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1 Introduction

Cellular automata (CA) are discrete dynamical systems introduced by Von Neumann
and Ulam, in the late 1940s [1]. Since then many applications in natural sciences and
mathematics were developed, for example, in fluid dynamics with lattice Boltzmann
methods [2, 3], fluids in heterogeneous porous media [4], in genetics [7], dune
dynamics [5], spatial pattern formation [6], and many others [8]. Cellular automata
can be seen as an idealization of a physical system in which space, time, and
certain physical quantities take a finite set of values. Cellular automata provide
simple models of complex systems showing that collective complex behavior can
emerge from the composition or interaction of simple components. Even if the local
interactions are perfectly described in a direct manner, it is possible that the global
behavior of a system obeys unexpected patterns. This fact makes CA suitable to
model and simulate non-equilibrium systems. In the 1980s, Wolfram [9, 10] gave
a classification of cellular automata which produces an intuitive way to distinguish
the dynamical behavior of cellular automata in four distinct classes, accordingly:
Class 1: almost every initial conditions produce an eventually fixed point behavior.
Class 2: almost every initial conditions produce an eventually periodic behavior.
Class 3: almost every initial conditions produce a pseudo-random behavior. Class
4: almost every initial conditions produce a complex behavior articulating regular
patterns with structured non-periodic geometric patterns.
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A very detailed comparison of the CA methods, for practical fluid-dynamics
problems, with conventional methods from numerical analysis is explained in [11],
in particular, with details from a computational point of view, considering memory
usage, computational time, and other characteristics.

Nevertheless, most of the interest in the use of cellular automata focuses on non-
equilibrium fluids or fluids composed with different phases, in which the differential
equations are hard to implement.

In [12] were introduced and discussed several techniques to explore evolutionary
dynamics of the automata space, using biologically motivated concepts. In partic-
ular, specific genetic algorithms and techniques such as mutation, assembly, and
recombination of CA. In that context the code rule of a CA was called the genotype,
and the diverse characteristics of generic CA realizations were called phenotype.
Here, these denominations are changed and adapted to the present context. The
advantage of evolutionary methods is to efficiently obtain CA rules with specific
characteristics. Previous work on evolutionary search over cellular automata can be
found also in [13, 14].

In this paper are presented techniques for modeling systems, seen as idealized
fluids, where may coexist distinct substances in diverse phases. These techniques,
using cellular automata, are suitable to simulate transient, non-equilibrium behavior
in fluid mechanics or other phenomena, such as fracture dynamics on heterogeneous
materials.

Our main result is the development of the assembly method, introduced in [12],
to determine CA code rules of increasing complex behavior. This means that the
systems present an increasing number of distinct behavior and spatial-temporal
patterns. A canonical process of assembling two CA rules is defined. This method
allows the study of the singular perturbation of a complex fluid and the study of
the interaction between two similar fluids subject to instabilities, leading to global
phase transitions.

In Sect. 2 the notions and concepts used in the paper regarding cellular automata
are introduced, in particular those notions from [12], such as the singular pertur-
bation, assembly, and the canonical assembly. The basic CA rule 3E6IGS58S,
which is used in the simulations, is also defined. In Sect. 3, the computation of the
canonical assembly of the CA rule 3E6IGS58S, its variations, and the simulations
of its perturbations are presented.

2 Preliminaries and Definitions

Some notions regarding one dimension cellular automata are here introduced. Let
Zn = {0, 1, 2, . . . , n − 1}, n > 0, be the local state space. Let φ : Zm

n → Zn be
a map, which determines the local dynamics of the system and is called local map
or CA rule. An element in Z

m
n , i.e., a word or a block of size m in the alphabet Zn,

is called a local configuration. The map φ induces a block map φk , k ∈ N, which
transforms words in Zn, of size m + k, into words of size k, through
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φk : Zm+k
n → Z

k
n,

φk (x1 . . . xm+k) := φ (x1 . . . xm) φ (x1 . . . xm) . . . φ (x1 . . . xm) .

There is a natural identification of φ1 with φ. To simplify the exposition, consider m

to be an odd number so that m = 2r + 1, for a certain natural number r . The global
map is then defined by

� : ZI
n → Z

I
n,

� (x) := (
φ

(
x[j−r,j+r]

))
j∈I ,

where I can be Z, N or a finite set ZL = {1, 2, . . . , L}. A cellular automaton is
the specification of the number of local states n, the size of the local configuration
m, the local map or CA rule φ, the configuration space or global state space I,
and if needed, the boundary conditions which depend naturally on I and m. The
time evolution of the system is given by the iteration of the map �, given an initial
condition x (0) = (xi (0))i∈I ∈ Z

I
n,

x (t + 1) = �(x (t)) , t ≥ 0,
x (0) = (xi (0))i∈I ∈ Z

I
n.

The parameter m = 2r + 1 gives the dependence of each state, in the next time
instant on the states of the neighbor cells, r cells to the left and r cells to the right.
In the case I isN or a finite set, it is necessary to specify boundary conditions, on the
left in the first case and both left and right in the second case. For convenience, [j ]n
denote the n-expansion of the natural number j , that is, j in base n. By convention,
the number of digits in [j ]n is fixed and equal to nm. That is, if [j ]n = j1 . . . jr then

j = j1 × nr−1 + j2 × nr−2 + · · · + jr−1 × n1 + jr × n0.

On the other hand, a word j1 . . . jr , in Zr
n with r ≥ 1, can be seen as a representation

of a natural number j ∈ N, in base n, denoted by 〈j1 . . . jr 〉n ∈ N. With this notation

j1 . . . jr ∈ Z
r
n → 〈j1 . . . jr 〉n = j ∈ N,

j ∈ N → [j ]n = j1 . . . jr ∈ Z
r
n.

Once fixed the value m and the configuration space I (and eventually the
boundary condition), a cellular automaton is completely characterized specifying
a sequence α = (α1, . . . , αnm) ∈ Z

nm

n corresponding to the sequence of the images
of every local configuration under φ. This sequence is called CA code rule and is a
functional representation of the CA, that is, a particular symbol in a certain position
in the referred sequence has a functional meaning. The position j in the sequence α
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gives a configuration which is the n-expansion of the integer (j − 1) and the value
αj is the image of that configuration under the rule φ, that is, αj = φ [j − 1]n.
Therefore, the CA code rule is

α = (
φ [j − 1]n

)nm

j=1 .

A more compact way to give a particular CA code rule is to use the Wolfram
numbering. The CA code rule is seen as the expansion in base n of a certain number
which when converted to decimal is designated as the Wolfram number of the CA
code rule. If n < 10 the number of digits of the Wolfram number is less than the
number of digits corresponding to the original CA code rule; therefore it is a more
compact way of specifying the CA rule. An even more compact form is to use
hexadecimal base (if the number of states is less than 16), or a larger base number.
Since we deal with very large CA-code rules, we will use base 32-expansion to
represent the CA code rules in compact way. The base 32, similarly to base 16, uses
the digit set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F,G,H, I, J,K,L,M,N,O,P,Q,R, S, T ,U, V }.

As an illustrative example consider the CA code rule 01110110 which determines
the local map

000
0

001
1

010
1

011
1

100
0

101
1

110
1

111
0

The sequence 01110110 represents a number in binary. The corresponding number
in decimal base is 110 = 0×20+1×21+1×22+1×23+0×24+1×25+1×26+0×27

(note the reversed order). In hexadecimal the rule 110 is designated by 6E, and in
base 32 is 3E. See Figs. 1 and 2.

To resume, a CA code rule will be a sequence α = α1α2 . . . αnm ∈ Z
nm

n , with
n ∈ N. The space of the CA code rules is denoted by G. The space of CA code rules
which have n different symbols is denoted by Gn, and the space of CA code rules
which have n different symbols and with neighbor number equal to m is denoted by
Gn,m.

The cellular automaton which is central in this work is a 3-state rule, with m = 3
and I = ZL, for a certain natural L. The CA code rule is

Fig. 1 Explicit CA code rule 110, in Wolfram numbering
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Fig. 2 Example of a
realization of the automaton
rule 110

α = 202000211011010222222101111.

The local map in Z3 = {0, 1, 2}, is then defined by

000
↓
2

001
↓
0

002
↓
2

010
↓
0

011
↓
0

012
↓
0

020
↓
2

021
↓
1

022
↓
1

100
↓
0

101
↓
1

102
↓
1

110
↓
0

111
↓
1

112
↓
0

120
↓
2

121
↓
2

122
↓
2

200
↓
2

201
↓
2

202
↓
2

210
↓
1

211
↓
0

212
↓
1

220
↓
1

221
↓
1

222
↓
1

The corresponding natural number (in decimal base), Wolfram number, is

3786635351324 = 2 × 30 + 0 × 31 + 2 × 32 + 0 × 33 + 0 × 34 + 0 × 35

+ 2 × 36 + 1 × 37 + 1 × 38 + 0 × 39 + 1 × 310 + 1 × 311

+ 0 × 312 + 1 × 313 + 0 × 314 + 2 × 315 + 2 × 316 + 2 × 317

+ 2 × 318 + 2 × 319 + 2 × 320 + 1 × 321 + 0 × 322 + 1 × 323

+ 1 × 324 + 1 × 325 + 1 × 326.
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Fig. 3 Realization of CA
rule 3E6IGS58S, with
random initial conditions

Note that the same number in base 2 is the CA code rule in reversed order, that is,

111101222222010110112000202binary = 3786635351324decimal .

In a more compact description, its hexadecimal representation is 371A50E151C
and in 32-base is 3E6IGS58S. This last representation will be chosen to refer the
CA rule, since it is shorter. In Fig. 3 we present an example of a realization with
initial global state given by a random vector x0 ∈ Z

150
3 .

2.1 Singular Perturbation and Pattern Stability

A singular perturbation of the CA rule is a transformation in a single symbol of the
CA code rule, and it is the simplest possible transformation defined on the rule space
Gn,m. This perturbation can be generated randomly or generated by a deterministic
process. To give a singular perturbation, it is necessary to specify the position in
the CA code rule where the mutation is to occur and how it occurs. Recall that a
position j in the sequence α gives a configuration which is the n−expansion of the
integer (j − 1), that is, [j − 1]n, (00 . . . 00 is the configuration of the position 1),
and the value αj is the image of the configuration under the automaton φ, that is,
αj = φ [j − 1]n, j = 1, . . . , nm.

Now, consider the stability of the patterns produced by time evolution of an initial
condition, with respect to singular perturbation. There are several cellular automata
which are very robust under singular perturbation, regarding the geometric structure
of the patterns produced, and others very sensitive. However, some CA are robust to
singular perturbation in some positions and in other positions are strongly sensitive.
As an example of this phenomena, see the Figs. 4, 5, 6, 7, and 8. The same CA code
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Fig. 4 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

rule 3E6IGS58S is singularly perturbed in different positions, and for each case a
realization of the CA is obtained, with random initial conditions. The realizations
show the similarity of some of the mutated CA codes and the drastic changes in
others.

2.2 Assembly of CA Code Rules

Next, it is described the assembly technique which produces CA rules obtained from
two given CA rules. The assembled CA rule inherits several characteristics from the
original rules; in particular, it maintains the original CA as subcases for special
initial conditions. Let α = α1 . . . αpm ∈ Gp,m and β = β1 . . . βqm ∈ Gq,m be two
CA code rules with p, q,m ∈ N. The alphabet underlying Gp,m is, as usual Zp, and
for Gq,m is Zq . The assembly of α with β is a general procedure which gives a class
of CA code rules in the space Gn,m, where n = p + q.

The first p symbols of Zn are reserved to codify the rule α and the last q symbols
of Zn to codify the rule β, using the correspondence
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Fig. 5 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23, with random initial conditions

Zp

↓
Zn

0 . . . p − 1
↓ ↓
0 . . . p − 1

and
Zq

↓
Zn

0 . . . q − 1
↓ ↓
p . . . p + q

Denote the correspondencê : Zq → {p, . . . , p + q} ⊂ Zn and the reversed
correspondence˜ : {p, . . . , p + q} → Zq . Note that̂can be seen as adding p to
each symbol if each symbol is seen as a natural number. For each local configuration
i1 . . . im ∈ Z

m
p , corresponding to the CA code rule α ∈ Gp,m, it is associated

the same configuration (with the same symbols) in Z
m
n . To each configuration

j1 . . . jm ∈ Z
m
q , corresponding to the CA code rule β ∈ Gq,m it is associated the

configuration ĵ1 . . . ĵm in Z
m
n . This gives a large number of degrees of freedom

to choose the image of the local map associated with configurations which mix
symbols from {0, . . . , p − 1} and {p, . . . , p + q}. This means that there are many
different CA code rules arising from assembly of two specific CA code rules α, β,.

Let φα ,φβ , φγ denote the local rules for each CA code rule α, β, γ . Then γ is a
CA code rule assembly of α, β if the following property is Satisfied:

x1 . . . xm ∈ {0, . . . , p − 1}m ⇒ φγ (x1 . . . xm) = φα (x1 . . . xm) ,

x1 . . . xm ∈ {p, . . . , p + q}m ⇒ φγ (x1 . . . xm) = φβ (̃x1 . . . x̃m) .
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Fig. 6 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

The local configurations for φγ with digits exclusively from {0, . . . , p − 1} or
exclusively {p, . . . , p + q} are called pure local configurations; the local configura-
tions mixing digits from {0, . . . , p − 1} and {p, . . . , p + q} are called mixed local
configurations. The images under φγ of pure local configurations in {0, . . . , p − 1}
are determined by φα , and the images under φγ of pure local configurations
in {p, . . . , p + q} are determined by φβ . The images under φγ of the mixed
configurations are not determined by α, β. Therefore, must be as external parameters
or degrees of freedom. As an example, consider the CA code rules α ∈ G2,3, rule
18, and β ∈ G2,3, rule 110, given by

α = 01001000 and β = 01110110.

The second CA code rule, β, is transformed via 0 → 0̂ = 2 and 1 → 1̂ = 3 into

β̂ = 23332332.

Note that the cellular automata β and β̂ are equivalent, although the symbols are
distinct; therefore, the two automata are identified β ←→ β̂.
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Fig. 7 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

Consider a CA code rule γ ∈ G4,3 obtained by assembly of α and β. Therefore,
corresponds to a cellular automaton that when restricted to initial conditions (and
boundary conditions) with states 0, 1 will reproduce the exact patterns of α and
when restricted to initial conditions (and eventual boundary conditions) with states
3, 4 will reproduce the patterns of β (up to the transformation 0 → 3, 1 → 4). A
CA code rule γ satisfying this property is called the assembly of α and β. There
are many different CA code rules arising from assembly. The local map in Z4 =
{0, 1, 2, 3}, for a rule γ ∈ G4,3, assembly of α and β has the following structure:

000
↓

γ1 = α1

001
↓

γ2 = α2

002
↓
γ3

003
↓
γ4

010
↓

γ5 = α3

011
↓

γ6 = α4

012
↓
γ7

013
↓
γ8

020
↓
γ9

021
↓

γ10

022
↓

γ11

023
↓

γ12

030
↓

γ13

031
↓

γ14

032
↓

γ15

033
↓

γ16
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Fig. 8 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

100
↓

γ17 = α5

101
↓

γ18 = α6

102
↓

γ19

103
↓

γ20

110
↓

γ21 = α7

111
↓

γ22 = α8

112
↓

γ23

113
↓

γ24

120
↓

γ25

121
↓

γ26

122
↓

γ27

123
↓

γ28

130
↓

γ29

131
↓

γ30

132
↓

γ31

133
↓

γ32

200
↓

γ33

201
↓

γ34

202
↓

γ35

203
↓

γ36

210
↓

γ371

211
↓

γ38

212
↓

γ39

213
↓

γ40

220
↓

γ41

221
↓

γ42

222
↓

γ43 = β̂1

223
↓

γ44 = β̂2

230
↓

γ45

231
↓

γ46

232
↓

γ47 = β̂3

233
↓

γ48 = β̂4
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Fig. 9 Distinct assembly of rule 18 with rule 110: (a) Realization for γ (1). (b) Realization for
γ (2). (c) Realization for γ (3)

300
↓

γ49

301
↓

γ50

302
↓

γ51

303
↓

γ52

310
↓

γ53

311
↓

γ54

312
↓

γ55

313
↓

γ56

320
↓

γ57

321
↓

γ58

322
↓

γ59 = β̂5

323
↓

γ60 = β̂6

330
↓

γ61

331
↓

γ62

332
↓

γ63 = β̂7

333
↓

γ64 = β̂8

In Fig. 9 are shown three realizations of distinct CA-rules in G4,3 arising from
the assembly of α and β. From left to right are denoted by γ (1), γ (2), and
γ (3). The initial conditions are composed by two segments with random initial
conditions from {0, 1}, and the middle segment is generated randomly from {2, 3}.
The difference between the rules γ (1), γ (2) and γ (3) are that for γ (1) the values of
the rule for mixed local configurations are taken randomly only from {0, 1} which
means that the patterns arising from α dominate. For γ (2) the values of the rule
for mixed local configurations are taken randomly only from {2, 3} which means
that the patterns arising from β dominate. Finally, for γ (3) the values of the rule
for mixed local configurations are taken randomly only from {0, 1, 2, 3} with equal
probability, which means that the initial patterns arising from α and β mix and
interact along the time flow.

The examples shown in Fig. 9, with α = 01001000 and β = 01110110,
correspond to

γ (1) = 0112001120110101101100200111012000101000022311331001101202232132,

with a majority of states for mixed configurations taken randomly from {0, 1},
γ (2) = 0122001322123301103200332232312232321203022331331203321232232132,
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with a majority of states for mixed configurations taken randomly from {2, 3},
γ (3) = 0132003130120123101100230113312000201000022313331023103232232132,

with an equilibrium of states for mixed configurations taken randomly with
probability 1/2 from {0, 1} and {2, 3}.

2.3 Canonical Assembly of a CA Rule

Consider now a process to assembly two copies of the same CA rule. In this case,
it is possible to turn the assembly uniquely determined, that is, not depending on
externally given parameters. Therefore, this process is called canonical assembly.
The canonical assembly can be viewed as the embedding of a particular system
in a larger one containing two copies of the original system. This process is
particularly important if it is necessary to model a system in non-equilibrium
which is transforming and exhibiting new patterns of behavior although maintaining
others. This can be achieved allowing singular perturbations after a canonical
assembly, as it is seen in the next section.

Let α ∈ Gp,m and n = 2p. Consider the state transformations

̂: Zn → Zn and ˜: Zn → Zn,

with

0̂ = p, 1̂ = p+1, . . . , p̂ − 1 = 2p−1, p̂ = p, p̂ + 1 = p+1, . . . , 2̂p − 1 = 2p−1,

and

0̃ = 0, 1̃ = 1, . . . , p̃ − 1 = p − 1, p̃ = 0, p̃ + 1 = 1, . . . , 2̃p − 1 = p − 1.

Note that Ẑn = {p, p + 1, . . . , 2p − 1} and Z̃n = Zp = {0, 1, . . . , p − 1}.
Moreover, ˜̂x = x and ̂̃x = x.

Let NX (i1i2 . . . im) be the number of digits in i1i2 . . . im belonging to a certain
subset X ⊂ Zn. Let

χ (i1i2 . . . im) =
{
0 if NZp (i1i2 . . . im) > r,

1 if NZp (i1i2 . . . im) ≤ r.

Recall that r = m/2 − 1. The condition above simply determines if the number
of digits in i1i2 . . . im belonging to Zp is larger than the number of digits in
{p, p + 1, . . . , n − 1}, with n = 2p. Then the canonical assembly of α produces
a CA code rule γ = (γk)k=1,...nm with
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γ〈i1...im〉n =
{

α〈̃i1...̃im〉p
if χ (i1i2 . . . im) = 0,

β〈̃i1...̃im〉p
if χ (i1i2 . . . im) = 1.

where β = α̂ = (̂αk)k=1,...,pm . Recall that 〈i1 . . . im〉n is the position number
associated to the local configuration i1 . . . im in base n. The number

〈̃
i1 . . . ĩmp

〉
is the

position number associated with the local configuration ĩ1 . . . ĩm in base p, since the
transformation˜sends Zn to Zp. The canonical assembly produces a CA rule which
in practical terms, reproduces two copies of the same CA with the duplication of the
number of states.

3 Case Study: Rule 3E6IGS58S

The CA rule 3E6IGS58S (see Fig. 3) is seen as an idealized fluid where two
substances which do not mix easily and two different phases of one of the substances
are in unstable equilibrium. The states 0, 1 (lighter colors) are seen as the same
substance in a different phase, and the state 2 (darker color) is a different substance.
This phenomenon reflects on the persistency of the local state 2 in refined geometric
structures and on the interaction between states 0, 1 which interchanges in a
complex way.

Through the general process of the canonical assembly applied to the CA rule
3E6IGS58S, it is obtained a CA rule which models a system composed of two
fluids of the same type. Moreover, the perturbation of the CA rule leads to complex
behavior, where the realizations of the CA rule present the patterns of the original
fluids and the patterns arising from the perturbation. In particular, the singular
perturbations considered in Sect. 2.1, for the individual fluid, are applied.

3.1 Canonical Assembly of Rule 3E6IGS58S

Let p = 3, consider the 3-state CA rule 3E6IGS58S, given by

α = 202000211011010222222101111,

and let

β = α̂ = 535333544344343555555434444,

which is obtained from α adding 3 to each symbol, as explained in the assembly
section. Now, consider the canonical assembly of α, with

0̂ = 2, 1̂ = 3, 2̂ = 5, 3̂ = 3, 4̂ = 4, 5̂ = 5,
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Fig. 10 Realization for the
canonical assembly of the
rule with structured initial
conditions: three segments
randomly generated from
{0, 1, 2}, from {3, 4, 5}, and
again from {0, 1, 2}. Random
initial conditions

and

0̃ = 0, 1̃ = 1, 2̃ = 2, 3̃ = 0, 4̃ = 1, 5̃ = 2.

The CA code rule is, represented in base 32,

8598OE44A81JS1KVBGVUQ5KDRJ7UP0JUBPL9CBFFBDIPFH1669SA00CU2

. . .MLT0B3AI26QSATJCN6LO7PKRTSIC2QFB180IQJTCQAFIUC6CEOSMSRI.

In Fig. 10 is shown a realization of the canonical assembly of the rule, exhibiting
the coexistence of the two fluids in similar regimes.

3.2 Perturbations of the Canonical Assembly

In Fig. 11 it is shown the singular perturbations of the canonical assembly of
the CA rule 3E6IGS58S in which there is a singular perturbation in the local
configurations: 333, 5 �→ 4, 544, 3 �→ 4, 554, 4 �→ 3, showing the coexistence
of the patterns of the original fluid and the patterns arising from the perturbed CA,
from Sect. 2.1, Figs. 4, 5, and 6.

Finally, consider the assembly of two CA code rules with randomly chosen val-
ues for the mixed configurations. In this case, the original patterns are maintained,
as long as the initial condition is restricted to pure local configuration states. If the
initial conditions mix states, then there is a complex interaction between the two
fluids and the patterns arising from the original CA.

This method produces CA rules which have unstable equilibrium between the
two coexisting fluids as is shown in Fig. 12.
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Fig. 11 (a) Perturbation of the canonical assembly of rule on the local configuration 333 as in the
figure (in this case local configuration 000). (b) Perturbation of the canonical assembly of rule on
the local configuration 544 as in the figure (in this case local configuration 211). (c) Perturbation
of the canonical assembly of rule on the local configuration 554 as in the figure (in this case local
configuration 221

Fig. 12 (a) Realization for γ4, with structured initial conditions: three segments randomly
generated from {0, 1, 2}, from {3, 4, 5}, and again from {0, 1, 2}. (b) Realization for γ5, random
initial conditions

4 Conclusions and Further Developments

In the present paper techniques are developed for modeling idealized fluids where
coexist distinct substances in different phases. These techniques, based on cellular
automata, are appropriate to simulate transient and non-equilibrium behavior in fluid
mechanics. The main result is the development of the canonical assembly method
which allows the determination of CA code rules with complex behavior, obtained
from given initial CA rules. The systems subject to assembly present an increasing
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number of distinct behavior and spatial-temporal patterns, maintaining, for certain
initial conditions, the original patterns. Several families of CA, associated with
idealized fluid substances, are considered. The canonical assembly method allows
the study of small perturbations of a complex fluid and the study of the interaction
between two similar fluids subject to instabilities. It is clear that the instabilities
depend on the particular rules. The considered rules are sensitive to certain singular
perturbations and not to other. The systematic study of the perturbations of these
rules will be considered in future work, aiming a complete classification of its
behavior.
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