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1 Sobolev Spaces, Inequalities, Dirichlet, and Neumann
Problems for the Laplacian

1.1 Sobolev Spaces

Let us introduce the following Sobolev spaces: for any 1 < p < ∞

Wm,p(�) = {
u ∈ D ′(�); ∀ |α| ≤ m, Dαu ∈ Lp(�)

}

and

Ws,p(�) =
{
u ∈ Wm,p(�);

∫

�

∫

�

|Dαu(x) − Dαu(y)|p
|x − y|N+σp

< ∞, ∀ |α| = m

}
,

where m ∈ N, s = m + σ, 0 < σ < 1 and � is an open set of RN. Equipped with
the graph norm, they are Banach spaces.

When � = R
N , using the Fourier transform, we define for any real number s the

space

Hs(RN) =
{
u ∈ S ′(RN);

∫

RN

(1 + |ξ |2)s |û(ξ)|2 dξ < ∞
}

,

which is an Hilbert space for the norm:
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‖u‖Hs(RN) =
(∫

RN

(1 + |ξ |2)s |û|2dx

)1/2

.

By Plancherel’s theorem we prove that Ws,2(RN) = Hs(RN) for all s ≥ 0 and
this identity is algebraical and topological. So, in the case p = 2, we denote more
simply the space Ws,2(�) by Hs(�).

Definition 1.1 For s > 0 and 1 ≤ p < ∞, we denote

W
s,p

0 (�) = D(�)
‖·‖Ws,p(�)

,

and its topological dual space

W−s,p′
(�) = [

W
s,p

0 (�)
]′

,

where p′ is the conjugate of p: 1/p + 1/p′ = 1. For p = 2, we will write Hs
0 (�)

and H−s(�), respectively.

Proposition 1.2 Suppose T ∈ D ′(�). Then T ∈ W−m,p′
(�), with m ∈ N

∗, if and
only if

T =
∑

|α|≤m

Dαfα, with fα ∈ Lp′
(�).

1.2 First Properties

It will be assumed from now on that � is a bounded open subset of RN with a
Lipschitz boundary.

Let us consider the following space

D(�) =
{
v|�; v ∈ D(RN)

}
.

Theorem 1.3

(i) The space D(�) is dense in Ws,p(�) for any s > 0 (even if � is unbounded).
(ii) The space D(RN) is dense in Ws,p(RN) for any s ∈ R.

As consequence, we have the following property: for any s > 0

W
s,p

0 (RN) = Ws,p(RN) and W−s,p′
(RN) =

[
Ws,p(RN)

]′
.

But in general, for any s > 0, we have W
s,p

0 (�) � Ws,p(�).
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Definition 1.4 For s > 0, we set

W̃ s,p(�) =
{
u ∈ Ws,p(�); ũ ∈ Ws,p(RN)

}
,

where ũ is the extension by 0 of u outside of �.

The space W̃ s,p(�) is a Banach space for the norm

‖u‖W̃ s,p(�) = ‖ũ‖Ws,p(RN) .

It is easy to verify that for any nonnegative integer m

W
m,p

0 (�) ↪→ W̃m,p(�) (1)

and for any u ∈ W
m,p

0 (�) we have

‖u‖W̃m,p(�) = ‖u‖Wm,p(�) . (2)

When s = m + σ with 0 < σ < 1, we can show that

‖u‖W̃ s,p(�) � ‖u‖Ws,p(�) +
∑

|α|=m

∥∥∥∥
Dαu

�σ

∥∥∥∥
Lp(�)

, (3)

where �(x) = d(x, �) and � = ∂�.

Theorem 1.5 The space D(�) is dense in W̃ s,p(�) for all s > 0 (even if � is
unbounded).

From (1), (2) and the definition of W
m,p

0 (�), we deduce the following: for any
m ∈ N

∗,

W̃m,p(�) = W
m,p

0 (�). (4)

Theorem 1.6 For any 0 < s ≤ 1/p, the space D(�) is dense in Ws,p(�), which
means that

W
s,p

0 (�) = Ws,p(�). (5)

Theorem 1.7 Let 0 < s ≤ 1 and u ∈ W
s,p

0 (�). Then

u

�s
∈ Lp(�) ⇐⇒ s �= 1/p

and in this case
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∥∥∥∥
u

�s

∥∥∥∥
Lp(�)

≤ C |u|Ws,p(�),

where the notation | · | denotes the semi-norm of Ws,p(�).

The case s =1 is known as Hardy’s inequality: for all u ∈ W
1,p
0 (�),

∥∥∥∥
u

�

∥∥∥∥
Lp(�)

≤ C ‖∇u‖Lp(�) .

Using again a Hardy’s inequality, we prove the following result:

Theorem 1.8 Let s > 0 and u ∈ W
s,p

0 (�). Then for any |α| ≤ s, we have

Dαu

�s−|α| ∈ Lp(�) ⇐⇒ s − 1/p /∈ N. (6)

From (3) and (6), we deduce the following identity:

W̃ s,p(�) = W
s,p

0 (�) (7)

which holds for any s > 0 satisfying s − 1/p /∈ N.

Proposition 1.9

(i) For any 1 ≤ j ≤ N and for any s ∈ R, the operator

∂

∂xj

: Ws,p(RN) −→ Ws−1,p(RN) (8)

is continuous.
(ii) However, if we replace RN by �, Property (8) takes place unless s = 1/p.

Sketch of the Proof of Point (ii)

1. Case s = m+σ , withm ∈ N
∗ and 0 ≤ σ < 1. Let u ∈ Ws,p(�). By definition,

we know that

u ∈ Wm,p(�) and
∫

�

∫

�

|Dαu(x) − Dαu(y)|p
|x − y|N+σp

< ∞, ∀ |α| = m.

So for any 1 ≤ j ≤ N

∂u

∂xj

∈ Wm−1,p(�) and
∫

�

∫

�

∣∣∣Dα ∂u
∂xj

(x) − Dα ∂u
∂xj

(y)

∣∣∣
p

|x − y|N+σp
< ∞,

for all |α| = m − 1. Consequently ∂u
∂xj

∈ Ws−1,p(�).
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2. Case s ≤ 0. Let u ∈ Ws,p(�). Since −s + 1 ≥ 1, for any ϕ ∈ D(�), we get:

∣∣∣〈 ∂u
∂xj

, ϕ〉D ′(�)×D(�)

∣∣∣ =
∣∣∣−〈u,

∂ϕ
∂xj

〉D ′(�)×D(�)

∣∣∣

≤ ‖u‖Ws,p(�)

∥∥∥ ∂ϕ
∂xj

∥∥∥
W

−s,p′
0 (�)

≤ ‖u‖Ws,p(�) ‖ϕ‖
W

−s+1,p′
0 (�)

.

We conclude by using the density of D(�) in W
−s+1,p′
0 (�).

3. Case 0 < s < 1. Let u ∈ Ws,p(�). Recall that � being Lipschitz open set,
there exists an extension operator

∀t ≥ 0, P : Wt,p(�) −→ Wt,p(RN)

which is linear, continuous, and satisfying

Pv|� = v, for any v ∈ Wt,p(�).

As Pu ∈ Ws,p(RN), we get ∂Pu
∂xj

∈ Ws−1,p(RN). But

(
∂Pu

∂xj

)

|�
= ∂u

∂xj

,

where ∂u
∂xj

is the restriction to � of the distribution T = ∂Pu
∂xj

∈ Ws−1,p(RN). More
precisely, we have:

∀ϕ ∈ D(�), 〈 ∂u

∂xj

, ϕ〉D ′(�)×D(�) = 〈T , ϕ̃〉D ′(RN)×D(RN).

That implies

∣∣∣∣〈
∂u

∂xj

, ϕ〉
∣∣∣∣ ≤ ‖T ‖Ws−1,p(RN) ‖ϕ̃‖

W 1−s,p′
(RN)

= ‖T ‖Ws−1,p(RN) ‖ϕ‖
W̃ 1−s,p′

(�)
.

We have shown that ∂u
∂xj

∈
[
W̃ 1−s,p′

(�)
]′

. But

[
W̃ 1−s,p′

(�)
]′ =

[
W

1−s,p′
0 (�)

]′ ⇐⇒ 1 − s �= 1/p′,

i.e., s �= 1/p. ��
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Remark 1 The above proof shows that

u ∈ W 1/p,p(�) �⇒ ∂u

∂xj

∈
[
W̃ 1/p′,p′]′

.

In particular,

u ∈ H 1/2(�) �⇒ ∂u

∂xj

∈
[
H̃ 1/2(�)

]′
,

where we remark also that

H̃ 1/2(�) ↪→ H 1/2(�) = H
1/2
0 (�).

This embedding being dense, we get by duality

H−1/2(�) =
[
H

1/2
0 (�)

]′
↪→

[
H̃ 1/2(�)

]′
.

Corollary 1.10 Let s > 0. The following characterization holds:

u ∈ W̃ s,p(�) ⇐⇒ u ∈ W
s,p

0 (�) and for any |α| = m,
Dαu

�σ
∈ Lp(�),

where s = m + σ,m ∈ N and 0 ≤ σ < 1.

1.3 Traces

Firstly, recall the following inclusions:

Ws,p(RN) ↪→ C 0(RN) if s >
N

p
.

So that if u ∈ Ws,p(RN) with s > N
p
, the restriction of u to the hyperplane xN = 0

is well defined. But the continuity with respect to all variables is not necessary. It
is enough to have the continuity with respect to the variable xN . This is possible as
soon as s > 1/p.

Actually, we have the following result:

Theorem 1.11

(i) Suppose that s − 1/p = k + σ, with k ∈ N and 0 < σ < 1 (which implies, in
particular, that s − 1/p /∈ N). Then the mapping
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u
γ�−→ (γ0u, γ1u, . . . , γku),

where

γ0u(x) = u(x′, 0), x′ = (x1, . . . , xN−1), and γju(x′) = ∂ju

∂x
j
N

(x′, 0),

defined for u ∈ D(RN), has a unique extension

Ws,p(Rn) −→
k∏

j=0

Ws−j−1/p,p(RN−1)

which is continuous and where k is the integer part of s > 0.
(ii) Moreover this operator has a right continuous inverse R:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀g = (g0, . . . , gk) ∈
k∏

j=0

Ws−j−1/p,p(RN−1), γRg = g

‖Rg‖Ws,p(RN) ≤ CN

k∑

j=0

∥∥gj

∥∥
Ws−j−1/p,p(RN−1)

.

Remark 2 For p = 2, the above result can be proved using the Fourier transform.

This result can be extended to the case where � is a bounded open subset of RN ,
with a C k,1 boundary (see the definition below).

Definition 1.12 Let � be an open subset of R
N . We say that � is Lipschitz

(respectively of class C k,1, k ∈ N
�) if for every x ∈ �, there exists a neighborhood

V of x in RN and orthonormal coordinates {y1, . . . , yN } satisfying:
(i) V is an hypercube

V =
{
(y1, . . . , yN) ∈ R

N ; |yj | < aj , 1 ≤ j ≤ N
}

,

(ii) there exists a function ϕ defined in

V ′ =
{
y′ ∈ R

N−1; |yj | < aj , 1 ≤ j ≤ N − 1
}

,

such that ϕ and ϕ−1 are Lipschitz (respectively, C k,1) and satisfying (Fig. 1)

∀ y′ ∈ V ′,
∣∣ϕ(y′)

∣∣ ≤ 1

2
aN
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x2

v

v’

x

(y 1

y 2 
= 

x10

r

y2

y1

 )

�

�

Fig. 1

� ∩ V = {
(y′, yN) ∈ V ; yN < ϕ(y′)

}

� ∩ V = {
(y′, yn) ∈ V ; yN = ϕ(y′)

}
.

Let


 : V ′ −→ � ∩ V

y′ �−→ (y′, ϕ(y′)).

Definition 1.13 Suppose that � is an open subset of RN of class C k,1, with k ∈ N

and let 0 < s ≤ k + 1. We introduce the following space

Ws,p(�) =
{
u ∈ Lp(�); u ◦ 
 ∈ Ws,p(V ′ ∩ 
−1(� ∩ V ))

}

for any (V , ϕ) verifying the previous definition.

Let (Vj , ϕj ), 1 ≤ j ≤ J , be any atlas of � for which each pair (Vj , ϕj ) satisfies the
above definition. One possible Banach norm for Ws,p(�) is given by:
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‖u‖Ws,p(�) =
J∑

j=1

∥∥u ◦ 
j

∥∥
Ws,p(V ′

j ∩
−1
j (�∩Vj ))

which is equivalent when 0 < s < 1 to the norm

(
‖u‖p

Lp(�) +
∫

�

∫

�

|u(x) − u(y)|p
|x − y|N−1+sp

dσxdσy

)1/p

.

We are now in position to extend Theorem 1.11 to the case where R
N−1 is

replaced by an N −1-dimensional manifold of RN , but which is sufficiently regular.
This simply uses changes of variables.

If locally � is represented by the pair (V , ϕ) with ϕ and ϕ−1 Lipschitz, then a
unit outward normal vector can be defined as follows:

for y′ ∈ V ′, ν(y′, ϕ(y′)) = (−∇′ϕ(y′), 1)
√
1 + |∇′ϕ(y′)|2 .

One can then extend this vector in all V by setting

ν(y′, yN) = ν(y′, ϕ(y′)), y ∈ V.

As � ⊂ ∪J
j=1Vj , we know that there exist functions μ0, μ1, . . . , μJ ∈ C∞(RN)

such that

(i) for all j = 0, . . . , J, 0 ≤ μj ≤ 1 and
J∑

j=1

μj = 1

(ii) suppμj is compact and suppμj ⊂ Vj for any j ≥ 1 and suppμ0 ⊂ �.

This partition of unity then allows to extend ν in a neighborhood of � as follows:

ν =
J∑

j=0

(μjν). It is then easy to verify that ν ∈ L∞(�) if � is Lipschitz and

ν ∈ C k−1,1(�) if � is C k,1.
We are now ready to establish the following result:

Theorem 1.14 (Traces) Let � be an open subset of RN of class C k,1, with k ∈ N.
Let s > 0 satisfying s ≤ k + 1 and s − 1/p = � + σ with 0 < σ < 1 and � ∈ N.

Then the mapping

u
γ�−→ (γ0u, γ1u, . . . , γ�u)

defined for C k,1 has a unique continuous extension as an operator from Ws,p(�)

into
�∏

j=0

Ws−j−1/p,p(�) where
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γ1u = ∂u

∂ν
= ∇u · ν, γju = ∂ju

∂νj
.

Moreover this operator has a right continuous inverse R (not depending of p).

Case � Lipschitz. Suppose 1/p < s ≤ 1. We have the following properties:

(i) If u ∈ Ws,p(�), then u|� ∈ Ws−1/p,p(�).
(ii) If g ∈ Ws−1/p,p(�), then there exists u ∈ Ws,p(�) such that u = g on � and

satisfying the estimate

‖u‖Ws,p(�) ≤ C ‖g‖Ws−1/p,p(�) .

Case � of class C 1,1.

(i) Let u ∈ Ws,p(�). If 1/p < s ≤ 2, then u|� ∈ W 1−1/p(�). Moreover, for any
g ∈ Ws−1/p,p(�), there exists u ∈ Ws,p(�) such that u = g on �, with

‖u‖Ws,p(�) ≤ C ‖g‖Ws−1/p,p(�) .

(ii) Let u ∈ Ws,p(�). If 1 + 1/p < s ≤ 2, then ∂u
∂ν

∈ Ws−1−1/p,p(�). Moreover,
for any g0 ∈ Ws−1/p,p(�) and g1 ∈ Ws−1−1/p,p(�), there exists u ∈ Ws,p(�)

such that

u = g0 and
∂u

∂ν
= g1 on �

with

‖u‖Ws,p(�) ≤ C
(‖g0‖Ws−1/p,p(�) + ‖g1‖Ws−1−1/p,p(�)

)
.

Theorem 1.15 Suppose that � is an open subset of RN of class C k,1, with k ∈ N.
Let s > 0 such that s − 1/p /∈ N and s − 1/p = �+σ, where 0 < σ < 1 and � ≥ 0
is an integer. Then we have the following characterization for s ≤ k + 1:

W
s,p

0 (�) = {
u ∈ Ws,p(�); γ0u = γ1u = . . . = γ�u = 0

}
.

1.4 Interpolation

We will consider here only the case of spaces Hs(�), with � bounded open
Lipschitz of RN .

Recall that for every s > 0 there exists a continuous linear operator:

P : Hs(�) −→ Hs(RN)
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satisfying

∀u ∈ Hs(�), Pu|� = u.

Theorem 1.16 [Interpolation Inequality] Let s1, s2, s3 with 0 ≤ s1 < s2 < s3.

Then

∀ ε > 0, ‖u‖Ws2,p(�) ≤ ε ‖u‖Ws3,p(�) + Kε
− s2−s1

s3−s2 ‖u‖Ws1,p(�) ,

where K = K(�, s1, s2, s3, p).

The above inequality is a consequence of the compactness of the embedding of
Ws3,p(�) into Ws2,p(�).

Recall now that we have different ways to define the Sobolev space Hm(�), for
m ∈ N:

u ∈ Hm(�) ⇐⇒ ∀ |α| ≤ m, Dαu ∈ L2(�),

u ∈ Hm(�) ⇐⇒ u = U|� with U ∈ Hm(RN),

u ∈ Hm(RN) ⇐⇒ u ∈ S ′(RN) and (1 + |ξ |2)m/2û ∈ L2(RN).

(9)

In the case of fractional Sobolev spacesHs(�), with s = m+σ,m ∈ N, 0 < σ < 1,
we have:

u ∈ Hs(�) ⇐⇒ u ∈ Hm(�) and ∀ |α| = m,
∫
�

∫
�

|Dαu(x)−Dαu(y)|
|x−y|N+2σ < ∞

u ∈ Hs(�) ⇐⇒ u = U|� with U ∈ Hs(RN),

u ∈ Hs(RN) ⇐⇒ u ∈ S ′(RN) and (1 + |ξ |2)s/2û ∈ L2(RN).

(10)
We can also get this space by interpolation:

Hs(�) =
[
Hm(�),L2(�)

]

μ
, 0 < μ < 1 (1 − μ)m = s

and more generally we have for any 0 < μ < 1
[
Hs1(�),Hs2(�)

]
μ

= H(1−μ)s1+μs2(�).

Concerning the interpolation of spaces Hm
0 (�), we have:

[
H

s1
0 (�),H

s2
0 (�)

]
μ

= H
(1−μ)s1+μs2
0 (�) if (1 − μ)s1 + μs2 /∈ 1

2
+ N

and

[
H

s1
0 (�),H

s2
0 (�)

]
μ

= H̃ (1−μ)s1+μs2(�) otherwise,

with equivalent norms.
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1.5 Transposition

Let V andH be two Hilbert spaces onR andA ∈ L (V ,H). For every fixed g ∈ H ′,
we consider the following mapping

V −→ R

x �−→ 〈g,Ax〉H ′×H

which defines a linear and continuous form on V that we denote by tAg:

〈tAg, x〉V ′×V = 〈g,Ax〉H ′×H .

Remark 3 If A : V −→ H is an isomorphism, then we can define the transpose of
A−1 and we easily verify that

tA−1 = (
tA
)−1 and tA : H ′ −→ V ′ is an isomorphism.

1.6 Inequalities

They are fundamental tools in the study of partial differential equations:

(i) Poincaré’s Inequality. Let � be an open space bounded in at least one
direction. Then there exists a constant C ≥ 0, depending on the diameter of �

such that

∀u ∈ W
1,p
0 (�), ‖u‖Lp(�) ≤ C ‖∇u‖Lp(�) .

(ii) Poincaré-Wirtinger’s Inequality. Let � be a Lipschitz bounded domain of
R

N . Then there exists a constant C(�) ≥ 0 such that

∀u ∈ W 1,p(�), inf
K∈R

‖u + K‖Lp(�) ≤ C(�) ‖∇u‖Lp(�) .

(iii) Hardy’s Inequality. Let � be a Lipschitz bounded open subset of RN . Then
there exists a constant C(�) ≥ 0 such that

∀u ∈ W
1,p
0 (�),

∥∥∥∥
u

�

∥∥∥∥
Lp(�)

≤ C(�) ‖∇u‖Lp(�) .

(iv) Calderòn–Zygmund’s Inequality.

∀u ∈ D(�),

∥∥∥∥
∂2u

∂xi∂xj

∥∥∥∥
Lp(�)

≤ C(�) ‖�u‖Lp(�) .
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1.7 Weak Solutions

Consider the following problems:

(PD) − �u = f in � and u = g on �

and

(PN) − �u = f in � and
∂u

∂ν
= h on �,

where � is a Lipschitz bounded domain of RN , f, g, and h are given.

Theorem 1.17 Given any f ∈ H−1(�) and any g ∈ H 1/2(�), there exists a unique
solution u ∈ H 1(�) to Problem (PD). Moreover

‖u‖H 1(�) ≤ C(�)
(‖f ‖H−1(�) + ‖g‖H 1/2(�)

)
.

Proof Using Theorem 1.14, there exists ug ∈ H 1(�) such that

ug = g on � with
∥∥ug

∥∥
H 1(�)

≤ C(�) ‖g‖H 1/2(�) .

Setting

fg = −�ug = −div∇ug ∈ H−1(�),

the problem becomes: Find v ∈ H 1
0 (�) solution of

(P 0
D) − �v = f − fg in � and v = 0 on �.

This last problem is equivalent to the following variational formulation:

(FV )D

⎧
⎨

⎩

Find v ∈ H 1
0 (�) such that

∀ϕ ∈ H 1
0 (�),

∫

�

∇v · ∇ϕdx = 〈f − fg, ϕ〉H−1(�×H 1
0 (�).

Applying Lax–Milgram Lemma or Riesz Theorem, we prove the existence of a
unique solution v ∈ H 1

0 (�) satisfying (FV )D .
Note that the bilinear form

a(v, ϕ) =
∫

�

∇v · ∇ϕdx
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is continuous on H 1
0 (�) × H 1

0 (�) and coercive on H 1
0 (�) thanks to Poincaré’s

inequality. In addition, this form allows to define a scalar product on Hilbert’s space
H 1

0 (�). ��
Remark 4

(i) If � is of class C 1, f ∈ W−1,p(�) and g ∈ W 1−1/p,p(�) with 1 < p < ∞,
then there exists a unique solution u ∈ W 1,p(�) to (PD).

(ii) When � is only Lipschitz, this regularity result holds for p ∈ ]2 − ε′, 2 + ε[
where ε and ε′ > 0 are depending on � and 2 − ε′ and 2 + ε are conjugate.

Concerning the Neumann problem, the approach is a bit more complicated.
Indeed, if we are looking for a solution u ∈ H 1(�) only, the boundary condition
on the normal derivative does not make sense, since the functions of L2(�) do not
have any trace at the boundary. Here, in fact, if one set v = ∇u we have

∂u

∂ν
= v · ν on �.

Definition 1.18

H(div; �) =
{
v ∈ L2(�); div v ∈ L2(�)

}
.

It is a Hilbert space for the scalar product

((v,w))H(div;�) =
∫

�

v · wdx +
∫

�

(div v)(divw)dx.

Proposition 1.19

(i) The space D(�) is dense in H(div; �).
(ii) The linear mapping

v �−→ v · ν,

defined on D(�)N, can be uniquely extended into a linear mapping of
H(div;�) in H−1/2(�) := [

H 1/2(�)
]′
.

(iii) In addition, we have the following Green’s formula (or Stokes’ formula):

∀ϕ ∈ H 1(�), ∀v ∈ H(div; �),

∫

�

v · ∇ϕ dx +
∫

�

ϕ div v dx = 〈v · ν, ϕ〉�

where 〈·, ·〉� denotes the duality brackets H−1/2(�) × H 1/2(�).

Corollary 1.20 Let u ∈ H 1(�) be such that �u ∈ L2(�). Then ∂u
∂ν

∈ H−1/2(�).

Moreover for any ϕ ∈ H 1(�), we have the following Green formula:
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∫

�

ϕ�udx +
∫

�

∇u · ∇ϕ dx = 〈∂u

∂ν
, ϕ〉�.

Proof It suffices to apply Proposition 1.19 by setting v = ∇u. ��
As a Consequence we can show that for any f ∈ L2(�) and for any g ∈

H−1/2(�), the problems

(PN)

⎧
⎨

⎩

Find u ∈ H 1(�) such that
−�u = f in �,
∂u
∂ν

= g on �

and

(QN)

⎧
⎨

⎩

Find u ∈ H 1(�) such that

∀ϕ ∈ H 1(�),

∫

�

∇u · ∇ϕ dx =
∫

�

f ϕ dx + 〈g, ϕ〉�

are equivalent, so that any solution of one is a solution of the other.

Remark 5

(i) The open � being bounded, the constant functions belong to H 1(�). So that
if u is a solution of (QN), taking ϕ = 1, the data f and g must satisfy the
(necessary) compatibility condition:

∫

�

f dx + 〈g, 1〉� = 0.

(ii) The implication (PN) �⇒ (QN) results from Corollary 1.20. The reverse
implication also uses Green’s formula and the surjectivity of the trace operator
of H 1(�) into H 1/2(�).

Theorem 1.21 Let � be a bounded, connected, and Lipschitzian open of RN, with
N ≥ 2. Let f ∈ L2(�), g ∈ H−1/2(�) satisfying the compatibility condition

∫

�

f dx + 〈g, 1〉� = 0.

Then Problem (PN) has a solution H 1(�), unique to an additive constant, verifying
the estimate:

‖∇u‖L2(�) ≤ C(�)
(‖f ‖L2(�) + ‖g‖H−1/2(�)

)
.

Proof According to Poincaré-Wirtinger’s inequality, we have

inf
K∈R

‖u + K‖H 1(�) ≤ C(�) ‖∇u‖L2(�) .
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So that the bilinear form

a(u, ϕ) =
∫

�

∇u · ∇ϕ dx

is coercive on the quotient space V = H 1(�)/R. It is then sufficient to apply Lax–
Milgram on the Hilbert space V . ��
Remark 6

(i) We could have chosen as space V the space H 1(�) ∩ L2
0(�) where

L2
0(�) =

{
v ∈ L2(�);

∫

�

v dx = 0

}
,

which is a Hilbert space and then use the inequality:

∀ v ∈ H 1(�) ∩ L2
0(�), ‖v‖H 1(�) ≤ C ‖∇v‖L2(�) .

(ii) We could have taken f in a space larger than L2(�). More precisely if f ∈
L(2∗)′(�), where (2∗)′ is the conjugate of 2∗ defined by

1

2∗ =
{ 1

2 − 1
N

if N ≥ 3
ε > 0 arbitrary if N = 2,

i.e., (2∗)′ = 2N
N+2 if N ≥ 3 and (2∗)′ > 1 if N = 2.

(iii) In Lp-theory, we have existence results in W 1,p(�) when � is C 1 and 1 <

p < ∞ or when � is C 0,1 and 2 − ε′ < p < 2 + ε.

In the same spirit, we can consider the case of Fourier-Robin boundary condition:

(PFR)

⎧
⎨

⎩

Find u ∈ H 1(�)

−�u = f in �,
∂u
∂ν

+ αu = g on �,

where α is a positive function defined on �, which can be formulated in an
equivalent way by:

(QFR)

⎧
⎨

⎩

Find u ∈ H 1(�) such that

∀ϕ ∈ H 1(�),

∫

�

∇u · ∇ϕ dx +
∫

�

αuϕ dx =
∫

�

f ϕ dx + 〈g, ϕ〉�.
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1.8 Strong Solutions

Theorem 1.22 Let � be a bounded open of class C 1,1 of RN . Let f ∈ L2(�) and
g ∈ H/2(�). Then the solution u given by Theorem 1.17 belongs to H 2(�) and
verifies the estimate:

‖u‖H 2(�) ≤ C(�)
(‖f ‖L2(�) + ‖g‖H 3/2(�)

)
.

Proof Firstly, we note that

L2(�) ↪→ H−1(�) and H 3/2(�) ↪→ H 1/2(�)

so that the problem (PD) has a unique solution u ∈ H 1(�).
We shift the data g ∈ H 3/2(�) by ug ∈ H 2(�) and we set again u = v + ug, so

that v ∈ H 1(�) vérifies:

{−�v = f + �ug ∈ L2(�),

v = 0 on �.

So, we need to show that v ∈ H 2(�). One of the methods to establish this regularity
consists in using the technique of the differential quotients.

The complete proof being long and tedious, we will admit it. ��
Remark 7 We can also establish the existence of solutions in W 2,p(�) when the
data f and g verify:

f ∈ Lp(�) and g ∈ W 2−1/p,p(�)

and the domain � is of class C 1,1.

1.9 Very Weak Solutions

We assume here that � is a bounded open of class C 1,1 and we are interested in the
homogeneous problem

(P H
D )

⎧
⎨

⎩

Find u ∈ L2(�)

−�u = 0 in �,

u = g on �,

where g ∈ H−1/2(�).

Remark 8 As the function u belongs “only” to L2(�), the boundary condition u =
g on � has a priori no sense. But we will see that in fact, we can make sense
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of the trace of a harmonic function in L2(�) and (we can in fact weaken this last
hypothesis).

Lemma 1.23

(i) The space D(�) is dense in the space

E(�;�) =
{
v ∈ L2(�); �v ∈ L2(�)

}
.

(ii) The mapping v �−→ v|� defined on D(�) can be uniquely extended into a
continuous linear mapping of E(�;�) into H−1/2(�).

(iii) In addition, we have the following Green’s formula:

⎧
⎨

⎩

∀ v ∈ E(�;�), ∀ϕ ∈ H 2(�) ∩ H 1
0 (�)∫

�

v�ϕ dx −
∫

�

ϕ�v dx = 〈v,
∂ϕ

∂ν
〉H−1/2(�)×H 1/2(�).

Proof

(i) The idea is to use the Hahn–Banach theorem. So let � ∈ [E(�;�)]′ vanishing
on D(�) and show that it cancels on E(�;�).

We know that there exist (f, g) ∈ L2(�) × L2(�) such that

∀ v ∈ E(�;�), 〈�, v〉 =
∫

�

f v dx +
∫

�

g�v dx.

Let f̃ and g̃ the extensions by 0 outside of � of f and g, respectively. Then,
for any v ∈ D(RN)

〈�, v|�〉 =
∫

�

f v dx +
∫

�

g�v dx =
∫

RN

f̃ v dx +
∫

RN

g̃�v dx,

i.e.,

�g̃ = −f̃ in R
N.

As g̃ ∈ L2(RN) and �g̃ ∈ L2(RN), then g̃ ∈ H 2(RN). Therefore, g ∈
H 2(�). The extension g̃, by 0 outside of �, belongs to H 2(RN). We know
then that g ∈ H 2

0 (�). By definition, there exists a sequence (gk)k of functions
of D(�) such that gk −→ g in H 2(�).

Finally, let v ∈ E(�;�). So,

〈�, v〉 = lim
k�⇒∞

[∫

�

−v�vk dx +
∫

�

gk�v dx

]
= lim

k�⇒∞ 0 = 0.
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(ii) Let v ∈ D(�) fixed and ϕ ∈ H 2(�) ∩ H 1
0 (�). Then

∫

�

v�ϕ dx −
∫

�

ϕ�v dx =
∫

�

v
∂ϕ

∂ν
.

Now let μ ∈ H 1/2(�). According to the trace theorem and since � is of class
C 1,1, there exists ϕ ∈ H 2(�) verifying

{
ϕ = 0 and ∂ϕ

∂ν
= μ on �,

‖ϕ‖H 2(�) ≤ C ‖μ‖H 1/2(�) .

Thus, using the Cauchy–Schwarz inequality

∣∣〈v, μ〉H−1/2(�)×H 1/2(�)

∣∣ =
∣∣∣∣

∫

�

vμ

∣∣∣∣ =
∣∣∣∣

∫

�

v
∂ϕ

∂ν

∣∣∣∣

≤ C(�)
(
‖v‖2

L2(�)
+ ‖�v‖2

L2(�)

)1/2 ‖ϕ‖H 2(�)

≤ C(�) ‖v‖E(�;�) ‖μ‖H 1/2(�) .

This shows that the linear mapping

D(�) −→ H−1/2(�)

v �−→ v|�

is continuous when D(�) is equipped with the norm of E(�;�). We finish
the proof by using the density of D(�) in E(�;�).

(iii) Immediate.
��

Theorem 1.24 Let� be a bounded open of classC 1,1 ofRN and let g ∈ H−1/2(�).
Then, the problem (P 0

D) has a unique solution u ∈ L2(�) verifying the estimate

‖u‖L2(�) ≤ C(�) ‖g‖H−1/2(�) .

Proof From Green’s formula above, it is easy to see that u ∈ L2(�) is a solution of
the problem (P 0

D) if and only if

∀ϕ ∈ H 2(�) ∩ H 1
0 (�),

∫

�

u�ϕ dx = 〈g,
∂ϕ

∂ν
〉�. (11)

Indeed, let u ∈ L2(�) be a solution of (P 0
D). Green’s formula implies that (11) takes

place.
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Conversely, let u ∈ L2(�) be a solution of (11). Then, for all ϕ ∈ D(�), we
have

0 =
∫

�

u�ϕ dx = 〈�u, ϕ〉D ′(�)×D(�),

i.e.,

�u = 0 in �. (12)

Let now ϕ ∈ H 2(�) ∩ H 1
0 (�). From (12) and Green’s formula above, we deduce

successively that:

0 =
∫

�

ϕ�udx =
∫

�

u�ϕ dx − 〈u,
∂ϕ

∂ν
〉�

then

〈u,
∂ϕ

∂ν
〉� = 〈g,

∂ϕ

∂ν
〉�.

From the surjectivity of the trace mapping v �→ (v|�, ∂v
∂ν

) from H 2(�) into
H 3/2(�) × H 1/2(�) we know that

∀μ ∈ H 1/2(�), 〈u,μ〉� = 〈g,μ〉�,

i.e., u = g in H−1/2(�). ��
Remark 9 A similar result can be established for the Neumann problem (P 0

N) with
boundary data h in H−3/2(�) and satisfying the compatibility condition 〈h, 1〉�
= 0.

1.10 Solutions in Hs(�), with 0 < s < 2

We have established in the previous paragraphs the existence of solutions in
H 1(�),H 2(�), and L2(�) under generally optimal assumptions (except for the
Neumann problem).

We will now consider the case of solutions in Hs(�) with 0 < s < 2 and s �= 1.
The main ingredient is to use interpolation (complex here).

Theorem 1.25 Let � be a bounded open of class C 1,1.

(i) Suppose that 1
2 < s < 2. Then the operators
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� : Hs(�) ∩ H 1
0 (�) −→ Hs−2(�) =

[
H 2−s

0 (�)
]′

if 1 < s < 2 and s �= 3
2 ,

� : H
3/2
0 (�) −→

[
H

1/2
00 (�)

]′
,

� : H 2−s
0 (�) −→ H−s(�) = [

Hs
0 (�)

]′ if 1 < s < 3
2 ,

(13)
are isomorphisms.

(ii) For any g ∈ Hs(�), with − 1
2 < s < 3

2 , Problem (P H
D ) has a unique solution

u ∈ Hs+ 1
2 (�).

Remark 10 What happens if � is only Lipschitz? For what values of s can we have
u ∈ Hs(�)?

2 The Stokes Problem with Various Boundary Conditions

We are interested here in the study of the Stokes problem:

(S)

⎧
⎨

⎩

Find (u, π) satisfying
−�u + ∇π = f in �,

divu = 0 in �,

with one of the following boundary conditions on �:

(i) u = 0 (Dirichlet boundary condition)
(ii) u · ν = 0 and curl u × ν = 0 (Navier type boundary condition)
(iii) u · ν = 0 and (Du)ν + αuτ = 0 (Navier boundary condition)
(iv) u × ν = 0 and π = π0 (pressure boundary condition).

Here u denotes the velocity field, π the pressure field, � a connected bounded
open set we assume at least Lipschitz.

Recall that

div u = ∇ · u, curl u = ∇ × u and Du = 1

2

(
∇u + (∇u)T

)
.

The notation uτ denotes the tangential component of u: uτ = u − (u · ν)ν. Finally
f and α are given on � and �, respectively.

Remark 11

(i) We limit ourselves here, with the exception of pressure, to the case of
homogeneous boundary conditions.

(ii) If the boundary of � is flat (like a cube, for example, or half space), the above
boundary conditions are more easily written. When � = R

3+, the Navier type
boundary condition is equivalent to:
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u3 = 0 and
∂u1

∂x3
= ∂u2

∂x3
= 0

and that of Navier at:

u3 = 0 and
∂u1

∂x3
− αu1 = ∂u2

∂x3
− αu2 = 0.

2.1 The Problem (S) with Dirichlet Boundary Condition

As for the Laplace equation with the Dirichlet boundary condition, we will assume

f ∈ H−1(�)3

and so look for u ∈ H 1
0 (�)3 verifying (S). Here we have in addition the constraint

divu = 0 in �

and the Lagrange multiplier π . First of all, as π must verify

∇π = f + �u ∈ H−1(�)3

it is, therefore, reasonable to look for π in L2(�). Moreover, it is easy to verify that
such π satisfies:

∀ v ∈ H 1
0 (�)3, 〈∇π, v〉H−1(�)×H 1

0 (�) = −
∫

�

π div v dx.

The space

V =
{
v ∈ H 1

0 (�)3; div v = 0 in �
}

being a subspace of H 1
0 (�)3 is, therefore, a Hilbert space. Moreover

∀ v ∈ V, 〈∇π, v〉H−1(�)×H 1
0 (�) = 0.

We are now able to propose a variational formulation of Problem (S):

(P 0
D)

⎧
⎨

⎩

Find u ∈ V such that

∀ v ∈ V,

∫

�

∇u : ∇v dx = 〈f , v〉H−1(�)×H 1
0 (�),

where we note that the pressure π has “disappeared.”
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Lemma 2.1 The problem

(S0
D)

⎧
⎨

⎩

Find (u, π) ∈ H 1
0 (�)3 × L2(�)

−�u + ∇π = f in �,

divu = 0 in �

is equivalent to the problem (P 0
D).

Proof The implication (S0
D) �⇒ (P 0

D) is immediate. Conversely, let u be a solution
of (P 0

D). Then, in particular,

∀ v ∈ D(�)3 such that div v = 0 in �,

we have

〈−�u − f , v〉D ′(�)3×D(�)3 = 0. (14)

As −�u − f ∈ H−1(�)3 and the space

V(�) =
{
v ∈ D(�)3; div v = 0 in �

}

is dense in the space V , then the relation (14) takes place for all v. Then we know
that there exists π ∈ L2(�), unique up to an additive constant, because � is
connected, such that

−�u − f = ∇(−π) in �

(this result is called “De Rham’s version of the theorem” in H−1(�)N ). And finally,
as u ∈ V , then

divu = 0 in � and u = 0 on �.

This ends the proof of the lemma. ��
Theorem 2.2 For any f ∈ H−1(�)3, the Stokes problem (P 0

D) has a unique
solution u ∈ V vérifying further

‖u‖H 1(�)3 ≤ C(�) ‖f ‖H−1(�)3 .

Proof Simply apply Lax–Milgram theorem. ��
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Remark 12 The theory is well known for everything that concerns the regularity of
solutions when the data are:

– solutions in W 1,p(�)3 × Lp(�)

– solutions in W 2,p(�)3 × Lp(�)

with 1 < p < ∞.
In particular, if f ∈ L2(�)3 and � is of class C 1,1, then u ∈ H 2(�)3 and

π ∈ H 1(�).

2.2 The Stokes Problem with Navier Type Boundary Condition

Here we are still interested in Stokes’ problem, but with the following boundary
condition:

u · ν = 0 and curl u × ν = 0 on �.

In order to take into account this condition at the boundary, it is important to write
the Laplacian operator in the form:

−� = curl curl − ∇ div.

On the other hand, if we study the existence of weak solutions u in H 1(�)3, it will
be necessary to give a meaning to the condition at the boundary

curl u × ν = 0 on �.

Recall the following Green formulas:

(i) If v ∈ L2(�)3 and curl v ∈ L2(�)3, then v × ν ∈ H−1/2(�)3 and

∀ϕ ∈ H 1(�)3,

∫

�

v · curl ϕ dx −
∫

�

ϕ · curl v dx = 〈v × ν,ϕ〉�,

where 〈·, ·〉� denotes the duality brackets H−1/2(�) × H 1/2(�).

(ii) If v ∈ L2(�)3 and div v ∈ L2(�), then v · ν ∈ H−1/2(�) and

∀ϕ ∈ H 1(�),

∫

�

v · ∇ϕ dx +
∫

�

ϕ div v dx = 〈v · ν, ϕ〉�.

Remark 13 If v ∈ L2(�)3 and curl v ∈ L6/5(�)3 (respectively, div v ∈ L6/5(�)),
then

v × ν ∈ H−1/2(�)3 (resp. v · ν ∈ H−1/2(�))
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and Green’s formulas above remain valid.

Proposition 2.3 Let v ∈ L2(�)3 such that curl v ∈ L2(�)3 and curl curl v ∈
L6/5(�)3. Then curl v ×ν ∈ H−1/2(�)3 and we have the following Green formula:

∀ϕ ∈ H 1(�)3,

∫

�

curl v · curl ϕ −
∫

�

ϕ · curl curl v = 〈curl v × ν,ϕ〉�.

Proof It suffices to put w = curl v and use the previous reminders. ��
We are now able to propose a variational formulation for the Stokes problem (S)

with the Navier type homogeneous condition. To do this, we set

V =
{
v ∈ L2(�)3; curl v ∈ L2(�), div v = 0 in � and v · ν = 0 on �

}

equipped with the graph norm:

‖v‖V =
(
‖v‖2

L2(�)
+ ‖curl v‖2

L2(�)3

)1/2

which makes it a Hilbert space.
We suppose f ∈ L6/5(�)3 and we consider the following variational formula-

tion:

(P 0
T N)

⎧
⎨

⎩

Find u ∈ V such that for any v ∈ V,∫

�

curl u · curl v dx =
∫

�

f · v dx.

Questions

(i) Is the problem (P 0
T N) equivalent to the problem (S0

T N)?
(ii) If so, is the bilinear form

V × V −→ R

(u, v) �−→
∫

�

curl u · curl v dx

coercive?

Remark 14 As with the Neumann problem for the Laplacian, the boundary condi-
tion

curl u × ν = 0 on �

is “hidden” in the variational formulation.
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Answers to the Above Questions
In order to study Problem (P 0

T N), we have to describe with more precision the
geometry of the domain. We first need the following definition.

Definition 2.4 A bounded domain in R
3 is called pseudo-C 0,1 (respectively,

pseudo-C 1,1) if for any point x on the boundary there exists an integer r(x) equal
to 1 or 2 and a strictly positive real number λ0 such that for all real numbers λ with
0 < λ < λ0, the intersection of � with the ball with center x and radius λ, has r(x)

connected components, each one being C 0,1 (resp. C 1,1).

Hypothesis There exist J connected open surfaces �j , 1 ≤ j ≤ J , called “cuts,”
contained in �, such that:

(i) each surface �j is an open part of a smooth manifoldMj ,
(ii) the boundary of �j is contained in ∂� for 1 ≤ j ≤ J ,
(iii) the intersection �̄i ∩ �̄j is empty for i �= j ,
(iv) the open set

�◦ = � \
J⋃

j=1

�j

is pseudo-C 0,1 (respectively, pseudo-C 1,1) simply connected.

Example for J = 1 and I = 3 r1

r0r2

r3 ��

Theorem 2.5 Let � be a bounded open C 1,1 set.

(i) Let v ∈ L2(�)3 such that div v ∈ L2(�), curl v ∈ L2(�) and satisfying in
addition

v · ν ∈ H 1/2(�) (respectively, v × ν ∈ H 1/2(�)3).

Then v ∈ H 1(�)3 and we have the following estimates:

‖v‖H 1(�) ≤ C(�)(‖v‖L2(�) + ‖div v‖L2(�) + ‖curl v‖L2(�) + ‖v · ν‖H 1/2(�))

(15)
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and

‖v‖H 1(�) ≤ C(�)
[
‖v‖L2(�) + ‖div v‖L2(�) + ‖curl v‖L2(�) + ‖v × ν‖H 1/2(�))

]
.

(16)
(ii) Under the above assumptions, if in addition v · ν = 0 on �, then we have the

following estimate:

‖v‖H 1(�) ≤ C(�)
( ‖div v‖L2(�) + ‖curl v‖L2(�) +

J∑

j=1

∣∣∣∣∣

∫

�j

v · ν

∣∣∣∣∣
)

(17)

and if v × ν = 0 on �, then we have the following estimate:

‖v‖H 1(�) ≤ C(�)
( ‖div v‖L2(�) + ‖curl v‖L2(�) +

J∑

i=1

∣∣∣∣

∫

�i

v · ν

∣∣∣∣
)
. (18)

Remark 15

(i) Suppose that

v ∈ L2(�)3, div v ∈ L2(�) and curl v ∈ L2(�)3

with

v · ν = 0 and v × ν = 0 on �.

Let us then extend v by 0 outside of �. It is easy to show that this extension
verifies:

ṽ ∈ L2(R3)3, div ṽ ⊂ L2(R3) and curl ṽ ∈ L2(R3)3.

As −� = curl curl − ∇ div, then �ṽ ∈ H−1(R3)3 and

ṽ − �ṽ ∈ H−1(R3)3,

which means that ṽ ∈ H 1(R3)3 and, therefore, v ∈ H 1
0 (�)3.

(ii) Now note that if u ∈ D(R3)3, then

∫

�

|∇u|2 dx = −
∫

R3
u · �u dx =

∫

R3
[u · (curl curl u) − u · �divu] dx

=
∫

R3

(
|curl u|2 + |divu|2

)
dx.
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Since D(R3)3 is dense in H 1(R3)3, we deduce that:

∀u ∈ H 1(R3)3,

∫

R3
|∇u|2 dx =

∫

R3

(
|curl u|2 + |divu|2

)
dx.

(iii) Back to point (i) of the remark: since v ∈ H 1
0 (�)3, we have:

‖∇v‖2
L2(�)

= ‖∇ṽ‖L2(R3) =
∫

R3

(
|curl ṽ|2 + |div ṽ|2

)
dx,

which gives the relation

∫

�

|∇v|2 dx =
∫

�

(
|curl v|2 + |div v|2

)
dx.

Note that this last relation can also be directly established if v ∈ D(�)3 and
then, by density of D(�) in H 1

0 (�)3, for any v ∈ H 1
0 (�)3.

Remark 16

(i) If � is simply connected, then for any v ∈ H 1(�)3 such that v · ν = 0 on �,
the inequality (17) is written

‖v‖H 1(�)3 ≤ C(�)
(‖div v‖L2(�) + ‖curl v‖L2(�)

)
.

(ii) If � is connected (I = 1), then for any v ∈ H 1(�)3 such that v × ν = 0 on �,
the inequality (18) is written

‖v‖H 1(�)3 ≤ C(�)
(‖div v‖L2(�) + ‖curl v‖L2(�)

)
.

Proposition 2.6 Let � be a bounded open subset of class C 1,1 of R3. Then the
bilinear form

(u, v) �−→
∫

�

curl u · curl v dx

is coercive on the following spaces V and on W , respectively:

V =
{

v ∈ H 1(�)3; div v = 0 in �, v · ν = 0 on � and
∫

�j

v · ν = 0, 1 ≤ j ≤ J

}

W =
{
v ∈ H 1(�)3; div v = 0 in �, v × ν = 0 on � and

∫

�i

v · ν = 0, 1 ≤ j ≤ I

}
.
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We are now able to study the problem (P 0
T N). We start with the simplest case

where � is simply connected.

Theorem 2.7 Let � be a bounded open domain of class C 1,1 of R3. Suppose that
� is simply connected.

(i) Then for any f ∈ L6/5(�)3, Problem (P 0
T N) admits a unique solution verifying

the estimate

‖u‖H 1(�) ≤ C(�) ‖f ‖L6/5(�) .

(ii) The problem (P 0
T N) is equivalent to the problem (S0

T N).
(iii) If moreover � is of class C 1,1 then the solution (u, π) ∈ W 2,6/5(�)3 ×

W 1,6/5(�).

Proof

(i) The open � being simply connected, then

V =
{
v ∈ H 1(�)3; div v = 0 in �, v · ν = 0 on �

}

and V is an Hilbert space. Then let us put

a(u, v) =
∫

�

curl u · curl v dx.

Proposition 2.6 shows that the form a is coercive on V . Finally, the form �(v) =∫
�

f ·v dx is clearly continuous because the continuous embeddingH 1(�)3 ↪→
L6(�)3. The Lax–Milgram theorem implies the existence of a unique solution
of Problem (P 0

T N).
(ii) Let us first show that

(S0
T N) �⇒ (P 0

T N).

Set

H =
{
v ∈ L6(�)3; div v ∈ L2(�), v · ν = 0 on �

}
.

We know that D(�)3 is dense in H . So we can show that the dual of H can be
characterized as follows:

H ′ =
{
g + ∇χ; g ∈ L6/5(�)3 and χ ∈ L2(�)

}

(similar proof to the characterization of the dual H−1(�) of H 1
0 (�)).
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Let now (u, π) ∈ V × L2(�) solution of (S0
T N). Then for any v ∈ V

〈∇π, v〉H ′×H = −
∫

�

π div v dx = 0.

Therefore,

−�u = ∇π − f ∈ H ′.

We need the following lemma:

Lemma 2.8

(i) The space D(�)3 is dense in the following space

E =
{
v ∈ H 1(�)3; �v ∈ H ′} .

(ii) The mapping

v �−→ curl v × ν

defined on D(�)3 can be uniquely extended into a continuous linear mapping
from E into H−1/2(�)3.

(iii) Moreover, for any ϕ ∈ H 1(�)3 such that

div ϕ = 0 in � and ϕ · ν = 0 on �

and for any v ∈ E, we have the following Green formula

−〈�v,ϕ〉H ′×H =
∫

�

curl v · curl ϕ dx + 〈curl v × ν,ϕ〉�,

where 〈·, ·〉� denotes the duality brackets H−1/2(�)3 × H 1/2(�)3.

We return to the proof of the theorem. Since u ∈ H 1(�)3 and �u ∈ H ′, i.e., u ∈
E, we can use this lemma to deduce on the one hand that the condition curl u = 0
has a meaning in H−1/2(�)3 and, on the other hand, that

∀ v ∈ V, 〈−�u, v〉H ′×H =
∫

�

curl u · curl v dx =
∫

�

f · v dx,

i.e., u is solution of (P 0
T N).

Conversely, let u ∈ V solution of Problem (P 0
T N). Then

div u = 0 in �, u · ν = 0 on �
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and

∀ v ∈ D(�)3 with div v = 0 in �

we have

〈curl curl u, v〉D ′(�)3×D(�)3 = 〈f , v〉D ′(�)3×D(�)3 .

That gives

〈−�u, v〉D ′(�)3×D(�)3 = 〈f , v〉D ′(�)3×D(�)3 .

So there exists, by De Rham’s theorem, a function π in L2(�), unique up to an
additive constant, such that

− �u − f = ∇(−π) in � (19)

(note that L6/5(�) ↪→ H−1(�)).

It remains to show that u vérifies:

curl u × ν = 0 on �.

For that, from (19) and use the formula of Green of the first lemma, one deduces
that

∀ v ∈ V, 〈−�u + ∇π, v〉H ′×H =
∫

�

curl u · curl v dx + 〈curl u × ν, v〉�

that is to say that

∀ v ∈ V,

∫

�

curl u · curl v dx + 〈curl u × ν, v〉� =
∫

�

f · v dx.

But u being solution of (P 0
T N), then

∀ v ∈ V, 〈curl u × ν, v〉� = 0.

Now let it be μ ∈ H 1/2(�). We know that there exists

w ∈ H 1(�)3, divw = 0 in �, w = μτ on �,

where μτ = μ − (μ · ν)ν the tangential component of μ on �. As w ∈ V , we have:

〈curl u × ν,μ〉� = 〈curl u × ν,μτ 〉� = 〈curl u × ν,w〉� = 0,
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which means that

curl u × ν = 0 on �.

(iii) The regularity W 1,6/5(�) of π is due to the fact that π satisfies:

div (∇π − f ) = 0 in � and (∇π − f ) · ν = 0 on �.

Setting z = curl u, the regularityW 2,6/5(�)3 of u is a consequence of the following
properties:

z ∈ L6/5(�)3, div z = 0, curl z ∈ L6/5(�)3 and z × ν = 0 on �.

��
Case � non Simply Connected
We then show that the kernel:

KT (�) =
{
v ∈ L2(�)3; divv = 0, curl v = 0 in� and v · ν = 0 on �

}

is of finite dimension and that the dimension corresponds to the number of cuts �j

necessary to obtain an open set
◦
� = � \ ∪J

j=1�j simply connected.
As a consequence, if

V =
{
v ∈ H 1(�)3; div v = 0 in � and v · ν = 0 on �

}
,

then, to prove that Problem (P 0
T N) admits a solution, it is necessary that f satisfies

the following compatibility condition:

∀ v ∈ KT (�),

∫

�

f · v dx = 0.

Moreover, if such a solution u exists, it is unique up to an additive element of
KT (�).

2.3 The Stokes Problem with Navier Boundary Condition

We recall the Navier condition:

[2(Du)ν]τ + αuτ = 0 on �,
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where

Du =
(
1

2

(
∂ui

∂xj

+ ∂uj

∂xi

))

1≤i,j≤3

is the deformation tensor, α defined on � is the friction coefficient and uτ is the
tangential component of u. To simplify, we will consider here only the case α = 0.

Note that when div u = 0 in �, then 2div Du = �u.

Lemma 2.9 If (u, π) ∈ H 1(�)3 × L2(�) is such that

−�u + ∇π ∈ L6/5(�)3

then

[(Du)ν]τ ∈ H−1/2(�)3

and

f or any ϕ ∈ H 1(�)3 such that div ϕ = 0 in � and ϕ · ν = 0 on �

we have the Green’s formula:

∫

�

(−�u + ∇π) · ϕ dx = 2
∫

�

Du : Dϕ dx − 2〈[(Du)ν]τ ,ϕ〉�,

where 〈·, ·〉� denotes the duality brackets H−1/2(�)3 × H−1/2(�)3.

With this Green’s formula, the Stokes problem can be formulated as:

(P 0
N)

⎧
⎨

⎩

Find u ∈ V, such that for any ϕ ∈ V,

2
∫

�

Du : Dϕ dx =
∫

�

f · ϕ dx.

Set

a(u,ϕ) =
∫

�

Du : Dϕ dx.

When � is not axisymmetric, then this form is coercive on V due to Korn’s
inequality:

‖u‖H 1(�) � ‖Du‖L2(�) .

While if � is axisymmetric, this is not the case anymore. We must then quotient by
some finite dimensional kernel.
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Remark 17 In fact, on � we have the relation:

[2(Du)ν]τ = curl u × ν − �u,

where � is an operator of order 0:

�u =
2∑

k=1

(
uτ · ∂ν

∂sk

)
τ k,

where (τ 1, τ 2) is a base of the tangent plane to � at point x and (s1, s2) are local
coordinates in this tangent plane.

This means that on the questions of regularity, they can be reduced to those
concerning the Navier type condition.
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