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Foreword

As you are reading this book, millions of children and young people, who have their 
whole life laying ahead of them, are being taught in classrooms. Whenever I think 
of this, I wonder how these young people should be educated, what knowledge and 
skills do they really need to develop in order to be best equipped for their lives and 
the future world that we cannot foresee. Unequivocally, in the challenging and 
changing world that we live in, the role of education should not be restricted to 
enriching students’ knowledge, but it should empower them to adapt to changes and 
approach problems creatively. Creative thinking constitutes the mechanism to man-
age change and challenge.

This book offers a widely useful compilation of theoretical frameworks, empiri-
cal findings, cases, and approaches to mathematical creativity across various ages. 
It is, I think, an important resource for those investigating mathematical creativity, 
for mathematics educators, policy makers, and teachers. First, it provides in a con-
cise way these various aspects of mathematical creativity and an overall view of 
what is the state of the art on this topic. It highlights the similarities and differences 
of mathematical creativity across ages and presents some indicative research studies 
on creativity at different age groups, using different theoretical frameworks, research 
questions, and methodological tools. It is, therefore, with great pleasure that I 
accepted the invitation by Dr. Chamberlin, Dr. Liljedahl, and Dr. Savić, three well-
known researchers in the field of mathematical creativity, to write the foreword for 
this book. I was excited to be given the opportunity to read all its chapters in advance.

In 1980, the National Council of Teachers of Mathematics (NCTM) identified 
gifted students of mathematics as the most neglected segment of research in math-
ematics education. Since then, a vast amount of quality research was developed for 
the identification of gifted students, and for creating appropriate materials for help-
ing talented students to enrich their mathematical abilities. Nowadays, much focus 
is placed on the teaching of mathematics which provides for creativity not only for 
the gifted and talented students, but provides for all students the opportunity to 
appreciate the beauty of mathematics and to fully develop their talents and abilities. 
Creativity is a way of thinking in mathematics through different lenses. Mathematics 
understanding requires creative applications in the exploration of mathematics 
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problems. Traditional teaching methods involving demonstrations and drill and 
practice using closed problems with predetermined answers insufficiently prepare 
students in mathematics. The essence of mathematics is thinking creatively, not 
simply arriving at the right answer.

In this line of thought, this book offers a detailed and elaborate picture of research 
on mathematical creativity, setting off from its origins, walking us through some of 
its major advances and bringing us to its current status, and finally openhandedly 
offering possible avenues for new research. The chapters blend nicely the theoreti-
cal background and literature of some of the most eminent theories in mathematics 
education and also present findings of some current empirical studies. The book is 
organized in four sections:

Section 1: History and Background of Mathematical Creativity
Section 2: Synthesis of Literature Finding for Researchers
Section 3: Recently Completed Empirical Studies in Mathematics Education
Section 4: Research Application and Editors’ Summative Considerations

When discussing mathematical creativity, it is useful to start from its history. 
Thus, the first section refers to the history of research and definitions of creativity, 
providing at the same time the background of mathematical creativity. In the second 
chapter, one of the editors, Peter Liljedahl, provides an overview of the various 
strands of creativity research that have influenced mathematics education. He elabo-
rates on the directions that research in mathematics creativity has taken and reveals 
the links among various theoretical frameworks in general, and specifically in math-
ematical creativity. This chapter is a useful tool for researchers to look at research 
on creativity in mathematics education, through different aspects that had been 
studied as well as through many underlying theoretical assumptions on creativity.

The history of research on creativity is closely related to the topic of the second 
chapter of the book, which reflects on mathematics creativity and society. The chap-
ter by Chamberlin and Payne reveals various conceptions of creativity and their 
implicit and explicit value in society. This is mainly examined through the lens of 
national standard documents and international competitions. The researchers high-
light the fact that one of the main reasons for which mathematical creativity is not 
advancing in the way we might have expected, is that rarely time and money are 
invested in the development of mathematical creativity in classrooms. Moreover, 
although the value of creativity is proclaimed in many curricula and policy docu-
ments, mathematics creativity is almost never or very rarely assessed in national or 
international level and thus teachers do not place adequate emphasis during their 
teaching. The authors aimed at showing the impetus connection of mathematics 
creativity to the society by underlying the chasm between the emphasis on creativity 
in curricula on one hand, and the resources invested by educational administrations 
on the other hand. It is not, of course, possible in a short article to deal with all 
aspects of the relation of mathematics creativity with the varsity of effects of soci-
ety. Despite that, the article contributes to a fruitful discussion in answering ques-
tions such as how to best nurture mathematical creativity of students, and most 
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importantly, why in most societies the administration undervalues the focus and 
significance of mathematics education creativity.

In the fourth chapter of this section, the three editors, Chamberlin, Liljedahl, and 
Savić, present the framework of the book and highlight its contribution. The editors 
wish to emphasize that mathematical creativity is for all students and not only 
restricted to a few talented students. To do so, they argue, that one needs to realize 
that mathematical creativity is not homogenous but its process and products differ 
in different ages. Therefore, they chose to discuss in this book, mathematical cre-
ativity and its development in ages 5–12 elementary school years, 13–18 secondary 
school years, and 19–23 tertiary education years.

In the second section, a synthesis of literature findings of three age groups are 
presented. The editors propose that research which focuses on mathematical cre-
ativity should take into consideration that persons, products, and processes are dif-
ferent at different ages. It appears that we need a more fine-grained analysis of what 
creativity may look like at different ages and how it might be developed. For 
instance, we need to provide a more detailed account of what mathematical creativ-
ity may look like at different ages, how it may develop and what the effects of vari-
ous types of instruction on students’ development of mathematical creativity are. 
The three chapters that follow offer a detailed account of what the empirical studies 
have shown until now, and what information is available about creativity in the three 
specific age groups. Understanding the development of creativity, learning about 
various attempts that were made to develop mathematical creativity and the impact 
that these attempts had, constitute important first steps for the development of better 
instruction for the development of students’ mathematical creativity. The three 
chapters also present promising directions for future research which can be useful 
to people who want to pursue research in this field.

The second chapter of this section by Kozlowski and Chamberlin explores the 
way in which literature influenced research in mathematics creativity for individuals 
5–12 years old. The literature explored in this article is organized in two main cat-
egories: academic oriented research and practice oriented research. In the third 
chapter of this section, Joklitschke offers a systematic overview of current empirical 
insights on mathematical creativity among secondary school students, while in the 
fourth chapter, Savić, Satyam, El Turkey, and Tang provide a broad view of research 
on mathematics creativity among students at the tertiary level. The authors indicate 
that far fewer research studies explored mathematical creativity among students of 
tertiary education in comparison to students of elementary and secondary education.

Actually, the second section of the book suggests that individuals are able to be 
creative in the sense that they are able to come up with novel ideas in the context of 
their age and abilities. Although there is a general agreement about which processes 
and abilities are important for the development of creativity, fully understanding the 
development of each process and its role in creativity is a more complex task. 
Research is not conclusive as to precisely indicating how creativity develops and 
what exactly is essential in fostering this development. Thus, the third section of the 
book, presents empirical studies which are related to a degree with developmental 
theories and processes thought to be important in the study of creativity in 
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individuals. Specifically, in the third section of the book, five recent empirical 
research studies in mathematics education are presented. In a broad sense, section 
three presents research that highlights practices which contribute to the develop-
ment of students’ creativity. The authors refer to episodes in classrooms, to the dif-
ferences of convergent and divergent thinking, to the progression of creativity, to the 
concept of group creativity, and finally to approaches which contribute to our under-
standing of the creative processes at play in educational environments. The chapter 
by Crespo and Dominguez presents the benefits of using different analytic lenses to 
understand children’s creative mathematical thinking. The researchers invite read-
ers to see through some episodes how children are working and what they are saying 
from different theoretical lenses. The realization that different theoretical frame-
works could reveal or disguise the causes or the results of any learning experience 
is of fundamental importance. As teachers and researchers, we need to embrace this 
challenge and invest time and effort in making the right choices.

In the third chapter of this section, de Vink, Lazoner, Willemsen, Schoevers, and 
Kroesbergen investigate the contribution of convergent and divergent thinking in 
upper-elementary school children while working on problem posing and multiple 
solution tasks. This is a worthwhile topic, since we often see creative thinking being 
associated only with divergent thinking and even equated with divergent thinking. 
The researchers found that generally divergent and convergent thinking is evolving 
in a nonlinear process. Students often start from divergent thinking and then move 
to convergent thinking. The authors found that students with high achievements in 
mathematics tended to use more convergent thinking or a combination of conver-
gent and divergent thinking. The realization of the important role that convergent 
thinking plays for the development of creative ideas may be an eye-opening experi-
ence and also reveals new directions for instruction which aim towards the develop-
ment of mathematical creativity. It is possible that most often instruction that tried 
to facilitate mathematical creativity emphasized mostly divergent thinking without 
appreciating the combination and cyclic blending of convergent and divergent 
thinking.

Thinking of environments that will support the development of creativity and 
also of group creativity in school classrooms appears to be challenging and neces-
sary. This is the topic that Liljedahl explores in the fourth chapter of this section. He 
uses the term burstiness, to describe the role of environment on group creativity. He 
outlines some of the key ingredients that are necessary for an environment to form 
fruitful ground for group creativity to occur such as the structure, diversity, psycho-
logical safety, welcome criticism, freedom to shift attention, focus, and opportunity 
for non-verbal communication. Liljedahl, presents an episode from secondary edu-
cation and masterfully illustrates what these ingredients may look like in the math-
ematics classroom.

Although numerous studies explored what mathematics creativity may look like 
and how it may progress through various learning environments, we rarely find any 
studies that show how the perception of individuals’ creativity changes during a 
learning course. A reason for this might be that most of the studies were conducted 
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with young students who may not be mature enough to discuss their perceptions of 
mathematical creativity and also reflect on them.

In the fifth chapter of this section Karakok, Tang, Cilli-Turner, El Turkey, Satyam, 
and Savic explore the progression of four undergraduate students’ perspectives on 
mathematical creativity. The original perspective of mathematical creativity of these 
four undergraduate students is that it involves unique, innovative, and original 
approaches. After the completion of the course, these students’ perspective of cre-
ativity changed with the incorporation of different mathematical actions which 
appear to be more mathematically creative. Undergraduate mathematics students’ 
perception of what mathematical creativity is and how it changes during a course is 
of outmost importance. Many of these undergraduate mathematics students will 
become mathematics teachers for the next generation. The way they perceive cre-
ativity will dictate the methods they will use to develop it. Thus, the successful 
development of mathematical creativity and the interruption of any vicious circles 
that inhibit its development, depend greatly on the perceptions that future mathe-
matics teachers hold. Thus, we need to invest in such studies, and most importantly 
invest on future mathematics teachers who will take on the responsibility to educate 
future minds.

Numerous attempts have been made to develop mathematical creativity. Changes 
of available means and tools also have an impact on the methods used for the devel-
opment of mathematical creativity. A book written in 2022 would not have been 
complete if it did not address a main concern and shift in the educational approaches 
that occurred worldwide as a result of the Covid-19 pandemic. Undoubtably, the 
Covid-19 pandemic brought to the forefront the need and possibilities of online 
learning. This raises the question whether online teaching will restrict development 
of mathematical creativity and if there are any ways in which one could develop 
mathematical creativity through online learning. In the sixth chapter of this section, 
Monahan and Munakata investigated through interviews the way in which seven 
instructors tried to incorporate creative teaching and learning in an online course 
which was prompted by the Covid-19 pandemic. The course was designed to sup-
port students to see the connections between mathematics and creativity. The 
researchers discuss the affordances and limitations of the online environment. It 
appears that online learning which so forcefully entered all levels of education in 
2020, will not only constitute a teaching environment which was dictated by the 
restrictions imposed by Covid-19 but, looking at it more optimistically, it may offer 
new possibilities for the teaching of students of all ages worldwide. Of course, it is 
likely, that different methods and approaches will be needed for different age groups 
and mathematical processes and products may also be different among these 
populations.

The fifth and final section of the book offers an overview of the book and con-
cluding thoughts on application, implications, and future directions. The authors 
discuss indicators, stages, assessment, processes, and products of creativity in the 
light of the development/maturation of creativity across the three age groups 5–12, 
13–18, and 19–23. The authors discuss what they feel is still needed in research by 
highlighting application of research to scholars and practitioners.
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This book is an important resource. It provides a useful compilation of ideas, 
theoretical backgrounds, empirical studies which address mathematical creativity of 
the general population across different ages. The literature review chapters, empiri-
cal studies presented, and reflective chapters offer the potential to researchers, 
mathematics educators, policy makers, teachers, and students to go beyond what 
they may learn from isolated research articles. The chapters of this book facilitate 
the reader to explore the field of mathematical creativity, make connections, and 
feed the development of new studies and theories in mathematical creativity. I hope 
that this book will become a useful tool for mathematics education researchers, 
teacher educators, professional developers, teachers, and students to learn and nur-
ture mathematical creativity and creativity in general.

Demetra Pitta-PantaziUniversity of Cyprus 
Nicosia, Cyprus

Foreword



xi

Contents

Part I � History and Background of Mathematical Creativity

	1	 ��Creativity and Mathematics: A Beginning Look�����������������������������������       3
Alane Jordan Starko

	2	 ��Creativity in Mathematics: An Overview of More Than 100 Years  
of Research������������������������������������������������������������������������������������������������     15
Benjamin Rott, Maike Schindler, Lukas Baumanns,  
Julia Joklitschke, and Peter Liljedahl

	3	 ��Mathematical Creativity and Society �����������������������������������������������������     27
Scott A. Chamberlin and Anna Payne

	4	 ��Organizational Framework for Book and Conceptions  
of Mathematical Creativity ���������������������������������������������������������������������     41
Scott A. Chamberlin, Peter Liljedahl, and Miloš Savić

	5	 ��Commentary on Section���������������������������������������������������������������������������     55
Deborah Moore-Russo

Part II � Synthesis of Literature on Mathematical Creativity

	6	 ��Mathematical Creativity Research in the Elementary Grades�������������     65
Joseph S. Kozlowski and Scott A. Chamberlin

	7	 ��Literature Review on Empirical Findings on Creativity  
in Mathematics Among Secondary School Students�����������������������������     81
Julia Joklitschke, Lukas Baumanns, Benjamin Rott,  
Maike Schindler, and Peter Liljedahl



xii

	8	 ��Mathematical Creativity at the Tertiary Level: A Systematic  
Review of the Literature���������������������������������������������������������������������������   105
Miloš Savić, V. Rani Satyam, Houssein El Turkey, and Gail Tang

	9	 ��Mathematical Creativity from an Educational Perspective: Reflecting on 
Recent Empirical Studies�������������������������������������������������������������������������   121
Esther S. Levenson

Part III � New Empirical Research on Mathematical Creativity

	10	 ��Now You See It, Now You Don’t: Why The Choice of Theoretical  
Lens Matters When Exploring Children’s Creative Mathematical 
Thinking�����������������������������������������������������������������������������������������������������   131
Sandra Crespo and Higinio Dominguez

	11	 ��The Creative Mathematical Thinking Process���������������������������������������   147
Isabelle C. de Vink, Ard W. Lazonder, Robin H. Willemsen,  
Eveline M. Schoevers, and Evelyn H. Kroesbergen

	12	 ��Group Creativity���������������������������������������������������������������������������������������   173
Peter Liljedahl

	13	 ��“Creativity Is Contagious” and “Collective”: Progressions  
of Undergraduate Students’ Perspectives on Mathematical 
Creativity���������������������������������������������������������������������������������������������������   197
Gulden Karakok, Gail Tang, Emily Cilli-Turner, Houssein El Turkey, 
V. Rani Satyam, and Miloš Savić

	14	 ��The Role of Creativity in Teaching Mathematics Online ���������������������   217
Ceire Monahan and Mika Munakata

Part IV � Research Application, Implications, and Future Directions

	15	 ��Concluding Thoughts on Research: Application, Implications,  
and Future Directions�������������������������������������������������������������������������������   241
Scott A. Chamberlin

��Index�������������������������������������������������������������������������������������������������������������������   249

Contents



xiii

About the Author

Demetra  Pitta-Pantazi  is Full Professor of Mathematics Education in the 
Department of Education at the University of Cyprus. Her research interests focus 
on students’ cognitive development of mathematical concepts, problem solving, 
mathematical creativity, integration of ICT in mathematics teaching, mathematics 
curriculum, and assessment. She is a member of the scientific committee for the 
development of the mathematics curriculum and textbooks, which are currently 
used in all primary schools in Cyprus. She is one of the associate editors of 
Educational Studies in Mathematics and a member of the editorial boards of the 
International Journal of Science and Mathematics Education and the Journal of 
Mathematical Behavior.



Part I
History and Background of Mathematical 

Creativity



3

Chapter 1
Creativity and Mathematics: A Beginning 
Look

Alane Jordan Starko

I am, perhaps, a strange person to be writing the first section of a book about creativ-
ity and mathematics. I am not a mathematician. I am a teacher and a teacher educa-
tor who is fascinated by creativity, particularly creativity in schools. Over more than 
30 years, I’ve had the opportunity to speak to thousands of students and educators 
about the nature and support of creativity. In scores of presentations, conferences, 
and classes, I’ve begun by asking the group to name individuals or endeavors they 
believed to be creative. In all those efforts, I’ve never had anyone name a mathema-
tician or a mathematical idea. Not ever. They have named individuals whose work 
was grounded in math to be sure; often the first person named is Albert Einstein, a 
theoretical physicist who spoke the language of mathematics fluently. But when the 
general person-on-the-street envisions creativity, they are much more likely to think 
about artists, musicians, and inventors than mathematicians.

There are many reasons for this. Most children develop their concept of mathe-
matics in elementary school. There, for many years, school-math entailed rows of 
calculations to be completed with maximum speed and accuracy. Math problems 
always had a correct answer, easily located in the teacher’s version of the text, and 
the students’ job was to replicate it. Anything that deviated from that path was not 
considered creative; it was considered a mistake. The problem, of course, is that 
memorizing number facts has little to do with actual mathematics.

When I began studying creativity and tried to envision creative mathematics in 
schools, I came face-to-face with the notion of math-is-not-calculations. Early in 
the process, I interviewed a mathematician friend who talked about beauty and truth 
in equations in terms reminiscent of artists, composers, or philosophers. In the years 
since then, I’ve learned more about what mathematics is and is not. To readers who 
are mathematicians, this is painfully obvious. But for the rest of us, it is essential to 

A. J. Starko (*) 
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understanding that creativity is fundamental to mathematics. In 1968, Halmos 
explained the nature of mathematics by first describing some of the things it is not.

As a first step toward telling you what mathematicians do, let me tell you some of the things 
they do not do. To begin with, mathematicians have very little to do with numbers. You can 
no more expect a mathematician to be able to add a column of figures rapidly and correctly 
than you can expect a painter to draw a straight line or a surgeon to carve a turkey. Popular 
legend attributes such skills to these professions, but popular legend is wrong. (p. 376)

Mathematics—this may surprise you or shock you some—is never deductive in its cre-
ation. The mathematician at work makes vague guesses, visualizes broad generalizations, 
and jumps to unwarranted conclusions. He arranges and rearranges his ideas, and he 
becomes convinced of their truth long before he can write down a logical proof. The convic-
tion is not likely to come early—it usually comes after many attempts, many failures, many 
discouragements, and many false starts (p. 380–81).

Like creativity in any other discipline, creativity in mathematics entails new 
ideas, new applications, new discoveries of beauty. It supports our understanding of 
the universe and inspires awe in those who see its implications. Sadly, many of us 
learned mathematics without either a sense of wonder or belief in the value of 
guesses, failures, or false starts.

Fortunately, mathematics education has progressed dramatically since the days 
of math=number facts. Still, the journey from early number concepts to creative 
mathematics is a complex one. The authors of this book intend to guide readers on 
that journey, considering the development of mathematical creativity as a process of 
maturation and growing sophistication over time. It entails understanding both the 
nature of mathematics and the nature of creativity. Here, we’ll start with creativity.

1.1 � What Is Creativity?

There are many definitions of creativity (e.g., Kaufman et al., 2017; Kaufman & 
Sternberg, 2019). Since the mid-twentieth century, most definitions have included 
two major criteria for judging creativity: novelty and appropriateness. To be consid-
ered creative, an idea or product must be new and appropriate to some goal. Random 
novelty without function, such as might be produced by my cats walking across the 
keyboard, is not sufficient. As the century continued, it was recognized that novelty 
and appropriateness must be defined within some environment. Sometimes defini-
tions take aim at the processes involved. An early effort in this direction was made 
by Guilford (1967, 1988), who defined components of creativity within his Structure 
of the Intellect model of intelligence. His identification of divergent thinking (flu-
ency, flexibility, originality, and elaboration) as a key element of creativity contin-
ues to be important in much creativity research today. More recently, Kounios and 
Beeman (2015) defined creativity as “the ability to reinterpret something by break-
ing it down into its elements and recombining these elements in a surprising way to 
achieve some goal” (p. 9). Here, the elements of surprise and goal directedness echo 
the two traditional elements of creativity. Simonton (2016) proposed that surprise 
itself become a third criterion. In that view, being new in a repetitious or mundane 

A. J. Starko
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way does not define creativity—it requires something that is novel in a surprising 
way. At its most basic, creativity involves the generation of a new—and possibly 
surprising—product (idea, artwork, invention, etc.) that is appropriate in some con-
text. It can range from the everyday creativity I exercise when devising a meal from 
the random contents of my refrigerator or making mosaic switch plate covers, often 
dubbed “Little c creativity,” to the “Big C Creativity” of those whose work changes 
the direction of their disciplines.

1.1.1 � What Creativity Is Not

Though the basics can seem straightforward, popular concepts of creativity are 
often confusing and prone to mythology (see, for example, Benedek et al., 2021). 
Some of the difficulties are rooted in the breadth of creative activities in the human 
experience, some in the varied aspects of creativity addressed in any given research 
study, some in the awe we feel when faced with the transformative power of “Big 
C” creativity. While we no longer believe creativity originates in the work of muses, 
the sense of mystery can remain. The list of creative myths is long, but a few are 
worth addressing specifically.

1.1.1.1 � Creativity Does Not Occur in the Right Brain

Creativity is a complex activity, requiring many kinds of cognitive and affective 
processes: considering likely areas for activity, producing diverse ideas, selecting 
from among ideas, viewing ideas from multiple perspectives, linking to prior knowl-
edge and experience, critiquing possibilities, etc. Like any complex activity, it 
requires the whole brain. It is true that in some creative tasks, highly creative people 
use the right hemisphere of the brain more than less creative individuals. But every-
one who has a whole intact brain uses all of it when attacking creative problems, as 
documented in activities from musical improvisation to story generation, designing 
book covers, and traditional creativity measures. In fact, explorations of the neuro-
biology of creativity, including multiple neural networks and coordination across 
networks, is some of the most vibrant creativity research today (Abraham, 2018; 
Vartanian, 2019).

1.1.1.2 � Creativity Is Not the Same as Intelligence or Expertise

There are several possible relationships between creativity and intelligence, varying 
with the measures and definitions used (Sternberg & O’Hara, 2000). Creativity has 
been hypothesized as part of intelligence; intelligence has been hypothesized as part 
of creativity. They have been viewed as overlapping in varied ways, or as differing 
uses of the same cognitive processes. One popular hypothesis postulates a threshold 
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effect, holding that a minimum threshold of IQ of about 120 is necessary for major 
creative contributions. Above that level, the correlation between creativity and intel-
ligence is seen as limited. This does not suggest that higher intelligence limits cre-
ativity (it doesn’t), but rather that above 120, other personal and environmental 
factors may be more important than additional IQ points. The threshold hypothesis, 
while still popular, continues to be debated, as research is conflicting, particularly 
when examining real-world creativity rather than standardized assessments (see, for 
example, Jauk et al., 2013).

Similarly, creativity is not the same as expertise. One can be very knowledgeable 
about an area without producing original ideas. Unlike intelligence, large amounts 
of expertise and/or experience can impede creativity, if they lead individuals to rou-
tinized problem solving or to become so entrenched in current knowledge that they 
no longer seek fresh perspectives. Sternberg and Lubart (1995) postulated an 
upside-down U relationship between creativity and knowledge, in which too little 
knowledge impedes creativity and too much knowledge can also impede creativity, 
if it leads an individual to believe they have no need to seek more information or 
new problem-solving methods. In such cases, it may not be the expertise, per se, that 
is problematic, but complacency that can set in when individuals believe their 
knowledge to be sufficient. Expertise plus continued questioning may be a different 
matter entirely—perhaps as evidenced by Sternberg himself, who continues to 
develop new theories in an academic career well into its fourth decade.

1.1.1.3 � Creativity Is Not Just for a Lucky Few

As noted earlier, creativity takes many forms. While few individuals make the “Big 
C” contributions that change their disciplines in dramatic ways, there are many 
opportunities for creativity in smaller professional contributions and in the innova-
tions that make daily life easier. The fact that activities may be “Little c” level in 
terms of the discipline doesn’t limit their opportunity for creativity. In Maslow’s 
words, “a first-rate soup is more creative than a second-rate painting” (1968, p. 136). 
The universality of creativity may be most easily envisioned in its early stages. 
Budding creativity evidenced in childhood play crosses time and cultures, while its 
more mature manifestations are impacted by personal values, characteristics, and 
experiences.

1.1.1.4 � Creativity Is Not Just a Phenomenon in the Arts

For many people, creativity is most immediately associated with the arts. We recog-
nize great painters, poets, composers, and choreographers as creative in their fields. 
Certainly, creativity is essential in the arts. But additionally, every field needs cre-
ativity to move forward. Without creativity, there would be no progress in science, 
no new literature, no inventions or technology, no problem-solving for our myriad 
cultural dilemmas. And, fortunately for this book, creativity is important for original 
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theorizing and problem solving in mathematics. The need for creativity across all 
areas of human endeavor means creativity is not a luxury (or worse yet, “fluff”) to 
be seen as an unnecessary intrusion on education. It is essential to all human prog-
ress, and thus, essential in schools.

1.1.2 � Mathematical Creativity

One of the great debates of creativity research is whether creativity in particular 
disciplines, for example, mathematical or musical creativity, represents unique con-
structs or is simply “general” creativity applied to different content (Kaufman et al., 
2017). One model that attempts to bridge the gap is the Amusement Park Theoretical 
model (APT, Baer & Kaufman, 2017). The APT model conceptualizes creativity as 
having initial requirements common to all creativity, such as intelligence and moti-
vation (like the entrance tickets to amusement parks), and then increasingly specific 
general thematic areas, domains, and microdomains, in which the characteristics 
and requirements for creativity may vary (like varied height requirements for differ-
ent rides). For example, when considering Katherine Johnson’s creativity, one might 
consider her overall intelligence and motivation, but also how creativity might oper-
ate in the general area of mathematics, the domain of early computer science, and 
the micro domain enabling space exploration in the mid-twentieth century.

However the two are related, the creativity-basics of general creativity undergird 
concepts of mathematical creativity. Philosophies of mathematics differ as to 
whether mathematics is discovered, like the nature of sound waves, or invented, like 
the telephone. Regardless, creativity in mathematics may be seen as having two 
faces: discovering mathematical facts and creating proofs to support the discovered 
facts. Just as science requires questioning and data, so mathematics requires explo-
ration, problems, proofs, and generalizations. It searches for new ideas, new pro-
cesses, and original solutions, and is a far cry from the textbook-driven rows of 
problems some students have experienced.

In many ways, mathematical creativity resembles models and descriptions of 
other types of creativity. Hadamard’s (1945) description of processes used in math-
ematical creativity mirrored Wallas’ (1926) more general four-stage creativity 
model that included preparation for addressing a creative problem; a period of incu-
bation representing time away from conscious consideration of the problem; illumi-
nation or the “aha!” experience of a new idea; and verification, in which the new 
idea is tested. Mathematical problem solving can involve essential elements of 
divergent thinking: fluency (many solutions), flexibility (many approaches to solu-
tion), and originality. Karwowski et  al. (2017) described mathematical creative 
problem-solving as supported by creative abilities, openness, and independence, 
characteristics associated with general creativity since MacKinnon’s research at the 
Institute of Personality Assessment and Research (IPAR) beginning in the 1950s 
(MacKinnon, 1978). Most contemporary models of creativity can be considered 
systems models, that is, they view creativity as the result of complex interactions of 
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cognitive and affective variables considered in context. For example, Amabile’s 
Componential model (Amabile, 1988; Amabile & Pratt, 2016) was a primary influ-
ence in recognizing the role of motivation in creativity. She described the necessity 
of individual domain skills and knowledge, creativity-relevant processes, and intrin-
sic motivation within situations conducive to creativity. Grégoire (2016) applied this 
thinking to mathematics, suggesting that mathematical creativity can be supported 
by addressing three dimensions of creativity: expertise, original thinking, and intrin-
sic motivation.

1.2 � How Does Creativity Develop?

This book’s authors are particular in their definition of “development” as regards 
creativity.

In this book, development is not considered to be the development of creativity in the class-
room, as influenced by overt pedagogical decisions or carefully selected curricula. Instead, 
it can be equated with a maturation process, which should not be left completely to chance 
(Chap. 3).

That is, the book is focused on the ways mathematical creativity matures across 
time. While the authors are careful to distinguish this idea from the notion of devel-
oping creativity in the classroom, the definition I’m more likely to utilize, it is clear 
they do not intend that creativity be ignored or left to develop on its own. This is 
wise. Virtually all current creativity research recognizes creativity existing within a 
social and emotional context. Those contexts influence how—and if—creativity 
will be possible or be recognized. Csiksentmilhalyi’s (1988) fundamental question 
of “Where is creativity?” recognized “Big C’s” naissance in the interactions of a 
person (or persons), a domain (discipline) and a field, the social structure of the 
domain. In the case of mathematical creativity, such interactions might include a 
mathematician’s personal characteristics, motivation, and creativity; knowledge of 
the domain;  and her interactions with the gatekeepers of the profession, such as 
journal editors. Hennessey (2015) has described these factors at an earlier educa-
tional level, examining the interactions among student characteristics, teachers’ 
characteristics, the culture of the classroom, and the larger surrounding culture. 
Even as any living thing needs supportive conditions to mature, so does creativity. 
In considering the development and maturation of creativity, it is essential to con-
sider the circumstances and influences that support it.

1.2.1 � Creativity Across Time

Relatively few researchers theorize about the development of creativity over time. 
Vygotsky situated his view of creativity in his sociocultural analysis of human 
thought, emphasizing the role of social and cultural interactions in the development 
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of thought. He believed creativity developed in three major stages: the creativity and 
symbolic play of childhood, the increasingly abstract thinking of adolescence, and 
consciously purposeful creativity in adulthood. In all stages, it is influenced by sur-
rounding social interactions. In childhood, these could be adults helping a child 
engage in symbolic play, while in adulthood, surrounding social and cultural needs 
can give direction to creative thought (Smolucha, 1992; Vygotsky, 1967).

In many ways, Vygotsky foreshadowed Bloom’s (1985) studies of talent devel-
opment, in which Bloom and colleagues studied the processes and influences 
through which individuals developed high levels of accomplishment in various 
fields. Those studied were all highly successful: concert pianists, sculptors, research 
neurologists, tennis champions, Olympic swimmers, and prize-winning research 
mathematicians. While the role and type of creativity varied across such diverse 
domains, the trajectories of the careers examined all entailed the development of 
creativity, and there was surprising consistency in stages of development, particu-
larly considered the wide range of talents studied.

First, the authors recognized the long periods of training and support necessary 
for exceptional accomplishment, regardless of initial individual abilities. Mature 
creativity does not grow without care and attention. They also identified patterns of 
beginning, middle, and later stages of talent (creativity) development, requiring dif-
ferent types of instruction and support. Initial stages of talent development entailed 
finding and falling in love with a discipline. It was a time of joyful discovery. The 
timing varied by field. Whereas young people often became engaged in music or 
sports at a very young age, prospective scientists or mathematicians might not dis-
cover their specific area of study until high school or college. Teachers during the 
early years of talent development, whenever they occurred, helped students experi-
ence delight in discovery and envision what the field might be. Learning was often 
playful and supportive of exploration. The middle years of development entailed 
more rigorous study mastering the basics of a discipline, often requiring a more 
expert teacher. Emphasis was generally on precision and accuracy. Later years of 
talent development, particularly for those aspiring toward “Big C” creativity, often 
required yet a different type of teaching, supporting young people in finding their 
own voice, questions, or challenges rather than replicating those of the past. These 
stages of talent development have been used as an organizing framework for gifted 
education and for supporting creativity developmentally (Olszewski-Kubilius et al., 
2018; Starko, 2018).

1.2.2 � Talent Development in Mathematics

The mathematicians studied by Bloom and colleagues were winners of the Sloan 
Research Fellowship, awarded to early career professionals in recognition of their 
“distinguished performance and a unique potential to make substantial contribu-
tions to their field,” suggesting significant creative potential (Alfred P.  Sloan 
Foundation, 2022). They came from homes that valued intellectual activity and 
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encouraged curiosity. However, the “early years” teachers for these students were 
found in middle or high school, when students were first exposed to the patterns and 
processes of mathematics, and experienced math as problem solving with the oppor-
tunity for varied procedures. It is interesting to consider whether this might have 
been different had students experienced more actual mathematical discourse in their 
early years. For this group, middle years’ teachers were generally found in college, 
particularly when undergraduate students had the opportunity to take more advanced 
graduate classes. In those years, the style of teaching seemed less essential than the 
knowledge base of the teacher, the commitment of the students to spend hours mas-
tering essential content, and the teacher’s commitment to help them succeed. Finally, 
the later years of high-level talent development required what Bloom (1985) 
described as a “master teacher” (p. 524). Only a handful of these individuals were 
seen to exist in any given field, so being accepted as a student in such a program 
required both skill and support. Mentorship with a master teacher, typically in a 
doctoral or post-doctoral environment, allowed young mathematicians to work 
alongside those who were doing the research that expands the field. In this type of 
environment, high-level mathematical creativity developed most successfully. Of 
course, this succession of progressively more expert teachers is not the only path to 
mathematical creativity. Srinivasa Ramanujan, for example, is known for his 
extraordinary contributions to mathematics, developed largely in isolation. Still, 
even he required correspondence with other mathematicians to integrate his ideas 
with standard procedures and bring his work to the field. As we consider the devel-
opment of mathematical creativity, from early explorations in number sense to the 
abstractions of mature creativity, it seems best to consider the concept of “develop-
ment” in both senses: the maturation and growing abstraction that are the focus of 
the book, and the supportive environments and actions that can allow it to flourish.

1.3 � About This Section

The first section of the book contains three chapters. Chapter 1 (Liljedahl) presents 
an introduction to mathematical creativity. It overviews theoretical perspectives on 
creativity grounded in mathematical problem solving and reviews the ways mathe-
matical creativity has been measured. It also describes some of the ways creativity, 
or creativity studies, can be divided, including the “Big C” “Little c” categories, and 
studies that emphasize creative persons, processes, products, or press.

Chapter 2 (Chamberlin & Payne) first reviews the development of general cre-
ativity research over time. The following section focuses specifically on mathemati-
cal creativity. Of particular interest to those focused on mathematics education is 
information on early interest in creativity by mathematicians. This is a stark contrast 
to the stereotypes of creativity existing only in the arts, or of mathematics as com-
prised only of increasing complex calculations. The next section emphasizes the 
value of mathematical creativity and its limited representation in the curriculum 
standards that shape today’s education. Chamberlin and Payne emphasize the 
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development of mathematical creativity as focused on maturation, dynamic and 
changing over time. They also examine factors that influence mathematical creativ-
ity, such as intelligence/content knowledge and affective variables. This section 
includes an introduction to the “Five Legs” theory (Chamberlin & Mann, 2021), 
which describes five affective factors influencing mathematical creativity. The final 
section of the chapter examines the application of Rhodes’ (1961) creativity catego-
ries of person, place, and process to mathematical creativity.

Chapter 3 (Chamberlin, Liljedahl, & Savić) begins with an operational definition 
of development of mathematical creativity and its relationship to mathematical cur-
riculum rigor. Development is associated with the Kaufman and Beghetto’s (2009) 
4 c’s (levels) of creativity, illustrating how mathematical creativity may mature 
across time. The authors review the relationship of Rhodes’ (1961) 4 P’s (person, 
process, product, press) to creativity and its development. Finally, they discuss bar-
riers to developing mathematical creativity, particularly in schools. These include 
the focus and/or breadth of standards, limitations in teachers’ content or pedagogi-
cal content knowledge, developmentally inappropriate materials, and pressure to 
teach to standardized tests. A particularly striking (and very familiar) description is 
“When teachers are forced to hastily cover a rather extensive list of mathematical 
concepts, ample time for mathematical creativity to emerge… [is] compromised” 
(p. 48–49). The description of basic structural barriers is both realistic and daunting. 
Finally, the chapter addresses some of the affective variables that impact the devel-
opment of creativity, including additional information on the “Five Legs Theory” 
that focuses specifically on mathematical creativity (Chamberlin & Mann, 2021). 
The theory includes affective dimensions that parallel those often described in gen-
eral creativity research. For example, Iconoclasm can be seen as a particular aspect 
of the more general characteristics of risk-taking and courage. Impartiality entails 
flexible thinking and willingness to examine problems from multiple perspectives. 
Inquisitiveness mirrors curiosity and openness to experience. Like so much of what 
we know about mathematical creativity, these factors mirror general creativity char-
acteristics, with a particular mathematical spin.

Considering the inclusion and support of creativity in mathematics education has 
the potential to transform the mathematics experiences of school children. With that 
transformation comes the opportunity to build a cohort of individuals with the 
vision and desire to develop mature mathematical creativity. If we are wise, that 
cohort will be both larger and more diverse than those who have gone before. The 
path may take us several steps closer to the “schools of curious delight” that have 
been my professional aspiration (Starko, 2022). With that hope, read on!
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Chapter 2
Creativity in Mathematics: An Overview 
of More Than 100 Years of Research

Benjamin Rott, Maike Schindler, Lukas Baumanns, Julia Joklitschke, 
and Peter Liljedahl

Research on creativity, invention, and innovation originates in different scientific 
disciplines and different decades. This diversity in theoretical backgrounds and defi-
nitions can still be seen in recent research, especially in mathematics education (see 
Joklitschke et al., 2021, for a review on notions of creativity in mathematics educa-
tion research). The goal of this chapter is to provide an overview of different strands 
in creativity research that have been influential in mathematics education. We will 
furthermore elaborate on trends and explicate why creativity research is going in the 
direction that it is today. As the terminology is not always consistent, in this over-
view, we include research on related concepts like “creativity,” “invention,” “inno-
vation,” etc.

2.1 � Research on Creativity Originating in (Mathematical) 
Problem-Solving

In this section, we present research on creativity that originates in the study of 
problem-solving processes along the lines of influential ideas—a summary in 
chronological order is given in Fig. 2.1.

B. Rott (*) · M. Schindler · L. Baumanns 
University of Cologne, Cologne, Germany
e-mail: benjamin.rott@uni-koeln.de; maike.schindler@uni-koeln.de;  
lukas.baumanns@uni-koeln.de 

J. Joklitschke 
University of Duisburg-Essen, Essen, Germany
e-mail: julia.joklitschke@uni-due.de 

P. Liljedahl 
Simon Fraser University, Burnaby, BC, Canada
e-mail: liljedahl@sfu.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. A. Chamberlin et al. (eds.), Mathematical Creativity, Research in 
Mathematics Education, https://doi.org/10.1007/978-3-031-14474-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14474-5_2&domain=pdf
mailto:benjamin.rott@uni-koeln.de
mailto:maike.schindler@uni-koeln.de
mailto:lukas.baumanns@uni-koeln.de
mailto:lukas.baumanns@uni-koeln.de
mailto:julia.joklitschke@uni-due.de
mailto:liljedahl@sfu.ca
https://doi.org/10.1007/978-3-031-14474-5_2


16

Fig. 2.1  Chronological overview of the developments of different streams of creativity research 
from 1910 to 1954

The interest of mathematicians in the process of mathematical creation dates at 
least back to the beginning of the twentieth century. In 1899, in the first issue of the 
journal L’Enseignement Mathématique, Henri Poincaré wrote about intuition in 
mathematics and argued for more attention to this topic in mathematics instruction 
(Kilpatrick, 1992, p.  7). In 1908, Poincaré gave a presentation to the French 
Psychological Society in Paris with the title L’Invention mathématique, thereafter 
published in his book Science et méthode in 1908. In this presentation, he told the 
audience his famous story of a geological excursion on which he had a spontaneous 
idea that helped him solve a complex problem (Fuchsian functions) he was working 
on for some time:

Just at this time, I left Caen, where I was living, to go on a geological excursion under the 
auspices of the School of Mines. The incidents of the travel made me forget my mathemati-
cal work. Having reached Coutances, we entered an omnibus to go some place or other. At 
the moment when I put my foot on the step, the idea came to me, without anything in my 
former thoughts seeming to have paved the way for it, that the transformations I had used 
to define the Fuchsian functions were identical with those of non-Euclidian geometry. I did 
not verify the idea; I should not have had time, as, upon taking my seat in the omnibus, I 
went on with a conversation already commenced, but I felt a perfect certainty. On my return 
to Caen, for conscience’ sake, I verified the result at my leisure. (Poincaré, 1908, pp. 326 f.)

In his further writings about invention and creativity, Poincaré focused on the 
unconscious parts of processes of mathematical discovery. Such parts of creative 
processes are nowadays called “incubation” (i.e., the time in which the unconscious 
mind works on a problem), and “Illumination” or “aha!-moment” (i.e., a sudden 
idea or insight related to the solution of a problem). According to Poincaré, these 
two parts or phases of creative processes are preceded by a preparation phase (i.e., 
consciously trying to better understand and solve the problem) and should be fol-
lowed by a verification phase (i.e., testing the idea from the illumination, turning it 
into a formal proof, etc.). As we will see, this Poincaré’s story is now almost syn-
onymous with the interplay of incubation and illumination and his conceptualiza-
tion has often been picked up in research on creativity. It may have been possible 
that when he made such realizations, Poincaré did not deliberately make the con-
nection between his ostensibly unconnected thoughts and their relationship to 
(mathematical) creativity.
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Poincaré was not the only mathematician at the beginning of the twentieth cen-
tury, who thought about mathematical creativity and invention. The mathematicians 
Henri Fehr and Charles-Ange Laisant, the editors of L’Enseignement Mathématique, 
assisted by the Swiss psychologists Théodore Flournoy and Édouard Claparède, 
published one of the first empirical studies regarding methods mathematicians use 
to solve high-level mathematical problems. They used a 30-item questionnaire to 
survey over 100 mathematicians on how they did mathematics, how they thought 
about the nature of their discipline, and how they achieved scientific progress 
therein. This questionnaire also included questions regarding the processes of inspi-
ration (“Enquête sur”, 1902; Fehr, 1905; Fehr et al., 1908—cited from Kilpatrick, 
1992, p. 7). Poincaré saw the study of Fehr et al. as a confirmation of his conclu-
sions (cf. Kilpatrick, 1992). However, Jacques Hadamard, another French mathe-
matician, expressed some critique regarding the questionnaire study by Flournoy 
and Claparède, highlighting the lack of questions regarding failures and other topics 
as well as only “alleged mathematicians whose names are now completely unknown” 
(Hadamard, 1945, p. 10) as participants.

Hadamard did not only criticize others’ ideas regarding mathematical creativity 
but did his own research. He had sent a questionnaire of his own to “first rate men” 
(ibid., p. 10)—including Henri Poincaré, George Pólya, Norbert Wiener, Hermann 
von Helmholtz, and Albert Einstein—to investigate creativity in the natural sci-
ences. In 1943, Hadamard gave a series of lectures on mathematical invention at the 
École Libre des Hautes Études in New York City. These talks were subsequently 
published in his book The Psychology of Invention in the Mathematical Field 
(Hadamard, 1945).

Hadamard, probably influenced by theories from Gestaltist psychology, took 
Poincaré’s ideas and turned them into a stage theory consisting of four separate 
stages stretched out over time. These stages are initiation, incubation, illumination, 
and verification (Hadamard, 1945). The first stage consists of deliberate and con-
scious work, trying to solve a scientific problem. When the solver is not able to 
come to a solution, s/he continues to work on the problem on an unconscious level, 
which is referred to as incubation. This second stage can last for any period of 
time—from minutes to weeks—and is inextricably linked to the conscious and 
intentional effort that precedes it (ibid.; van der Waerden, 1954). After the period of 
incubation, a rapid coming to mind of a solution, referred to as illumination, may 
occur. Thereafter, in the final stage, the correctness of the emergent idea needs to be 
evaluated. However, the verification may show that the solution revealed in the 
moment of illumination is, in fact, incorrect. For Hadamard (1945, p. 10; see also 
p. 64), such failures were as much a part of the creative process as the successes. 
The creative process should not be judged based on the correctness of the solution, 
which he pointed out when he criticized the questionnaire by Flournoy and 
Claparède:

Moreover, the most essential question—I mean the one which concerns the genesis of dis-
covery—suggests another one, which is not mentioned in the questionnaire [by Flournoy] 
though its interest is obvious. Mathematicians are asked how they have succeeded. Now, 
there are not only successes but also failures, and the reasons for failures would be at least 
as important to know.
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[…] Who can be considered a mathematician, especially a mathematician whose creative 
processes are worthy of interest? Most of the answers which reached the inquirers [Maillet 
or Claparède and Flournoy] come from alleged mathematicians whose names are now com-
pletely unknown. This explains why they could not be asked for the reasons of their failures, 
which only first-rate men would dare to speak of. (Hadamard, 1945, p. 10)

Whereas Hadamard emphasized the unconscious aspects, especially incubation and 
illumination, Bartel Leendert van der Waerden (1954) adopted these ideas, focusing 
on the conscious parts of the mathematical process, especially the preparation phase 
in his book Einfall und Überlegung—Beiträge zur Psychologie des mathematischen 
Denkens [in English: Idea and Consideration—Contributions to the Psychology of 
Mathematical Thinking]. Van der Waerden distinguishes between considerations, 
which are products of conscious thoughts, and ideas as products of unconscious 
thoughts. Using the example of Archimedes’ theorem “On the Sphere and the 
Cylinder,” van der Waerden shows that large parts of this theorem can be found by 
considerations, with only two (unconscious) ideas being needed, which can be pro-
voked by the conscious preparations (ibid., pp. 13 ff.).

Poincaré’s ideas have not only been adopted by mathematicians, but also by 
psychologists. The most famous one in that area is the English psychologist Graham 
Wallas, who, in 1926, reflected upon problem-solving or creative processes in his 
book The Art of Thought. Building on Poincaré’s work as well as the work of the 
German physicist Hermann von Helmholtz, Wallas describes four steps in creative 
processes, focusing on unconscious aspects of such processes. These four phases 
are preparation, incubation, illumination, and verification, which, of course, are the 
same phases that were later described by Hadamard (see above). The latter had 
known about Wallas’ work, but based his work directly on Poincaré’s ideas.

Even earlier, around the same time that Poincaré presented his ideas, the 
American psychologist John Dewey (1910) published the book How We Think. In 
this book, Dewey describes a general model of problem-solving processes, focus-
ing—in contrast to Poincaré and Wallas—on conscious aspects. This work influ-
enced George Pólya (cf. Neuhaus, 2001), who in 1945 published his first book, How 
to Solve It, in a series of several books on mathematical problem solving and discov-
ery. Like Dewey, Pólya (1945) focused on conscious aspects of problem solving, 
specifically on heuristics. Pólya’s four phases are very well known in the mathemat-
ics education community; for the sake of completeness, we name them here: (1) 
understanding the problem, (2) devising a plan, (3) carrying out the plan, and (4) 
looking back.

An overview of the work on creativity in chronological order is given in Fig. 2.1. 
It is important to note that—with the exception of Pólya’s work—all studies refer-
enced above followed the so-called “genius approach,” meaning that creativity was 
seen as something that applies only to extraordinary people or at least renowned 
experts in their respective fields of science. However, already Hadamard (1945, 
p. 104) mentioned similarities in the processes regardless of the gravity of the find-
ings: “between the work of a student who tries to solve a problem in geometry or 
algebra and a work of invention, one can say there is only a difference of degree.”
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To summarize, Poincaré’s and Hadamard’s insights into the subject of invention 
are an extensive exploration and extended argument for the existence of uncon-
scious mental processes and the importance of not limiting research on creativity to 
(correct and elaborated) solutions.

The creative process, extended over time and being punctuated by the sudden 
appearance of a solution, has traditionally been researched through the a posteriori 
self-reports of this private and subjective experience (Hadamard, 1945; Liljedahl, 
2013; Poincaré, 1952). More recently, however, Liljedahl (2013) has argued that 
illumination is largely an affective experience, which results in an observable emo-
tive response.

Recent studies in the field of mathematical problem solving—having circum-
vented the genius approach (see below for details)—refer to creativity as an impor-
tant factor for working on open-ended problems and problem fields (e.g., Haylock, 
1997; Pehkonen, 1995; Levenson, 2011; Levenson & Molad, 2022; Molad & 
Levenson, 2020; Silver, 1995) or for teaching (especially in Japan: Neriage, cf. 
Becker & Shimada, 1997; Takahashi, 2021). However, most of those studies do not 
aim at further developing or better understanding the concept of creativity itself. For 
a recent study in which the problem-solving models of Dewey and Wallas are 
empirically tested, see Rott et al. (2021); amongst others, they come to the conclu-
sion that in typical research settings—20–40  minute-processes—incubation and 
illumination are not suited to describe observed problem-solving processes. There 
are, however, studies in the field of problem posing that develop measures of math-
ematical creativity (for an overview, see Joklitschke et al., 2019). Such measures are 
addressed in the following section.

2.2 � Quantitative Approaches to Measuring (Mathematical) 
Creativity (from Psychology)

Another approach to conceptualize creativity—not inspired by Poincaré’s work—
stems from psychology. In 1950, when he was the president of the American 
Psychological Association, Joy Paul Guilford (1950) complained that “the subject 
of creativity has been neglected by psychologists” (ibid., p. 444). Following this 
article, he did revive studying creativity in his scientific discipline. Guilford (1967) 
himself, with a background in research on intelligence, significantly contributed to 
this field by conceptualizing creativity as one component of intelligence and intro-
ducing the differentiation between convergent and divergent production: 
“Convergent production is in the area of logical deductions or at least the area of 
compelling inferences. Convergent production rather than divergent production is 
the prevailing function when the input information is sufficient to determine a 
unique answer. […] For example, if we ask, ‘What is the opposite of HARD?’” 
(Guilford, 1967, p.  171). In comparison to convergent production, he describes 
divergent production as “a concept defined in accordance with a set of factors of 
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intellectual ability that pertain primarily to information retrieval and with their tests, 
which call for a number of varied responses to each test item. […] [These] tests 
require examinees to produce their own answers, not to choose them from alterna-
tives given to them” (Guilford, 1967, p. 138). Consequently, the act of recalling, as 
opposed to recognizing, can be considered a more rigorous demand cognitively and 
may serve as a metric for identifying creativity. In Guilford’s theory, both divergent 
and convergent thinking contribute to creative thinking in a cyclic movement 
between both kinds of thinking (cf. Lubart, 2016).

Additionally, Guilford (1967, p. 169 ff.) developed the Alternative Uses Task as 
a measure of creative ability that was adopted by various researchers. This classic 
test asks what one can do with a simple object like a brick—think of as many uses 
as possible in a certain amount of time. For example, in addition to using it in build-
ing a wall, it could be used as a paperweight, a projectile, or a replacement for a hot 
water bottle when heated in an oven. Such answers as empirical data are then coded 
to identify four factors of divergent thinking, namely, fluency (the ability to produce 
a multitude of answers), flexibility (the capability to generate answers in various 
ways), originality (the ability to come up with unique answers), and elaboration 
(the level of details in answers). In Guilford’s model, finding various and unusual 
ideas (i.e., fluency, flexibility, and originality) is attributed to divergent thinking, 
whereas giving details (i.e., elaboration) is linked to convergent thinking. As we will 
see, in mathematics education, divergent thinking is typically more often addressed 
than convergent thinking, up to a point where divergent thinking has become syn-
onymous with creativity (Cropley & Reuter, 2018). Despite the almost obsession 
with divergent thinking, relative to convergent thinking, each are of importance in 
the emergence of mathematical creativity. In fact, Lee (2017, p.  996) refers to 
(mathematical) creativity as, “the confluence of divergent and convergent thinking” 
(see also Runco & Acar, 2012).

In 1974, Ellis Paul Torrance, building on ideas by Guilford, published the first 
version of the Torrance Test of Creative Thinking (TTCT, Torrance, 1974). Alongside 
very different ways of assessing creativity, the TTCT includes variations of the 
Alternative Uses Task (the “Unusual Uses Activities”). One of these different ways 
is the “Picture Completion Test” in which persons are asked to complete incomplete 
figures—for example, a given circle could be used to draw a round cake, a bicycle 
(using the circle as one wheel), an eye (with the circle as the pupil), a pig (with the 
circle as the nose), etc.

The idea of Guilford’s Alternative Uses Task was adapted to mathematics educa-
tion by Roza Leikin (presented) at PME 31 (Leikin & Lev, 2007). Instead of objects 
like a brick, they used mathematical problems that should be solved in as many 
ways as possible—so-called Multiple Solution Tasks (MSTs). For each solution, it 
is decided whether it is appropriate (a sort of elaboration). Then, the number (n) of 
appropriate solutions is counted to identify the score for fluency. The solutions are 
compared to each other to determine whether they rely on similar or different ideas, 
determining a score for flexibility. And, finally, solutions are compared within the 
solution space of a peer group and/or to solutions of experts to score their originality.
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Fig. 2.2  Overview of quantitative approaches to measuring (mathematical) creativity

Leikin’s idea of using MSTs to measure mathematical creativity has been uti-
lized by several researchers in the field. Various groups of researchers use MSTs to 
assess fluency, flexibility, and originality (and most often, elaboration is not 
addressed explicitly). However, scoring the dimensions or combining their scores to 
a general test score differs between such groups (e.g., Kattou et al., 2013; Pitta-
Pantazi et  al., 2013). Additionally, scoring systems are evolving over time (e.g., 
Leikin, 2016; Leikin & Lev, 2007).

In 2013 and 2016, this line of research came to prominence in the mathematics 
education community with a special issue in the journal ZDM – Mathematics 
Education (Leikin & Pitta-Pantazi, 2013) and a keynote by Roza Leikin at the 40th 
PME conference (Leikin, 2016).

This way of measuring creativity by analyzing products (i.e., written text and 
figures) with regard to categories inspired by Guilford is used not only with MSTs 
but also with open-ended tasks (Multiple Outcome Tasks, Leikin & Elgrably, 2022) 
and in problem-posing situations (e.g., Bonotto, 2013; Van Harpen & Sriraman, 
2013; Van Harpen & Presmeg, 2013). A focus in problem-posing with respect to 
mathematical creativity pertains to the same constructs employed in problem 
solving (e.g., fluency, flexibility, and originality, but not often elaboration). In the 
context of problem-posing, fluency refers to the number of posed problems, flexibil-
ity refers to the diversity of posed problems (e.g., in terms of different mathematical 
ideas or strategies to be applied), and originality refers to the rareness of the posed 
problems with regard to all other problems that have been posed. See Fig. 2.2 for an 
overview of this line of research.

2.3 � Sorting the Field

As mentioned earlier, researchers in the field of creativity (e.g., Hadamard, Wallas, 
etc.) predominantly focused on self-reports of exceptional individuals as well as 
analyses of their works like literary works, musical compositions, technological 
inventions, or scientific discoveries (cf. Silver, 1997). Retrospectively, this was 
called the genius view of creativity—or “Big C” (Kaufman & Beghetto, 2009): It 
addresses the creativity of eminent individuals, which is often associated with 
exceptional creative contributions, that is, ideas or products that change the percep-
tion of the world (Sriraman, 2009; Sriraman et al., 2014). A typical example of the 
Big C-perspective on creativity in mathematics is Poincaré’s (1948) work on 
Fuchsian functions (Sriraman, 2009).
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However, researchers have turned away from the assumption that only geniuses 
can be creative and have focused their attention to ordinary or everyday creativity—
or “little c,” which means “everyday creativity” (Kaufman & Beghetto, 2009, p. 1; 
see also Feldhusen, 2006; Pehkonen, 1997; Sriraman et al., 2014). In the little c 
perspective on creativity, student solutions are considered creative if they “are 
unique and novel to the students in their particular environments” (Sheffield, 2018, 
p. 408). Sriraman et al. (2014) summarize the difference as follows:

For a professional artist, some new, ground-breaking technique, product, or process that 
changes his or her field in some significant way would be creative, but for a mathematics 
student in lower secondary school, an unusual solution to a problem could be creative 
(Sriraman et al., 2014, p. 110).

In 2009, Kaufman and Beghetto (2009) summarized the research on what they call 
Big C and little c creativity and extended this differentiation by adding two further 
aspects, mini c and pro c. “Mini c is defined as the novel and personally meaningful 
interpretation of experiences, actions, and events” (p. 2), which emphasizes the cre-
ativity in the learning process more than little c, where students’ creativity is scored 
based on their solutions to problems and outcomes. Mini c highlights the individual 
learning process taking place in its sociocultural context. Mini c refers to the per-
sonal level like drawing a picture that might even be a re-invention of previous work 
but is meaningful to the person and their learning process.

On the other hand, Pro c is a “category for individuals who are professional cre-
ators, but have not reached eminent status” (p. 4). Pro c takes into account the fact 
that for Big C, it is often required to reach an eminent status, and often this is only 
reached in a posthumous evaluation (ibid.). Therefore, in real-world practical appli-
cations, Pro c addresses professional creativity and outstanding contributions. Pro c 
refers to productions in professional domains or jobs such as the novels of a profes-
sional writer that may be endorsed in the professional discourse, for instance, by 
editors. On the other hand, Big C refers to creative contributions that receive large-
scale recognition such as Einstein’s contribution to physics.

In mathematics education, researchers often draw on the difference of Big C and 
little c to denote the difference of eminent individuals and those of students (e.g., 
Schindler et al., 2018: Schindler & Lilienthal, 2020; 2022). In mathematics educa-
tion, when school or university students’ creativity is addressed, we perceive a pre-
dominant trend that little c is addressed, for example, when MSTs or open-ended 
problems are addressed (e.g., Leikin & Lev, 2007; Levenson, 2011).

Within this aim to investigate students’ creativity, a further distinction can be 
made, which relates to the question: What is creativity, or what is it that is consid-
ered to be creative? Rhodes (1961) identified four perspectives on creativity, the 
so-called “4P of creativity,” which were laid out for mathematics education by Pitta-
Pantazi et al. (2018), who furthermore categorized research on mathematical cre-
ativity around the classification provided by Rhodes. The 4P are understood as 
follows: Creativity can address four different aspects, a feature of either a person, a 
product, a process, or press (the latter of which addressed the environment). With 
creativity of a person, the person themselves and their characteristics are focused: 
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The predominant question is: Is this person creative? With creativity of a process, 
processes are in focus: The question arises if the process is a creative one. Often, 
prototypical phases of creative processes—such as the ones identified by Poincaré 
(1908) and Wallas (1926), i.e., preparation, incubation, illumination, and verifica-
tion—are regarded and considered requisite for creative product to emerge. If the 
process involves incubation and illumination, mathematical processes are often 
regarded creative.

By creativity of a product, it is evaluated if the outcome, the result of a process is 
creative. Here, the question arises if the product is new or innovative, if it is original. 
And finally, with press, the emphasis is on the interplay of the individual and their 
environment, which draws on the assumption that persons in a vacuum cannot be 
creative, but rather respond to external factors. All these four aspects can be in focus 
in mathematics education research—also in a little c perspective: Regarding creativ-
ity, some researchers evaluate students’ products, others investigate students’ pro-
cesses, while again others evaluate the interplay of individual and group creativity 
at school. However, what already Rhodes mentioned six decades ago still holds true 
in mathematics creativity research today: The interplay of these four aspects “causes 
fog in talk about creativity” (Rhodes, 1961, p.  307). Even if products are being 
evaluated, often conclusions are drawn on the persons’ creativity, and sometimes 
inferences are being made about creative processes although the products were 
evaluated—not the processes themselves. This “fog” or confusion hints at the need 
for researchers in mathematics education to be clear about what it is that they con-
sider being creative (or not), and to communicate clearly what aspects of creativity 
and what interplays they investigate. Pitta-Pantazi et al. (2018) use Rhodes’ catego-
rization and apply it successfully to mathematics education by showing how exist-
ing studies can be mapped based on Rhodes’ categories, addressing processes, 
persons, press, and products.
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Chapter 3
Mathematical Creativity and Society

Scott A. Chamberlin and Anna Payne

3.1 � A History of Mathematical Creativity

To understand the construct of mathematical creativity with a modicum of depth, it 
is informative to make sense of general creativity research conceptions first and then 
to realize its applications to mathematics. This book represents thoughts of research-
ers who view creativity through the lens of development and the tenets conceptual-
ized in this chapter provide a basis for interpreting literature and ideas throughout 
the book.

3.2 � Overview of Creativity Research

In this section, a concise overview of seminal research in the field of educational 
psychology is first presented. Subsequently, the research is applied to the domain of 
mathematics, in an attempt to elucidate the editors’ conception of the construct 
known as mathematical creativity. The review of literature on general creativity is 
purposefully abridged because most readers of this book have substantial knowl-
edge of the general construct.

Albert and Runco (1999) provide a comprehensive overview of the history of 
creativity, tracing it at least 2000 years to current. From their perspective, much of 
the formal emphasis on creativity research dates to 150–200 years ago. Albert and 
Runco mention that the construct of creativity was highly driven by a Western 
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(European and American) influence. In specific, much of the early writing about 
creativity was Christian-oriented and pertained to evidence of creativity mostly in 
men. As the field progressed into the early twentieth century, visionaries such as 
Wallas (1926) provided models of why and how the creative process unfolds. In 
specific, Wallas suggested that the emergence of creative product(s) was a result of 
a four stage process which entailed: preparation, incubation, illumination, and veri-
fication. The stage that notoriously receives the largest amount of attention is that of 
incubation, because the stage suggests that creativity does not often comprise any 
one specific ‘aha’ moment or can be attributed to some sort of an epiphany. Instead, 
the emergence of creative product is more likely a result of considerable investment 
of cognitive or mental energy (Lykken, 2005) that may come from a struggle to 
make sense of an enigmatic situation.

Following several decades of discussion based largely on theory and mitigating 
the effect of empiricism about how the creative process unfolds, the next era of 
creativity research originated in the 1950s to 1960s. At this time, Guilford (1950) 
and Torrance (1966) were at the forefront of utilizing principles of psychometrics to 
quantify creative output. In specific, Guilford and Torrance each worked to develop 
respective instruments so that psychologists could ascertain the degree of creative 
thought. The next era of creative scholarly activity resulted in scholars such as 
Simonton (1988, 1999) and Sternberg and Davidson (1995) developing theories of 
creativity to provide insight with respect to what might be expected during the cre-
ative process. Of particular importance during this era was the contribution by 
Amabile (1983), in which she discussed the various components of creativity, called 
the Componential Theory of Creativity. Though this theory originated with a lens of 
organizational leadership, Amabile’s theory ultimately was recognized in the more 
general domain of educational psychology as one with particular significance in 
describing the creative process. Amabile’s work may have further served to provide 
insight about the indicators of creativity and/or how it might be manifested as a 
mathematical process. Imai (2000), traced initially to Hollands (1972) summarized 
the four indicators of creativity, fluency, flexibility, originality, and elaboration, in 
general literature and applied it to mathematical cognition.

3.3 � An In-Depth Look at Mathematical Creativity

Imai (2000) and Hollands’s (1972) work would have not occurred without substan-
tial efforts by previous researchers in mathematics education. Just before educa-
tional psychologists’ interest in creativity was born, dating at least to Chassell 
(1916), Poincaré (1908) is credited with the nascence of mathematical creativity 
discussion. Several decades later, Hadamard (1945) and Poincaré (1956) were 
instrumental in forwarding the initial discussion that mathematics, as a domain, 
could realize elements of creativity. Prior to their dialogue, some appeared to hold 
the belief that creativity had exclusive application to arts (creative and performing). 
Hadamard used terminology such as innovation in reference to how mathematics 
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may apply to creativity. Poincaré suggested that intuition (Browder, 1983) was a 
requisite component for creativity to emerge. Thankfully, this notion that mathema-
ticians were individuals engaged in rather mechanistic computations, as if they were 
a detached, rather emotionless computer on autopilot, was not accepted by many 
individuals in the world of creativity research.

Carlton’s (1959) seminal dissertation on 14 outstanding mathematicians pro-
vided 21 characteristics, which are, to this day, enlightening. Krutetskii (1976) cor-
roborated that mathematicians have an appreciation for aesthetics or beauty in 
solutions, thus suggesting that mathematicians do invest attention in creative pro-
cess and product. By early to mid-1990, the topic of creativity had become a main-
stay in professional organizations and academic journals. As an example, Silver 
(1997, 1994a, b) was the first to popularize the notion that problem-solving may be 
a vehicle to elicit creative thought, and a critical piece to problem-solving may not 
merely be solving problems, because the very act of posing problems might have 
proclivities to elicit creative mathematical processes and subsequently products. 
With the advent of a new millennium, the construct of mathematical creativity had 
realized considerable structure, through publications such as Liljedahl and Sriraman 
(2006), Sriraman’s (2004), and subsequently, Nadjafikhah et al.’s (2012) commen-
tary. In their work, they highlighted creativity and promoted the construct as a cen-
tral component of mathematics education and mathematics psychology. The first 
publication, by Sriraman and Liljedahl, details a discussion that they had in which 
many (mis)conceptions about creativity were elucidated and clarified. As an exam-
ple, one psychological principle discussed is the ‘Aha’ moment in relation to math-
ematical creativity. The ‘Aha’ moment in psychology is ostensibly an instantaneous 
moment when one (e.g., a problem solver) trying to make sense of a concept, has an 
epiphany or realization in which an illumination enables the mathematician to con-
clude work. In the final two publications, Sriraman, as well as Nadjafikhah, Yaftian, 
and Bakhshalizadeh, the authors provide desperately needed structure to the discus-
sion of what mathematical creativity is. Each of these publications served to assist 
researchers in focusing their efforts in theoretical scholarly contributions and instru-
ment design rather than to dictate specifically what mathematical creativity is. In 
fact, with the exception of Balka’s (1974) seminal work in instrumentation to quan-
tify mathematical creativity and Aiken Jr.’s (1973) comprehensive overview of 
mathematical creativity and the factors that may serve to indicate its presence, the 
work of the aforementioned scholars (Liljedahl, Sriraman, Nadjafikhah, Yaftian, 
and Bakhshalizadeh) has likely advanced the field considerably. More recently, 
efforts such as those by Singer (2018), Kattou et  al. (2016), Goldin (2017), and 
Haavold (2018) have provided additional insight regarding conclusions reached 
based on empirical data and theory analysis to support conclusions about mathemat-
ical creativity.
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3.4 � Value of Mathematical Creativity

The value of mathematical creativity likely varies by nation. There are often two 
entities that may influence curricula and content taught in schools. First, leaders in 
commerce and industry may possess some indirect influence. Second, educational 
standards often dictate more specifically the curricula and what is taught in schools, 
as they are utilized as a guide for day-to-day instructional decisions. Prior to this 
discussion, it is incumbent upon the book editors to disclose that creativity has at 
least three notable purposes and another endless list of reasons for its importance.

First, creativity is the cornerstone of innovation. Without creative processes and 
products, the world would almost literally stand still in an era. Were this the case, 
the most advanced versions of automobiles, cellular phones, medical advances, and 
the creative arts would not have been realized. Speaking of mathematics, if mathe-
matics advanced no farther than it is today, much knowledge would have already 
been generated. Nevertheless, future innovations that are predicated in the disci-
pline of mathematics, such as engineering, physics, chemistry, and other STEM 
disciplines would not see advances. Second, and as a result of the stagnation of 
mathematical creativity, a discipline has outlived its usefulness when advances, 
through creativity, cease to be made. Third, creativity is valued simply for the enjoy-
ment of doing mathematics. As Maslow (1943) illustrated when discussing motiva-
tion, once life’s needs are met (e.g., air, water, food, shelter), an appreciation for 
aesthetics is realized. Words such as creativity, beauty, and aesthetics are nearly 
synonymous when discussing advances in mathematics. Third,

Following an exhaustive search, it was found that electronically accessing indi-
vidual national standards documents for all countries became an impossible task. 
Hence, a central database of mathematics standards was utilized in which standards 
for each country was provided. This database was found at: http://timssandpirls.
bc.edu/timss2015/encyclopedia/countries/. Two caveats are issued prior to sharing 
results about countries’ emphasis on mathematical creativity. First, overviews were 
written by educational experts in respective countries, so the standards are open to 
interpretation in some countries more than others. Moreover, individuals construct-
ing the summaries may have been instructed to concentrate specifically on content. 
Second, scant space was provided for the overview of national standards, so the 
synopses of them was greatly abbreviated relative to the size of the actual docu-
ments. Hence, the emphasis on mathematical creativity may not have been accu-
rately reflected. A third explanation for the general paucity of emphasis on 
mathematical creativity exists. That is, international assessments are notorious for 
assessing mathematical performance and may rely on a regurgitation of standard, 
highly efficient mathematical procedures. Hence, in countries attempting to have 
high marks in international comparisons, creativity may intentionally be a casualty, 
so that acceleration may be achieved without distractions, though international data 
may not reveal this relationship empirically. In short, for countries that perform at 
the top of such international comparisons in Trends in International Mathematics 
and Science Study (TIMSS) and Programme for International Student Assessment 
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(PISA), creativity simply may not be a chief emphasis in grades K-12. Much of the 
emphasis on mathematical creativity, it may seem, originates at the university level. 
In fact, TIMSS appears to make no such claims that creativity is assessed. PISA, on 
the other hand (https://www.pisa.tum.de/en/domains/creative-thinking/), will be 
assessing mathematical creativity for the first time in 2022, but it will be done with 
a survey, rather than through having students create innovative solutions. Sadly, it 
may be the case that mathematical content on international assessments does not 
account for mathematical creativity and so mathematics instructors are not advised 
to facilitate it. Seeley (2004) made such a claim in reference to standardized assess-
ments in the United States. An old adage in many of the westernized nations is, “If 
you assess it, they will teach it!” If there is any truth to this adage, then the repudia-
tion of creativity assessment may be the reason that it is often neglected in national 
mathematics standards documents.

Listed in Table 3.1 are top performing countries in international comparisons, in 
order of their performance. The number of times that mathematical creativity was 
mentioned in the elementary and lower secondary documents is provided in 
parentheses.

Data from select regions and cities were removed as such geographical locales 
do not develop national standards

Despite what may be theorized as an almost patent neglect of mathematical cre-
ativity among top performing countries, literature in creativity education advocates 
for the infusion of it in day-to-day curricular decisions. This request for it may be 
predicated on the theorized by-products associated with it. For instance, it may be 
postulated that mathematics curricula heavy in creative demands may facilitate the 
development of students with flexible thinking, an appreciation for the aesthetics of 
mathematics (Chen, 2017; Lingefjärd & Hatami, 2020), and in the end may promote 
innovative thinking. Some industry experts feel that innovative mathematicians are 
more important than mathematicians capable of routinely completing voluminous 

Table 3.1  International mathematics assessment data

Grade 4 (TIMSS 2019) Grade 8 (TIMSS 2019) Grade 9 PISA (2018)

1 Singapore (0) Singapore (0) Singapore (0)
2 South Korea (1) China-Taiwan (0) China-Taiwan (0)
3 China-Taiwan (0) South Korea (1) South Korea (1)
4 Japan (1) Japan (1) The Netherlands (0)
5 Russia (0) Russia (0) Japan (1)
6 Northern Ireland (3) Ireland (0) Switzerlanda

7 England (0) Lithuania (0) Poland (1)
8 Ireland (0) Israel (0) Belgium (0)
9 Latviaa Australia (0) Estonia (0)
10 Norway (0) Hungary (0) Canada (0)

aStandards not listed
2019 TIMSS Results retrieved at: https://nces.ed.gov/timss/results19/#/math/intlcompare
2018 PISA Results retrieved at: https://nces.ed.gov/surveys/pisa/pisa2018/pdf/PISA2018_ 
compiled.pdf
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amounts of computations because computers can likely complete such work in a 
more precise and expeditious manner.

Given the almost universal neglect of mathematical creativity in elementary and 
secondary grade standards, it is not surprising that educational resources, in time 
and money, are scant in supporting its development (Plucker et al., 2004). When 
such a critical element of mathematics is wholly absent from standards documents 
and funding is not provided to facilitate it, professional development is often absent. 
It might be a safe assumption that mathematical creativity is often discussed all to 
infrequently in teacher preparation courses as well.

3.5 � Organizational Framework of the Book

Of substantial importance to any academic book is its organizational framework. 
The editors of this book invested considerable time discussing the organizational 
framework because introducing the idea of mathematical creativity having a devel-
opmental component is rather a novel idea in the mathematics education literature. 
However, upon considering the influence of development in mathematical creativ-
ity, Drs. Chamberlin, Liljedahl, and Savic were surprised to learn that such a discus-
sion had not ensued among scholars. When looking at the intersection of 
mathematical creativity and development, most scholars use the term development 
to refer to the development of mathematical creativity (Tubb et al., 2020), rather 
than mental development being a factor in the equation of mathematical creativity. 
Though not perfectly synonymous with the term development, another term that 
could be used is maturation. An operational definition of maturation for this book is, 
“a positive change in mental capabilities that leads to an enhanced penchant for 
advanced thinking.” In substituting the term, maturation can have highly positive 
effects on the prospect of mathematical creativity; conversely, the lack of matura-
tion or maturation at an abnormally slow rate, could have deleterious effects on 
mathematical creativity (process or product). In considering mathematical creativ-
ity in relation to development, several tenets are postulated.

Mathematical creativity is dynamic or ever-evolving. As mathematicians age, 
mature, and develop, the expectations regarding what constitutes mathematical cre-
ativity also advance. Hence, analysis of creativity becomes complex in upper levels 
of schooling. Mathematical creativity is, in part, influenced by other factors that are 
related to development. For instance, intelligence and cognition, as well as affect 
play a role in creative output in mathematics. Further, mathematical creativity can 
be viewed as composed of person, process, and product (Rhodes, 1961).

3.5.1 � Mathematical Creativity Is Dynamic

Unlike some domains, mathematics is one in which concepts build from year to year 
and they become increasingly complex as learners age (Gravemeijer et al., 2017). 
As an example, when learning to reason with rational numbers (Kainulainen et al., 
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2017), grade one students may learn initially about what constitutes a fraction and 
the relationship of part to whole. Subsequently, in grade two, students may learn 
how to combine parts (add) or remove a part from a whole (subtract) fractions. As 
they progress into later elementary and early secondary grade levels, students may 
learn to move from fractions to decimals to percentages. However, in other domains, 
such as humanities or social studies, the topics decided upon in educational stan-
dards may have little reason regarding why they are introduced at the respec-
tive ages.

Moreover, not only do content demands and mathematical concepts become 
increasingly complex as students age, but problem-solving demands grow in com-
plexity precipitously (Gravemeijer et al., 2017). For instance, at very young ages, 
students are provided with problems to solve. However as they age and enter the 
tertiary system of education, problem solvers might start to generate their own 
problems and solve them with aids such as graphing calculators or computers. This 
responsibility of generating and answering one’s own (novel) questions, may be 
consistent with future vocational demands, as they progress beyond formal educa-
tion. Other demands placed on mathematicians may be, but are not limited to, criti-
cal thinking, creative thinking, problem-solving, data analysis, innovation, and 
mathematical modeling (Kozlowski et  al., 2019; Vorhölter et  al., 2014; 
Wagner, 2014).

The point about mathematics is that it grows in intricacy as students age. 
Understanding algebra, as an example, is predicated on one’s ability to reason 
abstractly and such demands may not be requisite in younger grades. Geometry 
too, as does trigonometry, calculus, and a host of other university-related mathe-
matics courses, has a component of abstraction involved. Hence, the target regard-
ing what constitutes mathematical creativity seems to be moving as students age. 
A contribution that may be considered creative in grade three, for instance a par-
ticularly innovative method to divide fractions, may not hold such promise in alge-
bra when it comes to making sense of factoring using the quadratic formula. This 
is likely due to that which constitutes creativity in the respective foci, as people age 
in relation to a model referred to as the Four-C model of creativity (Kaufman & 
Beghetto, 2009). In the Four-C Model of Creativity, there are four levels compris-
ing (1) Mini-C, (2) Little-C, (3) Pro-C, and (4) Big-C. As individuals age, a devel-
opmental component is overlaid with the domain and contributions to fields 
become increasingly more sparse and less common. Hence, in looking at mathe-
matical creativity, the expectation regarding what constitutes creativity is altered 
subtly from year to year to year.

The Four-C model is one initially created in the world of Educational Psychology. 
However, its applications are particularly salient in the domain of mathematics, as 
explicated previously. As the book develops, the understanding of mathematical 
creativity and its relationship to development and maturation will be comprehen-
sively elucidated.

3  Mathematical Creativity and Society



34

3.5.2 � Mathematical Creativity Is Influenced by Affect, 
Intelligence, and Other Constructs

To minimize mathematical creativity to exclusively development is shortsighted. 
However, in looking at developmental, the relationship between development and 
other psychological constructs such as affect (students’ feelings, emotions, and dis-
positions), intelligence which is not merely measured by intelligence quotient, and 
other constructs, is apparent. Affect, as an example (Chamberlin & Mann, 2021), 
appears to show some marked connections to mathematical creativity. Empirical 
evidence may suggest that affect that students bring to learning episodes can greatly 
influence the degree of mathematical creativity that is elicited (Akgul & Kahveci, 
2016). Amabile et al. (2005) substantiated this claim in vocational settings. In fact, 
Chamberlin and Mann theorize that at least five factors, comprising Iconoclasm, 
Impartiality, Investment, Intuition, and Inquisitiveness, influence students’ recep-
tiveness and, subsequently, creative output.

To date, the Five Legs Theory of Creativity (Chamberlin & Mann, 2021) appears 
to be the only such theory that is specific and was designed with mathematics learn-
ing as the focus. Each of the Five Legs pertains to students’ emotional states that can 
be altered by intentional teaching components. In specific, the two most salient 
teaching components are types of activities and classroom environment created. 
Iconoclasm pertains to a problem solver’s penchant to challenge commonly accepted 
mathematical solutions, particularly when provided by an authority figure such as a 
teacher, mentor, or even an anonymous person on a website, while solving prob-
lems. Impartiality pertains to one’s ability to be open-minded in developing math-
ematical solutions. In being Impartial, one does not have allegiance to any particular 
method or approach to solving a problem. Investment pertains to one’s emotional 
dedication or commitment towards advancing content knowledge in a field, satisfy-
ing a curiosity, deepening one’s own mathematical content knowledge in a field, or 
even resolving a discrepancy, such as with cognitive dissonance (Olson et al., 2006), 
that was previously unresolved. Intuition pertains to one’s drive towards a particular 
response or solution, even if it is not one that is commonly endorsed. High levels of 
Intuition may result in increased levels of persistence. Similar to Intuition, 
Inquisitiveness (the Fifth Leg of Creativity) pertains to interest which may result in 
high levels of engagement. In looking at all Five Legs of Creativity, they should 
more appropriately be perceived as emotional states that may enhance the likeli-
hood of creative process and subsequently creative output or product. When one or 
more of the Five Legs is at a low level, the likelihood of creativity emerging in 
mathematics is said to be compromised. Conversely, when multiple Legs, or better 
still all Five Legs are at high levels, the proclivity for mathematical creativity emerg-
ing is said to be high.

As well, intelligence plays a role in mathematical creativity. The debate lingers 
with respect to what degree of intelligence is prerequisite for mathematical 
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creativity to emerge. Some hypothesize that specific intelligence is necessary for 
creativity to occur. The Threshold Theory of Creativity (Jung et al., 2009; Welter 
et al., 2016) maintains that an IQ of at least 120 is necessary for creative process 
and output to be realized. Conversely, others maintain that the Einstellung Effect 
(Ellis & Reingold, 2014) holds merit. In the Einstellung Effect, it is theorized that 
having too much experience and/or intelligence may impede one’s penchant for 
creative responses because one’s propensity to derive novel responses is hindered 
by preconceived notions of how to respond. It appears as though a combination of 
the two positions may be the most logical perspective through which to view cre-
ativity. It is possible that in mathematics, a specific level of intelligence, whatever 
that level is, must be apparent before creative output can occur. By the same token, 
exceedingly high levels of experience and/or intelligence may inhibit mathemati-
cal creativity, because individuals advanced in their field may rely on pre-estab-
lished conventions to respond to problem-solving situations. Additional 
psychological constructs most certainly influence the likelihood of mathematical 
creativity emerging. For instance, content knowledge, advanced intellect in a spe-
cific domain, and expertise in solving problems appear to influence one’s effective-
ness in solving problems, though they have not been studied in sufficient detail to 
garner any conclusions. A final consideration in this chapter, regarding compo-
nents that may influence mathematical creativity, with respect to development, 
pertains to the person, process, and product, from the Four P Model of Creativity 
(Rhodes, 1961).

3.5.3 � Final Factors That Influence Mathematical Creativity

The final factors mentioned in this book relevant to mathematical creativity are 
person, process, and product. Each of these components has multiple sub-constructs. 
As an example, a person may comprise, but is not limited to, individual characteris-
tics and attributes such as affect, thinking styles (such as the ability to think in a 
divergent manner and/or to think flexibly), and personal behavior, as well as habits 
and traits. Critical to mathematical creativity is the person, as without the person, 
creative process and product would not occur. The person is the vehicle from which 
creativity originates. Moreover, the person is multifaceted as the person brings an 
ostensibly endless list of experiences and approaches to solving mathematical prob-
lems. As explicated earlier, it would appear as though having advanced experience, 
content knowledge in a domain, or intellect would significantly enhance the pros-
pect of creative output. What does not appear to be discussed in considerable detail 
by Rhodes (1961), when considering the problem solver, is the prospect of a person 
interacting with one or more people, in seeking a solution. In this respect, a compo-
nent of social mediation may serve to enhance or inhibit the prospect of creative 
mathematical outcomes. Without person, there is no process or product. Process is 
often discussed next, as it is an antecedent to the outcome, or product.
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Process pertains to the acts in which a problem solver engages to generate a cre-
ative product. With respect to process, Rhodes (1961) was a believer in early work 
by Wallas (1926), and endorsed the four stages as comprising the following: prepa-
ration, incubation, illumination, and verification. In this process, preparation was a 
requisite and rather a self-explanatory construct-stage. In short, ample time is 
needed for the creative person to ruminate on a problem and to gather information 
in preparation to solve a problem. Though incubation, the second stage, may be the 
one most often attributed to Wallas, illumination may be the stage that generates 
particularly novel and useful products or solutions. Incubation, however, is not to be 
overlooked because it speaks of how creative solutions are not often miraculously 
derived instantaneously, especially when the mathematical problem is significantly 
challenging. Illumination pertains to the process of gaining some insight relative to 
a solution and can be considered the start of the culminating process. Verification 
too, has its role in the creative process, as it may be the catalyst that encourages 
problem solvers to refine their solution. The product is of primary importance as 
process and product are often the two components discussed on a regular basis in 
mathematics education. Products too, as opposed to the process used to develop the 
product(s), are often what is used to measure the creative output. In effect, the prod-
uct becomes the artifact of the prospectively creative work because it is the process 
documented in physical form. Hence, products maintain a crucial role in the rela-
tionship of mathematical creativity and development. In fact, products may often be 
viewed by mathematics educators as the sole indicator of mathematical creativity, 
although it could be argued that mathematics educators have realized the impor-
tance of process (Brownell, 1947) long before many content peers did.

3.6 � Conclusion

Mathematical creativity has been viewed through multiple lenses. A cursory review 
of mathematical creativity illustrates a progression of interest in research topics that 
initially began with theories and theoretical writings to explain (mathematical) cre-
ativity (e.g., Hadamard, 1945; Poincaré, 1908, 1956). Subsequently, instrument 
development was undertaken, with a flurry of publications in the 1960s and 1970s 
(Balka, 1974; Buckeye, 1970; Evans, 1965; Foster, 1970; Krutetskii, 1976; Manville, 
1972; Meyer, 1970; Prouse, 1967; Spraker, 1960) to quantify and ascertain mathe-
matical creativity scientifically.

Following the instrumentation development stage of the 1960s–1970s, the 
emphasis in mathematical creativity returned to a theoretical one. Silver’s interest in 
problem posing as a vehicle to promote mathematical creativity garnered much 
attention and generated discussion among academics. Also, scholarly efforts were 
directed towards types of curricula that may elicit mathematical creativity. 
Chamberlin and Moon (2005), for instance, promoted the idea of using mathemati-
cal modeling activities to facilitate mathematical creativity. Similarly, Scherer et al. 
(2019) looked at the learning of computer programming as a means to develop 
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mathematical creativity. As the book progresses, the importance of development 
will be explained in an attempt to learn about another piece of the mystery referred 
to as mathematical creativity.
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Chapter 4
Organizational Framework for Book 
and Conceptions of Mathematical 
Creativity

Scott A. Chamberlin, Peter Liljedahl, and Miloš Savić

4.1 � Organizational Framework of Book

Of particular importance in this book on mathematical creativity and its relationship 
to student development is an operational definition with respect to what constitutes 
development. Specifically, mathematical creativity and development is operation-
ally defined in this work as, “In relation to mathematical creativity, it is the authors’ 
position that development can have rather dramatic effects on creative process and 
product, as can myriad other factors such as affect, classroom environment, and cur-
ricula. At the heart of development, in this book, mathematically creative processes 
are of central importance.” More specifically, in this book, development is not con-
sidered to be the development of creativity in the classroom, as influenced by overt 
pedagogical decisions or carefully selected curricula. Instead, it can be equated with 
a maturation process, which should not be left completely to chance. Incidentally, 
this notion of creativity being something that teachers magically manipulate with 
some magical curricula is likely the most common conception of it when searches 
of academic databases transpire. As a caveat, the two conceptions of mathematical 
creativity, relative to development, are closely related. To clarify, development per-
tains to the maturation of learners and their corresponding ability to engage in math-
ematically creative processes, which typically results in creative products.
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For the sake of convenience, and because the aforementioned databases often 
partition pupils into one of several categories, three age categories have been 
adopted to guide the arrangement of the book:

•	 Elementary: ages 5–12
•	 Secondary: ages 13–18
•	 Tertiary: ages 19–23

Given the fact that conclusions reached in this book are predicated almost exclu-
sively on empirical research in mathematics education, one admonition to readers is 
that some studies span more than one age category. As an example, a study may 
have been conducted in which students in grades 6, 7, and 8 are involved, thus 
including students age 12, 13, and 14. In such cases, authors have been asked to 
disclose the fact that the study may include more than one age category. In general, 
readers should use discretion in interpreting such passages and would be well-served 
by applying the findings to (a) both age ranges, or (b) the predominant age category 
of the participants. In the example above, since roughly two-thirds of students are in 
the Secondary age category, the findings might likely apply there foremost.

Another component to consider is that mathematics rigor may not advance in a 
linear fashion from grade to grade. Though experts in curriculum design and authors 
of standards may imply that it does, logic suggests otherwise. The amount of review 
from year to year may directly influence the extent of new material that can be intro-
duced. It may also be postulated that the two most likely explanations for increasing 
rates of failure in mathematics is a consequence of reduced amount of review, which 
directly relates to the amount of new information that is introduced. Secondarily, the 
level of abstractness in mathematical domains likely increases as students age and 
this may influence student affect and cognition. For instance, algebra I is consider-
ably more abstract than grade seven or eight mathematics is because much of that 
may be review. All of this (in)directly influences the degree to which student devel-
opment influences the emergence of mathematical creativity. Taking into consider-
ation that generally students mature at varying levels (Cromer et al., 2015; Hassler, 
1991) and this evolution is overlaid with the construct of mathematical creativity, 
the complexity of this discussion is elevated considerably. Figure 4.1 illustrates the 
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varying level of development with the increased complexity of mathematical con-
tent in grades, but is a very rough approximation of the timeline.

This diagram of a hypothetical student is one in which readers can see the rela-
tionship between student development and (mathematical) curricular rigor. In it, 
neither the development of the student nor the increasing rigor of the curriculum 
advance in a consistently linear fashion. This is a result of a host of factors, notwith-
standing the notion that not all students have precisely the same mathematics 
courses throughout the world, not all students mature in lockstep fashion (though 
some of our school systems are based on the fact that chronological advancement 
perfectly correlates with cognitive development), not all students begin school at the 
same time or in the same place, and many academic institutions cover material in 
more or less sophisticated manners than others.

Hence, while a student in school A may be doing quite well academically using 
the standardized assessment created by the district, another student merely miles 
away may have almost identical content knowledge and reasoning skills, but not 
fare as well on the district assessment because of its rigor. As an aside, the countless 
human factors that constitute the educational process are what makes generaliza-
tions in the soft-sciences so much less stable than they are in the hard-sciences.

The editors and authors of this book therefore would like readers to be aware that 
though the focal point of the book is predicated on data from high quality empirical 
work in various domains, all centered on mathematics and learning, some conclu-
sions may apply to specific environments more than they do to others. Further, in 
extensive discussions about development and mathematical creativity, patterns were 
utilized to reach conclusions. As an example, whether one endorses Piaget’s cogni-
tive stages as valid (Inhelder & Piaget, 1958), it is generally believed that one’s 
ability to reason abstractly is extended as learners age. Thus, a fourteen-year-old 
can likely reason abstractly in a much more efficient manner than an eight year old 
can, assuming normal circumstances and development.

Additional conversations are raised in this chapter. As an example, the discussion 
of development and mathematical creativity is considered in relation to some com-
monly accepted theories in the domain of educational psychology. Namely, Kaufman 
and Beghetto’s (2009) Four C’s and Rhodes’ (1961) Four P’s of Creativity are con-
sidered. Development and mathematical creativity is also discussed in relation to 
barriers that may impede it and in relation to determining factors in the learning 
equation: cognition, affect, and conation (Goldin, 2019).

4.2 � Development and Mathematical Creativity in Relation 
to Creativity Models

Discussions of theoretical matters in a domain, in this case mathematics education, 
should not be undertaken devoid consideration of (a) empirical evidence that can be 
used to support or refute it, or (b) pre-existing theory. The former, empirical 
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evidence, is considered throughout the book. The latter, pre-existing theory, is con-
sidered in this section and periodically revisited throughout the book. In this sec-
tion, Kaufman and Beghetto’s (2009) Four C’s are discussed and then Rhodes’ Four 
P’s are discussed, with minimal discussion on press.

4.2.1 � The Four C’s

In 2009, Kaufman and Beghetto proposed a general (not mathematical per se) model 
of creativity in which they outlined contributions that could be considered creative. 
This model was divided into four levels, each pertaining to creativity and hence the 
title The Four C’s. The levels of creativity and a brief description of each level, is 
provided in Table 4.1.

According to Kaufman and Beghetto (2009), the Four C model was generated in 
response to the shortcomings in the previous Big-C (eminent creativity)/Little-C 
model (everyday creativity), as discussed by Merrotsy (2013), because Kaufman 
and Beghetto felt that this dichotomous model was one in which other, rather 

Table 4.1  Four C model of creativity with descriptions

Levels of 
creativity Description of levels

Mini-c These are often contributions at a personal (Runco, 1996, 2004) or individual  
(Niu & Sternberg, 2002) level and examples of it may occur during general 
classroom learning. For instance, a teacher may witness a contribution that (s)he 
has never seen, but many other advanced mathematicians have made such a 
realization. Assessment may occur by oneself.

Little-c These are often contributions considered to be everyday and may not require 
particularly advanced expertise in an area to emerge. They are, however, a bit more 
formal than those in mini-c. often, assessment may occur from a parent or teacher 
(not necessarily an expert in the domain).

Pro-c These are often contributions that require some degree of work with a mentor, to 
induct one into an advanced state of a domain. These contributions are often in a 
professional field or endeavor. Fellow (expert) peers in a domain often assess pro-c 
contributions for value.

Big-C These are often contributions that are incredibly rare and are recognized widely by 
experts in a domain as monumental or generational in nature. Such contributions 
are recognized across the domain as significant. As an example, in the world of 
health sciences, Jarvik’s artificial heart is an example of a Big-C contribution 
(Kahn & Jehangir, 2014).

*Note: The titles of the respective levels are recorded precisely as they were in the Kaufman and 
Beghetto (2009) article. It may be hypothesized that the mini and little levels start with a lower case 
letter to denote contributions that may be highly important to the individual, but not society per se. 
In the Pro and Big levels, each word starts with an upper case letter to denote (perhaps ostensibly) 
more significant contributions to society. Further, the final C, in Big-C, is upper case because it 
represents the highest level of contribution that an eminent individual can make. In fact, it is likely 
that accomplishing a Big-C contribution is what qualifies one as eminent in a field
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significant, contributions were omitted. Hence, their four-level model was in 
response to the faults in the two-level model and provided a great degree of 
specificity for increased precision in the discussion of creativity. The authors do 
mention several caveats with their model, perhaps the most significant of which is 
that they do not see the four levels as ones through which one must progress in 
sequential order. In fact, they mention that there may very well be situations in 
which one or more stages is skipped. Nevertheless, showing evidence of creativity 
in early stages may enhance the likelihood of advanced creative contributions sur-
facing eventually. It is also important to note that higher level creative contributions, 
such as Big-C and Pro-c, often require some degree of expertise. As an example, 
one is most unlikely to simply introduce oneself to a domain (e.g., astrophysics, 
veterinary medicine, or music) and realize a Pro-c or Big-C contribution within 
days. Often, such contributions require years of time, emotional, and cognitive 
investment.

How, one may inquire, does the Four C model have any application to the focus 
of this book, development and mathematical creativity? Simply stated, when learn-
ers are at a very young age, they cannot be expected to realize significant contribu-
tions because the requisite level of expertise is absent. In short, they may be at a 
neophyte level. Given the fact that Big-C contributions come from only some emi-
nent individuals, perhaps every ten to twenty years, a seven year old grade one stu-
dent will never generate such a contribution, at least in grade 1. Similarly, Pro-c 
contributions cannot happen at very young ages as the requisite amount of content 
expertise does not exist. However, in elementary and secondary grades, little-c 
becomes a possibility, as well as mini-c. This is because contributions from such 
individuals may be prospectively creative in mathematics and show promise for 
additional creative contributions. At the tertiary level, Pro-c becomes a possibility, 
but even then it is likely infrequent. As an example, in a senior level or early gradu-
ate level engineering course, a student may have a Pro-c contribution, but even that 
is unlikely in a school setting. Big-C contributions are often never realized by stu-
dents, but a select group of professors or advanced professionals may ultimately 
have Big-C contributions. As an aside, Simonton (1997) suggested that what is 
known now as Big-C work often begins in one’s twenties and may not likely come 
to fruition until one’s forties (Table 4.2).

Table 4.2  Explanation of age categories and likelihood of contributions

Age category in book Possible contributions level

Elementary (age 5–12) Mini-c, little-c
Secondary (age 13–18) Mini-c, little-c
Tertiary (age 19–23) Mini-c, little-c, pro-c
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4.2.2 � Person, Process, and Product: Portions 
of the Four P Model

Of additional importance to discussions in this book is Rhodes’ (1961) Four P 
model of Creativity. In this section, person, process, and product will be discussed 
in relation to development and mathematical creativity. The fourth P, press or envi-
ronment, will receive less attention than the first four Ps, but will be discussed near 
the end of the chapter. Rhodes’ conceptual definition of creativity included all four 
Ps. With the person as the centerpiece, he formulates a conceptual definition of the 
construct in this manner:

My answer to the question, “What is creativity?” is this: The word creativity is a noun nam-
ing the phenomenon in which a person communicates a new concept (which is the product). 
Mental activity (or mental process) is implicit in the definition, and of course no one could 
conceive of a person living or operating in a vacuum, so the term press is also implicit. 
(p. 305).

In this respect, all four Ps are integral to the process of creative emergence. 
Editors of this book find this model equally applicable to the relationship of devel-
opment and mathematical creativity. Person, according to Rhodes (1961), pertains 
to myriad factors, including, but not limited to: “personality, intellect, temperament, 
physique, traits, habits, attitudes, self-concept, value systems, defense mechanisms, 
and behavior” (p. 307). Note that most of these person attributes pertain to cognitive 
abilities or affective traits. Note additionally that the development, or state of matu-
ration of the learner is not explicitly mentioned, though Rhodes does suggest from 
very early creativity research, that individuals that physically mature late, relative to 
their peers that may be early developing according to psychological and chronologi-
cal norms, may hold some proclivity to be more flexible thinkers and thus more 
creative than their early maturing peers (Jones, 1957).

Just as the person is central to creative emergence, the (cognitive) process 
involved in generating creative products is instrumental. Many readers are inter-
ested in knowing which processes are specifically mentioned by Rhodes. Process, 
according to Rhodes (1961), pertains to, “motivation, perception, learning, think-
ing, and communicating” (p. 308). He posed several intriguing questions, all related 
to thinking and the motive that prospectively creative individuals have in opposition 
to individuals that may accept the status quo. Rhodes lists multiple reasoning pro-
cesses relative to creativity, as he relates them to the Four Stages of Creative Thought 
(Wallas, 1926). As with person, process may have a developmental component to it 
for two reasons. First, it was believed by Rhodes that success in creative reasoning 
or process could be taught through formal approaches. Hence, the more advanced 
one is in chronological years, assuming formal approaches for thinking creatively 
were delivered, the more likely one may be to successfully engage in creative pro-
cesses. Second, Rhodes closely tied creative process to success in preparation, incu-
bation, inspiration, and verification, and he suggested that the more mature one is, 
the greater propensity one may have to engage in these periods successfully.
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Success in creative processes, of which Rhodes mentioned many, ultimately 
leads to creative products. In fact, Rhodes (1961) referred to creative products as, 
“artifacts of thoughts” (p. 309). In essence, Rhodes suggested that products are the 
end-result or manifestation of processes. Without creative process, therefore, cre-
ative products would not materialize or come to a state of tangibility. The develop-
ment of an initial product is of far greater significance than rather minor innovations 
or ‘tweaks’ to inventions after the initial creation. This, then links Rhodes’ concept 
of products to Kaufman and Beghetto’s Big C, in that generational inventions may 
not come about until later stages in life, once one has worked with a mentor for 
several years. This too suggests a developmental component in the emergence of 
creative products. Moreover, products of considerable importance are often the 
result of organizing and classifying thoughts. The processes of organizing and clas-
sifying information is not low level as no structure exists for systematically arrang-
ing information, until the original creator does so. Such a higher-order responsibility 
is typically incumbent upon the most advanced and eminent individuals in a field.

4.3 � Barriers to Eliciting Creative Process and Product

Development and maturation likely play a large role in the emergence of mathemat-
ical creativity and they are one component in its facilitation. However, some may 
wonder if any barriers or negative attributes exist that may hinder creative process 
and product in mathematics. Likely, the most substantial factors pertain to a lack of 
qualifying characteristics among teachers, such as mathematical content knowl-
edge, pedagogical content knowledge, and/or a lack of fundamental principles in 
mathematics psychology, such as a cognizance of creativity. In addition, several 
factors that may be beyond teachers’ control likely impede creative processes and 
subsequently products. As an example, an overemphasis on standards and standard-
ized assessments may obstruct time that could be devoted to mathematical creativ-
ity. This burden of an overcrowded curriculum may thwart time that could be 
invested in the Four Stages of creativity (Wallas, 1926).

There may be instances in which mathematics instructors or mentors, with insuf-
ficient understanding of mathematics content, mathematics education, and/or math-
ematical creativity fail to recognize windows, or opportunities, for creative process 
and product. Much of the failure of mathematical creativity to emerge may be a 
result of inappropriate development expectations, in coordination with the inability 
to infuse developmentally appropriate tasks and/or to create a developmentally 
appropriate environment. In some instances, it is likely that a basic modification to 
a problem’s structure or mathematical information may make the task more devel-
opmentally appropriate than it was in its initial form. As an example, in some situa-
tions, quite engaging and highly open-ended problems may be negatively altered for 
use in textbooks with the insertion of organizational tools, designed to help students 
solve the problem. Such organizational tools may mathematize problems for stu-
dents (Cobb et  al., 1997; Lesh & Carmona, 2003), thereby serving to constrain 
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thinking of individuals with creative potential. As an example, compare the two 
problems below:

Problem A:
Identify the relationship between column A and column B:

HINT: see if you can identify a pattern (e.g., an increase in value) that is consis-
tent from column A to column B.

A B

2 8
4 64
6 216
8 512

Problem B:
In a recent show on personal finances, the host mentioned that assuming normal 
financial circumstances, meaning not excessively aggressive or stagnant growth in 
a market, one could expect a set aside retirement amount to double in value every 
seven years. Given this claim, if a person wanted to retire with at least $1,000,000, 
what is the minimum amount of money that the person needs to have invested by 
age 30, assuming no additional contributions to retirement. Note: The person hopes 
to retire at age 65.

Though the two problems each pertain to the same mathematical concept, that is 
exponential growth, the second problem is not as leading as the first because the 
organizational tool is not provided. Further, no hint is offered to the problem solvers 
in Problem B. The second problem has an unknown, value that needs to be identi-
fied, and may result in more than one answer, since the problem is phrased as, 
“Given this claim, if a person wanted to retire with at least $1,000,000, what is the 
minimum amount of money that the person need to have invested by age 30, assum-
ing no additional contributions to retirement.” Unfortunately, in some cases, highly 
engaging mathematical concepts may be compromised by curriculum developers 
that encourage the quickest path to the answer. In so doing, what Hiebert et  al. 
(2000) refer to as ‘sense-making’ in mathematics is often thwarted.

In addition to problems that may arrest thinking, the overreliance and prospec-
tive overemphasis on standardized tests as a metric for gauging student mathemati-
cal proficiency may impede the emergence of mathematical creativity, as increased 
attention is invested in insuring that all standards, be they national, state, and/or 
district, are met. Though some standards are engaging, many may be reduced to 
rather mundane algorithmic procedures, ones in which the true aesthetics of math-
ematics (Breitenbach & Rizza, 2018) is not presented or appreciated.

To compound the problem, use of curricular materials that may constrain stu-
dents’ thinking, coupled with teachers that are expected to deliver an extensive 
quantity of mathematical concepts in a short period of time, and thus the likelihood 
that teachers hastily cover topics, is enhanced. When teachers are forced to hastily 
cover a rather extensive list of mathematical concepts, ample time for mathematical 

S. A. Chamberlin et al.



49

creativity to emerge, and in specific, ample time for preparation, incubation, illumi-
nation, and verification (Wallas, 1926) are also compromised. The advancement of 
creative process and product in mathematics is largely contingent upon mathemati-
cians solving problems and having adequate time to pursue creative lines of thought. 
This notion of providing ample time to engage in cognition and thus prospectively 
engendering creativity theoretically helps students appreciate the battery of skills 
involved in being a mathematician. In so doing, comprehensive rather than partial, 
development of aspiring mathematicians may occur. Mathematicians, young and 
old alike, should realize that mathematics does not always comprise one demand. 
As an example, in young grades, mathematics students are often conditioned to real-
ize that mathematics is a domain of precision (National Governor’s Association & 
Council of Chief State School Officers, 2010; Otten et al., 2019). Hence, they may 
have a challenging time with the concept of estimation or approximation because 
they sense that precision is compromised or altogether neglected. In some instances, 
mathematics has demands of speed in processing (Clark et al., 2014; Lambert & 
Spinath, 2018), though some such demands are falsely created, such as timed tests 
(Sasanguie et al., 2013; Tsui & Mazzocco, 2007). For many students and teachers, 
therefore, slowing down to appreciate the beauty of mathematics (Koichu et  al., 
2017; Johnson & Steinerberger, 2019; Tjoe, 2016) is awkward. Similarly, providing 
ample time to consider various avenues to solve a problem may also be foreign, as 
students may not have engaged in such a process. Hence, though time is at a pre-
mium in many classes, and certainly mathematics is no exception, slowing down to 
appreciate the beauty and complexity of mathematics is incumbent upon mathemat-
ics educators with a desire to help young mathematicians truly mature. In fact, it 
was Papert (1980), in discussing Poincaré’s (1908) conception of mathematical cre-
ativity, who intonated that appreciating the beauty of mathematics was an anteced-
ent of mathematical creativity.

4.4 � Additional Factors in the Relationship Between 
Mathematical Creativity and Development

Mathematical creativity is a multifaceted and complex construct in the domain of 
mathematical psychology and its occurrence may not be exclusively predicated on 
the state of cognitive factors. In fact, affect, as well as conation likely play a role in 
mathematical creativity. As a consequence, variables involved with precipitating it 
(e.g., person, process, and product) in mathematical learning episodes should not be 
left to happenstance. The environment (or press), as Rhodes (1961) suggested, 
likely plays a role in affective and conative states. Mathematics instructors must be 
purposeful in aligning problem solvers’ developmental needs with mathematical 
creativity needs. When mathematics educators become intentional in fostering 
mathematical creativity with learners, it may enhance the probability of it emerging.
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Affect, comprising beliefs, attitudes, and emotions (McLeod, 1989), as well as 
conation, or one’s willingness to engage in a task (DeBellis & Goldin, 2006; Goldin, 
2019), may play seminal roles in the emergence of mathematical creativity. In par-
ticular, it has been theorized (Chamberlin & Mann, 2021) and empirically shown 
that when affect and to a lesser extent conation are at optimal levels, the likelihood 
of mathematically creative process and subsequently product emerging is enhanced. 
In this final section of chapter three, the constructs of affect and conation are dis-
cussed in relation to mathematical creativity.

4.4.1 � Empirical Evidence of Affect/Conation Relationship 
to Mathematical Creativity

Though empirical evidence to substantiate the connection between affect and cre-
ativity is sparse, some research does exist. For instance, Fernández-Abascal and 
Martín Díaz (2013) discuss three studies that they conducted in which positive and 
negative affect were investigated in relation to divergent thinking output. Generally, 
the studies showed that positive affect increased divergent thinking output, but neg-
ative affect had no particular influence on divergent thinking. Divergent thinking, by 
the way, is considered a metric for gauging creative output. Perhaps the most per-
suasive argument for the connection between affect and creativity comes from 
Davis, who, in 2009, showed such a connection based on a meta-analysis that he 
completed almost a decade previously. Baas et al. (2008) identified the same finding 
only one year earlier.

Another metric of creativity pertains to novelty. In 2013, Newton provided ample 
evidence of a connection between affect and novelty/original thought. In particular, 
the propensity for original thought is likely to be enhanced with positive affect, rela-
tive to negative affective states. Regarding conation, Schindler and Rott (2017) dis-
cussed the premise that task commitment plays a significant role in the emergence 
of creative output in mathematical settings. It would be a mischaracterization to 
suggest that the relationship between mathematical creativity and affect/conation is 
strong, when looking strictly at empirical evidence. In most cases, much of the lit-
erature is theoretical, as is that presented in the next section, and much of the empir-
ical connection between affect and mathematical creativity is either out of the 
domain of mathematics, or tenuous, at best. Nevertheless, attention has been 
invested in this relationship in the research world of late.

4.4.2 � Five Legs Theory

The Five Legs Theory (Chamberlin & Mann, 2021) is one in which five affective 
factors, comprising Iconoclasm, Impartiality, Investment, Intuition, and 
Inquisitiveness, are said to have a(n) (in)direct influence on mathematical process 
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and product. This theory is deeply ensconced in empirical literature and the five 
subconstructs that comprise the theory have somewhat altered conceptions and 
operational definitions than the manner in which affect has been discussed previ-
ously in mathematics education literature. As an example, Iconoclasm pertains to, 
“the courage to challenge conventional mathematical ideas” (p. 21). Garnering such 
courage is not a trivial feat per se, as conventional mathematical ideas are ubiqui-
tous in mathematical texts, online, and in teacher delivery of curricula in the class-
room. “Impartiality is considered an openness to appreciate and see multiple 
perspectives and to consider utilizing unconventional ones” (p.  31). Much like 
Iconoclasm, the subconstruct of Impartiality may be rare in mathematical learning 
episodes and classrooms. In fact, the development of each of these five subcon-
structs may depend largely on the learner’s characteristics and the environment 
(press) and atmosphere created by the teacher. Investment pertains to, “an emotional 
contribution to finding a solution to a task for one or more reasons” (p. 43). In the 
domain of mathematical psychology, investment shares several features with a 
financial investment, perhaps the most significant of which is that a sacrifice must 
be committed in an attempt to secure a reward. Moreover, inherent risk is involved 
in a financial, as well as an emotional commitment. In the Five Legs Theory, 
Intuition holds a slightly altered conception relative to what it does in layman’s 
terms. Intuition, in this case, pertains to a, “drive toward a solution or response” 
(p. 53). Much like a highly skilled culinary artist may have an inclination to inter-
mingle ingredients that have heretofore been unorthodox or foreign, a creative 
mathematician may have a drive to pursue a line of reasoning that has not been 
investigated, in an attempt to identify a new solution or proof to a problem. 
Inquisitiveness shares some attributes with interest in that it pertains to a curiosity 
which ultimately leads to high levels of engagement. The resultant product may be 
learners that are in Flow (Csikszentmihalyi & Csikszentmihalyi, 1993).

The question persists regarding specifically how affect and conation influence 
development and mathematical creativity. In general, two components are at work 
in this interaction. First, as learners age, their affective and conative states stabilize, 
according to Hart and Walker (1993). Second, as learners age, it is likely that those 
that engage in higher level mathematics have self-selected. This means that indi-
viduals matriculating higher level mathematics courses may be inclined to be more 
motivated than many of their younger counterparts. Hence, the propensity for cre-
ative output may be enhanced relative to its emergence in younger grades.

4.5 � Conclusion

In this chapter, the framework for the book was outlined. In particular, the funda-
mental tenet of this book is that mathematical creativity has a developmental com-
ponent to it. In this book, the term development is not used in the respect that it is in 
many literature reviews, that being to develop creativity in the mathematics class-
room. Instead, development in this book can be thought of as maturation. Secondarily, 
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development and mathematical creativity were discussed in relation to common 
creativity models as a concise investigation into their relationship. Next, barriers to 
mathematical creativity were explored and finally, additional factors in the discus-
sion of development and mathematical creativity, such as affect and conation, were 
discussed.
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Chapter 5
Commentary on Section

Deborah Moore-Russo

The authors of Chaps. 6, 7, and 8 provided three informative literature reviews on 
mathematical creativity across the elementary, secondary, and tertiary levels. As the 
three sets of authors reported, there has been limited research, especially empirical 
research, in this area. I begin by summarizing the key aspects of each chapter. These 
summaries are followed with a commentary on the themes that appear across the 
three chapters.

5.1 � Mathematical Creativity Research 
in the Elementary Grades

Kozlowski and Chamberlin (Chap. 6) provided a review of the literature on mathe-
matical creativity in the elementary grades. They differentiated between academic-
oriented research and practice-oriented research, and this dual categorization 
organized how they reported the literature cited in the chapter.

In looking at academic-oriented studies, the authors provided historical context 
citing work from mathematics, psychology, cognitive science, mathematics educa-
tion, and mathematical psychology. The authors used maturation, the mental devel-
opment of a child, as a lens for the chapter. This focus on development was also 
noted in much of the research cited as well as in Kozlowski and Chamberlin’s senti-
ments that understanding the relationships between creativity, age, and development 
merits further study.

In their review of the practice-oriented research, the authors focused on different 
instructional tasks and activities, including some that integrated digital resources. In 
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the practice-oriented category, they also considered the didactic contract (Brousseau, 
1997) and affective development, including both traits and states, as two environ-
mental aspects that relate to mathematical creativity.

After categorized reporting of the literature, the authors provided a synthesis of 
the current research with ideas for future research initiatives. The closing discussion 
continued with the two-category system considering promising directions for both 
academic-oriented and practice-oriented research on mathematical creativity for 
elementary students. One direction that was suggested for future academic-oriented 
research involves the relationship between a child’s age, maturation, and mathemat-
ical creativity. Interestingly, the authors reported that it is the rapid rate at which 
elementary students develop that makes the study of creativity so challenging in 
children. The authors addressed four possible ways that maturational development 
might be taken into account. For example, the use of repeated measures to account 
for development was suggested.

Two possible future directions noted by the authors for practice-oriented research 
involve studying how certain digital resources and how a holistic approach in the 
classroom might nurture mathematical creativity in children. Kozlowski and 
Chamberlin reported that disparate classroom practices (e.g., use of open-ended 
tasks) are studied currently in terms of their individual impacts on creativity. The 
authors suggested that combining different classroom factors and studying how 
together they might produce a more holistic creative environment could be a prom-
ising direction for mathematical creativity research related to elementary-aged 
children.

5.2 � Empirical Findings on Creative in Mathematics Among 
Secondary School Students

Joklitschke (Chap. 7) provided an overview of current research on mathematical 
creativity, focusing specifically on empirical research, at the secondary school level. 
The author decided to use this focus since previous work has already considered 
different approaches to creativity in mathematics and the theoretical assumptions 
that currently undergird mathematical creativity research.

The outline and style of this chapter contrasted with that of the previous chapter. 
Joklitschke used theoretical background, research methods, data analysis, results, 
and discussion sections to organize the chapter, similar to the organization that one 
would encounter in the empirical studies on which she reported. After introducing 
commonly used theoretical frameworks, the chapter provided information on the 
search criteria and how these criteria led to the inclusion of the 22 articles in the 
review, most of which (14 of 22) were quantitative studies. The author reported on 
common perspectives that were noted across many of the 22 articles, such as the 
phases of preparation, incubation, illumination, and verification (Wallas, 1926). 
Many of these same themes also appeared in Chaps. 6 and 8, and I address them 
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later in my commentary. A particularly interesting part of Chap. 7 related how some 
of the articles reviewed by the authors attempted to better understand creativity by 
creating models that in turn were validated in the studies.

Joklitschke stated that the current research landscape for mathematical creativity 
is diverse, with few published studies devoted solely to the topic of creativity. She 
offered possible explanations for this, but also reported that current research fre-
quently considers how creativity correlates to different psychometric constructs 
(e.g., achievement, giftedness). In addition, the author noted the heterogeneity of 
the methodological approaches in the mathematical creativity studies she considered.

The end of the chapter started with a general outlook for the field. Here, the 
author pondered whether interaction, collaboration, or classroom-based research 
might become more prevalent in the study of mathematical creativity. Joklitschke 
then looked at some of the research results in light of creativity as fluency, flexibil-
ity, and originality (Torrance, 1966). Before considering limitations of the chapter, 
she dedicated a paragraph to an interesting finding on the lack of historical refer-
ences in the works she reviewed.

5.3 � Mathematical Creativity at the Tertiary Level: 
A Systematic Review of the Literature

Savić, Satyam, El Turkey, and Tang (Chap. 8) provided a broad picture of the 
research on mathematical creativity at the tertiary level. The chapter focused on the 
developmental nature of creativity, looking at how mathematical creativity is fos-
tered. This differed from the developmental perspective in Chap. 6, where “develop-
mental” referenced the maturation and mental development of children. The authors 
limited the research to college and university mathematics courses and chose not to 
include research done in tertiary mathematics courses exclusively designed for pre-
service teachers, although they mentioned that there is value in such work since it 
could influence how future teachers view mathematics and mathematical creativity.

As is the case for Chap. 7, Savić and colleagues included methods, results, dis-
cussion, and future directions sections. The authors focused on 29 articles for the 
review and described the search criteria that were used to identify these studies. 
There were three interesting findings reported. The first was that 27 of the 29 arti-
cles have been published since 2012, and 17 of the 29 were published after 2018. 
They concluded that this shows how new this area of investigation is. The second 
finding was the authors called 11 of the 29 studies “descriptive.” These 11 articles 
did not use any coding, nor did they involve quantitative or qualitative methodolo-
gies. The remaining 18 studies were rather evenly split between quantitative and 
qualitative research methods. The third finding was that almost 38% of the articles 
in the literature review came from only two journals. Six of the 29 articles came 
from a special edition of the Journal of Humanistic Mathematics, while another five 
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were from different issues of Problems, Resources, and Issues in Mathematics 
Undergraduate Studies (a.k.a. PRIMUS).

This chapter also pointed out different rubrics that are being used to study math-
ematical creativity at the tertiary level, of which two are of note. One was the 
creativity-in-progress rubric on proving (El Turkey et al., 2018; Savić et al., 2017). 
Another was Lithner’s (2008) imitative/creative reasoning framework.

Savić and colleagues reported that while five of the articles reviewed had a focus 
on calculus, there was an array of mathematical topics covered. This lack of focus 
on a single mathematical topic or content area inspired the authors to write “that 
mathematical creativity can be fostered in any aspect of tertiary mathematics educa-
tion” (p. 111). The authors concluded the chapter with reasons why they believe that 
mathematical creativity is important for mathematics education at the tertiary level.

5.4 � Themes

All three chapters mentioned the increase in the research in mathematics education 
that focused on, or at least took into consideration, mathematical creativity. This 
research topic seems to be rapidly growing, and the authors in this section all 
reported that there is limited existing research and that more investigation in on 
mathematical creativity would be of great value to those in mathematics education.

5.5 � Mathematical Creativity: A Complex Topic

In Chap. 7, Joklitschke referred to the “complex literature landscape” of mathemati-
cal creativity and discussed how few recent publications have been solely devoted 
to the study of creativity. Creativity is often studied in context with other constructs, 
be they intellectual, personality, or affective. Some constructs mentioned in differ-
ent places of this section as being studied with mathematical creativity included 
giftedness, intelligence, achievement, persistence, motivation, openness, self-
confidence, self-efficacy, autonomy, and “an ability to deal with messiness” 
(Kozlowski & Chamberlin, p. 75). Joklitschke stated that creativity may be seen and 
studied as more of a “side effect” of other constructs than a construct in its own right.

Because of its overlap or connection with other constructs, one of the method-
ological challenges mentioned by Kozlowski and Chamberlin is how to measure 
mathematical creativity. Joklitschke suggested the research community lacks meth-
ods capable of shedding light on creativity from other perspectives; she proposed 
the possible use of EEGs and eye tracking. Savić and colleagues in Chap. 8 related 
that, in one study included in their literature review, the research team concluded 
that “evaluating creativity is a difficult task” (Blyman et al., 2020, p. 169).

Moreover, mathematical creativity is complex to understand because it is not a 
steady state measure. Joklitschke cited works that considered how increases in 
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knowledge may cause creativity to increase, with a possible dip around eighth grade 
during an increased algebraic approach in the mathematics curriculum. Kozlowski 
and Chamberlin also discussed how researchers have reported spikes, slumps, and 
leveling in an individual’s creative outputs.

5.6 � Mathematical Creativity: Where It Lives and How It 
Is Understood

Mathematical creativity is not rooted in a single academic area. Kozlowski and 
Chamberlin stated that mathematical creativity is “unique because many of its char-
acteristics can be attributed to various fields” (p. 66). They began Chap. 6 outlining 
how this construct cuts across many academic areas. In the closing of Chap. 7, 
Joklitschke brought forth four reasons as to the finding she called “striking” that few 
historical references are included in the empirical parts of the research she reviewed. 
A fifth reason that might be added to her list would be that a deep study of creativity 
requires reading across many academic areas.

Since creativity cuts across many areas of academia, it is not surprising that there 
are numerous ways that creativity is framed. This was noted in all three chapters in 
this section. All three sets of authors cited literature that uses the framing of creativ-
ity as being related to processes, persons, press (i.e., environment), and products 
(Rhodes, 1961). Joklitschke, in particular, raised the point that the products were 
often used as data for studying creativity, especially in quantitative studies, while 
qualitative studies were more likely to study processes. The authors of Chaps. 6 and 
7 mentioned studies that frame creativity as fluency, flexibility, and originality 
(Torrance, 1966). Mathematical creativity as divergent thinking was also mentioned 
in by the authors of Chaps. 6 and 7 in the articles they reviewed.

5.7 � Mathematical Creativity in the Classroom

All three sets of authors in this section relayed that both teaching actions (often 
focusing on particular types of instructional tasks) and the educational environment 
fostered in classrooms have been reported, or assumed, to impact mathematical 
creativity. In Chap. 6, Kozlowski and Chamberlin used practitioner-oriented 
research as one of their categories, which they considered to focus on “advancing 
implementable concepts [that] may have a direct influence on what teachers do to 
facilitate creativity in mathematics classrooms” (p. 66). In addition, Savić and col-
leagues stated that “there is a need for enhancing students’ creativity in mathematics 
classrooms at the tertiary level” (p. 106).

Considering instructional tasks and their relation to mathematical creativity, 
Kozlowski and Chamberlin discussed and differentiated between open-ended tasks 
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and multiple solution tasks. In Chap. 7, Joklitschke mentioned that tasks can either 
capture or promote mathematical creativity, and she mentioned multiple solutions 
tasks as being part of several studies she reviewed. In fact, multiple solution tasks 
were the most mentioned instructional practice that received research attention 
across the three chapters in the section.

The learning environment and how mathematical creativity is fostered in class-
rooms was also a common topic in the literature cited in this section. Savić and 
colleagues, in Chap. 8, reported that over a third of the studies they reviewed 
involved the researchers describing how they nurtured creativity in their own class-
rooms and that almost all the studies (25 of 29) assumed that creativity “could be 
fostered or developed in the classroom” (p. 110). Joklitschke reported that the class-
room “setting or way of instruction plays a prominent role” (p. 91) in much of the 
mathematical creativity research at the secondary level. For example, she reported 
on one study that investigated a classroom described as having an inquiry-based 
environment and another that analyzed the interactions of pairs working with prob-
lems posed in a dynamic geometry environment. Kozlowski and Chamberlin also 
reported on environment and mathematical creativity. For example, one study they 
used in their review involved an instructional environment that encouraged students 
to explore alternative strategies to solve problems.

5.8 � Concluding Thoughts

Mathematical creativity is a growing research topic in mathematics education. The 
three literature reviews provided a solid foundation to understand the existing body 
of literature on creativity that spans from elementary to tertiary mathematics. As all 
the chapters related, there are still numerous areas that merit exploration. For exam-
ple, one interesting suggestion was that the study of creativity should not be limited 
to the individual but should expand to consider the collective.

The literature reviews in this section set the groundwork for others to carry on 
with the study of mathematical creativity in elementary, secondary, and tertiary 
mathematics. What’s more, as someone who has dabbled ever so slightly in mathe-
matical creativity research as related to pre-and in-service teachers (Moore-Russo 
& Demler, 2018; Moore-Russo et al., 2020), I would love to see a research team 
build on the methodologies employed in the literature reviews in this section to 
investigate future and current teachers’ notions of mathematical creativity and how 
it should be nurtured.
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Chapter 6
Mathematical Creativity Research 
in the Elementary Grades

Joseph S. Kozlowski and Scott A. Chamberlin

6.1 � Mathematical Creativity Research 
in the Elementary Grades

Mathematical creativity (MC) in the elementary classroom has become a focal point 
for some mathematics education research (e.g., Sriraman & Haavóld, 2017) as well 
as practitioner frameworks (e.g., twenty-first-century learning framework; National 
Education Association, 2010). Furthermore, a chapter titled “Creativity and 
Giftedness in Mathematics Education: A Pragmatic View” (Sriraman & Haavóld, 
2017) was included in the most recent Compendium for Research in Mathematics 
Education (Cai, 2017) in the section about promising topics for future research in 
mathematics education. Therefore, a first step in MC research is to understand what 
the empirical work suggests on the topic at the elementary level. In this systematic 
literature review, information is presented in the following structure. The first sec-
tion contains results of the literature review on mathematical creativity (MC) 
research in grades K-6 which is categorized into two main groups; academic-
oriented research and practice-oriented research. The second portion of the paper 
contains a synthesis of current research, with carefully designed questions to help 
direct future initiatives in the MC research community.
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6.2 � Mathematical Creativity Research: Academic-Oriented 
and Practice-Oriented

The two following sections contain MC research organized into two main strands 
called academic-oriented research and practice-oriented research. These two 
strands share a major similarity in that they focus on empirical research on MC in 
grades K-6. However, their goals are primarily distinct. Academic-oriented research 
is defined as empirical research on MC that is directed at advancing theory, meth-
ods, and nuanced psychological details about MC. Ultimately, academic-oriented 
research comprises two foci. First, it is focused on advancing future research and, 
second, it is conducted to answer research questions built from the corpus of litera-
ture among scholars, academics, and theoreticians. Practice-oriented research is 
defined as empirical research on MC that is directed at advancing practices, instruc-
tion, skills, curricular materials, or any other aspect of the field of MC. Ultimately, 
practice-oriented research is focused on advancing implementable concepts and 
may have a direct influence on what teachers do to facilitate creativity in mathemat-
ics classrooms.

6.3 � Academic-Oriented Research on Mathematical 
Creativity: Impacting Future Research

Some research on MC is directly aimed at advancing research efforts. In this paper, 
such research is referred to as academic-oriented research. The construct of MC is 
unique because many of its characteristics can be attributed to various fields. For 
example, the process of MC has deep roots in psychology and cognitive science, the 
mathematical output informs mathematics research, and the process of learning and 
teaching of MC informs mathematics educational (and mathematical psychology) 
research. Sriraman (2017) critiques the field of mathematics education for not 
understanding the depth of knowledge about MC that has existed for decades across 
various fields (i.e., psychology, cognitive science, mathematics). Regardless, cur-
rent research efforts in (a) psychology and cognitive science, and (b) mathematics 
education and mathematics psychology are aggressively working to advance under-
standing of MC and drive future research. It is important to note that psychology 
and cognitive science are minimally disparate domains, but, for the sake of this lit-
erature review, they have been grouped into one category.

6.3.1 � Psychology and Cognitive Science Research

Several themes guide the review of the literature. First, the preponderance of (mod-
ern) research that pertains to MC originated in psychology and cognitive science as 
well as mathematics education and mathematical psychology. Though the domain 
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of mathematics may not contribute significant work relevant to the construct of MC 
today, it was mathematicians that were historically responsible for highlighting the 
importance of MC (Emch, 1900; Hadamard, 1945; Poincaré, 1913). In the first half 
of the twentieth century, research and theoretical writings about MC pertained to 
two emphases. The first emphasis was the recognition of the beauty or (a)esthetics 
of mathematics. This notion was foreign to many outside of the domain of mathe-
matics because beautiful mathematical solutions seemed at odds with the stereo-
typical mathematics procedures. Examples of that which was aesthetically pleasing 
or highly sophisticated had almost exclusively resided in the domain of creative arts, 
both performing and visual, and applying the construct of aesthetics in mathemati-
cal solutions was considered peculiar. The second focus in creativity studies situ-
ated in the domain of mathematics pertained to thought processes in which 
mathematicians engaged. For instance, synonyms employed early for the process of 
creativity were invention and imagination (Hadamard, 1945). Earlier, Poincaré sug-
gested that science and mathematics may be perceived as a wholly unemotional 
discipline, but that for innovations to transpire, creative individuals must drive such 
efforts. One commonality in each of the two aforementioned foci pertained to the 
rather unidimensional view of MC as novel, at the expense of fluency, flexibility, 
and elaboration.

As MC interest burgeoned, much of the empirical work was shouldered by 
researchers in the domain of psychology and cognitive science. In this section, 
recent work garners much of the attention, though some seminal work is discussed 
to situate and help readers make sense of recent work on MC. An important caveat 
in the literature is clarified here, which pertains to the term development. This 
review contains a discussion about development of MC and considers it as matura-
tion, and that this development affects the emergence of MC. This is distinct from 
myriad references relevant to MC which use the term development to reference the 
process of developing creativity in students over a finite (e.g., several weeks, 
months) period of time. Hence, many hallmark studies are not discussed in this 
review, as they were not germane to MC and development as used in the context of 
this book, which focuses on mental development (maturation) and its effects on 
MC. Also, literature in this section has been performed by scholars in psychology 
and cognitive sciences.

Perhaps the first researcher of consequence to investigate the relationship 
between development (maturation) and MC was Torrance (1968). In his study on 
creativity in multiple domains, he ascertained that fluency and flexibility realized 
considerable decreases of at least one half of a standard deviation among fourth 
graders, but that elaboration did not incur a statistically significant drop. He did this 
by analyzing data from 100 randomly selected participants, out of 350 students in a 
6-year period as they progressed through third, fourth, and fifth grades. In fact, over 
time, elaboration was the only factor that experienced statistically significant gains. 
This slump occurs in about 50% of the students and it is typically recovered in later 
years (e.g., sixth or seventh grades). Raina (1980), incidentally, found similar results 
to Torrance when investigating fourth graders in India, and Sak and Maker (2006) 
found a much less prominent, though statistically it did exist, slump in MC in fourth 
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grade. Sak and Maker’s findings show at least some evidence of a fourth-grade 
slump, having reviewed literature that spanned a 50 year period. To this day, no 
credible evidence exists to disprove this finding.

However, this study was replicated, to some extent, by Charles and Runco (2001) 
33 years later. In their study, they determined that when third, fourth, and fifth grade 
students’ performance was analyzed, there was not a slump in student creativity in 
fluency, when looking at divergent thinking. It is important to note several admoni-
tions with respect to the outcome of the Charles and Runco study. First, instrumen-
tation was likely far more sophisticated in the Charles and Runco investigation than 
it was previously. Second, one-third of a century after Torrance’s work, student 
demographics likely changed. Third, though fluency did enjoy a slight increase, 
there was a fourth-grade decrease in a category referred to as highly appropri-
ate ideas.

One of the most comprehensive discussions, at least during that era, relevant to 
the relationship between students’ advancing age and creative output was forwarded 
by Simonton (1984). In covering this topic, he stated that the theory was initially 
posited by Lehman (1953). In his theory, Lehman suggested that in sciences, of 
which mathematics is considered a sub-domain, creativity generally has a substan-
tial surge early in one’s career, reduced in later levels, and even later in one’s career 
is almost fully eliminated, after the vast majority of creative ideas are extinguished. 
Simonton stated that Lehman’s work, much like Piaget’s theories of child develop-
ment, endured strong criticism, but later (Simonton, 1977, 1980, 1984) such criti-
cism of Lehman’s work was shown to be without merit through Simonton’s 
empirical efforts. Hence, there is some value to the claim that initially, highly cre-
ative individuals may encounter a spike in output, but such a spike often levels, as 
creative individuals age. Perhaps the most notable critique of applying Simonton’s 
findings to the discussion of MC among elementary age students is that (a) the find-
ings were not exclusive to mathematics, though mathematicians were one of the 
major sub-domains, and (b) the age of creative individuals is not specified in the 
research. Nevertheless, his findings do warrant consideration in light of develop-
ment and MC.

Much of this work culminated with Sak and Maker’s (2006) investigation on 
children’s development in relation to MC.  They reiterated, as several previous 
scholars had (Anderson, 1992; Runco, 1991; Maker Runco, 2003), that growth in 
creativity, relative to age, was curvilinear. One finding of instrumental importance 
in their work was that with advanced age, it is assumed that a corresponding advance 
in domain knowledge transpires, thus enhancing the likelihood for increasing diver-
gent thinking and fluency. Hence, it could be argued, as per Sak and Maker’s work, 
that an advance in domain knowledge (or a developmental level), as well as age, is 
what enables increasing amounts of creative process and product among young, 
elementary age, mathematicians. Though much of the attention on creativity and 
development in the domain of mathematics has centered on the fourth-grade dip, 
additional studies have provided insight. Studies by scholars such as Kattou et al. 
(2016) and Hetrozoni et al. (2019) are perhaps of most applicability to this chapter.
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The Kattou et al. (2016) investigation was informative to the intersection of MC 
and development in two respects. First, in the literature review, the authors illustrate 
that no consensus appears to exist regarding age and MC. In particular, Wu et al. 
(2005) were unable to establish a definitive relationship between age and MC. Two 
admonitions exist, however, with their claim. First, not all research presented came 
directly from the domain of mathematics. Second, in their review, age is considered 
synonymous with development and though it likely correlates quite highly, it cannot 
be considered a perfect synonym with learner development. The second important 
finding from Kattou and colleagues arose because they analyzed the relationship of 
MC and several factors. Age was found to be one of several factors that influenced 
the amount of creative output and along with personality characteristics, it was 
found to be less important than cognitive characteristics in the emergence of 
MC. Again, though age presumably correlates quite highly with development, this 
finding may not be completely accurate because it is predicated on the notion that 
development follows a perfect trajectory with age.

In 2019, Hetrozoni and colleagues investigated whether age 9–11 high function-
ing children with autistic spectrum disorder (HFASD) held similar capabilities for 
MC as their age 9–11 typically developing (TD) counterparts. In the world of cre-
ative arts, it appears as though under certain circumstances, HFASD students out-
performed their TD peers (Liu et  al., 2011; Ten Eycke & Müller, 2015). In 
mathematical problem solving, TD students outperformed HFASD students (Bae 
et al., 2015). Results with this degree of inconclusiveness may precipitate research-
ers to question the applicability to their sample and focus. Hence, Hetrozoni et al. 
investigated the aforementioned comparison between HFASD and TD students in 
MC. In their study, they found that each group performed similarly, with the TD 
group outperforming the HFASD group in fluency and originality and the HFASD 
group outperforming the TD group in overall creativity in the Creating Equal 
Number task. The overall finding is that HFASD students may appear to have simi-
lar capabilities in MC output relative to their TD peers. The caveat with this study is 
that the two comparison groups were somewhat small (n = 20 in each group), hence 
the findings may be questioned.

To conclude that creativity and development research among elementary math-
ematics students is confined only to psychology and cognitive sciences would be 
naïve. In fact, the domains of mathematics education and mathematical psychology, 
as well as mathematics have studies of note. In the next sections, they are discussed.

6.3.2 � Mathematics Education and Psychology Research

One impetus for this book is that scant empirical research exists regarding MC and 
its relationship to maturation and development. In this section, research from experts 
in the field of mathematics education and psychology is shared. An important study 
at the intersection of MC and student development came from Hong and Aqui 
(2004), in which they identified prospective differences in mathematics students 
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identified as academically gifted, but not creatively gifted, in relation to mathemat-
ics students identified as creatively gifted, but not academically gifted. In their 
study, a significant difference existed in the two groups in cognitive resourcefulness 
(i.e., ability to utilize various cognitive strategies), with the group identified as cre-
atively gifted the more advanced. Though this characteristic may seem trivial, cog-
nitive resourcefulness may be thought of as the single distinction in mathematically 
gifted and creatively gifted mathematicians because the added ability to think 
quickly in multiple avenues likely provides greater adaptability and perhaps pliabil-
ity in considering multiple solutions simultaneously. Hence, creatively gifted stu-
dents may be more advanced, with respect to development, than their academically 
gifted peers. One caveat with the Hong and Aqui research is that it was conducted 
with secondary students, so that finding may not be directly generalizable to ele-
mentary age students. Nevertheless, the finding does hold promise in distinguishing 
between the two groups, especially when considering development and creativity in 
mathematics.

In a previous study, Haylock (1987a, b) found two characteristics, Overcoming 
Fixations (i.e., breaking away from mental sets and stereotyped solutions; OF) and 
Divergent Production (i.e., production of atypical responses; DP) of mathematically 
creative students that resulted in high levels of mathematics achievement. In short, 
according to Haylock, 11- and 12-year-old individuals with more well-developed 
capabilities to think divergently have greater success in mathematical achievement 
and specifically may be inclined to show greater levels of MC than their less well-
developed counterparts. In addition, individuals with the ability to overcome fixa-
tions, or not be attached to one single problem-solving approach, will fare better 
than their less well-developed peers in mathematical achievement and creativity.

As well, there appears to be some evidence that upper elementary students that 
can endure through ego depletion may be (more) well-developed and mature in their 
ability to work hard, apply effort, and persist while solving problems than their 
peers (Price & Yates, 2015). Such characteristics, according to Price and Yates 
(2015), often translate into additional positive attributes that result in highly creative 
responses in mathematics, such as a determination to succeed, resilience, and an 
openness to accept challenge and difficult choices.

6.4 � Practice-Oriented Research on Mathematical Creativity: 
Impacting Future Practice

Some empirical research on MC is directly aimed at advancing practice, which is 
referred to as practice-oriented research in this chapter. Much practice-oriented 
research on MC is categorized into one of the two following groups, which struc-
tures this section: (a) instructional tasks that relate to MC and (b) environmental 
aspects that relate to MC.
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6.4.1 � Instructional Tasks

One specific area of practice-oriented research focuses on instructional tasks that 
support, elicit, or relate to mathematics creativity (Bicer, 2021; Haylock, 1997; 
Kwon et  al., 2006; Leikin, 2009; Levenson, 2011, 2013; Levenson et  al., 2018; 
Silver, 1997; Sinclair et al., 2013). Research on MC instructional tasks is classified 
by the authors as practice-oriented researcher because it is geared at explicating 
specific activities that teachers can implement in the classroom to support MC. Bicer 
(2021) conducted a systematic literature review on MC fostering instructional prac-
tices and found that “problem-solving, problem-posing, open-ended questions, 
multiple solution tasks, tasks with multiple outcomes, modeling and model eliciting 
activities, technology integration (manipulatives, computers, and graphic calcula-
tors), extendable tasks, and emphasizing abstractness of mathematic” (p. 261) were 
important. The section of this chapter will focus on open-ended tasks, multiple solu-
tion tasks, and technological integration as current instructional practices that are 
receiving research attention due to their promising nature to support MC in elemen-
tary students. It is important to note that robust research has been conducted on 
mathematical modeling and MC, but will not be reviewed in this short chapter. For 
research on mathematical modeling and elementary MC, see literature such as 
(Amit & Gilat, 2012; Chamberlin & Moon, 2005; Lesh & Caylor, 2007).

6.4.1.1 � Open-Ended and Multiple Solution Tasks

Open-ended tasks and multiple solution tasks (MST) have been shown by research-
ers to benefit MC in elementary classrooms (Haylock, 1997; Kwon et  al., 2006; 
Leikin, 2009; Levenson, 2011, 2013). Although these tasks are similar, there is a 
distinction between their manifestation and use in the classroom. Levenson et al. 
(2018) describe the distinction by focusing on the ending, or the goal. Open-ended 
tasks typically do not have one right or wrong ending answer; there may be a variety 
of final answers that satisfy the task requirements. However, MSTs typically have 
one correct answer and individuals are asked to arrive at that answer in various 
ways. A related topic pertains to what are called moderately open tasks (Bokhove & 
Jones, 2018). The idea of ‘moderately open’ tasks is that a certain degree of con-
straints in a task (neither no constraints at all nor too much constraints) can induce 
creative thinking within mathematics, since constraints are part of the concept of 
creativity itself.

Levenson (2013) conducted a study on 43 graduate students regarding their per-
ception of elementary classroom activities that would occasion MC.  Qualitative 
analysis revealed that participants found problems that required a variety of solution 
strategies – a correct answer that could be garnered in various ways – were benefi-
cial to MC. One participant stated “In my opinion the task promotes MC because 
...in the wording of the question ‘suggest different ways’ and ‘give examples’ there 
is an opening for various possible solutions” (p. 285). In essence, future teachers 
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described how MSTs were beneficial to elementary-aged students in MC because 
they required the students to generate various solution strategies to garner a correct 
response. This teacher perception of creativity-fostering mathematical activity dem-
onstrated how MSTs are important pedagogical tools that allow students to engage 
in divergent production, which was discussed earlier as an important characteristic 
of creativity-fostering tasks.

6.4.1.2 � Technological Integrations to Support MC

The second theme of instructional tasks that has been shown to support elementary 
MC is incorporation of specific technologies and aspects of virtuality (Papert, 1980; 
Sinclair et  al., 2013). A pioneering effort in technological advances to support 
elementary-aged children’s mathematics was Papert’s (1980) Logo programming 
and Turtle Geometry. This primitive system had a robotic triangle that sat on the 
floor and was programmed to do basic movements programmed from a computer 
(e.g., rotate 90  degrees, move forward 100 ‘turtle steps’). The floor-based turtle 
soon moved onto the computer screen where a line was traced behind the turtle as it 
was programmed to move around the screen. Logo and Turtle Geometry evolved 
through Resnick et al.’ (2009) work at MIT into what is now Scratch. Importantly, 
this type of technology was thought by Papert to be key in supporting MC. Papert 
discusses that through this technology, students are able to incorporate their bodies 
(i.e., body syntonicity) and through this bodily engagement experience, construct 
creative mathematics. Papert describes that extralogical elements of mathematics 
(i.e., aesthetics, beauty) may surface from the unconscious not primarily based on 
logical accurateness, but on combinatorial or creative thought, and this technology 
allowed students to create their own mathematical objects and investigate the rela-
tionships between them.

Sinclair et  al. (2013) supported the hypotheses of Papert and found a unique 
distinction between realizing the possible (purely logical) and actualizing the virtual 
(creating something ontologically new) when using technology. Sinclair et al. con-
ducted a study with 6–9-year-old students to determine if specific technologies pro-
moted creative mathematics. Students in the study created new mathematical objects 
and relationships as they used gestures and created diagrams of virtual mathemati-
cal topics. For example, students in Sinclair et al.’s study constructed mental maps 
of areas outside the scope of the computer screen to decide on geometrical intersec-
tion of lines, constructed creative hypothesis and mathematical proofs about inter-
secting lines, and used gestures to create impossible mathematical line objects.

Taken together, tasks that foster MC, and that are related to MC, are an important 
research topic for the future and already some are known about benefits of certain 
tasks and activities such as open-ended questions, MSTs, and integrating specific 
technologies. One of the methodological challenges in understanding the relation-
ship between tasks and MC is the difficult nature of measuring the psychological 
construct of MC. Although progress is being made on MC assessments, consider-
able work is still needed to rigorously provide an MC measurement instrument that 
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could be used to determine the statistical effects of instructional tasks on MC change 
over time.

 

6.4.2 � Environmental Aspects That Relate to MC

Another theme of practice-oriented research is environmental aspects that relate to 
MC. Two specific environmental aspects that garner research interest and are prom-
ising for future research are the didactic contract of mathematics teaching and affec-
tive development.

6.4.2.1 � The Didactic Contract of Mathematics Teaching

The didactic contract describes the learning and teaching expectations that are 
inherent between a teacher and the pupils (Brousseau, 1997). For example, a teacher 
in a mathematics classroom may expect the 3rd grade pupils who memorize the 
multiplication table to be able to transfer these same multiplication calculations to 
other contexts; the pupil may or may not be aware of this expectation. Conversely, 
a teacher in a mathematics classroom may expect the grade students to actively form 
mathematical arguments to justify solutions; the pupil may or may not be aware of 
this expectation. In just these two situations, a variety of didactic contracts are 
‘signed’ between the teacher and the pupil, depending on the teacher expectations 
and whether or not the pupil perceives such expectations. Ultimately, certain didac-
tic contracts have been supported through research to support creative mathematical 
thought.
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Sarrazy and Novotná (2013) studied the mathematical didactic contract in rela-
tion to MC with 155, 9–10-year-old students. Two groups of students completed the 
same lessons on a single mathematic topic. One group used a devolving type of 
didactic contract (e.g., variability in instruction and expectation, active group work, 
complex initial problems, community analysis and critique of solutions). The other 
group used an institutionalizing type of didactic contract (e.g., show-remember-
apply, question-answer, teacher evaluation of solutions). Overall, the results indi-
cated that the institutionalizing contract resulted in higher creativity scores than the 
devolving. However, when analyzed more closely, results showed that advanced-
performing students scored higher in the devolving contract but medium- and lower-
performing students scored higher in the institutionalizing contract. These results 
are interesting because they suggest an environmental aspect that may be promising 
for a certain group of students when considering the effects on MC. For example, 
when it comes to supporting MC, certain didactic approaches such as allowing for 
ambiguity and variability in instruction may be promising for advanced-performing 
students, whereas other didactic approaches such as question-answer and show-
remember-apply may be more promising for medium- and lower-performing 
students.

6.4.2.2 � Classroom Affective Development

Though the research on student affective traits and states and its influence on MC, 
through a developmental lens, is not particularly advanced, some studies exist that 
inform the field about the interrelationship. Studies included in this section pertain 
to student emotions, such as anxiety, metacognition, personality characteristics, and 
emotional quotient.

As an overview of this section, Gregoire’s (2016) discussion of MC which is 
bolstered with a discussion of models relevant to MC, is particularly insightful. A 
salient personality characteristic mentioned by Grégoire is persistence. In his dis-
cussion of three historical examples of MC, the author discusses a discovery in 
topology by Russian mathematician Perelman. When mathematicians pressed him 
about the discovery, he suggested that he had been working on it for several years 
and that the discovery could not have come about without work of several individu-
als. His discovery though in an advanced state of academia, has implications for 
elementary students. Earlier in the article, thoughts by Sriraman (2005), Polya 
(1954), and Hadamard (1945) suggest that the chief difference in creativity among 
high level academics and elementary students may merely be one of degree (of 
complexity). In addition, Grégoire illustrates that an advanced state of maturity or 
development in additional affective characteristics might enhance the likelihood of 
MC emerging. As an example, a high degree of motivation, as well as openness, 
flexibility, self-confidence, and autonomy appear to be inherent in individuals that 
have recurring creative output.

In a cursorily related study on affect, divergent thinking, and mathematics 
achievement among elementary age girls, Wallace and Russ (2015) found that 
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having a wide array of positive affective states resulted in increased divergent think-
ing and mathematics achievement. In turn, such qualities resulted in high levels of 
original thinking in mathematics. The caveat with this longitudinal study was that it 
was conducted with a very small n of participants. Initially, 46 girls participated in 
the study, but 4 years later, only 31 of the original participants were able to contrib-
ute data.

In following one facet of Grégoire’s study, Greensfield and Deutsch (2016) stud-
ied positive mathematical emotions among 12 of the top female participants in the 
Israel International Math Competition for Girls. Using extensive interviews, one 
finding was that foundational experiences laid in elementary (childhood) years were 
a prerequisite to positive emotional states towards mathematics. Female mathemati-
cians interviewed in the study described how seminal childhood experiences (e.g., 
working on puzzles with parents, doing quizzes, engaging in thinking games) pro-
vided them with opportunities to realize the importance of mathematics in their 
family. Other characteristics that were mentioned by participants were determina-
tion and persistence, an enjoyment of doing mathematics, and a fascination with 
tasks that may elicit creative process and product. It was hypothesized that being 
able to direct positive emotions in mathematical settings comes at the expense of 
inordinately negative emotions, which may ultimately result in overall positive 
experiences in mathematics. This, in part, explained these eminent young females’ 
success in the high-level mathematics competition.

Studies such as those discussed may have encouraged Syaiful et al. (2020) to 
investigate the relationship between one’s emotional quotient – ability to manage 
and use one’s own emotions – and their creative output in mathematics. In using two 
instruments, one to assess creative output and one to assess one’s emotional quo-
tient, it was determined, with an n of 82 junior high students, that the emotional 
quotient scores explained 71.6% of the variance in creative performance, while the 
remaining 28.4% was explained by other variables. In short, such data suggest that 
one’s emotional quotient plays a considerable role in one’s creative output. Though 
the study was conducted with students barely senior to upper elementary, it is 
believed that this study has implications for elementary students’ affective states, 
their development, and their creative output.

In another study, Bonnett et al. (2017) investigated the effect of multiple factors, 
including the manner in which encouraging problem solvers to explore alternative 
strategies in creativity-based problems may refine mastery-oriented goals. Utilizing 
an n of 24, 12 boys and 12 girls, with an arithmetic mean age 8 years and 9 months, 
the researchers found that their approach not only helped students see learning as an 
ongoing and iterative process (i.e., refining mastery-oriented goals) but also had 
many other positive affective attributes that emerged as by-products. As an example, 
increased levels of metacognition, persistence, and the ability to deal with messi-
ness or unexpected results, thus yielding problem solver comfort, were resultant 
effects of the experience. Likely, the greatest criticism of the investigation was the 
very low n of participants. However, the results are encouraging and the investiga-
tion was conducted with grade 3 students, so generalizability to elementary students 
may not be in question.
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6.5 � Next Steps: Answering Some of the Field’s Most 
Immediate Questions

This review on elementary MC was organized into two main categories: academic-
oriented research and practice-oriented research. Both warrant a closing discussion 
to bring light to the next steps in terms of moving the field forward and answering 
questions that still exist.

6.5.1 � Promising Directions for Academic-Oriented Research 
on MC for Elementary Students

Considering the current state of extant literature, a few promising areas of academic-
oriented researcher exist that warrant future investigation. One pressing direction of 
future research surrounds the aforementioned topic regarding the relationship 
between age, development, and MC at the elementary age. Part of the remaining 
challenge moving forward with this topic relates to the rapid development of indi-
viduals at this young age. Young children’s minds are developing at a rate which is 
very hard to keep up with from a researcher’s perspective. Trying to psychometri-
cally evaluate a students’ MC is challenging when every week, month, and year of 
schooling at the K-6 grade years, makes such a difference in development. A few 
ways to account for this could be to increase research methods that utilize repeated 
measures to capture the ongoing change, to more clearly specify age when conduct-
ing such research (e.g., 8 years, 2 months, 2 weeks), to apply mixed-effect modeling 
to account for groups of ages, and to use more longitudinal methods. Another perti-
nent topic to this question is the state of early childhood research on MC. Although 
substantive research exists on early childhood creativity in general (see Saracho, 
2012 for a comprehensive perspective on creativity and early childhood), there is 
little empirical research on domain-specific MC for this young age group, with few 
exceptions (Ariba & Luneta, 2018; Krummheuer et  al., 2013; Shen & Edwards, 
2017). Increased understanding of how the youngest of minds creatively think about 
and produce mathematics would support MC researchers trying to understand the 
K-6 population.

6.5.2 � Promising Directions for Practice-Oriented Research 
on MC for Elementary Students

Like academic-oriented research, several promising areas exist within practice-
oriented research that warrant future investigation. One promising direction for 
future practice-oriented research is understanding the influence that new technolo-
gies could have on MC of elementary children. Technology continues to develop 

J. S. Kozlowski and S. A. Chamberlin



77

and change at a pace that is astonishing. Sixty years ago, teachers began to use 
overhead projectors to portray instructional material to children. Fast forward, and 
many children have personal devices with instant access to millions of apps, videos, 
activities, and flexible learning opportunities; there are even educational robotics 
and augmented/virtual reality devices. It is utterly unknown how many of these new 
technological opportunities relate to the MC of young children. Specifically, due to 
the ephemeral nature of specific technological apps or devices, it is important to 
start to understand broadly the components or nature of certain technologies that 
support MC. This would then be able to be more generalizable to future technology 
products as commercial and academic enterprises continue to revolutionize avail-
able products.

Finally, a promising area of future practice-oriented research is presented in 
Kozlowski and Chamberlin (2020), in which they discuss a possible combination of 
classroom factors (e.g., tasks, environmental aspects, discourse) that may produce a 
holistically creative environment. Current research is being conducted to investigate 
disparate classroom practices and their relationship to MC (e.g., a specific task); 
however, what is missing is the evaluation of multiple classroom factors and how 
their concomitant use impacts MC. For example, is offering an open-ended task 
enough to really foster MC, or do certain didactic contracts also need to be in place, 
coupled with specific affective characteristics, to truly support MC? Another thought 
is that open-ended tasks may enhance the likelihood of mathematical creativity 
emerging, but alone, they do not guarantee it. These questions are not yet answered 
and yet are pivotal in truly understanding how to support students’ creativity in 
mathematics.
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Chapter 7
Literature Review on Empirical Findings 
on Creativity in Mathematics Among 
Secondary School Students

Julia Joklitschke, Lukas Baumanns, Benjamin Rott, Maike Schindler, 
and Peter Liljedahl

For several years, research in mathematics education has increasingly focused on 
the area of creativity. There are several reasons for this development; for example, 
the importance of the free and creative individual engagement of students with 
mathematical problem solving is gaining recognition (National Council of Teachers 
of Mathematics, 2005; Sekretariat der Ständigen Konferenz der Kultusminister der 
Länder in der Bundesrepublik Deutschland, 2015). Additionally, social transforma-
tion requires a high degree of creative abilities and skills in the context of twenty-
first-century skills when considering increasing technological needs.

Theoretical discussions as well as empirical research are increasingly devoted to 
the topic of creativity in teaching and learning mathematics. And here quite differ-
ent foci are set. Often, the respective research is concerned with the relation to 
giftedness or special achievements. But also, the (further) development of instru-
ments to measure creativity is often considered. In other areas, creativity is seen as 
an important part of reasoning processes. The challenge in this chapter is to main-
tain an overview in this increasingly complex literature landscape.

Previous research in systematizing this thematic area has tended to focus on dif-
ferent approaches to creativity in mathematics (Sriraman, 2009), illustrate what per-
spectives can be taken (e.g., focusing on products or on processes) (Pitta-Pantazi 
et  al., 2018), or to explore more the basic theoretical assumptions that underlie 
current research (Joklitschke et al., 2021).
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However, we see a lack of research regarding an overview of current, empirical 
research on mathematical creativity in mathematics education and its respective 
findings. We believe that it can be a great added value for both researchers and 
teachers to have access to a systematic overview. Since both the thematic domains 
and the mathematical knowledge vary according to the age level, it makes sense to 
focus likewise in this systematic view of creativity research. This could provide a 
first insight, for example, for the further orientation of one’s own research, or one 
could get first ideas about which tasks and problems are used to capture or also 
promote mathematical creativity in students. Therefore, our research aim is to pro-
vide a systematic overview of the current, empirical insights on the topic of creativ-
ity in mathematics education among secondary school students.

7.1 � Theoretical Background

The study of creativity is attracting growing interest (Craft, 2003; Hersh & John-
Steiner, 2017)—not only because it is increasingly a matter of fostering students 
individually but also because society is striving for solutions to problems, which is 
becoming ever more complex. New demands require extraordinary solutions. Here, 
for sure, creativity is sought. When we think of cyber security, big data, or artificial 
intelligence, for example, mathematics plays a very central role (Leikin & Pitta-
Pantazi, 2013). These two goals, the fostering of the individual and the development 
of society, should of course also be addressed at school—twenty-first-century skills 
can serve as a guideline for these two goals and help to identify key competencies 
(Binkley et  al., 2012). Although there is no clear definition of the twenty-first-
century skills, a comparison of various classifications shows that creativity, among 
other things, is always listed, and therefore, a central element (Maass et al., 2019).

Along with this increase in importance, research on creativity in mathematics 
education is also growing (Leikin & Pitta-Pantazi, 2013). And with this, the theo-
retical foundations and findings are multifaceted (Leikin & Pitta-Pantazi, 2013; 
Sriraman, 2009). As in other disciplines, this diversity of research can lead to a feel-
ing of disorientation. Here, systematizations and literature reviews can help to better 
guide the research.

In this regard, one way of systematizing this heterogeneous research landscape 
of creativity was elaborated by Rhodes (1961) and adapted in mathematics educa-
tion by Pitta-Pantazi et  al. (2018). Rhodes, in his work on creativity and in his 
search for a definition of creativity, elaborated four strands, which he calls the four 
P’s of Creativity. Those four P’s stand for Person, Process, Product, and Press. 
Creativity can thus be seen as a personality trait of a Person. The Process focuses on 
the ways of thinking that can be considered creative. The Product view considers 
the outcomes and Press is understood as the interaction with the environment. With 
this classification, research on creativity can be studied more focused and also com-
municated more transparently. Moreover, Rhodes added that “only in unity do the 
four strands operate functionally. It is this very fact of synthesis that causes fog in 
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talk about creativity” (Rhodes, 1961, p. 307). Pitta-Pantazi et al. (2018) adapted this 
systematization to mathematics education research and cited a number of research 
papers under the respective strands. However, this collection does not represent a 
comprehensive overview.

Another overview is given by Sriraman (2009). Sriraman (2009) presents selected 
studies that are sorted according to their approach. Six approaches are distinguished: 
the mystical approach, the pragmatic approach, the psychodynamic approach, the 
psychometric approach, the cognitive approach, and the social-personality approach. 
Following the systematization of creativity by Sternberg and Lubart (1999), 
Sriraman’s work classifies studies in mathematics education research along these 
approaches. However, so far there is no such overview that sorts the current research 
accordingly or identifies future directions of research.

Another review is provided by Joklitschke et al. (2021). By means of a system-
atic protocol, the authors analyzed journal articles from 2007 to 2019 and elabo-
rated the theoretical foundations on which current mathematics education research 
in the field of creativity is based. With this approach, five essential notions were 
identified:

	1.	 Creativity as Flexibility, Fluency, and/or Other Characteristics: This notion 
traces back to the psychologist and intelligence researcher Guilford (1967) as 
well as to the psychologist Torrance (1974) and describes conceptualizations in 
which creativity is understood, for example, through fluency, flexibility, and 
originality (as, for example in mathematics education in Leikin, 2009).

	2.	 Creativity as Divergent Thinking also derives from Guilford (1967) and describes 
that creative thinking is primarily characterized by thinking in different direc-
tions. In some other understandings of this notion, it is emphasized that both 
aspects are indispensable for creative thinking: divergent and convergent 
thinking.

	3.	 Creativity as a Sequence of Stages focuses mainly on the creative process, in 
different stages can be identified: According to the mathematician Hadamard 
(1945), these stages are Preparation, Incubation, Illumination, and Verification. 
Mathematics education researchers such as Liljedahl (2013) use this view, 
emphasizing the affective component of the “aha!”-experience in students.

	4.	 Creativity in the Sense of Creative Mathematical Reasoning (CMR) stems 
directly from mathematics education and focuses on reasoning processes of 
learners (Lithner, 2008). Here, reasoning sequences are newly formed or re-
created. This contrasts with imitative reasoning, in which remembered or algo-
rithmic reasoning sequences are recalled and

	5.	 Person-, Product-, Process-, and/or Behavior-Based Notion of Creativity includes 
conceptualizations based on the 4 P’s of Creativity explained above 
(Rhodes, 1961).

Joklitschke et al. (2021) present a comprehensive literature review that provides 
an up-to-date overview of the currently prevailing basic theoretical assumptions in 
mathematics education research.
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However, what is missing so far is an overview that is similarly systematic and 
complete, but relates to the empirical implementations of current research. We feel 
there is a need to systematize the current research topics, the current research find-
ings, as well as the specific tasks that characterized the research domain.

Therefore, we would like to systematically aggregate and present current find-
ings in mathematics education research. For this purpose, we have conducted a 
systematic literature review. This has the substantial advantage that the different 
steps starting with a guiding research interest, through a clear data acquisition and 
to data analysis and its interpretation to condensed results are presented in a meth-
odologically clear way and are thus easily traceable. Since there is evidence that 
mathematical creativity can also depend on prior knowledge (e.g., Tabach & 
Friedlander, 2013), it makes sense to narrow such a review with respect to age level. 
In this chapter, therefore, the focus will be on secondary school students. Especially 
with regard to twenty-first-century skills, this age group is particularly interesting. 
At the end of their school career, they decide on their future professional career and 
this decision is influenced by their personal dispositions as well as by the current 
demands of society. Here, their skill of creativity can also play an important role.

With this approach, we would like to answer the following questions:

	1.	 How and in what contexts (e.g., other constructs) is creativity in mathematics 
education research assessed in secondary school students?

	2.	 What are the main results of current research in mathematical creativity?
	3.	 What particular tasks and problems are typically used to capture mathematical 

creativity?

7.2 � Methods

The aim of this paper is to provide a systematic overview of the current, empirical 
insights on the topic of creativity in mathematics education among secondary school 
students. Other publications have already approached the topic of mathematical cre-
ativity and presented current theoretical references in research (Joklitschke et al., 
2021). We build on this dataset in the present work. In the review at hand, we will 
now attend to the empirical parts of the respective publications. We used mathemat-
ics education-related databases as well as psychologically oriented databases to find 
all relevant articles published in journals in the time from 2007 to 2019. For this 
purpose, we used the following search terms:

•	 creative*
•	 aha*
•	 divergent think*
•	 illuminat*
•	 invent*
•	 innovate*
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•	 overcom* fixation
•	 bisociat*

After performing the search and excluding doubled entries, our search resulted in 
473 articles (see Fig.  7.1, left column). These articles were then further filtered 
using title, abstract, and keyword. Articles that did not mention creativity as an 
essential component were discarded. For example, when it is clear that the issue is 
an everyday understanding of creativity, or when it is about creative teaching, or 
when it is clear that creativity is used as a motivation (for example, in the context of 
twenty-first-century skills) (as in Duijzer et al., 2019). In a next step, the articles 
were read and excluded if they did not contain creativity as a central topic. In the last 
step, the school level was considered, so that articles were sorted out that did pertain 
to secondary school level—samples composed of different school levels were also 
included. If this information was not explicitly given, for example, because only the 
age of the students was apparent, then a brief research on the school system in the 
respective country was conducted and the school level was estimated. Finally, after 
several steps of sorting those articles and—for this chapter—to further narrow the 
literature with regard to the grade level (secondary school level), we finally included 
22 articles to this literature review. The search procedure is illustrated in the flow-
chart in Fig. 7.1.

At this point, a big difference between the initially found articles and the finally 
included articles can be noticed. On the one hand, this was due to the fact that the 
search with the specified word stems also found articles that, for example, report on 
an inventory or use phrases such as “Fortunately, theory and research illuminate 
learning trajectories that help all children meet these standards” (Clements et al., 
2019, p. 11). On the other hand, the term creativity is also a kind of umbrella term 
that is often used in everyday language.

Fig. 7.1  Flowchart of search procedure. In total, 22 articles were included for this review. The first 
and second columns stem from Joklitschke et al. (2021)
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7.3 � Data Analysis

Since we intend to provide a summary synthesis rather than to present the existing 
literature in its breadth and heterogeneity, as was the case with Joklitschke et al. 
(2021), we follow the guidelines for aggregative literature review according to 
Newman and Gough (2019) with our analysis: “aggregative synthesis logic focusses 
on the minimization of bias and thus selection pays particular attention to homoge-
neity between studies” (Newman & Gough, 2019, p.  5). We intensively read all 
articles, coded, and summarized them with regard to different categories. Those 
categories provided partially very general information (e.g., short title, or the coun-
try where the study was conducted), and partially arose directly from our research 
interest (e.g., which tasks were used to assess creativity?). With this focus, all arti-
cles were summarized using the following categories:

•	 Short title
•	 Country where study was conducted
•	 Country of first author
•	 Research question/aim of research
•	 Research design
•	 Sample (age, class, number of students)
•	 Qualitative/quantitative/mixed methods/other
•	 Methodology
•	 4 P’s (which P is addressed? Person, Product, Process, or Press)
•	 Tasks for assessing mathematical creativity
•	 Data analysis with focus on parts regarding creativity
•	 Main results

To follow our research interest, we qualitatively analyzed the data (Mayring, 
2015). For this, we looked for commonalities and also special characteristics in each 
category. These findings were then discussed in a panel of experts. In doing so, we 
mainly followed the criteria of a qualitative content analysis and subsequently, 
inductively formed different clusters, which are presented as “perspectives” in the 
following results.

7.4 � Results

In this section, we will discuss the current research landscape on the topic of cre-
ativity in mathematics education. For this purpose, different focal points (we call 
them perspectives) are set, which we will discuss in depth in the following sections.

It must be noted that the perspectives listed are not intended to constitute disjoint 
sets. Rather, they are clusters with respect to various criteria that we consider rele-
vant. Therefore, some papers are listed in more than one section. We would also like 
to stress that this review is a synthesis of existing literature. This automatically 
means that the individual empirical findings published in the respective articles have 
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Table 7.1  Overview of the distribution of articles depending on research approach. The third 
column focuses of Rhodes’ 4 P’s of creativity

Research approach Number 4 P’s

Quantitative 14 10 × product
3 × product → person
1 × product → process

Qualitative 6 4 × process
1 × process → person
1 × person and press

Mixed methods 2 1 × product
1 × (person; product → person)

been greatly condensed and thus cannot be adequately reproduced in their entirety 
in the review at hand. For detailed questions, we therefore refer the reader to the 
original studies themselves.

Twenty-two papers were included in our final analysis. The majority, namely, 14 
of these, were quantitatively oriented (see Table 7.1). In addition, there were six 
articles that had a qualitative research approach. The remaining two articles (Kim & 
Kim, 2010; Levav-Waynberg & Leikin, 2012) took both quantitative and qualitative 
methodological approaches (mixed methods) in both articles; however, the quantita-
tive part predominated. The articles were also analyzed in terms of the 4 P’s of 
creativity (right column) and therefore specify the focus that the empirical parts of 
the articles pursued (arrows indicate that there is an inference from one P to another 
P). Products were used exclusively to conduct quantitative analyses and, in two 
cases, these were used to infer other constructs (once to the person and once to the 
process). In qualitative research, on the other hand, process analysis is predomi-
nantly used, and mixed methods studies address different domains of the 4 P’s.

In addition to this first, quite general, overview, various perspectives on current 
research are taken. First, we analyze articles that focus on a deeper understanding of 
creativity and consider models of creativity (Perspective I). Subsequently, we pro-
vide an insight into the relationship with other constructs and consider particular 
treatments (Perspectives II and III). In Perspective IV, we pertain to further notewor-
thy studies and present their results. In the concluding Perspective V, we take a step 
back from the methodological approaches and the empirical findings and present 
typical problems and tasks that were used to assess mathematical creativity.

7.4.1 � Perspective I: Understanding Creativity and Validation 
of Creativity Models

Of the 22 included articles, 4 reflect on creativity, either by investigating creativity 
in isolation (i.e., without examining other constructs) or by establishing models of 
creativity and validating them. In this perspective, both qualitative and quantitative 
works can be found.
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An example of a qualitative article that belongs to this perspective is Meyer 
(2010). The article uses abduction to provide a theoretical framework and to analyze 
the creative processes. With this work, Meyer leans on Peirce’s theory of induction, 
deduction, and abduction (cf. Peirce, 1998), whereby “the abduction is the decisive 
inference for the discovery of mathematical coherences, which are not implied in 
the (construction of the) premises” (Meyer, 2010, p. 202). With focus on creativity, 
Meyer states that reconstruction of an abduction gives information of the degree of 
students’ discovery and therefore also of the degree of creativity. For example, if the 
rule of an abduction is not known to the student, and the student “invents” this rule 
in the abductive process, as well as the case as it is characteristic for the abduction, 
one can speak of “creative abduction.”

Likewise, Palatnik and Koichu (2019) focus on the examination of creativity in a 
qualitative way. Using a single case study, the authors show what conditions are 
needed to obtain what they call “flashes of insights.” They argue that such a flash of 
insight can occur when both intellectual triggers (a cognitive challenge) and emo-
tional triggers (such as the pressure to fail a course) come together. The discussion 
is strongly reminiscent of Hadamard’s process model, who calls the moment of idea 
generation illumination (Hadamard, 1945; see Chap. 2 for more information).

The quantitative articles assigned to this perspective are about model and test 
validation to capture creativity. However, it should be noted that in both cases other 
constructs are included.

For instance, in Peng et  al. (2013), classroom goal structures and self-
determination and how they could affect creativity are investigated (see Fig. 7.2; 
also for sample items). Creativity is evaluated by Peng and colleagues using two 
components: overcoming fixations and divergent production (by means of fluency, 
flexibility, and originality) as described by Haylock (1987). To give a small insight 
into how classroom goal structures and self-determination are assessed, an illustra-
tive example for each component is given below.

•	 Mastery approach goal structure: “Maths teachers care about whether we master 
or understand the learning materials, instead of our test scores.”

•	 Mastery avoidance goal structure: “Maths teachers often ask us to avoid making 
mistakes in mathematical assignments.”

•	 Performance approach goal structure: “Maths teachers are most concerned about 
how to increase our mathematical scores.”

•	 Performance avoidance goal structure: “Maths teachers tell us that the purpose of 
learning maths is to avoid being regarded as incapable.”

•	 Autonomous motivation: “I enjoy doing my mathematical homework a lot.”
•	 Controlled motivation: “I do mathematical homework because I want avoid 

being punished by my teacher.” (p. 57).

It was found that classroom goal structures have a significant impact on students’ 
self-determination and this again has a significant impact on both overcoming fixa-
tion and divergent production. More precisely, “mastery-approach is the classroom 
goal structure that exerts the greatest effect on creativity via autonomous 

J. Joklitschke et al.



89

Fig. 7.2  Simplified model of classroom goal structures (left column), self-determination motiva-
tions (middle row), and mathematical creativity (right column) (Peng et al., 2013, p. 56). Notes: 
The dashed lines as well as the lines that are dashed and dotted show a significant correlation 
(explanation in the paragraph above). For the purpose of clarity, the relations between the different 
classroom goal structures have been omitted

motivation” (see dashed and dotted line). Mastery-avoidance and performance-
approach have a significant effect on divergent production then, only if they signifi-
cantly influence autonomous motivation (purely dashed line). Interestingly, the 
performance-avoidance goal structure, when it affects controlled motivation, has no 
effect on creativity.

The model validation of Ayas and Sak (2014) is quite different from the other 
articles. Even though this is also a domain-specific view of creativity, the focus is 
not on mathematic creativity, but is defined more broadly as scientific creativity in 
five areas, one of which is called change graph, which is labelled as interdisciplin-
ary. In all these areas, creativity is assessed via open-ended problems and products 
are quantified by the components fluency, flexibility, and originality (the total score 
is calculated using logarithm functions, among others). The model was tested with 
N = 693 sixth graders participating in an educational program for gifted students. 
Using a confirmatory factor analysis, this test (called C-SAT; Creative Scientific 
Ability Test) was to be validated and “can be used as an objective measure of scien-
tific creativity both in research and in the identification of scientifically creative 
[sixth grade] students” (Ayas & Sak, 2014, p. 195). As a second focus, the relation-
ship with mathematical achievement is reviewed in this article and it was shown that 
there is a positive relationship between the creativity score and both the math grade 
and the performance on a test of mathematical talent.
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7.4.2 � Perspective II: Relation and Correlation 
to Other Constructs

The great majority of articles put creativity in context with at least one other con-
struct being researched. Since creativity has been systematically conceptualized, 
strong relationships to constructs such as intelligence or giftedness have repeatedly 
emerged. These relationships are also still evident in current mathematics education 
research.

In a classical correlation study (with one-way ANCOVA analysis), Chen et al. 
(2016) found that mathematically and scientifically talented students (n = 84; from 
senior high school and university) perform better in mathematical divergent think-
ing ability tests (which are also classically used to assess creativity) than non-gifted 
students, regardless of their intelligence. However, other studies examining the 
relationship with giftedness do not assume independence of intelligence (Leikin 
et al., 2017). In this study, a group comparison was conducted between students 
which were either (1) non-gifted and excelling in school mathematics; (2) generally 
gifted and excelling in school mathematics; or (3) were super-mathematically 
gifted. The comparison was conducted along three dimensions, namely, (a) domain-
general cognitive traits; (b) domain-specific (mathematical) creativity; and (c) 
neuro-cognitive functioning expressed in event-related potentials (ERPs). 
Methodologically, non-parametric Kruskal-Wallis test and Mann-Whitney tests 
were used. Even though the most relevant results apply to the characterization of 
different types of super mathematically gifted, it should be emphasized that the 
results also showed that they strongly depend on the different tasks. Thus, an impor-
tant issue for interpreting creativity scores in relation to intelligence might be the 
nature of the creativity task presented to the students. In contrast to Chen et  al. 
(2016), creativity tasks used to obtain those results from Leikin et al. (2017) were 
particularly challenging, insight-based tasks. Furthermore, those insight-based 
MSTs might also be “beneficial for both the identification of mathematical gifted-
ness and the ability grouping process” (Levav-Waynberg & Leikin, 2012, p. 85). 
The task dependency and the influence of intelligence were also confirmed in a 
study by Leikin and Lev (2013). In addition, correlational studies have been used to 
investigate the extent to which different levels of knowledge have an influence on 
creativity. In this regard, a quasi-longitudinal study with n = 76 students from ele-
mentary school (fourth grade) to junior high (ninth grade) provides insight, show-
ing that an increase in mathematical knowledge (over learning time in several 
school years; from fourth to ninth grade) also causes creativity to increase (Tabach 
& Friedlander, 2013)—with one exception: in eighth grade, creativity seems to 
temporarily decrease. This phenomenon can be explained by the increased process-
ing of creativity tasks with algebraic approaches. In the long run, creativity perfor-
mance seems to benefit from the strongly algebraic learning material in eighth 
grade (Tabach & Friedlander, 2013).
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7.4.3 � Perspective III: Reflecting on Instructions 
and Interventions

As seen above, there are various studies using group comparisons to examine cor-
relations and relationships between creativity and other different constructs—such 
as creativity and mathematical knowledge. When reviewing the included articles, it 
turns out that the setting or the way of instruction also plays a prominent role. This 
is a focus in this section.

Levav-Waynberg and Leikin (2012) inquired into the influence of extra geometry 
instruction (in terms of geometrical Multiple Solution Tasks) and its consequences 
on (among other things) students’ creativity. In a pretest-posttest design with con-
trol group (nexperimental = 229, ncontrol = 74; tenth grade), classes of the experimental 
group worked continuously with MSTs over a period of one year. The work on these 
special creativity problems not only promoted fluency and flexibility but also their 
so-called connectedness (the relative number of theorems used). Furthermore, the 
study showed that the third typical component of creativity, originality, was inde-
pendent of the intervention, indicating that this aspect seems to be rather stable.

As outlined in the systematic literature review on theoretical assumptions and 
related notions, creative mathematical reasoning also seems to play an increasingly 
prominent role (Joklitschke et al., 2021). For the theoretical basis of this notion, see 
Lithner (2008). In an intervention study (nCMR = 25, nAR = 23; all students attended 
upper secondary school or universities) with matched pair design, Norqvist et al. 
(2019) investigated to what extent and why learning through creative mathematical 
reasoning can be more effective than imitative reasoning. In contrast, the pretest-
posttest design consisted of only three sessions. The intervention unit consisted of a 
computer-based practice. The participants’ activity was recorded with an eye tracker 
and for the analysis, these data were used to examine dwell time in relation to dif-
ferent areas of interest. It was found that while the AR (algorithmic reasoning) task 
group was more successful during the intervention, the CMR (creative mathemati-
cal reasoning) group outperformed during the post-test. The eye-tracking analysis 
offers a possible explanation for this phenomenon, since students in the CMR group 
focused primarily on illusions. This is considered to be more conceptual and sus-
tainable. Students of the AR group focused more on formula, which has less of a 
long-term effect (Norqvist et al., 2019).

The concept of creative mathematical reasoning has also been used to investigate 
the relationship between CMR, students’ collaboration, and their use of dynamic 
geometry software (Granberg & Olsson, 2015). Thirty-six students (aged 16 and 17) 
worked in pairs on a problem using the dynamic geometry software GeoGebra. 
Here, special attention was paid to their joint problem space and on the reconstruc-
tion of the reasoning sequences. Granberg and Olsson (2015, p. 61) showed that 
“students used GeoGebra to collaborate and to engage in creative reasoning.”

Another study in which the interaction between learners plays a special role 
investigated “creative reasoning within the shifts of knowledge in an inquiry-based 
classroom” (Hershkowitz et al., 2017, p. 25). For this purpose, class discussions in 
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a 10-h lesson unit were analyzed in small steps with regard to so-called knowledge 
agents, who provide a certain chain of reasoning, and the followers, who take over 
those of reasoning processes. The classroom-based research showed impressively 
that all students who used CMR became knowledge agents, whereas students who 
were not assessed as creative did not necessarily function as knowledge agents.

7.4.4 � Perspective IV: Articles That Do Not Fit Perspectives 
I–III

In addition to the studies presented above, other articles should be mentioned. In 
three of the articles, the field of autonomy in combination with creativity is exam-
ined. One of these studies (Peng et  al., 2013) has already been presented in 
Perspective I. In this study, a model was validated that measures the impact of teach-
ing culture on self-determination motivation and this in turn measures the impact on 
creativity. In this context, self-determination motivation was assessed by question-
naire and includes two scales, namely, autonomous motivation scale and controlled 
motivation scale. According to the results, only the autonomous motivation scale, 
measured by intrinsic motivation and the identified regulation, has a significant 
influence on creativity, whereas the controlled motivation scale does not show a 
significant correlation. Furthermore, this study could also be considered classroom-
based research, even though the data collection was done through questionnaires 
and pen-and-paper tests, because, it starts from the effect of the teaching culture.

The second article focuses on the support of gifted students. Here, the relevance 
of mathematical modeling on (a) creative production ability and (b) self-directed 
learning was investigated in a 6-month support program. In order to investigate 
creativity, the mathematical modeling process of the students was examined, focus-
ing specifically on student behavior. It is not precisely clear to the authors to what 
extent Kim and Kim (2010) focus on processes, behaviors, or products. When con-
ceptualizing creativity, the authors draw on a previously developed model for the 
concept of creativity, which is not prominent in the literature (Joklitschke et  al., 
2021)—they conceptualize the creative product production model in mathematics 
(similar to Renzulli, 2002) composed of rings, namely, mathematical thinking, 
mathematical knowledge, and mathematical inquiry skill. The self-directed learning 
attitude was surveyed by means of a questionnaire. Unfortunately, both aspects are 
hardly connected with each other, but are almost isolated in the context of mathe-
matical modeling. For creativity, a focused group analysis showed that modeling 
tasks were “problem situation calling for a maximum of creativity” (Kim & Kim, 
2010, p. 116). For self-directed learning, a t-test with a comparison group showed 
that students in the modeling course exhibited a higher level of self-directed 
learning.

A third article (Kordaki, 2015) also deals with self-directed learning. In this arti-
cle, the problems that are usually characteristic for creativity research play the 
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crucial role: As variously studied and discussed previously, MSTs are used to inves-
tigate, measure, and promote creativity (Kattou et al., 2013; Leikin & Lev, 2007; 
Pitta-Pantazi, 2017). The researcher investigated the role of MSTs in students’ 
development of multiple representation on a specific computer-based learning envi-
ronment (Kordaki, 2015). In a comparative study with 20 14-year-old students, it 
was shown that MSTs, which explicitly demand multiple solutions, “can efficiently 
support students in expressing themselves to their fullest extent” in the context of 
this specific digital computer environment (Kordaki, 2015, p. 509).

It is also noticeable that in almost all articles, creativity is assessed through spe-
cial tasks or tests. In only one paper, creativity is measured by a self-report. Liu 
et al. (2015) examine differences in creativity between below- and above-average 
achievers and between classroom and extracurricular instruction. To capture cre-
ativity, students completed a questionnaire that was used to represent creativity—
one of two items was “I have been challenged to come up with new ideas” (p. 145). 
Since the database is also quite small despite a large sample (N = 381) due to only 
two items used for creativity, the results are not intended to be further relevant to 
this review.

7.4.5 � Perspective V: Problems and Tasks for Assessment

Following the insights that we have gained in the previous sections about the con-
texts, settings, and other constructs with which creativity is studied, the focus will 
now be put to the specific tasks and problems with which creativity is assessed. Of 
course, we cannot present all tasks that were presented in the included articles. 
Therefore, we will present characteristic examples that are typical or even used in 
more than one publication. Tasks that were used to capture other constructs are not 
presented—the focus is clearly on creativity.

A historical classic among tasks that capture creativity is the 9-dot-grid (see 
Fig. 7.3). The task is to draw an area with an area of 2 cm2 in a field of nine arranged 
dots in many different ways (Haylock, 1987).

In this review, for example, Chen et al. (2016) used this task in a further devel-
oped form. For the analysis of the students’ products, the components fluency, flex-
ibility, and originality were scored to measure creativity, whereby “the scoring 
system is based on the New Creative Thinking Test developed by Wu et al. (1999)” 
(Chen et al., 2016, p. 249). It should be stressed that no total score for creativity was 
determined here, but the scores of the individual components were used to relate 
them to other scores, such as intelligence. Similarly, this task was also used by Peng 
et al. (2013). Here, the task was “Draw a figure to form 2 cm2 for its measure of area 
within a nine-dot square. Please draw as many figures as you can in given 10 min-
utes” (p. 57). Even though the 9-dot-grid in the two articles does not carry the label 
of an MST, this task could still be assigned to this class of tasks. Interestingly, no 
reference is made to this particular type of task anywhere.
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Fig. 7.3  Example of the 9-dot-grid with two possible, but very common, solutions to the task of 
finding a 2 cm2-area

Dor and Tom walk from the train station to the hotel. They start out at 
the same time. Dor walks half of the time at speed v

1
and half of the time 

at speed v
2
. 

Tom walks half way at speed v
1

and half way at speed v
2
. 

Who gets to the hotel first: Dor or Tom?

Fig. 7.4  Example of a text based MST (Leikin et al., 2017, p. 112)

Of course, MSTs were represented in the present review. In fact, in Leikin and 
Lev (2013) all the problems that were used in this study to measure mathematical 
creativity are illustrated. The Movement Problem (See Fig. 7.4), which was used in 
Leikin et al. (2017) as well, was highlighted as a problem that particularly provokes 
insight-based solutions—as also discussed in Perspective II.

The instruction is the same for all MSTs: “The students were explicitly asked to 
solve each problem in as many ways as they can” (Leikin et al., 2017, p. 114; Leikin 
& Lev, 2013, p.  189; and nearly the same for Levav-Waynberg & Leikin, 2012, 
p. 77). The products of the students are then evaluated with respect to the categories 
Fluency, Flexibility, and Originality. Fluency refers to the number of solutions the 
student included. Flexibility expresses the diversity of the solutions. Originality 
describes the rarity of solutions or the level of insight. Finally, an overall creativity 
score is obtained, which multiplicatively offsets the flexibility and originality com-

ponents: Cr Flx Or�
�
�
i

n

i i
1

· , for n approaches. Detailed explanations of the calcula-

tion scheme can be found in Leikin (2009).
Furthermore, for the assessment of creativity, especially with the help of MSTs, 

geometric tasks are also frequently used. An example of this can be seen in Fig. 7.5 
(Levav-Waynberg & Leikin, 2012, p. 74). Here, the question is to find a proof for 
the perpendicularity of a triangle in a variety of ways.
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Fig. 7.5  Example of a geometrical MST (Levav-Waynberg & Leikin, 2012, p. 74). Instruction: 
“In triangle AGD, points E and F are on AG and DG, respectively, and points B and C are on AD 
(see drawing). Given that EF = FC = CB = BE, prove that triangle AGD is a right triangle.” (Levav-
Waynberg & Leikin, 2012, p. 74)

Fig. 7.6  Examples of a semi-structured problem posing situation (cf. van Harpen & Presmeg, 2013)

A similar approach to MSTs in problem-solving research, as shown above, can 
also be found in problem-posing research. Posing mathematical problems is often 
referred to as an act of creative invention (Silver, 1997). In our review, there are two 
articles that investigate mathematical creativity through problem-posing abilities. 
van Harpen and Presmeg (2013), for example, asked US and Chinese high school 
students to pose as many problems as they can that are related to a given picture of 
a triangle and its inscribed circle (among other problem-posing situations) (see 
Fig. 7.6). The responses, i.e., the posed problems, were analyzed with respect to the 
categories Fluency, Flexibility, and Originality, similar to the approach of analyzing 
responses to MSTs presented above. In the context of problem posing, fluency 
refers to the number of posed problems, flexibility refers to the diversity of posed 
problems (e.g., in terms of different mathematical ideas or strategies to be applied), 
and originality refers to the rareness of the posed problems compared within the 
solution space of the peer group.
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Fig. 7.7  Examples of a (a) AR task and a (b) CMR task

As shown in Perspective III, some articles also deal with the processes of math-
ematical creativity, with the help of a certain intervention. In this context, creative 
mathematical reasoning has already been discussed. A typical task that has been 
published more frequently (sometimes with slight modifications) in this context 
involves laying a row of squares of matchsticks. In Jonsson et al. (2014), for exam-
ple, performances of students who were given either algorithmic reasoning or cre-
ative mathematical reasoning tasks were compared. In Fig. 7.7, two analogous tasks 
can be seen for this purpose, illustrating the difference between these tasks that 
induce either AR or CMR (Jonsson et al., 2014, p. 24).
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7.5 � Discussion and Outlook

Current research on mathematical creativity in secondary students looks widely 
diverse. In order to bring some organization to this complex array of the research 
landscape, a systematic, aggregative literature review (cf. Newman & Gough, 2019) 
was conducted that highlights commonalities in the analyzed articles.

It is interesting to note that few publications in the recent period (2007–2019) 
have been devoted to the topic of creativity by itself. One possible explanation 
would be that researchers believe the construct has already been sufficiently 
explored. However, this is implausible as creativity has been identified as a very 
complex phenomenon (Chamberlin, 2020; Joklitschke et al., 2021; Kozlowski et al., 
2019; Kupers et al., 2019). Another explanation could be that there is currently a 
lack of methods to further explore creativity compared to established approaches. 
New methods could include EEGs (electroencephalogram; a recording of brain 
activity), CT scans, or eye tracking, all of which could help to learn more about 
creative processes. There are already studies using eye tracking to investigate such 
processes (Dietrich & Kanso, 2010; Leikin et  al., 2017; Norqvist et  al., 2019; 
Schindler & Lilienthal, 2020, 2022).

Summarizing the current state of research reveals a dominance of quantitative 
research. Out of twenty-two articles, fourteen are quantitative, six are qualitative, 
and two use a mixed-methods approach, both with a quantitative focus. Referring 
to the 4 P’s of creativity (Rhodes, 1961), there is an obvious relation: All analyzed 
quantitative studies use products as a data basis. In a few cases, this is used to 
draw conclusions about the processes or the person. The qualitative studies focus 
in five cases on the process, whereby, in one of them, this process is used to pro-
pose statements about the creativity of the person. In a sixth qualitative article, 
the focus is on the person and press. This distribution seems to be relatively stable 
for the period under consideration, so that no trends can be derived that would 
indicate a shift to qualitative research in the future. What is also noticeable is that 
the focus in the respective publications on one of the 4 P’s does not always seem 
to be consistently implemented. For example, by analyzing products, statements 
are made about the creativity of products and inferences are drawn about the cre-
ativity in the process. However, such a conclusion cannot be derived in every case 
(Liljedahl & Rott, 2017).

From a content perspective, the focus of current research on mathematical cre-
ativity on secondary school level is regularly dedicated to the investigation of cor-
relations to other psychometric constructs—most often intelligence, giftedness, or 
mathematical achievement. Such studies investigating the connection to other con-
structs were mostly quantitative in nature and exclusively focused on products or 
inferred from products to processes or to persons. Investigating specifically these 
constructs is plausible since creativity has often been conceptualized as part of intel-
ligence. Furthermore, it should be acknowledged that there are easily accessible 
measures for the most frequently considered secondary constructs, such as IQ, the 
grade in class, or participation in courses that require a high level of mathematical 
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knowledge. Nevertheless, results of such studies are inconsistent—as, for example, 
in the case of the relationship between intelligence and mathematical creativity. A 
possible explanation for this can be found in the methodological implementation, 
since the tasks for assessing creativity differed greatly in their requirements (com-
pare problem settings in Chen et al., 2016, and in Leikin & Lev, 2013).

Regarding methods for measuring mathematical creativity, the majority of 
researchers appears to agree that this construct cannot validly be measured indi-
rectly, that is via the use of questionnaires, but instead product evaluations or pro-
cess analyses are needed.

Taking a step back from classical correlational studies and looking at publica-
tions that are focused on a specific setting, the methodological approaches are defi-
nitely more heterogeneous—as both qualitative and quantitative approaches are 
used in this regard. It is also understandable that results in this area that can hardly 
be summarized in a review. This is due to the fact that the research interests in this 
area are very wide-ranging and therefore the analyses are very heterogeneous. 
Overall, it is striking that there seems to be low research interest on topics, in which 
a particular setting/treatment is in the foreground. Classroom-based research or the 
interaction between students or students and teachers are rarely studied, at least.

Nevertheless, there are first indications that, for example, working with tasks that 
intend CMR could be beneficial for students’ learning, discussing, and thinking 
(Hershkowitz et al., 2017). While there is no clear trend towards additional research 
focusing on interactions and collaborations, it is clear that ample research opportu-
nities in this area exist. With caution, one could therefore hypothesize that interac-
tion studies, collaboration studies, or classroom-based research could become 
frequent subjects of future studies, since there are already first steps in this direction 
and there are also recent publications that were not part of the review, but dedicated 
to these connections between creativity and, for example, collaboration (Khaliq & 
Rasool, 2019; Lee et  al., 2021; Levenson & Molad, 2022; Schindler & 
Lilienthal, 2022).

There are two further, probably important, results when considering the widely 
used conceptualization of mathematical creativity as fluency, flexibility, and origi-
nality. First, originality seems to be a relatively personality-stable component, 
whereas fluency and flexibility are trainable over time (Levav-Waynberg & Leikin, 
2012). Second, in the synopsis of the tasks belonging to the notion of creativity 
composed of fluency, flexibility, and originality, it is noticeable that they focus 
exclusively on fluency. We are not aware of any study that systematically examines 
the instructions for MSTs, which might warrant a close look. Differences that may 
occur could be investigated if the students were given instructions such as “Find 
different ways to solve the problem,” which would rather focus on flexibility, or 
“Find several different ways to solve the problem” or even “Find rare ways to solve 
the problem.”

When we relate our findings to the historical traces laid out in Chap. 2 of this 
book, it is striking that we have seen little to no such historical references in the 
empirical parts of the reviewed articles. This phenomenon may entail four explana-
tory options. First, the field of creativity research seems to have evolved rapidly, so 
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that tracing back to the beginnings of the research is no longer considered relevant. 
Second, it could also be that current research is seen as more or less detached—this 
hides the danger that important basic assumptions are reinterpreted and may no 
longer live up to their original meaning, so that concerns about validity could arise. 
Third, an explanation could also lie in the relationship with other variables studied. 
As shown, many publications examine the connection with other constructs. Thus, 
it is also conceivable that creativity is seen and investigated more as a side effect of 
these other constructs. And fourth, because of the dynamic relevance of creativity 
(e.g., twenty-first-century skills; Beswick & Fraser, 2019), it could also be that 
researchers see creativity as a new, emerging construct and may neglect the fact that 
it has a rich history of work. Referring back to the theoretical parts, we carefully 
hypothesize that it may be due to the multiple constructs that also need to be given 
some attention (third reason).

Shortly before the finalization of this chapter, a paper by Leikin and Sriraman 
(2022) was published that summarizes the current state of the art of empirical 
research on creativity in mathematics education. Leikin and Sriraman identify three 
major themes of this research field. These major themes largely confirm the per-
spectives we have identified in our analysis. In addition, we identified further per-
spectives, such as Perspective I, the understanding of creativity and validation of 
creativity models.

Limitations of the present review include the fact that due to the rigorous sam-
pling procedure, only a selection of articles and journals was reviewed. Certainly, 
the picture of the research landscape would look slightly different if, for example, 
conference papers, articles from conference proceedings, or even other mathematics 
education journals had been included. Moreover, the findings obtained are only 
addressed to the secondary level. A next step would be to obtain results for other 
school levels and to compare both results. Another important point is to keep the 
developments hypothesized and discussed research gaps in view and to investigate 
them further. Some gaps of research and foci that could be considered in the future 
are listed in the following:

•	 To better systematize and compare research, it would be helpful if researchers 
always stated clearly and consistently which of the 4 P’s of creativity their 
research addresses.

•	 Future research could focus on creativity in collaborative work (also targeting 
at Press).

•	 Future research could focus on classroom-based environments (also targeting 
at Press).

•	 Future research could focus on creative processes similar to those described by 
Hadamard, for example, by using long-term problems.

•	 Future research could focus on finding different types of creativity, for example, 
different process types or different types of persons.
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Chapter 8
Mathematical Creativity at the Tertiary 
Level: A Systematic Review 
of the Literature

Miloš Savić, V. Rani Satyam, Houssein El Turkey, and Gail Tang

8.1 � Introduction

Van Nuys (2019) shared results from a study in which it was stated that creativity is 
the most needed skill for employees in companies in 2019 and 2020. Specifically in 
STEM, careers will be uncertain and require flexibility and, most importantly, cre-
ativity (Wilson et al., 2017). Creativity is an important piece of mathematical think-
ing according to many prominent mathematicians (Borwein et al., 2018; Karakok 
et al., 2015), and thus is important to foster in future mathematicians. As well, the 
Mathematical Association of America’s Committee on the Undergraduate Program 
in Mathematics (Zorn et al., 2015) has emphasized the importance of mathematical 
creativity in its latest guidelines: “[A] successful major offers a program of courses 
to gradually and intentionally leads [sic] students from basic to advanced levels of 
critical and analytical thinking, while encouraging creativity and excitement about 
mathematics” (p. 9). Under Cognitive Goals and Recommendations, the guidelines 
also state that “[T]hese major programs should include activities designed to pro-
mote students’ progress in learning to approach mathematical problems with curios-
ity and creativity and persist in the face of difficulties” (p. 10). Whether the focus is 
on industry, academia, or the classroom, creativity is ubiquitously important.
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Much of the above motivations for tertiary mathematical creativity fostering lie 
in the developmental perspective of creativity, that a person’s creativity can be 
developed or fostered. Kozbelt et al. (2010) stated that developmental theories of 
creativity “help us to understand the roots of creativity, as suggested by the back-
ground of unambiguously creative persons, but they also often suggest how to 
design environments so that the creative potentials of children will be fulfilled” 
(p. 26). Developmental creativity pertains to the development of creative processes, 
persons, and press (environment), according to Rhodes (1961), whereas creative 
products are the end-results: “Although products are not the primary focus of devel-
opmental theories, they still play an important, but often tacit, role” (p. 26). Kozbelt 
et al. (2010) described that in the developmental theory of creativity, studies that 
have analysis of the creative process, including moments that influenced develop-
ment of one’s creativity, are important, as well as longitudinal studies to examine 
such development over time.

An abundance of scholarly work pertains to how to develop creativity in the pri-
mary and secondary classrooms (e.g., Beghetto & Kaufman, 2010; Starko, 2013), 
but the tertiary perspective is still growing (Kozlowski & Si, 2019). This literature 
constitutes an aggregate of the tertiary mathematics education literature on mathe-
matical creativity, allowing researchers in the field to survey and add to the previous 
studies. Furthermore, because there is a need for enhancing students’ creativity in 
mathematics classroom at the tertiary level, we explored the following research 
questions through systematic literature review: (i) What is the current state of 
research on tertiary mathematical creativity? (ii) To what extent is the developmen-
tal perspective of creativity present in current research?

8.2 � Method

In this systematic literature review, we followed the guidelines set out by Newman 
and Gough (2020). We set our research questions and then searched the literature. 
Because this is a first review of the tertiary mathematical creativity literature, our 
review may be considered a “scoping review” (Newman & Gough, 2020, p. 15), as 
we are not taking a full conceptual framework. Scoping reviews “summarize litera-
ture in a topic area” and are an “effective means of highlighting the relevant litera-
ture to the researcher” (O’Flaherty & Phillips, 2015). In the second research 
question, we are using the developmental lens described above, which will be used 
as an analysis tool and rather than as a selection criterion.

We first used Google Scholar to search for publications in which tertiary math-
ematical creativity was studied. The first search was conducted with the terms “___ 
math creativity,” where the blank was tertiary, undergraduate, and post-secondary. 
The second search was conducted substituting the blank with content-specific topics 
within tertiary mathematics: calculus, graph theory, real analysis, abstract algebra, 
differential equations, discrete math, precalculus, college algebra. Finally, we sub-
stituted the blanks with two terms separately, proof and proving, as they are 
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important mathematical activities in upper-division courses. We restricted the selec-
tion of articles to content that is taught in tertiary mathematics and mathematics-
only tracks for a focused systematic literature review. Therefore, in the search, we 
did not include articles about pre-service teachers or any article that used tertiary 
mathematics as a subset of a general, all-grades mathematics education article, 
although we acknowledge that there could be an intersection of both pre-service 
courses and topics such as number theory. This is not to discredit pre-service math 
courses at all, as they are important in the preparation of future teachers. We also 
narrowed our results to journal articles, book chapters, and dissertation publica-
tions. Accounting for all the criteria above, we found 29 artifacts total.

Each article was then put into a spreadsheet with author(s), title, journal, year, 
content topic (if specified), methods, results, and any other important information. 
We then analyzed each column, making observations about common themes.1 We 
now present those themes.

8.3 � Results

The two journals that had the largest number of articles were the Journal of 
Humanistic Mathematics (JHM, six articles) and Problems, Resources, and Issues 
in Mathematics Undergraduate Studies (PRIMUS, five articles). The JHM articles 
were all from a special issue that was guest-edited by our research group, which 
explains the frequency of articles from that journal. We believe that the number of 
PRIMUS articles is due to the position of the journal as a practitioner journal in 
tertiary mathematics, so mathematics instructors interested in mathematical creativ-
ity in their classroom may publish here. Each of these 11 articles had a description 
of how the authors fostered students’ creativity in their own courses. For example, 
Kasman (2014) described a project system, including how they assessed creativity, 
in a course for students that required a minimum of one math course for graduation 
(i.e., a general education course). They used a rubric to value several aspects of 
graph theory or voting problems, one of which was creativity (worth 3 points out of 
20). Kasman reported that the creativity in both mathematics and their aesthetics 
made them “delighted during the grading of these projects” (p. 489). Mayes-Tang 
(2020) also wrote about a first-year general education course where students created 
new geometrical concepts and built upon those concepts throughout the course. The 
author described fostering creativity by prompting the students to find properties or 
theorems with their created concept, and to present an end-of-semester, semester-
long project on their new geometrical concepts, including the semester-long prompt 
to “find as many properties as you can for your newly-defined creation and formu-
late relevant theorems about it” (p.  267). They concluded with eight 
recommendations to implementing creativity-focused courses, including to “look 

1 Data analysis was concluded at the end of August 2020.
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for creative moments in each class” and “set a grading structure for creativity-
focused assessments that rewards effort and reflection over sophistication of results” 
(p. 271). Munakata et al. (2021) studied a general education mathematics course 
that focused on creativity. They studied both student effects, including seeing math 
differently, seeing math creativity, frustration, collaboration; and teacher effects, 
including not knowing what to expect and feeling out of their comfort zone. All 
three practitioner papers had both creativity and terminal math courses. This small 
number may be due to the experience being the last math requirement for students, 
coupled with the minimal requirements for content (Kasman, 2014). The other two 
PRIMUS articles (El Turkey et al., 2018; Omar et al., 2019) are from our research 
group and are situated within proof-based courses. Both offer a rubric, the Creativity-
in-Progress Rubric on Proving (presented in full in Savić et al., 2017)), as a basis for 
actions in the classroom. The rest of the 18 articles were published in separate jour-
nals or books. Of the 29 articles, 27 were written in the last 10 years (2012–2021), 
of which 17 were written in the last 3 years (2019–2021). This indicates that the 
field of mathematical creativity in tertiary education is recently growing. Figure 8.1 
shows an infographic of articles by year.

The most popular topic out of the 29 articles was calculus, with five articles. 
Three of the five articles were quantitative, including creating and validating a 
“learning model based on open-ended questions… to improve students’ creativity in 
calculus learning in a valid and practical way” (Arsyad et al., 2017, p. 144). Mac an 
Bhaird et al. (2017) coded tasks from business, science, and pure calculus courses 
using Lithner’s (2008) imitative/creative reasoning framework. They found that, in 
the business and science calculus classes, tasks were mostly imitative, and tasks on 
tests were almost 100% algorithmic (which is a subset of imitative). The authors 

59%
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Fig. 8.1  Tertiary math creativity research by year
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end with a reflection on business and science courses, claiming that they “need not 
have a lower proportion of CR [creative reasoning] tasks” (p. 160). Blyman et al. 
(2020) discussed a rubric that they used in calculus to assess math creativity with 
pre-post-semester tasks. They had mixed results and concluded that “evaluating cre-
ativity is a difficult task” (p. 169). The other two calculus articles included deriva-
tive TACTivities for moving and manipulating derivative calculations 
(Hodge-Zickerman et al., 2020), and an investigation of Hawaii Algebra Learning 
Project (HALP) and its strong positive impact on mathematical achievement and 
creativity (Roble, 2017). In the case of Roble, mathematical creativity was defined 
by Leikin’s (2009) use of Torrance’s (1966) fluency, flexibility, and originality 
categories.

The second-most discussed topics in our literature review were graph theory and 
combinatorics (four articles). There were two articles on the same course in combi-
natorics (Karakok, 2021; Omar et al., 2019), and there were two other articles that 
mentioned problems in combinatorics and graph theory in order to foster creativity 
(Hoshino, 2018; Zazkis & Holton, 2009). The latter two graph theory articles were 
(1) a systematic literature review of graph theory with a consideration for how the 
problems can foster creativity (Suriyah et al., 2020); and (2) an article about how an 
online application with graph theory fosters creativity (Wahyuningsih et al., 2020).

In our investigation, we found that the most articles (11) were descriptive, mean-
ing that the authors described what happened in their classrooms or courses and 
how they fostered (or attempted to foster) mathematical creativity (e.g., Marciniak, 
2020; Monahan et al., 2020). These 11 articles also did not use qualitative, quantita-
tive, or any other coding techniques. These are separate from the three theoretical 
pieces that did not use coding (Grégoire, 2016; Hafizi & Kamarudin, 2020; Savic, 
2016). For example, Grégoire (2016) claimed there was interplay between the intel-
lectual abilities, personality of the student, and the educational environment. Hafizi 
and Kamarudin’s (2020) main claim was that there was a growth of creativity 
research in Malaysia specifically in higher education and detailed mathematical cre-
ativity research happening in the country. Finally, Savić (2016) combined the theo-
ries of problem solving and creativity while discussing proof research.

The next most-used method was quantitative, which had eight publications that 
studied ways of gauging whether a student was creative, with two articles citing 
Torrance’s Tests for Creative Thinking (Asahid & Lomibao, 2020; Singh & 
Kushwaha, 2019). There were seven qualitative studies, two of which were not part 
of our research group. The first one (Roble, 2017) discussed Multiple Solution 
Tasks (MSTs, Leikin, 2009) and pre-post testing of non-routine problems for 
achievement, along with student interviews about struggles in mathematics. 
Adiredja and Zandieh (2020) introduced anti-deficit perspectives in mathematical 
creativity, noting that students have creative examples of basis in linear algebra, and 
can generate mathematical creativity collectively as well as individually. Finally, 
there was a dissertation that had both qualitative and quantitative methods (Regier, 
2020). The quantitative part was focused on fostering creativity in the classroom 
and its impact on self-efficacy. Surveys were created with influence from Cilli-
Turner et  al. (2019) for the students to gauge how their teachers provided 
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Fig. 8.2  Tertiary math creativity research by method

opportunities for them to be creative. The qualitative portions studied connections 
between problem-posing and motivation as well as linked fostering creativity with 
self-efficacy, which was also presented in Regier and Savic (2020). This indicates a 
balance of methods for research, which is demonstrated in Fig. 8.2.

Using the Kozbelt et al.’s (2010) definition of developmental theories of creativ-
ity mentioned in the introduction, most of the articles found (25 of 29, or 86.2%) 
took a developmental perspective, meaning that they assumed that creativity could 
be fostered or developed in classrooms. The four articles that we perceived as not 
developmental were all quantitative studies (Arsyad et  al., 2017; Mac an Bhaird 
et al., 2017; Singh & Kushwaha, 2019; Tularam & Hulsman, 2015). However, the 
Arsyad et al. (2017) article was about creating a tool that could ultimately have the 
impact of increasing students’ creativity, which is a secondary outcome of the 
developmental perspective. This secondary outcome is true for Mac an Bhaird et al. 
(2017), who wanted to look at reasoning tasks in summative assessments for the 
development of “mathematical reasoning skills” since it is an “important objective 
of teaching of mathematics at all levels, in particular at university” (p. 160).

8.4 � Discussion and Future Research Directions

There is certainly much more that can be done in tertiary mathematics education 
with creativity. Compared to its place in primary and secondary education, mathe-
matical creativity is new to the realm of tertiary mathematics education. We hope 
this chapter encourages the field to consider mathematical creativity at this level, 
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including being creative in research methods, tools, and approaches to fostering 
creativity.

Our systematic literature review showed that very high or high-quality journals2 
have published only one article on creativity (i.e., Regier & Savic, 2020), in our 
search using the words “undergraduate/tertiary/post-secondary mathematical cre-
ativity.” This speaks to how new the research subfield is, how much more work 
needs to be done for mathematical creativity at the tertiary level to be more valued, 
or how journals need to consider publishing more research on mathematical creativ-
ity at the tertiary level. Regardless of the reason, there is a gap between the value of 
creativity in the three areas of industry, academia, and the classroom with the pub-
lication rates of tertiary mathematical creativity. Most of the articles described what 
happened in a classroom; future syntheses should cross-examine each descriptive 
article and see the common themes or ideas. Mathematical content was not focused 
on one topic or area of mathematics. This makes us believe that mathematical cre-
ativity can be fostered in any aspect of tertiary mathematics education. In fact, 
according to Ervynck (2002), mathematical creativity should be fostered in every 
aspect of tertiary mathematics education.

There were limitations to this scoping review, including the limit on the key-
words in searching. For example, in pre-service mathematics education, which was 
not considered in this chapter, there have been a number of articles on mathematical 
creativity, including those that conceptualize what teachers believe as mathemati-
cally creative (Bolden et al., 2010; Moore-Russo & Demler, 2018). This research at 
the pre-service level can have a huge influence on what future primary and second-
ary students see as mathematics (Aiken Jr, 1973; as cited by Fetterly, 2010). Future 
systematic reviews will hopefully take this review as a first step towards cataloging 
and broadening mathematical creativity.

8.5 � Conclusion

Why is mathematical creativity so important in tertiary mathematics education? For 
some students, this might be their last experience of mathematics, so there is one 
last chance to change their beliefs about mathematics as more exploratory (Kasman, 
2014; Mayes-Tang, 2020; Monahan et al., 2020; Munakata et al., 2021). For others, 
they will continue on to graduate school in mathematics, and creativity is a chance 
for them to feel like mathematicians (Omar et al., 2019). Mathematical creativity 
can also be a catalyst towards a more equitable classroom (Luria et  al., 2017), 
although much more empirical work is needed to validate that theoretical claim 

2 We are using the rankings by Williams & Leatham (2017) to define a very high or high-quality 
journal. These journals include Journal of Research in Mathematics Education (JRME), 
Educational Studies in Mathematics (ESM), Journal of Mathematical Behavior (JMB), ZDM – 
Mathematics Education, For the Learning of Mathematics (FLM), Mathematical Thinking and 
Learning (MTL), and Journal of Mathematics Teacher Education (JMTE).
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(Kozlowski & Si, 2019). All these reasons for fostering mathematical creativity 
have at their core a developmental perspective that centers students. Also, all these 
reasons need more research to understand how mathematical creativity impacts stu-
dents, including teaching actions that can foster creativity (Satyam et al., accepted) 
and the impacts on students’ affect (Tang et al., accepted). We also need to expand 
our knowledge from the individual to the collective, thinking of fostering creativity 
in groups or teams (Heath, 2021) as not many of the articles include this 
perspective.

Based on the results of this review, we implore instructors of tertiary mathemat-
ics, many of whom are mathematicians, to consider a developmental perspective on 
creativity. Hirst (1971), when discussing creativity in mathematics education, stated:

There must be a recognition that worth-while investigations can take place at a 
lower level than the full-blown research problem, and the purpose of these must be 
seen as contributing to the student’s mathematical development, and not the further-
ance of the boundaries of the subject. (p. 28)

In the 50 years since that quote, we have seen momentum only recently towards 
this perspective. We hope that by examining this systematic literature review, 
researchers and instructors can add to the developmental perspective of tertiary 
mathematical creativity.

�Appendix A: Table of all 29 Articles/Book Chapters Listed by 
Alphabetical Last Name

Author Year Title Journal Content Methods Develop?

Adams, 
Margaret

2020 Three 
Creativity-
Fostering 
Projects 
Implemented in 
a Statistics 
Class

Journal of 
Humanistic 
Mathematics

Statistics Rhodes 4P Yes

Adiredja, 
Aditya P; 
Zandieh, 
Michelle

2020 Everyday 
examples in 
linear algebra: 
Individual and 
collective 
creativity

Journal of 
Humanistic 
Mathematics

Linear 
Algebra

Qualitative: 
Interviews, 
coding for 
originality of 
basis, vector 
space

Yes

Arney, Chris 2002 Building 
Creativity 
Through 
Mathematics, 
Interdisciplinary 
Projects, and 
Teaching with 
Technology

Changing 
Core 
Mathematics

All Description 
of course

Yes

(continued)
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(continued)

Author Year Title Journal Content Methods Develop?

Arsyad, 
Nurdin; 
Rahman, 
Abdul; 
AHMAR, 
Ansari Saleh

2017 Developing a 
self-learning 
model based on 
open-ended 
questions to 
increase the 
students’ 
creativity in 
calculus

Global 
Journal of 
Engineering 
Education

Calculus Quantitative No

Asahid, 
Remelyn L; 
Lomibao, 
Laila S

2020 Embedding 
Proof-Writing 
in Phenomenon-
based Learning 
to Promote 
Students’ 
Mathematical 
Creativity

American 
Journal of 
Educational 
Research

Mixed, but 
students in 
Diff Eq

Quantitative Yes

Blyman, Kayla 
K; Arney, 
Kristin M; 
Adams, Bryan; 
Hudson, Tara 
A

2020 Does Your 
Course 
Effectively 
Promote 
Creativity? 
Introducing the 
Mathematical 
Problem 
Solving 
Creativity 
Rubric

Journal of 
Humanistic 
Mathematics

Calculus Quantitative 
pre-post 
problem 
solving

Yes

El Turkey, 
Houssein; 
Tang, Gail; 
Savic, Milos; 
Karakok, 
Gulden; 
Cilli-Turner, 
Emily; Plaxco, 
David

2018 The creativity-
in-progress 
rubric on 
proving: Two 
teaching 
implementations 
and students’ 
reported usage

PRIMUS Transition-to-
proof, number 
theory

Reflections, 
student work

Yes

Grégoire, 
Jacques

2016 Understanding 
creativity in 
mathematics for 
improving 
mathematical 
education

Journal of 
Cognitive 
Education and 
Psychology

NA Theoretical Yes

Hafizi, 
Mardiah 
Hafizah 
Muhammad; 
Kamarudin, 
Nurzatulshima

2020 Creativity in 
mathematics: 
Malaysian 
perspective

Universal 
Journal of 
Educational 
Research

NA Theoretical Yes
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(continued)

Author Year Title Journal Content Methods Develop?

Hodge-
Zickerman, 
Angie; Stade, 
Eric; York, 
Cindy S; Rech, 
Janice

2020 TACTivities: 
Fostering 
Creativity 
Through Tactile 
Learning 
Activities

Journal of 
Humanistic 
Mathematics

Calculus Descriptions 
of projects

Yes

Hoshino, 
Richard

2018 Supporting 
Mathematical 
Creativity 
Through 
Problem 
Solving

Teaching and 
Learning 
Secondary 
School 
Mathematics

Graph Theory, 
Combinatorics

Descriptions 
of problems

Yes

Karakok, 
Gulden

2021 Exploration of 
Students’ 
Mathematical 
Creativity with 
Actor-Oriented 
Transfer to 
Develop 
Actor-Oriented 
Creativity

Transfer of 
Learning: 
Progressive 
Perspectives 
for 
Mathematics 
Education and 
Related Fields

Combinatorics Qualitative: 
Case-study 
analysis

Yes

Kasman, Reva 2014 Balancing 
structure and 
creativity in 
culminating 
projects for 
liberal arts 
mathematics

PRIMUS Math for 
Liberal Arts 
(voting theory, 
graph theory)

Descriptions 
of projects

Yes

Mac an 
Bhaird, 
Ciarán; Nolan, 
Brien C; 
O’Shea, Ann; 
Pfeiffer, 
Kirsten

2017 A study of 
creative 
reasoning 
opportunities in 
assessments in 
undergraduate 
calculus courses

Research in 
Mathematics 
Education

Business, 
Science, and 
Pure calculus

Quantitative: 
Coding tasks 
with 
Lithner’s IR 
CR

No

Marciniak, 
Malgorzata A

2020 Creative 
Assignments in 
Upper Level 
Undergraduate 
Courses 
Inspired by 
Mentoring 
Undergraduate 
Research 
Projects

Journal of 
Humanistic 
Mathematics

Differential 
Equations

Descriptions 
of projects

Yes

Mayes-Tang, 
Sarah

2020 Designing 
Opportunities 
for 
Mathematical 
Creativity: 
Three Ways to 
Modify an 
Existing Course

PRIMUS First year 
seminar

Reflections 
and end of 
class 
discussion

Yes
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(continued)

Author Year Title Journal Content Methods Develop?

Monahan, 
Ceire; 
Munakata, 
Mika; Vaidya, 
Ashwin; 
Gandini, Sean

2020 Inspiring 
Mathematical 
Creativity 
Through 
Juggling

Journal of 
Humanistic 
Mathematics

Gen ed 
terminal 
course

Description 
of class, 
journals, 
notes of 
class and 
focus 
groups.

Yes

Munakata, 
Mika; Vaidya, 
Ashwin; 
Monahan, 
Ceire; Krupa, 
Erin

2021 Promoting 
Creativity in 
General 
Education 
Mathematics 
Courses

PRIMUS Gen ed 
terminal 
course

Description 
of class, 
journals, 
notes of 
class and 
focus 
groups.

Yes

Omar, 
Mohamed; 
Karakok, 
Gulden; Savic, 
Milos; Turkey, 
Houssein El; 
Tang, Gail

2019 I felt like a 
mathematician: 
Problems and 
assessment to 
promote creative 
effort

Primus Combinatorics Qualitative 
study: 
interviews, 
classroom 
artifacts – 
Best for 
teaching

Yes

Regier, Paul 2020 The impact of 
creativity-
fostering 
mathematics 
instruction on 
student 
self-efficacy and 
motivation

Dissertation Multiple Qualitative, 
Quantitative

Yes

Regier, Paul; 
Savic, Milos

2020 How teaching to 
foster 
mathematical 
creativity may 
impact student 
self-efficacy for 
proving

The Journal 
of Mathemati-
cal Behavior

Introduction 
to proofs 
course

Qualitative: 
Teaching 
observations, 
interviews, 
coding for 
self-efficacy 
and sources

Yes

Roble, Dennis 
B

2017 Communicating 
and valuing 
students’ 
productive 
struggle and 
creativity in 
calculus

Turkish 
Online 
Journal of 
Design Art 
and Commu-
nication

Calculus Qualitative 
surveys, 
MST 
(Leikin, 
2009) after 
HALP

Yes

Savic, Milos 2016 Mathematical 
problem-solving 
via Wallas’ four 
stages of 
creativity: 
Implications for 
the 
undergraduate 
classroom

The 
Mathematics 
Enthusiast

NA Theoretical Yes
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Author Year Title Journal Content Methods Develop?

Savic, Milos; 
Karakok, 
Gulden; Tang, 
Gail; El 
Turkey, 
Houssein; 
Naccarato, 
Emilie

2017 Formative 
assessment of 
creativity in 
undergraduate 
mathematics: 
Using a 
creativity-in-
progress rubric 
(CPR) on 
proving

Creativity and 
giftedness

Introduction 
to proofs 
course

Qualitative: 
Student work

Yes

Singh, Ram 
Dhani; 
Kushwaha, 
Sarita

2019 Components of 
Creativity and 
Mathematical 
Achievement in 
Undergraduate 
Students

Parisheelan NA Quantitative No

Suriyah, 
Puput; Waluya, 
Stevanus Budi; 
Rochmad, 
Rochmad; 
Wardono, 
Wardono

2020 Graph Theory 
as A Tool for 
Growing 
Mathematical 
Creativity

Jurnal 
Pendidikan 
Edutama

Graph Theory Systematic 
literature 
review

Yes

Tularam, 
Gurudeo 
Anand; 
Hulsman, Kees

2015 A Study of 
Students’ 
Conceptual, 
Procedural 
Knowledge, 
Logical 
Thinking and 
Creativity 
During the First 
Year of Tertiary 
Mathematics.

International 
Journal for 
Mathematics 
Teaching and 
Learning

Precalculus Quantitative: 
Likert 1–5, 
based on 
connection 
making

No

Wahyuningsih, 
Sapti; 
Satyananda, 
Darmawan; 
Qohar, Abd; 
Atan, Noor

2020 An Integration 
of “" Online 
Interactive 
Apps” for 
Learning 
Application of 
Graph Theory to 
Enhance 
Creative 
Problem 
Solving of 
Mathematics 
Students

International 
Journal of 
Interactive 
Mobile 
Technologies

Graph Theory Quantitative: 
Creative PS 
scale

Yes

Zazkis, Rina; 
Holton, Derek

2009 Snapshots of 
Creativity in 
Undergraduate 
Mathematics 
Education

Creativity in 
mathematics 
and the 
education of 
gifted 
students

Various Descriptions 
of problems, 
classrooms, 
and previous 
work

Yes
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Chapter 9
Mathematical Creativity from  
an Educational Perspective: Reflecting  
on Recent Empirical Studies

Esther S. Levenson

9.1 � To Comment Is to Reflect

Writing a commentary on others’ research is an opportunity to reflect on one’s own. 
Inevitably, you end up comparing the theoretical frameworks, methods, and mes-
sages of others to those used in your own work. The five chapters in this section 
have certainly afforded me many such opportunities. In terms of theoretical frame-
works, Crespo and Lominguez challenged me to see beyond what I usually see. In 
their chapter, they compare a human/language-centric lens to a materialist posthu-
man lens on children’s creative thinking. At the heart of their study is the question 
of where creativity is located. Is it only in the linguistic productions of humans, or 
does it emerge from the “agentive encounters between children and all the materials 
they work with”? These questions continue to follow the reader, as they read the 
other chapters in this section. Liljedahl puts forth a different theory, specifically 
directed at group creativity. He posits that group creative processes are synonymous 
with burstiness, a concept he borrows from group psychology. Whereas in my own 
studies of collective creativity (e.g., Levenson & Molad, 2022) I borrowed from 
theories of group learning (e.g., Martin et al., 2006), analyzing dialogical moves, 
co-actions, and interactions within a group, burstiness focuses on turn taking, where 
a bursty conversation is characterized by “multiple brief, focused sequences of turns 
at talk with reduced openings, and closings” (Woodruff & Aoki, 2004, p. 434). The 
more bursty a conversation, the quicker there is an exchange of ideas.
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In terms of methods, like de Vink et al., I have conducted quantitative studies 
related to students’ mathematical creativity (Molad et al., 2020). Like Crespo and 
Dominguez and Liljedahl, I have conducted and qualitatively analyzed classroom 
observations, seeking evidence of mathematical creativity (Levenson, 2011). 
However, Karakok et al. utilized a phenomenological case study design, a method 
that seems to be less employed in mathematics education research and even less so 
when studying classroom mathematical creativity. Karakok et al. were interested in 
studying undergraduate students’ experiences in an introduction-to-proof course 
and how these experiences shaped their developing perspectives on mathematical 
creativity. As such, they collected multiple reflections from the students regarding 
what they had learned, as well as their reflections on creativity and mathematical 
creativity. Bleiler (2015) stated that when participants’ reflections serve as the data, 
the methodological framework is more accurately called “interpretative phenome-
nological analysis” as the research focuses on “lived experiences of individuals as 
those experiences are reflected on and interpreted by the individuals themselves” 
(p. 234). Reading Karakok et al.’s chapter, one appreciates how the ordinary experi-
ence of writing proofs can become a meaningful and significant experience for a 
student.

Finally, there is the message of each study. Of course, each study, with its own 
unique questions, ends with a unique message. However, I did find a common mes-
sage running through all five chapters, the message that within educational contexts, 
creative processes, more than creative products, are the essence of mathematical 
creativity. In my own work (e.g., Levenson, 2011, 2014; Molad et al., 2020), I have 
not always been able to separate the study of creative processes from creative prod-
ucts. In one of my first studies related to collective mathematical creativity, I noted 
the following:

Regarding collective flexibility … it becomes more difficult to separate the product from 
the process. On the one hand, when discussing flexibility as a product, we may look at the 
solutions produced by the group which employed different strategies … Regarding the 
process, we may say that flexibility was marked by a certain adaptation of previous solu-
tions…. (Levenson, 2011, p. 229)

In a more recent study (Molad et al., 2020), my colleagues and I were challenged by 
one reviewer who claimed that we were mixing up the two notions. In response, we 
took the following stance: “Although research has not confirmed that creative prod-
ucts are always the result of creative processes, we regard the products of these tasks 
as expressions of creativity” (Molad et al., 2020, p. 202). In the introduction to his 
chapter in this book, Liljedahl succinctly clarifies that there are two distinct 
approaches to measuring creativity. The first approach is similar to the one my col-
leagues and I adopted and assumes that creative products act as a proxy for deter-
mining the creativity of a process. The second approach does not make this 
assumption and instead values the creative process itself and not because it may be 
a means to a novel solution. The question then remains: what processes may be 
called creative? Which then leads to the question of how to promote these creative 
processes.
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9.2 � Creative Processes: What Are They?

Liljedahl and de Vink et al. offer brief histories of the discourse on creative pro-
cesses, which I shall not repeat here. Interestingly, it seems that each paper adopts 
for their own research different views of creative processes, not always very explic-
itly. Crespo and Dominguez use the term “creative mathematical thinking” and link 
it with inventing novel ways of expressing mathematical ideas and flexibly handling 
real and imaginary worlds. de Vink et al. also related to imagination, although in a 
more implicit manner. They chose to implement a specific problem-posing task 
because they believed it would provoke students’ imagination. In Karakok et al.’s 
study, one of the students described her perspective of mathematical creativity as 
using your imagination to create something original. Previously, Whitcombe (1988) 
linked imagination to creativity, stating the following:

For although it is probably true that mathematics originated, thousands of years ago, as a 
consequence of real-world activity and observation, it soon developed ideas and concepts 
that are beyond actual human imagination. (p. 15)

Liljedahl seems to view imagination as a way to perhaps kick-start the creative pro-
cess. In his chapter, creative processes include shifting attention from one idea to 
another and exchanging ideas without pauses (in line with the theory of burstiness). 
Monahan and Munakata specifically relate to flexible thinking when viewing teach-
ers’ creativity as they shifted to an online environment. Of the five chapters in this 
section, de Vink et al. were most clear regarding thinking processes that make up 
creativity – divergent thinking and convergent thinking.

As de Vink et al. noted, divergent thinking is often thought of as the hallmark of 
creative thinking and is often measured in terms of the fluency, flexibility, and origi-
nality of ideas produced (Haylock, 1997; Silver, 1997). Yet, divergent thinking 
might also produce random useless ideas. According to Runco (1996), creativity is 
“manifested in the intentions and motivation to transform the objective world into 
original interpretations, coupled with the ability to decide when this is useful and 
when it is not” (p.  4). In other words, divergent thinking along with convergent 
thinking may be necessary for creativity. Convergent thinking happens when the 
solver logically strives to find a solution to a problem, seeking to understand the 
logical connections among knowledge elements in the problem. In fact, de Vink 
et al. posit that children use both types of thinking when solving mathematics prob-
lems and that these processes are often intertwined, not necessarily following a 
certain order.

Interestingly, what de Vink et  al. found among fifth-grade students was also 
noticed among a group of mathematics education researchers (Tabach & Levenson, 
2019). Yet, at least two important differences may be noticed between those studies 
(besides the age of the participants). First, in de Vink et al.’s study, they analyzed 
students’ divergent and convergent thinking processes only for what they deemed as 
mathematically creative turns, when mathematical concepts were combined in a 
new way. In Tabach and Levenson’s study, thinking processes for all responses were 
analyzed. Second and more importantly, in de Vink et al.’s study, students’ responses 
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all consisted of individual solutions (or individual questions for the problem-posing 
task), whereas in Tabach and Levenson’s study, two types of responses were given. 
The first type, like in de Vink et  al.’s study, consisted of individual solutions. 
However, the second type of response consisted of sets of solutions, where each set 
description explicitly referred to the existence of infinitely many solutions accord-
ing to the set characteristic. In de Vink et al.’s study, most ideas were created by 
divergent thinking. Similarly, in Tabach and Levenson’s study, divergent thinking 
led to relative fluency in producing the isolated solutions. Yet, in line with Runco, 
de Vink et al. noted that ideas should not only be generated, but also evaluated. In 
their study, original ideas were generated by divergent thinking followed by conver-
gent thinking. However, in Tabach and Levenson’s study, it was convergent thinking 
that led to different sets in which each set contained an infinite number of solutions. 
Then, after reaching a solution set with an infinite number of solutions, participants 
continued to search for an additional solution set. Thus, it may be said that conver-
gent thinking processes also led to divergent thinking processes. Both de Vink et al. 
and Tabach and Levenson call for additional research regarding these types of 
thinking.

9.3 � Creative Processes: How Can We Foster Them?

How to foster creative processes is discussed in all five chapters in this section. Of 
course, all chapters mention the activities that stimulated creative processes. de 
Vink et al. utilized intentionally designed mathematical tasks that have been shown 
in previous studies (e.g., Kattou et al., 2013) to elicit mathematical creativity. Three 
studies (Crespo & Dominguez, Karakok et  al., Liljedahl) were classroom-based, 
where the mathematics activities were part of the regular curriculum. Monahan and 
Munakata focused on the teachers’ activities. What struck me as interesting was that 
most of the studies made notice of the tasks, but did not dwell on them as the prime 
factor impacting on creative processes. In my own studies (e.g., Levenson & Molad, 
2022), I have always spent a fair amount of space describing the tasks used, why 
they were chosen, how they were used in previous studies, and how they could be 
used to measure mathematical creativity. I even investigated teachers’ perspectives 
on mathematical creativity by having them choose tasks they believed could occa-
sion mathematical creativity (Levenson, 2015). Upon reflection, many of my previ-
ous studies focused on the products or related to both processes and products 
without quite separating the two. Perhaps because the chapters in this section focus 
on creative processes, they place more emphasis on the environment that may foster 
these processes, rather than on the tasks themselves, not that focusing on environ-
ments is a new idea. Rhodes, in 1961, identified four strands of creativity research 
he called the 4Ps: product, person, process, and press, where press refers to the 
environment, both the physical and social environment.

Regarding the social environment, several of the chapters in this section discuss 
the interactions between students as well as the interactions between the students 
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and the teacher. In line with previous research (Levenson, 2011), they point out the 
need for creating a safe environment, where students can share ideas, make mis-
takes, and ask questions, without fear of being rebuffed (Karakok et al., Liljedahl). 
The role of the teacher is to foster autonomy, to not show students the “right way” 
before they have a chance to explore on their own (Crespo & Dominguez). Finally, 
a teacher who demonstrates enthusiasm for creativity can pass on this enthusiasm to 
students (Monahan & Munakata).

The social environment is especially significant when groups of students work 
together. For example, Crespo and Dominguez describe a class environment fos-
tered by the teacher, where children show care and responsibility when working in 
groups. When a teacher is not present, a student in the group may take on the role of 
a social leader, encouraging collaboration and listening to others, collecting ideas, 
and putting them forth to the group (Levenson & Molad, 2022). Interestingly, in 
Karakok et al.’s study, it is the students themselves who take note of the social envi-
ronment in group work, especially that questioning one’s own thinking, as well as 
others’ thinking, causes creativity to be “contagious.” Adding to these remarks, 
Liljedahl stated that the makeup of a group is an important factor in supporting 
creativity. Specifically, he suggests random groups, where neither the students nor 
the teacher forms the groups. Such randomness allows for diversity while simulta-
neously breaking down social barriers. Although Crespo and Dominguez do not 
explicitly focus on diversity, they do mention that the students in their study were 
multilingual and multicultural.

The environment also relates to the physical surroundings of those working on a 
problem (e.g., a divergent production task). In the workplace, for example, factors 
such as adequate light, ventilation, noise levels, and even the square footage of the 
work area were found to affect workers’ perceived ability to be creative (De Alencar 
& De Bruno‐Faria, 1997; Stokols et al., 2002). Studies of learning environments 
found that an open space containing moveable furniture, where multiple spaces for 
group work are available and there is access to a variety of materials and resources, 
can support creativity (e.g., Richardson & Mishra, 2018). Crespo and Dominguez 
also emphasized the availability of materials stating that the classroom was 
“flooded” with materials.

In my own studies, I have been less aware of the physical environment than per-
haps I ought to have been. In the classrooms I observed, students were either sitting 
at their own desks or sitting around a table working in groups. The teacher was 
either at the front of the classroom or walking between groups of students during 
group work. I thought back to those classrooms when reading Liljedahl’s chapter. 
Liljedahl claims that groups should “stand and work on vertical non-permanent 
(erasable) surfaces … making work visible to the teacher and other groups.” He 
further describes how the furniture in a classroom ought to be arranged. His sugges-
tions are in line with the theory of burstiness he proposes, as they afford fluid com-
munication. While Liljedahl stressed the affordances of an environment in support 
of creativity, Monahan and Munakata focused on how the constraints of an environ-
ment (specifically caused by the Covid-19 pandemic) can also benefit creativity. In 
their study, they noted that the change in instructional environments, from 
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face-to-face to online, offered teachers the opportunity to question their assump-
tions about teaching, which served as a catalyst for the teachers’ and student’ cre-
ativity. It also led to resourcefulness, which they claim is a trait of creativity. For the 
students, instructors noted that breakout rooms encouraged collaboration, allowing 
students to freely express their ideas. Unlike the abovementioned studies, for Crespo 
and Dominguez, the physical environment is more than just a catalyst for creativity; 
it is where creativity lies. In line with their materialist posthuman lens, creativity 
emerges “from the agentive encounters between children and all the materials they 
work with.”

9.4 � Some Pre-reading Suggestions

The five chapters in this section all present current research focused on mathemati-
cal creativity. Participants in those studies were of various ages, from young ele-
mentary school students, middle school students, high school students, undergraduate 
students, and teachers. One may be tempted to read only chapters that pertain to a 
certain age-group, perhaps the age of participants you, the reader, are most inter-
ested in. This would be a mistake. Instead, I challenge the reader to ask how the 
research described in each chapter may impact on one’s own research. How can you 
use the theory put forth in Crespo and Dominguez’s chapter to see creativity where 
it might have previously been hidden? Could Liljedahl’s design for a creativity-
promoting environment be implemented in schools in your country? How might 
you foster burstiness in online groups? What might be the perspective of your stu-
dents regarding mathematical creativity? Before reading the following chapters, my 
suggestion is to reflect on your perspectives of how mathematical creativity can be 
developed and then be open to others’ perspectives.
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Chapter 10
Now You See It, Now You Don’t: Why 
The Choice of Theoretical Lens Matters 
When Exploring Children’s Creative 
Mathematical Thinking

Sandra Crespo and Higinio Dominguez

10.1 � Introduction

As educators and researchers in the field of mathematics education, we have invested 
considerable amounts of time in the company of children, observing and learning with 
and from them inside and outside of the classroom. The young children in our families 
have also challenged us to stop projecting narrow adult perspectives on them but 
instead allowing children to take the lead on how they see, experience, and make sense 
of the world. It is with this understanding that we write this chapter and continue to 
explore the ideas we shared in Dominguez et al. (2020) about children’s creative math-
ematical thinking. Here, we focus more specifically on what we stand to learn when 
we promote dialogue between contrasting analytical lenses – a dialogue that can help 
us enhance our understanding of children’s creative mathematical thinking.

Our point is that traditional research on children’s mathematical creativity has 
documented a small portion – perhaps too small – of the abundant, complex, and 
interconnected creativity that is possible to see when one considers other analytical 
lenses. Consider the following exchange in a culturally and linguistically diverse 
kindergarten classroom, the authors were invited to observe and pay attention to 
what you, the reader, focus on and why.

Teacher (displaying a large red rectangle for the class): What shape is this?
Students (simultaneously): Red. Rectangle.
Teacher: What shape is this?
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Students (in unison): Redtangle.
Teacher: You mean Rectangle. Good. How come it isn’t a square? Do you 

remember?
Student A (softly): Because it has two short sides and two long sides.
Teacher: Good job. What were you going to say, Student B?
Student B: A square has four ends, and a rectangle has four ends.
Teacher: They do both have four ends. But what is special about the rectangle? 

Student A said it. What did he say?
Students C and D: There’s two big sides and two small sides.
Teacher: Good. (Displays a square) And what shape is this, then?
Students: Square.
Teacher: Square. How do we know this is a square?
Student B: It has four ends.
Student E: And it is littlerer.
Teacher: It doesn’t matter that it’s smaller. It could be the same size. Because of 

why? Student B?
Student A (speaking out of turn): They’re all the same length.
Teacher: They’re all the same length, Student A says.
Student B: Because they’re all the same length.
Teacher: They’re all the same length.

When we have shared this dialogue with other mathematics educators, their ana-
lytical lenses primarily focus on the mathematical correctness of the ideas shared. 
They seem bothered by the imprecise language in this exchange, and they often 
draw upon a binary correct/incorrect framework to classify the children’s thinking. 
Dismissed in this kind of analysis is the linguistic creativity the students in this 
example have used to express their mathematical thinking. They seem to miss and 
perhaps dismiss the possibility that students have invented a novel way to refer 
simultaneously to the color and type of shape (redtangle) and that they found a new 
use for the word “ends” and apply it in the mathematics classroom. Yet to us, this 
classroom interaction exemplifies the creation of a space marked by creativity, criti-
cality, and even transgression, as suggested by García and Wei (2014) and Wei 
(2011) in their discussion of translanguaging as a pedagogical and learning practice 
often observed in multilingual classrooms. Similar to art, translanguaging has a 
strong liberatory orientation to what is possible. It encourages creative forms of 
expression that have no bounds to the past nor allegiance to canonical perspectives. 
It encourages new meanings and new forms of sensemaking.

Mathematics educators and researchers alike are familiar with the pedagogy 
used in the above transcript and its linear organization of turn taking that promotes 
a focus on who says what, to whom, and with what frequency. The focus on lan-
guage in this neatly organized transcript hides the “messiness” of human thinking, 
including sensorial, bodily, and kinetic aspects (Sheets-Johnstone, 2011), all of 
which play an intrinsic role in how students make sense of mathematical ideas. Our 
point here is that common notions of creative mathematical thinking reduce every 
instance of mathematical creativity to a kind of language that is individual, 
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cognitive (exists in the speaker’s mind), and normative. There are compelling cri-
tiques of this narrow perspective on language because it has been used as an oppres-
sive tool to categorize and judge students’ creative sensemaking (DeLanda, 2008; 
Deleuze, 1994). We argue for a liberating view of children’s creative mathematical 
thinking that recognizes that creativity needs space, freedom, and movement, all 
aspects that transcription traditions fail to capture.

As we have noted elsewhere, studies of children’s creative mathematical think-
ing have tended to focus on individual children’s responses typically collected in 
interview settings and not necessarily within the fluid context of whole class instruc-
tional interactions. These studies have been important in recognizing the potential 
and existence of children’s mathematical creativity, including for very young pre-
school children. However, these studies do not consider the dynamic and relational 
nature of mathematical creativity, which is the type of children’s mathematics that 
we are interested in documenting.

10.2 � On Seeing and Not Seeing Mathematical Creativity

Because mathematics education research on children’s mathematical thinking is 
mostly grounded on clinical interviews conducted by university researchers, it is 
often the case that the children’s interactions with the social and material worlds are 
rendered invisible and unrelated to their creative thinking. This body of research has 
reinforced notions of creative mathematics as individualistic cognitive work, as it 
overemphasizes the value of children’s language productions over the process of 
their creative work with different materials, the contextual and cultural aspects of 
that work, and their linguistic creativity. It is these aspects of students’ creative 
mathematical thinking that we argue are critical and important to reconsider in this 
body of research.

In our experience observing children interact with one another in the mathemat-
ics classroom and in the playground, we find that these settings provide many 
opportunities to study their creative mathematical thinking. This was the case in the 
following episode from a lesson we observed in another kindergarten classroom in 
a school also serving a culturally and linguistically diverse student population. The 
school is a field site for prospective teachers in our teacher education program. In 
this episode, children were invited to explore measurement as a human invention 
that requires joint labor, intense conversations, and collaborative meaning-making.

The lesson contextualized the practice of measuring as part of a broader conver-
sation about environmentally responsible and sustainable fishing practices – if a fish 
is too small, it has to be released, and if the fish measures up to the teacher’s pro-
posed standard of 10 unit cubes long, then it can be kept (Fig. 10.1). The children 
were organized into fishing groups, and they could hardly contain their excitement. 
The students were eager to role play being part of a fishing crew. The teacher showed 
them how to “catch” a paper fish with a homemade fishing rod and invited them to 
guess the size of the fish. Their teacher measured the length of the paper fish twice 
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Fig. 10.1  Measuring fish lesson

to encourage the children to recheck their measures. She measured the fish length-
wise from the tip of the nose to the end of the tail, the first time pushing the cubes 
together and the second time by leaving uneven gaps in between them. The children 
gasped when the two measures turned out to be different (11 unit cubes and eight 
unit cubes). One of the children pointed out that although the unifix cubes were the 
same size, the gaps between them were different. With this realization, the children 
began measuring their own fish while the teacher encouraged them to help each 
other recheck their measures.

To check their accuracy, one of the groups decided to take turns to measure the 
fish they had caught. While they all agreed with their measurement of 10 cubes, the 
group grappled with the fact that 10 was right at the cutoff value of keeping or 
releasing the fish. When their teacher told the group that it was up to them to decide 
what to do, the children went back to remeasuring and discussing what they could 
do. Other groups were similarly debating their measurements. One of the groups 
found two different measurements for their fish, some claiming the fish was nine 
cubes and others only five. When the teacher asked the students whether this was a 
kind of problem with two answers, two students said no, one said maybe, and the 
fourth one convincingly said “yes!” The teacher then asked the students to show 
how they were getting these two different measurements. A student showed the 
teacher that they were getting nine cubes by placing the cubes starting at the nose, 
leaving no gaps, lined up end-to-end as straight as possible until reaching the tail of 
the fish. Then another student showed how they counted five cubes by doing the 
same but from the top fin on the back of the fish to the fin on its belly. After a couple 
of more interactions and some clarifications, the group decided they wanted to mea-
sure the fish’s “longness” (from nose to tail) and also the “wideness” (from back to 
belly), and if any of these measures was 10 or more, then they would keep the fish, 
otherwise they would return it to the bucket.

Researchers in mathematics education will read the above classroom episode 
differently depending on the theoretical lenses they use. We have found that the 
dominant approach to research on children’s mathematical creativity draws on clas-
sical notions of creative thinking (e.g., Haylock, 1997), which focuses on children’s 
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divergent thinking and associates creativity with giftedness, thus suggesting an 
innate nature of creativity. Qualities in the children’s responses to given tasks are 
associated with fluency, flexibility, originality, and elaboration, which are then con-
sidered as indicators of creative thinking (Haylock, 1987). Using this lens on the 
“measuring fish” episode highlights and makes visible the students’ eagerness for 
role playing and flexibility in handling real and imaginary worlds even inside the 
rigid structures of the mathematics classroom. We can also connect the students’ 
attention to the spacing or the gaps between the unifix cubes as an original and 
unusual realization for this particular age group as noticing the “negative” space 
between objects and images tends to be associated with divergent thinking. Another 
aspect of mathematical creativity that can be noticed with this more classical lens on 
children’s creative thinking is their willingness to entertain multiple truths and con-
sider multiple possibilities (when deciding that there can be multiple acceptable 
ways of measuring the fish), another marker of divergent thinking.

There are, however, important aspects of children’s thinking that are rendered 
invisible when only using a human-/language-centric lens on children’s creativity in 
mathematics. By human-centric, we mean a lens that privileges humans and their 
actions, whereas the materials with which this human works and what both human 
and materials achieve together are not central to the research analyses. By language-
centric, we mean a lens that reduces all data to linguistic productions, thus negating 
other forms of expressivity that are not language-based. A lens that moves creativity 
from its assumed innateness must address the question of where then creativity is 
located.

A materialist posthuman lens, in contrast, considers creativity as emerging from 
the agentive encounters between children and all the materials they work with – in 
the example provided, the paper fish, plastic bucket, homemade fishing rods, unit 
cubes, classroom floor, light in the room, students’ bodies and, importantly, the task 
itself. Thus, the creative moments identified with this lens are no longer seen as 
individual, innate, or child-centered; the gaps between the unit cubes were produced 
by the material nature of the cubes. A different material, such as a strip of paper 
folded in an accordion fashion, would not have permitted children to demonstrate 
this same type of creative thinking. The children’s eagerness to engage with the task 
would have been different if the task employed a different storyline. Similarly, the 
children’s willingness to actively engage in decision-making related to their mea-
suring activity was triggered by imagining material (and perhaps even moral) con-
sequences of their collective actions on the world around them. The point here is 
that a material posthumanist approach to analyzing this classroom episode allows us 
to see both human and nonhuman bodies as agentive partners. This is a significant 
point in the dialogue between these contrastive analyses because human-/language-
centric approaches have shaped most of the research literature in mathematics edu-
cation, including research with a focus on equity, which has struggled to find 
nonhierarchical lenses on children’s mathematical thinking.
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10.3 � Children’s Mathematical Thinking 
in a Fractions Lesson

To further illustrate the dialogue between contrasting lenses on children’s creative 
mathematical thinking, we have selected the following example from our interna-
tional collaboration that took us first to Chile and then back to Texas as part of a 
teaching-research exchange (see Dominguez et  al., 2020). This final example 
occurred in a classroom that is unusual for at least three reasons. First, the teacher 
had established a culture of trust and reciprocity as a result of her five-year partici-
pation in a research project led by the chapter’s second author. Her classroom truly 
was “a public space of debates in which the students are encouraged to show open-
ness toward others, responsibility, solidarity, care, and critical awareness” (Radford, 
2016, p. 5). Second, the teacher was consistently interested in exploring mathemati-
cal concepts in depth instead of following the superficial treatment found in most 
mathematics curricula. Again, this was a classroom the authors were invited into by 
the teacher, and their role was to be participant observers during a week-long visit 
to this teacher’s classroom.

In the unit explored, the focus was on the meaning of fractions as measurement 
that is often underemphasized in the US elementary mathematics curricula where 
the part-whole meaning is favored. The emphasis on this meaning has been associ-
ated with children’s difficulty understanding fractions greater than one (Thompson 
& Saldanha, 2003). Other countries, such as Japan, emphasize this meaning when 
the concept of fractions is first introduced to students (Watanabe, 2006). Third, the 
instructional approach was consistently transdisciplinary. In this example, the 
teacher fused the importance of teaching the measurement meaning of fractions 
with the importance of examining access to healthy foods in the students’ commu-
nity by considering how access to food quality is associated with racial/economic 
segregation.

The multilingual and multicultural students in this third-grade classroom were 
investigating the consequences of their food choices on their own health and the 
intersection of access to healthy foods and racial segregation in their community by 
physically measuring the amount of sugar they were consuming in a typical day. 
The classroom was flooded with materials (e.g., buckets filled with sugar, Ziploc 
bags, plastic spoons, worksheets, notebooks, pencils, document camera, and lap-
tops) and information (e.g., screen projecting the students’ favorite food labels, cop-
ies of food labels on students’ desks, and questions and answers traveling across the 
small groups).

To help maintain the uninterrupted fluidity of interactions (and intra-actions) 
between her students and the abundance of materials and information, the teacher 
gave them an approximation of one spoonful as more or less equal to 5 g of sugar. 
Mathematically, though, the teacher chose this approximation to have students work 
with the concept of fifths. The encounter between children and this fraction occurred 
when they had to measure an amount of sugar in a favorite beverage that contained 
56 g. This number prompted students to count by fives (by scooping spoonfuls of 
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sugar) but only until 55. Then, the question that emerged in this class was as fol-
lows: How do we measure that one extra gram of sugar in order to have 56 g?

In one group, led by students Giselle and José Luis, students first approached the 
task by doing something likely familiar to them: drawing a circle and attempting to 
split it into five parts. They erased these parts multiple times because the parts did not 
come out equal. As Higinio acknowledged their effort and difficulty of drawing fifths, 
they accepted their drawing as an important referent for their next activity, and José 
Luis exclaimed, “It’s like the tire of a car!” Next, they moved to working with the 
sugar. In this part of the video, we observed the level of care for others, responsibility, 
and critical awareness that characterizes a well-organized collective engaged in joint 
labor (Radford, 2016). While some members of the group volunteer to measure the 
sugar, others assume the flexible roles of record keepers, material seekers, accuracy 
observers, and even camera persons helping the research team capture the episode. 
The record keepers invented a system of keeping track of the spoons counted by draw-
ing 11 circles and putting a checkmark for each spoonful counted (Fig. 10.2).

Fig. 10.2  Keeping track of how many spoons of sugar to make 56 g
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Fig. 10.3  Splitting a rectangle of sugar into fifths

When confronted with the task of splitting one spoonful into fifths, students 
referred back to the circle split into five parts. Using the flat side of the ruler, they 
leveled one more spoon with sugar and emptied it onto the table with the goal of 
splitting it into fifths. With the same ruler but now using the straightedge of it, 
Giselle began pushing the mound of sugar into an elongated shape that made all of 
us around the table evoke the shape of a rectangle. Hearing this observation, Giselle 
continued using the straightedge to reshape the sugar into the shape of a rectangle 
(Fig. 10.3). When Sandra arrived to visit this group, student José Luis provided an 
update on their developing strategy.

José Luis:  We made it into a rectangle, and then, we put a line to get it.
Sandra: 	Deja ver, ¿cómo lo van a hacer? [Let me see. How are you going to do it?] 
(Using the spoon handle, Giselle marks three lines on the rectangle of sugar.)
Higinio: 	Those are fourths.
Sandra: 	¿Cómo vamos a hacer los quintos? [How are we going to make fifths?]
José Luis:  We need to make it longer! We need to make it longer! (Giselle elongates 
the rectangle of sugar and this time marks four lines, thus creating fifths.)
Higinio: 	Oh, I like that!
Everyone:  Seeing Giselle improvise the handle of the spoon as a tool for marking 
lines along the rectangle, all of us began counting 1, 2, 3, 4, and 5 for each part she 
was making (Fig. 10.3).

In the next two sections, we analyze this episode more closely using two differ-
ent lenses – one that centers human activity and another that decenters it. We have 
structured our analysis by focusing on the same three dimensions: the roles that 
language, materials, and agentivity play in children’s creative mathematical think-
ing. We focus on the same three dimensions in order to establish a dialogue between 
the two analytic approaches and so that we can explore what each lens helps to 
make visible and invisible.
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10.4 � A Human-/Language-Centric Lens on Children’s 
Creative Thinking

It is important to establish right from the start that no matter which lens we use to 
analyze the above classroom episode, we can find moments of children’s creative 
mathematical thinking. Even with a classical lens on creative thinking, we can see 
the creative problem-solving of the group when the children realized that it is not 
that simple to make identical spoons of sugar in practice as it is in one’s mind or in 
the abstract. Something that seems as natural and simple in our everyday life as to 
get a spoonful of sugar is now understood as a much more complex concept when 
considering how to make the spoonfuls hold exactly the same amount of sugar, as 
suggested by the groups’ careful leveling of sugar with the ruler. This insight is a 
hallmark of mathematical thinking, and when the children use different approaches 
to solve this problem, we are then moving into the territory of children’s creative 
mathematical thinking.

Realizing that there was a lot of variation in the size of the spoonfuls of sugar 
(some were too high, too low, had clumps, were not entirely full, and so on) the 
children needed to create a method for standardizing their unit of measure and make 
their spoonfuls of sugar as equal as possible. In addition to standardizing the unit of 
measure, they also realized that it was very easy to lose track of the number of 
spoons of sugar and that they could not tell by only looking at the Ziploc how many 
spoons they had emptied into it. Yet another challenge was how to split a spoon of 
sugar into fifths. All three of these challenges were happening in tandem, and they 
were all embedded within the same task. In other words, this group of children were 
able to work on three interrelated tasks in tandem while also moving across oral and 
written language in two different languages, with multiple tools, and while negotiat-
ing social interactions with their peers and with the adults in the group. Let us now 
consider the role of agentivity, language, and materials on children’s creative math-
ematical thinking from a human-/language-centric analytic lens.

10.4.1 � Agentivity

A human-/language-centric lens on children’s creative thinking attends to how chil-
dren either are provided with or take on agentive roles in group participation. It pays 
particular attention to qualities of students’ participation, such as active or passive 
or productive or unproductive participation (e.g., Webb et al., 2019). This lens asso-
ciates the quality of children’s participation with student learning and with creative 
thinking. Traditionally, this lens has been used to sort and classify children in terms 
of their active or passive learning behaviors and in terms of productive or unproduc-
tive contributions to the intellectual work of the group. With this lens, the children’s 
participation in the above episode is high. Children did not wait for the adults to tell 
them what to do; they grabbed the materials and began to tackle the challenge of 
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making 56 g of sugar. We can then say that all of the students were eagerly and 
actively participating, none of them took over the task, no one was excluded from 
the task, and none of them seemed to disengage. All hands on deck is one way to 
characterize the children’s agentive participation as each of them took on a role 
within the group. Importantly, they did so flexibly as they each took turns playing 
different roles – filling up the spoon with sugar, trying to make it “even,” and trying 
to keep track of their counting.

10.4.2 � Language

In a human-/language-centric perspective, language is viewed as a primary resource 
for making mathematical sense. With this primacy comes an emphasis on assessing 
the value of children’s linguistic contributions. In the episode, student José Luis 
appears to be more verbal than his peers as he expresses his thinking publicly with-
out being prompted. The other two students, Giselle in particular, seem much qui-
eter. From the human-/language-centric lens, this difference in the amount of talk 
between these students can be interpreted as indicating more or less advanced math-
ematical thinking. However, prioritizing more spoken language used as an indica-
tion of more advanced mathematical thinking takes away from the advanced 
mathematical thinking Giselle displayed in pouring the sugar onto paper and reshap-
ing it so it can be broken up into five parts. Additionally, when the focus is on how 
children use language in mathematics, we tend to invoke normative concerns with 
the mathematics register (Pimm, 1987; Setati, 2005). For example, in the above 
episode while students were talking about rectangles and lines and making a rect-
angle longer, adults were using the more formal mathematical terms to refer to frac-
tions as fourths and fifths. A focus on this contrastive use of language easily 
invisibilizes children’s creative work with fractions.

10.4.3 � Materials

In a human-/language-centric perspective, materials are considered as resources 
that mediate sensemaking (e.g., Hall & Nemirovsky, 2012). Using this perspec-
tive, we see children drawing a circle and attempting to split it into equal parts 
multiple times and then moving to creating a rectangle of sugar with a ruler. All 
this activity is mediated by multiple materials, and the assumption is that this 
activity is goal-oriented, in that students want to create five unit fractions of 
fifths. Put differently, the materials lend support to the human-driven mathemati-
cal activity. We can see persistence in the children’s multiple attempts at drawing 
and splitting a circle into five equal parts or elongating the sugar rectangle to fit 
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more equal parts. This suggests that the children are using the materials to make 
real what they have imagined in their minds and are wielding and shaping the 
materials in unexpected ways. This perspective assumes that the students’ persis-
tence is driven by the human desire to problem solve, and the materials are only 
in the service of this human desire.

10.5 � A Materialist Posthuman Lens on Children’s Creative 
Mathematical Thinking

We now revisit our fractions episode with the same focus on agentivity, language, 
and materials but from a materialist posthuman analytical perspective. Our purpose 
is to make visible what this lens allows us to see/not see in children’s creative math-
ematical thinking.

10.5.1 � Agentivity

Central in a materialist posthuman lens is the recognition that every body – human 
or otherwise – is agentive (Barad, 2003, 2007). Humans establish relationships with 
their material worlds precisely because the materials in these worlds are vibrant 
(Bennett, 2010), alive (Cajete, 2000; Barnhardt & Kawagley, 2005; Martínez 
Parédez, 1964), and in continuous correspondence – as in exchanging letters with 
the humans (Ingold, 2011; Roth, 2016). Yet, the source of this agentivity is not in the 
individual: no child, no bucket of sugar, and no drawing possesses agentivity in and 
of itself. Put differently, none of these material bodies bring to their coming together 
a preexisting agentivity. Rather, agentivity emerges from the moment  – unique, 
uncertain, changing  – that these bodies come into these assemblages (Deleuze, 
1994). The agentivity observed earlier of José Luis taking the lead in explaining to 
Sandra the creative nature of his group’s strategy emerges, according to this materi-
alist posthuman lens, not from the individual child, not as a premeditated act, but 
rather as part of the group’s welcoming of a new member, Sandra, as she came to 
visit this group. All members of the group are agentive at every moment in the inter-
action. Without Giselle manipulating the materials, the recorders inventing a visual 
record of their fraction measuring activity, or the peers as observers of the accuracy 
in measurement, José Luis’ explanation of their invented strategy would not have 
been as forceful and convincing as it was. This is because José Luis is not seen as an 
individual bringing his own agentivity to this interaction.
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10.5.2 � Language

Posthumanism offers a strong critique on the role of language in human affairs. Far 
from being the common interpretation of language as a resource for making sense 
in mathematics, these critiques reveal the imperialist pretensions of language and its 
tendencies to reduce every form of expressivity to language (DeLanda, 2008). 
Rather than focusing on this human-/language-centric approach to language, a post-
humanist approach highlights its role as one form among many other forms of mate-
rial expressivity (Deleuze, 1994; de Freitas, 2016; Sinclair et  al., 2013). In the 
episode provided, language  – or bilingualism, more precisely  – emerged among 
many other material forms, all of which flew into and across a space filled with 
material expressivities. The voice of José Luis exclaiming “It’s like the tire of a 
car!” shared the expressivity (a continuity) of his group members’ drawing of a 
circle split into five parts. Fresh in this drawing were faint lines that had been erased 
and redrawn multiple times by multiple hands. Clinging to those faint lines were 
eraser residue and graphite dust still vibrating on the paper. Similarly, the expressiv-
ity of José Luis’ urgency as he repeats “We need to make it longer, we need to make 
it longer!” finds a continuity in the amorphous amount of sugar taking the elongated 
shape of a rectangle. Participating in this orchestration of expressivities are José 
Luis’ voice, Giselle’s hands, the ruler, the moving sugar, and the eyes of all of us 
following this assemblage of language-material expressivities. Language is there-
fore not a resource for making mathematical sense but rather one of many expres-
sivities that emerge from materials coming into assemblages.

10.5.3 � Materials

A materialist posthumanist lens breaks away from the tradition of hierarchies that 
position humans as in control of the material world and, instead, proposes an onto-
logical equivalence among all bodies, human and more than human (Barad, 2003, 
2007). This tenet has inspired analyses that are variously named as flattened out 
(DeLanda, 2008; Hultman & Lenz Taguchi, 2010) or nonhierarchical (Dominguez, 
2021). This is an important aspect of decentering the human in the sense that what 
matters in flattened out analyses is the multiple continuities between and across 
materials. Thus, the initial circle split into five parts, the check marks inside the 11 
circles as a record system, the shaping of the sugar into a rectangle, the students’ 
bodies and all their senses, and their bilingualism are all equal partners in this cre-
ative process of making fifths. Similarly, the pencil, eraser, and hands drawing the 
circle multiple times; the notebook and eyes keeping an accurate record of spoon-
fuls measured; and the ruler that acts as a leveling tool for the sugar in a spoon only 
to later become a plow that pushes the sugar into a rectangle are all equal partners 
with the students. One needs the other, and no one claims a hierarchical position or 
ownership of the creative act. When children in these rare but possible classrooms 
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learn to see themselves as equal partners with materials, issues of competition for 
correct answers and status dissolve, giving way to spaces filled with reciprocity 
(Dominguez, 2021) and joint labor (Radford, 2016).

10.6 � Further Thoughts: Dialogue Between Analytic Lenses

In this chapter, we argue for the benefit of using multiple analytic lenses in order to 
better understand children’s creative mathematical thinking. We have shown how 
theoretical lenses that place a primary focus on human interaction can limit what 
counts as creativity in children’s mathematical thinking because humans constitute 
only one of many forces engaged in acts of creativity (Watts, 2013). In contrast, 
theories that decenter and reposition the human as an equal partner of the material 
world promote a view of creativity as emerging from the dynamic and fluid encoun-
ters between humans and materials (de Freitas, 2016; Sinclair et al., 2013). We see 
the dialogue between these contrastive perspectives as necessary and urgent because 
it can help mathematics educators begin to shift and question the idea that children’s 
creativity in mathematics is a rare occurrence. Bringing a human and posthuman 
analysis on children’s thinking into dialogue can help mathematics educators begin 
to see mathematical creativity as a common everyday aspect of children’s sense-
making. We argue that this reframing is necessary and foundational to support the 
elusive agenda of providing more rigorous, equitable, and justice-oriented mathe-
matics education to all children.
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Chapter 11
The Creative Mathematical Thinking 
Process

Isabelle C. de Vink, Ard W. Lazonder, Robin H. Willemsen, 
Eveline M. Schoevers, and Evelyn H. Kroesbergen

11.1 � Introduction

The value of creativity is increasingly recognized in mathematics education (Leikin & 
Sriraman, 2017). This increased interest fits well in the tradition of mathematicians like 
György Pólya and Jacques Hadamard, both of whom stressed more than 75 years ago 
that creativity is a driving force behind the discovery of new mathematical insights 
(Hadamard, 1954; Pólya, 1945). But, creativity is also important to those not involved in 
breaking new mathematical grounds, such as primary school children. Creativity helps 
them to integrate mathematical information and come up with different solutions or 
strategies to solve a problem (Hadamard, 1996; Mann, 2005), which is particularly 
important when children encounter a problem for which they have not yet learned a 
solution or solution strategy (Leikin, 2009). Indeed, research shows that children who 
score higher on measures of creativity also demonstrate higher mathematical perfor-
mance (Jeon et al., 2011; Kattou et al., 2013; Schoevers et al., 2018). Prior research often 
studied mathematical creativity in a static way for instance by scoring children’s perfor-
mance on multiple-solution tasks in terms of the number of responses (fluency), vari-
ability of responses (flexibility), and uniqueness of responses (originality) (Assmus & 
Fritzlar, 2018). Such product-based measures of mathematical creativity, although infor-
mative, cannot unveil the creative thinking processes that led to a particular response or 
solution. If we want to support the development of creative thinking skills in mathemat-
ics education, more insight into the creative thinking process is required. This study 
therefore aspired to illuminate the use of creative thinking, in particular the use of diver-
gent and convergent thought, in solving different types of mathematical problems.
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11.1.1 � Divergent and Convergent Thinking

Mathematical creativity can be defined as “the cognitive act of combining known 
concepts in an adequate, but for the student new way, thereby increasing or extend-
ing the student’s (correct) understanding of mathematics” (Schoevers, 2019, p. 58). 
Guilford (1973) proposed that such new combinations of concepts (i.e., creative 
ideas) are conceived through divergent and convergent thinking. Divergent thinking 
refers to the process of generating ideas, like problem definitions, strategies, or 
solutions from a specific starting point, whereas convergent thinking concerns the 
process of selecting and evaluating ideas to arrive at the best possible solution 
(Brophy, 2001). Much creativity research has exclusively focused on divergent 
thinking (e.g., Jeon et al., 2011; Plucker et al., 2004), but researchers increasingly 
recognize the importance of convergent thinking too. If children rely on divergent 
thinking alone, they can generate many different creative ideas, including incorrect 
and unfeasible ones. Convergent thinking then helps to assess the value of these 
ideas for the task at hand (Brophy, 2001; Cropley, 2006).

Divergent and convergent thinking have been identified as separate constructs in 
former research (e.g., Barbot et al., 2016). However, as Cortes et al. (2019) pro-
posed, task performance on either a divergent or a convergent thinking task could be 
a reflection of a mixture of both divergent and convergent thinking processes. Thus, 
previous results from research with divergent or convergent thinking tasks generally 
give little insight into children’s creative thinking process, as the exact process can-
not be inferred from the creative product. To further illuminate the creative thinking 
process, it is necessary to make the shift from measuring creative products to mea-
suring creative processes. Such an approach might shed more light on how creative 
ideas emerge in action (Corazza, 2016; Glăveanu, 2013). Conceiving creative ideas, 
for example a creative solution to a mathematics problem, is thought to consist of 
repeated cycles in which first divergent thinking and then convergent thinking is 
applied during different phases of creative problem-solving (Isaksen et al., 2011; 
Lubart, 2018). According to Wallas’s (1926) four-stage model of creativity, creative 
ideas are first prepared, followed by a process of incubation, an aha moment (illu-
mination), and then evaluation and implementation of the idea (verification). 
Although these phases suggest a linear creative process, it is more likely that the 
phases can be implemented multiple times in different orders, with cycles of diver-
gent and convergent thinking occurring in each phase (Lubart, 2018).

11.1.2 � The Creative Mathematical Thinking Process

Various theories have been proposed as to how creative ideas arise in the mathemati-
cal domain. A well-known framework was introduced by Alan Schoenfeld (1982), 
who based his thoughts on earlier work by Polya. Schoenfeld proposed that (cre-
ative) problem-solving consists of a phase of reading the problem, analyzing task 
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properties, exploring different possible solutions, planning how to reach a certain 
solution, implementing the solution properly, and lastly verifying (making sure the 
solution works). In general, phase models of creative problem-solving have been 
criticized for portraying creativity as a linear process that unfolds through a clearly 
defined sequence of steps (e.g., Lubart, 2018). However, it is more plausible that 
creative ideas also result from a messy process of going back and forth between 
steps, with cycles of divergent and convergent thinking embedded throughout 
(Lubart, 2018). Sheffield (2009) proposed such a non-linear process for mathemat-
ics. She suggested that creativity in mathematics is characterized by flexibility: stu-
dents cycle through different activities such as creating, evaluating, and relating. 
The exact process can vary based on the problem and the amount of experience the 
student has.

One of the few studies that investigated the creative mathematical thinking pro-
cess was a case study by Schindler and Lilienthal (2020) that depicted the creative 
problem-solving process of a high school student on a multiple-solution task. They 
indeed showed that such phase models might not be an accurate reflection of authen-
tic creative problem-solving. Using a stimulated recall interview guided by record-
ings of the student’s eye movements, Schindler and Lilienthal analyzed how new 
ideas emerge by coding the different parts of the student’s creative problem-solving 
process and comparing it to existing models on creative problem-solving (e.g., 
Wallas’s, 1926 model). They found that, compared to models like that of Wallas, 
phases could not be as clearly identified and that the sequence of phases did not 
seem to be as clear-cut. Instead of processing the different problem-solving phases 
step by step, the case study showed a cyclical process: the student constantly went 
back and forward between phases. For example, after generating an idea, the student 
was working on a solution. When he found out that this did not work, he discarded 
the approach and started looking for a new start and generating a new idea. Thus, 
Schindler and Lilienthal’s case study provides initial evidence that for mathematics, 
the creative problem-solving process is not linear but rather cyclical. This notion 
provides support for previous claims made by Lubart (2018) and Sheffield (2009) 
about the general and the mathematical creative thinking process, respectively.

Given this cyclical nature, divergent and convergent thinking might be inter-
twined throughout the creative mathematical process, as using both modes of think-
ing can help children to generate different possible solutions or strategies, as well as 
select the most fitting one and evaluate its quality (Assmus & Fritzlar, 2018; Mann, 
2005; Tabach & Levenson, 2018). Previous research has related both divergent and 
convergent thinking to mathematical performance on different types of tasks (De 
Vink et al., 2021; Jeon et al., 2011; Kattou et al., 2013; Schoevers et al., 2018). It 
therefore stands to reason that both thinking modes contribute toward the emer-
gence of creative ideas during mathematical problem-solving.

How often and how well children apply divergent and convergent thinking might 
differ depending on both the task and the child. In terms of the task, open tasks are 
proposed to be the most suitable for creative mathematical thinking as they usually 
allow for multiple responses and can take many different forms (e.g., posing math-
ematical problems or finding different solutions to a specific problem; Leikin, 
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2009). Indeed, creative thinking has been found to affect performance more on open 
mathematical tasks than on closed tasks (Leikin, 2009; Schoevers, 2019). In terms 
of child characteristics, mathematical achievement seems to be a key factor because 
children with higher mathematical achievement scores have shown higher creativity 
achievement scores than children with average or low mathematical achievement 
(Kroesbergen & Schoevers, 2017; Leikin, 2013). We therefore assumed that groups 
of children differing in mathematical achievement scores also show different cre-
ative thinking processes on a mathematical task.

11.1.3 � The Current Study

This study is a qualitative investigation of the creative thinking processes of primary 
school children engaged in mathematical tasks. Two groups of children (character-
ized by high vs. low mathematical achievement, as determined by a general math-
ematics knowledge test) were asked about their creative problem-solving process. 
Children at the extreme ends of mathematical achievement were selected to gain 
insight into the role that mathematical knowledge plays in the mathematical creative 
thinking process. Comparing such extreme cases could help to determine whether 
the differences found in mathematical creativity task scores relate to their creative 
thinking processes. The fifth grade is an appropriate educational stage to study 
mathematical creativity because its mathematics curriculum contains complex 
problems (Noteboom et al., 2017) that require creative thinking skill. To get a more 
varied picture, two types of open mathematical tasks were used: a problem-posing 
task and a multiple-solution task. Furthermore, as open tasks allow for different 
types of responses, both easy and more difficult, these tasks were deemed appropri-
ate for children with either high or low mathematical achievement.

11.2 � Method

11.2.1 � Participants

A group of 28 fifth-graders from eight Dutch primary schools participated in this 
study. These children were selected from a larger sample that participated in a 
research project on creativity in math and science education (De Vink et al., 2021; 
Willemsen et al., 2021). The children who participated in the current study were 
selected based on their most recent mathematics grade point average (GPA), as 
indicated by their scores on a standardized progress monitoring test (Janssen et al., 
2007). This test consisted of multiple-choice questions on various topics, from basic 
arithmetic to geometry and fractions, and was found to have good internal consis-
tency (KR-20 = .95, greatest lower bound = .97; Hop et al., 2016).
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Table 11.1  Descriptive statistics of the low-achieving, high-achieving, and total sample

Group
Sex Age Math GPA
Boys Girls M (SD) M (SD)

Low achieving 6 6 10.65 (0.09) 208.50 (3.80)
High achieving 13 3 10.66 (0.12) 282.00 (2.58)
Total 19 9 10.66 (0.41) 250.50 (38.75)

Extreme case sampling was used to draw an illustrative sample of children for 
the current study who demonstrated either mathematical excellence or lower math-
ematical performance (Onwuegbuzie & Leech, 2007). Children whose mathematics 
GPA could be classified as the lowest or highest 15% of the sample were selected to 
participate. After removing eight children from the sample for various reasons (e.g., 
no permission for audio recording or illness during data collection), the final sample 
consisted of 28 children. Descriptive statistics are presented in Table 11.1. The chil-
dren’s parents were all of Dutch nationality, and about half of them (46.4%) earned 
an (applied) university degree. Ethical approval for this study was obtained from the 
local ethics committee (ECSW-2019-087). The children’s parents gave informed 
consent for participation in the study, retrieval of mathematics scores from the 
school administration, and audio recording.

11.2.2 � Mathematical Tasks

We used two tasks to assess how children applied divergent and convergent thinking 
during mathematical problem solving: a problem-posing task and a multiple-
solution task. These tasks were selected from existing research instruments and 
combined in a test booklet.

The problem-posing task was taken from the geometrical creativity task (GCT, 
Schoevers et al., 2019). Children received a picture (a scenic view of two picnic 
tables and eight chairs in a forest) and were asked to generate different mathemati-
cal questions that their classmates could answer based on that picture. Children 
could, for example, pose the question “How many chairs should be added to the 
table if 10 people join for lunch?” This task was chosen because a picture is thought 
to call upon children’s imagination, which is seen as an important element of math-
ematical creativity (Sriraman, 2005). The problem-posing task was administered 
first because it was the most open of the two tasks, and research has shown that 
creative performance is best elicited by starting with the task that has the most 
response possibilities (Moreau & Engeset, 2016).

The multiple-solution task originated from the mathematical creativity task 
(MCT, Kattou et al., 2013; Dutch translation by Schoevers et al., 2018). This task 
was chosen because it allows for both simple and more elegant solutions and there-
fore was suitable for both low- and high-achieving groups. The task asked children 
to formulate calculations on both sides of an equal sign that had the same answer. 
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To do this, children could use the digits 1, 2, 3, 4, 5, and 6 and the operators plus, 
minus, multiplication, division, and decimal point. Both operators and digits could 
be combined. A possible solution to this task would be to combine 2 + 2 and 5 – 1, 
as these calculations both equal 4. Children were instructed to formulate as many 
calculations as possible.

11.2.3 � Procedure

Data was collected in December 2019 and January 2020. Children first participated 
in plenary creativity, and science and mathematical tasks as part of our larger cre-
ativity project in which the relation between creative thinking, mathematics, and 
science performance is assessed (De Vink et  al., 2021; Willemsen et  al., 2021). 
Next, the first author revisited the school after a couple of weeks to administer the 
current mathematical tasks. This ensured a relaxed setting for children as they were 
already familiar with the researcher and the different types of creativity and math-
ematical tasks. The tasks were administered to each child individually in a quiet 
area of the school. The administration of the two tasks took approximately half an 
hour. Audio recordings were made to capture the child’s thoughts and conversations 
with the researcher.

Before the start of the mathematical tasks, children were told that they would 
work on various types of mathematical tasks. They were explained that these tasks 
served to find out how different children approach mathematical tasks, that they 
would be asked to explain their responses and ideas, and that audio recordings 
would be made. Prior to each separate task, children were asked to read the instruc-
tions aloud. If children were not sure what to do after having read this information, 
they received help according to the standardized model for offering help during 
mathematical instruction from the Dutch guidelines on dyscalculia (Van Luit et al., 
2014). To create an optimal atmosphere for creative thinking to occur, children were 
reminded throughout the tasks to share all of their ideas with the researchers 
(Sternberg, 2007; i.e., to think aloud). Research has shown that children are able to 
provide accurate think-aloud reports of mathematical problem-solving but benefit 
from using prompts while doing so (Reed et al., 2015; Robinson, 2001). Therefore, 
in addition to the ideas shared through think-aloud, the researcher used think-aloud 
prompts to ask children about their approach (e.g., “How did you think of this idea/
solution?”).

To minimize any possible bias toward achievement, children’s mathematical 
achievement score was unknown to the researchers during the interview and coding 
process. A research assistant made a list of names and mathematics scores for chil-
dren whose mathematics GPA could be classified as the lowest or highest 15% of 
the sample. A separate list with names, but no mathematics scores, was provided to 
the researchers during the interview and coding process so that no prior knowledge 
of children’s achievement could affect their performance.
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11.2.4 � Data Analysis

After data collection, all audio recordings were transcribed verbatim. Next, ATLAS.
ti (version 8) was used to perform directed content analysis (Hsieh & Shannon, 
2005). This method was chosen because existing theories of divergent and conver-
gent thinking formed the starting point of this study, and this study aspired to extend 
these theories to the domain of mathematics. The directed content analysis pro-
ceeded in three steps. First, operational definitions of mathematical creativity, diver-
gent thinking, and convergent thinking were developed based on theory (see 
Table 11.2). Second, the researcher familiarized herself with the data by extensively 
reading each transcript and making notes with a first impression of each transcript. 
At this point, the transcripts were segmented into units that could be coded. A unit 
referred to a turn of the child, which can be defined as “one or more streams of 
speech bounded by speech of another, usually an interlocutor” (Crookes, 1990, 
p. 185). Third, the different turns received initial codes for mathematical creativity, 
divergent thinking, and convergent thinking using the operational definitions in 
Table 11.2.

During the initial coding phase, all turns with possible instances of mathematical 
creativity received the code “mathematical creativity.” These turns were further 

Table 11.2  Theoretical and operational definitions of mathematical creativity, divergent thinking, 
and convergent thinking for each task

Mathematical creativity Divergent thinking Convergent thinking

Theoretical 
definition

“The cognitive act of 
combining known concepts in 
an adequate, but for the 
student new way, thereby 
increasing or extending the 
student’s (correct) 
understanding of 
mathematics” (Schoevers, 
2019, p. 58).

“Divergent thought 
from a single starting 
point generates varied 
ideas” (Brophy, 2001, 
p. 439).

“…whereas convergent 
thought starting from 
multiple points seeks 
one most true or useful 
conclusion” (Brophy, 
2001, p. 439).

Operational 
definition
Problem-
posing task

The development of an idea 
that includes a combination of 
an element from the picture 
with a mathematical concept 
such as surface area in 
a way that is new to the child, 
resulting in an adequate 
question.

The process of 
generating a creative 
mathematical question 
based on the picture, as 
well as any 
corresponding 
elaboration or 
explanation.

The process of 
selecting or evaluating 
a creative mathematical 
question based on the 
picture.

Operational 
definition
Multiple-
solution task

The development of an idea 
that includes a combination of 
the given numbers with a type 
of calculation (e.g., 
multiplication) in a way that is 
new to the child, resulting in a 
correct calculation.

The process of 
generating a creative 
mathematical 
calculation, as well as 
any corresponding 
elaboration or 
explanation.

The process of 
generating a creative 
mathematical 
calculation, as well as 
any corresponding 
elaboration or 
explanation.
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classified according to the mode of thinking (divergent or convergent), type of idea, 
and help given (see Table 11.7 in the appendix). Regarding thinking mode, we set 
out to label each creative turn as either divergent or convergent thinking. As we 
noticed during the coding process that many children used both divergent and con-
vergent thinking in one turn, the code “divergent and convergent thinking” was 
added. It represented a combination of the operational definitions of divergent and 
convergent thinking for each task. Coding of the type of idea characterized the 
mathematical content that was central to the child’s solution. This classification 
served to ensure that every mathematically creative idea actually represented a com-
bination of concepts that was new for the child on this task (e.g., if the child thought 
of similar questions about surface area on the problem-posing task, this was not 
considered new for the child on this task). Codes for the type of idea were based on 
previous research that used the problem-posing and multiple-solution tasks pre-
sented here in larger samples (Schoevers et al., 2018; Schoevers et al., 2019). Since 
the problem-posing and multiple-solution tasks yielded different responses, sepa-
rate codes for the type of idea were used for each (see Table 11.7). Lastly, every turn 
was binary coded to indicate whether children received any help to formulate their 
response or idea.

Since the tasks were used to measure the creative thinking process, and not the 
creative product (e.g., children also received help), no formal scores were calculated 
for fluency, flexibility, and originality. However, a descriptive comparison of the 
originality of ideas could be made between children based on previous research 
(Schoevers et al., 2018; Schoevers et al., 2019) that used the same tasks. These stud-
ies determined how original ideas were by comparing the frequency of a certain 
type of response to the frequency of other types of responses. For the problem-
posing task, the Schoevers et al. studies showed a large variation in the questions 
that were generated, which means that quite a lot of responses could be seen as 
original. The questions that were generated the least often were (1) questions that 
made use of addition, subtraction, or division, (2) questions about ratio, (3) ques-
tions about volume, and (4) questions about circumference. An unoriginal response 
to the problem-posing task was any question that revolved around the concept of 
amount. For the multiple-solution task, original responses were (1) calculations 
with two numbers using division, (2) calculations with three or more numbers using 
subtraction or multiplication, (3) calculations using decimals, and (4) calculations 
using numbers consisting of three or more digits. Unoriginal responses for the 
multiple-solution task were calculations with two numbers using addition or mixed 
operations. To determine descriptive originality, the number of original responses 
was counted for every child.

11.3 � Findings

For all children together, a total of 2197 turns was identified. Out of these turns, 585 
(27%) received the code mathematical creativity. Subsequent coding of these turns 
showed that children predominantly used divergent thinking (76%), followed by a 
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combination of divergent and convergent thinking (14%) and convergent think-
ing (10%).

11.3.1 � Number of Creative Ideas

Children’s turns were mostly coded as non-creative, as opposed to mathematically 
creative turns (see Table 11.3). This means that mathematical concepts were often 
not combined in a new way when children generated questions (problem-posing 
task) or calculations (multiple-solution task). Although many children were able to 
think of several questions or calculations, the underlying ideas often seemed to be 
quite similar. For example, many children started the problem-posing task by posing 
an “amount” question and re-used this concept in subsequent ideas, only changing 
their strategy when prompted by the researcher (e.g., “Can you also think of a dif-
ferent type of question/calculation?” or “Can you think of a question/calculation 
that incorporates addition?”). Such uniform strategy use also occurred on the 
multiple-solution task. Children would, for example, generate many calculations 
with two numbers using addition or mixed operations (e.g., addition and subtrac-
tion). The excerpt below illustrates how one child produced comparable responses 
to the problem-posing task. Only the first question received the code mathematical 
creativity because subsequent questions were a repetition of this first concept.

Child: I have a question. How many black chairs are there?
Researcher: How many black chairs are there. Yes, good one. How did you think of 

that one?
Child: Well, there are chairs, but here are also another two chairs, and then, you 

don’t know whether you should count those.
Researcher: Yes.
Child: So, how many black chairs are there?
Researcher: Yes, smart. Then you can’t be confused about which chairs the 

question is.
Child: This is quite hard.
Researcher: There is also a lot to see in the picture. … But, take your time; there is 

no rush.
Child: How many brown chairs are there?
Researcher: Yes, that’s possible too. You can write that down.
……
Child: How many big trees are there?

Table 11.3  Number of creative ideas for the low-achieving and high-achieving group

Creative ideas (%) Non-creative ideas (%)

Low achieving 26 74
High achieving 27 73

Note: Percentage for this group of children
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In addition, quite many turns involved clarification questions about the task in 
which no mathematically creative question or calculation was proposed. Even 
though children had worked on a multiple-solution task before, this type of task was 
still rather new to them. Some children started each task by extensively asking what 
was possible or what would be considered “good,” despite instructions that there 
were no right or wrong answers as in a “regular” mathematical task. An example of 
such questions is presented below.

[Child reads the instruction aloud.]
Researcher: Yes, so on the next page, there is room to write down the questions your 

classmates can answer. Do you have an idea how you can approach this?
Child: And then … it has to be about mathematics?
Researcher: Yes. So, it should be about mathematics and about the picture, but any-

thing that relates to those two things you can ask a question about.
Child: That’s hard. And should it be easy questions? Or not?
Researcher: Any type of question.
Child: So, also a question on the level of first or second grade?

11.3.2 � The Use of Divergent Thinking

To generate creative questions and solutions, children mostly seemed to make use 
of divergent thinking, with 76% of turns being coded as such. Many divergent think-
ing turns were statements of ideas, for example, “And now, I have another mathe-
matical question. What is the amount of chairs plus the amount of people?” 
(problem-posing task) or “Ehm … 6 times 1 and 3 times 2” (multiple-solution task). 
Divergent thinking also concerned any elaboration or explanation of an idea, which 
differed considerably in terms of elaborateness. The initial idea statements of some 
children were short, for example, “The next question is how many chairs are there?” 
(problem-posing task). Other children immediately explained their ideas more elab-
orately, for example, “I should probably pose a question about circumference, 
because with 1 square meter you are sitting in the middle, on top of the table. … and 
2 people can sit at 1 square meter. … one on this side and one on the other side. … 
And 3 people can sit at the other square meter, because one can sit at the corner … 
so then, you should calculate the circumference as well” (problem-posing task). 
This child had previously posed a question about the surface area of the table and 
how many people could be seated at it but realized that the circumference of the 
table would be a better way to calculate this.

Similar differences occurred when children were asked to explain how they con-
ceived an idea. Some children explained that merely seeing an element of the pic-
ture or a number brought them to an idea, whereas others gave a more elaborate 
clarification. For example, one child mentioned thinking of a certain question on the 
problem-posing task because a similar question had been used in the mathematics 
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class a few times. Children often related information from the task to a different 
setting. A few children mentioned that similar ideas or topics had been discussed in 
mathematics class, but also more remotely related settings or contexts were men-
tioned. For example, one child was imagining where the picture in the problem-
posing task could have been taken and thought of Veluwe, a national park in the 
Netherlands. One child even seemed to activate such contextual knowledge, starting 
by asking himself “Where are they and what are they doing?” (problem-posing 
task). Something that most children had in common in terms of the divergent think-
ing statements was that they looked for elements that stood out. For example, some 
children decided to start their calculations in the multiple-solution task with the 
number 1, because it was the first number they noticed when reading the question. 
Some children also explicitly mentioned that they were trying to think of a question 
or calculation that was different from the ones that they had used before.

11.3.3 � The Use of Convergent Thinking and Combinations 
of Divergent and Convergent Thinking

Children’s spontaneous and prompted turns were less often coded as convergent 
thinking (10% of the turns) than divergent thinking (76% of the turns), both before 
and after researcher prompts. Convergent thinking was defined as the process of 
evaluating or selecting a mathematically creative question or calculation. 
Occasionally, children showed that they evaluated an idea or elaborated on why they 
selected a certain idea. For example, a child who proposed the question “How many 
chairs are there” on the problem-posing task later explained that she selected this 
question because easy questions were also allowed. Another child said, “Yes, I had 
to think is this really a good and logical question?” (problem-posing task). A recur-
ring theme throughout the turns that received a convergent thinking code was that 
children either evaluated their own ideas as being simple or easy or mentioned spe-
cifically trying to think of or selecting ideas that were “easy to think of.” For exam-
ple, “Yes, I just did a lot of easy calculations, except for this one!” (multiple-solution 
task) or “Using this method, I could go on easily” (multiple-solution task). These 
statements might suggest that children did not want to challenge themselves (one 
child also said on the multiple-solution task “I am not going to use divisions because 
I find that difficult”) or might be looking for a general rule or strategy they could use 
to generate many ideas. For example, one child said, “I tried to make calculations 
that usually had 5 or 10 as outcome; it does not need to be very big” (multiple-
solution task). However, occasionally, children did mention looking for variability 
or different ideas, for example, “I did not want to do the same thing every time, so 
then, I decided to do this” (multiple-solution task).

Convergent thinking often co-occurred with divergent thinking. Such divergent-
and-convergent-thinking turns often incorporated the initial creation of an idea and 
a selection or evaluation that further refined the idea. Examples are “Ehm, I saw two 
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tables, and I thought I can’t ask a question about the chairs. Yes, maybe it would be 
possible. But then, I thought no; I should ask how long can the table be, because 
that also is related to mathematics” (problem-posing task) or “Yes, you could try 
and see which calculations have 1 as outcome. And when you have had those, you 
can do it with 2 as outcome. And then, for example, with lower numbers, because 
when it is hard, it is best to start small” (multiple-solution task).

In terms of sequence, children often generated multiple ideas first (i.e., divergent 
thinking) before switching to convergent thinking or a combination of divergent and 
convergent thinking. That is, for most children, the first couple of turns were coded 
as divergent thinking. These turns either conveyed different ideas that were then 
translated into a specific question/problem or calculation or a multitude of more 
finished ideas (i.e., different actual questions/problems or calculations). After chil-
dren had started thinking of different ideas, they also started applying convergent 
thinking or combinations of divergent and convergent thinking. Since both tasks 
required children to think of multiple ideas, this sequence was repeated several 
times. Most often, a few divergent thinking turns were identified before a turn with 
a combination of divergent and convergent thinking or pure convergent thinking 
occurred. An example of a sequence of divergent and convergent thinking for the 
problem-posing task is presented below.

Child (divergent): Maybe, a question is how many chairs are at the table?
Researcher: Yes, seems like a good one. You can write that down. And how did you 

think of that question?
Child (divergent): Well, when I read it had to be a question related to mathematics, 

I immediately thought of amount.
Researcher: Yes.
Child (convergent): Those kinds of questions are usually the normal basic questions 

you can ask.
Researcher: Yes, very good. Did you think of amount before you decided to do 

something with the chairs?
Child (divergent and convergent): Yes. But, you should be able to answer these 

questions right? So, you can’t ask like how long is the table?
Researcher: Yes, it is actually possible to ask that. As long as your question relates 

to the picture.
Child: Okay.
Researcher: So, it would be possible to ask how long the table is.
[Child writes this question down]
Researcher: Yes good one too. And how did you think of that?
Child (divergent and convergent): Ehm, I saw two tables, and I thought I can’t ask 

a question about the chairs. Yes, maybe it would be possible. But then, I thought 
no; I should ask how long can the table be, because that also is related to 
mathematics.
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11.3.4 � Differences Between Children and Tasks

The observations presented thus far focused on the general characterization of the 
creative mathematical problem-solving process. However, we also observed differ-
ences between children and across tasks. In terms of the sequence of divergent and 
convergent thinking, most children used some convergent thinking or a combination 
of divergent and convergent thinking after a couple of turns of divergent thinking. 
However, three children used only divergent thinking and no convergent thinking or 
a combination of divergent and convergent thinking on the two tasks. A trend for 
these children seemed to be that they did not generate many different questions or 
mathematical calculations that included a new combination of concepts and as such 
had relatively few turns that received the code mathematical creativity, to begin 
with. One of these children also received a relatively large amount of help.

Another notable difference between children concerned the creativity of the 
ideas that were generated using divergent and convergent thinking or the combina-
tion of both. Specifically, we compared the use of divergent and convergent thinking 
between children of whom more than two ideas on the two tasks were coded as 
original (n = 4) and children of whom no ideas were coded as original on the two 
tasks (n = 7) (see Table 11.4). Although originality is a judgment of the creative 
product, a comparison of divergent and convergent thinking between children who 
differed in terms of the originality of their ideas can still yield valuable insights into 
their creative thinking process. First of all, this comparison showed that children 
who did not generate original ideas required a little more help (in 60% of the math-
ematically creative turns) than children who generated original ideas (in 40% of the 
turns). The group of children who generated multiple original ideas made more use 
of convergent thinking on the problem-posing task. On the multiple-solution task 
however, children who generated original ideas differed from children who did not 
generate original ideas in the use of divergent thinking and the combination of 
divergent and convergent thinking. Children who generated original ideas used less 
divergent thinking, while using more combined approaches with divergent and con-
vergent thinking. An example of such an approach is given below. This child thought 
of a mathematical calculation including a three-digit number on the multiple-
solution task.

Table 11.4  Number of original ideas for the low-achieving and high-achieving group

0 original ideas 1 original idea 2 original ideas 3 original ideas

Low achieving 5 5 1 1
High achieving 2 9 2 3
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Child (divergent and convergent): Yes. I think I am going to choose … ehm … for 
example, 124 is something that is possible to make with those numbers.

Researchers: Yes, you can.
Child (divergent): Ehm, and then, I am using plus 1, but you can also do 123, that 

is one less, plus 2.
[Child writes down 124 + 1 = 123 + 2].
Researcher: Yes, exactly, that is how you can do it. You thought of this one quickly. 

How did you do that?
Child (divergent and convergent): Well, I just saw 123, but I thought that is an 

uneven number, so it is not so convenient, so then, I decided not to use that. I then 
went to the 4, and that seemed like it was convenient, so I thought let’s make it 
simple and just add 1. But then, I thought, hey that is 125. So, to the 123, that’s 
already here, you can add 2 and make 125, and it works out.

We also contrasted children with high (n = 16) and low (n = 12) prior mathematical 
achievement. Findings showed that, although divergent thinking prevailed in both 
subgroups, children with high mathematical achievement scores had a slightly more 
balanced ratio (see Table 11.5) of divergent thinking to convergent thinking and 
combinations of divergent and convergent thinking than children with low mathe-
matics achievement scores. On the problem-posing task, children with high mathe-
matical achievement used slightly less divergent thinking and more convergent 
thinking than children with low mathematical achievement. On the multiple-solution 
task, the high mathematical achievement group used less divergent thinking and 
more combinations of divergent and convergent thinking than the low mathematical 
achievement group. Therefore, the differences between high and low achievers 
resembled those between children who generated original versus non-original ideas. 
This was also reflected in the fact that most original ideas were generated by chil-
dren with high mathematical achievement, whereas children with low mathematical 
achievement generated more unoriginal ideas. The amount of help received did not 
differ substantially between the two groups.

Finally, the two different tasks were compared. The problem-posing task and 
multiple-solution task were quite comparable with regard to the occurrence of 
mathematically creative ideas and the use of divergent and convergent thinking. 
Table 11.6 shows the absolute and relative frequency of divergent thinking, conver-
gent thinking, and a combination of the two for each task. On the problem-posing 

Table 11.5  Use of divergent thinking, convergent thinking, and divergent and convergent thinking 
for the low-achieving and high-achieving group

Divergent thinking 
(%)

Convergent thinking 
(%)

Divergent and convergent 
thinking (%)

Low 
achieving

80 10 10

High 
achieving

72 11 17

Note: Percentage for this group of children
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Table 11.6  Use of divergent thinking, convergent thinking, and divergent and convergent thinking 
for the different tasks

Divergent thinking 
(%)

Convergent thinking 
(%)

Divergent and convergent 
thinking (%)

Problem-posing 
task

80 6 14

Multiple-solution 
task

73 13 14

Note: Percentage for this task

task, around 28% of turns received the code mathematical creativity. On the 
multiple-solution task, this percentage was slightly lower (22%). Divergent thinking 
was predominant in both tasks, with a slightly higher occurrence rate on the 
problem-posing task. On the other hand, the use of convergent thinking was slightly 
higher on the multiple-solution task than on the problem-posing task. The use of a 
combination of divergent and convergent thinking was comparable between tasks. 
A notable difference between the two tasks concerned how elaborate ideas were, 
and therefore, also, extensive ideas were explained. Probably, the slightly larger 
percentage of divergent thinking used in the problem-posing task was related to the 
fact that children thought of complete questions here that included several elements 
(e.g., mathematical operations combined with several concepts from the picture). 
On the other hand, the multiple-solution task could be completed using relatively 
short calculations, which might lead to less elaborate divergent thinking processes 
and explanations thereof.

11.4 � Discussion

This study investigated children’s use of divergent and convergent thinking on two 
mathematical tasks: a problem-posing task and a multiple-solution task. Sixteen 
children with high mathematical achievement scores and twelve children with low 
mathematical achievement scores were asked how they thought of different creative 
ideas using think-aloud prompts. Their ideas were coded using qualitative content 
analysis. Specifically, the use of divergent and convergent thinking or a combination 
of the two was identified for every mathematically creative question (problem-
posing task) or calculation (multiple-solution task).

11.4.1 � The Use of Divergent and Convergent Thinking

Relatively few ideas were coded as creative ideas (27%) compared to uncreative 
ideas (73%). Although children could generate multiple ideas for both tasks, it was 
more difficult for them to think of diverse ideas and especially original ones. This 
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result is in line with previous research that showed that most high school students 
are able to produce ideas fluently but that flexibility and originality of solutions are 
more difficult to achieve (Leikin, 2013). The novelty of the tasks may also have 
impeded children’s conception of creative ideas. Both tasks in this study differed 
from the closed tasks in Dutch mathematical textbooks (Van Zanten & Van den 
Heuvel-Panhuizen, 2018). Although new tasks could evoke creative ideas because 
they require children to search for different ways to solve a mathematical problem 
(Levenson, 2013), the newness of the task might also have caused some children to 
feel insecure. This was apparent from the many questions children asked at the 
beginning of each task about when a response would be considered “correct.” 
Furthermore, some children needed additional explanations to understand what 
each task involved. The researcher emphasized in her explanation that there were 
many possible solutions, a response assumed to contribute to mathematical creativ-
ity (Kozlowski et al., 2019). Still, some children might have been preoccupied with 
finding the “right” answers because their mathematical instruction often focuses on 
one specific solution or solution strategy.

Despite the fact that most ideas were coded as uncreative, children also produced 
several creative ones, mostly through divergent thinking, and three children even 
relied exclusively on this mode of thinking. This finding is in line with Tabach and 
Levenson’s (2018) suggestion that tasks with (infinitely) many solutions can lead to 
“excessive” divergent thinking. That is, such tasks might enable children to produce 
many, but sometimes infeasible or ineffective, ideas. For all children, at least some 
of these ideas represented a new combination of mathematical concepts and there-
fore received the code mathematical creativity. However, children who used diver-
gent thinking and convergent thinking, either concurrently or in separate turns, 
generated the most original ideas. This finding is in line with previous research in 
which children with high divergent and convergent thinking skills also scored high 
on a multiple-solution task (de Vink et al., 2021). This finding also corroborates 
creative thinking theories that advocate the role of both divergent and convergent 
thinking (e.g., Brophy, 2001; Cropley, 2006; Guilford, 1973). It seems that, for 
mathematical creativity, ideas should not only be generated but also selected and 
evaluated to produce ideas of high quality.

Some authors have portrayed the creative thinking process as a linear series of 
steps (e.g., Wallas, 1926) whereas others characterize it as a “messy” process in 
which children alternately employ divergent and convergent thinking throughout 
the task (Isaksen et al., 2011; Lubart, 2018; Schindler & Lilienthal, 2020; Sheffield, 
2009). Our study supports the latter view and indicates that switching between 
divergent and convergent thinking occurred somewhat irregularly: children often 
had multiple repetitions of divergent thinking, after which one or two turns of con-
vergent thinking followed. This sequence seems to be a reflection of divergent 
thinking as an inherently exploratory process, that is, an “idea search in multiple 
directions […], which is inherently an exploration of a thought space” (Lubart, 
2018, p. 7). Likely, children first explore several possibilities, which are then evalu-
ated and combined into one solution. Previous research has not only identified 
divergent and convergent thinking as separate constructs but also showed that both 
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thought processes might be intertwined (Barbot et al., 2016; Cortes et al., 2019). In 
line with this connectedness between divergent and convergent thinking, we also 
found instances of a combination of divergent and convergent thinking. Such com-
binations show that although divergent and convergent thinking are seen as separate 
constructs, their processes might indeed be intertwined (Barbot et al., 2016; Cortes 
et  al., 2019). This connectedness is demonstrated at the task level with turns of 
divergent and convergent thinking. Turns that were coded with a combination of 
divergent and convergent thinking show that this connectedness extends to the turn 
level as well. These combination turns could reflect a micro-cycle in which the child 
alternated between divergent and convergent thinking. Analysis with other more 
fine-grained methods (e.g., preceding the turn level) could be used to unveil what 
such micro-cycles look like. This finding illustrates the need for more process-based 
research on divergent and convergent thinking, as static measures might not fully 
capture the complexity of the creative thinking process.

11.4.2 � The Role of Mathematical Achievement and Task Type

We also observed qualitative differences between children with high and low math-
ematics achievement scores. Previous research has shown higher mathematical 
achievement to be associated with higher mathematical creativity (Jeon et al., 2011; 
Kattou et al., 2013; Kroesbergen & Schoevers, 2017; Leikin, 2013; Schoevers et al., 
2018). In this study, ideas of children with high mathematical achievement scores 
were coded more often as original than the ideas of children with low mathematical 
achievement scores. It is important to note that this finding, just like the other find-
ings, is of qualitative nature and not statistically significant. Thus, we cannot con-
clude that children with high and low mathematical achievement scores differ in 
their ability to generate original ideas. Rather, this might be related to differences in 
the use of creative thinking skill. In this study, children with high mathematical 
achievement scores more often used convergent thinking, or combinations of diver-
gent and convergent thinking, than children with low mathematics achievement 
scores. Mathematics education emphasizes convergent thinking (i.e., looking for 
one correct answer instead of generating different ideas or strategies; Levenson, 
2013). Thus, it seems plausible that children with high mathematical achievement 
scores do well on tests of achievement by applying convergent thinking skill. These 
experiences with convergent thinking might have helped this group to select the 
most original ideas, while children with low mathematics achievement found this 
more difficult.

We found minor differences between children’s creative performance on the two 
types of tasks. On the problem-posing task, we found a slightly higher percentage 
of creative ideas than on the multiple-solution task. Children used relatively more 
divergent thinking and less convergent thinking on the problem-posing task than 
they did on the multiple-solution task. To our knowledge, no research has yet com-
pared children’s creative thinking processes on these types of tasks. Therefore, it is 
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difficult to determine whether this observation is specific to our study or whether 
other researchers might find the same results. It seems plausible that the problem-
posing task elicits more creative ideas because it contains fewer constraints 
(Medeiros et al., 2014). The only constraints to generate a question on this task are 
the topic of mathematics and the elements within the picture. The multiple-solution 
task, by contrast, required children to use the given numbers and operators and to 
match the outcome of the two calculations. These restrictions may have caused a 
slightly smaller number of creative ideas. Another explanation, however, is that the 
problem-posing task was presented first and that children suffered more from 
fatigue or inattention on the multiple-solution task. The fact that this task is also 
slightly more similar to regular textbook mathematical tasks might explain why 
children made more use of convergent thinking on this task than on the problem-
posing task.

11.4.3 � Future Studies and Limitations

This study provided a first look into how children with low or high mathematical 
achievement scores generate, select, and evaluate mathematically creative ideas on 
two types of mathematical tasks. Although we tried to make the research setting as 
relaxed and natural as possible for the children, it remains unclear whether our 
findings are typical of creative thinking in regular mathematics classrooms. 
Another possible limitation concerns the use of children’s verbal expressions as a 
proxy for creative thinking. Although research has shown that children are capable 
of explaining their thinking on a mathematical task (Reed et al., 2015; Robinson, 
2001), we do not know whether the ability to verbalize their thoughts differed 
between children, for example, as a result of differences in language ability or 
emotional factors like shyness. Therefore, the validity of the insight that we 
obtained into the creative thinking process might be higher for some children than 
for other children. Lastly, an important limitation of the current study is the binary 
coding of mathematical achievement as either “high” or “low.” We used extreme 
case sampling as a way of creating an illustrative sample and labeled the groups 
accordingly. It is important to stress that this label is based on a single test score 
and, hence, not necessarily reflective of children’s general mathematical skills or 
abilities. It does, however, provide insight into creative differences that can be 
observed between children who might score lower or higher on a more traditional 
mathematics test.

We recommend future research to contrast various types of measures of cre-
ative thinking processes in one sample to improve measurement reliability. For 
example, Schindler and Lilienthal (2020) combined eye-tracking with stimulated 
recall interviews to capture children’s creative thinking. Furthermore, future 
research could contrast different types of tasks, as well as groups of children 
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characterized by different individual features. For example, Bokhove and Jones 
(2018) have argued that mathematical creativity is not limited to open tasks but 
can also be displayed on tasks that are “moderately closed” (i.e., tasks that have 
some constraints but also allow for multiple solutions/strategies). It would be 
interesting to assess whether children’s creative thinking process on such a task 
differs from creative thinking on more open tasks. Furthermore, differences 
between children, especially regarding cognitive characteristics such as executive 
functions, might play a large role in the creative mathematical thinking process 
and should therefore be a topic of further research. For example, it would be inter-
esting to assess what role inhibition plays in the creative mathematical thinking 
process, because for children with high mathematical achievement, reduced inhi-
bition aids mathematical creativity, whereas for children with low mathematical 
achievement, strong inhibition seems important (Stolte et  al., 2019). Given the 
developmental nature of such cognitive characteristics, another interesting avenue 
for future research would be to examine what the creative mathematical thinking 
process looks like in different age groups (e.g., upper vs. lower primary school 
students).

11.5 � Conclusion and Implications

This study showed that many children find it difficult to come up with new ideas 
and stick to ideas similar to the ones they had generated before. Whereas this incli-
nation might not harm when solving mathematical problems that rely on automated 
knowledge, it becomes problematic when problems become more difficult and 
children can no longer rely on learned procedures. Our findings further indicate 
that convergent thinking is important in conceiving mathematically creative ideas 
(cf. Brophy, 2001; Cropley, 2006; de Vink et al., 2021; Tabach & Levenson, 2018). 
Primary math teachers are recommended to model and explain the use of divergent 
and convergent thinking in their classes, as the interplay between divergent and 
convergent thinking seems imperative. The use of different types of problems, both 
(moderately) closed and open, is recommended for children to gain experience 
with different ways of creative problem-solving. Finally, we recommend combin-
ing the learning of new mathematical facts or procedures with creative thinking, 
both divergent and convergent. It is important that children are not only taught that 
creative thinking is important, but also taught how to do this. The lower frequency 
of ideas coded as creativity in the group of children with low mathematical achieve-
ment scores shows that this group might need different support to come up with 
creative ideas. The dominant focus on convergent thinking in mathematics educa-
tion might disfavor a certain group of children, both in terms of creative thinking 
and mathematical achievement.
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�Appendix

Table 11.7  Codebook

Code Subcodes Problem-posing task Multiple-solution task

1_
Mathematical 
creativity

The development of an 
idea that includes a 
combination of an 
element from the picture 
with a mathematical 
concept such as surface 
area in a, for the child, 
new way, resulting in an 
adequate question (e.g., 
the development of the 
idea “How many square 
meters is the table?”).

The development of an idea that 
includes a combination of the given 
numbers with a type of calculation 
(e.g., including decimals) in a, for 
the child, new way, resulting in a 
correct calculation (e.g., the 
development of the idea “4,5 + 3 & 
6 + 1,5”).

2_Divergent 
thinking

The process of 
generating a 
mathematically creative 
questiona based on the 
picture, as well as any 
corresponding 
elaboration or 
explanation (e.g., “Oh, I 
have got one! How many 
square meter is the 
table? …. Because 2 
people can sit at 1 
square meter”).

The process of generating a 
mathematically creative 
calculationa, as well as any 
corresponding elaboration or 
explanation (e.g., “Hmm, what can 
I do with this? … Ahh, okay … yes, 
4,5 plus 3 and 6 plus 1,5”).

3_Convergent 
thinking

The process of selecting 
or evaluating a 
mathematically creative 
question based on the 
picture (e.g., “Yes, I had 
to think for a while 
whether it is actually a 
good and logical 
question”).

The process of selecting or 
evaluating a mathematically 
creative calculation (e.g., “I wanted 
to have an easy calculation, and I 
could think of this fast”).

4_Divergent 
and 
convergent 
thinking

The process of 
generating and selecting 
or evaluating a 
mathematically creative 
question based on the 
picture, as well as any 
corresponding 
elaboration or 
explanation (e.g., “I 
thought the surface are 
of the whole landscape 
is a bit too much … So, I 
was looking for 
something small that 
you could know the 
surface area of”).

The process of generating and 
selecting or evaluating a 
mathematically creative calculating, 
as well as any corresponding 
elaboration or explanation (e.g., 
“Well, I started thinking what I 
could with a comma, because I 
have not used it yet, so then, I 
thought of this question”).

(continued)
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Table 11.7  (continued)

Code Subcodes Problem-posing task Multiple-solution task

5_Type of 
idea

_Adding The generation of a 
mathematically creative 
question in which 
something is added 
(e.g., “What is the 
amount of chairs plus 
the amount of people?”).

N. A.

_Amount The generation of a 
mathematically creative 
question about an 
amount (e.g., “How 
many chairs are 
there?”).

N. A.

_Circumference The generation of a 
mathematically creative 
question about 
circumference (e.g., 
“What is the 
circumference of the 
table?”).

N. A.

_Estimate The generation of a 
mathematically creative 
question in which 
something is estimated 
(e.g., “How many 
pebbles are there on the 
ground?”).

N. A.

_Multiplying The generation of a 
mathematically creative 
question in which 
something is multiplied 
(e.g., “If you multiply 
the amount of chairs by 
2, how many chairs are 
there?”).

N. A.

_Ratio The generation of a 
mathematically creative 
question about ratio 
(e.g., “How many people 
can sit at the table?”).

N. A.

_Subtracting The generation of a 
mathematically creative 
question in which 
something is subtracted 
(e.g., “There are six 
chairs. I take two away; 
how many are left?”).

N. A.

(continued)
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Table 11.7  (continued)

Code Subcodes Problem-posing task Multiple-solution task

_Surface area 
and size

The generation of a 
mathematically creative 
question about surface 
area and size (e.g., 
“How many square 
meter is the garden?”).

N. A.

_Combination The generation of a 
mathematically creative 
question in which any of 
the above concepts are 
combined (e.g., “How 
many chairs are at a 
table on average?”).

N. A.

_Other The generation of a 
mathematically creative 
question that does not fit 
with any of the other 
codes for type of idea 
(e.g., “What kind of 
shape is the table?”).

N. A.

_2 number plus N. A. The generation of a mathematically 
creative calculation that uses two 
numbers and the operator plus (e.g., 
2 + 2 = 3 + 1).

_2 number 
minus

N. A. The generation of a mathematically 
creative calculation that uses two 
numbers and the operator minus 
(e.g., 4–2 = 6 – 4).

_2 number 
multiply

N. A. The generation of a mathematically 
creative calculation that uses two 
numbers and the operator multiply 
(e.g., 2 × 3 = 1 × 6).

_2 number 
mixed

N. A. The generation of a mathematically 
creative calculation that uses two 
numbers and mixed operators (e.g., 
2 + 4 = 2 × 3).

_3 number plus N. A. The generation of a mathematically 
creative calculation that uses three 
numbers and the operator plus (e.g., 
2 + 2 + 2 = 3 + 3).

_3 number 
minus

N. A. The generation of a mathematically 
creative calculation that uses three 
numbers and the operator minus 
(e.g., 6 – 2 − 2 = 5 – 3).

_3 number 
multiply

N. A. The generation of a mathematically 
creative calculation that uses three 
numbers and the operator multiply 
(e.g., 3 × 3 × 2 = 6 × 3).

(continued)
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Table 11.7  (continued)

Code Subcodes Problem-posing task Multiple-solution task

_3 number 
mixed

N. A. The generation of a mathematically 
creative calculation that uses three 
numbers and mixed operators (e.g., 
4 × 2 + 1 = 6 + 2 + 1).

_2-digit number N. A. The generation of mathematically 
creative calculation that uses a 
number composed of two digits 
(e.g., 15 + 13 = 14 + 14).

_3-digit number N. A. The generation of mathematically 
creative calculation that uses a 
number composed of three digits 
(e.g., 124 + 146 = 142 + 126 + 2).

_decimal 
number

N. A. The generation of a mathematically 
creative calculation that uses a 
decimal number (e.g., 
1.4 + 4.6 = 3 + 3).

Help The child received help 
during the process of 
generating, selecting or 
evaluating a 
mathematically creative 
question based on the 
picture.

The child received help during the 
process of generating, selecting, or 
evaluating a mathematically 
creative calculation.

Note: a“Mathematically creative question” or “mathematically creative calculation” in this table 
refers to a question or calculation as defined under the code “mathematical creativity”
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Chapter 12
Group Creativity

Peter Liljedahl

12.1 � Introduction

Creative is a modifier that can be used to refer to a product (what a creative solu-
tion), a process (be creative), a person (she is so creative), or an environment (this 
is such a creative space) (Liljedahl, 2008; Liljedahl & Allan, 2013, 2017; Mooney, 
1963; Pitta-Pantazi et al., 2018; Rhodes, 1961). Each of these usages has formed a 
discourse in the creativity literature.

The work on creative products has its roots in the work of the psychologist 
J. P. Guilford (1950, 1967) who felt that creativity had not been adequately treated 
as a psychological phenomenon. In an effort to quantify creativity, he created the 
Alternate Use Task, which asked participants to find as many different uses for an 
everyday object. Responses to this task were then analyzed for fluency (how many 
uses were found), flexibility (were there fundamentally different uses found), origi-
nality (how unique were the responses), and elaboration (how detailed the responses 
were). E. P. Torrance (1966) extended Guilford’s ideas to create the Torrance Test of 
Creative Thinking, which not only looked at alternate uses of objects but also asked 
participants to use everyday objects to solve problems and scored their performance 
on the same four categories as Guilford: fluency, flexibility, originality, and 
elaboration.

These approaches to quantifying creativity all have their roots in the assumption 
that for creativity to have happened, then something must have been created—it 
cannot be a creative process if nothing is created (Bailin, 1994). And what is created 
acts as a proxy for determining the creativity of the process that spawned it (Getzels 
& Jackson, 1962; Torrance, 1966). The second discourse on creativity—creative 
process—does not make this assumption.
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Unlike the discourse on creative products, which began in psychology and 
migrated to mathematics, the discourse on the creative process has its roots in math-
ematics with the work of Henri Poincaré (1854–1912) who, in 1908, gave a presen-
tation to the French Psychological Society in Paris entitled L’Invention mathématique 
(Poincaré, 1952). In this presentation, he shares a story of a creative process.

Just at this time, I left Caen, where I was living, to go on a geological excursion 
under the auspices of the School of Mines. The incident of the travel made me forget 
my mathematical work. Having reached Coutances, we entered an omnibus to go 
some place or other. At the moment when I put my foot on the step, the idea came 
to me, without anything in my former thoughts seeming to have paved the way for 
it, that the transformations I had used to define the Fuchsian functions were identi-
cal with those of non-Euclidean geometry. I did not verify the idea; I should not 
have had the time, as, upon taking my seat in the omnibus, I went on with the con-
versation already commenced, but I felt a perfect certainty. On my return to Caen, 
for conscience’ sake, I verified the results at my leisure (Poincaré, 1952, p. 53).

Poincaré argued that the creative process lived at the junction between the con-
scious and the unconscious (or subconscious) mind and that what felt like illumina-
tion was actually the transference of an idea from the unconscious to the conscious. 
Jacques Hadamard (1865–1963), a contemporary and a friend of Poincaré, extended 
these ideas. Using an instrument originally created by two French psychologists 
(Édouard Claparède and Théodore Flournoy), he surveyed his friends—mathemati-
cians such as Henri Poincaré and Albert Einstein. In 1943, Hadamard gave a series 
of lectures on mathematical invention at the École Libre des Hautes Études in 
New  York City. These talks were subsequently published as The Psychology of 
Mathematical Invention in the Mathematical Field (1945).

Hadamard’s classic work positions the subject of invention at the crossroads of 
mathematics and psychology. It not only provides an entertaining look at the eccen-
tric nature of mathematicians and their rituals but also outlines the beliefs of mid-
twentieth-century mathematicians about the means by which they arrive at new 
mathematics. It is an extensive exploration and extended argument for the existence 
of unconscious mental processes. In essence, Hadamard took the ideas that Poincaré 
had posed and, borrowing a conceptual framework for the characterization of the 
creative process from the Gestaltists of the time (Wallas, 1926), turned them into a 
stage theory—initiation, incubation, illumination, and verification. This theory still 
stands as the most viable and reasonable description of the process of mathematical 
creativity.

After Hadamard (1945), the work on the creative process splits into two unique 
discourses—descriptive and prescriptive. Although both of these discourses have 
their roots in the four stage process that Wallas (1926) proposed, they make use of 
these stages in very different ways. The descriptive discourse sees all four stages as 
important and inevitable part of the creative process (Kneller, 1965; Koestler, 1964). 
For example, Csíkszentmihályi (1996), in his work on “flow,” attends to each of the 
stages, with much attention paid to the fluid area between conscious and uncon-
scious work, or initiation and incubation. On the other hand, the prescriptive 
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discourse primarily focuses on the first stage, initiation, and is best summarized as 
a cause-and-effect discussion of creativity wherein the thinking processes during 
the initiation stage are the cause and the creative outcome are the effects (Ghiselin, 
1952). Some of the literature claims that the seeds of creativity lie in being able to 
think about a problem or situation analogically (Johnson-Laird, 1989). Other litera-
ture claims that utilizing specific thinking tools such as imagination, empathy, and 
embodiment (Root-Bernstein & Root-Bernstein, 1999) helps kick start the process. 
In all of these cases, the underlying theory is that the eventual presentation of a 
creative idea will be precipitated by the conscious and deliberate efforts during the 
initiation stage. Taken together, whereas the prescriptive discourse sees the creative 
process as a means to an end, the literature following the descriptive discourse sees 
creative process as an end unto itself.

The third discourse on creativity pertains to the person. This discourse is domi-
nated by two distinct characteristics, habit (Bailin, 1994) and genius (Silver, 1997). 
Habit has to do with the personal habits as well as the habits of mind of people that 
have been deemed to be creative (Pehkonen, 1997). However, creative people are 
most easily identified through their reputation for genius (Silver, 1997). 
Consequently, this discourse is often dominated by the analyses of the habits of 
geniuses as is seen in the work of Ghiselin (1952), Koestler (1964), and Kneller 
(1965) who draw on historical personalities such as Albert Einstein, Henri Poincaré, 
Vincent van Gogh, D. H. Lawrence, Samuel Taylor Coleridge, Igor Stravinsky, and 
Wolfgang Amadeus Mozart, to name a few. The result of this sort of treatment is that 
creative acts are viewed as rare mental feats, which are produced by extraordinary 
individuals who use extraordinary thought processes (Weisberg, 1999).

The first three discourses on creativity—product, process, and person—although 
not explicitly so, assumes that creativity is a solitary activity. Guilford and Torrance 
were interested in the fluency, flexibility, originality, and elaboration of individual 
research participants. Claparède and Flournoy, Poincaré (1952), Hadamard (1945), 
and Wallas (1926) were all interested in the creative process of a person working 
alone. And the discourse on creative people, by definition, looks at individuals.

The final discourse on creativity—environment—does not make this assump-
tion. Yes, environment has a significant role in the contribution to (Goldin, 2002), 
and sustaining (Csíkszentmihályi, 1996) of, the creativity of an individual—whether 
that be a product, process, or person (Mooney, 1963; Rhodes, 1961).

The creation of a creative product and the interaction of a creative person and a 
creative process does not occur in a vacuum […] Hence, it is impossible to separate 
creativity from the context in which it takes place (Pitta-Pantazi et al., 2018, p. 41).

But the discourse on environment does not limit us to thinking about creativity 
of the individual. We can explore the role that environment has on fostering and 
maintaining the creativity of groups. This is exactly what I am interested in looking 
at in this chapter—the role of environment on group creativity. More specifically, I 
am interested in looking at the role of a collective problem-solving environment 
called a thinking classroom in fostering the group creativity and what it is about this 
environment that achieves this.
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12.2 � Building Thinking Classrooms

Building Thinking Classrooms (Liljedahl, 2020) is a teaching framework that I 
developed in response to the realization that much of what happens during a math-
ematics lesson is not thinking—at least not the type of thinking that we know stu-
dents need to be doing to have ongoing success in mathematics. In particular, the 
baseline data that emerged from this research showed that in a typical lesson only 
about 20% of students do any thinking at all and, even then, only for approximately 
20% of the lesson. That is, in a typical 60-min lesson of 30 students, 5–7 students 
will spend 8–16 min thinking, while the rest of students spend no time thinking 
(Liljedahl, 2020). The research has further shown that the normative practices pres-
ent in many classrooms are not only allowing student to not think but are also actu-
ally promoting, in both explicit and implicit ways, nonthinking behaviors such as 
mimicking (Liljedahl, 2020; Liljedahl & Allan, 2013). These normative structures 
permeate classrooms around the world and are so entrenched that they transcend the 
idea of classroom norms (Yackel & Cobb, 1996) and can only be described as insti-
tutional norms (Liu & Liljedahl, 2012)—norms that have extended beyond the 
classroom and have become ensconced in the very institution of school and the 
fabric of what it means to teach.

Much of how classrooms look and much of what happens in them today is guided 
by these institutional norms—norms that have not changed since the inception of an 
industrial-age model of public education. Yes, desks look different now, and we 
have gone from blackboards to greenboards to whiteboards to smartboards, but stu-
dents are still sitting, and teachers are still standing. Although there have been many 
innovations in assessment, technology, and pedagogy, much of the foundational 
structure of school remain the same. I realized that if we want to promote and sus-
tain thinking in the classroom, these norms were going to have to change (Liljedahl, 
2020). So, I embarked on a massive long-term study into what kinds of changes 
were necessary for thinking to flourish in the classroom.

Over the course of 15 years, and through the conducting of thousands of micro-
experiments with over 400 K-12 practicing teachers, a series of 14 practices eventu-
ally emerged that not only broke away from the aforementioned institutional 
normative ways of teaching but have also been empirically proven to get more stu-
dents thinking and thinking for longer (Liljedahl, 2020). Each of these practices is 
a response to a question—a question which, in turn, served as a variable in the 
research.1 Each of these questions/variables and the emperically emergent optimal 
thinking practices is briefly described below.

	 1.	 What are the types of tasks we should use? If we want students to think, then we 
have to give them something to think about—and that comes in the form of a 
task. Good thinking tasks are tasks that are novel to the students—they have not 
seen them before. They need to have a low floor (accessible to all students) and 

1 More details about the methodologies involved and the results can be found in Liljedahl 
(2020, 2016).
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a high ceiling (have evolving complexity that allows all students to eventually 
feel challenged). At the beginning, highly engaging, non-curricular tasks are 
used, but after a period of time, they can be gradually replaced with curricular 
thinking tasks.

	 2.	 How should collaborative groups be formed? At the beginning of each lesson, 
students should be placed into visibly random groups of three to work on the 
thinking tasks. If the lesson is significantly longer than 1 h, these groups should 
be re-randomized approximately every hour.

	 3.	 Where should students work? Groups should stand and work on vertical non-
permanent (erasable) surfaces (VNPS) such as whiteboards, blackboards, or 
windows, making work visible to the teacher and other groups.

	 4.	 How should we arrange the furniture in the classroom? The classroom should 
be de-fronted with desks placed in a random configuration around the room 
(but away from the walls) and the teacher addresses the class from a variety of 
locations within the room. Further, the teacher’s desk should not be on the same 
wall as the projector and screen.

	 5.	 How should we answer questions? Students only ask three types of questions: 
(1) proximity questions, which are asked when the teacher is close; (2) stop 
thinking questions, e.g., “is this right” or “are we doing this right”; and (3) keep 
thinking questions, which are clarifying or extending questions they ask so they 
can get back to work. Teachers should answer only the third type of question.

	 6.	 When, where, and how should we give tasks? Tasks should be given verbally 
and visually (non-textually), in the first 5 min of the lesson, and from a noncen-
tral location in the room with students standing in loose formation around the 
teacher. If there are data, diagrams, or long expressions in the task, then these 
are written or projected on a wall, but the instructions pertaining to the activity 
of the task should be given verbally.

	 7.	 What should homework look like? Rather than assigning homework or practice 
questions, students should be given the opportunity to do 4–6 questions for 
them to check their understanding. Students should have the freedom to work 
on these in self-selected groups or on their own, and on the vertical nonperma-
nent surfaces or in their desks. They should be for self-evaluation and not 
marked or checked.

	 8.	 How should we foster student autonomy? Students should interact with other 
groups extensively, both for the purposes of extending their work and getting 
help. As much as possible, the teacher should encourage this interaction by 
directing students toward other groups.

	 9.	 How should we use hints and extensions to further student understanding? The 
teacher should maintain student engagement through a judicious and timely use 
of hints and extensions to maintain a balance between the challenge of the cur-
rent task and the abilities of the students working on it.

	10.	 How should we consolidate a lesson? When every group has passed a minimum 
threshold, the teacher should pull the students together to debrief what they 
have been doing. This debriefing should begin at a level that every student in the 
room can participate in and use group VNPS work to illustrate and exemplify 
the mathematics emerging out of the group activity.
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	11.	 How should students take notes? Students should make notes to their future 
selves. Students should have autonomy of what goes in these notes and how 
they are formatted and should be based on work that has already taken place.

	12.	 What should we choose to evaluate? Evaluation should honor the activities of a 
thinking classroom—evaluate what you value. If you value perseverance, eval-
uate perseverance; if you value collaboration, evaluate collaboration; and so on.

	13.	 How should we do formative assessment? Formative assessment should be 
focused primarily on informing students about where they are and where they 
are going in their learning. This requires, by necessity, a number of different 
activities from observation to check your understanding questions to unmarked 
quizzes where the teacher helps students to decode their demonstrated 
understandings.

	14.	 How should we grade? Reporting out of students’ performance should be based 
on the analysis of the data, rather than the counting of points, that is collected 
for each student within a reporting cycle. These data need to be analyzed on a 
differentiated basis and be focused on discerning the learning that a student has 
demonstrated.

Although each of these 14 practices, on their own and in concert, have been empiri-
cally shown to contribute to an increase in student thinking in the classroom 
(Liljedahl, 2020), the visually defining quality of a thinking classroom is that stu-
dents work together to solve thinking tasks in random groups of three while stand-
ing at vertical whiteboards (see Fig. 12.1).

Fig. 12.1  A thinking classroom
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When put together, these 14 practices build a classroom ethos, routine, and cul-
ture of students thinking individually and collectively to do and learn mathematics. 
And it radically improves on the baseline data stated above. When these thinking 
classroom practices are enacted, rather than 20% of students thinking, we are now 
seeing upward of 90% of students thinking. And rather than thinking for 8–16 min, 
students are now thinking for 50–85 min.

But these practices do more than create an environment conducive to thinking. It 
also creates an environment conducive to group creativity. By the mere fact that 
students are working on unfamiliar tasks—curricular or non-curricular—they are 
going to get stuck. And, in some cases, they are going to need creative insights to 
get unstuck. But the creativity that is exhibited in these settings does not always fol-
low the four-step creative process that we see in individuals (Hadamard, 1945; 
Wallas, 1926). For students working collectively, we need to look for different 
markers of creativity. I draw on the phenomenon of burstiness for these markers as 
well as environments that allow for these markers to flourish.

12.3 � Burstiness

When we think of a group being creative, one of the images that comes to mind is a 
brainstorming session. Ironically, this is both a naïve and flawed understanding of 
what group creativity looks like in a group. Brainstorming is just the throwing out 
of ideas into a common space. Most of these ideas are routine derivations or exten-
sions of what is already known. Every once in a while, however, an idea may be 
offered that is the product of an individual creative process. This offering, in and of 
itself, is not enough to say that a group is being creative. Even if multiple creative 
ideas are offered by individuals of the group, the group is not understood to be cre-
ative. Brainstorming is not group creativity. It may lead to group creativity. But it is 
not yet group creativity. A group is said to be creative when burstiness occurs.

Burstiness is a term that describes how rapidly members of a group are taking 
turns in conversation. The more rapid the exchange of ideas, the more bursty the 
communication is until there is a point where members of the group are walking on 
top of each other, excitedly interrupting each other, adding to each others’ ideas, and 
building off each other to spin out new ideas. “Burstiness is when everybody is 
speaking and responding to each other in a short amount of time” (Woolley, quoted 
by Vallance, 2020) and “is like the best moments in improv jazz. Someone plays a 
note, someone else jumps in with a harmony, and pretty soon, you have a collective 
sound that no one planned” (Grant, 2018).

Burstiness is not brainstorming. It is what may emerge out of brainstorming. 
“Burstiness is a sign that you’re not stuck in one of those dysfunctional brainstorm-
ing sessions. It’s when a group reaches its creative peak because everyone is partici-
pating freely and contributing ideas” (Woolley, quoted by Vallance, 2020).

Burstiness is a concept that emerged out of group psychology and the realization 
that, against all odds, teams of collaborators working asynchronously online can 
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and do sometimes become highly productive. Traditional organizational literature, 
which looked at the ingredients necessary for successful collaboration within brick-
and-mortar organization, could not explain how any level of collective intelligence 
could emerge from such settings (Boudreau et al., 2014; Woolley et al., 2010). But 
it did. Digging into these successful online asynchronous collaborations revealed 
that in instances of productivity, there was a marked decrease in the time between 
communication until the point where the work shifted from being asynchronous to 
synchronous. And thus, was born the idea of burstiness.

Emerging first as a marker of productivity, burstiness has since been linked to 
innovation (Grant, 2018) and creativity (Vallance, 2020), and it has shifted from 
describing these outcomes in online asynchronous collaborative groups to face-to-
face synchronous collaborative groups. And like often happens, the research has 
shifted from finding descriptive markers of burstiness to finding prescriptive ingre-
dients necessary for burstiness to occur. This prescriptive work has found that there 
are key ingredients necessary for an environment to be ripe for burstiness—and 
group creativity—to occur (Grant, 2018; Marghetis et al., 2019; Riedl & Wooley, 
2020; Vallance, 2020). In what follows, I present seven of these key ingredients.

	1.	 Some Structure: Lack of focus can occur if the work environment is too open. 
The work environment needs to allow for the unencumbered flow of ideas 
(Vallance, 2020) while at the same time providing enough structure to ensure 
that everyone can get their ideas out (Grant, 2018). In essence, there needs to be 
a structure around which the group can organize their collective work.

	2.	 Diversity: As with many things, when it comes to burstiness, diversity is a 
strength. As such, the group needs to be made of people with different back-
grounds, different knowledge, and different ways of thinking. When everyone is 
the same, “they do worse at creative problem-solving, but they think they do 
better, because they’re more comfortable. Diverse groups are more creative” 
(Grant, 2018).

	3.	 Psychological Safety: Group members need to feel safe to contributing ideas and 
know that they will not be punished or humiliated for their ideas, questions, con-
cerns, or mistakes (Grant, 2018).

	4.	 Welcome Criticism: This does not mean that ideas are above criticism. Burstiness 
does not happen unless good ideas come to the surface and that can not happen 
without a process in place to weed out less good ideas. As such, group members 
need to feel safe in offering criticism of ideas as well as feel safe in having their 
ideas criticized. The key here is that the critique is about the idea, not about the 
person (Grant, 2018).

	5.	 Freedom to Shift Attention: One of the key markers of burstiness is the ability of 
a group member, or the group as a whole, to shift their attention between ideas. 
As such, the structure needs to provide a workspace that will not only allow for 
the presentation and representation of lots of different ideas but also afford the 
freedom to shift their attention between these many ideas (Marghetis et al., 2019).

	6.	 Focus: As mentioned, diversity is a good thing, but too much diversity can lead 
to a lack of focus—especially as it pertains to ideas. This is why brainstorming 
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is not the same as burstiness. Brainstorming has too much diversity—too big a 
range of idea. Burstiness cannot happen until the group settles on a smaller sub-
set of ideas and begins to focus their energy on those (Riedl & Wooley, 2020).

	7.	 Opportunity for Nonverbal Communication: Burstiness is signaled by group 
members talking over each other as ideas are pilled on top of ideas. From a 
purely verbal perspective, this can appear as quite a rude behavior as group 
members interrupt each other. From a nonverbal perspective, however, it isn’t 
rude. The use of body language to both read and signal emotions and intentions 
allows burstiness to not be experienced as rude and to remain productive (Riedl 
& Wooley, 2020). As such, the work environment needs to allow for an ease of 
nonverbal communication.

12.4 � Method

As mentioned, my intention in this chapter is to look at the role of environment on 
group creativity. More specifically, I am interested in looking at the role of a think-
ing classroom in fostering the group creativity and what it is about thinking class-
rooms that achieves this. To this end, the data for the work presented here comes 
from a grade 11 Foundations of Mathematics (FoM 11) course wherein the teacher 
is enacting the Building Thinking Classrooms framework of teaching.

12.4.1 � Course and Participants

At the time of data collection, students could choose from one of three grade 11 
mathematics courses: Pre-calculus 11 (PC 11), Foundations of Mathematics 11 
(FoM 11), and Apprenticeship and Workplace 11 (A&W 11). Any one of the three 
will satisfy the high school graduation requirement, but only PC 11 and FoM 11 are 
eligible for admission to university. From a content perspective, the FoM and PC 
sequence of courses are equally rigorous. The difference is that, whereas PC 11 (and 
12) is made up of exclusively continuous mathematics topics, FoM 11 (and 12) cov-
ers content from both continuous and discrete mathematics. Having said that, PC 11 
and 12 are perceived to be more rigorous because they will allow students to apply 
to university programs that require calculus. The distribution of students across 
these three courses varies from school to school, depending on what percentage of 
students have ambitions to attend university, college, vocational school, or trade 
schools.

The school in which the data was gathered was in a middle-class neighborhood, 
graduation rates were high, and the majority of students anticipated going on to 
some sort of postsecondary education. As such, 50% of students in a grade 11 
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mathematics course2 were in PC 11, 30% in FoM 11, and 20% in A&W 11. The 
particular FoM 11 course in which the data was collected consisted of 28 students 
(ages 16–19). Of these, 20 were in grade 11, six were in grade 12, and two were 
older than grade 12.

The data was gathered in late November. That is to say, the teacher had had 
plenty of time to establish the thinking classroom practices as norms in the class-
room and to build a thinking classroom culture among her students.

12.4.2 � The Lesson

The lesson during which the data was collected began by the teacher gathering the 
students around her at one of the vertical whiteboards in the room. She then pro-
ceeded to play a game of tic-tac-toe with the students. She played badly—by 
design—and the student won. She acknowledged that the student had beaten her on 
one of the diagonals and asked the class, “how many different lines are there where 
the student could have won?” There was some murmuring among students, and 
then, the class began to call out, “8.” She asked them to clarify and to show her 
where the eight wins were. She then asked, “what defines a win?” The class imme-
diately responded with “three in a row,” to which she stated, “rows are horizontal, 
and columns are vertical.” The students modified their answer to “three on a line,” 
to which she nodded with agreement.

The teacher then held up a picture of a 3D tic-tac-toe board (see Fig. 12.2) and 
asked, “if there are eight ways to win on 2D tic-tac-toe board, how many ways are 
there to win on a 3D tic-tac-toe board?” She then put the students into random 
groups of three using a deck of cards and sent them off to work at vertical nonper-
manent surfaces spread around the room.

2 Because of failure and acceleration, not all grade 11 students are in a grade 11 mathematics 
course. Likewise, not all students in a grade 11 mathematics course are grade 11 students.

Fig. 12.2  A 3D tic-tac-toe 
board
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12.4.3 � The Data

The data comes from one of the groups working on this problem. The group was 
comprised of Adam, Betty, and Christine—all pseudonyms. The data consists of an 
audio recording of their work plus the field notes that I took during my observation 
of their work. In what follows, I provide synopsis of their problem-solving episode. 
This episode took 42 min from the time the group got to their whiteboard to the time 
the teacher drew the activity to a close. For purposes of brevity, I present their work 
through a combination of narrative, portions of their transcribed discussions, and 
excerpts from my field notes.

12.4.4 � The Episode

Immediately upon getting to their whiteboard, Adam suggested that the answer 
might be 83. Betty asked him where that came from, and Mark hypothesized that 
because “there are 8 ways to win in regular tic-tac-toe, there might be 8 × 8 × 8 ways 
to win in 3D tic-tac-toe.” Christine pushed them off this idea by saying, “Hmm. I’m 
not sure. That seems too easy. Let’s try counting and see where we get to.”

With this, Betty drew a 3D tic-tac-toe board. Christine started off by stating, “we 
know there are 8 ways to win on each board,” to which Adam immediately added, 
“and 9 straight up and down.” There was some discussion (4 min) about this before 
Betty wrote 3 × 8 + 9 on the board. After this point, the group spent the next 8 min 
discussing a variety of different diagonals that could be considered wins. Eventually, 
they all agreed that there are four diagonals that start in a corner of the topmost 
gameboard, goes through the middle square of the middle gameboard, and finishes 
in a corner on the bottom game board (see Fig. 12.3).

During this discussion, Betty misunderstood what Christine was saying and drew 
in the diagonal that starts in a corner of the top game board, goes through a middle 

Fig. 12.3  Diagonal 
through the middle
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Fig. 12.4  Diagonal along 
the edge

square along one of the edges of the middle board, and finishes in a corner on the 
bottom board (see Fig. 12.4). Both Adam and Christine dismissed this and pointed 
at the middle square of the middle board, “it goes through here.”

After they had all agreed on the four diagonals going through the middle of the 
middle board (see Fig. 12.3), Betty brought their attention back to the diagonal she 
had drawn (see Fig. 12.4), “so, what about this one?” They all agreed that that was 
a win and that there were also four such wins. But then something interesting 
happened.

1. Christine	 Wait. It can go the other way as well.
2. Adam	[8s. pause] Hmm. You mean up?
3. Betty	 [5s. pause] Up and down are the same win.
4. Christine	 [no pause] No. It can go this way [drawing a new line (see 
Fig. 12.5)].
5. Adam	[5s. pause] Ok.
6. Betty	 [no pause] Yes. That’s a win.
7. Adam	[6s. pause] So, there are four more wins?
8. Betty	 [12s. pause] Wait. Didn’t we already count those?
9. Christine	 [25s. pause] Ok. Let’s try again. If we look at just this cor-
ner …[pointing at one of the corners on the top board].
10. Betty	 [no pause] … There are three wins …
11. Adam	 [no pause] … Three diagonals.
12. Christine	 [no pause] Right. One that way …
13. Betty	 [at the same time as Christine] … That way and that way.
14. Adam	 [3s. pause] Ok. [Adam writes a three in the corner they are point-
ing at (see Fig. 12.6).]
15. Christine	 [1s. pause] And these are also three [writes 3’s in the other cor-
ners (see Fig. 12.6)].
16. Betty	 [no pause] [Betty writes 1’s in the four edge squares (see 
Fig. 12.6).]
17. Adam	 [no pause] [Adam writes 0’s in the middle square (see Fig. 12.6).]
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Fig. 12.5  Diagonal along 
a different edge

Fig. 12.6  Diagonal wins 
from a cell

18. Betty	 [15s. pause] So, there are 24 plus nine plus …
19. Christine	 [at the same time as Betty] … Plus three plus three plus …
20. Adam	 [at the same time as Christine] … Plus one plus one plus one 
plus one.
21. Christine	 [5s. pause] So, 49?
22. Adam	 [5s. pause] Yeah.
23. Betty	 [15s. pause] Hmm. [10s. pause] What if we made this four [draw-
ing a new 3 × 3 grid and putting a four in one of the corners (see Fig. 12.7)]?
24. Christine	 [no pause] Like, four ways to win from that corner going down.
25. Adam	 [no pause] Instead of the vertical [pointing at the 9 on the board].
26. Christine	 [2s. pause] Then, these are 2’s and this is a 1 [pointing at the 
squares along the edges and the middle].
27. Betty	 [no pause] [writes in the numbers on the grid (see Fig. 12.7)].
28. Adam	 [5s. pause] So, now its 24 plus four time four plus four times two 
plus one …
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Fig. 12.7  Diagonal wins 
from a cell plus 
vertical wins

Fig. 12.8  Wins from a cell 
on 4 × 4 × 4 game

29. Christine	 [5s. pause] 25?
30. Adam	 [5s. pause] Yeah, 25.

At this point, the group pauses for almost 2 min. Christine looks at her phone, and 
Adam looks around the room. Betty, on the other hand, is looking at the whiteboard.

31. Betty	 Let’s do a 4 × 4 × 4. [Betty draws a 4 × 4 grid (see Fig. 12.8).]
32. Adam	 [no pause] [takes the marker from Betty and writes in the 4’s and 
2’s and 1’s (see Fig. 12.8)].
33. Christine	 [20s. pause] These are like constants [waving her hand over the 
4 × 4 grid].
34. Betty	 [no pause] There are just more of them.
35. Adam	 [no pause] Except the 4’s ….
36. Christine	 [no pause] … There are always four 4’s ….
37. Betty	 [no pause] … Because there are always four corners [pointing at 
the four corners (see Fig. 12.8)].
38. Christine	 [15s. pause] I think we can generalize this.

At this point, the group begins a process of generalizing the problem to an 
n  ×  n  ×  n game. They work in a more determined and purposeful way, making 

P. Liljedahl



187

conjectures, pausing to discuss the conjectures, and checking their thinking. 
Eventually, they arrive at a generalization for the problem, simplifying this general-
ization, and checking their answer with another groups. That group had arrived at a 
different answer, so there was a fair bit of discussion before the two groups agreed 
on the final solution. During this discussion, the other group adopted Adam, Betty, 
and Christine’s (Adam’s group) way of tracking wins. So too did other groups who 
saw what Adam’s group was doing. Adam, Betty, and Christine spent some time 
interacting with other groups about their way of counting wins that cut through the 
different game boards.

12.5 � Analysis I: Burstiness

Within the lesson that I observed, coming up with the way of annotating each cell 
of the top game board (see Figs. 12.7 and 12.8) was unique to Adam’s group. Others 
adopted it when they saw what Adam’s group was doing, but only Adam’s group 
came up with it on their own. In the 50 or so settings in which I have used this task, 
as well as in the 10 or so settings where I have seen it used, very few groups come 
up with the type of annotation that Adam’s group used (less than 10%). It is a rela-
tively novel solution. We might even want to call it a creative solution. But was the 
process that generated it creative? By looking at the time intervals between interac-
tions, we can see where there were moments where the ideas were piling on each 
other as the group members exchanged thoughts without pauses, even talking over-
top of each other. At these moments, the group was bursting—and by extension, 
exhibiting group creativity (Vallance, 2020).

Although the entire period between lines 1 and 37 can be seen as one single 
extended burst, we can also look at this time span as a series of five individual 
bursts. In what follows, I comment on each of these.

12.5.1 � Burst 1: Lines 9–17

The first burst was triggered by Christine when she suggested that they only look at 
one corner on the top board. This burst consisted of all three very rapidly talking 
about the different diagonals that can stem from one corner, eventually prompting 
Adam to write a 3 in that corner (see Fig. 12.6). This was followed immediately by 
Betty and Christine filling in the rest of the 3’s and adding 1’s to the non-corner cells 
along the edges (see Fig. 12.6). This burst is characterized by a shift from thinking 
about diagonals as lines in three-dimensional space and trying to track where those 
diagonals are to thinking about the cells that diagonals can start from and how many 
start from that same point. The minute this shift was initiated by Christine, both 
Betty and Adam’s thinking switched over, and they started piling ideas on top of 
each other.

12  Group Creativity



188

12.5.2 � Burst 2: Lines 18–20

This burst is triggered when Betty shifts the attention away from tracking and anno-
tating diagonals to adding them all up. Adam and Christina quickly jump on this 
way of thinking as they all begin to talk overtop of each other. Although there are no 
ideas emerging out of this burst, it is a burst, nonetheless.

12.5.3 � Burst 3: Lines 23–27

The third burst was triggered by Betty when she suggested that they incorporate the 
vertical win into their notation scheme. Like with the first burst, this rethink about 
what they were doing was immediately picked up by Christine and Adam as they 
started piling on their ideas. This burst is marked by a shift in thinking of vertical 
wins as different from diagonal wins to a way of thinking about all the wins that cut 
through the different game boards—both diagonal and vertical—as belonging to the 
same category.

12.5.4 � Burst 4: Lines 31–32

This short burst is initiated by Betty when she suggests that they consider a 4 × 4 × 4 
game. This suggestion immediately brought Adam back to the group, and he jumped 
on Betty’s suggestion without hesitation, adding in the relevant numbers. Although 
the transcript does not reveal this, Christine is fully focused on what Adam is doing, 
and I suspect, had there been more than one marker, Christine would have been 
writing on the grid at the same time as Adam. This burst is indicative of a shift of 
attention away from distractions and is triggered by Betty suggesting an extension 
to what they had already been doing.

12.5.5 � Burst 5: Lines 33–37

The final burst is triggered by Christine’s suggestion that the numbers on the grid 
are constants. This prompts both Betty and Adam to join with Christine to think 
about the fact that the grid will always be populated by 4’s and 2’s and 1’s, and what 
changes is how many of each that there are. This burst is marked by a shift of think-
ing about the 4 × 4 × 4 game as a specific task to the 4 × 4 × 4 game as an example 
of a more general game—the group started looking at the general in the particular 
(Mason & Pimm, 1984) in the 4 × 4 × 4 game.
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Vallance (2020) claims that burstiness is synonymous with group creativity, and 
hence, that moments of burstiness can be used to identify if a group is engaged in a 
collaborative creative experience. For the most part, the data presented here sup-
ports this claim. From the data, this seems to be mostly true in that four of the bursts 
(1, 3, 4, and 5) were marked by a creative shift in thinking about the task at hand—
the most significant of which occurred in the first burst where thinking about diago-
nals moves from lines to starting points. But the data also shows that burst is 
occurring without evidence of group creativity—the group was just adding up the 
numbers in the grid. Regardless of whether a burst correlated with creative thinking 
or not, however, is that all five bursts were triggered by a shift of attention. So, 
burstiness, at least within this data set, is indicative of a shift of attention—and some 
shifts of attention can trigger group creativity.

The question that remains to be answered, now, is—in what way did the environ-
ment occasion these incidences of burstiness?

12.6 � Analysis II: Environment

In what follows, I unpack the thinking classroom through the lens of the seven 
ingredients necessary to occasion burstiness to see in what ways the environment 
that Adam, Betty, and Christine were working in contributed to the burstiness we 
saw in the aforementioned episode.

12.6.1 � Some Structure

In order for burstiness to occur, there needs to be enough freedom for ideas to flow 
unencumbered (Vallance, 2020) while at the same time providing enough structure 
to ensure that ideas can come out (Grant, 2018). The thinking classroom, although 
providing students with lots of autonomy and freedom, has some well-defined struc-
tures—chief among is that students work at vertical nonpermanent surfaces (VNPS). 
Although a constant structure within a thinking classroom, these workspaces pro-
vide a huge degree of freedom as to how to use the space. It is a workspace that is 
both easy and familiar to output ideas onto. And it is large enough to hold multiple 
ideas from multiple group members on at the same time. For example, the white-
board that Adam, Betty, and Christine worked on had all of the ideas that were 
shared in the episode above on the whiteboard at the same time.
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12.6.2 � Diversity

Another structure that is ubiquitous in a thinking classroom is that students work in 
random groups. Early on in the research, we discovered that the optimal group size 
was three. Groups of two struggled more than groups of three, and groups of four 
almost always devolved into a group of three plus one. Groups of three were opti-
mal. We didn’t know why—we just knew that groups of three were optimal. The 
explanation for why came to us from complexity theory, which tells us that in order 
for a group to be generative, it needs to have both redundancy and diversity (Davis 
& Simmt, 2003). Redundancy are the things that a group has in common—common 
language, common knowledge, and common notation. Without these commonali-
ties, students cannot even begin to collaborate. But if all they have is redundancy, 
the group will not produce anything more than an individual member of the group 
could. To be generative, they also need to have diversity or the things that individual 
members of the group bring that are not shared by the others—different ideas, dif-
ferent viewpoints, different representations, etc. Random groups of three seems to 
have the perfect balance of redundancy and diversity.

This is not to say that randomness guarantees diversity. It doesn’t. And it is 
always the case that when randomly assigning groups of three there will be some 
groups that are more diverse than others. It even happens sometimes that three very 
strong and like-minded students will be randomly put into the same group. When 
this happens, it is often the case that the teachers will declare, a priori, that this 
group is going to “kick but” on the task at hand. Ironically, this turns out to almost 
never be true. It is my experience that homogeneous groups of strong students are 
almost always outperformed by groups with more diverse abilities. Diverse groups 
offer up more ideas and interrogate these ideas and each other more—all of which 
are necessary for burstiness to occur.

Although not a guarantee of diversity, randomness does increase the likelihood 
that diversity can occur. For example, the Building Thinking Classrooms research 
showed that when students group themselves, they tend to select their partners from 
within their friend groups (Liljedahl, 2020). Friends tend to be more like-minded, 
have related histories and experiences, and have similar viewpoints and disposi-
tions. Friend groups are less diverse. Likewise, when teachers make groups, they 
often form homogeneous groups (Liljedahl, 2020) as homogenous groups have long 
been promoted as a way to help teachers manage the challenges of differentiated 
instruction. Homogenous groups are not diverse. And even when teachers decide to 
form heterogeneous groups, their criteria for doing so often include concerns for 
behavior, social issues, and maintaining peace and quiet (Liljedahl, 2014, 2020)—
all of which can diminish the diversity that can be achieved. Random groups cuts 
through all that.
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12.6.3 � Psychological Safety

Although not guaranteeing diversity, what creating random groups does is create an 
environment where students have psychological safety. In working with different 
students each day, students get to know everyone in the class which, in turn, builds 
community (Liljedahl, 2020). And with this comes an elimination of social barriers 
(Liljedahl, 2014) and the unlocking and mobilization of empathy among students 
(Liljedahl, 2020). The students begin to care about and care for each other more 
when random groupings are used. And they start to see themselves as more capable. 
In a study of how thinking classrooms shifted self-efficacy beliefs in students, I 
found that random groups were one of the most significant ways for teachers to 
persuade (Bandura, 1986, 1994, 1997) students, in nonverbal ways, that they were 
all equally capable (Liljedahl, in press).

With this increase in self-efficacy, mobilization of empathy, and greater sense of 
community, students feel less at risk and, as a result, are more willing to take risks. 
This is further supported by working on VNPS. My research has shown that work-
ing on erasable surfaces reduces the risk that students feel when outputting ideas 
(Liljedahl, 2016, 2019, 2020) where errors can easily be erased. Taken together, the 
structures of a thinking classroom increase the psychological safety for students 
and, as a result, increases the output of ideas.

12.6.4 � Welcome Criticism

This is not to say that all these ideas are equally good. Burstiness often begins with 
brainstorming. We saw that in the above episode when Adam threw out the idea that 
the answer could be 83. He didn’t have any real expectation that this was the right 
answer—it was just an idea. Brainstorming is a good way to get lots of ideas out, but 
for burstiness to occur, groups need to be able to cut through these ideas and push 
forward those ideas that are better. Individual members of a group need to be able 
to not just offer up ideas; they need to interrogate these ideas and be ok with their 
ideas being interrogated. The psychological safety that thinking classrooms affords 
helps with this. The sense of community, feelings of empathy, and increased self-
efficacy allow students to welcome the criticism that is necessary for good ideas to 
emerge and burstiness to occur.

12.6.5 � Freedom to Shift Attention

But this is not to say that burstiness is only about focus on one idea. Burstiness occurs 
when there is freedom for group members to easily shift their attention between mul-
tiple good ideas (Marghetis et  al., 2019). In the episode with Adam, Betty, and 
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Christine, we saw several instances of the group shifting their attention from one idea 
to the next. Being able to represent multiple ideas on vertical nonpermanent surfaces 
facilitates this shift in attention. So too does the ability to see other groups’ work. 
Although Adam, Betty, and Christine did not do this very much, it is interesting to 
note that their way of representing how many wins originate from a particular cell (see 
Fig. 12.6) did spread to five other groups in the room. Although some groups adopted 
this method through direct interaction with the Adam, Betty, and Christine, other just 
noticed the idea as they were looking around the room. Good ideas can come both 
from inside the group and from outside the group. It doesn’t matter. A good idea is a 
good idea and, regardless of where it comes from, can trigger a burst in another group. 
The freedom with which to shift attention between ideas in a thinking classroom, your 
own group’s or others’, is key for this to happen.

12.6.6 � Focus

Access to too many ideas, however, can lead to a lack of focus, which, in turn, pre-
vents burstiness from occurring. This is why brainstorming is not the same as bursti-
ness. Brainstorming has too much diversity—too big a range of idea. Burstiness 
cannot happen until the group settles on a smaller subset of ideas and begins to 
focus their energy on those (Riedl & Wooley, 2020). Access to the multitude of 
ideas that are being shared by 10 different groups working on vertical whiteboards 
could create too much diversity and, as such, lead to a lack of focus, except it 
doesn’t. And the reason it doesn’t is that, although there is a lot of diversity of ideas 
among 30 students working in 10 groups, they are all working on the same task or 
sequence of tasks. This constrains the diversity and creates the focus necessary for 
burstiness to potentially occur.

12.6.7 � Opportunity for Nonverbal Communication

In a thinking classroom, students are communicating with each other across five 
channels of communication. The first channel is the verbal channel—they are talk-
ing to each other. The second channel is the representational channel. As students 
are talking to each other, one member of the group is also writing what is being said 
through symbols and diagrams on the VNPS. Although only one member of the 
group has the ability to represent their or other’s thinking in this way, all members 
of the group have the ability to point at the symbol and diagrams on the VNPS as 
they explain their thinking. This is the pointing channel, and it is a very well used 
channel in a thinking classroom. We saw this in several points in the episode. The 
fourth channel in a thinking classroom is the tool channel. Although not used in the 
particular episode above, in a thinking classroom, students often work with manipu-
latives and digital tools, and they use these tools to communicate their thinking with 
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each other. The final channel of communication is the gesture channel. They use this 
channel to communicate ideas, to affirm or correct ideas, and to communicate emo-
tions and intentions. Although only one of these five channels is verbal, the other 
four channels work in conjunction to the verbal channel to support the verbal com-
munication of ideas. The gesture channel, in particular, allows group members to 
signal intention in such a way that the piling on of ideas during moments of bursti-
ness is welcomed and not seen as rude instances of interrupting.

12.7 � Conclusions

Creativity does not happen in a vacuum. “It is impossible to separate creativity from 
the context in which it takes place” (Pitta-Pantazi et al., 2018, p. 41). This context 
consists of not only the people that someone works with but also the environment 
within which this work is being done. In this chapter, I was interested in looking 
closer at the construct of group creativity—something that has been largely over-
looked in the creativity research in mathematics education—and the role that envi-
ronment plays in fostering group creativity. Using the construct of burstiness (Grant, 
2018; Marghetis et al., 2019; Riedl & Wooley, 2020; Vallance, 2020) to identify 
instances of group creativity, I was able to not only illuminate what creativity looks 
like in a collaborative setting but also illuminate the important role that environment 
plays in occasioning burstiness. Structure, diversity, psychological safety, welcome 
criticism, freedom to shift attention, focus, and opportunity for nonverbal commu-
nication are all contributed to the burstiness seen in the data—and all, in turn, were 
contributed to through the construct of the thinking classroom framework 
(Liljedahl, 2020).

The thinking classroom, through its combination of structure and freedoms to 
move within these structures, creates an ideal environment for burstiness, and group 
creativity, to flourish. By having students work on thinking tasks at vertical white-
boards (or their proxies) in random groups of three, groups are provided with an 
environment that allows for the piling on of ideas necessary for burstiness to begin. 
At the same time, the thinking classroom creates an environment within which stu-
dents feel safe to take risks, offer ideas, and welcome the criticism necessary for the 
very best of these ideas to move forward. The structures of a thinking classroom, in 
turn, makes these ideas not only visible to every member of the groups but also 
every member of other groups in the room, which, in turn, can seed burstiness 
among other groups.

However, the structures of a thinking classroom are not mere descriptions of an 
environment wherein burstiness, and group creativity, can occur. A thinking class-
room is prescriptive—it can be built. The Building Thinking Classrooms framework 
emerged out of 15 years of research as a framework for how to construct an environ-
ment that not only fosters thinking among students—individually and collectively—
but also necessitates it. And as it turns out, it also build an environment that fosters 
group creativity.
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Chapter 13
“Creativity Is Contagious” 
and “Collective”: Progressions 
of Undergraduate Students’ Perspectives 
on Mathematical Creativity

Gulden Karakok, Gail Tang, Emily Cilli-Turner, Houssein El Turkey, 
V. Rani Satyam, and Miloš Savić

13.1 � Introduction

It is shocking to me that the creativity involved in math is often overlooked … A 
professor at my school is dedicated to integrating creativity in her coursework to 
ensure students are engaged and excited throughout the entire course. It was in her 
course that my interest in the topic of number theory grew. Peyton, a first-generation, 
female student.

Peyton was one of the participants of the presented study, and this short anec-
dotal quote was from personal communication a year after the study. As Peyton 
points out, mathematical creativity is often underemphasized in mathematics 
courses that tertiary level students take, even though there are numerous policy and 
curriculum standard documents, both in the United States and internationally, 
emphasizing creativity as an important and needed skill when learning mathematics 

G. Karakok (*) 
University of Northern Colorado, Greeley, CO, USA
e-mail: Gulden.Karakok@unco.edu 

G. Tang 
University of La Verne, La Verne, CA, USA 

E. Cilli-Turner 
University of San Diego, San Diego, CA, USA
e-mail: ecilliturner@SanDiego.edu 

H. E. Turkey 
University of New Haven, West Haven, CT, USA 

V. R. Satyam 
Virginia Commonwealth University, Richmond, VA, USA 

M. Savić 
University of Oklahoma, Norman, OK, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. A. Chamberlin et al. (eds.), Mathematical Creativity, Research in 
Mathematics Education, https://doi.org/10.1007/978-3-031-14474-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14474-5_13&domain=pdf
mailto:Gulden.Karakok@unco.edu
mailto:ecilliturner@SanDiego.edu
https://doi.org/10.1007/978-3-031-14474-5_13


198

(e.g., Askew, 2013; Schumacher & Siegel, 2015). Peyton’s quote also highlights the 
potential impacts of explicitly valuing and providing ways for students to enhance 
their mathematical creativity in mathematics courses. We, the Creativity Research 
Group, recognize the need to emphasize mathematical creativity, and in our research 
studies (e.g., Cilli-Turner et al., 2019, 2020; El Turkey et al., 2018; Omar et al., 
2019; Savić et al., 2017; Tang et al., 2015), we aim to explore the ways in which 
students’ mathematical creativity can be explicitly valued and enhanced at the ter-
tiary level mathematics courses. We agree with Nadjafikhah et al.’s (2012) claim 
that fostering mathematical creativity should be one of the goals of any educa-
tion system.

The lack of a universally agreed-upon definition of mathematical creativity 
(Mann, 2006) should not prevent us from nurturing all our students’ existing math-
ematical creativity in our courses. Since mathematics is so prevalent and acts as a 
gatekeeper in science, technology, engineering, and mathematics (STEM) fields, 
“[t]eaching engineers (and other STEM disciplines) to think creatively is absolutely 
essential to a society’s ability to generate wealth, and as a result provide a stable, 
safe, healthy and productive environment for its citizens” (Cropley, 2015, p. 140). 
The number of studies examining students’ mathematical creativity and the ways to 
enhance it at the tertiary level is slowly growing; however, compared to the number 
of studies at the primary and secondary school mathematics level, it is still sparse. 
Furthermore, most of the studies focus on the quantitative outcomes of mathemati-
cal creativity; there is a need to understand the phenomenon of mathematical cre-
ativity through students’ lived experiences in order to build classroom experiences 
to support it.

To complement the existing knowledge and expand our understanding of per-
spectives that students bring to mathematics, we share results from one of our stud-
ies conducted in an introduction-to-proofs course to explore the progression of 
undergraduate students’ perspectives of mathematical creativity. This progression 
was examined through several data sources collected chronologically, including 
pre-course survey, students’ reflection assignments (RAs), in-class conversations, 
post-course survey, and one end-of-semester interview. Students’ perceived devel-
opment of their own mathematical creativity guided our understanding of these pro-
gressions. Using a phenomenological study design, we explore students’ lived 
experiences of mathematical creativity in a proof course.

13.2 � Background Literature

Guilford (1950), in his presidential address to the American Psychological 
Association, urged researchers and educators to find ways to enhance the creative 
promise of learners. However, from a research perspective, this has been a hard task 
as there are more than 100 definitions of mathematical creativity (Mann, 2006). In 
fact, Borwein et al. (2014) demonstrated that many mathematicians had different 
ideas about mathematical creativity. Some conceptualizations of creativity focus on 
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emphasizing whether the end product is original and useful (Runco & Jaeger, 2012), 
while others describe mathematical creativity as a process that involves different 
modes of thinking, some of an unusual nature (Balka, 1974).

Most frequently, we observe researchers focusing on quantitative measures with 
an end product orientation using the Torrance (1966) categories of fluency, flexibil-
ity, originality, and elaboration as a framework for data analysis. Fluency in general 
refers to the number of meaningful and relevant ideas as a response to a problem or 
a stimulus. Flexibility is defined as the number of groups or categories of responses, 
whereas originality (or novelty) is a unique production or unusual thinking. 
Elaboration is defined as the ability to produce a detailed plan and relates to the 
generalization of ideas.

Leikin (2013), for example, used a point system to evaluate three of these catego-
ries (fluency, flexibility, and originality) in students’ work. While Leikin acknowl-
edged that solutions must be “appropriate” – “The notion of appropriateness has 
replaced the notion of correctness” (p.  391)  – an expert (e.g., an instructor or a 
researcher) was the one who judged what is or should be appropriate or original. 
Furthermore, even though quantitative approaches can measure how creative a 
product is from the perspective of an expert, they obscure completely the perspec-
tive of the student writing the solution and how others (e.g., students or instructors 
of the courses) may perceive it.

In one of our earlier studies, we explored university students’ and mathemati-
cians’ perspectives of mathematical creativity using three process categories: taking 
risks, making connections, and creating ideas (Tang et  al., 2015). We found that 
students rarely (9% of students’ responses) associated making connections (e.g., 
synthesizing different mathematical content) with creativity when compared to 
mathematicians (38% of mathematicians’ responses). This study provided motiva-
tion to think about explicitly valuing and discussing the processes that are deemed 
to be important in the existing literature to develop mathematical creativity (El 
Turkey et al., 2018). Furthermore, we recognize that most of the existing definitions 
of mathematical creativity were derived from experts’ (e.g., research mathemati-
cians, other experts in education and psychology fields) experiences or perspec-
tives; however, it is (as) important to consider students’ voices and experiences with 
mathematical creativity. Researchers have been calling for studies that bring stu-
dents’ voices forward (e.g., Roos, 2019, on the topic of inclusion), and it is time for 
us to hear undergraduate students’ perspectives on mathematical creativity.

With this overarching goal to gain an understanding of students’ perspectives on 
mathematical creativity, we conducted the present study in an introduction-to-
proofs course and examined the data collected at various stages of the course. 
Earlier results from this study used hypothesis coding (Saldaña, 2013) on students’ 
end-of-semester interviews only and indicated that students’ perspectives were 
related to Torrance’s (1966) originality category with codes such as uniqueness, 
original, and innovative ways (Cilli-Turner et al., 2019). We also observed “being 
flexible” and “trying different ways” in students’ perspectives, which related to 
Torrance’s (1966) flexibility and fluency categories (Cilli-Turner et al., 2019). We 
further explored the sources of students’ perspectives (Cilli-Turner et al., 2020) and 
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noticed that students during these interviews mentioned their experience in the 
introduction-to-proofs course.

These results initiated our work here examining the progression of these stu-
dents’ perspectives of mathematical creativity from the start of the introduction-to-
proofs course until its end. More precisely, we aim to address the research question: 
what are the progressions of students’ perspectives on mathematical creativity 
through their experiences in a semester-long introduction-to-proofs course?

13.3 � Theoretical Perspective and Methodology

In our mathematical creativity research projects (see http://www.creativityresearch-
group.com for a complete list of references), we use a developmental perspective of 
creativity (Kozbelt et al., 2010) that contends that creativity develops over time and 
emphasizes the role of the environment in the development of creativity. Such an 
environment should provide students with authentic mathematical tasks and oppor-
tunities to interact with others (Sriraman, 2005).

We operationalize mathematical creativity as “a process of offering new solu-
tions or insights that are unexpected for the student, with respect to their mathemati-
cal background or the problems [they’ve] seen before” (Savić et al., 2017, p. 1419). 
This definition focuses on the process (Pelczer & Rodríguez, 2011) of creation, 
rather than the product that is created at the end of a process (Runco & Jaeger, 
2012). This orientation allows for a dynamic view rather than a static one to capture 
nuances in the individual’s thinking and experiences. Furthermore, our definition 
takes a relativistic perspective – creativity relative to the student – in contrast to 
absolute creativity in the field of mathematics (Leikin, 2009). For example, Levenson 
(2013), using a similar viewpoint, focused on the discussion of ideas by individual 
students and how these ideas helped in developing a product of collective mathe-
matical creativity in fifth- and sixth-grade mathematics classrooms. Levenson also 
emphasized the teachers’ roles in facilitating these discussions. The developmental 
perspective of creativity interlaced with our operational definition of mathematical 
creativity is our theoretical perspective.

We utilized a phenomenological case study design (Patton, 2002) to explore the 
progression of students’ perspectives on mathematical creativity through their expe-
rience in the introduction-to-proofs course. This methodology was suitable for our 
investigation as it is “particularly effective at bringing to the fore the experiences 
and perceptions of individuals from their own perspectives, and, therefore, at chal-
lenging structural or normative assumptions” (Lester, 1999, p. 1). This allowed us 
to focus on students’ perspectives of mathematical creativity rather than experts’ 
views (e.g., mathematicians’ or researchers’ views) or normative assumptions.
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13.4 � Method

13.4.1 � Setting

The research setting for this study was an introduction-to-proofs course at a small 
liberal arts college in southwestern United States. Students met twice a week for 
15 weeks for approximately an hour and a half. The course topics typically included 
sets, logic, and various proof techniques (e.g., direct proof, induction, contradiction, 
contraposition). The instructor of the course implemented inquiry-based learning 
(IBL) pedagogy (see https://www.inquirybasedlearning.org/) and adapted Ernst’s 
(2017) textbook. Students often worked in small groups and presented their proofs 
to the class, which was followed by class discussions. There were three exams dur-
ing the semester and a final exam in week 16. Students had daily assignments with 
problem sets for which they had unlimited opportunities to re-work their proofs 
during the semester using the feedback provided by the class community (peers and 
instructor).

Almost every week, students also submitted a reflection (short writing) assign-
ment (RA). The content of these reflections varied from week to week. For example, 
for the first three assignments, students were asked to read articles on topics such as 
the importance of discussions in mathematics courses, the importance of reflection, 
and the impact of IBL. Then, they wrote a minimum of a half-page reflection on 
what they learned and found meaningful. There was also one RA for each of the 
three exams. For the RA in week 5 (RA#5), students were asked to reflect on their 
views of creativity and mathematical creativity and how these views were similar to 
and different from each other.

Students were introduced to the Creativity-in-Progress Reflection (CPR) on 
Proving (e.g., Karakok et al., 2016; Savić et al., 2017, named Creativity-in-Progress 
Rubric in our earlier publications) in class during week 7 (see Appendix 1 for the 
version used in this course). The CPR was developed as a formative assessment tool 
with two categories (making connections and taking risks) that incorporated aspects 
of fluency, flexibility, originality, and elaboration from existing research. The mak-
ing connections category is defined as the process of connecting the proving task 
with definitions, theorems, multiple representations, and examples from both the 
current course and possible experiences from previous courses. The taking risks 
category is defined as the process of actively attempting a proof to demonstrate flex-
ibility in using multiple approaches or techniques, posing questions about reasoning 
within the attempts, and evaluating those attempts. The CPR also provides three 
general development levels: beginning, developing, and advancing, each of which 
marks a student’s progress on a given task along a continuum, as our way to com-
municate the possible states of growth.

The CPR was given to the students without the word “creativity” in the title to 
not steer students’ attention to that word but rather used the title “Progress Rubric 
on Proving” to focus on “progress” (see Appendix 1). Students were asked to reflect, 
using the CPR, on their proofs (including all scratch work) on various assignments 
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and exams. In addition, the instructor asked students to use the CPR in class on their 
peer’s presented work to discuss ways in which it demonstrated various aspects of 
the CPR and to engage students to think about how to move their own thinking for-
ward to advancing levels on the rubric categories.

13.4.2 � Participants

Fifteen students out of 17 enrolled students in the course agreed for their submitted 
course work and their utterances from class recordings to be used for the study. We 
conducted one 60- to 90-min audio-video recorded interview with seven partici-
pants who volunteered for these interviews. In this chapter, we present results from 
four participants to demonstrate the uniqueness of each participant’s perspectives 
on mathematics and mathematical creativity, while cross-case analysis resulted in 
common themes on what contributed to the development of their mathematical cre-
ativity, from their perspectives, in this course. All four students were female and 
first-generation students, and Table  13.1 summarizes the four participants’ 
information.

These four participants were selected among seven participants using both con-
venience and maximum variation sampling methods (Patton, 2002). With conve-
nience sampling, we considered the most complete data set from participants to gain 
better insights into their lived experiences in the course. In addition, we examined 
all seven students’ pre- and post-course survey entries, perspectives of mathemati-
cal creativity and progressions, background information (e.g., majors, courses 
taken), and self-identified mathematical ability for maximum variation. With maxi-
mum variation, we do not mean that the other three participants did not have any 
variation in their progression of perspectives; rather, with these selected four stu-
dents, we were able to demonstrate varieties in progressions for all seven students. 
In other words, a maximum variation (heterogeneity) sampling (Patton, 2002) was 
utilized to provide “high-quality, detailed descriptions of each case, which are use-
ful for documenting uniqueness” and document “shared patterns that cut across 
cases” (Patton, 2002, p. 235).

Table 13.1  Four participants’ information

Participants 
(pseudonyms) Ethnicity Major

Math courses concurrently 
enrolled

Alice Latinea Mathematics Number theory
Stephanie White Mathematics Number theory, Calculus 3
Peyton White Economics (math 

minor)
None

Olivia Latinea Biology (math minor) None
aSee https://www.vox.com/the-highlight/2019/10/15/20914347/latin-latina-latino-latinx-
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13.4.3 � Data Collection and Analysis

There were several data sources collected for the study: surveys, audio recordings 
of class sessions, reflection assignments, and one 60- to 90-min, audio-video 
recorded interview with seven students. Our first round of analysis of these data 
started by examining the interview transcripts from all seven students (Cilli-Turner 
et al., 2019, 2020), which addressed the research question: what are tertiary stu-
dents’ perspectives of mathematical creativity?

We follow these results by using a case study with the selected students to further 
explore their experiences throughout the course. To address our research question 
for this study, the following data sources were organized chronologically: open 
questions on pre- and post-course surveys (collected during weeks 1 and 15), reflec-
tion assignments (RA#5 on creativity and mathematical creativity; RA#8 and 
RA#12 on which students discussed their creative moments on exams 2 and 3, 
respectively; and any other available RAs), class discussions on the CPR (weeks 7 
and 9), and the interview at the end of the semester (conducted in weeks 15 and 16).

Students were given pre- and post-course surveys with the same questions. There 
were three open-ended questions where students typed their answers. For example, 
one of the questions was as follows: to be good in math, you need to … because …. 
The other survey questions asked students to rate their perceived abilities in doing 
mathematics, attitudes about mathematics, and agreement with statements related to 
doing mathematics (e.g., doing mathematics involves creativity, taking risks is 
important in doing mathematics). Data from the surveys were included in the data 
analysis to gain insights into participants’ views of mathematics in general.

Each student participated in one 60- to 90-min audio-video recorded interview at 
the end of the semester. Interviews were transcribed in their entirety. At the begin-
ning of the interview, all participants were asked what mathematical creativity 
meant to them with follow-up clarifying questions. We then asked students to 
expand on their RA#5, if they felt creative in the course, and to give a specific 
moment from the course as an example of their mathematical creativity. Similarly, 
they were asked if they thought other students were creative and asked to give exam-
ples. Additional questions were about what students thought contributed to their and 
others’ creativity and if and how they utilized the CPR in their work in this course.

Data analysis methods were chosen to fit the phenomenological study design: 
themes were created to describe each student’s experience throughout the course to 
understand the phenomenon of mathematical creativity and the progression of their 
perspectives of it. Analyses sought “descriptions of what [students] experience and 
how it is that they experience what they experience” (Patton, 2002, p. 107) related 
to mathematical creativity. This follows the theoretical perspective of developmen-
tal creativity; each student’s experiences in the environment (the course) will be 
different and progress based on what they perceive in the environment over time.

The chronologically organized data for each participant was read several times 
prior to the start of the systematic process of coding. In these initial readings, the 
goals were to get a sense of what each participant uttered (as captured in transcripts) 
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or wrote about their beliefs, skills, and perspectives on mathematics, creativity, and 
mathematical creativity by identifying relevant texts (Auerbach & Silverstein, 
2003), which are texts (e.g., a portion of a transcript or written work) that include 
words, sentences, or phrases related to research questions from all data sources. The 
first author turned these relevant texts into narratives using bracketing (Patton, 
2002) to briefly describe the participant’s experience with the phenomenon of math-
ematical creativity at that point in time. After the narratives were created for each 
participant, the relevant texts were coded further into ideas that were repeated by the 
participants at least three or more times, and participants’ own words or phrases 
were used to describe these codes (Auerbach & Silverstein, 2003). For example, 
some repeated ideas were metaphors students used, such as “thinking outside the 
box,” or words, such as “different ways” and “making connection.” These repeated 
ideas were checked with the results of the earlier studies, such as Cilli-Turner et al. 
(2019, 2020), for triangulation purposes (Patton, 2002). Then, we looked for occur-
rences of the repeated ideas for each participant to gain insight into the progression 
of their perspectives on mathematical creativity.

The first author continued by examining the narratives to add more nuances 
related to the participants’ experiences with the repeating ideas. These revised nar-
ratives were re-examined and re-written (process described in van Manen, 1990) to 
capture overarching themes for each participant’s experience. One important aspect 
of our data analysis method was to examine each participant’s perceived develop-
ment of their own mathematical creativity. The mathematical actions (e.g., taking 
risks, posing questions) that participants used when explaining their mathematical 
creativity (e.g., “I made connection to … ”) in RA#8, RA#12, and during the inter-
view provided us additional insights into participants’ operationalization of and, 
thus, their conception of mathematical creativity. In other words, such self-
reflections of ability brought “to the fore [the students’] experiences and percep-
tions” of mathematical creativity “from their own perspectives” (Lester, 1999, p. 1).

Analysis of pre- and post-course survey responses provided corroborating evi-
dence of the progression of participants’ perspectives. Even though open-ended sur-
vey questions were not asking about mathematical creativity, participants’ responses 
captured their initial and end-of-the-course views related to mathematics, because 
“it has long been accepted that we understand new phenomena [of mathematical 
creativity] in terms of the understanding we already possess” (Spangler & Williams, 
2019, p. 4).

13.5 � Results

We first present each participant’s perspectives of mathematical creativity and their 
progression of them through our developed narratives. Then, the results of the cross-
case analysis are presented to share the uniqueness and similarities of perspectives 
and progressions of the four participants’ perspectives. We start with Alice’s narra-
tive and then present condensed versions (due to space limitations) of Stephanie, 
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Olivia, and Peyton’s narratives. Alice’s narrative was provided in a longer version to 
exemplify the chronological data analysis process only. In the condensed versions, 
we provide participants’ initial perspectives captured in RA#5 and address our 
research question on the progression of perspectives, by making references to the 
repeated ideas.

13.5.1 � Progression of Alice’s Perspective

Alice initially described her view of being creative in mathematics by referring to 
“finding different and innovative ways to come to a solution or a number of solu-
tions” (RA#5). At this point, she associated creativity with the idea of “memoriza-
tion” in mathematics: “It may also help to use creativity to help remember theorem[s] 
or formulas such as creating a song to remember the quadratic formula.” This mem-
orization idea aligns with her rating of the statement “the best way to do well in 
math is to memorize all the formulas” on the pre-course survey. Alice was the only 
student (among the seven) who slightly agreed (rated 4 out of 6 on the agreement 
scale) with this statement, whereas other participants disagreed with this sentence in 
varying degrees (i.e., strongly to slightly disagree).

In this initial perspective of mathematical creativity, Alice also mentioned that 
being creative in mathematics helps to understand concepts “easier,” which, for her, 
seemed to be about creating ways to memorize formulas or methods of solution. For 
example, in week 7, during a small group discussion in which students were asked 
to comment on other students’ RA #5 entries (which were presented without any 
student name), Alice shared her view of being mathematically creative as “not nec-
essarily like making it colorful or pretty, just being able to find a different way to 
approach it or maybe a shorter way or a simpler way” (classroom transcript, week 
7). In this discussion, she said, “That’s what tripped me up when I started to get to 
college cause it’s like ‘Oh yeah! Here are all the ways you can do it!’ and I’m like, 
‘there are that many ways? Really!?’” Her remarks made her group members laugh, 
and one of them said, “Let’s just stick with one!” Alice continued, “One! I can 
memorize one. I don’t know if I can memorize 5.” It seems that the idea of having 
multiple ways to solve problems was a new and challenging experience for her in 
college mathematics courses, and she related this experience to mathematical cre-
ativity at this point in the semester.

After the CPR was introduced to the students, Alice seemed to relate her own 
proof construction process to various subcategories of making connections category 
in the CPR (repeated idea). On both exam 2 and exam 3 reflection assignments 
(RA#8 and RA#12, respectively), for example, she mentioned trying to connect a 
theorem to the proof statement. “I was being creative when I tried to connect a pre-
vious theorem on the test to help prove another theorem on the test” (RA#8). As the 
repeated idea of making connections was observed in data after the CPR was intro-
duced, we claim that it became part of Alice’s perspective of mathematical creativ-
ity. It also seems that Alice started to incorporate the CPR language to examine her 
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own work and found this practice (making connections) useful for her to better 
understand the course.

The end-of-the-semester interview provides additional evidence of the progres-
sion of Alice’s perspective from “different and innovative ways” to making connec-
tions. We observed other aspects of her perspective that were not repeated or uttered 
by Alice prior to this interview. Alice described creativity in mathematics as:

… coming up with like new and different techniques to be able to solve um problems… to 
be able to prove theorems, specifically for [this course]. Um, it kind of means just, kind of 
using like a trick um something that’s not really common, or maybe like a different repre-
sentation to show the same thing that no one has really used (interview, week 16).

She, yet again, repeated the finding different ways (“different techniques”) idea but 
included using tricks or different representations in her description. For Alice, 
“using a trick” mathematical action (process) was related to making connections 
between theorems and the proof statement, which helped her to understand a proof 
more easily.

I guess finding kind of like a trick or … being able to find the connections between theo-
rems or being able to use one theorem to solve another or using like a lemma to solve part 
of a theorem, just to make it a lot more … easier so the theorem’s not … a page and a half 
long … [I]n any case, just having, being able to find … a technique that works that doesn’t 
necessarily make everything longer. It kind of just makes it more … easier to understand too 
(interview, week 16).

As Alice’s perspective progressed to incorporate making connections, her view of 
the function of different ways or approaches moved away from memorization of 
formulas for understanding. For instance, Alice strongly disagreed with the post-
course survey statement, “the best way to do well in math is to memorize all the 
formulas” with which she was in slight agreement at the beginning of the course.

In addition, Alice “tried to feel” creative, and she did feel creative through her 
attempts to make connections, even though she identified herself as “struggling a 
little bit trying to make connections between um theorems, um and being able to 
like create lemmas to be able to uh fit into proofs.” However, when she indeed made 
connections, she perceived this part of her understanding, “when I make a connec-
tion I’m like ‘Yes! Like, I understand.’ Like, it makes me really happy when I’m 
able to make a connection” (interview, week 16). It seems that making connections 
not only helped her feel creative but also impacted her emotion (“makes me really 
happy”).

Alice’s perspective of mathematical creativity is centered around the idea of find-
ing different solutions. Throughout the course, Alice incorporated strategies (e.g., 
using different examples, representations, etc.) to find these different solutions. She 
believed that her mathematical creativity ability developed when utilizing these 
strategies. She not only mentioned making connection repeatedly but also internal-
ized these mathematical actions for her own mathematical creativity. For this rea-
son, we claim Alice’s perspective of mathematical creativity progressed to include 
making connections. It seems that at the end of the semester, Alice recognized the 
ways in which making connections provided her the tools to improve her own math-
ematical creativity and to understand the concepts “better” and “easier” that were 
not (just) memorization of formulas.
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13.5.2 � Progression of Stephanie’s Perspective

Stephanie’s perspective of mathematical creativity centers around the metaphor of 
“taking the road less traveled” (repeated idea) that makes the most sense to the indi-
vidual. This perspective progressed throughout the course to recognize the interplay 
between an individual’s mathematical creativity and collective mathematical cre-
ativity. Stephanie initially explained her perspective of mathematical creativity in 
terms of using “imagination to innovate something original” (RA#5) in an arts set-
ting. However, in this reflection, she acknowledged that creativity can be found in 
other contexts and real-life situations. She claimed that mathematics professors 
“tend to teach the road most traveled to get to the solution, but more times than not, 
there are other ways to get to the correct solution,” (RA#5) and, for her, finding 
these other ways to get answers was being mathematically creative.

Stephanie referred to a person’s creativity relating to their own process of finding 
different solutions (repeated idea) and taking paths that were less traveled (repeated 
idea) again after week 5. However, when these ideas were repeated, she included the 
purpose of taking such different paths as personal sense-making and understanding 
of mathematics. Furthermore, for her, determining the less traveled path required 
her to see other’s paths. For example, when students were asked to reflect on their 
creative moments on exam 3 (week 12), Stephanie wrote:

It is hard to determine if there were any “creative moments,” as for me, creativity is the path 
less traveled. I do not know how my classmates proved any of them, and so, I don’t know if 
any of my proofs were creative.

During the interview, Stephanie first described what it means to be mathematically 
creative as “the same as being creative in anything else. It’s taking the road less trav-
eled [repeated idea]. It’s not just doing what the herd is doing but finding your own 
way to get to where you need to be.” She again emphasized the importance of sense-
making and understanding during the process of finding solutions, “It’s finding the 
solution but doing it in a way that makes the most sense to you.”

As she identified her and her classmates’ creativity to be developed throughout 
the course, she mentioned that seeing others’ works in class was an important aspect 
of the course that contributed to these developments. When she elaborated on this 
idea, she stated that for her, “creativity is both individual and collective … [another 
student’s] creative moment, I could then use to expand on and do something a little 
different to have my own creative moment.” She believed that all of these creative 
moments of students were “not the road most traveled,” and she viewed these 
moments to be an integral part of the “road we are traveling together, and yet each 
time we’re changing it to be what we need it to be, expanding on it and having our 
own creative moments, based on a creative moment somebody else had before us.”

For her individual creativity, she focused on the subcategory of tricks and tools 
of the CPR “to create something new … to have that one thing that’s like ‘Wow, 
that’s awesome!’” She also wanted to do this for the collective creativity of the 
class; she wanted to “bring forth a new tool that we could all use as a class.” She 
reflected in the interview that she “started to look at creativity a little bit different 
through the course” as she noticed many different “paths” the other students were 
taking both in their choice of proof technique and using conceptually different ideas.
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Even though Stephanie repeatedly referred to the metaphor of “taking the road 
less traveled” to describe her perspective of mathematical creativity, her desire to 
compare her “road” to others’ was not only to assess her own creativity but also for 
her to develop her creativity through other’s creative moments. She believed that 
finding tools and tricks and sharing these with others, persistence, and being flexible 
to try different things were important for all of them to develop their individual and 
collective creativity.

13.5.3 � Progression of Peyton’s Perspective

Peyton’s perspective on mathematical creativity progressed throughout the semester 
from believing that “there’s no need for creativity in mathematics” to recognizing 
that mathematical creativity is within the process of producing proofs. Peyton 
described creativity as to “be able to come up with original and innovative ideas” 
(repeated idea) initially and identified herself as not creative but wished to be 
(RA#5). She mentioned in RA#5 that prior to the introduction to this proofs course, 
she was on the “spectrum that generally believes that there’s no need for creativity 
in mathematics.” She enjoyed mathematics initially because she could get the cor-
rect answer if she understood the material. This course had proven her initial ideas 
to be untrue and “every time I see someone else’s answer to a proof, I am amazed at 
how he or she came to that answer … Overall, I realized math has a lot of room for 
creativity” (RA#5).

Peyton’s perspectives on creativity started to evolve at the very beginning of the 
course (as evidenced in RA#5), and she described her view of creativity in the inter-
view (week 16) through a process that involves reflection in thinking, “[b]ecause 
every step requires more thinking, and every step requires you to figure out your 
next step, and so that’s where the creativity comes in.” We notice an additional pro-
gression of Peyton’s perspective on mathematical creativity prior to the end-of-the-
semester interview. For example, when she reflected on a quote given for RA#8, she 
shared her noticing as follows:

… that creativity does not necessarily need to be a “spontaneous” and brand new discovery, 
because creativity can be presented in many ways. This is especially significant for me 
because I generally assume that creativity does in fact require spontaneous and new discov-
eries…But reading [the] quote emphasizes the fault in that logic. True creativity lies in a 
person’s ability to use resources in ways to improve his or her own thought process.

Even though Peyton did not perceive herself as mathematically creative throughout 
the semester, she was able to recognize other students’ mathematical creativity and 
hence thought she probably had mathematically creative moments as well. She 
believed that her mathematical creativity developed in this course, in particular “it 
helped me to realize or recognize that there does not always have to be one set pro-
cess in math” (interview, week 16). Overall, Peyton’s perspective of mathematical 
creativity progressed from the ability “to come up with original and innovative 
ideas” (RA#5) spontaneously to recognizing that it is a process where “true creativ-
ity lies in a person’s ability to use resources in ways to improve on his or her own 
thought process” (interview, week 16).
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13.5.4 � Progression of Olivia’s Perspective

Olivia’s perspective of mathematical creativity centers around the metaphor of 
“thinking outside the box,” which she initially associated with “trying something 
new that is often different from others” (repeated idea of uniqueness) (RA#5). 
Throughout the semester, her perspective evolved to include other aspects of math-
ematical creativity related to the mathematical actions described in the categories of 
the CPR. She believed that creativity was contagious, and the course discussions of 
their (students’) proofs, the thinking processes behind such proofs, and the CPR 
contributed to her perception of creativity and the development of her own mathe-
matical creativity. At the end of the semester, she described mathematical creativity 
as “really thinking outside of the box [repeated idea] and being able to be comfort-
able or at least willing to take risks and not just follow a standard format … but 
being willing to be flexible and try different approaches.”

She initially thought of creativity in art-related contexts and believed she did not 
have any of those qualities and hence never thought of herself as creative. However, 
in this course, she noticed that “there are mathematical ways of being creative, so I 
was able to get a better understanding as the semester went on of what that [creativ-
ity] meant in a different context” such as mathematics and proving. She noticed that 
students in the course developed their mathematical creativity, including her. She 
mentioned that early in the semester, they (students) were “kind of not really feeling 
confident in our abilities to be creative”; however, later in the semester, “it was 
really interesting to see students that were quiet, reserved early on, like show their 
work later in the semester and they had done something like totally cool and 
amazing.”

Olivia mentioned many aspects of the course contributing to her and her class-
mates’ development of mathematical creativity. For example, the IBL structure of 
the course was an important aspect because “you really try to make connections, 
and it forces you to get creative because you have, um, very little like understanding 
of the right way to do it, so it kind of throws that out of a student’s mind.” She 
viewed not having pre-exposure to the “right way” allowed them to be “free,” and 
working with other students helped to develop different methods to approach prob-
lems. She said that these course activities aligned with her idea that “creativity can 
be contagious.” Active class engagement in which students share their work and 
discuss their mathematical thinking was a way that Olivia thought the creativity 
spread out among students and developed their mathematical creativity.

Olivia’s beliefs about mathematics in general also showed some changes from 
the pre- to the post-course survey. On the pre-course survey, she stated that to be 
good in mathematics, one needs to “think outside the box [repeated idea] and be 
comfortable with abstract thinking because math is not one dimensional.” To her, 
thinking mathematically meant “to think critically and use what I know and apply it 
to any given situation.” On the post-course survey, Olivia explained being good in 
mathematics through flexibility, persistence, creativity, and the process of evalua-
tion. These shifts from the pre- to the post-course survey served as corroborating 
evidence for the progression of Olivia’s perspective of mathematical creativity.
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Overall, Olivia internalized several mathematical actions from the CPR to help 
her “to think outside the box” and be mathematically creative: willing to take risks, 
being flexible, making connections, and posing questions to further her thinking.

13.6 � Uniqueness and Similarities in Progressions 
Across Participants

All four participants’ progressions of their perspectives of mathematical creativity 
had some unique aspects from their experiences in the course. Alice’s perspective of 
mathematical creativity was centered around the idea of finding new, different tech-
niques and solutions. Throughout the course, Alice incorporated strategies (e.g., 
using different examples, representations, etc.) to find these different solutions. She 
believed that her mathematical creativity developed utilizing these strategies, which 
was unique in her experience. For Alice, creativity is “being able to find the connec-
tions” to make mathematics easier to understand.

Stephanie’s perspective of mathematical creativity was centered around the met-
aphor of “taking the road less traveled” and progressed to include the importance of 
others’ contributions to have collective creativity. Stephanie identified the subcate-
gory of tricks and tools of the CPR as an important strategy to develop individual 
and collective creativity, which was unique to her experience. For Stephanie, cre-
ativity is “taking the road less traveled” individually and contributes to the “the road 
we are traveling together” to create collective creativity.

Peyton’s perspective of mathematical creativity progressed from believing that 
“there is no need for creativity in mathematics” to viewing it as the ability “to come 
up with original and innovative ideas” spontaneously, to recognizing it as a process 
where “true creativity lies in a person’s ability to use resources in ways to improve 
on his or her own thought process.” Peyton mentioned many aspects of the course 
contributing to her recognition of mathematical creativity and the development of 
mathematical creativity of others. Peyton’s experience was unique in the way that 
she started to recognize many aspects of the course and continuously reflect on 
these experiences to integrate them into her perspective. For Peyton, creativity is 
finding your own ways and about the process of “getting from the beginning to the 
end” within the idea production.

Olivia’s perspective of mathematical creativity centered around the metaphor of 
“thinking outside the box” and identified many strategies such as taking risks, being 
flexible, and posing questions to develop mathematical creativity. As she believed 
that creativity was contagious, posing questions to understand her and others’ think-
ing was important to her. She wrote her own questions on her scratch paper, which 
was a new practice for her. In addition, she repeatedly talked about flexibility in 
terms of working on and finding many different solutions, which was another unique 
aspect. For Olivia, creativity is “contagious” and requires one to be “comfortable or 
at least willing to take risks.”
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There were similar repeated ideas in all four students’ experiences with the phe-
nomenon of mathematical creativity. Some of these repeated ideas were about 
aspects that contributed to the development of their mathematical creativity: course 
structure (e.g., IBL format) and the use of the CPR, and the instructor’s actions.

The IBL format of the course was new to all four participants, and in this course, 
students actively engaged in constructing their own proofs and sharing their math-
ematical thinking, processes, and proofs with each other. All students mentioned in 
this course structure were not pre-exposed to the “right way” or “one way” of prov-
ing, and they had to do what they thought “made sense to them” or “was going to 
work.” They had to “swim or sink,” and they were all in this together, so “you start 
to work together, and you start to build relationships with [classmates], and you 
work off of each other’s creativity.” Thus, this format helped students develop not 
only their proving skills but also their mathematical creativity.

Examining each other’s proofs was helpful to all four participants for different 
reasons. Alice valued this practice because it helped her to reflect on her own pro-
cess to make sure she understands the mathematical concepts. She appreciated the 
use of the CPR in this process as it helped to notice the use of strategies mentioned 
in the CPR. For Stephanie, examining others’ proofs was important to see if she 
“took the road less traveled” and to learn what other tools and tricks that she could 
use in her future proof work. However, she felt uncomfortable to use the CPR as she 
felt like she was being “judgy” (classroom transcript, week 9). Olivia, and other 
students (including Alice), pointed out that the purpose of using the CPR was to 
understand each other’s thinking processes. Examining proofs “opened” Peyton’s 
“eyes to realize that there really are so many different ways to go about doing things, 
especially in math,” and for Olivia, this was the essence of mathematical creativity 
and helped her to develop her own.

All four students noticed certain instructor actions that provided them opportu-
nity to develop their mathematical creativity. Peyton considered the instructor’s 
guidance and determination not to interfere with their learning process to be impor-
tant. Olivia noticed that the instructor created a “safe,” “free-spirited” environment 
that allowed them to take risks. She noticed even small actions by the instructor, 
such as sitting down at students’ table to join the conversation, which helped create 
this environment and facilitated the message “you know you guys kind of run the 
show type of deal” (interview week 16). Stephanie thought the instructor’s persis-
tence in not giving out answers or confirming correctness was an important action 
for them to develop their mathematical creativity collectively. She acknowledged 
the instructor’s intentions for a “swim or sink” approach as pushing them to focus 
on processes by guiding them through questions.

13.7 � Conclusion

The purpose of this chapter was to present students’ perspectives of mathematical 
creativity and how such perspectives develop in a course environment. The develop-
mental orientation of creativity in this phenomenological study provided us the 
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opportunity to hear student voices and notice the ways in which they experienced 
the phenomenon of mathematical creativity in the classroom environment that was 
carefully designed by the instructor who made explicit choices. The IBL implemen-
tation coupled with the use of CPR provided students opportunities to experience 
multiple ways of thinking, examining proof processes, and developing individual 
strategies. They internalized these experiences as part of mathematical creativity 
and utilized them to enhance their own mathematical creativity.

The results of this study contribute to our existing knowledge of creativity in 
several ways. The instructional designs (e.g., the course structure, teaching actions) 
can nurture students’ perceived self-abilities of mathematical creativity and shape 
(progress) their perspectives of mathematical creativity. The CPR provides strate-
gies for students to develop their own mathematical creativity in unique ways and 
provides additional tools to understand mathematics. The instructors’ actions not 
only motivate students to form a classroom learning community but also develop 
collective creativity. All these carefully engineered instructional efforts made cre-
ativity contagious.

The research design allowed us to break free from normative assumptions of 
mathematical creativity. We (the researcher and the instructor) purposefully did not 
evaluate students’ mathematical creativity ability but rather attended to participants’ 
voices to understand the formation of their perspectives. As we believe both the 
ability and perspectives of mathematical creativity are dynamic and shape continu-
ously, our results only present the progressions of participants’ perspectives at the 
time of the study. In the opening anecdotal quote, we have a glimpse of Peyton’s 
perspective a year after the study. In this research study design, we also incorporated 
students’ views of mathematics (through examining their pre- and post-course sur-
vey entries) as these perspectives intertwine with views of mathematical creativity.

In our current studies, we are exploring some of these experiences further. For 
example, we have been expanding on explicit instructors’ actions to enhance math-
ematical creativity in Calculus courses (Tang et  al., 2020). As discussed in this 
chapter, we noticed that students utilized the CPR not only to develop their mathe-
matical creativity but also to better understand mathematics. We are exploring this 
connection with Calculus students’ lived experiences (Cilli-Turner et  al., 
forthcoming).

We also observed that many participants of this study connected their experi-
ences with emotions that they felt in the course with the phenomenon of mathemati-
cal creativity (e.g., Alice’s “makes me really happy”, Stephanie’s excitement 
(“Wow!”)). This line of observations led us to focus on affective domains in math-
ematical creativity in our current work as well (Cilli-Turner et al., forthcoming).

In closing, we invite both researchers and instructors to design environments for 
students to notice their mathematical creativity in their own way and spread it to 
others. The developmental perspective of creativity provides us a roadmap for the 
“road we are traveling together” to understand the research construct of mathemati-
cal creativity “collectively” (Stephanie, week 16).
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Chapter 14
The Role of Creativity in Teaching 
Mathematics Online

Ceire Monahan and Mika Munakata

14.1 � Introduction

In this chapter, we report on a study that explored creativity in the context of the 
teaching and learning of mathematics in an online setting. Seven instructors of a 
general education mathematics course were followed during the fall 2020 semester 
to determine how the transition to an online platform served as a “useful” constraint 
as they implemented lessons on creative thinking in mathematics. We outline our 
motivation for the study, provide the particular context in which it took place, report 
on our findings, and provide implications for future research and practice.

There were two main catalysts for our study: our existing projects on creativity 
in mathematics and the pandemic. We were part of a research team on a National 
Science Foundation-funded project, “Engaged Learning through Creativity in 
Mathematics and Science” (CMS), that ran from September 2016 to August 2021. 
The main objective of the CMS project was to develop, implement, and disseminate 
modules that encouraged students to think creatively as they explored mathematics.
The CMS project was motivated by a survey that showed that undergraduate science 
and mathematics students thought of disciplines related to the arts as creative but 
their own disciplines as lacking in creativity (Munakata & Vaidya, 2013). This result 
was in keeping with other studies that have shown that creativity and the sciences 
(including mathematics) are rarely recognized together (Kaufman & Baer, 2004). 
This, along with other works (Boaler, 2016; Neumann, 2007), inspired us to con-
sider how we can convince students of the intertwined nature of mathematics and 
creativity. Over its five-year duration, the CMS project involved a professional 
development program for teachers (Monahan, 2020), collaborations with the cam-
pus performing arts center (Monahan et al., 2020) and a community college, and a 
permanent change to our undergraduate course offerings.

C. Monahan (*) · M. Munakata 
Montclair State University, Montclair, NJ, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. A. Chamberlin et al. (eds.), Mathematical Creativity, Research in 
Mathematics Education, https://doi.org/10.1007/978-3-031-14474-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14474-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-14474-5_14


218

As part of the CMS project, we redesigned a course formerly called Contemporary 
Applied Mathematics for Everyone (MATH 106), resulting in the name being offi-
cially changed to Creative Thinking through Mathematics. The course is a regular 
offering for non-science and non-mathematics majors at our 4-year university. 
Whereas the course previously focused on mathematical applications in the social 
sciences (e.g., voting theory, apportionment) and daily matters (e.g., interest rates, 
scheduling, bin packing), we revised it to reflect a way of thinking rather than align-
ing mathematics with certain contexts. Over the course of three  years, the two 
authors and a colleague co-designed, taught, revised, and retaught a set of modules 
on creative thinking in mathematics (Munakata et  al., 2021). In redesigning the 
course, we relied on research on creativity (e.g., Guilford, 1968; Rhodes, 1961; 
Sternberg, 2006) and mathematical creativity (Chamberlin & Moon, 2005; DeHaan, 
2009; Shriki, 2010). The redesigned course is the context for this study.The shift to 
online teaching due to the pandemic served as the other context for this study. 
Although the shift to online teaching in Spring 2020 was sudden and unexpected, by 
Fall 2020,  the instructors had had time to reflect and plan for more meaningful 
online interactions with their students. We were interested in determining the ways 
in which the added constraint of online teaching encouraged instructors to think 
more deeply about what it means to teach creatively, given that MATH 106 was 
already focused on teaching creatively and encouraging students to be creative and 
also because it was not initially designed for an online setting. Furthermore, we 
sought to determine the ways in which our modules on creative thinking were ame-
nable to an online setting. Specifically, our research questions were as follows:

	1.	 In what ways does the transition from in-person to online teaching and learning 
encourage creativity?

	2.	 What features of a course focused on creativity in mathematics are amenable to 
this shift?

14.2 � Related Literature

Although creativity is a topic of interest in many disciplines, there is no agreed-
upon definition for the term (Cropley, 2000). While some researchers have identi-
fied personal characteristics and thinking styles of someone considered creative 
(Neumann, 2007; Sternberg, 2006), others have explored the object of creativity 
(Rhodes, 1961; Runco, 2004). Specifically, Rhodes (1961) identified four categories 
of creativity, referred to as the “4Ps”: product, person, process, and press. Although 
the original 4Ps include press as the final category, we have renamed that construct 
place, for the purposes of this study. Under these categories, product is defined as 
what is created, person focuses on specific attributes of a creative person, process is 
the thinking behind a creative endeavor, and place is the environment in which cre-
ativity occurs. Researchers have explored creativity in mathematics since the late 
1940s and argued that mathematics is creative when people demonstrate its novel 
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and useful nature by combining familiar ideas in new ways (Poincaré, 1908/1952). 
Other researchers have identified creativity in mathematics as one’s ability to dem-
onstrate non-algorithmic decision-making (Ervynck, 1991) and generate novel 
solutions to problems (Chamberlin & Moon, 2005; DeHaan, 2009; Shriki, 2010). 
Similarly, Boaler (2016) identified mathematical creativity as a flexible mental con-
struct and highlighted the importance of including creativity in the teaching and 
learning of mathematics. It is important to note that researchers have distinguished 
teaching creatively from teaching for creativity (Bolden et al., 2010; Department for 
Educational and Employment, 1999). Teaching creatively includes instances where 
teachers demonstrate creativity to make learning interesting and meaningful for stu-
dents, while teaching for creativity identifies ways in which teachers can encourage 
students to be creative learners. The two perspectives are both useful in mathematics 
education and are both relevant to our study. New situations, in our case a shift to 
online teaching and learning, can provide constraints that encourage teacher and 
student creativity. A constraint is a limitation or restriction, which some researchers 
argue encourages and promotes creativity (Stokes, 2001; Stokes & Fisher, 2005). 
Several studies have described how constraints (e.g., lack of resources, competitors, 
social demands) promote creativity in real-world settings (Peterson et al., 2013), 
among artists (Dahl & Moreau, 2007; Stokes, 2001), and in linguistics (Costello & 
Keane, 2000). One’s ability to work within these constraints influences how one 
engages in the problem-solving process (Peterson et  al., 2013). However, little 
research has focused on how constraints might promote creativity in teaching and 
learning mathematics, particularly in an online setting. Given that constraints are 
inevitable, Peterson et  al. (2013) identified the need to support people to work 
within constraints. This literature framed our research questions and data analysis to 
better understand how a shift from in-person to online mathematics instruction pro-
moted teacher and student creativity.

14.3 � Methods

This study involved seven of nine instructors of MATH 106 in Fall 2020; in the first 
semester, the course ran under its new name and focus. Whereas the transition to 
online in Spring 2020 occurred without warning, all instructors were aware that 
courses would be predominantly online when they signed up to teach the course. Of 
the eight sections reported in this study, two were held in hybrid mode where stu-
dents had the option of attending class in person.

While there is some flexibility on the part of the instructor to choose the particu-
lar content focus, the official course catalog includes the following description:

Explorations of mathematics that foster creative thinking and interdisciplinary approaches. 
Topics include fractals, symmetry, recreational mathematics, projective geometry, probabil-
ity, statistics, and mathematics of arts and design. Students are encouraged to broaden their 
understanding of the meaning and utility of mathematical and creative thinking.
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MATH 106 is a coordinated course. It is typically taught by adjunct instructors, with 
many having taught it for multiple semesters. Instructor workshops and information 
sessions are held prior to and during each semester. During these workshops, 
instructors review course objectives, discuss creativity in mathematics, and share 
ideas for lessons. Instructors also are a part of an online community page, where 
they are encouraged to share lessons and ideas.

14.4 � Data Collection and Analysis

14.4.1 � Interviews

The seven instructors were interviewed at the end of the semester by one of the 
authors. These interviews took place throughout the month of December. We used a 
semi-structured interview protocol (Appendix 14.A) to guide the interviews. The 
interviews were conducted via Zoom and ranged from 38 to 70 minutes. Each ses-
sion was transcribed verbatim, and the entirety of these transcripts was entered into 
an Excel spreadsheet, organized by utterances. Utterances, which became our units 
of analysis, were deemed as passages in the transcripts that were separated by 
change of topic or idea. After partitioning the transcript in this way, we identified 
passages that were related to creativity in teaching in an online setting, creativity of 
students or instructors, and any products that seemed creative. Once the units of 
analysis were identified, we independently read each highlighted utterance and gen-
erated possible codes. Because we were using the 4Ps framework (product, person, 
process, place) to identify the object of creativity, those became our level 1 codes 
(see Table 14.1). Level 2 and 3 codes (see Table 14.2) were generated after careful 
review and discussions of the transcripts.

Once the codebook was established through this iterative process, we indepen-
dently coded the 287 highlighted passages using our agreed-upon codes. Our inter-
rater reliability for each code and sub-code was 90% for level 1, 88% for level 2, and 
75% for level 3. We suspect that the reliability measures were high because of the 
extent of our discussion before we began coding. The lower levels of agreement for 
level 2 (when compared to level 1) were expected, since a disagreement in the level 
1 code assignment necessarily led to different level 2 codes. The same explanation 

Table 14.1  Level 1 codes and descriptions

Level 1 code Code description

Person Describes oneself or student as featuring a trait of creativity
Focus on self or others with no mention of the process

Process Describes a situation that called for creativity
Product Describes something that was produced—lesson plan, students’ written work, etc.
Place Mentions setting as the focal point leading to a constraint or affordance
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Table 14.2  Frequency of codes from interview transcripts

Level 1 code Level 2 code Level 3 code

Person (50) Instructor (34)
Student (13)
Both (3)

Flexibility (23)
Connections (8)
Open-mindedness (6)
Adaptability (2)
Enthusiastic (2)
Rigidity (1)
Resourceful (1)

Process (95) Instructor (78)
Student (12)
Both (2)

Planning (24)
Implementing (23)
Engaging (9)
Grading (8)
Assessing (7)
Completing assignments (6)
Communicating (3)
Collaborating (2)

Product (16) Instructor (9)
Student (7)

Lesson (7)
Homework (5)
Assessment (2)
In class (1)

Place (140) Online (124)
In person (7)
Course (6)

Online, constraint (71)
Online, affordance (52)
In person, constraint (1)
In person, affordance (6)

applies to the decreasing levels of agreement on level 3 codes when compared to 
level 2 codes. All disagreements were resolved through discussion.

To determine overall trends in the interview data, we conducted a frequency 
count of all codes. Level 1 codes (person, process, product, or place) helped us 
describe the ways in which creativity played a role in the transition to online teach-
ing. Level 2 codes identified who was being creative (student, teacher, or both), and 
Level 3 codes illuminated the ways in which creativity was called upon.

14.4.2 � Surveys

In addition to the interviews, we collected data through online surveys before and 
after the semester (the text from the pre- and post-surveys is provided in Appendices 
14.B and 14.C). Because the completion rate of these surveys varied, we consider 
these data secondary and supplementary to our interview data. Of the seven instruc-
tors, three completed both pre- and post-semester surveys (Michael, Shannon, and 
Stephanie), one completed the pre-semester survey only (Charles), and the other 
three only completed the post-semester survey (Caitlin, Shonda, and James). All 
names were converted to first name pseudonyms.
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The survey responses were converted into an Excel sheet, and relevant passages 
were highlighted. As with the interview data, we highlighted passages that men-
tioned or alluded to the role of creativity in the transition to online teaching. The 
responses to the surveys are presented in this paper only when they exemplify, 
enhance, or clarify something that was said in the interviews by the same instructor.

14.5 � Findings

Our findings suggest that constraints led both instructors and students to be creative 
in the implementation and completion of assignments. Instructors noted affordances 
of the online learning environment and how this transition redefined what it means 
to teach and learn mathematics.

Table 14.2 shows the frequency of each code. Of the level 1 codes, place was the 
most frequent. Of the remaining level 1 codes, the most frequently mentioned code 
was process, followed by person and product. When combined, it is clear that the 
interviewees most often recalled instances where they (the instructor) were creative, 
rather than situations where the students were asked to be. Of course, this may be an 
outcome of the interviewee’s perspective and the nature of the questions being 
asked of the interviewees.

The level 2 codes were related to the actor of focus (when it was a person, pro-
cess, or product) or the setting (when referring to place). For example, for product 
and process, either the instructor or the student (and in some cases both) was the 
actor. Similarly, place—online, in person, or the course in general—indicated the 
setting where creativity took place. The level 3 codes identified what was creative 
(e.g., flexibility, assessment, planning). Flexibility was the most frequent Level 
3 code. This personal characteristic played a key role in the planning and imple-
menting of the lessons as the online environment was at times unpredictable. 
Instructors spoke often of the constraints related to online teaching and learning, 
although they also described the affordances that online teaching supported.

With this understanding of the overall trends in the data, we analyzed the utter-
ances that accompanied the quantitative data to better understand participants’ 
experience transitioning to an online-teaching environment. The following are the 
findings based on this qualitative analysis, organized by the themes we identified.

14.6 � How Traits of Creativity Were Called Upon 
in the Transition

Sternberg and Williams (2001) proposed six traits that help teachers encourage stu-
dents’ creativity. These include the ability to (a) model creativity, (b) repeatedly 
encourage idea generation, (c) cross-fertilize ideas, (d) build self-efficacy, (e) 
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question assumptions, and (f) imagine other viewpoints. These traits came into play 
as teachers thought of how they could encourage creativity in mathematics in an 
online setting.

There was consensus that instructors were called on to be creative throughout the 
transition. As Shannon put it in her survey, “We need to be creative in order to learn 
how to best teach online.” Many instructors also mentioned their ability to be flexi-
ble. For James, previous life changes gave him the confidence to be flexible under 
these circumstances: “I don’t know explicitly but it kind of drove home that if I can 
bounce back and work through all of that, I can handle having to switch a course 
online” (Interview, December 2020). Michael relished the opportunity to be cre-
ative: “So, being able to go out and actually find content that’s relevant and reflects 
the topics from our course…I guess that entire process…I could consider creative” 
(Interview, December 2020). Similarly, Shannon described herself as liking change, 
and this allowed her to be flexible and creative when things did not go as planned in 
the online environment.

For some, the transition to the online platform gave them the opportunity to ques-
tion their assumptions about teaching. In the excerpt below, Michael recalls how he 
changed his instructional mode partway through the semester after viewing videos 
of previous classes:

I felt [it] was very monologue-esque and…I don’t want it to feel like that…like, you know, 
a Calc IV class where just the professor [is] doing whatever and people are taking notes and 
then who knows what’s going on? So, I think that allowed me to re-edit the lessons in that 
way because the medium of the course, the online class itself. (Interview, December 2020)

In this case, Michael was able to use the recordings as a tool to be a reflective prac-
titioner. By viewing the videos of his own classes, he was able to recalibrate his 
instruction. For example, he looked for applets and interactive platforms that would 
allow students to explore: “I’d send a link out and I go, ‘Play with this. See what 
happens’” (Interview, December 2020). His use of the word “play” in this excerpt 
exemplifies the importance of play in both mathematics and creativity.

Students were also called on to be creative as learners. Instructors recounted how 
students had to be adaptable and think in ways that are not always asked of them 
during in-person mathematics classes. Resourcefulness was another trait of creativ-
ity that students exemplified. Caitlin noted that students “were more resourceful and 
sought out references to other things more by doing it virtually and turning in a 
virtual product…having the access to being on a computer, I think, was helpful in 
them pulling on meaningful resources” (Interview, December 2020). In addition to 
finding resources on their own, students needed to be creative in thinking about how 
to present their work, much in the same way that instructors were. For instance, 
James reflected that students had to be creative in the presentation of their work or 
answering questions online:

Particularly with drawing [responses] because like they could have a picture in their head, 
but then they have to figure out exactly how they’re going to get it on Zoom with a mouse. 
Or, how they’re going to get it in the notebook to like maybe put up to the camera for me or 
for the rest of the students. (Interview, December 2020)
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14.7 � Constraints Leading to Creativity

Before the semester, some instructors were unsure of how they would transfer in-
person activities to online. For example, Charles realized that the course “might 
become limited to what can be done with household resources” (pre-survey). The 
acknowledgment that there would be limitations—but that it wouldn’t be impossi-
ble—led Charles to be creative in how he presented the material. When asked to 
describe an especially creative lesson, Charles recounted how he demonstrated the 
Pythagorean theorem using Cheez-It crackers. Similarly, instructors asked students 
to bring household materials to class, such as color pens, coins, and strips of paper. 
Caitlin noted that she tried to make the activity similar to “what we would be doing 
in person without me being able to provide the counting chips or the cubes or any-
thing else” (Interview, December 2020). The constraint of materials led to creativity 
as instructors and students found ways to engage in similar activities in an online 
setting.

These adjustments are in contrast to some instructors who abandoned lessons 
that they thought impossible in an online setting. Michael lamented that “lesson 
plans that involve physical manipulatives such as paper, scissors, rulers, blocks, 
Legos, beach balls cannot be readily made available to students who do not wish to 
come to campus” (post-survey). This statement implies that Michael replaced les-
sons that required manipulatives with ones that didn’t require materials. As another 
example, James decided not to implement a module on non-Euclidean geometry 
that required students to find the distance between two points on campus that was 
not easily measurable in order to motivate the distance formula. Although the set-
ting for this activity could have been adapted, James described how he had to aban-
don the lesson (as well as one involving a beach ball). In his case, practicalities 
impeded his implementation of “creative” lessons, exemplifying a missed opportu-
nity for instructor creativity.

14.8 � Affordances of the Online Environment: More 
Higher-Level Thinking Allowed

One outcome of the online transition described by several instructors was that the 
online platform encouraged higher-level thinking in their students. Several attri-
butes of the online platform were mentioned, including the way the transition forced 
the instructor to reevaluate their objectives and the “safety” that the online setting 
afforded the students. Shonda described how revising her tasks helped promote 
higher-order thinking:

I felt a need to design distance learning experiences that have very clear instructions and 
utilize only one or two resources…Tasks with few instructions often lead to the greatest 
amount of higher-order thinking, as students figure out what to do within defined parame-
ters (post-survey).
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Shonda recognized that the need to give fewer instructions left more flexibility for 
students to consider different approaches. This contrasts with problem sets typically 
given by mathematics instructors. She also acknowledged her role as a learner in the 
process: “Distance learning has pushed me to think about how I can be a learner and 
more concise with the delivery of new information” (Interview, December 2020).

Some instructors saw “being at home” as an affordance that promoted creativity. 
In particular, Shannon considered how she thought more creatively in a comfort-
able, nonintimidating setting and wondered if this could be true for her students 
as well:

For me personally, and maybe this is true for others, being at home allows you to think 
about things a little bit differently…you feel comfortable where you are, you know you’re 
not in a classroom setting. So, I think for some students that might bring out some ideas that 
they wouldn’t feel otherwise if they were in a less comfortable setting. (Interview, 
December 2020)

This is an example of how a constraint can also be seen as an opportunity. In this 
particular case, the constraint of being online provided a low-stakes environment for 
students to think more freely.

The online platform also impacted how instructors used electronic resources. For 
example, Stephanie had to “think a little bit harder about the questions that I pose 
when I start class or think a little bit…harder about making my lessons more engag-
ing” (Interview, December 2020). Another way in which the online platform was 
seen as an affordance was in how the electronic resources made students more cre-
ative. For example, Shonda noted, “Online makes them more creative, because they 
are able to explore [websites], they are able to use them” (Interview, December 
2020). Caitlin recalled an infographic assignment, which she had reworked for the 
online setting. In person, students collaborated mainly using poster paper and mark-
ers. However, because of the nature of being online, she opened submissions to 
PowerPoint or other technologies. Allowing different formats when thinking about 
student products, in her view, included more resources and was more in-depth, 
thought-out, and creative than submissions from previous semesters.

14.9 � Redefining What It Means to Learn Mathematics

Because being online made it easier for students to share their work in real time, it 
encouraged them to interact with each other and to co-construct the mathematics. 
Being able to draw on a shared screen led students to experience mathematics dif-
ferently. For example, in the following excerpt, James recalls how the drawing fea-
ture helped students see that they had a stake in the mathematics being explored:

Something I’ve never really done before is save their work and make it accessible to every-
one. So, typically…everyone would have a copy of whatever they did in their notebooks 
and they’d go home with it, but, now, I would tend to put up the whiteboard and let them 
draw on it. So, when I saved the notes, publish them, they had stuff that they did. So, I think 
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it kind of gives a good impression that, oh, it’s not just the professor that can do all this. It’s 
other…people in my class that’s doing it too. (Interview, December 2020)

Teaching online also expanded the instructors’ views of what it means to collabo-
rate. Whereas in person, students typically sit around a table or form a cluster with 
individual desks, the online platform motivated different ways to collaborate during 
class. As Michael described:

When we talk about collaboration, I’m not sure if we’re talking about two people sitting in 
a room looking at a board and really breaking it down. We’re talking about maybe people 
texting or chatting by email or something like that. So, it’s a different, it is a form of col-
laboration, but it does seem like they’re more isolated…So, collaboration is certainly wel-
comed and especially if they’re sending emails to each other about what they have and I still 
think that’s good because that allows them to come up with their own example. (Interview, 
December 2020)

In his comment, Michael juxtaposes collaboration with isolation, highlighting the 
key difference in collaboration between an online and in-person class.

The breakout rooms were another feature that encouraged collaboration. It gave 
the students “a room of their own” and Stephanie noted the following:

It was kind of nice that they had this space that was theirs, virtually, knowing [that] they 
were with their other classmates and they had this freedom of expression and they could 
come together and express their ideas…It definitely helped them be more creative in terms 
of communicating with their classmates. (Interview, December 2020)

This “freedom” was an outcome of the online environment, where it was possible 
for students to meet on their own away from the instructor. As Stephanie noted, this 
may have encouraged students to speak more freely, as opposed to in a classroom 
where the instructor is present.

14.10 � The Need to Be Creative in Assessments

Instructors were called on to be creative in adapting assessments to an online set-
ting. Almost all of the interviewees mentioned developing different forms of assess-
ments—whether informal or formal—given the constraints and allowances of 
online teaching. For example, whereas having internet resources available to all 
students was seen as an affordance for projects, it constrained the types of questions 
instructors could ask on online tests. In many cases, this forced the instructors to be 
creative in how they assessed as they also thought about how to encourage their 
students to be creative in their responses. As Caitlin described:

The focus of assessments became more about the process and thinking behind [the] topics 
rather than an answer that students could Google…So, I was trying to find out more about 
the relationships or, “What is the meaning of your…x- and y- axes…what’s the relation-
ship?” I think, to get away from a straightforward, “I can Google this and give you an 
answer, but still have no understanding of what it means.” (Interview, December 2020)
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Others encouraged the use of the internet as a resource, even on exams. This altered 
the kinds of questions they asked on assessments. For example, in the interview 
(December 2020), Shannon noted the following:

Even for the final exam, I just said, use the internet. I even put a link to a web page on it as 
like, “Look at this web page, what do you see?” Trying to just adjust the exam to the 
[online] setting. It was interesting.

She reflected that allowing the use of web-based resources required students to 
“interpret available information and us[e] resources and information appropriately 
and also promoted an open-ended approach” (Interview, December 2020). Similarly, 
Caitlin reflected that she “wanted [assessments] to be something that was a little 
more open ended and there wasn’t just one correct answer…questions that required 
a little bit more thinking” (Interview, December 2020).

Although some forms of formative assessments were curtailed during online 
teaching, others were newly discovered. Instructors acknowledged that it was more 
difficult to gauge students’ engagement or comprehension without being able to see 
them. For example, James noted, “Typically, when I was in person, I would walk 
around and see what everyone’s doing and I could course correct there, like, ‘oh, 
that’s not quite right, try this,’ or ‘you’re on the right track—keep going’” (Interview, 
December 2020). Similarly, Shannon inquired, “How are you going to monitor their 
work, because again, you can’t do that the way you’ve always done so it certainly 
needed some creativity with how to do that” (Interview, December 2020). She also 
reflected on student engagement and how students interacted with one another: 
“we’re used to how that happens in the classroom, I think, and it’s a little bit harder 
online.” Instructors cited online surveys such as Mentimeter and the polling feature 
on Zoom as “help(ing) me have more access to students’ ideas and what their 
thoughts would be” (Stephanie, Interview, December 2020).

14.11 � Supporting the Creative Process

Because instructors were more flexible with their deadlines and with their availabil-
ity outside of class, students were given more opportunities to be creative. Michael 
recounted how he rethought the submission process for his students. Whereas he did 
not allow for resubmissions when he taught in person, this semester, he realized the 
merits of allowing students to seek feedback and resubmit after receiving feedback. 
As he said in his interview (December 2020):

I think doing this allowed me to…instill the attitude that mathematics is, “You have to 
fail,”…sometimes, you have to fail a bunch. There are some theorems that haven’t been 
proven yet that were stated decades ago. So, people have been failing at it for decades and 
still haven’t gotten to the solution.

The idea that failure is part of learning mathematics aligns with creativity because a 
central tenet of creativity is combining new ideas in novel and unfamiliar ways 
(Guilford, 1968).

14  The Role of Creativity in Teaching Mathematics Online



228

The online platform also provided more time for the student and instructor to 
meet outside of class, contributing to the notion that mathematics is a process rather 
than a final solution. Several instructors mentioned that more students were reach-
ing out to them than usual and instructors made themselves more available to stu-
dents than they had in the past. Shonda and Stephanie discussed their increased 
availability for students, and Michael made the following comment:

[I] liked that (online) approach to taking the course and this type of environment to be able 
to meet with students, whenever, of course I was free when they were free, being able to 
meet online and talk about their criticisms I think was beneficial. That was something I 
don’t think I could have done during a normal semester where meeting times are restricted, 
and I don’t have enough time before or after class to talk with this student and that student 
and this student. (Interview, December 2020)

Instructors were able to support students’ creative approach to mathematics as they 
had more time available for students and could provide space for students to think 
about the material.

14.12 � More Time to “Stew”

One characteristic of the creative process is that it benefits from an incubation 
period (e.g., Dodds et  al., 2003; Ritter & Dijksterhuis, 2014). A solution that is 
automatic or takes little time to generate is typically associated with an “exercise” 
rather than a problem-solving situation that requires creativity (Schoenfeld, 2014) 
and disjoints from what mathematicians would describe as mathematics. In adjust-
ing their instruction for online teaching, some instructors allotted more time for 
each assignment. For example, James noted, “Instead of making everyone do every-
thing in the hour they were with me, I gave them the whole week to do it. And then 
they could come in and work through stuff with me if they wanted” (Interview, 
December 2020). He thought that this additional time gave students the opportunity 
to “stew” and “use the time outside of class to think about the problem”. James 
recognized that ideas or different approaches often occur when students are not 
directly focused on the problem at hand. The online transition made James realize 
this and led him to adapt his instruction accordingly.

Similarly, Michael identified that in person, students are quick to agree with one 
another (or with the instructor) and proceed. However, in an online setting that 
incorporates independent work, students are:

Taking it and they’re trying to own it. Whereas in class a student might say, “Is this fine?” 
And a bunch of other students will overhear them and then go, “Oh, well now it’s got to be 
this.” So…you’re not creating an atmosphere where it allows them to think about this type 
of problem the way it should be thought out. (Interview, December 2020)

The online setting afforded Michael’s students a chance to think on their own before 
being influenced by more vocal students. In addition to providing them the time to 
think, it is also possible that students became accustomed to being asked to think 
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through ideas on their own, rather than relying on their classmates to verbalize 
an answer.

14.13 � Features of the Course that Played a Role 
in the Transition

Given the deliberate attempts to encourage students and teachers to be creative in 
their approach to teaching and learning mathematics, we were interested to see what 
elements of this particular course helped or hindered the transition to an online 
environment. As mentioned above, many of the instructors had taught this course in 
person prior to the pandemic and had thought deeply about the role of creativity in 
mathematics.

In describing the particular characteristics of the course, the instructors seemed 
to agree that MATH 106 is a course that emphasizes process over the answer and 
encourages multiple approaches. In describing his class, Michael said, “We want to 
see students have a unique thought process when it comes to interpreting some type 
of problem, especially if they’re not a science or a math major” (Interview, December 
2020). Caitlin echoed this idea when she said, “I think, the course also, forcing or 
encouraging students to think about it from a different perspective maybe got them 
thinking about other things outside of the class in those ways that maybe they 
wouldn’t have otherwise” (Interview, December 2020). In the post-semester survey, 
Michael also recounted how he tried to convey his enthusiasm to students. He 
stressed the importance of the instructor embracing creativity: “I believe creativity 
to be contagious—especially if one is enthusiastic about the creative process in 
general. Although it could be much more difficult to convey this enthusiasm through 
a tiny webcam, I believe the impact is the same.” The open-endedness and process-
oriented nature of the course, as well as the instructors’ instructional philosophy, 
were brought up by others as being conducive to an online platform.

Instructors’ conceptions of what it means to be creative helped them seek cre-
ativity in their students in an online setting. When asked about the role of creativity 
in online teaching, Stephanie replied that creativity gave her a mindset that helped 
her approach online teaching. She noted, “[The course] brings with it a sense of fun, 
freedom, and flexibility to try new things” (post-survey). The course itself also had 
an impact on instructors’ conceptions about mathematics. When asked how teach-
ing a course on creativity in mathematics influenced his view of mathematics, 
Charles replied that “it forces me to generate original ideas.” This mindset of being 
open to new ideas and being flexible came through in Stephanie’s analogy of being 
in an experiment. She reflected, “We’re like in this experimental mode. You know, 
we’re experimenting with new technologies; we’re experimenting with different 
class formats; we’re experimenting with all these different things” (Interview, 
December 2020).
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The course objectives related to creativity in mathematics also offered the 
instructors a language to use when conveying the challenges and opportunities 
afforded by the online transition. When communicating with her students, Stephanie 
conveyed the flexibility inherent in creativity to the students in presenting the online 
transition as a challenge:

It wasn’t always the same kind of format like every week. It was kind of just, you know, 
when I told them I was like, “we’re going to see what works.” Like this is new to me too, 
you know, like we’re going to be creative with it. We’re going to be open with it. We’re just 
going to kind of like change it up and see how it goes. (Interview, December 2020)

The course objectives also provided an opportunity for students to learn in a differ-
ent way. In his pre-course survey, Michael recognized the significance of creativity 
in the context of students’ multiple online courses:

Creativity is essential in all modalities of learning. However, for the student that is stuck in 
their house all day taking five classes—having the chance to be creative allows the student 
to not just escape their perhaps mundane schedule, but allows them to think about the world 
in a new way.

14.14 � Discussion

Our findings illuminate the role of creativity in the transition to online teaching 
among instructors teaching a course on creativity in mathematics. As this group of 
instructors had been engaged in discussions centered on creativity research before 
the pandemic, they offered a unique perspective on the experiences of educators as 
they faced unfamiliar territory—one that came with constraints and affordances. 
Some of their experiences highlighted the need to be flexible, open-minded, and 
responsive to the students and to the realities of the online classroom. Many of the 
instructors spoke of how the experience of teaching online changed their perspec-
tives about both mathematics and teaching. Some of these lessons can inform future 
online offerings as well as in-person courses to aid instructors as they prepare for 
the many unknowns that can arise when teaching a mathematics course online.

The flexibility of the curriculum offered instructors leeway in deciding which of 
their previous (in-person) lessons and activities they would implement in the online 
setting. Some instructors abandoned lessons that required materials, while others 
adapted those lessons and incorporated household items (e.g., crackers, string, 
coins). Related to the flexibility of the curriculum, because MATH 106 does not 
serve as a prerequisite for any other course, instructors were able to be creative in 
how they assessed their students. There was no departmental final exam or set of 
common questions that spanned sections. As such, instructors were able to ask 
questions that emphasized process over answer and became creative about how they 
assessed student understanding through open-ended instead of calculation ques-
tions. The ease with which students were able to Google answers also necessitated 
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a shift to more open-ended questions that prompted different responses from each 
student.

The explicit goal of the course—to promote creative thinking through mathemat-
ics—also offered a context that eased the transfer to an online setting. Instructors 
spoke of how students and instructors were in experimentation mode, exemplifying 
the importance of play (Monahan et al., 2020), risk-taking (Glover & Sautter, 1977; 
Tyagi et al., 2017), and collaboration (Paulus & Nijstad, 2003) in creativity. This 
mindset was consistent with what students were called on to consider. In this way, 
the online environment served as a meta-example of how a constraint can lead to 
creativity. Also, because learning through experimentation was emphasized in the 
course, instructors came to believe that this mindset opened the door for more stu-
dents to participate than perhaps would be expected in an in-person environment. 
The shift from in-person to online teaching also changed the instructors’ thinking 
about teaching and about mathematics more generally.

The implications of our study inform professional development, course design, 
and assessment. We saw the important role that constraints (even when caused by a 
pandemic) play in the instructors’ creative and reflective practices. In light of our 
results and considering the course retrospectively, our results indicate that it may be 
beneficial to base professional development meetings on the role of constraints in 
teaching and learning. As Peterson et al. (2013) noted, instructors need support in 
managing and thriving within constraints. An explicit focus on constraints and the 
sharing of experiences through this lens may provide instructors with additional 
ideas and may help them shift their mindset to see constraints as affordances. For 
example, we saw evidence that some instructors abandoned lessons they initially 
thought of as impossible in an online environment. Discussing how these obstacles 
can be considered as constraints to overcome and encouraging instructors to be 
creative in how they restructure a lesson to fit the context could benefit teaching and 
learning mathematics. In this way, we could provide a language to discuss issues 
related to teaching and to encourage creativity in teaching.

Through this research, we identified how the transition to the online environment 
opened up ways of thinking about teaching creatively, teaching for creativity, and 
teaching and learning mathematics. Although in the case of this research, the con-
text of a course on creativity helped instructors through the transition, other courses 
could use creativity as a lens to approach teaching and assess learning. Lessons that 
we learned during the pandemic related to teaching for creativity can be carried over 
into future online or in-person offerings. For example, the availability of informa-
tion online led to more creative assessment items and student products. Similarly, 
students were encouraged to doodle and to show mathematics using household 
items. Both of these tasks (doodling and finding creative uses for everyday items) 
have been associated with creativity (Guilford, 1968; Torrance, 1966). Another les-
son learned is that students had to be creative in how they presented their thinking. 
Through the act of creating a video or a drawing, students were able to merge math-
ematics and communication in creative ways. Nuanced changes in how we ask 
questions and how we ask students to participate may encourage deep thinking 
about mathematics both in in-person and online settings. These added emphases of 
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creativity in course design, professional development, and instruction can be the 
basis for further research on the role of creativity in higher education.

Lastly, it is impossible to discuss the transition to the online environment without 
acknowledging the impact of the pandemic that spurred it. It was a devastating year 
filled with uncertainty. It was a time when the world as a whole was forced to be 
creative: in managing day-to-day tasks, in how we socialized, and in how we faced 
life changes. Teaching and learning online was just another way in which instructors 
and students alike were called on to be creative. This common goal often led to a 
sense of community, which spurred on more creativity. As Stephanie reflected:

I think [being online] kind of opened up more communication which contributed to the 
creativity of the class because we just were able to have richer, deeper discussions…how 
everyone was feeling and what their thoughts on math…the community that was built in the 
class. And…knowing that their thoughts were valued and they could kind of just like say 
what was on their mind and speak their mind and it was very non-judgmental, and it was 
like “oh yeah like I think that too.” Or, “oh yeah…I see what you’re saying. But I don’t 
know if I agree with that.”

The students’ sense that they were a part of a community of learners, where learning 
was put in the context of their lived realities, was central to Stephanie’s teaching. 
Students felt safe to voice their ideas and agree or disagree with one another. 
Instilling a sense of community among students was especially important during the 
pandemic, and it will undoubtedly remain just as important in the years to come.

14.15 � Conclusion

This study reported on the role of creativity in the teaching and learning of mathe-
matics in a course with a special emphasis on creativity. The context of the course 
provided us with a lens to characterize the shifts in teaching and learning prompted 
by the transition. An extension of this study would be to analyze class recordings to 
understand how creative teaching and teaching for creativity appear in an actual 
online class. While the particular course provided a fitting context to study creativ-
ity in teaching online, it also highlights a limitation of the study. A study using a 
similar framework on a more conventional course would help extend our findings 
more broadly. We acknowledge that this course was unique from most mathematics 
major courses. This course did not have a set curriculum and offered more flexibility 
than would have been possible for a course in a sequence. However, there are ele-
ments of this study that could be considered for more typical courses. For example, 
the online platform and, more specifically, the access to answers and solutions 
through the internet called for more creative approaches to assessment.

Undoubtedly, one outcome of the pandemic year will be that more attention will 
be paid to online teaching and learning. Further studies on practices to encourage 
student engagement and to promote mathematics as a creative enterprise would help 
us consider all of the possibilities of online learning.
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�Appendix A

�Interview Protocol

	1.	 Person

•	 Teacher

–– Overall, would you identify yourself as creative? Why or why not?

•	 Some traits of creativity are flexibility, adaptability, innovation, risk-
taking, and making connections. Would you identify yourself as having 
any of these traits? Please explain.

–– What were some attitudinal and personal characteristics that you possess 
that helped you plan/implement this class online?

–– What is your general attitude towards change and uncertainty?
–– Is there another time you experienced uncertainty (aside from the teaching 

of this course) that helped you through this?

•	 Student

–– Tell us about a really creative student you have.

•	 What makes them creative?
–– Did online teaching and learning affect how their creativity was able 

to shine?
–– How did teaching online help students be creative?

	2.	 Place

•	 Online

–– Did the online platform help you be creative? Help your students be 
creative?

–– In what ways did you take advantage of the online platform in an uncon-
ventional way?

–– What was possible online that isn’t possible in person?

•	 Hawkmix

–– What were some affordances given by the Hawkmix modality?
–– What did you have to consider as you plan your classes for dual modality?
–– What was possible under Hawkmix that wouldn’t be in a purely online or 

in-person setting?

	3.	 Process

•	 Teacher

–– What were some constraints that online teaching presented? How did you 
overcome them?
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–– In what ways were you more creative because you were teaching online 
this semester?

•	 As you planned or executed your ideas?
•	 Was any of this made possible specifically through the online platform?

–– What elements of creativity did you have to rely upon as you taught 
your class?

•	 Students

–– How were you able to ask your students to be creative in your class, espe-
cially given the online setting?

–– Do you think there are elements of online learning that forced your stu-
dents to be creative?

	4.	 Product: Being that the focus of this class is on creativity in mathematics:

•	 What was your most creative lesson?
•	 What was your least creative lesson? Do you think it would have been more 

creative in an in-person setting? Was the creative element lost because we 
are online?

	5.	 How does creativity figure into:

•	 Pandemic
•	 Online transition—different modalities
•	 Nature of this course

	6.	 Is there anything else you’d like to add about your experience teaching MATH 
106 online?

�Appendix B

�Pre-semester Survey

	 1.	 What technologies (learning platform, programs, etc.) are you planning 
on using?

	 2.	 What went into the decision to use these technologies?
	 3.	 How will you adjust your in-person teaching practices to accommodate learn-

ing online?
	 4.	 For mathematics courses in general, what about in-person teaching that might 

not be possible (or is very difficult) in an online setting?
	 5.	 For MATH 106 in particular, what about in-person teaching that might not be 

possible (or is very difficult) in an online setting? (Please be specific about your 
past experiences if you’ve taught MATH 106 before.)
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	 6.	 For mathematics courses in general, what do you think will be possible in an 
online platform that isn’t possible in in-person teaching? What affordances 
does online teaching offer you that might not be possible in person?

	 7.	 For MATH 106 in particular, what do you think will be possible in an online 
platform that would not have been possible in in-person teaching? What affor-
dances does online teaching offer that might not be possible in person?

	 8.	 What does creativity mean to you?
	 9.	 What role does creativity have in teaching mathematics online?
	10.	 How is teaching a course on creativity in mathematics influencing your think-

ing of mathematics?
	11.	 Please describe one lesson/module you’re looking forward to facilitating.
	12.	 Please add any other comments/suggestions/questions you have.

�Appendix C

�Post-semester Survey

	 1.	 What technologies (learning platform, programs, etc.) did you use to teach 
MATH 106 this semester? What went into the decision to use these 
technologies?

	 2.	 How did you adjust your in-person teaching practices to accommodate learn-
ing online?

	 3.	 For mathematics courses in general, what about in-person teaching that might 
not be possible (or is very difficult) in an online setting?

	 4.	 For MATH 106 in particular, what about in-person teaching that might not be 
possible (or is very difficult) in an online setting? (Please be specific about your 
past experiences if you’ve taught MATH 106 before.)

	 5.	 For mathematics courses in general, what was possible in an online platform 
that wasn’t possible in in-person teaching? What affordances did online teach-
ing offer you that might not have been possible in person?

	 6.	 For MATH 106  in particular, what was possible in an online platform that 
would not have been possible in in-person teaching? What about online teach-
ing that made this possible?

	 7.	 What does creativity mean to you?
	 8.	 What role does creativity have in teaching mathematics online?
	 9.	 How did teaching a course on creativity in mathematics influence your thinking 

of mathematics?
	10.	 Please describe one lesson/module you implemented that you are particularly 

pleased with. Please briefly explain why you chose this one.
	11.	 Please add any other comments/suggestions/questions you have.
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Chapter 15
Concluding Thoughts on Research: 
Application, Implications, and Future 
Directions

Scott A. Chamberlin

15.1 � Introduction

One of the most intriguing aspects of mathematical creativity is that it is not identi-
cal in process or product for a 6-year-old grade-one student as it is for a 19-year-old 
student in second year at university. Hence, the practicality of the research is inter-
preted in a manner that enables stakeholders the opportunity to utilize the scholarly 
works and literature of peers in their research and/or teaching efforts to forge new 
paths and respond to areas of interest in creativity that are yet to be explored. In 
specific, the editors and authors of this book maintain that development is rarely 
considered in relation to mathematical creativity, and it deserves attention when 
conducting research and implementing activities designed to facilitate creativity. 
This is because not all students, across and within grades, reside at precisely the 
same place. Schools all across the world are based on the premise of chronological 
status (age) and not developmental status. In effect, having a classroom composed 
of myriad ability–level students is likely more typical than having one composed of 
students all on exactly the same ability level. More specifically, if you have a grade-
five mathematics class with one student on a grade-three level, another on grade-
four level, many students on grade-five level, one on grade six, and one on grade 
eight level, you have a perfectly normal classroom.
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15.2 � General Overview of the Book

In the first section of the book, the editors each contribute a chapter, with a focus on 
development in relation to mathematical creativity. Each editor was rather infor-
mally assigned age band (5–12, 13–18, and 19–23). Much of the research in math-
ematical creativity coalesces around the elementary years (ages 5–12) and secondary 
years (ages 13–18). The tertiary years are typically less researched in mathematical 
creativity, as they are in many content domains. Thankfully, the only group dedi-
cated to researching mathematical creativity at the tertiary level, the Creativity 
Research Group (http://www.creativityresearchgroup.com), agreed to actively par-
ticipate in the finalization of this book (e.g., Chaps. 7, 12, and 13). Miloš Savić was 
instrumental in soliciting their assistance because without it, this book would have 
been absent with their presence. Peter Liljedahl was instrumental in spearheading 
the contributions in secondary education, and Scott Chamberlin initiated much of 
the elementary sections.

Each section contains themes and foci in each age band. Most chapters repre-
sented either an empirical study or a comprehensive literature review. Hence, all 
chapters were some combination of research or reports on research in the form of 
literature reviews and theoretical contributions. In the first section, Chaps. 1, 2, 3, 
and 4, introductory discussions are provided so that readers are prepared to make 
senses of discussions in the book. Of note in this section is the third chapter in 
which the organizational framework for the book is provided. In this chapter, sev-
eral operational definitions are shared so that all readers share common understand-
ings. In the second section, Chaps. 5, 6, 7, and 8, research for each age band (5–12, 
13–18, and 19–23) is shared to provide a basis for subsequent discussions of empiri-
cal work. In the third section, Chaps. 9, 10, 11, 12, 13, and 14, empirical work is 
discussed so that readers can appreciate efforts of scholars in an attempt to under-
stand development and mathematical creativity research. Commentators provided 
opinions on the positive and negative attributes of each section, in the last chapter of 
each section, and a foreword was shared by Demetra Pitta-Pantazi. Chapter 15 is a 
culminating chapter for the book, designed to highlight what is known, what is not 
known, and the implications for researchers and practitioners.

15.3 � Needed Research

For as much that is known about mathematical creativity, it appears as though vol-
umes more is not known about it. As an example, instrumentation to carefully docu-
ment the creative process is sorely lacking. This is not to suggest that no 
instrumentation exists, but such instrumentation is not particularly sophisticated. 
More specifically, instrumentation that documents mathematical creativity in rela-
tion to development does not appear to exist. Accepting the flawed premise that all 
learners develop at the same rate and that chronological age determines one’s level 
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of development, instrumentation of a high degree of precision could highlight the 
rather dramatic differences in ability levels. Data from studies could elucidate the 
disparities and encourage all parties to not view mathematical learning episodes as 
one-size-fits-all scenarios. Further, curriculum developers and teachers may be 
more inclined to take learning episodes seriously and differentiate activities so that 
they are low-floor/high-ceiling activities. In so doing, students may be more engaged 
than they otherwise might have been, and they may realize that learning facilitators 
(e.g., teachers, curriculum coordinators) have compassion for their abilities. 
Consequently, learners may be inclined to persist for teachers who illustrate that 
they care for their students (Lumpkin, 2007; Umarji et al., 2021).

To return to the point of maturational rate, it is an assumption of contributors that 
learners do not develop at the same rate in coordination with their chronological 
age. Hence, proactively investigating how learners could be best served would aid 
scholar-researchers and practitioners alike. Moreover, simply finding consensus on 
this idea through empirical work would be invaluable in motivating educational 
stakeholders to generate materials to serve a greater number of learners than are 
currently served.

Another focus that deserves attention pertains to creative output in mathematical 
learning episodes. In specific, one may wonder if it is predominately a result of 
development or if there are other factors at play. It would be logical to assume that 
other factors are involved. For instance, one’s level of intelligence may well have 
some influence on the product delivered, and though Sheffield (2009) and Haylock 
(1997) suggest that a modicum of intelligence is necessary for creative output to be 
realized, the precise level has never been determined. Interestingly, many scholars 
have questioned what the lowest level of intelligence could be for creative output to 
register, but few have questioned whether the other end of the spectrum (i.e., 
advanced intelligence) may also preclude or more likely hinder mathematically cre-
ative output. Luchins and Luchins (1959) questioned if rather advanced states of 
mental ability may negatively influence creative output in the respect that individu-
als with an intimate acquaintance of a domain and an advanced state of understand-
ing might be inclined to rely on preexisting conventions to solve problems, rather 
than invest time in pursuit of novel solutions. Nevertheless, investigating factors 
associated with creative output in mathematics represents an important line of 
research and inquiry.

Given the significance of development in the emergence of creative output, one 
may question whether maturation can be influenced, that is, intentionally acceler-
ated or unintentionally decelerated pending external factors such as classroom envi-
ronment, curricular choices, teaching/instructional decisions, and/or any other 
effects. This is an area in need of attention, and scholars would do well to critically 
look at how the factors help determine creative output. It is likely that factors other 
than simply development play a considerable role in creative output. The question 
remains: what specifically are the factors, and how do each of them load? It could 
be hypothesized logically that an overbearing teacher may impede creative pursuits 
(Chamberlin & Mann, 2021) by negatively influencing one’s affect. Also, a curricu-
lum that over-relies on review of materials and includes mathematical content in 
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repeated years (e.g., 3–5 years) may provide a motive that discourages students 
from investing attention in mathematics. Once a student has turned off attenuation, 
it may be difficult to get them to return to productivity, even if activities are intel-
lectually stimulating. Also, a classroom environment that is conducive to not par-
ticipating can serve to discourage highly creative individuals. In total, there are 
likely many more factors that can negatively and positively influence creative out-
put, and they deserve attention in empirical work.

Another consideration pertains to whether development in various subdomains 
of mathematics (e.g., number theory, geometry, algebra, measurement, and statistics 
and probability) can occur at various rates. It would seem logical that they can and 
most likely do. However, having an empirically based answer to this question would 
be most helpful for researchers and scholars in mathematical creativity. Counter to 
many discussions in this book, mathematical maturity often pertains to the tertiary 
level and not the elementary and secondary (Faulkner et al., 2019; Yani et al., 2019). 
In fact, Lew (n.d.) discusses components of mathematicians that lead college pro-
fessors to believe that they are mathematically mature. Still, the rate at which stu-
dents develop in various domains of mathematics is not known. It is not fully known 
if students develop in some domains earlier than others (e.g., perhaps number sense 
advancement appears before algebraic reasoning). Logically, some would say that it 
does, based on the premise that number sense is infused with very young learners 
(e.g., preschool, kindergarten), and algebra is not formally presented until around 
age 14 or 15. This alone is not proof that algebra is a domain that should come later 
than number sense; it is merely a comment on the arrangement of domains and dis-
ciplines in mathematics. After all, Carraher et al. (2006) illustrate that students as 
young as 8–10 years of age can reason algebraically. This is certainly not the first 
evidence of early-elementary students’ ability to reason algebraically. Preschool 
teachers have been engaging students in activities relevant to (pre-)algebra for 
decades. For instance, the National Council of Teachers of Mathematics (2000) 
stated that pattern thinking is evidence of engagement in early algebraic thinking. 
Also, does students’ progression of development transpire at the same levels if each 
domain has relatively similar amount of instructional time invested in it? Logic 
would dictate that this is a most unreasonable hypothesis. Nevertheless, relevant to 
the theory and studies provided in this book, it would behoove researchers to inves-
tigate this issue to resolve this issue.

15.4 � Application of Research

In this section, the application of research pertains to (1) peer scholars and research-
ers and (2) practitioners. Often, educational stakeholders think of themselves as one 
or the other when in reality, the distinction in the two parties is not as disparate as 
some believe. In fact, some teachers engage in action-research to provide insight in 
assessment, instruction, learning, and curricular decisions. Moreover, researchers 
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have been known to instruct students to investigate their reasoning (Lesh et  al., 
2000) through using curricular materials such as thought-revealing activities.

15.4.1 � Application of Research to Scholars

The most significant contribution of this book is to reveal what is known and what 
is not known about mathematical creativity and development. In a sense, this book 
(as are many academic books) serves as an update on the current status of literature. 
Throughout this book, empirical work is provided for reader consideration. Much of 
this research has not been publicly shared, and the research is supplemented by 
comprehensive literature reviews. Many of the research efforts have been conducted 
to specify indicators of creative output such as originality, fluency, flexibility, and 
elaboration (Imai, 2000), while other works have invested in stages of creativity 
(e.g., Wallas, 1926). The Wallas work has very much stood the test of time insofar 
as his four stages of creativity (preparation, incubation, illumination, and verifica-
tion) are still considered to have accuracy in explaining the creative process. 
Naturally, in nearly 100 years since his theory was promoted, it has endured some 
criticism, and experts seem willing to modify it (Sadler-Smith, 2015). Nevertheless, 
a theory that is discussed 100 years after its design does warrant consideration. 
Also, the role of development in relation to creativity was discussed, historical con-
tributions were considered, and an inclusion of creativity research in mathematics 
was provided in all three age bands (5–12, 13–18, and 19–24). Also, the value of 
theoretical lens in interpreting student research, the process(es) used to engage in 
creative thinking, the manner in which mathematical creativity can be promoted by 
tertiary students, and the consideration of creativity emerging in online mathematics 
settings was discussed. All researchers that utilize this book will have an expanded 
understanding of mathematical creativity, with emerging research that can posi-
tively influence the domain.

Of course, every time that a comprehensive overview of research and scholarly 
work is provided, it invariably reveals that a domain is not as advanced as it might 
desire, with respect to knowledge. Hence, additional efforts need to be invested in 
qualitative work, as was done by many contributors in this book, as well as quantita-
tive efforts. Principally speaking, this is because qualitative efforts provide rather a 
microscopic look at why a phenomenon transpired as it did. Quantitative work, on 
the other hand, often helps researchers reveal what happened, and it can provide 
badly needed generalizability that qualitative efforts often lack. Moreover, in accor-
dance with the domain’s (creativity) emphasis on novel products in mathematics 
(Nadjafikhah & Yaftian, 2013), researchers in mathematical creativity must forge 
efforts in new paths to expand the domain’s knowledge and to engage researchers’ 
intellect. Further, scholars with an emphasis on generating new knowledge about a 
field should avoid replication studies, particularly in situations in which multiple 
studies have shown a consensus, for example, studies in which the value of diver-
gent thinking as a mechanism to promote creative output is ubiquitous in 
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mathematical creativity and that date to at least the mid to late 1960s (Bradfield, 
1969; Guilford & Hoepfner, 1966; Madaus, 1967). In nearly 55 years of research, 
researchers have had ample time to investigate every conceivable facet of divergent 
and convergent thinking and its relationship to mathematical creativity and, like-
wise, discussions of indicators of creativity such as fluency and flexibility, often 
attributed to Krutetskii (1976), who initially investigated these characteristics in the 
1950s and 1960s; originality, often attributed to Chassell (1916); and elaboration, 
often attributed to Guilford (1959). In much the same sense, ample time has been 
provided for research on the four main indicators of creativity (over 100 years in the 
case of originality). Whatever could have been learned about it has likely surfaced.

Hence, replication studies are no longer needed in areas with literally decades of 
research already accumulated. New areas of research must be pursued to provide a 
more complete picture of mathematical creativity in relation to other factors that 
already exist. For instance, an emerging area in the domain of mathematical creativ-
ity pertains to feelings, emotions, dispositions, attitudes, and beliefs and their effect 
on mathematical creativity (Chamberlin & Mann, 2021). Affective states, after all, 
have a considerable influence on cognitive efficiency (Clore et al., 2018), and cogni-
tive efficiency is intricately intertwined with mathematically creative processes and 
therefore products (Doyle, 2016). Certainly, this book represents an emerging area 
of scholarly efforts in promoting the idea that development and maturation may play 
a large role in mathematical creativity. Other areas worthy of investigations by 
researchers are international comparisons of countries and their creative output. To 
compare mathematical learners in various countries, considerably more sophisti-
cated instrumentation must be developed, relative to what currently exists. One such 
instrument that should be created is an instrument that helps researchers understand 
the relationship between affect and problem posing. Another area in which instru-
mentation should be developed pertains to instructional decisions and the environ-
ment created, relative to amenability to facilitate creative output. Critically analyzing 
curricular materials in relation to creative process also deserves research efforts.

15.4.2 � Application of Research to Practitioners

Of note in the previous section are several areas that could help complete the picture 
of mathematical process and product in relation to various factors. Near the end of 
the section, the call for increasing sophistication regarding instrumentation is issued. 
Several of these requests illustrate the earlier claim that the work of researchers and 
practitioners is difficult to disentangle, for instance, efforts relevant to investigating 
student emotions during problem posing, critically analyzing instructional and cur-
ricular decisions in relation to creative process (and ultimately product), and other 
classroom implications for mathematical creativity. For instance, investigating pro-
fessional development in its effect on how mathematical creativity is promoted, 
including its importance, in the larger picture of mathematical learning is badly 
needed and originating scenarios in which situations to increase the likelihood of 
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mathematical creativity are an important endeavor. Scholars can discuss mathemati-
cal creativity in a theoretical notion endlessly, but until increased output is realized, 
no real effect will occur. Overlaid with all of this is the central component of devel-
opment and its role in enhancing the quality of creative-learning episodes. Teachers 
are often well acquainted with student developmental levels, if even only infor-
mally, and they could greatly enhance the quality of research. Hence, coordinated 
efforts between practitioners and researchers should occur.
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