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In loving memory of our dear friend
and colleague Bong Jae Chung.

April 1, 1967–February 12, 2021



Preface

This book brings together current scholarship in the area of mechanics and its
applications to various branches of mathematics, science, and engineering, specif-
ically around themes of computation and modeling in fluid mechanics, in honor
of our dear friend and colleague, Dr. Bong Jae Chung, a computational scientist
who passed away on February 12, 2021. Bong Jae or Chung, as he was often
referred to by his friends, was born in Daegu, South Korea, where he completed
his undergraduate degree in physics at Kyung Hee University. He came to the
United States in 1994 as a graduate student. After a brief stint in Georgia, he
moved to Pittsburgh for his master’s degree and eventually graduated from the
University of Pittsburgh in 2004 with a PhD in mechanical engineering under the
guidance of Professor Anne Robertson. He worked for several years as a postdoc and
research professor at various universities including Johns Hopkins University (with
Prof. Aleksander Popel), the University of North Carolina Chapel Hill (with Profs.
Richard McLaughlin, Roberto Camassa, and Alberto Scotti), and George Mason
University (with Prof. Juan Cebral) before securing a tenure track position in the
Department of Mathematical Sciences and Department of Applied Mathematics &
Statistics at Montclair State University, New Jersey, where he was employed for a
little more than three years before his untimely passing.

Bong Jae was a prolific researcher with diverse interests ranging from prob-
lems of classical fluid mechanics, flows pertaining cerebral aneurysms, protein
aggregation modeling, vortex-induced vibrations, and pattern formation in fluids
to non-equilibrium thermodynamics. More recently, he had started working on
modeling problems related to drug delivery, a topic on which his student Nicholas
Jeffoupolous wrote a master’s thesis1. Bong Jae also had a keen interest in
experimental work having spent several months as a postdoc with Prof. George
Klinzing in the Department of Chemical Engineering at the University of Pittsburgh,
where he participated in the experiments related to pneumatic conveying, and also
at the fluid dynamics laboratory at UNC Chapel-Hill, where he was part of the

1 You can find his article with Bong Jae on this topic in Chap. 14
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team studying vortex-induced vibrations. Bong Jae was an essential member of
the Complex Fluids Laboratory at Montclair State University and was looking
forward to getting involved in a variety of experiments and using our particle image
velocimetry system to better understand wake vortex dynamics, which he was also
modeling numerically.

This volume contains work by scholars from several countries who are experts in
the different areas of theoretical and computational fluid mechanics and other areas
of science in which Bong Jae shared keen interest. Many of the contributions here
are by his mentors, friends, and collaborators and also scholars he wanted to work
with in the future. To the extent possible, we have taken care to prepare the articles so
that they are accessible and relevant not only to other researchers but also to graduate
students, postdocs, and those wanting to pursue new lines of research in these areas
of mechanics. For this reason, the papers have been prepared in a semi-tutorial style,
where possible. While scholarship in the area of Fluid Structure Interaction (FSI)
has been gaining ground, especially with developments in computational techniques
and technology, most books in this area are restricted to very specific topics. The
particular novelty and interesting aspect of this book lies in its interdisciplinarity,
with contributions from mathematicians, physicists, mechanical and biomechanical
engineers, and even psychologists, all bringing new perspectives to the study of
mechanics.

This book is truly an eclectic mix of articles on various themes. We have therefore
decided to organize the book into four thematic parts: (1) Theory, (2) Computations,
(3) Experiments, and (4) Applications. In some cases where the papers fall in
multiple categories, we have tried to assign them to a part we feel it best represents.

Part I on theoretical fluid mechanics consists of four papers which range
from mathematical (existence of solutions) issues for fluids (Chap. 1: Berselli and
Růžička) and fluid solid systems (Chap. 3: Galdi) to modeling the physics of
fluids (Chap. 2: Carapau, Correia and Areias; Chap. 4: Camassa, Ding, McLaughlin,
Overman, Parker, and Vaidya).2 Part II on CFD and numerical methods features
six papers. The first of these (Chap. 5: Bodnár, Keslerová, and Lancmanová) on the
numerical methods for flow in branching channels was a repeating theme in much of
Bong Jae’s computational biomechanics work. Other papers in this part are focused
on Galerkin methods in problems of plasticity (Chap. 6: Areias, Carapau, Lopes,
and Rabczuk) and novel uses of modern computational techniques in mechanics
such as use of machine learning techniques to understand emergence of patterns
in kinetic models related to protein aggregation (Chap. 7: Pateras, Vaidya, and
Ghosh), reduced order modeling (Chap. 8: Snyder, Mou, Liu, San, De Vita, and
Iliescu ), numerical issues in the modeling of viscoelastic fluid flows (Chap. 9: Pires
and Bodnár), and cellular automata modeling of complex fluids (Chap. 10: Ramos,
Carapau, and Correia). Part III on experiments includes two papers. The first of these

2 It is worth mentioning that Bong Jae was very interested in the problem discussed in (Chap. 4)
which was initiated by the authors during his postdoctoral days at UNC-CH in 2008–2009; he even
helped with debugging the initial codes written for this work.
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is on the thermomechanics of self-organization in dissipative systems (Chap. 11:
De Bari and Dixon) on which Bong Jae had previously published and wished to
contribute more to in the coming years. The second paper in this part is devoted
to the use of vortex-induced vibrations towards hydrokinetic energy generation
(Chap. 12: Wulandana and Haque), which was one of his primary research interests.
In fact, a significant part of his computational effort after his arrival in New Jersey
was devoted to development of numerical methods to study fluid-solid interactions,
specifically vortex-induced oscillations. Part IV on applications of fluid mechanics
covers areas of deep interest to Bong Jae including drug delivery (Chap. 13: Azhdari,
Emami, and Ferreira; Chap. 14: Jefopolous and Chung ), carbon sequestration
(Chap. 15: Phouc and Massoudi), and Ocular flow (Chap. 16: Chung, Martinez,
and Vaidya). Two of these chapters feature articles by Chung and his past students
Brandon and Nicholas (Chaps. 14 and 16).

It is certainly worth mentioning that a special issue of this kind is rare. Such honor
is reserved for the ”generals” of science not ”foot soldiers”. A commonly held view
among scientists, whose essential sentiment is even expressed by the likes of David
Bohm, is captured in the following statement:3

In the whole of human history, perhaps only a few people have achieved it
[creativity]. Most of the rest of human action has been relatively mediocre, though
it is interlaced with flashes of penetrating insight that help raise it above the level
of mere humdrum.

We respectfully reject this viewpoint and the overarching hierarchical value
system that it imposes on scientific contributions. It is being slowly recognized that
creativity happens at all levels, and while we all admire and rely on the paradigm
shifting, “wall-breaking” efforts to eliminate barriers to knowledge, there are those
who do the same, one brick at a time. Their efforts are no less valuable, and
collectively taken, such efforts are essential for the next great scientific transforma-
tion. When sincere and consistent, such work also deserves acknowledgment. I am
therefore deeply appreciative of all colleagues who have volunteered to contribute
to and supported this volume, in honor of a soldier of science; they remind us that
knowledge seeking is a collective effort and every contribution has merit, much of
it yet unforeseen.

We convey special thanks to Professor Giovanni Paolo Galdi for his help and
encouragement in getting the book published in this series and to Professor Anne
Robertson, Bong Jae’s PhD advisor and collaborator, for her encouragement and
commitment to this project. Bong Jae expressed deep admiration for all his teachers
and mentors and was deeply influenced by them, especially Dr. Robertson. On
his behalf, we would therefore like to thank all his mentors, including Dr. Alek-
sander Popel (Biomedical Engineering, Johns Hopkins), Dr. Richard McLaughlin
(Mathematics, UNC-Chapel Hill), Dr. Alberto Scotti (Marine Sciences, UNC-
Chapel Hill), Dr. Roberto Camassa (Mathematics, UNC-Chapel Hill), and Dr. Juan
Cebral (Biomedical Engineering, George Mason) for their mentorship and for the

3 Bohm, D. (2004) On Creativity, editor Lee Nichol. London: Routledge.
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intellectual stimulation they provided. We also thank Bong Jae’s students Nicholas
and Brandon, both of whom lost a mentor midway through their thesis project and
yet persisted in completing the work and are featured in this book. We acknowledge
the help and support of Mr. Chris Eder and Ms. Saveetha Balasubramaniam at
Birskhauser-Springer for helping us see this volume through and for making this
such a smooth process for us.

Montclair, NJ, USA Ashwin Vaidya
Évora, Portugal Fernando Carapau
June 2022



Personal Memories and Tributes

I feel fortunate to have served as Dr. Bong Jae Chung’s doctoral advisor, and
therefore had the opportunity to get to know him personally, watch him grow
intellectually, share the joy of immersing in shared research on fluid and solid
mechanics, experience his genuine kindness and see the happiness he drew from his
wife and dear friends. Bong Jae was my second doctoral student. I first met him in
the early stages of his graduate studies at the University of Pittsburgh as a member of
his Masters’ thesis committee. His research focused on the numerical study of freely
moving bubbles in a stirred column. I was impressed by Bong Jae’s determination to
deeply understand this difficult topic and, with his advisor, Dr. Hwang’s agreement,
recruited him to my research group for his doctoral studies. One of the things that
stood out to me even at that time, was his great love of learning and discovery. He
was clever, determined, and ready to take on new and difficult topics.

Dr. Chung’s doctoral research covered challenging topics involving theoretical
and computational studies of cerebral aneurysms. His initial computational work
evaluated flow in arterial bifurcations, where cerebral aneurysms are typically
found. He built on these results to design, for the first time, an in vitro flow
chamber to expose endothelial cells to the same wall shear stress field found at
the apices of cerebral bifurcations. While most of his research and coursework was
fluid mechanics, during the last year of his doctoral work, we began discussing
possible ways of improving existing arterial wall models. Despite the fact that his
background in solid mechanics was limited, he independently learned the material
in the advanced graduate text, Theoretical Elasticity, by Green and Zerna. He then
moved on to use this knowledge to apply the theory of small on large elastic
deformations to the arterial system, for the first time. As a postdoctoral researcher
at George Mason University, Dr. Chung had an extremely productive collaboration
with Dr. Juan Cebral, one of the top computational biofluid dynamicists. This work
led to important publications in the field of cerebral aneurysms, including Bong
Jae’s first author review article in the Annals of Biomedical Engineering, CFD for
evaluation and treatment planning of aneurysms: review of proposed clinical uses
and their challenges. It was a pleasure to continue to work with Bong Jae through
joint research with Juan and Bong Jae on cerebral aneurysms.

xi
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Bong Jae maintained his focus on learning and developing new knowledge
through all the different chapters of his life, while persistently working toward his
goal of being a professor. His wife, Kelly Yoo, fondly described their shared love
of camping and that on these trips, “he always had his back pack full with heavy
books, research notes and computer.” Like the rest of us, she appreciated Bong Jae’s
thirst for learning and sharing knowledge with others. Bong Jae will live on in all of
our memories with love and deep respect.

Pittsburgh, PA, USA Anne M. Robertson

Chung and I were dear friends and close collaborators for nearly 24 years so
this is a deep personal loss. We studied together and graduated a few days apart.
We were most fortuitous to even share part of our postdoctoral experience at the
University of North Carolina—Chapel Hill together and thought it miraculous that
we would end up as faculty members in the same university. I have fond memories
of our working deep into the night, engaging in exciting scientific and philosophical
discussions and making elaborate future plans for exciting projects.

Chung was dedicated to his work and very passionate about it. He was extremely
prolific, the rate and diversity of his contributions, especially in the last decade of
his life are impressive (see the following pages for a full list of his publications).
However, to him, his research and even teaching were not about achievements or
reputation—it stemmed from a sincere joy of learning and sharing his knowledge
with others. In his friendships also, he was about filling moments together with
laughter and love; it did not matter what he was doing with his friends it was about
making the interaction memorable. In all his encounters, he was about listening,
not talking; about compassion, forgiveness and seeking the best in others. I greatly
admired and appreciated his wisdom of kindness and simplicity. There are a great
many reasons to mourn the loss of a friend and colleague, but we see this volume as
a celebration of a humble, thoughtful, and passionate scientific life.

Montclair, NJ, USA Ashwin Vaidya

In September 2000 I started my PhD work at the Department of Mechanical
Engineering and Materials Science, Pittsburgh, PA, USA under the supervision of
Professors Anne M. Robertson and Adélia Sequeira (DMAT/IST, Portugal). As part
of the work in this group, under the guidance of Professor Anne M. Robertson, I met
my colleague Chung (as many of us referred to him), with whom I developed a solid
friendship over the years, not only in scientific terms, but also in our personal lives.
We were brothers. Chung was a warm, simple person and friend to everyone. His
scientific observations and precious collaboration within the working group were
appreciated by all. The scientific community and science itself have prematurely lost
a good thinker. Chung, wherever you are, a big hug from your brother Fernando!

Évora, Portugal Fernando Carapau
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Natural Second-Order Regularity for
Systems in the Case 1 < p ≤ 2 Using the
A-Approximation

Luigi C. Berselli and Michael Růžička

1 Introduction

In this paper, we consider the boundary value problem associated with nonlinear
elliptic systems:

{− div S(Du) = f in �,

u = 0 on ∂� ,
(1)

where the operator S depends on the symmetric gradient Du and has (p, δ)-structure
(cf. Definition 3). Here, � ⊂ R

3 is a sufficiently smooth and bounded domain. The
paradigmatic example for the operator in (1) is given by

S(Du) := (δ + |Du|)p−2Du, with δ ≥ 0, 1 < p <∞ . (2)

Thus, problem (1) is a generalization to systems of the classical p-Laplace problem
for scalars �pu := div(|∇u|p−2∇u), which corresponds to the case δ = 0. While
the existence of weak solutions is a rather standard result—based on the theory of
monotone operators—the regularity of solutions is more complicated and has been
addressed for the case 1 < p ≤ 2 by Seregin and Shilkin [22] (in the case of a
flat boundary) and by the authors of the present paper in [8] (in a general smooth
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domain). The proof is obtained by a classical strategy: the use of difference quotients
to estimate partial derivatives in the tangential directions and ellipticity to recover
normal derivatives. The main difficulties are those of justifying the calculations to
make the argument rigorous. This has been done by means of (a) smoothing with
the addition of an extra Laplace term −ε�uε and (b) proving for the solution uε

(of the approximate problem) estimates independent of ε > 0 to justify the limit as
ε→ 0.

This approach cannot be used in the case p > 2, since the calculations—despite
being formally very similar—are not justified. In fact, the added Laplacian term
immediately implies estimates in L2(�) for second-order partial derivatives of uε,
but this is still not enough to give proper meaning to all of the integrals appearing in
the derivation of the various estimates.

To overcome this technical problem—very recently—we developed in [9] a
theory based on the (multiple) approximation of the operator S, which allows to treat
the case p > 2, for all arbitrarily large p. The theory of the multiple approximation
can also be applied in the case 1 < p ≤ 2 (in fact, a single approximation is enough
in this case), providing an alternative proof for the results from [8, 22].

In this paper, we consider the case 1 < p ≤ 2, and we explain the modifications
and simplifications of the theory with a “single” A-approximation. Even if the
results we prove are not completely original, we believe it is important to explain
them with great detail. This will be particularly interesting for students or younger
researchers, since the developed method, which is highly flexible, can be adapted
to several other problems. Even if we skip some details (which would make the
presentation too long), we try to keep the presentation as much as possible self-
contained. We refer with detailed citations to [7–10] for all missing technical details.
We present a detailed presentation only in the elliptic case. Nevertheless, the method
can be also applied to parabolic problems with minor modifications to recover in a
different way results similar to those proved in [10] (see Sect. 6).

The main goal of this paper is to show how to prove a result of “natural” second-
order regularity for weak solutions. This corresponds to proving—under possibly
minimal assumptions on the data—that weak solutions (and not solutions with
additional unproved properties) satisfy the following inequality:

∫
�

(δ + |Du|)p−2|∇Du|2 dx ≤ C , (3)

which can be equivalently rewritten as ∇F(Du) ∈ L2(�), where

F(Du) := (δ + |Du|) p−2
2 |Du| . (4)

The regularity coming from inequality (3) is called natural since if one restricts to
the periodic case (and integration by parts can be done freely without boundary
terms) this is formally obtained by multiplying the system in (1) by −�u and
performing straightforward integration by parts.
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Remark 1 In the literature, the name natural is used to distinguish such regularity
results from the so-called “optimal” second-order regularity (for which there exists
also an intense research activity; see [1, 3, 12, 13]), which proves ∇S ∈ L2(�), i.e.,∫

�

∣∣∇((δ + |Du|)p−2Du
)∣∣2 dx ≤ C .

The two notions of regularity are rather different in the spirit: the optimal regularity
is linked with nonlinear versions of the singular integral theory, while the natural
regularity is based on energy methods. The latter involves quasi-norms (cf. Barrett
and Liu [2]), which are, among others, of crucial relevance for the numerical
analysis of the problem, in particular, to prove optimal convergence rates for finite
element discretizations.

In Sect. 2, we will give definitions of the missing notions and formulate general
assumptions on the operator S, covering the example (2) in the case p ∈ (1, 2] and
δ ∈ [0,∞). Based on that, we consider the following notion of solution:

Definition 1 (Regular Solution) Let the operator S in (1) have (p, δ)-structure for
some p ∈ (1,∞) and δ ∈ [0,∞). We say that u is a regular solution to (1) if
u ∈ W

1,p
0 (�) satisfies for all w ∈ W

1,p
0 (�)∫

�

S(Du) · Dw dx =
∫
�

f · w dx ,

and fulfils

F(Du) ∈ W 1,2(�) .

The main result we will prove with full details is the following:

Theorem 1 Let the operator S in (1), derived from a potential U , have (p, δ)-
structure for some p ∈ (1, 2] and δ ∈ [0,∞). Let � ⊂ R

3 be a bounded domain
with C2,1 boundary. Assume that f ∈ Lp′(�). Then, the system (1) has a unique
regular solution with norms estimated only in terms of the characteristics of S, δ, �,
and ‖f‖p′ .
The counterpart in the parabolic case (cf. Theorem 2) will be presented, without
a detailed proof, in the final section. Moreover, for all results, we will study only
the nondegenerate case δ > 0. The degenerate case can be handled by a limiting
argument, provided that the estimates do not degenerate as δ → 0, exactly as in [8,
Sec. 3.2]. The proof of such estimates requires some changes with respect to the
ones obtained in [9] (for p > 2) and in [10] (for p < 2, but with a different
approximation) related to the initial condition. Such estimates are available in our
setting (cf. Propositions 6, 9, 15). In fact, the limiting process δ → 0 depends only
on the regularity available and is independent of the method used to prove it; hence,
there is nothing to change with respect to the already available proof in [8].
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Plan of the Paper In Sect. 2, we recall the main facts about N-functions and
the A-approximation. Sections 3 and 4 are devoted to the proof of the existence
and regularity for the solutions of the approximated problem. Especially Sect. 4 is
crucial for the estimates independent of A. Section 5 explains the limiting process
to come back from the A-approximate system to the original one. Finally, in Sect. 6,
the corresponding results in the parabolic setting are presented.

2 On the A-Approximation of an Operator and Its Properties

In this section, we introduce the notation and the crucial properties of N -functions,
which will be used to prove the relevant properties of A-approximated operators.
We summarize and recall the main results already proved with full details in [9, 17],
i.e., proofs of all statements in this section can be found in these references.

2.1 Notation

We use c, C to denote generic constants, which may change from line to line, but
are not depending on the crucial quantities. Moreover, we write f ∼ g if and only
if there exists constants c, C > 0 such that c f ≤ g ≤ C f .

We use the customary Lebesgue spaces (Lp(�), ‖ . ‖p), p ∈ [1,∞], and Sobolev
spaces (Wk,p(�), ‖ . ‖k,p), p ∈ [1,∞], k ∈ N. We do not distinguish between
scalar, vector-valued, or tensor-valued function spaces; however, we denote scalar
functions by roman letters, vector-valued functions by small boldfaced letters, and
tensor-valued functions by capital boldfaced letters. We denote by |M| the three-
dimensional Lebesgue measure of a measurable set M . As usual the gradient of a
vector field v : � ⊂ R

3 → R
3 is denoted as ∇v = (∂ivj )i,j=1,2,3 = (∂iv)i=1,2,3,

while its symmetric part is denoted as Dv := 1
2

(∇v + ∇v�
)
. The derivative

of functions defined on tensors, i.e., U : R
3×3 → R, is denoted as ∂U =

(∂ijU)i,j=1,2,3 where ∂ij are the partial derivatives with respect to the canonical
basis of R3×3.

2.2 N-Functions

A function ϕ : R≥0 → R
≥0 is called an N-function if ϕ is continuous, convex, and

strictly positive for t > 0 and satisfies1

1 In the following, we use the convention that ϕ′(0)
0 := 0.
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lim
t→0+

ϕ(t)

t
= 0 , lim

t→∞
ϕ(t)

t
= ∞ .

If ϕ additionally belongs toC1(R≥0)∩C2(R>0) and satisfies ϕ′′(t) > 0 for all t > 0,
we call ϕ a regular N-function. In the rest of the paper, we restrict ourselves to this
case and note that for a regular N-function we have ϕ(0) = ϕ′(0) = 0. Moreover, ϕ′
is increasing and limt→∞ ϕ′(t) = ∞. For details, we refer to [16, 18, 20, 21]. For a
regular N-function ϕ, we define the complementary function ϕ∗ via

ϕ∗(t) :=
t∫

0

(ϕ′)−1(s) ds .

One easily sees that ϕ∗ is a regular N-function, too.
The �2-condition plays an important role in Orlicz spaces. A nondecreasing

function ϕ : R≥0 → R
≥0 is said to satisfy the �2-condition (in short ϕ ∈ �2),

if for some constant K ≥ 2 it holds

ϕ(2t) ≤ Kϕ(t), ∀ t ≥ 0 .

The �2-constant (the smallest of such K ≥ 2) of ϕ is denoted by �2(ϕ).
It has been recently recognized that a fundamental role in regularity theory of

problem similar to (1) is played by the notion of balanced N-function (cf. [9, 12,
21]). A regular N-function ϕ is called balanced if there exist constants γ1 ∈ (0, 1]
and γ2 ≥ 1 such that there holds

γ1 ϕ
′(t) ≤ t ϕ′′(t) ≤ γ2 ϕ

′(t), ∀ t > 0 .

The pair (γ1, γ2) is called characteristics of the balanced N-function ϕ. The property
of being balanced transmits to ϕ∗, whose characteristics are (γ−1

2 , γ−1
1 ). Note that

for a balanced N-function ϕ, we have the equivalences

ϕ(t) ∼ ϕ′(t) t ∼ ϕ′′(t) t2, ∀ t > 0

with constants of equivalence depending only on the characteristics of ϕ. In view of
this, it is convenient to introduce the particular notation aϕ : R≥0 → R

≥0, defined
for regular N-functions ϕ via

aϕ(t) := ϕ′(t)
t

.

Another important tool is shifted N-functions {φa}a≥0, defined for t ≥ 0, by

ϕa(t) :=
t∫

0

ϕ′a(s) ds with φ′a(t) := φ′(a + t)
t

a + t
.
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For an N–function φ ∈ �2, there holds for all P,Q ∈ R
n×n and all t ≥ 0 that

φ|P|
(|P−Q|) ∼ φ|Q|

(|P−Q|) with constants of equivalence depending only on
�2(φ

′). The most relevant property for us is a change of shift.

Lemma 1 (Change of Shift) Let φ be an N-function such that φ and φ∗ satisfy the
�2-condition. Then, for all δ ∈ (0, 1), there exists cε = cε(�2(φ

′)) such that for all
P,Q ∈ R

n×n and all t ≥ 0 there holds

φ|P|(t) ≤ cε φ|Q|(t)+ ε φ|P|
(|P−Q|) ,(

φ|P|
)∗
(t) ≤ cε

(
φ|Q|

)∗
(t)+ ε φ|P|

(|P−Q|) .
Proof These inequalities are proved in [21, Lemma 5.15, Lemma 5.18]. ��

Finally, we introduce for p ∈ (1,∞) and δ ∈ [0,∞) the function ωp,δ : R≥0 →
R
≥0 via

ωp,δ(t) :=
t∫

0

(δ + s)p−2s ds, ∀ t ≥ 0 .

Remark 2 The function ωp,δ(t) is precisely the N-function associated with the
canonical example for the operator S in (2). If p and δ are fixed (and to avoid
confusion with shifted functions), we simply write ω(t) := ωp,δ(t).

Clearly, ω is a regular N-function for all p ∈ (1,∞) and δ ∈ [0,∞). More precisely,
for p ≤ 2, we have:

Lemma 2 For any p ∈ (1, 2] and for any δ ∈ [0,∞), there holds

ω(t) ≤ (ω)′(t) t ≤ 2p+1ω(t), ∀ t ≥ 0 ,

(p − 1) (ω)′(t) ≤ (ω)′′(t) t ≤ (ω)′(t), ∀ t > 0 .
(5)

In particular, the function ω is a balanced N-function with characteristics (p−1, 1)
and �2-constant depending only on p. Moreover, also ω∗ is a balanced N-function
with characteristics (1, (p − 1)−1) and �2-constant depending only on p.

For the shifts of ω and its complementary function ω∗, there hold for all a ≥ 0 the

equivalences ωa(t) ∼ (δ + a + t)p−2t2 and (ωa)
∗(t) ∼ ((δ + a)p−1 + t

)p′−2
t2.

2.3 Nonlinear Operators with (p, δ)-Structure

In this section, we collect the main properties of nonlinear operators derived from a
potential and of operators having (p, δ)-structure.



Natural Second-Order Regularity Using the A-Approximation 9

Definition 2 (Operator Derived from a Potential) We say that an operator
S : R3×3 → R

3×3
sym is derived from a potential U : R≥0 → R

≥0, and write S = ∂U

if S(0) = 0 and for all P ∈ R
3×3 \ {0} there holds

S(P) = ∂U(|Psym|) = U ′(|Psym|)
|Psym| Psym = aU (|Psym|)Psym,

for some U ∈ C1(R≥0) ∩ C2(R>0) satisfying U(0) = U ′(0) = 0.

Definition 3 (Operator with a ϕ-Structure) Let the operator S : R3×3 → R
3×3
sym ,

belonging to C0(R3×3;R3×3
sym )∩C1(R3×3 \ {0};R3×3

sym ), satisfy S(P) = S
(
Psym

)
and

S(0) = 0. We say that S has ϕ-structure if there exist a regular N-function ϕ and
constants γ3 ∈ (0, 1], γ4 > 1 such that the inequalities

3∑
i,j,k,l=1

∂klSij (P)QijQkl ≥ γ3 aϕ(|Psym|) |Psym|2 ,
∣∣∂klSij (P)∣∣ ≤ γ4 aϕ(|Psym|) ,

are satisfied for all P,Q ∈ R
3×3 with Psym �= 0 and all i, j, k, l = 1, 2, 3. The

constants γ3, γ4, and �2(ϕ) are called the characteristics of S and will be denoted
by (γ3, γ4,�2(ϕ)).

If ϕ = ωp,δ with p ∈ (1,∞) and δ ∈ [0,∞) we say that S has (p, δ)-structure
and call (γ3, γ4, p) its characteristics.

Closely related to an operator with ϕ-structure is the function Fϕ : R3×3 → R
3×3
sym

defined via

Fϕ(P) :=
√
ϕ′(|Psym|)|Psym|

|Psym| Psym = √aϕ(|Psym|)Psym , (6)

where the first representation holds only for Psym �= 0. In the special case of an
operator S with (p, δ)-structure, we have (recall that ω = ωp,δ)

F(P) := Fω(P) = √aω(|Psym|) Psym = (δ + |Psym|) p−2
2 Psym ,

which is consistent with the notation used in the previous literature, cf. (4).
If ϕ is a balanced N-function with characteristics (γ1, γ2), then S = ∂ϕ is an

operator with ϕ-structure and with characteristics depending only on γ1 and γ2. The
following result will be crucial for our investigations (cf. [21, Section 6]).

Proposition 1 Let ϕ be a balanced N-function with characteristics (γ 1, γ 2). Let S
have ϕ-structure with characteristics (γ3, γ 4,�2(ϕ)) and let Fϕ be defined in (6).
Then, we have for all P,Q ∈ R

3×3 that
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(
S(P)− S(Q)

) · (P−Q) ∼ aϕ(|Psym| + |Psym −Qsym|) |Psym −Qsym|2

∼ |Fϕ(P)− Fϕ(Q)|2 ,
|S(P)− S(Q)| ∼ aϕ(|Psym| + |Psym −Qsym|) |Psym −Qsym| ,

where the constants of equivalence depend only on γ1, γ 2, γ 3, and γ4.

In addition, the following result will be used to handle operators derived from a
potential.

Proposition 2 Let the operator S = ∂U , derived from the potential U , have
ϕ-structure, with characteristics (γ3, γ4,�2(ϕ)). If ϕ is a balanced N-function with
characteristics (γ1, γ2), then U is a balanced N-function satisfying for all t > 0

γ3

γ2
ϕ′′(t) ≤ U ′′(t) ≤ γ4

γ1
ϕ′′(t) .

The characteristics of U is equal to
( γ3
γ4

γ 2
1
γ2
,
γ4
γ3

γ 2
2
γ1

)
.

The significance of this proposition is that a general operator S derived from a
potential U with (p, δ)-structure can be simply handled as the explicit example (2).

2.4 Approximation of a Nonlinear Operator

We now define the A-approximation of a function and of an operator and prove
the relevant properties needed in the sequel. This approximation was introduced
in [17] for p > 2 and generalized in the recent paper [9] to a so-called (A, q)-
approximation, for some q ≥ 2, which allows for a unified approach for all
p ∈ (1,∞). The purpose of the A-approximation of a function is to have quadratic
behavior near infinity (cf. [17, Lemma 2.22]), and consequently, one can take
advantage of the standard Hilbertian theory.

Definition 4 (A-Approximation of a Scalar Real Function) Given a function
U ∈ C1(R≥0) ∩ C2(R>0) satisfying U(0) = U ′(0) = 0, we define for A ≥ 1
the A-approximation UA ∈ C1(R≥0) ∩ C2(R>0) via

UA(t) :=
{
U(t) t ≤ A ,

α2 t
2 + α1 t + α0 t > A .

To ensure continuity up to second-order derivatives, the constants αi = αi(U),
i = 0, 1, 2, are given via
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α2 = 1

2
U ′′(A) ,

α1 = U ′(A)− U ′′(A)A ,

α0 = U(A)− U ′(A)A+ 1

2
U ′′(A)A2 .

Remark 3 If ϕ is a regular N-function, the definition of ϕA, together with the
properties of ϕ, implies that there exists a constant c(A, ϕ) such that for all t ≥ 0
there holds

aϕA(t) =
(ϕA)′(t)

t
≤ c(A, ϕ) .

More precise (explicit) upper and lower bounds are given in (8) if ϕ = ω.

We have the following relevant result (cf. [9, Lemma 2.42]) linking balanced
functions with their A-approximations.

Lemma 3 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Then, for
all A ≥ 1, it holds that ϕA is also balanced with characteristics

(
γ1, γ2

)
.

Concerning the homogeneity of the function ω for 1 < p ≤ 2 (similar results could
be deduced also in the case p > 2), we have the following result:

Lemma 4 Let 1 < p ≤ 2 and δ ∈ [0,∞). The functions ω(t) and ωA(t), for any
A ≥ 1, are balanced functions with characteristics (p − 1, 1). Moreover, it holds
for all λ, t ≥ 0 that

ω(λ t) ≤ max{λ, λ2}ω(t) and ωA(λ t) ≤ max{λ, λ2}ωA(t) . (7)

Proof The assertion on the characteristics for both functions follows directly from
Lemmas 2 and 3 (which shows that they are unchanged by the A- approximation).
The estimates in (7) are proved by observing that if φ is a regular N-function with
characteristics (γ1, γ2), then it follows for all t > 0 that

d

dt
log(ϕ′(t)) = ϕ′′(t)

ϕ′(t)
≤ γ2

1

t
,

which implies, by integration with respect to t over (s, λs), with λ > 1 and s > 0,
and using the exponential function, that

ϕ′(λ s)
ϕ′(s)

≤ λγ2 .
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A further integration with respect to s over (0, t), t > 0, proves

ϕ(λ t) ≤ λγ2+1ϕ(t) , ∀ t > 0 .

The case t = 0 is trivial, and in the case 0 ≤ λ ≤ 1 and t ≥ 0, the proof ends by
observing that φ

(
(1− λ) 0+ λ t

) ≤ λφ(t), by the convexity of φ. ��
Next, we define the A-approximation of an operator derived from a potential.

Definition 5 (A-Approximation of an Operator Derived from a Potential) Let
the operator S = ∂U be derived from the potential U . Then, we define for given
A ≥ 1 the A-approximation SA := ∂UA as the operator derived from the potential
UA, i.e., SA satisfies SA(0) = 0, and for all P ∈ R

3×3 \ {0}, there holds

SA(P) := ∂UA(|Psym|) = (UA)′(|Psym|)
|Psym| Psym = aUA(|Psym|)Psym .

The properties of the operator S in Proposition 1 are inherited by the operator SA.
More precisely, we have (cf. [9, Prop. 2.47]):

Proposition 3 Let ϕ be a balanced N-function with characteristics (γ1, γ2). Let
the operator S = ∂U , derived from the potential U , have ϕ-structure with
characteristics (γ3, γ4,�2(ϕ)). For A ≥ 1, let ϕA and SA be the A-approximation
of ϕ and S, respectively. Then, we have for all P,Q ∈ R

3×3 that

(SA(P)− SA(Q)) · (P−Q) ∼ aφA(|Psym| + |Psym −Qsym|) |Psym −Qsym|2 ,
∼ |FφA(P)− FφA(Q)|2,

|SA(P)− SA(Q)| ∼ aφA(|Psym| + |Psym −Qsym|) |Psym −Qsym| ,

with constants of equivalence depending only on γ1, γ2, γ3, and γ4.

Remark 4 For the limiting process, it is of fundamental relevance that in Proposi-
tion 3 the constants do not depend on A ≥ 1. The details of the proof can be found
in [9, Sec. 2].

Equivalent expressions for ∇F(Du) (based on Proposition 3) play a crucial role
in the proof of regularity of weak solutions. To this end, we define, for a sufficiently
smooth operator S : R3×3 → R

3×3
sym , the functions PAi : R3×3 → R, i = 1, 2, 3, via

P
A
i (P) := ∂iSA(P) · ∂iP =

3∑
j,k,l,m=1

∂jkS
A
lm(P) ∂iPjk ∂iPlm ,

and emphasize that there is no summation over the index i.
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The abovementioned properties of balanced functions allow us to deal with
the problem associated with S = ∂U with (p, δ)-structure using the quantities
related with ω and not with U itself, greatly simplifying both the presentation and
the estimates, cf. Proposition 2. For this reason, we also introduce the following
notation, consistent with (4):

FA(P) := FωA(P) and aA(t) := aωA(t) .

Using this notation, we have the following result (cf. [9, Prop. 2.49], [8,
Prop. 2.4]):

Proposition 4 Let the operator S = ∂U , derived from the potential U , have (p, δ)-
structure for some p ∈ (1,∞) and δ ∈ [0,∞), with characteristics (γ3, γ4, p). If
for a vector field v : � ⊂ R

3 → R
3 there holds FA(Dv) ∈ W 1,2(�), then we have

for i = 1, 2, 3 and a.e. in � the following equivalences:

|∂iFA(Dv)|2 ∼ aA(|Dv|) |∂iDv|2

∼ P
A
i (Dv) ,

|∂iSA(Dv)|2 ∼ aA(|Dv|)PAi (Dv) ,

where the constants of equivalence depend only on γ3, γ4, and p.

In view of this proposition, it is important to have upper and lower bounds for
aA in order to control various quantities related to FA, in terms of F. Crucial in this
respect is the following result (cf. [9, Lem. 2.69]):

Lemma 5 For p ∈ (1, 2], δ > 0, and A ≥ 1, the function aA(t) is nonincreasing,
and for all t ≥ 0, there holds

(p − 1) a(t) ≤ aA(t) ≤ δp−2 ,

(p − 1) (δ + A)p−2 ≤ aA(t) . (8)

Proof The statement is clear for t ≤ A using aA(t) = a(t) = (δ + t)p−2, 0 ≤ δ,
t ≤ A, and p ≤ 2. For t ≥ A, we have aA(t) = ω′′(A) + ω′(A)−ω′′(A)A

t
. Thus, we

get that aA(A) = (δ + A)p−2, limt→∞ aA(t) = (δ + A)p−3
(
δ + (p − 1)A

)
, and

(aA)′(t) = −ω′(A)−ω′′(A)A
t2

≤ 0 in view of (5), and p ≤ 2. This yields

(δ + A)p−2 ≥ aA(t) ≥ (δ + A)p−3((p − 1)A+ δ) ≥ (p − 1) (δ + A)p−2 ,

which implies the assertions using δp−2 ≥ (δ+A)p−2 and (δ+A)p−2 ≥ (δ+ t)p−2

in view of t ≥ A, and p ≤ 2. ��
In the sequel, we will use frequently the following consequences (cf. [9, Cor. 2.71]):
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Corollary 1 Let the operator S, derived from the potential U , have (p, δ)-structure
for some p ∈ (1, 2] and δ > 0, with characteristics (γ3, γ4, p). Then, there holds
for all t ≥ 0 that

(p − 1)

2
(δ + A)p−2t2 ≤ ωA(t) ,

(p − 1) ω(t) ≤ ωA(t) ≤ δp−2

2
t2 ,

(ωA)∗(t) ≤ (p − 1) (�2(ω
∗))M ω∗(t) ,

where M ∈ N0 is chosen such that (p − 1)−1 ≤ 2M . Moreover, for all P ∈ R
3×3,

there holds

|FA(P)|2 ∼ ωA(|Psym|) ,
c |F(P)|2 ≤ |FA(P)|2 ,
|SA(P)| ≤ c δp−2|Psym| ,

with constants c depending only on γ3, γ4, and p.

Corollary 2 Under the assumptions of Proposition 4, there exists c(p, γi) > 0 such
that

c(p, γi)|∇F(Dv)|2 ≤ |∇FA(Dv)|2.

Proof This follows immediately from Proposition 4, Lemma 5, and [8, Prop. 2.4].
��

3 On the Existence and Uniqueness of Regular Solutions
for the Approximate Problem

In this section, we introduce the approximate problem and prove existence, unique-
ness, and regularity of its solutions. In fact, to prove Theorem 1, we use an
approximate problem, obtained by replacing the operator S = ∂U with (p, δ)-
structure by SA = ∂UA which has (2, δ) structure, i.e., we study

{− div SA(DuA) = f in �,

uA = 0 on ∂� .
(9)
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This system can be treated by standard techniques typical for linear equations.
This procedure yields various estimates independent of A ≥ 1 for the solution
uA, which will enable us to pass to the limit A → ∞ and to show that the limit
u = limA→∞ uA will be a regular solution of the original problem (1).

The first standard result concerns the existence and uniqueness of weak solutions
for (9).

Proposition 5 Let the operator S = ∂U , derived from the potential U , have (p, δ)-
structure for some p ∈ (1, 2] and δ ∈ (0,∞). Assume that f ∈ Lp′(�). Let SA

be as in Definition 5. Then, the approximate problem (9) possesses a unique weak
solution, i.e., uA ∈ W

1,2
0 (�) with FA(DuA) ∈ L2(�) satisfies for all w ∈ W

1,2
0 (�)

∫
�

SA(DuA) · Dw dx =
∫
�

f · w dx . (10)

This solution satisfies the estimate

‖FA(DuA)‖2
2 + (p − 1)(δ + A)p−2‖DuA‖2

2

+ (p − 1)
(‖F(DuA)‖2

2 + ‖DuA‖pp
) ≤ C

∫
�

ω∗(|f|) dx ,
(11)

with C depending only on the characteristics of S and �.

Remark 5 The energy-type estimate (11), which is obtained by testing with uA,
implies that: (i) uA ∈ W

1,2
0 (�) with norms depending on A; (ii) uA ∈ W

1,p
0 (�)

with norms bounded uniformly with respect to A ≥ 1.

Proof of Proposition 5 The proof is based on a classical Faedo-Galerkin approx-
imation of (9). The existence of Galerkin solutions uAk , for k ∈ N, follows by a
standard argument based on Brouwer fixed point theorem. Passing to the limit as
k →∞ (for A fixed) can be done within the standard theory of monotone operators
(Minty-Browder theory). Since this is a fully standard argument, we just derive the
a priori estimates necessary for this procedure.

By using uAk as test function in the Galerkin approximation for uAk , we get

c ‖FA(DuAk )‖2
2 ≤ cε

∫
�

(ωA)∗(|f|) dx+ ε

∫
�

ωA(|uAk |) dx

≤ cε

∫
�

(ωA)∗(|f|) dx+ ε C

∫
�

ωA(|DuAk |) dx ,

where we used in the first line Proposition 3 with Q = 0 together with Young
inequality and in the second line
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∫
�

ωA(|uAk |) dx ≤ CP

∫
�

ωA(|∇uAk |) dx ≤ CPCK

∫
�

ωA(|DuAk |) dx ,

which follows from modular versions of Poincaré and Korn inequalities in Orlicz
spaces (see [5, 9, 23]). Moreover, we absorb the last term on the right-hand
side of the previous estimate using

∫
�
ωA(|DuAk |) dx ∼ ‖FA(DuAk )‖2

2 in view of
Corollary 1. Note that all constants are independent of A ≥ 1 and depend only on
the characteristics of S and on �. Moreover, from Corollary 1, it also follows that

∫
�

(ωA)∗(|f|) dx ≤ c(p)

∫
�

ω∗(|f|) dx ≤ C(p)
(
δp +

∫
�

|f|p′ dx
)
, (12)

where the last estimate shows that the right-hand side in (11) is finite. Hence, after
the limiting procedure k →∞, we arrive at

‖FA(DuA)‖2
2 ≤ C

∫
�

ω∗(|f|) dx , (13)

for some C independent ofA and δ. Uniqueness follows from the strict monotonicity
of SA (cf. Proposition 3). By using the estimates in Corollary 1 and the definition
of FA, we derive from (13) the various terms in the estimate (11), which ends the
proof. ��

3.1 Description and Properties of the Boundary

We assume that the boundary ∂� is of class C2,1, that Is, for each point P ∈ ∂�,
there are local coordinates such that in these coordinates we have P = 0 and ∂� is
locally described by a C2,1-function, i.e., there existRP , R

′
P ∈ (0,∞), rP ∈ (0, 1),

and a C2,1-function gP : B2
RP

(0)→ B1
R′P

(0) such that

(b1) x ∈ ∂� ∩ (B2
RP

(0)× B1
R′P

(0)) ⇐⇒ x3 = gP (x1, x2) ,

(b2) �P := {(x′, x3)
∣∣ x′ = (x1, x2) ∈ B2

RP
(0), gP (x′) < x3 < gP (x

′) + R′P } ⊂
�,

(b3) ∇gP (0) = 0, and ∀ x′ = (x1, x2)
� ∈ B2

RP
(0) |∇gP (x′)| < rP ,

where Bk
r (0) denotes the k-dimensional open ball with center 0 and radius r > 0.

We also define, for 0 < λ < 1, the open sets λ�P ⊂ �P as

λ�P := {(x′, x3)
∣∣ x′ = (x1, x2)

� ∈ B2
λRP

(0), gP (x
′) < x3 < gP (x

′)+ λR′P } .
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To localize near ∂� ∩ ∂�P , for P ∈ ∂�, we fix smooth functions ξP : R3 → R

such that

(�1) χ 1
2�P

(x) ≤ ξP (x) ≤ χ 3
4�P

(x) ,

where χA(x) is the indicator function of the measurable set A. For the remaining
interior estimate, we localize by a smooth function 0 ≤ ξ0 ≤ 1 with spt ξ0 ⊂ �0,
where �0 ⊂ � is an appropriate open set such that dist(∂�0, ∂�) > 0. Since
the boundary ∂� is compact, we can use an appropriate finite sub-covering which,
together with the interior estimate, yields the global estimate.

Let us introduce the tangential derivatives near the boundary. To simplify the
notation, we fix P ∈ ∂�, h ∈ (0, RP

16 ) and simply write ξ := ξP , g := gP . We
use the standard notation x = (x′, x3)

� and denote by ei , i = 1, 2, 3 the canonical
orthonormal basis in R

3. In the following lowercase Greek letters, take values 1, and
2. For a function f with spt f ⊂ spt ξ , we define for α = 1, 2 tangential translations:

fτ (x
′, x3) = fτα (x

′, x3) := f
(
x′ + h eα, x3 + g(x′ + h eα)− g(x′)

)
,

tangential differences �+f := fτ − f and tangential difference quotients d+f :=
h−1�+f . For simplicity, we denote ∇g := (∂1g, ∂2g, 0)� and use the operations
(·)τ , (·)−τ , �+(·), �+(·), d+(·) and d−(·) also for vector-valued and tensor-valued
functions, intended as acting component-wise.

We will use the following properties of the difference quotients, all proved in [4].
Let v ∈ W 1,1(�) be such that spt v ⊂ spt ξ . Then

∇d±v = d±∇v+ (∂3v)τ ⊗ d±∇g ,
Dd±v = d±Dv+ (∂3v)τ

s⊗ d±∇g ,
div d±v = d± div v+ (∂3v)±τ d±∇g ,
∇v±τ = (∇v)±τ + (∂3v)±τ d±∇g ,

(14)

where (v ⊗ w)ij := viwj , i, j = 1, 2, 3, and v
s⊗ w := 1

2

(
v ⊗ w + (v ⊗ w)�

)
.

Moreover, we have also the following properties: If spt g ⊂ spt ξ , then there holds

(d−g)τ = −d+g , (d+g)−τ = −d−g , d−gτ = −d+g ,

and if spt g ∪ spt f ⊂ spt ξ , then we have

d±(fg) = f±τ d±g + (d±f ) g .

As for the classical difference quotients, Lq -uniform bounds (with respect to h > 0)
for d+f imply that ∂τ f belongs to Lq(spt ξ).
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Lemma 6 If f ∈ W 1,1(�), then we have for α = 1, 2

d+f → ∂τ f = ∂ταf := ∂αf + ∂αg ∂3f as h→ 0 , (15)

almost everywhere in spt ξ , (cf. [17]). If we define, for 0 < h < RP

�P,h =
{

x ∈ �P

∣∣ x′ ∈ B2
RP−h(0)

}
,

and, if f ∈ W
1,q
loc (R

3), for 1 ≤ q <∞, then

∫
�P,h

|d+f |q dx ≤ c

∫
�P

|∂τ f |q dx .

Moreover, if d+f ∈ Lq(�P,h0), 1 < q <∞, and if

∃ c1 > 0 :
∫

�P,h0

|d+f |q dx ≤ c1, ∀h0 ∈ (0, RP ) and ∀h ∈ (0, h0) ,

then ∂τ f ∈ Lq(�P ) and

∫
�P

|∂τ f |q dx ≤ c1 .

The following variants of formula of integration by parts will often be used.

Lemma 7 Let spt g ∪ spt f ⊂ spt ξ = spt ξP and 0 < h < RP

16 . Then

∫
�

fg−τ dx =
∫
�

fτg dx .

Consequently,
∫
�

f d+g dx = ∫
�

(d−f )g dx . Moreover, if in addition f and g are

smooth enough and at least one vanishes on ∂�, then

∫
�

f ∂τ g dx = −
∫
�

(∂τ f )g dx .
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3.2 Regularity Results with Possible Dependencies on A

We start proving spatial regularity for the approximate problem. The estimates,
which will be proved for first-order derivatives of ∇uA and FA(DuA) in this first
step, are uniform with respect to A ≥ 1:

(i) In the interior of �
(ii) For tangential derivatives near the boundary

On the contrary, the estimates depend on A in the normal direction near the
boundary ∂�. Nevertheless, this allows later on to use the equations point-wise
and to prove (in a different way) estimates independent of A ≥ 1 even near the
boundary, allowing then to pass to the limit with A→∞.

By using the translation method, we obtain the following results, which will be
proved below:

Proposition 6 Let the operator S = ∂U , derived from the potential U , have (p, δ)-
structure for some p ∈ (1, 2], and δ ∈ (0,∞), with characteristics (γ3, γ4, p). Let
� ⊂ R

3 be a bounded domain with C2,1 boundary, and assume that f ∈ Lp′(�).
Then, the unique weak solution uA ∈ W

1,2
0 (�) of the approximate problem (9)

satisfies

∫
�

ξ2
0 |∇FA(DuA)|2 + ωA

(
ξ2

0 |∇2uA|)+ (δ + A)p−2ξ2
0 |∇2uA|2 dx ≤ c0 ,

∫
�

ξ2
P |∂τFA(DuA)|2 + ωA

(
ξ2
P |∂τ∇uA|)+ (δ + A)p−2ξ2

P |∂τ∇uA|2 dx ≤ cP ,

(16)

where c0 = c0(δ, ‖f‖p′ , ‖ξ0‖1,∞, γ3, γ4, p), while the constant related to the
neighborhood of P is such that cP = cP (δ, ‖f‖p′ , ‖ξP ‖1,∞, ‖gP ‖C2,1 , γ3, γ4, p).
Here, ξ0(x) is a cutoff function with support in the interior of �, and for arbitrary
P ∈ ∂�, the tangential derivative is defined locally in �P by (15).

By using Proposition 6 and the ellipticity of SA, we can write, for a.e. x ∈ �,
the missing partial derivatives in the normal direction (which is locally e3 after a
rotation of coordinates) in terms of the tangential ones. By employing the previous
results, we obtain estimates also for the partial derivatives in the e3-direction, but
with a critical dependence on the approximation parameter A.

Proposition 7 Under the assumptions of Proposition 6, there exists a constant
C1 > 0 such that, provided in the local description of the boundary there holds
rP < C1 in (b3), where ξP (x) is a cutoff function with support in �P , there holds
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∫
�

ξ2
P |∂3FA(DuA)|2 + ωA

(
ξ2
P |∂3DuA|) dx ≤ CA ,

where CA = CA(δ, ‖f‖p′ , ‖ξP ‖1,∞, ‖gP ‖C2,1 , γ 3, γ 4, p,A).

Before starting the proof of these two propositions, we generalize [7, Lemma 3.11],
originally proved for φ = ω (with 1 < p ≤ 2) to φ = ωA. The main properties used
are convexity of ωA, that (ωA)′′ is nonincreasing, and the equivalence properties
from Lemma 3.

Lemma 8 Let p ∈ (1, 2] and δ ≥ 0. Then, for ξ and g as above and for any
v ∈ W

1,2
0 (�), we have

∫
�

ωA
(
ξ |∇d+v|)+ ωA

(
ξ |d+∇v|) dx ≤ c

∫
�

ξ2
∣∣d+FA(Dv)

∣∣2 dx

+ c(‖ξ‖1,∞, ‖g‖C1,1)

∫
�∩spt ξ

ωA
(|∇v|) dx ,

with constants not depending on δ and A.

Proof The proof is carried out by adapting that of [7, Lem. 3.11]. First, we use the
following identity:

ξ ∇d+v = ∇(ξ d+v)− ∇ξ ⊗ d+v ,

and consequently we get, by using (7), that

∫
�

ωA(ξ |∇d+v|) dx ≤ c

∫
�

ωA(|D(ξ d+v)|) dx+ c(‖g‖C0,1 , ‖ξ‖1,∞)

∫
�∩spt ξ

ωA(|∇v|) dx ,

where we also used Korn’s inequality for N-functions (cf. [14, Thm. 6.10]), with a
constant independent of A ≥ 1, and the following inequality (cf. [9, Sec. 3.2]):

∫
�∩spt ξ

ωA(|d±v|) dx ≤ c

∫
�∩spt ξ

ωA(|∇v|) dx . (17)

Using the identities

D(ξ d+v) = ξ D(d+v)+ ∇ξ s⊗ d+v = ξ d+Dv+ (∂3v)τ
s⊗ d+∇g +∇ξ s⊗ d+v ,

the properties of ωA, ξ, g, and (17), we obtain
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∫
�

ωA(ξ |∇d+v|) dx ≤ c

∫
�

ωA(ξ |d+Dv|) dx

+ c(‖ξ‖1,∞, ‖g‖C1,1)

∫
�∩spt ξ

ωA(|∇v|) dx .
(18)

We focus on the first term on the right-hand side of (18). Using a change of shift as
in Lemma 1 yields

ωA(ξ |d+Dv|) ≤ c
(
ωA
|Dv|+|�+Dv|(ξ |d+Dv|)+ ωA(|Dv| + |�+Dv|)) . (19)

By the fact that ωA is balanced with characteristics depending only on p

(cf. Lemmas 2 and 3), we get

ωA
|Dv|+|�+Dv|(ξ |d+Dv|) ∼ (ωA

|Dv|+|�+Dv|)
′(ξ |d+Dv|) ξ |d+Dv|

= (ωA)′(|Dv| + |�+Dv| + ξ |d+Dv|)
|Dv| + |�+Dv| + ξ |d+Dv| ξ2|d+Dv|2

= aA(|Dv| + |�+Dv| + ξ |d+Dv|) ξ2|d+Dv|2.

Next, since aA is nonincreasing for p ∈ (1, 2] (see Lemma 5), we get

ωA
|Dv|+|�+Dv|(ξ |d+Dv|) ≤ aA(|Dv| + |�+Dv|) ξ2|d+Dv|2

∼ ξ2|d+FA(Dv)|2 .

Inserting this into (19), we obtain from (18) that

∫
�

ωA(ξ |∇d+v|) dx ≤

≤ c

∫
�

ξ2
∣∣d+FA(Dv)

∣∣2 dx+ c(‖ξ‖1,∞, ‖g‖C1,1)

∫
�∩spt ξ

ωA(|∇v|) dx .
(20)

Next, we observe that (14) and (7) yield

∫
�

ωA(ξ |d+∇v|) dx ≤
∫
�

ωA(ξ |∇d+v|) dx+
∫
�

ωA(ξ |∂3v||d+∇g|) dx

≤
∫
�

ωA(ξ |∇d+v|) dx+ c(‖ξ‖∞, ‖g‖C1,1)

∫
�∩spt ξ

ωA(|∇v|) dx .



22 L. C. Berselli and M. Růžička

This shows that also the term
∫
�
ωA(ξ |d+∇v|) dx can be estimated by the right-

hand side of (20), ending the proof. ��
We can now proceed with the proof of regularity in the tangential directions and in
the interior.

Proof of Proposition 6 We obtain estimates for tangential derivatives by consider-
ing limits of increments in the tangential directions cf. [7, 9]. Fix P ∈ ∂� and use
in �P

w = d−(ξ2d+(uA| 1
2�P

)) ,

where ξ := ξP , g := gP , and h ∈ (0, RP

16 ), as a test function in the weak
formulation (10) of Problem (9). This yields∫

�

ξ2d+SA(DuA) · d+DuA dx =

= −
∫
�

SA(DuA) · (ξ2d+∂3uA − (ξ−τ d−ξ + ξd−ξ)∂3uA
) s⊗ d−∇g dx

−
∫
�

SA(DuA) · ξ2(∂3uA)τ
s⊗ d−d+∇g − SA(DuA) · d−(2ξ∇ξ s⊗ d+uA

)
dx

+
∫
�

SA((DuA)τ ) ·
(
2ξ∂3ξd

+uA + ξ2d+∂3uA
) s⊗ d+∇g dx

+
∫
�

f · d−(ξ2d+uA) dx =:
8∑

j=1

Ij .

(21)

The properties of SA, Proposition 3, and Lemma 8 imply the following estimate:∫
�

ξ2
∣∣d+FA(DuA)

∣∣2 + ωA
(
ξ |d+∇uA|) dx ≤

≤ c

∫
�

ξ2d+SA(DuA) · d+DuA dx+ c(‖ξ‖1,∞, ‖g‖C1,1)

∫
�∩spt ξ

ωA
(|∇uA|) dx .

The terms I1–I7 in (21) are estimated exactly as in [7, (3.17)–(3.22)], while I8 is
estimated as the term I15 in [7, (4.20)]. Thus, we get, by using also Corollary 1,

∫
�

(δ + A)p−2ξ2
∣∣d+∇uA

∣∣2+ξ2
∣∣d+FA(DuA)

∣∣2+ωA(ξ |d+∇uA|) dx ≤

≤ c(‖f‖p′ , ‖ξ‖2,∞, ‖g‖C2,1 , δ) .
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This proves the second estimate in (16) by Lemma 6, since the constant on the
right-hand side does not depend on h > 0.

The first estimate in (16) is proved in the same way with many simplifications,
since in the interior one can consider directly standard translations in all the
coordinate directions. ��

For the Proof of Proposition 7, the following observation will be crucial.

Remark 6 The obtained estimate (16)1, Proposition 4, and Lemma 5 imply that
uA ∈ W

2,2
loc (�) (with estimates depending on A) and that the system (9) is well-

defined point-wise a.e. in �.

Proof of Proposition 7 To estimate the derivatives in the e3-direction, we use
equation (9) point-wise a.e. in �, which is justified by Remark 6. Denoting,
for α, γ = 1, 2, Aαγ := ∂γ 3S

A
α3(DuA), bγ := ∂3Dγ 3uA, and2 fα := fα +

∂33S
A
α3(DuA)∂3D33uA + ∂γσ S

A
α3(DuA)∂3DγσuA +∑3

k,l=1 ∂klS
A
αβ(DuA)∂βDkluA,

we can rewrite the first two equations in (9) as follows:

−2Aαγ bγ = fα a.e. in � .

We employ this equality separately on each �P in order to use the notion of
tangential derivative. By straightforward manipulations (cf. [7, Sections 3.2 and
4.2]) we get a.e. in �P

aA(|DuA|) |b| ≤ c
(
|f| + |f|‖∇g‖∞ + aA(|DuA|) (|∂τ∇uA| + ‖∇g‖∞|∇2uA|)) .

Note that we can deduce from this inequality information about b̃γ := ∂2
33uAγ ,

because |b| ≥ 2|b̃|−|∂τ∇uA|−‖∇g‖∞|∇2uA|. Adding on both sides, for α = 1, 2
and i, k = 1, 2, 3, the term

aA(|DuA|) (|∂α∂iuAk | + |∂2
33u

A
3 |
)
,

we finally arrive, a.e. in �P at the inequality

aA(|DuA|)|∇2uA| ≤
≤ c

(
|f| + |f|‖∇g‖∞ + aA(|DuA|) (|∂τ∇uA| + ‖∇g‖∞|∇2uA|)) ,

where, due to the results proved in Sect. 2, the constant c only depends on the
characteristics of S. Next, we can choose the open sets �P in such a way that
‖∇gP (x′)‖∞,�P

is small enough, so that we can absorb the last term from the right-
hand side, which yields

2 Recall that we use the summation convention over repeated Greek lowercase letters from 1 to 2.
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aA(|DuA|) |∇2uA| ≤ c
(
|f| + aA(|DuA|) |∂τ∇uA|

)
a.e. in �P ,

where again the constant c only depends on the characteristics of S. Dividing both
sides by the quantity

√
aA(|DuA|) �= 0 (which is nonzero by the fact that δ > 0 and

the properties of ωA) and raising the result to the power 2, we get a.e. in �P

aA(|DuA|)|∇2uA|2 ≤ c
|f|2

aA(|DuA|) + c aA(|DuA|)|∂τ∇uA|2 . (22)

Note that both sides are finite a.e. and, for the moment, we know that the left-hand
side belongs at least to L1

loc(�P ).
Concerning the first term on the right-hand side, we note that Lemma 5 and the

definition of aA imply

1

aA(t)
≤ 1

(p − 1)

1

a(t)
= 1

(p − 1)

1

(δ + t)p−2 .

Using this estimate and Hölder inequality, we get, with a constant c independent
on A,

∫
�

|f|2
aA(|DuA|) dx ≤ c(p)‖f‖2

p′ ‖δ + |DuA|‖2−p
p

≤ c
(‖f‖p′

p′ + δp + ‖F(DuA)‖2
2

)
.

(23)

For the second term on the right-hand side of (22), we use that, in view of Lemma 5,
there holds:∫

�

ξ2
P a

A(|DuA|)|∂τ∇uA|2 dx ≤ δp−2
∫
�

ξ2
P |∂τ∇uA|2 dx

= δp−2

(δ + A)p−2
(δ + A)p−2

∫
�

ξ2
P |∂τ∇uA|2 dx

≤
(

1+ A

δ

)2−p
cP ,

where the final estimate follows from the already proved results on tangential
derivatives in Proposition 6.

Hence, multiplying (22) by ξ2
P and integrating over the proper sub-domain

�P,ε :=
{
x ∈ �P

∣∣ gP + ε < x3 < gP + R′P , for 0 < ε < R′P
}
,

we get, also using (11) and (12),
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∫
�P,ε

ξ2
P a

A(|DuA|)|∇2uA|2 dx ≤

≤ c

∫
�P,ε

|f|2
aA(|DuA|) dx+ c

∫
�P,ε

ξ2
P a

A(|DuA|)|∂τ∇uA|2 dx

≤ c

∫
�

|f|2
aA(|DuA|) dx+ c

∫
�

ξ2
P a

A(|DuA|)|∂τ∇uA|2 dx

≤ C
(
δp + ‖f‖p′

p′ + (1+ Aδ−1)2−p ) .
Since this estimate is independent of ε > 0, the above inequality shows, by mono-
tone convergence, that also

∫
�
ξ2
P a

A(|DuA|)|∇2uA|2 dx ≤ C(‖f‖p′ , δ, δ−1, A),
ending the proof. ��

Remark 7 The reader should notice that the dependence on A is mainly due to the
fact that we have a stress tensor depending on the symmetric gradient. To use Korn
inequality in Lemma 8, we have to pay the price of estimates depending on A. In
the case of a stress tensor depending on the full gradient, this step can be skipped
(see the results in [6] where the considered problem has an additional term with
2-structure and the A-approximation is not needed).

By collecting the results of the Propositions 6 and 7, we get the following result:

Proposition 8 Let the operator S = ∂U , derived from the potential U , have (p, δ)-
structure for some p ∈ (1, 2] and δ ∈ (0,∞). Let � ⊂ R

3 be a bounded domain
with C2,1 boundary, and let f ∈ Lp′(�). Then, the unique weak solution uA ∈
W

1,2
0 (�) of problem (9) satisfies

∫
�

|∇FA(DuA)|2 dx ≤ c(A, δ−1) ,

where c depends also on the characteristics of S, δ, ‖f‖p′ , |�|, and the C2,1-
norms of the local description of ∂�. In particular, the above estimate implies that
uA ∈ W 2,2(�).

Proof The proof is simply obtained by observing that � is a compact set. After hav-
ing fixed all �P small enough (depending on P ) to perform the calculations leading
to Proposition 7, we can extract a finite covering of sets �P and consequently prove
the uniform nature of estimates in terms of P ∈ ∂�. To show that uA ∈ W 2,2(�),
we use Proposition 4 and Lemma 5. ��
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4 Estimates Uniform with Respect to A for the Solutions of
the Approximate Problem

We now sketch the proof of the estimate of ∇FA(DuA), which is independent
of A. Moreover, we also improve the δ-dependence of the estimates. We adapt to
the A-approximation the same procedure already used in [8], obtaining the steady
counterpart to the case 1 < p ≤ 2 of the results proved in [9, Sec. 3].

Proposition 9 Let the same hypotheses as in Theorem 1 be satisfied with δ > 0,
and let the local description gP of the boundary and the localization function ξP
satisfy (b1)– (b3) and (�1) (cf. Sect. 3.1). Then, there exists a constant C2 > 0 such
that the regular solution uA ∈ W

1,2
0 (�) ∩W 2,2(�) of the approximate problem (9)

satisfies for every P ∈ ∂�

∫
�

ξ2
P |∂3FA(DuA)|2 dx ≤ C ,

provided rP < C2 in (b3), with C depending on the characteristics of S, δ, ‖f‖p′ ,
‖ξP ‖1,∞, ‖gP ‖C2,1 , and C2.

Proof We will not give the full proof of this result, since it is very similar to that of
[8, Prop. 3.2]. For the reader’s convenience, we just explain the main steps.

Fix an arbitrary point P ∈ ∂� and a local description g = gP of the boundary
and the localization function ξ = ξP as before. Proposition 4 yields that there exists
a constant C0, depending only on the characteristics of S such that

1

C0
|∂3FA(DuA)|2 ≤ P

A
3 (DuA) a.e. in � .

We now work directly with P
A
3 (DuA) to deduce estimates for |∂3FA(DuA)|2. Note

that, since uA is a regular solution of (9), all calculations are justified. Thus, using
the definition of PA3 (DuA) and the symmetries of SA and DuA, we obtain

1

C0

∫
�

ξ2|∂3FA(DuA)|2 dx ≤ (24)

≤
∫
�

ξ2∂3SAαβ(DuA) ∂3DαβuA dx+
∫
�

ξ2∂3SA3α(DuA) ∂αD33uA dx

+
∫
�

3∑
j=1

ξ2∂3SAj3(DuA) ∂2
3u

N
j dx

=: J1 +J2 +J3 .
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The most critical term is J1 which is estimated, for any λ > 0, as follows

|J1| ≤ λ

∫
�

ξ2|∂3FA(DuA)|2 dx+ cλ−1

(
1+ ‖∇g‖2∞

) 2∑
β=1

∫
�

ξ2|∂βFA(DuA)|2 dx

+
∫
�

ξ2|∂3SA(DuA)| |∇2g| |DuA| dx+
∣∣∣∣
∫
�

ξ2∂3SAαβ(DuA) ∂α∂τβ u
A
3 dx

∣∣∣∣ .

In the last but one term we multiply and divide by
√
aA(|DuA|), use Proposition 4,

Young inequality, and aA(|DuA|)|DuA|2 ∼ |FA(|DuA|)|2 (cf. Proposition 3),
yielding that it is estimated by

λ

∫
�

ξ2|∂3FA(DuA)|2 dx+ cλ−1 ‖∇2g‖2∞
∫
�

|FA(DuA)|2 dx .

To handle the last term in the above estimate of J1 we perform a crucial partial
integration. This avoids to have terms with the quantity ∂3SA(DuA) which cannot
be estimated in terms of tangential derivatives. Let us explain the main idea beyond
this step. Observe that, by neglecting the localization ξ , integration by parts gives

∫
�

∂3SAαβ(DuA) ∂α∂τβ u
A
3 dx =

∫
�

∂αSAαβ(DuA) ∂3∂τβ u
A
3 dx

=
∫
�

∂αSAαβ(DuA) ∂τβD33uA dx .

We next multiply and divide the integrand on the right-hand side by
√
aA(|DuA|),

using Proposition 4, Young inequality, and the definition of the tangential deriva-
tives, yielding that

∣∣∣ ∫
�

∂αSAαβ(DuA) ∂τβD33uA dx
∣∣∣ ≤

≤ c

2∑
α=1

∫
�

|∂αFA(DuA)|2 dx+ c

2∑
β=1

∫
�

|∂τβ FA(DuA)|2 dx

≤ c

2∑
α=1

∫
�

|∂ταFA(DuA)|2 dx+ c ‖∇g‖2∞
∫
�

|∂3FA(DuA)|2 dx .

The presence of the localization leads to several additional lower-order terms,
which all can be easily handled as in [8]. To treat J2, we multiply and divide by
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√
aN(|DuA|), using Proposition 4 and Young inequality, to show that, for any given

λ > 0, it holds

|J2| ≤ λ

t∫
0

∫
�

ξ2|∂3FA(DuA)|2 dx+ cλ−1

2∑
β=1

t∫
0

∫
�

ξ2|∂βFA(DuA)|2 dx ,

for some constant cλ−1 depending on λ−1. To handle the term J3, we use Eq. (9).
All terms are handled exactly as in [8, Prop. 3.2], and thus, we skip the details here.
All together we arrive at the following: estimate

|J1| + |J2| + |J3| ≤
(
λ+ cλ−1 ‖∇g‖2∞

) ∫
�

ξ2|∂3FA(DuA)|2 dx

+ cλ−1

2∑
β=1

∫
�

ξ2|∂τβ FA(DuA)|2 dx

+ cλ−1

(
1+ ‖∇ξ‖2∞

)∫
�

|FA(|DuA|)|2 dx+ cλ−1

∫
�

|f|2
aA(|DuA|) dx .

Now, we first choose λ > 0 smaller than (4C0)
−1, and then we choose the covering

of the boundary ∂� such that cλ−1 ‖∇g‖2∞ ≤ (4C0)
−1, in order to absorb in the

left-hand side of (24) the term involving ∂3FA(DuA). By using the estimate (23)
already proved for the term with the external force, we get

∫
�

ξ2|∂3FA(DuA)|2 dx ≤ c

2∑
β=1

∫
�

ξ2|∂τβ FA(DuA)|2 dx

+ c

∫
�

|FA(DuA)|2 dx+ c
(
δp + ‖f‖p′

p′
)
,

with constants depending only on the characteristics of S, ‖g‖C2,1 , and ‖ξ‖1,∞. The
uniform estimates (11) and (16) for the right-hand side allow us to end the Proof of
Proposition 9. ��

Proposition 10 Let the operator S = ∂U , derived from the potential U , have
(p, δ)-structure for some p ∈ (1, 2] and δ ∈ (0,∞). Let � ⊂ R

3 be a bounded
domain with C2,1 boundary, and let f ∈ Lp′(�). Then, the unique weak solution
uA ∈ W

1,2
0 (�) of the problem (9) satisfies

∫
�

|∇F(DuA)|2 + |∇FA(DuA)|2 dx ≤ C ,
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where C depends on the characteristics of S, δ, ‖f‖p′ , |�|, and the C2,1-norms of
the local description of ∂�. In particular, the above estimate implies that uA is

uniformly bounded with respect to A ≥ 1 in W
2, 3p

p+1 (�).

Proof The assertion follows in the same way as in the Proof of Proposition 8. The
estimate for ∇F(DuA) in L2(�) follows from Corollary 2. It implies in turn that uA

is bounded uniformly with respect to A ≥ 1 in W
2, 3p

p+1 (�) by using [11, Lem. 4.5].
��

5 Passing to the Limit

The final step concerns passing to the limit A→∞. The unique solution of (1) will
be obtained as

u := lim
A→∞uA ,

with the limit taken in appropriate function spaces.

Remark 8 It will be needed to extract several subsequences, but we still write
simply A→∞ to avoid using too heavy notation.

By uniform—with respect to A—estimates in W 1,2(�) in Proposition 10, it directly
follows that FA(DuA) has a weak limit which we denote as F̂ ∈ W 1,2(�). Moreover,
Proposition 10 also yields that ‖∇2uA‖3p/(p+1) ≤ C, with a constant independent

of A. Hence, the compact Sobolev embedding W
2, 3p

p+1 (�) ↪→↪→ W 1,1(�) implies
the strong convergence of gradients in L1(�). This also implies that DuA(x) →
Du(x) for almost every x ∈ �.

Combining these two facts with limA→∞ FA(P) = F(P), which is valid
uniformly with respect to any compact set in R

3×3, and the lower semicontinuity
of the norm, it follows that

lim
A→∞FA(DuA) = F(Du) weakly in W 1,2(�) and a.e. in �,

and also ∫
�

|∇F(Du)|2 dx ≤ C .

Observe that F̂ = F(Du) since weak limit in Lebesgue spaces and the a.e. limit
coincide.

It remains to be proved that u is the unique solution of (1). From the construction
of SA, it follows SA(P)→ S(P), uniformly with respect to any compact set in R

3×3.
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This fact, coupled with the almost everywhere convergence of DuA, implies that

lim
A→∞SA(DuA(x)) = S(Du(x)) a.e. x ∈ �,

which is nevertheless not enough to infer directly that

lim
A→∞

∫
�

SA(DuA) · Dw dx =
∫
�

S(Du) · Dw dx, ∀w ∈ C∞0 (�) ,

and to pass to the limit in the weak formulation. To this end, we need, for instance,
additionally a uniform bound on SA(DuA) in Lq(�), for some q > 1. This would
imply that SA(DuA) ⇀ Ŝ in Lq(�) and that the limit will satisfy Ŝ = S(Du), again
by the identification of weak and almost everywhere limits in the Lebesgue spaces.

Observe that from the definition of SA, we have (cf. Proposition 3 and Lemma 5)
for p ∈ (1, 2] that

|SA(DuA)| ≤ c δp−2|DuA| .

On the other hand, the estimate F(DuA) ∈ W 1,2(�), which is uniform with respect
to A, implies by the Sobolev embedding W 1,2(�) ↪→ L6(�) that ‖F(DuA)‖6 ≤
C. Using the properties of F, it follows for p ∈ (1, 2] that (cf. Proposition 3 and
Lemma 5)

‖DuA‖3p ≤ C .

Hence, we get that SA(DuA) is bounded uniformly in L3p(�) for 1 < p ≤ 2.
This finally allows us to pass to the limit in the weak formulation, showing that u
solves (1). Thus, we proved Theorem 1.

6 On the Time-Dependent Problem

In this section, we state the natural regularity results in the time-dependent case.
These results can be proved by adapting the method used in the steady situation.
Thus, we just give the statements of the needed results and explain necessary
changes.

Remark 9 Results from this section are partially contained in [10], where they
are proved with a different approximation method and under more restrictive
assumptions on the data, which however yield also regularity in time, i.e., it is
proved there that in addition ∂

∂t
F(Du) ∈ L2(�) holds. Here, we are keeping the

minimal assumptions to prove the natural regularity with respect to the spatial
variables. However, additional assumptions on the data would allow to fully recover
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all the regularity results from [10]. The result presented in this section is the (p ≤ 2)-
counterpart of [9, Thm. 3.4].

We now show how the initial boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t
− div S(Du) = f in I ×�,

u = 0 on I × ∂� ,

u(0) = u0 in �,

(25)

where I = (0, T ), for some T > 0, can be handled by adapting the tools used in the
steady case. First, we introduce the notion of a regular solution.

Definition 6 (Regular Solution) Let the operator S = ∂U in (25), derived from
the potential U , have (p, δ)-structure for some p ∈ (1,∞) and δ ∈ [0,∞).
Let � ⊂ R

3 be a bounded domain with C2,1 boundary, and let I = (0, T ),
T ∈ (0,∞), be a finite time interval. Then, we say that u is a regular solution
of (25) if u ∈ Lp(I ;W 1,p

0 (�)) satisfies for all ψ ∈ C∞0 (0, T ) and all w ∈ W
1,p
0 (�)

T∫
0

(∂u(t)
∂t

,w
)
ψ(t)+ (S(Du(t)),Dw) ψ(t) dt =

T∫
0

(f(t),w) ψ(t) dt ,

and fulfils

u ∈ L∞(I ;W 1,p
0 (�)) ∩W 1,2(I ;L2(�)) ,

F(Du) ∈ L∞(I ;L2(�)) ∩ L2(I ;W 1,2(�)) .

To formulate clearly the dependence on the data in the various Estimates, we
introduce the quantity

|||u0, f|||2 :=
∫
�

|u0|2 + |Du0(x)|p dx+
T∫

0

∫
�

|f(t, x)|p′ + |f(t, x)|2 dx dt .

As in the steady case, we replace the operator S in (25) by SA as in Definition 5.
The next step is the construction of a “strong solution.” This is done by means of
a Galerkin approximation of the A-approximation of problem (25), using a priori

estimates obtained by formally testing with uA and ∂uA
∂t

. In fact, we proceed as in
the Proof of Proposition 5 and [9, Prop. 3.7] and use also Corollary 1. However, in
contrast to the case p > 2 in [9, Prop. 3.7], we also need to approximate the initial
condition u0 to obtain a priori estimates independent of δ−1. In fact, if we would
not do so, we have to handle the term ωA(|Du0|) which results from testing with
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∂uA
∂t

. This could be done by using Corollary 1 yielding ωA(|Du0|) ≤ c δp−2|Du0|2,
which produces an undesired δ−1 dependence. We avoid this by approximating u0

in W
1,p
0 (�) ∩ L2(�) by an uA0 ∈ W

1,∞
0 (�) satisfying

‖DuA0 ‖∞ ≤ A . (26)

This could be done by using the “convolution-translation” method, which finds its
introduction probably in the work of Puel and Roptin [19] and was rediscovered
many times for different applications to partial differential equations or simply
by appealing to standard properties of Sobolev functions and mollification. In
fact, from the proof of [15, Thm. 5.5.2] and standard transformation and covering
arguments, it follows that for u0 ∈ W

1,p
0 (�) ∩ L2(�) there exists a sequence

(wn) ⊂ W
1,p
0 (�) ∩ L2(�) and n0 ∈ N such that supp wn ⊂ � 1

n
:= {x ∈

�
∣∣ dist(x, ∂�) > 1

n
}, n ≥ n0, ‖Dwn‖p ≤ 2 ‖Du0‖p, ‖wn‖2 ≤ 2 ‖u0‖2, n ≥ n0,

and wn → u0 in W
1,p
0 (�) ∩ L2(�). Thus, we can mollify with a standard

mollification kernel ρ, which yields (for 0 < εn < 1/2n) a sequence vn := ρεn ∗wn

belonging to C∞0 (�) and converging to u0 in W
1,p
0 (�) ∩L2(�). We can choose εn

such that it is a decreasing null sequence. Moreover, Hölder inequality yields

‖Dvn‖∞ = ‖ρεn ∗ Dwn‖∞
≤ 1

ε
3/p
n

‖ρ‖p′ ‖Dwn‖p ≤ 2

ε
3/p
n

‖ρ‖p′ ‖Du0‖p =: An ↗∞ .

For A ∈ [An,An+1), n ≥ n0, we set uA0 := vn, which satisfies (26) and converges

to u0 in W
1,p
0 (�) ∩ L2(�).

Now, we can formulate the result showing the existence of a “strong solution.”

Proposition 11 Let the operator S = ∂U , derived from the potential U , have
(p, δ)-structure for some p ∈ (1, 2] and δ ∈ [0,∞). Assume that u0 ∈ W

1,p
0 (�) ∩

L2(�) and f ∈ Lp′(I×�). Let SA be as in Definition 5, and let uA0 be as constructed
above, satisfying (26). Then, for all A ≥ An0 , the approximate problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uA

∂t
− div SA(DuA) = f in I ×�,

uA = 0 on I × ∂� ,

uA(0) = uA0 in �,

(27)

possesses a unique strong solution uA, i.e., uA ∈ W 1,2(I ;L2(�)) with FA(DuA) ∈
L∞(I ;L2(�)), which satisfies for all ψ ∈ C∞0 (0, T ) and all w ∈ W

1,2
0 (�)
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T∫
0

(∂uA(t)
∂t

,w
)
ψ(t)+ (SA(DuA(t)),Dw) ψ(t) dt =

T∫
0

(f(t),w) ψ(t) dt .

In addition, the solution uA satisfies the estimate

esssup
t∈I

(
‖uA(t)‖2

2 + ‖FA(DuA(t))‖2
2 + (δ + A)p−2‖∇uA(t)‖2

2 + ‖F(DuA(t))‖2
2

)

+
T∫

0

∥∥∥∂uA(s)
∂t

∥∥∥2

2
ds ≤ C

(
δp + |||u0, f|||2) ,

with C depending only on the characteristics of S and �.

Proof We do not give the full proof, which is a combination of Proposition 5 and
[9, Prop. 3.7]. It differs from [9, Prop. 3.7] mainly in the approximation of the initial
condition. Thus, we just derive the a priori estimates.

Formally taking uA as test function in (25), we directly get

1

2
‖uA(t)‖2

2 +
t∫

0

∫
�

ωA(|DuA(s)|) dxds ≤ 1

2
‖uA0 ‖2

2 + C

t∫
0

∫
�

ω∗(|f(s)|) dxds ,

where the external force is treated (for a.e. t ∈ I ) as in the proof of Proposition 5
(note that for this estimate, the special choice of uA0 is not essential).

The second estimate is obtained by testing (25) by the time derivative of uA. In
this way, we get

t∫
0

∥∥∥∂uA(s)
∂t

∥∥∥2

2
ds +

∫
�

ωA(|DuA(t)|) dx ≤ c

∫
�

ωA(|DuA0 |) dx+ c

t∫
0

‖f(s)‖2
2 ds .

The problem is that ωA has a quadratic growth, while Du0 belongs to Lp(�). To
resolve this, we take advantage of the special approximation uA0 . In view of (26) and
the definition of ωA, we get

ωA(|DuA0 (x)|) = ω(|DuA0 (x)|) for a.e. x ∈ � .

Consequently, testing (27) with uA and ∂uA
∂t

results in
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1

2
‖uA(t)‖2

2 +
∫
�

ωA(|DuA(t)|) dx+
t∫

0

∫
�

ωA(|DuA(s)|) dx+
t∫

0

∥∥∥∂uA(s)
∂t

∥∥∥2

2
ds

≤ 1

2
‖uA0 ‖2

2 +
∫
�

ω(|DuA0 |) dx+ C

t∫
0

∫
�

ω∗(|f(s)|) dxds + C

t∫
0

‖f(s)‖2
2 ds .

The assertion follows, using the estimates from Corollary 1, the properties of the
approximation uA0 , estimate (12), and the definition of |||u0, f|||. ��
By using the same tools employed in Sect. 3, one can prove the regularity in
the interior and for tangential derivatives (with estimates independent of A).
Also, regularity in normal direction follows analogously, but the estimates depend
on A. More precisely, by adapting the translation method used in the Proof of
Proposition 6, the result below can be proved:

Proposition 12 Let the operator S = ∂U , derived from the potential U , have
(p, δ)-structure for some p ∈ (1, 2] and δ ∈ (0,∞), with characteristics
(γ3, γ4, p). Let � ⊂ R

3 be a bounded domain with C2,1 boundary, and let
u0 ∈ W

1,p
0 (�) ∩ L2(�) and f ∈ Lp′(I × �). Then, the unique strong solution

uA of the approximate problem (27) satisfies for a.e. t ∈ I :

t∫
0

∫
�

ξ2
0 |∇FA(DuA)|2 + ωA

(
ξ2

0 |∇2uA|)+ (δ + A)p−2ξ2
0 |∇2uA|2 dx ds ≤ c0 ,

t∫
0

∫
�

ξ2
P |∂τFA(DuA)|2 + ωA

(
ξ2
P |∂τ∇uA|)+ (δ + A)p−2ξ2

P |∂τ∇uA|2 dx ds ≤ cP ,

where c0 = c0(δ, |||u0, f|||, ‖ξ0‖1,∞, γ3, γ4, p), while the constant related to
the neighborhood of P is such that cP = cP (δ, |||u0, f|||, ‖ξP ‖1,∞, ‖gP ‖C2,1 ,

γ3, γ4, p).

By using Proposition 12 and ellipticity of SA, we can write, for a.e. (t, x) ∈ I ×
�, the missing partial derivatives in the normal direction (which is locally e3 after
a rotation of coordinates) in terms of the tangential ones, obtaining the following
result:

Proposition 13 Under the assumptions of Proposition 12, there exists a constant
C1 > 0 such that, provided in the local description of the boundary, there holds
rP < C1 in (b3), where ξP (x) is a cutoff function with support in �P , and then



Natural Second-Order Regularity Using the A-Approximation 35

t∫
0

∫
�

ξ2
P |∂3FA(DuA)|2 + ωA

(
ξ2
P |∂3DuA|) dx ds ≤ CA ,

where CA = CA(δ, |||u0, f|||, ‖ξP ‖1,∞, ‖gP ‖C2,1 , γ 3, γ 4, p, ω,A).

Next, we improve the estimate in the normal direction in the sense that we will
show that they are bounded uniformly with respect to the parameter A ≥ An0 . At
this stage, the time derivative is treated as an L2-term on the right-hand side, while
an Lp′ -estimate would be needed to estimate it properly. This can be overcome by
appropriate integration by parts. This step involves multiplying the equations by
ξ2
P ∂

2
33uA and integrating by parts over the whole domain. To this end, the following

technical result is used to justify the treatment of the time derivative:

Lemma 9 Let ∂� ∈ C2,1 and let v ∈ L2(I ;W 2,2(�) ∩ W
1,2
0 (�)) ∩

W 1,2(I ;L2(�)). Then, for all t ∈ [0, T ], it holds

−
t∫

0

∫
�

∂v
∂t

∂2
33v dx dt = 1

2
‖∂3v(t)‖2

2 −
1

2
‖∂3v(0)‖2

2 .

Note that this result requires that u0 ∈ W
1,2
0 (�), and starting from this point, we

need further regularity of the initial condition. With Lemma 9, one can prove the
following result:

Proposition 14 Let the same hypotheses as in Proposition 12 be satisfied and
assume also u0 ∈ W

1,2
0 (�). Let the local description gP of the boundary and

the localization function ξP satisfy (b1)− (b3) and (�1) (cf. Sect. 3.1). Then, there
exists a constant C2 > 0 such that the unique strong solution uA of the approximate
problem (27) satisfies for every P ∈ ∂� and a.e. t ∈ I

t∫
0

∫
�

ξ2
P |∂3FA(DuA)|2 dx ds ≤ C ,

provided rP < C2 in (b3), with C depending on the characteristics of S, δ, |||u0, f|||,
‖Du0‖2, ‖ξP ‖1,∞, ‖gP ‖C2,1 , and C2.

From Propositions 11 and 14, we deduce in the same way as in the Proof of
Proposition 10:

Proposition 15 Under the assumption of Proposition 14, the unique strong solution
uA of the approximate problem (27) satisfies
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esssup
t∈I

(
‖uA(t)‖2

2+‖F(DuA(t))‖2
2

)
+

T∫
0

∫
�

|∇F(DuA)(s)|2+
∣∣∣∂uA(s)

∂t

∣∣∣2
2
dx ds ≤ C ,

with C depending on the characteristics of S, δ, |||u0, f|||, ‖Du0‖2, and the C2,1-
norms of the local description of ∂�. In particular, uA is uniformly bounded with

respect to A ≥ 1 in Lp(I ;W 2, 3p
p+1 (�)).

Finally, passing to the limit as A→∞ can be performed in a way similar to that
used in the steady case: Observe that the bound on the time derivative allows us to
use the Aubin-Lions lemma to infer the (space-time) convergence:

DuA → Du a.e. in I ×�, and strongly in L2(I ×�).

The rest of the argument requires minor changes to prove finally the following result:

Theorem 2 Let the operator S in (25), derived from a potential U , have (p, δ)-
structure for some p ∈ (1, 2] and δ ∈ (0,∞). Let � ⊂ R

3 be a bounded domain
with C2,1 boundary. Assume that u0 ∈ W

1,2
0 (�) and f ∈ Lp′(I × �). Then, the

system (25) has a unique regular solution with norms estimated only in terms of the
characteristics of S, δ, �, ‖u0‖1,2, and ‖f‖p′ .
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Three-Dimensional Velocity Field Using
the Cross-Model Viscosity Function

Fernando Carapau , Paulo Correia, and Pedro Areias

1 Introduction

Let us consider the constitutive equation for an incompressible and homogeneous
linearly viscous fluid where the Cauchy stress tensor is given by

T = −pI + 2μD, (1)

where p is the hydrostatic pressure, μ the constant viscosity, and D the symmetric
part of the velocity gradient, also called the rate of deformation tensor

D := 1

2

(
∇ϑ + (∇ϑ

)T )
, (2)

where1 ϑ = ϑ(x, t) is the three-dimensional velocity field, ∇ϑ is the spatial
velocity gradient, and

(∇ϑ
)T denotes the transpose of ∇ϑ . The fluids that comply

with Eq. (1) are known in the scientific literature as Newtonian fluids. On the other
hand, there are fluids for which the viscosity is not constant, and it may depend on

1 Let x = (x1, x2, x3) be the rectangular space Cartesian coordinates (for convenience, we set
x3 = z) and t is the time variable.
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certain parameters, as pressure and/or shear rate. These fluids for which the viscosity
is not constant are known as non-Newtonian fluids.

For many real fluids, the viscosity of the flow changes with the intensity of the
rate of deformation tensor (see, for example, [1]). This change of the viscosity can
be very large in some fluids, and it cannot be ignored. Throughout this work, we
will consider that the viscosity only depends on the intensity of the shear rate. The
simplest way to model such behavior is to introduce in (1) the viscosity as a function
of shear rate:

μ(|γ̇ |) : R+ → R
+,

where γ̇ is a scalar measure of the rate of shear defined by

|γ̇ | = √2D : D.

Therefore, the Cauchy stress tensor in (1) takes the form

T = −pI + μ(|γ̇ |)
(
∇ϑ + (∇ϑ

)T )
. (3)

The class of non-Newtonian fluids satisfying condition (3) is called generalized
Newtonian fluids (or quasi-Newtonian). In general, we can divide the generalized
Newtonian fluid into two subclass: the shear-thinning (or pseudoplastic) fluids
where the viscosity decreases with the increasing shear rate and the shear-thickening
(or dilatant) fluids for which the viscosity increases with the increasing shear rate.
The shear-thinning behavior is commonly observed in real fluids, for example,
suspensions, emulsions, polymeric fluids (see, for example, [2–4]). The shear-
thickening behavior is less common, although it can be observed at highly loaded
suspensions, for example, starch, plaster, and a few unusual polymeric fluids (see,
for example, [2–4]).

Next, we will present the specific viscosity function under study in this work,
that is, the cross model, where the viscosity function in (3) is given by

μ(|γ̇ |) = μ∞ + μ0 − μ∞
1+ (k|γ̇ |)1−n . (4)

Here, parameters k and n are called the consistency index and the flow index
(positive constants), respectively. In this model, we consider fluids with bounded
low μ0 and high limiting viscosities μ∞. Considering, n = 1 in Eq. (4), the
Cauchy stress tensor (3) corresponds to the Newtonian fluid behavior with μ =
(μ∞ + μ0)/2. Moreover, if n < 1, we obtain

lim|γ̇ |→∞μ(|γ̇ |) = μ∞, lim|γ̇ |→0
μ(|γ̇ |) = μ0,
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= 0.1

= 0.9

= 0.5

(a)

= 1.5

= 3

= 5

(b)

Fig. 1 Cross model: (a) shear-thinning viscosity and (b) shear-thickening viscosity. Both cases
with values k = 1.007 s, μ0 = 0.56 poise, and μ∞ = 0.0345 poise (see, for example, [5, 6]), for
different values of flow index

and the fluid shows us a shear-thinning behavior (see Fig. 1). If n > 1, then

lim|γ̇ |→∞μ(|γ̇ |) = μ0, lim|γ̇ |→0
μ(|γ̇ |) = μ∞,

and we have a shear-thickening fluid behavior (see Fig. 1).
Numerical simulations relating to a three-dimensional model for a homogeneous

incompressible fluid based on the Cauchy stress tensor (3) with viscosity function
(4), for a given geometry, require a high computational effort. In this sense, theories
that allow us to reduce the complexity of the problems under study by reducing
variables are important. A possible simplification is to consider the evolution of
average flow quantities using simpler one-dimensional models. Usually, classical
one-dimensional models are obtained by imposing additional assumptions related
to the nonlinear convective acceleration and the viscous dissipation terms. These
closure approximations are typically based on assuming a purely axial flow with
a field dependence on axial variables (see, for example, [7–9]). In this work, we
present an alternative theory to reduce the three-dimensional model under study to
a one-dimensional system of ordinary differential equations, which depend only on
time and on a single spatial variable, by using the Cosserat theory associated with
fluid dynamics (see Caulk and Naghdi [10]). The basis of this theory (see Duhem
[11]) and Eugène and François Cosserat [12]) is to consider an additional structure
of deformable vectors (called directors) assigned to each point on a spatial curve
(the Cosserat curve). The use of directors in continuum mechanics goes back to
Duhem [11], who regarded a body as a collection of points, together with associated
directions. This theory has also been used by several authors in studies of rods,
plates, and shells (see, for example, [13–17]). An analogous hierarchical theory
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related to fluid dynamics has been developed by Caulk and Naghdi [10] and Green et
al. [18–20]. Recently, this hierarchical theory has been applied to models associated
with hemodynamics (see Robertson and Sequeira [21] and Carapau and Sequeira
[22]). Regarding the swirling motion, this hierarchical theory was used to study
several models (see Caulk and Naghdi [10] and Carapau et al. [23–25]). Also, this
hierarchical theory has been applied for specific models related to non-Newtonian
fluids under different geometries and perspectives (see Carapau [26, 27], Carapau
and Correia [28], and Carapau et al. [29, 30]). This alternative approach theory has
been validated by the works of Caulk and Naghdi [10], Robertson and Sequeira [21],
Carapau and Sequeira [22, 29], and Carapau [27].

The advantage of using the Cosserat theory related to fluid dynamics is not so
much getting an approximation of the three-dimensional system but rather in using
it as an independent framework to predict some properties of the three-dimensional
problem under study. The main features of the director theory are as follows: it
incorporates all components of the linear momentum equation; it is a hierarchical
theory, making it possible to increase the accuracy of the model; the system of
equations is closed at each order and therefore unnecessary to make assumptions
about the form of the nonlinear and viscous terms; invariance under superposed
rigid body motions is satisfied at each order; the wall shear stress enters directly as
a dependent variable in the formulation; and the director theory has been shown to
be useful for modeling flow in curved tubes, considering many more directors than
in the case of a straight tube. A detailed discussion about Cosserat theory, related to
fluid dynamics, can be found in [10, 18–20]. The three-dimensional numerical study
of the flow associated with an incompressible fluid that follows the constitutive
equation (3) with viscosity function (4) in a circular cross-section tube with constant
radius is in fact a challenging and complex study in terms of computational effort
and infeasible in many relevant issues. Our one-dimensional approach is obtained
by integrating the linear momentum equation over the cross section of the tube,
taking the three-dimensional velocity field approximation provided by the Cosserat
theory. This procedure yields a one-dimensional system, depending only on time
and a single spatial variable, which is the axis of the symmetrical flow. This velocity
field approximation satisfies exactly both the incompressibility condition and the
kinematic boundary condition. Based on the work of Caulk and Naghdi (see [10]),
we consider the three-dimensional velocity field ϑ = ϑ(x, t) approximated by:2

ϑ = v +
k∑

N=1

xα1 . . . xαNWα1...αN , (5)

with

v = vi(z, t) ei , Wα1...αN = Wi
α1...αN

(z, t) ei . (6)

2 In the sequel, Latin indices take the values 1, 2, and 3 and Greek indices 1 and 2, and we use the
convention of summing over repeated indices.
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In condition (5), v denotes the velocity along the axis of symmetry z at time
t , xα1 . . . xαN are the polynomial weighting functions with order k, the vectors
Wα1...αN are the director velocities which are symmetric with respect to their
indices, and ei are the associated unit basis vectors. We remark that the number
k identifies the order in the hierarchical theory and is related to the number of
directors. In applications, these director velocities are associated with physical
characteristics of the fluid. Considering the velocity field approximation (5) with
nine directors (see [10]), i.e., k = 3 in (5) and the constitutive condition (3)
with viscosity function (4) in our one-dimensional model, we obtain the unsteady
equation for mean pressure gradient depending on the volume flow rate, Womersley
number, and viscosity parameters over a finite section of a straight, rigid, and
impermeable tube with constant circular cross section. Attention is focused on
some numerical simulations for constant and nonconstant mean pressure gradient
using a Runge-Kutta method. In particular, given a specific data, we get information
about the volume flow rate, and consequently we can illustrate the three-dimensional
velocity field behavior on the circular cross section of the tube.

2 Governing Equations

Taking into account the constitutive condition (3) with viscosity function (4), we
consider the motion of a homogeneous incompressible generalized Newtonian fluid
without body forces inside straight rigid and impermeable rectilinear tube with
circular cross section of constant radius (see Fig. 2). The boundary of the fluid is
defined by the surface scalar constant function φ, which is related to the circular
cross-section straight tube by the following relationship:

φ2 = x2
1 + x2

2 . (7)

Fig. 2 Fluid domain � with normal and tangential components of the surface traction vector pe
and τ1, τ2 with constant circular cross section φ along the axis of symmetry z. The boundary ∂� is
composed by the proximal cross section �1, by the distal cross section �2, and by the lateral wall
of the tube �w
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Therefore, the equations of motion, considering conservation of linear momentum
and mass, are given in �× (0, T ) by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ
(∂ϑ
∂t
+ ϑ · ∇ϑ

)
= ∇ · T ,

∇ · ϑ = 0,

T = −pI + (μ∞ + μ0 − μ∞
1+ (k|γ̇ |)1−n

)(∇ϑ + (∇ϑ
)T )

, tw = T · n,
(8)

with the initial condition

ϑ(x, 0) = ϑ0(x) in �, (9)

and the homogeneous Dirichlet boundary condition

ϑ(x, t) = 0 on �w × (0, T ), (10)

where ρ is the constant density of fluid. Equation (8)1 represents the balance of
linear momentum, and (8)2 is the incompressibility condition. The constitutive
equation appears in (8)3 and tw denotes the stress vector on the surface whose
outward unit normal vector is n(x, t) = ni(x, t)ei . The components of the outward
unit normal vector to the surface φ are given by

n1 = x1

φ
, n2 = x2

φ
, n3 = 0. (11)

The theoretical study of the model (8)–(10), namely, existence, uniqueness, and
regularity of classical and weak solutions, still poses some difficulties. In this work,
we are interested in computational simulations of the model (8)–(10), using the
director approach related to fluid dynamics. Since Eq. (7) defines a material surface,
the three-dimensional velocity field ϑ must satisfy the kinematic condition3

d

dt

(
φ2 − x2

1 − x2
2

) = 0,

i.e.,

− x1ϑ1 − x2ϑ2 = 0, (12)

on the boundary defined by (7). Averaged quantities such as volume flow rate and
pressure are needed to study one-dimensional models. Consider S = S(z, t) a
generic axial section of the domain � at time t defined by the spatial variable z,
bounded by the circle defined by (7), and let A(z, t) be the area of this section
S(z, t). Then, the volume flow rate Q is defined by

3 The material time derivative is given by d
dt

( · ) = ∂
∂t

( · )+ ϑ · ∇( · ).
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Q(z, t) =
∫
S(z,t)

ϑ3(x, t)da, (13)

and the average pressure p̄ by

p̄(z, t) = 1

A(z, t)

∫
S(z,t)

p(x, t)da. (14)

Next, considering (5), it follows (see [10]) that the approximation of the three-
dimensional velocity field ϑ = ϑi(x, t)ei using nine directors is given by

ϑ =
[
x1(ξ + σ(x2

1 + x2
2))− x2(ω + η(x2

1 + x2
2))
]
e1

+
[
x1(ω + η(x2

1 + x2
2))+ x2(ξ + σ(x2

1 + x2
2))
]
e2

+
[
v3 + γ (x2

1 + x2
2)
]
e3, (15)

where ξ, ω, γ, σ, andη are scalar functions of the spatial variable z and time t . The
physical significance of these scalar functions in (15) is the following: γ is related
to transverse shearing motion, ω and η are related to rotational motion (also called
swirling motion) about e3, while ξ and σ are related to transverse elongation. We
use nine directors because it is the minimum number for which the incompressibility
condition and the kinematic boundary conditions on the lateral surface of the tube
are satisfied pointwise. Using the velocity approach (15), the kinematic conditions
(12) on the lateral boundary reduce to

− φ2(ξ + φ2σ) = 0, (16)

and the incompressibility condition given by Eq. (8)2 becomes

(v3)z + 2ξ + (x2
1 + x2

2)(γz + 4σ) = 0, (17)

where the subscripted variable denotes partial differentiation. For Eq. (17) to hold at
every point in the fluid, the velocity coefficients must satisfy the separate conditions:

(v3)z + 2ξ = 0, γz + 4σ = 0. (18)

Hence, the boundary condition (12) and the incompressibility condition given by
Eq. (8)2 are satisfied exactly by the velocity field (15) if we impose the conditions
(16) and (18). On the wall boundary of the rigid tube, we impose the no-slip
boundary condition requiring that the velocity field (15) vanishes identically on the
surface (7), i.e., condition (10) is satisfied. Thus, it follows that

ξ + φ2σ = 0, ω + φ2η = 0, v3 + φ2γ = 0. (19)
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Therefore, Eq. (16) is satisfied identically, and the two incompressibility conditions
(18) reduce to

(v3)z + 2ξ = 0, (φ2v3)z = 0. (20)

Considering the flow in a rigid tube with constant circular cross section given by
surface (7) without swirling motion (i.e., ω = η = 0), conditions (13), (15), (19),
and (20), then the volume flow rate Q is just a function of time t , given by

Q(t) = π

2
φ2v3(z, t), (21)

and, consequently, the velocity field (15) can be rewritten as

ϑ(x, t) = 2Q(t)

πφ2

(
1− x2

1 + x2
2

φ2

)
e3, (22)

and the initial condition (9) is satisfied when we consider in computational
simulations Q(0) = const.

To simplify the computational effort, it is convenient to introduce the stress vector
tw on the lateral surface in terms of its outward unit normal n and in terms of the
components of the surface traction vector τ1, τ2 and pe in the form (see [10])

tw = τ1λ− pen+ τ2eθ , (23)

where τ1 is the wall shear stress, while λ and eθ are the unit tangent vectors defined
by

λ = n× eθ , eθ = (xα/φ)eαβeβ, (24)

with e11 = e22 = 0 and e12 = −e21 = 1. Using conditions (11) and (24), the
expression for the stress vector (23) can be rewritten in terms of its rectangular
Cartesian components as

tw = 1

φ
(−pex1 − τ2x2)e1 + 1

φ
(−pex2 + τ2x1)e2 + τ1e3. (25)

Next, instead of the momentum equation (8)1 be verified pointwise in the fluid,
we impose the following integral conditions (see [10]):

∫
S

[
∇ · T − ρ

(∂ϑ
∂t
+ ϑ · ∇ϑ

)]
da = 0, (26)

∫
S

[
∇ · T − ρ

(∂ϑ
∂t
+ ϑ · ∇ϑ

)]
xα1 . . . xαN da = 0, (27)
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where N = 1, 2, 3. Using the divergence theorem and a form of Leibniz rule,
Eqs. (26) and (27) for nine directors can be reduced to the following vector
equations:

∂h

∂z
+ f = a, (28)

and

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (29)

where h, kα1...αN , mα1...αN are resultant forces defined by

h =
∫
S

T 3da, kα =
∫
S

T αda, kαβ =
∫
S

(
T αxβ + T βxα

)
da, (30)

kαβγ =
∫
S

(
T αxβxγ + T βxαxγ + T γ xαxβ

)
da, (31)

and

mα1...αN =
∫
S

T 3xα1 . . . xαN da. (32)

The quantities a and bα1...αN are inertia terms defined by

a =
∫
S

ρ
(∂ϑ
∂t
+ ϑ · ∇ϑ

)
da, (33)

bα1...αN =
∫
S

ρ
(∂ϑ
∂t
+ ϑ · ∇ϑ

)
xα1 . . . xαN da, (34)

and f , lα1...αN , which arise due to surface traction on the lateral boundary, are
defined by

f =
∫
∂S

tw ds, (35)

lα1...αN =
∫
∂S

tw xα1 . . . xαN ds. (36)

Next, we will derive the equation for the mean pressure gradient using the
computed values for the quantities (30)–(36) in Eqs. (28)–(29) according to [10].
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3 Main Results and Simulations

The computational effort to calculate the quantities (30)–(36) related to the con-
stitutive equation (8)3 for any index flow n (i.e., shear-thinning viscosity and
shear-thickening viscosity) is difficult to handle. This difficulty is related to
computational problems arising from the calculation of integrals with singularities.
However, for some positive integer values of n, the difficulty can be overcome.
Therefore, considering the choice n = 3 on Eq. (8)3, the equation for the mean
pressure gradient will be obtained using the resulting quantities from (30) to (36) on
Eqs. (28)–(29).

In sequence, using the velocity field (22), the surface (7), the volume flow rate
(21), and the stress vector (25) in Eqs. (30)–(36), we can explicitly calculate the
forces h, kα , kαβ , kαβγ , mα1...αN , the inertia terms a, bα1...αN , and the surface
tractions f , lα1...αN . Hence, plugging these solutions into Eqs. (28)–(29) and using
Eq. (14), by solving a linear system, we get the unsteady equation for the average
pressure gradient, given by

p̄z(z, t) = − 4ρ

3πφ2Qt(t)− 8μ0

πφ4Q(t)

+ (μ0 − μ∞
)[ π3φ8

64 k4 Q3(t)
ln
(32k2Q2(t)+ π2φ6

π2φ6

)

− πφ2

2 k2 Q(t)

]
, (37)

Integrating condition (37) over a finite section of the tube between z1 and z2 with
z1 < z2, we obtain the mean pressure gradient over the interval [z1, z2] at time t ,
given by

G(t) = 4ρ

3πφ2Qt(t)+ 8μ0

πφ4Q(t)+ (μ0 − μ∞
)[ πφ2

2 k2 Q(t)

− π3φ8

64 k4 Q3(t)
ln
(32k2Q2(t)+ π2φ6

π2φ6

)]
, (38)

where

G(t) = p̄(z1, t)− p̄(z2, t)

z2 − z1
.

Next, let us consider the following dimensionless variables:

t̂ = ω0t, Q̂(t̂) = 2ρ

πφk
Q(t), Ĝ(t̂) = ρ3φ7

k4
G(t), (39)



Three-Dimensional Velocity Field Using the Cross-Model Viscosity Function 49

where ω0 is the characteristic frequency for unsteady flows. In the cases where a
steady volume flow rate is specified, the nondimensional volume flow rate Q̂ is
identical to the classical Reynolds number used for flow in tubes (see Robertson
and Sequeira [21]). Substituting the new variables (39) in Eq. (38), we obtain the
nondimensional mean pressure gradient:

Ĝ(t̂) = 2

3
W2

oQ̂t̂ (t̂)+ 4AμQ̂(t̂)+ Bμ
[ 1

Q̂(t̂)
− 1

8

Cμ
Q̂3(t̂)

ln
(

8
Q̂2(t̂)

Cμ
+ 1
)]
,

(40)

whereWo = φ3
√
ρ3ω0/k3 is the Womersley number, which is the most commonly

used parameter to reflect the pulsatility of the flow andAμ,Bμ, and Cμ are viscosity
parameters, given by

Aμ = μ0ρ
2φ4

k3 , Bμ = (μ0 − μ∞)ρ4φ4

k7 , Cμ = ρ2φ4

k4 . (41)

Moreover, using (39)2 and the dimensionless variables

x̂1 = x1

φ
, x̂2 = x2

φ
, ẑ = z

φ
, ϑ̂(x̂, t̂) = φρ

k
ϑ(x, t), (42)

at the velocity equation (22), we get the nondimensional three-dimensional velocity
field:

ϑ̂(x̂, t̂ ) = Q̂(t̂)
(

1− (x̂2
1 + x̂2

2)
)
e3. (43)

In the next section, we present numerical simulations associated with the
Eqs. (40) and (43) for specific flow regimes, considering

Aμ → 1, Bμ → 0, Cμ �= 0, (44)

in order to reduce the computational effort.

3.1 Constant Mean Pressure Gradient

In Fig. 3, we can observe the behavior of the unsteady volume flow rate solution
given by (40) obtained using a Runge-Kutta method with constant mean pressure
gradient Ĝ(t̂) = 1 when we increase the Womersley number. Therefore, we
note that the amplitude of the solution in the initial transient phase increases and
becomes less pronounced as the Womersley number increases. In this particular
case of a constant mean pressure gradient, the volume flow rate given by (40)
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Fig. 3 Unsteady volume
flow rate given by Eq. (40)
with constant mean pressure
gradient Ĝ(t̂) = 1 where
Q̂(0) = 0.1 and
Wo = (0.5; 1.5; 3) for
shear-thickening fluids with
n = 3

ˆ

ˆ

n= 3.00, Time= 0.2 s n= 3.00, Time= 0.6 s
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Fig. 4 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with
Ĝ(t̂) = 1, Q̂(0) = 0.1, Wo = 1.5, and n = 3 (shear-thickening fluid). Time parameters: t̂ =
0.2, t̂ = 0.6

converges toward to the steady-state solution, converging faster for small values
of the Womersley number, i.e., whenWo → 0.

Moreover, with the information of the volume flow rate given by (40), obtained
for certain flow regimes, we can return to the three-dimensional problem to obtain
the behavior of the three-dimensional velocity field (43) in time on the circular cross
section of the tube. Figures 4 and 5 illustrate the three-dimensional velocity field
(43) behavior in the circular cross section of the tube when we increase the time
parameters.
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Fig. 5 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with
Ĝ(t̂) = 1, Q̂(0) = 0.1, Wo = 1.5, and n = 3 (shear-thickening fluid). Time parameters: t̂ =
1, t̂ = 2

3.2 Nonconstant Mean Pressure Gradient

Let us consider the nonconstant mean pressure gradient function, given by

Ĝ(t̂) = 1+ sin2(t̂)

et̂
, (45)

which shows an interesting behavior (see Fig. 6). More specifically, it shows a
strong variation in the initial stage and after the initial transient phase has small
fluctuations, which tend to decrease with time. In Fig. 7, we can observe the behavior
of the unsteady volume flow rate solution given by (40) obtained using a Runge-
Kutta method with nonconstant mean pressure gradient (45), when we increase the
Womersley number Wo = (0.5; 1.5; 3). In the initial phase of transition, we can
verify the variation of the volume flow rate with the increase of the Womersley
number, but with time the volume flow rate tends to stabilize regardless of the period
of variation of the nondimensional parameter.

Finally, with the information of the volume flow rate given by (40), obtained for
certain flow regimes with nonconstant pressure gradient (45), we can return to the
three-dimensional problem to obtain the behavior of the three-dimensional velocity
field (43) in time on the circular cross section of the tube (see Figs. 8 and 9).
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Fig. 6 Nonconstant mean
pressure gradient given by
Eq. (45) ˆ

ˆ

Fig. 7 Unsteady volume
flow rate given by Eq. (40)
with nonconstant mean
pressure gradient (45) where
Q̂(0) = 0.1 and
Wo = (0.5; 1.5; 3) for
shear-thickening fluids with
n = 3

ˆ

ˆ



Three-Dimensional Velocity Field Using the Cross-Model Viscosity Function 53

–1
–1 –0.5 0.5 10 –1 –0.5 0.5 10

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
n= 3.00, Time= 0.2 s n= 3.00, Time= 0.6 s

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

 (
m

/s
)

Fig. 8 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with
nonconstant mean pressure gradient (45), Q̂(0) = 0.1,Wo = 0.5, and n = 3 (shear-thickening
fluid). Time parameters: t̂ = 0.2, t̂ = 0.6
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Fig. 9 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with
nonconstant mean pressure gradient (45), Q̂(0) = 0.1,Wo = 0.5, and n = 3 (shear-thickening
fluid). Time parameters: t̂ = 1, t̂ = 2

4 Conclusions

Based on the works [10, 21, 22, 27, 29], we are facing a one-dimensional theory
relevant to the study of physical problems involving the flow of Newtonian and
non-Newtonian fluids under different geometries and perspectives, being a valid
alternative to the classics one-dimensional models. The nature of Eq. (40) shows us
in general the difficulty and the challenge of studying the flow of an incompressible
fluid where the viscosity varies with the shear rate. In this work, based on a one-
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dimensional model obtained by using the Cosserat theory, we studied the behavior
of the unsteady volume flow rate and the unsteady three-dimensional velocity field
of an incompressible fluid where the viscosity function was given by Eq. (4), i.e.,
by cross-model viscosity function. Our one-dimensional approach is difficult to
implement for any power index n, the difficulty being associated with computational
problems due to the singularities presented in the integral calculus caused by
constitutive equation (8)3. In this sense, it was not possible to obtain a general
equation for the mean pressure gradient involving the volume flow rate, Womersley
number, power index n, and viscosity parameters. Based on the computational work
and considering n = 3, we obtain specific ordinary differential equation to the
mean pressure gradient involving the volume flow rate, Womersley number, and
viscosity parameters. Using a Runge-Kutta method to solve the ordinary differential
equation, we present the behavior of the unsteady volume flow rate by fixing the
mean pressure gradient for specific flow regimes. Furthermore, we illustrate the
three-dimensional velocity field behavior related to the model (8)–(10). Future
work related to the Cosserat theory, which we are currently under study, include
fluid-structure interaction, curved tubes, and the case of tubes with branches or
bifurcations.
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Small Forced Oscillation of a Rigid Body
in a Viscous Liquid

Giovanni P. Galdi

Őν oί ϑεoὶ ϕιλoυ̃σ ιν, ὰπoϑνήσ�ει νέoς .
He whom the gods love dies young

MENANDER 342-291 BC

1 Introduction

Viscous flow around oscillating bodies is a problem of significant relevance in
fluid mechanics, e.g., [1, 10] and the literature there cited. As a matter of fact,
its range of application is rather wide, since it may be of interest at different
scales: from microfluidics [8] to design of marine and land vehicles [1] and from
bubble dynamics [9] to stability of structures [3]. Concerning the latter, of particular
importance is the phenomenon of forced oscillation of suspension bridges, induced
by the vortex shedding of the fluid (air), which reflects into an oscillatory regime
of the wake. When the frequency of the wake approaches the natural structural
frequency of the body (the bridge), a resonant phenomenon may occur that could
lead to structural failure. An infamous example of this phenomenon is the well-
known collapse of the Tacoma Narrows Bridge.

As a first step toward furnishing a rigorous mathematical analysis of this
phenomenon, in the joint work [2], we have started to analyze the simple model
problem where a two-dimensional rectangular structure is subject to a unidirectional
restoring elastic force and immersed in the two-dimensional channel flow of
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a Navier-Stokes liquid driven by a time-independent Poiseuille flow. The main
objective in [2] is to investigate the existence of possible equilibrium configurations
of the structure, at least for “small” data. In [2], an analogous question was also
addressed when the rectangle is allowed to rotate around its center and subject to a
restoring elastic torque.

The natural, second step to be undertaken is then to suppose that, more generally,
the driving mechanism is time periodic of prescribed period T (“T -periodic”) and
study the corresponding forced oscillation of the structure with a view to possible
occurrence of resonance. The main goal of this paper is to provide an introductory
contribution in that direction.

More precisely, let S be a rigid body subject to an elastic restoring force R that
we assume to be applied to its center of mass, G. S is in the flow of Navier-Stokes
liquid driven by a T -periodic, uniform velocity U = U(t) at “large” distance from
S . To avoid “boundary effects” that could be irrelevant to the study we have in
mind, we suppose that the liquid fills the whole space, �, outside S . Moreover,
we assume that on S a torque is applied that prevents it from rotating. Under these
conditions, the system of equations governing the motion of the coupled system
body liquid, in a frame F ≡ {G, ei} attached to S , is given by [4]

∂tϑ + (ϑ − χ) · ∇ϑ = ν�ϑ −∇p
div ϑ = 0

}
in �× R ,

ϑ(x, t) = χ(t) , (x, t) ∈ ∂�× R ; lim|x|→∞ϑ(x, t) = U(t) , t ∈ R ,

Mχ̇ + ρ

∫
∂�

T(ϑ, p) · n = R in R .

(1)

Here, ϑ and ρ p are velocity and pressure fields of the liquid and ρ and ν its density
and kinematic viscosity, while M and χ = χ(t) are mass of S and velocity of G,
respectively. Furthermore,

T(z, ψ) := 2ν D(z)− ψ I , D(z) := 1

2

(
∇z+ (∇z)�

)
,

with I identity matrix, is the Cauchy stress tensor, and, finally, n is the unit outer
normal at ∂�.

The relevant question we want to investigate is whether (1) admits the existence
of T -periodic solutions and, more importantly, whether or not such existence
holds for arbitrary value of T (> 0). The response to the latter will provide the
information on whether resonance does or does not occur.

In this paper, we will consider only “small oscillations” of S , which translates
into the assumption of creeping flow for the liquid (Stokes approximation). Further,
we take R to be a linear function of the displacement ξ := ∫ χ(s)ds with respect to
a fixed point, namely,

R = −� ξ , � ∈ R+ .
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As a consequence, (1) becomes

∂tϑ = ν�ϑ −∇p
div ϑ = 0

}
in �× R ,

ϑ(x, t) = ξ̇(t) , (x, t) ∈ ∂�× R ; lim|x|→∞ϑ(x, t) = U(t) , t ∈ R ,

ξ̈ + ω2
0 ξ +�

∫
∂�

T(ϑ, p) · n = 0 in R ,

(2)

where

ω2
0 :=

�

M
, � := ρ

M
.

Our primary objective is then to investigate whether, under suitable regularity
assumption on U , problem (2) has one (and only one) T -periodic solution in a
suitable function class. The main result, formulated in Theorem 1 in the following
section, states that, provided U is T -periodic and smooth enough, (2) is uniquely
solvable for T -periodic (ϑ, p, ξ) in a suitable function class, whatever T > 0. Thus,
in particular, resonance is ruled out, at least in the creeping flow approximation.
Even though well known, it is worth emphasizing that in the absence of liquid,
such a result is not true. The method we use relies on a combination of the ideas
developed in [7] and [6]. The crucial point in the proof of the theorem is to establish
a uniform bound of the generic Fourier mode of the displacement (the “amplitude”
of the oscillation) in terms of the data, namely, U (see (34)). As expected, such a
bound is lost in the limit ν → 0. As it becomes clear from the proof, a result entirely
analogous to that given in Theorem 1 can be obtained if, in addition, a T -periodic
(smooth enough) force is acting on S .

We believe that our approach could be extended to study the full nonlinear
problem (1), as well as applied to investigate the fundamental question of vortex-
induced oscillation of the body (Hopf bifurcation), which, in fact, is the original
motivation of our work. These investigations will be the object of future research.

The plan of the paper is as follows: After recalling some known results in Sect. 2,
in the following Sect. 3, we reformulate the problem in terms of its averaged (over
a period) and oscillatory components (see (7)–(8)) and then give the proof of our
main finding in Theorem 1.

2 Preliminary Results

We begin to recall some basic notation. By �, we indicate a domain of R
3,

complement of the closure of a bounded domain �0 of class C2. As customary,
Lq = Lq(�) is the Lebesgue space with norm ‖·‖q , and Wm,2 = Wm,2(�) denotes
Sobolev space, m ∈ N, with norm ‖ · ‖m,2. Furthermore, Dm,2 = Dm,2(�) are
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homogeneous Sobolev spaces with seminorm |u|m,2 := ∑
|l|=m ‖Dlu‖2, whereas

D
1,2
0 = D

1,2
0 (�) is the completion of C∞0 (�) in the norm | · |1,2.

A function u : � × R �→ R
3 is T -periodic, T > 0, if u(·, t + T ) = u(· t),

for a.a. t ∈ R, and we set u := 1
T

∫ T
0 u(t)dt . Let B be a function space endowed

with seminorm ‖ · ‖B and T > 0. Then, L2(0, T ;B) is the class of functions u :
(0, T )→ B such that

‖u‖L2(B) :=
(∫ T

0
‖u(t)‖2

B

) 1
2 <∞.

Likewise, we put

W 1,2(0, T ;B) =
{
u ∈ L2(0, T ;B) : ∂tu ∈ L2(0, T ;B)

}
.

For simplicity, we write L2(B) for L2(0, T ;B), etc. Moreover, we define the
Banach spaces

L2
! := {ξ ∈ L2(0, T ), ξ is T -periodic } ,

Wk
! := {ξ ∈ L2

!(0, T ), d
lξ/dt l ∈ L2(0, T ) , l = 1, . . . , k} ,

L2
! := {u ∈ L2(L2); u is T -periodic, with u = 0} ,
W2

! := {u ∈ W 1,2(L2) ∩ L2(W 2,2); u is T -periodic, with u = 0} ,

along with norms

‖ξ‖L2
!
:= ‖ξ‖L2(0,T ) , ‖ξ‖Wk

!
:= ‖ξ‖Wk,2(0,T ) ,

‖u‖L2
!
:= ‖u‖L2(L2) , ‖u‖W2

!
:= ‖u‖W 1,2(L2) + ‖u‖L2(W 2,2) .

Before addressing the resolution of our problem, we need to recall some known
results. The following one is proved in [4, Lemma 4.9]:

Lemma 1 Suppose u ∈ L6(�) ∩ D1,2(�), with div u = 0 in � and u|∂� = u∗ ∈
R

3. Then, there exists a numerical constant c0 such that

|u∗| ≤ c0|�0|− 1
6 ‖D(u)‖2 .

The proof of the next lemma is given in [6, Lemma 5.1].

Lemma 2 Consider the boundary-value problems, with i = 1, 2, 3, k ∈ Z\{0}, and
ω := 2π/T :

i k ω h
(i)
k = ν�h

(i)
k − ∇γ (i)

k

div h
(i)
k = 0

}
in �,

h
(i)
k |∂� = ei ,

(3)
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The following properties hold:

(i) There is one and only one solutions (h(i)
k , γ

(i)
k ) ∈ W 2,2(�) × W 1,2(�). This

solution satisfies the estimates

‖h(i)
k ‖2 ≤ c ; ‖∇h

(i)
k ‖2 ≤ c |k| 1

2 ; |h(i)
k |2,2 ≤ c |k| , (4)

where c = c(ω, ν) > 0.
(ii) The matrix B defined by components1

(B)�i =
∫
∂�

T�j (h
(i)
k , γ

(i)
k )nj

satisfies the condition (with ∗ ≡ c.c.)

ζ ∗ · B · ζ = i k ω ‖ζih(i)‖2
2 + 2ν‖D(ζih(i))‖2

2 , (5)

for all ζ = (ζ1, ζ2, ζ3) ∈ C
3.

3 Main Result

This section is entirely devoted to the proof of the main contribution of this paper,
stated later on in Theorem 1. To reach this goal, we begin to rewrite (2) in terms of
its averaged and oscillatory components. Thus, assuming T -periodicity and setting

ϑ(x, t) = ϑ(x)+v(x, t), p(x, t) = p(x)+p(x, t), ξ = ξ+σ (t), U(t) = U+U(t)
(6)

problem (2) can be formally split into the following two problems:

ν�ϑ = ∇p
div ϑ = 0

}
in �,

ϑ(x) = 0 , x ∈ ∂� , lim|x|→∞ϑ(x) = U

ω2
0 ξ +�

∫
∂�

T(ϑ, p) · n = 0 ,

(7)

and

∂tv = ν�v− ∇p
div v = 0

}
in �× R ,

v(x, t) = σ̇ (t) , (x, t) ∈ ∂�× R , lim|x|→∞v(x, t) = U(t) , t ∈ R ,

σ̈ + ω2
0 σ +�

∫
∂�

T(v,p) · n = 0 in R .

(8)

1 Unless otherwise stated, we assume summation over repeated indices.
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We next perform the lift of the vector U as follows: Set

W (t) := x3U2(t)e1 + x1U3(t)e2 + x2U1(t)e3 . (9)

Clearly,

curl W = U(t) . (10)

Let φ(x) be a smooth cutoff function that is 1 for |x| ≥ 2R and 0 for |x| ≤ R, R
sufficiently large, and define

w(x, t) := curl
(
φ(x)W (t)

)
.

In view of (10), we deduce

w(x, t) = φ(x)U(t)−W ×∇φ(x) (11)

so that w is a T -periodic solenoidal vector function that is equal to U(t) for |x| ≥ 2R
and equal to 0 for |x| ≤ R. Therefore, introducing the field

u(x, t) := v(x, t)− w(x, t) , (12)

we deduce that (8) is equivalent to

∂tu = ν�u−∇p+ f

div u = 0

}
in �× R ,

u(x, t) = σ̇ (t) , (x, t) ∈ ∂�× R ; lim|x|→∞u(x, t) = 0 , t ∈ R ,

σ̈ + ω2
0 σ +�

∫
∂�

T(u,p) · n = � F in R ,

(13)

where

f = f (x, t) := −∂tw + ν�w , F = F (t) := −
∫
∂�

T(w, 0) · n . (14)

Notice that by (9) and (11), we obtain, on the one hand,

f ≡ F ≡ 0 . (15)

and, on the other hand,

‖f ‖L2
!
+ ‖F‖L2

!
≤ C ‖U‖W 1

!
, (16)

with C = C(�, ν) > 0. We are now in a position to prove the following theorem:
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Theorem 1 Let T > 0 arbitrary, and let U := (U + U) ∈ W 1
! . Then, problem (2)

has one and only one solution (ϑ, p, ξ) such that

(ϑ − U , p) ∈ [L6(�) ∩D
1,2
0 (�) ∩D2,2(�)] ×W 1,2(�) ,(

ϑ − ϑ − U, p − p
) ∈W2

! × L2(D1,2) , ξ ∈ W 2
! .

(17)

Furthermore, this solution satisfies the estimates

‖ϑ − U‖6 + |∇ϑ‖1,2 + |ξ | + ‖p‖1,2 ≤ C1 |U |
‖ϑ − ϑ − U‖W2

!
+ ‖ξ‖W 2

!
+ ‖p − p‖L2(D1,2) ≤ C2‖U‖W 2

!
,

(18)

where Ci = Ci(�, ν, T , ω0,�) > 0, i = 1, 2.

Proof Throughout the proof, by ci , i = 1, 2, . . ., C, we denote positive constants
that, at most, may have a similar parameter dependence as the constants Ci defined
above. From classical results on the Stokes problem [5, TheoremV.5.3 and IV.5.1],
we infer that, for any U ∈ R

3, there exists a unique solution (ϑ, p) to (7)1,2,3 in the
class specified by (17)1 that, in addition, obeys the estimate

‖ϑ − U‖6 + ‖∇ϑ‖1,2 + ‖p‖1,2 ≤ c1 |U | . (19)

Moreover, by [5, Theorem II.9.1], we infer that ϑ − U obeys (7)4 as well. Finally,
by well-known trace theorems, we show that∣∣∣∣

∫
∂�

T(ϑ, p) · n
∣∣∣∣ ≤ c2

(‖∇ϑ‖1,2 + ‖p‖1,2
)

so from the latter and (19), we may choose ξ as in (7)4 and deduce (18)1 . We now
pass to the resolution of problem (13). To this end, we set

u := z+w , p := τ + q (20)

where z and w satisfy the following set of equations:

∂tz− ν�z = −∇τ + f

div z = 0

}
in �× R

z|∂� = 0
(21)

and

∂tw− ν�w = −∇q
div w = 0

}
in �× R

w|∂� = σ̇ ;
σ̈ + ω2

0 σ +�

∫
∂�

T(w,q) · n = � F −�

∫
∂�

T(z, τ ) · n := � F .

(22)



64 G. P. Galdi

Since f satisfies (15) and (16), by [7], it follows that there exists a unique solution
(z, τ ) ∈W2

! × L2(D1,2) that, in addition, obeys the inequality

‖z‖W2
!
+ ‖τ‖L2(D1,2) ≤ c3 ‖f ‖L2

!
≤ C ‖U‖W 1

!
. (23)

Since, by trace theorem,

‖
∫
∂�

T(z, τ ) · n‖L2
!
≤ c

(
‖z‖W2

!
+ ‖τ‖L2(D1,2)

)
, (24)

by assumption, the properties of (z, τ ), (15), (16), and (23) we may infer that the
function F in (22) is in L2

! , with F = 0 and that, in addition,

‖F‖L2
!
≤ C ‖U‖W 1

!
. (25)

Thus, in order to find solutions to (22), we formally expand w, q, and σ , in Fourier
series as follows:

w(x, t) =
∑
k∈Z

wk(x) eik ω t , q(x, t) =
∑
k∈Z

qk(x) eik ω t , (26)

σ (t) =
∑
k∈Z

σ k eik ω t , w0 ≡ ∇q0 ≡ σ 0 ≡ 0,

where (wk,qk, σ k) solve the problem (k �= 0)

i k ωwk = ν�wk −∇qk
div wk = 0

}
in �

wk|∂� = ikσ k ,

(27)

with the further condition

(
−k2 ω2 + ω2

0

)
σ k +�

∫
∂�

T(wk,qk) · n = �Fk , (28)

where {Fk} are Fourier coefficients of F with F0 ≡ 0. For each fixed k ∈ Z\{0}, a
solution to (27)–(28) is given by2

wk =
3∑

i=1

i k σ kih
(i)
k , qk =

3∑
i=1

i k σ kiγ
(i)
k , (29)

2 No summation over k.
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with (h
(i)
k , γ

(i)
k ) given in Lemma 2, and where σ k solve the equations

(
−k2 ω2 + ω2

0

)
σ k +

3∑
i=1

i k � σki

∫
∂�

T(h
(i)
k , γ

(i)
k ) · n = � Fk , (30)

which, with the notation of Lemma 2(ii), can be equivalently rewritten as

M · σ k = � Fk , M := (−k2 ω2 + ω2
0)I+ i k � B . (31)

The matrix M is invertible for all k �= 0. In fact, using (5), for all ζ ∈ C
3, we show

ζ ∗ ·M · ζ = (−k2 ω2 + ω2
0) |ζ |2 − k2ω� ‖ζih(i)

k ‖2
2 + i k � ν‖D(ζih(i)

k )‖2
2 .

Thus, assuming M · ζ = 0, it follows

D(ζih
(i)
k ) ≡ 0 . (32)

However, by the properties of h
(i)
k , we obtain that ζih

(i)
k |∂� = ζ , which by Lemma 1,

the embedding W 1,2(�) ⊂ L6(�), and (32) implies ζ = 0, namely, 0 is not an
eigenvalue of M. As a result, for the given Fk , (31) has one and only one solution
σ k . If we now dot-multiply both sides of (31) by σ ∗k and use again (5), we deduce

(−k2 ω2 + ω2
0) |σ k|2 − k2ω� ‖σkih(i)

k ‖2
2 + i k � ν‖D(σkih(i)

k )‖2
2 = � (Fk, σ ∗k) ,

which, in turn, furnishes

k ν‖D(σkih(i)
k )‖2

2 = �[(Fk, σ ∗k)] ,
(k2 ω2 − ω2

0) |σ k|2 + k2ω� ‖σkih(i)
k ‖2

2 = �  [(Fk, σ ∗k)] .
(33)

Recalling that σkih
(i)
k |∂� = σ k , by (33)1, Schwarz inequality, and Lemma 1, we

show the crucial estimate

|σ k| ≤ c0

ν |�0| 1
6

|Fk| , |k| ≥ 1 . (34)

Again by Schwarz inequality, from (33)2, we get, in particular,

k2ω2 |σ k| ≤ � |Fk| + ω2
0 |σ k| ,

and so combining the latter with (34), we conclude
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k2|σ k| ≤
(
� + c0 ω

2
0

ν |�0| 1
6

)
|Fk|
ω2 := C0 |Fk| , |k| ≥ 1 . (35)

From (35), it immediately follows that

‖σ‖2
W 2

!

=
∑
|k|≥1

(|k|4 + |k|2 + 1)|σ k|2 ≤ 3C2
0

∑
|k|≥1

|Fk|2 = 3C2
0‖F‖2

L2
!

. (36)

Moreover, from (29), (36), and (4), we infer

‖w‖2
W2

!

=
∑
|k|≥1

[
(|k|2 + 1)‖wk‖2

2 + ‖∇wk‖2
2 + ‖D2wk‖2

2

]
(37)

≤ c4

∑
|k|≥1

(|k|4 + |k|2 + 1)|σ k|2 ≤ c5 ‖F‖2
L2
!

,

so that, combining (36), (37), (22)1, and (25), we obtain

‖w‖W2
!
+ ‖σ‖W 2

!
+ ‖∇q‖L2(D1,2) ≤ c6 ‖U‖W 1

!
. (38)

We now observe that from (11), (12), and (20), we have

ϑ − ϑ − U = z+w+ (φ − 1)U−W ×∇φ .

Thus, in view of (9) and the properties of φ, we deduce

‖ϑ − ϑ − U‖W2
!
≤ ‖z+w‖W2

!
+ c7‖U‖W 1

!
. (39)

As a result, combining (39) with (23) and (38) allows us to conclude that (ϑ − ϑ −
U, p − p) is in the class (17)2 and that it satisfies (18)2. Finally, by [5, Theorem
II.9.2], we infer that ϑ − ϑ satisfies also the asymptotic condition in (8)4, which
thus completes the existence part of the theorem. To show uniqueness, it is enough
to show that, in the stated function class, the problem

∂tϑ − ν�ϑ = −∇p
div ϑ = 0

}
in �× R ,

ϑ |∂� = ξ̇ , lim|x|→∞ϑ(x, t) = 0 , t ∈ R ,

ξ̈ + ω2
0 ξ +�

∫
∂�

T (ϑ, p) · n = 0 ,

(40)

has only the zero solution. This is easily established. In fact, if we dot-multiply both
sides of (40)1 by ϑ , integrate by parts over �, and use (40)3,5, we show
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1

2

d

dt
(� ‖ϑ(t)‖2

2 + |ξ̇(t)|2 + ω2
0 |ξ(t)|2)+ 2ν � ‖D(ϑ(t))‖2

2 = 0 .

Integrating both sides of this equation from 0 to T and employing the T -periodicity
imply

‖D(ϑ(t))‖2 ≡ 0. (41)

From (41), we derive, in particular, ‖D(ϑ)‖2 ≡ 0 , which, since ϑ |∂� = 0, furnishes

ϑ ≡ 0. (42)

By (41)–(42), we then infer

‖D(ϑ − ϑ)‖2 ≡ ‖D(ϑ(t))‖2 ≡ 0 . (43)

However, by assumption, we have that for all t ∈ [0, T ], ϑ(t) ≡ (ϑ(t) − ϑ) ∈
W 1,2(�) ⊂ L6(�). Therefore, owing to Lemma 1, (43), and (42), we conclude
ϑ ≡ ∇p ≡ 0.
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Critical Density Triplets for the
Arrestment of a Sphere Falling in a
Sharply Stratified Fluid

Roberto Camassa, Lingyun Ding, Richard M. McLaughlin, Robert Overman,
Richard Parker, and Ashwin Vaidya

1 Introduction

Stratified fluids are those in which the background, equilibrium density field varies
with height. Such systems occur naturally in many environments including lakes,
oceans, and the Earth’s atmosphere, as well as on other planets. Sedimentation of
particles in stratified fluids ubiquitously occurs in natural environments [22] and
plays a vital role in marine snow [21, 24], oil spill properties [2, 8], and distributions
of dense microplastics [18] in the oceans and most recently in marine particulate
aggregation [9].

Here, we focus on an interesting phenomenon that occurs when particle cross
density interfaces between two fluids of different densities. In a work by Abaid et
al. [1], the experimental sedimentation of a sphere in stratified saltwater was studied,
and an intriguing bounce phenomenon was first documented in which a dense sphere
falling in the fluid momentarily stopped and began to rise before ultimately falling.
The momentary levitation of the sphere yields a prolonged settling time, which can
contribute to the accumulation of particulate matter in the vicinity of strong density
transition layers in the environment, e.g., haloclines or thermoclines [10, 11, 13, 21,
32].

We remark that there are three important factors to this bounce phenomenon. The
first parameter is the Reynolds number Ua

ν
, where U is a characteristic velocity, a

is the radius of the sphere, and ν is the kinematic viscosity. Several articles in the
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literature [4, 5, 7] investigated the gravitational settling particles at low Reynolds
numbers regime (Re = 0.001) where a complete first principle-based theory is
possible. In the low Reynolds number, no bounce is observed, while the original
work by Abaid et al. [1] involved Reynolds numbers in the hundreds. The second
parameter is the relative thickness of the fluid density transition layer h/a which is
characterized by the ratio of the layer thickness h to the particle radius a. Several
studies [27, 30] have explored gravitational particle settling in sharply stratified
fluids but reported no bounce phenomenon. In [27] and [30], the parameter h/a ! 1
which takes values 60 and 20, respectively, whereas in the work of Abaid et al. [1],
this parameter was much smaller, taking values around 3. In this paper, we focus
on this parameter regime and explore the dependence of the bounce phenomenon
on layer thickness experimentally. The third factor is the relation between the top
fluid density ρ1, bottom fluid density ρ2, and sphere density ρb. The sphere rises
into the upper fluid when its density is lower than that of the bottom fluid. When the
sphere density is considerably higher than the fluid densities, the sphere penetrates
the interface without bouncing back. As a result, predicting the range of sphere
densities for which motion reversal is conceivable with known top and bottom fluid
densities is intriguing.

Toward that goal, we are interested in using experiments and theory to determine
a critical density triplet (ρ1, ρ2, ρ

∗
b ) with the constraint ρ∗b ≥ ρ2 ≥ ρ1. For any

sphere with the density ρ∗b ≥ ρb ≥ ρ2, the falling sphere will bounce; if the
sphere density equals the critical density, ρb = ρ∗b , the falling sphere will just
stop momentarily but not rise before ultimately descending to the tank bottom.
Additionally, increasing the sphere density such that ρb > ρ∗b with fixed ρ1 and
ρ2 or, equivalently, decreasing ρ2 with fixed ρ1 and ρb = ρ∗b prevents the sphere
from stopping. As previously stated, we concentrate on cases with relatively high
Reynolds numbers (between 20 and 450, based on the terminal velocities in the
bottom and top layers, respectively) and a sharply stratified fluid (h/a < 4, h ∼
0.9 cm, and a = 0.25 cm). There are very few studies attempting to estimate these
critical densities in the literature. Perhaps the first attempt was by Camassa et al. [3].
In that work, they proposed a coarse criterion for the critical density triplet which is
based upon estimating the enhanced buoyancy through an asymptotic calculation of
the drift volume induced by a sphere traveling a finite but large distance. Here, we
aim to improve the critical density estimation based on the potential flow assumption
and the system’s potential energy for the levitation phenomenon of a sedimenting
sphere in such a parameter regime. By analyzing the monotonicity of the potential
energy curve, we establish an estimation that depends on the sphere and fluid
density, the initial position of the sphere, and the thickness of the fluid density
transition layer. Last, we anticipate this study could have applications in separating
particles with different densities.

The paper is organized as follows: In Sect. 2, we present the setup of the model
and formulate the energy equation of the system. In Sect. 3, we document the details
of the experimental procedure and the critical density obtained by the experimental
method. The linear regression of the experimental data shows critical densities
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satisfy the relation ρ∗b = 1.03ρ2 − 0.0295ρ1. Additionally, we demonstrate that
thicker layer transitions are less capable of arresting the sphere. In Sect. 4, we
provide a criterion to estimate the critical sphere density with given top and the
bottom fluid density, the layer thickness, and the initial position of the sphere. We
document the details of our numerical method in Appendix.

2 Setup and Governing Equations

2.1 Setup Description

We consider a sphere with the density ρb and radius a sedimenting in a two-
layer unbounded homogeneous fluid imposed upon the regions above and below
an artificial interface as sketched in Fig. 1. The top and bottom fluid densities are ρ1
and ρ2, respectively (ρ2 > ρ1). At time t = 0, the interface of two fluid layers is
centered at z = 0. The sphere starts at (0, zb(0)), zb(0) = z0 > a with an initial
velocity (0, vb(0)).

Due to the complex nature of the fluid flow around the body, the energy
expressions of interest must be determined numerically by evaluating the evolution
of the fluid interface. We make the following simplifying assumptions: First,
the sphere penetrates the interface very fast, sufficiently so as not to generate
any waves. The interface of the two-fluid layers stays sharp at the end of the
experiment. Second, we assume the fluids are inviscid and irrotational. Based on
these assumptions, the velocity field induced by the falling sphere can be modeled
by the three-dimensional potential flow. To take advantage of the axial symmetry,
we adopt the cylindrical coordinate system r = √x2 + y2. The position (r(t), z(t))

of a passive tracer in the fluid satisfies the equation:

dz

dt
= vb(t)a

3(r2 − 2z̃2)

2(z̃2 + r2)5/2
,

dr

dt
= −3vb(t)a3z̃r

2(z̃2 + r2)5/2
, (1)

Fig. 1 The setup at initial
time t = 0 and a finite time
t > 0. The white, light blue,
and gray regions are occupied
by the top fluid, bottom fluid,
and sphere, respectively. The
black solid line is the
interface between the top and
the bottom fluid
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where z̃ = z(t) −
(
z0 +

t∫
0
vb(s)ds

)
and (0, vb(t)) is the velocity of the sphere.

Here, we observe an important property of this model which will greatly simplify
the numerical calculation: the resulting interface shape from passive advection is
independent of the time history of the sphere trajectory. To see this, rescaling time

via
t∫

0
vb(s)ds = k in Eq. (1) results in:

dz

dk
= −a3(r2 − 2z̃2)

2(z̃2 + r2)5/2
,

dr

dk
= −3a3z̃r

2(z̃2 + r2)5/2
, z̃ = z− (z0 + k), (2)

which is the equation of the tracer in the case that the sphere moves with the
unit speed with respect to the pseudo-time k. Thus, the interface resulting from
any sphere motion ending at the same position is identical. There are two options
to explore here. First, one could explore the consequences of employing energy
conservation to self-consistently evolve the sphere and fluid under the assumptions
of potential flow. Second, one could study the potential energy stored in the fluid
as a function of the three densities through a sphere moving at a constant speed.
We will study the latter option here in this paper because of the independence of
path history and its direct theoretical implications and discuss the limitations of the
former in the conclusion section. Without loss of generality, we assume the sphere
has a constant speed in the numerical simulation.

Last, we assume the fluid density linearly depends on the concentration of the
solute, for example, the sodium chloride solution [17]. Since the solute is passively
advected by the fluid flow and the diffusion is negligible in the experimental
timescale, the fluid density field satisfies the advection equation:

∂tρ + u · ∇ρ = 0, (3)

where u is the velocity field provided in Eq. (1). In this study, we consider the
following initial density profile:

ρ(r, z, 0) = ρI (z) =

⎧⎪⎪⎨
⎪⎪⎩
ρ1

Lρ

2 ≤ z,

ρ1 + 2(ρ2−ρ1)

L2
ρ

(
Lρ

2 − x
)2 (

x
Lρ
+ 1
)

−Lρ

2 < z <
Lρ

2 ,

ρ2 z ≤ −Lρ

2 ,

(4)
which has a continuous first-order derivative. As Lp → 0, Eq. (7) converges to the
step function:

ρ(r, z, 0) =
{
ρ1 0 ≤ z,

ρ2 z < 0.
(5)
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2.2 Nondimensionalization

We nondimensionalize the equations and formulae via the following change of
variables:

ar ′ = r, az′ = z,
a

U
t ′ = t, a4gρ1P

′ = P, ρ1ρ
′ = ρ, aL′ρ = Lρ, Re = Ua

ν
.

(6)
We can distinguish the dimensional and dimensionless variables by the units
after their values. The variables in Sect. 3 are in the dimensional form. Without
specification, the variables in the next subsection and Sect. 4 are dimensionless.
Hence, we can drop the prime without confusion. The nondimensionalized initial
density profile is:

ρ(r, z, 0) = ρI (z) =

⎧⎪⎪⎨
⎪⎪⎩

1 Lρ

2 ≤ z,

1+ 2(ρ2−1)
L2
ρ

(
Lρ

2 − x
)2 (

x
Lρ
+ 1
)

−Lρ

2 < z <
Lρ

2 ,

ρ2 z ≤ −Lρ

2 .

(7)

2.3 The Potential Energy

Our goal is to use the energy of the sphere-fluid system to capture the arrestment
of the spherical body as it moves through the two fluids. A full-scale dynamic
explanation of the phenomena is very complex. We believe that our explanation
provides an alternative and simpler explanation for the levitation phenomenon.

The total mechanical energy of the system at any instant of time can be given by:

E(t) = P1(t)+ P2(t)+ Pb(t)+Kb(t)+Kf (t), (8)

where P1(t) and P2(t) are the potential energies of the top and bottom fluids,
respectively. Pb(t) is the potential energy of the body. Kb(t) and Kf (t) are the
kinetic energies of the body and fluid, respectively. It is possible to express the
kinetic energy of the fluid in terms of the added mass [15, 28].

First, we consider the extremely sharp stratification, namely, Lρ = 0. A
consequence of the law of conservation of mass is that the sphere penetrating into
the bottom fluid causes a displacement of the top layer into the bottom and vice
versa, the bottom fluid into the top layer. Therefore, in estimating the change in
potential energies, the exact shape of the interface at a given time instant must be
known. It is possible to write �P1 = P1(t) − P1(0) as a result of gained volume
by the top fluid in the drift region and a lost volume in the reflux region. Similarly,
�P2 = P2(t) − P2(0) can be thought of as potential energy of the bottom fluid
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due to a volume lost in the drift region and gained volume in the reflux region.
We can therefore think of the net change in potential energy of the entire fluid as
coming only from the drift and reflux volume regions in addition to the gravitational
potential energy contribution of the fluid displaced by the body. The change of
potential energy can then be written in the form:

�P = �P1 +�P2 +�Pb

= π(ρ2 − 1)

(∫ ∞

r∗(zb)
rz(r)2dr −

∫ 0

z∗(zb)
r(z)2zdz

)
+ 4π

3
(ρb − 1)(zb(t)− zb(0)),

(9)
where (r∗(zb), 0) are the coordinates of the point of zero Lagrangian displacement

and (0, z∗(zb)) is the lowest point on the interface (see Fig. 1). The asymptotic
expansion of �P in the limit of some parameters is available via the asymptotic
expansions provided in [3, 20, 33, 34]. In other cases, we have to compute �P

numerically.
Second, for the case with a nonzero density transition layer thickness, we prefer

to use the results in the zero-layer thickness case rather than solve the full advection
Equation (3). We consider N artificial interfaces at z = zi which satisfy −Lρ

2 =
zN < zN−1 < . . . < z2 < z1 = Lρ

2 . The fluid density between nth and (n + 1)th
layer is approximated by the density at the middle point ρI,n = ρI ((zn+1 + zn)/2).
Since the density field is passively advected by the flow, we can divide the (N +
1) layer system into N independent two-layer systems while conserving the total
potential energy (see the schematic in Fig. 2). The first system consists of two fluids
separated by a sharp interface located at z = z1. The top fluid density is 1 and
the bottom fluid density is ρI,1. The interface in nth system (n > 1) is located at
z = zn. Top and bottom fluid densities are 0 and ρI,n − ρI,n−1, respectively. The
(N + 1)th system only contains a sphere centered at zb with the density ρb − 1.
Clearly, the summation of the potential energy of these N + 1 systems equals the
potential energy of the original system. Since each system has a two-layer stratified
fluid, we can apply the previous conclusion (9) and obtain the following expression
of the change in potential energy:

ρI,0

ρI,1

z1

z2

z1

z2

z1

z2

z1

z2

ρI,0

ρI,1

ρI,1 ρI,2 – ρI,1ρI,2

Full (N+1)-layer system 1st system 2nd system 3rd system

ρb ρb – ρI,0
ρ = 0

ρ = 0

ρ = 0

ρ = 0

Fig. 2 A schematic of decomposing the full (N + 1) layer system into N two-layer systems and a
system that only contains the sphere. The potential energy in the full system equals the sum of the
potential energy in all subsystems. Here, N = 2, t = 0, ρI,0 = 1, ρI,N = ρ2. zn is the height of
the n-th interface
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�P = 4π

3
(ρb − 1)(zb(t)− zb(0))

+ lim
N→∞

N∑
n=1

π
(
ρI,n − ρI,n−1

) (∫ ∞

r∗n (zb)
rzn(r)

2dr −
∫ 0

z∗n(zb)
rn(z)

2zdz

)
,

(10)

where rn(z), zn(r), r∗n(zb), and z∗n(zb) are associated with the interface starts at
z = zn and ρI,0 = 1, ρI,N = ρ2. In the numerical simulation, we distribute zn
uniformly, and N = 30 ∼ 40 is enough to obtain desirable results.

3 Experimental Methods and Results

Our experimental study involved dropping several spherical beads into a tank
containing density-stratified liquids by varying the fluid and sphere densities and the
layer thickness. In the following sections, we detail the exact procedure followed for
various aspects and stages of the experimental study.

3.1 Tank, Bath, and Camera Setup

As presented in Fig. 3, the setup consists of two experimental tanks placed within a
thermal bath. The outer tank (thermal bath tank) is regulated by a Thermo Scientific
NESLAB RTE-7 Digital Plus Refrigerated Bath. The thermal bath is maintained at
19 degrees Celsius while taking data. Each of the inner experimental tanks consists
of two Plexiglas sides for ease of viewing, a Plexiglas bottom, and two sides made of
copper plates to assist in thermalization. The copper plates are coated in a protective
sealant to prevent corrosion. The bottom layer of fluid is prepared in one of the
inner tanks and the top layer in the other. The tank with the bottom layer of fluid is
filled only halfway as the experiment will be run in this tank after pouring the top
layer. The outer tank is a glass fish tank for ease of viewing. The NESLAB machine
is connected to the fish tank via flexible PVC tubing. Two solid 1-foot sections of
PVC pipe were glued into opposing corners of the fish tank. The flexible tubing is
run over the top of the tank and down through these PVC pipes so that the input
and output flow can be placed parallel to the experimental tank sides in an effort to
minimize any vibrations upon the experimental tanks.

As stated earlier, there are two inner experimental tanks where saltwater solutions
are prepared and one outer tank for the thermal bath. The two inner tanks have the
outer dimensions of 7” by 7” by 12.5”. The two copper plates are each 0.25” thick,
and the two Plexiglas sides and bottom are each 0.5” thickness. This results in inner
dimensions of 6.5” by 6” by 12”. The thermal bath tank was simply a standard
glass aquarium measuring 24.5” by 12.5” by 16.5”. On the rear of the outer tank
behind the experimental tank in which the bead is dropped in, a background is
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Fig. 3 Setup with two inner experimental tanks and outer tank as a thermal bath which is
connected to a recirculating thermally controlled reservoir

placed. A variety of backgrounds were used. For the human viewer, a black and
white checkerboard pattern of 0.635 cm by 0.635 cm squares produced the best
visualization of the layer transition. The compression of the squares is easy to
discern, and this gives a very clear view of the layer. For the purposes of tracking
the bead in the DataTank script, a checkerboard pattern with 1 mm by 1 mm squares
produced cleaner data. A solid background was never used, but this would most
likely produce data with even less noise in the script, but such a background makes
it much more difficult to discern a clean transition with the human eye.

A Sony HD camcorder is used for the duration of filming on the project. The
camera is set up a meter in front of the inner tank the experiment will be run in.
The camera is leveled to be on alignment with the water-air interface in the tank
which contains the bottom layer. The alignment is performed using the lines on the
front and back of tank. At the interface level, the lines on the front pane of the tank
should be directly in front of the lines on the rear pane of the tank. Also, the lines
on the rear of the tank should stick out from the end of the lines on the front of the
tank by equal amounts on both left and right sides of the tank at the interface level
(see Figs. 4 and 5). After completing the alignment phase, a meterstick is put in the
center of the tank where the bead will fall, and the camera is focused on the smallest
demarcations on the stick.

3.2 Stratification Setup

The density setup begins by filling the tanks with deionized water. Diamond Crystal
Extra Coarse Solar Salt is then added to the water to bring the solution up to the
desired density. An aquarium fishnet is used to hold the salt in the tank while mixing.
The salt dissolves faster using the fishnet since there is a greater surface area of
salt exposed to the water as opposed to being piled on the bottom. Also having
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Fig. 4 (a) Vertical alignment: the tip of the screw holes on the back wall should be inside the top
of the screw holes on the front wall. Also, the distance between the line of tips on both the back
wall and the line of tips on the front wall (lines shown in red) should be the same for both the left
and the right side of the tank. (b) The green arrow shows good alignment horizontally. The back
screw hole is directly behind the front screw hole. Red lines show these screw holes are not aligned
with the screw hole on the front of the tank

Fig. 5 Optimal setup: green lines are screw holes on the back wall, and red are those on the front.
The distance between the hole ends on the front and the back of the tank (red and green liens) is
equal on both the left and the right side of the tank. Also, at the level of the water-air interface
(before top layer is poured), the rear screw holes are directly behind those of the front. Both above
and below the water interface line the screw holes on the back wall appear before those of the front
wall. They are “inside” the next set of screw holes on the front wall, and the difference in height
between this set of red and green lines is equal for all four such sets

the salt in the fishnet allows quick removal of the salt to avoid overshooting the
target density. While fixing the density, the temperature must be maintained at 19
degrees Celsius. Both solutions (top and bottom layer) are brought up to the desired
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densities in separate tanks. To ensure the solution is fully mixed, once attaining the
target density, another sample is tested to ensure the density is true.

Pouring the layer is the most delicate part of the experiment as the two saltwater
solutions will mix very easily. Care must be taken to pour the layer carefully and to
not bump the tanks while the layer is being poured. The layer is poured through
a diffuser (Fig. 6). The diffuser is simply a combination of two types of foam.
The porous, spongelike center allows the layer being poured to slowly settle on
top of the bottom layer. The outer foam (blue Styrofoam insulation board) keeps
the diffuser buoyant enough to float up as the water level rises. Before using the
diffuser, the diffuser must be primed with the top layer solution. For this reason,
the tank with the top layer solution should be filled to the top even though the tank
with the bottom layer is only filled half way. If the diffuser is primed with deionized
water and the top layer has a density different from deionized water, then as the top
layer is poured through the diffuser, there will be a strong tendency for the density
to drift away from the original density as it flows through. Therefore, the diffuser
needs to be primed with a few cups of the same solution which will eventually be
poured through the diffuser. Along these lines, the diffuser must also be cleaned
with deionized water after use to prevent salt accumulation. After attaining both
desired densities and priming the diffuser, the diffuser is placed on the top of the
experimental tank, floating on top of the bottom layer. A syringe is then used to
gently pour the top layer through the diffuser. The general idea is to pour very slowly
at the start (a rapid drip from a syringe) and then speed up as the distance between
the diffuser and interface layer increases. For a more quantifiable rate, using 60-

Fig. 6 The diffuser for pouring the stratified fluid
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ml syringes with the exit hole widened to 8 mm the first pour through the diffuser
should take approximately 45 s. The final pour through the diffuser should take 1.5 s.
At the start, going too quickly will mix the interface, resulting in a poor transition
layer. Once the diffuser sits an inch or so above of the interface, going too slowly
just allows the interface more time to diffuse. The goal when pouring the layer for
this experiment is to keep the layer thickness (see Layer Profiling) under 1.00 cm.
When the tank is filled to just shy of the top, carefully lift the diffuser straight up,
keeping it level while doing so to prevent water from pouring suddenly from it. Any
big drips or sudden movements while removing the diffuser will disturb the layer.
The purpose of filling the experimental tank all the way up is to ensure that the bead
has enough time to reach its terminal velocity in the solution before encountering
the transition layer.

The beads dropped are made of glass and have diameters of 4–5 mm. The beads
have a very slight peak on one end as a result of manufacturing. Although very
slight, this little extra glass makes this point the heaviest part of the bead. Therein,
when dropping the bead, care is taken to orientate the bead so this point is on the
bottom. Otherwise, the bead will spin in an effort to orientate itself in this manner
as it falls. Before releasing the bead but while holding the bead under the surface of
the water, care is taken to remove any air bubbles adhering to the bead by rolling the
bead between two fingers. The beads were manufactured by the American Density
Materials. To accurately measure their precise density, we used bisection search with
Archimedes method using different tanks of saltwater in insulated containers. Fluid
densities were accurately measured using an Anton Paar DMA 4500 Densitometer.

Layer profiling is performed using a conductivity probe attached to a Velmex,
Inc. high-precision UniSlide. The layer is profiled after the bead has been dropped
because the probe disturbs the layer upon passing through it. Once the slider is
clamped to the tank to ensure it doesn’t move while the probe is being lowered,
measurements of conductivity and temperature are taken at 0.1-cm increments
beginning at approximately a centimeter above the interface and continuing to
approximately a centimeter below (until the readings level off). The layer thickness
is calculated as follows: After all readings have been taken, the conductivity and
temperature readings are converted to densities using previous experimental tables
for saltwater solutions. Layer thickness is quantified by focusing on the change
from the lowest density solution (top fluid) to the highest density fluid (bottom
fluid). The layer thickness is measured as the distance between the points of 10
and 90% changes in density. More precisely, we define L10 to be the height at
which the density profile takes the value of the top density plus 10% of the total
density variation and similarly define L90 to be the height at which the density is
top density plus 90% of the total density variation. Then, the layer thickness is given
by L = |L10 − L90|.

For the entirety of the experimental data (except for the section on the effects
of diffusion time on layer thickness), the layer thickness was kept under 1.1 cm.
The majority of the runs had a layer thickness of 0.85–0.9 cm. The final step in the
experiment is to film a meterstick in the tank, right where the bead fell. This is used
for attaining a scale in the script which calculates the minimum velocities.
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3.3 Experimental Results

We repeated the experiment with hundreds of combinations of the various
sphere and fluid densities to experimentally search for the critical density triplet
(ρ1, ρ2, ρ

∗
b ) as defined in Sect. 1. This is an extremely labor-intensive task as each

measurement for one bottom density requires preparing the salt solution with the
desired density, pouring an entirely fresh layer, and measuring the density profiles,
which takes hours. With given top fluid and sphere densities, finding one critical
bottom density takes at least ten independent fresh tanks.

Table 1 shows the critical density triplet (ρ1, ρ2, ρ
∗
b ) and related experimental

parameters. We calculate the sphere speed by a DataTank script. Because of the
spatial and temporal resolution, as well as camera noise, the speed will never be
exactly zero. Hence, we report the minimum speed in each experiment and adopt
a consistent criterion to determine the arrestment. We have two observations from

Table 1 Critical density triplet (ρ1, ρ2, ρ
∗
b ) and related experimental parameters. The fourth

column is the minimum speed during the whole falling process. The radius of the spheres is 0.25 cm

Bead Top Bottom Min Layer
density(g/cc) density(g/cc) density(g/cc) velocity (cm/s) thickness(cm)

1.0901 0.997 1.08680 0.069 0.814641521

± 0.997 1.08678 0.055 0.830600263

0.0001 0.997 1.08683 0.065 0.874706739

1.07495 0.997 1.07166 0.056 0.843531654

± 0.997 1.07182 0.001 0.903259318

0.0001 0.997 1.07170 0.039 0.904773401

1.05018 0.997 1.04805 0.029 0.819058413

± 0.997 1.04805 0.052 0.817808592

0.0002 0.997 1.04803 0.098 0.840865709

1.03997 0.997 1.03761 0.018 0.896928129

± 0.997 1.03759 0.06 0.795575335

0.0002 0.997 1.03761 0.051 0.905041625

1.03506 0.997 1.03335 0.006 0.885285341

± 0.997 1.03335 0.013 0.87707262

0.00015 0.997 1.03333 0.052 0.850024643

1.02017 0.997 1.01886 0.048 0.874341231

± 0.997 1.01882 0.035 0.882575525

0.0001 0.997 1.01883 0.067 0.890235316

1.0901 1.02998 1.08725 0.02 0.959324843

± 1.03006 1.08726 0.01 0.950414969

0.0001 1.03000 1.08728 0.05 0.98831011

1.0901 1.03999 1.08755 0.04 0.955474843

± 1.04001 1.08755 0.05 0.940466969

0.0001 1.04000 1.08755 0.06 0.99331213
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Table 1. First, from the first six rows in the table, we see that ρ2 increases as ρb
increases when ρ1 is fixed. Second, from the first row and the last two rows in the
table, we see ρ2 slightly decreases as ρ1 increases with a fixed sphere density. More

interestingly, the linear regression yields the following formula between
ρ∗b
ρ1

and ρ2
ρ1

:

ρ∗b
ρ1
= a1

ρ2

ρ1
+ a2, (11)

where a1 = 1.03 and a2 = −0.0295 with 95% confidence bounds, respectively,
(1.019, 1.042) and (−0.04183,−0.01718). The summed square of residuals is
4.5369e–07, and the R-square value is 0.99987, which indicates a strong statistical
linear relation. One can also see the linear relation in Fig. 11 which will be
elaborated in the next section.

A brief inquiry as to the effects of diffusion time on the resulting layer thickness
and critical density was carried out. The purpose of this was mainly to convince
those carrying out the experiment that a difference in layer thickness between say
0.85 and 0.95 cm would not drastically distort the data. This is important because of
the difficulty of ascertaining a precise and repeatable layer thickness every time. The
process was simply pouring a tank and waiting for a certain amount of time before
dropping the bead and measuring the layer thickness. All runs were done with the
same bead of the density of 1.03997 g/cc. The critical density found with deionized
water on top and no wait time between finishing pouring of the layer and dropping
the bead was 1.03761g/cc with a layer thickness of 1.0072 cm. With a 2-hour wait
time, the critical density was found to be 1.03770 g/cc with a layer thickness of
1.4998 cm. With a 3-hour wait time, the critical density was 1.03772 g/cc with a
layer thickness of 1.6747 cm. This shows that after 3 hours of diffusion, the critical
density is shifted by about 0.0001 g/cc. Hence, this provides some comfort for the
few minutes of difference in time pouring the layer for each run, although more
work on this could be done.

We could obtain a rough estimation of layer growth rate by assuming the density
profile is:

ρ(z) = ρ1 + ρ2 − ρ1

2

(
erf

( −z
2
√
κ(t + t0)

)
+ 1

)
,

where

erf(z) = 2√
π

z∫
0

e−t2 dt.

The 10th and 90th percentiles of erf(z) are around −0.90619 and 0.90619,
respectively. Based on our definition of the density transition layer thickness, we
have L = 3.62478

√
κ(t + t0). Applying the linear regression on L2 with respect

to t , namely, L2 = a1t + a2, we have a1 = 0.0001666 and a2 = 1.023 with
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95% confidence bounds (0.0001122, 0.0002209) and (0.6159, 1.431), respectively.
The summed square of residuals is 0.0011, and the R-square value is 0.9993.
Comparing these two expressions of the layer thickness L, we obtain t0 = 6445.87 s
and κ = 1.197809 × 10−5 cm2/s. The molecular diffusivity κ computed here is
close to the diffusivity of NaCl reported in the literature [31] which is around
1.3× 10−5 ∼ 1.6× 10−5 cm2/s.

It is worth noting that because of the intrusive manner of layer profiling with a
probe, each of these data points was from separate runs. Since each of these runs
was from separated pours, the starting layer thickness differed between the three.

4 Critical Density and Energy Criterion

Camassa et al. [3] proposed that for a reversal of motion to occur, the averaged
density of the sphere and drift fluid must necessarily be less than the density of
the bottom layer fluid, in order to have negative buoyancy in the system, which
leads to a coarse criterion for the critical density triplet ρ̄b = (1 + c)ρ2 − cρ1,
where c is the ratio of drift volume to the sphere volume. In the case that sphere
travels from positive infinity to negative infinity, c = 1

2 . This criterion also shows a
linear dependence between the critical densities which agrees with the experimental
observations. If ρ1 = 0.997 g/cc and ρ2 = 1.0376 g/cc, Table 1 shows ρ∗b = 1.04
g/cc, while this criterion predicts ρ̄b = 1.0579 g/cc, which has the relative difference
ρ̄b−ρ1
ρ∗b−ρ1

− 1 ≈ 0.4163. Considering that the sphere travels a finite distance, c could

be smaller at roughly 0.44. Therefore, this reduces the relative difference to 0.35,
which is still a relatively large difference. Of course, such large errors are to be
expected as applying the drift volume directly to the sphere’s buoyancy is at best a
coarse approximation.

In this section, instead of considering the drift volume, we aim to improve the
critical density estimation based on the system’s potential energy. With numerical
simulations, we next show that the potential energy as a function of the sphere
position can change from a non-monotonic to a monotonic function of position as
the sphere density increases. This observation will provide a criterion to estimate the
critical sphere density such that any sphere with a density higher than the critical
value cannot arrest. Since we have nondimensionalized the problem, we set the
radius and sphere speed to be unity in the numerical simulations below.

Figure 7a shows a typical interface evolution as the sphere falls. The scale of the
reflux region is small compared to the drift region. Figure 7b shows the variation of
the change in potential energy contributions due to the sphere, the reflux, and drift
regions as indicated in Eq. (9). The contribution due to the drift region can be seen to
far exceed that due to the reflux region as would be expected in free space. After all,
the drift volume is carried to infinity along with the moving sphere. While the drift
contribution increases monotonically in the range of values computed, the reflux
contribution peaks as the sphere just crosses the initial interface and then decays.
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Fig. 7 (a) The figure shows the time evolution of the interface based on the numerical simulation,
as the sphere falls from the upper layer to the lower one. The drift region is very apparent in the left
panel. The right panel shows a zoomed-in view of the reflux region at different times. (b) The dual
y-axis chart shows, in the same simulation as panel (a), the change of potential energy contributed
by the reflux region �Preflux (left axis), drift region �Pdrift (right axis), and body �Pb (right axis)
when the center of the body zb at different positions. Notice the scale difference in y-direction.
The parameters are ρ2 = 1.04, ρb = 1.042, and z0 = 10
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Fig. 8 The figure denotes the net potential energy variation in the entire system for different
parameters. The parameters are ρ2 = 1.042 in panel, (a, b), ρ2 = 1.038 in panel (c), zb(0) =
z0 = 2 in panel (a), and z0 = 10 in panel (b, c). The legend shows the corresponding value of ρb
for each curves. The insets are zoomed-in versions of each picture

In Fig. 8, we plot the total potential energy versus zb with ρ2 = 1.042 in panel (a,
b) and ρ2 = 1.038 in panel (c) while varying the sphere density ρb. The insets are
zoomed-in view of the original picture near the critical points. The different columns
correspond to different starting points for the sphere, namely, zb(0) = z0 = 2 in
panel (a) and z0 = 10 in panel (b, c). Figure 8 is very telling; as ρb is varied,
we see significant variations in the types of curves produced: (1) The early part of
each of these curves begins with the potential energy of the system decreasing with
zb caused by the falling sphere whose potential energy decreases. The potential
energy contributions of the fluid are nonexistent at this stage; (2) the next phase
of this curve occurs when the sphere reaches the interface. The sphere’s potential
energy continues to decrease; however, the drift and reflux regions now take place,
resulting in a positive contribution to the potential energy which could counter the
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negative values of the sphere. The density of the sphere now becomes important
henceforth. For the case that ρb is slightly larger than ρ2 as is seen clearly in Fig. 8a
and c, the positive energy of the fluid wins resulting in a minimum in the energy
curve. Then the energy curve rises briefly as the sphere penetrates the interface and
soon after begins to fall again as the fluid’s potential energy fails to overcome that
of the sphere. For the case when ρb is sufficiently larger than ρ2, we see that the
energy curve can be completely dominated by the potential energy of the sphere
which shows monotonically decreasing behavior. Therefore, we denote the sphere
density where the transient between these two cases happens as ρ̄b, which provides
an estimation for ρ∗b in the critical density triplet.

Mathematically, when the sphere density reaches the critical value, ρ̄b, there
exists a degenerate critical point on the curve, zb = z∗b, such that:

∂zbP
∣∣
zb=z∗b = ∂2

zb
P

∣∣∣
zb=z∗b

= 0. (12)

Equivalently, ∂zbP is nonpositive for zb < z0 and only equals zero at one point
zb = z∗b. Next, we first consider the density profiles with the zero density transition
layer thickness and then study the profile with nonzero-layer thickness.

4.1 Zero Density Transition Layer Thickness

We start with the case Lρ = 0. We explore the dependence of the critical density
ρ̄b for several parameters such as the bottom fluid density ρ2 and the initial position
z0. First, as the initial position is closer to the interface, the sphere entrains the
light fluid and therefore is harder to levitation. Figure (a) clearly shows the critical
density asymptotically converges as the initial position moving further away from
the interface. Similarly, Fig. 9b shows the critical point z∗b(z0) also converges as
z0 →∞.

To further investigate the criterion (12), we take the derivative of the potential
energy equation (9) with respect to zb and setting it to zero, which yields:

π(ρ2 − 1)∂zb

(∫ ∞

r∗(zb)
rz(r)2dr −

∫ 0

z∗(zb)
r(z)2zdz

)
+ 4π

3
(ρb − 1) = 0. (13)

The second equality in Eq. (9) becomes:

π(ρ2 − 1)∂2
zb

(∫ ∞

r∗(zb)
rz(r)2dr −

∫ 0

z∗(zb)
r(z)2zdz

)
= 0. (14)

Numerically solving the above equation yields the critical position zb = z∗b.
Substituting it back to Eq. (13) gives the critical density:
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(b) The figure shows that nondimensionless parameter β is independent of the bottom fluid
density ρ2

ρ̄b = (ρ2 − 1)β + 1, β = 3

4
∂zb

(∫ ∞

r∗(zb)
rz(r)2dr −

∫ 0

z∗(zb)
r(z)2zdz

)∣∣∣∣
zb=z∗b

,

(15)
where β can be numerically computed. We call attention to three important
properties of β. First, β is dimensionless. Second, as demonstrated in Fig. 10a, β
increases as the sphere initial position z0 increases. Third, β is independent of ρ2
and ρb, which is verified in Fig. 10b. Also note that in this model the depth z∗b is
independent of the sphere density as is evident from Eq. (14).

Equation (15) shows that ρ̄b linearly depends on ρ2 , which closely resembles
Equation (11) from the experiments with slightly different coefficients. Addition-
ally, Eq. (15) indicates that the difference between the critical sphere density and
the bottom fluid density increases proportionally with the density differences in the
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Fig. 11 Comparison of experimental results and theoretical prediction. The blue dotted line
represents a line of slope 1, and the red solid lines are the critical sphere densities obtained
by solving equation (12) numerically with z0 = 20. The coordinates of the color dots are the
nondimensionalized critical density triplet (1, ρ2, ρb) from Table 1. The black dashed line is the
linear regression (11) of the experimental data. All dots are bounded by the red and blue lines

fluid and also with the value of β − 1 where β > 1. Therefore, we have equality,
namely, ρ̄s = ρ2 iff ρ2 = ρ1.

Now, we are ready to compare our numerically obtained values with those
obtained from our experiments, which are presented in Fig. 11. When z0 = 20,
ρ̄b can be expressed as:

ρ̄b = 1.0815ρ2 − 0.0815. (16)

We have two comments about this formula. First, ρ̄b provided in the above equation
shows a relative difference ρ̄b(ρ2)−1

ρ∗b (ρ2)−1 − 1 ≤ 0.043 for all ρ2 ∈ [1, 1.1], which is a

great improvement compared with the criterion proposed in article [3]. Second, the
experimental values of critical density from Table 1 and the linear regression (11)
consistently fall inside theoretical critical window [ρ2, ρ̄b] within the experimental
parameter regime 1 < ρ2 ≤ 1.1. Figure 11 demonstrates the sphere density ρ̄b
obtained from the energy curve constitutes an upper bound for the density ρ∗b in the
critical density triplet. This behavior is very reminiscent of a van der Waals-type
pressure-volume curve [19].

4.2 Nonzero Density Transition Layer Thickness

Now, let us switch the attention to the case with nonzero density transition layer
thickness. With a similar procedure, we have:
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ρ̄b = (ρ2 − 1)β + 1,

β = 3

4
lim

N→∞

N∑
n=1

ρI,n − ρI,n−1

ρ2 − 1
∂zb

(∫ ∞

r∗n (zb)
rzn(r)

2dr −
∫ 0

z∗n(zb)
rn(z)

2zdz

)∣∣∣∣∣
zb=z∗b

,

(17)

where z∗b is the location for the summation reaches the minimum value, which also
solves the equation:

lim
N→∞

N∑
n=1

ρI,n − ρI,n−1

ρ2 − 1
∂2
zb

(∫ ∞

r∗n (zb)
rzn(r)

2dr −
∫ 0

z∗n(zb)
rn(z)

2zdz

)∣∣∣∣∣
zb=z∗b

= 0.

(18)

According to Eq. (7), we have ρ(zi) − ρ(zj ) = (ρ2 − 1)f (zi, zj ) for zi, zj ∈
[−Lρ

2 ,
Lρ

2 ] where f (zi, zj ) is independent of ρ2. Hence, the dimensionless parame-
ter β defined in Eq. (17) is independent of ρ2 and only depends on Lp and the initial
position of the sphere.

The layer thickness L in Sect. 3 is measured as the distance between the points of
10 and 90% changes in density. For the density profile provided in Eq. (7), we have
L ≈ 0.6084Lp. The layer thickness presented in Table 1 is around L = 0.85 cm

0.25 cm ≈
3.4. Hence, we numerically evaluate β in Eq. (17) with Lp = 3.4/0.6084 ≈ 5.6 and
obtain:

ρ̄b = 1.0289ρ2 − 0.0289. (19)

This estimation shows a relative difference ρ̄b(ρ2)−1
ρ∗b (ρ2)−1 − 1 ≤ 0.0078 for all ρ2 ∈

[1, 1.1].
Figure 12 shows β and ρ̄b decrease as the layer thickness increases which

qualitatively captures the trend observed in experiments. We have two remarks:
First, one can observe this trend with three fluid layers in the simulation. Second, the
decreasing rate of ρ̄b with respect to the layer thickness is relatively larger than the
experimental observation: In the experiment, the nondimensionalized ρ∗b changes
around 0.0002 as the nondimensionalized layer thickness L increases from 4 to 6,
while Fig. 12 shows ρ̄b changes 0.0004 as Lρ increases from 4/0.6084 to 6/0.6084.
The difference in the change rate is because our potential energy-based criterion
doesn’t consider the complex nature of the fluid flow, for example, the viscous fluid
layer around the body. However, even for the large Lρ , ρ̄b is an accurate estimation
with less than 1% relative difference which is better than the estimation provided in
Eq. (16) under the zero-layer thickness assumption.
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Fig. 12 The blue solid line and red dashed line show the variation of the nondimensionless
parameter β (left axis) and estimated critical sphere density ρ̄b (right axis) provided in Eq. (17) as
functions of Lρ , respectively. The parameters are ρ2 = 1.04 and z0 = 20+Lρ/2. For convergence,
we need the number of artificial layers N to increase as Lρ increases. We use N = 30 when
Lρ = 1 and N = 80 when Lρ = 10. To show β is independent of ρ2, we repeat the simulation
for ρ2 = 1.05 and then plot the resulted β with black dots which is fully overlapped with the solid
blue curve for the case ρ2 = 1.04

5 Conclusion and Discussion

We have studied the constraints of the fluid and sphere densities for producing
a bouncing or levitation when a rigid sphere falls in a two-layer stratified fluid.
Experiments focus on cases with relatively high Reynolds numbers (between 20
and 450) and sharply stratified fluid (h/a < 4). We explore the critical density
triplet (ρ1, ρ2, ρ

∗
b ) as defined in Sect. 1 with experimental and theoretical method.

The main results are summarized as follows:
First, experiments show that the increasing of fluid density transition layer

decreases the difference between ρ2 and ρ∗b . Second, when the relative fluid
density transition layer thickness h/a is around 3∼4, the linear regression of the
experimental shows that the dimensionless ratio ρ∗b/ρ1 increases linearly as ρ2/ρ1
increases. Third, based on the monotonicity of the potential energy curve, we
identified a critical sphere density ρ̄b which could be the estimation of ρ∗b . With
the zero-layer thickness assumption, the estimation ρ̄b is an upper bound of the
experimental measured ρ∗b with less than 0.043 relative difference ρ̄b(ρ2)−ρ1

ρ∗b (ρ2)−ρ1
− 1

within the experimental parameter regime ρ2/ρ1 ∈ [1, 1.1]. Next, we demonstrated
that ρ̄b decreases as the layer thickness increases. When the layer thickness matches
the experimental value h

a
≈ 3.4, we obtain a more accurate estimation ρ̄b which has

a 0.0078 relative difference within the same experimental parameter regime, which
is a great improvement compared with the estimation proposed in article [3].

Future research include a number of directions: First, the fluid layer surrounding
the sphere could play a role in the settling dynamics [1, 6]. In particular, the
work using a vertically towed fishing line in stratification [6] provides a starting
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point toward estimating the size of this boundary layer. We expect that including
the viscous drag from the fluid layer into the model could yield a more accurate
prediction of the critical densities. Second, many articles numerically studied the
particles settling in an unbounded stratified fluid [12, 14, 29], while fewer studies
have addressed the case with sharply stratified fluid and relative high Reynolds
numbers. We plan to investigate the complicated dynamics of the momentary
levitation discussed in this paper using a direct numerical simulation of the Navier-
Stokes equation and understand the effect from the rigid boundaries. Third, we are
interested in generalizing the theory to a dual problem, namely, the rise of droplets
in a sharply stratified fluid [16, 23, 25], which is important in the study of the oil
spill [2, 8].
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Appendix

Numerical Method

In this section, we document the details of the numerical calculation of the drift and
reflux contributions to the potential energy and associated issues.

As the sphere penetrates the interface and deforms it, there is considerable
stretching of the mesh in the region around the sphere, due to the potential nature
of the flow. The uniform mesh on the interface cannot resolve the dynamics
efficiently. Hence, for simplicity, we adopt a nonuniform mesh, which takes the
parameterization:

x(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 s = 0,

e
s
r1 0 < s ≤ r1, y(s) = 0,

k1(s − r1)+ 1 r1 < s,

(20)

where r1 and k1 are constants selected to resolve the interface evolution profile,
which varies for different initial position of the sphere and the duration of the
evolution. The mesh points cluster exponentially at the neighborhood of zero and
distributed uniformly when they are far away from zero. The exponential profile of
the initial mesh in the immediate vicinity of the particle provides a high density of
meshes where the stretching is maximum.

A fourth-order explicit Runge-Kutta method with typical step size �t = 10−3

was used to compute the time evolution of the interface region as the sphere moved
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through the layers by solving the initial value problem with the velocity field
provided in Eq. (1).

We approximate the interface by the cubic spline with the boundary condition
“not-a-knot” to ensure fourth order accuracy in the interface tracking stage. The
point of zero Lagrangian displacement (r∗(zb), 0) is calculated by solving the root
of the spline function.

The integrals in Eq. (9) are evaluated by the trapezoidal rule. To achieve higher
accuracy, one can adopt the spline-based quadrature rules described in [26, 35]. The
potential energy as a function of the sphere position is approximated by a fifth-order
spline function. Since differentiation could introduce unexpected oscillations when
the data is not smooth enough, instead of solving ∂2

zb
P (z∗b) = 0 for the critical point

z∗b, we calculate z∗b by finding the minimum value of ∂zbP .
We verified that all numerical results were not sensitive to an increase of

either spatial or temporal resolution, therefore establishing the convergence of the
numerical scheme.
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Numerical Investigation of
Incompressible Fluid Flow in Planar
Branching Channels

Tomáš Bodnár, Radka Keslerová, and Anna Lancmanová

1 Introduction

This work is motivated by the flow of blood and air in biomedical applications
[25, 27, 15]. The blood flow in circulatory system and the air flow in the respiratory
system share some physical similarities [14, 28, 20]. From the mathematical mod-
eling point of view, both problems can be seen (with certain level of simplification)
as flow of incompressible viscous fluid in a system of branching channels. The
fluid is flowing through channels that are characterized by a multilevel (almost
fractal-like) branching with secondary branches of different size and orientation
with respect to the main channel. Such channel pattern is characteristic, however
not exclusive, to the biomedical systems in living organisms. It can also be found
in many industrial and environmental problems. The complicated configuration
of the channels leads to numerous problems related to geometry description, its
discretization (grid generation), and mathematical formulation of the associated
problem including suitable boundary conditions.

The description and discretization of the channel geometry are usually done
using the standard grid generation performed on the part of the space occupied
by the fluid, i.e., the interior of the channel. The grid can be either structured (in
simple cases) or rather unstructured for realistic description of larger representative
parts of the circulatory or respiratory systems. This approach is quite common;
however, it is associated with certain drawbacks. This includes rather nontrivial
and expensive grid generation and necessity of the grid regeneration in case of
even small geometry modifications. Also, the CFD solvers for general unstructured

T. Bodnár (�) · R. Keslerová · A. Lancmanová
Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical
University in Prague, Prague, Czech Republic
e-mail: Tomas.Bodnar@fs.cvut.cz; Radka.Keslerova@fs.cvut.cz; Anna.Lancmanova@fs.cvut.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Carapau, A. Vaidya (eds.), Recent Advances in Mechanics and Fluid-Structure
Interaction with Applications, Advances in Mathematical Fluid Mechanics,
https://doi.org/10.1007/978-3-031-14324-3_5

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14324-3_5&domain=pdf

 885 55738
a 885 55738 a
 
mailto:Tomas.Bodnar@fs.cvut.cz

 11345 55738 a 11345
55738 a
 
mailto:Radka.Keslerova@fs.cvut.cz

 22707 55738 a 22707
55738 a
 
mailto:Anna.Lancmanova@fs.cvut.cz

 -2016 61494 a -2016 61494 a
 
https://doi.org/10.1007/978-3-031-14324-3_5


96 T. Bodnár et al.

grids are more complicated, making it difficult to implement any nonstandard
mathematical models or boundary conditions.

Most of the problems associated with standard methods using wall-fitted grids
can be avoided while using the immersed boundary method. In this case, a larger
domain is discretized, typically in the form of cuboid in 3D or rectangle in 2D
space. A grid (usually Cartesian, i.e., orthogonal equispaced) is constructed in the
whole such domain where also the model equations are solved. The specific channel
geometry is only represented at the level of the mathematical model being used, one
model in the region occupied by the fluid and another one elsewhere. The switch
between the models is simply realized using some kind of indicator (characteristic)
function specifying the interior and exterior parts of the considered channel. In this
case, due to very simple grid structure and domain shape, the CFD solver can be very
simple. Implementation of alternative mathematical models or boundary conditions
is quite easy and straightforward. Also, the changes in geometrical configuration of
the channel are rather easy, only requiring re-definition of the characteristic function
describing the fluid region. No grid changes or code adjustments are needed.

The main aim in this present work is to compare the results of a standard finite
volume based method [16, 15] which used the wall-fitted grid, with a much simpler
finite difference code working on regular Cartesian grid [18] while employing a
generic implementation of immersed boundary method. As a test case, a channel
with single branch inclined at different angles was chosen, similar to geometry used
in [27] or [21]. The results of both codes are compared to see whether the simple
finite difference and immersed boundary method based code can match the essential
flow characteristics resolved by the older standard finite volume code used in some
of our previous studies [3, 4, 15, 2].

2 Mathematical Model

The flow of incompressible, homogeneous Newtonian fluid can be described by
the system of Navier-Stokes equations. It represents balance of mass and linear
momentum.

2.1 Governing Equations

The incompressible Navier-Stokes equations can be written in a conservative
(divergence) vector form:

∂u

∂t
+∇· (u⊗ u) = − 1

ρ
∇p + ν�u , (1)
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where ρ is the (constant) density, ν is the (constant) kinematic viscosity, and p, u

is the pressure and velocity field, respectively. This form is directly derived from
integral version of balance laws and is thus often considered as the most general
differential form of the governing system. It can be directly used in finite volume
discretization. Alternatively, this system is often rewritten in the nonconservative
(convective) form as:

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν�u. (2)

This form is typically used in finite difference and finite element discretizations.
In both cases, the velocity field u obeys the incompressibility (divergence-free)

constraint (∇ · u = 0).

3 Numerical Methods

The numerical methods for both the finite difference and the finite volume in-house
codes are briefly described here. We start from the description of the artificial
compressibility method that is shared by both codes. For other ways of pressure-
velocity coupling, see our previous works [17] and [18].

3.1 Artificial Compressibility Method

The artificial (or pseudo-)compressibility method is one of the simplest and most
frequently used methods for velocity-pressure coupling in incompressible fluid flow
simulations [8, 7]. It allows to calculate pressure from velocity field and to enforce
the incompressibility, i.e., the divergence-free constraint. The method is based on a
direct analogy with compressible flows, where time derivative of density is present
in the continuity (mass balance) equation:

∂ρ

∂t
+∇ · (ρu) = 0 . (3)

Such term can equivalently be expressed in terms of pressure (using the state
equation), considering the dependence of density on pressure ρ = ρ(p), which
leads to reformulated continuity equation:

∂ρ

∂p

∂p

∂t
+ u ·∇ρ + ρ ∇ · u = 0 . (4)
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The first term in (4) is associated with the speed of sound c by ∂p
∂ρ
= c2, considering

an adiabatic change of state. Adopting this physical argument and returning back
to homogeneous fluids with constant density, a modified continuity equation can be
written:

1

β2

∂p

∂t
+ ρ ∇ · u = 0 , (5)

with β being artificial (pseudo-)speed of sound. This adjustable parameter has finite
value, which should be suitably chosen depending on the case solved, to ensure the
pressure-velocity coupling and convergence of the numerical solution. For further
details concerning the choice and effect of the artificial speed of sound β, see, for
example, [11] or [29]. Because the added term containing the time derivative of
pressure is purely artificial, the method is often just used solving steady problems.
In such cases, the nonphysical term vanishes in the steady state, and the divergence-
free velocity field is recovered.

3.2 Finite Difference Solver

The finite difference approximation of governing equations is a natural choice
because of the use of immersed boundary method on Cartesian (structured, orthog-
onal, equispaced) grids. In such case, the discretization is extremely simple,
allowing for easy implementation and modification of various numerical methods
and algorithms.

In discretization of the governing system, both the nonconservative (convective)
and the conservative (divergence) form of the equations can be used. The conserva-
tive system (1), including the continuity equation (divergence-free constraint), can
be (for homogeneous case with constant density) written in vector form as:

DWt + Fx +Gy +Hz = Rx + Sy + Tz, (6)

where D = diag (0, 1, 1, 1) and W = col(p, u, v,w) are the vectors of unknowns.
In case of artificial compressibility method, the diagonal matrix D is replaced by

Dβ = diag

(
1

ρβ2
, 1, 1, 1

)
including the artificial compressibility parameter β:

F =

⎛
⎜⎜⎝

u

u2 + p/ρ

u v

u w

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

v

v u

v2 + p/ρ

v w

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝

w

w u

w v

w2 + p/ρ

⎞
⎟⎟⎠ , (7)
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R =

⎛
⎜⎜⎝

0
νux

νvx

νwx

⎞
⎟⎟⎠ , S =

⎛
⎜⎜⎝

0
νuy

νvy

νwy

⎞
⎟⎟⎠ , T =

⎛
⎜⎜⎝

0
νuz

νvz

νwz

⎞
⎟⎟⎠ . (8)

In laminar case (i.e., with constant viscosity ν), the right-hand side of equation (6)
can further be simplified to contain the viscous terms in the form of the Laplacian
of velocity:

DWt + Fx +Gy +Hz = νD�W (9)

Again, in case of artificial compressibility method, the diagonal matrix D on the left-
hand side is replaced by Dβ , adding the time derivative of pressure to the continuity
equation. Similar modification on the right-hand side is only used exceptionally, to
add extra stabilization (regularization) term proportional to Laplacian of pressure
(see, for example, [26, 3]).

The nonconservative form of (9) or (2), respectively, is:

DWt + uWx + vWy + wWz = − 1

ρ
∇̂p + νD�W , (10)

where ∇̂ = col
(

0, ∂
∂x
, ∂
∂y
, ∂
∂z

)
is the extended gradient operator, which if applied

to pressure field leads to ∇̂p = col(0, px, py, pz).

3.2.1 Immersed Boundary Method

The immersed boundary method is a simple way that allows to simulate flows in and
around complex geometries, without the need to construct shape-specific grids for
each individual problem configuration. More details and further references on the
principle and various versions of the immersed boundary method can, for example,
be found in [23, 24] or [22, 10] and [6].

The version used in this work is probably the simplest of all possible implemen-
tations of the immersed boundary method. The situation can be described using the
schematic pictures of the grids used for finite volume (FVM) and finite difference
(FDM) methods in this work. The typical (structured in this case) grid used FVM
simulations has a multiblock structure, with individual grids constructed for each
block. These grids have simple structure with the grid lines fitted to physical or
artificial boundaries of the computational domain. This results in grids that are
aligned (parallel) to boundaries. This allows to achieve optimal spatial accuracy of
the applied numerical schemes. Also, the grid points coincide with the boundary, so
the implementation of boundary conditions is quite straightforward. This situation
is shown in Figs. 1(a) and 2(a). Such grid can easily be refined close to the wall, but
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(a) (b)

Fig. 1 Grid structure for finite volume and finite difference simulations. (a) Wall-fitted grid for
FVM. (b) Immersed boundary grid for FDM

(a) (b)

Fig. 2 Detail of the grid for finite volume and finite difference simulations. (a) Wall-fitted grid for
FVM. (b) Immersed boundary grid for FDM

sudden changes in the directions and cell sizes at the interfaces of individual blocks
might be problematic (and difficult to treat numerically).

A completely different grid (and discretization) concept is used for the presented
immersed boundary finite difference code. Instead of constructing the grid just for
the interior of the channel (occupied by a fluid), a larger rectangular domain is
chosen, containing the physical domain of interest (the channel). This situation is
shown in Fig. 1(b). This whole rectangle now represents a computational domain,
and a Cartesian (i.e., regular, orthogonal equispaced) grid is constructed for the
whole (rectangular) domain. In this configuration, the physical boundaries (channel
walls in the considered case) no more coincide with boundaries of the grid as it is
shown in Figs. 1(b) and 2(b).

In the immersed boundary FDM method, the governing equations are discretized
in the whole rectangular domain, and suitable boundary conditions are only imposed
on its boundary. The unknown fields of velocity and pressure are sought in all
internal points of the domain, distinguishing the points inside of the fluid domain
(marked by white color in Fig. 2(b)) and inside of the solid domain (marked by
light blue color in Fig. 2(b)). The values of the velocity in the solid region are
then reset to zero (which corresponds to solid in rest), and no special treatment
is applied to pressure. In fact, the whole calculation of (fluid) velocity in the
points inside the solid region can be skipped, directly set to zero, so the discrete
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governing equations are only solved in the points in the fluid region. This approach
was already tested in [19], where some additional references can be found. The
advantage of this approach is its simplicity, where very basic discretization formulas
can lead to highest accuracy, due to Cartesian (undeformed, unstretched) grid. The
simulations shown further prove that even this simplest version of the immersed
boundary method gives quite good results comparable with those obtained by more
complicated and refined finite volume codes.

3.2.2 Lax-Friedrichs Scheme

The Lax-Friedrichs scheme is one of the simplest classical schemes used for numer-
ical discretization of conservation laws and in simulation of transport phenomena.
It is an explicit method, employing central in space discretization, that is formally
of first order in both space and time. Despite of its rather low theoretical accuracy,
it is well known for its simplicity (no need for upwinding) and robustness. It is well
known that in its basic form the scheme it contains quite strong internal numerical
diffusion. This nonphysically high diffusivity can however be significantly reduced
and individually adjusted for each solved case [17, 18].

Besides of its robustness, the Lax-Friedrichs scheme allows for very easy and
straightforward implementation of pressure-velocity coupling methods, including
the artificial compressibility, pressure correction, or operator-splitting methods.
Some of these methods are more difficult to implement in the other predictor-
corrector or multistage methods we have used in our study.

When the conservative formulation is used, the (modified) Lax-Friedrichs
scheme can conveniently be written in a vector form. Here, it is written in 2D
version as it was used in our simulations:

Wn+1
i,j

= (1− ζ )Wn
i,j + ζ

(
Wn

i+1,j +Wn
i−1,j +Wn

i,j+1 +Wn
i,j−1

4

)
+

+�t D−1
β

[
−

Fn
i+1,j − Fn

i−1,j

2�x
−

Gn
i,j+1 −Gn

i,j−1

2�y
+

+ ν D

(Wn
i+1,j − 2Wn

i,j
+Wn

i−1,j

�x2
+

Wn
i,j+1 − 2Wn

i,j
+Wn

i,j−1

�y2

)]
(11)

This formal simplicity comes mainly from the fact that the pressure is hidden in
the inviscid fluxes F and G (and H). For the nonconservative version of the Lax-
Friedrichs scheme, the component vise form is rather used leading to (12), (13),
and (14):
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pn+1
i,j = (1− ζ )pn

i,j + ζ

(
pn
i+1,j + pn

i−1,j + pn
i,j+1 + pn

i,j−1

4

)
+

+ ρ β2�t

[
− uni+1,j − uni−1,j

2�x
− vni,j+1 − vni,j−1

2�y

]
,

(12)

un+1
i,j = (1− ζ )uni,j + ζ

(
uni+1,j + uni−1,j + uni,j+1 + uni,j−1

4

)
+

+�t

[
− uni,j

uni+1,j − uni−1,j

2�x
− vni,j

uni,j+1 − uni,j−1

2�y
− 1

ρ

pn
i+1,j − pn

i−1,j

2�x

+ ν

(
uni+1,j − 2uni,j + uni−1,j

�x2 + uni,j+1 − 2uni,j + uni,j−1

�y2

)]
,

(13)

vn+1
i,j = (1− ζ )vni,j + ζ

(
vni+1,j + vni−1,j + vni,j+1 + vni,j−1

4

)
+

+�t

[
− uni,j

vni+1,j − vni−1,j

2�x
− vni,j

vni,j+1 − vni,j−1

2�y
− 1

ρ

pn
i,j+1 − pn

i,j−1

2�y

+ ν

(
vni+1,j − 2vni,j + vni−1,j

�x2 + vni,j+1 − 2vni,j + vni,j−1

�y2

)]
.

(14)

3.2.3 MacCormack Scheme

The MacCormack scheme is a relatively simple step-up from the first-order Lax-
Friedrichs method which offers theoretically second order of accuracy in both space
and time. It is a specific variant of Lax-Wendroff class of methods that is written
in the predictor-corrector form using asymmetric forward/backward discretization
stencil to approximate spatial derivatives to provide finally a central (second order)
approximation. The increased formal accuracy of the method comes at the price of
doubled computational cost (for both CPU and memory requirements). This method
is in general also a bit less robust than the previously described Lax-Friedrichs
scheme, because it contains significantly less numerical diffusion, which may lead
to nonphysical oscillations in computational field (and need for extra numerical
stabilization). Despite of these shortcomings, the MacCormack scheme is a simple
representative of second-order methods that can bring some additional comparative
advantage into the simulations performed within the scope of this work.

To describe the MacCormack scheme, it’s better to start from a rearranged
equation (9), where all terms except the time derivative are placed on the right-hand
side:

Wt = D−1
β

[− (Fx +Gy +Hz

)+ νD�W
]

(15)
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Now, in order to update in time the values of the vector Wn to Wn+1, the aim
is to construct an approximation of Wt from (15). This approximation is built
differently in predictor (e.g., using backward differences) and in corrector (using
forward differences). Then the final update is performed using linear combination
of the two values obtained. This procedure is formalized in the following steps:

Predictor Step The spatial derivatives of inviscid fluxes in (15) are discretized using
backward differences, while central differencing is used for viscous terms:

(
∂W
∂t

)n
i,j

= D−1
β

[
− Fn

i,j − Fn
i−1,j

�x
− Gn

i,j −Gn
i,j−1

�y
+

+ ν D

(
Wn

i+1,j − 2Wn
i,j +Wn

i−1,j

�x2
+ Wn

i,j+1 − 2Wn
i,j +Wn

i,j−1

�y2

)]
,

(16)

where values of all variables on the right side are known at the current time level n.

Using the approximate value
(
∂W
∂t

)n
i,j

, the preliminary (marked by tilde) values of

unknown Wn+1 are predicted from the first two terms of the corresponding Taylor
series, i.e., using explicit Euler time-stepping:

W̃n+1
i,j = Wn

i,j +�t

(
∂W
∂t

)n
i,j

, (17)

where the value of the first term on the right-hand side is known at current time level
and the second term was previously evaluated from (16). The obtained auxiliary
values of W̃n+1 are used in the corrector step.

Corrector Step Here, the predicted values W̃n+1 are used to calculate another
approximation of Wt from (15) but this time applying the forward in space
differentiation of inviscid fluxes, while central differencing is used again for viscous
fluxes:

(
∂W̃
∂t

)n+1

i,j

= D−1
β

[
− F̃n+1

i+1,j − F̃n+1
i,j

�x
− G̃n+1

i,j+1 − G̃n+1
i,j

�y
+

+ ν D

(
W̃n+1

i+1,j − 2W̃n+1
i,j + W̃n+1

i−1,j

�x2 + W̃n+1
i,j+1 − 2W̃n+1

i,j + W̃n+1
i,j−1

�y2

)]
.

(18)

Again, all the terms on the right-hand side can easily be evaluated from the known
values W̃n+1

i,j .
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Variables Update Having now the two approximate values of Wt from predictor
and corrector steps, the final approximation can be built as an average of the two
values, representing an approximation of Wt at the time level n+ 1/2:

(
∂W
∂t

)n+1/2

i,j

= 1

2

⎡
⎣(∂W

∂t

)n
i,j

+
(
∂W̃
∂t

)n+1

i,j

⎤
⎦ (19)

Finally, the values of the unknown variable vector Wn+1 can be obtained by making
a forward time step of the length �t from Wn using the approximate time derivative
Wn+1/2

t :

Wn+1
i,j = Wn

i,j +�t

(
∂W
∂t

)n+1/2

i,j

(20)

In principle, the MacCormack method is thus similar to Heun’s method for
solution of ordinary differential equations. Also here, it leads to increased (second
order) accuracy with respect to time. The spatial accuracy of MacCormack method
is the same (second order) as for the Lax-Wendroff scheme due to the use of central
approximation of all spatial derivatives [9].

The whole scheme can alternatively (and equivalently) be rewritten in more com-
mon form, allowing direct comparison with Lax-Friedrichs scheme. The expressions
for predicted and corrected values are shown in (21) and (22):

W̃i,j = Wn
i,j +�t D−1

β

[
−

Fn
i,j
− Fn

i−1,j

�x
−

Gn
i,j
−Gn

i,j−1

�y
+

+ ν D

(Wn
i+1,j − 2Wn

i,j
+Wn

i−1,j

�x2
+

Wn
i,j+1 − 2Wn

i,j
+Wn

i,j−1

�y2

)] (21)

Wn+1
i,j

= 1

2

(
Wn

i,j + W̃i,j

)
+ �t

2
D−1
β

[
−

F̃n
i+1,j − F̃n

i,j

�x
−

G̃n
i,j+1 − G̃n

i,j

�y
+

+ ν D

(W̃n
i+1,j − 2W̃n

i,j
+ W̃n

i−1,j

�x2
+

W̃n
i,j+1 − 2W̃n

i,j
+ W̃n

i,j−1

�y2

)] (22)

It’s good to note, that the choice of backward differencing in predictor and
forward differencing in corrector steps was arbitrary, and it could have been chosen
the other way round and shouldn’t affect the results [11, 1].

The nonconservative version of the MacCormack scheme is again rather written
in component vise form separately for unknown pressure and velocity, so instead of
predictor in form (21), we obtain (23), (24), and (25):
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p̃i,j = pn
i,j − β2ρ �t

[
uni,j − uni−1,j

�x
+ vni,j − vni,j−1

�y

]
(23)

ũi,j = uni,j+

+�t

[
− uni,j

uni,j − uni−1,j

�x
− vni,j

uni,j − uni,j−1

�y
− 1

ρ

pn
i,j − pn

i−1,j

�x
+

+ ν

(
uni+1,j − 2uni,j + uni−1,j

�x2 + uni,j+1 − 2uni,j + uni,j−1

�y2

)] (24)

ṽi,j = vni,j+

+�t

[
− uni,j

vni,j − vni−1,j

�x
− vni,j

vni,j − vni,j−1

�y
− 1

ρ

pn
i,j − pn

i,j−1

�y
+

+ ν

(
vni+1,j − 2vni,j + vni−1,j

�x2
+ vni,j+1 − 2vni,j + vni,j−1

�y2

)] (25)

These predicted fields p̃, ũ, and ṽ are updated in the corrector step, where instead
of (22) we obtain (26), (27), and (28):

pn+1
i,j = 1

2

(
pn
i,j + p̃i,j

)
− β2ρ

�t

2

[
ũi+1,j − ũi,j

�x
+ ṽi,j+1 − ṽi,j

�y

]
(26)

un+1
i,j = 1

2

(
uni,j + ũi,j

)
+

+ �t

2

[
− ũi,j

ũi+1,j − ũi,j

�x
− ṽi,j

ũi,j+1 − ũi,j

�y
− 1

ρ

p̃i+1,j − p̃i,j

�x
+

+ ν

(
ũi+1,j − 2ũi,j + ũi−1,j

�x2 + ũi,j+1 − 2ũi,j + ũi,j−1

�y2

)]
(27)

vn+1
i,j = 1

2

(
vni,j + ṽi,j

)
+

+ �t

2

[
− ũi,j

ṽi+1,j − ṽi,j

�x
− ṽi,j

ṽi,j+1 − ṽi,j

�y
− 1

ρ

p̃i,j+1 − p̃i,j

�y
+

+ ν

(
ṽi+1,j − 2̃vi,j + ṽi−1,j

�x2
+ ṽi,j+1 − 2̃vi,j + ṽi,j−1

�y2

)]
(28)
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3.2.4 Numerical Stabilization

The MacCormack scheme belongs to the family of central, second-order schemes
that are prone to numerical oscillations in the presence of sharp solution gradients.
In the presented immersed boundary method implementation, such nonphysical
numerical oscillations often appear at the fluid-solid interface, i.e., in the proximity
of the channel walls. In order to keep these numerical oscillations under control, a
fourth-order artificial viscosity is implemented in the code, applied just to pressure
field. The added smoothing (regularization) term has the form εh4�2p, where h

stands for the grid cell size and �2p is the bi-Laplacian of pressure containing the
fourth-order spatial derivatives. This numerical stabilization process can be added
as an extra smoothing step in the algorithm, after the corrector step. So the final
smoothed values p̂n+1

i,j at the time level n+ 1 are obtained as:

p̂n+1
i,j = pn+1

i,j +D4pn
i,j . (29)

The added numerical viscosity has the form D4pn
i,j = D4

xp
n
i,j +D4

yp
n
i,j , with :

D4
xp

n
i,j = ε (pn

i−2,j − 4pn
i−1,j + 6pn

i,j − 4pn
i+1,j + pn

i+2,j ) , (30)

D4
yp

n
i,j = ε (pn

i,j−2 − 4pn
i,j−1 + 6pn

i,j − 4pn
i,j+1 + pn

i,j+2) .

The coefficient ε should be suitably chosen for the optimal smoothing properties.
Typically, the fourth-order stabilization is aimed at suppression of high-frequency
(point-to-point) spatial oscillations and is less strong than the more commonly used
second-order numerical diffusion stabilization. For more details, see, for example,
[12] or the discussion of numerical diffusion in [5].

3.3 Finite Volume Solver

The finite volume discretization is used in waste majority of commercial CFD
solvers. In this work, it was used as a reference for comparison and validation of
the newly developed finite difference solver. Within the presented study, the finite
volume method was used in two codes. First is an in-house developed simple 2D
code, while second is the more general open-source package OpenFOAM. Here, we
only describe our own finite volume code, while we refer the reader to the online
documentation of the OpenFOAM solver (www.openfoam.com).

In finite volume method, we usually start directly from the conservative form of
governing equations, i.e., from (1) or (6), respectively. In most cases, the inviscid
and viscous fluxes are being treated separately, each using specific discretization.
For example, upwinding or some higher-order reconstruction is applied in the
discretization of inviscid fluxes. In our case, however, the same central scheme
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is used for both inviscid and viscous terms discretization, and thus the governing
system (6) can be rewritten in divergence-like form:

DWt + (F− R)x + (G− S)y + (H− T)z = 0 . (31)

Considering the artificial compressibility method (i.e., replacing D by Dβ ), it takes
the form:

Wt = −Dβ

[
(F− R)x + (G− S)y + (H− T)z

]
. (32)

Applying the finite volume discretization on the spatial derivatives on the right-hand
side of (32), a semi-discrete system is obtained, consisting of ordinary differential
equations for time evolution of approximate values of W at individual grid cells.

In two-dimensional case (using structured grid), it is obtained by integrating (32)
over each grid cell �i,j , using Green’s theorem on the right-hand side:

∫
�i,j

Wt d� = −Dβ

∮
∂�i,j

[
(F− R)nx + (G− S)ny

]
dS , (33)

and defining the cell (averaged) value Wi,j = 1

|�i,j |
∫
�i,j

W d�, which leads to:

dWi,j

dt
= − Dβ

|�i,j |
∮
∂�i,j

[
(F− R)nx + (G− S)ny

]
dS

︸ ︷︷ ︸
LWi,j

. (34)

The spatial discretization operator LWi,j approximates the integral over the cell
boundary ∂�i,j . The values of inviscid fluxes are simply interpolated from the
neighboring cell centers to the boundary. The approximate values of viscous fluxes
at boundary points can be obtained by Green’s theorem for integration over the
boundary of dual (diamond-shaped) control volumes, using both centroids and
vertices of the primary grid (see Fig. 3). The result in semi-discrete system of ODE’s
has the form:

dWi,j

dt
= −LWi,j (35)

and can be solved, for example, by a Runge-Kutta multistage method:

W(0)
i,j = Wn

i,j ,

W(r+1)
i,j = W(0)

i,j − α
(r)
�tLW(r)

i,j , r = 1, . . . , s

Wn+1
i,j = W(s)

i,j . (36)
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Fig. 3 Grid configuration for approximation of inviscid and viscous fluxes. (a) Primary and
secondary cells. (b) Approximation of viscous fluxes

This specific method belongs to the family of low-storage methods, where always
only the values from the previous one stage are required. This is a great advantage
in case of large, high-resolution simulations, where memory efficiency can be
limiting. The three-stage explicit RK scheme used to obtain results presented here
had coefficients α

(1) = 1/2, α
(2) = 1/2, α

(3) = 1. More details on this type of
finite volume discretization and associated Runge-Kutta methods can be found, for
example, in [13, 3, 15, 2].

4 Numerical Simulations

The numerical simulations performed in this study had two main objectives: first,
to compare the outputs of different methods and codes to verify that the newly
developed immersed boundary code is sufficiently accurate and robust and, second,
to investigate the flow in the branching area of the channel depending on the angle
of attachment of the secondary branch.
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4.1 Test Case Description

4.1.1 Domain Geometry

For the immersed boundary implementation of finite difference method, the two-
dimensional (2D) computational domain was chosen as a rectangle in x − y plane
with dimensions 30D × 10D. The numerical simulations were performed on a
structured, orthogonal (Cartesian) grid with different number of equidistant nodes.
The standard grid had 1200×200 cells.

The coordinate system has been chosen to have the origin at the edge of
branching. The whole domain as well as the channel geometry is shown in Fig. 4.
The width (diameter) of the main horizontal channel is denoted by D, and the width
of the inclined (oblique) branch inclined at the angle α was chosen to be D/2. The
same configuration was kept for all simulations, just changing the angle α by setting
it to values 30◦, 60◦, 90◦, 120◦, and 150◦.

For finite volume simulations, just the interior of the channel (marked by white
color in Fig. 4) was used to construct the grid. See Sect. 3.2.1 for details.

4.1.2 Boundary Conditions

The boundary setup was chosen as simple as possible in order to allow for easy
extension for non-Newtonian and turbulent flows, where the velocity profiles are
not a priori known even for the simple channel with Poiseuille-like flow. Therefore,
we have opted for the flow to be defined by pressure drop to be prescribed
between inlet and outlet parts of the boundary. So only different values of pressure
were prescribed at different inlet/outlet parts of the boundary. Otherwise, the
homogeneous Neumann condition was prescribed for velocity components on those

15D 15D

8D

1D

1D

D/2

y

x

O A

B

α

Fig. 4 Computational domain of a branched pipe
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parts of boundary to mimic a fully developed flow. On the channel wall of course,
the no-slip, i.e., homogeneous, Dirichlet condition u = (0, 0) was prescribed for
velocity.

To establish a pressure drop between inlet and outlet of the channel, the pressure
was set to zero at outlet, and a suitable (positive) value of pressure was set at
the inlet. In order to achieve some realistic flow conditions, we have chosen all
conditions similar to flow of blood in common carotid artery. From its diameter
D = 6 mm, fluid viscosity, and channel length (without considering the branch),
it was possible to find suitable inlet pressure from Poiseuille solution, to achieve
similar velocity as it’s found in the real blood vessel of the same size. This led us to
the choice of inlet pressure pin = 60 Pa, while at the outlets we prescribed pressures
pA = pB = 0.

For the immersed boundary method, the velocity is set to zero inside the part
of the domain occupied by the solid material, so no special treatment is needed
on the channel walls for pressure or velocity. See Sect. 3.2.1 for details of the
implementation.

4.2 Numerical Results

The aim of presented numerical results is to demonstrate the applicability of
the chosen methods and their settings for the considered class of problems. The
newly developed finite difference method (FDM)-based immersed boundary code
is compared with in-house finite volume method (FVM) and open-source finite
volume code OpenFOAM. Both FVM methods share the same grid. For the FDM
method with immersed boundary channel representation, two different grids were
used. The standard coarser grid had resolution 1200×200 cells, while the finer grid
had doubled of the cells in the vertical y direction, i.e., having 1200×400 cells.

Figures 5, 6, and 7 show the comparison of pressure and velocity fields obtained
using all the considered codes for the case of oblique branching at angle α = 30◦.
The pressure fields in Fig. 5 have very similar character, and except the FDM
results on coarse grid, all results are almost identical. The comparison of horizontal
velocity fields in Fig. 6 reveals that the in-house FVM code and FDM code on finer
grid provide almost identical results. The OpenFOAM results predict a bit higher
velocity in the main channel, while the FDM code on coarse grid predicts lower
velocity. The same level of agreement between the results can also be seen in the
comparison of vertical velocity fields for the same case shown in Fig. 7.

It is interesting to see that the level of agreement between the results changes
for different angles α of the secondary branch. The comparison of pressure and
velocity fields in the case of α = 60◦ is shown in Figs. 8, 9, and 10. Here, it seems
the OpenFOAM results are closest to the FDM on finer grid (see the comparison of
the horizontal velocity contours in Fig. 9).

The comparison of results in the case of α = 90◦ (shown in Figs. 11, 12,
and 13) shows that even the results obtained by FDM on the coarse grid are almost
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Fig. 5 Pressure field in detail for the case α = 30◦, different solvers, and grids. (a) FVM in-house.
(b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

Fig. 6 Horizontal velocity u in detail for the case α = 30◦, different solvers, and grids. (a) FVM
in-house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

identical to other methods. The orthogonality of the grid allows for optimal use of
all computational points and leads to highest accuracy of numerical approximation.

All the three mentioned cases, i.e., for α = 30◦, 60◦, 90◦ can be compared
according to the velocity profiles presented in Fig. 14 showing the velocity mag-
nitude at the inlet and outlet sections of the main channel and the outlet section
of the secondary branch. In general, the results are in a very good agreement. The
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Fig. 7 Vertical velocity v in detail for the case α = 30◦, different solvers, and grids. (a) FVM
in-house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

Fig. 8 Pressure field in detail for the case α = 60◦, different solvers, and grids. (a) FVM in-house.
(b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

FDM method works better on finer grid (as expected). The main differences between
the results are at the outlet of the secondary branch where the profiles differ most.
This is probably because the details of the implementation of boundary conditions
differ for each code. For FDM methods, the variables are extrapolated along the
grid lines, i.e., in the y direction. For the in-house FVM code, such extrapolation is
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Fig. 9 Horizontal velocity u in detail for the case α = 60◦, different solvers, and grids. (a) FVM
in-house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

Fig. 10 Vertical velocity v in detail for the case α = 60◦, different solvers, and grids. (a) FVM
in-house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

performed to ghost cells which are constructed as a prolongation of the actual grid
close to the boundary. It results in extrapolation along the oblique grid lines which
are parallel to the walls of the branch. On the other hand, the OpenFOAM technique
imposes the normal derivative directly on the cell boundary face, without the need
to construct any ghost cells. Thus, certain local small differences in the obtained
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Fig. 11 Pressure field in detail for the case α = 90◦, different solvers, and grids. (a) FVM in-
house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

Fig. 12 Horizontal velocity u in detail for the case α = 90◦, different solvers, and grids. (a) FVM
in-house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

solutions are expected. Largest differences are again observed for the case α = 30◦
where the grids differ most and thus also the differences in the implementation
of boundary conditions become more important. This, however, doesn’t seems to
have any significant effect on the main flow features. For the comparison of profiles
including the angles α = 120◦, 150◦, see Fig. 14.
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Fig. 13 Vertical velocity v in detail for the case α = 90◦, different solvers, and grids. (a) FVM
in-house. (b) FVM OpenFOAM. (c) FDM coarse grid. (d) FDM finer grid

From now on, we will only focus on the comparison of our in-house FVM code
and the immersed boundary FDM code on finer grid (unless specified otherwise).
The pressure field for the case α = 30◦ is shown in Fig. 15, with FVM results in the
left column and FDM results in the right column. The global view at the complete
channel shows that in the main channel as well as in the secondary (oblique) branch,
the pressure field (away from the branching region) behaves like in Poiseuille flow,
with linear pressure distribution along the channel axis. The detailed look at the
branching region shows that the pressure is very well captured by the FDM method,
despite of quite rough representation of the oblique branch walls by the simple
implementation of the immersed boundary method. Also, the comparison of velocity
components (Fig. 16), velocity magnitude, and streamlines (Fig. 17) shows very
good agreement between the results obtained using both, FVM and FDM methods.

Closer look at the performance of the FDM method on coarse and finer grid is
provided in Fig. 18 for pressure fields and velocity magnitude in Fig. 19. Apparently,
for α = 90◦, the results on the coarse and finer grid are almost identical, but the
more the branch deviates from this ideal position, the differences between the results
become more apparent.

Similar comparison for cases with different branching angle α is shown in
Figs. 20 and 21 for finite volume method (in the left column) and finite difference
method (in the right column). Also here, the mutual agreement between the two
methods depends on the angle α, with best results (smallest solution differences)
achieved for angles close to α = 90◦, while in the cases α = 30◦ and α = 150◦
the differences are more pronounced. The comparison of streamlines for FVM and
FDM solutions (shown in Fig. 22) shows that both methods captured properly the
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Fig. 14 Profiles of velocity magnitude for various branching angles α. In-house FVM code red em
dashed hypen, OpenFOAM FVM code black em dashed hypen, FDM code on coarse grid green
em dashed hypen, FDM code on finer grid blue em dashed hypen. (a) α = 30◦—channel inlet. (b)
α = 30◦—channel outlet. (c) α = 30◦—branch outlet. (d) α = 60◦—channel inlet. (e) α = 60◦—
channel outlet. (f) α = 60◦—branch outlet. (g) α = 90◦—channel inlet. (h) α = 90◦—channel
outlet. (i) α = 90◦—branch outlet

vortices in regions of separated flow. There are no visible differences, and only close
inspection can reveal some small shifts in the position of reattachment points.

The comparison of velocity profiles shown in Fig. 23 confirms the overall very
good mutual agreement between the results obtained by different codes. In some
cases, the results are almost identical (so it seems some profile line is missing, but
it’s not). The main differences appear at the outlet from the secondary branch, at
the angles far from the case α = 90◦, where the grids are optimal and orthogonal.
The performance of the FDM method can be substantially be improved by refining
the grid. But in any case, even in the present version of the grid, the simple
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Fig. 15 Pressure field for the case α = 30◦—finer grid simulations. (a) Pressure—
whole channel—FVM. (b) Pressure—whole channel—FDM. (c) Pressure—detail—FVM. (d)
Pressure—detail—FDM

Fig. 16 Velocity field for the case α = 30◦—finer grid simulations. (a) Horizontal velocity u—
detail—FVM. (b) Horizontal velocity u—detail—FDM. (c) Vertical velocity v—detail—FVM. (d)
Vertical velocity v—detail—FDM
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Fig. 17 Velocity magnitude and streamlines for the case α = 30◦—finer grid simulations. (a)
Velocity magnitude—detail—FVM. (b) Velocity magnitude—detail—FDM. (c) Streamlines—
detail—FVM. (d) Streamlines—detail—FDM

immersed boundary FDM method performs very well, which is sufficient for the
future intended tests of reduced order model boundary conditions.

5 Conclusions and Remarks

The main aim of this work was to develop and validate simple finite difference
code, employing immersed boundary method, to simulate the flow of viscous fluid
flow in branching channels. The new code is intended for future testing of some
nonstandard boundary conditions based on reduced order models. The presented
series of numerical simulations clearly showed despite of the (intentional) simplicity
of the chosen finite difference discretization and grid, the results provided by the
code are on par with the outputs of more advanced finite volume in-house as well as
open-source alternatives.

It was found that for the FDM code working on Cartesian grid with immersed
boundary method, special attention should be paid to grid resolution to properly
capture all essential physical features of the flow in the oblique branches. Although
the results obtained on coarse and finer grid are qualitatively very similar (showing
the same flow structure), some of the quantitative parameters (like maximum
velocity or flow rate) may differ.

In the presented comparison, a simple pressure-based setup was chosen, where
the flow is driven only by the prescribed pressure differences between inlet
and outlet boundaries of the channel branches. Such setup is very sensitive to



Numerical Investigation of Incompressible Fluid Flow in Planar Branching Channels 119

Fig. 18 Pressure field comparison for coarse and finer grid results obtained using FDM method.
(a) α = 30◦—FDM—coarse grid. (b) α = 30◦—FDM—finer grid. (c) α = 60◦—FDM—coarse
grid. (d) α = 60◦—FDM—finer grid. (e) α = 90◦—FDM—coarse grid. (f) α = 90◦—FDM—
finer grid. (g) α = 120◦—FDM—coarse grid. (h) α = 120◦—FDM—finer grid. (i) α = 150◦—
FDM—coarse grid. (j) α = 150◦—FDM—finer grid
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Fig. 19 Velocity magnitude comparison for coarse and finer grid results obtained using FDM
method. (a) α = 30◦—FDM—coarse grid. (b) α = 30◦—FDM—finer grid. (c) α = 60◦—
FDM—coarse grid. (d) α = 60◦—FDM—finer grid. (e) α = 90◦—FDM—coarse grid. (f) α =
90◦—FDM—finer grid. (g) α = 120◦—FDM—coarse grid. (h) α = 120◦—FDM—finer grid. (i)
α = 150◦—FDM—coarse grid. (j) α = 150◦—FDM—finer grid
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Fig. 20 Pressure field detail comparison for various branching angles α. (a) α = 30◦—FVM. (b)
α = 30◦—FDM. (c) α = 60◦—FVM. (d) α = 60◦—FDM. (e) α = 90◦—FVM. (f) α = 90◦—
FDM. (g) α = 120◦—FVM. (h) α = 120◦—FDM. (i) α = 150◦—FVM. (j) α = 150◦—FDM
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Fig. 21 Velocity magnitude detail comparison for various branching angles α. (a) α = 30◦—
FVM. (b) α = 30◦—FDM. (c) α = 60◦—FVM. (d) α = 60◦—FDM. (e) α = 90◦—FVM.
(f) α = 90◦—FDM. (g) α = 120◦—FVM. (h) α = 120◦—FDM. (i) α = 150◦—FVM. (j)
α = 150◦—FDM
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Fig. 22 Streamlines detail comparison for various branching angles α. (a) α = 30◦—FVM. (b)
α = 30◦—FDM. (c) α = 60◦—FVM. (d) α = 60◦—FDM. (e) α = 90◦—FVM. (f) α = 90◦—
FDM. (g) α = 120◦—FVM. (h) α = 120◦—FDM. (i) α = 150◦—FVM. (j) α = 150◦—FDM



Fig. 23 Profiles of velocity magnitude for various branching angles α. In-house FVM code red
em dashed hypen, FDM code on coarse grid green em dashed hypen, FDM code on finer grid
blue em dashed hypen. (a) α = 30◦—channel inlet. (b) α = 30◦—channel outlet. (c) α = 30◦—
branch outlet. (d) α = 60◦—channel inlet. (e) α = 60◦—channel outlet. (f) α = 60◦—branch
outlet. (g) α = 90◦—channel inlet. (h) α = 90◦—channel outlet. (i) α = 90◦—branch outlet .
(j) α = 120◦—channel inlet. (k) α = 120◦—channel outlet. (l) α = 120◦—branch outlet. (m)
α = 150◦—channel inlet. (n) α = 150◦—channel outlet. (o) α = 150◦—branch outlet
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the numerical method, grid structure, and the way the boundary conditions are
imposed. This sensitivity is due to the fact that the flow rate in channel branches
is a priori unknown and the flow field only develops due to pressure difference
forcing. The discretization artifacts, such as the numerical diffusion and dispersion,
can thus significantly affect the flow resistance, and thus the resulting flow can
be significantly altered. In this context, the agreement between the numerical
predictions of the three considered methods and codes can be judged as very good.

The simplicity of the immersed boundary approach and finite difference dis-
cretization allows for very simple testing of various numerical methods and
computational setups. The accuracy of this FDM approach proved to be sufficient
for this purpose. In addition, the in-house finite volume code for structured grids
and the open-source (OpenFOAM) finite volume code for arbitrary grids facilitate
the future implementation of the tested models into more advanced codes dealing
with realistic three-dimensional geometries.

Our future work will focus on the extension of the presented comparison
for unsteady flows and non-Newtonian fluids, which is crucial for the intended
investigation of various biomedical applications.
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Consistent C Element-Free Galerkin
Method for Finite Strain Analysis

P. Areias, F. Carapau , J. Carrilho Lopes, and T. Rabczuk

1 Introduction

Simulations of engineering material processing technology are supported by elasto-
plastic analyses. Two constitutive requirements are important in this context: (1)
the quality of the stress values present in the yield functions depends on the
smoothness of the displacements and crucially on mesh distortion [1] and (2)
quasi-incompressibility conditions in metal plasticity and polymers are difficult
to satisfy with reasonable support sizes in meshless methods [2]. Compared with
displacements, errors in stresses are a magnitude higher, even without accounting
for incompressibility. High-order (quadratic and cubic) finite elements are typically
not adopted in finite strain elastoplastic analysis due to well-known shortcomings:

• High-order elements are adversely impacted by mesh distortion. Convergence
rate is changed by distortion [1]. Adaptive remeshing is required more often with
high-order elements.

• Problems requiring high-order derivatives impose dedicated techniques or isoge-
ometric formulations [3].
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• Although stress quality improves with the order of the complete polynomial,
in finite element methods, stresses are still discontinuous at inter-element
boundaries [4]. Plasticity results are dependent on the quality of the stresses,
which is compromised even in high-order finite elements.

• The use of finite elements for quasi-incompressible problems requires specialized
techniques (see, for example, [5–7]).

Note that Rabczuk, Belytschko, and Xiao [8] proved that a Lagrangian kernel
is required for stability,1 but classical finite strain plasticity algorithms (e.g.,
[9, 10]) combined with EFG are based on configuration updating (see [11]). A
comprehensive presentation of developments in meshless methods (including EFG)
was recently published by J.-S. Chen et al. [12]. A related development combining
partition of unity and least squares is described in Cai et al. [13]. Several remedies
are described, in particular for boundary conditions. Therefore, meshless methods,
in particular with quadratic and cubic bases and satisfying the Kronecker delta
condition, perfectly fit these applications:

• Since no isoparametric mapping is used, mesh distortion sensitivity is attenuated
with respect to finite elements.

• Stresses are continuous, as long as all terms participating in the shape functions
are differentiable.

• Contact algorithms are relatively simplified.
• Quasi-incompressibility can be directly addressed by changing the polynomial

basis.
• Strain localization problems can be directly addressed via strain-gradient meth-

ods.

Several applications have been published with meshless discretization for finite
strain plasticity [11], but not at the same scale of finite elements. The reputation for
difficult-to-impose boundary conditions still affects EFG, although developments in
interpolation have resurrected interest in the question of the Kronecker delta prop-
erty (see [14]). In contrast with finite strain plasticity, hyperelastic implementations
of EFG are common, and recent papers report realistic results with high degree of
continuity (see [15]). In this paper are the following:

A newly developed fully anisotropic elastoplastic framework based on the
iteration for Ce [16] does not require the explicit form of the deformation gradient.
This motivates a revisiting of the moving least squares/EFG approach. Another
effect that is often reported in the context of EFG is the volumetric locking in
quasi-incompressible applications, [11, 17]. This is addressed here by the following
techniques:

• Selective quadrature for the right Cauchy-Green tensor C, with reduced quadra-
ture in det C and full quadrature in Ĉ = det [C]−1/3 C

1 Strictly in particle methods, but stabilized particle methods share properties with EFG.
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• Selective interpolation for these terms, with a higher-order polynomial being
adopted for Ĉ

In terms of discretization, this work adopts the following techniques:

• Ab initio definition of the shape functions and derivatives for the entire analysis.
• Parameterized quadrature and interpolation functions for the deviatoric and

volumetric parts of the right Cauchy-Green tensor C.
• Quasi-singular weight functions (see [18–20]).
• Quadrature points are defined in tetrahedra.
• Lagrangian diffuse derivatives are adopted.
• Constitutive integration making use of the Mandel stress tensor and iteration on

Ce [16].

Volumetric locking has been diagnosed in element-free Galerkin methods by
Dolbow and Belytschko [21] where a mixed displacement-pressure formulation was
proposed in the small strain case. Within the RKPM family of W.K. Liu’s group, a
pressure projection method was proposed, where pressure is re-interpolated using
fewer points and a specific patch [22]. Applications were made with incompressible
hyperelasticity. More conventional F-bar formulations have been used in the context
of particle methods with explicit integration by Wu et al. [23]. In the small strain
case, Recio , Jorge and Dinis [24] have applied B and Enhanced strain techniques
to an EFG formulation. For implicit integration, an incremental finite deformation
version was adopted by Coombs et al. [25]. In neither of these papers the closed-
form expressions for the equilibrium and Jacobian were presented in the finite strain
case. In the incremental case (see [25]), expressions are significantly simplified, and
results for moderate plastic deformations are shown in that paper. In Moutsanidis
et al. [26], an F-bar implementation is presented for the conforming reproducing
kernel method. Navas et al. [27], in order to avoid the locking involved in the fluid
phase of the porous media, devised a B-bar algorithm.

This paper is organized as follows: Sect. 2 presents the interpolation, based on
moving least squares and diffuse derivatives, as well as the algorithm to guarantee
a sufficiently small support radius. Section 3 presents the discretization based on
the total Lagrangian approach, including the partition of C with its first and second
variations. This is followed by Sect. 4 where the constitutive integration, fitting the
developments of Sect. 3, is described in detail. In Sect. 5, three benchmark tests are
presented, and finally conclusions are drawn in Sect. 6.

2 Interpolation

2.1 General Approach for Moving Least Squares

Interpolation with a polynomial basis and least squares fitting was introduced by
P. Lancaster and K. Salkauskas [18]. Herein, classical derivations are followed (see
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[19, 28, 29]). We introduce m as the number of terms in the polynomial basis, n as
the number of supporting nodes, and D as support radius. For a given node K,, the
distance to a given point with coordinates X is identified as sK (X). Let us consider
a q−tuple of nonnegative integers α = (α1, . . . , αq) ∈ N

q

0 . We write the absolute
value as the sum |α| = ∑q

i=1 αi. We consider the set of all polynomials of degree
equal or less than p as:

Pp =
{
pα (X) = X

α1
1 · · ·Xαq

q | |α| ≤ p
}
. (1)

We now introduce a polynomial basis as an array of elements of Pp:

p(X) = {p1 (X) , p2 (X) , · · · , pm (X)} pi ∈ Pp (2)

with #q (X) = (p+q)!/p!q! = m. We therefore use m elements of P for the
polynomial basis. The direct form (2) is known to produce conditioning difficulties.
Therefore, we adopt a normalized and shifted form using a complete basis:

p (X) =
{

1,

(
X1 −X1

)
D

,

(
X2 −X2

)
D

,

(
X3 −X3

)
D

, (3)

(
X1 −X1

) (
X2 −X2

)
D2 ,

(
X1 −X1

) (
X3 −X3

)
D2 ,

(
X2 −X2

) (
X3 −X3

)
D2 ,

(
X1 −X1

)2
D2 ,

(
X2 −X2

)2
D2 ,

(
X3 −X3

)2
D2 , · · ·

}
.

We use X as a centroid of the nodes within the D−radius of X. Given a point
with coordinates X, the approximation weight of another point with coordinates
XI depends on the distance between the points sI (X) = ‖X −XI‖ . The notation
w [sI (X)] is introduced to represent this weight function of X. From this basis, an
m× n P Vandermonde matrix is defined by its elements as follows:

PiJ = pi (XJ ) i = 1, . . . , m, J = 1, . . . , n (4)

The components of weight matrix, which is a function of the supporting points
and the coordinates X, are given by:

WIJ (X) = δIJw [sI (X)] I, J = 1, . . . , n (5)

Applying the traditional least squares arguments [28] leads to the following
format for the n-dimensional shape function array N (X):

N (X) = p(X) ·A−1 (X) · B (X) (6)
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where A (X) is the m × m moment matrix A (X) = B (X) · P T and B (X) is the
m × n linear combination matrix B (X) = P ·W (X). We make use of the Q · R
decomposition of

√
W (X) · P T :√

W (X) · P T = Q (X) ·R (X) (7)

where Q (X) is an orthogonal matrix and R (X) is an upper triangular matrix [30].
A classical Gram-Schmidt algorithm for the Q ·R decomposition is used (see [31]).
For our application, only R (X) is required. It is straightforward to obtain, from (6),
the final form of the shape function array:

N (X) = p(X) ·R−1 (X) ·R−T (X) · B (X) . (8)

Therefore, this operation is relatively inexpensive since it consists of two
triangular solves. Omitting the dependence on X, we have:

RT · U1 = B (9)

R · U2 = U1 (10)

where U2 is a m × n matrix, which suffices to define the shape functions.
Reintroducing the dependence on X, the result is:

N (X) = p (X) · U2 (X) . (11)

The interpolated value φ (X) is obtained by linear combination of nodal values
φ = {φ1, φ2, · · · , φn} φ (X) = N (X) ·φ. In terms of components, Eq. (6) is written
as:

NL (X) = pj (X) U2jL (X) L = 1, . . . , n; j, k = 1, . . . , m (12)

First derivative of NL(X) with respect to coordinates Xm, m = 1, 2, 3 is here
denoted as:

N ′
L (X) =p′j (X) U2jL (X)

−pj (X) A−1
j l (X) A′lp (X) U2pL (X)

+pj (X) A−1
jk (X) B ′kL (X) (13)

where:

B ′kL (X) = PkJW
′
JL (X) (14)

A′lp (X) = B ′lL (X) PpL. (15)
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In terms of p′j (X) and W ′
J I (X), Eq. (13) can be written as a sum of two terms:

N ′
L (X) = N$

L (X)+N•
L (X) (16a)

where:

N$
L (X) = p′j (X) U2jL (X) (16b)

and:

N•
L (X) = pj (X) A−1

j l (X) PlMW ′
MQ (X)

[
δQL − PpQU2pL (X)

]
. (16c)

It is a tradition to identify (16b) as the diffuse derivative (see Nayroles, Touzot,
and Villon [32]).

2.2 Quasi-Singular Weight Function

Singular weight functions are known to produce an interpolation satisfying the
Kronecker delta property [18]. Quasi-singular functions have been adopted to
approximate this property [19]. The following quasi-singular weight function is
introduced (see, for example, [19, 20]):

w [sI (X)] =
{[

s2
I (X)/D2 + tol2

]−1 − [1+ tol2
]−1

sI ≤ D

0 sI > D
(17)

where tol ∈ R
+ is a tolerance parameter. The maximum value of w [sI ] is obtained

as:

w[0] = 1/(tol2 + tol4). (18)

Here, we adopt tol = 1×10−3. The Kronecker delta property is approximately
satisfied:

NI (XJ ) ∼= δIJ . (19)

Derivatives of w [sI ] with respect to sI are trivially given by

dw [sI ]

dsI
= − 2D2sI(

D2tol2 + s2
I

)2 . (20)
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Strong versions of this weighting are available (see M. Dehghan, [33]) but
involve an intricate implementation.

3 Discrete Equilibrium Equations

In finite element technology, two papers introduced a consistent formulation for
the so-called mean dilatation technique [6, 34] which was invented by Nagtegaal
et al. [35]. A straightforward total Lagrangian implementation is followed (see, for
example, [36]). We make use of the definition of the right Cauchy-Green tensor:

C (Xh) = F T (X) · F (X) . (21)

A partition into volumetric and deviatoric parts is required for selective quadra-
ture. Omitting the dependence on Xh, the derivatoric Cauchy-Green tensor follows
from the Flory [37] decomposition:

Ĉ = det [C]−1/3 C. (22)

Introducing the variation symbol δ and taking advantage of the symmetry of C,

the variation of Ĉ is calculated as (see also Appendix Section “First and Second
Variations of det [C]”):

δĈ =
(

det [C]−1/3 I − 1

3
Ĉ ⊗ C−1

)
: δC (23)

where I is the symmetric fourth-order identity tensor, i.e., [I]ijkl= 1
2

(
δij δkl+δikδjl

)
.

This variation will be required later in the formation of the weak form of
equilibrium. Newton-Raphson iteration requires the second variation of Ĉ. For
the second variation of Ĉ, we adopt the time derivative notation, which results in:

δ ˙̂C =
(

det [C]−1/3 I − 1

3
Ĉ ⊗ C−1

)
: δĊ

+Ċ :
(
−1

3
det [C]−4/3 C−1 ⊗ I

)
: δC

+Ċ :
(

1

9
Ĉ ⊗ C−1 ⊗ C−1 − 1

3
det [C]−1/3 I ⊗ C−1

)
: δC

+Ċ : T : δC (24)

where T is a sixth-order tensor which is defined in terms of components as:
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[
T
]
mnijkl

= 1

3
C−1
kmC

−1
nl Ĉij . (25)

Given the decomposition, we assume an independent det
[
C
]

which we denote

as θC = det
[
C
]
. In this case, we define a combined right Cauchy-Green tensor:

C$ =
(

θC

det [C]

)1/3

C. (26)

Interpolation for C makes use of a lower-order polynomial and/or fewer quadra-
ture points. The specific form (26) was proposed by Simo et al. [6] with a
clear significance: in the context of low-order finite elements, to replace an over-
constrained imposition of det [C] ∼= 1 by an independent field θC . Here, C can
follow a distinct quadrature rule or a distinct interpolation. The first variation of C$

is calculated as:

δC$ =
(

θC

det [C]

)1/3

δC + 1

3

[(
C$ ⊗ C

−1
)
: δC −

(
C$ ⊗ C−1

)
: δC

]
. (27)

Using the time derivative notation, an analogous form is obtained:

Ċ$ =
(

θC

det [C]

)1/3

Ċ + 1

3

[(
C$ ⊗ C

−1
)
: Ċ −

(
C$ ⊗ C−1

)
: Ċ
]
. (28)

The time derivative of δC$ is obtained from (27) as:

δĊ$ =− θ̇C
2

9
θ
−5/3

C ĈδθC − 1

3
θ
−2/3

C Ĉδθ̇C

+1

3
θ
−2/3

C

(
θ̇CδĈ + δθC

˙̂C
)
+ θ

1/3

C δ ˙̂C.

These expressions are error-prone to implement manually and therefore have
been implemented in Mathematica [38] with the AceGen add-on, developed by
Korelc [39]. The Mathematica sheets and corresponding Fortran 90 source codes
are available in GitHub (see [40]). For a given point Xh with discrete support �Xh

,
we have:

F (Xh) = dxh

dXh

=
∑

L∈�Xh

(
dNL (Xh) xL

dXh

)
. (29)

In terms of components and omitting the dependence on Xh, we obtain the
components of F as:
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Fij = dNL

dXj

xiL. (30)

Using the variation symbol, δ, we introduce the variation of F , in the equilibrium
sense, as:

δFij = dNL

dXj

δxiL. (31)

Introducing the notation NjL = dNL/dXj for the shape function derivatives, the
following results for C and its first and second variations are obtained:

Cij = NiKNjLxkKxkL ⇒
δCij = NiKNjL (xkLδxkK + xkKδxkL)

Ċij = NiKNjL (xkLẋkK + xkKẋkL)

δĊij = NiKNjL (ẋkLδxkK + ẋkKδxkL) .

Note that besides the node indices K and L, the index k is also muted.
Equilibrium is established in a weak form by the use of the second Piola-Kirchhoff
stress S$ and the spatial configuration variation δx:

1

2

∫
�0

S$ : δC$ d�0 = f ext · δx (32)

where S$ ≡ S$ (C$) where C$ was calculated as shown in (27). For the application
of Newton-Raphson iteration, we require the first variation of (32). As discussed
previously, to avoid confusion with the variation symbol δ, we use the time
derivative to denote the variation of equilibrium. By taking this time derivative
variation, the tangent modulus C is employed to read:

1

2

∫
�0

S$ : δĊ$ d�0+ 1

4

∫
�0

δC$ : C : Ċ$ d�0 = f ext · δx −
1

2

∫
�0

S$ : δC$ d�0

(33)
where f ext is the external load vector and is the nodal velocity vector. Note that in
the implementation, the second derivative of C$ is required in δĊ$. In Voigt form
(see [41]), we have the following internal force and tangent stiffness:

f L =
∫
�0

BT
L · I6 · Ŝ$ d�0 (34)

KKL =
∫
�0

BT
K · I6 · C · I6 · BL d�0 +

∫
�0

Š$ · I6 · B$
L d�0. (35)
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Matrices B and B$ are implemented in [40], and I6 is a diagonal matrix
containing 1 for indices 11 and 22 and 33 and 2 for indices 44, 55, and 66. In
contrast with advanced finite element formulations [42, 43], these are classical and
direct derivations. In addition, shape functions and corresponding derivatives are
calculated once, at the start of the solution process.

4 Hyperelasticity/Plasticity Using the Elastic Mandel Stress
Tensor

4.1 Formulation

The Mandel stress tensor approach to finite strain plasticity is adopted [44, 45]. We
make use of the Kröner-Lee decomposition [46–48]:

F = F e · Fp. (36)

Using (36), the velocity gradient is determined by its definition and then
partitioned as follows:

L = Ḟ · F−1 = Le + F e · Lp · F−1
e (37)

with Le = Ḟ e · F−1
e the elastic velocity gradient and Lp = Ḟp · F−1

p the plastic
velocity gradient. The second Piola-Kirchhoff stress is a function of the elastic part
of F by means of Ce = F T

e · F e (cf. [49] page 166), the second Piola-Kirchhoff
stress at the intermediate configuration is given by Se (Ce) (see [50]), from which
energy consistency results in a specific form for the second Piola-Kirchhoff stress
S = F−1

p · Se (Ce) · F−T
p . In the hyperelastic case, a strain energy density function

ψ (Ce) exists such as:

Se (Ce) = 2
dψ (Ce)

dCe

. (38)

The Neo-Hookean model is used, with the following strain energy density function:

ψ(Ce) = μ

2
[tr (Ce)− 3]− μ log

√
det (Ce)+ λ

2

[
log
√

det (Ce)
]2

. (39)

The flow law follows similar arguments [45], with the initial plastic deformation
gradient corresponding to the identity,

[
F p

]
0 = I . Agreeing with standard

derivations on plasticity, a yield function φ is introduced, as well as a plastic
multiplier γ̇ . Introducing the notation Qp = F−1

p , we summarize the constitutive
system as:
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S = Qp · Se (Ce) ·QT
p (40)

Q̇p = −γ̇Qp ·N [T e] (41)[
Qp

]
0
= I (42)

≺ φ (T e)+ γ̇ &− γ̇ = 0 (43)

with ≺ • &= •+|•|
2 being the unit ramp function. In (41), the Mandel stress [44] T e

is given by:

T e = Ce · Se (Ce) . (44)

Assuming an associated flow law [48], we have the flow vector N (T e) deter-
mined from the derivative of φ (T e):

N(T e) = dφ(T e)/dT e. (45)

When hardening is present, power equivalence provides the effective plastic
strain rate ε̇p as a function of the yield stress σy :

ε̇p = γ̇
T e : N(T e)

σy
. (46)

4.2 Constitutive Integration

For the constitutive integration, we use superscripts n and n + 1 to identify two
consecutive time steps and �t as the time step size. Applying the backward Euler
method for Q̇p and γ̇ results in:

Qn+1
p = Qn

p ·
[
I +�γ ̂N

(
Cn+1
e

)]−1

︸ ︷︷ ︸[
�Q̂

(
Cn+1
e ,�γ

)]−1

(47)

γ n+1 = γ n + γ̇ n+1�t︸ ︷︷ ︸
�γ

. (48)

We now define the elastic trial Cauchy-Green tensor as C$
e =

[
Qn

p

]T · Cn+1 ·Qn
p.

Introducing the function Ĉ
$

e

(
Cn+1) = (Qn

p

)T ·Cn+1 ·Qn
p, the constitutive system

for �γ > 0 consists of the following equations:
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[
�Q̂

(
Cn+1
e ,�γ

)]T · Cn+1
e ·

[
�̂Q

(
Cn+1
e ,�γ

)]
− Ĉ

$

e

(
Cn+1

)
︸ ︷︷ ︸

rc
(
Cn+1
e ,�γ,Cn+1)

= 0 (49)

φ$

[
Cn+1
e · Ŝe

(
Cn+1
e

)]
= 0. (50)

Since Cn+1
e is symmetric, Voigt notation can be used, Cn+1

e = Voigt
[
Cn+1
e

]
and rc

(
Cn+1
e ,�γ,Cn+1

) = Voigt
[
rc
(
Cn+1
e ,�γ,Cn+1)]. Omitting the function

arguments for conciseness, the Newton-Raphson iteration for Cn+1
e (Voigt form)

and �γ is written as:

[ ∂rc
∂Cn+1

e

∂rc
∂�γ

∂φ

∂Cn+1
e

0

]
︸ ︷︷ ︸

J

{
�Cn+1

e

��γ

}
︸ ︷︷ ︸

�Y

= −
{

rc
(
Cn+1
e ,�γ,Cn+1

)
φ$

[
Cn+1
e · Ŝe

(
Cn+1
e

)]
}

︸ ︷︷ ︸
r

(51)

with Y = {
Cn+1
e �γ

}T
being the constitutive unknowns for this problem.

Following Cn+1
e ,Qn+1

p is determined by (47), and the second Piola-Kirchhoff stress
at step n+ 1 is given in tensor notation by:

Š
n+1

⎛
⎜⎝Cn+1

e ,�γ︸ ︷︷ ︸
Y

⎞
⎟⎠ = Qn

p ·
[
�̂Q

(
Cn+1
e ,�γ

)]−1 · Ŝe

(
Cn+1
e

)

·
{[

�̂Q
(

Cn+1
e ,�γ

)]−1
}T
·
(
Qn

p

)T
. (52)

Stress sensitivity, the determination of the consistent modulus, with Sn+1 =
Voigt

[
Sn+1], is determined as follows:

dSn+1

dCn+1
= ∂̂S

n+1

∂Cn+1
e

· dCn+1
e

dCn+1
+ ∂̂S

n+1

∂�γ

d�γ

dCn+1
. (53)

In (53), a single product dot · is adopted for double contraction of quantities in Voigt
form. From (53), we can conclude that C is determined as a function of the solution
of (51), since:

dY/dCn+1 = −J−1 · ∂r
∂Cn+1

(54)
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therefore, stress sensitivity is simply given by:

dSn+1

dCn+1 = −
(

d̂Sn+1/dY
) · (dY/dCn+1) . (55)

The effective plastic strain rate follows the integration of (46):

εn+1
p = εnp +�γ

T e : N(T e)

σy
. (56)

4.3 Specific Yield Function

The nondimensional yield function is given by:

φ$ (T e) = σeq (T e)

σy
− 1 (57)

where, as a prototype equivalent stress, a specific Hill48 criterion (1948 [51]) is
adopted. The general form of the Hill48 equivalent stress σeq is written as:

σeq (T e) =
[
F (T22 − T33)

2 +G(T33 − T11)
2 +H (T11 − T22)

2 (58)

+ 2S1
(
T s

4

)2 + 2S2
(
T s

5

)2 + 2S3
(
T s

6

)2]1/2

(59)

where the subscript e of T e is omitted for conciseness. In (58), the superscript s
is adopted to indicate a symmetrized quantity. For example, T s

6 = 1/2 (T23 + T32) .

Introducing the yield ratios, y = {y1, . . . , y6} as constitutive data, we have for F, G,
H, S1,...,3:

F = 1

2

(
1/y2

2 + 1/y2
3 − 1/y2

1

)
(60)

G = 1

2

(
1/y2

1 + 1/y2
3 − 1/y2

2

)
H = 1

2

(
1/y2

1 + 1/y2
2 − 1/y2

3

)
Sk = 3/2

(
y2
k+3

)
k = 3, . . . , 6.

We note that many other yield criteria can be used, since any specific form of
σeq (T e) can inserted.
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5 Numerical Tests

Numerical tests were performed with the code from the leading author, SimPlas
[52], and the specific source code for C−EFG was created using Mathematica [38]
with the AceGen add-on [36, 39]. Source code for the equations in this work is
available via GitHub [40].

5.1 Straight Cantilever Beam with Closed-Form Solution

We start with the Timoshenko and Goodier [53] cantilever beam in small strain
elasticity. Two values of the Poisson coefficient are adopted: ν = 0.3 and
ν = 0.49999. The quasi-incompressible case is here specified with a plane strain
assumption. A comparison with the MINI element by D. Arnold [5] is performed.
The beam is represented in Fig. 1.

We use the first slope boundary condition by Timoshenko and Goodier [53] who
obtained the solution for the displacement in the plane stress case:

u (x, y) = P

4c3E

{
E
G

(
y3 − 3c2y

)+ 3y (l − x) (l + x)− νy3

(l − x)2 (2l + x)+ 3νxy2

}
.

Introducing this solution into the strain components and making use of Hooke’s
law, we calculate the strain energy per unit thickness as:

U = 1

2

∫ l

0

[∫ +c

−c
(
εxxσxx + εyyσyy + γxyτxy

)
dy

]
dx. (61)

The plane strain case is obtained replacing E by E/1−ν2 and ν by ν/1−ν. Strain
energy per unit thickness is given by:

Uplane strain =
P 2
[
6c2El + 5Gl3

(
1− ν2

)]
20c3GE

.

l = 8

2c
=
1

y

x

E = 1
ν = 0.3 or ν = 0.49999

Fig. 1 Timoshenko and Goodier cantilever beam [53] with fixed support
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Table 1 Closed-form and
converged solutions for the
cantilever beam

Closed-form solutions (specialized from [53])

Plane stress Plane strain

Poisson coefficient: v(0) U v(0) U

ν = 0.3 2048 1036.48 1863.68 944.32

ν = 0.49999 2048 1038.40 1536.02 782.41

Converged solutions (h = 0.005)

Plane stress Plane strain

Poisson coefficient: v(0) U v(0) U

ν = 0.3 $ $ 1880.90 940.33

ν = 0.49999 $ $ 1542.00 770.08

Uplane stress =
P 2
(
6c2El + 5Gl3

)
20c3GE

.

Results are given in Table 1 for both cases. This table also shows the converged
results for h = 0.005 obtained with a mixed finite element formulation [52]. Only
the plane strain case will be addressed, since it is more demanding in terms of
convergence.

Displacement results as a function of the characteristic mesh size h are summa-
rized in Table 2, with the following cases being considered:

1. ν = 0.3 with full quadrature (3 Gauss points per triangle for both C and C).
2. ν = 0.49999 with full quadrature.
3. ν = 0.49999 with selective quadrature (3 Gauss points per triangle for C and 1

Gauss point for C).

The following notation is adopted for the polynomials:

1. 1 ≤ p0 ≤ 3 is the degree of polynomial adopted for C.
2. 1 ≤ p1 ≤ 3 with p1 ≥ p0 is the degree of polynomial adopted for C.

From the observation of Table 2, we conclude that:

1. For the compressible case, all formulations behave acceptably, with the exception
of p0 = p1 = 1 which results in excessive displacements. In addition, with
p0 = p1 = 2, we can conclude that results are non-monotonous.

2. Using full quadrature for the quasi-incompressible case, two combinations
exhibit severe volumetric locking: p0 = p1 = 1 and p0 = 1, p1 = 2.

3. Using selective quadrature for the quasi-incompressible case only p0 = 1, p1 =
2 exhibits locking. Both p0 = p1 = 3 and p0 = 2 and p1 = 3 are acceptable
formulations.

Tip displacement error convergence is shown in Fig. 2 for ν = 0.3 and ν =
0.49999. The latter is considered with full and selective quadrature. Energy error
convergence is determined for both the compressible and quasi-incompressible
cases in Table 3 for p0 = 2 and p1 = 3.
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Fig. 2 Timoshenko-Goodier cantilever beam: tip displacement convergence for ν = 0.3 and ν =
0.49999. Results from the MINI element [5] are also included for comparison. (a) ν = 0.3, full
quadrature. (b) ν = 0.49999, full quadrature. (c) ν = 0.49999, selective quadrature
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Table 3 Timoshenko and
Goodier cantilever beam:
numerical results for U in the
plane strain case with
selective quadrature and
p0 = 2 and p1 = 3

h ν = 0.3 v = 0.49999

0.0125 943.7 766.5

0.0250 945.1 765.2

0.0500 949.5 762.1

0.1000 957.1 756.3

0.2000 981.8 743.5

XY

Z

E = 29870
ν = 0.3

Properties (consistent units):

σy = 41 + 205εp (linear hardening case)
σy = 112(εp + 0.0113)0.227 (power law case)

Nodes:
535 nodes

R = 1

H
=

1

Frictionless contact

(One-quarter of geometry discretized)

3616 nodes
868 nodes

u
z

Fig. 3 Billet upsetting test: relevant data and notation

5.2 Billet Upsetting Test

We make use of the upsetting test reported by M.A. Puso and J. Solberg [54] in
its two elastoplastic versions (linear and power hardening). Geometry, boundary
conditions, and constitutive properties are shown in Fig. 3. Three uniform meshes
are adopted for comparison, containing 535, 868, and 3616 nodes. Nodes are forced
to remain above a horizontal plane by a non-penetration condition. Of the two
cases reported in [54], the elastoplastic case described is the most demanding, and
it was found that only their nodal integrated and stabilized UT4s provided stable
and accurate results. Using a cubic basis (p0 = p1 = 3), Fig. 4 shows the very
smooth contour plots for εp and hydrostatic σH . All three factors contribute to a
more flexible behavior: finer meshes are less stiff, larger supports produce softer
behavior, and quadratic basis produces results beneath the reaction displacement
curve reported in [54]. Using uniform quadrature and uniform interpolation, Fig. 5
shows the results compared with the reported in [54]. We test three basis dimensions:
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Power-law hardening case
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S33

Fig. 4 Upsetting test: contour plots (εp , S33) for the power-law hardening case and 535 nodes

linear, quadratic, and cubic with n = 25. In terms of quadrature, both 1 and 4
Gauss points are tested. Reduced quadrature produces exceedingly flexible results,
as shown in Fig. 5. This conclusion leads us to favor either full quadrature (4 points
in both terms) or selective quadrature (4 points for the deviatoric terms and 1 point
for the volumetric term). Focusing on the polynomial bases, Fig. 6 shows the effect
of p0 and p1 on the displacement-reaction behavior. The following conclusions are
taken:

• In contrast with displacement-based finite elements, increasing the polynomial
degree does not produce more flexible results.

• In contrast with finite elements, uniform reduced quadrature does not produce
hourglassing/point instabilities. However, significant loss of stiffness is observed,
which precludes its use in the quasi-incompressible case.
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Fig. 5 Upsetting test, linear hardening, n = 25: effect of dimension of polynomial basis for
uniform quadrature/uniform basis

• The polynomial degree of the deviatoric term, p1, is important in terms of results.

Selective interpolation is now contemplated, with Fig. 7 showing the effect of
combining distinct bases. We conclude that the deviatoric term p1 is crucial for
the results.

Combining selective quadrature with full interpolation, results show that sig-
nificant differences exist by changing the basis (see Fig. 8). In terms of mesh
convergence, excellent results are obtained, as Fig. 9 shows. In our experience, this
is one of the advantages of meshless methods.

Finally, to complete the test of Puso and Solberg [54], the power-law hardening
is tested in Fig. 10

5.3 Tension Test

We apply the C-EFG method to the tension test discussed by Simo and co-workers
in the context of J2 plasticity [9] (see also the 1993 reference [55] where the test
is described in detail). Geometry, boundary conditions, and material properties are
summarized in Fig. 11, along with the two cases of nodal distribution, structured
and unstructured, as this was found to have an effect on the results. The contour plot
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Fig. 6 Upsetting test, n = 25, effect of selective polynomial basis for the deviatoric (p1) and
volumetric (p0) terms. Reduced quadrature. (a) Linear and quadratic bases. (b) Quadratic and
cubic bases. (c)
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Fig. 7 Upsetting test, n = 25, effect of selective polynomial basis for the deviatoric (p1) and
volumetric (p0) terms. Full quadrature. (a) Linear and quadratic bases. (b) Quadratic and cubic
bases

of the effective plastic strain, given by Eq. (56), is shown in Fig. 12 for two values
of y. The specific yield stress σy is given by the hardening law shown in Fig. 11.
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Fig. 8 Upsetting test, n = 25, effect of selective quadrature for uniform interpolation
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Compared to mixed FE formulations, results are distinct. When compared with
enhanced assumed strain hexahedra, specifically Simo and Armero [7, 55], both the
initial plastic behavior and the post-localization behavior are different (see Fig. 13).
We note that two significant differences exist: (1) Simo and Armero adopted a
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Fig. 10 Results for power-law hardening

Imposed longitudinal
displacement 12.826

Symmetry

26
.6
67

Unstructured node distribution Structured node distribution

12.6978

(Consistent units)

σy = 0.45 + (0.715− 0.45)(1− e−16.93εp) + 0.12924εp

ν = 0.29
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Fig. 11 Relevant dimensions and mesh for the Neo-Hookean/Hill48 tension test

formulation based on the Kirchhoff stress tensor and radial-return mapping for J2
plasticity and (2) hexahedra tend to reproduce the incompressibility condition with
sharper stretching. MINI elements (see, [5]) are also used for comparison, as Fig. 13
shows. When compared with the MINI runs, much coarser meshes are used in EFG
for similar results. In contrast with the previous examples, finer node distributions
result in a sharper localization region, with lower reactions for higher displacements.
For the structured mesh with 3760 nodes, Fig. 14a shows the advantages of using
p0 = 2 and p1 = 3 in terms of post-localization. When adopting an unstructured
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y = {1, 1, 1, 1, 1, 1}

εp

εp

y = {1, 0.8, 1, 0.9, 1, 1}

Fig. 12 Tension test: deformed configurations for both yield functions ({1, 1, 1, 1, 1, 1} and
{1, 0.8, 1, 0.9, 1, 1} with the corresponding effective plastic strain colors

node distribution, a less pronounced post-localization behavior is exhibited (see
Fig. 14b).

6 Conclusions

In the context of C decomposition and by parameterizing the quadrature and the
degree of the polynomial basis, we developed a discretization scheme with the
following distinctive features:
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Fig. 13 Comparison with advanced finite element technology [7, 55] and effect of node density
on the results

• An initial perturbation of internal FE nodal positions is performed for efficiency
reasons (low n).

• From linear up to cubic shape, functions are adopted for the volumetric and
deviatoric terms of the right Cauchy-Green tensor. Lagrangian diffuse derivatives
are defined ab initio for the entire analysis.

• A pre-established nodal support is imposed, and a tetrahedra integration with 1
or 4 quadrature points for C and C is adopted.

• Constitutive integration makes use of the Mandel stress tensor and iteration on
Ce [16].

Implementation is straightforward and was performed in SimPlas [52] with
AceGen [39] and Mathematica [38]. Three benchmark tests were performed, which
allow the following conclusions:

• Even with small supports and coarse meshes, results are highly competitive with
established finite elements if either selective interpolation or selective quadrature
are adopted. This holds for the quasi-incompressible case where special finite
elements are adopted.

• Numerical testing shows that the ideal combination is p0 = 2 and p1 = 3 with
either selective or full quadrature.

• Finite strain plasticity solutions are very robust, with large strains being possible
without loss of convergence or instabilities.

• The finite strain formulation is simpler than with mixed finite elements and on
par with displacement-based FEM. Source code is available at GitHub, cf. [40].
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Fig. 14 Effect of selective interpolation and structured/unstructured node distribution. (a) Effect
of selective interpolation. (b) Effect of structured/unstructured node distribution
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Appendix

First and Second Variations of det [C]

For the determinant of C, the following relations hold, which follow from estab-
lished results and application of the chain rule:

δ det [C] = det [C] C−1 : δC (62)

dδ det [C] = dC :
(

det [C] C−1 ⊗ C−1
)
: δC

+ det [C] : dδC − dC : S : δC (63)

where S is a fourth-order tensor with components Sklij = C−1
ik C−1

lj . Given the n−th
power of det [C], det [C]n , it follows that:

δ det [C]n = n det [C]n−1 δ det [C] (64)

dδ det [C]n = n(n− 1) det [C]n−2 δ det [C] d det [C]+ n det [C]n−1 dδ det [C]
(65)

with δ det [C] being given by (62) and dδ det [C] by (63). Given θC = det
[
C
]
,

similar expressions are obtained for δθC and dδθC .
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Physics-Informed Bias Method for
Multiphysics Machine Learning:
Reduced Order Amyloid-β Fibril
Aggregation

Joseph Pateras, Ashwin Vaidya, and Preetam Ghosh

1 Multiphysics Modeling

Deriving reduced order models for multiphysical systems is a hallmark of modern
science which affords viability to the computational analysis of many physical,
chemical, biological, geological, etc. systems. As system complexity grows, so
too must the dimensionality of our models. Creating complex enough models
for increasingly complex problems is a vexing concern for researchers. Take, for
instance, the three-body problem [9]. In classical mechanics, it is easy enough
to model the orbit of two bodies interacting with Newton’s laws of motion and
gravitation. However, add a third or perhaps n-many bodies, and the problem
becomes substantially harder; difficulty increases so much so that this problem
is an important consideration in space mission design [9]. By increasing our
understanding of the three-body system’s physics and tweaking our modeling
approach, we can also create novel approaches to obtain better results and draw
interesting conclusions [1, 12].

Generally, multiphysics problems are presented here as a large class of problems,
which might be computationally difficult and are apt targets of the physics-informed
ML (PIML) approach. There are innumerably many techniques to providing
modeling solutions to multiphysics problems. Numerical solutions to PDEs are
obtained using finite elements or differences, spectral, meshless, or any variety of
methods. If many numerical methods must be reproduced for a large number of
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iterations and/or on increasingly nonlinear, complex systems, the costs of traditional
multiphysical modeling, discussed in Sect. 2, can become prohibitive to expanding
research.

In this work, the focus is on a particular biophysical model with relevancy to
the study of Alzheimer’s disease. By applying the training set bias method outlined
in Sect. 2, we are able to reliably reproduce previous numerical solutions [5, 6] in a
considerably small fraction of the time and with improving accuracy as we introduce
more information to the biasing method paradigm.

1.1 Amylod-β Fibril Aggregation

The runaway aggregation of toxic amyloid proteins is a condition underpinning
many serious health conditions commonly referred to as amyloid diseases. One such
protein, which aggregates in our brains near neurons, is called Amyloid-β (Aβ).
Modeling the formation of these toxic plaques is important as they can only be
observed directly in the human brain during an autopsy. This was exactly how in
the year 1906 Dr. Alois Alzheimer noted the presence of these plaques in the brain
of a patient exhibiting dementia-like symptoms now synonymous with Alzheimer’s
disease.

The model presented in Fig. 1 is a reduced order representation of Aβ aggre-
gation. The entire amyloid system is extremely complex and a full-scale analysis
is difficult to imagine. The model in Fig. 1 describes individual monomers of Aβ

aggregating to form a nucleation size oligomer of size n and an ordered step of
aggregation to form a full fibril containing m-many individual Aβ proteins. A1
is the monomer species of Aβ. n-many A1 proteins come together to form an
experimentally observed intermediate nucleation size, An [4]. Each A also has a
corresponding “prime” species, A’, signifying an aggregation reaction has occurred
in the presence of an environmental catalyst L, such as a fatty acid or a surfactant.
Both healthy and toxic pathways culminate in a post-nucleation size oligomer of
size m (Am and A′m, respectively)[2]. The reactions in Eqs. (1)–(6) describe the
interactions between the differently sized aggregates of Aβ. Each double-ended
arrow in Fig. 1 describes a reversible aggregation reaction or a switching between
toxic and healthy pathways. It is observed that fully realized fibrils no longer mutate
between healthy and toxic.

A1 + L
k+1�
k−1

A′1, (1)

n ∗ A1
k+2�
k−2

An, (2)
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Fig. 1 A reduced order aggregation model for Aβ amyloid formation

n ∗ A′1
k+3�
k−3

A′n, (3)

An + L
k+4�
k−4

A′n, (4)

m

n
∗ An

k+5�
k−5

Am, (5)

m

n
∗ A′n

k+6�
k−6

A′m. (6)

The reactions in Eqs. (1)–(6) are derived from the law of mass action, where the
various k values describe the rates of each reaction. The law of mass action can
be used to model many various chemical or physical systems like the previously
presented Aβ model [6] or in a myriad of other diverse fields including but certainly
not limited to particle flocking behavior in fluid-surface interactions [3], model-
based epidemiology [13], or radioligand binding studies [10].

The general framework of a multiphysics problem apt for a PIML study is easily
definable, is quite broad, and is certainly not limited to mass action models. The
system of study can be:

1. Any system about which we have knowledge of some physical, mechanical,
chemical, or properties otherwise

2. Any system which is traditionally modeled with complex multiphysical assump-
tions

3. Any system whose breadth of study is limited by availability of data and/or the
computational expense of modeling
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1.2 Complex Multiphysics Modeling Costs

Generally, solutions to highly nonlinear models introduce significant computational
expense and fidelity concerns in numerical solutions. Researchers are widely
creative in addressing both issues. New and improved models help quantify systems
more reliably, and enhanced computation techniques decrease cost. However, the
increasing complexities of our models will only increase proportionally as research
probes deeper understanding of physical systems.

1.3 Amyloid-β Aggregation Model

By employing the law of mass action, we can convert the list of chemical equations
into a system of differential equations describing the concentration of each Aβ

species. With nondimensionalization and characteristic choices of rate k−1 and
concentration A1, we arrive at the nondimensional system of equations:

dB1

ds
= nα1Bn − nα2B

n
1 + B

′
1 − α3B1, (7)

dB
′
1

ds
= nβ1B

′
n − nβ2B

′n
1 + α3B1 − B

′
1, (8)

dBn

ds
= α2B

n
1 − α1Bn + m

n
α5Bm + β4B

′
n − α4Bn − m

n
β3B

m
n
n , (9)

dB
′
n

ds
= β2B

′n
1 − β1B

′
n + α4Bn + m

n
β5B

′
m −

m

n
β6B

′ mn
n − β4B

′
n, (10)

dBm

ds
= β3B

m
n
n − α5Bm, (11)

dB ′m
ds

= β6B
′ mn
n − β5B

′
m. (12)

Here, B1, Bn, and Bm represent healthy oligomers of sizes 1, n, andm, and
B ′1, B ′n, and B ′m are toxic oligomers. The various nondimensional rate constants
are given by αi or βi . The equations are solved using MATLAB’s built-in ode45
function. Steady-state values are obtained for each Aβ species to draw conclusions
about the aggregation process’ dependence upon environmental conditions. Fig-
ure 2a depicts the aggregation of monomers over time modeled by the governing
equations (7)–(12). The computations of the governing equations are performed
repeatedly for various initial conditions—depicted by Fig. 2b—and for differing
values of rate constants representing environmental factors.

By comparing the steady-state concentrations of each species, the dominance
of toxic or healthy oligomers is deduced. Named and defined in Table 1 are
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Fig. 2 (a) Depiction of the aggregation process and (b) an example of the variety of pathological
initial conditions to be considered

Table 1 The eight possible
steady states when evaluating
the competition of healthy
and toxic species

State conditions State name

B1 > B ′1 and Bn > B ′n and Bm > B ′m hhh

B1 > B ′1 and Bn > B ′n and Bm < B ′m hht

B1 > B ′1 and Bn < B ′n and Bm > B ′m hth

B1 < B ′1 and Bn > B ′n and Bm > B ′m thh

B1 < B ′1 and Bn < B ′n and Bm > B ′m tth

B1 > B ′1 and Bn < B ′n and Bm < B ′m htt

B1 < B ′1 and Bn > B ′n and Bm < B ′m tht

B1 < B ′1 and Bn < B ′n and Bm < B ′m ttt

eight possible combinations when comparing healthy vs toxic oligomers at each
aggregation level. The outcome state—denoted xxx—describes the toxicity of the
chosen input conditions. For example, thh describes toxic monomers dominating in
comparison to healthy monomers, while healthy ologimers dominate the nucleation
and post-nucleation domains.

The excruciating computational expense comes from the desire to solve for the
dominant state in many sets of conditions. Monte Carlo or other parameter sampling
techniques are important to multiphysics modeling. In the Aβ example, for instance,
to properly inform, clinical probes at controlling the runaway amyloid process
models should encompass a wide possibility of initial conditions. Additionally, to
fully capture the possible range of environmental factors like catalysts or patient
predisposition, models need to incorporate various parameter regimes. To produce
numerical results reconcilable with in vitro experiments and with breadth wide
enough to draw conclusions about seeding conditions, Ghosh et al. [6] solve Eqs. (7)
to (12) for 4000 rate parameter combinations to produce a phase space of just one



162 J. Pateras et al.

set of initial conditions. With an average iteration duration of ∼three seconds1

on a single processor, one initial condition takes about 8 days to resolve. The
computation here is embarrassingly parallel; however, work is bound by hardware
and still consistently burdened with increasing model complexity.

As discussed in Sect. 1, multiphysics models encompass such wide fields as
planetary physics and protein aggregation. Large parametric sweeps like Monte
Carlo methods are ubiquitous. Large sampling methods are used to guide flight
trajectory risks in unmanned aerial systems [11]. Considering the costs with large
parametric sweeps on complex nonlinear differential equations, one can imagine
the computational complexity of controlling aircraft or of solving x-many n-body
problems required to put humans into atmospheric orbit and further.

2 Physics-Informed Machine Learning

Machine learning approaches are popular for their ability to transcend many of the
costs presented in Sect. 2. ML approaches to modeling multiphysics systems can
explore high-dimensional feature spaces for correlations. Deep ML architectures
offer creative ways to extract features from multi-fidelity data. With ML approaches
like neural networks gaining popularity, they have been used in all types of
research—including flight control [8].

However, some problems, like the Aβ aggregation problem, lack the massive
empirical data to train an ML model or are prohibited by the computational
expense of reliable simulation data. Physics-informed machine learning harnesses
the computational advantages of ML and accelerates training and improves model
generalization by integrating the model with systemic information. Karniadakis et
al. [7] describe three principles of PIML: observational biases, inductive biases,
and learning biases. Each of the methods integrates physically relevant information
like symmetry, conservation laws, or system dynamics into the model’s data
augmentation procedures, architecture, or training procedures, respectively [7].
The Aβ example will employ a standard densely connected neural network. The
training data will be iteratively augmented to capture segments of data where feature
occurrence is proportional to feature significance. This observationally biased neural
network is shown to increase in accuracy as essentially a physics-informed data
augmentation is performed.

1 Computation described in detail in Sect. 3 Table 2.
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2.1 Amyloid-β Fibril Aggregation

The neural network architecture used to predict the dominant steady-state aggre-
gation is defined using the keras package. The network contains an input and
output layer of six and eight dimensions, respectively, with a densely connected
intermediate layer of 60 nodes. The dense layer uses the rectified linear activation
function. The Nadam optimizer is used. The input to the model is the initial
concentrations of Aβ protein species. The output is the fraction of the rate parameter
phase space dominated by each steady-state outcome.

The goal of this study is to show that a neural network trained on informed data
augmentations can provide steady-state simulations with fidelity. This particular
neural network is trained on various initial seedings of Aβ protein species, as
depicted in Fig. 2b. Initial seedings are defined by the initial concentration of
each Aβ species, given by B1, B

′
1, Bn, B

′
n, andBm,B

′
m. For example, 1, 0, 0, 0, 0, 0

defines the case where only healthy monomers of Aβ are present at the onset
of simulations. The data for the study is obtained by solving Eqs. (7)–(12) with
MATLAB’s ode45. 1000 randomly varied initial seedings are solved for steady-
state species concentrations. 70% of the initial data is used for training, while 30%
is withheld for testing. After training and testing the initial data, 700 augmented
training data points are created, and metrics are compared to the previous iteration
until the convergence of accuracy.

The source of the physics-informed intervention is the previous knowledge about
the system’s dependency on initial conditions. It is observed in Ghosh et al. [6] that
the pathological outcome is dependent more heavily on certain seedings than others.
In the trained neural network, the same trends are noticed when a sensitivity analysis
is performed on the trained model, with respect to well-known seeding conditions.

Concisely, step one is to generate initial training and testing data. Next is to
train the neural network on the initial training data. At this stage, we output the
test accuracy. Then, by comparing the trained model’s prediction to a well-known
seeding, a sensitivity analysis is performed. The training set is augmented such that
feature occurrence is proportional to feature sensitivity. The model is retrained on
the new data, and updated test accuracy is reported.

The simplicity of the neural architecture is matched by the narrow scope of
the Aβ seedings. The example training set is populated by randomly perturbed
seedings whose steady-state conditions are already well known. Random small
changes about the well-understood initial seedings make up our training set. The
purpose of this example is to show a simple case of PIML aptly relieving the
computational expense of repetitive differential equation solvers while avoiding
the need for massive amounts of data with physics-informed automatic training set
generation.

The first two iterations of the observational bias method are described above, and
results are reported in Sect. 3. The general informed data augmentation process is
depicted in Fig. 3.
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Fig. 3 The automatic feedback framework of the observational bias method

3 Case Study: Training Set Bias Method for Modeling
Amyloid-β Aggregation

The initial training is performed with a learning rate of 0.01 and a batch size of 60.
Final loss converges to 0.2874 with 1000 epochs. The augmented data is trained
under identical conditions for a final loss of 0.2462. On a batch size of 25, the
test accuracy for iteration one is 97.6%. Parameter importance is determined as
the mean absolute error of predicting the most well-studied seeding case, the base
case beginning with only monomers over 2000 random small incremental shifts
in each input. The occurrence of each feature in the following training set is then
proportional to its importance—thus reinforcing the ML process with knowledge of
the steady-state behavior of the system. The model is then retrained under identical
conditions, with testing accuracy in iteration 2, on the same testing set, is 98.3%.
The training processes can be repeated many times to see consistent increase in
accuracy.

Table 2 shows just how much time can be saved by implementing the PIML
approach, with 98.3% accuracy in just three iterations. It is key to understanding
that the runtime of making predictions and training the simple neural architecture is
negligible compared to the time it takes to generate training sets. The bottleneck
in runtime is still the time spent numerically solving the governing equations.
However, the PIML approach allows us to take a small subset of data and extrapolate
predictions with a reasonable accuracy rate. Furthermore, the possibility of running
more data augmentation iterations is only impeded by the need to recreate datasets
by again computing the governing equations.

4 Conclusions

The example of modeling Amyloid-β aggregation has been proposed as a problem
where mathematical modeling is key for anatomical reasons and whose breadth of
research is prohibited by computational expense. The use of a neural network to
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Table 2 Comparison of the first and second iteration of the PIML approach to standalone differen-
tial equation-based modeling. The neural model is trained and evaluated in a Google Colaboratory
notebook on a single 2.2 GHz Intel CPU with 13 GB RAM, and MATLAB computations are
performed on one local 3.6 GHz Intel CPU with 15 GB usable RAM

Time to resolve Time to resolve

Method Testing accuracy One initial seeding (approx.) 100 Initial seedings (approx.)

PIML 1 97.6% 2.1 days 2.1 days

PIML 2 98.3% 3.5 days 3.5 days

ode45 – 8.3 days 830 days

accurately predict dominant steady-state concentrations and the ability for physics-
informed data augmentation to improve accuracy of the said model is displayed in
Sect. 3. Most importantly, the PIML approach affords significant speedup and opens
the pathological probing of the Aβ model to much larger parameter spaces.

Generally, this is one example of expensive multiphysical modeling where a
physics-informed machine learning model could reliably produce modeling results
with significant advantages in terms of computational expense.
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Reduced Order Model Closures: A Brief
Tutorial

William Snyder, Changhong Mou, Honghu Liu, Omer San, Raffaella De Vita,
and Traian Iliescu

1 Introduction

Reduced order models (ROMs) are computational models whose dimensions are
orders of magnitude lower than the dimensions of the full order models (FOMs) (i.e.,
models obtained from classical numerical methods, e.g., the finite element method).
Because ROMs are relatively low-dimensional, their computational cost is orders
of magnitude lower than the computational cost of FOMs. Thus, ROMs represent
a promising alternative to FOMs in computationally intensive applications, e.g.,
digital twins of wind farms and real-time surgical procedures. ROMs are expected
to play a key role in establishing mathematical modeling foundations for digital
twins of many engineering, healthcare, and environmental systems. Indeed, if ROM
results are nearly indistinguishable from the corresponding FOM results, then they
can contribute as predictive tools in emerging digital twin infrastructures. However,
despite being successfully used in simple, academic test problems, ROMs have not
made a significant impact in complex, practical applications.

One of the main hurdles in the ROMs’ development is their notorious inaccuracy
when they are used in the under-resolved regime, i.e., when the ROM’s dimension
(i.e., its number of degrees of freedom (DOF)) is not large enough to capture
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the complex dynamics of the underlying system. To illustrate the under-resolved
regime, think of the numerical simulation of the flow around a wind farm. This
simulation with a FOM (e.g., the finite element method) generally requires millions
(if not billions) of DOF. Thus, performing shape optimization or real-time control of
the wind farm flow, which would require many individual FOM runs, is not feasible.
Replacing the costly FOM with a ROM would be a natural choice. However, in
order to represent the turbulent flow dynamics in the wind farm simulation would
require thousands or tens of thousands of DOF in the ROM. Despite the ROM’s
cost being much lower than the FOM cost, it is still too high to allow the use of
the ROM in real-time control applications, where thousands of ROM runs would
be required. Thus, a practical choice would be to use much cheaper ROMs, i.e.,
ROMs with much fewer (e.g., hundreds or even tens) DOF. However, these low-
dimensional ROMs, although computationally efficient (and, therefore, practical),
generally yield inaccurate results. The reason is simple: these ROMs do not have
enough DOF to represent the complex dynamics of a complex flow such as the
turbulent wind farm flow.

The above discussion yields the following two important conclusions:

1. The under-resolved ROM regime is critical in realistic, complex applications.
2. Under-resolved ROMs produce inaccurate results.

These conclusions naturally lead to the following question:

•? Q0

How do we fix the under-resolved ROMs?

The answer to Q0 is simple:

•> A0

We develop good ROM closure models, i.e., correction terms that increase the
standard ROM’s accuracy.

To our knowledge, the first (and only) survey of ROM closure models was
performed in [1], where the authors discuss dozens of ROM closures for fluids that
have been developed over the last four decades. We are not aware, however, of a
tutorial on ROM closures. This paper takes a first step at filling that gap.

This brief tutorial on ROM closures (also known as parameterizations [5, 10, 11,
16, 17, 34, 53] and hidden dynamics [40, 41]) is structured as a sequence of simple
questions and answers that lead the reader from a simple PDE to projection ROMs,
and then to ROM closures. Our paper is aimed at first year graduate students and
advanced undergraduate students. Thus, we strive to keep the technical details to a
level that is easily understood by students with a standard background in differential
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equations and numerical methods. We also emphasize that our goal in this tutorial is
not to explain the “how,” but the “why.” That is, we carefully explain the principles
used to develop ROM closures, without focusing on particular approaches (which
are carefully discussed in [1]).

The rest of the paper is organized as follows: In Sect. 2, we illustrate the ROM
closure modeling concept for a three-dimensional toy problem. In Sect. 3, we
present the general algorithm used to develop the classical Galerkin ROM. In Sect. 4,
we first present the ROM closure problem, and then we discuss its solution, i.e., the
ROM closure model. In Sect. 5, we construct the data-driven variational multiscale
ROM, in which available data is used to build the ROM closure model. In Sect. 6,
we illustrate how closure modeling can significantly increase the ROM accuracy in
the numerical simulation of fluid flows. In Sect. 7, we survey current mathematical
results for ROM closure modeling. Finally, in Sect. 8, we present conclusions and
future research avenues.

2 A Crash Course in ROM Closure: A Toy Problem

Before carefully presenting the ROM closure modeling in the next sections, we
illustrate the underlying concepts and principles for a toy problem. These concepts
and principles are broadly illustrated in the schematic in Fig. 1, which is adapted
from Fig. 1 in [3].

To present our toy problem, we first assume that the FOM solution, uFOM , can
be accurately approximated by only three ROM basis functions:

uFOM(x, t) ≈ a1(t)ϕ1(x)+ a2(t)ϕ2(x)+ a3(t)ϕ3(x), (1)

where ϕ1,ϕ2,ϕ3 are the ROM basis functions, and a1, a2, a3 are the sought time-
dependent coefficients. Of course, for complex systems, one should use many more
(e.g., hundreds and even thousands of) ROM basis functions to accurately approxi-
mate uFOM . However, to graphically illustrate the need for closure modeling in our
toy problem, we assume that three ROM basis functions are enough.

Next, we use the three ROM basis functions in the Galerkin framework to
construct the Galerkin ROM (G-ROM). Details regarding the G-ROM construction
are given in Sect. 3. For the purpose of the toy problem illustration in this section,
we just note that the resulting G-ROM is a three-dimensional dynamical system that
can be written as follows:

⎡
⎣ȧ1

ȧ2

ȧ3

⎤
⎦ =

⎡
⎣F1(a1, a2, a3)

F2(a1, a2, a3)

F3(a1, a2, a3)

⎤
⎦ , (2)

where F1, F2, and F3 are the components of the ROM operators, e.g., vectors,
matrices, and tensors, which are presented in Sect. 3. Since the three ROM basis
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Projection error

Closure error

Fig. 1 A schematic representation of the ROM closure modeling for a three-dimensional toy
problem. The goal is to reduce the three-dimensional G-ROM (2) (black curve and equations)
to the most accurate two-dimensional ROM. The I-ROM (3) (blue curve and equations) is the most
accurate ROM obtained in the Galerkin framework, but it is not closed (since it depends on a3).
The two-dimensional G-ROM (4) (red curve and equations) is closed, but it is not accurate (since
we simply ignore the a3 contribution). The two-dimensional G-ROM supplemented with a closure
model (5) (green curve and equations) is closed and more accurate than the two-dimensional G-
ROM (4) since the closure terms τ1(a1, a2) and τ2(a1, a2) aim at steering the green curve toward
the blue curve

functions yield an accurate approximation of the FOM solution in (1), the three-
dimensional G-ROM in (2) is expected to yield an accurate approximation to uFOM .
That is, solving the three-dimensional G-ROM (2) for a1, a2, a3, and then plugging
these values back into (1) yields an accurate approximation to uFOM . In Fig. 1,
the time evolution of the solution of the accurate three-dimensional G-ROM (2) is
represented as the black curve.

At this point, we invoke the need to reduce the computational cost of the three-
dimensional G-ROM (2). Specifically, we aim at constructing a two-dimensional
ROM that is as accurate as possible (preferably, as accurate as the three-dimensional
G-ROM (2)). For our toy problem (1), this amounts to constructing a dynamical
system for a1 and a2 (assuming that the first two ROM basis functions dominate the
third, as is often the case; see Sect. 3).

Of course, reducing the ROM dimension from three to two does not yield such a
great reduction of computational time. We emphasize, however, that we consider
this reduction only to illustrate the ROM closure modeling concept for our toy
problem. In practical settings, ROMs reduce the FOM dimension by orders of
magnitude.
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The most natural way to construct an accurate two-dimensional ROM is to keep
only the first two equations in (2) and discard the third equation:

[
ȧ1

ȧ2

]
=
[
F1(a1, a2, a3)

F2(a1, a2, a3)

]
. (3)

Mathematically, this amounts to first using a Galerkin expansion for all three ROM
basis functions (i.e., using (1)), and then using a Galerkin projection onto only the
first two basis functions (instead of projecting onto all three basis functions, as done
in (2)).

In Fig. 1, the time evolution of the solution of the efficient, two-dimensional
ROM (3) is represented as the blue curve. Of course, since we perform a Galerkin
projection only onto the first two basis functions, we incur an error, which we denote
as the (Galerkin) projection error (the blue dashed lines in Fig. 1). Nevertheless, it
stands to reason that, in the Galerkin framework with the basis {ϕ1,ϕ2,ϕ3}, the
two-dimensional ROM (3) is the most accurate two-dimensional ROM we can hope
to get. This is why we call the two-dimensional ROM (3) the ideal ROM (I-ROM).
However, the two-dimensional I-ROM (3) has a big problem: It is not closed since
the equations for a1 and a2 depend on a3. This is the ROM closure problem.

So how do we solve the ROM closure problem? The easiest way to solve the
ROM closure problem is to simply ignore it. That is, we can simply ignore the a3
contribution to the dynamics in (3):

[
ȧ1

ȧ2

]
=
[
F1(a1, a2, 0)
F2(a1, a2, 0)

]
. (4)

The ROM in (4) is two-dimensional and closed (since the equations depend only
on a1 and a2). In Fig. 1, the time evolution of the solution of this two-dimensional
ROM (4) is represented as the red curve. Of course, since in (4) we simply ignored
the a3 contribution to the correct dynamics of a1, a2 given by (3), we incur an error,
which is generally called the closure error (the red dashed lines in Fig. 1).

Remark 1 (Galerkin Closure is a Relative Concept) We note that if we start with
just two ROM basis functions ϕ1 and ϕ2, the Galerkin ROM framework (which is
presented in Sect. 3 and outlined in Algorithm 1) yields a two-dimensional G-ROM
that satisfies exactly the equations in (4). Thus, the ROM closure concept is relative
to the ROM space used in the Galerkin framework:

• If we start with two basis functions, the Galerkin method yields the two-
dimensional G-ROM (4), which is closed.

• If, however, we start with the larger (three-dimensional) ROM space spanned
by ϕ1,ϕ2, and ϕ3, the discussion in this section shows that the most accurate
two-dimensional ROM obtained by a direct truncation of the three-dimensional
G-ROM (2) (i.e., the I-ROM (3)) is not closed.
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Remark 2 (Galerkin Closure is a General Concept) We emphasize that, although
our discussion focuses exclusively on ROMs, the Galerkin closure is a general
concept that is associated with the classical Galerkin framework. Thus, there is no
surprise that, over half a century, closure has been addressed in different contexts:
large eddy simulation (LES) [6], variational multiscale (VMS) methods [24],
subgrid-scale (SGS) methods [21, 33], and nonlinear Galerkin (NG) methods [20].

At this point, it is probably a good idea to summarize our discussion. As
illustrated in the schematic in Fig. 1, the reader interested in constructing the most
accurate two-dimensional G-ROM has reached a crossroads:

• On the one hand, the I-ROM (3) is the most accurate two-dimensional ROM that
we can get by using the Galerkin framework, but it is not closed.

• On the other hand, the G-ROM (4) is closed, but we are incurring the closure
error.

This is as far as the classical Galerkin framework can take us. We’re stuck. So what
do we do next?

The answer, as many times in numerical methods, is to take a middle of the
road approach. Specifically, we construct a ROM closure model and add it to the
G-ROM (4):

[
ȧ1

ȧ2

]
=
[
F1(a1, a2, 0)+ τ1(a1, a2)

F2(a1, a2, 0)+ τ2(a1, a2)

]
, (5)

where τ1(a1, a2), τ2(a1, a2) are the components of the ROM closure model, i.e.,
correction terms that aim at steering the inaccurate G-ROM (4) as close as possible
to the accurate (but not closed) I-ROM (3). In Fig. 1, the time evolution of the
solution of the closed ROM (5) is represented as the green curve.

How do we construct the ROM closure model in (5)? We answer this question in
Sect. 5. But first, in Sect. 3, we present the main steps in the G-ROM construction.

3 Galerkin ROM (G-ROM)

Over the past four decades, projection ROMs have been used in the numerical
simulation of fluid flows [8, 22, 23, 39, 42, 49]. In this tutorial, we exclusively
consider projection ROMs that use numerical or experimental data to find the “best”
basis, which is then used together with the Galerkin method to construct the ROM.
In this section, we present the main steps in the construction of the Galerkin ROM.

To illustrate the Galerkin ROM construction, we start with a generic PDE for the
dynamics of a variable of interest, u:

ut = f (u) , (6)
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Algorithm 1 Galerkin ROM (G-ROM) algorithm
1: Use numerical or experimental data to construct modes {ϕ1, . . . ,ϕR}, which represent the

recurrent spatial structures in the system (6).
2: Choose the dominant modes {ϕ1, . . . ,ϕr }, r ≤ R, as ROM basis functions.
3: Use a Galerkin expansion ur (x, t) =∑r

j=1 aj (t)ϕj (x).
4: Replace u with ur in (6), and then on both sides of (6) take the inner product with each mode

ϕi , i = 1, . . . , r . That is, perform a Galerkin projection of the PDE (6) onto the ROM space
Xr := span{ϕ1, . . . ,ϕr }. The obtained Galerkin ROM (G-ROM) is of the form

•
a = F (a), (7)

where a(t) = (ai(t))i=1,...,r is the vector of coefficients in the Galerkin expansion in step 3
and F comprises the ROM operators.

5: In the offline stage, compute the ROM operators (e.g., vectors, matrices, and tensors), which
are preassembled from the ROM basis.

6: In the online stage, repeatedly use the G-ROM (7) for longer time intervals.

equipped with appropriate boundary conditions and initial conditions. In Algo-
rithm 1, we list the main steps in the Galerkin ROM construction.

Remark 3 (ROM=d2G) The main steps in the G-ROM (7) construction presented
in Algorithm 1 are straightforward. In principle, they are the same steps as those
used to construct classical Galerkin methods, e.g., the finite element method (FEM).
The fundamental difference between the G-ROM and the FEM is that the former
uses a data-driven basis, whereas the latter uses a universal basis (i.e., piecewise
polynomials). Thus, one could think of the projection ROMs that we discuss in this
tutorial as data-driven Galerkin (d2G) methods.

Next, we explain some of the steps in Algorithm 1.

ROM Basis (Step 1)
To construct the ROM basis, we first collect snapshots from the simulation of the
FOM. If we are interested in time prediction (as in the numerical illustration in
Sect. 6), the snapshots can be FEM approximations of (6) at the time instances
t1, . . . , tM , i.e., u1

h, . . . ,u
M
h , respectively. (If (6) depends on parameters, we can

also build a ROM basis for parameter prediction [22, 42].) Next, we use these
snapshots to construct the modes {ϕ1, . . . ,ϕR}, which represent the recurrent
spatial structures in the system described by (6). Different approaches can be used
to construct the ROM basis functions, e.g., (i) the proper orthogonal decomposition
(POD) [8, 23, 31, 49, 51]; (ii) the reduced basis method (RBM) [22, 42]; (iii)
the proper generalized decomposition (PGD) [15]; and (iv) clustering [9]. In this
tutorial, to fix ideas, we exclusively use the POD to generate the ROM basis.

For a careful presentation of the POD basis, the reader is referred to, e.g., [23]
(for a physical presentation) and to [51] (for a mathematical presentation). In this
paper, however, we only briefly discuss the qualitative properties of the POD basis
functions, which we will later use in our numerical illustration in Sect. 6. The reason
for our brief qualitative discussion of the POD basis is that ROM closure modeling
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does not depend on the particular type of ROM basis functions used. That is, our
presentation of ROM closure modeling remains the same for any type of ROM basis
used in a Galerkin framework, whether it is POD, RBM, or PGD.

The main principle used to construct the G-ROM basis can be stated as follows:
Use the available snapshots to find the ROM basis that “best” represents the
system’s dynamics. Since this is the “best” basis, for certain problems, one can
hope to use much fewer basis functions to construct the G-ROM than to construct,
e.g., FEM models. For example, instead of using millions or even billions of
basis functions as in FEM simulations, one can hope to use tens or hundreds
basis functions in the G-ROM construction. This choice of “best” basis yields
computational models (i.e., ROMs) whose dimension can be orders of magnitude
lower than the dimension of FEM models. (This also explains the term “reduced” in
the ROM terminology.)

Of course, a natural question is what the “best” ROM basis means. In fact, there
are many proposals for the “best” ROM basis, and each proposal yields a different
class of ROMs (e.g., POD, RBM, or PGD, to name just a few). For example, given
a set of snapshots, the POD basis is the orthonormal basis that yields the minimum
projection error with respect to a chosen norm (e.g., the L2 norm) [51].

However, independent of the approach used to construct them, the ROM basis
functions generally share several qualitative features. To illustrate this, in Fig. 2 we
plot the Euclidian norm of two POD basis functions, ϕ1 and ϕ10, and two FEM basis
functions, φh

1 and φh
10, for a 2D flow past a circular cylinder [37]. One can clearly

see the significant differences between the POD basis functions (top two plots) and
the FEM basis functions (bottom two plots). Indeed, the POD basis functions have
global support (i.e., they can be nonzero over the entire computational domain),
whereas the FEM basis functions have local support (i.e., they are one at one mesh
point and zero everywhere else). To further illustrate the different characteristics of
the POD basis, in Fig. 3 we plot the Euclidian norm of two POD basis functions, ϕ1
and ϕ10, for soft tissue modeling [48]. Comparing these two POD basis functions
with the POD basis functions in the top two plots of Fig. 2, we can clearly see that
different physical systems (i.e., the soft tissue in Fig. 3 and the flow in Fig. 2) yield
fundamentally different POD basis functions. We emphasize that this is in complete
contrast with classical numerical methods, such as the FEM. Indeed, the FEM basis
functions are universal basis functions, i.e., they have the same shape (piecewise
polynomials and local support) for all the problems. In contrast, the POD basis
functions (and ROM basis functions in general) change their shape when we change
the problem. This can be clearly seen by comparing the top two plots of Fig. 2 with
the plots of Fig. 3.

Galerkin ROM Construction (Steps 2–6)
To illustrate the G-ROM construction, we use the Navier-Stokes equations (NSE) as
a mathematical model:

∂u

∂t
− Re−1�u+ u · ∇u+ ∇p = 0 , (8)



Reduced Order Model Closures: A Brief Tutorial 175

Fig. 2 2D flow past a circular cylinder: (a) Euclidian norm of ROM basis functions ϕ1 and ϕ10 at
mesh points. (b) Euclidian norm of FEM basis functions φh1 and φh10 at mesh points. Note that the
ROM basis functions are fundamentally different from the FEM basis functions: The former have
global support, whereas the latter have local support

∇ · u = 0 , (9)

where u is the velocity, p the pressure, and Re the Reynolds number. We
consider the NSE posed on a bounded spatial domain in either R

2 or R
3, and

supplemented with homogeneous Dirichlet boundary conditions and an appropriate
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Fig. 3 Soft tissue modeling: Euclidian norm of ROM basis functions ϕ1 and ϕ10 at mesh points

initial condition. The NSE (8)–(9) can be cast in the general form (6) by choosing
f (u) = Re−1�u − u · ∇u (after applying the Leray projection, which maps the
vector field into the divergence-free subspace of the underlying state space) [50].

To construct the G-ROM for the NSE, we follow Steps 2–6 in Algorithm 1. That
is, we choose the first r basis functions from the modes constructed in Step 1, use a
Galerkin truncation

ur (x, t) =
r∑

j=1

aj (t)ϕj (x), (10)

replace u with ur in the NSE (8), and project the resulting PDE onto the ROM
space, Xr . Furthermore, we apply the divergence theorem to the diffusion term and
the pressure term. This yields the G-ROM [37]:

•
a = A a + a� B a, (11)

where a(t) is the vector of unknown coefficients aj (t), 1 ≤ j ≤ r in the Galerkin
expansion (10). The ROM operator A in (11) is an r × r matrix that corresponds to
the diffusion term in the NSE (i.e., −Re−1�u) and has entries

Aim = −Re−1 (∇ϕm,∇ϕi

)
, 1 ≤ i, m ≤ r , (12)

where (·, ·) denotes the L2 inner product. The ROM operator B in (11) is an r×r×r

tensor that corresponds to the nonlinear term in the NSE (i.e., u ·∇u) and has entries

Bimn = −
(
ϕm · ∇ϕn,ϕi

)
, 1 ≤ i, m, n ≤ r . (13)

We note that the pressure term in the G-ROM (11) vanishes since we assumed
that the ROM modes are discretely divergence-free (which is the case if, e.g., the
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snapshots are discretely divergence-free). ROMs that provide a pressure approxi-
mation are discussed in, e.g., [18, 22].

Once the matrix A and tensor B are assembled in the offline stage, the G-
ROM (11) is a relatively low-dimensional, efficient dynamical system that can be
used in the online stage for longer time intervals (or more parameter values, e.g.,
Re [22, 42]).

4 The Closure Problem and Its Solution: The Closure Model

This section has two goals: In Sect. 4.1, we motivate the need for ROM closure
modeling in the under-resolved regime, i.e., we describe the ROM closure problem.
In Sect. 4.2, we show how to solve the ROM closure problem, i.e., we show how
to construct a ROM closure model. To this end, we give the definition of the ROM
closure model, show that using the exact closure model (i.e., using the ideal ROM)
increases the ROM accuracy, and finally outline the main steps in the ROM closure
model construction.

4.1 The Closure Problem

The G-ROM (11) constructed in Sect. 3 is appealing from the computational point
of view: The G-ROM can significantly reduce the dimension (and, thus, the
computational cost) of classical numerical discretization (e.g., FEM) models by
orders of magnitude. So one can ask the following natural question:

•? Q1

What is wrong with G-ROM?

The short answer to Q1 is: It depends on the resolution. Specifically:

•> A1

It depends on whether we are in the resolved regime or the under-resolved regime.

• In the resolved regime (i.e., when there are enough ROM basis functions
{ϕ1, . . . ,ϕr} to accurately represent the underlying dynamics), the G-ROM
produces accurate results.
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• In the under-resolved regime (i.e., when there are not enough ROM basis
functions {ϕ1, . . . ,ϕr} to accurately represent the underlying dynamics), the G-
ROM produces inaccurate results.

But then one can ask the following questions:

•? Q2

Why is the under-resolved regime important? Why do we need to worry about it?

•> A2

Many important applications (e.g., atmospheric boundary layer flows, digital twins
of wind farms, and anisotropic and heterogeneous biological tissues) are centered
around multiscale systems that require a large number of ROM basis functions.
However, to ensure a low computational cost in these applications, under-resolved
G-ROMs are generally used.

4.2 The Closure Model

In Sect. 4.1, we defined the ROM closure problem, and we explained why it is
important. In this section, we present the solution to the ROM closure problem.
That is, we answer the following question:

•? Q3

What is the solution to the closure problem?

•> A3

The solution to the closure problem is the closure model. That is, replace the G-
ROM (11) with

•
a = F (a)+ τ (a), (14)

where τ (a) is the closure model, which represents the effect of the discarded ROM
modes {ϕr+1, . . . ,ϕR} on the ROM dynamics.
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Note that A3 is a vague definition, which begs the following questions: What
exactly does “model the effect” mean? What exactly does τ (a) in (14) actually
model?

Answering these natural questions is not straightforward. To do so, we need to
extend the Galerkin framework. This sounds like a daunting task, but it turns out
to be relatively simple. The “trick” is to rethink the space we use in the Galerkin
framework:

In the resolved regime, the ROM space Xr := span{ϕ1, . . . ,ϕr} is the only space
we will ever need, since everything happens in Xr . Thus, in the resolved regime, G-
ROM should (and generally does) work just fine.

However, in the under-resolved regime we need two spaces: (i) the resolved
space Xr , and (ii) the unresolved space Xr ′ := span{ϕr+1, . . . ,ϕR}. To keep the
ROM dimension (and, therefore, its computational cost) low, we want to work in
the resolved space, Xr . However, to increase the ROM accuracy, we should do our
best to model the contribution to the ROM dynamics made by the dynamics in the
unresolved space, Xr ′ . But this sounds like a lot of work (both in terms of modeling
and computation). So the following is a natural question:

•? Q4

Does Xr ′ have a significant effect on the ROM dynamics?

•> A4

Yes.

The answer A4 is simple. In Sect. 4.2.1, we introduce the ideal ROM, which adds
the exact closure term to the classical G-ROM. The ideal ROM results clearly show
why the effect of Xr ′ should be modeled. Specifically, we show that the ideal ROM
results are dramatically more accurate than the G-ROM results. Thus, we conclude
that modeling the exact ROM closure term is beneficial to ROM accuracy.

4.2.1 The Ideal ROM (I-ROM)

To present the ideal ROM, we first need to define the spaces of resolved ROM
scales (i.e., Xr ) and unresolved ROM scales (i.e., Xr ′ ). To this end, we extend
the variational multiscale (VMS) framework proposed by Hughes and his group
two decades ago in the FEM context. We note, however, that there are other
ways of defining the spaces of resolved and unresolved ROM scales, e.g., spatial
filtering [37].
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First, we leverage the orthonormality of the ROM basis functions and construct
the two orthogonal spaces, Xr and Xr ′ , as follows:

Xr := span{ϕ1, . . . ,ϕr} and Xr ′ := span{ϕr+1, . . . ,ϕR}. (15)

The space Xr represents the space of the resolved ROM scales, i.e., the spatial
scales that are explicitly approximated by a given r-dimensional ROM. In contrast,
the space Xr ′ represents the space of the unresolved ROM scales, i.e., the spatial
scales that are not explicitly approximated by the chosen ROM. We note that since
the ROM basis functions are generally ordered from the most important to the
least important (with respect to a physical criterion, e.g., kinetic energy [23]), the
decomposition in (15) is natural. We also note that since we are concerned with the
under-resolved regime that often occurs in practical applications, we consider the
case when r ( R.

The next step in the construction of the ideal ROM is to extend the Galerkin
framework to the space XR := Xr ⊕ Xr ′ , which is the maximal ROM space (i.e.,
the space spanned by all the snapshots). Thus, we use the ROM approximation of
both resolved and unresolved scales, i.e., we utilize uR ∈ XR defined as

uR =
R∑

j=1

aj ϕj =
r∑

j=1

aj ϕj +
R∑

j=r+1

aj ϕj = ur + u′ , (16)

where ur ∈ Xr represents the resolved ROM component of u, and u′ ∈ Xr ′

represents the unresolved ROM component of u. Next, we plug uR in the generic
equation (6), project the resulting equation onto Xr , and use the ROM basis
orthogonality to show that

(
uR,t ,ϕi

) = (
ur,t ,ϕi

)
, ∀ i = 1, . . . , r , where uR,t

and ur,t are the time derivatives of uR and ur , respectively. Following these steps,
we obtain the ideal ROM (I-ROM):

(
ur,t ,ϕi

) = (f (ur ) ,ϕi

)+ (f (uR) ,ϕi

)− (f (ur ) ,ϕi

)
︸ ︷︷ ︸
τ I−ROM= ideal ROM closure term

, ∀ i = 1, . . . , r. (17)

The last two terms in (17) yield the ideal ROM closure term, τ I−ROM , which
represents the effect of the discarded ROM modes {ϕr+1, . . . ,ϕR} onto the
dynamics of the resolved ROM scales, ur . Using the expansion (16), the I-ROM (17)
can be written as the following dynamical system for the vector of ROM coefficients
of the resolved scales:

•
a = F (a)+ τ I−ROM(a1, . . . , ar , ar+1, . . . , aR). (18)

The above discussion clearly shows that, from a mathematical point of view, the
correct equations satisfied by the coefficients of the resolved ROM scales are the
I-ROM equations (18) instead of the G-ROM equations (11). However, we need to
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Fig. 4 2D flow past a circular cylinder. The Euclidian norm of the error, uFOM − uROM , at mesh
points for G-ROM (11) (top) and I-ROM (17) (bottom). The I-ROM error is significantly lower
than the G-ROM error, which illustrates the potential benefit of ROM closure modeling

ask ourselves whether this mathematical framework has a practical impact (i.e., we
need to ask question Q4). Specifically, we need to check whether the I-ROM results
are better than the G-ROM results.

In Fig. 4, we present results for the I-ROM (18) and the G-ROM (11) in the
numerical simulation of a two-dimensional flow past a circular cylinder. These
plots clearly show that the I-ROM performs significantly better than the classical
G-ROM. Thus, these results suggest that including a model for the I-ROM closure
term, τ I−ROM , could increase the ROM accuracy.

Remark 4 (The Closure Model Increases Accuracy) There is a lot of confusion in
the ROM community (and not only) regarding the role of the closure model. In
this section, we tried to emphasize that the main role of the ROM closure model
is to increase the accuracy of the G-ROM. Indeed, in Eq. (14), adding the closure
term, τ (a), to the classical G-ROM yields a more accurate model (in the extended
Galerkin framework).

That being said, in many important practical applications (e.g., convection-
dominated flows), the G-ROM’s inaccuracy often manifests itself in the form
of spurious numerical oscillations. Thus, a popular misconception (at least in
computational fluid dynamics) is that the only role of the ROM closure model is
to eliminate/alleviate these numerical oscillations, i.e., to increase the numerical
stability of the G-ROM.

However, we emphasize that, while numerical stability of the model is necessary
(indeed, if the model is accurate, then it has to be stable), it is not sufficient. For
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example, we can add a very large stabilization term to the classical G-ROM. This,
most likely, will stabilize the model, but will also degrade its accuracy.

To summarize, we emphasize that ROM closure modeling is not simply about
adding numerical stabilization. Instead, ROM closure modeling is about adding
the “right” amount of numerical stabilization (i.e., the amount of stabilization that
makes the model accurate).

4.2.2 Closure Model Construction

The I-ROM results in Sect. 4.2.1 clearly show that the effect of Xr ′ should be
modeled. We emphasize, however, that the I-ROM itself does not represent a
practical solution since it depends on the coefficients of the discarded ROM modes,
ar+1, . . . , aR , which we do not model in our ROM (since we work in Xr ).

•? Q5

How do we make the I-ROM (18) practical?

•> A5

We construct a closure model, τ , which is an approximation in Xr of the I-ROM
closure term, τ I−ROM :

τ I−ROM(a1, . . . , ar , ar+1, . . . , aR) ≈ τ (a1, . . . , ar ). (19)

Since τ in (19) lives in Xr , it can be computed with the available ROM data, and,
thus, can be used in practical computations.

Remark 5 (Closure=Correction) Equation (14) shows that the closure model, τ ,
in (19) can be interpreted as a correction term that is added to the G-ROM (11) to
correct its dynamics in XR . So do we really need I-ROM in order to construct the
closure model? In Sect. 5, we will show that the I-ROM is needed when we construct
data-driven ROM closures. Furthermore, we note that the I-ROM derivation explains
the closure model terminology. Indeed, τ I−ROM(a1, . . . , ar , ar+1, . . . , aR) shows
that the I-ROM (17) is closed in XR , but not in Xr .

ROM closure models are of three types: (i) Functional, which use physical
insight to construct the closure model; (ii) Structural, which use mathematical tools;
and (iii) Data-driven, which use available data. The three types of ROM closure
models are surveyed in [1]. In this tutorial, we take a different approach and, for
clarity of presentation, focus on data-driven approaches, which have experienced a
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tremendous development over the last few years. Specifically, in the next section,
we present the data-driven variational multiscale ROM closure model.

5 The Data-Driven Variational Multiscale ROM
(D2-VMS-ROM)

In this section, we illustrate how data-driven modeling can be leveraged to construct
the ROM closure model. Specifically, we outline the main steps in the construction
of one data-driven ROM closure model, i.e., the data-driven variational multiscale
ROM (D2-VMS-ROM) that was proposed in [37] (see also [52]). To this end, we
follow the presentation in Section 2.3 in [37] to construct the two-scale D2-VMS-
ROM. (We note that a three-scale D2-VMS-ROM was also proposed and tested in
[37].)

To build the D2-VMS-ROM, we start with the I-ROM (18). As explained in
answer A5, to construct the ROM closure model we need to find an approximation
τ (a1, . . . , ar ) for the I-ROM closure term in (18), τ I−ROM(a1, . . . , ar , ar+1, . . . , aR).
The construction of the data-driven ROM closure model consists of two steps:
(i) postulating a model form ansatz; and (ii) solving a least squares problem to
determine the coefficients of the model form. Next, we outline these two steps.

5.1 Model Form Ansatz

The first step in the construction of the data-driven ROM closure model is to pos-
tulate a model form (ansatz). Specifically, we approximate the I-ROM closure term
τ I−ROM with g(ur ), where g is a generic function whose coefficients/parameters
still need to be determined:

τ I−ROM
i

(17)= (
f (uR) ,ϕi

)− (f (ur ) ,ϕi

) ≈ (g(ur ) ,ϕi

)
, i = 1, . . . , r. (20)

5.2 Least Squares Problem

To determine the coefficients/parameters in g used in (20), in the offline stage, we
solve the following low-dimensional least squares problem:
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min
g parameters

M∑
j=1

∥∥∥∥[(f (uFOM
R (tj )) ,ϕi

)− (f (uFOM
r (tj )) ,ϕi

)]

− (g(uFOM
r (tj )) ,ϕi

)∥∥∥∥
2

,

(21)

where uFOM
R and uFOM

r are obtained from the FOM data, and M is the number
of snapshots. Once g is determined, the I-ROM (17) with the I-ROM closure term
replaced by g yields the data-driven VMS-ROM (D2-VMS-ROM):

(
ur,t ,ϕi

) = (f (ur ) ,ϕi

)+ (g(ur ) ,ϕi

)
, i = 1, . . . , r. (22)

We emphasize that we have a lot of flexibility in choosing the model form
ansatz (20) in the D2-VMS-ROM. For example, for the NSE, we can choose the
following model form: ∀ i = 1, . . . , r,

(
g(ur ) ,ϕi

) = (Ã a + a�B̃ a
)
i
, (23)

where, for computational efficiency, we assume that the structures of g and f are
similar. Thus, in the least squares problem (21), we solve for all the entries in the
r × r matrix Ã and the r × r × r tensor B̃.

The least squares problem (21) is low-dimensional since there are only (r2+ r3)

entries in Ã and B̃ to be optimized, and r is small. Thus, (21) can be efficiently
solved in the offline stage. For the NSE, the D2-VMS-ROM (22) takes the form

•
a = (A+ Ã)a + a�(B + B̃)a , (24)

where A and B are the G-ROM operators in (11), and Ã and B̃ are the VMS-ROM
closure operators in (23).

Remark 6 (Physical Constraints) To improve the D2-VMS-ROM accuracy, one can
use physical constraints when solving the least squares problem (21) to find the
entries of the VMS-ROM closure operators Ã and B̃. Numerical experiments have
shown that imposing physical constraints can indeed increase the D2-VMS-ROM
accuracy [35].

In Algorithm 2, we list the main steps in the construction of ROMs equipped
with data-driven closure models.

6 ROM Closures in Action: Numerical Results

In the previous sections, we tried to convince the reader that ROM closures
are important since they significantly increase the ROM accuracy in the under-
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Algorithm 2 Data-driven ROM closure algorithm
1: Use numerical or experimental data to construct modes {ϕ1, . . . ,ϕR}, which represent the

recurrent spatial structures in the system.
2: Choose the dominant modes {ϕ1, . . . ,ϕr }, r ≤ R, as ROM basis functions.
3: Use a Galerkin expansion uR(x, t) =∑R

j=1 aj (t)ϕj (x).
4: Replace u with uR in (6).
5: Use a Galerkin projection of the PDE obtained in step 4 onto the space of resolved ROM scales

Xr := span{ϕ1, . . . ,ϕr } to obtain the ideal ROM (I-ROM):

•
a = F (a)+ τ I−ROM, (25)

where a(t) = (ai(t))i=1,...,r is the vector of coefficients in the Galerkin expansion in step 3, F

comprises the G-ROM operators, and τ I−ROM is the ideal ROM closure term defined in (17).

6: In the offline stage:

• Compute the G-ROM operators (e.g., vectors, matrices, and tensors), which are preassem-
bled from the ROM basis.

• Choose a model form g for τ I−ROM in (25).
• Solve the least squares problem (21) to find the parameters in the model form.
• Compute G(a), which comprises the ROM closure operators corresponding to the model

form g for τ I−ROM .
• Replace the I-ROM (25) with the data-driven ROM closure model

•
a = F (a)+G(a). (26)

7: In the online stage, repeatedly use the data-driven ROM closure (26) for various parameter
settings and/or longer time intervals.

resolved regime. We note, however, that all our arguments have been mathematical
arguments. Thus, we can ask the following natural question:

•? Q6

Do ROM closures work in practice?

The answer to Q6 is simple:

•> A6

Yes!
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Table 1 2D flow past a
circular cylinder. L2 norm of
errors for G-ROM,
D2-VMS-ROM, and I-ROM
for different r values

r G-ROM I-ROM D2-VMS-ROM

2 1.509e+00 5.987e−02 1.504e−02

3 8.595e−01 5.072e−01 8.024e−02

4 6.583e−01 3.415e−02 2.538e−02

5 7.095e−01 4.197e−01 5.156e−01

6 5.562e−01 2.371e−01 3.132e−02

7 4.760e−01 2.324e−01 6.482e−02

8 2.692e−01 2.122e−01 1.691e−02

The answer A6 is elaborated in the survey in [1], which presents a plethora of
examples of under-resolved ROM simulations of complex dynamics (e.g., turbulent
flows) in which ROM closures significantly increase the accuracy at a modest
computational overhead.

In this section, for clarity of presentation, we illustrate how a specific ROM
closure model (i.e., the D2-VMS-ROM outlined in Sect. 5) increases the ROM
accuracy for the 2D flow past a circular cylinder [37], which is a simple test problem
commonly used in the ROM community. (We note, however, that the D2-VMS-
ROM was successfully used for challenging test problems, e.g., turbulent channel
flow [36] and the quasi-geostrophic equations [38].) In our numerical investigation,
we use a Reynolds number Re = 1000 and four ROM basis functions (i.e., r = 4).
Details of the computational setting can be found in [37].

In Table 1, we list the L2 norm of the error, uFOM − uROM , for G-ROM (11)
(second column), I-ROM (17) (third column), and D2-VMS-ROM (22) (fourth
column). We note that the G-ROM error is relatively large, whereas both the D2-
VMS-ROM and I-ROM error are much smaller than G-ROM. In particular, the
D2-VMS-ROM error is one and even two orders of magnitude smaller than the
G-ROM error for some r values. In Fig. 5, we present plots of the Euclidian norm
of the error at each mesh point at the final time, for G-ROM (11) (top), I-ROM (17)
(middle), and D2-VMS-ROM (22) (bottom). We note that the G-ROM error is
relatively large, whereas the D2-VMS-ROM error is almost negligible. These two
plots clearly show that adding the data-driven closure model to the classical G-
ROM (i.e., using the D2-VMS-ROM) significantly increases the G-ROM accuracy.
Although the I-ROM cannot be used in practical computations (since it is not
closed), we included I-ROM results for comparison purposes. Table 1 and Fig. 5
show that the D2-VMS-ROM is not only more accurate than the standard G-ROM,
but it is almost as accurate as the I-ROM (which includes an ideal closure model).
Thus, for this test problem, the D2-VMS-ROM error almost reaches the theoretical
lower bound given by the I-ROM error. Overall, Fig. 5 clearly shows that closure
models can significantly increase the ROM accuracy in under-resolved simulations.
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Fig. 5 2D flow past a circular cylinder. The Euclidian norm of the error, uFOM − uROM , at
mesh points for G-ROM (11) (top), I-ROM (17) (middle), and D2-VMS-ROM (22) (bottom). The
D2-VMS-ROM error is significantly lower than the G-ROM error, which illustrates the benefit of
ROM closure modeling. Also note that, in this case, the D2-VMS-ROM error almost reaches the
theoretical lower bound given by the I-ROM error

7 Mathematical Foundations of ROM Closures

In Sects. 4 and 5, we discussed the mathematical modeling of ROM closures. In
Sect. 6, we discussed the numerical simulation of ROM closures. The following is
a natural question:

•? Q7

What can we prove about ROM closures?
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The answer to Q7 is simple:

•> A7

Not so much. Yet.

In this section, we briefly summarize some relevant theoretical aspects associated
with ROM closure modeling. Compared with the analysis of classical numerical
schemes [6, 27, 44], the theoretical foundations for ROM closures are much
less developed. We emphasize, however, that recently there have been significant
advancements in this exciting and important research area.

The theoretical investigations of ROM closure modeling generally aim at proving
error bounds for ROM closures of the form

‖uFOM − uROM‖ ≤ C (space error+ time error+ ROM error) , (27)

where uFOM is the FOM solution, uROM is the ROM solution, ‖ ·‖ is a given norm,
the space error is the error that results from the spatial approximation, the time error
is the error that results from the time approximation, the ROM error is the error
that results from the ROM approximation, and C is a generic constant that does
not depend on the discretization parameters. We note that the first two terms on the
right-hand side of (27) appear in error bounds for classical numerical discretizations,
e.g., the FEM [27]. The third term, however, does not appear in these bounds.

The main purpose of the error bound (27) is to show the convergence of the ROM
solution to the FOM solution. For example, as the spatial mesh size and the time step
go to zero, the space error and time error in (27), respectively, are expected to go to
zero (at a rate that depends on the particular spatial and time discretizations used).
Furthermore, as the number of ROM basis functions goes to the rank of the snapshot
matrix, the ROM error in (27) is also expected to go to zero. Thus, as the right-hand
side of (27) goes to zero, so does the error on the left-hand side of (27), which proves
the convergence of the ROM solution to the FOM solution.

For the G-ROM (11), the numerical analysis started two decades ago with the
pioneering work of Kunisch and Volkwein, who proved the first error bounds for
the POD of parabolic equations, e.g., the heat equation [31] and the Navier-Stokes
equations [32]. More than a decade later, Singler improved Kunisch and Volkwein’s
results, by proving sharper error bounds [47]. Recently, optimal pointwise in time
error bounds were proved in [30]. These results finally bring the G-ROM numerical
analysis to a level comparable to (although not as developed as) the level of the
numerical analysis of the FEM.

For the ROM closure models, the numerical analysis is relatively scarce. The
numerical analysis for ROM closures aims at proving a modified form of the G-
ROM error bound (27):
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‖uFOM − uROM‖ ≤ C (space error+ time error+ ROM error+ closure error) ,
(28)

where the closure error is the error that results from the approximation of the closure
term τ I−ROM in the I-ROM (17) with a closure model.

As mentioned in [1], the first numerical analysis of ROM closures was performed
in [7], where error bounds for the time discretization of the Smagorinsky model (i.e.,
a ROM closure model developed on phenomenological arguments) were proven.
Error bounds for the time and space discretizations of the Smagorinsky model were
later proven in [43] in an RBM context. Error bounds for VMS closure models were
proved in [19, 25, 26, 45] (see also [4, 46] for related work). Finally, error bounds
for the D2-VMS-ROM (22) were proved in [29] (see also [28] for related work).

8 Conclusions and Outlook

In this paper, we presented a brief tutorial for reduced order model (ROM) closures.
In the first part of our tutorial, we motivated the ROM closures. We note that
ROM closure modeling is often misunderstood in the ROM community. Thus, we
started our tutorial by explaining the need for ROM closure modeling (i.e., the
ROM closure problem) in realistic applications, and then we carefully described
the ROM closure model. Specifically, we first outlined the main steps used to
construct the Galerkin ROM (G-ROM), which is based on leveraging a data-driven
basis in the classical Galerkin framework. Next, we noted that, although G-ROM
can decrease the computational cost of standard numerical discretizations by orders
of magnitude, it yields inaccurate results in under-resolved ROM simulations, i.e.,
when the number of basis functions is not enough to capture the underlying system’s
dynamics. To address the G-ROM’s inaccuracy in under-resolved simulations, we
introduced the ROM closure model. We motivated the need for ROM closure by
presenting a mathematical extension of the classical Galerkin framework to include
not only the space of resolved scales, but also the space of unresolved scales. In
this extended variational multiscale framework, we showed that the correct ROM
dynamics include an additional term (i.e., the closure term), which represents the
effect of the unresolved scales. Furthermore, we showed that this mathematical
framework, which we named the ideal ROM (I-ROM), yields numerical results
that are significantly more accurate than the G-ROM results. Thus, we concluded
that a ROM closure model, which is a practical model for the I-ROM closure term,
should be added to the G-ROM to increase its accuracy in realistic, under-resolved
simulations.

In the second part of our tutorial, we outlined the main steps in the construction
of ROM closure models. To simplify our presentation, we focused on one partic-
ular type of ROM closure modeling, i.e., data-driven modeling. Furthermore, we
illustrated this construction for one specific data-driven ROM closure model, i.e.,
the data-driven variational multiscale ROM (D2-VMS-ROM). In our construction,
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we started with the closure term in the I-ROM, and we simply posed the closure
problem as leveraging the available FOM data to find the “best” ROM closure
model. To this end, we first postulated a model form for the ROM closure model.
Then, we solved a least squares problem to find the parameters in the model form
that yield the ROM closure model that is the closest to the ideal ROM closure
model. Finally, we also included numerical results for the two-dimensional flow
past a circular cylinder, which showed that the D2-VMS-ROM was significantly
more accurate than the standard G-ROM, and almost as accurate as the I-ROM.
These numerical results illustrated the significant benefit of ROM closure modeling
in under-resolved simulations.

We hope that this brief tutorial offers a glimpse into the exciting research
field of ROM closure modeling, which has witnessed a significant development
over the past two decades. This research area is currently experiencing a dynamic
development in several directions. One of the most active research directions is
the use of machine learning tools to construct more accurate and more efficient
ROM closure models. Recently, deep learning models have been shown to be
quite effective and computationally efficient in capturing the relationship between
resolved and unresolved scales [2]. However, these models often need large amounts
of training data and their generalization, expressivity, and analysis still remain
mostly challenging.

Another important research direction is the development of ROM closures for
problems in solid mechanics. Although most ROM closure modeling has been
performed in computational fluid dynamics [1], there has been recent work done
in solid mechanics. For example, approximations of the mechanical behavior of soft
tissue showed substantial improvement in accuracy over G-ROM with the addition
of ROM closure terms at a modest computational overhead [48]. The ability of ROM
closure to capture the nonlinearities of soft tissue behavior is especially promising
for its application in biomechanics.

Depending on the applications, one can also couple ROMs with additional
parameterization schemes or surrogate models for some of the unresolved scales
in order to recover more dynamical features of the original system, especially when
the ROMs are constructed for under-resolved dynamical regimes. For instance, in
the context of data assimilation, when observations are only available for the (large-
scale) low-frequency modes, one can design computationally efficient strategies
within the conditional Gaussian framework [12–14] to approximate the dynamics of
the high-frequency (unresolved) modes with quantified uncertainties by a suitable
dynamical model for the unresolved modes.

Finally, providing mathematical support for ROM closures is also an important
research direction. We note that significant mathematical support has been provided
for closures in classical computational fluid dynamics [6, 27, 44]. For ROM closures,
however, only the first steps have been taken and much more remains to be done.
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Artificial Stress Diffusion in Numerical
Simulations of Viscoelastic Fluid Flows

Marília Pires and Tomáš Bodnár

1 Introduction

Viscoelastic fluids are quite common in many areas of industrial, environmental,
and biomedical fluid mechanics. There exist a number of models describing specific
sub-classes of these fluids, capturing their various distinct properties. Most of
these models are rather complex, relating the stress tensor with the fluid rate of
deformation tensor and its history. This is why the mathematical modeling and
numerical simulations of viscoelastic fluid flows are some of the most challenging
problems of contemporary computational fluid dynamics.

1.1 Motivation

The motivation for present work comes from the biomedical fluid mechanics, where
the viscoelastic fluid models are often used to describe specific behavior of blood,
synovial fluids, and various other gel-like bio materials [8]. The flow of such fluids is
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described by a set of coupled partial differential equations, representing the balance
laws for mass and linear momentum, complemented by suitable rheological model
for the stress tensor. One of the classical and most common models for viscoelastic
fluid flows is the Oldroyd-B model (described further in Sect. 2.2). This model
shares the structure and many properties with a whole class of other more complex
rate type models for viscoelastic liquids. This is why the Oldroyd-B model is used
in this work as a prototype of a viscoelastic fluid model, showing some of its most
distinct properties.

It was found by many authors in the past, that while solving the governing
equations of the Oldroyd-B model, the numerical methods often fail to converge in
certain regimes, due to instabilities encountered in the solution process. The critical
regime at which the numerical instabilities occur is related to the characteristic
Weissenberg number of the solved problem. The loss of numerical stability at
high Weissenberg numbers was addressed in a number of works in the past
decades, developing various specific schemes and algorithms to fight the numerical
instabilities [6, 33].

1.2 Artificial Diffusion Concept

The concept of numerical and artificial diffusion is well known in computational
fluid dynamics. It starts with the presence and/or absence of diffusive terms in the
mathematical models of fluid flows. The Euler equations of fluid dynamics (for both
compressible and incompressible fluids) can be understood as the limit (singular)
model arising from the original (viscous) Navier-Stokes equations for vanishing
viscosity. It can be shown that limit solutions emanating from a sequence of viscous
model solutions for successively decreasing viscosity lead to physically relevant
solutions of the inviscid model [7, 14]. The vanishing viscosity is thus not only
relevant in developing the inviscid model, but it also plays an important role in
obtaining the successive approximate solutions to that model, possibly leading to
unique physically realistic solution of the problem [3, 4].

At the discrete level, most of the numerical methods are associated with certain
level of numerical diffusion or dispersion. It can be shown that the leading order
term in the discretization error can either have diffusive or dispersive character.
It is well known that certain amount of numerical diffusion is necessary for
numerical methods to be stable and robust. Such numerical diffusion can either
be directly embedded in the numerical scheme as a part (or side effect) of the
discrete approximation, or it can be added artificially as a special term or step in
the algorithm.

The embedded numerical diffusion is typically introduced by some kind of
upwinding or intentional use of highly diffusive numerical methods. It can, for
example, be shown that the (first order) upwind scheme can be rewritten as central
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scheme with added numerical diffusion of specific form. The Lax-Friedrichs scheme
can be used as an example of highly diffusive scheme, which again can be rewritten
into the form of standard (non-diffusive) central scheme and additional diffusive
term. Such highly diffusive methods are quite robust, but due to excessive diffusion
their accuracy is reduced to first order only. The detailed analysis based on the
modified equation approach can be found in [13, 19] or [2]. When the level of
diffusivity can’t easily be adjusted in these methods, they are often combined with
higher order (but less diffusive and less robust) methods to achieve better accuracy
with only minor sacrifices regarding the overall robustness of the combined method.
This is, for example, the case of so-called Total Variation Diminishing (TVD)
schemes [11, 20], where the (less diffusive) higher order discretization is used where
the solution is smooth enough, while dropping to some first order (more diffusive)
method in the proximity of high solution gradients or shocks. Such spatial blending
of numerical methods with various levels of numerical diffusion can lead to desired
robustness and increased accuracy of the numerical scheme. Similar effect can be
achieved by the so-called composite schemes [21, 22], where most of the time-
steps (or iterations) are performed using higher order (less diffusive) method, while
some (smoothing, stabilizing) steps are performed by a diffusive method with lower
accuracy. The ratio higher versus lower order steps can be adjusted, so the total
level of numerical diffusion introduced to the numerical solution can be kept under
control.

The artificial diffusion approach is similar in principle, except that the numerical
diffusion is not an intrinsic part of the numerical discretization (as it is, e.g., in the
Lax-Friedrichs or upwind scheme), but is expressed separately, either as an extra
term in the scheme or extra step in the numerical method. Typically some standard
less-diffusive scheme (of possibly higher order) is used, and the extra numerical
diffusion is added artificially at the next stage. Typically such added artificial
diffusion mimics the physical diffusion terms being proportional to Laplacian or
bi-Laplacian of the corresponding quantity. Such artificial diffusion can either be
seen as a separate smoothing (post-processing) step, or as an operator splitting
method applied at the discretization level. This allows full control over the form,
behavior, and amount of the numerical diffusion added by the numerical method.
Such numerical schemes involving an artificial diffusion were extensively studied
and used in past decades. For some practical examples of artificial diffusion terms,
see, for example, [15, 16]. Some hints concerning the effects of numerical diffusion
on the stability of numerical schemes can be found in [10].

The fact that the diffusion added to mathematical models and numerical methods
has some physical motivation can be seen as an important advantage over many
other purely artificial and algorithmic stabilization approaches. In many cases the
artificially added numerical diffusion just substitutes the physical diffusion that
was dropped out from the mathematical model as a consequence of its (over-)
simplification.
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1.3 Tensorial Stress Diffusion in Oldroyd-B-Like Models

As mentioned before, the added diffusion terms are important for the well posedness
of mathematical models as well as for stabilization of numerical methods. This
concept proved to be useful for numerical solution of many fluid mechanics
problems, which was the main motivation for testing this approach also for the
stabilization of numerical models of viscoelastic fluid flows.

In the context of this paper, the viscoelastic fluids are modeled by a constitutive
relation, linking together the flow kinematics with the stress in the fluid, represented
by a stress tensor. The corresponding governing equations describing the spatio-
temporal evolution of this stress tensor can be seen as a specific type of (tensorial)
transport equations, with non-linear source terms depending on the flow field. In
the Oldroyd-B model (and many other models with similar structure), only the
advection and source terms are present, but there are no diffusion terms (see
Sect. 2.2). It is an interesting open question, whether from the physical point of
view, the presence (or absence) of tensorial diffusion in the viscoelastic constitutive
relations can be justified (is necessary) [4]. There exist viscoelastic fluid models
containing some physical diffusion [23, 32], mostly based on arguments related
to microstructure of the fluid. These models however form a specific category of
rheological constitutive laws and are not subject of the present investigation. Here
such diffusive viscoelastic models only serve as motivation for the use of artificial
diffusion in numerical simulations of otherwise non-diffusive viscoelastic fluid flow
models.

In order to introduce and analyze the tensorial stress diffusion in the Oldroyd-
B model, the constitutive relation (20) is modified by adding an extra term E

containing the continuous version of the additional diffusive terms aimed to stabilize
the numerical simulations at the discrete level. The artificially extended constitutive
model has the form:

τ +We

(
∂τ

∂t
+ u · ∇τ −∇uT · τ − τ · ∇u

)
= 2ηD+E . (1)

Different variants of the added artificial diffusion term E were used in our previous
works [26, 27, 29] and [28]. Here all these variants are summarized and discussed.

(a) Constant diffusive term proportional to the Laplacian of elastic stress:1

E = α ·� τ ≈ α ·� τn . (2)

1 The temporal index n corresponds to pseudo-time, used in the time-marching iterative procedure
(see the description of numerical algorithm, Sect. 3, for more details).
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This simplest and most primitive form of the artificial diffusion term is
closest to the physical diffusion which sometimes appears in the truly diffusive
constitutive laws. In general, this extra term is always present in the model
and does not vanish even when the solution reaches the steady state, so E =
α · �τn

� 0 when τn n→∞−−−→ τ . This means that rather than just stabilizing
the numerical solution of the non-diffusive model, the whole model is modified
by the added diffusive term and the results may (will) depend on the values of
the parameter α. In numerical simulations this artificial diffusion coefficient α
should be kept, small, at least of order O(h2) to preserve the consistency of the
numerical method with the original non-diffusive problem. This however only
guarantees that for h→ 0 the whole artificial diffusive term will asymptotically
vanish; however on any finite size grid the term remains to be present, affecting
the final solution.

(b) Time-dependent diffusive term is just a minor modification of the above-
mentioned constant diffusive term, where instead of the constant diffusion
coefficient α, it is made time-dependent, i.e., α = α(t), leading to:

E = α(t) ·� τ ≈ α(t) ·� τn . (3)

The purpose of the variable in time artificial diffusion coefficient α(t) is to
make it decay in time, to make it eventually vanish in the limit for t → ∞.
The idea is to keep the artificial diffusion term active just during the initial
stage of the iterative process, while letting it to vanish later when it’s no more
needed. So it will help to overcome the initial solution instabilities, but it will
not affect the final solution. The diffusion coefficient function α(t) should be
tuned accordingly, to be strong enough at the beginning of the simulation and
decay fast enough to vanish at the end of the iterative process.

(c) Time-derivative dependent variant of the diffusive term takes the form

E = α(φt ) ·� τ ≈ α(φt ) ·� τn , (4)

where φ is suitably chosen flow quantity and t stands for iterative (pseudo)
time. The goal is to avoid the need of tricky manual adjustments of constant
diffusion coefficient α or variable α(t) and rather make the whole process
automatic, by choosing the diffusion coefficient α(φt ) such that it will decay
with the time-derivative ‖φt‖ → 0, meaning that the added artificial diffusion
automatically vanishes when the steady solution is reached. In this case there is
no need to a-priori estimate the number of iterations till the steady state (as
for time-dependent α(t)) to adjust the appropriate diffusion decay, and it is
guaranteed that the artificial diffusion will automatically vanish for the steady
solution (when φt = 0).

(d) Residual diffusive term is made proportional to the Laplacian of the (pseudo)
time derivative of the stress:
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E = α ·�τ t ≈ α ·�
(
τn − τn−1

)
. (5)

The temporal index n corresponds to pseudo-time, used in the time-marching
iterative procedure. In steady problem iterative solution, the difference(
τn − τn−1

)
can be considered as a steady residual of the problem that should

converge to zero, i.e., τn → τ meaning that
(
τn − τn−1

) → 0. This also
implies that the extra term E in the form (5) will vanish when the numerical
solution converges to steady state. Due to this property, the added diffusivity
will only act during the transitional stage of (pseudo) time stepping. As a
consequence, the solution of the original (non-diffusive) model is recovered,
and the final results should not depend on the choice of the parameter α. The
whole stabilization process in this case can be seen as residual smoothing,
rather than the stress tensor smoothing used in the previous three variants of
artificial stabilization involving just the Laplacian of the elastic stress tensor
� τ .

1.4 Structure and Aim of This Work

This paper is meant as a summary and overview of the various methods of
artificial stress diffusion applicable to Oldroyd-B model (introduced in Sect. 2) of
viscoelastic fluids (and related models). The description of numerical method and its
implementation details are given in full length in Sects. 3 and 4, supplementing the
partial presentations in our previous papers [26, 27, 29] and [28]. Some additional
numerical simulations and their results are presented in Sect. 5 documenting the
main conclusions of this work. The final Sect. 6 is fully dedicated to extended
discussion of the obtained results and practical experience.

2 Mathematical Model

From the physical point of view, fluid is a substance that does not resist to
deformation under the action of an external force and shear (tangential) stress. The
deformation of fluid tends to recover the hydrostatic balance (hydrostatic stress-
free condition) where the shear stress forces are null. Typically the fluids are
characterized by their viscosity and density.

The (dynamic) viscosity μ > 0 is a physical property (which may depend on the
temperature) that characterizes the resistance of the fluid to flow. As the temperature
increases, the viscosity of the liquid decreases, and consequently the velocity of
the fluid may increase. In the absence of external forces, only the friction forces
generated due to viscosity act on the fluid in motion and may eventually force it to
come to rest.
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The density ρ > 0 is the fluid mass per unit of volume. In incompressible
fluids the mass of certain fluid volume is preserved, which in case of invariant
volume leads to preservation of density. In the particular case of homogeneous
incompressible fluids, it results in constant density.

2.1 Equations of Motion

Let ρ be the mass density, μ > 0 the dynamic viscosity, u the velocity vector
field, p the pressure, and T the stress tensor field of an unsteady, incompressible,
homogeneous, isothermal fluid flow in a bounded domain � ⊂ R

d (d = 2, 3)
during the interval of time

[
0, Tf

]
(Tf > 0).

The governing equations are defined by two fundamental principles:2

They arise from the balance laws for mass and linear momentum of the fluid.

• Mass balance—continuity equation. The balance of mass (in absence of
sources/sinks) is written in differential form as

∂ρ

∂t
+∇ · (ρu) = 0 . (6)

This equation can be rewritten using the material derivative as

Dρ

Dt
= −ρ∇ · u , (7)

where the material derivative
D

Dt
= ∂

∂t
+u ·∇ describes the time rate of change

of the quantity being transported by the fluid at velocity u.
The physical requirement of incompressibility of a fluid implies that its

volume remains constant (independently of applied force and deformation). This
property can be expressed by the necessary condition on the velocity field stating
that it must be divergence-free, i.e., ∇ · u = 0. If in addition the fluid is
assumed (required) to be homogeneous, i.e., having constant density (both in
space and time) ρ = const , the continuity equation (6) is satisfied automatically.
Therefore in the models of incompressible (homogeneous) fluid flows, only the
incompressibility constraint

∇ · u = 0 (8)

is considered in place of the continuity equation.

2 Assuming the fluid as a continuum media. This means, the properties of the fluid vary
continuously in space. With this assumption, it is possible to use differential calculus in fluid
mechanics problems, although there may be jumps or discontinuities in the properties of the fluids.
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• Momentum balance describes the inertial effects in fluid flows. It is based on
Newton’s second law stating that the momentum rate of change of fluid is equal
to the net force acting on it.

ρ
Du

Dt
= ∇ · T− ∇p . (9)

Here just the pressure gradient force is considered, together with the action of the
stress tensor T expressed via its divergence.

The system of equations of motion represented by the continuity and momentum
equations (8) and (9) must further be complemented (closed) by suitable constitutive
relation for the stress tensor T.

2.2 Constitutive Relation: Oldroyd-B Model

Constitutive relation postulates in mathematical form the mechanical behavior
of fluid in terms of the tension states related to the velocity gradient (rate of
deformation). Such relations can have either explicit form T = f (D) or more
general implicit form f (T,D) = 0 [30]. For the fluids of Oldroyd-B type the
constitutive law is defined by

T+ λ1

�
T= 2

(
μsD+ λ2

�
D
)

, (10)

where the parameter λ1 > 0 corresponds to the relaxation time scale indicating
the time during which the fluid remembers the history of stress. The retardation
time scale parameter λ2 > 0 follows from the response time of the fluid to
sudden application of tension, μs is the solvent (dynamic) viscosity, and D =
1

2

(∇u+ ∇uT
)

is the rate of deformation tensor. The upper convected derivative

of any tensor M defined by
�
M= DM

Dt
− ∇uM − M (∇u)T describes the rate of

change of the tensor M in coordinate system which stretches and rotates with the
fluid. This derivative can be seen as generalization of the material time derivative
assuring that the constitutive model is objective (meaning that the laws of motion
are the same independently of the inertial frame) [1, 17, 24].

The stress tensor T can further be decomposed into viscoelastic part τ (so-called
extra stress) and the purely viscous (Newtonian or solvent) stress component.

T = 2
λ2

λ1
μD+ τ . (11)
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Taking into account that λ1 = μe

G
and λ2 = λ1

μs

μ
, where μe, μs and μ = μs +

μe are the elastic, solvent, and total viscosities, respectively, and G is the Young
modulus, considering the decomposition (11), the momentum equations (9) and the
constitutive law (10) can be rewritten as

ρ

(
∂u

∂t
+ u · ∇u

)
= 2μs∇ · D+ ∇ · τ −∇p , (12)

τ + λ1

(
∂τ

∂t
+ u · ∇τ −∇uτ − τ (∇u)T

)
= 2μeD . (13)

The complete set of governing equations describing the Oldroyd-B fluid flow is
represented by Eqs. (8), (12), and (13).

2.3 Dimensionless Form of Equations

Let U and L be the characteristic velocity of the fluid and the characteristic length

scale of the domain, respectively. This also determines a time scale T = L

U
. Using

these scales a non-dimensional coordinate system is defined by

x = x̃

L
, t = Ut̃

L
, (14)

where the tilde symbol∼ is used to denote the original dimensional parameters. For
viscoelastic fluid flows, the Reynolds and Weissenberg numbers Re andWe can be
used to characterize the flow.

The Reynolds number is defined as the ratio between the inertial forces and the
viscous forces expressed by

Re = UL

ν
, (15)

where ν = μ

ρ
is the kinematic viscosity.

The Weissenberg number characterizes the relative importance of the elasticity of
the fluid, defined as the rate of two characteristic time scales. The first one, denoted
λ1, represents the relaxation time scale (the memory) of the fluid, while the second
convection/advection time scale represents the time needed by the fluid to pass the
distance L at the velocity U .

We = λ1U

L
. (16)
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The dimensionless contribution of the polymer viscosity μe is defined by

μe

μ
= μ− μs

μ
= 1− μs

μ
= η ∈ [0, 1] . (17)

Scaling the velocity vector field, the pressure, and the extra stress tensor of the fluid
by

u = ũ

U
, p = p̃L

μU
, τ = τ̃L

μU
, (18)

and taking into account the definitions (15), (16), and (17), the dimensionless
momentum equations can be written as

Re
(
∂u

∂t
+ u · ∇u

)
= 2(1− η)∇ · D+∇ · τ −∇p , (19)

and the dimensionless constitutive equation takes the form

τ +We

(
∂τ

∂t
+ u · ∇τ −∇uτ − τ (∇u)T

)
= 2ηD . (20)

It has been proved that Eqs. (19), (20), and (8) are stable in the sense of Hadamard
[25]. The complete dimensionless system for the Oldroyd-B model is written below
for future reference.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ · u = 0 ,

Re
(
∂u

∂t
+ u · ∇u

)
+ ∇p = 2(1− η)∇ · D+∇ · τ ,

τ +We

(
∂τ

∂t
+ u · ∇τ − ∇uT τ − τ∇u

)
= 2ηD .

(21)

This stress tensor splitting allows to decouple the kinematics and non-Newtonian
viscoelastic stress even though the divergence of τ is included in the momentum
equation as a pseudo-body force and the constitutive equation contains a contribu-
tion from the Newtonian part.

This governing system should be supplemented by appropriate initial and
boundary conditions.

2.4 Boundary Conditions

In practical applications the flow in bounded domain during limited time is of
interest. Therefore some initial and boundary conditions should be specified. The
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mathematical need for boundary conditions hinges on their role in proving well
posedness of the problem, i.e., showing that there exists a unique solution that
depends continuously on the initial data.

For the considered problem of flow in a closed channel (with tube-like geometry),
the bounded domain � has boundary ∂� = �in ∪ �w ∪ �out . The following set of
conditions can be used:

• The inlet boundary—the Dirichlet boundary conditions are imposed for both the
velocity and extra stress, assuming, for example, that the analytical solution is
known from a Poiseuille-like flow for u and τ .

u = uin on �in ,

τ = τ in on �in .

• The (rigid) walls of the domain—the no-slip boundary conditions are imposed
on the fluid velocity u, i.e.,

u = 0 on �w .

• The outlet boundary—the homogeneous Neumann boundary conditions are used
for u, i.e.,

∂u

∂n
= 0 on �out ,

where n is the outward unit normal vector to the �out .

2.5 Variational Formulation

Considering a bounded domain �, whose boundary is ∂� = �in ∪ �w ∪ �out ,
the dimensionless strong formulation of the Oldroyd-B fluid flow problem (without
additional body forces) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · u = 0 , in �

Re
(
∂u

∂t
+ u · ∇u

)
+ ∇p = 2(1− η)∇ · D+ ∇ · τ , in �

τ +We

(
∂τ

∂t
+ u · ∇τ −∇uT τ − τ∇u

)
= 2ηD , in �

u = 0 , on �w

u = uin, on �in

τ = τ in , on �in

u|t=0 = u0 .

(22)
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The function spaces for bi-dimensional case (� ⊂ R
d ) are chosen in the following

way:

V =
{
u ∈ H1(�) : u = 0 on �w and u = uin on �in

}
, (23)

L2
0(�) =

{
p ∈ L2(�) :

∫
�

p d� = 0

}
, (24)

S =
{
S ∈ [L2(�)]d×d : ST = S

}
. (25)

The variational formulation or the weak problem corresponding to (22), given
u0 ∈ V such that ∇ · u0 = 0, is:

Find (u, p, τ ) ∈ L2 (0, T ;V)× L2
(
0, T ;L2

0(�)
)× L2 (0, T ;S) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
�

(∇ · u) q = 0 ,∫
�

2(1− η)D : ∇v + Re
∫
�

(
∂u

∂t
+ u · ∇u

)
· v −

∫
�

p∇ · v = −
∫
�

τ : ∇v,∫
�

[
τ +We

(
∂τ

∂t
+ u·∇τ

)]
: S =

∫
�

[
2ηD+We

(
∇uT τ + τ∇u

)]
: S.

(26)

holds ,∀v ∈ H1
0(�),∀q ∈ L2

0(�) and ∀S ∈ S.

3 Numerical Approximation

This section describes the details of finite element discretization of the governing
system. The focus is on obtaining a steady solution by a time-marching algorithm
as a limit for t → ∞ of the unsteady system solved with stationary boundary
conditions. The effects of various artificial stress diffusion techniques are evaluated
for a two-dimensional case of flow in a symmetric, smoothly corrugated channel.

The discrete model is obtained using the Rothe method in which the temporal and
spatial discretizations are performed separately. First, the discretization in time (of
the material time derivative) is realized by characteristic Galerkin method associated
with the implicit Euler method. The spatial discretization is then based on a finite
element approximation of the variational formulation.
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3.1 Discretization in Time: Convective Term

The Characteristic Galerkin Method [31] evaluates time derivative3 of a field φ

(scalar, vector, or tensor) on Lagrangian frame using characteristic lines (trajec-
tories) of material particles driven at velocity u. For the instant t and the interval of
time �t , it requires that

φ(t +�t, x) = φ(t, x − u�t) .

In a time interval [0, Tf ] is defined a set of points tn = n�t = n
Tf
N

, n = 0, . . . , N .
Denote φn the approximation of function φ at the instant of time tn = n�t , i.e.,

φn ≈ φ(tn, x), tn = n�t, x ∈ �.
The material derivative of φ which represents the rate of change of φ along the

trajectory is approximated by the backward Euler scheme as

Dφ

Dt
(tn+1, x) = ∂φ

∂t
(tn+1, x)+ u(tn+1, x) · ∇φ(tn+1, x) ≈

≈ φ(tn+1, x)− φ(tn, x − u(tn, x)�t)

�t
=

= φ(tn, x)− φ(tn−1, x$)

�t
, (27)

where x$ = x − u(tn, x)�t is the position at time tn−1 of the particle located at x

at time tn.
Figure 1 shows the characteristic path ξ in time and space of a point of the fluid

that is at the position xi of the domain’s grid at the instant of time tn, which was at

Fig. 1 Simplified scheme of
the advection characteristic tn

uΔt

ξ

tn – 1

xi – 1 x* xi

3 The finite-difference approximation (in time) used in this method [5] is quite popular among
researchers, because it allows to achieve second-order of accuracy in time (at least in the case of
uniform velocity field) and only requires one level of memory storage for the values from previous
time step. In more general case of a non-uniform velocity field or multidimensional flows, the
scheme is considered only first-order accurate in time.



208 M. Pires and T. Bodnár

the node x$ = xi − u(tn, xi )�t at the previous time instant tn−1. Since at instant
tn−1 only the values of φ are known in the grid nodes xi−1, xi and xi+1, the value
of φ(tn−1, x$) is evaluated by interpolation and set φ(tn−1, x$) = φ(tn, xi ).

Taking into account (27), the semi-discretized Oldroyd-B problem is defined
∀v ∈ H1

0(�),∀q ∈ L2
0(�) and ∀S ∈ S by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 = u0 ,∫
�

(∇ · un
)
q = 0 ,∫

�

2(1− η)Dn : ∇v + Re
∫
�

un − un−1
$

�t
· v −

∫
�

pn∇ · v = −
∫
�

τ : ∇v ,∫
�

(
τn +We

τn − τn−1
$

�t

)
: S =

∫
�

[
2ηD+We

(
∇uT · τn + τn · ∇u

)]
: S .

(28)

3.2 Discretization in Space

The Finite Element Method (FEM) was adopted to discretize the considered
problem (28) in space. The domain � was decomposed into finite number NT of
triangles T whose union constitute a non-degenerated mesh Th, meaning that:

• The interior of each Ti is non-empty (T◦i �= ∅, i = 1, . . . NT).
• The interior of two distinct triangles are disjoints (T◦i ∩ T◦j = ∅, i �= j, i, j =

0, . . . , NT) .
• Every boundary of Ti , i = 1, . . . NT is a boundary of another triangle (the

triangles are adjacent or part of boundary ∂Th).

• � = NT∪
i=1
Ti = Th .

The parameter h = max
T∈Th

hT defines the diameter of the triangulation Th, where hT

is the diameter of the circumscribed circle into T. The mesh Th is a uniform regular
mesh, where all the triangles have approximately the same size. This means that
there exist positive constants C1, C2 independent of h and T such that:

• C1h ≤ hT, ∀T ∈ Th ,

•
hT
ρT

≤ C2, ∀T ∈ Th ,

where ρT is the diameter of the inscribed circle into T.
The discretization elements are chosen to guarantee the compatibility condition

known as the discrete LBB (Ladyzheskaya, Babuška and Brezzi) or inf-sup
condition, which requires that there exists γ > 0 (independent of h) such that
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inf
qh∈Lh\{0}

sup
vh∈mXh\{0}

|(qh,∇ · vh)|
‖vh‖Xh

‖qh‖Lh
≥ γ .

where the finite dimensional function spaces are defined by

Xh =
{
vh ∈ C(Ω) ∩V : vh|T ∈ P2(T),∀T ∈ Th

}
, (29)

Lh =
{
qh ∈ C(Ω) ∩ L2

0(Ω) : qh|T ∈ P1(T),∀T ∈ Th

}
, (30)

being the Pn be the space of polynomials of degree n > 0 defined on triangles.
The momentum equations are discretized with the mixed finite element known as

Hood-Taylor elements P2−P1 which are associated to the approximation of saddle
point problems. The constitutive equation for extra stress tensor is also discretized
by quadratics finite elements4. Defining the finite dimensional function space

Sh =
{
Sh ∈ C(Ω) ∩ S : Sh,ij |T ∈ P2(T),∀T ∈ Th

}
, (31)

the approximate finite element problem based on (28) can be written for each
t∈[0, Tf ], h > 0,u0

h ∈ Xh and τ 0
h ∈ Sh, leading to:

Find (uh, ph, τh) ≡ (uh(t, ·), ph(t, ·), τh(t, ·)) ∈ Xh ×Lh × Sh such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

(∇ · un
h

)
qh = 0,∫

Ω

2(1− η)Dn
h :∇vh + Re

∫
Ω

un
h − un−1

$h

Δt
· vh −

∫
Ω

pn
h∇ · vh = −

∫
Ω

τh : ∇vh,∫
Ω

(
τn
h +We

τττnh − τττn−1
$h

Δt

)
: Sh=

∫
Ω

[
2ηDh +We

(
∇uT

h · τn
h + τn

h ·∇uh

)]
:Sh,

(32)

holds for all (vh, qh,Sh) ∈ Xh ×Lh × Sh.
Further details about the properties of the finite element method and about the

rigorous convergence analysis of spatial discretization of the Navier-Stokes problem
can be found in [9].

As Eq. (32)3 is verified ∀Sh ∈ Sh, it is also verified for the symmetric tensor
Mh ∈ Sh such that for some fixed i, j = 1, 2 the corresponding component Mh,ij

4 There is no general mathematical theory to guarantee the stability of finite element method for a
given choice of element type, in the case of viscoelastic problems.
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belongs to the space

Mh =
{
Mh ∈ C(�) ∩ L2(�) : Mh|T ∈ P2(T),∀T ∈ Th

}
. (33)

and the other components of the tensor are null. Hence, the tensorial equation (32)3
can be decoupled into the set of scalar equations. This means that the tensorial
equation (32)3 can be replaced in the problem (32) by the system of scalar equations
for tensor components:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

(
τn
h,11 +We

τn
h,11 − τn−1

$h,11

�t

)
: Mh =

=
∫
�

[
2η

∂u1

∂x1
+ 2We

(
∂u1

∂x1
τn
h,11 +

∂u1

∂x2
τn−1
h,12

)]
: Mh ,

∫
�

(
τn
h,12 +We

τn
h,12 − τn−1

$h,12

�t

)
: Mh =

=
∫
�

[
η

(
∂u1

∂x2
+ ∂u2

∂x1

)
+We

(
∂u2

∂x1
τn
h,11 +

∂u1

∂x2
τn−1
h,22

)]
: Mh ,

∫
�

(
τn
h,22 +We

τn
h,22 − τn−1

$h,22

�t

)
: Mh =

=
∫
�

[
2η

∂u2

∂x2
+ 2We

(
∂u2

∂x1
τn
h,12 +

∂u2

∂x2
τn
h,22

)]
: Mh .

(34)

4 Artificial Stress Diffusion Implementation

The four different types of artificial stress diffusion terms E introduced in Sect. 1.3
share a common form involving the Laplacian of the extra stress τ . Therefore also
most of the details of their implementation in the finite-element framework are
shared. All cases lead to the following modified constitutive relation to be solved:

τ +We

(
∂τ

∂t
+ u · ∇τ −∇uT · τ − τ · ∇u

)
= 2ηD+ α(·)�σ , (35)

where the artificial diffusion coefficient α can either be constant or variable as α(·),
and the tensor σ either corresponds to the elastic stress tensor, i.e., σ = τ or to the
time derivative (time-difference, steady residual) of that tensor, i.e., σ = τ t . So, the
weak formulation of (35) is defined ∀S ∈ S by
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∫
�

[
τ +We

(
∂τ

∂t
+ u · ∇τ

)]
: S =

=
∫
�

[
2ηD+We

(
∇uT · τ + τ · ∇u

)]
: S − α(·)∇σ : ∇S,

(36)

where S = {S ∈ [L2(�)]d×d : ST = S
}
.

When a variable artificial diffusion coefficient is used, the following types of
functional dependencies can be (were) used:

• Time-dependent function α(t)—Diffusion coefficient α is monotonically decay-
ing with (pseudo) time t and vanishing for the limit case of t −→ ∞, where the
steady-state solution should be reached. Different shapes of such monotonically
decaying functions were considered and tested, searching for optimal initial
values of the diffusion coefficient and suitable decay rate. The function α(t) used
in the presented simulation has the form

α(t) = α0 · 1

1+ ε · t , (37)

where α0 = α(0) is the initial value for the diffusion parameter α, while the
adjustable parameter ε affects the rate of decay of the function (by scaling the
time variable).

• Time-derivative dependent function α(φt )—Diffusion coefficient α is made
proportional to (dependent on) the time-derivative of some solved quantity φ.
The dependence is such that the diffusion coefficient α −→ 0 for the steady-
state solution where φt −→ 0. Proposed and tested were different functional
dependencies of α on the time derivative φt as well as different choices of
the indicator variable φ for evaluation of the time derivative (e.g., pressure p,
tensor components τij , or tensor norm ‖τ‖). The general form of the functional
dependency of α(φt ) is the following:

α(φt ) = α0 · ε

ε + (1− ε) · (‖φt‖)m , (38)

where again α0 = α(0) is the initial value for the diffusion parameter α, and the
adjustable parameters ε and m affect the rate of decay of the function.

These functional dependencies of α(·) for time-dependent and time-derivative-
dependent diffusion coefficients were extensively tested and discussed in [28], being
compared to each other, to the constant diffusion term and also to the original non-
diffusive numerical method without any added artificial diffusion.
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5 Numerical Results

The model was implemented in FreeFem++, which is a finite element solver and
simulation software for the solution of partial differential equations (see [12] for
more details about FreeFem++).

Numerical simulations were performed in a domain having the shape of a 2D
corrugated channel consisting of three smoothly connected identical sinusoidally
shaped segments. The straight inlet and outlet parts of the channel are sufficiently
long to guarantee a fully developed Poiseuille flow upstream and downstream from
the corrugated part.

The computational grid consisting of triangular finite elements was generated
using the FreeFem++ [12] by Delaunay-Voronoi algorithm, considering 10 ele-
ments along each unit of length of wall, without any special treatment to symmetrize
the grid with respect to x axis.

Figure 2 shows some details about the computational domain, already used in our
previous publications [26–29], where many of the numerical simulations and their
results were already presented and discussed. Here the focus is on some additional
results supporting the observations regarding the applicability and efficiency of
individual stress diffusion terms. All tests illustrated here were obtained with a fixed
Reynolds number Re = 1000.

5.1 Constant Diffusion Coefficient

This section, and, namely, Fig. 3, shows the effects of the diffusion term based
on Laplacian of the extra stress tensor when the artificial diffusion coefficient

D
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m
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(a)

(b)

Fig. 2 Geometrical configuration of the test case—corrugated tube (2D channel). (a) Geometry
sketch of the channel. (b) Grid for finite element approximation
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Fig. 3 Components of the elastic stress tensor τ , obtained using the stress diffusion (2) with
different values of α

α = const is used (i.e., the diffusion term in the form (2). It should be noted that
the solution obtained with setting α = 0 corresponds to the original non-diffusive
system, so it might be considered as the reference solution which we should obtain.

The case or relatively low Weissenberg number We = 0.4 was chosen here to
allow for mutual comparison of the simulation results obtained with and without the
added stabilization term. Evidently such comparison will be not possible in case
of higher We, when the stabilization can’t be removed (switched off) to obtain
numerical solution.

In this series of simulations the results were obtained for α ∈ {10−4, 10−3, 10−2
}

in the stabilization term α · �τn. The contours of the extra stress tensor τ

components shown in Fig. 3 clearly demonstrate the smoothing effect of this kind
of added diffusive term. Even for the smallest chosen value of α = 10−4, the results
differ visibly from the reference (non-diffusive) solution obtained for α = 0. With
increasing the value of α, the problem of the solution (over-)smoothing only gets
more apparent.

These test with the standard artificial diffusion term with constant coefficient
α confirm that the use of such added term may lead to unacceptable errors on
the solution which no more corresponds to the original non-diffusive Oldroyd-B
problem. Therefore the artificial diffusion coefficient α should be kept as small as
possible. Evidently no diffusion is needed for lowWe, but with increasing values
ofWe the need for stabilization grows.



214 M. Pires and T. Bodnár

This suggests a possibility to use the artificial diffusion coefficient that will
depend on the Weissenberg number, i.e., α = α(We), while still being constant in
space and time. This will allow to almost automatically adjust the level of artificial
diffusion in dependence on its anticipated need. This possibility was explained and
tested in [29] using the expression α(We) ∝ h2 · atan(εWe) which increases
monotonically in dependence onWe, reaching some finite asymptotic value α∞ for
high Weissenberg numbersWe→∞. Use of such case dependent (We dependent)
artificial diffusion coefficient makes the whole method much more safe to use,
avoiding to large extent the risk of over-smoothing the solution.

5.2 Time-Dependent Diffusion Coefficient

In this case the artificial stress diffusion has the form (3), i.e., the diffusion
coefficient α depends on (iterative) time in such a way that α(t) monotonically
approaches to zero as t → ∞. The dependence for α(t) is described by the
relation (37), where the parameter ε can be chosen to allow for adjustment of the
decay of the function α(t).

In this setup it makes not much sense to show the final converged solutions
for different values of ε, because in ideal case α → 0 and all solutions will be
virtually identical. To demonstrate the behavior of this kind of variable (decaying)
in time diffusion coefficient α(t) the results are presented after fixed number of time
steps, allowing to compare the effects of the stabilization term before it vanishes.
Moreover in this case it was pushed to the highest attainable Weissenberg number,
i.e., for each artificial diffusion setting the criticalWe was found experimentally.

The results are in this case presented in the form of graphs of extremal values
(minima and maxima) of the elastic stress tensor τ components, depending on the
Weissenberg number. In Fig. 4 the individual curves correspond to different settings
of the decay parameter ε in (37). The reference (non-diffusive) solution corresponds
to α(t) = 0. In the presented graphs the vertical discrepancies with respect to the
reference solution curve correspond to smoothing effects resulting in the cut-off of
the solution local extrema. The horizontal extent of each curve corresponds to the
maximum attainable Weissenberg numberWe for chosen setting decay of α(t).

From Fig. 4 it is evident that the fast decay of α(t) allows to recover the non-
diffusive reference solution (after finite number of pseudo-time steps). On the other
hand, slow decay of α(t) results into non-negligible value of α at the time the
simulation was stopped, which leads to more stable numerical method (with higher
criticalWe), but at the price of higher effective smoothing, leading to possibly too
diffusive solutions that do not correspond to the original (non-diffusive) Oldroyd-B
problem.

Similar observations can be made in the graphs of the extrema of the stress
tension (see Fig. 5) along the channel wall. Also here the stability of the method
due to added diffusion seems to come at the price of non-negligible smoothing of
the solution. The underestimation (due to excessive smoothing) of tension extrema
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Fig. 4 Maximum and minimum values of the elastic stress tensor τ components, for different
settings of the parameter ε depending on the Weissenberg number We. (a) Component τ11. (b)
Component τ12. (c) Component τ22

on the wall may have important consequences in practical use of artificial diffusion
methods in engineering or biomedicine.

5.3 Time-Derivative-Dependent Diffusion Coefficient

The choice of time-derivative dependent diffusion coefficient attempts to avoid the
need to adjust the decay of α(t) based on some a-priori estimate of the number
of iterations needed to reach the steady-state solution. Here at the same time
the (pseudo) time difference of solution approximations (φn − φn−1) ∝ φt is
used to adjust the artificial diffusion coefficient α(φt ) and also to stop the time-
marching simulation when (φn − φn−1) → 0, i.e., stopping the simulation when
‖φn − φn−1‖ < tol.
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Fig. 5 Extremal values of the stress tension on the wall −(τ · n) · t |w along the channel wall

for different values of parameter ε in the diffusion coefficient α(t) = 10−4

1+εt , depending of the
Weissenberg number

The choice of the artificial diffusion coefficient being solution-dependent brings
an extra non-linearity into the extended (stabilized, diffusive) problem. The param-
eter α is reset every iteration, which may in the worst case lead to de-stabilization
of the solution. In order to face this problem (avoid rapid in time changes of α), the
dependence (38) can be modified to take into account some recent history of the
coefficient α and use some kind of floating average value rather than the actual one
just based on the latest iteration. The modified formula has the form

α(φt ) = 1

L

n∑
k=n−L

α(φkt ) =
α0

L

n∑
k=n−L

ε

ε + (1− ε) · (‖φkt ‖)m , (39)

where L corresponds to the number of previous time steps considered to evaluate
the new diffusion coefficient α for the current iteration.

The numerical tests based on the formula (39) were performed for different
averaging lengths L, using either the elastic stress tensor τ or pressure p to govern
the diffusion coefficient α = α(φt ), i.e., either α ∝ ‖τ t‖ or α ∝ ‖pt‖.

When using the tensor-dependent diffusion coefficient α = α(τ t ), the results
shown in the Fig. 6 seem to be quite insensitive to the averaging length L for whole
range of Weissenberg numbersWe, which is also confirmed in the graphs of tension
on the wall shown on Fig. 7.

Another technically relevant output characterizing globally the flow in the
considered channel is the pressure drop between the inlet and outlet boundary. This



Artificial Stress Diffusion in Numerical Simulations of Viscoelastic Fluid Flows 217

Fig. 6 Maximum and minimum values of the elastic stress tensor τ components, for different
lengths of the averaging history L with α defined by (39) and φ = τ depending on the Weissenberg
numberWe. (a) Component τ11. (b) Component τ12. (c) Component τ22

quantity is plotted for all solved cased in Fig. 8 showing again the robustness of
the tensor driven diffusion coefficient α(τ t ) with respect to the choice of averaging
length L.

The situation changes dramatically when trying to use φ = p, i.e., pressure
driven diffusion parameter α = α(pt ). Figure 9 shows that for higher Weissenberg
numbers the results are quite sensitive to the choice of the averaging length L. For
shorter L the results are rather randomly affected and inconsistent, while for large
L the high diffusive coefficient is preserved which leads to over-smoothed results
with underestimated extremal values.

The quick look at the tension on the wall (Fig. 10) and pressure drop (Fig. 11)
just confirm the fact that the choice of α = α(pt ) is not suitable for practical use,
leading to large variability of the results depending on L.
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Fig. 7 Extremes values of the stress tension on the wall −(τ · n) · t |w along the channel wall for
different values of lengths of the averaging history L, depending on the Weissenberg numbers
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Fig. 9 Maximum and minimum values of the elastic stress tensor τ components, for different
lengths of the averaging history L with α defined by (39) and φ = p depending on the Weissenberg
numberWe. (a) Component τ11. (b) Component τ12. (c) Component τ22

5.4 Residual Diffusive Term

In order to avoid the dilemma with the choice of the functional dependence of α(·),
the stabilization by added Laplacian can rather be applied to steady residual (time-
derivative) of stress tensor. This indirect smoothing applied on residual seems to be
very robust and yet quite easy to implement choice. For the numerical simulations
using this residual stabilization defined by the diffusive term α·�τ t , the same values
of the parameter α described in Sect. 5.1 were used, i.e., α ∈ {10−4, 10−3, 10−2

}
.

The contour fields of the components of the elastic stress tensor are shown in Fig. 12.
The final fully converged results are almost identical for all choices of parameter
α, including the reference non-diffusive solution with α = 0. This is significant
improvement over the standard artificial diffusion shown in Sect. 5.1 where the
results were heavily affected by the choice of parameter α, leading to solutions that
differ from the one of the original non-diffusive model.

Further details regarding the extremal stress values shown in Fig. 13 document
the extension of the range of attainable Weissenberg numbers due to applied residual
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Fig. 11 Pressure drop dependence onWe for different values of lengths of the averaging history L

stabilization. By choosing sufficiently high parameter α, the critical Weissenberg
number was increased by about 50%. Figures 14 and 15 confirm this trend, showing
that with α = 10−1 the critical Weissenberg number was raised up to We =
0.68, while only We = 0.44 could have been achieved without the stabilization.
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Fig. 12 Components of the elastic stress tensor τ , obtained using the residual stress diffusion (5)

Important is that this form of vanishing residual stabilization is safe in the sense that
it doesn’t affect the final steady solution.

6 Conclusions and Remarks

The series of numerical tests revealed several characteristic features and characteris-
tics associated with the use of the described variants of the artificial stress diffusion.
The main conclusions for all variants are summarized here, while for more details
supporting these conclusions we refer to our previous works, where individual stress
diffusion terms were studied separately.

(a) Constant diffusive term in the form (2) - This is the simplest generic version
of the artificial stress diffusion. It was shown that such added term allows to
extend the robustness and working range of the numerical method to higher
Weissenberg numbers, but it comes at the price of reduced accuracy of the
method. The simulations performed using this term for the cases at moderate
Weissenberg numbers (where the solution can also be obtained without the use
of any stabilization) have shown that the solutions obtained without and with
this kind of diffusive term differ significantly, with progressive deterioration of
the diffusive solution for higher values of the diffusion coefficient α. This is
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Fig. 13 Maximum and minimum values of the elastic stress tensor τ components, obtained
using the residual diffusion term for different values of the parameter α in (5) depending on the
Weissenberg numberWe. (a) Component τ11. (b) Component τ12. (c) Component τ22

why this primitive form of the artificial diffusion should be used with extreme
caution, with the level of diffusion being kept as small as possible. An attempt
has been made to make an automatic adjustment of the diffusion coefficient
with respect to Weissenberg number, i.e., α = α(We) with values close to
zero for low We (when the method is stable even without any stabilization)
and setting substantially larger values of α as the We reaches certain critical
threshold. The threshold value ofWe is case dependent and should be properly
adjusted together with the asymptotic value of α for the highest range ofWe.
This automatic setup of α = α(We) was studied in detail in [29], showing that
this choice is safer for practical use, preventing excessive artificial diffusion to
spoil the numerical results. In general however this constant (in time and space)
choice of the diffusion coefficient α leads to results that are always to some
extent affected by the artificial (non-physical) added diffusion. The advantage
of this choice might be seen in simplicity of the formulation that allows for
obtaining some theoretical results concerning the mathematical well-posedness
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Fig. 14 Extreme values of the stress tension on the wall −(τ · n) · t |w along the channel wall for
different values of α, depending on the Weissenberg number

Fig. 15 Pressure drop depending onWe for different values of α

of the problem, including the stabilization term. Such theoretical results are
often not available for the more complicated stabilization techniques.

(b) Time-dependent diffusive term in the form (3) - This is the first step in the
improvement of the original constant diffusion technique, trying to remove its
main weakness which is the presence of the added artificial term effects in the
steady-state problem solution. The principle is based on practical observations
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from numerical simulations showing that the method tends to be mostly
unstable at the beginning of the iterative process, starting from some ad-hoc
chosen initial condition. The added time-decay of the diffusion coefficient
α = α(t) helps to stabilize the initial phase of iterations, while it is significantly
reduced (or completely vanished) towards the end of the time-marching iterative
process, where the final (steady) solution should be recovered. This setting was
successfully tested in [28], showing that if properly fine-tuned, this approach is
very safe to use leading to solutions that are almost free of the artifacts of over-
smoothing due to presence of the artificial diffusive term. The disadvantage
of this approach can mainly be seen in the need to manually adjust the decay
rate for the α(t), allowing it to reduce sufficiently before the iterative process
is stopped. For this it is necessary to have some a-priori estimate of iterations
needed to reach the steady state. As an advantage of this particular method can
be named the fact that from the point of view the mathematical analysis, this
version of the model is not any different as the previous case with constant
diffusion coefficient α, provided that the choice of α(t) guarantees that it is
a bounded, positive, smooth, monotonically decaying function of (iterative)
time t .

(c) Time-derivative-dependent diffusive term in the form (4) - The problem of the
previous (time-dependent) artificial diffusion method, where some estimate of
the number of iterations till the steady state was needed, is resolved now by
choosing the diffusion coefficient being a function of time-derivative of the
solution α ∝ φt . In this way it is possible to make the artificial diffusion term
to completely vanish at the moment the steady solution is reached for which
φt = 0. This behavior was documented by simulations and discussed in detail
in [28]. This time-derivative dependent setup showed to be quite robust and
insensitive to the choice of the starting value of α0 in (38). The main problem
is to choose properly the flow variable φ on which the function α(φt ) will
depend. The numerical experiments have shown that the choice of φ = ‖τ‖
is better than φ = p, because pressure p tends to fluctuate more, which may
de-stabilize the solution by rapidly varying coefficient α. The norm of the extra
stress tensor ‖τ‖ work visibly better, probably also because it combines the
changes of all components of the tensor, avoiding some very fast variation
typical for individual components or other scalar quantities. From the numerical
implementation point of view this version of the added stabilization term is still
almost identical to previous two simpler variants, but mathematical analysis
of the underlying model is already significantly more complicated as some
assumptions on temporal behavior of the solutions are needed to control the
diffusion coefficient α(φt ).

(d) Residual diffusive term in the form (5) - This method proved to be most efficient
and robust from the four artificial diffusion terms used in the present study. Its
design was motivated by the idea of making the stabilization term proportional
to the time derivative of the solution as in the case of α(φt ), but removing
the need of finding suitable form of the function α(φt ). In the present form,
the implementation of the method with �(τn − τn−1) = �τn − �τn−1 is
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very straightforward, because it only requires to remember and use again the
values of �τn−1 from the previous time step. The only adjustable parameter
is the constant proportionality coefficient α in E = α · �τ t . The numerical
experiments have shown that the method is quite robust with respect to values
of α, leading (obviously) to the same final steady solution, independently of the
choice of α. It is interesting to note that although the stabilization term contains
the third order mixed partial derivatives, the term is linear in contrast to the
previously used time-derivative-dependent stabilization term in the form (4).
This may simplify the rigorous mathematical analysis of the extended model
and numerical solver. As mentioned earlier, the physical or mathematical
interpretation of this stabilization term proportional to �(τ t ) (or (�τ )t ) is
not so obvious as in the previous cases. Probably the best interpretation can be
in the context of residual smoothing approach, considering that the difference
τn − τn−1 corresponds to the steady residual for the stationary problem; hence
the Laplacian is applied to smooth this residual between the iterations.

The stabilization methods presented here were considered in the context of iterative
solution of steady problems; however the same approach can possibly be used to
stabilize sub-iterative process within the unsteady time-stepping in physically non-
stationary problems.

The numerical simulations performed in the framework of this paper have
shown the applicability of various versions of the artificial stress diffusion for
stabilization of numerical methods for simulation of viscoelastic Oldroyd-B fluid
flows at moderate Weissenberg numbers. The artificial stress diffusion proved to be
very simple and effective tool in improving the robustness of existing numerical
solvers. The main advantage comes from the ease of implementation and use
with existing standard codes. On the other hand although the artificial diffusion
helps to enlarge the region of applicability of the basic numerical method, it
is evident that this approach has some limitations, making it efficient just for
moderate Weissenberg numbers. For extremely high Weissenberg numbers flows
some other specialized methods and solvers should be recommended, using specific
discretization techniques (e.g., based on the log-conformation tensor reformulation
[6, 18]).
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Cellular Automata Describing
Non-equilibrium Fluids with Non-mixing
Substances

Carlos Ramos, Fernando Carapau , and Paulo Correia

1 Introduction

Cellular automata (CA) are discrete dynamical systems introduced by Von Neumann
and Ulam, in the late 1940s [1]. Since then many applications in natural sciences and
mathematics were developed, for example, in fluid dynamics with lattice Boltzmann
methods [2, 3], fluids in heterogeneous porous media [4], in genetics [7], dune
dynamics [5], spatial pattern formation [6], and many others [8]. Cellular automata
can be seen as an idealization of a physical system in which space, time, and
certain physical quantities take a finite set of values. Cellular automata provide
simple models of complex systems showing that collective complex behavior can
emerge from the composition or interaction of simple components. Even if the local
interactions are perfectly described in a direct manner, it is possible that the global
behavior of a system obeys unexpected patterns. This fact makes CA suitable to
model and simulate non-equilibrium systems. In the 1980s, Wolfram [9, 10] gave
a classification of cellular automata which produces an intuitive way to distinguish
the dynamical behavior of cellular automata in four distinct classes, accordingly:
Class 1: almost every initial conditions produce an eventually fixed point behavior.
Class 2: almost every initial conditions produce an eventually periodic behavior.
Class 3: almost every initial conditions produce a pseudo-random behavior. Class
4: almost every initial conditions produce a complex behavior articulating regular
patterns with structured non-periodic geometric patterns.
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A very detailed comparison of the CA methods, for practical fluid-dynamics
problems, with conventional methods from numerical analysis is explained in [11],
in particular, with details from a computational point of view, considering memory
usage, computational time, and other characteristics.

Nevertheless, most of the interest in the use of cellular automata focuses on non-
equilibrium fluids or fluids composed with different phases, in which the differential
equations are hard to implement.

In [12] were introduced and discussed several techniques to explore evolutionary
dynamics of the automata space, using biologically motivated concepts. In partic-
ular, specific genetic algorithms and techniques such as mutation, assembly, and
recombination of CA. In that context the code rule of a CA was called the genotype,
and the diverse characteristics of generic CA realizations were called phenotype.
Here, these denominations are changed and adapted to the present context. The
advantage of evolutionary methods is to efficiently obtain CA rules with specific
characteristics. Previous work on evolutionary search over cellular automata can be
found also in [13, 14].

In this paper are presented techniques for modeling systems, seen as idealized
fluids, where may coexist distinct substances in diverse phases. These techniques,
using cellular automata, are suitable to simulate transient, non-equilibrium behavior
in fluid mechanics or other phenomena, such as fracture dynamics on heterogeneous
materials.

Our main result is the development of the assembly method, introduced in [12],
to determine CA code rules of increasing complex behavior. This means that the
systems present an increasing number of distinct behavior and spatial-temporal
patterns. A canonical process of assembling two CA rules is defined. This method
allows the study of the singular perturbation of a complex fluid and the study of
the interaction between two similar fluids subject to instabilities, leading to global
phase transitions.

In Sect. 2 the notions and concepts used in the paper regarding cellular automata
are introduced, in particular those notions from [12], such as the singular pertur-
bation, assembly, and the canonical assembly. The basic CA rule 3E6IGS58S,
which is used in the simulations, is also defined. In Sect. 3, the computation of the
canonical assembly of the CA rule 3E6IGS58S, its variations, and the simulations
of its perturbations are presented.

2 Preliminaries and Definitions

Some notions regarding one dimension cellular automata are here introduced. Let
Zn = {0, 1, 2, . . . , n− 1}, n > 0, be the local state space. Let φ : Zm

n → Zn be
a map, which determines the local dynamics of the system and is called local map
or CA rule. An element in Z

m
n , i.e., a word or a block of size m in the alphabet Zn,

is called a local configuration. The map φ induces a block map φk , k ∈ N, which
transforms words in Zn, of size m+ k, into words of size k, through
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φk : Zm+k
n → Z

k
n,

φk (x1 . . . xm+k) := φ (x1 . . . xm) φ (x1 . . . xm) . . . φ (x1 . . . xm) .

There is a natural identification of φ1 with φ. To simplify the exposition, consider m
to be an odd number so that m = 2r + 1, for a certain natural number r . The global
map is then defined by

' : ZI
n → Z

I
n,

' (x) := (φ (x[j−r,j+r]
))

j∈I ,

where I can be Z, N or a finite set ZL = {1, 2, . . . , L}. A cellular automaton is
the specification of the number of local states n, the size of the local configuration
m, the local map or CA rule φ, the configuration space or global state space I,
and if needed, the boundary conditions which depend naturally on I and m. The
time evolution of the system is given by the iteration of the map ', given an initial
condition x (0) = (xi (0))i∈I ∈ Z

I
n,

x (t + 1) = '(x (t)) , t ≥ 0,
x (0) = (xi (0))i∈I ∈ Z

I
n.

The parameter m = 2r + 1 gives the dependence of each state, in the next time
instant on the states of the neighbor cells, r cells to the left and r cells to the right.
In the case I is N or a finite set, it is necessary to specify boundary conditions, on the
left in the first case and both left and right in the second case. For convenience, [j ]n
denote the n-expansion of the natural number j , that is, j in base n. By convention,
the number of digits in [j ]n is fixed and equal to nm. That is, if [j ]n = j1 . . . jr then

j = j1 × nr−1 + j2 × nr−2 + · · · + jr−1 × n1 + jr × n0.

On the other hand, a word j1 . . . jr , in Z
r
n with r ≥ 1, can be seen as a representation

of a natural number j ∈ N, in base n, denoted by 〈j1 . . . jr 〉n ∈ N. With this notation

j1 . . . jr ∈ Z
r
n → 〈j1 . . . jr 〉n = j ∈ N,

j ∈ N→ [j ]n = j1 . . . jr ∈ Z
r
n.

Once fixed the value m and the configuration space I (and eventually the
boundary condition), a cellular automaton is completely characterized specifying
a sequence α = (α1, . . . , αnm) ∈ Z

nm

n corresponding to the sequence of the images
of every local configuration under φ. This sequence is called CA code rule and is a
functional representation of the CA, that is, a particular symbol in a certain position
in the referred sequence has a functional meaning. The position j in the sequence α
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gives a configuration which is the n-expansion of the integer (j − 1) and the value
αj is the image of that configuration under the rule φ, that is, αj = φ [j − 1]n.
Therefore, the CA code rule is

α = (φ [j − 1]n
)nm
j=1 .

A more compact way to give a particular CA code rule is to use the Wolfram
numbering. The CA code rule is seen as the expansion in base n of a certain number
which when converted to decimal is designated as the Wolfram number of the CA
code rule. If n < 10 the number of digits of the Wolfram number is less than the
number of digits corresponding to the original CA code rule; therefore it is a more
compact way of specifying the CA rule. An even more compact form is to use
hexadecimal base (if the number of states is less than 16), or a larger base number.
Since we deal with very large CA-code rules, we will use base 32-expansion to
represent the CA code rules in compact way. The base 32, similarly to base 16, uses
the digit set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F,G,H, I, J,K,L,M,N,O,P,Q,R, S, T ,U, V }.

As an illustrative example consider the CA code rule 01110110 which determines
the local map

000
0

001
1

010
1

011
1

100
0

101
1

110
1

111
0

The sequence 01110110 represents a number in binary. The corresponding number
in decimal base is 110 = 0×20+1×21+1×22+1×23+0×24+1×25+1×26+0×27

(note the reversed order). In hexadecimal the rule 110 is designated by 6E, and in
base 32 is 3E. See Figs. 1 and 2.

To resume, a CA code rule will be a sequence α = α1α2 . . . αnm ∈ Z
nm

n , with
n ∈ N. The space of the CA code rules is denoted by G. The space of CA code rules
which have n different symbols is denoted by Gn, and the space of CA code rules
which have n different symbols and with neighbor number equal to m is denoted by
Gn,m.

The cellular automaton which is central in this work is a 3-state rule, with m = 3
and I = ZL, for a certain natural L. The CA code rule is

Fig. 1 Explicit CA code rule 110, in Wolfram numbering
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Fig. 2 Example of a
realization of the automaton
rule 110

α = 202000211011010222222101111.

The local map in Z3 = {0, 1, 2}, is then defined by

000
↓
2

001
↓
0

002
↓
2

010
↓
0

011
↓
0

012
↓
0

020
↓
2

021
↓
1

022
↓
1

100
↓
0

101
↓
1

102
↓
1

110
↓
0

111
↓
1

112
↓
0

120
↓
2

121
↓
2

122
↓
2

200
↓
2

201
↓
2

202
↓
2

210
↓
1

211
↓
0

212
↓
1

220
↓
1

221
↓
1

222
↓
1

The corresponding natural number (in decimal base), Wolfram number, is

3786635351324 = 2× 30 + 0× 31 + 2× 32 + 0× 33 + 0× 34 + 0× 35

+ 2× 36 + 1× 37 + 1× 38 + 0× 39 + 1× 310 + 1× 311

+ 0× 312 + 1× 313 + 0× 314 + 2× 315 + 2× 316 + 2× 317

+ 2× 318 + 2× 319 + 2× 320 + 1× 321 + 0× 322 + 1× 323

+ 1× 324 + 1× 325 + 1× 326.
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Fig. 3 Realization of CA
rule 3E6IGS58S, with
random initial conditions

Note that the same number in base 2 is the CA code rule in reversed order, that is,

111101222222010110112000202binary = 3786635351324decimal .

In a more compact description, its hexadecimal representation is 371A50E151C
and in 32-base is 3E6IGS58S. This last representation will be chosen to refer the
CA rule, since it is shorter. In Fig. 3 we present an example of a realization with
initial global state given by a random vector x0 ∈ Z

150
3 .

2.1 Singular Perturbation and Pattern Stability

A singular perturbation of the CA rule is a transformation in a single symbol of the
CA code rule, and it is the simplest possible transformation defined on the rule space
Gn,m. This perturbation can be generated randomly or generated by a deterministic
process. To give a singular perturbation, it is necessary to specify the position in
the CA code rule where the mutation is to occur and how it occurs. Recall that a
position j in the sequence α gives a configuration which is the n−expansion of the
integer (j − 1), that is, [j − 1]n, (00 . . . 00 is the configuration of the position 1),
and the value αj is the image of the configuration under the automaton φ, that is,
αj = φ [j − 1]n, j = 1, . . . , nm.

Now, consider the stability of the patterns produced by time evolution of an initial
condition, with respect to singular perturbation. There are several cellular automata
which are very robust under singular perturbation, regarding the geometric structure
of the patterns produced, and others very sensitive. However, some CA are robust to
singular perturbation in some positions and in other positions are strongly sensitive.
As an example of this phenomena, see the Figs. 4, 5, 6, 7, and 8. The same CA code
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Fig. 4 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

rule 3E6IGS58S is singularly perturbed in different positions, and for each case a
realization of the CA is obtained, with random initial conditions. The realizations
show the similarity of some of the mutated CA codes and the drastic changes in
others.

2.2 Assembly of CA Code Rules

Next, it is described the assembly technique which produces CA rules obtained from
two given CA rules. The assembled CA rule inherits several characteristics from the
original rules; in particular, it maintains the original CA as subcases for special
initial conditions. Let α = α1 . . . αpm ∈ Gp,m and β = β1 . . . βqm ∈ Gq,m be two
CA code rules with p, q,m ∈ N. The alphabet underlying Gp,m is, as usual Zp, and
for Gq,m is Zq . The assembly of α with β is a general procedure which gives a class
of CA code rules in the space Gn,m, where n = p + q.

The first p symbols of Zn are reserved to codify the rule α and the last q symbols
of Zn to codify the rule β, using the correspondence
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Fig. 5 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23, with random initial conditions

Zp

↓
Zn

0 . . . p − 1
↓ ↓
0 . . . p − 1

and
Zq

↓
Zn

0 . . . q − 1
↓ ↓
p . . . p + q

Denote the correspondencê : Zq → {p, . . . , p + q} ⊂ Zn and the reversed
correspondence˜ : {p, . . . , p + q} → Zq . Note that̂can be seen as adding p to
each symbol if each symbol is seen as a natural number. For each local configuration
i1 . . . im ∈ Z

m
p , corresponding to the CA code rule α ∈ Gp,m, it is associated

the same configuration (with the same symbols) in Z
m
n . To each configuration

j1 . . . jm ∈ Z
m
q , corresponding to the CA code rule β ∈ Gq,m it is associated the

configuration ĵ1 . . . ĵm in Z
m
n . This gives a large number of degrees of freedom

to choose the image of the local map associated with configurations which mix
symbols from {0, . . . , p − 1} and {p, . . . , p + q}. This means that there are many
different CA code rules arising from assembly of two specific CA code rules α, β,.

Let φα ,φβ , φγ denote the local rules for each CA code rule α, β, γ . Then γ is a
CA code rule assembly of α, β if the following property is Satisfied:

x1 . . . xm ∈ {0, . . . , p − 1}m ⇒ φγ (x1 . . . xm) = φα (x1 . . . xm) ,

x1 . . . xm ∈ {p, . . . , p + q}m ⇒ φγ (x1 . . . xm) = φβ (̃x1 . . . x̃m) .
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Fig. 6 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

The local configurations for φγ with digits exclusively from {0, . . . , p − 1} or
exclusively {p, . . . , p + q} are called pure local configurations; the local configura-
tions mixing digits from {0, . . . , p − 1} and {p, . . . , p + q} are called mixed local
configurations. The images under φγ of pure local configurations in {0, . . . , p − 1}
are determined by φα , and the images under φγ of pure local configurations
in {p, . . . , p + q} are determined by φβ . The images under φγ of the mixed
configurations are not determined by α, β. Therefore, must be as external parameters
or degrees of freedom. As an example, consider the CA code rules α ∈ G2,3, rule
18, and β ∈ G2,3, rule 110, given by

α = 01001000 and β = 01110110.

The second CA code rule, β, is transformed via 0 → 0̂ = 2 and 1 → 1̂ = 3 into

β̂ = 23332332.

Note that the cellular automata β and β̂ are equivalent, although the symbols are
distinct; therefore, the two automata are identified β ←→ β̂.
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Fig. 7 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

Consider a CA code rule γ ∈ G4,3 obtained by assembly of α and β. Therefore,
corresponds to a cellular automaton that when restricted to initial conditions (and
boundary conditions) with states 0, 1 will reproduce the exact patterns of α and
when restricted to initial conditions (and eventual boundary conditions) with states
3, 4 will reproduce the patterns of β (up to the transformation 0 → 3, 1 → 4). A
CA code rule γ satisfying this property is called the assembly of α and β. There
are many different CA code rules arising from assembly. The local map in Z4 =
{0, 1, 2, 3}, for a rule γ ∈ G4,3, assembly of α and β has the following structure:

000
↓

γ1 = α1

001
↓

γ2 = α2

002
↓
γ3

003
↓
γ4

010
↓

γ5 = α3

011
↓

γ6 = α4

012
↓
γ7

013
↓
γ8

020
↓
γ9

021
↓
γ10

022
↓
γ11

023
↓
γ12

030
↓
γ13

031
↓
γ14

032
↓
γ15

033
↓
γ16
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Fig. 8 (a) Realization of the CA rule 3E6IGS58S. (b) Realization of a perturbation of the CA
rule 3E6IGS58S at position 23

100
↓

γ17 = α5

101
↓

γ18 = α6

102
↓
γ19

103
↓
γ20

110
↓

γ21 = α7

111
↓

γ22 = α8

112
↓
γ23

113
↓
γ24

120
↓
γ25

121
↓
γ26

122
↓
γ27

123
↓
γ28

130
↓
γ29

131
↓
γ30

132
↓
γ31

133
↓
γ32

200
↓
γ33

201
↓
γ34

202
↓
γ35

203
↓
γ36

210
↓

γ371

211
↓
γ38

212
↓
γ39

213
↓
γ40

220
↓
γ41

221
↓
γ42

222
↓

γ43 = β̂1

223
↓

γ44 = β̂2

230
↓
γ45

231
↓
γ46

232
↓

γ47 = β̂3

233
↓

γ48 = β̂4
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Fig. 9 Distinct assembly of rule 18 with rule 110: (a) Realization for γ (1). (b) Realization for
γ (2). (c) Realization for γ (3)

300
↓
γ49

301
↓
γ50

302
↓
γ51

303
↓
γ52

310
↓
γ53

311
↓
γ54

312
↓
γ55

313
↓
γ56

320
↓
γ57

321
↓
γ58

322
↓

γ59 = β̂5

323
↓

γ60 = β̂6

330
↓
γ61

331
↓
γ62

332
↓

γ63 = β̂7

333
↓

γ64 = β̂8

In Fig. 9 are shown three realizations of distinct CA-rules in G4,3 arising from
the assembly of α and β. From left to right are denoted by γ (1), γ (2), and
γ (3). The initial conditions are composed by two segments with random initial
conditions from {0, 1}, and the middle segment is generated randomly from {2, 3}.
The difference between the rules γ (1), γ (2) and γ (3) are that for γ (1) the values of
the rule for mixed local configurations are taken randomly only from {0, 1} which
means that the patterns arising from α dominate. For γ (2) the values of the rule
for mixed local configurations are taken randomly only from {2, 3} which means
that the patterns arising from β dominate. Finally, for γ (3) the values of the rule
for mixed local configurations are taken randomly only from {0, 1, 2, 3} with equal
probability, which means that the initial patterns arising from α and β mix and
interact along the time flow.

The examples shown in Fig. 9, with α = 01001000 and β = 01110110,
correspond to

γ (1) = 0112001120110101101100200111012000101000022311331001101202232132,

with a majority of states for mixed configurations taken randomly from {0, 1},
γ (2) = 0122001322123301103200332232312232321203022331331203321232232132,
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with a majority of states for mixed configurations taken randomly from {2, 3},
γ (3) = 0132003130120123101100230113312000201000022313331023103232232132,

with an equilibrium of states for mixed configurations taken randomly with
probability 1/2 from {0, 1} and {2, 3}.

2.3 Canonical Assembly of a CA Rule

Consider now a process to assembly two copies of the same CA rule. In this case,
it is possible to turn the assembly uniquely determined, that is, not depending on
externally given parameters. Therefore, this process is called canonical assembly.
The canonical assembly can be viewed as the embedding of a particular system
in a larger one containing two copies of the original system. This process is
particularly important if it is necessary to model a system in non-equilibrium
which is transforming and exhibiting new patterns of behavior although maintaining
others. This can be achieved allowing singular perturbations after a canonical
assembly, as it is seen in the next section.

Let α ∈ Gp,m and n = 2p. Consider the state transformations

̂: Zn → Zn and ˜: Zn → Zn,

with

0̂ = p, 1̂ = p+1, . . . , p̂ − 1 = 2p−1, p̂ = p, p̂ + 1 = p+1, . . . , 2̂p − 1 = 2p−1,

and

0̃ = 0, 1̃ = 1, . . . , p̃ − 1 = p − 1, p̃ = 0, p̃ + 1 = 1, . . . , 2̃p − 1 = p − 1.

Note that Ẑn = {p, p + 1, . . . , 2p − 1} and Z̃n = Zp = {0, 1, . . . , p − 1}.
Moreover, ˜̂x = x and ̂̃x = x.

Let NX (i1i2 . . . im) be the number of digits in i1i2 . . . im belonging to a certain
subset X ⊂ Zn. Let

χ (i1i2 . . . im) =
{

0 if NZp (i1i2 . . . im) > r,

1 if NZp (i1i2 . . . im) ≤ r.

Recall that r = m/2 − 1. The condition above simply determines if the number
of digits in i1i2 . . . im belonging to Zp is larger than the number of digits in
{p, p + 1, . . . , n− 1}, with n = 2p. Then the canonical assembly of α produces
a CA code rule γ = (γk)k=1,...nm with
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γ〈i1...im〉n =
{
α〈̃i1...̃im〉p if χ (i1i2 . . . im) = 0,

β〈̃i1...̃im〉p if χ (i1i2 . . . im) = 1.

where β = α̂ = (̂αk)k=1,...,pm . Recall that 〈i1 . . . im〉n is the position number
associated to the local configuration i1 . . . im in base n. The number

〈̃
i1 . . . ĩmp

〉
is the

position number associated with the local configuration ĩ1 . . . ĩm in base p, since the
transformation˜sends Zn to Zp. The canonical assembly produces a CA rule which
in practical terms, reproduces two copies of the same CA with the duplication of the
number of states.

3 Case Study: Rule 3E6IGS58S

The CA rule 3E6IGS58S (see Fig. 3) is seen as an idealized fluid where two
substances which do not mix easily and two different phases of one of the substances
are in unstable equilibrium. The states 0, 1 (lighter colors) are seen as the same
substance in a different phase, and the state 2 (darker color) is a different substance.
This phenomenon reflects on the persistency of the local state 2 in refined geometric
structures and on the interaction between states 0, 1 which interchanges in a
complex way.

Through the general process of the canonical assembly applied to the CA rule
3E6IGS58S, it is obtained a CA rule which models a system composed of two
fluids of the same type. Moreover, the perturbation of the CA rule leads to complex
behavior, where the realizations of the CA rule present the patterns of the original
fluids and the patterns arising from the perturbation. In particular, the singular
perturbations considered in Sect. 2.1, for the individual fluid, are applied.

3.1 Canonical Assembly of Rule 3E6IGS58S

Let p = 3, consider the 3-state CA rule 3E6IGS58S, given by

α = 202000211011010222222101111,

and let

β = α̂ = 535333544344343555555434444,

which is obtained from α adding 3 to each symbol, as explained in the assembly
section. Now, consider the canonical assembly of α, with

0̂ = 2, 1̂ = 3, 2̂ = 5, 3̂ = 3, 4̂ = 4, 5̂ = 5,
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Fig. 10 Realization for the
canonical assembly of the
rule with structured initial
conditions: three segments
randomly generated from
{0, 1, 2}, from {3, 4, 5}, and
again from {0, 1, 2}. Random
initial conditions

and

0̃ = 0, 1̃ = 1, 2̃ = 2, 3̃ = 0, 4̃ = 1, 5̃ = 2.

The CA code rule is, represented in base 32,

8598OE44A81JS1KVBGVUQ5KDRJ7UP0JUBPL9CBFFBDIPFH1669SA00CU2

. . . MLT0B3AI26QSATJCN6LO7PKRTSIC2QFB180IQJTCQAFIUC6CEOSMSRI.

In Fig. 10 is shown a realization of the canonical assembly of the rule, exhibiting
the coexistence of the two fluids in similar regimes.

3.2 Perturbations of the Canonical Assembly

In Fig. 11 it is shown the singular perturbations of the canonical assembly of
the CA rule 3E6IGS58S in which there is a singular perturbation in the local
configurations: 333, 5 �→ 4, 544, 3 �→ 4, 554, 4 �→ 3, showing the coexistence
of the patterns of the original fluid and the patterns arising from the perturbed CA,
from Sect. 2.1, Figs. 4, 5, and 6.

Finally, consider the assembly of two CA code rules with randomly chosen val-
ues for the mixed configurations. In this case, the original patterns are maintained,
as long as the initial condition is restricted to pure local configuration states. If the
initial conditions mix states, then there is a complex interaction between the two
fluids and the patterns arising from the original CA.

This method produces CA rules which have unstable equilibrium between the
two coexisting fluids as is shown in Fig. 12.
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Fig. 11 (a) Perturbation of the canonical assembly of rule on the local configuration 333 as in the
figure (in this case local configuration 000). (b) Perturbation of the canonical assembly of rule on
the local configuration 544 as in the figure (in this case local configuration 211). (c) Perturbation
of the canonical assembly of rule on the local configuration 554 as in the figure (in this case local
configuration 221

Fig. 12 (a) Realization for γ4, with structured initial conditions: three segments randomly
generated from {0, 1, 2}, from {3, 4, 5}, and again from {0, 1, 2}. (b) Realization for γ5, random
initial conditions

4 Conclusions and Further Developments

In the present paper techniques are developed for modeling idealized fluids where
coexist distinct substances in different phases. These techniques, based on cellular
automata, are appropriate to simulate transient and non-equilibrium behavior in fluid
mechanics. The main result is the development of the canonical assembly method
which allows the determination of CA code rules with complex behavior, obtained
from given initial CA rules. The systems subject to assembly present an increasing
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number of distinct behavior and spatial-temporal patterns, maintaining, for certain
initial conditions, the original patterns. Several families of CA, associated with
idealized fluid substances, are considered. The canonical assembly method allows
the study of small perturbations of a complex fluid and the study of the interaction
between two similar fluids subject to instabilities. It is clear that the instabilities
depend on the particular rules. The considered rules are sensitive to certain singular
perturbations and not to other. The systematic study of the perturbations of these
rules will be considered in future work, aiming a complete classification of its
behavior.
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Part III
Experiments



Circular Causality and Function
in Self-Organized Systems
with Solid-Fluid Interactions

Benjamin De Bari and James A. Dixon

1 Introduction

The concept of self-organization has far-reaching applications, including non-
equilibrium physics such as the Benard convections [1] and lasers [2], and even
biological phenomena such as collective behavior [3] and motor control [4, 5]. One
way of characterizing these self-organized phenomena is as the emergence of mutual
constraint among constituent elements in a complex system. These constituents
could be the light particles in a laser [2] or individual amoeba in a colony of
bacteria [6]. In each case, the nonlinear interactions between constituents drive the
emergence of macroscopic organization of the collective ensemble and possibly new
properties of the system. Often these macroscopic dynamics exert an influence back
on the microscopic dynamics, causing the constituents to become co-constrained
and leading to a reduction in the total degrees of freedom of the system. For
example, in the case of Benard convections, the emergence of convective rolls
imposes constraints on the trajectories of the particles [1]. Self-organization in these
systems is driven by dissipative entropy-producing processes, and they are thus
called dissipative structures. Notably dissipative structures obtain in both living and
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nonliving systems and thus have been identified as a promising phenomenon for
bridging the life and natural sciences.

We review two nonliving dissipative structures in which fluids play a pivotal
role for supporting self-organization and the emergence of mutual constraint among
solid elements. In each case, individual solid constituents are embedded in a fluid
milieu (oil and water, respectively) and subject to non-equilibrium forcing (electrical
and chemical, respectively). These solid elements have dynamics influenced by the
fluid, and those dynamics also feedback and alter properties of the fluid. Because
the solid elements all alter a shared fluid, the reciprocal interactions between an
individual and the fluid lead to mutual constraint among all solid elements in the
system and to the self-organization of structures and dynamics. A host of interesting
phenomena are observed due to this mutual constraint, including formation of
structures, oscillatory dynamics, coordination among multiple structures, and even
emergent sensitivity to weak magnetic fields. While the two systems are quite
distinct instantiations, we argue that the self-organized dynamics in each system
derive from a shared circular causality that stems from the reciprocal solid-fluid
interactions.

These nonlinear interactions are also subject to the thermodynamic contingencies
within each system, as dissipative self-organization is maintained by entropy-
producing processes. Researchers have, for some time now, been engaged in
identifying overarching principles that predict the time-evolution of nonequilibrium
systems. One candidate hypothesis is that nonequilibrium systems will evolve
towards states (i.e., configurations, processes) that produce entropy at the fastest
possible rate given the boundary conditions and constraints, often called the max-
imum entropy production principle (MEPP) [7–10]. We have found evidence that
the dynamics of both dissipative structures discussed herein can be well explained
by a MEPP. As we discuss, the joint influence of this MEPP and the nonlinear solid-
fluid interactions leads to interesting and sometimes surprising dynamics in these
systems.

2 Exemplary Dissipative Structures

2.1 The Electrical Self-Organized Foraging Implementation:
E-SOFI

Our most studied system is an electrically driven dissipative structure. Metal beads
sit in a 6-cm2 dish with a shallow bath of oil. Approximately 5 cm above the dish,
separated by an air gap, is a fixed-source electrode that delivers positive charges
to the system. A metal ring surrounds the beads and is connected to a grounding
electrode. Charges accumulate on the surface of the oil and on the beads, which
become dipoles that are attracted to the grounding metal ring. After some time, the
beads tend to spontaneously aggregate into branching strings of beads called “trees”
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Fig. 1 Characteristic
example of a tree-structure in
the E-SOFI. The white
column above the dish houses
the source electrode. The
grounding electrode is
attached near the top-left
portion of the metal ring.
Trees like this one will tend to
move around in the dish and
change orientation and shape
while the system is running

(Fig. 1). These trees maintain contact with the grounding ring, serving as pathways
for the conduction of charge. The trees also exhibit dynamic motion, translating
along the interior edge of the ring as well as flexing and swaying through the oil.

The primary dissipative process measured is the electrical current through the
grounding ring. We calculate the rate of entropy production * as a function of the
applied voltage V, electrical current I, and system temperature T according to

* = V I (x, t)

T

where current I is a function of time t and the position x of the tree. One key
finding from studying this system is that the trees, and the system as a whole,
appear to abide by a variational principle to maximize * [11–13], that is, to
maximize the rate of entropy production. A wealth of evidence supports that the
morphology of the structures and their dynamics tend to emerge such that * is
maximized. We thus posit that the system is rudimentarily end-directed to maximize
*. Crucially, the structures are also increasingly stable with greater *, and thus by
maximizing the flow of charges, the trees are end-directed to maintain themselves.
We have argued elsewhere that the end-directedness of dissipative structures may
be analogous to the goal-directed behavior seen in biological systems [11–14].
Nonliving physical systems governed by variational principles tend to demonstrate
equifinality, converging on a given end-state independent of initial conditions. For
example, an isolated system with a small thermal gradient will evolve toward a state
of maximal entropy. End-directedness may be generally construed as a system’s
evolution being determined by the optimization of a physical quantity, such as
entropy, energy, or *. We have suggested that an end-directedness of this form is
common to living and nonliving dissipative structures [11–14].
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Fig. 2 E-SOFI setup for single-tree oscillations. The tip-bead trajectory is depicted as a red arc

The trees exhibit a variety of dynamics and are understood to move in order
to collect charges and increase the rate of entropy production. The tree will tend
to translate along the interior edge of the grounding ring, as well as swaying and
bending the trunk and branches through the oil. Because these dynamics contribute
to collecting charges, we consider them to be foraging behaviors, and thus we call
the system the Electrical Self-Organized Foraging Implementation (E-SOFI). These
foraging dynamics are robust. Even when a single-branched tree is fixed at the base
so that it cannot translate along the interior edge of the ring, it will tend to oscillate,
pivoting on its base bead (Fig. 2). The tip bead of the tree oscillates along a short
arcing path, centered nearly on the minimum distance from the source electrode
(Fig. 2). Interestingly, during this oscillatory cycle, the tip bead makes departures
from the charge-rich region near the source electrode, and we even observe *

decreasing during this time. This was initially mysterious; given that the system
seems to be trying to maximize *, why would the tree move away from the source
in a way that decreases *?

The answer lies in the interaction between the tree and the embedding fluid
milieu. Charges accumulate on the oil surface, and the tree moves up increasing
gradients of charge. The tree conducts charges to the ground, depleting their local
concentration, while elsewhere charges accumulate. If we imagine a distribution
of charges along the tip bead’s arc trajectory, charges will tend to be depleted
near the tree and accumulate elsewhere. The tree is thus continually reshaping the
distribution of charges on the oil surface and changing the gradients that it follows.
The charge distribution directs the tree’s motion, while the motion of the tree in turn
changes that same distribution. There is thus a reciprocal interaction between the
solid (tree) and fluid (oil) elements of the system that leads to these self-organized
dynamics.

This hypothesized interaction between the charge distribution and the tree was
investigated with a computational model of the system [15]. The model represents
the tip bead of a single tree moving along an approximately one-dimensional arc.
Electrical charges are distributed across that one-dimensional space. The model is
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instantiated as a set of coupled differential equations representing the forces on the
tip bead and the concentration of charges at each location in space (for details, see
[15]). The model readily reproduces the dynamics of the tree, with the simulated
bead oscillating around the virtual source electrode. In the model, it is evident that
the bead is continually following increasing gradients of the charge distribution,
always moving to more charge-rich regions. However, the tree’s conduction of
charges is continually reshaping that distribution, and the feedback between the
distribution and the bead drives the emergence of the oscillatory cycle.

While these results did suggest that the trees are following increasing gradients
and would thus tend to increase *, it remained a curious fact that the system
would prefer this nonstationary oscillatory state in which entropy periodically
decreases. To evaluate whether the oscillations produced greater rates of entropy
production than steady states, we conducted a parallel set of empirical and simulated
experiments [15]. Experiments focused on two conditions: (1) the tree (bead) was
allowed to oscillate freely, and (2) the tree (bead) was fixed at a point that minimized
the distance to the source electrode. The electrical current (proportional to the
rate of entropy production) was measured and averaged within trials. Comparisons
of these two conditions revealed that the average * was higher when the tree
was able to oscillate than when it was fixed at a minimum distance from the
source electrode [15]. This result held in both the physical and simulated systems.
Thus, while * decreases within a given oscillatory cycle, the entire oscillatory
process produces entropy at a faster rate than if the tree were static and * was
stationary. Here we observed that a variational principle might direct this far-
from-equilibrium system, but the complex reciprocal solid-fluid interactions drive
nonobvious emergent dynamics to satisfy that end.

The interaction between the tree and charge distribution leads not only to the
oscillatory and motive dynamics of a single tree but even enables coupling between
multiple trees [16–18]. This coupling has remarkable dynamical and functional
consequences for the trees’ activities. To investigate some of these consequences,
the system was expanded to have two separate grounding electrodes that could
support separate trees. The current through each grounding electrode and individual
tree was measured separately. These grounds were small metal brackets with
insulating material on the sides of the front faces. The base bead of a tree was
situated in-between these insulating constraints so the tree would form and only
exhibit swaying dynamics without any translation on the grounding electrode (Fig.
3). Two grounds were situated approximately 5 cm from each other in parallel, with
identical six-bead trees on each. The trees were thus constrained to share a region
of the charge distribution.

Each tree individually demonstrated oscillatory dynamics like those observed in
[15]. The two trees very quickly became synchronized, oscillating back and forth
together. This synchronization occurs due to the joint modulation of the charge
distribution. Each tree modifies the charge distribution, which modifies the forces
on both trees. These reciprocal effects thus couple the trees and drive the emergence
of a global (i.e., two-tree) steady state that here manifests as synchronization. The
computational model was extended to include two beads in a one-dimensional
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Fig. 3 E-SOFI setup for two-tree oscillation. X and Y coordinates used as frame of reference for
image processing. Tip beads are largely constrained to motion in the X-dimension

space, analogous to the laboratory experiments. The same synchronization effect
is observed in computer simulations, further supporting the charge distribution and
fluid as a mediator for this emergent organization [17]. Synchronization is quite a
common phenomenon in both biotic and abiotic oscillatory systems [19]. Here the
synchronization emerges due to the reciprocal interactions between the solid and
fluid elements in the system.

In addition to self-organized dynamical states, this fluid-mediated-coupling
enables functional interactions between trees [18]. Recall that the system appears
to abide by the variational principle to maximize *. This principle is analogous to
a “goal” of the system, and we treat the system and the trees themselves as being
rudimentarily end-directed to maximize *. Dynamics that contribute to increasing
* thus are construed as functional in that they serve an implicit end for this system.

A pair of trees was again placed on separate grounding electrodes and allowed
to oscillate. The tip bead of Tree 1 (Fig. 4a) was replaced with a magnetically
sensitive chrome bead. All other beads in both trees were composed of nonmagnetic
aluminum. A magnet on a moveable arm was positioned below the dish. It was
initially placed far below the dish, exerting negligible force on the chrome bead such
that Tree 1’s dynamics were entirely unaffected. The magnet could be mechanically
raised so that it held the tip bead of Tree 1 in a fixed position. When the tip bead of
Tree 1 was locked down by the magnet, it constrained the entire tree so that it was
bent away from the charge-rich region of oil nearer the source electrode (Fig. 4b).
We intentionally locked Tree 1 in a region that was further from the source electrode
and therefore would not draw as much charge; under this manipulation the current
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Fig. 4 (a) Pair of E-SOFI trees co-oscillating. Trees are approximately equidistant from the source
electrode. This is the “Unlocked Phase” of trials. (b) The magnet has been raised near the dish
to constrain Tree 1, locking it away from the charge-rich region between the two trees. Tree 2
oscillates freely. This is the “Locked Phase” of trials

measured from its grounding electrode decreases. The magnetic constraint is thus a
functional perturbation to Tree 1 and to the system, as it decreases the current and
consequently the rate of entropy production.

Experiments were conducted as two 10-min phases: (1) both trees oscillated
freely for 10 min (the Unlocked phase), and (2) Tree 1 was magnetically constrained
while Tree 2 oscillated freely (the Locked phase). The electrical current through
each grounding electrode was collected, as well as the position of the tip bead
of each tree, during all phases of the trial. Data from the Unlocked and Locked
phases were compared to evaluate if Tree 2’s dynamics and current change due to
the functional perturbation to Tree 1.

It was observed that when Tree 1 is constrained, the current it conducts is
dramatically decreased compared with the Unlocked phase. The magnetic constraint
thus worked as a functional impairment. Crucially, the current conducted by Tree 2
increased in the Locked phase, indicating that it was in some way compensating for
the loss of entropy production by Tree 1 [18]. This change in Tree 2’s current was
accompanied by a change in its motive dynamics. Tree 2’s oscillation amplitude was
averaged within each trial phase. Comparing between Unlocked and Locked phases,
we observed that Tree 2’s oscillation amplitude increased during the Locked Phase
[18]. Together, the results suggest that Tree 2 exhibited a change in dynamics that
compensated for the functional impairment to Tree 1. Here we see that the reciprocal
effects mediated by solid-fluid interactions enable functional coupling between
elements in the system. The two trees appear to be coordinated in maintaining
* by maintaining the electrical current, with their dynamics entangled due to the
reciprocal interactions.
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2.2 The Chemical Self-Organized Foraging Implementation:
C-SOFI

Another remarkable system we have investigated is a chemical dissipative structure
called the Chemical-Self Organized Foraging Implementation (C-SOFI), a simple
system that displays quite complex dynamics [20, 21, 27]. Thin, fragmented pellets
of benzoquinone (BQ) float at the air-water interface in a small petri dish. These
pellets dissolve into the aqueous milieu, thus altering the surface-tension gradients
on the water surface. These surface-tension gradients pull the pellets across the
water while the pellets continue to dissolve. There is a reciprocal interaction
between the pellet and the aqueous environment, reminiscent of that discussed in
the E-SOFI. The pellets dissolve and alter the surface-tension gradients, and the
surface-tension gradients move the pellets and alter how and where they dissolve.
The interaction between a single pellet and the aqueous milieu again leads to fluid-
mediated coupling between the pellets; one pellet’s alteration of the surface tension
field changes the forces on all pellets embedded in that field. When there are a large
number (i.e., more than 12) of pellets, these reciprocal effects drive the pellets to
aggregate, forming into a dynamic collective that tends to move through the dish as
a single entity (Fig. 5). This “flock,” as it is called, is a dissipative structure emerging
from the entropy-producing dissolution and motive processes.

Interestingly, the emergence of a flock depends on the geometry of the pellets.
Irregularly shaped pellet fragments, like those in Fig. 5, will readily form flocks.
However, circularly shaped pellets of approximately the same average size will
not. While the details of this phenomenon have not been fully explained, we
speculate that the nature of the reciprocal effects between the pellet and the aqueous

Fig. 5 Selected frames from a video documenting the emergence of a flock in the C-SOFI. After
about 90 s, the flock has formed. The flock varies in organization and particle number, while
retaining a tendency to aggregate. (Reprinted with permission from Ref. [21]. Copyright 2022,
American Chemical Society)
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environment change with different pellet shapes, leading to different coupling
relationships and consequently either flocking or not flocking. Some evidence
suggests that a thermodynamic variational principle may be at work. For example,
estimates of the entropy production in flocking irregular pellets and nonflocking
circular pellets demonstrated that the flocking pellets produce more entropy than
the nonflocking counterparts [21]. It is thus possible that the flock, a dissipative
structure, emerges as an opportunistic pathway for dissipation, consistent with the
maximum entropy production principle (MEPP). Computational modeling of the
system investigated the stability and likelihood of different flock sizes for each of
the irregular and circular systems [22]. The model, derived from the empirical data,
reproduces the tendency for irregular particles to produce large-pellet-number flocks
and the tendency for the circular pellets not to flock. Moreover, thermodynamic
analysis of the Gibbs energy of different flock sizes revealed that the system’s
preferred (i.e., most stable) state was also the minimum Gibbs energy state [22]. This
suggests that a Minimum Gibbs Energy Principle may be driving the emergence of
flocks of different sizes and accounts for the dynamics of both irregular and circular
pellets.

One of the most surprising phenomena displayed by the C-SOFI is a self-
organized sensitivity to weak magnetic fields [21]. To demonstrate this, a single
irregular pellet was created with some embedded ferrous material, making it
magnetically sensitive. This pellet is referred to as the “sensor” pellet. The sensor
pellet is placed alone in the dish where it swims across the water surface. A magnet
is positioned above the dish, and its height is adjusted such that it has only a
very weak interaction with the sensor pellet. At this height, the pellet is slightly
biased by the magnet but is not completely captured and still swims throughout
the entire dish. In a subsequent experiment, a single sensor pellet is placed into
the dish with 14 other nonferrous irregular pellets. These pellets form a flock,
incorporating the sensor. When the magnet is positioned above the dish, at the
height previously shown to be too great to constrain the single sensor pellet, the
entire flock moves under the magnet and remains there (Fig. 6). While the magnetic
field (at the set height) was not able to capture the single sensor pellet, the entire
flock nevertheless is constrained by interaction between the sensor and the magnet.
Control experiments revealed that the magnet does not constrain a flock of irregular
pellets with no sensor, nor are circular pellets with a circular sensor among them
constrained by the magnet [21].

We are currently pursuing a full explanation of these phenomena, but we
speculate again that the fluid-mediated coupling among particles is playing a crucial
role. It has been documented that some nonequilibrium systems will demonstrate
emergent sensitivity to weak energy fields through cooperative self-organizing
processes [23–26]. In such systems, the very weak microscopic interaction between
the system and field is amplified by the self-organizing processes and biases the
macroscopic activity of the system. Similarly, we hypothesize that in the C-SOFI the
reciprocal coupling between pellets leads to self-organizing processes that amplify
the effect of the magnet on the sensor pellet, biasing the entire flock to orient relative
to the magnet.
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Fig. 6 Selected frames from a video documenting the magnet sensitivity of a C-SOFI flock.
The sensor pellet is highlighted in red. After about 20 s, the flock has moved under the magnet
and remains in the area for the duration of the trial. (Reprinted with permission from Ref. [21].
Copyright 2022, American Chemical Society)

One of the clearest demonstrations of the feedback between the pellets’ disso-
lution and the properties of the aqueous milieu is detailed in this final experiment
from Chen and colleagues [27]. A thin hydrophobic plastic divider is placed in the
petri dish, bisecting it into roughly two equal compartments of water. The divider
has a small 3-cm gap – referred to as a “gate” – through which the water surface
extends and bridges the two baths. When a batch of irregular pellets is placed in the
dish on one side, they initially spread out and distribute themselves throughout both
compartments. Over time, they tend to aggregate near the center of the dish under
the gate. Shortly after, the flock, now consisting of nearly all particles in the dish,
selects one compartment of the dish to move into, breaking the symmetry of the
system. In some trials, the flock will later make a subsequent transition to the other
side.

Discrete samples of the surface tension on either side of the dish reveal that just
before the initial symmetry-breaking event, there is a large difference in the surface
tension on either side of the dish [27]. For example, in Fig. 7 the flock ultimately
selects side B. Immediately prior to this transition, the surface tension on side B was
much higher than on side A. It was repeatedly observed that the flock tended to make
a transition to whichever side has greater surface tension [27]. The imbalance in
surface tension emerges in part due to the dissolution of the pellets, as they decrease
the surface tension locally. Thus, the flocks modulate the properties of the aqueous
environment, which in turn feedback to constrain the activity of the flock. In trials
where repeated transitions were observed (i.e., the flock moved from A to B then
back to A), this occurred due to repeated flipping of the relative surface tension on
either side. The flock lowered the surface tension on one side, made a transition
to the other side, and then lowered the surface tension there until an imbalance
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Fig. 7 (I) Samples of the surface tension on either side of the dish. (II) Samples of surface tension
from a control trial with no pellets. (III) Image of the gate. (IV–VI) Selected frames demonstrating
the flock’s transition from side A to B. (Reprinted with permission from Ref. [27]. Copyright 2022,
American Chemical Society)

prompted the transition. While experiments could not be sustained long enough to
observe long timescale oscillation, the reciprocal feedback between the structure
and environment leading to oscillatory symmetry breaking is strikingly like that
observed in the E-SOFI. Again, we observe a variety of striking emergent dynamics
stemming from complex reciprocal solid-fluid interactions.

3 Agent-Environment Reciprocities as a General Framework
for Self-Organization

Herein we have reviewed some interesting dynamics in nonequilibrium systems
that all appear to derive from the dissipative processes and reciprocal interactions
between solid elements in a fluid milieu. We generalize this scheme by thinking
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of these systems in terms of agent-environment reciprocities. In each system, the
agent is the dissipative structure, while the environment is the embedding fluid and
its properties. More specifically, in the E-SOFI the agent is the bead structure while
the environment is the oil and the charge distribution. Similarly in the C-SOFI the
agent is the flock and the environment is the aqueous milieu with its surface tension
and concentration gradients. Notice that the system’s behavior is best understood
at the scale of the agent-environment system, not by appealing to one or another
alone (i.e., the dynamics of the bead structure can’t be explained by its own internal
properties and processes alone).

We can observe analogues of the reciprocal interactions displayed by the E- and
C-SOFIs in the case of a foraging bacterium. An amoeba, while navigating sugar
gradients, is all-the-while consuming sugar, altering the embedding distribution
much like the E-SOFI. An individual bacterium might not exert a dramatic effect
on the sugar gradients, but colonies of bacteria have been shown to do so. For
example, pioneering work by Adler [28] looked at the collective activity of E.
coli confined to a narrow glass tube. The tube was full of sugar with initially
uniform distribution. The E. coli colony was introduced to the tube at one end,
where it began to eat the sugar. Over time, the entire colony moved along the
length of the tube, consuming the sugar within. Recent modeling work demonstrated
that the colony’s consumption generates gradients of the sugar that then stimulate
chemotaxis, leading to a feedback process that drives the colony along the length
of the tube [29]. This consumption-induced motion is remarkably similar to that
observed in the E-SOFI. The same modeling work identified that the collective
chemotaxis observed is a dynamic that maximizes entropy production compared
with other possible modes of propagation through the tube [29]. Similar modeling
projects have further supported that bacterial foraging occurs due to reciprocal
interactions between metabolism, consumption, and embedding distributions of
metabolizable resources [30–32].

Such reciprocal effects are not limited to single-celled organisms. Researchers
studying chemotaxis of eukaryotic cells in multicellular organisms demonstrated
that some may be unable to individually sense and follow very shallow concen-
tration gradients but will collectively detect and navigate those gradients [33]. The
researchers identified that the cell-to-cell interactions are moderated by the local
concentrations of chemoattractant around individual cells, leading to an emergent
anisotropy. This emergent sensitivity to weak chemical gradients is compellingly
similar to the emergent magneto-sensitivity demonstrated by the C-SOFI.

At yet a larger scale, some problems in motor control can be characterized in
terms of the emergence of mutual constraint among coupled physiological elements.
To grip an object and keep it in hand, one must coordinate the forces on the
object from each finger. If one finger is perturbed such that it exerts less force,
another finger may exert more force to compensate. This phenomenon is called
“reciprocal compensation” and has been observed in the control and coordination of
speech effectors [34], force production by fingers [35, 36], and even interpersonal
coordination tasks [37, 38]. Such examples are strikingly like the coordinated
dynamics exhibited by the E-SOFI, wherein a tree will change its dynamics to
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compensate for the perturbations to its partner, thereby maintaining the system’s
REP. Reciprocal compensation requires that physiological elements are coupled,
and it is generally understood that this coupling is a complex process that includes
neural activity, mechanical forces, and perceptual information. An enticing yet
ambitious possibility is that we may use the E-SOFI as a minimal model of
these broader examples of reciprocal compensation, with the reciprocal fluid-solid
interactions as a minimal model of the more diverse instantiations of coupling in
biology.

The language of agent-environment interactions comes from well-established
theory within the field of ecological psychology [39–41]. An agent is very broadly
any organism, and the environment is the pocket of the world that it is engaged with,
with many salient features such as food sources, shelter, and other organisms. As an
example, consider an amoeba such as Escherichia coli embedded in an aqueous
medium with dissolved metabolizable sugars. E. coli are attracted to these food
resources and will tend to swim up increasing concentration gradients of sugar [28,
42]. When these bacteria detect a sugar gradient, they will orient and rotate their
flagella to propel themselves along the gradient and will continue swimming if
the concentration of sugar is increasing. This is known as “running” behavior. If,
alternatively, the bacteria detect that they are not following an increasing gradient
(e.g., the gradient is zero or decreasing in the direction of travel), they will throw
out their flagella at all angles and rotate them such that their trajectory is pseudo-
random. This is known as the “tumbling” behavior. While running and tumbling are
activities of the E. coli cell itself, they cannot be fully understood without reference
to the embedding context. Running or tumbling is necessarily understood relative to
properties of the embedding sugar gradients. Much like in the E- and C-SOFIs, the
proper unit of analysis is the agent-environment system. Moreover, in each case the
agent is a dissipative structure, whether the bead-structure, pellet flock, or amoeba,
and thus a thermodynamics-based framework of explanation may be available for
all such systems.

Here, we lay the foundations for such a framework. The variational MEPP is
analogous to the end-directed nature of biological behavior; the present state of the
system is constrained by a future state. In biology an organism may have an end,
such as finding metabolizable resources, but its behavior is also constrained by its
embedding context and its own capabilities. Behavior can be explained by three
factors: (1) the agent and its properties, (2) the environment, and (3) the intentions
or ends. Analogues of each of these factors can be identified in these nonliving
dissipative structures. As discussed, the agent is the structure itself, and so its
properties include its configuration, its motion, its electrical or chemical potential,
and likely other factors. The environment of each system is most easily identified
with the embedding milieu with such salient factors as charge density, aqueous
concentration, and surface tension. Constraining the interaction of this reciprocal
pair is the intention, which we identify with the variational MEPP.

The agent and environment interact dynamically in the context of the system-
level end for entropy to be maximized. For example, a tree structure (agent) in
the E-SOFI interacts with the charge distribution (environment) in nonlinear ways
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and selects an oscillatory dynamic (behavior) that maximizes entropy production
(intention). If one of the three factors changes so does the behavior. We discovered
that oscillations did not occur if the voltage was low, and consequently the charge
density in the oil was lower [15]; a change in the environment while maintaining
the same agent properties and intentional state leads to a different behavior. This is
directly analogous to the transition between running and tumbling behavior in E.
coli driven by the change in ambient concentration gradients. If you decrease the
sugar gradient while maintaining the same properties of the bacterium and its goal
to forage, that triggers a transition to a different behavioral mode. The whole range
of the interesting life-like dynamics of the E- and C-SOFIs can similarly be cast in
terms of this tripartite formalization.

4 Conclusions

We have aimed to illustrate that reciprocal interactions are essential to a host of
self-organizing events in both living and nonliving dissipative systems. In the E-
and C-SOFI, fluids played a key role in mediating those interactions. While the
role of fluids was evaluated only qualitatively herein, we hope that subsequent work
will more significantly evaluate the fluid dynamics in each system. In particular, we
seek to find a mapping of the tripartite formalization of agent, environment, and
intention in the theory of fluid dynamics. It is possible that mathematical features
of the fluid dynamics can be generalized to use as a common framework for all the
self-organized phenomena outlined herein and more.
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Hydrokinetic Energy Harvesting
Potential of Triangular Prims and Cross
Cylinders

Rachmadian Wulandana and Fairooz Haque

1 Introduction

The undertaking project is motivated by extensive studies reported by Chung,
Vaidya, et al. on vortex-induced autorotation of symmetric bodies [1–3]. In par-
ticular, the current study builds upon the characteristics of hinged short Delrin
cylinders exposed to water flow confined in transparent observation chamber [3].
The tests were performed using a commercial closed loop flow tank furnished with
a centrifugal pump capable of delivering maximum of 60 cm/s average flow speed.
The vortex structure was visualized using hydrogen bubble, and the images were
analyzed for quantitative results [4]. The Delrin cylindrical samples with its long
axis perpendicular to the flow demonstrate four (4) distinct responses: stagnation
or no motion, random oscillation, periodic oscillation, and autorotation. Parameters
that dictate the motions include the flow speed and non-dimensional inertia, defined
as I ∗ = I

(ρf d
5)

, where the I, ρf , and d refer to moment of inertia, fluid density,

and the diameter of the cylinder model, respectively. The autorotation for the short
solid cylinder was indicated to occur at Reynolds numbers around 3000 and 4500
for bodies with I ∗ of approximately a little less than 0.20. The cylindrical bodies
demonstrate predominantly random oscillations, and the oscillation frequency tends
to linearly increase with Reynolds number. Bodies with Aspect Ratio (AR, ratio of
length to diameter) of unity show larger propensity for rotation than that of bodies
with AR of two.
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The importance of upstream blockage on the autorotation of Delrin short cylinder
was highlighted in our works [5]. The rotation frequency or rpm of the suspended
Delrin cylinder was significantly increased when the incoming water flow was
perturbed by an object. A video of such phenomenon can be viewed in this
website [2]. The blockage also causes the autorotation to occur at lower flow speed
than that without the obstacle. When cylinders with AR of less than and larger than
unity were tested, it was found that the upstream obstacle increases the autorotation
potential of these cylinders. Past experiments with such cylinders in normal flow
did not show autorotation [3]. The upstream distance and size of the blockage from
the cylinder also show effects on the rpm of the autorotation. The effect from the
distance diminishes as the obstacle moves away from the cylinder. In the current
paper, we will report effects on the upstream distance on the power production of
our turbine models.

The utilization of upstream blockage to enhance autorotation is not novel. A
similar asymmetric blocking technique was employed by Skews to enhance the
vortex shedding behind the body and increase the rotational speed of polygonal
prisms exposed to air flow [6, 7]. Armandei and Fernandes use a similar technique
called buffeting for marine energy harvesting [8]. Here, a blunt object is placed
directly in front of a power extracting device to generate an oscillating wake.
The vibration of the device occurs when the frequency of the wake matches with
the natural frequency of the device. Upstream deflectors have been extensively
studied by researchers interested in the hydrokinetic energy harvesting. In particular,
effects on the placement and geometry of deflectors on the performance of vertical
axis turbines, such as Darrieus and Savonius types, have been investigated both
experimentally and numerically. The deflector is a stationary thick plate placed
upstream relative to the turbine and partially blocks the incoming flow. The
reduction in the cross-section area increases the incoming flow speed that impinges
into the advancing blades. Deflectors that make obtuse angle to the incoming flow
guide the flow toward the advancing blades and prevent the flow to stream into the
returning blades [9]. Experimental works by Zhang et al. found that deflectors that
make 120 degree angle to the incoming flow best improve the power coefficient
of a 2-bladed Savonius-like vertical axis turbine [9]. Golecha et al. studied the
effects of deflector’s angle relative to the flow direction and its position relative
to the turbine on multi-stage Savonius turbines [10]. They concluded that if the
deflector optimally placed relative to the turbine, it can double the power coefficient.
Similar conclusion was drawn when a pair of deflectors was utilized [11]. Patel et al.
conducted a similar test on a three-bladed Darrieus turbine using a deflector that is
normal to the flow direction [12]. Patel and Patel further utilized a similar deflector
concept to improve the performance of dual rotor Savonius turbine [13]. Jeeva et
al. performed experimentation on a pair of angled deflectors placed upstream an
inclined three-bladed Savonius turbine [14]. They concluded that the inclination of
the shaft improved the power coefficient of the turbine. Mosbahi et al. designed
and studied a combination of a deflector and narrowing channel to improve the
performance of Savonius turbines with twisted blades (helical Savonius rotor)
[15, 16]. Salleh et al. compared the power enhancement by upstream deflectors on
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the power coefficients of conventional Savonius turbines placed in air and water
flows [17]. They concluded that the effects of the deflectors on the power production
by the two fluids are very similar.

Computer simulation studies on such deflectors were performed to understand
complex flow characteristics and to estimate improvement of torques and potential
power output. Nimvari et al. studied the effects of placing a porous deflector on the
performance of Savonius wind turbine, and they discovered that the flows through
the porosity caused breakdown of the wake behind the deflector that leads to an
incoming flow with fewer fluctuations [18]. Using computer simulation, Alizadeh
et al. studied the effects of placing a simple barrier in front of Savonius turbine
and concluded that the power can be increased by 18% at an optimal distance [19].
Mosbahi et al. performed three-dimensional numerical studies of hydrokinetic heli-
cal Savonius turbines with upstream deflectors and concluded an increase of 17.4%
in power generation [16]. Pulijala and Singh [20] provided the computer model of
the experiment setup by Golecha et al. [10] and found reasonable validation of the
improvement in power coefficient. Kerikous and Thevenin conducted optimization
studies for the shape and position of a thick deflector placed upstream a two-bladed
Savonius turbine and concluded that the optimum configuration increased the power
coefficient by 15% [21]. Patel and Patel recently performed numerical study to
investigate the effects of diverging and converging deflectors on the performance of
dual-rotor Savonius turbines [13]. Both experiment and computer simulation studies
showed significant effects of the deflector on the turbine power output. The local
increase of incoming flow velocities due to the partial reduction in the cross-section
area of the channel provides extra momentum on the turbine blades. In addition to
that, the blockage also prevents negative torque caused by the incoming flow on the
returning blades.

Renewable energy is appealing since it is a clean and ecologically acceptable
alternative to traditional power generation methods that may be employed in remote
societies without causing major environmental degradation. A recent review on
hydrokinetic energy harvesting technologies pointed out the safety and sustainabil-
ity of hydrokinetic energy systems, particularly for applications in remote places
that are difficult to reach via transmission lines [22]. The hydrokinetic system is
attractive because it does not require massive and expensive infrastructure unlike
the hydropower system. The power capacity from hydrokinetic is known to be small
but that may be appropriate for local needs. The power production of hydrokinetic
systems in remote areas has been investigated by numerous researchers from around
the globe. In Indonesia, for example, the potential power production from micro
hydro systems has been estimated to reach 144 MW [23]. Susilowati et al. argued
that micro hydrokinetic plants in seven locations along the Mahakam river in
East Kalimantan province of Indonesia can substitute the existing diesel-fueled
generators operated by national government [24]. In Malaysia, the power generation
from the hydrokinetic system is estimated to total about 500 MW [25]. Abundant
river debris, limited technology, and low current speeds put challenges on the
utilization of hydrokinetic energy systems and, hence, careful design and selection
of turbine types are crucial [25–27]. A small hydrokinetic system powered by a
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Pelton wheel turbine has been constructed as example in Sarawak, Malaysia [27].
The small plant was able to provide electricity for 15 families. In Thailand, the 77-
km U-Tapao river was estimated to produce 72 MW of hydrokinetic power from its
38 sub-basin small rivers [28]. In Tunisia, Africa, specifically near the Hama city,
an attempt to extract hydrokinetic energy from irrigation channels was facilitated
using Savonius turbines with twisted blades [15, 16]. A similar attempt to install a
5-kW underwater axial turbine in an irrigation canal was reported in Northern Cape
Province of South Africa [29]. In North Central Nigeria, the hydrokinetic potential
of rivers in the Lower Niger Basin was estimated to be about 826 MW [30]. In
India, the hydrokinetic power generation along the 195-km eastern Yamuna canal,
situated in Saharanpur district of Uttar Pradesh, was estimated to reach 27 MW
for an average of 2.5 m/s flow speed. In Brazil, a complex analysis utilizing river
average speed, change of elevation, and river depth along with 58 possible sites
of the plants estimates the hydrokinetic power generation along Amazon River in
Brazil to be about 910 MW [31].

Based on the mechanism of the kinetic energy conversion, the hydrokinetic
harvesting technologies can be classified as turbines, which constitute devices with
rotary motions, and non-turbines, which constitute devices that do not have rotary
motions [32, 33]. Turbines can be further classified according to the orientation
of the rotation axis with respect to the water flow direction, such as axial,
vertical, horizontal, and cross-flow turbines [22]. The axis of vertical turbines
is perpendicular to the flow direction, and the rotational plane is parallel to the
water surface. The vertical axis orientation allows the turbine to rotate despite of
the flow direction; hence it is attractive for applications in oceans [34]. Interest
of applications of vertical axis turbines, such as Savonius, Gorlov, and Darrieus
turbines, for applications in rivers was found to be increasing [35]. The turbine
category is populated by devices equipped with bladed rotors that rotate due to the
combination of drag and lift forces by the water flow. On the other hand, the non-
turbine category mostly constitutes devices that convert flow-induced motion (FIM)
and oscillation as well as vortex-induced vibrations (VIV) of the harvesting objects
exposed to water flow into useful electrical energy [22]. Various energy harvesting
mechanisms stem from different modes of vortex-induced vibration (VIV) that can
be classified as fluttering, galloping, vortex-induced vibration, and autorotation [36].
Summaries and reviews of various academic and industrial research on vortex-
induced energy harvesting technologies were provided by Rostami and Armandei
[37] and recently by Wang et al. [38]. While investigation in this area has been
dominated by academic research and small-scale experimentation and computer
modeling, several products have attracted industries for large-scale development.
For example, Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converts
the vortex-induced lateral oscillation of a bar exposed to water flow into electricity
by means of electromagnetic induction [39, 40]. On the other hand, Festo developed
DualWing Generator that exploits the flow-induced flutter mechanism by means of
a pair of NACA 0014 wings that oscillate synchronously in the opposite directions
[41]. The generator by Vortex Bladeless [42], a company based in Spain, exploits the
vortex-induced vibration of a blunt cantilever body exposed to wind [43]. The lateral
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vibration of the pole is converted to electricity by means of a patented alternator
technology.

In this project, three distinct vortex-induced autorotating bladeless turbine
designs are evaluated for their performance in terms of energy generation. Among
the many modes of vortex-induced vibration previously discussed, the autorota-
tion mode has received the least attention for energy harvesting. The Vertical
Axis Autorotating Current Turbine or VAACT, which constitutes a rectangular
plate hinged at its symmetric axis [44, 45], perhaps serves the best example for
an energy harvester that exploits the rotating mode of vortex-induced motion.
Such autorotation of symmetric rectangular plate under air flow was studied by
Skews [46]. The work, however, was not aimed for power generation. One of the
two triangular designs presented in this paper has straight sides while the other
has curved sides. The triangular prism designs are selected in this study due to its
well-studied autorotation characteristics when they are exposed to air flow [6, 7].
The curved sides of our design are expected to increase surface area needed to
generate torque fluid shear stresses. In terms of energy harvesting, an early work by
Vaidya et al. estimated possible power production from vortex-induced oscillation
of short cylinders [47]. Recently, our collaborative work with Chung and Vaidya
reported the autorotation potentials of various 3D-printed symmetric bodies under
water flow [5, 48]. The work has discovered that Cross Cylinder turbine models
demonstrated autorotation and power generation. This innovative model resembles
a merge of two short cylinders; each possesses an AR of unity, in orthogonal
manner. Other models studied in this experiment that did not show any rotation
can be viewed as combinations of symmetric bodies such as rectangular prisms,
cubes, polygonal prisms, star, ellipsoids, etc. Our works on the 3D-printed Cross
Cylinder models also revealed the minimum effects of turbine density on the power
generation and rotation-per-minute (rpm) of the turbine and the significant effects
of upstream obstacle on the power production [48].

In this paper, we will first discuss the turbine model, specification of the flow
tank, and tools utilized in this project, delving into the specifics of the operating
conditions and methods for experiment. Results on the effects of upstream obstacle
and tandem arrangement on the performance of the Cross Cylinder model will be
discussed. Moreover, the effectiveness of upstream obstacle on the rotation of such
vortex-induced turbines is investigated using triangular prism models.

2 Methods

The power generation potential of three 3D-printed bladeless turbine models (shown
in Fig. 1), triangular prism with straight sides (panel a), triangular prism with curved
sides (panel b), and Cross Cylinder turbine model (panel c), is investigated using a
custom-made water flow tank shown in Fig. 2 panel a. During the experiment, the
turbine model is placed in the middle between the two walls of the observation
chamber and is exposed to either free stream or perturbed flow caused by an
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Fig. 1 3D-printed turbine models used in this project: (a) a triangular prism with straight sides,
(b) a triangular prism with curved sides, and (c) a Cross Cylinder model

Fig. 2 Tools utilized in the project: (a) the custom-made open water flume furnished with
centrifugal pump, variable frequency drive, and observation chamber. The yellow arrows indicate
flow direction. The telescoping mechanism for turbine is shown in (b), and figure (c) shows the
detail of the connection between the turbine and motor. (d) shows the schematic when the turbine
is exposed to upstream blockage (the arrows indicate flow direction), and (e) shows the digital
multimeter used in the experiment
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Table 1 Properties of bladeless turbine models used in this project

Mass Volume Side surface area Moment of inertia

Turbine type (gram) (cm3) (cm2) (g.mm2)

Cross Cylinder 50.73 113.69 7854 57593

Triangular prism with straight sides 13.65 33.60 5850 1700

Triangular prism with curved sides 12.7 21.90 5941 1220

obstacle. The model was placed about 7 or 8 cm below the water surface that
occupies a little less than 15 cm of chamber depth. The width and length of the
transparent observation chamber are 15 and 60 cm, respectively. The panel d of
Fig. 2 shows the sketch of a turbine model exposed to such perturbed flow. The
asymmetric stream obstacle is provided by a 5-cm wide wooden ruler placed
perpendicular to the flow direction at either 10-cm, for close obstacle, or 20-
cm, for far obstacle, in front of the single turbine. In addition to the perturbed
flow mentioned above, the Cross Cylinder model is also tested under tandem
configuration. In the tandem arrangement, another identical Cross Cylinder is placed
approximately 10-cm behind the front turbine. The perturbed flow is not applied to
the tandem arrangement due to length limitation of the observation channel. In the
current report, only the power production from the main front turbine in the tandem
configuration will be reported. The second turbine was particularly “blocked” by
the main turbine, and there was very minimal rotational motion and power that can
be observed. Both triangular prism turbines can be considered as extruded planar
triangular shapes. One of them with straight sides, while the other with curved sides.
The heights of triangular turbines are 5 cm and the corner-to-corner distance is about
3 cm. The Cross Cylinder model represents a merge of two short cylinders; each has
equal diameter and length of 5 cm. These turbines were made of Polylactic Acid
(PLA) with 20% infill printing parameter (Table 1).

The flow tank is equipped with a 3-hp centrifugal pump capable of delivering up
to 60 cm/s of average water speed in the observation chamber. The experimentation
and observation of the turbine performance are made available through the 15 ×
15 × 60 cm3 transparent chamber made of 1/2′′ thick plexiglass. The Variable
Frequency Drive (FVD) allows the water flow to be controlled either manually or
automatically at frequencies ranging from 20 Hz to 60 Hz. The maximum average
flow speed that can be achieved is approximately 60 cm/s. A converging chamber
was designed at the entrance of the observation chamber to reduce the complexity
of the flow and to create uniform flow. The custom made closed-loop flow tank
was sponsored by the Vibration Institute, and it was constructed as a senior design
project within the Division of Engineering of SUNY New Paltz [49]. A 3D-printed
hollow cylindrical casing is designed to hold and waterproof a 0.5-V DC motor
that is used to generate continuous voltage and current data for this study. The wire
connections from the DC motor were connected to a Dawson Digital Multimeter
shown in Fig. 2 panel d. The digital multimeter is equipped with a USB connection
and a data acquisition software that allows for the collected date to be processed
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using Excel. The multimeter and software record measurements at a sampling rate
of 3 Hz. Each measurement set was taken over 180 data points culminating in a total
of approximately 60 s. Because the multimeter cannot measure voltage, current,
and power generated at the same time, tests conducted with this multimeter first
measured voltage, then switched to measure current while the flow tank continued
to run. The collected data was imported into Microsoft Excel for further process.

Stainless steel shafts of 2-mm in diameter are press-fitted into the turbine plastic
models. The coupling between the metal shaft and the motor shaft is facilitated by
a 2-cm-long rigid plastic tubing with 2-mm internal diameter. The shaft connection
is stabilized using 2-mm ball bearings properly secured at the base of the casings.
The waterproof 3D-printed casing for the DC generator allows the DC motor to be
lowered into the water stream by means of telescoping mechanism. The vertical axis
orientation is preferred than the horizontal due to its practicality for the installation
of the DC motor. This results in a short connecting metal coupling shaft that is
less prone to large bending caused by the water flow pushing the turbine models.
Figure 2 panel b displays the 3D-printed suspension frame with its telescoping
mechanism that allows the turbine casing to be lowered into the water. Panel c
depicts various components involved in the coupling between the turbine model
and the DC motor.

The turbine performance will be measured using Average Power production, pos-
sible Maximum Power production, Efficiency, Number of “Flips,” and Maximum
Rotation Time (Table 2). The Average Power is a product of the time-averaged of
the current and voltage absolute data. On the other hand, the possible Maximum
Power is a product of the maximum values of the current and voltage absolute
data. The Efficiency of the turbine is defined as the ratio of the Average Power
to the possible Maximum Power. The recorded current and voltage continuous data
demonstrate changes of signs from positive to negative due to the oscillation and
change of rotational movement. The total numbers of sign changes from the current
and voltage data during the 60-s observation period are combined, and this will be
reported as Number of Flips. On the other hand, the data collection also allows the
counting of time period in between two consecutive flips, when the turbine would
rotate in a single direction. The longest time in between these two sign changes of
each current and voltage data is combined and reported here as Maximum Rotation
Time. The unit used for Maximum Rotation Time is second.

Table 2 Definition of output by the turbine used for analysis

Term Definition

Average Power Product of the average voltage and current absolute data

Maximum Power Product of the maximum voltage and current absolute data

Efficiency Ratio between the Average Power and Maximum Power

Number of Flips Total number of sign changes of the current and voltage data
during the observation period

Maximum Rotation Time The sum of the longest times between two consecutive sign
changes in the current and voltage data
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Fig. 3 This figure shows the linear equation shows the relationship between the pump frequency
(x axis in Hz) and the average speed (y axis in m/s) for the case of normal flow without obstacles
and flows with close and far upstream obstacles

Prior to collecting the power data, the mean velocity of the water stream in
the observation channel was verified using a propeller flow meter from Vernier
[50]. The flow meter was placed in the middle between the two walls of the
observation chamber, which would be the location of the turbine. The measurement
was performed for the free stream condition and the perturbed conditions with close
(10-cm upstream) and far (20-cm upstream) obstacle. The speed data was collected
for 30 s, and the time-averaged mean velocity was calculated for a range of pump’s
frequencies from 10 to 60 Hz. The outcomes for the free stream and perturbed
flows are presented in Fig. 3. The mean velocity data for free stream are presented
using triangular markers. A linear regression of the data revealed useful relationship
between the pump’s frequency (x, in Hz) and estimated mean velocity (y, in m/s) in
the observation channel:

y = 0.0141x − 0.0705 (1)

This linear relationship is comparable to one obtained previously [49]. In this
graph, the circle and square markers represent the mean velocities detected by the
flow meter for the perturbed cases due to close and far obstacles, respectively. This
data represents local speed that would be experienced by the turbine due to the
presence of upstream partial blockage. The consistent data among the two cases
suggests that the obstacle certainly increases the local speed at the turbine’s location,
but its distances from the location do not have effect on the local speed. The increase
in speed is expected due to the decrease in channel width caused by the upstream
blockage.
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In this paper, the experiment results will be presented with respect to the
Reynolds numbers (Re) defined below:

Re = ρV d

μ
(2)

In this formulation, the V is mean velocity of the main incoming stream, not
local velocity experienced by the turbine. This mean velocity is estimated from
the pump frequency using Eq. 1 described above. The characteristic length, d, for
the triangular prism models is taken as the edge-to-edge distance of the triangular
shapes (3.75 cm). For the Cross Cylinder model, this length is taken as the diameter
of the cylinder (5 cm) that defines the model. The density, ρ = 998 kg/m3, and
viscosity, μ = 0.89 cP, are for the water taken at 20 ◦C.

3 Results

Results presented in this report are organized as follows:

• Data comparison from the Cross Cylinder turbine model
• Results on the performance of the Cross Cylinder turbine model
• Results on the performance of the triangular prism with straight sides
• Results on the performance of the triangular prism with curved sides

3.1 Data Comparison from the Cross Cylinder Turbine Model

In this section, it will be first shown the consistency of data among a series of same
experiments. Figure 4 panels a and b display three (3) data sets of Average Power
and Number of Flips, respectively, from a single Cross Cylinder turbine model
exposed to obstacle-free water stream. Figure 4 panel 1 demonstrates a consistent
linear relationship between the Average Power, in the y axis, versus the Reynolds
number, in the x axis, among all three data sets. The average power production
by the Cross Cylinder turbine here is slightly higher (less than double) than that
reported previously [5, 48] that were calculated from discrete, instead of continuous,
measurement of current and voltage. The linear relationship between the power
production and flow speed is duplicated here, but for larger range of Reynolds
numbers. The discrepancy between the current and past data can be caused by
many sources, particularly the differences in friction of the motor shaft and physical
resistance of the motor bearing used in these two experiments. The current work
also revealed consistent linear increase of the Maximum Power with respect to the
increase in flow speeds for the three (3) data sets. This data is not displayed, but,
subsequently, the calculated Efficiency of the Cross Cylinder exposed to free stream
is approximately constant, about 5%.
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Fig. 4 The two panels are data from the Cross Cylinder turbine exposed to free stream at various
flow speeds. Panel (a) shows Average Power generation versus Reynolds number (×1000), and the
data indicates linear increase in power with respect to the increase in flow speed. Panel (b) shows
the Number of Flips versus Reynolds number (×1000). Here, data indicates unchanged number
of flips with increasing flow speed for all three data sets. The two panels show that the data are
consistent within the three separate experiments

Figure 4 panel b displays the Number of Flips for increasing Reynolds number
from three (3) sets of data. The graph shows no consistent trend of Number of Flips
with respect to the increase of flow speeds. The same inconsistency was shown in
our previous work on a similar Cross Cylinder model but having high shaft friction.
Nevertheless, while no specific tendency is shown, the data variation indicates that
the Number of Flips is relatively the same for the given range of Reynolds numbers.
Similar trend to this is also observed for the Maximum Rotation Time given by the
three (3) sets of experiment data. Data on maximum rotation time will be displayed
later in comparison with other experiment data.

3.2 Results from the Cross Cylinder Turbine Models

The effects of the blockage distance and tandem configuration on the Cross Cylinder
turbine’s performance will be presented in the following sections. The results repre-
sent average data from three (3) separate experiments. Figure 5 panels a to e show
the experiment results for the Cross Cylinder turbine model exposed to free stream
(circle marker), perturbed flow due to close (10-cm) obstacle (rectangular marker),
perturbed flow due to far (20-cm) obstacle (diamond marker), and perturbed flow
due to far obstacle in tandem arrangement (triangle marker). Panel a shows the
Average Power versus Reynolds number. This data shows the multiplying effects
of perturbed flow in the power production. As expected, the power production
in the tandem arrangement is consistent with the perturbed flow due to the far
obstacle as the distance of the upstream obstacle from the turbine is essentially
identical. Generally, the close upstream obstacle results in larger multiplying effects
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Fig. 5 Results from the Cross Cylinder model are depicted relative to Reynolds number: (a)
Average power, (b) Maximum possible power, (c) Efficiency, (d) Number of flips, and (e)
Maximum rotation time

than the far obstacle when the Reynolds number is below 30,000. The multiplying
effects of the close obstacle however are diminishing, from about 13 times to
only 2 times, with the increase of Reynolds number. On the other hand, the graph
shows that the average power due to the far obstacle and tandem configuration are
consistently increasing with Reynolds number. The maximum multiplying factor
due to far obstacle is about 15 times. This is less than the maximum multiplying
factor presented by the close obstacle of about 21 times at low Reynolds number.
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Presented in panel b of Fig. 5 are the potential Maximum Power production of
the Cross Cylinder model for all flow cases studied in this project. The graph clearly
indicates the strong multiplying effects of perturbed flow on power production of the
turbine exposed to free stream. The turbine under free stream—without blockage—
shows the lowest possible maximum power for all Reynolds numbers and also low
gradient of the linear relationship. And, again, the possible Maximum Power for the
far obstacle (diamond) and tandem configuration (triangle) are essentially the same
for all Reynolds numbers observed here. Nevertheless, the maximum power for the
perturbed flow cause by 10-cm obstacle does not show large deviation from than
that by the other two cases. Regression analysis on each data set strongly indicates
linear relationship as the R2 ≈ 0.9 for all data set, except for the perturbed flow
case due to close obstacle. This case only shows R2 ≈ 0.7, indicating low linear
preference. Note that, as it is indicated in Fig. 3, the local speeds for the perturbed
case are essentially the same. Hence, the trend of data shown here may indicate that
the maximum power solely depends on the local speed experienced by the turbine.
Another important note that we can draw here is that the second turbine located
downstream in the tandem configuration does not affect the power production. It
can be seen that both the Average Power and Maximum Power data are consistent
between the tandem configuration and far obstacle configuration.

The ratio of the Average Power to the Maximum possible Power is defined as
the Efficiency of the turbine. Panel c of Fig. 5 depicts the Efficiency of the Cross
Cylinder turbine for all cases studied in this project. When the turbine is exposed
to the free stream, without obstacle, the Efficiency is increasing with the Reynolds
number, but the value is very small—only about 5%. The Efficiency is multiplied
when the turbine is exposed to perturbed flow. However, the effects from each are
not the same. The close obstacle—10-cm blockage—increases the efficiency up to
about 20%, but then the Efficiency decreases with Reynolds numbers down to 5%
when the flow speed is maximum. The tandem configuration and far obstacle setup
both increase the Efficiency up to about 28%. The Efficiency shown by these two
configurations is shown to be steadily increasing with the Reynolds numbers. The
tandem configuration seems to be better as it shows less up and down. So, this might
be the effect by the turbine placed on the back of the main turbine. The graph of the
Efficiency clearly reflects the power generation by the turbine exposed to these four
cases.

The effects of the flow perturbation and tandem arrangement on the Number of
Flips are displayed in panel d of Fig. 5. Clearly, the graph shows that the perturbed
flow reduced the number of flips. The effects of the far obstacle and tandem
configuration, again, are very similar. The close obstacle reduces the number of
flips, but the effects are reduced after Reynolds number around 30,000. Interestingly,
the entire graph resembles a mirror of the Average Power where the effect of close
obstacle also shows a local maximum around the same Reynolds number and the
effects of far obstacle and tandem are similar.

Panel e of Fig. 5 depicts the Maximum Rotation Time recorded for this turbine.
The rotation time also reflects some of the power production by the turbine. During
the two 60-s observation time, the turbine demonstrates oscillation and rotation. In
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the free stream, the longest rotation time shown by the turbine was about 11 or
12 min (combined from the current and voltage measurement). Note that this is not
the sum of all rotation times, but only the maximum rotation time demonstrated
by the turbine for the two 60-s observation period. This Maximum Rotation Time
for the free stream case also seems to be unchanged with the Reynolds numbers,
unlike the Average Power and Maximum Power. The low rotation time is reflected
in a very low power production by the no-blockage case. Other curves represent
results from all perturbed flow cases. The flow perturbation clearly increases the
maximum rotation time. However, the effects of the perturbed flow on the maximum
rotation time cannot be easily comprehended as there is no specific trend that
can be observed. The effects of the close obstacle and tandem configuration show
local peaks on different Reynolds numbers. On the other hand, the effects of the
20-cm blockage seem to increase with the Reynolds numbers with a slight local
deficit at Reynolds number around 40,000. The tandem configuration shows the
most consistent increase of Maximum Rotation Time with respect to the increase in
Reynolds numbers, with the exception of a drastic drop when the flow speed is near
maximum.

3.3 Results from Triangular Prism with Straight Sides

Figures 6 panels a–d, and e show the outcomes from the triangular prism turbine
with straight sides: Average Power, Maximum Power, Efficiency, Number of Flips,
and Maximum Rotation Time, respectively. Note that the range of Reynolds
numbers for the triangular turbines is lower than one used for the Cross Cylinder
because the characteristic length used here is shorter. Panel a of Fig. 6 depicts
the Average Power versus the Reynolds number for the turbine exposed to free
stream (circle), 10-cm upstream blockage or close obstacle (rectangle), and 20-cm
upstream blockage or far obstacle (diamond). Here, it can be seen that the power
production by the turbine exposed to free stream is linearly increasing with the
Reynolds numbers. This reflects results by the Cross Cylinder model, but the values
here are much higher. The data also shows that the upstream blockage generally
increases the power production. Effects from the close obstacle, however, are seen
to be more consistent than the effects by the far obstacle. Based on previous results
from the Cross Cylinder turbine, the far obstacle is expected to provide the largest
multiplying effects on the power production. Here, these results are not consistently
shown by the far obstacle as the power is not always the largest among the observed
flow speeds.

The possible Maximum Power, depicted in panel b of Fig. 6, also indicates
consistent increase of maximum power with respect to the Reynolds number. The
multiplying effects of the close obstacle look constant across the Reynolds numbers.
The effects of the far obstacle, again, do not seem to be consistent across the range
of Reynolds numbers.
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Fig. 6 Results from the triangular prisms with straight sides are depicted relative to Reynolds
number: (a) Average power, (b) Maximum possible power, (c) Efficiency, (d) Number of flips, and
(e) Maximum rotation time

The ratio between the Average Power to the possible Maximum Power results in
the Efficiency that is depicted in panel c of Fig. 6. Data indicates that the Efficiency
is increasing with the Reynolds numbers. The Efficiency can reach around 33%
when the turbine is exposed to perturbed flow. When the turbine is exposed to free
stream, the Efficiency can reach 20%. This is much better than that of Cross Cylinder
model which offers around 5–7%.
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Panels d and e of Fig. 6 show the Number of Flips and Maximum Rotation Time
produced by the triangular prism turbine with straight sides, respectively. The graphs
in panel d of Fig. 6 demonstrate an interesting finding. Here, up to Reynolds number
about 25,000, the perturbed flow does not provide any effect on the number of flips.
However, beyond this Reynolds number, there is a reduction effect by the perturbed
flow, particularly when the obstacle is far. This is in contrast with the data obtained
from the Cross Cylinder model which show significant reduction of the number of
flips by the perturbed flow across the range of observed Reynolds numbers. Also, it
should be pointed out that the Number of Flips presented here is quite high, about
150. This is much higher than that of the Cross Cylinder exposed to perturbed flow
than can be reduced to about 40 times.

Data shown on the Maximum Rotation Time shows no specific trend with respect
to the increase in Reynolds numbers. All data seem to populate in between 5 and
15 min, with one exception for almost 20 min. This data seems to indicate that there
is minimum effect of the perturbed flow on the Maximum Rotation Time of the
triangular prism with straight sides.

3.4 Results from Triangular Prism with Curved Sides

Figure 7 panels a to e show result from the experiment with the triangular prism
with curved sides. Panel a) displays the relation between Average Power and
Reynolds numbers. Unlike the power data of the Cross Cylinder and triangular
prism with straight sides, here, the average power shows a non-linear trend with
local maximums. The average power is steadily increasing to maximum values when
the Reynolds number is about 27,000, and then the average power decreases. When
the turbine is exposed to free stream, the average power reaches a little less than
200 μW. The perturbed flows increase the maximum achievement to about 400 μW,
double that produced by the free stream case. The similarity of data from the
experiment using close and far obstacles indicates that the distance of the upstream
blockage does not show significant effect on the power production.

Panel b shows the Maximum Power production in relation with the Reynolds
number. The Maximum Power produced by this turbine shows a non-linear trend
with local peaks around Reynolds number about 27,000, similar to the trend shown
by the Average Power. The maximum power production by this turbine exposed to
free stream can go to up to almost 600 μW, while that produced by the perturbed
flow can go up to about 900 μW. Similar to the case with the Average Power, the
blockage distance does not significantly affect the maximum power production. In
fact, at high Reynolds number, the maximum production is lower than the free
stream case. Generally speaking, the power production by this turbine is much larger
than that by the Cross Cylinder model but is comparable to the triangular prism
model with straight sides.

Panel c shows the Efficiency of this turbine. Because both the Average Power and
Maximum Power data are non-linear, it is not surprising to see that the Efficiency
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Fig. 7 Results from the triangular prisms with curved sides are depicted relative to Reynolds
number: (a) Average power, (b) Maximum possible power, (c) Efficiency, (d) Number of flips,
and (e) Maximum rotation time

shows non-linear trend with local peaks as well. The Efficiency of this turbine can
reach up to 50% for the perturbed flow and about 33% for the free stream case. The
close and far positions of the upstream obstacles do not show clear differentiation
on their effects on the Efficiency. Nevertheless, the 20-cm far blockage shows more
consistent trend compare to the 10-cm close blockage. The Efficiency of this turbine
is the highest among the three turbines studied here.

Panel d displays the Number of Flips for this turbine exposed to the three cases
of flows. Here, the graph also shows non-linear trend with local minimums near the



282 R. Wulandana and F. Haque

Reynolds number of 27,000, corresponding to the peaks for average and maximum
powers. Nevertheless, the flow perturbation does not seem to affect the Number of
Flips obtained by the free stream case as there is not much reduction of flips that can
be seen from the graph. Comparing to the other two turbines, this turbine shows the
least number of flips (much less than 120), indicating best autorotation performance
among the three turbine designs studied here. Nevertheless, the non-linear trend
and the specific Reynolds number corresponding to the maximum power prompt
the importance of further investigation on the effects of flow speed and turbine’s
geometry on the autorotation.

Consequently, the Maximum Rotation Time, shown in panel e also, displays
a non-linear trend, but in opposite direction to the Number of Flips. The trend
shows local peaks of maximum rotation time at around Reynolds number of 27,000.
The graph shows that the close obstacle does not affect the maximum rotation
time of the free stream case. On the other hand, the far obstacle shows significant
improvement over the Maximum Rotation Time around Reynolds number of 25,000.
The maximum rotation time obtained here is slightly better than that obtained by the
triangular prism with straight sides but less than the Cross Cylinder model.

3.5 Summary and Discussion

The three bladeless turbine designs discussed in this paper demonstrate distinctive
performance. The Cross Cylinder turbine and triangular prism design with straight
sides shows linear relationship between Average and Maximum Power production
with the increase in Reynolds numbers. On the other hand, the triangular design
with curved sides shows non-linear trend of Average Power and Maximum Power
versus Reynolds numbers. Table 3 shows that the Cross Cylinder model results
in the lowest Average Power among the three turbine models for all flow cases
studied here. The triangular prism with curved sides produces 191 μW when it is
exposed to free stream. The Average Power by this turbine can reach more than
400 μW when the flow is perturbed by the upstream obstacle. Table 4 summarizes
the possible Maximum Power produced by the three turbine designs exposed to
the three flow cases. Consistent with the Average Power, the Cross Cylinder model
shows the lowest possible Maximum Power, of around 200 μW, among the three
models. The two triangular prism models show similar possible maximum power of
around 500 μW when they are exposed to free stream.

Tables 3 and 4 also signify the effects of upstream obstacles on the Average
Power and Maximum Power. As is shown in Fig. 3, the upstream blockage increases
the local velocity experienced by the turbine. However, the distances, far or close,
do not affect the amount of velocity. For the Cross Cylinder model, the flow
perturbation can increase the Average Power by tenfold. For the triangular turbine
models, the flow obstruction can double or even triple the Average Power. However,
the multiplying effects by the blockages on the Maximum Power can be seen to
be less than on the Average Power. The Average Power by the triangular prism
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Table 3 Summary of Average Power (μW) by the three turbines exposed to the three flow
conditions. Only the maximum values are presented in this table

No blockage 10-cm blockage 20-cm blockage

Turbine type μW μW μW

Cross Cylinder 4.99 27.97 50.79

Triangular prism with straight sides 98.40 189.29 241.17

Triangular prism with curved sides 191.00 407.35 414.67

Table 4 Summary of possible Maximum Power (μW) by the three turbines exposed to the three
flow conditions. Only the maximum values are presented in this table

No blockage 10-cm blockage 20-cm blockage

Turbine type μW μW μW

Cross Cylinder 78.59 162.05 187.18

Triangular prism with straight sides 508.27 780.35 891.55

Triangular prism with curved sides 566.78 938.70 833.85

model with curved sides can exceed 191 μW in the free stream and 414 μW, when
the flow is perturbed. Possible maximum power of this turbine can reach 930 μW.
The blockage distances, far and close, do not show clear distinctive effects on the
turbine’s performance.

Effects of the perturbed flow on power production by the Cross Cylinder model
have been indicated in our past works with Chung [5, 48]. In these past studies, the
current and voltage data were obtained discretely, not continuously, and the power
production reached only about 1.5 μW at Reynolds number around 34,000. These
studies were conducted between Reynolds numbers 27,000 and 34,000. The linear
relationship between the power and flow speed and the multiplying effects of the
upstream obstacle were observed. Effects of the blockage distance were not studied
in the past. Instead, effects of the turbine mass density were investigated, and it was
found that the effects of the turbine’s density are minimal.

Considering the small size of the turbines tested in this project, the power
production presented here is quite large. The large-scale power production of turbine
prototypes may be estimated using the Power Coefficient (Cp) formulation defined
as

Cp = W

ρn3D5 (3)

where ρ is the fluid density, n is the revolution per minute, and D is the diameter of
the turbine [51]. Assuming that the Cp, ρ, and n for the turbine model and prototype
are equal, the large-scale output of the prototype can be calculated as follows:

Wp = (
Dp

Dm

)5Wm (4)
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Table 5 Summary of the Efficiency (%) by the three turbines exposed to the three flow conditions.
Only the maximum values are presented in this table

No blockage 10-cm blockage 20-cm blockage

Turbine type % % %

Cross Cylinder 6.36 20.00 28.05

Triangular prism with straight sides 19.36 30.60 32.28

Triangular prism with curved sides 33.70 47.90 49.73

Table 6 Summary of the Maximum Rotation Time (second) by the three turbines exposed to the
three flow conditions. Only the maximum values are presented in this table

No blockage 10-cm blockage 20-cm blockage

Turbine type sec. sec. sec.

Cross Cylinder 13.5 48.17 45.50

Triangular prism with straight sides 14.00 14.00 19.50

Triangular prism with curved sides 31.00 32.50 19.50

where Wp and Wm are the power by the prototype and model, respectively, and Dp

and Dm are the diameters of the prototype and model, respectively. The formulation
indicates that a-20 times scale-up would multiply the model’s power by 3.2e6 times
larger. A Cross Cylinder turbine prototype with 1.00 diameter and length potentially
can produce 15W of power under free symmetric stream and more than 150W
when it is exposed to perturbed flow. On the other hand, a 60-cm wide triangular
prism turbine with curved sides potentially can produce 600W of power under free
stream and 1324W of power when it gets exposed to perturbed flow.

Table 5 displays the Efficiency of the three turbines exposed to the three flow
conditions. Only the maximum values are presented in this table. The Efficiency is
defined as the ratio of the Average Power to the possible Maximum Power that can
be achieved by the turbine. The Cross Cylinder model shows the lowest possible
efficiency among the three turbine designs. The triangular prism model with curved
sides shows the best efficiency among the three models studied here. The Efficiency
by the triangular prism model with straight sides shows slightly less values than
the triangular model curved sides. The perturbed flow can be seen to significantly
increase the efficiency of the three turbines. The efficiency can go up to 50% for the
triangular prism model with curved sides.

Lastly, Table 6 summarizes the Maximum Rotation Time that was recorded
during the two 60-s observation period. Only the largest times are included in this
table. Note that this parameter does not represent the rotation per minute or angular
speed of the turbines. The Cross Cylinder model exposed to the free stream shows
the least amount of rotation time. The triangular prism with straight sides shows
similar maximum rotation time with the Cross Cylinder. The rotation time by the
triangular prism with curved sides double the times by the Cross Cylinder model.

The upstream blockage shows varying effects. It significantly increases the
maximum rotation time of the Cross Cylinder model (from 13.5 to 45.50 s), but
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it does not provide any significant effect on the rotation time of the triangular prism
with straight sides. The effects on the triangular prism with curved sides are also
minimal. The maximum rotation time can reach 45 s for the Cross Cylinder model
and the triangular prism with curved sides.

Low Number of Flips and high Rotation Time indicate high power production.
When the turbines are exposed to free stream, the triangular model with curved
sides shows the lowest number of flips among the designs discussed in this report.
Combined with its long rotation time, it generates large power production for this
turbine. The upstream blockage significantly reduces the Number of Flips of the
Cross Cylinder model. Interestingly, the flow perturbation does not affect the flip
frequency and rotation time demonstrated by both triangular models.

Data presented here indicates that the power production is not proportional to the
moment inertia and side surface area of the turbine models (shown in Table 1). The
moment inertia and the side surface area, needed to generate shear stress and torque,
of the Cross Cylinder turbine are the largest among the three models, but its power
production is the least. As the flow is provided by the same pump, the available
kinetic energy is the same for all the models. Hence, it should be expected that the
angular speed of the Cross Cylinder would be the least. Nevertheless, as neither the
torque nor the angular velocity data were measured in this experiment, it is difficult
to relate the power production with the geometry and mass properties of the turbines.
The triangular model with curved sides demonstrates better performance than its
counterpart model with straight sides. The two triangular models have similar side
surface area and the moment of inertia. The current data, however, are not sufficient
to support any conclusion regarding the role of the curvatures of the triangular
model. The roles of the curvature and sharp edges on the autorotation and power
production warrant further investigation.

4 Conclusion

Three distinctive bladeless turbine designs have been tested for their hydrokinetic
power production potential. The Average Power and possible Maximum Power
production by the triangular models are superior to the Cross Cylinder model.
In particular, the power produced by the triangular model with curved sides can
exceed 60 times greater than that of the Cross Cylinder model. The upstream
asymmetric blockage significantly improves the power production of all turbines,
but the greatest effect is on the Cross Cylinder model. The Cross Cylinder and
triangular model with straight sides show linear relationship between the power
production and Reynolds numbers. Interestingly, the triangular model with curved
sides shows non-linear trend with local peaks at around Reynolds number of 27,000.
Certainly, this is interesting to note as this turbine promises the best performance,
but this feature is limited for a certain range of flow speeds. This certainly warrants
further investigation.
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The upstream blockage disrupts the symmetric flow presented by the observation
channel. Hence, the blockage may provide a near-realistic situation of natural
rivers where the turbines would have been placed. In our experiments, the flow
perturbation significantly increases the power production of the turbines. The effects
on the performance of Cross Cylinder model are more significant than on the
performance of triangular turbines. However, its effects on the Number of Flips
and Rotation Time remain to be investigated. It certainly improves the autorotation
of the Cross Cylinder model, but it does not seem to show clear benefit for the
reduction of flip frequency and maximization of the rotation time of the triangular
prism turbines. The upstream distance of the blockage from the turbine affects the
power production of the Cross Cylinder, but not the Efficiency and rotation time.
The tandem configuration does not improve the performance of the front turbine.
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Fickian and Non-Fickian Transports
in Ultrasound Enhanced Drug Delivery:
Modeling and Numerical Simulation

Ebrahim Azhdari, Aram Emami, and José Augusto Ferreira

1 Introduction

In the World health statistics 2021: Monitoring Health for the SGDs, from the World
Health Organization, it is reported that cancers are among the leading causes of
morbidity and mortality worldwide with approximately 8.7 million cancer-related
deaths in 2016 and a projection of over 13 million deaths in 2030.

The classical approach to treat cancer is the chemotherapy administered with
different procedures depending on the cancer type. Traditionally, the cytotoxic drugs
are systemically administered and transported to the target by the blood stream
leading to severe side effects. Only a small part of the administered drug reaches
the target. The drug dose-limiting toxicity restricts the amount drug administered in
each chemotherapy protocol [37].

The cancer microenvironment is the major barrier to the drug delivery. The
connective tissue in the body is composed by interstitial fluid and extracellular
matrix (ECM) that is composed by proteins, glycoproteins, proteoglycans, and
polysaccharides. The change of the ECM properties is one of the main features
of cancer. Tumor progression is accompanied by the tumor fibrosis (desmoplasia)
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characterized by excessive collagen depositions in the surroundings of the tumor,
often crosslinked, that leads to an increase in the tissue stiffness [30, 34].

Many solid tumors are characterized by abnormal vasculature with intercellular
gaps and endothelial fenestrae that lead to vascular leakage; some regions present
a reduced penetration of blood vessels and consequently reduced blood flow. The
leaky vasculature and the non-existence of an efficient lymphatic drainage system
lead to the fluid accumulation and an elevated interstitial fluid pressure. In the
tumor periphery is observed lower interstitial fluid pressure due to the action of
the functioning lymphatic system. The balance between the irregular and leaky
vasculature system and the inefficient drainage lead to enhanced permeability and
retention effects [2, 31].

Novel tools and technological approaches have captured the attention of
researchers in drug delivery in order to improve the performance of conventional
therapeutics and patient compliance for cancer therapy. Physical (also called
exogenous, external, or extrinsic) stimuli-responsive drug delivery systems
(SRDDS) are promising approaches to control and target drug delivery for cancer
treatments [7, 13, 15, 33, 46]. In this case, the drugs are entrapped in nanocarriers
(liposomes, dendrimers, micelles, polymeric nanoparticles, carbon nanotubes,. . .)
that can be systemically administered and transported to the target. The application
of external stimuli (ultrasound, temperature, electric fields, magnetic fields,
light,. . .) activates the drug release at appropriate rate, specific time, and desired site
and eventually changing the properties of the target tissue that leads to the increase
of the drug transport. In this paper we will be focused in the use of ultrasound as
enhancer of the drug delivery.

Ultrasound has a number of attractive characteristics as a trigger for drug
delivery. It is promising because of its non-invasiveness, the absence of ionizing
radiations, and the facile regulation of tissue penetration depth by tuning frequency,
duty cycles, and time of exposure. When ultrasound is applied, the drug release can
be triggered through the thermal and mechanical effects generated by hyperthermia,
cavitations, and radiation forces. This phenomenon promotes the fusion of the
drug carrier and the heating of the cancer and the surrounding tissues, resulting
in change in the thermal and mechanical properties of the tissue. These changes are
experimentally observed in [14] and [16].

Ultrasound is mechanical longitudinal wave propagating in a medium through
changes in pressure, at frequencies higher than the audible ones for the human ear
(20 kHz). As the ultrasound wave propagates, it induces changes in the pressure
of the surrounding medium with a succession of compression and decompression
events. Ultrasound can be modulated by varying different parameters such as
frequency and intensity that are of utmost importance. Thermal and mechanical
effects are among the most important biological effects which are induced by
ultrasound [7, 11, 43].

When an ultrasonic wave propagates through the body, it is attenuated by the
contact with different tissues by absorption and scattering. As a consequence of
the energy absorption, an increase of tissue temperature is observed that leads to
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Fig. 1 Schematic representation of US enhanced drug delivery

biological properties change, an increase of the blood flow due to the dilation of
blood vessels, and an increase in permeability of the normal vascular walls.

Cavitation is recognized as a major cause of ultrasound-induced mechanical
effects. It is defined as the creation or motion of very small gas bubbles that
are produced in tissue due to the alternating expansion and compression of tissue
as acoustic pressure waves propagate through it. Once the cavitation bubbles
are produced, they may undergo oscillations during many cycles of the acoustic
wave, called non-inertial (stable) cavitation. When low pressure acoustic ultrasound
is applied, stable cavitation bubbles oscillate in size but do not collapse. This
oscillating motion causes the rapid movement of fluid near the cavitation bubble,
a phenomenon which is called micro-streaming. Stable cavitation can generate
mechanical stress on blood vessels to enhance vascular permeability of the tissue.
Inertial cavitation occurs due to violent oscillation, rapid bubble growth during the
rarefaction cycle of the acoustic wave, and then violent collapse and destruction of
the bubble. Bubbles that collapse close to a cell wall or solid surface produce a very
high-speed liquid jet that drives into the surface and results in pitting of the surface
or cell wall (Fig. 1).

The use of ultrasound has been shown to enhance drug delivery to solid tumors
through iterations with ECM and interstitial fluid pressure. The increasing on the
temperature leads to an increasing of the blood flow and to the modification of the
ECM structure. In fact, the collagen heating induces an increase in the interfibrillar
space. The unfolding of the dense collagen matrix is accompanied by an increase in
hydraulic conductivity that can enhance the fluid flow and consequently can lead to
a reduction of the interstitial fluid pressure. It should be pointed out that ultrasound
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can also induce pore formation at cellular level resulting from the displacement of
the soft tissue due to the pressure waves propagation. Cavitation can lead to the
disruption of the collagen matrix. In both cases, an enhancing of the fluid transport
is observed inducing a reduction of the interstitial fluid pressure. At a macroscopic
level, ultrasound enhances the diffusion transport due to the temperature increasing
and convective transport due to the reduction of the interstitial fluid pressure and to
the pressure waves propagation [2, 31].

Viscoelastic materials are materials that present viscous properties (that means
that they deform subject to a force) and present elastic properties, that is, they return
to their initial form when the deformation force stops [9]. Biological materials like
extracellular matrix scaffold, cancer cells and tissues are considered viscoelastic
materials (see, for instance, [1, 10, 38]). It should be pointed out that the viscoelastic
properties of the tissues are mainly determined by the ECM viscoelasticity that
depends on the types and strength of the matrix crosslink bonds and the molecular
weight of the matrix. The tumor progression leads to a collagen accumulation, often
crosslinked, that often results in a stiffness increasing. The viscoelastic behavior
is traditionally described by stress-strain relations—Maxwell models, Kelvin-Voigt
models, Zener models, or generalized Maxwell models [9, 45].

ECM viscoelasticity has an important role in tissue dynamics. For instance, ECM
stiffness and viscoelasticity are key factors on cell dynamics [21, 32].

Transport in viscoelastic material has been object of intense research during the
last decade due to the fact that the diffusion transport violates the classical Fick
law. Several approaches have been proposed to model the pathological behavior
observed in this kind of material (see, for instance, [12, 17, 19, 20, 29, 40, 42]). As
mentioned before, the stress-strain relation depends on the material. For instance, in
biological tissues, Maxwell, Kelvin-Voigt, Zener, or generalized Maxwell models
were considered. To include the viscoelastic effect in the drug transport, it was
assumed that the strain depends on the drug concentration, and consequently, a
stress-drug concentration relation is established. The mass flux is decomposed into
two parts, one of Fickian type and the second one is given in function of the gradient
of the stress and, considering mass conservation, integro-differential equations were
proposed to replace the traditional parabolic equations for the concentration (see, for
instance, [4, 5, 8, 25–27]).

As mentioned above, experiments show that application of ultrasound alters the
mechanical properties of the target tissue. It has been observed that the diffusion and
convection transports increase with the ultrasound intensity. Then, if we consider a
drug initially distributed in a neighborhood of a cancer tissue, when ultrasound is
used as enhancer, then the coupling between the pressure waves propagation, the
structural change in the tissues, the drug transport, the viscoelastic behavior in the
two target need to be considered. A multiphysics and multidomain approach should
be adopted to describe accurately the drug transport in this scenario.

There are numerous contributions on computational modeling of ultrasound
enhanced drug transport. Without being exhaustive we mention the following
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papers: [6] where the acoustic pressure propagation is described by the Khokhlov-
Zabolotskaya-Kuznetsov equation; [18] that deals with a Helmholtz equation to
describe the acoustic pressure propagation, [23] considers a wave equation for
the acoustic pressure coupled with a convection-diffusion equation for the drug
concentration; [24] where the mathematical model introduced in the previous paper
is modified introducing the heat effect; [39] uses a modified Westervelt equation
for the pressure waves description; and [47] takes an explicit expression for the
pressure intensity. However, up to now no computational methodology is provided
that combines the propagation of the pressure waves induced by ultrasound, the
change of the target tissues, and the drug transport in the two neighboring tissues:
healthy and diseased tissues (cancer) and their different viscoelastic properties.

J.A. Ferreira et al. in [23] studied a system of partial differential equations defined
by a hyperbolic equation (wave equation) and a parabolic equation (convection-
diffusion-reaction equation) that can be used to describe the drug transport in a
target tissue enhanced by ultrasound. In this paper is proposed the coupling between
the acoustic pressure wave propagation and the drug transport considering that the
convective velocity depends on the acoustic pressure intensity and eventually on its
gradient. In [24] the drug transport enhanced by ultrasound is also considered but
introducing the heat effect resulting from the acoustic pressure waves propagation.
In these papers the authors propose numerical methods to compute second-order
accurate approximations for the acoustic pressure intensity and for the drug
concentration.

In this paper we consider the scenario the approach described in [23] and [24],
that is, we consider a healthy and a cancer tissues, a drug initially distributed in
the healthy tissue, the intensity of the acoustic pressure waves described by wave
equations, with attenuation terms due to the energy absorption by the targets, the
drug transport is described by convection-diffusion equations where the convective
velocities and the diffusion coefficients depend on the pressure waves intensity
to take into account the structural change in the targets and the reduction of the
interstitial fluid pressures in both tissues. To simplify, the viscoelastic target effects
on the drug transport are only considered in the cancer tissue. We assume that the
viscoelastic behavior of the last target tissue is described by a Zener model [45]. The
paper is organized as follows. Section 2 is devoted to the introduction of the system
of partial differential equations that will be considered in what follows. Taking into
account phenomenological information, the behavior of the drug mass in the system
is studied in Sect. 3. In Sect. 4 we present a variational formulation, and we establish
a stability result for the continuous model that leads to the uniqueness of solution
of the differential problem. Numerical simulations are presented in Sect. 5. Finally,
in Sect. 6 we present some conclusions. In the near future, we intend to study the
existence of solution of the differential problem considered here as well as propose
efficient and accurate numerical methods.
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2 Coupling Acoustic Pressure with Drug Transport

We consider a healthy tissue �1 where a drug is initially dispersed. This tissue is
in contact with a solid cancer tissue represented by �2 (see Fig. 2). Let �i , i =
1, 2, 3, 4, be the boundary of �1, and let �i, i = 4, 5, 6, 7, be the boundary of
�2 being �4 the interface between the two domains that represents the interface
between the healthy and cancer tissue.

Let pi be the acoustic wave pressure intensity in the tissue �i, i = 1, 2, that we
consider be described by the following telegraph equation:

∂2pi

∂t2 + 2αiβi
∂pi

∂t
= β2

i �pi in �i × (0, Tf ], (1)

for i = 1, 2, where βi is the sound speed, αi is the attenuation coefficient, and Tf
is the final time (see [18, 23, 36]). In (1), �pi(t) denotes the Laplacian of pi with
respect to the spatial variables.

In the healthy tissue we consider that the drug transport is described by the
following convection-diffusion equation

Fig. 2 Spatial domain:
healthy and cancer tissues
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∂c1

∂t
+∇.(v1c1)−∇.(D1∇c1) = 0 in �1 × (0, Tf ], (2)

where c1 is a drug concentration, v1 denotes the convective velocity due to the
ultrasound effect, and D1 is diffusion coefficient. In (2), ∇.(v1c1) represents the
divergence of v1c1, ∇c1 denotes the gradient of c1 with respect to the spatial
variables, and ∇.(D1∇c1) represents the divergence of D1∇c1.

If a low pressure acoustic ultrasound is applied, stable cavitation bubbles oscillate
in size but do not collapse. This oscillating motion causes the rapid movement of
fluid near the cavitation bubble, a phenomenon which is called micro-streaming. To
take into account this effect, we assume that v1 is defined as follows [44]:

v1 = v1,0 + v∗1 , (3)

where v1,0 is the steady-state fluid velocity and v∗1 is the enhanced velocity due to
the ultrasound defined as follows:

v∗1 = φ1p
2
1, (4)

where φ1 is a constant. Also in the presence of ultrasound, the diffusion transport
increases being D1 defined by

D1 = D1,0 + ψ1v1,

where ψ1 is a constant and D1,0 is the molecular diffusion coefficient [44].
In the cancer tissue we take into account the viscoelastic effect in the drug

transport, and then the drug transport is defined by

∂c2

∂t
+ ∇.(v2c2) = ∇.(D2∇c2)+∇.(Dv∇σ)− λc2 in �2 × (0, Tf ], (5)

where c2 represents the drug concentration in the non-healthy tissue �2, σ denotes
the scalar stress due to the viscoelastic characteristics of the target, D2 is the drug
diffusion coefficient, Dv is the viscoelastic diffusion coefficient, and λ represents
the drug consumption rate by the cancer cells. In (5), v2 represents the ultrasound
enhanced convective velocity that is defined as (3), but it should take into account
the reduction of the interstitial fluid pressure due to structural modification of the
ECM induced by ultrasound, and is defined by

v2 = v2,0 + v∗2 ,

where v2,0 is the steady-state fluid velocity and

v∗2(t) = φ2p
2
2(t)+ φ3‖∇p2(t)‖2,
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with φi = 2, 3, constants and ‖∇p2(t)‖2 =
∑
i=1,2

‖∂p2

∂xi
(t)‖2

L2(�i)
. The diffusion

coefficient D2 is given by

D2(t) = D2,0 + ψ2p
2
2(t),

where D2,0 is the molecular diffusion coefficient and ψ2 represents a positive
constant.

Regarding the diffusive component of the flux, it is well-known that Fick’s
law does not represent an accurate description of the diffusion phenomenon due
to the viscoelastic effects as pointed out in the introduction. One of the simplest
rheological models to characterize stress-strain relaxation in biological tissues is
the so-called Zener model

∂σ

∂t
+ E2

μ
σ = −(E1 + E2)

∂ε

∂t
− E1E2

μ
ε in �2 × (0, Tf ], (6)

where σ and ε denote the stress and strain, respectively, E1 denotes the stiffness of
the single spring, and E2 and μ the stiffness and damping coefficient of the spring-
dashpot couple, respectively (see [9, 35, 45]).

It should be remarked that in Eq. (6), we assumed that the relation between strain
and concentration of drug in the solid cancer tissue is a linear version of the ε =
f (c2) adopted, for instance, in [22], that is, ε = γ c2, where γ is a positive constant.
Then (6) is replaced by

∂σ

∂t
+ E2

μ
σ = −(E1 + E2)γ

∂c2

∂t
− E1E2

μ
γ c2 in �2 × (0, Tf ]. (7)

We also remark that the minus sign in the right hand side of Eq. (7) means that the
solid cancer tissue acts as a barrier to the drug transport.

There is a well-established theory for diffusion in linear viscoelastic media
presented in [3] and [41], considering the stress tensor TS , that takes into account the
stress supported by the diffusion substance, and a diffusive force vector that takes
into account the momentum change between the diffusion species and the medium.

From (7) we easily obtain, by assuming that the coefficients are constant and the
initial drug concentration in the tumor, c2(0), is zero,

σ(t) = σ0e
−E2

μ
t − (E1 + E2)γ c2(t)+ E2

2γ

μ

∫ t

0
e
−E2

μ
(t−s)

c2(s)ds.

Consequently the mass flux J2 admits the following representation

J2(t) = −D∗
2∇c2 + v2c2 − DvE

2
2γ

μ

∫ t

0
e
−E2

μ
(t−s)∇c2(s)ds,
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where D∗
2 = D2 −Dv(E1 + E2)γ . Assuming that Dv and the initial stress, σ0, are

constants, Eq. (5) is equivalent to

∂c2

∂t
+∇.(v2c2) = ∇.(D∗

2∇c2)+ DvE
2
2γ

μ

∫ t

0
e
−E2

μ
(t−s)∇2c2(s)ds − λc2. (8)

For the initial acoustic pressures and drug concentrations, we assume the
following conditions

⎧⎪⎪⎨
⎪⎪⎩
pi(0) = ∂pi

∂t
(0) = 0 in �i, i = 1, 2,

c1(0) = c1,0 in �1,

c2(0) = 0, σ (0) = σ0 in �2.

(9)

For i = 1, 2, let Ji be the drug flux in �i defined by

J1 = −D1∇c1 + v1c1, J2 = −D2∇c2 + v2c2 −Dv∇σ.

We observe that J1 has two contributions: a Fickian and a convective one, and J2
presents two contributions analogous to the ones of J1 and a contribution due to the
viscoelastic effect of the target tissue on the drug transport defined by −Dv∇σ. We
assume that the boundaries �j , j = 1, 2, 3, are isolated; that means that no mass
flux crosses it,

J1.η = 0 on
( ∪j=1,2,3 �j

)× (0, Tf ], (10)

where η denotes the exterior unit normal to �1.

We assume that the boundaries �j , j = 5, 6, 7, are not isolated, that is, the drug
cross these boundaries is defined by

J2.η = A1c2 on
( ∪j=5,6,7 �j

)× (0, Tf ], (11)

where A1 is a permeability coefficient. Equation (11) means that the amount of drug
that crosses ∪j=5,6,7�j depends on the amount of drug that reaches this boundary
and on its permeability.

On the interface boundary �4 , the continuity of the drug mass fluxes are assumed

{
J1.η = A2(c1 − c2)

J1.η = −J2.ν on �4 × (0, Tf ] , (12)

where A2 is a partition coefficient, η is the unit exterior normal to �1 on �4 and
η = −ν. The first equation of (12) means that the amount of drug that crosses
�4 is proportional to the difference between the drug concentration that reaches �4
through �1 and the drug concentration that is in �4 from �2. The continuity of the
drug mass flux through �4 is represented by the second equation of (12).
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The acoustic pressure is assumed to be known on the boundary �1, that is,

p1 = p�1 on �1 × (0, Tf ]. (13)

The boundaries �j , j = 2, 3, 5, 6, 7, do not interfere with the pressure wave
propagation; that is, a homogeneous Neumann boundary condition is prescribed

∇p1.η = 0 on
( ∪j=2,3 �j

)× (0, Tf ], (14)

and

∇p2.η = 0 on
( ∪j=5,6,7 �j

)× (0, Tf ]. (15)

On the interface boundary �4, we assume continuity of the acoustic pressure

p1 = p2 on �4 × (0, Tf ], (16)

and

β1∇p1.η + β2∇p2.ν = 0 on �4 × (0, Tf ]. (17)

In (17), η and ν are the unitary normals on �4 exterior to �1 and to �2,
respectively.

The boundary and interface conditions are summarized in what follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1.η = 0 on (�1 ∪ �2 ∪ �3)× (0, Tf ],
J1.η = A2(c1 − c2) on �4 × (0, Tf ],
J2.η = −J1.ν on �4 × (0, Tf ],
J2.η = A1c2 on

( ∪j=5,6,7 �j

)× (0, Tf ],
p1 = p�1 on �1 × (0, Tf ],
∇pi.η = 0 on

( ∪j=2,3,5,6,7 �j

)× (0, Tf ], i = 1, 2,
β1∇p1.η + β2∇p2.ν = 0 on �4 × (0, Tf ].

(18)

The meaning and units of all variables and parameters used in the model are
presented in Table 1.

3 Qualitative Behavior of the Total Mass

In what follows we analyze the time behavior of the total mass of drug,

M(t) =
∑
i=1,2

∫
�i

ci(t)dxi,
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Table 1 Values for the parameters in the healthy and cancer tissues

Variable/parameter Definition Value

ci , i = 1, 2 Concentration of the drug –

A1 Permeability coefficient 10−8 [m/s]

D1,0 Diffusion coefficient 10−10 [m2/s]

c1,0 Initial concentration of the drug 10−2 [mol/m3]

αi, i = 1, 2 Attenuation coefficient 8.3× 10−3 [Np/m]

βi, i = 1, 2 Sound speed 1500 [m/s]

φi, i = 1, 2, 3 Positive constant 2× 10−4 [m/(Pa.s)]

vi,0, i = 1, 2 Conductive velocity 2.06× 10−3 [m/s]

ψi, i = 1, 2 Positive constant 110−4 [m]

E1 Stiffness coefficient of the single spring 1.2294× 10−5 [Pa]

E2 Stiffness coefficient of the spring 1.7239× 10−5 [Pa]

μ Stiffness coefficient of the dashpot 17.7432× 10−4

Dv Viscoelastic diffusion coefficient 10−12 [mol/(m3. s. Pa)]

A2 Partition coefficient 10−8 [m/s]

D2,0 Diffusion coefficient of the drug 3.6× 10−10 [m2/s]

c2,0 Initial concentration of the drug 0 [mol/m3]

σ0 Initial stress 10−3 [Pa]

ρ Density 1000 [kg/m3]

λ Drug consumption rate 10−5 [1/s]

where �1 and �2 stand for the healthy tissue and the solid cancer tissue domains,
respectively. As we have

M′(t) =
∑
i=1,2

∫
�i

∂ci

∂t
(t)dx,

for c1 and c2 regular enough, considering (2) and (5) in the equivalent form
∂c1

∂t
(t) = −∇.J1(t),

∂c2

∂t
(t) = −∇.J2(t)− λ2c2(t), we obtain

M′(t) =
∫
�∗
−J1(t).ηds +

∫
�∗∗
−J2(t).ηds − λ

∫
�2

c2dx,

where �∗ = ⋃4
i=1 �i and �∗∗ = ⋃7

i=4 �i . Taking into account the boundary
conditions (10)–(12), we get

M′(t) = −A1

∫
�5∪�6∪�7

c2(t)ds − λ

∫
�2

c2dx,
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that leads to

M(t) =M(0)−
∫ t

0

∫
�5∪�6∪�7

A1c2(τ )dsdτ −
∫ t

0

∫
�2

λc2dxdτ, t ∈ [0, Tf ].
(19)

Mathematically, we conclude that the drug mass in the system at time t , M(t), is
equal to the drug mass at initial time minus the drug mass that passes through the
boundary of the target tissue and the drug consumed until the time t which agree
with the behavior of the physical system.

4 Stability Analysis

In this section, we study the stability of the coupled problems (1), (2), (5), and (7)
(see [28]). We start by introducing some notations. Let � be a bounded domain in
R

2 with boundary ∂�. By L2(�), H 1(�) and L2(∂�) we denote the usual Sobolev
spaces endowed with the usual inner products (., .), (., .)1 and (., .)∂�, respectively,
and norms ‖.‖L2(�), ‖.‖H 1(�) and ‖.‖L2(∂�), respectively. The usual inner product
in [L2(�)]2 is denoted by ((., .)). By L2(0, Tf ;H 1(�)) and L2(0, Tf ;L2(�))

we represent, respectively, the space of functions u : (0, Tf ) → H 1(�) and
u : (0, Tf )→ L2(�) such that

∫ Tf

0
‖u(t)‖2

H 1(�)
dt < +∞,

∫ Tf

0
‖u(t)‖2

L2(�)
dt < +∞.

We also introduce the space H 1
�1
(�1) = {w1 ∈ H 1(�1) : w1 = 0 on �1}

and the spaces H 2(0, Tf , L2(�i)), i = 1, 2, given by the space of function w ∈
L2(0, Tf , L2(�i)) such that the weak derivatives w(j) ∈ L2(0, Tf , L2(�i)), j =
1, 2, i = 1, 2.

In what follows we consider the weak solution of the initial boundary value
problem (IBVP) (1), (2), (8), and (18) with general initial conditions defined by
the following: for i = 1, 2, pi ∈ H 2(0, Tf , L2(�i)) ∩ L2(0, Tf ,H 1(�i)), and
p1(t) = p�1 on (0, Tf )× �1,

∑
i=1,2

(∂2pi

∂t2
(t), wi

)+ ∑
i=1,2

(
2αiβi

∂pi

∂t
(t)), wi

) = − ∑
i=1,2

((
β2
i ∇pi(t),∇wi

))
,

(20)
for all w1 ∈ H 1

�1
(�1) and for all w2 ∈ H 1(�2),

(pi(0), wi) = (p0,i , wi),∀wi ∈ L2(�i), (p
′
i (0), wi) = (pd,i , wi),∀wi ∈ L2(�i),

(21)
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for i = 1, 2, ci ∈ H 1(0, Tf , L2(�i)) ∩ L2(0, Tf ,H 1(�i)) and

∑
i=1,2

(∂ci
∂t

(t), wi+2
) = ∑

i=1,2

((
vi(t)ci(t),∇wi+2

))− ∑
i=1,2

((
Di∇ci(t),∇wi+2

))

−(A2(c1(t)− c2(t)), w3 − w4
)
�4
− (A1c2(t), w4

)
�5∪�6∪�7

− λ(c2(t), w4)

−(DvE
2
2γ

μ

∫ t

0
e
−E2

μ
(t−s)∇c2(s)ds,∇w4(t)

)
, (22)

for all wi+2 ∈ H 1(�i), i = 1, 2,

(c1(0), w3) = (c1,0, w3), ∀w3 ∈ L2(�1), (c2(0), w4) = (c2,0, w4), w4 ∈ L2(�2).

(23)
In (22), to simplify the notation, D∗

2 was represented only by D2.

To simplify the analysis, in what follows we assume the convective velocities
depend only on the acoustic pressure, that is, vi = (v1,i (pi), v2,i (pi)), i = 1, 2,
and

|vj,i(x)| ≤ β0|x|, x ∈ R, j = 1, 2, i = 1, 2,

D1 ∈ C1
b(R) and D1 ≥ χ1 > 0 in R,

D2 ∈ C1
b(R) and D2 ≥ χ2 > 0 in R,

where C1
b(R) denotes the space of bounded functions with bounded first order

derivatives in R, χ1 and χ2 are positive constants. The previous assumptions will
be used to obtain an upper bound for p1, p2, c1 and c2.

1. Energy estimates for the acoustic pressure: We assume that p�1 = 0 and pi are

such that ∇ ∂pi

∂t
(t) = ∂

∂t
(∇pi(t)) almost everywhere in �i and p0,i ∈ H 1(�i),

pd,i ∈ L2(�i) for i = 1, 2.

Taking in (20) wi = ∂pi

∂t
(t), we get

1

2

∑
i=1,2

d

dt

∥∥∂pi
∂t

(t)
∥∥2+

∑
i=1,2

2αiβi
∥∥∂pi
∂t

(t)
∥∥2 = −

∑
i=1,2

((
β2
i ∇pi(t),∇

∂pi

∂t
(t)
))
,

that can be written in the following equivalent form

1

2

∑
i=1,2

d

dt

(∥∥∂pi
∂t

(t)
∥∥2 + β2

i

∥∥∇pi(t)∥∥2)+ ∑
i=1,2

2αiβi
∥∥∂pi
∂t

(t)
∥∥2 = 0.
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As pi ∈ H 2(0, Tf , L2(�i)), then

∑
i=1,2

(∥∥∂pi
∂t

(t)
∥∥2 + β2

i

∥∥∇pi(t)∥∥2)+ ∑
i=1,2

4αiβi

∫ t

0

∥∥∂pi
∂t

(s)
∥∥2
ds

=
∑
i=1,2

(∥∥pd,i∥∥2 + β2
i

∥∥∇p0,i
∥∥2)

, (24)

for t ∈ [0, Tf ].
We observe that as pi(t) ∈ H 1

�1
(�i), holds the Poincaré- Friedrichs inequal-

ity, that is, there exists a positive constant CP such that

‖pi(t)‖ ≤ CP ‖∇pi(t)‖,

and consequently, the conservation relation (24) allows us to obtain the following
upper bound

∑
i=1,2

(∥∥∂pi
∂t

(t)
∥∥2 + β2

i

∥∥pi(t)‖2
H 1

)+ ∑
i=1,2

4αiβi

∫ t

0

∥∥∂pi
∂t

(s)
∥∥2
ds (25)

≤ C
∑
i=1,2

(∥∥pd,i∥∥2 + β2
i

∥∥∇p0,i
∥∥2)

,

for a positive constant C, t independent.
We observe that to obtain an estimate for ‖pi(t)‖L∞ we need to assume some

regularity. While for the one dimensional case, H 1(�i) is embedded in C(�i)

and, consequently, the upper bound (25) leads to

∑
i=1,2

(∥∥∂pi
∂t

(t)
∥∥2 + β2

i

∥∥pi(t)‖2
L∞
)+ ∑

i=1,2

4αiβi

∫ t

0

∥∥∂pi
∂t

(s)
∥∥2
ds

≤ C
∑
i=1,2

(∥∥pd,i∥∥2 + β2
i

∥∥∇p0,i
∥∥2)

,

in our situation we need to increase the regularity of our data. In fact, assuming
that p0,i ∈ H 2(�i), pd,i ∈ H 1(�i) for i = 1, 2, and considering the
acoustic pressure problem for pi replaced by the corresponding problem for∇pi ,
following the proof of (24), it can be shown that

∑
i=1,2

(∥∥ ∂
∂t
(∇pi)(t)

∥∥2 + β2
i

∣∣pi(t)|2H 2

)+ ∑
i=1,2

4αiβi

∫ t

0

∥∥ ∂
∂t
∇pi(s)

∥∥2
ds

=
∑
i=1,2

(∥∥∇pd,i∥∥2 + β2
i

∣∣p0,i
∣∣2
H 2

)
, (26)
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where |pi(t)|H 2 denotes the semi-norm in H 2(�), that is

|pi(t)|2H 2 =
∑
|ω|=2

‖ ∂ |α|pi
∂x

ω1
1 ∂ω2

(t)‖2, ω = (ω1, ω2), ωj ∈ N0, j = 1, 2, |ω| = ω1 + ω2.

From (24) and (26) we get

∑
i=1,2

(∥∥∂pci
∂t

(t)
∥∥2
H 1 + β2

i

∥∥pi(t)‖2
H 2

)+ ∑
i=1,2

4αiβi

∫ t

0

∥∥∂pi
∂t

(s)
∥∥2
H 1ds

≤ C
∑
i=1,2

(∥∥pd,i∥∥2
H 1 + β2

i

∥∥p0,i
∥∥2
H 2

)
.

Taking now into account that H 2(�i) is embedded in C(�i), we conclude

∑
i=1,2

(∥∥∂pi
∂t

(t)
∥∥2
H 1 + β2

i

∥∥pi(t)‖2
L∞
)+ ∑

i=1,2

4αiβi

∫ t

0

∥∥∂pi
∂t

(s)
∥∥2
H 1ds

≤ C
∑
i=1,2

(∥∥pd,i∥∥2
H 1 + β2

i

∥∥p0,i
∥∥2
H 2

)
. (27)

From inequality (27) we conclude the existence of positive constant C, t and
pi independent, such that

max
i=1,2

‖pi(t)‖2
L∞ ≤ C

∑
i=1,2

(∥∥pd,i∥∥2
H 1 + β2

i

∥∥p0,i
∥∥2
H 2

)
. (28)

2. Energy estimates for the concentrations: Taking in (22) w3 = c1(t) and w4 =
c2(t) we get

1

2

∑
i=1,2

d

dt

∥∥ci(t)∥∥2 ≤ −χ1
∥∥∇c1(t)

∥∥2 − χ2
∥∥∇c2(t)

∥∥2 − A2
∥∥c1(t)− c2(t)

∥∥2
�4

−((DvE
2
2γ

μ

∫ t

0
e
−E2

μ
(t−s)∇c2(s)ds,∇c2(t)

))
(29)

+
∑
i=1,2

((
vi(t)ci(t),∇ci(t)

))− A1
∥∥c2(t)

∥∥2
�5∪�6∪�7

− λ‖c2(t)‖2.

It is easy to show the following estimates:

|((vi(pi(t))ci(t),∇ci(t)))| ≤ β0‖pi(t)‖L∞‖ci(t)‖‖∇ci(t)‖
≤ 1

4ε2
i

β2
0‖pi(t)‖2

L∞‖ci(t)‖2 + ε2
i ‖∇ci(t)‖2, i = 1, 2,

(30)
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and

−(DvE
2
2γ

μ

∫ t
0 e
−E2

μ
(t−s)∇c2(s)ds,∇c2(t)

) ≤ ε2
3

∥∥∇c2(t)
∥∥2

+D2
vE

3
2γ

8ε2
3μ

2

∫ t

0

∥∥∇c2(s)
∥∥2
ds,

(31)

where εi �= 0, i = 1, 2, 3, are arbitrary constants.
Then, from (29), (30), and (31), we obtain

d

dt

∑
i=1,2

∥∥ci(t)∥∥2 +
∑
i=1,2

2(χi − ε2
i )‖∇ci(t)‖2 − 2ε2

3‖∇c2(t)‖2

+ 2A2‖c1(t)− c2(t)‖2
�4
+ 2A1

∥∥c2(t)
∥∥2
�5∪�6∪�7

≤ D2
vE

3
2γ

4ε2
3μ

2

∫ t

0

∥∥∇c2(s)
∥∥2
ds +

∑
i=1,2

1

2ε2
i

β2
0‖pi(t)‖2

L∞‖ci(s)‖2 − 2λ‖c2(t)‖2.

Then, with ε2
1 = χ1

2 and ε2
2 = ε2

3 = χ2
4 , we have

∑
i=1,2

∥∥ci(t)∥∥2 +
∫ t

0

( ∑
i=1,2

χi‖∇ci(s)‖2
)

+
∫ t

0

(
2A2‖c1(s)− c2(s)‖2

�4
+ 2A1

∥∥c2(s)
∥∥2
�5∪�6∪�7

)
ds

≤
∑
i=1,2

∥∥ci(0)∥∥2 + D2
vE

3
2γ

χ2μ

∫ t

0

∫ s

0

∥∥∇c2(θ)
∥∥2
dθds

+
∫ t

0

(
max{β

2
0

χ1
‖p1(s)‖2

L∞ , 2
β2

0

χ2
‖p2(s)‖2

L∞ − 2λ}
∑
i=1,2

∥∥ci(s)∥∥2
)
ds,

that is, with

E(t) =
∑
i=1,2

∥∥ci(t)∥∥2 +
∑
i=1,2

χi

∫ t

0
‖∇ci(s)‖2ds

+2
∫ t

0

(
A2‖c1(s)− c2(s)‖2

�4
+ A1

∥∥c2(s)
∥∥2
�5∪�6∪�7

)
ds,

and

h(t) = max{D
2
vE

3
2γ

χ2μ
,max{β

2
0

χ1
‖p1(t)‖2

L∞ , 2
β2

0

χ2
‖p2(t)‖2

L∞ − 2λ}},

we have
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E(t) ≤ E(0)+
∫ t

0
h(s)

∫ s

0
E(θ)dθds.

Considering the Gronwall lemma to the last inequality, we obtain

E(t) ≤ E(0)e
∫ t

0 h(θ)dθ , t ∈ [0, Tf ]. (32)

We remark that combining (32) with (28) we get the upper bound for E(t) in
function of the parameters and the initial conditions for the acoustic pressure and
for the initial concentrations.

5 Numerical Simulations

In this section we illustrate the behavior of drug concentration in the healthy and
cancer tissues. The numerical results were obtained using the commercial software
package COMSOL Multiphysics 5.3. The numerical solutions were obtained fol-
lowing the MOL (Method of Lines) approach: spatial discretization that leads to
ordinary differential systems (for the pressure and for the concentration) followed
by the time integration. In the spatial discretization of the governing equations, we
use the piecewise quadratic finite element method defined on the mesh illustrated in
Fig. 3.

Fig. 3 Computational
meshes in the spatial domain
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In the time integration of the first order ordinary differential systems, an adaptive
Backward Differentiation Formula with order between 1 and 2, with adaptive time
step, has been used. The computational time for the reference simulation performed
on an Intel (R) Core (TM) i3-4170 3.70 GHz processor and 8.0 GB RAM is around
half an hour. Different mesh sizes were used for simulation to verify that the solution
is convergent and mesh independent.

The parameters used in the computation of the numerical approximations that we
present in what follows are included in Table 1, and they have been extracted from
[7, 18], and [36].

The numerical results that we present in what follows are grouped into two sets.
In the first set we illustrate the influence of the viscoelastic nature of the tissue
on the drug transport, the influence of the stiffness of the cancer tissue that is
consequence of the tumor fibrosis characterized by excessive collagen depositions,
often crosslinked, as well as the opposition to the transport of drug due to high
interstitial fluid pressure. In the second group of results, we intend to illustrate the
influence of ultrasound in the rupture of the microenvironment cancer barrier to the
drug delivery because ultrasound promotes the convective and diffusive transport.

Drug Transport in Viscoelastic Tissue
Figures 4 and 5 illustrate the drug distribution in the healthy and cancer tissues
during 1000s. As time increases, the drug concentration decreases in the healthy
tissue and increases in the cancer tissue. We observe that in average, the drug
concentration in the healthy tissue decreases and in the cancer tissue increases until
t = 100s and after decreases. This behavior is consequence of the drug consumption
as well as due to the drug transport through the boundary �5 ∪ �b ∪ �7 defined by
the condition (11) (Fig. 6).

The parameter Dv is used to take into account the increasing of the opposition to
the drug transport in viscoelastic materials due to stiffness. In Fig. 7 we plot the drug
mass in the cancer tissue (a) and in the line x1 = 0.5, x2 ∈ (1, 2) (b) at t = 50 s.
As Dv increases, it increases the opposition to the drug transport, and consequently
lower values of the drug mass are observed. Fig. 7b also illustrates this effect. In
fact, for lower value of Dv , we observe higher values for the drug concentration.

The parameter E2 is related with the existence of collagen crosslinks in the target
tissue. The effect of the increasing of the amount of bounds in the collagen fibers
of the target tissue is illustrated in Fig. 8. As the crosslinks increase, increases ECM
stiffness and consequently the resistance of the collagen fibers to the drug transport.
These facts lead to an increasing of the drug mass in the target tissue for lower
values of E2 (Fig. 8a, b). Lower values of the drug concentration are also observed
for higher values of E2 as illustrated in Fig. 8c.

The effect of the drug consumption in the target tissue in the drug mass is
illustrated in Fig. 9. As increases the drug consumption, lower values of drug mass
are accumulated in the target tissue—Fig. 9. This effect is also observed in the
concentration for x1 = 0.5 and x2 ∈ (1, 2). For higher consumption, lower values
for the concentration are observed.
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Fig. 4 Drug distribution in
the healthy tissue. (a) Drug
distribution, 1 s. (b) Drug
distribution, 1000 s

Drug Transport and Ultrasound
In what follows we plot the drug masses in the target tissue and the drug concen-
trations for x1 = 0.5, x2 ∈ (1, 2) at t = 50 s considering the scenarios defined
in the first part but considering the ultrasound effect defined by p�1 = 10−4 Pa. In
Fig. 10 we consider different values of Dv . Comparing Figs. 7 and 10, we observe
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Fig. 5 Drug distribution in
the cancer tissue. (a) Drug
release, 1 s. (b) Drug release,
1000 s

higher drug mass peaks when ultrasound is used as well as higher values for the
concentrations for x1 = 0.5, x2 ∈ (1, 2) at t = 50s.

The effectiveness of ultrasound in the promotion of the drug transport through
the cancer tissue is also illustrated in Fig. 11 when we consider different values
of the coefficient E2 related with the ECM collagen crosslinks. In fact, when we
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Fig. 6 Average drug concentration in the healthy tissue (a) and in the cancer tissue (b)
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Fig. 7 Drug mass in target (a) and drug concentrations for x1 = 0.5 and x2 ∈ (1, 2) at t = 50 s
(b) for different values of Dv
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Fig. 8 Drug mass in the
target tissue (a) and its zoom
(b), drug concentrations for
x1 = 0.5 and x2 ∈ (1, 2) at
t = 50 s (c) for different
values of E2
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Fig. 9 Drug mass in the target tissue (a) and drug concentrations for x1 = 0.5 and x2 ∈ (1, 2) at
t = 50 s (b) for different values of λ
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Fig. 10 Drug mass in the target tissue (a) and drug concentration for x1 = 0.5 and x2 ∈ (1, 2) at
t = 50 s (b) for different values of Dv
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Fig. 11 Drug mass (a), zoom
of drug mass (b), and drug
concentrations for x = 0.5
and x2 ∈ (1, 2) (c) for
different values of E2
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Fig. 12 Drug mass in the target (a) and drug concentrations for x1 = 0.5 and x2 ∈ (1, 2) (b) with
and without ultrasound

compare the results in Fig. 11 with the corresponding ones in Fig. 8, we observe
higher values for the drug masses and for the drug concentrations when the drug
transport is enhanced by ultrasound.

Finally we present in the same figures the drug masses and the drug con-
centrations obtained with and without ultrasound. From the results presented in
Fig. 12, the drug mass peak is higher when ultrasound is used. In what concerns
the concentration, the same behavior is observed: in presence of ultrasound, higher
concentrations are observed in the target tissue.
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6 Conclusions

In this paper a multiphysics and multidomain problem, mathematically written as
system of partial differential equations complemented with boundary, interface,
and initial conditions defined in (1)–(11), is studied from analytical and numerical
point of views. This system describes the drug transport enhanced by ultrasound
in healthy and cancer tissues. The mathematical problem was defined taking into
account the physiological characteristics of the target, namely, in what concerns the
ECM alterations during the cancer evolution, as well as their implications in the
drug transport: Fickian description in the healthy tissue and non-Fickian description
in the cancer tissue were considered. As the healthy tissue is also a viscoelastic
material, a non-Fickian equation could also be considered. However, to take into
account the significant differences between both tissues, two different approaches
were considered in each domain. Numerical results illustrating the behavior of
the unknowns of the mathematical problem are presented. From these results we
conclude that system (1)–(11) describes accurately at least qualitatively the drug
delivery in a cancer tissue when the drug is administered in the neighboring healthy
tissue and the drug transport is enhanced by ultrasound.

Energy estimates where established for the acoustic pressure and for the drug
concentration that allow us to conclude that the model will have good stability
properties.

From the numerical results presented in the paper, we conclude the following:

1. Due to physiological modifications of the cancer ECM as cancer evolves, the
resistance to the drug transport increases. In the mathematical problem, such
resistance is associated with the parameters Dv linked with the stiffness and E2
connected with collagen crosslinks. From Figs. 7 and 8, as these values increase,
we conclude that the drug masses in the target decrease.

2. Ultrasound has been used to enhance the drug transport modifying the cancer
ECM. In fact, ultrasound induces an increase in the interfibrillar space that
is accompanied by an increase in hydraulic conductivity that promotes the
fluid flow reducing the interstitial fluid pressure. Ultrasound can also induce
pore formation at cellular level. From Figs. 10, 11, and 12, we conclude that
ultrasound can be an efficient enhancer of the drug transport in cancer.
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Computational Analysis to Study
the Efficiency of Shear-Activated
Nano-Therapeutics in the Treatment
of Atherosclerosis

Nicholas Jefopoulos and Bong Jae Chung

1 Introduction

Every year in the United States 795,000 people suffer from a stroke, which is a
governing cause of long-term disability and the fifth leading cause of death in the
country [1, 2]. Approximately 85% of all strokes are ischemic (blockage in blood
flow), and intracranial atherosclerosis is a leading cause of ischemic stroke [1, 3].
This study seeks to gain insight into a novel shear-activated nano-therapeutic to
treat atherosclerosis and prevent stroke in at-risk patients. Approximately 50% of
ischemic strokes occur within the middle cerebral artery (MCA) region [1]. The
MCA is positioned within a connection of several arteries located in the brain’s
inferior region known as the Circle of Willis (CoW) [4]. Plaque formation within
the CoW is primarily consigned to its large arteries which includes the MCA [3].

In addition to the prevalence of strokes, a connection between strokes and
other diseases necessitates research into medical prevention measures. Intracranial
atherosclerosis and ischemic stroke are also risk factors to the development of
dementia [3]. A link has been established between atherosclerosis within the CoW
and Alzheimer’s disease [5]. Hypoperfusion due to CoW plaques could be the
contributing factor, as considerable widespread pathologic hemodynamic changes
in the brain have been observed in Alzheimer’s disease patients [5]. This seems
reasonable considering the CoW supplies 80% of the oxygenated blood to the
cerebrum, whose functions include reasoning and problem-solving [1].

Antithrombotic therapy, risk factor modification, and lipid-lowering treatments,
along with more invasive stenting and bypass surgeries, are all currently being used
to treat intracranial atherosclerosis [6]. Apart from healthy lifestyle changes, all of
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these treatments are not without their risks, and most do not attempt to remove
plaque from arteries. Among the noninvasive treatments, antithrombotic therapy,
the use of an antiplatelet or anticoagulant to reduce clotting, comes at the risk
of increased bleeding [7]. Lipid-lowering treatments use statins to lower overall
cholesterol to slow down the buildup of plaques with possible risk of liver damage
and development of type II diabetes [8].

A therapy that is effective in dissolving plaque from arteries is necessary for
treating patients at risk of experiencing a stroke. Targeted nano-therapeutics have
increasingly been developed and used to dissolve malignant tumors [9]. Specifically
targeted nano-therapeutics that take advantage of mechanical forces may be a novel
method to attack atherosclerosis in the future. Thrombosed vasculature displays
mechanical characteristics which differ from normal blood vessels. In a thrombosed
vasculature, the local fluid shear stress (caused mainly by friction) may increase
greatly, from under 70 dyne/cm2 to greater than 1000 dyne/cm2 (1 dyne = 1 ×
10−5 N) [10].

The high fluid shear stress in these locally stenosed regions activates platelets
which quickly adhere to the vessel, causing narrowing. Activation of platelets
through high fluid shear stress is a major contributing factor to the development
of atherosclerotic plaques. Korin et al., as described in their 2012 paper, developed
a shear stress activated nano-therapeutic (SA-NT) inspired by platelet shear stress
activation to target atherosclerotic plaques [10]. The therapeutic consists of particles
that are approximately the size of platelets, between one and five micrometers in
diameter. Each particle is an aggregate consisting of smaller nanoparticles. The
therapeutic remains intact during normal flow conditions but breaks up into their
smaller components when exposed to higher levels of fluid shear stress. These
smaller nanoparticles will experience lower drag forces and consequently have
greater adherence to the stenosis allowing the therapeutic to be locally targeted and
dissolve the atherosclerosis (Fig. 1).

These SA-NTs are constructed by spray-drying solutions of poly-lactic-co-
glycolic acid (PLGA) to form a micrometer-sized aggregate composed of smaller
nanoparticles. Most other current therapeutics work to stop plaque growth instead of
dissolving it, as the SA-NT is designed to do. The great benefit of using targeted SA-
NTs is the ability to use a much smaller dosage without compromising effectiveness.
It was shown that to clear a pulmonary embolism within mice, this method used
∼1/100 the normal dose [10]. SA-NTs, in conjunction with temporary endovascular
bypass, have been shown to achieve high rates of re-canalization without the dangers
of vascular trauma seen in stent-retriever thrombectomies [11].

While targeting atherosclerosis with high dosage therapeutics is desirable,
studies must be conducted to ensure that unwanted side effects are minimized
through effective aggregate breakup. Korin et al. determined a shear stress threshold
of 100 dyne/cm2 [10]. Nano-particles breaking off from the aggregate at this, or
higher, shear stress intensity or higher were detected at levels that are an 8–12-fold
increase as compared to the levels detected under normal shear stress conditions.
Using computational fluid dynamics (CFD), they equated this shear stress level to a
60% obstructed vessel. Normal vessels experience a typical level of shear stress of
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Fig. 1 Aggregate particle breakup into nanoparticle components

approximately 10–30 dyne/cm2 [10]. Aggregate particle parameters that will allow
targeting of vessels less than 60% obstructed are a practical pursuit, as narrowing of
50–69% is considered moderate and may require aggressive treatment, especially if
the patient is showing symptoms of the disease [12, 13].

Several numerical studies have been conducted analyzing different aspects of
SA-NTs. A study by Qiao et al. was conducted to determine aggregate particle
injection sites for stenosed vascular. An idealized curved geometry with three supra-
aortic branches was created with a 75% occlusion after the aortic arch. A breakup
threshold for the aggregate particle was determined by area, averaging the shear
stress rate of the entire aortic wall during one cardiac cycle. This was determined to
be 975 s−1. A shear stress rate above the average (1000 s−1) was chosen to be the
shear stress rate threshold for the particle. At first, the center point of a radial section
after the aortic arch and before the stenosed region was chosen as an injection
site. This location was chosen due to its relatively low shear stress rate in order to
not cause premature breakup. It was discovered that the aggregate particles would
only be broken up at the most severe narrowing, and no nano-therapeutics were
discovered in the center of the stenosis during this test. The injection site was then
moved to 1 mm away from the aortic wall; this resulted in aggregate particle breakup
and nano-therapeutics in the center of the stenosis [14].

A numerical study of topological flow structures formed by atherosclerosis in
vessels and its effects on SA-NTs was conducted by Meschi et al. The study focused
on a Lagrangian Coherent Structure (LCS) formed by flow separation after the
center of the stenosis. The LCS acted as a transport barrier causing a high shear
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stress rate aiding in aggregate particle breakup. The transport barrier also led to
nano-therapeutic accumulation in a post-stenosis region which could result in higher
drug absorption.

Numerical studies have been conducted to determine the effect of certain
parameters of particles in the bloodstream, which aid in drug development. These
parameters were primarily studied to give insight to particle binding which may
contribute to the retention of large amounts of toxic particles. Doig et al. studied
the influence of particle size compared to average particle residence time in a
bifurcated carotid artery using numerical methods [9]. Using an arterial geometry
with a diameter of approximately 0.34 cm, the conclusion was that particle size and
mean residence time are positively correlated, with the maximum residence time
dropping sharply with a reduction in particle size. However, as the particle diameter
decreased, the number of particles experiencing wall interactions increased. The test
was also run for an arteriole geometry with a diameter of approximately 0.0034 cm.
The smaller size allowed Brownian motion to be a larger factor, and the residence
time increased by 3% when reducing the particle size from 500 nm to 50 nm [9].

Studies concentrating on SA-NTs and how different parameters influence their
breakup have not yet been fully conducted. Additionally the applicability of SA-NTs
in the treatment of atherosclerosis in the CoW is not fully understood [10]. The roles
that particle density, particle diameter, vessel geometry, stenosis shape, and breakup
threshold (shear rate) play in the effectiveness of SA-NTs have not been studied
extensively. This study seeks to investigate these parameters and their influence on
aggregate breakup position and rate using numerical modeling techniques. For SA-
NTs to work as intended, enough of the aggregate must break up at the stenosis.
Breakup before or after will not be effective in treating atherosclerosis and could
have potentially harmful effects. We will explore the effect of the parameters on
breakup position and rate using several idealized arterial geometries. Each geometry
will have one of three curvatures and either a concentric or eccentric stenosis.

2 Methods

The computational method involves a number of steps, which we now broadly
describe. Details of each step are described in the subsections which follow. The
numerical simulations begin by creating idealized arterial geometries. Flow data, in
the form of a velocity field, is then calculated using the Navier-Stokes equation
for each geometry. A force balance equation is solved using a combination of
investigated parameters to determine particle trajectories. The aggregate particle
model consists of twenty-five nanoparticles attached to the surface of each aggregate
particle. Each nanoparticle has a 1.8×10−5 cm diameter which matches the diameter
of the nanoparticles in Korin et al.’s 2012 paper [10]. Once a breakup threshold
has been met, in this case once the particle reaches a certain angular velocity, the
aggregate particle will break up, and its components are tracked as they disperse
through the flow. Figure 2 outlines the computation method.
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Fig. 2 Overview of the computational method. Idealized geometries are used to create flow data.
Flow data is then used in particle transport model along with investigated particle parameters to
output aggregate breakup position and angular speed

A total of seven arterial geometries were evaluated. These seven are idealized
geometries, with each possessing one of three curvatures. All of the idealized
geometries represent a vessel with a diameter of 0.5 cm and a length of 7.0 cm.
The flow enters each geometry in a single inlet and exits using a single outlet.
Geometry curvatures are either a straight pipe (R1), a 7.0 cm segment of a 44.56 mm
radius torus, i.e., a quarter of a torus (R2), or a 7.0 cm segment of a 22.28 mm
radius torus, i.e., a half of a torus (R3). Concentric or eccentric (off-center with
respect to width) stenoses were created within the center (with respect to length) of
each geometry. For the R1 and R3 vessels, a unique geometry with 50% occlusion
(0.25 cm opening) was created for each combination of stenosis characteristics
(concentric or eccentric; and occlusion). In the eccentric R3 case, superior, inferior,
and ventral/dorsal locations also are studied. Figure 3 shows a selection of the
arterial geometries, and Table 1 gives a listing of all idealized geometries tested.
The inclusion of concentric and eccentric stenoses is due to their dual prevalence in
the CoW. One study of 1,220 CoW segments found that 79% of advanced plaques
were eccentric and 19% were concentric. The other 2% were completely occluded
plaques [3]. All seven idealized geometries were created using FreeCAD software
version 0.18 and used a .stl file for CFD analysis to assess blood flow data [15].

2.1 Computational Fluid Dynamics (CFD) Analysis

We triangulate the idealized geometries using in-house software for segmenta-
tion/model construction (ZMD). Each model is then used as a surface to generate a
finite element grid based on an advancing front method. The method uses in-house
software (GEN3D) to re-triangulate the surface and generate tetrahedral elements
[16, 17].



326 N. Jefopoulos and B. J. Chung

Fig. 3 Idealized geometries. (a) R1 geometry with concentric 50% occlusion. (b) R2 geometry
with concentric 50% occlusion. (c) R3 geometry with concentric 50% occlusion. The remaining
(d–f) images show the R3 geometry with eccentric stenosis in the (d) superior, (e) inferior, and (f)
ventral/dorsal locations

Continuity and unsteady Navier-Stokes equations are used to model blood flow
as an incompressible Newtonian fluid (density, ρ = 1.105 g/cm3 and viscosity, μ =
0.04 Poise). The equations are as follows:

∇ · 1v = 0, (1)

ρ(
∂ 1v
∂t
+ 1v · ∇1v) = −∇P + μ∇21v, (2)

where 1v is the flow velocity and P is the mechanical pressure. The unsteady flow
equations are solved with in-house software that utilizes a fully implicit scheme and
efficient solution algorithms (FEFLO) [18, 19]. A parabolic inlet velocity profile
and traction-free boundary condition at the outlet is implemented. Vessel wall
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Table 1 Overview of the vessel geometries, stenosis shapes, and stenosis locations that were
tested

Case number Vessel geometry Stenosis shape Stenosis location

1 R1 Concentric –

2 R1 Eccentric –

3 R2 Concentric –

4 R3 Concentric –

5 R3 Eccentric Inferior

6 R3 Eccentric Superior

7 R3 Eccentric Ventral/dorsal

compliance (ability to distend) is neglected for this study, and thus, no-slip boundary
conditions are imposed at the walls.

2.2 Particle Trajectories

To attain aggregate and nanoparticle position as well as translational and rotational
(angular) velocities, a force balance equation was used. Using Newton’s 2nd law
ma = F , one has

S
d 1vp
dt

= 1FAM + 1FB + 1FD + 1FL, (3)

where S is the specific density of the particle (ratio of particle density and fluid

density) , d 1vp
dt

is the acceleration of the particle, 1FAM is the force of added mass, 1FB

is the Bassett force, 1FD is the drag force, and 1FL is the lift force [20]. Substitution
of the specific forms of these forces leads to the following force balance equation:

S
d 1vp
dt

=D1u
Dt

+ 1

2

(
D1u
Dt

− d 1vp
dt

)
+ 3

4

CD

D
|1u− 1vp|(1u− 1vp)+ 1flift, (4)

1flift = 1flift: shear + 1flift: rotational, (5)

where D
Dt

is the material derivative, 1u is the velocity field, CD is the coefficient of
drag, D is the diameter of the particle, | · | denotes the magnitude of the vector,
1flift: shear is the shear-induced lift force, and 1flift: rotational is the rotation-induced lift

or “Magnus force.”
This force balance equation is solved using the second-order Runge-Kutta

method (midpoint method). This technique approximates the solution of the second-
order Taylor expansion without needing to compute derivatives of f (t, y). After
aggregate breakup, each nanoparticle is also governed by Brownian motion due to
its small size, and thus, we add motion in the form of a scaled pseudo-random vector
to the position of each nanoparticle.
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2.3 Breakup Criterion

Aggregate particles are designed to be broken up into their nano-therapeutic
components when they reach a region of high fluid shear stress [10]. An aggregate
particle will experience a fluid shear force on the surface of the particle in that
region, which depends on the particle’s radial position from the center of the vessel
due to its parabolic velocity profile. For instance a particle can have a higher shear
force near the wall and have a lower shear rate near the center of the lumen where
the particle is not largely influenced by fluid shear force [14]. A fluid shear force
on each particle determines the rotational force of the particle. We assume that the
threshold for breakup of aggregate particle depends on the magnitude of angular
velocity (angular speed); therefore angular speed is used as a numerical criterion for
the breakup of each aggregate particle.

2.4 Interpolation of Flow Data

The CFD analysis produces flow data at every 0.01 s. It generates 100 snapshots
of flow data including flow velocities and pressures for each cardiac cycle of 1 s.
In order to reduce our computational costs for the CFD analysis, the flow data is
interpolated into smaller time step sizes.

The binary output files are quite large, ranging from approximately 10–40 MB.
This file size made it prudent to develop code to interpolate the flow data within the
model rather than creating larger output files. The time step size for the simulation
of particle trajectories is determined by a convergence test, which will be discussed
in the results section.

The subroutine interpolates the data linearly using

t = t0 + i
t1 − t0

s
, (6)

1u = 1u0 + (t − t0)
1u1 − 1u0

t1 − t0
, (7)

where 1u = (u, v,w) and t are the interpolated velocity and time, respectively,
1u0 = (u0, v0, w0), and t0 are the velocities and time from an output file, and
1u1 = (u1, v1, w1), and t1 are the velocities and time from the preceding output file,
s is the number of interpolated data points between two original data points, and
{i ∈ Z|1 ≤ i ≤ s}. The appropriate time step was computed from the convergence
test to be 0.002 of the original 0.01 s. This algorithm does not store any of the
interpolated data after each iteration in order to minimize computer memory usage.



Shear-Activated Nano-Therapeutics 329

2.5 Initial Conditions

Aggregate particles are allocated every 50 elements on a plane 0.05 cm from the
geometry inlet. The number of elements between aggregate particles was chosen
arbitrarily. The number of aggregate particles in the test and their position is
dependent on the number of triangular elements that make up the inlet. This method
produces between 10 and 20 particles for each geometry. After aggregate particles
break up into their nanoparticle components, the aggregate particle is still tracked in
the flow as if it had not broken up for the possibility of gaining further insight.

2.6 Particle Ricochet Assumption

The computational method allows particles to exit the geometry at any point in a
cycle. Therefore, a method had to be devised to prevent a particle, aggregate or
nano-, from leaving the domain through the arterial vessel wall. We assume that a
particle hitting the vessel walls is bounced back to the luminal region so that (1)
the particle motion obeys the linear momentum conservation law by considering the
walls are rigid and (2) there are no biochemical reactions between the walls and
particle. To ensure that particles do not leave the geometric domain prematurely, we
have developed a ricochet method that enables particles to exit the outlet.

If 1v is the incident vector, n̂ is the normal vector to the surface at the point at
which 1v hits, then the reflected vector 1w is described by

1w = 2n̂(1v · n̂)− 1v. (8)

The reflected vector has an angle of reflection that is the same as the angle of
incidence (Fig. 4).

If a particle leaves the geometry domain but did not exit through the geometry
outlet during a time step iteration, the algorithm creates a line between the particle’s
position at the previous time step and the particle’s current position outside
the domain. This line consists of 100,000 equally spaced points. The geometric
boundaries used in our study are comprised of triangular elements. The centroid
(geometric center) of each triangular element and the distance between every point
on the created line and every element’s centroid is calculated, and the minimum
distance is determined. The centroid with the minimum distance from the line is
then used to create a unit normal from the surface. Vector 1v is then calculated by
finding the component wise distance from the original position (x1, y1, z1) to the
centroid and normalized by its magnitude. The reflection vector is scaled by the
distance from the geometry surface to the particle’s current position outside the
domain (x2, y2, z2). Vector 1w is calculated using Eq. 8, scaled, and added to the
centroid vector to determine the new position of the particle.
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Fig. 4 Geometry of the particle ricochet subroutine. The particle (position 1) has moved outside
the domain to position 2. This routine moves the particle back into the domain to a point (position
3) of reflection off the boundary

2.7 Convergence Test

A convergence test was performed to determine a time step at which the dis-
cretization error is minimal. A straight arterial vessel with diameter of 0.5 cm and
length of 7.0 cm was used as the geometry for this test. It contained a concentric
stenosis at its center with a maximum narrowing of 0.25 cm. Eighteen particles were
simultaneously tracked, each having a different arbitrary starting position. This test
was performed eleven times, starting with the original time step from the binary
flow data of 0.01 s and dividing that time step in half for each study thereafter. For
each particle, the radial position data was collected from each study. Figure 5 shows
the convergence test of a single aggregate particle moving through the R1 geometry
with 50% occlusion.

A comparison of particle position for each particle every 0.01 s was made
between each consecutive study. The maximum difference between position data
was calculated and normalized using the geometry’s radius of 0.5 cm. Using an
error threshold of 0.001, it was determined that the difference between study 10
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Fig. 5 Convergence test of a single aggregate particle moving through R1 geometry with
concentric 50% occlusion

(0.01 s/512) and study 11 (0.01 s/1024) met the convergence threshold requirements
for all particles except one (MP8). It was observed that the majority of maximum
position differences were located near the outlet of the geometry. Since this study
is concerned with the region around the stenosis, it was sensible to define a stenosis
region and restrict the data analysis to it. The stenosis region is defined as being
1.5 cm before and after the center of the stenosis at 3.5 cm from the inlet. Tables 2
and 3 compare the maximum position with all data and the maximum position
contained around the stenosis.

From 2.0–5.0 cm from the inlet, all particles met the threshold requirement
between study 10 and 11. Therefore 0.01/512 was determined to be the time step
for this model. We use the time step for the rest of our simulations. In conducting
the convergence study an interesting correlation was found between initial radial
position of the aggregate particle and the normalized maximum difference between
position data of the dt/512 versus dt/1024 case. It appears that particles positioned
farther away from the stenosis center had a greater gap between the dt/512 and
dt/1024 cases, as seen in Fig. 6.
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Table 2 Convergence test: normalized �r by study (all data). Cells highlighted in blue meet the
threshold requirement

Study 1 2 3 4 5 6 7 8 9 10

Data Set 1 Original DT/2 DT/4 DT/8 DT/16 DT/32 DT/64 DT/128 DT/256 DT/512

Data Set 2 DT/2 DT/4 DT/8 DT/16 DT/32 DT/64 DT/128 DT/256 DT/512 DT/1024

Particle Normalized Δr

1 9.03E-02 2.71E-02 2.24E-02 1.29E-02 1.00E-02 4.90E-03 2.39E-03 1.29E-03 6.07E-04 9.83E-04

2 6.85E-02 3.05E-02 2.49E-02 1.48E-02 7.73E-03 4.90E-03 2.72E-03 1.90E-03 9.65E-04 4.91E-04

3 1.81E-01 4.36E-02 3.05E-02 1.70E-02 9.13E-03 6.19E-03 3.32E-03 2.56E-03 1.61E-03 8.13E-04

4 5.33E-02 5.68E-02 3.19E-02 1.79E-02 8.26E-03 3.80E-03 1.83E-03 8.99E-04 6.46E-04 3.65E-04

5 2.05E-02 1.12E-02 6.62E-03 3.42E-03 1.79E-03 9.27E-04 4.68E-04 2.37E-04 1.21E-04 5.99E-05

6 1.39E-02 1.03E-02 5.78E-03 2.95E-03 1.47E-03 7.34E-04 3.77E-04 1.90E-04 9.48E-05 4.59E-05

7 5.15E-02 6.04E-02 3.37E-02 1.68E-02 7.86E-03 3.87E-03 1.88E-03 9.16E-04 4.62E-04 2.34E-04

8 1.58E-01 3.13E-02 4.02E-02 2.12E-02 4.42E-02 3.56E-02 1.33E-02 5.65E-03 3.83E-03 1.54E-03

9 6.12E-02 5.74E-02 3.68E-02 1.88E-02 9.39E-03 4.60E-03 2.31E-03 1.19E-03 6.52E-04 2.98E-04

10 2.40E-02 1.38E-02 7.30E-03 4.10E-03 2.17E-03 1.06E-03 5.26E-04 2.67E-04 1.36E-04 7.45E-05

11 1.03E-02 5.12E-03 3.22E-03 1.63E-03 8.10E-04 4.15E-04 2.08E-04 1.05E-04 5.16E-05 2.64E-05

12 2.24E-02 1.14E-02 6.30E-03 3.41E-03 1.73E-03 8.89E-04 4.46E-04 2.24E-04 1.12E-04 5.73E-05

13 7.69E-02 7.06E-02 3.51E-02 2.05E-02 9.92E-03 5.15E-03 2.46E-03 1.24E-03 6.08E-04 3.08E-04

14 1.07E-01 6.20E-02 3.07E-02 3.52E-02 1.87E-02 8.85E-03 3.87E-03 1.88E-03 8.86E-04 4.34E-04

15 8.02E-02 2.71E-02 3.72E-02 2.42E-02 1.55E-02 9.58E-03 4.74E-03 2.90E-03 1.43E-03 7.35E-04

16 5.71E-02 3.49E-02 1.98E-02 1.26E-02 5.73E-03 3.02E-03 1.49E-03 7.51E-04 3.77E-04 1.86E-04

17 9.08E-02 5.80E-02 2.98E-02 1.57E-02 7.56E-03 3.66E-03 1.82E-03 8.96E-04 4.48E-04 2.32E-04

18 1.50E-01 2.46E-02 2.81E-02 2.54E-02 1.17E-02 7.01E-03 3.50E-03 1.72E-03 8.56E-04 4.25E-04

Table 3 Convergence test: normalized �r by study (stenosis region). Cells highlighted in blue
meet the threshold requirement. The stenosis region is defined as being 1.5 cm before and after the
center of the stenosis at 3.5 cm from the inlet

Study 1 2 3 4 5 6 7 8 9 10

Data Set 1 Original DT/2 DT/4 DT/8 DT/16 DT/32 DT/64 DT/128 DT/256 DT/512

Data Set 2 DT/2 DT/4 DT/8 DT/16 DT/32 DT/64 DT/128 DT/256 DT/512 DT/1024

Particle Normalized Δr

1 9.03E-02 2.71E-02 2.20E-02 9.04E-03 4.79E-03 2.25E-03 1.01E-03 5.06E-04 5.88E-04 9.83E-04

2 6.85E-02 2.08E-02 2.48E-02 1.48E-02 7.73E-03 4.23E-03 2.07E-03 1.06E-03 5.26E-04 2.64E-04

3 1.81E-01 4.29E-02 3.05E-02 1.70E-02 9.13E-03 4.73E-03 2.52E-03 1.28E-03 6.45E-04 3.17E-04

4 5.33E-02 4.23E-02 2.32E-02 1.37E-02 6.57E-03 3.17E-03 1.55E-03 7.75E-04 3.86E-04 1.90E-04

5 2.05E-02 1.05E-02 6.16E-03 3.38E-03 1.79E-03 9.27E-04 4.68E-04 2.37E-04 1.21E-04 5.35E-05

6 1.39E-02 1.03E-02 5.78E-03 2.95E-03 1.30E-03 6.38E-04 3.28E-04 1.63E-04 8.14E-05 3.96E-05

7 5.15E-02 4.66E-02 2.56E-02 1.38E-02 6.70E-03 3.34E-03 1.65E-03 8.13E-04 4.09E-04 2.10E-04

8 1.58E-01 3.13E-02 4.02E-02 2.12E-02 1.16E-02 5.63E-03 2.82E-03 1.40E-03 7.04E-04 3.71E-04

9 6.12E-02 4.88E-02 3.24E-02 1.79E-02 9.12E-03 4.60E-03 2.31E-03 1.14E-03 5.73E-04 2.92E-04

10 2.40E-02 1.35E-02 7.03E-03 3.91E-03 2.02E-03 9.88E-04 4.92E-04 2.49E-04 1.27E-04 7.45E-05

11 1.03E-02 5.12E-03 3.00E-03 1.57E-03 7.61E-04 3.90E-04 1.96E-04 9.88E-05 4.86E-05 2.46E-05

12 2.24E-02 1.14E-02 6.30E-03 3.34E-03 1.69E-03 8.64E-04 4.34E-04 2.18E-04 1.09E-04 5.43E-05

13 7.69E-02 6.59E-02 3.31E-02 1.99E-02 9.79E-03 5.15E-03 2.46E-03 1.24E-03 6.08E-04 3.08E-04

14 9.47E-02 6.20E-02 3.07E-02 2.06E-02 1.35E-02 6.28E-03 2.98E-03 1.43E-03 7.33E-04 3.33E-04

15 8.02E-02 2.71E-02 3.72E-02 2.11E-02 1.17E-02 5.71E-03 2.79E-03 1.39E-03 7.37E-04 3.67E-04

16 5.30E-02 2.95E-02 1.59E-02 9.21E-03 4.24E-03 2.31E-03 1.15E-03 5.79E-04 2.89E-04 1.42E-04

17 8.21E-02 4.88E-02 2.51E-02 1.38E-02 6.83E-03 3.39E-03 1.70E-03 8.36E-04 4.19E-04 2.20E-04

18 1.45E-01 2.46E-02 2.81E-02 2.02E-02 1.08E-02 5.43E-03 2.68E-03 1.30E-03 5.65E-04 2.83E-04
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Fig. 6 Convergence test showing the positive correlation between initial radial particle position
and normalized maximum difference between position data of dt/512 vs dt/1025 cases

3 Results

3.1 Optimal Breakup Threshold

Angular speed, ω, was used as a breakup threshold for aggregate particles. When
the aggregate particles reach an angular speed threshold, they break up into their
nanoparticle components. Once an aggregate particle is broken, the twenty-five
nanoparticles will break off with the same velocity and angular velocity as the
aggregate particle had just prior to breakup as shown in Fig. 1. To determine
a breakup threshold, the angular speed at time step, t = 1, was calculated
for each aggregate particle. The minimum angular speed, ωmin, was determined,
and different breakup thresholds were generated by scaling ωmin to a variety of
magnitudes. To determine the optimal breakup threshold for each study, two criteria
were measured: the percentage of particles that broke up within the stenosis region
and the average distance the aggregate particle broke up from the center of the
stenosis. This average includes all aggregate particles, including those that did not
break up within the stenosis region as well as those that broke up before and after
the stenosis.
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For the R1 and R3 geometries, we chose the stenosis region to be 1 cm before and
1 cm after the center of the stenosis along the z-axis. This a slightly smaller region
than the region used in our original convergence test. The stenosis region on the R2
geometry consisted of the area spanning 0.5 cm before and 0.5 cm after the center
of the stenosis. The shorter region is due to the stenosis lying on a slant relative
to the z-axis. The average breakup distance from the center of the stenosis was
ascertained by capturing the position of the first appearance of a nanoparticle from
each aggregate particle. Due to time and post processing limitations, data from every
fifth time step was captured. No biochemical nanoparticle binding components were
used in this study to determine if the nanoparticles will adhere to the stenosis after
breakup.

The R1, R2 and R3 geometries with a concentric stenosis and 50% occlusion
were tested. The specific density and aggregate particle diameter were kept constant
at 1.0 and 3.8 μm, respectively. An aggregate particle diameter of 3.8 μm was
chosen for consistency with Ref [10].

For the R1 geometry, fifteen aggregate particles were inserted into the flow
to study the effect of different breakup thresholds. Thirteen different breakup
thresholds, determined by scaling ωmin = 14.89 rad/s for this R1 geometry, were
tested to determine the optimal value. All aggregate particles broke up within the
stenosis region when the threshold value was between 3ωmin (44.66 rad/s) and
5ωmin (74.44 rad/s). At thresholds less than 3ωmin (44.66 rad/s) particles broke up
prematurely, while at thresholds greater than 5ωmin (74.44 rad/s) particles did not
break up. By comparing the average distance of particle breakup from the stenosis
center, the optimal breakup threshold was determined to be 3ωmin (44.66 rad/s) as
seen in Fig. 7. This breakup threshold yielded the closest average distance from the
stenosis center (0.29 cm), with all particles breaking up after the stenosis center.
Particle breakup after the stenosis center may be beneficial in nano-therapeutic
residence time due to the development of a LCS which acts as a barrier post-stenosis
[21]. Table 4 shows the results for all thirteen breakup thresholds that were tested.

It was observed that the initial particle position was correlated with the proximity
of the breakup position to the stenosis center. To ensure this observance was not an
error caused by recording the data at every 5th time step (as opposed to recording the
data at every time step), the simulation for the R1 geometry was repeated; this time
recording the data at every time step. The least squares linear regression analysis
was performed to determine the relationship between the initial radial position of
the particle and the proximity of the breakup to the stenosis center. For this analysis
the optimal threshold (44.66 rad/s) was used with aggregate particles possessing a
3.8 μm diameter and specific density of 1. The line of best fit that emerged from
the analysis is given as ŷ = 0.96 − 9.49r0, with an R2 value of 0.90, and where
ŷ is the predicted breakup proximity (cm) to the stenosis center, and r0 is the
initial radial particle position. The initial radial position of the aggregate particles is
negatively correlated with distance from the breakup position to the stenosis center.
As particles are placed into the flow, the farther their initial radial distance is from
the geometry center, the closer the breakup occurs to the stenosis center as seen in
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Fig. 7 Radial position as a function of position along the z-axis for aggregate particles flowing
through the concentric R1 vessel geometry with an optimal breakup threshold. Each line represents
an individual aggregate particle path, and the stars (*) indicate particle breakup position. Note that
aggregate particles continue to be tracked through the flow as though they never broke apart even
if they do breakup

Table 4 Breakup threshold data for the R1 geometry. Note that the shear threshold values are
computed using multiples of ωmin = 14.8879598 and then rounded to two decimals

Shear Threshold ( ) Total AP Total Broken AP Total Broken in Stenosis Region Avg Distance from Center (cm)

37.22 15 15 4 1.777

40.32 15 15 12 0.915

43.18 15 15 13 0.701

44.66 15 15 15 0.292

46.15 15 15 15 0.294

46.52 15 15 15 0.304

55.83 15 15 15 0.347

65.13 15 15 15 0.413

74.44 15 15 15 0.466

93.05 15 13 13 0.498

111.66 15 11 9 0.564

148.88 15 6 5 0.673

223.32 15 0 0 -

Fig. 8. This agrees with the optimal aggregate particle injection site proposed by
Qiao et al. [14].
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Fig. 8 Breakup distance from stenosis center versus initial radial position of the aggregate particle
for the concentric R1 geometry. The line of best fit shows a negative correlation, and is represented
by ŷ = 0.96− 9.49r0 with an R2 value of 0.90

Table 5 Breakup threshold data for the R2 geometry. Breakup threshold data for the R2
geometry. Note that the shear threshold values are computed using multiples of ωmin =
5.9040012962963 and then rounded to two decimals

Shear Threshold ( ) Total AP Total Broken AP Total Broken in Stenosis Region Avg Distance from Center (cm)

44.28 17 17 1 0.992

59.04 17 17 4 0.848

118.08 17 17 9 0.489

121.03 17 17 15 0.221

123.98 17 17 16 0.211

129.89 17 17 16 0.184

135.79 17 17 17 0.150

141.70 17 17 17 0.145

177.12 17 17 17 0.129

283.39 17 17 17 0.104

289.30 17 17 17 0.103

295.20 17 16 16 0.097

324.72 17 16 16 0.097

For the R2 geometry, seventeen aggregate particles were inserted into the flow
to study the effect of different breakup thresholds. Thirteen different breakup
thresholds, determined by scaling ωmin = 5.90 rad/s for this R2 geometry, were
tested to determine the optimal value. All aggregate particles broke up within the
stenosis region when the threshold value was between 23ωmin (135.79 rad/s) and
49ωmin (289.1 rad/s). The average distance from the stenosis center was minimized
for 289.1 rad/s at 0.10 cm from the center. All but one particle broke up before
the stenosis center, which is a stark difference to the R1 geometry in which all
particles broke up after the stenosis center. A similar regression analysis of initial
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Fig. 9 Position of aggregate particles flowing through the concentric R3 vessel geometry with an
optimal breakup threshold. Each line represents the path of an aggregate particle, and the circles
indicate particle breakup position. Note that aggregate particles continue to be tracked through the
flow as though they never broke apart even if they do breakup

radial position and breakup position that was completed for the R1 geometry was
conducted. However, unlike the R1 geometry, no correlation was discovered in the
curved R2 geometry. However, this could be due to the initial radial position being
too far away from the stenosis and may hold for particle position when entering the
stenosis region. Table 5 shows the results for all thirteen breakup thresholds that
were tested.

For the R3 geometry, ten aggregate particles were inserted into the flow to study
the effect of different breakup thresholds. Thirteen different breakup thresholds,
determined by scaling ωmin = 16.38 rad/s for this R3 geometry, were tested to
determine the optimal value. The maximum number of aggregate particles which
broke up within the stenosis region was nine, and occurred when the threshold
value was between 10ωmin (163.84 rad/s) and 12ωmin (196.61 rad/s). No distinct
characteristics of the tenth particle were observed. The average distance from the
stenosis center was minimal at a threshold value of 12ωmin (196.61 rad/s) as shown
in Fig. 9. A similar regression analysis to that described previously of initial radial
position and breakup position was conducted. No correlation was discovered in the
curved R3 geometry from this analysis. In contrast to the R1 and R2 geometries
at their optimal thresholds, a slight majority (60%) of aggregate particles broke
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Table 6 Breakup threshold data for the R3 geometry. Breakup threshold data for the R3 geome-
try. Note that the shear threshold values are computed using multiples of ωmin = 16.3839233 and
then rounded to two decimals

Shear Threshold ( ) Total AP Total Broken AP Total Broken in Stenosis Region Avg Distance from Center (cm)

40.96 10 10 0 2.108

122.88 10 10 4 1.347

147.46 10 10 7 0.584

163.84 10 10 9 0.445

165.48 10 10 9 0.445

175.31 10 10 9 0.482

176.95 10 10 9 0.482

178.58 10 10 9 0.481

180.22 10 10 9 0.488

196.61 10 10 9 0.364

212.99 10 8 8 0.157

245.76 10 6 6 0.143

327.68 10 6 6 0.121

up before the stenosis center in the R3 geometry. Table 6 shows the results for all
thirteen breakup thresholds that were tested.

In summary, the curvature of vessel geometry greatly affects the optimal
aggregate particle breakup threshold. The optimal breakup threshold of the R2 was
approximately 6.3 times greater than R1, and the R3 curved geometry was approx-
imately 4.5 times greater than that of the R1 straight geometry. A clear correlation
between vessel curvature and optimal breakup threshold was not observed, but
it can be said that curvature creates greater complexity, which this study cannot
examine fully. The optimal breakup thresholds for both curved cases were at the
highest end of the optimal range of thresholds, while the straight case threshold
was found at the lower end of its range. It was discovered that for the straight case,
a negative correlation exists between initial aggregate particle radial position and
average breakup distance from the stenosis; this pattern was not seen in the R2 or
R3 curved cases.

3.2 Specific Density

Specific density was tested on both the R1 and R3 geometries. Aggregate particle
diameter and breakup threshold were kept constant at 3.8 μm and 10ωmin, respec-
tively. Specific densities from 1 to 1.3 were tested. There was no change in the
results for these cases. It was determined that in order for specific density to make
any noticeable change, the specific density would have to be set to an unrealistic
value of 104 or above.
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Table 7 Aggregate particle diameter data

R1 Average distance from stenosis R3 average distance from stenosis
Diameter (μm) center (cm) center (cm)

1 0.29160212 0.449844683

2 0.291686948 0.449477008

3 0.291774464 0.447882889

3.8 0.29184599 0.445322032

4 0.291864522 0.443923137

5 0.291957333 0.438509313

3.3 Particle Diameter

The effect of particle diameter on breakup threshold was studied using the R1 and
R3 geometries, both with a 50% concentric occlusion. The specific density was kept
constant at 1. Optimal breakup threshold values of 44.66 rad/s for the R1 geometry
and 196.61 rad/s for the R3 geometry were used. Three particle diameters (1.0, 3.8
and 5.0 μm) were studied for each geometry. These diameters were chosen based on
the diameter of natural platelets which lies between 1.0 and 5.0 μm, while 3.8 μm
was included because it is the average diameter of fabricated SA-NT aggregate
particles [10].

A positive correlation between aggregate particle diameter and average breakup
distance from stenosis center was discovered for the R1 geometry. Using regression
analysis, the relationship can be described by the equation ŷ = 0.292+0.0000887d,
with R2 = 0.99, and where d is the aggregate particle diameter (μm), and ŷ is
the predicted breakup proximity (cm) to the stenosis center. Similar analysis was
performed for the R3 geometry, and a negative correlation was found with ŷ =
0.454− 0.00272d, with R2 = 0.85.

This demonstrates that curvature matters when choosing an optimal aggregate
particle diameter. Smaller particles may be ideal for straight vessels and larger
particles for a vessel with greater curvature. Overall the ranges of breakup distance
for the R1 and R3 geometries respectively were 3.55×10−4 and 1.13×10−2, so the
benefit may be marginal. The positive correlation between particle size and average
particle residence time found in Doig et al.’s study may warrant a larger aggregate
particle diameter in order to gain the binding benefit of larger nanoparticles [9].
Table 7 shows the average distance from stenosis center for the R1 and R3 diameter
cases that were simulated.

3.4 Stenosis Shape and Location

The R1 geometry was tested with a 50% occluded eccentric stenosis inserted into
it in order to compare it to the R1 concentric case. The minimum angular velocity



340 N. Jefopoulos and B. J. Chung

for this case was 11.66 rad/s. In order to attain a similar threshold value to the
R1 concentric case, 3.82ωmin was used to attain a threshold of 44.66 rad/s. Sixteen
aggregate particles were introduced into the flow. In this case, all particles broke up
within the stenosis region. The eccentric R1 case had an average minimum distance
from stenosis center of 0.29 cm, which is identical to the concentric case to two
significant digits.

The R3 geometry was tested with 50% occluded eccentric stenoses in three
positions: superior, inferior, and ventral/dorsal. The superior case had a minimum
angular velocity of 1.23 rad/s. To meet the concentric case threshold, the minimum
was multiplied by 159.98. Twenty particles were tested, and all particles broke up
within the stenosis region. The average distance from the stenosis center is 0.19 cm,
which was closer than for the concentric case with the same parameters.

The inferior case had a minimum angular velocity of 2.10 rad/s. To meet the R3
concentric case threshold, the minimum was multiplied by 93.52. Twenty particles
were tested. All particles broke up within the stenosis region. The average distance
from stenosis center is 0.07 cm, which is closer than for the concentric case.

The ventral/dorsal case had a minimum angular velocity of 2.74 rad/s, and in
order to match the concentric case threshold of 196.61, the minimum was multiplied

Fig. 10 Comparison of aggregate particle flow of the R3 inferior eccentric case (left) and the R3
superior eccentric case (right). Each line traces an individual aggregate particle flowing through
the geometry
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by 71.73 to attain the threshold. Fourteen aggregate particles passed through the
flow. All particles broke up within the stenosis region, and this case had an
average distance from stenosis center of 0.20 cm, which again is closer than for
the concentric case.

In all R3 eccentric cases, the particles broke up before the stenosis center, which
agrees with the concentric case. All three eccentric cases fared better in both particle
breakup within the stenosis region and average breakup distance from stenosis
center. The inferior eccentric case performed the best due to its position relative to
the particle trajectory, reminiscent of the correlation between initial particle position
and breakup position shown in the R1 concentric case. A comparison of the inferior
and superior case is shown in Fig. 10 for a visual of stenosis position and its effect
on particle trajectory. It should be noted that all eccentric cases had a better average
particle breakup position, and all also had greater occlusion in the radial center than
the concentric case. This greater center occlusion did not seem to affect the straight
cases’ average breakup distance. Curvature, which in part drives particle trajectory,
combined with stenosis location, has a sizeable effect on optimal breakup distance.

4 Summary and Conclusion

This study used computational methods to better understand how aggregate particle
breakup threshold, diameter and specific density, as well as vessel curvature
and stenosis shape affect the efficiency of shear-activated nano-therapeutics in
the treatment of atherosclerosis. Different idealized geometries were used to test
and analyze these parameters. Optimal angular velocity breakup thresholds were
discovered for both straight and curved geometry cases. Geometry curvature was a
sizeable factor in breakup threshold, as the curved vessel cases (R2, R3) required
6.3 and 4.5 times the angular velocity of the straight vessel, respectively. No clear
pattern was shown relating vessel curvature and optimal breakup threshold.

In the straight geometry cases, a correlation was found between initial particle
position and particle breakup proximity to the stenosis center. As particles are
positioned farther away from the vessel center, their breakup proximity from center
is decreased. A similar correlation was not found in the curved vessel cases, but
could hold true if a position nearer to the stenosis region was used. This finding in
the straight geometry case corresponds with Qiao et al.’s study and further iterates
their proposal for an injection site close to the aortic wall [14]. This correlation may
hold true for the R2 and R3 if analysis was calculated using particle position when
entering the stenosis region and not initial particle position.

Aggregate particle diameter was also explored. Diameters from 1.0 to 5.0 μm
were used for both straight and curved geometries. For the straight vessel case,
small decreases in average particle breakup distance from stenosis center were seen
as particle diameters decreased. The opposite happened with the curved vessel
case. As the particle diameter increased, a slight decrease in average particle
breakup distance from stenosis was achieved. This indicates that as vessel curvature
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increases, so should the diameter of the aggregate particle for optimal results. This
result could be useful in tailoring the aggregate particle to disease site.

Different specific densities were tested for both straight and curved geometries.
It was determined that specific density will not play a role in efficiency of shear-
activated nano-therapeutics.

Stenosis shape and location were tested in both the straight vessel and one of
the curved vessel geometries. Curvature in conjunction with stenosis location had a
great effect on average breakup distance from the stenosis center. This is a similar
observation to the initial particle position correlation found in the R1 cases. Both
indicate that it is optimal to have the stenosis in the aggregate particle path.

Further studies need to be conducted to find optimal parameters. Effects of
greater occlusions and more complicated geometries should give us more insight
and a better understanding of the effectiveness of shear activated nano-therapeutics.
There is evidence that blood viscosity is a risk factor for atherosclerosis; therefore,
studies should be conducted using greater blood viscosity than used in this study to
determine its effect on particle breakup [22].
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Compressed CO2 Refrigeration for
Energy Storage and CO2 Utilization

Tran X. Phuoc and Mehrdad Massoudi

1 Introduction

Carbon dioxide (CO2) has been considered as the most environmentally friendly
refrigerant used in industrial and marine refrigeration [1–5]. This is because CO2
is an inert gas, where the ozone depletion associated with conventional refrigerants,
such as perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs), does not exist.
Carbon dioxide, which is available as a byproduct from many processes and
plants (e.g., power plants, ammonia and beer production units etc.), is also more
economical in comparison with conventional synthetic refrigerants. Like other
refrigerants, the conventional use of CO2 for refrigeration or air conditioning
applications is achieved through vapor-to-liquid compression and liquid-to-vapor
expansion processes. To achieve sufficient refrigeration, subcritical cycle and
transcritical cycle have been commonly used, and high operation pressures (7–
12 MPa) are required. Refrigeration systems with either subcritical or transcritical
operations are more complex, leading to higher costs in components and installation.
High operating pressure is more hazardous and increases the potential for leaks, and
specially designed components are required.

When the critical temperature of CO2 is around 31 ◦C, the heat released by
CO2 condensation cannot be discharged into the surrounding atmosphere above this
temperature; in this work we report a simple analysis on a CO2 cooling system that
can be achieved simply based on its natural Joule-Thomson cooling capability. The
Joule-Thomson effect is the change in a fluid temperature when it expands without
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Fig. 1 Joule-Thomson inversion curves for CO2

work and heat transfer. The Joule-Thomson inversion curve for CO2 [6, 7] (the
locus of states where the fluid temperature is invariant upon isenthalpic expansion)
as shown in Fig. 1 indicates that in the reduced pressure up to about 12, and the
reduced temperature between 1 and 4.5, the Joule-Thomson coefficient of CO2 is
positive, that is, if it is expanded isenthalpically, it will be cooled down. For CO2
injection into a depleted natural gas reservoir, early studies [8–14] have reported that
depending on the reservoir and the injection conditions, such effects could reduce
reservoir temperature so significantly that thermal fracturing, formation of hydrates,
and freezing of residual water could be induced.

The new cooling concept is presented in Fig. 2. It simply consists of four
main components: a high-pressure piston-cylinder storage tank, a solar-powered
compressor, a multipath heat exchanger, and a low-pressure storage tank. Excess
solar (or wind) energy is used to compress CO2 into the piston-cylinder tank that
is set at a constant pressure by a moving piston (of about 1 MPa to 5 MPa). The
compression process is carried out slowly so that the temperature of CO2 in the
compressed tank can be in equilibrium with the surrounding air temperature. When
it is needed, the compressed CO2 is allowed to expand at constant enthalpy via a
plug valve into the low-pressure heat exchanger (≤0.1 MPa). Such an expansion
reduces CO2 temperature significantly when it enters the heat exchanger where it
is heated by absorbing heat from the hot air flowing through the heat exchanger.
When the CO2 exits the heat exchanger, it is pumped and stored into a low-
pressure tank (≤0.1 MPa). When excess solar or wind energy is available, it is
recompressed and stored back into the high-pressure tank. Cooling this way is based
strictly only on the Joule-Thomson cooling effect of CO2. We calculated the CO2
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Fig. 2 Compressed CO2 for energy storage and cooling utilization. (1) High-pressure tank, (2)
plug valve, (3) multipath heat exchanger, (4) pump, (5) low-pressure tank, (6) solar-powered
compressor

Joule-Thomson coefficient using the NIST database [15] and also from the Wagner-
proposed equation of state for CO2 [16]. The values of the CO2 Joule-Thomson
coefficient at 35 ◦C increase from 10.082 K/MPa at 1 MPa to 10.11 K/MPa at
3 MPa and then start to decrease as the pressure increases further. For 40 ◦C, for
the same range of pressure, it is constant at 9.67 K/MPa. The temperatures of 35 ◦C
and 40 ◦C used here are common environment temperatures. Thus, considering the
environment temperature of about 40 ◦C, the most effective range of pressures used
is about 1–3 MPa. The proposed refrigeration cycle requires only a few no-moving
part components, and the working fluid remains in its single vapor phase; thus, it
is simple and cost-effective in design, components, and installation. The proposed
cooling system will serve as cooling and an energy storage system for excess solar
(or wind) energy at the same time. In the following sections, the performance of a
parallel-flow heat exchanger and counter-flow heat exchanger will be analyzed.
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2 Heat Transfer Analysis

When compressed CO2 is released at a constant enthalpy from the high-pressure
tank through the plug valve as shown in Fig. 2, a cold-stream CO2 at the heat
exchanger pressure is generated and enters the heat exchanger at x = 0 and exits
the heat exchanger at x = L, which is the length of the heat exchanger. The CO2
temperature and velocity at the heat exchanger inlet are related to the tank pressure
and temperature and the pressure of the heat exchanger; they can be calculated as
follows:

μJT =
(
∂T

∂P

)
h

≈
(
TCO2,tnk − TCO2,in

)
(Ptank − Pin)

(1)

TCO2,in = TCO2,tnk − μJT (Ptank − Pin) (2)

Ptnk = Pin + ρCO2,inV
2
in (3)

Thus, the mass flow rate of the cold CO2 stream before entering the multiple flow
paths of the heat exchanger is

ṁCO2 = πr2
p

[
ρCO2,in (Ptank − Pin)

] 1
2 (4)

where TCO2,in is the CO2 inlet temperature,TCO2,tnk is the temperature of CO2
stored in high-pressure tank, μJT is the Joule-Thomson coefficient of CO2 (at
TCO2,tnk, Ptnk), Pin (about 0.1 MPa) is the heat-exchanger pressure, ρCO2,in is the
density of CO2 at the heat-exchanger inlet, Vin is the CO2 velocity, and rp is the
radius of the release pipe.

This analysis is given to a single flow path of a heat exchanger as represented
in Fig. 3. Two types of flow configurations are used: a parallel flow and a counter
flow. The flow path has a width b, which is also the width of the heat exchanger, and
a thickness a. For the parallel-flow heat configuration, the hot air stream enters the
flow path at x = 0 and exits at x = L. For the counter-flow configuration, it enters
at x = L and exits at x = 0. The cold CO2 stream inlet temperature, TCO2,in, is
determined using Eq. (2). Since the heat exchanger has N identical flow paths, the
mass flow rate of the CO2 stream per path is ṁCO2,p = ṁCO2/N , where ṁCO2 is
determined using Eq. (4). Keeping the dimensions of the releasing pipe (rp = 5 mm)
and of the flow path (a = 2 cm, b = 10 cm, L = 1 m) unchanged, the goal is to
calculate the air and CO2 outlet temperatures using the number of the flow path N,
the compressed tank pressure, at Ptnk, and temperature, at TCO2,tnk , and the air mass
flow rate, ṁair,p, as parameters.

The heat capacity of the air stream and CO2 stream are

Ẇair = ṁair,pcp,air (5)
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Fig. 3 Heat exchanger: (a) parallel flow, (b) counter flow

ẆCO2 = ṁCO2,pcp,CO2 (6)

The total heat transfer between the two streams is

Q̇ = Ẇair

(
Tair,in − Tair,out

) = ẆCO2

(
TCO2,out − TCO2,in

)
(7)

Or

Q̇ =
(
Tair,in − TCO2,in

)− (Tair,out − TCO2,out

)
(

1
Ẇair

+ 1
ẆCO2

) (8)

where ṁCO2,p is the mass flow rate of the CO2 stream, ṁair,p is the mass flow rate
of the air stream, cp,CO2 is the specific heat at constant pressure of CO2, cp, air is the
specific heat at constant pressure of air, and q̇ ′′ is the heat transfer rate per unit area
between the two fluid stream at any location along the heat exchanger expressed as
follows:

q̇ ′′ = ho
(
Tair − TCO2

)
(9)

If the inside tube wall is thin and its thermal resistance is neglected, the heat
transfer coefficient ho calculated from the heat transfer coefficient of the air stream,
hc, air, and the heat transfer coefficient of the CO2 stream, hc,CO2 , as

1

ho
= 1

hc,air
+ 1

hc,CO2

(10)
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2.1 Parallel-Flow Heat Exchanger

Referring to Fig. 3a, the mean temperatures of the air stream, Tair, and CO2 stream,
TCO2 , in the heat exchanger are

dTCO2

dx
= 4 (a + b) q̇ ′′

ẆCO2

= 4 (a + b) ho

ẆCO2

(
Tair − TCO2

)
(11)

dTair

dx
= −4 (a + b) q̇ ′′

Ẇair

= −4 (a + b) ho

Ẇair

(
Tair − TCO2

)
(12)

Subtract Eq. (11) from Eq. (12)

d
(
Tair − TCO2

)
(
Tair − TCO2

) = −4 (a + b) ho

(
1

Ẇair

+ 1

ẆCO2

)
dx (13)

Integrating Eq. (13) from x = 0, where Tair, = Tair,in and TCO2 = TCO2,in

to x = L where Tair = Tair,out and TCO2 = TCO2,out , we obtain the outlet
temperatures of both streams and the total heat transfer rate, Q̇, as

Tair,out − TCO2,out =
(
Tair,in − TCO2,in

)
e−βL (14)

where

β = 4 (a + b) ho

(
1

Ẇair

+ 1

ẆCO2

)
(15)

From Eq. (14)

(
1

Ẇair

+ 1

ẆCO2

)
= − 1

4 (a + b) hoL
Ln

(
Tair,out − TCO2,out

Tair,in − TCO2,in

)
(16)

The total heat transfer, given by Eq. (8), becomes

Q̇ = −4 (a + b) hoL

⎡
⎣(Tair,in − TCO2,in

)− (Tair,out − TCO2,out

)
Ln
(
Tair,out−TCO2,out

Tair,in−TCO2,in

)
⎤
⎦ (17)

From Eq. (7), the CO2 outlet temperature is expressed as follows:

TCO2,out = TCO2,in +
Wair

WCO2

(
Tair,in − Tair,out

)
(18)
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From Eqs. (14) and (18), the air outlet temperature is

Tair,out = Tair,in −
(
Tair,in − TCO2CO2,in

) (
1− e−βL

)
(

1+ Ẇair

ẆCO2

) (19)

2.2 Counter-Flow Heat Exchanger

Referring to Fig. 3b, the temperatures of the CO2 stream in the heat exchanger is
described by Eq. (11); temperatures of the air stream, Tair, in the heat exchanger is
expressed in Eq. (20):

dTair

dx
= 4 (a + b) ho

Ẇair

(
Tair − TCO2

)
(20)

Combining Eqs. (11) and (20)

d
(
Tair − TCO2

)
(
Tair − TCO2

) = αdx (21)

where

α = 4 (a + b) ho

(
1

Ẇair

− 1

ẆCO2

)
(22)

And integrating Eq. (21) from x = 0, where Tair, = Tair,out , and TCO2 =
TCO2,in to x = L, where Tair = Tair,in and TCO2 = TCO2,out we obtain the outlet
temperatures of both streams and the total heat transfer rate, Q̇, as follows:

Ln

(
Tair,out − TCO2,in

)
(
Tair,in − TCO2,out

) = −αL (23)

And

(
1

Ẇair

− 1

ẆCO2

)
= − 1

4 (a + b) hoL
Ln

(
Tair,out − TCO2,in

)
(
Tair,in − TCO2,out

) (24)

From Eq. (7), the total heat transfer and CO2 outlet temperature are

Q̇ = −4 (a + b) hoL

⎡
⎢⎣
(
Tair,in − Tair,out

)− (TCO2,out − TCO2,in

)
Ln

(
Tair,out−TCO2,in

)(
Tair,in−TCO2,out

)

⎤
⎥⎦ (25)



352 T. X. Phuoc and M. Massoudi

TCO2,out = TCO2,in +
Ẇair

ẆCO2

(
Tair,in − Tair,out

)
(26)

From Eq. (23), the air outlet temperature is

Tair,out = Tair,in +
(
TCO2,in − Tair,in

) (
1− e−αL

)
(

1− Ẇair

ẆCO2
e−αL

) (27)

3 Results and Discussions

The following results are calculated for a heat exchanger that has 10 or 20 flow paths
with a = 2 cm, b = 10 cm, and a length L = 1 m. The diameter of the CO2 release
pipe is set to 1 cm.

Figure 4 shows the exit temperatures of air and CO2 streams as they pass through
the heat exchanger having 20 flow paths and a length of 1 m. The temperature drop
of the air stream shown here does not seem to depend on the compressed tank
temperature but depends significantly on the air mass flow rate. The counter-flow
configuration also results in a larger temperature drop than the parallel-flow does.
For the parallel-flow configuration, the exit temperature of the air stream is about 8–
15 ◦C lower than its initial temperature for the range of the mass flow rate ratio from
0.25 to 1. For the same range of the mass flow rate ratio, the counter-flow results in
the air temperature drop from about 9–19 ◦C.
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Fig. 5 Exit temperature as a function of the compressed tank pressure (ratio of air mass flow rate
to the CO2 mass flow rate: 50%, N = 20; (a) parallel flow, (b) counter flow)

Figure 5 shows the exit temperatures of air and CO2 streams as a function of
the compressed tank pressure when the initial air temperature of 35 ◦C (308 K) and
the mass flow rate ratio of 0.5 are kept unchanged. The temperatures and the mass
flow rates of CO2 as a function of the compressed tank pressure before entering
the heat exchanger are also included in the figure for easy reference. The results
indicate that the tank pressure has a significant effect on the exit temperatures of
both streams. For the conditions used here, a decrease of about 25–30 ◦C in the air
stream temperature is achieved when the compressed tank pressure is at 5 MPa. For
example, with Ptnk = 5 MPa and Ttnk = 35 ◦C (308 K), the air exit temperature
is 10 ◦C (283 K) with the parallel-flow configuration and 6 ◦C (279 K) with the
counter-flow configuration. Such a significant cooling is due to the fact that as seen
from Eqs. (2) and (4), where the CO2 temperature and mass flow rate are calculated,
colder and higher mass flow rate of CO2 can be released entering the heat exchanger
as the tank pressure is higher.

Figure 6 shows the total heat transfer for a heat exchanger having 20 flow paths.
The results shown here indicate that the total heat transfer increases with the mass
flow rate ratio and with the increase in the compressed tank pressure. The heat
transfer is also higher with the counter-flow configuration. As seen from Fig. 5,
increasing the compressed tank pressure would result in a CO2 stream that enters
the heat exchanger with higher mass flow rate and lower temperature. Thus, more
heat from the surrounding hot air is absorbed. For example, for the conditions used
here, with the mass flow ratio of 50%, a total heat transfer rate in the range from
284 W to 3174 W (parallel flow) and from 386 W to 3592 W (counter flow) is
exchanged between the two streams as the tank pressure increased from 1 to 5 MPa.

The effects of the number of the flow paths on air and CO2 exit temperatures and
the total heat transfer rate are presented in Figs. 7 and 8. With the conditions used
here, a total of 3–4 kW of heat exchange can be delivered. Increasing the number of
the flow paths, the surface heat transfer is increased, and the CO2 mass flow rate per
path is decreased; both of these effects have a significant impact on the total heat



354 T. X. Phuoc and M. Massoudi

(a) (b)

500

1000

2000

3000

4000

0
600

700

800

900

1000

1100

1200

1300

1400 · ·mair/mair = 0.5

· ·Mass flow rate ratio, (mair/mCO
2
) Compressed Tank Pressure, P

tnk
, (MPa)

0.2 0.3 0.4

Parallel flow

P
tnk

 = 2 MPa

T
tnk

 = 35 °C

N = 20

Counter flow
Parallel flow

T
tnk

 = 35 °C

N = 20

Counter flow

0.5 0.6 0.7 0.8 0.9 1.0

H
ea

t 
tr

an
sf

er
 r

at
e 

(J
/s

)

1 2 3 4 5

Fig. 6 Total heat transfer for a single path: (a) as a function of the flow rate ratio, (b) as a function
of the compressed tank pressure

292
293
294
295
296
297
298
299
300
301
302
303

· ·(mair/mCO
2
) Compressed tank pressure, P

tnk
 (MPa)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

270

280

290

300

310

P
tnk

 = 2 MPa; T
CO2,in

 288 K, T
tnk

 = 308 K (35 °C); Parallel Flow

mair/mCO2
 = 0.5, T

tnk
 = 35 °C (308 K); Parallel Flow

Tair
 (N = 10 paths)

Tair
 (N = 20 path)

TCO2
 (N = 20 paths)

TCO2
 (N = 10 paths)

T
air , (N = 10 paths)

T
air , (N = 20 paths)T

CO2 , (N = 20 paths)
T
CO2 , (N = 10 paths)

E
x
it

 T
em

p
er

at
u
re

 (
K

)

1 2 3 4 5

·

· ·

P
tnk

(MPa)

T
CO2, in

(K)

mCO2

(g/s)

1
2
3
4
5

299
289
279
269
259

4.9776
N=20 N=10

7.3606
9.2612

10.937
12.452

9.9552
14.721
18.522
21.875
24.904

Fig. 7 Exit temperature as a function of the flow rate ratio and of the compressed tank pressure:
effect of the number of the flow paths

transfer rates but less significant on the air and CO2 exit temperatures. For example,
for Ptnk = 2 MPa and 35 ◦C (308 K), a CO2 stream of 147.2 g/s and 288 K is released
before entering the heat exchanger. With 10 flow paths, a stream of 14.7 g/s of CO2
enters each path, resulting in the exit air temperature in the range from 294 K to
302 K and a total heat transfer rate from 504 W to 851 W when the ratio of the mass
flow rate increases from 0.25 to 1. For the same condition, a heat exchanger with 20
flow path can deliver a heat transfer rate from 545 W to 1144 W, resulting in the air
exit temperature from 293 K to 300 K. However, it is noticed that with fewer flow
paths, the difference in the air and CO2 exit temperature becomes wider. This means
that the cooling capacity of a heat exchanger with fewer flow paths can be improved
if it is longer.
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4 Conclusions

We have performed a simple analysis to explore the possibility of using compressed
CO2 for air-cooling applications. The goal is to develop a compressed CO2
system for both excess solar/wind energy storage and CO2 utilization. The cooling
capacity of the gaseous CO2 is achieved naturally using the Joule-Thomson cooling
capability of the expanding CO2 from a high-pressure compressed tank to a lower-
pressure heat exchanger. Keeping the heat-exchanger dimension fixed, the analysis
was aimed at the exit air temperature and the total heat transfer using the compressed
tank pressure, air mass flow rate, and number of the flow paths within the heat
exchanger as parameters. For a heat exchanger that has 10 or 20 flow paths with
a = 2 cm, b = 10 cm, and a length L = 1 m and a pressure of 0.1 MPa, our
results indicate that the Joule-Thomson cooling capability of the gaseous CO2 that
expands from a compressed tank at 5 MPa into such a heat exchanger could generate
a 3–4 kW of cooling power, and a stream of 124 g/s of hot air flowing through it
could have a temperature drop from 25 to 30 ◦C. The pressure of 5 MPa used here
is very much lower than the pressure required in conventional vapor-compression
refrigeration cycles (from 7–12 MPa).

Disclaimer This paper was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.



356 T. X. Phuoc and M. Massoudi

References

1. P.K. Bansal, S. Jain, Cascade systems: past, present, and future. ASHRAE Trans. 113, 245–252
(2007)

2. H.M. Getu, P.K. Bansal, Thermodynamic analysis of an R717- R744 cascade refrigeration
system, Int. J. Refrig. 31 (2008) 45–54

3. S. Sawalha, Using CO2 in supermarket refrigeration. ASHRAE J. 47, 26–30 (2005)
4. P. Bansal, A review e Status of CO2 as a low temperature refrigerant: Fundamentals and R&D

opportunities. Appl. Therm. Eng. 41, 18–29 (2012)
5. J.M. Belman-Flores, V. Pérez-García, J.F. Ituna-Yudonago, J.L. Rodríguez-Muñoz, J. de Jesús

Ramírez-Minguela, General aspects of carbon dioxide as a refrigerant. J. Energy South. Afr.
25, 96–106 (2014)

6. C.M. Colina, M. L’ısal, F.R. Siperstein, K.E. Gubbins, Accurate CO2 Joule–Thomson
inversion curve by molecular simulations. Fluid Phase Equilib. 202, 253–262 (2002)

7. B. Haghighi, M.R. Bozorgmehr, Joule-Thomson inversion curves calculation by using equation
of state. Asian J. Chem. 24(2), 533–537 (2012)

8. C.M. Oldenburg, Joule–Thomson cooling due to CO2 injection into natural gas reservoirs.
Energy Convers. Manag. 48, 1808–1815 (2007)

9. S.A. Mathias, J.G. Gluyas, C.M. Oldenburg, C.F. Tsang, Analytical solution for Joule–
Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs. Int. J.
Greenhouse Gas Control 4, 806–810 (2010)

10. A.S. Ramazanov, V.M. Nagimov, Analytical model for the calculation of temperature distribu-
tion in the oil reservoir during unsteady fluid inflow. Oil Gas Bus. 2007, 10–20 (2007)

11. Z. Ziabakhsh-Ganji, H. Kooi, Sensitivity of Joule–Thomson cooling to impure CO2 injection
in depleted gas reservoirs. Appl. Energy 113, 434–451 (2014)

12. A.K. Singh, U.J. Goerke, O. Kolditz, Numerical simulation of non-isothermal compositional
gas flow: Application to carbon dioxide injection into gas reservoirs. Energy 36, 3446–3458
(2011)

13. A.K. Singh, G. Baumann, J. Henninges, U.J. Goerke, O. Kolditz, Numerical analysis of thermal
effects during carbon dioxide injection with enhanced gas recovery: A theoretical case study
for the Altmark gas field. Environ. Earth Sci. 67, 497–509 (2012)

14. R. Middleton, H. Viswanathan, R. Currier, R. Gupta, CO2 as a fracturing fluid: Potential for
commercial-scale shale gas production and CO2 sequestration. Energy Procedia 63, 7780–
7784 (2014)

15. https://webbook.nist.gov/chemistry/
16. R. Span, W. Wagner, New equation of state for carbon dioxide covering the fluid region from

the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data
25, 1509–1596 (1996)

https://webbook.nist.gov/chemistry/


A Two-Phase Model for Mucosal
Aggregation and Clearance in the Human
Tear Film

Bong Jae Chung, Brandon Martinez, and Ashwin Vaidya

1 Introduction

Approximately 7% of population of the USA, especially women, suffer from
aqueous tear deficiency or dry eye disease [1] while nearly 60% of glaucoma
patients have symptoms of dry eyes [2]. Dry eye syndrome mainly occurs due to
inadequate lacrimal layer production, or meibomian gland dysfunction at the rim of
the eyelids, which can cause excessive evaporation of the tear film [3]. Ocular mucin
are known to regulate the function of tear film, especially to protect ocular surface
from the evaporation of tear film (maintaining water), associated with dry eye
syndrome [4]. Additionally, they are also known to serve as mucosal barriers to wrap
and remove debris from the tear film [5, 6]. Therefore mucin, glycosylated proteins,
plays a key role in lubricating and protecting the ocular mucosa in general. The
tear film contains three types of mucin: (i) the large gel-forming mucin MUC5AC
expressed by conjunctival goblet cells, playing a role of removal of debris, (ii)
the small soluble mucin MUC7 secreted by the lacrimal gland acini, and (iii) the
membrane-associated mucin MUCs 1, 4, and 16 expressed by the corneal and
conjunctival epithelia, preventing pathogen penetration [4, 7, 8]. A number of earlier
studies show that mucin properties and its distribution are altered by ocular surface
diseases such as dry eye [4, 7, 9, 10].
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Simply stated, the human tear film is essentially composed of a very thin lipid
layer, an aqueous layer, and a mucus layer. However modern theories suggest a
less distinct demarcation of its composition [7, 11–13]. The bulk of the tear film
is composed of the aqueous layer [14], which is enriched saline and serves to
moisten the eye and provide nutrients [15]. The lipid layer serves mostly to reduce
evaporation of the aqueous layer and resides mostly between the two edges of the
eyelid [16]. The aqueous layer behaves strictly as a Newtonian fluid [17] while the
mucus layer, which lies between the aqueous layer and the surface of the eyeball
displays non-Newtonian characteristics; its molecular composition gives it a shear
dependent and possibly elastic character [18], although the properties of mucus
that we know about come from sources other than the eye due to the difficulty in
isolating the very small amounts present in the eye. Details about the physiological
properties of the tear film can be found extensively in the literature [7, 12, 13, 19–
22]. Following the recent theories, the tear film can be assumed (as is done in this
paper) that the aqueous and mucus layers form a single system containing mucin.
In the current paper, mucin is considered to be discrete entities embedded in the
background fluid with a prescribed distribution profile depending upon possible
clinical conditions.

The tear film is subjected to the blinking motion of human eyelid, with blinking
classified as (i) voluntary, (ii) regular, and (iii) responsive; the opening period is
around twice as large as the closing period [23, 24]. Consequently, the nature of the
flow of the layers is oscillatory. The embedded mucin in the layers is also governed
by this periodic motion of the background fluid compounded by their own inertial
motion. In the current paper, a wrapping mechanism of foreign body capture by
free floating mucin is modeled. The process of mucin wrapping in the removal of
foreign debris has been well documented in the gastrointestinal tract of the human
body [25]; ([26, section4.2] polystyrene particle interaction with mucin in humans);
mucin aggregation has also been observed in other mammalian species besides
humans. Figure 1 shows a clear image of a mucus coated particle taken from the
intestine of a rat [6].

Even in other mammalian species apart from humans, it has been found that India
Ink particles injected in the intestines of cats are surrounded by mucus, indicating
that any embedded foreign object must pass a mucus barrier which prevents it
from reaching the epithelial cells [5]. Several studies on drug delivery in human
subjects [5, 25, 26] using nanoparticles (NPs) have revealed the inner workings
of the mucin wrapping mechanism which could be a hindrance in targeted drug
delivery in organs containing mucus. These studies indirectly provide evidence
for the possible purpose and mechanics of mucin—foreign particle interaction
in the eye. In an article pertaining to the impact of mucus on drug delivery
mechanisms, Wongsakorn [27] points to a possible explanation for this interaction
which: “. . .might be the electrostatic interaction of negatively charged mucus that
wraps NPs, thereby changing their physico-chemical properties.” The existence of a
wrapping mechanism for foreign body capture within the human tear film of the eye
is also supported by the findings in [28], which describes changes in the tear film
and ocular surface stemming from dry eye syndrome. The idea that mucus binds
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Fig. 1 The image shows
mucus coated particles taken
from the small intestine of a
rat, immediately following
discharge. Reprinted from
Journal of Pharmaceutical
Sciences, Vol. 87, Issue 4,
Boaz Tirosh,Abraham
Rubinstein, ‘Migration of
Adhesive and Nonadhesive
Particles in the Rat Intestine
under Altered Mucus
Secretion Conditions’, Pages
453–456, Copyright (1998),
with permission from
Elsevier

to foreign particles for their elimination is consistent with the notion of a wrapping
mechanism and expressed thus [28]: “Bladder mucosa exhibits nonspecific anti-
adherence to bacteria, attributed to electrochemical repulsion by its negatively
charged residues [29] although at the ocular surface, mucus more commonly binds
with potentially harmful tear contaminants and acts as a debris removal system.”
It is evident that the mucin wrapping mechanism exists in the gastrointestinal
tract of mammalian species besides humans; it is even noted in one of the studies
considered above that mucus has the function of adhering to and clearing foreign
debris entering the ocular surface of the human eye [28]. We therefore hypothesize
that the mechanism of mucin wrapping exists in the tear film of the human eye.
Modeling attempts begin with a definition of adhesion between mucin and a foreign
object.

Adhesion between mucin and the object occurs when they are sufficiently
close, i.e., within a predefined activation range. The inter- and intra-binding forces
between mucin and mucin-bacteria or mucin-protein systems have been extensively
studied [30–34]. While the impact of fluid flow and properties of the tear film on
pathologies such as glaucoma [35, 36] and of the role of lipid layers related to
dry eye disease [37] have been investigated, several fundamental questions about
the underlying mechanics still need to be addressed, to the best of the authors’
knowledge. The goals of the current paper are to specifically model the wrapping
mechanics and clearance rates of “ocular debris” under various conditions, such as
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(i) mucin distribution, (ii) mucin population (which contributes to the bulk viscosity
of the tear film), and (iii) adhesion force between mucin and debris. Such a study
could lead to better understanding of the underlying physics of clearance with
potential remedies for ocular diseases such as glaucoma and dry eye disease.

The outline of the rest of the paper is as follows: the next section develops the
various parts of the theoretical model, namely, the fluid flow induced by blinking,
the mucin distribution profile, and biochemical forces at play. This is followed by
a section outlining the computational strategies involved in the study. Finally, we
discuss the results of our calculations followed by a discussion of the possible
biological implications of this study.

2 Theoretical Model

The model in our study (see Fig. 2) consists of three parts which include the (a)
background, aqueous fluid component of the tear film, (b) the mucin proteins, and
(c) the foreign body that penetrates the tear film. The governing equations are chosen
so that each component of the model is physically reasonable but also to optimize
computational time.

2.1 The Fluid Model

Whereas the literature on tear film recognizes the presence of aqueous and mucus
layers in the eye, it is difficult to demarcate such zones clearly in the tear film since
mucins are found to be present throughout the tear film. There is controversy even
in the estimation of the exact depth of the net ocular tear film [38] with depths
ranging between 3 μm and 40 μm. However, there have been attempts to identify
regions dominated by each. We rely on recent reports [39] which suggest that the
thickness of the mucus layer ranges between 0.02 and 0.05 μm while the aqueous
layer is estimated to be between 6 and 9 μm in thickness. Therefore, according to
these estimates, the mucus layer occupies less than 1% of the entire film.

Therefore, in the model employed here we treat the aqueous and mucus layers as
a single, combined medium. Since the inhomogeneity of the tear film system comes
from the presence of mucin “particles” in the background fluid, we take the model
tear film as a fluid, whose material characteristics (viscosity) are spatially varying
due to changing mucin distribution. In many practical cases where complex fluids
play an important role, the shear viscosity is often modeled as a function of one
or more of the following: time (t), shear rate (γ̇ ), concentration(φ), temperature(θ ),
pressure(p), electric field (E), and magnetic field (M). So in general, we can write

μ = μ (t, γ̇ , φ, θ, p, |E|, |M|) . (1)
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Fig. 2 This figure outlines our overall modeling strategy. The problem of clearance of a foreign
body in the tear film is broken down to two interaction phases, at various scales. Panel (a) shows
the model assumption regarding the tear film makeup. Panel (b) shows a schematic of Phase I
which involves the mucoadhesion process between the foreign body and mucin at the small scale,
and finally, panel (c) shows Phase II which includes the large scale transport of the foreign body
due to the coupling with the background flow

In this particular study, the dependence on concentration (i.e., φ) alone is rele-
vant. Our hypothesis is that the tear film layer acquires its complex characteristics
due to this inhomogeneous mixture resulting in an effective viscosity of the system
which changes with depth. Our assumption stems from the fact that viscosity (μ) is
well known to depend upon concentration (φ) [40]. Therefore, for a concentration
changing with depth, i.e., φ = φ(z), it implies μ = μ(z). The particular advantage
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of using this model lies in the fact that it allows for an analytical solution for the
flow velocity under oscillatory (blinking) conditions, which captures the essential
characteristics of the tear film. We realize that the model ignores some aspects of a
complex fluid such as the shear rate dependence of viscosity. However, the current
approximation can be justified by the facts that the net tear film is predominantly
Newtonian with about 99% of its volume occupied by the aqueous layer. Also, since
the exact distribution of free-floating mucin in the aqueous layer is unknown and
may be impossible to ascertain, an assumption allowing material properties of the
fluid to vary spatially alone may be reasonable for its computational affordances;
such an assumption allows for determination of a completely analytical solution to
the time-dependent flow equations. Yet another point to be noted is that local shear
rate effects in the bulk fluid (with aqueous and mucin components) are accounted
for in the way it impacts the motion of the immersed body, which will be described
in greater detail in Sect. 2.3.

The fluid model used here is based on earlier work [41] where the fluid stress
tensor is given by

T = −pI+ 2μ(x)D, (2)

D = 1

2

(
∇u+∇T u

)
. (3)

The linear momentum equation representing the incompressible flow of the bulk
tear film system is given by

ρ
∂u
∂t
= div T, (4)

div u = 0. (5)

The velocity profile for such an inhomogeneous fluid under oscillatory shearing
motion of the boundary [41] is solved using the separation of variables u =
u(z)ω(t)ex , where u(z) is given by

u(z) = U
eB0z − 1

eB0 − 1
, (6)

and the viscosity varies with depth according to the expression

μ(z) = A0e
−B0z. (7)

In these expressions, U is the eyelid blinking speed, and the coefficients A0 and
B0 determine the mucin distribution magnitude and profile, respectively. The total
period for a blinking cycle is about 0.1–0.4 s, and the maximum displacement of the
eyelid is around 0.08 m [42]. Also, the speed of blinking is known to be 0.1 m/s.
While there is asymmetry in the closing and opening speeds of the eyelid, during a
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complete blink, for the present study, we apply a sinusoidal input. Specifically, we
take this function to be as follows:

ω(t) = cos

(
2πt

T

)
, (8)

where T is the period of blinking motion assumed to be 0.2 s. As stated earlier, the
above velocity profile (Eq. 6) can be assumed to model the flow corresponding to
the tear film mixture with its viscosity varying according to the distribution profile
of mucins in the layer (as depicted by Eq. 7).

We define the dimensionless parameters as follows:

Re = ρUH

μ̄
, x∗ = x

H
, u∗ = u

U
, t∗ = t

H/U
, F ∗ = F

U2/H
, (9)

where U , H , and F correspond, respectively, to the maximum speed of eyelid
(0.1 m/s), the thickness of aqueous and mucus layer (10−5 m), and binding force
(which is discussed in the following section). Also μ̄ is the average dynamic
viscosity over the tear film domain. From Eq. (7), μ̄ can be written in terms of the
function of A0, B0,

μ̄ = 1

Z

∫ Z

0
μ(z)dz = 1

Z

∫ Z

0
A0e

−B0zdz = − 1

Z

(
A0

B0

)
(e−B0Z − 1), (10)

where Z is the height of the fluid domain. The Reynolds number, Re in the layer
induced by the blinking motion of the eyelid is quite low; it is reported [43] that
the viscosity of mucin layer is at least 100 times higher than of water. As a result,
Re for the mucin layer is around 10−2. However, it is not surprising to estimate the
average viscosity of the combined tear film (mucus and aqueous layers) would be
much less than that, and in turn, Re in the whole layer should be slightly larger.
Note that henceforth, the variable without * will be used thereafter.

2.2 Phase I: Mucoadhesion and Wrapping Mechanics

This portion of our model accounts for the microscopic interactions between the
foreign body and the embedded mucins in the background fluid and in turn impacts
the Phase II interaction between the fluid and the particle. This part of the paper can
be summarized by the following sequence of reactions:

B +M → A1, (11)

A1 + (n− 1)M → An, (12)
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where B refers to the foreign body, M to a critical amount1 of mucin strands
which increases the dimension of the debris, A1 is a single aggregate formed by the
interaction of B and M through Van der Waal’s forces, and An is a larger aggregate
of size n. The chemistry of this interaction is discussed below and accounted for
with care in our simulations.

2.2.1 Adhesion Mechanics

Adhesion force between mucins and proteins was measured in a study by Efremova
et al. [32]. We follow their results of tethered polyethylene glycol (PEG) chains
interacting with adsorbed mucin in the presence of soluble mucin. The adhesive
force of mucin measured between the PEG bilayer and an adsorbed mucin layer
bathed in a 0.2 mg/mL mucin solution (pH 7.2), which is relevant to the properties
of tear film [44] was −0.3 ± 0.1 mN/m with adhesive contact from 593 ± 30 Å.
We assume that adhesion activation begins as mucin and particle approach within
600 Å (the distance between the center of the mucin and the surface of the debris is
referred to as the activation zone, denoted Lc) and the magnitude of the adhesion
force, Fa is 0.3 × 10−8 milli-Newton. The mass of mucin is around 0.2–200 MDa
as a larger aggregate [45]; in our computations we consider the mass to be 0.2 MDa.
The adhesion force, which is activated in the activation zone, has a linear profile
with respect to distance, given by the equations:

Fa(i) = −Fa

Lc

d(i)+ Fa, if d(i) ≤ Lc, (13)

Fa(i) = 0 otherwise, (14)

where i = 1, . . . , N , the index number of mucin, and d(i) is the distance between
the centers of mucin and debris. Lc is the activation length, which is approximately
600 Å + Rdebris . Therefore, d(i) ≤ Lc helps determine if the debris is within the
activation zone or not (see Fig. 2b).

Mucins within Lc adhere to the surface of the debris simultaneously each time,
and thus, the adhesion force of each mucin, Fa(i), acts on the debris in the direction
of approach. The force vector of each mucin can be expressed as

Fa(i) = Fa(i)r̂(i). (15)

The total force acting on the debris by mucins within Lc, therefore, is

Fa =
N∑
i

Fa(i) for i = 1, · · ·N. (16)

1 So if m refers to a single mucin strand, M = nwrapm where nwrap is a critical number which
depends upon the dimension of mucin. See Sect. 2.2.2 for more discussion on this point.
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2.2.2 Wrapping and Size of Aggregate

We assume that the mucin-particle aggregate is a spherical homogeneous polychain
as shown in Fig. 4 and its diameter and density change in accordance with the rate
of adhesion. The radius of the aggregate changes such that

ra = rp + dk,m, (17)

where ra is the radius of the mucin-particle aggregate, rp is the radius of the foreign
particle, and dk,m stands for the thickness of the mucin layer adhering to the debris
(see Fig. 4). As a result, the number of mucin required to completely wrap the
foreign body, nwrap, is given by

nwrap = SAp

PAm

= 2
(

4πr2
p

π
4 d

2
m

)
= 2
(

16r2
p

d2
m

)
, (18)

where SAp is the surface area of the particle and PAm refers to the projected area
of the mucin and dm is the thickness (or diameter) of each mucin particle which is
assumed to be a sphere. Once the body binds with sufficiently many mucin spheres,
denoted nwrap, the diameter of the aggregate (i.e., debris and mucin) increase by
the amount, dm. As a result, for a particle coming into contact with k mucins, the
increase in radius of the aggregate can be written as

dk,m = γ dm, (19)

where γ = 3
(

k
nwrap

)
. Consequently, the specific density of a k-aggregate (i.e.,

particle interaction with k mucins) also changes after binding and is determined
by the equation

s(k)a = spVp + smVm

V
(k)
a

= sp
4π
3 r3

p + sm
π
3 d

3
k,m

4π
3 r3

a

= 4spr3
d + smd

3
k,m

4r3
a

. (20)

In this expression sp is the original specific density of debris, Vp is its volume,
and rp represents its radius. Similarly sm and Vm represent the specific density and
volume of the bound mucins.

We choose the initial non-dimensional diameter of the debris particle to be
rp = 0.025. The specific density, sp, for the debris is chosen 1.03, while sm for
the freely floating mucin is taken to be 1 since the mucin is considered to be
completely buoyant and as having negligible inertia. The original size (thickness)
of mucin of the order of 10−8 m [46, 47]. In this study, we use the smallest size,
10−8 m, corresponding to a non-dimensional thickness value of dm = 10−3 in the
computational domain (see Eqs. (9)). The projected area of each mucin (PAm) is
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then around 10−6 and in turn, Eq. (18) yields nwrap ≈ 104, which can entirely wrap
the debris particle.

It is worth noting that the change in thickness of the aggregate as given in
Eqs. (17) and (19) refers to a discrete increment in the dimension of the aggregate,
given by γ , which requires that the debris be completely wrapped before increasing
further in size. In our computations, this condition is modified for computational

convenience2 so that γ =
(

k
nwrap

)

dk,m =
(

k dm

nwrap

)
≈
(

10−3k

104

)
= 10−7k, (21)

which can be thought of as an average increment in the aggregate size for interaction
with k mucins. The mucins that adhere to the surface are removed for the next time
step from the environment, but immediately replaced by same number of mucins in
the same positions accounting for the physiologic secretion process.

2.3 Phase II: The Particle Model

Phase two of our model considers the macroscopic transport properties of the
foreign particle, based on the interaction forces between the surrounding fluid and
the body. For computational convenience, mucins and a foreign object (i.e., ocular
debris) immersed in the tear film are represented by immersed spherical particles,
and their motions are governed by the force balance equation. We assume that the
immersed objects do not disturb the flow through one way coupling of the flow and
particle equations. The link between the particles and fluid is made through the flow
viscosity. Therefore,

S
dvp
dt

= FAM + FB + FD + FL + Fa, (22)

where S = ρp/ρ represents the specific gravity (ρ = 1000 kg/m3 for water), or
ratio of particle to fluid density, and vp is the particle velocity.

A more explicit form of this equation can be given as

S
dvp
dt

= Du
Dt

+ 1

2
(
Du
Dt

− dvp

dt
)+ 3

4

CD

D
|u− vp|(u− vp)

+ 3

4

CL

D
(|u− vp|2top − |u− vp|2bot)n+ Fa, (23)

2 This assumption is made to side-step the issue of having as many as 104 mucin particles in the
simulation to see an increase in aggregate size, as modeled by Eq. (19).
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where the first term in the equation is FAM, the force of added mass, resulting from
an accelerating object moving through a fluid having to move the surrounding fluid
out of the way of the particle, or, along with the particle. This is the result of the fact
that a particle and the fluid cannot both occupy the same space. The second term, FB,
is the Bassett force, representing the fluid’s history, due to a particle moving through
a fluid and moving faster than the fluid can recover. As a particle accelerates in a
fluid, the front half of the particle will push the fluid it encounters along or aside.
The fluid on the rear side of the particle tends to fill in the space vacated by the
particle. If the particle is moving too quickly, or accelerates too sharply, there is a
gap between the fluid and the particle, which influences the particle’s motion. The
third term, FD, is the drag force, representing the force of retardation due to the
dissipative nature of the fluid. The expression for drag force relies on a constant
termed the drag coefficient. This coefficient, denoted CD , is given in terms of the
particle Reynolds number, Rep as

CD =
⎧⎨
⎩

24
Rep

, if Rep ≤ 1;
24
Rep

(1+ 0.15Re0.687
p ) if Rep > 1.

where Rep is the Reynolds number of the particle, Rep = (ρDpU)/μ (Dp is the
diameter of the particle). When an object is surrounded by a fluid with an overall
shearing motion, the velocity differential in the fluid upon the different parts of the
object creates a lift force. The immersed object experiences a reduction in pressure
on the side that is experiencing a larger velocity difference resulting in a net force
in the direction of lower pressure. Since our fluid experiences different velocities
at different levels above the moving floor, there will be a lift force generated by
the particle, represented by the last term, FL, the lift force, where CL is the lift
coefficient and n represents the normal vector to the flow direction. As described
earlier in Eqs. (13) and (14), Fa is the force of adherence acting on the debris particle
by neighboring mucins.

3 Computational Methods

Figure 5 describes the overall computational scheme utilized in our study. There are
several aspects to our computational approach, each of which is described below.

3.1 The Fluid Model

The fluid flow equation (6) is discretized in the three dimensional computational
domain, containing rectangular blocks (194×130×290) and its unitless dimension
(L ×W × H = 5 × 0.3 × 1) units. The maximum blinking speed at the top (i.e.,
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Z = 1) is U(Z) = 1. The window allocating the mucin and debris particles in the
computational domain has the dimension of L/10×W/3×H and is located in the
middle of the domain to reduce computational cost.

Based on our model (Eq. (7)), mucins are assumed to be initially distributed based
on the exponential viscosity profile such that the number of mucins is a function of
z (and independent of x), given by

N(z) = A0e
−B0z. (24)

At time t = 0, mucins are evenly distributed in x and y, and the count is simply
determined by N(z). The mucins are equally spaced in the chosen domain, and
the spacing is given by W/60 in y and H/100 in the z directions. Therefore, in
the entire volume, mucins are distributed more densely near the bottom, i.e., at the
corneal surface.

To maintain consistency in the study, N(z) and therefore the average viscosity, μ̄
must be held constant. Consequently, the constants A0 and B0, which prescribe the
viscosity profile, are not independently determined but must be written in terms of
the average viscosity of the tear film over the domain. Using Eq. (10), we can write
the relationship between A0, B0, and μ̄ as

A0 = B0μ̄Z

1− e−B0Z
. (25)

As illustrated in the curves on the left bottom in the figure, increasing B0 stretches
out the curve towards the origin so that higher mucin population proximal to corneal
surface will be allocated for a larger B0. In our computations, we explore various
cases of B0 with several different values of μ̄ (see Table 1).

3.2 The FSI Particle Model

A second order Runge-Kutta scheme is used to solve the non-dimensional Laplacian
particle equations (22); detailed methods are reported in our earlier work [10].
As discussed in the earlier section, the adhesion force is activated as mucin and
debris begin to approach each other and are within the activation range, Lc. In
the computation, once within the range, the adhesion process is assumed to be
completed. The specific density and diameter of debris is then immediately updated
for the next time. We assume that mucin is constantly secreted, so for every
mucin that leaves the domain after adhering to a debris which enters the activation
range, a new mucin is generated to replace the old one. This is in keeping with
the computational assumption that the number of mucin particles (i.e., N(z)) is a
constant throughout the computation. This is also consistent with the healthy or
normal physiological case of a constant mucin secretion rate.
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Fig. 3 This figure shows the velocity flow profile as a function of depth under time-dependent
oscillation of the one of the walls (bottom). The different panels indicate the impact of changing
viscosity dependence on depth, corresponding to varying mucin distributions; panel (a) corre-
sponds to homogeneous fluid with no mucin (B0) while panel (b) corresponds to the case B0 = 1
and (c) to B0 = 5. The last two panels indicate a more rapid change in the distribution of mucin,
with progressively increasing mucin concentration towards the top. The figures (d–f) show the
respective changes in viscosity as a function of depth

Initial mucin distribution is shown in Fig. 3. In our computations, mucins are
confined within the smaller domain in the xy plane, near the object, to reduce
computational cost. Therefore the foreign object should reside within the smaller
domain. Mucin particles have periodic boundary conditions on both the lateral sides
in y as well as the axial sides in x. In the z direction, mucins are not allowed to
move out of the domain, which is enforced by setting the particles which wander
outside the boundary, back into the domain to conserve the total number of mucin.
The computation is terminated when the foreign object lifts up to 95% of the eye
lid, along the z direction. Clearance of the foreign object is assumed to occur when
it reaches approximately 95% of the thickness of the layer which is composed of
mostly water, i.e., when the aggregate (debris+mucin) reach a non-dimensional
height of Z∗ = 0.95.
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Fig. 4 The figure shows a schematic of the assumed physical properties of mucin in the model
and the wrapping mechanism. A single strand of mucin is assumed to be spherical as shown on
the left side of the figure. The figure on the right shows a cross section binding of the aggregate
particle after binding, i.e., the debris and mucin. Once the debris, which is also treated as a sphere,
is completely bound by nwrap mucins, the size of the debris increases from rd → ra = rd + dm

Fig. 5 This figure shows the computational domain in unitless dimensions with the allocated
window for mucin. The bottom left panel shows mucin distribution with a viscosity profile for
the cases of B0 = 1 to B0 = 4. The bottom right panel shows the resulting mucin distribution with
a foreign object placed near the cornea for the specific case of B0 = 1
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4 Results

The present study aims to identify the role of mucin in the tear film subject. Based
on the literature and our own contributions, we note that responsive blinking motion
of the eyelid due to the entrance of foreign objects into the tear film activates mucin
binding and the collective transport of aggregates. However, the effectiveness of
this clearance mechanism can depend on the chemical and mechanical properties of
mucin and also its secretion (or distribution) in the tear film. Our calculations reveal
that the time required for the debris to move towards the eyelid (clearance time)
can change depending on (i) viscosity distribution (i.e., by changing B0 and A0 in
Eq. 25), (ii) viscosity, μ̄, and (iii) the adhesion force, Fa .

In our computation, the foreign object is initially positioned at the location (L/2,
W/2, H/10), i.e., near the bottom (see Fig. 5). The studies are performed by changing
the values of parameters shown in Table 1.

As shown in the table, we explore several values of B0, μ̄, and two values of Fa

corresponding to the “normal” and “abnormal” cases. Equations (13) and (14) are
based on known estimates [32] of the binding force, and any significant deviation
from this value is considered to be “unhealthy” in our case. We collect the vertical
displacement of the foreign particle in the z direction as a function of time shown in
Fig. 6. Note that Z∗ close to 1 represents the foreign particle proximal to the eyelid.

Note that higher B0 corresponds to a more rapid decay in mucin distribution from
the corneal surface to the eyelid. As seen in the figure, the time taken to lift up the
particle to the eyelid reduces as μ̄ increases, for any B0. Furthermore, B0 increases
(from (a) to (d) in the figure), the rate of displacement changes more rapidly. We also
note that the clearance time is shorter at the middle range of B0 explored in this study
which is indicative of an optimal distribution profile for mucin. We also explore the
case of B0 = 5, which is shown in the inset of Fig. 6d. This inset panel figure is
restricted to the case of the lowest value of μ̄ (namely, 108). In this particular case,
the foreign object is not lifted up to required clearance height of 95% of total height
because of lowered viscosity. As will be discussed later, a viscosity over a threshold
value may be required for each B0. Since B0 determines the number distribution of
mucin profile along the vertical direction, a higher B0 results a greater number of
mucins proximal to the cornea. Our study reveals that heavier mucin distribution
near the cornea is, in fact, not optimal in the case when B0 = 5. In order to help the
role of protection of cornea by mucins, an appropriate mucin distribution is required.

Table 1 Parameter values corresponding to viscosity μ̄ and adhesion force (Fa) used in the
computations

B0 1 2 3 4 5 – –

Fa Fa = Fnormal Fnormal/3 – – – – –

μ̄ μ1 = 108 μ2 = 129 μ3 = 172 μ4 = 215 μ5 = 237 μ6 = 258 μ7 = 301
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Fig. 6 This figure shows the vertical displacement (non-dimensional height, Z∗) of the debris as a
function of time for varying viscosity (μ̄) at normal Fa . Each panel in the figure assumes a different
value of B0, corresponding to a different mucin distribution profile: (a) B0 = 1, (b) B0 = 2, (c)
B0 = 3 and (d) B0 = 4,. The inset figure in (d) also showcases a single case of B0 = 5. The
optimal clearance time is defined as the minimum t∗ when Z∗ = 0.95 and the optimal physical
parameters of the system correspond to the values of μi and B0, which correspond to the minimum
clearance time

5 Discussion

The parametric study of the effect of mechanical properties of mucin such as its
profile B0, adhesion force, and density (total number of mucins in the system
estimated through the average viscosity), on the lift force of the particle produces
valuable data to quantitatively explore the protection mechanism of mucins in
the ocular tear film. The results of our computation suggest optimal mechanical
properties of mucins. The study shows that an appropriate denser population of
mucins proximal to mucosa as well as denser distribution in the entire layer (μ̄)
in the tear film helps the cause of protection through accelerating the clearance rate
of foreign immersed bodies.



A Two-Phase Model for Mucosal Aggregation and Clearance in the Human Tear Film 373

2.5

3

3.5

4

4.5

5

5.5
8.5E–045.0E–04 5.5E–04 6.0E–04 6.5E–04 7.0E–04 7.5E–04 8.0E–04 9.0E–048.5E–04 1.0E–03 1.1E–03 1.3E–03 1.4E–03 1.6E–03 1.7E–03 1.9E–03 2.0E–03

3
1 2 3

Bo

a b

Not
Applicable

t* t*

43*N

μ
=

43*N

μ
=

Bo
4 5 1 2 3 4

3.5

4

4.5

5

5.5

6

6.5

7

Fig. 7 This figure summarizes the results of our model computations using a contour plot, which
identify the clearance lift-time of the debris in terms of control parameters B0 and μ. Panel (a)
corresponds to the case of a normal adhesion force Fa = Fnormal as defined in Table 1 while panel
(b) corresponds to the case when Fa = Fnormal/3. The blank area in panel (a) identified as “Not
applicable” corresponds to the range where the aggregate (debris) never clears the tear film, i.e.,
always stays at Z∗ < 0.95 within the computational time

The band plots showing the time of lift in Fig. 7 as a function of B0 and μ̄

plane clearly show the “safe zone” where the fastest clearance is guaranteed. The
figure illustrates that both the normal and abnormal (i.e., Fa = Fnormal/3 which
is lower than the normal value determined by experiments) adhesion forces can
have small lift times (indicated by the color blue). The lift times are however a
function of B0 and μ̄; the optimal zones being identified with the region of the
medium B0 and higher viscosity, μ̄. The lift time is about two times slower for the
abnormal adhesion force of mucin compared with normal cases, which seems to
be qualitatively reasonable. For the normal adhesion force, an additional B0 = 5
case was explored for three higher viscosity cases since two lower viscosities did
not lift the object to the top near the eyelid. As seen in the inset in Fig. 6d, the
object was not fully lifted due to the lower density of mucin, resulting in a blank
region in the figure. In summary, the tear film can be seen as a complex system
serving a protective role, which depends on physical (B0, μ̄) and chemical factors
(Fa). Optimal conditions for mucin to serve its recognized role of protection of the
cornea are explored and understood via its ability to wrap and transport debris away
from the cornea quickly and shown in the Fig. 7.

No quantified data on the mucin mechanical properties such as eye mucin
adhesion force and its distribution under physiologic and pathological conditions
would limit our analysis. Nevertheless from our study with systematic assumptions
on the property data, the altered mechanical properties of mucins due to ocular
surface disease may downregulate the role of mucins with regard to their protective
capacity resulting in viral, fungal, or bacterial eye infections such as pink eye,
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or conjunctivitis. Understanding the normal behavioral conditions and mechanics
of mucins-tear film complex therefore can be beneficial to the treatment of the
ocular surface diseases. Our study can suggest that the treatment of ocular disease
using synthetic or artificial tears should be associated with the appropriate mucin
properties, as suggested in this work. Patient-specific data on mucin properties
under healthy and pathological conditions would help further theoretical and
computational studies to unveil the detailed mechanical roles of mucins.
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