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1 Introduction

Viscoelastic materials, as their name suggests, combine two different properties:
viscosity and elasticity. They are used for isolating vibration, dampening noise, and
absorbing shock. They are intended to dissipate mechanical energy from vibrations
or noises, to limit their propagation in structures, they have a decisive impact on the
fatigue of these structures and on our comfort.

Viscoelastic materials have applications in all fields of engineering and mechan-
ical systems, from the automotive to civil engineering, from space to home
appliances (engine and machine mounts and supports, transmission seals and belts,
glazing edges and fixing of subsystems, damping of metal plates and shells, parts of
seats and interior of cabs, tire and wheels, tuned damping systems) [7, 15, 24, 40].

Since the 1980s, the development of modern technologies has required the use
of innovative materials with high mechanical properties, suitable for their use, and
having low densities. A composite material meets most of these requirements; it is
a kind of mixture of different materials whose properties are superior to each of its
components taken separately. These materials were first developed and used in the
1940s in the aeronautical field (essentially for military airplanes and helicopters)
and are today in automobile construction, in shipbuilding, and in buildings. But
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these materials are excellent transmitters of mechanical and acoustic vibrations,
which can affect the integrity of the entire system. Also, thanks to these composite
materials it is possible to reduce the number of parts of a structure, there would
then be less frictions at connections between elements. It is, therefore, imperative to
associate with these materials effective damping techniques. One solution is to add
full or partial layers of viscoelastic materials, glued on (or incarnated between) the
parts. A viscoelastic product can be integrated into the composite material [28, 36].

In this context we have chosen to study a network of elastic and viscoelastic
materials; More precisely, we investigate the asymptotic stability of a graph of
elastic strings with local Kelvin–Voigt damping.

Models of the transient behavior of some or all of the state variables describing
the motion of flexible structures have been of great interest in recent years, for
more details about physical motivation for the models, see also [23, 29], and
the references therein. Mathematical analysis of transmission partial differential
equations is detailed in [29]. For the feedback stabilization problem for the wave or
Schrödinger equations (in networks, in particular), we refer the readers to references
[3–6, 8–13, 29].

A wave equation on a (single) string of length �, with (local) Kelvin–Voigt
damping is modeled by the following equation

∂2u

∂t2
− ∂

∂x

(
∂u

∂x
+ a(x)

∂2u

∂x∂t

)
= 0 in (0, �) × (0,∞), (1)

where a(x), x ∈ [0, �] is a nonnegative function.
As boundary conditions, we often associate the Dirichlet conditions:

u(0, t) = u(�, t) = 0.

From a mathematical point of view, the Kelvin–Voigt damping model (1) has
been studied by several authors. let us recall some results in the literature,

• Huang proved in 1988 [27] that when the damping is global (i.e., distributed
over the entire domain), the corresponding semigroup is not only exponentially
stable but also analytic. Thus, the Kelvin–Voigt damping is much stronger than
the viscous damping (i.e., the damping term is replaced by −a(x) ∂u

∂t
), where the

corresponding semigroup is only exponentially stable and not analytic (see, e.g.,
[21] and [18]).
Such a comparison is not valid anymore if the damping is localized:

• Chen et al. [21] proved in 1991 that in the case of localized viscous damping, the
associated semigroup is exponentially stable no matter the size or the location
of the subinterval where the damping is effective, and even if the damping
coefficient function has a jump discontinuity at the interface.

However, the local Kelvin-Voigt damping does not follow the same analogue.
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• It was first proved in 1998 by S. Chen et al. [30] that, when the viscoelastic
damping is locally distributed ( precisely, they took a(x) = a0χ(α,β), with a0 >

0), the associated semigroup is not exponentially stable.
• In 2002, K. Liu and Z. Liu [31] proved that if a ∈ C2[0, �], and ∫ �

0 a(x)dx > 0,
then the system is exponentially stable: the asymptotic behavior depends on the
regularity of the damping coefficient.

The works cited below consider the domain [−1, 1] instead of [0, �] and suppose
that a(x) = 0 on [−1, 0) and a(x) = b(x) on (0, 1].
• In 2004, Renardy [41] supposed that a(x) = 0 on [−1, 0] and a(x) > 0 on (0, 1]

and he assumed that

lim
x→0+

a′(x)

xα
= k > 0 for some α > 0, (2)

then the eigenvalues of the system (1) are such that the decay rate tends to infinity
with frequency.

• Z. liu and B. Rao [32], 2005, and M. Alves et al. [2], 2014, proved that if b(x) ≥
c > 0 on (0, 1) and b ∈ C(0, 1). The associated semigroup is polynomially stable
of order 2.

• In 2010, Q. Zhang [43] improved the result in [32]: the author took a ∈
C1[−1, 1], b(0) = b′(0) = 0 and supposed the existence of a positive constant

c such that
∫ x

0
|b′(s)|2
b(s)

ds ≤ c|b′(x)| for all x ∈ [0, 1], ( for example, b(x) =
xα, α > 1).

• In 2016 Z. Liu and Q. Liu [35] took over the condition (2) of Renardy. Precisely
they took a ∈ L∞(−1, 1), b(x) > 0 on (0, 1] and b(0) = 0; b′, b′′ ∈ L∞(0, 1),
and supposed that lim

x→0+
a(x)
xα = k > 0. Then the system (1) is exponentially

stable for α = 1 and polynomially, nonexponentially stable for 0 ≤ α < 1.
• It is proved [33] in 2017 that if a ∈ C1[−1, 1] and satisfies conditions in the last

point, then the system (1) remains exponentially stable for α > 1.

In this work we study a more general case, it is about a network of strings with
local Kelvin–Voigt damping.

We first introduce some notations needed to formulate the problem under
consideration (as introduced in [1, 37] or [7]. Let G be a planar connected graph
embedded inR3,withN edges e1, . . . , eN , N ≥ 1 and p vertices s1, . . . , sp, p ≥ 2.
By degree of a vertex of G we mean the number of edges incident at the vertex. If
the degree is equal to one, the vertex is called exterior; otherwise, it is said to be
interior. We denote by Iint and Iext , respectively, the sets of indices of interior and
exterior vertices, then I := Iint ∪ Iext is the set of indices of all vertices. Finally,
we define J := {1, · · · , N} and for k ∈ I, we will denote by Jk the set of indices
of edges adjacent to the vertex sk. If k ∈ Iext , then the unique element of Jk will be
denoted by jk.
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The length of the edge ej is denoted by �j . Then, ej may be parametrized by
its arc length by means of the functions πj : [0, �j ] −→ ej , x 	−→ πj (x). But
sometimes, we identify ej with the interval (0, �j ).

For a function u : G −→ C we set uj = u ◦ πj its restriction to the edge ej . For
simplicity, we will write u = (u1, . . . , uN) and we will denote uj (x) = uj (πj (x))

for any x ∈ (0, �j ).

The incidence matrix D = (dkj )p×N is defined by,

dkj =
⎧⎨
⎩
1 if πj (�j ) = sk,

−1 if πj (0) = sk,

0 otherwise.

Suppose that the equilibrium position of our network of elastic strings coincides
with the graph G. Then, we consider the following initial and boundary value
problem (Fig. 1):

∂2uj

∂t2
(x, t) − ∂

∂x

(
∂uj

∂x
+ aj (x)

∂2uj

∂x∂t

)
(x, t) = 0, 0 < x < �j , t > 0, j ∈ J,

(3)
ujk

(sk, t) = 0, k ∈ Iext , t > 0, (4)

Fig. 1 A Graph
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uj (sk, t) = ul(sk, t), t > 0, j, l ∈ Jk, k ∈ Iint , (5)

∑
j∈Jk

dkj

(
∂uj

∂x
(sk, t) + aj (sk)

∂2uj

∂x∂t
(sk, t)

)
= 0, t > 0, k ∈ Iint , (6)

uj (x, 0) = u0j (x),
∂uj

∂t
(x, 0) = u1j (x), 0 < x < �j , j ∈ J, (7)

where uj : [0, �j ] × (0,+∞) → R, j ∈ J, be the transverse displacement in ej ,
aj ∈ L∞(0, �j ) and, either aj is zero, that is, ej is a purely elastic edge, or there
exists a subinterval wj of (0, �j ), nonreduced to a singleton, such that aj (x) > 0,
a.e. on wj . Such edge will be called a K-V edge.

We assume that G contains at least one K-V edge and contain at least one external
node (i.e., Iext �= ∅). Furthermore, we suppose that every maximal subgraph of
purely elastic edges is a tree, whose leaves are attached to K-V edges.

Our aim is to prove, under some assumptions on damping coefficients aj , j ∈ J ,
exponential and polynomial stability results for the system (3)–(7).

We define the natural energy E(t) of a solution u = (uj )j∈J of (3)–(7) by

E(t) = 1

2

∑
j∈J

∫ �j

0

(∣∣∣∣∂uj

∂t
(x, t)

∣∣∣∣
2

+
∣∣∣∣∂uj

∂x
(x, t)

∣∣∣∣
2
)

dx. (8)

It is straightforward to check that every sufficiently smooth solution of (3)–
(7) satisfies the following dissipation law

d

dt
E(t) = −

∑
j∈J

∫ �j

0
aj (x)

∣∣∣∣∣
∂2uj

∂x∂t
(x, t)

∣∣∣∣∣
2

dx ≤ 0, (9)

and; therefore, the energy is a nonincreasing function of the time variable t .
The main results of this paper then concern the precise asymptotic behavior of

the solutions of (3)–(7). Our technique is a special frequency domain analysis of the
corresponding operator.

This work is organized as follows: In Sect. 2, we give the proper functional setting
for system (3)–(7)and prove that the system is well-posed. In Sect. 3, we analyze the
resolvent of the wave operator associated with the dissipative system (3)–(7) and
prove the asymptotic behavior of the corresponding semigroup. For more details in
the proofs, see [14].
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2 Well-Posedness of the System

In order to study system (3)–(7) we need a proper functional setting. We define the
following space

H = V × H,

whereH =
∏
j∈J

L2(0, �j ) and V =
⎧⎨
⎩u ∈

∏
j∈J

H 1(0, �j ) : ujk
(sk) = 0, k ∈ Iext , satisfies (10)

⎫⎬
⎭

uj (sk) = ul(sk) := u(sk), k ∈ Iint , j, l ∈ Jk, (10)

and equipped with the inner products

< (u, v, (ũ, ṽ) >H=
∑
j∈J

∫ �j

0

(
vj (x) ¯̃vj (x) + u′

j (x) ¯̃u′
j (x)

)
dx. (11)

System (3)–(7) can be rewritten as the first order evolution equation

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t

(
u
∂u

∂t

)
= A

(
u
∂u

∂t

)
,

u(0) = u0,
∂u

∂t
= u1

(12)

where the operator A : D(A) ⊂ H → H is defined by

A
(

u

v

)
:=
(

v

(u′ + a ∗ v′)′
)

,

with

a := (aj )j∈J and a ∗ v′ := (aj v
′
j )j∈J ,

and

D(A) :=
⎧⎨
⎩(u, v) ∈ H, v ∈ V, (u′ + a ∗ v′) ∈

∏
j∈J

H 1(0, �j ) : (u, v) satisfies (13)

⎫⎬
⎭ ,

∑
j∈Jk

dkj

(
u′

j (sk) + aj (sk)v
′
j (sk)

)
, t > 0, k ∈ Iint . (13)
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Lemma 2.1 The operator A is dissipative, 0 ∈ ρ(A) : the resolvent set of A.

Proof For (u, v) ∈ D(A), we have

Re(
〈
A(u, v), (u, v)

〉
H) = Re

∑
j∈J

(∫ �j

0
v ′̄
αu′

j dx +
∫ �j

0
(u′

j + ajv
′
j )

′vjdx

)
.

Performing integration by parts and using transmission and boundary conditions,
a straightforward calculations leads to

Re(
〈
A(u, v), (u, v)

〉
H) = −

∑
j∈J

∫ �j

0
aj (x)

∣∣∣v′
j (x)

∣∣∣2 dx ≤ 0

which proves the dissipativeness of the operator A inH.

Next, using Lax–Milgram’s lemma, we prove that 0 ∈ ρ(A). For this, let (f, g) ∈
H and we look for (u, v) ∈ D(A) such that

A(u, v) = (f , g)

which can be written as

vj = fj , j ∈ J, (14)

(u′
j + ajv

′
j )

′ = gj , j ∈ J. (15)

v is completely determined by (14). Let w ∈ V ; multiplying (15) by wj , then
summing over j ∈ J , we obtain, using transmission and boundary conditions,

∑
j∈J

∫ �j

0

(
u′

j + ajv
′
j

)
w′

j dx = −
∑
j∈J

∫ �j

0
gjwjdx. (16)

Replacing vj in the last equality by (14), we get

ϕ(u,w) = ψ(w), (17)

where

ϕ(u,w) =
∑
j∈J

∫ �j

0
u′

jw
′
j

and

ψ(w) = −
∑
j∈J

(∫ �j

0
gj wjdx +

∫ �j

0
ajf

′
jw

′
j dx

)
.
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The function ϕ is a continuous sesquilinear form on V × V and ψ is a continuous
anti-linear form on V ; here V is equipped with the inner product

〈
f , g

〉
=
∑
j∈I

∫ �j

0
u′

jw
′
j .

Since ϕ is coercive on V, by the Lax–Milgram lemma, equation (17) has a unique
solution u ∈ V. Then taking w ∈

∏
j∈J

D(0, �j ) in (17) and integrating by parts, we

deduce that (u′ + a ∗ v′) ∈
∏
j∈J

H 1(0, �j ) and (u, v) satisfies (15). Moreover (u, v)

satisfies (13).
Return back to the Lax–Milgram lemma, (u, v) verifies

∥∥(u, v)
∥∥H ≤

∥∥∥(f , g)

∥∥∥H .

In conclusion (u, v) ∈ A and A−1 ∈ L(H), which assert that 0 ∈ ρ(A). ��
By the Lumer–Phillip’s theorem (see [38, 42]), we have the following proposi-

tion.

Proposition 2.2 The operator A generates a C0-semigroup of contraction
(Sd(t))t≥0 on the Hilbert space H.

Hence, for an initial datum (u0, u1) ∈ H, there exists a unique solution(
u,

∂u

∂t

)
∈ C([0, +∞), H) to problem (12). Moreover, if (u0, u1) ∈ D(A), then

(
u,

∂u

∂t

)
∈ C([0, +∞), D(A)).

Furthermore, the solution (u,
∂u

∂t
) of (3)–(7)with initial datum in D(A) satisfies

(9). Therefore, the energy is decreasing.

3 Asymptotic Behavior

In order to analyze the asymptotic behavior of system (3)–(7), we shall use
the following characterizations for exponential and polynomial stability of a C0-
semigroup of contraction:

Lemma 3.1 ([26, 39]) A C0-semigroup of contraction (etB)t≥0 defined on the
Hilbert space H and such that

iR ⊂ ρ(B) (18)
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is exponentially stable if and only if

lim sup
β∈R,|β|→+∞

∥∥∥(iβI − B)−1
∥∥∥L(H)

< ∞. (19)

Lemma 3.2 ([19]) A C0-semigroup of contraction (etB)t≥0 on the Hilbert spaceH
such that iR ⊂ ρ(B) satisfies

∥∥∥etB
∥∥∥L(D(B),H)

≤ C

t
1
α

for some constant C > 0 and for α > 0 if and only if

lim sup
β∈R,|β|→+∞

1

|β|α
∥∥∥(iβI − B)−1

∥∥∥L(H)
< ∞. (20)

Lemma 3.3 (Asymptotic Stability) The operator A verifies (18) and then the
associated semigroup (S(t))t≥0 is asymptotically stable onH.

Proof Since 0 ∈ ρ(A) we only need here to prove that (iβI − A) is a one-to-one
correspondence in the energy spaceH for all β ∈ R

∗. The proof will be done in two
steps: in the first step we will prove the injective property of (iβI − A) and in the
second step we will prove the surjective property of the same operator.

• Suppose that there exists β ∈ R
∗ such that Ker(iβI − A) �= {0}. So λ = iβ is

an eigenvalue ofA, then let (u, v) an eigenvector ofD(A) associated with λ. For
every j in J we have

vj = iβuj , (21)

(u′
j + ajv

′
j )

′ = iβvj . (22)

We have

〈
A(u, v), (u, v)

〉
H =

∑
j∈J

∫ �j

0
aj

∣∣∣v′
j

∣∣∣2 dx = 0.

Then ajv
′
j = 0 a.e. on (0, �j ).

Let ej a K-V edge. According to (21) and the fact that ajv
′
j = 0 a.e. on

(0, �j ), we have u′
j = 0 a.e. on ωj . Using (22), we deduce that vj = 0 on ωj .

Return back to (21), we conclude that uj = 0 on ωj .

Putting y = u′
j + ajv

′
j = (1 + iβaj )u

′
j , we have y ∈ H 2(0, �j ) and y′ =

−β2uj . Hence y satisfies the Cauchy problem
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y′′ + β2

1 + iβaj

y = 0, y(z0) = 0, y′(z0) = 0

for some z0 in ωj . Then y is zero on (0, �j ) and hence u′
j and uj are zero on

(0, �j ). Moreover uj and u′
j + ajv

′
j vanish at 0 and at �j .

If ej is a purely elastic edge attached to a K-V edge at one of its ends, denoted
by xj , then uj (xj ) = 0, u′̄

α(xj ) = 0. Again, by the same way we can deduce
that u′

j and uj are zero in L2(0, �j ) and at both ends of ej . We iterate such
procedure on every maximal subgraph of purely elastic edges of G (from leaves
to the root), to obtain finally that (u, v) = 0 in D(A), which is in contradiction
with the choice of (u, v).

• Now given (f , g) ∈ H, we solve the equation

(iβI − A)(u, v) = (f , g)

or equivalently,

{
v = iβu − f

β2u + u′′ + iβ (a ∗ u′)′ = (a ∗ f ′)′ − iβf − g.
(23)

Let us define the operator

Au = −u′′ − iβ (a ∗ u′)′, ∀u ∈ V.

It is easy to show that A is an isomorphism from V onto V ′ (where V ′ is the dual
space of V obtained by means of the inner product in H ). Then the second line
of (23) can be written as follows

u − β2A−1u = A−1
(
g + iβf − (a ∗ f ′)′

)
. (24)

If u ∈ Ker(I − β2A−1), then β2u − Au = 0. It follows that

β2u + u′′ + iβ(a ∗ u′)′ = 0. (25)

Multiplying (25) by u and integrating over T , then by Green’s formula we obtain

β2
∑
j∈J

∫ �j

0
|uj (x)|2 dx−

∑
j∈J

∫ �j

0
|u′

j (x)|2 dx−iβ
∑
j∈J

∫ �j

0
aj (x) |u′

j (x)|2 dx = 0.

This shows that
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∑
j∈J

∫ �j

0
aj (x) |u′

j (x)|2 dx = 0,

which imply that a ∗ u′ = 0 in G.
Inserting this last equation into (25) we get

β2u + u′′ = 0, in G.

According to the first step, we have that Ker(I − β2A−1) = {0}. On the other
hand, thanks to the compact embeddings V ↪→ H and H ↪→ V ′ we see that A−1

is a compact operator in V . Now thanks to Fredholm’s alternative, the operator
(I − β2A−1) is bijective in V , hence the Eq. (24) have a unique solution in V ,
which yields that the operator (iβI −A) is surjective in the energy spaceH. The
proof is thus complete.

��
Before stating the main result, we define a property (P) on a as follows

(P ) ∀j ∈ J, a′
j , a

′′
j ∈ L∞(0, �j ) and ∀k ∈ IM,

∑
j∈Jk

dkj a
′
j (sk) ≤ 0.

Theorem 3.4 Suppose that the function a satisfies property (P ), then

(i) If a is continuous at every inner node of T , then (Sd(t))t≥0 is exponentially
stable on H.

(ii) If a is not continuous at least at an inner node of T , then (Sd(t))t≥0 is
polynomially stable on H, in particular, there exists C > 0 such that for all
t > 0 we have

∥∥∥eAt (u0, u1)

∥∥∥H ≤ C

t2

∥∥∥(u0, u1)∥∥∥D(A)
, ∀ (u0, u1) ∈ D(A).

Proof According to Lemmas 3.1, 3.2, and 3.3, it suffices to prove that for γ = 0,
when a is continuous at every inner node, or γ = 1/2, when a is not continuous at
an inner node, there exists r > 0 such that

inf‖(u,v)‖H,β∈R
βγ
∥∥(iβI − A)(u, v)

∥∥H ≥ r. (26)

Suppose that (26) fails. Then there exists a sequence of real numbers βn, with βn →
∞ (without loss of generality, we suppose that βn > 0 ), and a sequence of vectors
(un, vn) in D(A) with

∥∥(un, vn)
∥∥H = 1 such that

β
γ
n

∥∥(iβnI − A)(un, vn)
∥∥H → 0. (27)
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We shall prove that
∥∥(un, vn)

∥∥H = o(1), which contradict the hypotheses on
(un, vn).

Writing (27) in terms of its components, we get for every j ∈ J,

β
γ
n (iβnuj,n − vj,n) =: fj,n = o(1) in H 1(0, �j ), (28)

β
γ
n (iβnvj,n − (u′

j,n + ajv
′
j,n)

′) =: gj,n = o(1) in L2(0, �j ). (29)

Note that

β
γ
n

∑
j∈J

∫ �j

0
aj (x)

∣∣∣v′
j (x)

∣∣∣2 dx = Re
(〈
β

γ
n (iβnI − Ad)(un, vn), (un, vn)

〉
H
) = o(1).

Hence, for every j ∈ J

β
γ
2
n

∥∥∥∥a
1
2
j v′

j,n

∥∥∥∥
L2(0,�j )

= o(1). (30)

Then from (28), we get that

β
γ
2
n

∥∥∥∥a
1
2
j βnu

′
j,n

∥∥∥∥
L2(0,�j )

= o(1). (31)

Define Tj,n = (u′
j,n + ajv

′
j,n) and multiplying (29) by β

−γ
n qTj,n where q is any

real function in H 2(0, �j ), we get, using (28) and some integrations by parts,

1

2

∫ �j

0
q ′ ∣∣vj,n

∣∣2 dx + 1

2

∫ �j

0
q ′ ∣∣Tj,n

∣∣2 dx − Im

∫ �j

0
qajβnvj,nv

′
j,ndx

−1

2

([
q(x)

∣∣vj,n(x)
∣∣2]�j

0
+
[
q(x)

∣∣Tj,n(x)
∣∣2]�j

0

)
= o(1). (32)

��
Lemma 3.5 The following property holds

Im

∫ �j

0
qajβnvj,nv

′
j,ndx = o(1). (33)

Proof Since β
γ
2
n a

1
2
j v′

j,n → 0 in L2(0, �j ) and q ∈ L∞(0, �j ), it suffices to prove
that

β
1− γ

2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
L2(0,�j )

= O(1). (34)
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For this, taking the inner product of (29) by iβ1−2γ
n aj vj,n leads to

β
2−γ
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(0,�j )

= −iβ1−γ
n

∫ �j

0
T ′

j,naj vj,ndx − iβ1−2γ
n

∫ �j

0
gj,naj vj,ndx.

(35)
Since aj ∈ L∞(0, �j ) and gᾱ,n → 0 in L2(0, �j ) we can deduce the inequality

− Re(iβ1−2γ
n

∫ �j

0
gᾱ,naj vj,ndx) ≤ 1

4
β
2−γ
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(ωj )

+ o(1). (36)

On the other hand, we have [14]

− Re(iβ1−γ
n

∫ �j

0
T ′
j,navj,ndx) ≤ −Re

[
iβ1−γ

n Tj,n(x)aj (x)vj,n(x)
]�j

0

+ 1

2

[
β

−γ
n a′

j (x)
∣∣vj,n(x)

∣∣2]�j

0
+ 1

4
β
2−γ
n

∥∥∥∥a
1
2
j

vj,n

∥∥∥∥
2

L2(0,�j )

+ O(1). (37)

Note that in the proof of (37) we have used that a′
j and a′′

j belong to L∞(0, �j ).

Thus, substituting (36) and (37) into (35) leads to

1

2
β
2−γ
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(0,�j )

≤ −Re
[
iβ1−γ

n Tj,n(x)aj (x)vj,n(x)
]�j

0

+1

2

[
β

−γ
n a′

j (x)
∣∣vj,n(x)

∣∣2]�j

0
+ O(1). (38)

Summing over j ∈ J,

∑
j∈J

β2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(0,�j )

≤ −2
∑

k∈Iint

Re

⎛
⎝iβ1−γ

n vn(sk)
∑
j∈Jk

dkj ajk
(sk)Tjk,n(sk)

⎞
⎠

+β
−γ
n

∑
k∈Iint

∣∣vn(sk)
∣∣2 ∑

j∈Jk

dkj a
′
jk

(sk) + O(1). (39)

We have used the continuity condition of vn and the compatibility condition (7) at
inner nodes and the Dirichlet condition of u and v at external nodes.

Notes that from property (P) we have

∑
k∈IM

∣∣vn(sk)
∣∣2 ∑

j∈Jk

dkj a
′
j (sk) ≤ 0, (40)

then to conclude, it suffices to estimate
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∑
k∈Iint

Re

⎛
⎝iβ1−γ

n vn(sk)
∑
j∈Jk

dkj ajk
(sk)Tjk,n(sk)

⎞
⎠ .

Case (i), corresponding to γ = 0: Here a is continuous in all nodes. It follows that∑
k∈Iint

Re
(

iβ1−γ
n vn(sk)

∑
j∈Jk

dkj ajk
(sk)Tjk,n(sk)

)
= 0.

Then, (39) and (40), yield

β2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(0,�j )

= O(1)

for every j ∈ J, and the proof of Lemma 3.5 is complete for case (i).
Case (ii), corresponding to γ = 1

2 : Recall that here the function a is not
continuous at some internal nodes. We want estimate the first term in the right hand
side of (38). To do this it suffices to estimate Re(iβ1−γ

n Tj,n(x)aj (xj )vj,n(x)) at an
inner node x = xj when aj (xj ) �= 0. By means of some Gagliardo–Nirenberg
inequality [34] we proved in [14] the following estimate

−Re(iβ
1
2
n Tj,n(xj )vj,n(xj )) = o(1).

We then conclude that the first term on the right hand side of (39) converges to zero.
Then, again, using (40), we obtain that

∑
j∈I

β
1
2
n

∥∥∥∥a
1
2
j βnvj,n

∥∥∥∥
2

L2(0,�j )

= O(1),

then

β
3
2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(0,�j )

= O(1)

for every j ∈ I, and the proof of Lemma 3.5 is complete for case (ii). ��
Return back to the proof of Theorem 3.4. Substituting (33) in (32) leads to

1

2

∫ �j

0
q ′ ∣∣vj,n

∣∣2 dx+1

2

∫ �j

0
q ′ ∣∣Tj,n

∣∣2 dx−1

2

[
q(x)

(∣∣vj,n(x)
∣∣2 + ∣∣Tj,n(x)

∣∣2)]�j

0
= o(1)

(41)
for every j ∈ J.

Let j ∈ J such that ej is a K-V string. First, note that from (34), we deduce that

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
2

L2(0,�j )

= o(1).
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Then, we take q(x) = ∫ x

0 aj (s)ds in (41) to obtain

1

2

∫ �j

0
aj

∣∣Tj,n

∣∣2 dx − 1

2

(∫ �j

0
aj (s)ds

)(∣∣vj,n(�j )
∣∣2 + ∣∣Tj,n(�j )

∣∣2) = o(1).

(42)

Since 1
2

∫ �j

0 aj

∣∣Tj,n

∣∣2 dx = o(1) and
∫ �j

0 aj (s)ds > 0, then (42) implies

∣∣Tj,n(�j )
∣∣2 + ∣∣vj,n(�j )

∣∣2 = o(1). (43)

Therefore, (41) can be rewritten as

1

2

∫ �j

0
q ′ ∣∣vj,n

∣∣2 dx + 1

2

∫ �ᾱ

0
q ′ ∣∣Tj,n

∣∣2 dx

+1

2

(
q(0)

∣∣vj,n(0)
∣∣2 + q(0)

∣∣Tj,n(0)
∣∣2) = o(1). (44)

By taking q = x + 1 in (44) we deduce that

∥∥vj,n

∥∥
L2(0,�j )

= o(1) and
∥∥∥u′

j,n

∥∥∥
L2(0,�j )

= o(1) (45)

and moreover

vj,n(�j ) = o(1) and Tj,n(�j ) = o(1) (46)

implies that
∥∥vj,n

∥∥
L2(0,�j )

= o(1) and
∥∥Tj,n

∥∥
L2(0,�j )

= o(1).

Moreover,
∥∥∥u′

j,n

∥∥∥
L2(0,�j )

= ∥∥Tj,n − ajvj,n

∥∥
L2(0,�j )

= o(1). Also we have

vj,n(0) = o(1) and Tj,n(0) = o(1). (47)

Finally, notice that (43) signifies that

vj,n(�j ) = o(1) and Tj,n(�j ) = o(1). (48)

To conclude, it suffices to prove that (45) holds. For every j ∈ I such that ej is
purely elastic. As in the proof of Lemma 3.3, we start by proving (45) for a string
ej attached at one end to only K-V strings. Then we iterate such procedure on each
maximally connected subgraph of purely elastic strings (from leaves to the root).

Thus
∥∥(un, vn)

∥∥H = o(1), which contradicts the hypothesis
∥∥(un, vn)

∥∥H = 1.

Remark 6

1. If for every j ∈ J , aj is continuous on [0, �j ] and not vanish in such interval,
then we do not need the property (P) in the Theorem 3.4.
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Indeed (P) is used only to estimate

−Re

(
iβ1−γ

n

∫ �j

0
T ′

j,naj vj,ndx

)

in (35), according to β
1− γ

2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
L2(0,�j )

.

This is equivalent to estimate

−Re

(
iβ1−γ

n

∫ �j

0
T ′

j,nvj,ndx

)

according to β
1− γ

2
n

∥∥vj,n

∥∥
L2(0,�j )

:

−Re

(
iβ1−γ

n

∫ �j

0
T ′

j,nvj,ndx

)

= −Re
[
iβ1−γ

n Tj,n vj,n

]�j

0
+ Re

(
iβ1−γ

n

∫ �j

0
Tj,nv

′
j,ndx

)

= −Re
[
iβ1−γ

n Tj,n(x) vj,n(x)
]�j

0
+ o(1)

as in case (ii) (proof of Theorem 3.4) we prove without using (P) that

−Re
[
iβ1−γ

n Tj,n(x) vj,n(x)
]�j

0
≤ β

2−γ
n

4

∥∥vj,n

∥∥2
L2(0,�j )

+ o(1).

2. We find here the particular cases studied in [2, 25, 30, 31, 33]. Note that
concerning the result of polynomial stability in [2, 25] the authors proved that
the 1

t2
decay rate of solution is optimal when the damping coefficient is a

characteristic function.
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