore, 8 different
PLS models were built, each excluding one of the polymer types which was
considered unknown. In a next step, the unknown polymer type is evaluated by
the corresponding PLS model. Here, relative errors in the range of 16–90% are
obtained when quantifying unknown polymer types providing a universal perfor-
mance for all investigated polymers. Therefore, the general applicability of this
approach for the quantification of metal content in unknown polymer types is
concluded. The authors also conclude that the presented approach does not provide
the accuracy which could be achieved with matrix-matched quantification, but the
PLS model can be employed when dealing with unknown samples where matrix-
matched quantification is not feasible. Additionally, highly accurate analysis is often
not required, e.g., when determining if the metal content is above a specific threshold
value, which is often sufficient for many industrial applications.
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10.4 Innovative Characterization of Polymers and Organic
Materials

Besides the most common application of LIBS for polymer characterization, such as
classification and quantitative metal analysis in polymers, several other innovative
applications have been presented in the literature where LIBS is used for the analysis
of polymers and other organic materials.

10.4.1 Imaging Applications

LIBS is a promising and upcoming technique for (elemental) imaging and has found
its way into many applications ranging from bioimaging, materials science to
geology [86, 87]. Conventional elemental imaging is also possible with other



techniques such as LA-ICP-MS or μ-XRF, but LIBS also offers molecular informa-
tion which has also been applied to polymer samples. Here the unique capability of
LIBS enabling discrimination of different polymer types discussed in the previous
chapter was used to obtain spatially resolved distributions of different polymer types
within a sample.
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The work of Brunnbauer et al. [48] presented the feasibility of mapping the
distribution of different polymer types within a structured sample using single-shot
LIBS spectra for the first time. In the first step, a lateral mapping on a sample
consisting of two different polymer types was carried out. Using PCA, obtained
LIBS spectra were clustered in two groups enabling the reconstruction of the 2D
distribution of the two polymer types within the sample. Besides imaging the
polymer distribution, a sample consisting of several layers of three different polymer
types was also investigated. Here, a 3D depth profile mapping the sample layer by
layer was recorded. Again, the 3D distribution of the three polymer types was
reconstructed by clustering the obtained dataset using a multivariate data evaluation
approach (k-means clustering). Especially the second application of investigating
layered polymer samples shows the advantages of LIBS since this is not easily
possible with any other technique.

A second imaging application of LIBS investigating the lateral distribution of
polymers was published by Pagnin et al. [55]. This work focused on the classifica-
tion of modern art materials consisting of mixtures of inorganic pigments and
polymeric binder materials. Investigating contemporary art materials is of great
interest in cultural heritage science as a tool to adapt adequate restoration measures,
authentication studies, and uncover fraud. Enabling simultaneous detection of the
inorganic elemental fingerprint from the pigments and polymer-specific signals from
the organic binder, LIBS is a promising technique for analyzing these materials. In
this work, the authors present a multivariate classification model (RF) trained using
data of pigment/binder mixtures based on three different binders and nine inorganic
pigments. The obtained RF model allowed identifying both the inorganic pigment
and the organic binder of an unknown sample if it is within the training dataset. The
developed classification model was also applied to a structured sample of different
pigment/binder combinations. Using LIBS imaging combined with the developed
classification model, the distribution of the inorganic pigments and organic binder
within the sample were reconstructed (Fig. 10.8).

10.4.2 Degradation Studies

During their lifetime, polymers are often exposed to harsh environmental conditions
such as high temperatures, UV radiation, or corrosive atmospheres, which may cause
degradation altering the materials’ properties. Therefore, to assure the functionality
of the polymer under these conditions, investigation of degradation behavior is of
significant interest both for industrial applications but also for environmental sci-
ence. Nevertheless, conventional techniques used for this type of characterization are
limited to the sample surface or the bulk of the material. Enabling detection of



polymer-specific signals and oxygen (potentially indicating oxidation of the sample)
as well as imaging and depth profiling, LIBS is a promising technique for degrada-
tion studies of polymers.
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Fig. 10.8 Microscopic image of a sample that consists of different mixtures of inorganic pigments
(a) and organic binders (c) and the results from a laterally resolved LIBS classification of the
corresponding pigments (b) and binders (d) [71]

One of the first works investigating changes in LIBS signals of organic molecules
after chemical aging was published by Farhadian et al. [88]. In this work, the authors
observed degradation of composite propellants containing polyurethane as a binder
using LIBS after aging times of 60, 120, and 180 days at elevated temperatures. A
significant decrease of the CN violet band with increasing aging time was observed
in recorded LIBS spectra. Additionally, the C2/CN, C/H, and O/H ratios showed
trends over the aging time. The presented results demonstrated the feasibility of
investigating the degradation of organic materials using LIBS.

A work investigating the degradation of polyacrylate exposed to the soil using
LIBS was published by Liang et al. [89]. Polyacrylate is commonly used in the
agricultural field as controlled-release coated fertilizers and is known to be biode-
gradable. To investigate the degradation mechanisms of this material, polyacrylate
samples were buried in soil for up to 12 months and subsequently analyzed using
several analytical techniques, including LIBS. LIBS allows the detection of changes
in polymer-specific signals, and the uptake of inorganic species from the surround-
ings can be measured. In this case, systematic changes in the signal intensities of



nutrient elements (N, P, K), mineral elements (Ca, Mg, Al, Si), and primary
constituents of polyacrylate (C, H, O) were observed. Using PCA, a clear distinction
of samples aged for different times was possible.
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Fig. 10.9 Depth profile measurements of polymer degradation indicated by a change of the C2 and
O signal [23]

In a work published by Brunnbauer et al. [90], the advantage of LIBS depth
profiling was used for the first time to the monitoring of the degradation of polymers.
In a first step, LIBS measurements on the surface of a time series of UV-aged
polymer samples from the field of cultural heritage science were compared to
FT-IR analysis, and the signal of the C2 swan band was identified as a marker for
degradation. In contrast to FT-IR, sample analysis with LIBS is not limited to the
surface only but also allows the measurement of depth profiles. Thus, in the
mentioned work, the authors analyzed depth profiles to investigate the degree of
degradation as a function of depth. Therefore, variations in the intensity of the C2

Swan band were used as an indicator for degradation. These measurements showed
that the sample is degraded on the surface and down to a depth of 20 μm. Addition-
ally, an increase of the oxygen signal was observed in the LIBS spectra indicating
oxidation of the polymer sample. In a second application, degradation of a polymer
thin film was characterized using a tandem LA-ICP-MS/LIBS system. The polymer
film was aged using UV irradiation and subsequently exposed to artificial seawater
containing a trace amount of Cd. By the simultaneous recording of LIBS and
ICP-MS data, both degradation of the polymer film and changes of the uptake
behavior of heavy metals was observed. This work clearly demonstrates the unique
advantages LIBS has to offer for the characterization of polymer degradation
(Fig. 10.9).

10.4.3 Investigating the Molecular Structure of Organic Compounds

Besides the classification of polymer samples, which is a topic gaining more and
more attention in the LIBS community, several groups have dedicated research to
investigate if information about the molecular structure of an organic compound can
be deduced from LIBS spectra. To this end, systematic analysis of organic



compounds containing different numbers of aromatic rings, C-C, or C¼C bonds can
be carried out. Locke et al. [91] published the first work regarding this topic in 1990.
In their work, the authors carried out LIBS experiments in combination with gas
chromatography, suggesting a “laser microplasma gas chromatography detector
(LM-GCD).” Different organic species were investigated, including CH3CH2CH3,
CH4, CH3OH, CO, CO2, C6H6, and various halogenated organic compounds.
Analyzing the LIBS spectra of these compounds, the authors found a significant
increase in the C2 signal for C6H6 compared to the other molecules, indicating that
C¼C bonds or aromatic rings in the molecule lead to an intense C2 signal in the
laser-induced plasma. St-Onge et al. [92] carried out a work confirming this finding.
Here, the authors investigated seven organic molecules containing different amounts
of aromatic rings. The results confirmed an apparent increase of the C2 emission with
the number of aromatic rings present in the sample (Fig. 10.10).
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Fig. 10.10 Chemical structures of different analyzed compounds (left) and the corresponding C2

signal observed in LIBS spectra (right) indicating a correlation to the number of aromatic rings [92]

Mousavi et al. [19] increased the number of organic compounds under investiga-
tion to 13 in order to systematically investigate the correlation of the C2 LIBS signal
with the number of aromatic rings and the percentage of C-C and C¼C bonds
present. Again, a clear relationship was found, indicating that fragmentation of the
molecule is the primary source of C2 in the laser-induced plasma.

Besides investigating the influence of the molecular structure of small molecules
on LIBS spectra, the works of Grégoire et al. are focused on polymers. Again similar
findings compared to small molecules were reported indicating higher C2 intensities
for polymers containing aromatic rings [61]. Besides simply comparing signal
intensities with the structural elements of polymers, a more sophisticated approach
including plasma imaging was also carried out [93]. Here the spatial distribution of
excited species of CN, C2, and N in the laser-induced plasma of different polymer
types was investigated, demonstrating a significant difference.
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10.5 Summary and Future Perspectives

In the last decades, the comprehensive chemical characterization of polymers has
become mandatory in many research fields and industrial applications. Although
several well-established analytical techniques exist for this task, the use of LIBS is
continuously gaining more attention. The main features which make this technique
so attractive are the ease of use, no need for sample preparation, and speed of
analysis. With some constraints, these advantages are also accessible with FT-IR,
TGA/DTA, or MALDI-TOF-MS, however, LIBS offers the unique benefit to collect
both molecular and elemental information simultaneously.

In the case of polymer identification, usually only molecular emissions (C2 swan
band and CN violet band) and the signals obtained for the elements C, H, and O were
used, but LIBS also provides access to elements such as F, Cl, N, S, and P, which
could be used to further improve the quality of applied classification procedures. To
fully exploit this advantage of LIBS, the measurement of broadband spectra cover-
ing the wavelength range necessary for the detection of the most important elements
(approximately 200–800 nm) is required. Although much progress has been made
in polymer classification in recent years, considering the remarkable developments
in the applied chemometric approaches, further improvements could be anticipated
in the near future. For example, automatic peak detection combined with multivari-
ate evaluation methods may enable fast and superior data evaluation strategies taking
advantage of the information present in broadband LIBS spectra.

Besides polymer classification, the quantitative determination of prevailing
additives or contaminations has become essential in the last years. For this task,
the multi-element capabilities of LIBS are of utmost importance. Usually, for alkali
and earth alkali elements detection limits in the lower μg/g range could be achieved.
However, the reduced sensitivity for the measurement of non-metals impedes
challenging applications. Common solutions to overcome this limitation are the
accumulation of multiple LIBS spectra or the use of more sensitive detectors, as
both approaches result in LIBS measurements with significantly improved detection
limits.

However, as for most solid sampling techniques, the sample matrix hampers
reliable quantification without the use of matrix-matched standards. Since LIBS
provides not only information about the main constituents of the polymer but also
characteristic molecular features from the organic material under investigation, the
polymer-specific signals could be used in combination with statistical methods to
circumvent the need for matrix-matched standards. The first pioneering studies
demonstrated the applicability of this approach for the analysis of trace elements
in bulk polymer samples. In the future, this may give rise to the possibility of
analyzing polymers in a matrix-independent manner, enabling fast analysis of
additives or contaminations in high-performance polymers as well as the detection
of valuable or toxic elements in polymer waste or recycling materials.

In contrast to TGA/DTA, which provide bulk information only, and FT-IR/
MALDI-TOF-MS, which are limited to the analysis of the sample surface, LIBS
enables laterally resolved investigations as well as the measurement of depth



profiles. Thus, information about the distribution of major, minor, and trace
constituents within the polymer sample becomes available, offering the investigation
of research tasks not accessible with traditional techniques for polymer analysis. For
example, the capabilities of LIBS for polymer classification could be expanded to
structured or layered samples. Moreover, the ability to measure depth profiles is a
precondition for in-depth studies in polymer corrosion. The effect of UV radiation,
humidity, or corrosive environment on the polymer surface could be monitored with
several analytical techniques. However, information about changes in the material
below the sample surface is only accessible with LIBS. This unique feature of LIBS
could be used to support the development of polymers with improved properties but
also to monitor the degradation of polymers in the environment.
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Although especially the latter application examples must be considered as feasi-
bility studies, the ongoing developments in LIBS instrumentation and the amazingly
fast evolution of statistical methods and chemometric approaches will boost work in
this research field. Thus, it could be expected that LIBS will become a standard
method for polymer analysis, not only for applications where more established
techniques fail (e.g., depth profiling) but also for more conventional tasks such as
polymer classification or discrimination as well as polymer authentication or
adulteration.
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Plasma formation by focused high-power, short laser pulses on matter at atmospheric
pressure is always accompanied by a characteristic snapping sound. The fraction of
incoming energy absorbed by the material contributes to processes like heating and
melting that lead to the formation of inertially-confined, high-pressure plasma and
vapors. Vibrations propagating into the sample generated by the pressure and
inherent recoil reaction of induced stress waves (e.g., shock waves) together with
the supersonic expansion of the front edge of the plasma into the ambient gas allow
the back-and-forth vibration of close atmospheric particles resulting in sound.
Precedents on laser-generated acoustic transients are not numerous in literature
specially when compared to other laser-produced phenomena. However, its
promising uses make it an interesting area to explore. This chapter reviews the
combined use of optical emission and the sound waves generated by laser-induced
plasma formation to support the identification of the sample. The first section of the
chapter deals with the fundamentals of laser-induced acoustic signals. The next
section is devoted to the discussion of how the experimental variables affect
acoustics as a source of sample information. Among the discussed variability
sources are the excitation parameters, the morphological and the physico-chemical
properties of the target as well as the buffer gas under which these optical and
acoustic transients develop. A discussion on the synergy of combined optical and
acoustic spectroscopies through data fusion strategies toward analytical specificity
follows. Finally, the conclusions outline the most relevant achievements so far and
future needs focusing mainly on the use of laser-induced acoustics for the in-situ
laser-based geochemistry exploration of solar system planets, one of its most
interesting applications.
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11.1 Laser-Induced Acoustics: Sparking the Interest

Among the most characteristic traits of laser-induced plasmas is the sparking sound
that accompanies the optical emission. Interestingly, the produced sound gets louder
as the energy of the laser pulse used to generate the plasma increases, thus hinting a
correlation between both phenomena at a very primitive level. This fact has, in
consequence, drawn the attention of researchers toward pursuing the use of the laser-
induced acoustic signal as a pathway to expand the analytical information provided
by LIBS. The first references to acoustic recordings associated with laser-induced
plasmas date back to the 1960s. Young et al. [1], in 1963, measured the acoustic
energy generated by sudden plasma formation (the audible noise noted to resemble
that of a cap pistol) and found it to be only 3 � 10�7 J–6 � 10�7 J. Meanwhile,
Ujihara et al, in 1969, found that a sonic wave pulse was generated because of the
stopped expansion of the emerging laser-produced vapors by the resistance of the
surrounding air. In this case, the energy of these sonic waves was estimated to be of
the order of 10�2 J. The substantially higher values may be explained on the basis of
the different excitation conditions used by Ujihara et al. [2] compared to Young et al.
[1], 7 MW–100 ns vs. 5 MW–30 ns, and the material originating the sparks, brass
and graphite electrodes vs air.

An early example of the integration of laser-induced acoustics detection into an
optical spectroscopy setting can be found in the work authored by Chen and Yeung
in 1988 [3]. Therein, the magnitude of the acoustic wave was found to be linearly
related to the emission intensities of both major and minor elements in the sample of
the collected spectra and was, therefore, successfully applied as a mean to correct
pulse-to-pulse variations, as will be commented later. The use of acoustics as an
internal standard for normalizing the signal from LIBS events is one of the earliest
applications suggested and one that still attracts attention nowadays. Sometime later,
in 1997, Mesaros et al. used acoustics to identify phase transitions induced by the
incoming laser pulsed in metal samples [4]. Upon melting, the acoustic signal
produced by the steel targets employed in their experiments exhibited traceable
changes when the energy threshold for phase transformations was reached. A
piezoelectric transducer connected to a digital oscilloscope was used as the acoustic
detector in the described study, with these devices being the most commonly used
detectors for laser-induced acoustics second only to microphones. In the same year,
Stauter et al. demonstrated that acoustic detectors can be calibrated in order to
translate the intensity of the recorded signal in the time domain to control the
ablation rate on ceramics [5]. In 2003 and 2004, researchers of the laser lab at the
University of Málaga published two papers aiming to extract sample composition-
dependent features within the laser-produced acoustic waves as well as to justify the
observed particularities on the basis of the plasma evolution in time [6, 7].

These pioneering documents evidenced that the inspection of laser-produced
shockwaves recordings in both, the time and the frequency domains, could yield
information related to the physical properties of the samples (hardness, density,
aggregation phase, porosity, etc.) and guidance on its interaction with the laser pulse.
Some results even suggested that information on the sample chemical composition



may also be gathered, as specific frequencies seemed to be tied to particular
elements. At the same time, due to the convoluted nature of this signal and how
prone it was to being modified by interactions with the environment, unraveling the
target-related contribution proved to be a daunting task. Modeling has been used to
describe the laser-induced shockwave from a theoretical point of view in order to
provide a stronger background capable of supporting conclusions reached from the
inspection of plasma acoustic recordings and to open new pathways for their
application [8]. Still, the full exploitation of the information carried by the laser-
produced acoustic wave is far from being accomplished.
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Throughout the present chapter, the fundamentals ruling the phenomenon of
laser-induced acoustics will be presented. The most frequently used instrumental
configurations for capturing the audios and data processing schemes will be
reviewed and recently published bibliography will be referenced to discuss the
reasons for the rekindled interest that the topic has experienced during the latter
half of the 2010s and its prospective development and future during the 2020s.

11.2 Fundamentals of the Laser-Produced Acoustic Wave

Basic definitions and other aspects related to the physics of laser-induced sound are
presented to provide the necessary background about the topics covered in this
chapter.

11.2.1 Inception and Evolution of the Wave: From Shockwave
to Acoustic Wave

The high energy density of the laser pulse reaching the sample in LIBS studies
introduces a strong disturbance in the irradiated area and its close surroundings. In
order for the system to respond to the abrupt change in its equilibrium parameters,
the energy input is violently shaken off by a number of processes including the
formation of a shockwave that precedes the laser-induced plasma expansion in both
time and space. In this subsection, we will focus on plasma expansion into a gaseous
medium as it is the most common working scenario for both LIBS and laser-induced
acoustics experiments.

Supersonic propagation rates along the medium characterize the early lifespan of
the shockwave. Therefore, during the initial stages, the shockwave may be treated as
a blast wave akin to those mathematically described by the Taylor–Sedov–Von
Neuman model where the energy of the pressure wave can be extracted from the
dimensionless expression:

ζ ¼ x
ρ0
E t2

� �1=5



where x is the distance measured from the place at which the explosion took place, at
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time t with total energy E and instantly expanded into an undisturbed gas with
density ρ0. The spatial coordinates of the expression are significantly simplified by
assuming a spherical wavefront. Moreover, it is suitable for describing a shockwave
coming from an event (blast) such as a laser-produced plasma, in which high energy
density is released within a short time frame. The energy contained within the wave
is the primary entity to be linked to the traits of the inspected sample.

After some time, usually in the nanosecond range, the wavefront loses its
supersonic properties and its speed becomes gradually closer to that of the speed
of sound (c¼ 343 ms�1 in Earth atmosphere, in non-humid air at 293 K, at sea level,
static conditions). In consequence, the physical treatment of the wave changes as it
no longer expands into an undisturbed medium. Rather, the acoustic wave now
relocates in space guided by pressure gradients (Δp) at a speed matching that of the
sound in the given medium. Provided that the wavefront can keep inducing at least a
small Δp, the wave will keep traveling until its eventual complete absorption
(Fig. 11.1). Given the dependency of the expansion on Δp, it is intuitive to relate
it to the density and physical traits of the gaseous phase, which plays a key role in the
final collected signal. For gases adhering to ideal behavior the speed of sound can be
calculated as:

c ¼
ffiffiffiffiffiffiffiffiffi
γRT
M

r

where γ is the adiabatic index (the specific heat ratio), R is the universal gas constant,
T is the temperature of the medium and M is the molecular mass of the medium. As
the wave traverses the path separating the target from the receiver in which it is
recorded, it interacts with the molecules composing the medium being transmitted
through it as a vibration. For example, expansions taking place in low-pressure
media are bound to yield signals of reduced intensity owing to energy absorption,
which may be biased toward a certain frequency range depending on the medium.
Upon reaching the receptor, the acoustic wave induces a response proportional to its
remaining energy, thus allowing experimentally measuring E as it is translated at the
detector.

11.2.2 Parameters Conditioning the Collected Acoustic Wave

The laser-induced acoustic response of materials can be considered fragile due to the
many different sources of uncertainty that may potentially alter the signal reaching
the detector. The influence of parameters ranging from laser excitation-related to
sample inherent traits and environmental influence is described below based on
literature.
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Fig. 11.1 Schematic representation of the generation of a laser-induced plasma acoustic wave

11.2.2.1 Excitation Settings

11.2.2.1.1 Pulse Energy
A straightforward correlation between the pulse energy and, in consequence, the
energy density on the sample surface and the collected acoustic signal can be traced.
As a rule of thumb, the higher the used irradiance, the louder the recorded sound.



Due to the principles governing the explosive process of plasma formation, the
release of the energy excess by the sample leads to a shockwave featuring higher
acoustic energy. In the paper by Conesa et al. [7], the direct correlation existing
between irradiance and the acoustic energy of the wave was highlighted by the
systematic study performed therein. Irradiances from 2.6 GW cm�2 up to 12.2 GW
cm�2 were used to test the response of aluminum samples. The ascending trend
featured a change of slope at an irradiance of ca. 4.8 GW cm�2 with simultaneously
acquired plasma images suggesting that the inflection point was directly linked to a
change in the plasma expansion dynamics (Fig. 11.2a). Moreover, the work
presented the inference of the excitation energy upon the frequency spectrum, as
different components arose at higher energies. In line with the conclusions drawn in
the paper, and as will be further discussed below, upon inspection in the time
domain, recorded acoustic amplitudes also exhibit increasing values with irradiance.
Acoustic amplitudes are a common value used in laser-induced acoustics to quantify
the acoustic response of a material to the excitation laser pulse. Amplitudes are
measured as the absolute value resulting from the intensities of the first maximum
and minimum peaks observed for the acoustic wave as it evolves in time. It is worth
noting that, for a same material, no qualitative differences are usually observed in the
first maximum-minimum region as a function of pulse energy, yet, after this time
window, new components tend to arise. As new interactions occur due to changes in
the plasma dynamics with increasing energy, new interferences formed along the
acoustic pathway acquire greater relevance along with echoes, while intensities for
already existing interferences become enhanced.
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11.2.2.1.2 Wavelength
While the acoustic response in the time domain has been reported as a steady signal
with little dependence on the wavelength used for sample irradiation [9], in some
instances it can greatly modify the amplitude of the emission. For samples featuring

Fig. 11.2 (a) (left) Acoustic energy produced by a laser-induced plasma ignited on an Al sample
versus laser irradiance at sample surface. (right) Plasma shape evolution as a function of the
irradiance value (acquired at a delay of 260 ns from plasma onset). Adapted from [7]. (b) Acoustic
spectra (in the time and frequency domains) for the ns/ps laser-induced breakdown at 24 mJ laser
energy [12]



localized surface plasmon resonance (LSPR), increased acoustic energy was
recorded when excitation was performed with λ in resonance with that of the surface
plasmon [10]. While these recent results have been only demonstrated to the best of
our knowledge, at a theoretical level they are of great relevance to the field of laser-
induced acoustic probing as they pave the path toward the use of photoacoustic to
measure LSPR values as well as for nanomaterial sizing.
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11.2.2.1.3 Pulse Duration
The correlation between the length of the laser pulse used for excitation (τ) and the
magnitude of the pressure wave induced was explored by Jansen et al. for tissue
phantoms (gels of polyacrylamide (PAA) with various water concentrations to
simulate different tissue strengths) covering a Young’s modulus range between
0.031 � 106 Nm�2 and 0.866 � 106 Nm�2 [11]. Samples were tested both in
water and in gel phases with pictures of the bubble forming at the tip of the optical
fiber delivering the laser pulse being acquired from bubble inception until decay
while pressure was registered via a piezoelectric stage coupled to an oscilloscope. A
wide τ window from 500 ns to 1100 μs was explored concluding that longer pulses
lead to a collapse in the pressure value of the wave. This may be expected as the
elongation of the lapse within which the system is perturbed implies that its
subsequent release will be performed under circumstances different to those favoring
blast wave formation. It is worth mentioning that the work highlighted the extent to
which the medium can damp the acoustic signal as pressure was found to decrease
severely for samples inspected in 84% gel medium when compared to those exam-
ined in water.

A more recent work authored by Manikanta et al. explored the effect of shorter
laser pulses (30 ps and 7 ns) in the frequencies collected from the breakdown of air
[12]. Reported results indicated that the peak frequencies of both ns and ps acoustic
pulses are distinct, indicating the distinct plasma formation mechanisms (Fig. 11.2b).
A higher efficiency in the conversion of optical into acoustic energy for ns pulses as
frequencies between ca. 10 kHz and 160 kHz were detected in the spectra. Con-
trarily, ps excitation yielded responses only in the shorter range comprised between
60 kHz and 140 kHz. Moreover, intensity maxima in the frequency domain were
shifted toward higher values for ps excitation (34 kHz–68 kHz for ns, 94 kHz–
122 kHz for ps). This behavior was attributed to the different mechanisms governing
the sparking, expansion and decay of the plasma depending on the excitation regime.
In parallel, changes in the acoustic amplitude of the main signal owing to increasing
pulse energies were studied. Apart from the expected increase in pressure, the arrival
time of the wave at the receptor was found to shorten with higher E values, likely a
consequence of the slightly shorter path traversed by the wave as the size of the
plasma plume became larger.

11.2.2.1.4 Laser-Matter Interaction
The dependence of the acoustic response on the physical traits of the sample is well-
known by now [13]. Among studied variables, sample morphology has been found
to yield largely similar results in the time and in the frequency domains for identical



samples, aluminum cylinders of varying diameter and thickness cut from the same
alloy rod in the case presented in reference [14]. Differences in the time domain were
once again found during later stages of the wave lifespan with reflections and
interferences manifesting with a varying relevance degree and slight delays
depending on the dimensions of the Al probe. Moreover, results presented therein
highlighted the exceptional stability of the acoustic response measured as the first
max-to-min amplitude during the ablation of homogeneous samples, further stating
the capabilities of the technique to discern layers or phase changes upon laser drilling
the sample as will be commented on later.
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The value of the linear absorption coefficient (ε) at a given wavelength is one of
the main factors determining the efficiency of the laser-matter coupling. As also
reported in the work by Bosáková et. al [14], upon adding dyes with different ε to
transparent epoxy matrices, the intensity of the recorded acoustic signal changed in
agreement with ε at the used excitation wavelength of 1064 nm.

Other quantities directing the sample-matter interaction and the ablation rate, in
consequence, are the sample hardness, Young’s modulus, the material density and its
porosity, as each of them conditions the transmission of the acoustic wave and,
therefore, the magnitude of the signal collected as well as minor qualitative
components at later times in the recorded wave.

11.2.2.1.5 Sample Surroundings
The objects present in the environment of the sample can substantially modify the
final collected signal to the point of totally diluting any possible information
regarding the target it may contain. Among often overlooked reported sources of
uncertainty one may find the sample support, opto-mechanics or, even, the table on
which the experiment is being conducted. Reflections of the acoustic wave upon
interaction with external items create interference patterns that may reach the
detector and introduce misleading components. Other relevant interactions that
need to be addressed to ensure data reliability are concurrent winds during signal
acquisition [15], the presence of obstacles scatterers in the acoustic path, and the
receiver (microphone) height above ground as well as the emitter-to-receiver
(plasma-to-microphone) coordinates [14]. Although in the time domain, these
contributions are manifested in the form of very subtle differences, they are more
easily identifiable within the frequency domain owing to its higher sensitivity to
those interference patterns.

11.3 Capturing Laser-Produced Acoustics

While experiments involving laser-driven acoustics share large similarities to any
conventional LIBS set-up as far as the excitation stage is concerned, the nature of the
phenomenon to be recorded makes it necessary to complement them with additional
capturing infrastructures. Some preliminary attention must be devoted, primarily for
those readers familiar exclusively with LIBS, to recording laser-induced acoustics
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since certain aspects of the laboratory setting that may be irrelevant to the optical
spectroscopy can be of great significance to the acoustic response.
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The most critical issue to acoustic detection is the presence of potential interfering
artifacts in the path the sound waves travel from the source to the receiver. A simple
example of this is the effects from the “ground” or the surface over which sound
propagates. In general, surfaces tend to absorb energy from the incident acoustic
waves. When the sound propagates over any ground, attenuation may occur due to
acoustic energy losses by absorption and reflection mechanisms. For example, for a
given geometry represented in Fig. 11.3, the two contributions lead to pressure
minima at frequencies where they interfere destructively when the phase difference
between them, caused both by path length difference and by the phase change (ϕ)
upon reflection on the ground, is an odd number of n radians, that is, 2nþ 1ð π ¼
2π
λ r2 r1 ϕ) [15].
These losses depend on several parameters related to the surface, i.e., the geome-

try of the point sound source and the receiver, distances from the ground and
inherent ground properties (smooth/rough, porous, hard/soft . . .). Thus, the ground
or the mere existence of walls (for cases where laser excitation is performed on a
target located inside an ablation chamber) may introduce severe modifications in the
waveform owing to the interference patterns (either destructive or constructive)
sourcing from the absorbed/reflected waves and merging with the direct soundwave.
As a matter of fact, changes in the frequency domain of the acoustic spectra of some
targets have been observed simply as a consequence of switching their positions
along with the sample holder [16]. In the case of long-range sensing of laser-driven
acoustic signals, which is a case in early development stages currently performed
with the SuperCam instrument on the Perseverance rover from the M2020 NASA’s
mission in Mars, the wind speed, the variation of the atmospheric temperature,
humidity and pressure as well as thermal gradients from the ground influence the
propagation of the acoustic wave in terms of attenuation and sound speed. Therefore,
the employed set-up design must account for all these issues, either to fully nullify
the negative effects or to minimize them, at least in controllable environments such
as laboratory-scale research. An option to do so is the use of absorbing elements
(working inside anechoic chambers) or the arrangement of the components in such a

Fig. 11.3 Schematic
geometry of a point source
and a receiver near to a solid
surface



way that the propagation times of echoes and reflections differ significantly from the
propagation time of the direct wave.
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While the detectors pose the most obvious addition to the layout, we will begin
this subsection by describing elements largely absent in the references outlined in the
introduction section which have been proven crucial in recent literature [13, 14, 16–
20]. Anechoic chambers, in which samples are housed during their inspection, have
been proven as valuable assets to minimize the intrusion of reflection arising from
the interaction between the acoustic wave and the surroundings of the experiment on
the collected signal. Even though the impact of reflections can be greatly damped
depending on the processing scheme followed, these interferences hinder the full
exploitation of the acquired data as they further convolute the signal to be inspected
in the time as well as in the frequency domain. The inner walls of the anechoic
chambers are covered with acoustic absorbents, e.g., acoustic foam made from
polymers such as polyurethane, which is the main component of the often-used
HiLo-N40 foam. Acoustic absorbing panels feature wedges of different dimensions
and geometries, with these two parameters requiring ad-hoc optimization for each
experiment. The material type, the structure (flat or patterned surface) of the panel as
well as the size and shape of the absorbers, for patterned foam tiles, should be
carefully selected in order to get the largest ratio of reflected to direct sound
[21]. Moreover, the dimensions of the anechoic chamber should also be optimized
to provide an environment free of echoing or other radiated signals and reduce the
effects of these undesirable signals during the testing. To do so, studying the
frequency behavior of the anechoic chamber is mandatory (i.e., the resonances
existing in the chamber when excited by an acoustic source). Most of these funda-
mental resonances are in mid-low frequency range, in one or more of the chamber’s
dimensions and affect the free field conditions when reflection occurs. Regarding the
geometry of the anechoic chamber, the simplest to construct and the easiest for lining
of the absorbers is the rectangular-shaped chamber [22]. However, the selection of
the optimum geometric proportions of these rectangular chambers is not a trivial
matter. Several criteria can be found, such as the ones reported in [23]. Others, just
for instance, report that one of the dimension ratios for rectangular enclosures that
yield the lowest value of ψ is 1:1.2:1.4, considering the eigenfrequencies of the
enclosure up to the Schroeder frequency (a sound frequency zone that ranges from
100 to 200 Hz in which enclosure resonances dominate) and considering a surface
averaged sound absorption coefficient (α) of the decided absorber <0.6 [24].

The most commonly reported housings to provide an environment free of echoes
and reduce the effects of undesirable signals during the recordings are either full
anechoic or hemi-anechoic chambers, depending on the degree up to which their
inner walls are covered, with laser incidence being vertical [13] or horizontal [14] to
the sample depending on the optical aperture allowed by the design. The sample
holder is another important fact to consider in acoustic experiments as it may become
the first obstacle in the acoustic pathway yielding interferences as put forward in
recent works [13, 14, 19]. Some proposed suitable ways to fix the sample position
include resting it on acoustic foam [13] or covering the holder with acoustically
insulating materials such as neoprene [14].
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As stated above, microphones and piezoelectric stages are the most commonly
used devices to translate the pressure wave into an electric signal for further
processing. For microphones, omnidirectional polar pattern condenser microphones
are the preferred choice. These microphones offer a flat response for frequencies
within their working range while being unbiased to the direction from which the
sound is coming, thus avoiding the tedious calibration required by directional
microphones, which feature anisotropic response. While convenient from the exper-
imental simplicity point of view, omnidirectional detectors are sensitive to the
inclusion of many undesired reflections. Cardioid polar pattern microphones may
stand in as in-between solutions for the issue as directional calibration is not required
while the permeability to backscattered reflections is largely reduced, thus signifi-
cantly reducing the number of possible interferences entering the detector. The polar
pattern of the microphone dictates the degree of flexibility that researchers have for
placing the detector, i.e., to set the emitter-to-receiver distance and angle. This is a
key point as the acoustic response is direction-dependent in nature. Therefore, the
recorded response may substantially vary depending on both parameters. It is also of
utmost importance to ensure that the position of the receptor does not allow for
wave-receptor interference formation and recording. Microphones are then
connected to an audio interface, allowing the control of the sampling rates condi-
tioning the number of points contained in the file, and adequate software such as
Audacity for data storage in computers. On the other hand, piezo stages also act as
sample holders as direct, intimate contact is required to convert the device vibration
into an impulse signal at the oscilloscope to which they are frequently coupled. At
the expense of more complicated tracking of the signal origin (e.g., direct sample
vibration or a composed interference), piezo stages allow for higher sampling rates
and improved resolution of the resulting waveform as well as a larger detectable
frequency range, usually up to 200 kHz whereas microphones commonly have an
upper limit of ca. 20 kHz. Furthermore, other experimental approaches have been
reported to obtain the acoustic signal, such as using the plasma speckle patter via the
optical recording of the plasmas and its conversion to acoustic patterns [25].

On a final note, attention should also be directed into minimizing the possible
interaction between the sound wave and any element present along the acoustic
pathway, especially for experiments involving long sample-to-microphone
distances. Isolating the full pathway with absorbers may be of worth for in-lab
experiments dealing with fundamental aspects of laser-induced acoustics in order
to decrease the vulnerability of the detector to reflected waves that may originate
from a number of interactions such as the acoustic wave scattering the surface of an
optomechanical component.

Examples of set-ups reported in literature using microphones and piezoelectrics
as detectors are provided in Fig. 11.4.
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Fig. 11.4 Example instrumental configurations proposed in literature for capturing laser-induced
plasma acoustics on different samples. (a) Set-up used by Conesa et al. [7] for simultaneous
collection of the optical and acoustic emission of plasmas created on solids. No anechoic chambers
were used in the configuration. (b) Set-up by Hosoya et al. with both, targets and a closely placed
microphone detector located within a hemi-anechoic chamber. The set-up is described in reference
[18]. (c) Configuration using a piezoelectric transducer, a fast photodiode and a power meter
synchronized by an oscilloscope to capture laser-produced plasma acoustics by Mesaros et al. in
reference [4]. (d)Piezo-based acoustics detection system by Kacaras et al. in reference [36]. (e)
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Fig. 11.4 (continued) Standoff configuration with samples and microphone encased in a hemi-
anechoic chamber with perpendicular laser excitation by Álvarez-Llamas et al. in reference [19]. (f)
Set-up by Chide et al. in reference [13]. Sample rested on an insulating foam support housed within
an anechoic box. Laser incidence was vertical
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11.4 Acoustic Data Processing

The acoustic response recorded corresponds to the wave generated by the pressure
variations caused from the pushing of the surrounding atmosphere molecules by the
ablated sample fragments. This massless sound source is typically a short-duration
impulsive signal that can be represented in both the time and the frequency domains.

For the time-domain, the digitalized recording measures the sound pressure level
multiple times per second in measurements often called samples, also defined as
sampling rate. A common sampling rate is 96,000 samples per second. Then, the
samples can be plot on a graph, with the Y-axis representing the sound pressure
level, with positive values representing the sound pressure level being above the
ambient atmospheric pressure and negative values representing the sound pressure
level being below the ambient atmospheric pressure, and the X-axis being the time.
From this signal, some magnitudes such as the shockwave peak-to-peak amplitude,
in the case of the typical impulsive response in laser-induced acoustics, the instanta-
neous power and the energy of the signal can be extracted [26]. The peak-to-peak
amplitude of the waveform usually refers to the maximum positive or negative
deviation of a waveform from its zero-reference level. The power of the signal,
while is referred to an instantaneous value, is normally denoted as its mean square
value, calculated by averaging the obtained instantaneous values over a given time,
P(x) ¼ x2(t). However, since power is only significant for stationary or slowly
varying signals, for the transient events we focus on, such as vibration shocks or
acoustic pulses, the fundamental quantity to be considered is the energy, that is, the
accumulation of the power over a time, E x2(t)dt [26, 27].

For frequencies, the spectral analysis of the audio signal is the process that places
it in the mentioned domain to observe how much of the signal lies within each given
frequency band over a range of frequencies. The essential connection between the
time and frequency domains is a pair of mathematical operators called transforms.
Perhaps the most representative operator is the Fourier transform, which converts a
time function into a sum or integral of sine waves of different frequencies, each
representing a frequency component. “Fourier transform” term refers to the fre-
quency domain representation and the mathematical operation. Fourier transform is a
widely applied operator in many techniques and fields, therefore, fully detailing and
describing the operator is beyond the scope of this chapter. For this reason, only
some concepts that may be of use in processing the data obtained by laser-driven
acoustics will be briefly mentioned.

In the frequency domain, the energy of the signal can also be represented in terms
of frequency ( f ), E ¼ R

x2(t)dt ¼ R
|X( f )|2df; being thus calculated through either

x(t) or X( f ), being X( f ) the Fourier transform for x(t). The magnitude squared,
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|X( f )|2, called the energy spectral density (ESD), is always an even, non-negative,
real-value function of frequency that represents the distribution of the energy of the
signal in the frequency domain. Once defined, the spectral energy density more
commonly used is the power spectral density (PSD or simply power spectrum),
which refers to the spectral energy distribution found per time unit [26]. The PSD is
typically expressed in terms of squared signal units per frequency units (e.g.,
Pa2Hz�1) as the power (W ) is proportional to the square of the signal.

Resulting from the nature of the acoustic signal, its processing is based on
computing the discrete Fourier transform (DFT), that is, to work with information
that is discrete and finite in length. However, the fast Fourier transform (FFT)
algorithm which enables the speeding up of conversions made by DFT and helps
in reducing the complexities of computing replaces it frequently. Furthermore, while
DFT is a mere mathematical algorithm that transforms time-domain signals to
frequency domain components, FFT algorithm consists of several computation
techniques including DFT. Finally, as a result, FFT returns a two-sided spectrum
in complex form (real and imaginary parts), which must be treated to get the
magnitude and phase.

During the FFT signal processing, some aspects must be considered, like the
aliasing of the signal, the use of filters and the application of windows function.
Aliasing occurs between frequencies related by an integer multiple of the sampling
rate, fs, the number of points in time-space recorded in 1 s. It is the phenomenon
when two distinct continuous signals x1(t) and x2(t) produce the same sequence of
sample values x[n] when sampled at a fixed rate fs. Thus, to ensure that aliasing
effects do not corrupt a signal (or the analysis) sampled at a rate fs to be fully
reconstructed, the signal must only contain frequency components below half that
sampling frequency (known as Nyquist frequency or maximum frequency fmax).
Consequently, the Nyquist rate (fs ¼ 2fmax) is the lowest sampling rate for which a
signal can be reconstructed with maximum frequency fmax. Filtering is an operation
to improve audio signals in many ways, basically separating frequencies associated
to the expected signal, from frequencies that are related to uninformative signals, like
the sinusoidal oscillations at either 50 Hz or 60 Hz from electrical AC power and
their associated high-frequency harmonics and other external signals. This approach
helps to further “clean up” the signal in case the performance of an anechoic chamber
is not 100%.

Lastly, windowing (application of a windows function) is also a preprocessing
step in acoustics to modify the digitized signal before computing the FFT. The
Fourier series assumes that the signal is periodic in time t. When the signal is
digitized into N samples from 0 to N � 1, the Fourier series concludes that the
next sample (N ) will be the same value as the first (0). Unfortunately, for the vast
majority of vibration-originated signals, a discontinuity usually exists between the
end of the digitized signal and the beginning of the periodic repetition, thereby
causing the FFT algorithm to generate artificial noise. Thus, the windowing adapts
the digitized signal by sending it to zero at the beginning and end of the time sample
to reduce or eliminate the discontinuity in time and the consequent noise in the FFT.
There are different types of window functions that can be applied depending on the



signal and its selection is not a simple task. Each window function has its own
characteristics and, therefore, suitability for different applications. Particularly, in
the case of impulse signals as those coming from laser-induced plasmas, no window
(often called the uniform or rectangular window as there is still a windowing effect)
is suggested to be applied.
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The recording and processing of the acoustics signal can be carried out via any of
the numerous audio editors available, with Audacity being one of the most common
since it is free, open-source and cross-platform software. Also, signal processing
libraries for acoustic data have been developed for most of the scientific software and
languages (e.g., MATLAB, Python).

11.5 Uses of Laser-Produced Acoustic Waves

The fact that short and ultrashort laser pulses of sufficient energy, when focused into
a target, no matter the state of the matter, are accompanied by sound and ultrasonic
waves has generated interest among various scientific fields (Fig. 11.5) and
applications in the last few decades. This section attempts to lay a holistic view of
the most actively researched topics in the field of laser-driven acoustics. Doubtlessly,
there may be many more references in the scientific literature, but any reader with a
deeper interest in any of the presented topics can make use of the cited literature and
cross-references therein provided.

Fig. 11.5 Conceptual map summarizing the prospective main fields of application for laser-
induced acoustics in conjunction with LIBS
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11.5.1 Optical Emission Signal Normalization

As known, LIBS, as an analytical technique, sometimes has limited applicability,
mainly for quantitative purposes. This is due to the inadequate level of analytical
figures of merit (particularly accuracy and precision) attainable by the technique
compared to other well-established multielemental analytical chemistry tools. While
some efforts have been devoted to elucidating the cause-effect relationship of the
large pulse-to-pulse optical emission variability, the harsh reality is that LIBS
continues to provide unstable signals [28]. In order to alleviate signal fluctuations
directly correlated to plasma characteristics and, therefore, to excitation conditions/
parameters and physicochemical properties of the sample under evaluation, normal-
ization approaches of raw LIBS data using parameters representative of the actual
plasma conditions have been proposed [29]. There are two distinct ways to stan-
dardize the recorded lines intensity: (internal) using attributes specific to the LIBS
spectrum, such as normalizing to the whole spectrum area, the spectral background
or by using the intensity of an internal standard line, or quantities directly derived
from them e.g., plasma parameters such as the temperature Te and electron density
ne; and (external) i.e., monitoring other data in addition to the LIBS spectrum, either
simultaneously, like the acoustic signal induced by the shock wave, or after, like the
ablated mass.

In particular, regarding normalization with acoustic response, the earliest docu-
ment in this area dates back to the late 1980s and is attributed to Chen et al. [3].
Using a pulsed excimer laser running at UV 308 nm wavelength, researchers
identified that the magnitude of the acoustic wave associated with plume generation
is linearly proportional with the emission intensity of both major and minor elements
in several pure metallic samples and alloys. Over a wide range of vaporization
conditions, including laser power, focusing, and surface pretreatment, and over a
limited range of composition, the emission peak area (EMPA) and the acoustic peak
height (ACPH) were well correlated with each other, thus advancing the possibility
of using the acoustic signal as an internal standard for normalizing analytical signals
derived from various types laser-generated plasma plumes [25, 30].

In this context, Hrdlička et al. [9] used the square power of the acoustic signal for
the internal standardization of LIBS spectra, in the interval of 290–340 nm, of a
glazed wall tile. They successfully compensated for the decrease in the optical
emission of some lines of the major elements (Si, Cr, Al, and Ti) monitored during
the depth profiling in single-ablation spots with two lasing wavelengths, 1064 nm
and 532 nm. Researchers obtained similar results with both lasing wavelengths
despite using different irradiance values and demonstrated that the decrease of
emission intensity after drilling through the glaze into the substrate as well as the
shot-to-shot fluctuations could be successfully compensated for via the acoustic
emission.

Anabiarte et al. [25] demonstrated the use of the estimated acoustic energy to
normalize atomic LIBS spectra and prevent the results from being affected by
unwanted changes in the experimental conditions, such as the laser pulse energy.
They did so by means of the speckle pattern perturbation, monitored with a



conventional CCD camera placed at the end of a coil of plastic optical fiber (POF)
and processed with an intra-image contrast ratio method (Fig. 11.6a). This normali-
zation can enable a better estimation of the sample’s chemical composition.
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Fig. 11.6 (a) Experimental Set-up used in [25] showing the sensing device based on a coiled
plastic optical fiber for simultaneously collecting the light emission and the shockwave from the
laser-ablation and its acoustic shockwave and the normalization capability for the Cu I emission line
at 510.6 nm (Adapted from [25]). (b) Normalized signal intensity ranges of the acoustic signals and
normalized structure depth and width ranges in dependency on the position of the z-axis [33]. (c)
Measured (dashed-dotted line) and deconvolved (solid line) room impulse responses for a spherical
loudspeaker (upper box), a directional loudspeaker (middle box), and a LIB event (lower box) [36]

Similarly, Lu et al. [31] demonstrated that acoustic normalization can be used to
reduce fluctuations in raw LIBS data toward improving the precision and accuracy of
coal calorific value measuring. By means of acoustic normalization, the relative
standard deviation (RSD) of shot-to-shot intensities of spectral lines of C
(I) 193.1 nm, C (I) 247.8 nm, H (I) 656.3 nm and N (I) 868.1 nm were significantly
reduced from 10.16, 6.53, 3.79 and 5.21% to 7.01, 4.40, 2.81 and 3.54%, respec-
tively. However, they also observed that the compaction pressure of samples
affected the correlation between acoustic energy and spectral intensity; a circum-
stance that shows that normalization is not effective in every analytical scenario.

It should be noted that the approach to acoustic normalization is not limited
exclusively to plasmas in air and, therefore, to acoustic waves propagating in this
medium. Thus, Huang et al. [32] proposed a spectral normalization method based on
the acoustic signals measured by a hydrophone immersed in water. Their results
showed clearly that the spectral line intensity had a better linear relationship with the
acoustic energy than with the laser energy. Accordingly, acoustic normalization
demonstrated better performance in reducing LIBS spectral fluctuation than laser



energy normalization did. Calibration curves for the quantitative analysis of Mn, Sr,
and Li were constructed in the work on the basis of the proposed acoustic normali-
zation method with improved analytical performance being observed.
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11.5.2 Characterization of Focal Position

Another potential application for which the laser-generated acoustic signals have
been used is the accurate establishment of the focal point in experimental setups.
Schulze et al. [33, 34] proposed a method capable of automatically positioning the
focal spot for ultra-short pulse laser ablation processes by detection of airborne
acoustic emissions (Fig. 11.6b). In the field of laser ablation-based manufacturing
processes, the correct positioning of the laser focus relative to the work piece and the
detection and elimination of geometrical deviations are extremely important to
ensure the required precision. Regarding laser ablation fabrication using ultra short
pulsed Nd:YAG lasers, problems arise when the focal plane is not on the surface of
the work piece. In fabrication schemes using laser ablation, defects sourcing from
target mispositioning usually cannot be corrected during the machining process and
remain in the final product. To solve this, an acoustical sensor was built to provide a
correctly adjusted focal plane at the beginning of the first manufacturing step. The
analysis of airborne acoustic emissions during the ablation process yielded specific
details about the focal position of the laser beam. Based on this correlation, an
acoustic focus positioning model was built up to automatically adjust the focal plane
prior to ablation.

In a similar fashion, it was identified that the acoustic environment surrounding a
focusing pulsed laser beam can influence the probability of plasma formation from
laser-induced breakdown of air at atmospheric pressure [35]. In open air, the location
of an air plasma produced by a focused YAG laser pulse was found to be closer to the
focal point used to focus the laser beam. In contrast, upon coaxially confining the
same beam along the interior of a quartz tube, the position of the air plasma shifted
away from the focal point and toward the focusing lens, i.e., to a region of lower laser
fluence. Such a circumstance was justified on the basis of the interaction between
standing acoustic waves (formed from sound waves produced by previous laser-
induced plasmas) and the impinging laser pulse. The standing acoustic waves
rarified the medium within the tube, as commented in the fundaments section,
producing areas of slight increases and decreases of the atmospheric pressure
value. These antinodes had a noticeable effect on the probability of creating an air
plasma at given coordinates along the optical path. Rarefaction effects have been
shown to be particularly relevant when dealing with sequences of laser pulses and
was not observed in single shot experiments. Special consideration of this phenom-
enon should be given by researchers interested in experiments where the position of
a laser-induced plasma is changed without further adjustment of the laser or
associated optics (such as raster sampling or 2D/3D mapping).

Lastly, the laser-induced breakdown of air has been proposed as an ideal acoustic
point source emitting a repeatable, broadband, and omnidirectional radiation pattern



within the audible bandwidth to provide a more accurate temporal and spatial
representation of room reflections than that reported for conventional loudspeakers
(Fig. 11.6c) [36].
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11.5.3 Surface Treatment

Perhaps, the first report on the use of acoustics to monitor surface ablation can be
traced back to the early 1990s [37]. Short duration (<30 ns FWHM), unipolar,
acoustic transients corresponding to compressive stress in bulk ceramic YBCO
targets 0.5–1 mm thick prepared with plane-parallel faces were monitored for
variable fluence (� 2 J cm�2) using a KrF laser emitting at a wavelength of
248 nm with pulse of duration ~10 ns full-width at half-maximum (FWHM). The
targets were mounted onto a fast time-response piezoelectric transducer formed by a
9 μm thick polyvinylidene fluoride (PVDF) film sandwiched and bonded between
the sample and a ~4 mm thick Perspex impedance matching stub. Results
demonstrated the usefulness of fast time-response photoacoustic measurements for
non-destructive evaluation and characterization of the properties of bulk ceramic
superconducting (high-Tc) materials. Acoustics provided information on the magni-
tude and time evolution of the pressure generated at the material surface by the recoil
momentum of the ablating species and by any backscattered products of the interac-
tion with the excimer laser.

From the results on laser-acoustics as a diagnostic tool during the fabrication of
layered structures featuring thin films of different elemental composition, other uses
of this data produced alongside ablation have also been explored for a variety of
purposes. In this line, Lee et al. [38] used acoustic emission to monitor pulsed
532 nm laser-induced damage on aluminum films (of thickness ranging from
13 nm to 50 nm) deposited upon quartz. Results revealed that damage thresholds
measured by the acoustic probe (interpreted as evaporative events) were in the
30 mJ�cm�2 to 100 mJ�cm�2 range, which are about 30% higher than those
measured using the optical probe (interpreted as melting events). Furthermore,
experimental data were found to be consistent and reproducible and could be
satisfactorily simulated by a one-dimensional heat diffusion model with a
temperature-dependent absorption. Authors concluded that the ablative acoustic
signal seemed to track the vapor pressure pulse released from target surfaces at
temperatures well below the boiling point of aluminum. This low threshold temper-
ature was easily reached by small energy increments beyond melting point since the
absorptance of liquid aluminum increased upon melting. This explained the unfore-
seen sensitivity of the acoustic probe relative to the optical one, especially for thicker
films.

Gusev et al. [39] studied theoretically and experimentally the influence of melting
upon the excitation of surface acoustic wave (SAW) pulses in silicon. According to
their prior theoretical background for the optimization of the interface waves gener-
ation by lasers in experiments from their analytical solutions for the leaky Rayleigh,
Scholte, and lateral waves excited via the laser-induced thermoelastic effect [40]



authors predicted that SAW was predominantly generated in the solid phase due to
the absence of shear rigidity of any liquid layer. The characteristic changes in the
SAW pulse both the shape and the amplitude, either its saturation or even its
decrease, observed above the melting threshold are explained theoretically to be a
result of the decrease of the heat flux into the solid phase as well as due to the
decrease of the volume of the solid phase caused by melting. Experimentally, for
laser pulses of 7 ns duration at 355 nm wavelength, the threshold values of laser
fluence for melting Fm ¼ 0.23 � 0.04 J cm2 and for ablation Fa ¼ 1.3 � 0.2 J cm2

were determined as the situations of characteristic changes in the observed SAW
pulses. Furthermore, the influence of reflectivity changes on the SAW pulse was
identified negligible in comparison with the effect of melt-front onto the heat flux to
the solid phase. Also, Mesaros and collaborators [4] performed real-time detection
of Nd:YAG pulsed laser surface melting by analyzing the photoacoustic signals
produced on AISI 304 stainless steel samples. Comparison between the amplitudes
of the transversal and longitudinal waves allowed them to identify the fluence
thresholds for surface melting.
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In a similar fashion, Liu and coworkers [41] evaluated excimer laser (at a
wavelength of 248 nm and pulse duration of ca. 20 ns) ablation on a chromium
thin film (400 nm thick) directly deposited on a glass substrate via DC magnetron
sputtering system. No intermediate adhesion layer was present between the film and
the substrate. Acoustic emission arising from the ablation process and optical
microscope observation of the surface morphology of the patterned areas were
used as diagnostic tools. In the experiment, an acoustic emission transducer was
coupled to the sample to acquire sound waves sourcing from laser–material interac-
tion and an oscilloscope was used to record the signals. Scores for several
characteristics of the acoustic emissions (e.g., average power, RMS, etc.) showed
a clear connection with the ablation mechanisms of the thin metal films for variable
laser fluences. Furthermore, since those scores discriminated well the damage to the
glass substrate, authors considered that the evaluation of acoustic emissions may
also be considered as a monitoring strategy for excimer laser micromachining.

Directly related to this topic, acoustic wave generation during excimer laser
interaction with copper substrates was also investigated [42]. After finding that
audible acoustic waves could be detected during laser surface cleaning pro-
cesses—the acoustic wave emission disappeared when the surface was completely
clean—a numerical model was proposed to study the ablation threshold and mor-
phology change of the substrate material under laser irradiation. This numerical
formula, investigating the relationship between the amplitudes of the emitted acous-
tic waves and some contributing factors as bulk and surface responses from the
initial conditions of the substrate, pulse dependence (laser fluence, number of
pulses), and morphology change of the substrate surface, was established for real-
time monitoring of laser-solid interaction.

The potential of acoustic monitoring was also examined for laser ablation of crust
on historical sandstone samples contaminated due to prolonged interaction with the
environment and for specimens covered by artificial crust layers [43]. Jankowska
et al. studied experimentally the laser cleaning of moistened, thoroughly wet, and dry



historical sandstones covered by a black, porous encrustation and model specimens
with artificial coverage using acoustics. An electret microphone was placed either
behind of, close to the back surface, or in front of the sample to detect the snapping
sound accompanying the interaction of the laser pulse with the sample. Authors
confirmed that the detected sound correlated strongly with the progress of the crust
ablation process, thereby allowing its reliable monitoring. Dependency of the
measured sound intensity on laser interaction parameters, like pulse energy, crust
thickness and degree of moistening was identified.

11 Materials Characterization by Laser-Induced Plasma Acoustics and Spectroscopy 303

This application continues to prove its usefulness in recent times. The analysis of
the spectrum obtained by Fast Fourier Transform of the Photoacoustic Induced by
Laser Ablation (PILA) during laser-assisted paint removal process has been
described, in order to identify the presence of paint components on a metallic
surface, optimize the ablation rate and propose the PILA technique for monitoring
the laser ablation of paint layers [44]. Also, a closed-loop control that reflected the
status of laser paint removal based on real-time monitoring of the evolution of the
amplitude and the local standard deviation of the acoustic signal has been considered
to achieve a good clean effect without damaging the substrate. In the work, the
frequency range was set in 7 kHz–10 kHz region and signals were found to gradually
decrease to a steady value upon removal of the paint as represented in
Fig. 11.7a [45].

Recently, a prototype hybrid photoacoustic (PA) and optical system for the
on-line monitoring of laser cleaning procedures was presented. The intrinsically
generated PA signals combined with high-resolution optical images provided the
opportunity to follow the cleaning process accurately in real time [46], Indeed,

Fig. 11.7 (a) Surface morphology of a white paint after irradiation by 1, 4, 6, and 8 laser pulses
(45 mJ) together with the time domain acoustic signals (14 pulses) and the frequency domain
spectra. Adapted from [45] (b) Two surface waves with different frequencies propagating on coated
materials[49]. (c) Pulsed laser ablation of PVC targets at various focal spot size ϕ (open
traingle ¼ 40 μm, open circle ¼ 75 μm, and cross ¼ 100 μm). Plotted are the laser energy (red)
and the acoustic signal (black) against the mass (Δm) removed per pulse [57]



photoacoustic (PA) imaging technologies have transcended the frontiers of its main
niche in contemporary biomedical research studies toward innovative applications in
cultural heritage diagnostics and laser cleaning monitoring. As discussed in [47], PA
signals offer substantially high detection sensitivity, providing optical absorption
contrast at high spatial resolution. This unique combination of features was
employed for establishing novel diagnostic methodologies aiming to uncover
concealed features and provide structural information in multi-layered objects.
Thus, the rich potential of emerging PA technologies, not only in the field of cultural
heritage, offer exciting possibilities for its future implementation as a diagnostic and
monitoring approach allowing for a safe and well-controlled ablative procedure that
will safeguard the original object surface.
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11.5.4 Material Hardness

As discussed above, the wideband acoustic impulses generated by short laser pulses
and propagating along the surface of the materials are very sensitive to films and
surface treatments, since the wave energy is concentrated near the surface. This is
particularly true for coated and surface-modified materials the wave velocity
depends on frequency. This phenomenon, named dispersion, may be used to eluci-
date important parameters such as film thickness, density and Young’s modulus,
which depends on the bonding conditions and the microstructure and is proportional
to material’s hardness [48]. Multiple uses of acoustic waves for the inspection of
surfaces can be found in scientific literature. One of such applications is assessing the
thickness of layers. Laser-induced plasma acoustics have been used to evaluate the
quality of diamond-like carbon films with thicknesses down to few nanometers [49]
(Fig. 11.7b) or to characterize laser-hardened steels up to depths of 1 mm
[50, 51]. Further surface traits probed using laser-induced acoustics include the
elasticity of plasma-sprayed deposits on multiple substrates [52, 53] or the charac-
terization of nanostructured materials with unusual mechanical properties
[54, 55]. Laser acoustics have also helped to evaluate subsurface damage in a
non-destructive way [56].

11.5.5 Ablated Volume

One of the observables during pulsed laser ablation is the removed mass. Given the
difficulties and the large uncertainties in real-time monitoring of the quantity of
ablated sample, in the late 1990s researchers started using acoustical signals to
monitor these quantities [5]. Stauter et al. found that, on a specific domain of laser
fluence, the ablation rate on ceramics with short laser pulses at different wavelengths
could be related to the shock wave energy. Furthermore, results showed that, rather
than using the laser beam deflection technique, via a simple calibration procedure, it
was possible to replace the laser probe by a microphone.



11 Materials Characterization by Laser-Induced Plasma Acoustics and Spectroscopy 305

The photoacoustic signal was also considered as an indirect weighing for mea-
suring mass removed (Δm), especially at sub-ng level [57]. TheΔm per pulse in laser
ablation at both the ns and the ps time regimes was shown to correlate with the
acoustic signal A and the laser spot size ϕ. Functional forms of Δm(A, ϕ) were
deduced for aluminum and polyvinyl chloride, represented in Fig. 11.7c targets
ablated continuously for 2 to 3 h; with the averaged acoustic signal (peak-to-peak)
recorded every 15 min, for fluence ranging from 1.5 through 88 J cm�2. Computed
Δm agreed with empirical values within the experimental error.

The benefits of this approach have even been extended to field-deployable
sampling of solids [58, 59]. In order to track acoustic pressure waves formed for
every individual laser ablation event during mass removal by a portable laser
ablation (pLA) system, a directional microphone was integrated into the handheld
pLA-module. Its performance was investigated for various samples, revealing
discrepancies as a function of their ablation thresholds. While samples with high
ablation thresholds, such as glasses and minerals, showed a linear relationship
between the acoustic signal and the amount of mass removal, for samples with
low ablation thresholds, e.g., metals, the acoustic signal was identified to be mainly
influenced by the laser fluence at the ablation spot rather than by the amount of mass
removal.

Also, in this line, in preparation for the SuperCam/Mars Microphone in-situ
scientific tasks, and using a specifically designed LIBS set-up coupled with an
acoustic test bench under ambient terrestrial atmosphere, shot-to-shot evolution of
the acoustic signal associated with the plasma was studied with regards to the
morphology of the laser-induced crater [13]. Results from the experiments revealed
that the amplitude of the acoustic signal decreased as a function of the number of
shots during a depth profile. Such a decrease in the acoustic energy was well-
correlated with the target hardness/density. Furthermore, investigations confirmed
that the acoustic energy may be used as a remote tracer of the ablated volume of the
target, regardless of its physical properties. Experiments revealed a linear relation-
ship between the normalized acoustic energy and the ablated volume. All this
demonstrated that the use of a microphone may add valuable new data to the ablation
process associated to the thicknesses of the coatings and the presence of alteration
layers; a new information that is independent of the abundances of chemical
elements reported from optical emission of LIBS sparks.

11.5.6 Detection and Characterization of Materials

Some research has addressed the nature of acoustic signals as an observable capable
of detecting and recognizing a material. In this context, van den Heuvel and
collaborators [60] used laser excitation of soils for standoff detection (and classifi-
cation) of buried landmines including non-metallic mines. An acoustic pulse that
propagated along the soil was generated after heating by the delivered pulses, which
featured an energy of up to 350 mJ with a 20 Hz repetition rate at 1.064 μm, of a
primary small area of the surface of the soil and a secondary volume of air in and



above the soil in few nanoseconds. The acoustic shock wave generated by the laser
pulse reflected back from the buried objects into the surface; the echo was then
measured with laser a Doppler vibration (LDV) sensor at a range of several meters.
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Also framed in the context of security and defense, Moros et al.[61] proposed the
acoustic spectroscopy as an approach to detect contents within different packaging.
Focused laser pulses (13 ns length) operated at 1 Hz were used to generate sound
fields on two-component systems at a distance of 50 cm. Thus, under boundary
conditions, the sound fields, directly radiated by the vibrating elastic structure of the
outer component but modulated by the inner component that modified the dynamical
integrity of the system, excited the surrounding air in contact with it. Consequently,
the resulting frequency spectrum was observed to be a useful indicator of the
concealed content—gas (air), liquid (water) or solid (sand)—that influenced the
acoustic airborne transients originated from the wall of the opaque chemical-resistant
polypropylene and stainless-steel containers.

The acoustic responses produced by pulsed laser ablation have also found their
use in the field of biomedicine [62]. Already in the early 1990s, Esenaliev et al. [63]
investigated the amplitudes and profiles of the acoustical and shock waves generated
and propagating in atherosclerotic human aorta tissues and an aqueous CuCl2
solution under pulsed (τ ¼ 50 ns) UV (λ ¼ 308 nm) laser irradiation (below and
above the ablation threshold) to calculate the rise rates, pressure gradients and
propagation velocities of shock waves in biotissues. Similarly, Li and collaborators
[64] evaluated the thermal effects of the laser-induced surface acoustic waves toward
their practical application for measuring the elasticity of normal and diseased tissues
in dermatology and other surface epithelia. The challenge of mitigating potential
problems owing to heat generation upon direct pulse application to the tissue led
them to propose as an alternative the application of a thin agar membrane. The layer
would act as a shield to protect the tissue. This approach was verified by measuring
the mechanical properties of skin in a Thiel mouse model. Similarly, laser-induced
surface acoustic waves were also considered to characterize the elastic properties of
different layers of organs such as the urinary bladder, which are essential to ensure
its functioning, including the storage and voiding phases of the micturition cycle; in
essence, a critical step for understanding various disease processes and improving
patient care [65].

In the same fashion, Ghasemi et al. [66] employed laser-induced breakdown
spectroscopy and the subsequent acoustic response during microplasma formation
to identify cancerous human breast tissue. Higher decibel audio signals emanating
from the microplasma and a subsequent audio blueshift were reported for malignant
cancerous tissues when compared to those of healthy ones as represented in
Fig. 11.8a. Furthermore, authors justified the higher intensities of the acoustic
signals (stronger shockwave) in cancerous tissues from the higher abundance of
tracer elements (Ca, Na, and Mg) as well as higher plasma temperature and electron
density.

Finally, the use of laser-driven acoustic waves has also crossed the Earth borders.
One of the latest and most innovative applications of the LIBS+Microphone tandem
has been its incorporation in the SuperCam instrument onboard the Perseverance



rover within the Mars2020 mission. The world’s first Mars microphone was fitted
into NASA’s Mars Polar Lander, yet contact was lost on December 3, 1999, 10 min
before landing on Mars. A second microphone was mounted on NASA’s Mars
Phoenix lander, although it had to be turned off before launch due to last-minute
technical difficulties. After these previously unsuccessful attempts, Perseverance
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Fig. 11.8 (a) (Above) Frequency-domain acoustic signal from cancerous and normal breast tissues
after excitation with laser pulses of different energy (150, 175, and 200 mJ�pulse�1); a 200 Hz
spectral shift to higher frequency accompanying a sound level elevation for the cancerous tissues
with respect to the healthy ones can be observed. (Below) Schematics of plasma formation on the
tissues during the laser shot. Adapted from [66]. (b) Different sounds recorded by SuperCam.
Atmospheric spectra (light blue area) and LIBS acoustic spectra (light red area) are shown [67]. (c)
Raman mapping of laser-induced craters on hematite resulting from irradiation using 1, 2, 3, and
5 laser shots, showing the change from hematite (red) to magnetite (blue). comparison between the
percentage of the crater surface covered by magnetite (blue bars), the LIBS optical spectrum area in
the UV range (green) and shockwave energy (purple) [20]. (d) Data fusion process scheme
combining LIBS and acoustic data for mineral differentiation [19]



s

carried out the recording of sounds on Mars successfully for the first time
[67]. SuperCam’s main mission is the mineralogical study of the Martian surface
using, among other analysis techniques, LIBS and sound recordings with a micro-
phone. The SuperCam microphone records sound in the 0.1–10 kHz range, either
naturally occurring (atmospheric) or artificially induced (LIBS, Ingenuity helicopter
or the rover itself). The microphone can be operated in synchronization with the
LIBS laser, recording lapses strictly in the range of the laser pulse and the plasma
lifetime, or in a passive way, thus keeping the collection open for larger spans.
Figure 11.8b represents the main sounds recorded by SuperCam’s microphone and
its frequency range.
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Previously to its in-situ deployment in Mars, the potential of the Mars micro-
phone was demonstrated for laser ablation under Earth atmosphere in a preliminary
study with a small set of samples and fixed experimental conditions [13, 68]. Then, a
detailed characterization was performed under Mars environmental conditions
[17]. In order to record the sounds of the SuperCam laser hits on rocks under Mars
atmosphere, the microphone should be able to record audio signals from 100 Hz to
10 kHz, with a sensitivity sufficient to monitor laser impacts at distances up to 8 m.
Thus, tests performed on Martian soil simulants within the Aarhus planetary simu-
lation facility set to controlled Martian conditions, i.e., 6 mbar CO2 atmosphere, with
winds and T at the microphone being �80 �C, confirmed that the SuperCam/Mars
Microphone met the requirements satisfactorily. Furthermore, results showed that
the variation of the acoustic energy of the shock waves depends on the level of
compaction of the target. Additional experiments were also conducted at the Institut
de Recherche en Astrophysique et Planétologie (IRAP, Toulouse, France) under
Mars atmosphere to explore all the main instrumental, target-dependent, and envi-
ronmental parameters that likely govern the laser-induced acoustic signal expected
to be generated on Mars [69]. Two different types of samples were considered to
study the influence of target properties and laser-matter interactions on the acoustic
signal and the ablated volume. With these being, five pure metals with tabulated and
well-known physical properties and a set of natural homogeneous minerals obtained
from the Collection de Minéraux at Sorbonne Université, Paris, France. A
SuperCam observe targets at various distances from the rover, under an atmospheric
pressure that follows diurnal and seasonal cycles, the study proposed a sequence of
corrections to apply to Mars data in order to compare acoustic signal from targets
sampled under different configurations. Results revealed that, for minerals (except
graphite) and rocks the growth of the crater was responsible for the shot-to-shot
decrease in acoustic energy, thereby confirming that monitoring the acoustic energy
during a burst of laser shots could be used to estimate the laser-induced cavity
volume. Moreover, since the amount of matter removed by the laser was more
relevant when the target was soft, the decreasing rate of the acoustic energy was
correlated with the hardness of the material.

Finally, other studies also conducted by Chide et al. [20] have discovered the root
cause of the increase in acoustic signal amplitude over some laser shots to the laser
ablation of hematite, goethite, and diamond. Subsequent analysis of the craters
formed after laser ablation using Raman spectroscopy and scanning electron



microscopy revealed that both, hematite, and goethite, had been transformed into
magnetite whereas diamond had been transformed into amorphous-like carbon
(Fig. 11.8c). These results gave insights into the influence of the target’s physical
properties over the acoustic signal. Experiments conducted by Alvarez-Llamas et al.
[19] have well-corroborated these points. Figure 11.9 shows the variation of both the
average amplitude in the first maximum of the acoustic wave (Fig. 11.9b) and the
coefficient of intensity variation as the material was drilled by the laser in one
sampling position—slope—(Fig. 11.9c), for 6 rich in Fe and 6 rich in Ca geological
specimens. As seen, clear differences are detected between the two subgroups. First,
the original plasma blast evidence to be more sensitive for Fe-bearing minerals as
compared to the Ca-rich ones. Furthermore, the negative slope revealed for the Ca
group indicates lower hardness and higher ablation rate per sample.

11 Materials Characterization by Laser-Induced Plasma Acoustics and Spectroscopy 309

Fig. 11.9 (a) Average time domain signals in the 0.1–1.25 ms range. (b) Average amplitude in the
first maximum of the acoustic wave for each mineral studied. (c) Slope value obtained for each
mineral. Values closer to 0 indicated stable signal during the laser shot series, while negative values
implied decreases in the measured sound intensity. Reproduced faithfully from reference [19]

In summary, all these investigations have revealed a range of complementary
information on the physical properties of the ablated targets when listening to the
laser-induced acoustic signals that can considerably help to better document the
geological material analyzed by SuperCam when associated to the elemental com-
position of rocks and soils of the Mars surface determined by LIBS. But most
importantly, in the context of Mars surface exploration, the extremely specific



behavior of the acoustic response anticipates that the microphone data may help
discriminating mineral phases whereas LIBS data can only discern the elements
composing the target.
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11.5.7 LIBS and Acoustics Data Fusion

Despite the close relationship between laser-induced plasmas and the acoustics
derived from them, to date few scientists in the topic have focused their efforts on
trying to exploit the synergy of both simultaneous information. As of the writing of
this chapter, only the work by Alvarez-Llamas et al. directly addresses the combina-
tion of both sources [19]. In that work, LIBS data and simultaneously acquired
acoustic recordings from Fe-based and Ca-based minerals laser-probed at a sampling
distance of two meters under Earth and Mars-like atmospheres were preprocessed to
develop a mid-level data fusion strategy. The scheme was based on the concatena-
tion of scores matrix resulting from LIBS data principal components analysis (PCA)
and two different features extracted from the time domain acoustic responses, the
wave peak-to-peak amplitude and the variation of this value for a specific sampling
position. Figure 11.8d represents the mid-level data fusion scheme used in this work.
By doing so, a new global sample descriptor was created allowing for better
differentiation of samples with extremely similar LIBS spectra. Results revealed
that, under a tightly controlled experimental scenario, acoustic data in the time
domain could be merged with LIBS spectra to enhance the discrimination
capabilities of the technique owing to differences found in the laser-produced
sound wave, thus paving the way toward extracting relevant chemical data from
this newly exploited source of information.

This paper constitutes a preliminary attempt at fusing LIBS and acoustics to
maximize the information yielded by analysis events. Yet, there is still a long way to
go. Mainly for future implementation in the analysis of samples in an open environ-
ment. As discussed above, the uncontrollable presence of echoes or interferences at
such scenarios can substantially alter the time domain signal and cause an antago-
nistic effect and may even categorize as similar samples that are significantly
different.
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