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Abstract. With the increase in online platforms, the surface area of mali-
cious activities has increased manifold. Bad actors abuse policies and ser-
vices like claims, coupons, payouts, etc., to gain material benefits. These
fraudsters often work collusively (rings), and it is difficult to identify
underlying relationships between them when analyzing individual actors.
Fraud rings identification can be modeled as a community detection prob-
lem on graphs where nodes are the actors, and the edges represent common
attributes between them. However, the challenge lies in incorporating the
attributes’ domain-informed importance and hierarchy in coming up with
edge weights. Treating all edge types as equal (and binary) can be fairly
naive; we show that using domain knowledge considerably outperforms
other methods. For community detection itself, while the weight informa-
tion is expected to be learned automatically in deep learning-based meth-
ods like Graph Neural Networks (GNN), it is explicitly provided in tradi-
tional methods. In this paper, we propose a scalable and extensible end-
to-end framework based on domain-aware weighted community detection
to detect fraud rings. We first convert a multi-edge weighted graph into
a homogeneous weighted graph and perform domain-aware edge-weight
optimization to maximize modularity using the Leiden community detec-
tion algorithm. We then use features of communities and nodes to classify
both community and a node as fraud or not. We show that our methods
achieve up to 9.92% lift in F1-score on internal data, which is significant
at our scale, and up to 4.81% F1-score lift on two open datasets (Amazon,
Yelp) vs. an XGBoost based baseline.

Keywords: Fraud detection · Graph learning · Community
detection · Fraud rings identification · Graph neural network

1 Introduction

Similar to any e-commerce marketplace, every day, new loopholes are being
exploited by fraudsters in hyper-local, online food delivery platforms. Fraud-
sters exploit business policies and services around food-issue claims, payments,
coupons, etc., which have a material impact on the platforms’ bottom line. Most
often, these fraudsters operate in collusive groups. In many cases, when looked
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at in isolation, it is easy to mistake the behavior of these fraudsters as not that
dissimilar to normal, non-fraudulent patterns; it is only when looked at as a
group that fraudulent patterns become apparent. Such fraud groups can cause
more damage than individual fraudsters due to the collective knowledge they
employ and can typically cover more surface area than an individual actor. As
a result, identifying fraud rings is a crucial piece in a platform’s overall risk
mitigation plan.

For identifying frauds, graph-based approaches have been widely studied.
Entities (like customers, sellers) in a marketplace and connections (like pay-
ment instruments, reviews) between them can be variously represented by
homogeneous-, heterogeneous-, relational-, multi-, weighted graphs, and more.
Nilforoshan [23] proposes a multi-view graph representation for mining fraud
where multiple edges exist between nodes. Belle [2] proposes variants of graph
representation learning such as traditional, inductive, and transductive for fraud
detection in credit card transactions. While weighted and multi-view graphs
solve for multiple edge types and weights, to the best of our knowledge, pro-
viding domain information to identify optimal weights has not been explored.
Domain information is usually available in the form of, say, payment-instrument
linkages being ‘stronger’ indicators of connectedness vs. linkages based on shared
wi-fi addresses. Such fraud groups can cause more damage than individual fraud-
sters due to the collective knowledge they employ and can typically cover more
surface area than an individual actor. As a result, identifying fraud rings is a
crucial piece in a platform’s overall risk mitigation plan.

GNNs play an important role in building graph-based machine learning (ML)
approaches because of their ability to learn from graph structure. Graph Convo-
lution Networks (GCN) have been applied in domains like opinion fraud [9,17]
and insurance fraud [16]. For applications where graphs scale to millions of nodes
with frequent updates and additions, scalability and run-time have been bot-
tlenecks for GNN based approaches. On the other hand, community detection
methods [26,36], which attempt to capture group structure by partitioning the
graphs into communities, are typically more scalable. The authors of [4,13,30]
have extensively studied GNN-based community formation and proposed meth-
ods to combine both approaches. In such methods, the number of communities to
be formed has to be provided beforehand as a hyper-parameter, and this limits
the attainability of optimal separation of communities.

Most fraud detection literature typically targets a single fraud detection task,
like fake reviews or spam detection. However, in most real-world marketplaces,
new fraud modus operandi (M.O) emerge all the time, and it is typically imprac-
tical, or even infeasible, to build M.O-specific detection models. It is our obser-
vation that a large swath of fraud is perpetrated by rings operating in collusion,
constantly cooking up new M.Os. There is not much literature on methods or
frameworks that can be extended across multiple M.Os being committed by
similar sets of fraudsters (i.e., rings).
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In this paper, we propose a novel generalizable framework to detect fraud
rings using community detection on a graph whose edge weights are learned in
a domain-aware manner. Our contributions are:

• We explicitly provide domain knowledge to community detection where opti-
mal weights are algorithmically determined using weight bounds and edge
priorities for fraud identification. This explicit feeding of information cannot
be done in GNNs, as we expect them to learn this automatically, adding
uncertainty.

• Our framework is modular – graph construction, community detection, down-
stream discriminator. We first convert a multi-edge graph into a weighted
homogeneous graph which is then used by Leiden-based community detection.
Community information is then used by downstream tasks to perform fraud
ring detection. The node-to-community mapping can be used to develop rules
and models for multiple M.Os using simple community feature aggregations.

• We perform extensive experiments on two public benchmark datasets (Yelp
and Amazon Reviews) and an internal dataset demonstrating the effectiveness
of the proposed framework, both in terms of run-time and F1-score perfor-
mance. Our framework shows a 1.7% relative improvement in F1-score on
Amazon, 4.8% on Yelp, and 9.92% on internal datasets.

The remainder of the paper is organized as follows. Section 2 outlines the
existing literature in related works. Section 3 introduces the problem statement
of fraud rings and challenges involved. Section 4 details the proposed framework.
Section 5 demonstrates the experimentations conducted and the ablation study.
We end in Sect. 6 by concluding the paper.

2 Related Work

2.1 Community Detection

While recent research has been backed by GNN based approaches, there has been
significant research on non-GNN based approaches for community detection [31].
While GNN approaches focus on representation learning, traditional methods
use various graph theory strategies. Traditional methods distribute graphs into
communities and do not require the number of communities to be supplied
beforehand. This is a major advantage as estimating the number of communities
upfront is typically impossible. Modularity and Constant Potts Model (CPM)
are well-known metrics to evaluate the quality of generated communities. Ghosh
et al. [10] proposed a strategy to run the Louvain algorithm in a distributed
computing environment. Even though Louvain, by nature, is not scalable, using
these types of distributed implementations can process larger graphs, albeit at
the cost of extra resources. You et al. [37] proposed a three-stage algorithm that
includes central-node identification, label propagation, and community merg-
ing. Community detection can also be performed using optimization algorithms
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like Particle Swarm Optimization (PSO) [26] or semi-supervised approaches like
label propagation [36]. The Leiden algorithm [33] introduced in 2019 by Traag
et al. can run faster and find better partitions compared to other methods.

A majority of the recent literature on GNNs is based on the assumption of
incorporating ring information within the embeddings. Luo et al. [20] attempted
to identify communities in a heterogeneous graph by applying their Context
Path based GNN model. While most community detection approaches focus on
segregating graphs into non-overlapping communities, Shchur et al. [30] focus
on generating overlapping communities using a GNN-based Neural Overlapping
Community Detection (NOCD) model. Moreover, the NOCD model is also com-
pared with non-deep models such as multi-layer perceptrons and free-variable
models, studying the effectiveness of using deep network models. Bandyopadhyay
et al. [1] attempted to solve community detection using GNN in an unsupervised
approach. The authors integrated a self-expressive layer in GNN and designed a
loss function to classify nodes into communities directly. Wang et al. [35] leverage
the bipartite representation to perform community detection in heterogeneous
graphs using GNNs. The attention mechanism is adopted for increased focus on
prime nodes while segregating the graph. Jia et al. [14] presented a generative
adversarial network based community detection framework solving overlapping
community detection and graph representation learning.

Identifying edge priority has been an active area of research but focuses on
learning weights rather than explicit inputs. Shang et al. [29] propose SACN
(Structure-Aware Convolution Network) that uses an encoder-decoder architec-
ture. The encoder consists of a weighted graph convolution network, which learns
the network weights by utilizing the graph node structure, node attributes, and
edge relation types. This generates accurate graph node embeddings capturing
most of the important information from the graph. The decoder is a convolu-
tion network used for link prediction. In [12], the authors designed a fast algo-
rithm known as MGFS (Multi-label Graph-based Feature Selection algorithm)
that utilizes the Page Rank algorithm to estimate feature importance based on
edge weights.

2.2 Graph-based Fraud Detection

Graph-based approaches for identifying frauds have been extensively studied in
financial fraud [16,19,34] and opinion-fraud detection [9,15,24]. Wang et al.
[34] proposed a SemiGNN variant solving the label uncertainty problem in
fraud detection where only a small percentage is tagged as fraud with cer-
tainty. Liu et al. [19] present a GEM model utilizing graph embeddings and
attention mechanisms to identify irregular malicious accounts on a financial
platform. Dou et al. [9] proposed a CARE-GNN (CAmouflage-REsistant GNN)
architecture emphasizing the identification of camouflaged fraudsters who had
built ways to hide themselves among normal users. Liu et al. [18] present a
DGFraud (Deep Graph Fraud) model that identifies frauds in social network
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graphs despite inconsistencies in context, features, or relations among the users.
A few researchers [25,28,32] have also attempted to identify fraud community
groups in medical, banking, and telecom sectors using traditional community
detection such as label propagation and group mining. Sun et al. [32] proposed
a person’s similarity adjacency graph and Maximal Clique Enumeration-based
approach to identify fraud in medical insurance.

Although using deeper networks or complex strategies might outperform dur-
ing experimentations, these are often constrained by high inference time, com-
plex retraining processes, and non-trivial deployment challenges, when applied
in real-world applications. To the best of our knowledge, ours is the first novel
and scalable end-to-end framework using traditional graph theory-based commu-
nity detection, which outperforms GNNs in terms of both run-time and F1-score
performance.

3 Fraud Detection Problem

3.1 Identifying Fraud Rings

A graphical representation of the user base of an e-commerce platform can have
customers sharing stationary and non-stationary attributes. These customers
can be grouped into communities, combined behavior of which can be used to
identify fraud rings. Figure 1 illustrates how an entity’s fraud status changes
when looked at from the lens of its connections. Using only an entity’s attributes
might classify the entity as not-fraud. However, if the entity is connected to
a number of high-risk entities, then the whole community and the entity at
hand could be classified as fraudulent. It should be noted that it is not possible
to constrain rings identified to be composed solely of fraudulent actors. It is
typically a business decision to either add some post-processing to reduce such
false positives or choose to live with it.

3.2 Incorporating Domain Knowledge

In e-commerce marketplaces, it is pretty likely that the customers can be con-
nected to other customers. One can create connections based on identifiers like
payments, wi-fi, etc., to behavioral aspects like similar buyers, areas, category
preferences, etc. The importance of such connections varies based on the problem
one is trying to solve. For example, behavioral relations can boost the quality
of recommendations, and identifiers can help identify swindling tendencies. Fur-
ther, in fraud rings identification, not all rings are equal. For example, for a
hyper-local marketplace, a ring of entities connected by a common device(s) is a
‘stronger’ signal compared to rings of wi-fi addresses or broad geo-locations. It
could be the opposite for a social network. It is crucial to encode this additional
domain-specific knowledge.
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Fig. 1. An illustration of fraud rings identification problem.

Adding weights and domain knowledge to the graph helps enforce graph sub-
structure by focusing on relationships that identify frauds with higher confidence
and distilling the accidental or less relevant connections. The basic assumption
is that “Not all the available information is useful or is of equal importance”.
Without weights, all the edges will have equal importance, which might increase
false positives. Weights benefit the graph algorithms by providing domain knowl-
edge information required to learn better representation from the neighborhood.
These weights are learned automatically in GCNs but are taken as inputs in
community detection. Explicitly setting weights to the edge relations provides
us control over the amount of information to be used from the neighborhood.

3.3 Other Challenges in Fraud Detection

• Concept Drift: Fraudsters are constantly inventing new M.Os leading to
the breaking of models trained on older data distributions. This phenomenon
is known as concept drift. We tackle concept drift in two ways. Firstly, several
M.O-agnostic features are employed which do not change with time, i.e., sta-
tionary attributes. Secondly, by abstracting community detection from fraud
identification discriminator.

• Scalability: With millions of customers, it is challenging to represent them in
a single graph or as multiple subgraphs. Further, it is computationally costly
and time-consuming to train graphical ML models on large graphs. We rely
on Leiden methods’ fast local move approach to detect quality communities
in much less time.
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• Cold Start: A majority of the fraud detectors depend on entities’ history or
interactions on a platform to predict fraud. However, fraudsters continually
create new accounts to commit frauds for which there will be no historical
data. This is similar to cold-start problems in recommendation systems. To
combat this, we match these new accounts with previously identified sta-
tionary attributes, linking them to a community. Since our framework tags
an entire community as fraud or not, the same label is inherited by new
accounts ‘matched’ to that community. We were thus able to uncover 20%
more frauds on a daily basis.

4 Proposed Framework

In this section, we present our community-based fraud detection framework.
Firstly, we provide an overview of the framework and its workflow. Then, we
detail the different modules involved.

4.1 Overview

The proposed framework has three modules: Graph Construction (GC), Com-
munity Detection (CD), and Downstream Task (DT). The GC module molds
the raw data into a graph representation. We then propose a way to convert a
multigraph into a homogeneous one. The CD module processes this graph and
segregates the nodes into possible rings based on their connectivity. This mod-
ule also takes in the domain knowledge in the form of edge-weights optimized
over the modularity metric. Finally, the DT module predicts communities as
fraud rings and nodes as fraudulent customers. An illustration of the proposed
framework is presented in Fig. 2.

4.2 Graph Construction

Graph Definition. We construct a graph where customers are the nodes, and
stationary attributes are the edges between them. All edge types in our graph are
undirected. Each edge type has a weight that signifies the importance of that
attribute in identifying fraud. Since we intend to use off-the-shelf community
detection algorithms which require input graphs to be homogeneous, we make
a simplifying assumption of treating our edge types as homogeneous (our nodes
are already homogeneous).

Graph Representation. A multigraph is defined as G(V,E(e, t),W (t, w)),
where

V is a set of vertices representing customers with ‖V ‖ = n,
E is the set of edges with ‖E‖ = m, each edge e having a relation type

attribute t ∈ T’ = {1, 2, . . . , T} where T’ is the set of possible edge relation
types, and



Identifying Fraud Rings Using Domain Aware Weighted Community 157

W = (w1, w2 ..., wT ) is a weight vector that maps each edge relation type
t to a weight wt. By default, all edge relation types have unit weight.

The multigraph (G) is converted into a homogeneous graph (G’), by merging
multiple edges between the same two nodes as one edge and summing the edge
weights.
G’ is defined as G’(V,E’(e,m),W ’),

where
V is the same set of vertices representing users with ‖V ‖ = n,

Fig. 2. Proposed community-based fraud detection framework.

E’ is the set of edges with ‖E’‖ = m’, each edge e having a merge set
type attribute u ∈ P(T’), power set of T’

W’ = (w’1, . . . , w’2n) is a new weight vector, where w’u is the sum of
weights of all edge types in the merge set u.

We experimented with summation, averaging, and multiplication as weight
aggregation techniques, out of which, summation worked best (as indicated by
goodness-of-fit in downstream tasks) in our experiments. Figure 3 illustrates the
conversion from a multigraph to a homogeneous graph.

4.3 Community Detection

Weighted Community Detection. In a graph, a community is defined as a
set of nodes that can be grouped together such that each set of nodes is densely
connected internally, and loosely connected with the rest of the nodes. Several
graph algorithms exist for community detection, which evolved over time from
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Fig. 3. Left: A sample multigraph representation. Edge colors and numbers represent
different edge types and their edge weights respectively. Right: The homogeneous graph
derived where edge attributes store the merged information such as edge types involved
and their weights aggregation. A simple summation of edge weights for aggregation is
illustrated here.

Newman [22], Louvain [3] to Leiden algorithm [33]. Our framework adopts the
Leiden algorithm (LDN), which builds on the Louvain algorithm. LDN employs
a three-step process for segregating communities:

1. local moving of nodes,
2. refinement of the partition, and
3. aggregation of the network based on the refined partition, using the non-

refined partition to create an initial partition for the aggregate network.

LDN supports two objective functions known as Modularity and the Constant
Potts Model (CPM). Modularity is a measure of how well a graph is partitioned
into communities. It tries to maximize the difference between the actual number
of edges in a community and the expected number of such edges and is defined
as follows:

H =
1

2m

∑

c

(
ec − γ

K2
c

2m

)

Here, ec denotes the actual number of edges in community c. K2
c

2m denotes
the expected number of edges, where Kc is the sum of the degrees of the nodes
in community c and m is the total number of edges in the network. γ is the
resolution parameter that ranges in [0, 1]. Higher resolution leads to more com-
munities, while lower resolution leads to fewer communities.

Our framework’s novelty is the inclusion of domain knowledge in commu-
nity detection. The various edge types between the customers can differ in the
information they convey with respect to a task. For example, to suggest friends
in a social graph, subscribing to a common page is likely a more important
edge than clicking on the same ad. A similar analogy applies to fraud detection
in e-commerce graphs where the edge weight of stationary attributes could be
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different. Prior domain knowledge is required to define these weights. Weighted
community detection can then exploit this domain knowledge to better segregate
a graph, compared to an unweighted or domain-agnostic method. The brute-force
way would be to take the best guesstimate and pick weights as constant values
such that order is maintained between the edges type. The problem with this
approach is that weights might not be optimal. The proposed way picks inspira-
tion from constrained optimization. We first define upper and lower bounds on
weights for each edge type. Then, we use a relative priority of edge types as con-
straints over these weights. The bounds can overlap among edge types, but esti-
mated weight combinations should follow priority constraints. For example, con-
sider two edge types with bounds as [0,10] and [5,10] respectively and edge type 1
with a lower priority than edge type 2. The set of weight combinations consid-
ered during optimization have edge type 1 weight < edge type 2 weight with
[5<6,4<8,1<10] as valid and [8<5, 9<5] as invalid example combinations.

Community Profile. Each node is represented by a set of features (F) derived
from the node’s domain behavior. Key group indicators (KGI) are a subset of F
that can be directly influenced by a group context. Community profile (CP) is
defined by the combined representation of the member node. A CP vector is an
aggregate of KGI feature values corresponding to each node in the community.
Figure 4 explains CP in a fraud reviews detection problem.

Fig. 4. Community profile

Proposed Algorithm. The CD module comprises of the below step by step
process:

1. Define weight bounds and edge type priorities for the input homogeneous
graph

2. Iteratively select combinations of weights using optimization methods like
grid search.

3. Apply weighted community detection with weights from step 2 and modular-
ity as the optimization metric
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4. Output the community separation with maximum modularity as the best
separation

5. For each community in the best separation, aggregate node features to create
a community profile

The community detection process is presented as Algorithm 1.

Algorithm 1. Domain Aware Community Detection
Input: G’ = (V, E’(e, m), W): A homogeneous graph with equal uni-weighted edge

types
Output: A mapping of each node in V to a community and a community features

vector representation for each community formed
procedure CommunityDetection(Graph G’)

max modularity ← 0
best communities seperation ← None
ub = (u1, u2, ..., ut)
lb = (l1, l2, ..., lt)
constraint = {n} #example → nr > ng & ng ≥ nr & nb = nr

weight combinations ← weight estimation(ub, lb, constraint)
for each w in weight combinations do

for each e in E’ do
E”+ = e’= sum(m,w)

end for

G”← graph(E”)
partitions ← leiden community detection(G”)
communities ← group partitions by community id(partitions)
modularity ← evaluate(communities)
if modularity > max modularity then

max modularity ← modularity
best communities separation ← communities

end if
end for

community features ← dict{community id : aggregated features}()
for community in best communities separation do

aggregated features ← vector()
for each node in community do

Aggregate individual node features within a community as required and
add the to the aggregated features vector

aggregated features ← addup node features()
community features[community id] ← aggregated features

end for
end for

return partitions, community features
end procedure
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4.4 Downstream Task

The DT module consists of a discriminator which takes node features and com-
munity profiles as inputs. In GCN-based methods, the task information is pro-
vided during the optimization process, and hence, the learned node-embeddings
are tuned to the respective M.Os/tasks. In the proposed framework, the com-
munities identified in the previous step(s) can be used across M.Os. Community
‘profile’ consists of aggregated features across all possible identified frauds. For
example, for an M.O involving order cancellations, the incidence of cancellation
in the community can be used. For M.Os around fraudulent claims, the incidence
of claims at a community level can be used. Since the communities’ profile vector
already encapsulates the incidence of various fraudulent actions, it can help in
creating a variety of lightweight discriminators with little to no future feature
engineering. For example, a simple rule like flagging all communities with inci-
dences of M.Os above a certain threshold can be employed to identify rings. This
is especially useful for emerging M.Os or when it is challenging to get labeled
data. For M.Os where sufficient labeled data is available, supervised methods
with node and community features as inputs can be used.

5 Experiments

In this section, we demonstrate the effectiveness of our framework on real-world
fraud detection problems, namely, opinion fraud and financial fraud. We also
compare and contrast the framework in unweighted and weighted variants, using
grid-search and PSO (particle swarm optimization) methods for weights estima-
tion, in addition to GCN-based and Leiden community detection. We use the
end-to-end run-time of the framework and the F1-score of the downstream task
as the comparison metrics.

Table 1. Graph statistics of reviews datasets for opinion fraud detection

Dataset #Nodes #Edges Degree Fraud percentage

Amazon 11,944 4,398,392 739.71 14.5%

Yelp 45,954 3,846,979 167.47 9.5%

Our graph ˜3.9M ˜4.9M 2.48 < 5%*

* to preserve confidentiality, we do not reveal the exact
number

5.1 Experimental Setup

Datasets. For opinion fraud detection, two open datasets are considered:
restaurant-review spam data from Yelp [27] and product-review fraud data from
Amazon [38]. Both have labels for each review/user being either fraud (spam)
or benign (genuine). Both of these datasets can be represented as multi graphs,
with one node type and multiple edge types.



162 S. Masihullah et al.

Yelp dataset has reviews as nodes and 32 handcrafted node features with the
following three relations:

1. R-U-R: links different reviews posted by the same user
2. R-S-R: links different reviews under the same product with the same star

rating
3. R-T-R: links different reviews under the same product posted in the same

month

Amazon dataset has users as nodes and 25 handcrafted node features with
the following three relations:

1. U-P-U: links different users reviewing at least one same product
2. U-S-U: links different users having at least one same star rating within one

week
3. U-V-U: links different users with top 5% mutual review text TF-IDF

similarities

For benchmarking on our internal dataset, we tackle a M.O related to cash
transactions where the graph is built on two months’ worth of cash-transacting
customers. Our graph has customers as nodes and 60 node features with our
relations (for confidentiality reasons, we cannot reveal the exact relationship
types).

As mentioned in Sect. 4.2, all datasets are converted to homogeneous graphs.
Table 1 shows the statistics.

Methods Compared. We compare our proposed methods (domain-aware,
weighted community-detection based) against GCN methods as shown in
Table 2. The baseline is an XGBoost classifier which also serves as the discrimi-
nator for all non-baseline methods.

Table 2. Methods used for ablation

Name Description Community
detection method

Input to discriminator

Baseline XGBoost - Node features

GCN Graph Convolutional Network - Node features &
Graph embeddings

DMoN Deep Modularity Network [17] Modularity-based
GCN

Node features &
Graph embeddings

UWL Unweighted community detection Leiden Node features &
Graph embeddings

OWL* Domain-aware weighted community
detection using PSO optimization

Leiden Node features &
Graph embeddings

WL* Domain-aware weighted community
detection using grid search

Leiden Node features &
Graph embeddings

* our proposals
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5.2 Experimental Settings

For GCN variants, we implemented Deep Graph Infomax [18] to learn node rep-
resentations. A GCN with 2-layer and 128-dimension embeddings was used for
comparison methods across all three datasets. For GCN-based community detec-
tion using DMoN, a 2-layer network each of 32 dimensions was trained for all
datasets. Both GCN & DMoN were trained for 100 epochs with Adam optimizer
with a learning rate of 0.001 and a dropout of 0.5. The choice of architectures for
GCN and DMoN was primarily driven by the computing resources required. In
the case of the XGBoost discriminator, hyper-parameter settings were kept the
same for all the comparison methods but were specific to the dataset. To achieve
a fair comparison, the classification threshold of the XGBoost discriminator was
adjusted so that the fraud coverage (percentage of samples tagged as fraud by a
model) was the same for all variants and equal to the dataset’s fraud percentage.
This is called the threshold-moving strategy in the literature [6].

5.3 Implementation

Graphs were constructed and maintained using networkx [11] and igraph [7]
libraries. For PSO, the global optimization variant was adopted from pyswarms
[21]. We used the Leiden implementation from igraph with default parameters.
For GCN and XGBoost implementations, Stellargraph [8] and XGBoost [5] pack-
ages were used respectively. All models were trained on an AWS m4.4xlarge CPU
instance.

Table 3. Performance comparison datasets

Comparison

method

Amazon Yelp Our graph

F1 score F1 score

Relative

improvement

Time

taken

Relative

improvement

Time

taken

Relative

improvement

in F1-score*

Time

taken

Baseline 0.8383 - 2 s 0.7751 2 s 0% 2 s

GCN 0.8423 0.48% 3.5 min 0.7958 2.67% 2.65 min 3.58% 35 min

DMoN 0.832 −0.75% 10.2 min 0.7928 2.28% 8 min −0.64% 48 min

UWL 0.8406 0.27% 8.6 s 0.8279 6.81% 2 s 2.47% 44.5 s

OWL** 0.839 0.08% 9.5 s 0.792 2.18% 2 s 2.94% 44.5 s

WL** 0.8532 1.78% 9.5 s 0.8124 4.81% 2 s 9.92% 44.5 s

* to preserve confidentiality, we only report relative improvement numbers for our
data
** our proposals

5.4 Experimental Results

Table 3 shows the F1 scores and time taken on the CPU of each dataset. As pre-
viously mentioned, the baseline method uses only node features, while the other
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methods use both node and neighborhood information. On the Amazon dataset,
only our WL method shows a pragmatically meaningful improvement (1.78%).
On the Yelp dataset, all methods handily beat the baseline, demonstrating the
usefulness of neighborhood information. Our WL method trails UWL on the Yelp
dataset. We hypothesize that this is primarily due to our limited knowledge of
Yelp’s domain which has, in turn, had a direct bearing on and affects weight
optimization and the quality of communities formed. On our dataset, DMoN
under-performs the baseline signifying that, in larger graphs, limiting the num-
ber of communities can negatively affect downstream performance. Both OWL
(+2.94%) and WL (+9.92%) outperform UWL (+2.47%), indicating the impor-
tance of domain-aware weights. Between OWL and WL, we hypothesize that
PSO was not able to optimize better by using only modularity as the objective
function and hence could not outperform the grid-search-based WL.

On the computation time front, while for smaller graphs like Amazon and
Yelp, the difference is in seconds, for larger graphs like ours with 3 M nodes,
LDN concludes in less than a minute, while GCN methods take at least half an
hour. We only used two months of data for these experiments; expanding this
horizon will have a direct bearing on graph size. Hence, we hypothesize that for
even larger graphs, training GCN will take much longer.

We also investigated the temporal stability of the communities formed. We
constructed graphs over a moving time window of two months at a weekly level.
We then compared the movements of customers’ assignments from one com-
munity to another in every iteration and found a 3–5% movement which is an
acceptable threshold for us. As previously claimed, we were also able to cre-
ate a rule-based classifier for an unseen-before M.O using the results from the
community module within a few days (as opposed to weeks/months if we had
to build models from scratch for this M.O). We were also able to change the
threshold of these rules based on changing fraud behavior with no change in the
underlying graph or community modules. This framework is currently deployed
in production, inferencing millions of transactions per day, with the graph and
community modules being updated weekly.

6 Conclusion and Future Work

In this paper, we proposed a novel end-to-end fraud detection framework to
identify fraud rings. To the best of our knowledge, this is the first attempt
at a scalable graph-based system utilizing domain knowledge as weighted edge
priorities in Leiden community detection. Experiments were conducted on large-
scale open and internal fraud datasets demonstrating the effectiveness of the
proposed framework using F1 score and CPU run-times.

As an extension, we plan to experiment with different objective functions
and strategies that can potentially outperform grid searching. On the commu-
nity detection front, we want to explore how we can extend this work to handle
overlapping communities. Our current implementation uses stationary attributes
for edges. Given the dynamic nature of fraud, it is important to explore ways
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to incorporate non-stationary attributes, which can potentially help make detec-
tions resistant to changing fraud patterns. In this work, we also made the simpli-
fying assumption of converting heterogeneous graphs into homogeneous ones. We
would like to explore if there are additional benefits to be derived by researching
ways to directly use heterogeneous graphs instead.
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