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Preface

This volume constitutes the proceedings of the spring school: “Trends in PDE’s and
Related Fields”.

This spring school was held at the University of Sidi Bel Abbès, Algeria, in the
period 08–10 April 2019 (see http://conf-sidi-bel-abbes.ur-acedp.org/ for details).

The spring school consisted of two mini-courses, seven invited talks on the
theme, and some short talks. This volume gathered the mini-course and the five
contributions.

The invited speakers agreed to write review papers related to their contributions
to the spring school, while others have written more traditional research papers,
which constitute the last part of this volume. They represent recent and new works
on the topic of mathematical control theory and related fields.

We believe that this volume therefore provides an accessible summary of a wide
range of active research topics, along with some exciting new results, and we hope
that it will prove a useful resource for both graduate students new to the area and
more established researchers.

The spring school brought together internationally leading researchers and young
researchers who came from all around the world. The organizers’ intention was to
provide a wide angle snapshot of this exciting and fast-moving area and facilitate the
exchange of ideas on recent advances in its various aspects. The numerous formal,
informal, and sometimes lively discussions that resulted from this interaction were
for us a sign that we achieved something in the direction of fulfilling this aim.

Our second aim was to ensure that the diffusion of these recent results was
not limited to established researchers in the area and those present at the spring
school but also available to newcomers and more junior members of the research
community. This was reflected by the presence of many unfamiliar and/or young
faces in the audience. The present proceedings should hopefully complete the
fulfillment of our second aim.

This spring school would not have materialized without the help and support of
the following institutions.

We are very grateful to Laboratoire d’Analyse et de Contrôle des EDP at the
University of Sidi Bel Abbès and to the Research Lab ACPDE, Analysis and Control
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of Partial Differential Equations, at the University of Monastir for their financial
supports without whom this spring school would not be accessible without fees.

We would also like to thank all the participants of the spring school who have
made this event a success, the contributors to these proceedings.

Monastir, Tunisia Kaïs Ammari
May 2022
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Sobolev Spaces and Elliptic Boundary
Value Problems

Chérif Amrouche

2010 Mathematics Subject Classification 35L05, 34K35

1 Sobolev Spaces, Inequalities, Dirichlet, and Neumann
Problems for the Laplacian

1.1 Sobolev Spaces

Let us introduce the following Sobolev spaces: for any 1 < p <∞

Wm,p(�) = {
u ∈ D ′(�); ∀ |α| ≤ m, Dαu ∈ Lp(�)}

and

Ws,p(�) =
{
u ∈ Wm,p(�);

∫

�

∫

�

|Dαu(x)−Dαu(y)|p
|x − y|N+σp <∞, ∀ |α| = m

}
,

where m ∈ N, s = m + σ, 0 < σ < 1 and � is an open set of RN. Equipped with
the graph norm, they are Banach spaces.

When � = R
N , using the Fourier transform, we define for any real number s the

space

Hs(RN) =
{
u ∈ S ′(RN);

∫

RN

(1+ |ξ |2)s |û(ξ)|2 dξ <∞
}
,

which is an Hilbert space for the norm:

C. Amrouche (�)
Laboratoire de Mathématiques et Leurs Applications, UMR CNRS 5142, Université de Pau et des
Pays de l’Adour, Pau, France
e-mail: cherif.amrouche@univ-pau.fr
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2 C. Amrouche

‖u‖Hs(RN) =
(∫

RN

(1+ |ξ |2)s |û|2dx
)1/2

.

By Plancherel’s theorem we prove that Ws,2(RN) = Hs(RN) for all s ≥ 0 and
this identity is algebraical and topological. So, in the case p = 2, we denote more
simply the spaceWs,2(�) by Hs(�).

Definition 1.1 For s > 0 and 1 ≤ p <∞, we denote

W
s,p

0 (�) = D(�)
‖·‖Ws,p(�)

,

and its topological dual space

W−s,p′(�) = [
W
s,p

0 (�)
]′
,

where p′ is the conjugate of p: 1/p + 1/p′ = 1. For p = 2, we will write Hs
0 (�)

and H−s(�), respectively.

Proposition 1.2 Suppose T ∈ D ′(�). Then T ∈ W−m,p′(�), with m ∈ N
∗, if and

only if

T =
∑

|α|≤m
Dαfα, with fα ∈ Lp′(�).

1.2 First Properties

It will be assumed from now on that � is a bounded open subset of RN with a
Lipschitz boundary.

Let us consider the following space

D(�) =
{
v|�; v ∈ D(RN)

}
.

Theorem 1.3

(i) The space D(�) is dense inWs,p(�) for any s > 0 (even if � is unbounded).
(ii) The space D(RN) is dense inWs,p(RN) for any s ∈ R.

As consequence, we have the following property: for any s > 0

W
s,p

0 (RN) = Ws,p(RN) and W−s,p′(RN) =
[
Ws,p(RN)

]′
.

But in general, for any s > 0, we haveWs,p

0 (�) � Ws,p(�).
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Definition 1.4 For s > 0, we set

W̃ s,p(�) =
{
u ∈ Ws,p(�); ũ ∈ Ws,p(RN)

}
,

where ũ is the extension by 0 of u outside of �.

The space W̃ s,p(�) is a Banach space for the norm

‖u‖W̃ s,p(�) = ‖ũ‖Ws,p(RN) .

It is easy to verify that for any nonnegative integer m

W
m,p

0 (�) ↪→ W̃m,p(�) (1)

and for any u ∈ Wm,p

0 (�) we have

‖u‖W̃m,p(�) = ‖u‖Wm,p(�) . (2)

When s = m+ σ with 0 < σ < 1, we can show that

‖u‖W̃ s,p(�) � ‖u‖Ws,p(�) +
∑

|α|=m

∥∥∥∥
Dαu

�σ

∥∥∥∥
Lp(�)

, (3)

where �(x) = d(x, �) and � = ∂�.

Theorem 1.5 The space D(�) is dense in W̃ s,p(�) for all s > 0 (even if � is
unbounded).

From (1), (2) and the definition of Wm,p

0 (�), we deduce the following: for any
m ∈ N

∗,

W̃m,p(�) = W
m,p

0 (�). (4)

Theorem 1.6 For any 0 < s ≤ 1/p, the space D(�) is dense in Ws,p(�), which
means that

W
s,p

0 (�) = Ws,p(�). (5)

Theorem 1.7 Let 0 < s ≤ 1 and u ∈ Ws,p

0 (�). Then

u

�s
∈ Lp(�)⇐⇒ s �= 1/p

and in this case
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∥∥∥∥
u

�s

∥∥∥∥
Lp(�)

≤ C |u|Ws,p(�),

where the notation | · | denotes the semi-norm ofWs,p(�).

The case s =1 is known as Hardy’s inequality: for all u ∈ W 1,p
0 (�),

∥∥∥∥
u

�

∥∥∥∥
Lp(�)

≤ C ‖∇u‖Lp(�) .

Using again a Hardy’s inequality, we prove the following result:

Theorem 1.8 Let s > 0 and u ∈ Ws,p

0 (�). Then for any |α| ≤ s, we have

Dαu

�s−|α|
∈ Lp(�)⇐⇒ s − 1/p /∈ N. (6)

From (3) and (6), we deduce the following identity:

W̃ s,p(�) = W
s,p

0 (�) (7)

which holds for any s > 0 satisfying s − 1/p /∈ N.

Proposition 1.9

(i) For any 1 ≤ j ≤ N and for any s ∈ R, the operator

∂

∂xj
: Ws,p(RN) −→ Ws−1,p(RN) (8)

is continuous.
(ii) However, if we replace RN by �, Property (8) takes place unless s = 1/p.

Sketch of the Proof of Point (ii)

1. Case s = m+σ , withm ∈ N
∗ and 0 ≤ σ < 1. Let u ∈ Ws,p(�). By definition,

we know that

u ∈ Wm,p(�) and
∫

�

∫

�

|Dαu(x)−Dαu(y)|p
|x − y|N+σp <∞, ∀ |α| = m.

So for any 1 ≤ j ≤ N

∂u

∂xj
∈ Wm−1,p(�) and

∫

�

∫

�

∣∣∣Dα ∂u
∂xj
(x)−Dα ∂u

∂xj
(y)

∣∣∣
p

|x − y|N+σp <∞,

for all |α| = m− 1. Consequently ∂u
∂xj

∈ Ws−1,p(�).
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2. Case s ≤ 0. Let u ∈ Ws,p(�). Since −s + 1 ≥ 1, for any ϕ ∈ D(�), we get:

∣∣∣〈 ∂u∂xj , ϕ〉D ′(�)×D(�)
∣∣∣ =

∣∣∣−〈u, ∂ϕ∂xj 〉D ′(�)×D(�)
∣∣∣

≤ ‖u‖Ws,p(�)

∥∥∥ ∂ϕ
∂xj

∥∥∥
W
−s,p′
0 (�)

≤ ‖u‖Ws,p(�) ‖ϕ‖W−s+1,p′
0 (�)

.

We conclude by using the density of D(�) inW−s+1,p′
0 (�).

3. Case 0 < s < 1. Let u ∈ Ws,p(�). Recall that � being Lipschitz open set,
there exists an extension operator

∀t ≥ 0, P : Wt,p(�) −→ Wt,p(RN)

which is linear, continuous, and satisfying

Pv|� = v, for any v ∈ Wt,p(�).

As Pu ∈ Ws,p(RN), we get ∂Pu
∂xj

∈ Ws−1,p(RN). But

(
∂Pu

∂xj

)

|�
= ∂u

∂xj
,

where ∂u
∂xj

is the restriction to � of the distribution T = ∂Pu
∂xj

∈ Ws−1,p(RN). More
precisely, we have:

∀ϕ ∈ D(�), 〈 ∂u
∂xj

, ϕ〉D ′(�)×D(�) = 〈T , ϕ̃〉D ′(RN)×D(RN).

That implies

∣∣∣∣〈
∂u

∂xj
, ϕ〉

∣∣∣∣ ≤ ‖T ‖Ws−1,p(RN) ‖ϕ̃‖W 1−s,p′ (RN) = ‖T ‖Ws−1,p(RN) ‖ϕ‖W̃ 1−s,p′ (�) .

We have shown that ∂u
∂xj

∈
[
W̃ 1−s,p′(�)

]′
. But

[
W̃ 1−s,p′(�)

]′ =
[
W

1−s,p′
0 (�)

]′ ⇐⇒ 1− s �= 1/p′,

i.e., s �= 1/p. ��
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Remark 1 The above proof shows that

u ∈ W 1/p,p(�) �⇒ ∂u

∂xj
∈
[
W̃ 1/p′,p′

]′
.

In particular,

u ∈ H 1/2(�) �⇒ ∂u

∂xj
∈
[
H̃ 1/2(�)

]′
,

where we remark also that

H̃ 1/2(�) ↪→ H 1/2(�) = H
1/2
0 (�).

This embedding being dense, we get by duality

H−1/2(�) =
[
H

1/2
0 (�)

]′
↪→

[
H̃ 1/2(�)

]′
.

Corollary 1.10 Let s > 0. The following characterization holds:

u ∈ W̃ s,p(�)⇐⇒ u ∈ Ws,p

0 (�) and for any |α| = m,
Dαu

�σ
∈ Lp(�),

where s = m+ σ,m ∈ N and 0 ≤ σ < 1.

1.3 Traces

Firstly, recall the following inclusions:

Ws,p(RN) ↪→ C 0(RN) if s >
N

p
.

So that if u ∈ Ws,p(RN) with s > N
p
, the restriction of u to the hyperplane xN = 0

is well defined. But the continuity with respect to all variables is not necessary. It
is enough to have the continuity with respect to the variable xN . This is possible as
soon as s > 1/p.

Actually, we have the following result:

Theorem 1.11

(i) Suppose that s − 1/p = k + σ, with k ∈ N and 0 < σ < 1 (which implies, in
particular, that s − 1/p /∈ N). Then the mapping
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u
γ�−→ (γ0u, γ1u, . . . , γku),

where

γ0u(x) = u(x′, 0), x′ = (x1, . . . , xN−1), and γju(x
′) = ∂ju

∂x
j
N

(x′, 0),

defined for u ∈ D(RN), has a unique extension

Ws,p(Rn) −→
k∏

j=0
Ws−j−1/p,p(RN−1)

which is continuous and where k is the integer part of s > 0.
(ii) Moreover this operator has a right continuous inverse R:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀g = (g0, . . . , gk) ∈
k∏

j=0
Ws−j−1/p,p(RN−1), γRg = g

‖Rg‖Ws,p(RN) ≤ CN

k∑

j=0

∥∥gj
∥∥
Ws−j−1/p,p(RN−1) .

Remark 2 For p = 2, the above result can be proved using the Fourier transform.

This result can be extended to the case where� is a bounded open subset of RN ,
with a C k,1 boundary (see the definition below).

Definition 1.12 Let � be an open subset of R
N . We say that � is Lipschitz

(respectively of class C k,1, k ∈ N
�) if for every x ∈ �, there exists a neighborhood

V of x in RN and orthonormal coordinates {y1, . . . , yN } satisfying:
(i) V is an hypercube

V =
{
(y1, . . . , yN) ∈ R

N ; |yj | < aj , 1 ≤ j ≤ N
}
,

(ii) there exists a function ϕ defined in

V ′ =
{
y′ ∈ R

N−1; |yj | < aj , 1 ≤ j ≤ N − 1
}
,

such that ϕ and ϕ−1 are Lipschitz (respectively, C k,1) and satisfying (Fig. 1)

∀ y′ ∈ V ′, ∣∣ϕ(y′)
∣∣ ≤ 1

2
aN
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x2

v

v’

x

(y 1

y 2 
= 

x10

r

y2

y1

 )

�

�

Fig. 1

� ∩ V = {
(y′, yN) ∈ V ; yN < ϕ(y′)

}

� ∩ V = {
(y′, yn) ∈ V ; yN = ϕ(y′)

}
.

Let

 : V ′ −→ � ∩ V
y′ �−→ (y′, ϕ(y′)).

Definition 1.13 Suppose that � is an open subset of RN of class C k,1, with k ∈ N

and let 0 < s ≤ k + 1. We introduce the following space

Ws,p(�) =
{
u ∈ Lp(�); u ◦ ∈ Ws,p(V ′ ∩−1(� ∩ V ))

}

for any (V , ϕ) verifying the previous definition.

Let (Vj , ϕj ), 1 ≤ j ≤ J , be any atlas of � for which each pair (Vj , ϕj ) satisfies the
above definition. One possible Banach norm forWs,p(�) is given by:
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‖u‖Ws,p(�) =
J∑

j=1

∥∥u ◦j

∥∥
Ws,p(V ′j∩−1j (�∩Vj ))

which is equivalent when 0 < s < 1 to the norm

(
‖u‖pLp(�) +

∫

�

∫

�

|u(x)− u(y)|p
|x − y|N−1+sp dσxdσy

)1/p

.

We are now in position to extend Theorem 1.11 to the case where R
N−1 is

replaced by anN−1-dimensional manifold of RN , but which is sufficiently regular.
This simply uses changes of variables.

If locally � is represented by the pair (V , ϕ) with ϕ and ϕ−1 Lipschitz, then a
unit outward normal vector can be defined as follows:

for y′ ∈ V ′, ν(y′, ϕ(y′)) = (−∇′ϕ(y′), 1)
√
1+ |∇′ϕ(y′)|2 .

One can then extend this vector in all V by setting

ν(y′, yN) = ν(y′, ϕ(y′)), y ∈ V.

As � ⊂ ∪Jj=1Vj , we know that there exist functions μ0, μ1, . . . , μJ ∈ C∞(RN)
such that

(i) for all j = 0, . . . , J, 0 ≤ μj ≤ 1 and
J∑

j=1
μj = 1

(ii) suppμj is compact and suppμj ⊂ Vj for any j ≥ 1 and suppμ0 ⊂ �.

This partition of unity then allows to extend ν in a neighborhood of� as follows:

ν =
J∑

j=0
(μjν). It is then easy to verify that ν ∈ L∞(�) if � is Lipschitz and

ν ∈ C k−1,1(�) if � is C k,1.
We are now ready to establish the following result:

Theorem 1.14 (Traces) Let � be an open subset of RN of class C k,1, with k ∈ N.
Let s > 0 satisfying s ≤ k + 1 and s − 1/p = � + σ with 0 < σ < 1 and � ∈ N.

Then the mapping

u
γ�−→ (γ0u, γ1u, . . . , γ�u)

defined for C k,1 has a unique continuous extension as an operator from Ws,p(�)

into
�∏

j=0
Ws−j−1/p,p(�) where
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γ1u = ∂u

∂ν
= ∇u · ν, γju = ∂ju

∂νj
.

Moreover this operator has a right continuous inverse R (not depending of p).

Case � Lipschitz. Suppose 1/p < s ≤ 1. We have the following properties:

(i) If u ∈ Ws,p(�), then u|� ∈ Ws−1/p,p(�).
(ii) If g ∈ Ws−1/p,p(�), then there exists u ∈ Ws,p(�) such that u = g on � and

satisfying the estimate

‖u‖Ws,p(�) ≤ C ‖g‖Ws−1/p,p(�) .

Case � of class C 1,1.

(i) Let u ∈ Ws,p(�). If 1/p < s ≤ 2, then u|� ∈ W 1−1/p(�). Moreover, for any
g ∈ Ws−1/p,p(�), there exists u ∈ Ws,p(�) such that u = g on �, with

‖u‖Ws,p(�) ≤ C ‖g‖Ws−1/p,p(�) .

(ii) Let u ∈ Ws,p(�). If 1 + 1/p < s ≤ 2, then ∂u
∂ν
∈ Ws−1−1/p,p(�). Moreover,

for any g0 ∈ Ws−1/p,p(�) and g1 ∈ Ws−1−1/p,p(�), there exists u ∈ Ws,p(�)

such that

u = g0 and
∂u

∂ν
= g1 on �

with

‖u‖Ws,p(�) ≤ C
(‖g0‖Ws−1/p,p(�) + ‖g1‖Ws−1−1/p,p(�)

)
.

Theorem 1.15 Suppose that � is an open subset of RN of class C k,1, with k ∈ N.
Let s > 0 such that s− 1/p /∈ N and s− 1/p = �+σ, where 0 < σ < 1 and � ≥ 0
is an integer. Then we have the following characterization for s ≤ k + 1:

W
s,p

0 (�) = {
u ∈ Ws,p(�); γ0u = γ1u = . . . = γ�u = 0

}
.

1.4 Interpolation

We will consider here only the case of spaces Hs(�), with � bounded open
Lipschitz of RN .

Recall that for every s > 0 there exists a continuous linear operator:

P : Hs(�) −→ Hs(RN)
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satisfying

∀u ∈ Hs(�), Pu|� = u.

Theorem 1.16 [Interpolation Inequality] Let s1, s2, s3 with 0 ≤ s1 < s2 < s3.

Then

∀ ε > 0, ‖u‖Ws2,p(�) ≤ ε ‖u‖Ws3,p(�) +Kε−
s2−s1
s3−s2 ‖u‖Ws1,p(�) ,

where K = K(�, s1, s2, s3, p).

The above inequality is a consequence of the compactness of the embedding of
Ws3,p(�) intoWs2,p(�).

Recall now that we have different ways to define the Sobolev space Hm(�), for
m ∈ N:

u ∈ Hm(�) ⇐⇒ ∀ |α| ≤ m, Dαu ∈ L2(�),

u ∈ Hm(�) ⇐⇒ u = U|� with U ∈ Hm(RN),

u ∈ Hm(RN) ⇐⇒ u ∈ S ′(RN) and (1+ |ξ |2)m/2û ∈ L2(RN).

(9)

In the case of fractional Sobolev spacesHs(�), with s = m+σ,m ∈ N, 0 < σ < 1,
we have:

u ∈ Hs(�) ⇐⇒ u ∈ Hm(�) and ∀ |α| = m,
∫
�

∫
�
|Dαu(x)−Dαu(y)|
|x−y|N+2σ <∞

u ∈ Hs(�) ⇐⇒ u = U|� with U ∈ Hs(RN),

u ∈ Hs(RN) ⇐⇒ u ∈ S ′(RN) and (1+ |ξ |2)s/2û ∈ L2(RN).

(10)
We can also get this space by interpolation:

Hs(�) =
[
Hm(�),L2(�)

]

μ
, 0 < μ < 1 (1− μ)m = s

and more generally we have for any 0 < μ < 1
[
Hs1(�),Hs2(�)

]
μ
= H(1−μ)s1+μs2(�).

Concerning the interpolation of spaces Hm
0 (�), we have:

[
H
s1
0 (�),H

s2
0 (�)

]
μ
= H

(1−μ)s1+μs2
0 (�) if (1− μ)s1 + μs2 /∈ 1

2
+ N

and

[
H
s1
0 (�),H

s2
0 (�)

]
μ
= H̃ (1−μ)s1+μs2(�) otherwise,

with equivalent norms.
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1.5 Transposition

Let V andH be two Hilbert spaces onR andA ∈ L (V ,H). For every fixed g ∈ H ′,
we consider the following mapping

V −→ R

x �−→ 〈g,Ax〉H ′×H
which defines a linear and continuous form on V that we denote by tAg:

〈tAg, x〉V ′×V = 〈g,Ax〉H ′×H .

Remark 3 If A : V −→ H is an isomorphism, then we can define the transpose of
A−1 and we easily verify that

tA−1 = (
tA
)−1 and tA : H ′ −→ V ′ is an isomorphism.

1.6 Inequalities

They are fundamental tools in the study of partial differential equations:

(i) Poincaré’s Inequality. Let � be an open space bounded in at least one
direction. Then there exists a constant C ≥ 0, depending on the diameter of �
such that

∀u ∈ W 1,p
0 (�), ‖u‖Lp(�) ≤ C ‖∇u‖Lp(�) .

(ii) Poincaré-Wirtinger’s Inequality. Let � be a Lipschitz bounded domain of
R
N . Then there exists a constant C(�) ≥ 0 such that

∀u ∈ W 1,p(�), inf
K∈R

‖u+K‖Lp(�) ≤ C(�) ‖∇u‖Lp(�) .

(iii) Hardy’s Inequality. Let � be a Lipschitz bounded open subset of RN . Then
there exists a constant C(�) ≥ 0 such that

∀u ∈ W 1,p
0 (�),

∥∥∥∥
u

�

∥∥∥∥
Lp(�)

≤ C(�) ‖∇u‖Lp(�) .

(iv) Calderòn–Zygmund’s Inequality.

∀u ∈ D(�),

∥∥∥∥
∂2u

∂xi∂xj

∥∥∥∥
Lp(�)

≤ C(�) ‖�u‖Lp(�) .
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1.7 Weak Solutions

Consider the following problems:

(PD) −�u = f in � and u = g on �

and

(PN) −�u = f in � and
∂u

∂ν
= h on �,

where � is a Lipschitz bounded domain of RN , f, g, and h are given.

Theorem 1.17 Given any f ∈ H−1(�) and any g ∈ H 1/2(�), there exists a unique
solution u ∈ H 1(�) to Problem (PD). Moreover

‖u‖H 1(�) ≤ C(�)
(‖f ‖H−1(�) + ‖g‖H 1/2(�)

)
.

Proof Using Theorem 1.14, there exists ug ∈ H 1(�) such that

ug = g on � with
∥∥ug

∥∥
H 1(�)

≤ C(�) ‖g‖H 1/2(�) .

Setting

fg = −�ug = −div∇ug ∈ H−1(�),

the problem becomes: Find v ∈ H 1
0 (�) solution of

(P 0
D) −�v = f − fg in � and v = 0 on �.

This last problem is equivalent to the following variational formulation:

(FV )D

⎧
⎨

⎩

Find v ∈ H 1
0 (�) such that

∀ϕ ∈ H 1
0 (�),

∫

�

∇v · ∇ϕdx = 〈f − fg, ϕ〉H−1(�×H 1
0 (�)

.

Applying Lax–Milgram Lemma or Riesz Theorem, we prove the existence of a
unique solution v ∈ H 1

0 (�) satisfying (FV )D .
Note that the bilinear form

a(v, ϕ) =
∫

�

∇v · ∇ϕdx
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is continuous on H 1
0 (�) × H 1

0 (�) and coercive on H 1
0 (�) thanks to Poincaré’s

inequality. In addition, this form allows to define a scalar product on Hilbert’s space
H 1

0 (�). ��
Remark 4

(i) If � is of class C 1, f ∈ W−1,p(�) and g ∈ W 1−1/p,p(�) with 1 < p < ∞,
then there exists a unique solution u ∈ W 1,p(�) to (PD).

(ii) When � is only Lipschitz, this regularity result holds for p ∈ ]2 − ε′, 2 + ε[
where ε and ε′ > 0 are depending on � and 2− ε′ and 2+ ε are conjugate.

Concerning the Neumann problem, the approach is a bit more complicated.
Indeed, if we are looking for a solution u ∈ H 1(�) only, the boundary condition
on the normal derivative does not make sense, since the functions of L2(�) do not
have any trace at the boundary. Here, in fact, if one set v = ∇u we have

∂u

∂ν
= v · ν on �.

Definition 1.18

H(div; �) =
{
v ∈ L2(�); div v ∈ L2(�)

}
.

It is a Hilbert space for the scalar product

((v,w))H(div;�) =
∫

�

v · wdx +
∫

�

(div v)(divw)dx.

Proposition 1.19

(i) The space D(�) is dense in H(div; �).
(ii) The linear mapping

v �−→ v · ν,

defined on D(�)N, can be uniquely extended into a linear mapping of
H(div;�) in H−1/2(�) := [

H 1/2(�)
]′
.

(iii) In addition, we have the following Green’s formula (or Stokes’ formula):

∀ϕ ∈ H 1(�), ∀v ∈ H(div; �),
∫

�

v · ∇ϕ dx +
∫

�

ϕ div v dx = 〈v · ν, ϕ〉�

where 〈·, ·〉� denotes the duality brackets H−1/2(�)×H 1/2(�).

Corollary 1.20 Let u ∈ H 1(�) be such that �u ∈ L2(�). Then ∂u
∂ν
∈ H−1/2(�).

Moreover for any ϕ ∈ H 1(�), we have the following Green formula:
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∫

�

ϕ�udx +
∫

�

∇u · ∇ϕ dx = 〈∂u
∂ν
, ϕ〉�.

Proof It suffices to apply Proposition 1.19 by setting v = ∇u. ��
As a Consequence we can show that for any f ∈ L2(�) and for any g ∈

H−1/2(�), the problems

(PN)

⎧
⎨

⎩

Find u ∈ H 1(�) such that
−�u = f in �,
∂u
∂ν
= g on �

and

(QN)

⎧
⎨

⎩

Find u ∈ H 1(�) such that

∀ϕ ∈ H 1(�),

∫

�

∇u · ∇ϕ dx =
∫

�

f ϕ dx + 〈g, ϕ〉�

are equivalent, so that any solution of one is a solution of the other.

Remark 5

(i) The open � being bounded, the constant functions belong to H 1(�). So that
if u is a solution of (QN), taking ϕ = 1, the data f and g must satisfy the
(necessary) compatibility condition:

∫

�

f dx + 〈g, 1〉� = 0.

(ii) The implication (PN) �⇒ (QN) results from Corollary 1.20. The reverse
implication also uses Green’s formula and the surjectivity of the trace operator
of H 1(�) into H 1/2(�).

Theorem 1.21 Let � be a bounded, connected, and Lipschitzian open of RN, with
N ≥ 2. Let f ∈ L2(�), g ∈ H−1/2(�) satisfying the compatibility condition

∫

�

f dx + 〈g, 1〉� = 0.

Then Problem (PN) has a solutionH 1(�), unique to an additive constant, verifying
the estimate:

‖∇u‖L2(�) ≤ C(�)
(‖f ‖L2(�) + ‖g‖H−1/2(�)

)
.

Proof According to Poincaré-Wirtinger’s inequality, we have

inf
K∈R

‖u+K‖H 1(�) ≤ C(�) ‖∇u‖L2(�) .
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So that the bilinear form

a(u, ϕ) =
∫

�

∇u · ∇ϕ dx

is coercive on the quotient space V = H 1(�)/R. It is then sufficient to apply Lax–
Milgram on the Hilbert space V . ��
Remark 6

(i) We could have chosen as space V the space H 1(�) ∩ L2
0(�) where

L2
0(�) =

{
v ∈ L2(�);

∫

�

v dx = 0

}
,

which is a Hilbert space and then use the inequality:

∀ v ∈ H 1(�) ∩ L2
0(�), ‖v‖H 1(�) ≤ C ‖∇v‖L2(�) .

(ii) We could have taken f in a space larger than L2(�). More precisely if f ∈
L(2

∗)′(�), where (2∗)′ is the conjugate of 2∗ defined by

1

2∗
=
{ 1

2 − 1
N

if N ≥ 3
ε > 0 arbitrary if N = 2,

i.e., (2∗)′ = 2N
N+2 if N ≥ 3 and (2∗)′ > 1 if N = 2.

(iii) In Lp-theory, we have existence results in W 1,p(�) when � is C 1 and 1 <
p <∞ or when � is C 0,1 and 2− ε′ < p < 2+ ε.

In the same spirit, we can consider the case of Fourier-Robin boundary condition:

(PFR)

⎧
⎨

⎩

Find u ∈ H 1(�)

−�u = f in �,
∂u
∂ν
+ αu = g on �,

where α is a positive function defined on �, which can be formulated in an
equivalent way by:

(QFR)

⎧
⎨

⎩

Find u ∈ H 1(�) such that

∀ϕ ∈ H 1(�),

∫

�

∇u · ∇ϕ dx +
∫

�

αuϕ dx =
∫

�

f ϕ dx + 〈g, ϕ〉�.
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1.8 Strong Solutions

Theorem 1.22 Let � be a bounded open of class C 1,1 of RN . Let f ∈ L2(�) and
g ∈ H/2(�). Then the solution u given by Theorem 1.17 belongs to H 2(�) and
verifies the estimate:

‖u‖H 2(�) ≤ C(�)
(‖f ‖L2(�) + ‖g‖H 3/2(�)

)
.

Proof Firstly, we note that

L2(�) ↪→ H−1(�) and H 3/2(�) ↪→ H 1/2(�)

so that the problem (PD) has a unique solution u ∈ H 1(�).
We shift the data g ∈ H 3/2(�) by ug ∈ H 2(�) and we set again u = v + ug, so

that v ∈ H 1(�) vérifies:

{−�v = f +�ug ∈ L2(�),

v = 0 on �.

So, we need to show that v ∈ H 2(�). One of the methods to establish this regularity
consists in using the technique of the differential quotients.

The complete proof being long and tedious, we will admit it. ��
Remark 7 We can also establish the existence of solutions in W 2,p(�) when the
data f and g verify:

f ∈ Lp(�) and g ∈ W 2−1/p,p(�)

and the domain � is of class C 1,1.

1.9 Very Weak Solutions

We assume here that � is a bounded open of class C 1,1 and we are interested in the
homogeneous problem

(PHD )

⎧
⎨

⎩

Find u ∈ L2(�)

−�u = 0 in �,
u = g on �,

where g ∈ H−1/2(�).

Remark 8 As the function u belongs “only” to L2(�), the boundary condition u =
g on � has a priori no sense. But we will see that in fact, we can make sense



18 C. Amrouche

of the trace of a harmonic function in L2(�) and (we can in fact weaken this last
hypothesis).

Lemma 1.23

(i) The space D(�) is dense in the space

E(�;�) =
{
v ∈ L2(�); �v ∈ L2(�)

}
.

(ii) The mapping v �−→ v|� defined on D(�) can be uniquely extended into a
continuous linear mapping of E(�;�) into H−1/2(�).

(iii) In addition, we have the following Green’s formula:

⎧
⎨

⎩

∀ v ∈ E(�;�), ∀ϕ ∈ H 2(�) ∩H 1
0 (�)∫

�

v�ϕ dx −
∫

�

ϕ�v dx = 〈v, ∂ϕ
∂ν
〉H−1/2(�)×H 1/2(�).

Proof

(i) The idea is to use the Hahn–Banach theorem. So let � ∈ [E(�;�)]′ vanishing
on D(�) and show that it cancels on E(�;�).

We know that there exist (f, g) ∈ L2(�)× L2(�) such that

∀ v ∈ E(�;�), 〈�, v〉 =
∫

�

f v dx +
∫

�

g�v dx.

Let f̃ and g̃ the extensions by 0 outside of � of f and g, respectively. Then,
for any v ∈ D(RN)

〈�, v|�〉 =
∫

�

f v dx +
∫

�

g�v dx =
∫

RN

f̃ v dx +
∫

RN

g̃�v dx,

i.e.,

�g̃ = −f̃ in R
N.

As g̃ ∈ L2(RN) and �g̃ ∈ L2(RN), then g̃ ∈ H 2(RN). Therefore, g ∈
H 2(�). The extension g̃, by 0 outside of �, belongs to H 2(RN). We know
then that g ∈ H 2

0 (�). By definition, there exists a sequence (gk)k of functions
of D(�) such that gk −→ g in H 2(�).

Finally, let v ∈ E(�;�). So,

〈�, v〉 = lim
k�⇒∞

[∫

�

−v�vk dx +
∫

�

gk�v dx

]
= lim

k�⇒∞ 0 = 0.
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(ii) Let v ∈ D(�) fixed and ϕ ∈ H 2(�) ∩H 1
0 (�). Then

∫

�

v�ϕ dx −
∫

�

ϕ�v dx =
∫

�

v
∂ϕ

∂ν
.

Now let μ ∈ H 1/2(�). According to the trace theorem and since � is of class
C 1,1, there exists ϕ ∈ H 2(�) verifying

{
ϕ = 0 and ∂ϕ

∂ν
= μ on �,

‖ϕ‖H 2(�) ≤ C ‖μ‖H 1/2(�) .

Thus, using the Cauchy–Schwarz inequality

∣∣〈v, μ〉H−1/2(�)×H 1/2(�)

∣∣ =
∣∣∣∣

∫

�

vμ

∣∣∣∣ =
∣∣∣∣

∫

�

v
∂ϕ

∂ν

∣∣∣∣

≤ C(�)
(
‖v‖2

L2(�)
+ ‖�v‖2

L2(�)

)1/2 ‖ϕ‖H 2(�)

≤ C(�) ‖v‖E(�;�) ‖μ‖H 1/2(�) .

This shows that the linear mapping

D(�) −→ H−1/2(�)
v �−→ v|�

is continuous when D(�) is equipped with the norm of E(�;�). We finish
the proof by using the density of D(�) in E(�;�).

(iii) Immediate.
��

Theorem 1.24 Let� be a bounded open of classC 1,1 ofRN and let g ∈ H−1/2(�).
Then, the problem (P 0

D) has a unique solution u ∈ L2(�) verifying the estimate

‖u‖L2(�) ≤ C(�) ‖g‖H−1/2(�) .

Proof From Green’s formula above, it is easy to see that u ∈ L2(�) is a solution of
the problem (P 0

D) if and only if

∀ϕ ∈ H 2(�) ∩H 1
0 (�),

∫

�

u�ϕ dx = 〈g, ∂ϕ
∂ν
〉�. (11)

Indeed, let u ∈ L2(�) be a solution of (P 0
D). Green’s formula implies that (11) takes

place.
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Conversely, let u ∈ L2(�) be a solution of (11). Then, for all ϕ ∈ D(�), we
have

0 =
∫

�

u�ϕ dx = 〈�u, ϕ〉D ′(�)×D(�),

i.e.,

�u = 0 in �. (12)

Let now ϕ ∈ H 2(�) ∩ H 1
0 (�). From (12) and Green’s formula above, we deduce

successively that:

0 =
∫

�

ϕ�udx =
∫

�

u�ϕ dx − 〈u, ∂ϕ
∂ν
〉�

then

〈u, ∂ϕ
∂ν
〉� = 〈g, ∂ϕ

∂ν
〉�.

From the surjectivity of the trace mapping v �→ (v|�, ∂v∂ν ) from H 2(�) into
H 3/2(�)×H 1/2(�) we know that

∀μ ∈ H 1/2(�), 〈u,μ〉� = 〈g,μ〉�,

i.e., u = g in H−1/2(�). ��
Remark 9 A similar result can be established for the Neumann problem (P 0

N) with
boundary data h in H−3/2(�) and satisfying the compatibility condition 〈h, 1〉�
= 0.

1.10 Solutions in Hs(�), with 0 < s < 2

We have established in the previous paragraphs the existence of solutions in
H 1(�),H 2(�), and L2(�) under generally optimal assumptions (except for the
Neumann problem).

We will now consider the case of solutions in Hs(�) with 0 < s < 2 and s �= 1.
The main ingredient is to use interpolation (complex here).

Theorem 1.25 Let � be a bounded open of class C 1,1.

(i) Suppose that 1
2 < s < 2. Then the operators
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� : Hs(�) ∩H 1
0 (�) −→ Hs−2(�) =

[
H 2−s

0 (�)
]′

if 1 < s < 2 and s �= 3
2 ,

� : H 3/2
0 (�) −→

[
H

1/2
00 (�)

]′
,

� : H 2−s
0 (�) −→ H−s(�) = [

Hs
0 (�)

]′ if 1 < s < 3
2 ,

(13)
are isomorphisms.

(ii) For any g ∈ Hs(�), with − 1
2 < s < 3

2 , Problem (PHD ) has a unique solution

u ∈ Hs+ 1
2 (�).

Remark 10 What happens if � is only Lipschitz? For what values of s can we have
u ∈ Hs(�)?

2 The Stokes Problem with Various Boundary Conditions

We are interested here in the study of the Stokes problem:

(S)

⎧
⎨

⎩

Find (u, π) satisfying
−�u+∇π = f in �,
divu = 0 in �,

with one of the following boundary conditions on �:

(i) u = 0 (Dirichlet boundary condition)
(ii) u · ν = 0 and curlu× ν = 0 (Navier type boundary condition)
(iii) u · ν = 0 and (Du)ν + αuτ = 0 (Navier boundary condition)
(iv) u× ν = 0 and π = π0 (pressure boundary condition).

Here u denotes the velocity field, π the pressure field, � a connected bounded
open set we assume at least Lipschitz.

Recall that

div u = ∇ · u, curlu = ∇ × u and Du = 1

2

(
∇u+ (∇u)T

)
.

The notation uτ denotes the tangential component of u: uτ = u− (u · ν)ν. Finally
f and α are given on � and �, respectively.

Remark 11

(i) We limit ourselves here, with the exception of pressure, to the case of
homogeneous boundary conditions.

(ii) If the boundary of � is flat (like a cube, for example, or half space), the above
boundary conditions are more easily written. When � = R

3+, the Navier type
boundary condition is equivalent to:
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u3 = 0 and
∂u1

∂x3
= ∂u2

∂x3
= 0

and that of Navier at:

u3 = 0 and
∂u1

∂x3
− αu1 = ∂u2

∂x3
− αu2 = 0.

2.1 The Problem (S) with Dirichlet Boundary Condition

As for the Laplace equation with the Dirichlet boundary condition, we will assume

f ∈ H−1(�)3

and so look for u ∈ H 1
0 (�)

3 verifying (S). Here we have in addition the constraint

divu = 0 in �

and the Lagrange multiplier π . First of all, as π must verify

∇π = f +�u ∈ H−1(�)3

it is, therefore, reasonable to look for π in L2(�). Moreover, it is easy to verify that
such π satisfies:

∀ v ∈ H 1
0 (�)

3, 〈∇π, v〉H−1(�)×H 1
0 (�)

= −
∫

�

π div v dx.

The space

V =
{
v ∈ H 1

0 (�)
3; div v = 0 in �

}

being a subspace of H 1
0 (�)

3 is, therefore, a Hilbert space. Moreover

∀ v ∈ V, 〈∇π, v〉H−1(�)×H 1
0 (�)

= 0.

We are now able to propose a variational formulation of Problem (S):

(P 0
D)

⎧
⎨

⎩

Find u ∈ V such that

∀ v ∈ V,
∫

�

∇u : ∇v dx = 〈f , v〉H−1(�)×H 1
0 (�)

,

where we note that the pressure π has “disappeared.”



Sobolev Spaces and Elliptic Boundary Value Problems 23

Lemma 2.1 The problem

(S0D)

⎧
⎨

⎩

Find (u, π) ∈ H 1
0 (�)

3 × L2(�)

−�u+∇π = f in �,
divu = 0 in �

is equivalent to the problem (P 0
D).

Proof The implication (S0D) �⇒ (P 0
D) is immediate. Conversely, let u be a solution

of (P 0
D). Then, in particular,

∀ v ∈ D(�)3 such that div v = 0 in �,

we have

〈−�u− f , v〉D ′(�)3×D(�)3 = 0. (14)

As −�u− f ∈ H−1(�)3 and the space

V(�) =
{
v ∈ D(�)3; div v = 0 in �

}

is dense in the space V , then the relation (14) takes place for all v. Then we know
that there exists π ∈ L2(�), unique up to an additive constant, because � is
connected, such that

−�u− f = ∇(−π) in �

(this result is called “De Rham’s version of the theorem” inH−1(�)N ). And finally,
as u ∈ V , then

divu = 0 in � and u = 0 on �.

This ends the proof of the lemma. ��
Theorem 2.2 For any f ∈ H−1(�)3, the Stokes problem (P 0

D) has a unique
solution u ∈ V vérifying further

‖u‖H 1(�)3 ≤ C(�) ‖f ‖H−1(�)3 .

Proof Simply apply Lax–Milgram theorem. ��
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Remark 12 The theory is well known for everything that concerns the regularity of
solutions when the data are:

– solutions inW 1,p(�)3 × Lp(�)
– solutions inW 2,p(�)3 × Lp(�)
with 1 < p <∞.

In particular, if f ∈ L2(�)3 and � is of class C 1,1, then u ∈ H 2(�)3 and
π ∈ H 1(�).

2.2 The Stokes Problem with Navier Type Boundary Condition

Here we are still interested in Stokes’ problem, but with the following boundary
condition:

u · ν = 0 and curlu× ν = 0 on �.

In order to take into account this condition at the boundary, it is important to write
the Laplacian operator in the form:

−� = curl curl −∇ div.

On the other hand, if we study the existence of weak solutions u in H 1(�)3, it will
be necessary to give a meaning to the condition at the boundary

curlu× ν = 0 on �.

Recall the following Green formulas:

(i) If v ∈ L2(�)3 and curl v ∈ L2(�)3, then v × ν ∈ H−1/2(�)3 and

∀ϕ ∈ H 1(�)3,

∫

�

v · curlϕ dx −
∫

�

ϕ · curl v dx = 〈v × ν,ϕ〉�,

where 〈·, ·〉� denotes the duality brackets H−1/2(�)×H 1/2(�).

(ii) If v ∈ L2(�)3 and div v ∈ L2(�), then v · ν ∈ H−1/2(�) and

∀ϕ ∈ H 1(�),

∫

�

v · ∇ϕ dx +
∫

�

ϕ div v dx = 〈v · ν, ϕ〉�.

Remark 13 If v ∈ L2(�)3 and curl v ∈ L6/5(�)3 (respectively, div v ∈ L6/5(�)),
then

v × ν ∈ H−1/2(�)3 (resp. v · ν ∈ H−1/2(�))
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and Green’s formulas above remain valid.

Proposition 2.3 Let v ∈ L2(�)3 such that curl v ∈ L2(�)3 and curl curl v ∈
L6/5(�)3. Then curl v×ν ∈ H−1/2(�)3 and we have the following Green formula:

∀ϕ ∈ H 1(�)3,

∫

�

curl v · curlϕ −
∫

�

ϕ · curl curl v = 〈curl v × ν,ϕ〉�.

Proof It suffices to put w = curl v and use the previous reminders. ��
We are now able to propose a variational formulation for the Stokes problem (S)

with the Navier type homogeneous condition. To do this, we set

V =
{
v ∈ L2(�)3; curl v ∈ L2(�), div v = 0 in � and v · ν = 0 on �

}

equipped with the graph norm:

‖v‖V =
(
‖v‖2

L2(�)
+ ‖curl v‖2

L2(�)3

)1/2

which makes it a Hilbert space.
We suppose f ∈ L6/5(�)3 and we consider the following variational formula-

tion:

(P 0
TN)

⎧
⎨

⎩

Find u ∈ V such that for any v ∈ V,∫

�

curlu · curl v dx =
∫

�

f · v dx.

Questions

(i) Is the problem (P 0
TN) equivalent to the problem (S0TN)?

(ii) If so, is the bilinear form

V × V −→ R

(u, v) �−→
∫

�

curlu · curl v dx

coercive?

Remark 14 As with the Neumann problem for the Laplacian, the boundary condi-
tion

curlu× ν = 0 on �

is “hidden” in the variational formulation.
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Answers to the Above Questions
In order to study Problem (P 0

TN), we have to describe with more precision the
geometry of the domain. We first need the following definition.

Definition 2.4 A bounded domain in R
3 is called pseudo-C 0,1 (respectively,

pseudo-C 1,1) if for any point x on the boundary there exists an integer r(x) equal
to 1 or 2 and a strictly positive real number λ0 such that for all real numbers λ with
0 < λ < λ0, the intersection of � with the ball with center x and radius λ, has r(x)
connected components, each one being C 0,1 (resp. C 1,1).

Hypothesis There exist J connected open surfaces �j , 1 ≤ j ≤ J , called “cuts,”
contained in �, such that:

(i) each surface �j is an open part of a smooth manifoldMj ,
(ii) the boundary of �j is contained in ∂� for 1 ≤ j ≤ J ,
(iii) the intersection �̄i ∩ �̄j is empty for i �= j ,
(iv) the open set

�◦ = � \
J⋃

j=1
�j

is pseudo-C 0,1 (respectively, pseudo-C 1,1) simply connected.

Example for J = 1 and I = 3 r1

r0r2

r3 ��

Theorem 2.5 Let � be a bounded open C 1,1 set.

(i) Let v ∈ L2(�)3 such that div v ∈ L2(�), curl v ∈ L2(�) and satisfying in
addition

v · ν ∈ H 1/2(�) (respectively, v × ν ∈ H 1/2(�)3).

Then v ∈ H 1(�)3 and we have the following estimates:

‖v‖H 1(�) ≤ C(�)(‖v‖L2(�) + ‖div v‖L2(�) + ‖curl v‖L2(�) + ‖v · ν‖H 1/2(�))

(15)
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and

‖v‖H 1(�) ≤ C(�)
[
‖v‖L2(�) + ‖div v‖L2(�) + ‖curl v‖L2(�) + ‖v × ν‖H 1/2(�))

]
.

(16)
(ii) Under the above assumptions, if in addition v · ν = 0 on �, then we have the

following estimate:

‖v‖H 1(�) ≤ C(�)
( ‖div v‖L2(�) + ‖curl v‖L2(�) +

J∑

j=1

∣∣∣∣∣

∫

�j

v · ν
∣∣∣∣∣
)

(17)

and if v × ν = 0 on �, then we have the following estimate:

‖v‖H 1(�) ≤ C(�)
( ‖div v‖L2(�) + ‖curl v‖L2(�) +

J∑

i=1

∣∣∣∣

∫

�i

v · ν
∣∣∣∣
)
. (18)

Remark 15

(i) Suppose that

v ∈ L2(�)3, div v ∈ L2(�) and curl v ∈ L2(�)3

with

v · ν = 0 and v × ν = 0 on �.

Let us then extend v by 0 outside of �. It is easy to show that this extension
verifies:

ṽ ∈ L2(R3)3, div ṽ ⊂ L2(R3) and curl ṽ ∈ L2(R3)3.

As −� = curl curl − ∇ div, then �ṽ ∈ H−1(R3)3 and

ṽ −�ṽ ∈ H−1(R3)3,

which means that ṽ ∈ H 1(R3)3 and, therefore, v ∈ H 1
0 (�)

3.
(ii) Now note that if u ∈ D(R3)3, then

∫

�

|∇u|2 dx = −
∫

R3
u ·�u dx =

∫

R3
[u · (curl curlu)− u ·�divu] dx

=
∫

R3

(
|curlu|2 + |divu|2

)
dx.
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Since D(R3)3 is dense in H 1(R3)3, we deduce that:

∀u ∈ H 1(R3)3,

∫

R3
|∇u|2 dx =

∫

R3

(
|curlu|2 + |divu|2

)
dx.

(iii) Back to point (i) of the remark: since v ∈ H 1
0 (�)

3, we have:

‖∇v‖2
L2(�)

= ‖∇ṽ‖L2(R3) =
∫

R3

(
|curl ṽ|2 + |div ṽ|2

)
dx,

which gives the relation

∫

�

|∇v|2 dx =
∫

�

(
|curl v|2 + |div v|2

)
dx.

Note that this last relation can also be directly established if v ∈ D(�)3 and
then, by density of D(�) in H 1

0 (�)
3, for any v ∈ H 1

0 (�)
3.

Remark 16

(i) If � is simply connected, then for any v ∈ H 1(�)3 such that v · ν = 0 on �,
the inequality (17) is written

‖v‖H 1(�)3 ≤ C(�)
(‖div v‖L2(�) + ‖curl v‖L2(�)

)
.

(ii) If � is connected (I = 1), then for any v ∈ H 1(�)3 such that v × ν = 0 on �,
the inequality (18) is written

‖v‖H 1(�)3 ≤ C(�)
(‖div v‖L2(�) + ‖curl v‖L2(�)

)
.

Proposition 2.6 Let � be a bounded open subset of class C 1,1 of R3. Then the
bilinear form

(u, v) �−→
∫

�

curlu · curl v dx

is coercive on the following spaces V and onW , respectively:

V =
{

v ∈ H 1(�)3; div v = 0 in �, v · ν = 0 on � and
∫

�j

v · ν = 0, 1 ≤ j ≤ J

}

W =
{
v ∈ H 1(�)3; div v = 0 in �, v × ν = 0 on � and

∫

�i

v · ν = 0, 1 ≤ j ≤ I

}
.
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We are now able to study the problem (P 0
TN). We start with the simplest case

where � is simply connected.

Theorem 2.7 Let � be a bounded open domain of class C 1,1 of R3. Suppose that
� is simply connected.

(i) Then for any f ∈ L6/5(�)3, Problem (P 0
TN) admits a unique solution verifying

the estimate

‖u‖H 1(�) ≤ C(�) ‖f ‖L6/5(�) .

(ii) The problem (P 0
TN) is equivalent to the problem (S0TN).

(iii) If moreover � is of class C 1,1 then the solution (u, π) ∈ W 2,6/5(�)3 ×
W 1,6/5(�).

Proof

(i) The open � being simply connected, then

V =
{
v ∈ H 1(�)3; div v = 0 in �, v · ν = 0 on �

}

and V is an Hilbert space. Then let us put

a(u, v) =
∫

�

curlu · curl v dx.

Proposition 2.6 shows that the form a is coercive on V . Finally, the form �(v) =∫
�

f ·v dx is clearly continuous because the continuous embeddingH 1(�)3 ↪→
L6(�)3. The Lax–Milgram theorem implies the existence of a unique solution
of Problem (P 0

TN).
(ii) Let us first show that

(S0TN) �⇒ (P 0
TN).

Set

H =
{
v ∈ L6(�)3; div v ∈ L2(�), v · ν = 0 on �

}
.

We know that D(�)3 is dense in H . So we can show that the dual of H can be
characterized as follows:

H ′ =
{
g + ∇χ; g ∈ L6/5(�)3 and χ ∈ L2(�)

}

(similar proof to the characterization of the dual H−1(�) of H 1
0 (�)).
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Let now (u, π) ∈ V × L2(�) solution of (S0TN). Then for any v ∈ V

〈∇π, v〉H ′×H = −
∫

�

π div v dx = 0.

Therefore,

−�u = ∇π − f ∈ H ′.

We need the following lemma:

Lemma 2.8

(i) The space D(�)3 is dense in the following space

E =
{
v ∈ H 1(�)3; �v ∈ H ′} .

(ii) The mapping

v �−→ curl v × ν

defined on D(�)3 can be uniquely extended into a continuous linear mapping
from E into H−1/2(�)3.

(iii) Moreover, for any ϕ ∈ H 1(�)3 such that

div ϕ = 0 in � and ϕ · ν = 0 on �

and for any v ∈ E, we have the following Green formula

−〈�v,ϕ〉H ′×H =
∫

�

curl v · curlϕ dx + 〈curl v × ν,ϕ〉�,

where 〈·, ·〉� denotes the duality brackets H−1/2(�)3 ×H 1/2(�)3.

We return to the proof of the theorem. Since u ∈ H 1(�)3 and�u ∈ H ′, i.e., u ∈
E, we can use this lemma to deduce on the one hand that the condition curlu = 0
has a meaning in H−1/2(�)3 and, on the other hand, that

∀ v ∈ V, 〈−�u, v〉H ′×H =
∫

�

curlu · curl v dx =
∫

�

f · v dx,

i.e., u is solution of (P 0
TN).

Conversely, let u ∈ V solution of Problem (P 0
TN). Then

div u = 0 in �, u · ν = 0 on �
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and

∀ v ∈ D(�)3 with div v = 0 in �

we have

〈curl curlu, v〉D ′(�)3×D(�)3 = 〈f , v〉D ′(�)3×D(�)3 .

That gives

〈−�u, v〉D ′(�)3×D(�)3 = 〈f , v〉D ′(�)3×D(�)3 .

So there exists, by De Rham’s theorem, a function π in L2(�), unique up to an
additive constant, such that

−�u− f = ∇(−π) in � (19)

(note that L6/5(�) ↪→ H−1(�)).
It remains to show that u vérifies:

curlu× ν = 0 on �.

For that, from (19) and use the formula of Green of the first lemma, one deduces
that

∀ v ∈ V, 〈−�u+∇π, v〉H ′×H =
∫

�

curlu · curl v dx + 〈curlu× ν, v〉�

that is to say that

∀ v ∈ V,
∫

�

curlu · curl v dx + 〈curlu× ν, v〉� =
∫

�

f · v dx.

But u being solution of (P 0
TN), then

∀ v ∈ V, 〈curlu× ν, v〉� = 0.

Now let it be μ ∈ H 1/2(�). We know that there exists

w ∈ H 1(�)3, divw = 0 in �, w = μτ on �,

where μτ = μ− (μ · ν)ν the tangential component of μ on �. As w ∈ V , we have:

〈curlu× ν,μ〉� = 〈curlu× ν,μτ 〉� = 〈curlu× ν,w〉� = 0,
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which means that

curlu× ν = 0 on �.

(iii) The regularityW 1,6/5(�) of π is due to the fact that π satisfies:

div (∇π − f ) = 0 in � and (∇π − f ) · ν = 0 on �.

Setting z = curlu, the regularityW 2,6/5(�)3 of u is a consequence of the following
properties:

z ∈ L6/5(�)3, div z = 0, curl z ∈ L6/5(�)3 and z× ν = 0 on �.

��
Case � non Simply Connected
We then show that the kernel:

KT (�) =
{
v ∈ L2(�)3; divv = 0, curl v = 0 in� and v · ν = 0 on �

}

is of finite dimension and that the dimension corresponds to the number of cuts �j

necessary to obtain an open set
◦
� = � \ ∪Jj=1�j simply connected.

As a consequence, if

V =
{
v ∈ H 1(�)3; div v = 0 in � and v · ν = 0 on �

}
,

then, to prove that Problem (P 0
TN) admits a solution, it is necessary that f satisfies

the following compatibility condition:

∀ v ∈ KT (�),
∫

�

f · v dx = 0.

Moreover, if such a solution u exists, it is unique up to an additive element of
KT (�).

2.3 The Stokes Problem with Navier Boundary Condition

We recall the Navier condition:

[2(Du)ν]τ + αuτ = 0 on �,
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where

Du =
(
1

2

(
∂ui

∂xj
+ ∂uj

∂xi

))

1≤i,j≤3

is the deformation tensor, α defined on � is the friction coefficient and uτ is the
tangential component of u. To simplify, we will consider here only the case α = 0.

Note that when div u = 0 in �, then 2div Du = �u.

Lemma 2.9 If (u, π) ∈ H 1(�)3 × L2(�) is such that

−�u+∇π ∈ L6/5(�)3

then

[(Du)ν]τ ∈ H−1/2(�)3

and

f or any ϕ ∈ H 1(�)3 such that div ϕ = 0 in � and ϕ · ν = 0 on �

we have the Green’s formula:

∫

�

(−�u+ ∇π) · ϕ dx = 2
∫

�

Du : Dϕ dx − 2〈[(Du)ν]τ ,ϕ〉�,

where 〈·, ·〉� denotes the duality brackets H−1/2(�)3 ×H−1/2(�)3.

With this Green’s formula, the Stokes problem can be formulated as:

(P 0
N)

⎧
⎨

⎩

Find u ∈ V, such that for any ϕ ∈ V,
2
∫

�

Du : Dϕ dx =
∫

�

f · ϕ dx.

Set

a(u,ϕ) =
∫

�

Du : Dϕ dx.

When � is not axisymmetric, then this form is coercive on V due to Korn’s
inequality:

‖u‖H 1(�) � ‖Du‖L2(�) .

While if � is axisymmetric, this is not the case anymore. We must then quotient by
some finite dimensional kernel.
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Remark 17 In fact, on � we have the relation:

[2(Du)ν]τ = curlu× ν −�u,

where � is an operator of order 0:

�u =
2∑

k=1

(
uτ · ∂ν

∂sk

)
τ k,

where (τ 1, τ 2) is a base of the tangent plane to � at point x and (s1, s2) are local
coordinates in this tangent plane.

This means that on the questions of regularity, they can be reduced to those
concerning the Navier type condition.

References

1. C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional
nonsmooth domains. Math. Methods Applied. Sci. 21, 823–864 (1998)

2. C. Amrouche, N. Seloula, Lp-theory for vector potentials and Sobolev’s inequalities for vector
fields. Applications to the Stokes equations with pressure boundary conditions. Math Models
Methods Appl. Sci. 23, 37–92 (2013)

3. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985)
4. J.-L. Lions, M. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol.

I (Springer, New York-Heidelberg, 1972)
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Survey on the Decay of the Local Energy
for the Solutions of the Nonlinear Wave
Equation
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1 Introduction and Preliminaries

We survey the results of the local energy of the solutions of the semilinear wave
equation (subcritical and critical) and the critical Klein–Gordon wave equation in
[3–7].

Indeed, we consider the following problems:

⎧
⎨

⎩

�u+ χ (x) u|u|p−1 = 0 on R×�,
u = 0 in R× ∂�
u(0, x) = u0(x) ∈ HD(�) and ∂tu(0, x) = u1(x) ∈ L2(�),

(1)

where � = R
3\O and O is a strictly convex compact with smooth boundary ∂�,

O ⊂ BR for some R >0 and 2 < p ≤ 5. The function χ is a positive and of class
C1, with compact support such that suppχ ⊂ BR . Here the function χ is allowed
to be equal to 1 near ∂�. We denote by H = HD(�) × L2(�) the completion of
(C∞0 (�))2 with respect to the norm

‖(ϕ1, ϕ2)‖2H =
∫

�

(|∇ϕ1|2 + |ϕ2|2)dx.

More precisely we have the following theorem:
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Theorem 1.1 Given R and R0 two positive real numbers, there exist C > 0 and
α > 0 such that inequality

ER(u(t)) ≤ Ce−αtE(u(0)) (2)

holds for every u solution to (6) in the “Shatah–Struwe” class with initial data ϕ
= (ϕ1, ϕ2) supported in BR and satisfying

E(ϕ) = 1

2

∫

�

(
|ϕ2|2 + |∇xϕ1|2

)
dx +

∫

�

χ(x)
|ϕ1|p+1
p + 1

dx ≤ R0. (3)

Next we consider the case χ(x) = λ ∈ R, p > 1+√2 and for small data we obtain
the polynomial decay of the local energy.

We are interested also in the following system:

{
�u+ χ1u+ χ2u5 = 0, on R× R

3,

u(0, x) = u0(x) ∈ H 1(R3) and ∂tu(0, x) = u1(x) ∈ L2(R3),
(4)

where � = ∂2t − �, χ1 and χ2 are positives functions, of class C1, with compact
support such that suppχ1 ∪ suppχ2 ⊂ BR for some R > 0 and satisfying

x · ∇χ1(x) ≤ 0 and x · ∇χ2(x) ≤ 4, ∀x ∈ R
3. (5)

We obtain the exponential decay of the local energy for the solutions of the solution
of the critical Klein–Gordon equation by combining the time global Strichartz
norms with the exponential decay of the local energy of the solutions of the Klein–
Gordon equation.

The paper is organized as follows: In Sect. 2 we give the results on the Scattering.
In Sect. 3 we prove the result on Exponential decay of the local energy of the
solution for the wave equation. Section 4 is devoted the polynomial decay of the
local energy of the semilinear wave equation with arbitrary exponent. In Sect. 5,
we give the proof of the exponential decay of the local energy of solution for the
Klein–Gordon equation.

2 Scattering for the Subcritical and Critical Wave Equation

We consider the following nonlinear wave equation,

⎧
⎨

⎩

�u+ χ (x) u|u|p−1 = 0 on R×�,
u = 0 in R× ∂�
u(0, x) = u0(x) ∈ HD(�) and ∂tu(0, x) = u1(x) ∈ L2(�),

(6)
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where � = R
3\O and O is a strictly convex compact with smooth boundary ∂�,

O ⊂ BR for some R >0 and p > 2. The function χ is a positive and of class
C1, with compact support such that suppχ ⊂ BR . Here the function χ is allowed
to be equal to 1 near ∂�. We denote by H = HD(�) × L2(�) the completion of
(C∞0 (�))2 with respect to the norm

‖(ϕ1, ϕ2)‖2H =
∫

�

(|∇ϕ1|2 + |ϕ2|2)dx.

Global existence and uniqueness of the solutions to the Cauchy problem (6) has
been studied in [4, 14, 26].

Consequently, for every initial data (u0, u1) in the energy space H and in the case
2 < p < 5 (respectively, in the critical case p = 5), system (6) admits a unique
solution u ∈ C(R,HD(�))) (respectively, in the “Shatah–Struwe” class, that is

u ∈ C( R,HD(�)) ∩ L5
loc( R, L

10(�)), ∂tu ∈ C( R, L2(�)).

The global energy of u at time t is defined by

E(u(t)) = 1

2

∫

�

(
|∂tu (t)|2 + |∇xu (t)|2

)
dx + 1

p + 1

∫

�

χ(x) |u (t)|p+1 dx,
(7)

which is time independent.
We define the local energy by

Eρ(u(t)) = 1

2

∫

�∩Bρ

(
|∂tu (t)|2 + |∇xu (t)|2

)
dx+ 1

p + 1

∫

�∩Bρ
χ(x) |u (t)|p+1 dx,

(8)
where Bρ is a ball of radius ρ > 0 containing the obstacle O.

For every t ∈ R, we define the wave operator U(t) by

U(t) : H −→ H

(ϕ1, ϕ2) �−→ U (t) (ϕ1, ϕ2) = (u (t) , ∂tu (t)) ,

where u is the solution of (6) in the “Shatah–Struwe” class with initial data ϕ =
(ϕ1, ϕ2) .

The family (U (t))t∈R forms a one parameter continuous group on H, to which
we will refer as the nonlinear wave group.

Let us consider the wave equation in exterior domain

⎧
⎨

⎩

�u = 0 on R×�,
u = 0 in R× ∂�,
u(0, x) = ϕ1(x) ∈ HD(�) and ∂tu(0, x) = ϕ2(x) ∈ L2(�).

(9)

We denote UL(t) the linear wave group.
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We first recall the following result due to the author [4] (see [7] for the subcritical
case) who prove that u is equivalent for the energy norm, as t →+∞, to a solution
of the linear equation:

Theorem 2.1 The nonlinear wave group outside a compact convex obstacle is
asymptotically complete with respect to the linear wave group in the same domain.
More precisely, with the notations defined above we have

(a) If u is the solution of (6) (with 2 < p ≤ 5), then there exists a unique finite
energy solution u+ of

{
�u+ = 0 on R×�,
u+ = 0 in R× ∂�

such that Ec((u+ − u) (t)) −→
t−→+∞ 0, where

Ec((u+ − u)(t)) = 1

2

∫

�

(
|∂t (u+ − u) (t)|2 + |∇x(u+ − u) (t)|2

)
dx.

(b) The wave operator defined by

�+ : H −→ H

(u/t=0, ∂tu/t=0) �−→ (u+/t=0, ∂tu+/t=0)

is a bijection.
(c) Similar results to a) and b) hold if t goes to −∞.

We note that a large number of works have been devoted to the theory of scattering
for the nonlinear wave equation. In addition to the works of Bahouri and Gérard
[2], Ginibre and Vélo [14], and Pecher [24] which concerned the semilinear wave
equation in free space, we have the results obtained by Nakanishi [22] for the Klein–
Gordon equation.

To establish Theorem 2.1 we prove first that the Strichartz norms of the solutions
to (6) are global in time. The scattering theorem then follows as in [2].

Remark 2.2 The result of the Theorem 2.1 remains true if χ = 1 on �.

In order to prove that the Strichartz norms for the solutions of (6) are global in
time, we recall the following theorem due to H.Smith and C.D.Sogge [27].

Theorem 2.3 Let u be a solution of the following system

(S)

⎧
⎨

⎩

�u = F (t, x) ∈ L1(R, L2(�)) on R×�
u = 0 on R× ∂�
u(0, x) = u0(x) ∈ HD(�) and ∂tu(0, x) = u1(x) ∈ L2(�)

.

Given r ≥ 2, q given by 1
q
+ 1

r
= 1

2 , there exists Cr > 0 such that,
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‖u‖Lq(R,L3r (�)) ≤ Cr(E(u)(0)
1�2 + ‖F (t, x)‖L1(R,L2(�))).

From this theorem we deduce

Proposition 2.4 Given r ≥ 2, q given by 1
q
+ 1

r
= 1

2 , there exists Cr > 0, such
that for every T ≥ 0, for every u solution of (S) we have

‖u‖Lq([0,T ],L3r (�)) ≤ Cr(E(u(0))
1�2 + ‖F (t, x)‖L1([0,T ],L2(�))). (10)

Proof For T > 0, we define a cutoff function by

χT =
{
1 if 0 ≤ t ≤ T

0 if not
,

and we consider, vT the solution of the system

⎧
⎨

⎩

�vT + χT F(t, x) = 0 on R×�
vT = 0 on R× ∂�
(vT (0, x), ∂t vT (0, x)) = (u0(x), u1(x))

,

where u is the solutions of (S) with initial data (u0(x), u1(x)) in H. By virtue of local
time Strichartz estimate of [27], we have χT F(t, x) ∈ L1(R, L2(�)) and thanks to
the previous theorem, we deduce

‖vT ‖Lq(R,L3r (�)) ≤ Cr(E(vT (0))
1�2 + ‖χT F(t, x)‖

L1(R,L2(�))
)

and, therefore,

‖vT ‖Lq([0,T ],L3r (�)) ≤ Cr(E(u)(0)
1�2 + ‖F(t, x)‖

L1([0,T ],L2(�))
).

Since u = vT on [0, T ]×�, we obtain

‖u‖Lq([0,T ],L3r (�)) ≤ Cr(E(u)(0)
1�2 + ‖F(t, x)‖L1([0,T ],L2(�))).

��

2.1 The Subcritical Case

We are interesting to the semilinear system:
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⎧
⎨

⎩

�u+ f (x, u) = 0 on R×�
u = 0 on R× ∂�
u(0, x) = u0(x) ∈ HD(�) and ∂tu(0, x) = u1(x) ∈ L2(�)

. (11)

Here f is defined by f (x, u) = χ (x) g (u), where χ is a function of class C1 with
compact support in BR satisfying χ ≥ 0 and ∂χ

∂r
= χr ≤ 0.

Moreover g is a function from R to R of class C1 satisfying

⎧
⎨

⎩

for every s ∈ R, sg(s) ≥ 0
there exists δ > 0 and p0 ≥ 1, such that, sg(s)− 2G(s) ≥ δ |s|p0+1
where G(s) = ∫ s

0 g (t) dt

(12)

and

{
there exist p1, p; 2 < p1 ≤ p < 5, such that,
for every s ∈ R,

∣∣g(j)(s)
∣∣ ≤ C(|s|p1−j + |s|p−j ) , j = 0, 1.

(13)

The typical example is f (x, u) = χ(x) |u|p−1 u.
The global energy of u at time t is defined by:

E(u(t)) = 1

2

∫

�

|∂tu (t)|2 + |∇xu (t)|2 +
∫

�

χ(x)G(u (t))dx (14)

and is time independent.
We define the local energy for every ρ > 0 by:

Eρ(u(t)) = 1

2

∫

�∩Bρ
|∂tu (t)|2 + |∇xu (t)|2 +

∫

�∩Bρ
χ(x)G(u (t))dx. (15)

2.1.1 Prisized Morawetz Estimate

We adapt the proof of Morawetz in [20] to obtain the following result:

Proposition 2.5 The solution u of (11) satisfies

χu ∈ Lp0+1(R+ ×�). (16)

Proof We denote

⎧
⎨

⎩

Q(u) = χG (u) ,

Qu (u) = χg (u) ,

Qr (u) = χrG (u) .
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Moreover arguing by density we can suppose the initial data ϕ in (C∞0 (�))2.
Thanks to Morawetz multiplier, we have

2r−1(x.∇u+ u)(�u+Qu(u)) = 2(r−1∂t ((x.∇u+ u)∂tu))− 2r−3(x.∇u)2
+2r−1 |∇u|2 + 2r−1(uQu − 2Q)− 2Qr(u)

+div
{
r−1(−(∂tu)2x − 2(x.∇u)∇u

+ |∇u|2 x − 2u∇u− r−2u2x + 2Q.x)
}
.

Integrating over �, one has

− d

dt

∫

�

[
2r−1(x.∇u+ u)∂tu)

]
dx

=
∫

∂�

(−2r−1(x.∇u)∇u+ r−1 |∇u| 2x).νdσ + 2
∫

�

r−1(|∇u| 2 − (r−1x.∇u)2)dx

+ 2
∫

�

r−1(uQu − 2Q)dx − 2
∫

�

Qr(u)dx.

On the other hand

(−2r−1(x.∇u)∇u+ r−1 |∇u| 2x) = −
〈
r−1x, ν

〉 ∣∣∣∣
∂u

∂n

∣∣∣∣
2,

where ν is the outward normal; so

− d

dt

∫

�

[
2r−1(x.∇u+ u)∂tu)

]
dx − 2

∫

�

r−1(|∇u| 2 − u2r )dx

= 2
∫

�

r−1(uQu − 2Q)dx − 2
∫

�

Qr(u)dx −
∫

∂�

〈
r−1x, ν

〉 ∣∣∣∣
∂u

∂n

∣∣∣∣
2dσ.

Since O is convex, we have
〈
r−1x, ν

〉 ≤ 0; in addition, by hypothesis on χ and f ,
(uQu − 2Q)r−1 ≥ 0 and Qr(u) ≤ 0.
This yields

∫

�

r−1(uQu − 2Q)dx ≤ − d

dt

∫

�

[
2r−1(x.∇u+ u)∂tu)

]
dx.

For every t0, we have

∫

�(t=t0)

[
r−1(x.∇u+ u)∂tu)

]
dx ≤ 2E(0).
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Hence for T ≥ 0,
∫ T
0

∫
�
r−1(uQu − 2Q)dxdt ≤ 4E(0),

which yields for every �ρ = � ∩ Bρ
∫ T

0

∫

�ρ

(uQu − 2Q)dxdt ≤ 4ρE(0).

Now, by (12) there exists p0 ≥ 1 such that,

uQu − 2Q = χug − 2χG ≥ Cδχ |u|p0+1

which gives

∫ T

0

∫

�

χ |u|p0+1 dxdt ≤ CR,δ

∫ T

0

∫

�

(uQu − 2Q)dxdt

≤ CR,δ E(0).

��

2.1.2 Global Time Strichartz Norms

Let us recall the following bootstrap lemma (see [2]).

Lemma 2.6 LetM(t) be a nonnegative continuous function in [0, T ] such that, for
every t ∈ [0, T ] ,

M(t) ≤ a + bM(t)θ ,

where a, b > 0 and θ > 1 are constants such that,

a < (1− 1

θ
)

1

(θb)1/θ−1
, M(0) ≤ 1

(θb)1/θ−1
.

Then for every t ∈ [0, T ], we have

M(t) ≤ θ

θ − 1
a.

Proposition 2.7 Let u be a solution of (11), then for every r > 2 and q given by
1
q
+ 1

r
= 1

2 , we have:

f (x, u) ∈ L1(R, L2(�)) et u ∈ Lq(R, L3r (�)). (17)

Proof We recall that u is solution of
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⎧
⎨

⎩

�u+ f (x, u) = 0 on R×�
u = 0 on R× ∂�
u(0, x) = u0(x) ∈ HD(�) and ∂tu(0, x) = u1(x) ∈ L2(�),

with f (x, u) = χ (x) g (u) where g verifies, in particular,

⎧
⎨

⎩

there exist p1 and p; 2 < p1 ≤ p < 5, such that,
∀s ∈ R, |g(s)| ≤ C(|s|p1 + |s|p)
andp0 ≥ 1, δ > 0 such that sg(s)− 2G(s) ≥ δ |s|p0+1 .

Thanks to Hölder’s inequality, we obtain for every λ ≥ 1:

‖f (x, u)‖L1([T ,S],L2(�)) ≤ ‖χu‖pLp([T ,S],L2pλ(�))

≤ C(‖χu‖η1
Lp0+1([T ,S]×�) ‖u‖

θ1

Lq1 ([T ,S],L3r1 (�))

+‖χu‖η2
Lp0+1([T ,S]×�) ‖u‖

θ2

Lq2 ([T ,S],L3r2 (�))
), (18)

with qi = 8piλ−2p0λ−3p0−2λ−3
piλ−p0λ+5λ−3 , ri = 2(8piλ−2p0λ−3p0−2λ−3)

3(2λpi+1−p0−4λ) , θi =
8piλ−2p0λ−3p0−2λ−3

λ(7−p0) and ηi = p0λ−piλ+3p0+2λ+3
λ(7−p0) , such that 1

qi
+ 1

ri
= 1

2 , for
i = 1, 2 and p2 = p.

By proposition 2.4, and thanks to the conservation of global energy, we obtain

‖u‖Lq1 ([T ,S],L3r1 (�)) + ‖u‖Lq2 ([T ,S],L3r2 (�))

≤ Cr(E(u(T ))
1�2 + ‖f (x, u)‖L1([T ,S],L2(�)))

≤ Cr(E(u(0))1�2 + ‖χu‖η1
Lp0+1([T ,S]×�) ‖u‖

θ1

Lq1 ([T ,S],L3r1 (�))

‖χu‖η2
Lp0+1([T ,S]×�) ‖u‖

θ2

Lq2 ([T ,S],L3r2 (�))
).

Thanks to the inequality:: 1+ xa + yb ≤ (1+ x + y)a for every x and y ≥ 0, and
a > b ≥ 0, we obtain

1+ ‖u‖Lq1 ([T ,S],L3r1 (�)) + ‖u‖Lq2 ([T ,S],L3r2 (�))

≤ Cr((E(u(0)))1�2 + ‖χu‖η′
Lp0+1([T ,S]×�)

×(1+ ‖u‖Lq1 ([T ,S],L3r1 (�)) + ‖u‖Lq2 ([T ,S],L3r2 (�)))
θ ′),

(19)

where η′ = min(η1, η2) and θ ′ = max(θ1, θ2).
We choose T large enough so that the conditions of lemma 2.6 are satisfied, then

‖u‖Lq1 ([T ,S],L3r1 (�)) + ‖u‖Lq2 ([T ,S],L3r2 (�)) ≤ Cr,E0 .

Finally back to (19) and (10), we deduce that:
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f (x, u) ∈ L1(R+, L2(�)) and u ∈ Lq(R+, L3r (�)); ∀ r > 2 and q such that
1

q
+
1

r
=
1

2
.

��

2.1.3 The Proof of Theorem 2.1

First we give the following properties:

Proposition 2.8 If F ∈ L1(R, L2(�)), then there exists a unique finite energy
solution w of

{
�w = F on R×�
w = 0 on R× ∂�. (20)

Satisfying E0(w(t)) −→
t−→+∞ 0 where E0(w(t)) = 1

2

∫
�
|∂tw(t)| 2 + |∇xw(t)| 2dx.

This result has already been used in free space by [2].

Proof Let wT be a solution of

⎧
⎨

⎩

�wT = F on R×�
wT = 0 on R× ∂�
E0(wT (T )) = 0.

(wT (0) , ∂twT (0)) is a Cauchy sequence in H .
In fact; let T > S:

{
� (wT − wS) = 0 on R×�
wT − wS = 0 on R× ∂� .

This system is conservative then,

E0((wT − wS)(0)) = E0((wT − wS)(T ))
≤ E0(wS(T ))

≤ E0(wS(S))+ ‖F‖L1([S,T [,L2(�)) = ‖F‖L1([S,T [,L2(�)) .

The second member goes to 0, when S, T goes to infinity, since F ∈ L1(R, L2(�)).
Finally wT converges to w solution of

{
�w = F on R×�
w = 0 on R× ∂�,

and

E
1
2
0 (w(t)) ≤ E

1
2
0 ((w − wT )(t))+ ‖F‖L1([T .t[,L2(�))
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≤
(
E

1
2
0 ((w − wT )(0))+ ‖F‖L1([T .t[,L2(�))

)
−→

t−→+∞ 0.

��
Remark 2.9 In addition we have, for all T ≥ 0, r > 2, and q given by 1

q
+ 1

r
= 1

2 ,

‖w‖Lq([T ,+∞[,L3r (�)) ≤ Cr ‖F‖L1([T ,+∞[,L2(�)) . (21)

We come back to the proof of Theorem 2.1.

Proof f (x, u) ∈ L1(R, L2(�) for every u solution of (11), therefore, there exists a
unique w+ such that, �w+ − f (x, u) = 0 and E0(w+(t)) −→

t−→+∞ 0.

u+ = u+ w+ satisfies then

⎧
⎪⎨

⎪⎩

�u+ = 0 on R×�,
u+ = 0 on R× ∂�,
E0((u− u+) (t)) −→

t−→+∞ 0.

To prove the uniqueness of u+; we consider u1+ and u2+ such that,

⎧
⎪⎨

⎪⎩

�ui+ = 0 on R×�,
ui+ = 0 on R× ∂�, for i = 1, 2,
E0(

(
u− ui+

)
(t)) −→

t−→+∞ 0.

Then v = u1+ − u2+ satisfies

⎧
⎪⎨

⎪⎩

�v = 0 on R×�,
v = 0 on R× ∂�,
E0((v) (t)) −→

t−→+∞ 0.

Using the conservation of the energy, we conclude that v = 0. So the wave operator

�+ : H −→ H

(u/t=0, ∂u/t=0) �−→ (u+/t=0, ∂tu+/t=0)

is well defined.
Conversely, let v a finite energy solution of

{
�v = 0 sur R×�
v = 0 sur R× ∂�.

We will prove that there exists a unique v+, satisfying
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⎧
⎪⎨

⎪⎩

�v+ + f (x, v+) = 0 on R×�
u+ = 0 on R× ∂�
E0((v+ − v) (t)) −→

t−→+∞ 0
.

Let δ > 0 to be fixed later, and T ≥ 0 such that

‖v‖Lp([T ,+∞[,L3r (�)) + ‖v‖Lp1 ([T ,+∞[,L3r1 (�)) ≤ δ,

for r et r1 such that 1
p
+ 1

r
= 1

2 and 1
p1
+ 1

r1
= 1

2 .

Setting

Bδ =
{
v ∈ HD × L2, ‖v‖Lp([T ,+∞[,L3r (�)) + ‖v‖Lp1 ([T ,+∞[,L3r1 (�)) ≤ δ

}
,

and

S : Bδ −→ Bδ

w �−→ w̃

(22)

where w̃ is defined by

⎧
⎪⎨

⎪⎩

�w̃ + f (x, v + w) = 0 on R×�
w̃ = 0 on R× ∂�
E0(w̃ (t)) −→

t−→+∞ 0
.

Using the fact that 2p
3r < 1 and 2p1

3r1
< 1 we deduce

‖f (x, v + w)‖L1([T ,+∞[,L2(�)) ≤ C(‖v + w‖p
Lp([T ,+∞[,L3r (�))

+‖v + w‖p1
Lp1 ([T ,+∞[,L3r1 (�))

)

≤ C1
R0,p,p1

(δp1−1 + δp−1)δ,

which, by hyperbolic inequality, yields

E
1/2
0 (w̃(T )) ≤ 2C(δp + δp1).

This allows one to apply the fixed point argument to find v+ on the interval [T ,∞[.
Indeed by Remark 2.9 for w1 and w2 in Bδ , we have

‖w̃1 − w̃2‖Lp([T ,+∞[,L3r (�)) + ‖w̃1 − w̃2‖Lp1 ([T ,+∞[,L3r1 (�))

≤ Cp,p1 ‖f (x, v + w1)− f (x, v + w2)‖L1([T ,+∞[,L2(�)) .
(23)
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In addition, the relation (13) yields

|f (x, v + w1)− f (x, v + w2)|

=
∣∣∣∣

∫ 1

0

d

dλ
f (x, λ (v + w1)+ (1− λ) (v + w2))

∣∣∣∣

=
∣∣∣∣χ

∫ 1

0
(w1 − w2) .∇g(λ (v + w1)+ (1− λ) (v + w2))

∣∣∣∣

≤ Cχ |w1 − w2|
(
(|v + w1| + |v + w2|)p−1 + (|v + w1| + |v + w2|)p1−1

)
.

Let β and β ′ such that 1
3r
2
+ 1

β
= 1

3r1
2
+ 1

β ′ = 1, then

‖f (x, v + w1)− f (x, v + w2)‖L1([T ,+∞[,L2(�))

≤ C(‖w1 − w2‖Lp([T ,+∞[,L3r (�)) + ‖w1 − w2‖Lp1 ([T ,+∞[,L3r1 (�)))×
(‖(|v + w1| + |v + w2|) χ‖p−1Lp([T ,+∞[,L2β(p−1)(�))

+ ‖(|v + w1| + |v + w2|) χ‖p1−1
Lp1 ([T ,+∞[,L2β′(p1−1)(�))

).

Since 2β (p − 1) ≤ 3r and 2β ′ (p1 − 1) ≤ 3r1 then

‖f (x, v + w1)− f (x, v + w2)‖L1([T ,+∞[,L2(�)) (24)

≤ CR,p(‖w1 − w2‖Lp([T ,+∞[,L3r (�)) + ‖w1 − w2‖Lp1 ([T ,+∞[,L3r1 (�)))

(‖|v + w1| + |v + w2|‖p−1Lp([T ,+∞[,L3r (�))
+ ‖|v + w1| + |v + w2|‖p1−1

Lp1 ([T ,+∞[,L3r1 (�))
.

Combining (23) and (24) we obtain

‖w̃1 − w̃2‖Lp([T ,+∞[,L3r (�)) + ‖w̃1 − w̃2‖Lp1 ([T ,+∞[,L3r1 (�))

≤ C2
R0,p,p1

(δp1−1 + δp−1)(‖w1 − w2‖Lp([T ,+∞[,L3r (�))

+‖w1 − w2‖Lp1 ([T ,+∞[,L3r1 (�))).

(25)

So choosing δ such that δp1−1 + δp−1 < min( 1
C1
R0,p,p1

, 1
C2
R,p,p1

), we see that S

is well defined, and with Lipschitz constant smaller than 1. As a consequence there
exists w+ with finite energy satisfying

⎧
⎪⎨

⎪⎩

�w+ + f (x, v + w+) = 0 on R×�
w = 0 on R× ∂�
E0(w+ (t)) −→

t−→+∞ 0.
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Setting v+ = v + w+ and extending v+ to R × �, using existence and uniqueness
for the Cauchy problem, we conclude that there exists v+ satisfying

⎧
⎪⎨

⎪⎩

�v+ + f (x, v+) = 0 on R×�
v+ = 0 on R× ∂�
E0((v+ − v) (t)) −→

t−→+∞ 0.

Moreover E0((v+)(0)) is controlled by E0((v+)(T )) which is finite.
For the uniqueness of v+, we consider v1+ and v2+ such that

⎧
⎪⎨

⎪⎩

�vi+ + f (x, vi+) = 0 on R×�,
vi+ = 0 on R× ∂�, for i = 1, 2,
E0(

(
vi+ − v

)
(t)) −→

t−→+∞ 0.

u = v1+ − v2+ satisfies then

⎧
⎪⎨

⎪⎩

�u+ f (x, v1+)− f (x, v2+) = 0 on R×�,
u = 0 on R× ∂�,
E0((u) (t)) −→

t−→+∞ 0.

As in (25), we can prove that

‖u‖Lp([T ,+∞[,L3r (�)) + ‖u‖Lp1 ([T ,+∞[,L3r1 (�))

≤ CR,p

(
‖u‖Lp(L3r ) + ‖u‖Lp1 (L3r1 )

)(
‖v1+‖p−1Lp(L3r )

+ ‖v2+‖p1−1Lp1 (L3r1 )

)
.

Then choosing T > 0 such that

CR,p

(
‖v1+‖p−1Lp(L3r )

+ ‖v2+‖p1−1Lp1 (L3r1 )

)
< 1,

we obtain v1+(t) = v2+(t) ∀t ≥ T and conclude by uniqueness for the Cauchy
problem (11).

Finally we conclude that the wave operator�+ is a bijection, and using the same
method we get a similar result when t goes to −∞. ��

2.2 The Critical Case

Here we suppose that p = 5.
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2.2.1 Global Time Strichartz Norms

Let

e(t) =
∫

|x|≤t
x∈�

[
1

2
|∇xu(t, x)|2 + 1

2
|∂tu(t, x)|2 + 1

6
χ(x) |u(t, x)|6

]
dx.

We then obtain the following lemma which is similar to the one in [2] in free space.

Lemma 2.10 There exists D > 0 such that, for all b > a > R, for every solution
u to �u + χ(x)u5 = 0, with u ∈ C([a, b] ,HD(�)) ∩ L5([a, b] , L10(�)), ∂tu ∈
C([a, b] , L2(�)) we have

∫

|x|≤b
x∈�

χ(x) |u(b, x)|6 dx ≤ D
[a
b
(e(a)+ e(a)1/3)+ e(b)− e(a)+ (e(b)− e(a))1/3

]
.

Proof We use the notations of [26]. Let

Kb
a = {(t, x), a ≤ t ≤ b, |x| ≤ t} ∩�

the truncated light cone,

Mb
a = {(t, x), a ≤ t ≤ b, |x| = t} ∩�

the “mantle” associated with Kb
a , and

D(t) = {(t, x), |x| ≤ t} ∩�

its spacelike sections. We note that

∂Kb
a = D(a) ∪D(b) ∪Mb

a ∪
{
(t, x) ∈ Kb

a ∩ ∂�
}
.

We start with an initial data in
(
C∞0 (�)

)2, hence the associated solution is of class
C∞(see [26]).

Multiplying equation (6) by ∂tu and using an argument of scaling we obtain for
all x0 ∈ supp(χ) which can be chosen and fixed

divt,x(
1

2
|∇xu(t, x)|2 + 1

2
|∂tu(t, x)|2 + 1

6
χ(x − x0) |u(t, x)|6 ,−∂tu∇xu) = 0,

(26)
then we integrate (26) over the truncated cone Kb

a to obtain the classical energy
identity
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e(b)− e(a) =
∫

Mb
a

(
1

2

∣∣∣
x

t
∂tu+∇xu

∣∣∣
2 + 1

6
χ(x − x0) |u|6) dσ√

2
. (27)

Moreover, multiplying (6) by Lu = (t∂t + x · ∇ + 1)u, we obtain

divt,x(tQ+ ∂tuu,−tP )+ (1
3
− 1

6
x · ∇χ(x − x0))u6 = 0, (28)

where

Q = 1

2
(|∇xu|2 + |∂tu|2)+ 1

6
χ(x − x0)u6 + ∂tux

t
· ∇xu

and

P = x

t
(
1

2
(|∂tu|2 − |∇xu|2)− 1

6
χ(x − x0)u6)+ ∇xu(∂tu+ x

t
· ∇xu+ u

t
).

Integrating (28) over Kb
a we obtain

0 =
∫

D(b)

(bQ+ (∂tu)u)dx −
∫

D(a)

(aQ+ (∂tu)u)dx (29)

−
∫

Mb
a

(tQ+ ∂tuu+ x · P) dσ√
2
+
∫

(t,x)∈Kb
a∩∂�

ν · (−tP )dσ

+
∫

Kb
a

(
1

3
− 1

6
x · ∇χ(x − x0))u6dxdt

= I + II + III + IV + V,

where ν is the outward unit normal to O.
We start with the term III . Since t = |x| onMb

a , we can write

III = −
∫

Mb
a

(|x| |∂tu|2 + 2(∂tu)x · ∇xu+ |x · ∇xu|
2

|x| + ux · ∇xu|x| + (∂tu)u) dσ√
2
.

We parameterizeMb
a by

� � y −→ (|y| , y), a ≤ |y| ≤ b,

and let v(y) = u(|y| , y). Then

dσ = √2dy and y · ∇v|y| =
x · ∇xu
|x| + ∂tu.

This yields
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III = −
∫

y∈�
a≤|y|≤b

{
|y · ∇v|2
|y| + v y · ∇v|y|

}

dy

= −
∫

y∈�
a≤|y|≤b

|v + y · ∇v|2
|y| dy +

∫

y∈�
a≤|y|≤b

(
v2

|y| + v
y · ∇v
|y|

)
dy.

By integrating by parts, one sees that

∫

y∈�
a≤|y|≤b

v
y · ∇v
|y| dy = 1

2

∫

y∈�
|y|=b

v2dσ − 1

2

∫

y∈�
|y|=a

v2dσ −
∫

y∈�
a≤|y|≤b

v2

|y|dy.

So if we switch back to the original coordinates, we have

III = −
∫

Mb
a

∣∣∣∣
1

t
Lu

∣∣∣∣

2

t
dσ√
2
+ 1

2

∫

∂Db

u2dσ − 1

2

∫

∂Da

u2dσ. (30)

Now, we rewrite the first and second term of (29) as

I + II = H(b)−H(a)− 1

b

∫

Db

(x · ∇xuu+ 3

2
u2)dx+ 1

a

∫

Da

(x · ∇xuu+ 3

2
u2)dx,

(31)
where

H(t) =
∫

D(t)

(t

[
1

2

∣∣∣∣
1

t
Lu

∣∣∣∣

2

+ 1

2

(

|∇xu|2 −
∣∣∣∣
x · ∇xu

t

∣∣∣∣

2
)

+ χ(x − x0) |u|
6

6

]

+ u2

t
)dx.

As above, a simple integration by parts gives

∫

D(t)

(x · ∇xuu+ 3

2
u2)dx = t

2

∫

∂D(t)

u2dσ. (32)

Therefore, we obtain from (29)–(32),

H(b)−H(a)+
∫

Kb
a

(
1

3
− 1

6
x ·∇χ(x−x0))u6dxdt =

∫

Mb
a

∣∣∣∣
1

t
Lu

∣∣∣∣

2

t
dσ√
2
+
∫

(t,x)∈Kb
a∩∂�

ν ·tP dσ.
(33)

We note that on [a, b]×�,

∇xu = (∂νu)ν, u = ∂tu = 0 and (ν · x) ≤ 0 for every x ∈ ∂�,

which yields

ν · tP = 1

2
(ν · x)(∂νu)2 ≤ 0. (34)
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The Hölder’s inequality gives

∫

D(t)

χ(x − x0)u
6

6
dx ≤ 1

t
H(t) ≤ C1(e(t)+ e(t)1/3) (35)

and then

∫

Mb
a

∣∣∣∣
1

t
Lu

∣∣∣∣

2

t
dσ√
2
≤
∫

Mb
a

(
2b

∣∣∣
x

t
∂tu+∇xu

∣∣∣
2 + 2

u2

t

)
dσ√
2

(36)

≤ bC2([e(b)− e(a)]+ [e(b)− e(a)]1/3).

Combining (33)–(36) we obtain the result for smooth initial data.
Now, by density argument and the continuity of the nonlinear map:

F : H −→ C ([0, T ] ,H)
(ϕ,ψ) �−→ (u, ∂tu) ,

where u is the solution to (6) such that (u, ∂tu)/t=0 = (ϕ, ψ)(see [10]), the result
of this lemma holds for every data in H . ��
Remark 2.11 We note that the main estimate in Lemma 2.10 is true for any star
shaped obstacle. However, we will use in this article Lemma 2.10 for convex
obstacles which is sufficient to prove our result.

We will now apply Theorem 2.3 and Lemma 2.10 to prove the following proposition.

Proposition 2.12 Let u be a solution to (6), then

∫

�

χ(x) |u(t, x)|6 dx −→
t→±∞ 0, (37)

and for all q > 2 and r such that
1

q
+ 1

r
= 1

2
we have

u ∈ Lq(R+, L3r (�)). (38)

Proof The classical energy identity (27) shows that e(t) is a nondecreasing bounded
function of t , hence it has a limit L as t → +∞. Applying Lemma 2.10 with a =
εT , B = T and passing to the limit as T →+∞, we obtain

lim sup
T−→+∞

∫

|x|≤T
x∈�

χ(x) |u(T , x)|6 dx ≤ Dε(L+ L1/3) (39)
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for every ε > 0, hence the left-hand side of (39) is 0. Using invariance of (6) by
time translations, we get for every R > 0,

lim
T−→+∞

∫

|x|≤R+T
x∈�

χ(x) |u(T , x)|6 dx = 0. (40)

On the other hand, the energy identity outside a forward wave cone leads to

∫

|x|≥T+R
x∈�

χ(x) |u(T , x)|6 dx ≤
∫

|x|≥R
x∈�

[
3 |∂tu(0, x)|2 + 3 |∇xu(0, x)|2 + |u(0, x)|6

]
dx

(41)
which goes to 0 as R −→+∞.

Finally (37) follows by combining (40) and (41).
Now applying Proposition 2.1 with q = r = 4 we have

‖u‖L4([T ,S],L12(�)) ≤ C(E(u(T ))1�2 +
∥∥∥χ(x)u5

∥∥∥
L1([T ,S],L2(�))

)

≤ C(E(u(0))1�2 + ‖χ(x)u‖5
L5([T ,S],L10(�))

which yields by Hölder’s inequality

‖u‖L4([T ,S],L12(�)) ≤ C(E(u(T ))1�2 + ‖χu‖L∞([T ,S],L6(�)) ‖u‖4L4([T ,S],L12(�))
).

Then, by choosing then T large enough and using Lemma 2.6 and (37), we
deduce u ∈ L4(R+, L12(�)) and by Hölder’s inequality that u ∈ L5(R+, L10(�)).

Finally (38) follows by virtue of Theorem 2.3. ��

2.2.2 The Proof of Theorem 2.1 in the Case p = 5

The arguments in the proof below are contained in [7]. We include them for the
convenience of the reader and to make the paper self-contained.

First, we consider wT the solution in the “Shatah–Struwe” class of the following
system

⎧
⎨

⎩

�wT = −χ(x)u5 on R×�,
wT = 0 in R× ∂�
Ec(wT (T )) = 0.

Here, the solutionwT converges tow+ solution of

{
�w+ = −χ(x)u5 on R×�,
w+ = 0 in R× ∂�

“as t goes to infinity.”
Moreover, we have
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E
1
2
c (w+(t)) ≤ E

1
2
c ((w+ − wT )(t))+

∥∥∥χ(x)u5
∥∥∥
L1([T .t[,L2(�))

≤
(
E

1
2
c ((w+ − wT )(0))+ ‖u‖L5([T .t[,L10(�))

)
−→

t−→+∞ 0.

Let u+ = u+ w+ which satisfies

⎧
⎪⎨

⎪⎩

�u+ = 0 on R×�,
u+ = 0 in R× ∂�
Ec((u− u+) (t)) −→

t−→+∞ 0.

To prove the uniqueness of u+; we define u1+ and u2+ as the solutions of

⎧
⎪⎨

⎪⎩

�ui+ = 0 on R×�,
ui+ = 0 in R× ∂�
Ec(

(
u− ui+

)
(t)) −→

t−→+∞ 0
for i = 1, 2

Then v = u1+− u2+ satisfies

⎧
⎪⎨

⎪⎩

�v = 0 on R×�,
v = 0 in R× ∂�
Ec((v) (t)) −→

t−→+∞ 0.

Using the conservation of the energy, we conclude that v = 0. So the wave operator

�+ : H −→ H

(u/t=0, ∂u/t=0) �−→ (u+/t=0, ∂tu+/t=0)

is well defined. Conversely, let v be a finite energy solution of

{
�v = 0 on R×�,
v = 0 in R× ∂�.

We will prove that there exists a unique v+ satisfying

⎧
⎪⎨

⎪⎩

�v+ + χ(x)v5+ = 0 on R×�,
v+ = 0 in R× ∂�
Ec((v+ − v) (t)) −→

t−→+∞ 0.

Let δ > 0 to be fixed later, and T ≥ 0 such that ‖v‖L5([T ,+∞[,L10(�)) ≤ δ.

Next, we define the set Bδ by:
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Bδ =
{
w ∈ L5(L10) such that ‖w‖L5([T ,+∞[,L10(�)) ≤ δ

}
, and

S : w −→ w̃,

where w ∈ Bδ and w̃ is defined by

⎧
⎪⎨

⎪⎩

�w̃ + χ(x)(v + w)5 = 0 on R×�,
w̃ = 0 in R× ∂�,
Ec(w̃ (t)) −→

t−→+∞ 0.

By virtue of Proposition 2.4 we have

‖w̃‖L5([T ,+∞[,L10(�)) ≤ C

∥∥∥χ(x)(v + w)5
∥∥∥
L1([T ,+∞[,L2(�))

≤ C(‖v‖5
L5([T ,+∞[,L10(�))

+ ‖w‖5
L5([T ,+∞[,L10(�))

),

for which we apply the hyperbolic inequality and we obtain that

E
1/2
c (w̃(T )) ≤ 2Cδ5.

This allows one to apply the fixed point argument and then v+ on [T ,+∞[ . Indeed,
using Proposition 2.4, we have for every w1 and w2 in Bδ, we have

‖w̃1 − w̃2‖L5([T ,+∞[,L10(�)) (42)

≤ C1

∥∥∥χ(x)((v + w1)
5 − (v + w2)

5)

∥∥∥
L1([T ,+∞[,L2(�))

≤ C2

∥∥∥χ(x) |w1 − w2| (|v + w1| + |v + w2|)4
∥∥∥
L1([T ,+∞[,L2(�))

≤ C2 ‖w1 − w2‖L5([T ,+∞[,L10(�)) ‖|v + w1| + |v + w2|‖4L5([T ,+∞[,L10(�))

≤ C3δ
4 ‖w1 − w2‖L5([T ,+∞[,L10(�)) .

So choosing δ such that C3δ
4 < 1, we see that

S : Bδ −→ Bδ

is well defined, with Lipschitz constant smaller than 1. As a consequence there exists
w+ with finite energy satisfying

⎧
⎪⎨

⎪⎩

�w+ + χ(x)(v + w+)5 = 0 on [T ,+∞[×�,
w = 0 in [T ,+∞[× ∂�
Ec(w+ (t)) −→

t−→+∞ 0.
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Setting v+ = v+w+, extending v+ toR×�and using the existence and uniqueness
of the Cauchy problem in the “Shatah–Struwe” class, we conclude that there exists
v+ satisfying

⎧
⎪⎨

⎪⎩

�v+ + χ(x)v5+ = 0 on R×�,
v+ = 0 in R× ∂�
Ec((v+ − v) (t)) −→

t−→+∞ 0.

Moreover, Ec((v+) (0)) is controlled by Ec((v+) (T )) which is finite.
For the uniqueness of v+, we consider v1+ and v2+ such that

⎧
⎪⎨

⎪⎩

�vi+ + χ(x)(vi+)5 = 0 on R×�,
vi+ = 0 in R× ∂�
Ec(

(
vi+ − v

)
(t)) −→

t−→+∞ 0,
for i = 1, 2

and then set u = v1+ − v2+ which satisfies

⎧
⎪⎨

⎪⎩

�u+ χ(x)(v1+)5 − χ(x)(v2+)5 = 0 on R×�,
u = 0 in R× ∂�
Ec(u (t)) −→

t−→+∞ 0.

As in (42), we can prove that

‖u‖L5([T ,+∞[,L10(�)) ≤ C ‖u‖L5(L10) (

∥∥∥v1+
∥∥∥
4

L5(L10)
+
∥∥∥v2+

∥∥∥
4

L5(L10)
),

then choosing T > 0 such that

C(

∥∥∥v1+
∥∥∥
4

L5(L10)
+
∥∥∥v2+

∥∥∥
4

L5(L10)
) < 1,

we obtain v1+(t) = v2+(t) for every t ≥ T , and we conclude by the uniqueness of
the Cauchy problem (6) in the “Shatah–Struwe” class.

Finally, we obtain that the wave operator �+ is a bijection, and using the same
method we get a similar result when t goes to −∞.

3 Exponential Decay for the Local Energy of the Subcritical
and Critical Wave Equation with Localized Semilinearity

The main result of this work is to prove that the decay of the local energy of the
solutions of (6) is of exponential type.
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More precisely we have the following theorem:

Theorem 3.1 ([3, 7]) Given R and R0 two positive real numbers, there exist C > 0
and α > 0 such that inequality

ER(u(t)) ≤ Ce−αtE(u(0)) (43)

holds for every u solution to (6) in the “Shatah–Struwe” class with initial data ϕ
= (ϕ1, ϕ2) supported in BR and satisfying

E(ϕ) = 1

2

∫

�

(
|ϕ2|2 + |∇xϕ1|2

)
dx +

∫

�

χ(x)
|ϕ1|p+1
p + 1

dx ≤ R0. (44)

Remark 3.2 Theorems 2.1 and 3.1 remain true if O = ∅; that is the free space.

For the literature we quote essentially the results of Jeng-Eng-Lin [18], C. Morawetz
[21], and W. Strauss [28] and which obtained various rates of decay (from
polynomial to exponential) in free space. We note that the results of the decay of
the local energy for the solutions of the semilinear wave equation are less provided.

We discuss now the methods used to establish Theorem 3.1.
Let ϕ ∈ H with support in BR , clearly ϕ ∈ K . For all h ∈ H , we have P+h = h

on BR .
Consequently U(t)ϕ = Z(t)ϕ on BR , so

ER(U(t)ϕ) = ER(Z(t)ϕ) ≤ E(Z(t)ϕ).

We note that to prove the exponential decay of the local energy, it is then enough
to prove that E(Z(t)ϕ) decays exponentially. Consequently, by the semi-group
property it suffices to prove that: for everyE0 > 0 and ϕ ∈ K verifying E(ϕ) ≤ E0,

E(Z(T )ϕ) ≤ CE(ϕ),

for some T > 0 and 0 < C < 1. In the subcritical case, we argue by contradiction
and we use the result proved by the author and M. Daoulatli in [7] that the nonlinear
Lax–Phillips semi-group Z(t) is compact for some T > 0 when 2 < p < 5: The
proof was based on the properties of the microlocal defect measures of P. Gérard
[12] and used in crucial way, the subcritical nature of the equation.

Obviously, this is not possible when p = 5; we will overcome this difficulty
with the help of the energy balance Theorem proved by B. Dehman and P. Gérard
[8] which is adapted in our case. We prove in this case that for some sequences of
initial data Z(T ) is compact “at infinity” which is sufficient to obtain an absurdity.
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3.1 Nonlinear Lax–Phillips Theory

Let us consider the free wave equation

(E0)

{
∂2t u−�u = 0 on R× R

3

u(0) = ϕ1 , ∂tu(0) = ϕ2 on R
3 (45)

with ϕ = (ϕ1, ϕ2 ) ∈ H0; the completion of (C∞0 (R3))2 with respect to the norm

‖ϕ‖ 2 =
∫

Rd

(|∇ϕ1| 2 + |ϕ2| 2)dx.

We denote U0(t) the free wave group.
We recall now a classical result for the wave equation in the free space with odd

dimension.

Theorem 3.3 (Huygens’ Principle [16]) If the initial data ϕ ∈ H0 is supported in
the ball BR , then the corresponding solution of wave equation in free space vanishes
in the cone

{(t, x) ∈ R× R
3 ; |t | > R et |x| ≤ |t | − R}. (46)

Following Lax and Phillips, we denote:

D0+ = {ϕ = (ϕ1, ϕ2) ∈ H0 such that U0(t)ϕ = 0 on |x| ≤ t , t ≥ 0} (47)

the space of outgoing data, and

D0− = {ϕ = (ϕ1, ϕ2) ∈ H0 such that U0(t)ϕ = 0 on |x| ≤ −t , t ≤ 0} (48)

the space of incoming data associated with the solutions of (E0).
Let us now consider the wave equation in outside domain

(EL)

⎧
⎨

⎩

�u = 0 on R×�
u = 0 on R× ∂�
u(0, x) = u0(x) ∈ HD(�) and ∂tu(0, x) = u1(x) ∈ L2(�).

(49)

We recall that the system is conservative; more precisely

E0(u(t)) = 1

2

∫

�

|∂tu(t)|2 + |∇xu(t)|2 = E0(u(0)). (50)

We denote UL(t) the linear wave group.



Survey on the Decay of the Local Energy 59

In order to study the influence of the obstacle, Lax and Phillips introduced the
spaces of outgoing and incoming data associated with the solutions of problem (EL)

by

DR+ = {ϕ = (ϕ1, ϕ2) ∈ H0 ; UL(t)ϕ = 0 on |x| ≤ t + R, t ≥ 0} (51)

DR− = {ϕ = (ϕ1, ϕ2) ∈ H0 ; UL(t)ϕ = 0 on |x| ≤ −t + R, t ≤ 0} . (52)

We identify H to a subspace of H0 with the help of the following continuation
operator

E : H −→ H0 : Eϕ =
{
ϕ on �

0 on C�.

Then we remark that the subspace of outgoing and incoming data associated with
(EL) coincide, respectively, with U0(R)D

0+ et U0(−R)D0− and U0(−R)D0−.
Moreover, they satisfy the following properties.

(a) DR+ and DR− are closed in H.
(b) DR+ and DR− are orthogonal and

DR+ ⊕DR− ⊕
((
DR+

)⊥ ∩
(
DR−

)⊥) = H. (53)

Remarks 3.4

(1) The solutions of (6) and (9) verify the finite speed propagation property.
(2) The nonlinearity being localized in a ballBR , it is easy to see thatU (t) = UL(t)

on DR+ and U (−t) = UL(−t) on DR− for every t ≥ 0. In particular, this yields

U(t) operates on DR+ and U (−t) operates on DR− for every t ≥ 0. (54)

(3) We remind that P+
[
P−

]
is the orthogonal projection ofH onto the orthogonal

complement of DR+
[
DR−

]
and thanks to (53), it is clear that

P+ϕ ∈
(
DR+

)⊥ ∩
(
DR−

)⊥
if ϕ ∈

(
DR−

)⊥
. (55)

(4) U (t) operates on DR+ for t ≥ 0, so supp(U(t)ϕ) ∩ supp (χ) = ∅ for every
t ≥ 0 and ϕ ∈ DR+. Using then the uniqueness for the Cauchy problem (in the
“Shatah–Struwe” class in the critical case), we obtain: for every ϕ in H and for
every t ∈ R+,

U (t) ϕ = U (t) P+ϕ + U (t)
(
I − P+)ϕ (56)

= U (t) P+ϕ + U0 (t)
(
I − P+) , ϕ
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where
(
I − P+) denotes the orthogonal projection onDR+ and U0 (t) is the free

wave group.

(5) U(t) operates on
(
DR−

)⊥ [(
DR+

)⊥]
for every t ≥ 0 [t ≤ 0].

By analogy with the linear case, we define the nonlinear Lax–Phillips semi-group
by

Z(t) = P+U(t)P−, for t ≥ 0. (57)

In order to prove that Z(t) is a semi-group, we need the following lemma (we take
f (x, u) = χ(x)|u|4u in the critical case):

Lemma 3.5 Given (ϕ, ψ) ∈ H 2, and t ∈ R we have:

〈U(t)ϕ,U(t)ψ〉H − 〈ϕ,ψ〉H
= −

∫ t

0
〈f (x, u(s)), ∂t v(s)〉L2 + 〈∂tu(s), f (x, v(s))〉L2 ds, (58)

where we denoted U(t)ϕ = (u(t), ∂tu(t)) and U(t)ψ = (v(t), ∂t v(t)).

Proof By density argument, it suffices to prove the result for (ϕ, ψ) in (C∞0 (�))2.
Thanks to Green formula

d

dt
〈U(t)ϕ,U(t)ψ〉H =

d

dt

(〈∇u,∇v〉L2 + 〈∂tu, ∂tv〉L2

)

=
〈
∂2t u, ∂tv

〉
+
〈
∂tu, ∂

2
t v
〉
− 〈∂tu,�v〉 − 〈�u, ∂tv〉.

Since u and v verify the system (E),

d

dt
〈U(t)ϕ,U(t)ψ〉H = −〈f (x, u) , ∂tv〉L2 − 〈∂tu, f (x, v)〉L2

and the result follows. ��
Proposition 3.6 (1) Z(t)DR+ = Z(t)DR− = {0}, for every t ≥ 0.

(2) Z(t) operates on K = (
DR+

)⊥ ∩ (
DR−

)⊥
.

(3) (Z(t))t≥0 is a continuous semi-group on K, satisfying E(Z(t)ϕ) ≤ E(ϕ) for
every t ≥ 0, and ϕ ∈ K.

Proof

(1) First it is clear that Z(t)ϕ = 0 if ϕ ∈ DR−.
On the other hand, let ϕ ∈ DR+, ϕ ∈ (DR−)⊥ since DR+ and DR− are

orthogonal, so Z(t)ϕ = P+U(t)ϕ = 0, for t ≥ 0, due to (54).
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(2) By virtue of (55) to prove that Z(t) operates onK , it suffices to verify that U(t)

operates on
(
DR−

)⊥
; for every t ≥ 0.

Let ϕ ∈ (
DR−

)⊥
and ψ ∈ DR−; according to lemma (3.5) we have:

〈U(t)ϕ,ψ〉H − 〈ϕ,U(−t)ψ〉H
=
∫ t

0
〈f (x, u(s)), ∂t v(s − t)〉L2 ds −

∫ t

0
〈∂tu(s), f (x, v(s − t))〉L2 ds.

Thanks to (54) U(s − t)ψ ∈ DR− for every s ≤ t

and supp(f ) ∩ supp(U(s − t)ψ) = ∅,
then

〈U(t)ϕ,ψ〉H = 〈ϕ,U(−t)ψ〉H = 0.

3. Z(t) is obviously continuous. And we just prove that Z(t1 + t2) = Z(t1)Z(t2)

for t1, t2 ≥ 0.
Let ϕ ∈ K , by (56) we have:

Z(t1 + t2)ϕ = P+ U(t1)U(t2)ϕ

= P+ U(t1)P+ U(t2)ϕ + P+ U0(t1)(I − P+ )U(t2)ϕ,

since

U0(t1)(I − P+ )U(t2)ϕ ∈ DR+,

we obtain

Z(t1 + t2)ϕ = P+ U(t1)Z(t2)ϕ = Z(t1)Z(t2)ϕ.

��
Remark 3.7 In the proof of proposition (3.6), we obtained that U(t) operates on(
DR−

)⊥
, for every t ≥ 0. Similarly, it is possible to prove that U(t) operates on

(
DR+

)⊥
for every t ≤ 0.

The proposition below shows that Z(t)ϕ goes to 0 as t −→ +∞ for all ϕ ∈ K.
This result is useful to deduce the exponential decay for the local energy of the
solutions to (6).

Proposition 3.8

(1) For all ρ ≥ R and ϕ ∈ H

lim
t−→+∞‖U(t)ϕ‖H(Bρ∩�) = 0.
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(2) For all ϕ ∈ K , lim
t−→+∞‖Z(t)ϕ‖H = 0.

Proof

(1) Taking ϕ in H , and applying Theorem 2.1, we can find ψ in H such that,

‖U(t)ϕ − UL (t) ψ‖H −→ 0
t−→+∞

then

‖U(t)ϕ‖H(Bρ∩�) ≤ ‖U(t)ϕ − UL (t) ψ‖H(Bρ∩�) + ‖UL(t)ψ‖H(Bρ∩�) −→ 0
t−→+∞,

(59)
since the last term of the right-hand side of (59) converges to 0, by the classical
Lax–Phillips theory [16].

(2) For all ϕ ∈ K = (DR+)⊥ ∩ (DR−)⊥ and t ≥ 2R we have

Z(t)ϕ = P+MU(t − 2R)ϕ + P+U0(2R)U(t − 2R)ϕ,

whereM = U(2R)− U0(2R).
By remarks 3.4, U(t − 2R)ϕ ∈ (DR−)⊥.Moreover

U0(2R)(D
R−)⊥ ⊂ DR+ (see [1] lemma 4.2),

hence

Z(t)ϕ = P+MU(t − 2R)ϕ.

Using the finite speed propagation property and the fact that the nonlinearity is
supported in BR , we get

‖Z(t)ϕ‖H = ‖Z(t)ϕ‖H0
(60)

= ∥∥P+MU(t − 2R)ϕ
∥∥
H0

≤ ‖MU(t − 2R)ϕ‖H0

= ‖MU(t − 2R)ϕ‖H0(B3R)

= ‖U(t)ϕ − U0(2R)U(t − 2R)ϕ‖H0(B3R)

≤ ‖U(t)ϕ‖
H(B3R)

+ ‖U(t − 2R)ϕ‖
H(B5R)

−→ 0.
t−→+∞

Here H0 denotes the completion of
(
C∞0

(
R
3
))2

with respect to the norm

‖ϕ‖2 = ‖(ϕ2, ϕ2)‖2 =
∫

R3
(|∇ϕ1(x)|2 + |ϕ2|2)dx.

��
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3.2 Exponential Decay for the Local Energy of the Subcritical
Wave Equation

3.2.1 The Compactness of Z(T )

Definition 3.9 We denote by TR the minimal time needed by all the “generalized”
geodesics starting from BR at (t = 0) to leave the ball BR: TR is called the escape
time.

By analogy with proposition 5.1 of [1], we obtain

Proposition 3.10 Let (ϕn)n a bounded sequence in K , then there exists a subse-
quence of ϕn (still denoted ϕn) and ϕ in K such that ϕn converges weakly to ϕ in
H and (U(t)ϕn)1 converges to (U(t)ϕ)1 strongly in H

1
loc(K̃(T )) for T ≥ TR + 3R,

where K̃(T ) = {|x| ≤ t − T + R, t ≥ T } , and (U(t)ϕn)1 is the first component of
the vector U(t)ϕ.

The proof of this proposition is based on the notion of microlocal defect
measures. These measures were introduced by P. Gérard in [12, 13]. And G. Lebeau
proved there propagation near the boundary for the Dirichlet problem [17]).

Proof of Proposition 3.10 The sequence (ϕn)n is bounded in the closed subspace
K , then there exists a subsequence still denoted (ϕn)n, ϕ ∈ K such that

ϕn ⇀
n−→+∞ ϕ.

Let T0 ≥ T and (un)n∈N (respectively,(vn)n∈N) the sequence of solutions of
the system (E) (respectively,(EL)) associated with the sequence ϕn)n∈N. By
virtue of (14) (respectively, (50)), (un)n∈N (respectively, (un)n∈N) is bounded in
H 1
loc([0, T0]×�); then it admits a subsequence, still denoted (un)n∈N (respectively,

(un)n∈N) that converges weakly to u (respectively, v).
Let μ (respectivement μL) the microlocal defect measure associated with

(un − u)n∈N (respectivement (vn − v)n∈N) in H 1
loc([0, T0]×�).

We will prove that μ = 0 in K̃(T ) = {|x| ≤ t − T + R , t ≥ T }.
Let q ∈ T ∗(K̃(T )) and λ a generalized bicharacteristic starting at q.
The obstacle is strictly convex and then nontrapping. So if λ is traced backwards

in time, it does not meet ∂� or meets ∂� at t0 > 2R, consequently λ0 = λ/t=0 /∈
B(0, R). Since Supp(f ) ⊂ B(0, R), we have un = vn near λ0, and we conclude
that μ = μL near λ0.

On the other hand ϕn ∈ K , and ZL(t) = P+UL(t)P− is compact for T ≥
TR + 3R, (see [20]), so μL = 0 near q. By propagation of the support of μL, (see
[17]), this gives μ = μL = 0 near λ0. To finish the proof we give the following
lemma, where the subcritical power of the nonlinearity plays a crucial role. ��
Lemma 3.11 Under conditions of the proposition 3.10 we have:
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f (x, un)− f (x, u) −→
n−→+∞ 0 in L1([0, T0] , L

2(�))). (61)

We postpone the proof of this lemma and use it to prove that μ = 0 near q.
By (61), we have (un − u)n∈N is “linearizable” [13], then μ propagates along

the bicharacteristic. And we conclude that μ = 0 near q since μ = 0 near λ0.

Proof of lemma 3.11 We write f (x, un) − f (x, u) = χ (un − u) h (un, u) with
h (un, u) verifying

|h (un, u)| ≤ C((|u| + |un|)p−1 + (|u| + |un|)p1−1) (62)

(hypotheses (13)). Applying Hölder inequality for ε > 0 and β such that, 1
6−ε +

1
2β = 1

2 , 1/α + 1/γ = 1.

‖f (x, un)− f (x, u)‖ L1([0,T0],L2(�))) ≤ C ‖χ (un − u)‖L∞(
0,T0;L6−ε) ‖χh‖Lα(0,T0;L2β

)

The compactness of H 1
loc→ L6−ε

loc gives that

‖χ (un − u)‖L∞(0,T0;L6−ε) →
n→+∞ 0

Thus, it remains to prove that ‖χh‖Lα(0,T0;L2β) is bounded. We obtain, by (62)

‖χh‖Lα(0,T0;L2β) ≤ ‖χ(|u| + |un|)‖p−1Lα(p−1)(0,T0;L2β(p−1)) T
1/γ
0

+‖χ(|u| + |un|)‖p1−1
Lα(p1−1)

(
0,T0;L2β(p1−1)) T

1/γ
0 .

Now we estimate one of the members of the right-hand side of (63).

(a) If β(p − 1) ≤ 3, then

‖χ(|u| + |un|)‖Lα(p−1)(0,T0;L2β(p−1)) ≤ CT0,β(‖u‖L∞(L6) + ‖un‖L∞(L6))

≤ 2CT0,βR0,

where R0 is the radius of the ball of the energy space in which we choose the
initial data.

(b) In the other case, we chose α such that, 2
p−1 < α <

2β
β(p−1)−3 , and we use

Hölder inequality, to obtain a Strichartz norm. Indeed we chose r such that,
1
r
+ 1

α(p−1) = 1
2 , with 3r > 2β(p − 1),

‖χ(|u| + |un|)‖Lα(p−1)(0,T0;L2β(p−1)) ≤ C(‖u‖Lα(p−1)(0,T0;L3r )

+‖un‖Lα(p−1)(0,T0;L3r ))

≤ CT0,β,R0 .

��
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Lemma 3.12 Let (ϕn)n a bounded sequence in H , then there exists a subsequence
still denoted (ϕn)n and ϕ ∈ H , such that,

MLϕn −→
n−→+∞ MLϕ,

whereML = U(2R)− UL(2R).

Proof Setting UL(t)ϕn =
(
vn

∂tvn

)
, U(t)ϕn =

(
un

∂tun

)
.

(ϕn)n a bounded sequence in H , then there exists a subsequence still denoted
(ϕn)n and ϕ ∈ H such that ϕn ⇀

n−→+∞ ϕ in H.

By virtue of (14) and (50) (un)n∈N is bounded (respectively, (vn)n∈N ) in
H 1
loc([0, T ] ×�) for all T ≥ 0, then there exists a subsequence, still denoted (un)n

(respectively, (vn)n) weakly converging to u (respectively, v). Then u−un+ v− vn
satisfies

⎧
⎨

⎩

�(u− un + v − vn)+ χ(x)(g(u)− g(un)) = o on D′([0, T ]×�)
u− un + v − vn = 0 on R× ∂�
(u− un + v − vn)/t=0 = 0 and ∂t (u− un + v − vn)/t=0 = 0,

where f (x, u)− f (x, un)) ∈ L1([0, T ] , L2(�)), for all T ≥ 0.
The hyperbolic inequality and lemma 3.11 then yield the desired result

‖MLϕn −MLϕ‖H ≤ sup
[0,2R]

‖UL(t)(ϕn − ϕ)− U(t)ϕn + U(t)ϕ)‖H
≤ CR ‖f (x, u)− f (x, un))‖L1([0,2R],L2(�)) −→

n−→+∞ 0.

��
Proposition 3.13 Z(T ) is compact operator on K for T ≥ TR + 9R.

Proof Let (ϕn)n be a bounded sequence in K; by proposition 3.10 there exist a
subsequence, still denoted (ϕn) and ϕ ∈ K such that, for all T ≥ TR + 9R,

U(t − 2R)ϕn −→ U(t − 2R)ϕ dans HB5R . (63)

On the other hand

Z(t)ϕn = P+MLU(t − 2R)ϕn + P+(UL(2R)− U0(2R))U(t − 2R)ϕn.

Now by the lemma 3.12, we have

P+MLU(t − 2R)ϕn −→
n−→+∞ P+MLU(t − 2R)ϕ.
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Furthermore the finite speed propagation property guarantees that the support of
(UL(2R)− U0(2R))U (t − 2R) ϕn is in B3R . Using the continuity of P+ and (63),
we get that for all t ≥ TR +9R

P+(UL(2R)−U0(2R))U(t−2R)ϕn −→
n−→+∞ P+(UL(2R)−U0(2R))U(t−2R)ϕ.

And we conclude that,

Z(t)ϕn −→
n−→+∞ Z(t)ϕ dans H, if t ≥ TR + 9R.

��

3.2.2 Proof of Theorem 3.1

In the following subsubsection we identify U(t)ϕ and Z(t)ϕ with their first
components.

Let ϕ ∈ H with support in BR , clearly ϕ ∈ K . For all h ∈ H , we have P+h = h

on BR. Consequently U(t)ϕ = Z(t)ϕ on BR , so

ER(U(t)ϕ) = ER(Z(t)ϕ) ≤ E(Z(t)ϕ).

To prove the exponential decay of the local energy, it is then enough to prove
that E(Z(t)ϕ) decays exponentially. Consequently, by the semi-group property it
suffices to prove that: for every E0 > 0 and ϕ ∈ K verifying E(ϕ) ≤ E0

E(Z(T )ϕ) ≤ CE(ϕ), for some T > 0 and 0 < C < 1.

For that we argue by contradiction: We fix E0 and we suppose that for every T , and
for every 0 < C < 1, there exist ϕ such that,

E(Z(T )ϕ) ≥ CE(ϕ) and E(ϕ) ≤ E0. (64)

Then we obtain two sequences Cn −→
n−→+∞ 1 and ϕn verifying

E (Z (n) ϕn) ≥ CnE (ϕn) .

On the other hand if t ≤ n

E (Z (t) ϕn) ≥ CnE (Z (n) ϕn) ≥ CnE (ϕn) ,

then

E0 ≥ E (ϕn) ≥ E (Z (t) ϕn) ≥ CnE (ϕn) . (65)
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(ϕn) is a bounded sequence inH , so by proposition 3.10 there exists a subsequence,
still denoted (ϕn) and ϕ ∈ K such that,

ϕn ⇀ ϕ in K and Z(t)ϕn −→
n−→+∞ Z(t)ϕ in H, for all T ≥ TR + 9R. (66)

Combining (65) and (66), we obtain

E (ϕn) −→
n−→+∞ E (Z (t) ϕ) for all t ≥ T R + 9R.

On the other hand

E(Z(t)ϕn) ≥ CnE(U(t)ϕn) (67)

= Cn[E(Z(t)ϕn)+ 1

2
‖(P+ − I )U(t)ϕn‖2H ], (68)

then

1

2
Cn‖(P+ − I )U(t)ϕn‖2H ≤ (1− Cn)E(Z(t)ϕn).

Passing to the limit in the last inequality, we obtain

‖(P+ − I )U(t)ϕn‖ −→
n−→+∞ 0.

In other words U(t)ϕ ∈ (
DR+

)⊥
, for every t ≥ TR + 9R.

By Remark 3.7, we conclude that

E(Z(t)ϕ) = E(U(t)ϕ) = E (ϕ) , for every t ≥ 0. (69)

Since ϕ1n is bounded in HD , then

∫

�∩BR
χ(x)G(ϕ1n)dx −→

n−→+∞

∫

�∩BR
χ(x)G(ϕ1)dx, (70)

where we denoted ϕn = (ϕ1n, ϕ
2
n) and ϕ = (ϕ1, ϕ2). So by combining (69) and (70),

we obtain

ϕn −→
n−→+∞ ϕ ∈ H.

Finally there exists ϕ ∈ H , and u solution of
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⎧
⎪⎪⎨

⎪⎪⎩

�u+ f (x, u) = 0,
u = 0 on R× ∂�,
(u(0), ∂tu(0)) = ϕ,

E(Z(t)ϕ) = E(ϕ), ∀t ≥ 0.

1st case: E(ϕ) = lim
n−→+∞E(ϕn) = α2 > 0.

This case is impossible, since by Proposition 3.8, we have lim
t−→+∞E(Z(t)ϕ) = 0,

which contradicts E(ϕ) > 0.

2nd case: E(ϕ) = lim
n−→+∞E(ϕn) = 0. Let α2n = E(ϕn).

vn = un
αn

satisfies

(S)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�vn + 1
αn
f (x, αnvn) = 0,

vn/∂� = 0,
(vn(0), ∂t vn(0)) = ϕn

αn
= ψn ∈ K,

Ẽn(ψn) = 1
2

∫
�

(∣∣∂tψ2,n
∣∣2 + ∣∣∇xψ1,n

∣∣2
)
dx + 1

α2n

∫
�
χ(x)G(αnψ1,n)dx = 1.

Denote Vn(t) = (vn, ∂tvn) = V 0
n (t) + Wn(t), where V 0

n (t) = (v0n, ∂tv
0
n) and

Wn(t) = (wn, ∂twn), with

⎧
⎪⎨

⎪⎩

�v0n = 0
v0n/∂� = 0

(v0n(0), ∂t v
0
n(0)) = ϕn

αn

and

⎧
⎪⎨

⎪⎩

�wn + 1
αn
f (x, αnvn) = 0

wn/∂� = 0
(wn(0), ∂twn(0)) = 0.

It is clear that
∥∥∥∥
1

αn
f (x, αnvn)

∥∥∥∥
L1([0,T ],L2(�))

−→
n−→+∞ 0 for every T ≥ 0,

thenWn(t) −→
n−→+∞ 0 in L∞([0, T ] ,H), that is

sup
0≤t≤T

∣∣∣E
((
vn − v0n

)
(t)

)∣∣∣ →
n→+∞ 0 (71)

due to the hyperbolic inequality.
Let t ≥ 0, by virtue of (14) (respectively, (50), (Vn(t))n (respectively, (V 0

n (t))n)
is bounded in H and admits a subsequence that converges weakly to V (t)

(respectively, V 0(t)).
Therefore, (71) yields

V (t) = V (t)0 for every t ≥ 0.
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Coming back to the contradiction argument developed above, we can find ψ ∈ K ,
ψn ⇀ ψ and P+V n(T ) ⇀ P+V (T ) = P+V 0(T ) in H , where

⎧
⎨

⎩

�v = 0
v/∂� = 0
(v(0), ∂t v(0)) = ψ.

By the compactness of ZL(t) for T ≥ TR + 3R, (see [20])

ZL(T )ψn −→
n−→+∞ ZL(T )ψ = P+V (T ), pour tout T ≥ TR + 3R.

On the other hand ‖ψn‖H ≤ 1 and ‖ψn‖H −→
n−→+∞ 1, which gives using (65)

‖ZL(T )ψ‖H = ‖ψ‖H = 1,

and contradicts the result of Melrose (see [20]).

3.3 Exponential Decay for the Local Energy of the Critical
Wave Equation

In the following section we identify U(t)ϕ and Z(t)ϕ with their first components.
Let ϕ ∈ H with support in BR; clearly ϕ ∈ K . Moreover for all h ∈ H , we have

P+h = h on BR . Consequently U(t)ϕ = Z(t)ϕ on BR , so

ER(U(t)ϕ) = ER(Z(t)ϕ) ≤ E(Z(t)ϕ).

Thus it is enough to prove the exponential decay of E(Z(t)ϕ). Furthermore, by the
semi-group property it suffices to prove: for every E0 > 0 there exist T > 0 and
0 < C < 1 such that,

E(Z(T )ϕ) ≤ CE(ϕ) for every ϕ ∈ K satisfying E(ϕ) ≤ E0.

For that we argue by contradiction: We fix E0 > 0 and we suppose that for every T
and for every 0 < C < 1, there exists ϕ such that,

E(Z(T )ϕ) ≥ CE(ϕ) and E(ϕ) ≤ E0. (72)

Then we obtain two sequences Cn −→
n−→+∞ 1, and (ϕn)n with

E (Z (n) ϕn) ≥ CnE (ϕn) .
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Therefore, for every t ≤ n

E(Z(t)ϕn) ≥ CnE (ϕn)

= CnE(U(t)ϕn)

= Cn

(
1

2
‖U(t)ϕn‖2H +

1

6

∫

�

χ(x)
∣∣(U (t) ϕn)1

∣∣6 dx
)

= Cn

(
E(Z(t)ϕn)+ 1

2

∥∥(P+ − I )U(t)ϕn
∥∥2
H

)
,

then

1

2
Cn

∥∥(P+ − I )U(t)ϕn
∥∥2
H
≤ (1− Cn)E(Z(t)ϕn) −→

n−→+∞ 0. (73)

(ϕn) is a bounded sequence in H , so there exists a subsequence, still denoted (ϕn)
and ϕ ∈ K such that ϕn ⇀

n−→+∞ ϕ in K . And thanks to Corollary A.1

(P+ − I )U(t)ϕn ⇀
n−→+∞ (P+ − I )U(t)ϕ, for every t ≥ 0.

Combining with (73), we obtain E(Z(t)ϕ) = E(U(t)ϕ) = E (ϕ), for every t ≥ 0.
Using then Proposition 3.8, we easily obtain that the weak limit ϕ of the sequence

ϕn is 0.
To finish the proof of Theorem 3.1 we need the following proposition.

Proposition 3.14 Let (ϕn)n a bounded sequence in K such that ϕn ⇀ 0 then there
exists a positive and nondecreasing sequence

(
αj
)
satisfying

lim
j−→+∞ lim

n−→+∞
∥∥U(αj )ϕn

∥∥
H(B5R)

= 0. (74)

We postpone the proof of this proposition.

End of Proof of Theorem 3.1 We write as in (60)

∥∥Z(αj + 2R)ϕn
∥∥
H
= ∥∥Z(αj + 2R)ϕn

∥∥
H0

= ∥∥P+MU(αj )ϕn
∥∥
H0

≤ ∥∥MU(αj )ϕn
∥∥
H0

= ∥∥MU(αj )ϕn
∥∥
H0(B3R)

≤ ∥∥U(αj + 2R)ϕn
∥∥
H(B3R)

+ ∥∥U(αj )ϕn
∥∥
H(B5R)

,
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where M = U(2R) − U0(2R). As the first term of the last inequality is controlled
by the second (the finite speed propagation property) we deduce that

lim
n−→+∞E(Z(αj + 2R)ϕn)

= lim
n−→+∞(

1

2

∥∥Z(αj + 2R)ϕn
∥∥2
H
+ 1

6

∫

�

χ(x)
∣∣(U(αj + 2R)ϕn)1

∣∣6 dx) −→
j−→+∞ 0.

(75)

Now we rewrite the right-hand term of (75) as

E(Z(αj + 2R)ϕn) = E(ϕn)− 1

2

∥∥(P+ − I )U(αj + 2R)ϕn
∥∥2
H
.

Passing then to the limit, first as n −→ +∞, then as j −→ +∞ we obtain
lim

n−→+∞E(ϕn) = 0.

Let β2n = E(ϕn). vn = un
βn

satisfies

(S)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�vn + β4nχ(x)v5n = 0 on R×�
vn = 0 in R× ∂�
(vn(0), ∂t vn(0)) = ϕn

βn
= ψn ∈ K

Ẽn (vn) = 1
2

∫
�

(|∂tvn|2 + |∇xvn|2
)
dx + 1

6

∫
�
β4nχ(x)v

6
ndx = 1.

Denote Vn(t) = (vn(t), ∂tvn(t)) = V 0
n (t)+Wn(t), where V 0

n (t) = (v0n(t), ∂tv
0
n(t)),

andWn(t) = (wn(t), ∂twn(t)) with

⎧
⎪⎨

⎪⎩

�v0n = 0 on R×�
v0n = 0 in R× ∂�
(v0n(0), ∂t v

0
n(0)) = ϕn

βn

and

⎧
⎨

⎩

�wn + β4nχ(x)v5n = 0 on R×�
wn = 0 in R× ∂�
(wn(0), ∂twn(0)) = 0.

Strichartz inequality (see Corollary 2.2 in [26] or Proposition 2.1 in [4]) applied to
system (S) gives

‖vn‖L5([0,T ],L10(�)) ≤ C(E(
ϕn

βn
)+ β4n

∥∥∥χ(x)v5n
∥∥∥
L1([0,T ],L2(�))

)

≤ C(1+ β4n ‖vn‖5L5([0,T ],L10(�))
).

Since βn −→
n−→+∞ 0, a classical bootstrap argument shows that χ(x)v5n is bounded in

L1([0, T ] , L2(�)) for every T ≥ 0, which yields due to the hyperbolic inequality

sup
0≤t≤T

∣∣∣E
((
vn − v0n

)
(t)

)∣∣∣ →
n→+∞ 0. (76)
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Now, for t ≥ 0, (Vn(t))n
(
respectively,V 0

n (t)
)
is bounded in H and admits then a

subsequence weakly converging to V (t)
(
respectively, V 0(t)

)
.Moreover (76) gives

V 0
n (t) ⇀

n−→+∞ V 0(t) = V (t) for every t ≥ 0,

and by the compactness of ZL(t) [20], we have

P+V 0
n (t) −→

n−→+∞ P+V 0(t), for every t ≥ TR + 9R.

Then, according to (76)

P+Vn(t) −→
n−→+∞ P+V 0(t), ∀t ≥ TR + 9R.

Coming back to the contradiction argument developed above, we have

Cn ≤ Ẽn(P
+Vn(t)) ≤ 1,

and passing to the limit we get

1

2

∥∥∥P+V 0(t)

∥∥∥
2

H
= 1. (77)

Using again the fact Ẽn (vn) = 1, we obtain

‖Vn(t)‖H ≤
√
2

then
〈
Vn(t), V

0(t)
〉
≤ ‖Vn(t)‖H

∥∥∥V 0(t)

∥∥∥
H
≤ √2

∥∥∥V 0(t)

∥∥∥
H
,

and using Vn(t) ⇀
n−→+∞ V 0(t) which implies, in particular,

〈
Vn(t), V

0(t)
〉
−→

n−→+∞

∥∥∥V 0(t)

∥∥∥
2

H
,

then we obtain
∥∥V 0(t)

∥∥
H
≤ √2. Combining this with (77) we deduce that we can

find ψ = V (0) ∈ K such that

‖ZL(t)ψ‖H = ‖ψ‖H =
√
2 for every t ≥ 0,

which contradicts the result of Melrose (see [20]). ��
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In order to prove Proposition 3.14 we will need the following Proposition due to
B. Dehman and P. Gérard. They proved this result for� = R

3, but one can see that,
with slight modifications, the proof remains valid when � is the exterior of convex
obstacle.

Proposition 3.15 (Adapted from [8]) Let (rn) be a sequence of solutions of

�rn + χ(x)r5n = fn,

in the “Shatah–Struwe” class and we assume that (rn(0), ∂t rn(0)) ⇀ (r0, r1) in
HD(�)× L2(�) and fn −→ 0 strongly in L1

loc(R+, L2(�)).

Let r be the “Shatah–Struwe” solution of

�r + χ(x)r5 = 0, r(0) = r0, ∂t r(0) = r1

and r̃n the “Shatah–Struwe” solution of

�r̃n + χ(x)r̃5n = 0, r̃n(0) = rn(0)− r0, ∂t r̃n(0) = ∂t rn(0)− r1.

Then for every T > 0,

sup
0≤t≤T

∥∥∇x,t rn −∇x,t r −∇x,t r̃n
∥∥
L2(�)

+ ‖rn − r − r̃n‖L5(R,L10(�) −→
n−→+∞ 0.

We come back now to the proof of proposition 3.14.

Proof of Proposition 3.14 Let (un)n∈N (respectively,(vn)n∈N) the sequence of solu-
tions to (6) (with p = 5) (respectively,(EL)) associated with the sequence of initial
data (ϕn)n∈N, in the sense that

⎧
⎨

⎩

�un + χ(x)u5n = 0 on R×�
un = 0 in R× ∂�
(un(0), ∂tun(0)) = ϕn

and

⎧
⎨

⎩

�vn = 0 on R×�
vn = 0 in R× ∂�
(vn(0), ∂t vn(0)) = ϕn.

rn = un − vn satisfies then
⎧
⎨

⎩

�rn + χ(x)r5n = χ(x)((un − vn)5 − u5n) = fn on R×�
rn = 0 in R× ∂�
(rn, ∂t rn)/t=0 = 0.

Due to Proposition 3.10 (which is easily adapted in our context) vn −→ 0 on

H 1
loc

(
K̃(T )

)
for T ≥ T0 = TR + 3R, where K̃(T ) = {(t, x) ∈ R×� / |x|

≤ t − T + R, t ≥ T } , then
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fn = χ(x)

4∑

p=0
C
p

5 u
p
nv

5−p
n −→

n−→+∞ 0 in L1
loc([T0,+∞[ , L2(�)).

Indeed by Hölder’s inequality, Strichartz estimates, and corollary A.2 one can see
that∥∥∥χ(x)upnv

5−p
n

∥∥∥
L1
loc([T0,+∞[,L2(�))

converges to 0.

Applying then Proposition 3.15, we obtain

‖rn − r̃n‖H 1
loc([T0,T ]×�) −→

n−→+∞ 0 for every T ≥ T0, (78)

where r̃n satisfies

⎧
⎨

⎩

�r̃n + χ(x)r̃5n = 0 on R×�
r̃n = 0 in R× ∂�
(r̃n, ∂t r̃n)/t=T0 = (rn, ∂t rn)/t=T0 .

Combining then (78) with the fact that supp(rn(t)) ⊂ BR+t for every t ≥ 0, we see
that

r̃n −→
n−→+∞ 0 in H 1

loc(|x| > R + t, t ≥ T0). (79)

Moreover, we recall that the energy density of (r̃n) is given by

en(t, x) = 1

2

[
|∂t r̃n(t, x)|2 + |∇x r̃n(t, x)|2

]
+ 1

6
χ(x) |r̃n(t, x)|6 ,

and e(t, x) the weak limit of en(t, x).
We note that the conclusion of Theorem 7 in [8] remains valid in our situation,

that is

e(t, x) =
+∞∑

j=1
e(j)(t, x)+ ef (t, x), (80)

where e(j) is the limit energy density of the nonlinear concentrating wave q(j)n

solution to
⎧
⎨

⎩
�q(j)n + χ(x)

(
q
(j)
n

)5 = 0 on R×�, q(j)n = 0 in R× ∂�
(q
(j)
n (0), ∂tq

(j)
n (0)) = (p

(j)
n (0), ∂tp

(j)
n (0)),

(p
(j)
n ) is the solution of (128) associated with

(
ϕ(j), ψ(j), h

(j)
n , x

(j)
n , t

(j)
n

)
and ef is

the limit energy density of a sequence of solutions of the linear wave equation w̃n,
namely
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ef (t, x) =
∫

ξ∈S2
μ(t, x, dξ)

with μ(t, x, dξ) = μ+(t, x, dξ)+μ−(t, x, dξ) and μ± are positive measures on�
×S2.

Consequently, using (80) we obtain

∥∥∥q(j)n

∥∥∥
H 1
loc(|x|>R+t, t≥T0)

−→
n−→+∞ 0 and ‖w̃n‖H 1

loc(|x|>R+t, t≥T0) −→
n−→+∞ 0.

(81)
On the other hand, taking χ = χ(x(j)), where x(j) = lim

n−→+∞x
(j)
n and using

Theorem 1 in [4] (or also Theorem 2 in [10] with slight modifications), we obtain

∫

�

(

∣∣∣∂t (q
(j)
n − v(j)n ) (t, x)

∣∣∣
2+

∣∣∣∇x(q(j)n − v(j)n ) (t, x)

∣∣∣
2
)dx −→

n−→+∞ 0, t ∈
]
t
(j)∞ , T

]
,

(82)
for every T > t

(j)∞ , where v(j)n is a sequence of finite energy solutions of the
linear wave equation and t (j)∞ = lim

n−→+∞t
(j)
n witch verifies t (j)∞ ≥ T0, in fact the

decomposition of the energy density is only made in the region t ≥ T0.
Denote μj , j ≥ 1 (respectively,μ) the microlocal defect measures associated

with
(
q
(j)
n

)

n
(respectively,w̃n) . The result (82) implies that μj is also attached to

the sequence v(j)n on the time interval
]
t
(j)∞ , T

]
. Let q ∈ T ∗(K̃(T

t
(j)∞ +R + t

(j)∞ ))

(recall that T
t
(j)∞ +R is given by Definition 3.9) and λ a generalized bicharacteristic

starting at q. The obstacle is strictly convex and then nontrapping; so if λ is traced
backwards in time, it does not meet ∂� or meets ∂�.

But in the two cases λ0 = λ
/t=t (j)∞ ∈

{
|x| > R + t, t ≥ t

(j)∞
}
and in view of

(81), we get

μj = μ = 0 on
{
|x| > R + t, t ≥ t

(j)∞
}
.

Applying then the linear result of G.Lebeau (see [10]) for propagation of the support
of μj (respectively,μ) we deduce that μj = μ = 0 on K̃(T

t
(j)∞ +R + t

(j)∞ ). Hence

e(j) = ef = 0 on K̃(T
t
(j)∞ +R + t

(j)∞ ),

consequently

j∑

p=1
e(p) = 0 on K̃( max

1≤p≤j(Tt(p)∞ +R + t
(p)∞ )). (83)

On the other hand, by (80) we have
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∀ε > 0, ∃j0 ∈ N such that for every j ≥ j0
∑

p≥j+1
e(p) ≤ ε

vol(B5R)
, (84)

then (83) and (84) gives

lim
j−→+∞ lim

n−→+∞
∥∥r̃n(αj )

∥∥
H(B5R)

= 0,

where αj = max
1≤p≤jTt(p)∞ +R + t

(p)∞ .

Consequently, we get by (78) the same limit for rn. Finally, recalling that un =
rn + vn and vn −→ 0 on H 1

loc

(
K̃(T )

)
for T ≥ T0 we obtain the desired result. ��

4 Polynomial Decay for the Local Energy of the Semilinear
Wave Equation with Small Data

Now we consider the following nonlinear wave equation,

{
�u+ λu |u|p−1 = 0, in R× R

3,

u(0, x) = f (x) ∈ C1(R3) and ∂tu(0, x) = g(x) ∈ C0(R3),
(85)

where λ ∈ R.

We assume that |f (x)| ≤ ε

(1+ |x|)p−1 and |g(x)|+ |∇f (x)| ≤ ε

(1+ |x|)p , for
some ε > 0.

We keep the global energy and the local energy of u at time t as in ***Sect. 2
and we take here χ(x) = λ and � = R

3.

Now, we define the following functional space which is inspired from the space
introduced in [24]

X
p
δ,R =

{
u s.t. ∇ lxu(t, x) ∈ C0(R× R

3), 0 ≤ l ≤ 1,
‖u‖Vp ≤ δ and ‖∂tu‖Vp + ‖∇xu‖Vp ≤ R

}

,

where we denoted

‖u‖Vp := sup
t∈R
x∈R3

[(1+ |x| + |t |)(1+ ||x| − |t ||)p−2|u(t, x)|].

We establish the global well posedness and the local energy decay for (85).

Theorem 4.1 Assume that p > 1+√2. Then there exist ε0 > 0, δ and R > 0 such
that, for every ε ∈ ]0, ε0[ the system (1.1) admits a unique solution in the space
X
p
δ,R. Moreover, there exists a constant C = C(ρ, ε0) > 0 such that following
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inequality

Eρ(u)(t) = 1

2

∫

Bρ
(|∂tu(t, x)|2+|∇xu(t, x)|2)dx+ λ

p + 1

∫

Bρ
|u(t, x)|p+1 ≤ C

(1+ t)2p−2

holds for every u solution of (85).

Remark 4.2

(1) The results in Theorem 4.1 complete the work of Pecher [24] who proves the

global well posedness and scattering for p ∈
]
1+√2, 3

[
.

(2) Let also indicate that optimality of the decay rate is still an open problem.
(3) The proof of theorem 4.1 is based on a fixed point process and uses in crucial

way the properties of the fundamental solution of the wave operator on R
3.

4.1 Fundamental Lemmas

In this subsection, we give some preliminary lemmas.

Lemma 4.3 ([24]) If h is a continuous function and r = |x|, then
∫

|y−x|=t
h(|y|)dSy = 2πt

r

∫ r+t

|r−t |
σh(σ)dσ.

Lemma 4.4 Assume p > 1+√2 and define

g(σ, s) = σ

(1+ σ + s)p(1+ |s − σ |)p(p−2) .

Then for some C = C(p) the following inequality holds

∫ t

0
(

∫ r+t−s

|r−t+s|
g(σ, s)dσ )ds ≤ c0r

(1+ r + t)(1+ |r − t |)(p−2) = N(r, t) for r ≥ 0, t ∈ R+.

Proof The region of integration is divided into three parts as follows:

0 ≤ r ≤ t − 1, t − 1 ≤ r ≤ t + 1 and r ≥ t + 1.

We just treat the first case and we note that the other cases can be treated in the same
way.

We substitute γ = s + σ, β = s − σ
∫ t

0
(

∫ r+t−s

|r−t+s|
g(σ, s)dσ )ds ≤

∫ t

0
(

∫ r+t−s

|r−t+s|
dσ

(1+ σ + s)p−1(1+ |s − σ |)p(p−2) )ds
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≤
∫ t+r

t−r
dγ

(1+ γ )p−1
∫ t−r

−∞
dβ

(1+ |β|)p(p−2)

≤ C

∫ t+r

t−r
dγ

(1+ γ )p−1 .

If 1+ t − r ≥ 1+t+r
2 , i.e., 1+ t ≥ 3r one can estimate

∫ t+r

t−r
dγ

(1+ γ )p−1 ≤
2r

(1+ t − r)p−1 ≤
4r

(1+ t + r)(1+ t − r)p−2 .

Whereas in the case 1+ t − r ≥ 1+t+r
2 , i.e., 1+ t ≤ 3r one estimates by

∫ t+r

t−r
dγ

(1+ γ )p−1 =
1

p − 2

[
1

(1+ t − r)p−2 −
1

(1+ t + r)p−2
]

≤ c

(1+ t − r)p−2 ≤
cr

(1+ t + r)(1+ t − r)p−2 .

This completes the proof of Lemma 4.4. ��
Remark 4.5 As a direct consequence of Lemma 4.4 we define

Vp =
{
u ∈ C0

(
R× R

3
)
\ ‖u‖Vp <∞

}
.

Note that ‖·‖Vp is an algebra norm.

Lemma 4.6 Let u0 be the solution of the following linear wave equation

{
∂2t u0 −�u0 = 0,
u0(x, 0) = f (x) ∈ C1(R3), ∂tu0(x, 0) = g(x) ∈ C0(R3),

and take ε > 0 and k > 2 such that

|f (x)| ≤ ε

(1+ |x|)k−1 and |g(x)| + |∇f (x)| ≤ ε

(1+ |x|)k , for all x ∈ R
3.

Then

|u0(x, t)| ≤ Cε

(1+ |x| + t)(1+ ||x| − t |)k−2 , for x ∈ R
3 and t ∈ R+, i.e., u0 ∈ Vk.

Proof According to the classical representation formula, we have

u0(x, t)= t

4π

∫

|y|=1
g(x + ty)dSy + ∂

∂t
(
t

4π

∫

|y|=1
f (x + ty)dSy)
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= t

4π

∫

|y|=1
g(x + ty)dSy+ 1

4π

∫

|y|=1
f (x + ty)dSy+ t

4π

∫

|y|=1
(∇xf (x + ty), ξ)dSy

= 1

4πt

∫

|x−y|=t
g(y)dSy + 1

4πt2

∫

|x−y|=1
f (y)dSy + t

4π

∫

|y|=1
(∇xf (x + ty), y)dSy

= I1 + I2 + I3.

We treat the first term as follows

|I1| = C

t

∫

|y−x|=t
|g(y)| dSy ≤ Cε

t

∫

|y−x|=t
dSy

(1+ |y|)k =
2πCε

r

∫ r+t

|r−t |
σdσ

(1+ σ)k .

If r ≥ 1 and r ≥ t
2 we estimate

1

r

∫ r+t

|r−t |
σdσ

(1+ σ)k ≤
1

r

∫ +∞

|r−t |
dσ

(1+ σ)k−1 ≤
c

r(1+ |r − t |)k−2 ≤
c

(1+ r + t)(1+ |r − t |)k−2 .

If r ≤ t
2 or t

2 ≤ r ≤ 1 we have

1

r

∫ r+t

|r−t |
σdσ

(1+ σ)k ≤
1

r

∫ r+t

|r−t |
dσ

(1+ |t − r|)k−1 ≤
2

(1+ |r − t |)k−1

≤ c

(1+ r + t)(1+ |r − t |)k−2 .

Finally the second and third terms can be handled in the same way.
The proof of Lemma 4.6 is achieved. ��

4.2 Proof of Theorem 4.1: Existence and Decay of the Local
Energy

We denote by

E(u)(t, x) = λ

4π

∫ t

0

1

t − τ (
∫

|y−x|=t−τ
up(τ, y)dSy)dτ,

where u satisfies (85).
In order to run a fixed point theorem we estimate for u ∈ Vp

|E(u)(t, x)| ≤ C
1

4π

∫ t

0

1

t − τ (
∫

|y−x|=t−τ
∣∣up(τ, y)

∣∣ dSy)dτ

≤ C
1

4π

∫ t

0

1

t − τ (
∫

|y−x|=t−τ
dSy

(1+ |y| + τ)p(1+ ||y| − τ |)p(p−2) )dτ ‖u‖
p
Vp
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≤ C1

r

∫ t

0
(

∫ r+t−τ
|r−t+τ |

σdσ

(1+ σ + τ)p(1+ |σ − τ |)p(p−2) )dτ ‖u‖
p
Vp

≤ C2

(1+ r + t)(1+ |r − t |)(p−2) ‖u‖
p
Vp

which gives

‖E(u)‖Vp ≤ C ‖u‖pVp . (86)

One can easily verify that ∂xkE(u) = E(∂xk (up)).
Consequently one proves

∥∥∂xkE(u)
∥∥
Vp
≤ C ‖u‖p−1Vp

∥∥∂xku
∥∥
Vp
. (87)

On the other hand

|(E(u)− E(v))(t, x)| ≤ C
1

4π

∫ t

0

1

t − τ (
∫

|y−x|=t−τ
∣∣up − vp∣∣ (τ, y)dSy)dτ

≤ C
1

4π

∫ t

0

1

t − τ (
∫

|y−x|=t−τ

∣∣∣(u− v)(up−1 + vp−1)
∣∣∣ (τ, y)dSy)dτ.

Thus

‖E(u)− E(v)‖Vp ≤ C(‖u‖p−1Vp
+ ‖v‖p−1Vp

) ‖u− v‖Vp , (88)

and one easily verifies

∥∥∂xKE(u)− ∂xKE(v)
∥∥
Vp
≤ C[‖u− v‖Vp (‖u‖p−2Vp

+ ‖v‖p−2VP
)
∥∥∂xKu

∥∥
Vp

+ ∥∥∂xKu− ∂xK v
∥∥
Vp
(‖u‖p−1Vp

+ ‖v‖p−1Vp
)]. (89)

Then we write

E(u)(t, x) = λ

4π

∫ t

0
(t − τ)(

∫

|y|=1
up(τ, x + (t − τ)y)dSy)dτ.

It is easy to check that

∂tE(u)(t, x) = pE(∂tu up−1)(t, x)+ 1

4πt

∫

|x−y|=t
up(0, y)dSy.

As |up(0, y)| ≤ C

(1+|y|)p(p−1) , we deduce that
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|∂tE(u)(t, x)| ≤ p

∣∣∣E(∂tu up−1)(t, x)
∣∣∣+ C

t

∫

|y−x|=t
dSy

(1+ |y|)p(p−1) ‖u‖
p
Vp

≤ p

∣∣∣E(∂tu up−1)(t, x)
∣∣∣+ C

r

∫ r+t

|r−t |
σdσ

(1+ σ)p+1 ‖u‖
p
Vp

since p > 1+√2.
Similarly to the proof of Lemma 4.6 and in order to estimate the second term of

the last inequality, we distinguish the two following cases:
If r ≥ 1 and r ≥ t/2 we obtain

1

r

∫ r+t

|r−t |
σdσ

(1+ σ)p+1 ≤
1

r

∫ +∞

|r−t |
dσ

(1+ σ)p ≤
c

r(1+ |r − t |)p−1 ≤
c

(1+ r + t)(1+ |r − t |)p−1 .

If r ≤ t
2 or t

2 ≤ r ≤ 1 it follows that

1

r

∫ r+t

|r−t |
σdσ

(1+ σ)p+1 ≤
1

r

∫ r+t

|r−t |
dσ

(1+ |t − r|)p ≤
2

(1+ |r − t |)p ≤
c

(1+ r + t)(1+ |r − t |)p−1 ,

and we obtain

‖∂tE(u)‖Vp ≤ C ‖u‖p−1Vp
(‖∂tu‖Vp + ‖u‖VP ). (90)

Finally we write

(∂tE(u)− ∂tE(v))(t, x) = pE(∂tu(up−1 − vp−1))(t, x)+ pE(vp−1(∂tu− ∂tv))(t, x)
+ 1

4πt

∫

|x−y|=t
(up(0, y)− vp(0, y))dSy.

Consequently

‖∂tE(u)− ∂tE(v)‖Vp ≤ C ‖∂tu‖Vp ‖u− v‖Vp (‖u‖p−2Vp
+ ‖v‖p−2Vp

)+
‖∂tu− ∂tv‖Vp ‖v‖p−1Vp

+ ‖u− v‖Vp (‖u‖p−1Vp
+ ‖v‖p−1Vp

).

(91)

The rest of the proof is standard.
The estimates (86), (87), and (90) show that for an arbitrary given R one has

‖E(u)‖Vp ≤ Cδp,
∥∥∂xkE(u)

∥∥
Vp
≤ Cδp−1R and ‖∂t (E(u))‖Vp ≤ C(δp + δp−1R).

So u0 + E(u) ∈ X if u ∈ Xp
δ,R. Now we take δ > 0 small enough, say,
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Cδp−1 ≤ 1

4
and Cδp−2R ≤ 1

4
,

and we consider the sequence un+1 = u0 + E(un), n ≥ 0.

By (88), (89), and (91), we have ‖un+1 − un‖Vp ≤
1

2
‖un − un−1‖Vp .

Consequently, we have

‖un+1 − un‖Vp ≤
c

2n
,
∥∥∂xk (un+1 − un)

∥∥
Vp
≤ c

2n
+ 1

2

∥∥∂xk (un − un−1)
∥∥
Vp
.

Thus, we deduce that

∥∥∂xk (un+1 − un)
∥∥
Vp
≤ cn

2n
and ‖∂t (un+1 − un)‖Vp ≤

cn

2n
.

We then conclude that (un) converges in X
p
δ,R to u which is the unique solution of

the system (85).
Finally as u in Xp

δ,R then for t ≥ 0 and x ∈ B(0, ρ) we have

|∂tu(t, x)|2 + |∇xu(t, x)|2 ≤ C

(1+ t)2p−2 ,

and then

|u(t, x)|p+1 ≤ C

(1+ |x| + |t |)p+1(1+ ||x| − |t ||)(p+1)(p−2) .

This gives the energy decay.

5 Decay of the Local Energy for the Solutions of the Critical
Klein–Gordon Equation

In this section, we are interested in the following system:

{
�u+ χ1u+ χ2u5 = 0, on R× R

3,

u(0, x) = u0(x) ∈ H 1(R3) and ∂tu(0, x) = u1(x) ∈ L2(R3),
(92)

where � = ∂2t − �, χ1 and χ2 are positives functions, of class C1, with compact
support such that suppχ1 ∪ suppχ2 ⊂ BR for some R > 0 and satisfying

x · ∇χ1(x) ≤ 0 and x · ∇χ2(x) ≤ 4, ∀x ∈ R
3. (93)

We denote by H = H 1(R3)× L2(R3) endowed with the norm
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‖(ϕ1, ϕ2)‖2H =
∫

R3

(
|∇ϕ1|2 + |ϕ2|2

)
dx.

It is by now well-known that for every initial data (u0, u1) ∈ H 1(R3) × L2(R3);
system (92) admits a unique solution u in the “Shatah–Struwe” class, that is

u ∈ C( R,H 1(R3)) ∩ L5
loc( R, L

10(R3)), ∂tu ∈ C( R, L2(R3)).

The global energy of u at time t is defined by

E(u(t)) = 1

2

∫

R3

(
|∂tu (t)|2 + |∇xu (t)|2 + χ1(x)|u(t)|2

)
dx+ 1

6

∫

R3
χ2(x) |u (t)|6 dx,

(94)
which is independent of time.

We define the local energy by

ER(u(t)) = 1

2

∫

BR

(
|∂tu (t)|2 + |∇xu (t)|2 + χ1(x)|u(t)|2

)
dx+ 1

6

∫

BR

χ2(x) |u (t)|6 dx,
(95)

where BR is a ball of radius R.
For every t ∈ R, we define the nonlinear Klein–Gordon operator U(t) by

U(t) : H −→ H

(ϕ1, ϕ2) �−→ U (t) (ϕ1, ϕ2) = (u (t) , ∂tu (t)) ,

where u is the solution of (92) in the “Shatah–Struwe” class with initial data ϕ =
(ϕ1, ϕ2) .

(U (t))t∈R forms a one parameter continuous group onH, which will be referred
as the nonlinear group.

Our major concern is to prove exponential decay of the local energy. More
precisely, we have:

Theorem 5.1 For all R > 0, there exist α > 0 and c > 0 such that

ER(u(t)) ≤ Ce−αtE(0) (96)

holds for every u solution to (92) with initial data (u0, u1) ∈ H supported in BR .

The literature is less provided for Klein–Gordon equation. We quote essentially
the work of C. Morawetz [21] and B. Dehman and P. Gérard [12]. Furthermore,
a recent result by M. Malloug [19] which establishes the exponential decay of the
local energy for the damped Klein–Gordon equation in exterior domain and R-S-O.
Nunes and W-D. Bastos [23] obtain the polynomial decay of the local energy for the
linear Klein–Gordon equation.

In order to prove the main result in this section, first we use an argument inspired
from the works of [2, 4] to establish that the Strichartz norms of the solutions to
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(92) are global in time. Then, we introduce the Lax–Phillips semi-group ZKG(t)
and a similar argument to that giving in [23] and we get the exponential decay of
the localized linear Klein–Gordon equation.

More precisely, we consider the system,

{
�u+ χ1u = 0, on R× R

3,

u(0, x) = u0(x) ∈ H 1(R3) and ∂tu(0, x) = u1(x) ∈ L2(R3),
(97)

where χ1 is a function of class C1 with compact support such that suppχ1 ⊂ BR ,
for some R > 0. We denote by EL the global energy of u solution of (9) at time t
defined by

EL(u(t)) = 1

2

∫

R3

(
|∂tu (t)|2 + |∇xu (t)|2 + χ1(x)|u(t)|2

)
dx,

and we define the local energy by

EL,R(u(t)) = 1

2

∫

BR

(
|∂tu (t)|2 + |∇xu (t)|2 + χ1(x)|u(t)|2

)
dx,

where BR is a ball of radius R.
We prove the following theorem:

Theorem 5.2 Let R > 0, there exist α > 0 and c > 0 such that

EL,R(u(t)) ≤ Ce−αtEL(0) (98)

holds for every u solution to (97) with initial data (u0, u1) ∈ H supported in BR .

5.1 Strichartz Norms Global in Time

The main concern of this section is to prove that Strichartz norms for the solutions
of (92) are global in time, we recall the following theorem due to J. Zhang and J.
Zheng.

Theorem 5.3 ([29, Zhang–Zheng])
Let (X, g) be a nontrapping scattering manifold of dimension n ≥ 3. Suppose

that u is the solution to the Cauchy problem:

(S)

{
∂2t u−�gu+ u = F (t, z) , (t, z) ∈ I ×X,
u(0) = u0(z), ∂tu(0) = u1(z),

where �g denotes the Laplacian on the manifold X with scattering metric g.
For some initial data u0 ∈ Hs , u1 ∈ Hs−1, the time interval I ⊆ R and
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F ∈ Lq̃ ′t (I ;Lr̃ ′z (X)) then

‖u(t, z)‖Lqt (I ;Lrz(X)) + ‖u(t, z)‖C(I ;Hs(X)) � ‖u0‖Hs(X) + ‖u1‖Hs−1(X) + ‖F‖Lq̃′t (I ;Lr̃′z (X)),

where the pairs (q, r), (q̃, r̃) ∈ [2,+∞]2 satisfy the KG-admissible condition with
0 ≤ θ ≤ 1,

2

q
+ n− 1+ θ

r
≤ n− 1+ θ

2
, (q, r, n, θ) �= (2,∞, 3, 0), (99)

and the gap condition

1

q
+ n+ θ

r
= n+ θ

2
− s = 1

q̃ ′
+ n+ θ

r̃ ′
− 2. (100)

Remark 5.4 We note that in the case of flat Euclidean space, where X = R
3 and

gjk = δjk the previous result for problem (S) remains valid with slight modification
in the context of our problem (92), i.e., by taking F = χ2u

5 and replacing the linear
term u by χ1u.

Now, notice the following corollary, which is adapted from Theorem 5.3.

Corollary 5.5 Given a time interval I ⊆ R. The inequality

‖u(t, x)‖Lqt (I ;Lrx(R3)) + ‖u(t, x)‖C(I ;H 1(R3)) � E(u(0))1/2 + ‖χ2u5‖L1
t (I ;L2

x(R
3))

holds for every u solution to (92). Here the pair (q, r) ∈ ]2,+∞] × [2,+∞[ and
satisfies

1

q
+ 3

r
= 1

2
. (101)

For the proof of our main result, we need the following lemma:

Lemma 5.6 Let

e(t) = 1

2

∫

|x|≤t
x∈R3

(
|∂tu (t, x)|2 + |∇xu (t, x)|2 + χ1(x)|u(t, x)|2

)
dx + 1

6

∫

|x|≤t
x∈R3

χ2(x) |u (t, x)|6 dx.

There exists D > 0 such that, for all b > a > R, and every solution u to �u +
χ1u + χ2(x)u

5 = 0, with u ∈ C([a, b] ,H 1(R3)) ∩ L5([a, b] , L10(R3)), ∂tu ∈
C([a, b] , L2(R3)) we have
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∫

|x|≤a
x∈R3

χ2(x) |u(a, x)|6 dx ≤ D

[
b

a
(e(b)+ e(b)1/3)

]
.

Remark 5.7 We note that Lemma 5.6 is similar to that 2.10. Here, we choose a
suitable multiplier for the equation of Klein–Gordon.

Proof Let

Kb
a =

{
(t, x) ∈ R× R

3, a ≤ t ≤ b, |x| ≤ t
}
,

the truncated light cone,

Mb
a =

{
(t, x) ∈ R× R

3, a ≤ t ≤ b, |x| = t
}
,

the “mantle” associated with Kb
a , and

D(t) =
{
(t, x) ∈ R× R

3, |x| ≤ t
}
,

its spacelike sections. We note that

∂Kb
a = D(a) ∪D(b) ∪Mb

a .

We start with initial data in
(
C∞0

(
R
3
))2

, hence the associated solution is of class
C∞.

Multiplying equation (92) by ∂tu, we obtain

divt,x

(
1

2
|∇xu(t, x)|2 + 1

2
|∂tu(t, x)|2 + 1

2
χ1 |u(t, x)|2 + 1

6
χ2(x) |u(t, x)|6 ,−∂tu∇xu

)
= 0,

(102)
then we integrate (102) over the truncated cone Kb

a to obtain the classical energy
identity

e(b)− e(a) =
∫

Mb
a

(
1

2

∣∣∣∣
x

t + 1
∂tu+∇xu

∣∣∣∣

2

+ 1

2
χ1 |u(t, x)|2 + 1

6
χ2(x) |u|6

)
dσ√
2
.

(103)
Moreover, multiplying (92) by Lu = (−t∂t + x · ∇ + 1)u, we get

divt,x (tQ+ ∂tuu,−tP )+
(
2

3
χ2 − 1

6
x · ∇χ2

)
u6+|∂tu|2+|∇xu|2−(x.∇χ1) u2 = 0,

(104)
where
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Q = −
[
1

2
(|∇xu|2 + |∂tu|2 + χ1|u|2)+ 1

6
χ2(x)u

6
]
+ ∂tux

t
· ∇xu

and

P = x

t

(
1

2

(
|∂tu|2 − |∇xu|2 − χ1|u|2

)
− 1

6
χ2(x)u

6
)
+∇xu

(
−∂tu+ x

t
· ∇xu+ u

t

)
.

Integrating (104) over Kb
a we obtain

0 =
∫

D(b)

(bQ+ (∂tu)u) dx −
∫

D(a)

(aQ+ (∂tu)u) dx (105)

−
∫

Mb
a

(tQ+ ∂tuu+ x · P) dσ√
2
+
∫

Kb
a

(
|∂tu|2 + |∇xu|2

)
dxdt

+
∫

Kb
a

[(
2

3
χ2 − 1

6
x · ∇χ2

)
u6 − (x.∇χ1)u2

]
dxdt

= I + II + III + IV + V.

We start with the term III . Since t = |x| onMb
a , we can write

III =
∫

Mb
a

|x|
(
χ1|u|2 + 1

3
χ2u

6
)
dσ√
2
−
∫

Mb
a

u
x · ∇xu
|x| + (∂tu)u dσ√

2
.

We parameterizeMb
a by

y �−→ (|y| , y), a ≤ |y| ≤ b,

and let v(y) = u(|y| , y). Then

dσ = √2dy and y · ∇v|y| =
x · ∇xu
|x| + ∂tu.

Integrating by parts, one sees that

∫

y∈R3

a≤|y|≤b
v
y · ∇v
|y| dy = 1

2

∫

y∈R3

|y|=b
v2dσ − 1

2

∫

y∈R3

|y|=a
v2dσ −

∫

y∈R3

a≤|y|≤b

v2

|y|dy.

So if we go back to the original coordinates, we have

III =
∫

Mb
a

|x|
(
χ1u

2 + u2

|x|2 +
1

3
χ2u

6
)
dσ√
2
− 1

2

∫

∂Db

u2dσ + 1

2

∫

∂Da

u2dσ.

(106)
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Now, we rewrite the first and second term of (105) as

I + II = −H(b)+H(a)+ 1

b

∫

Db

(
x · ∇xuu+ 3

2
u2
)
dx− 1

a

∫

Da

(
x · ∇xuu+ 3

2
u2
)
dx,

(107)
where

H(t) =
∫

D(t)

t

[
1

2

∣∣∣∣
1

t
Lu

∣∣∣∣

2

+ 1

2

(

|∇xu|2 −
∣∣∣∣
x · ∇xu

t

∣∣∣∣

2

+ χ1|u|2
)

+ χ2 |u|
6

6

]

+ u2

t
dx.

(108)
An integration by parts gives

∫

D(t)

(
x · ∇xuu+ 3

2
u2
)
dx = t

2

∫

∂D(t)

u2dσ. (109)

Make use of (105), (106), (107), and (109), we get

H(a) − H(b)+
∫

Mb
a

t

(

χ1(x)u
2 + u2

t2
+ 1

3
χ2(x)u

6

)
dσ√
2
+
∫

Kb
a

(
|∂tu|2 + |∇xu|2

)
dxdt

+
∫

Kb
a

[(
2

3
− 1

6
x · ∇χ2(x)

)
u6 − (x.∇χ1(x)) u2

]
dxdt = 0.

Using hypothesis (93),
[(

2
3 − 1

6x · ∇χ2(x)
)
u6 − (x.∇χ1(x)) u2

]
� 0 and we

conclude that

H(a) ≤ H(b). (110)

On the other hand, in view of (108) we have the following double inequality

∫

D(t)

χ2(x)
u6

6
dx ≤ 1

t
H(t) ≤ C1

(
e(t)+ e(t)1/3

)
. (111)

The last inequality being a simple consequence of Hölder’s inequality applied to∫
D(t)

u2dx.

Consequently, dividing by a, we find from (110) and (111)

∫

D(a)

χ2(x)|u(a, x)|6dx ≤ D

[
b

a

(
e(b)+ e(b)1/3

)]
. (112)

Now, by a density argument and the continuity of the nonlinear map

F : H −→ C ([0, T ] ,H)
(ϕ,ψ) �−→ (u, ∂tu) ,
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where u is the solution of (92) such that (u, ∂tu)/t=0 = (ϕ, ψ), the result of this
lemma holds for every data in H . ��

To prove that the Strichartz norms are global in time we follow the same program
of that in Proposition 2.12 and we obtain the following proposition:

Proposition 5.8 Let u be a solution to (92), then

∫

R3

χ2(x) |u(t, x)|6 dx −→
t→±∞ 0, (113)

and for all (q, r) ∈ ]2,∞] × [2,∞[ satisfying (101), we have

u ∈ Lq(R+, Lr(R3)). (114)

5.2 Exponential Decay of the Local Energy of Localized
Linear Klein–Gordon Equation

The goal of this subsection is to prove the exponential decay of the local energy for
the localized linear Klein–Gordon equation,

{
�u+ χ1u = 0, on R× R

3,

u(0, x) = u0(x) ∈ H 1(R3) and ∂tu(0, x) = u1(x) ∈ L2(R3),
(115)

where χ1 is a function of class C1 with compact support such that suppχ1 ⊂ BR ,
for some R > 0. We equipped the Hilbert space H = H 1(R3) × L2(R3) with the
scalar product

((u1, u2), (v1, v2)) =
∫

R3
∇u1(x)∇v1(x)+ χ1(x)u1(x)v1(x)+ u2(x)v2(x)dx.

Obviously, this scalar product is equivalent to the classical one. We denote by EL
the global energy of u solution of (115) at time t defined by

EL(u(t)) = 1

2

∫

R3

(
|∂tu (t)|2 + |∇xu (t)|2 + χ1(x)|u(t)|2

)
dx,

and we define the local energy by

EL,R(u(t)) = 1

2

∫

BR

(
|∂tu (t)|2 + |∇xu (t)|2 + χ1(x)|u(t)|2

)
dx,

where BR is a ball of radius R.
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For that, we prove the following theorem:

Theorem 5.9 Let R > 0, there exist α > 0 and c > 0 such that

EL,R(u(t)) ≤ Ce−αtEL(0) (116)

holds for every u solution to (115) with initial data (u0, u1) ∈ H supported in BR .

5.2.1 Semi-Group of Lax–Phillips Adapted to Localized Linear
Klein–Gordon Equation

In this part we will show that the solution of (9) is generated by a semi-group of
contractions that we noteUKG(t) : t ≥ 0. Then we introduce the Lax–Phillips semi-
group ZKG(t) adapted to our case.

Proposition 5.10 The operator

AKG =
(

0 I

�− χ1I 0

)

of domainD(AKG) = {ϕ = (ϕ1, ϕ2) ∈ H such that AKGϕ ∈ H }, is maximal dissi-
pative.

Proof Let ϕ = (ϕ1, ϕ2) ∈ D(AKG). We have

(AKGϕ, ϕ) =
∫

R3
∇ϕ2(x)∇ϕ1(x)+�ϕ1(x)ϕ2(x)dx.

By integrating by parts, one sees that Re (AKGϕ, ϕ) = 0 and, therefore, AKG is a
dissipative operator.

Now, in order to prove that Im (I − AKG) = H , we consider g = (g1, g2) ∈ H
and ϕ = (ϕ1, ϕ2) ∈ D(AKG) satisfying

ϕ − AKGϕ = g. (117)

This is equivalent to

{
ϕ2 = ϕ1 − g1,
−�ϕ1 + (1+ χ1) ϕ1 = g1 + g2. (118)

Let introduce now, the bilinear form b(h,ψ) on H 1(R3) as follows:

b(h,ψ) =
∫

R3
∇h∇ψdx +

∫

R3
(1+ χ1) hψdx. (119)
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We have

|b(h,ψ)| ≤ c‖h‖H 1(R3)‖ψ‖H 1(R3),

so b is continuous, and b(h, h) ≥ c‖h‖H 1(R3), i.e., b is coercive.
Moreover, g1 + g2 =: g̃ ∈ L2(R3), then the linear form

l : H 1 → C

ψ �−→ (g̃, ψ)

is continuous. By the Lax–Milgram theorem, there exists a unique solution ϕ1 ∈
H 1(R3) of the variational problem

b(ϕ1, ψ) = l(ψ), ∀ψ ∈ H 1(R3).

Using again the system (118), one can easily find that ϕ = (ϕ1, ϕ2) ∈ D(AKG).
This permit to conclude the proof. ��

Remark 5.11 According to the Hille–Yosida theorem, AKG generates a C0-

contraction semi-group
(
UKG(t)

)

t≥0.

At present, we set for t ≥ 0 ZKG(t) = P+UKG(t)P−, where P+ and P− are,
respectively, orthogonal projection on (D+)⊥ and (D−)⊥.

The following proposition gives some properties of the operator ZKG(t).

Proposition 5.12

(1) ZKG(t)D+ = ZKG(t)D− = {0}, for every t ≥ 0.
(2) ZKG(t) operates on K = (D+)⊥ ∩ (D−)⊥ .
(3) (ZKG(t))t≥0 is a continuous semi-group on K .

The arguments (with slight modifications) in the proof below are contained in [1].
We include them for the reader’s convenience to make the paper self-contained.

Proof

(1) Let ϕ ∈ D− then by definition of P− we have: ZKG(t)ϕ = 0. Let ϕ ∈ D+,
since D+ and D− are orthogonal then P−ϕ = ϕ and so to deduce that
ZKG(t)ϕ = 0, it is enough to verify UKG(t)D+ ⊂ D+. Let ϕ ∈ D+ and

UKG(t)ϕ =
(
u(t)

∂tu(t)

)
the corresponding KG group where u(t) is the solution

of (9). Since ϕ ∈ D+ then u(t, x) = 0 for |x| ≤ t + R and t ≥ 0. As
supp(χ1u) ⊂ BR then u verifies:

{
∂2t u−�u = 0 on R+ × R

3,

u(0) = ϕ1 ∂tu(0) = ϕ2 on R
3.
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According to the uniqueness of the solution of Eq. (9), we conclude that
UKG(t)ϕ = U(t)ϕ. Which gives UKG(t)ϕ ∈ D+ because U(t)ϕ ∈ D+.

(2) Let ϕ ∈ K = (D+)⊥ ∩ (D−)⊥, show that ZKG(t)ϕ ∈ K . It is easy to see that
ZKG(t)ϕ ∈ (D+)⊥. In fact, let g ∈ D+, we have

(ZKG(t)ϕ, g) = (P+UKG(t)ϕ, g) = (UKG(t)ϕ, P
+g) = 0,

which shows that ZKG(t)ϕ ∈ (D+)⊥. It remains to verify that ZKG(t)ϕ ∈
(D−)⊥.

Let g ∈ D−, we have

(ZKG(t)ϕ, g) = (P+UKG(t)ϕ, g) = (UKG(t)ϕ, P
+g) = (UKG(t)ϕ, g)

= (ϕ,U∗KG(t)g).

To complete the proof of (2), we give the following lemma: ��
Lemma 5.13 Let U∗KG(t) the adjoint operator of UKG(t). Then U∗KG(t)ϕ =
U(−t)ϕ, ∀ϕ ∈ D−.
Proof Since UKG(t) is a semi-group generated by AKG, then UKG∗(t) is a semi-
group generated by A∗KG. Let g = (g1, g2) ∈ D−, we put

U∗KG(t)g =
(
v1(t)

v2(t)

)

such that

{
∂tv1 = −v2,
∂tv2 = −�v1 − χ1v1,

which implies

{
∂2t v1 −�v1 − χ1v1 = 0,
∂tv1 = −v2.

So, we have U∗KG(t)g =
(

v1(t)

−∂tv1(t)
)
=
(

v(t)

∂tw(t)

)
, v(t) is the solution of:

{
∂2t v −�v − χ1v = 0, on R+ × R

3,

(v(0), ∂t v(0)) = (g1,−g2).

Similarly U(−t)g =
(

w(t)

−∂tw(t)
)
, and w(t) the solution of
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{
∂2t w −�w = 0, on R+ × R

3,

(w(0), ∂tw(0)) = (g1,−g2).

Setting ṽ(t) = v(−t) and w̃(t) = w(−t) with t ≤ 0, then ṽ(t) and w̃(t) verify the
following equations:

{
∂2t ṽ −�ṽ − χ1ṽ = 0, on R− × R

3,

(̃v(0), ∂t ṽ(0)) = (g1,−g2),
{
∂2t w̃ −�w̃ = 0, on R− × R

3,

(w̃(0), ∂t w̃(0)) = (g1, g2).

Since g ∈ D− then U(−t)g = 0 on |x| ≤ t + R and t ≥ 0, so w̃(t) = 0 on
|x| ≤ −t + R and t ≤ 0. But we have suppχ1 ⊂ BR then by uniqueness of the
solution we deduce that w̃(t) = ṽ(t) for t ≤ 0, hence w(t) = v(t) for t ≥ 0, and
U∗KG(t)g = U(−t)g. ��
Now let us go back to the second point proof of the proposition, according to Lax
and Phillips (see Theorem 2.1 in [16, chapter V]) we have, U(−t)D− ⊂ D− for
all t ≥ 0. We deduce then that U∗KG(t)g ∈ D− and since ϕ ∈ (D−)⊥ then
(ZKG(t)ϕ, g) = (ϕ,U∗KG(t)g) = 0 which shows that ZKg(t)ϕ ∈ (D−)⊥.
3) Let s ≥ 0, t ≥ 0 and ϕ ∈ K . We have

ZKG(t)ZKG(s)ϕ = P+UKG(t)P−ZKG(s)ϕ

= P+UKG(t)P+UKG(s)P−ϕ

= P+UKG(t)P+UKG(s)ϕ.

Since P+UKG(t)P+ = P+UKG(t) (because (P+ − I ) is the orthogonal
projection on D+) then

ZKG(t)ZKG(s)ϕ = P+UKG(t)UKG(s)ϕ = ZKG(t + s).

The following lemma will be used to establish the exponential decay of the semi-
group ZKG(t):

Lemma 5.14 We have

(a) UKG(t)(D−)⊥ ⊂ (D−)⊥ and U(t)(D−)⊥ ⊂ (D−)⊥ for all t ≥ 0.
(b) U(t)(D−)⊥ ⊂ D+ for all t ≥ 2R.
(c) If we putM = UKG(2R)− U(2R) then we have,

Mϕ = 0 for |x| ≥ 3R and ‖Mϕ‖ ≤ 2‖ϕ‖5R.

(d) ZKG(t) = P+MUKG(t − 4R)MP−, ∀t ≥ 4R.
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Proof

(a) Let ϕ ∈ (D−)⊥ and g ∈ D−, we have (UKG(t)ϕ, g) = (ϕ,U∗KG(t)g). As
U∗KG(t)g ∈ D−, then (UKG(t)ϕ, g) = 0 and consequently UKG(t)ϕ ∈ (D−)⊥.

In the same way we show the other inclusions.
(b) It suffices to show that U(2R)(D−)⊥ ⊂ D+, according to the theory of

representation ([28]), the spaces D− and D+ corresponding, respectively, to
sub-spaces L2(]−∞,−R]×S2) and L2([R,+∞]×S2). Since the group U(t)
operates like translation on the right on L2 then U(2R)(D−)⊥ is represented by
L2([R,+∞] × S2) which proves the second point.

(c) Let ϕ ∈ H , by a domain of dependence argument (see [16]), we see that

U(t)ϕ = UKG(t)ϕ on |x| > t + R, t ≥ 0.

In particular, for t = 2R, U(2R)ϕ = UKG(2R)ϕ on |x| > 3R.
Another application of the principle of domain of dependence shows that

‖U(2R)ϕ‖3R ≤ ‖ϕ‖5R,

and

‖UKG(2R)ϕ‖3R ≤ ‖ϕ‖5R,

then

‖Mϕ‖ = ‖Mϕ‖3R ≤ 2‖ϕ‖5R.

(d) We have

P+MU(t − 4R)MP−ϕ

= ZKG(t)ϕ + P+U(2R)UKG(t − 4R)U(2R)P−ϕ

− P+UKG(t − 2R)U(2R)P−ϕ − P+U(2R)UKG(t − 2R)P−ϕ.

Using (b), U(2R)P−ϕ ∈ D+, therefore, the second and the third terms are
equal to 0. Similarly, using a) we deduce UKG(t − 2R)P−ϕ ∈ (D−)⊥.

Using again the argument in (b) we get U(2R)UKG(t − 2R)P−ϕ ∈ D+
which shows that the last term is equal to 0. ��

5.2.2 Proof of Theorem 5.9

In order to prove Theorem 5.9 we will need the following theorem due to Nunes
and Bastos which establish the polynomial decay of local energy. They proved this
result for the linear Klein–Gordon equation in R

n, n ≥ 1, but we can see that, with
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slight modifications, the theorem and its proof remain valid in the context of our
problem. Let us state the theorem which in our case.

Theorem 5.15 ([23, Nunes–Bastos])
Let � ⊂ R

3, be a bounded domain. There exists positive constants T0 > d(�)

and K > 0 depending on �, c and T0 such that for every u0, u1 ∈ C∞0 (R3) with
supp u0 ∪ supp u1 ⊆ �, the solution u to the Cauchy problem (115) satisfies

E(u(t)) ≤ K

t3

(
‖u0‖2

H 1(�)
+ ‖u1‖2

L2(�)

)
(120)

for every t > T0.

Remarks 5.16

(1) The truncation function χ1 does not have impact on the proof of theorem;
following [25] and using the well-known representation for the solutions of the
wave equation see [9], and also an integral representation of Bessel’s functions
(see [11, p. 437]) we obtain the desired result.

(2) Using spectral approach in our case, more precisely, the method used by
Malloug [19] we can find the polynomial decay of the local energy for Klein–
Gordon equation.

(3) This result combined with the properties of semi-group ZKG(t) will allow us to
show that the decay of energy is in fact, exponential.

We come back now to the proof of Theorem 5.9.
For ρ > 0, we put Hρ = {ϕ ∈ H ;ϕ with support in Bρ}. Let ϕ ∈ HR and

g ∈ D+ ∪ D−, then g = 0 on BR , so (ϕ, g) = 0 and consequently ϕ ∈ K . On the
other hand, for a given h of H , P+h = h on BR , thus we obtain

UKG(t)ϕ = ZKG(t)ϕ on BR.

We have ‖UKG(t)ϕ‖R = ‖ZKG(t)ϕ‖R ≤ ‖ZKG(t)ϕ‖. Hence to get the exponential
decay of the local energy, it is enough to prove the exponential decay of ‖ZKG(t)‖.

By applying the estimate (120) of Theorem 5.15 with � = Bρ , and choosing
ρ = 5R and T sufficiently large such that

‖UKG(t)g‖5R ≤ 1

8
‖g‖, g ∈ H5R. (121)

Let ϕ ∈ H , by the previous lemma we have

‖ZKG(T + 4R)ϕ‖ = ‖P+MUKG(T )MP−ϕ‖
≤ ‖MUKG(T )MP−ϕ‖
= ‖MUKG(T )MP−ϕ‖3R
≤ 2‖UKG(T )MP−ϕ‖5R
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≤ 1

4
‖MP−ϕ‖ ≤ 1

2
‖P−ϕ‖ ≤ 1

2
‖ϕ‖.

Put T ′ = T + 4R; let t > 0, there exists k ∈ N such that kT ′ ≤ t ≤ (k + 1)T ′ and
one deduces

‖ZKG(t)ϕ‖ ≤ ‖ZKG(kT ′)ϕ‖ ≤ ‖ZKG(T ′)ϕ‖k ≤ 1

2k
‖ϕ‖ ≤ Ce−αt‖ϕ‖.

Thus, Theorem 5.9 holds.
We are now ready to prove our main result.

5.3 Proof of Theorem 5.1

We come back to the proof of the main result of this section: By combining
the results of the global time Strichartz norms and the exponential decay of the
local energy of the linear Klein–Gordon equation, we deal with the nonlinear term
χ2u

5 as a source term and using the Gronwall lemma in a crucial way, we obtain
the exponential decay of the local energy for the solutions of (92). Thanks to the
Duhamel’s Formula, the nonlinear equation (92) for u = U(t)ψ can be written as

u(t) = UL(t)ψ +
∫ t

0
UL(t − s)Iχ2u5(s)ds,

where UL(t) is the linear evolution group, χ2 = χ2(x) is the localizer, and I is the
mapping defined by Iu = (0, u). Fix a ball BR , an energy bound E(ψ) ≤ R0, and
a smooth cut-off function K that satisfies K(x) = 1 on supp(ψ). From now we
denote by C any constant which may depend on BR , R0, and K .

By the support property of K , we have

Ku(t) = KUL(t)ψ +
∫ t

0
KUL(t − s)KIχ2u5(s)ds,

and using the fact that the local energy of UL(t) decay exponentially

‖KUL(t)Kφ‖E ≤ Ce−βt‖φ‖E,

for some constant β > 0, here E denotes the energy space. Applying this estimate
to the above integral identity, we obtain

‖Ku‖L∞
(t)
(E) ≤ ‖KUL(t)ψ‖L∞

(t)
(E) + C

∫ t

0
e−β(t−s)‖χ2u5‖L1

(s)
(L2)ds. (122)
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For any t ≥ 0, where Lp(s)(X) := Lp(s, s + 1;X), and the spatial domain R
3 is

omitted. As a consequence of the global time Strichartz in time, we deduce for any
ε > 0 that there exists T > 0 such that

‖χ1/6
2 u‖L∞(T,∞,L6) < ε.

Similarly, if ε is sufficiently small, we can bound any other space-time norms of the
Strichartz type.

For example, we have ‖u‖L5/2(T ,∞,L30) < C. By the Hölder’s inequality, we have
for any interval I ⊆ (T ,∞)

‖χu5‖L1(I,L2) ≤ C‖χ1/6u‖5/2
L∞(I,L6)

‖u‖5/2
L5/2(I,L30)

≤ C‖χ1/6u‖5/2
L∞(I,L6)

. (123)

Since |χ1/6u| ≤ C|Ku| by the support property, the Sobolev inequality implies that

‖χu5‖L1(I,L2) ≤ Cε3/2‖Ku‖L∞(I,E). (124)

We apply these bounds to (122), translating t by T . Denoting by

f (t) := ‖Ku‖L∞
(t+T )(E), g(t) := ‖KUL(t − T )‖L∞

(t+T )(E). (125)

We obtain the following integral inequality

f (t) ≤ g(t)+ Cε3/2
∫ t

0
e−β(t−s)f (s)ds, (126)

so

f (t) ≤ Ce−βt + Cε3/2
∫ t

0
e−β(t−s)f (s)ds,

which is equivalent to

eβtf (t) ≤ C + Cε3/2
∫ t

0
eβsf (s)ds.

By virtue of Gronwall Lemma, we obtain

f (t) ≤ Ce(cε
3/2−β)t , for t ≥ 0.

We choose ε so cε3/2 − β < −β
2 , to get the exponential decay for f (t), which

implies that of E(Ku(t)).
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Appendix

In this appendix, we give some important theorems of the literature that we have
used in several proofs in this article. We give them in our context, i.e., for the
solutions of the critical wave equation with localized semilinearity near a convex
obstacle. All these results are borrowed from [2, 8, 10], we note that (with slight
modifications of their proofs) these results remain valid in the context of our
problem.

Let us first introduce some vocabulary.
A scale h is a sequence (hn)n of positive numbers going to 0 if n goes to infinity;

a core is a convergent sequence z = (tn, xn) of Rt × R
3
x.

(h, z) and (h′, z′) are orthogonal if

either

∣∣∣∣log(
hn

h′n
)

∣∣∣∣ →
n→+∞ +∞ or h = h′ and

∣∣tn − t ′n
∣∣+ ∣∣xn − x′n

∣∣

hn
→

n→+∞ +∞.

(127)
The linear concentrating wave associated with (ϕ, ψ, hn, xn, tn) is the solution of
the following linear wave equation

⎧
⎨

⎩

�pn = 0 on R×�, pn = 0 in R× ∂�
(pn(tn), ∂tpn(tn)) =

(
1
h
1/2
n

P�

(
ϕ
( ·−xn

hn

))
; 1
h
3/2
n

1�(·)ψ
( ·−xn

hn

))
,

(128)

where � is the exterior of a compact, strictly convex, smooth domain of R3 and P�
is the orthogonal projection from Ḣ 1(R3) to HD(�).

The nonlinear concentrating wave associated with pn is the solution of the
following equation

{
�qn + χ(x)q5n = 0 on R×�, qn = 0 in R× ∂�

(qn(0), ∂tqn(0)) = (pn(0), ∂tpn(0)).
(129)

We recall that the energy of any function u solution to (128) or (129) is defined by:

E0(u)(t) = 1

2

∫

�

(
|∂tu (t, x)|2 + |∇xu (t, x)|2

)
dx.

Finally, we assume that the initial data (ϕn, ψn) is compact at infinity, in the sense
that

lim
n−→+∞

∫

|x|≥R

(
|∇ϕn (x)|2 + |ψn (x)|2

)
dx −→

R−→+∞ 0. (130)

We recall the following theorem witch is adapted from Theorems 1 and 3 in [10].

Theorem 5.17 Let vn be the solution of



Survey on the Decay of the Local Energy 99

{
�vn = 0 on R×�, vn = 0 in R× ∂�

(vn(0), ∂t vn(0)) = (ϕn, ψn)

satisfying sup
n
E0(vn) < +∞ and (130). Then there exists a finite energy

solution to the linear wave equation v, orthogonal concentrating data(
ϕ(j), ψ(j), h

(j)
n , x

(j)
n , t

(j)
n

)
, for j ∈ N

∗, such that vn can be decomposed

as follows, up to the extraction of a subsequence: for any l ∈ N
∗,

vn = v +
l∑

j=1
p
(j)
n + w(l)n ,

where p(j)n is the linear concentrating wave associated with
(
ϕ(j), ψ(j), h

(j)
n , x

(j)
n ,

t
(j)
n

)
and the remainder w(l)n satisfies, for every T > 0,

lim
n−→+∞

∥∥∥w(l)n
∥∥∥
L∞([−T ,T ],L6(�))

→
l→+∞ 0. (131)

Moreover, denote un a solution in the “Shatah–Struwe” class of

{
�un + χ(x)u5n = 0 on R×�, un = 0 in R× ∂�

(un(0), ∂tun(0)) = (ϕn, ψn)
(132)

satisfying sup
n
E0(un) < +∞ and (130). Then up to the extraction of a subsequence,

we can write, for any l ∈ N
∗,

un = u+
l∑

j=1
q
(j)
n + w(l)n + r(l)n , (133)

where u is a solution of a nonlinear wave equation, q(j)n is the nonlinear concen-
trating wave equation associated with p(j)n and for every T > 0,

lim
n−→+∞( sup

−T≤t≤T
E0(r

(l)
n , t)1/2 +

∥∥∥r(l)n
∥∥∥
L5([−T ,T ],L10(�))

) →
l→+∞ 0. (134)

Let us note that this result, which describes the high frequency approximation of
the solutions of the critical wave equation, is easily applicable in our context, i.e., in
the presence of the function χ . Indeed, looking carefully to the proof of Theorem 3,
one observes that the behavior of a profile concentrating at x(j)n −→ x

(j)∞ depends
locally only on χ(x(j)∞ ) while the behavior is nonlinear and does not have any effect
while the profile is close to linear.
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Now, notice the following corollaries.

Corollary 1 (Adapted from Corollary 1 in [2]) Let (un) be a sequence of solution
in the “Shatah–Struwe” class to (1.1). We assume that (ϕn, ψn) ⇀ (ϕ,ψ) in
HD(�) × L2(�). Then un ⇀ u, where u is the solution in the “Shatah–Struwe”
class of

{
�u+ χ(x)u5 = 0 on R×�
(u(0), ∂tu(0)) = (ϕ, ψ).

(135)

Corollary 2 (Adapted from Corollary 2 in [2]) There exists a nondecreasing
function A : [0,+∞[ −→ [0,+∞[ such that, for every Shatah–Struwe solution
u to (1.1),

‖u‖L5(R,L10(�)) ≤ A (E(u)) .

Let now (un) be a sequence of solutions to (135). We recall that the energy density
of un is given by

en(t, x) = 1

2

[
|∂tun(t, x)|2 + |∇xun(t, x)|2

]
+ 1

6
χ(x) |un(t, x)|6 ,

and we say that e(t, x) is the limit energy density of the sequence (un) if en(t, x)
converges weakly to e(t, x).

We finally come to the “energy balance theorem” witch is adapted from Theorem
7 in [8].

Theorem 5.18 Let (un) be a bounded sequence in the “Shatah–Struwe” class,
solution of (135) and satisfying sup

n
E0(un) < +∞, un(0), ∂tun(0) are supported

in a fixed compact of � and un ⇀ 0. Then we can write the limit energy density of
(un) as

e(t, x) =
+∞∑

j=1
e(j)(t, x)+ ef (t, x), (136)

where e(j) is the limit energy density of the nonlinear concentrating wave q(j)n and
ef is the limit energy density of a sequence of solutions of linear wave equation w̃n,
namely

ef (t, x) =
∫

ξ∈S2
μ(t, x, dξ)

with μ(t, x, dξ) = μ+(t, x, dξ) + μ−(t, x, dξ) and μ± are positive measures on
�× S2.
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This theorem remains valid in our case. Indeed its proof is based on lemma A.3
of [6] which we easily adapt to our work by extending the solutions by 0 outside �.
More precisely, using the notations of [8], let ϕ(t, x) ∈ C∞0 (R×�) , ψ (t, x) ∈
C∞0 (R×�) such that supp(ϕ) ⊂ {(t, x) \ ψ ≡ 1} and ṽ(j)±,n (respectively, w̃(l)n ) the

extensions by 0 of v(j)±,n (respectively, w
(l)
n ), outside �.We have

�
(
ψw̃(l)n

)
= [�, ψ]w(l)n →

n→+∞ 0 in L2 (R×�) ,

which yields (as in [8]) the desired result, i.e.,

ϕb
(
v
(j)
±,n, w(l)n

)
= ϕb

(
ψṽ

(j)
±,n, ψw̃(l)n

)
→

n→+∞ 0 in L1 (R×�) .

Finally, let us indicate that the analogue of the lemma A2 in [8] is in [10] (lemma
3.7 p. 35).
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A Spectral Numerical Method to
Approximate the Boundary
Controllability of the Wave Equation
with Variable Coefficients

Carlos Castro
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1 Introduction

Consider the one-dimensional wave equation with a given potential a(x) ∈
L∞(0, 1) and a boundary control at the extreme x = 1,

⎧
⎨

⎩

u′′(t, x)− uxx(t, x)+ a(x)u(t, x) = 0 t ∈ (0, T ), x ∈ (0, 1),
u(t, 0) = 0, u(t, 1) = f (t), t ∈ (0, T ),
u(0, x) = u0(x), u′(0, x) = u1(x) x ∈ (0, 1),

(1)

where (u0, u1) ∈ L2(0, 1) × H−1(0, 1) are the initial data. Here, H−1(0, 1)
represents the dual space of H 1

0 (0, 1). The following controllability result is known
to hold [10]: given T > 2, for any initial data (u0, u1) ∈ L2 × H−1(0, 1), there
exists a control f ∈ L2(0, T ) such that the solution u of system (1) satisfies

u(x, T ) = ut (x, T ) = 0, x ∈ (0, 1).

This is usually known as the null controllability problem. It is well known that, due
to the time reversibility of the wave equation, this is equivalent to control any initial
data to any other final one, not necessarily zero (see, for example, [8] or [11]).

We are interested in the numerical approximation of the control f . A natural
numerical approach consists in substituting the continuous wave equation by a
consistent discrete approximation, depending on a discretization parameter h→ 0,
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and stating the corresponding results at the discrete level. When this discrete system
is controllable, it can be used to obtain numerical approximations of the controls
and the controlled solutions.

It turns out that this is not the case when considering usual discretization of the
wave equation based on finite differences or classical finite elements. This has been
observed by a number of authors in different situations (see [11] or [6] and the
references therein for a complete description and number of examples).

This has a dramatic consequence in the applications. For example, in the context
of the boundary controllability, if we compute the boundary controls of the discrete
approximation, their norms grow exponentially as the discretization parameter h→
0, for some initial data, and do not produce any approximation of the control for the
continuous system.

These phenomena were first described in a series of papers by R. Glowinski and
J.-L Lions (see the review paper [7] and the references therein). They also proposed
a number of cures to deal with this lack of uniformity, as bigrid approximations
or Tychonoff regularization methods. Later on, other methods have been proposed:
filtering, projection of the controlled solution, etc. (see the review [11]).

In [2] and [4], a numerical method based on a mixed finite element formulation
for (1) was found to give a corresponding semi-discrete approximation of the
controlled wave equation with the property that the discrete controls converge to
the continuous one as h → 0. This was proved for the constant coefficients wave
equation in one dimension and two dimension in a square. As far as we know, this
is the only discretization of the wave equation for which such property holds. The
proof in the one-dimensional case is based on a Fourier series argument and requires
a detailed spectral analysis, while the two-dimensional case relies on a discrete
version of the classical multipliers method. This mixed finite elements method has
been recently extended to the variable coefficient equation (1) (see [3]).

In this chapter, we propose a Fourier approach to this controllability problem
in the one-dimensional case. It consists basically in a projection method over the
finite dimensional space generated by the first eigenfunctions of the Laplacian.
In this way, the controllability problem is reduced to a controllability one for a
finite dimensional system for which we apply the well-known results. In particular,
we write the explicit formula for the controls. This method has been previously
considered in the literature by F. Bourquin et al. in [12] and [13] to approximate
the boundary control of the wave equation but without potential. Here we focus on
the numerical implementation of the method and give some experiments that show
its efficiency. This provides numerical evidences of the convergence. Convergence
estimates of the discrete controls to the continuous one can be found in [1] or [12]
for slightly different problems.

Note that the projection method described in this work is not restricted to the one-
dimensional case and it can be extended to several dimensions, as long as we can
compute efficiently the eigenfunctions of the Laplacian. In some special domains as
balls or intervals, these are explicit and the method is easily adapted.

The rest of the chapter is divided as follows. In Sect. 2, we introduce the Fourier
projection method and deduce the discretization of (1). In Sect. 3, we recall the
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controllability results for the finite dimensional systems and apply them to the
discrete problem. In Sect. 4, we show some numerical experiments that illustrate the
efficiency of the method. Finally, in Sect. 5, we give an appendix with the MATLAB
code.

2 Numerical Approximation of the Control Problem

In this section, we introduce a numerical approximation of the control problem (1)
that provides a new discrete control problem that we solve in the next section. The
solutions of this discrete control problem are taken as numerical approximations of
the original control problem.

We assume that f is compactly supported in t ∈ (0, T ). This condition is
required for the controls that we construct in the next section. We first homogenize
the boundary condition by introducing the following system:

{
h′′(x)− a(x)h(x) = 0, x ∈ (0, 1)
h(0) = 0, h(1) = 1.

(2)

Then, the change of variables

v′′ = u− h(x)f (t)
transforms system (1) into

⎧
⎨

⎩

v′′(t, x)− vxx(t, x)+ a(x)v(t, x) = −h(x)f (t), t ∈ (0, T ), x ∈ (0, 1)
v(t, 0) = v(t, 1) = 0, t ∈ (0, T )
v(0, x) = v0(x), v′(0, x) = v1(x) x ∈ (0, 1),

(3)

where the initial data vi(x) (i = 1, 2) are obtained from ui(x) as the solutions of
the elliptic problems

{
(vi)′′(x)− a(x)vi(x) = ui(x), x ∈ (0, 1)
vi(0) = vi(1) = 0, i = 1, 2.

(4)

Remark 1 We can also consider the apparently more natural change of variables
v = u− h(x)f (t), but this produces a system where the control is f ′′(t), instead of
f (t), and therefore a control problem with less smooth data.

Now we use the Fourier representation of solutions. For any time t ∈ [0, T ], we
can write v(t, x) as a linear combination of the elements in the orthogonal basis
{sin(kπx)}∞k=1 in L2(0, 1). Therefore,

v(t, x) =
∞∑

k=1
vk(t) sin(kπx).
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Substituting this expression in the first equation in (1), we formally obtain

∞∑

k=1

(
v′′k (t)+ k2π2vk(t)+ a(x)vk(t)

)
sin(kπx)+ h(x)f (t) = 0,

which we project in the finite dimensional space XN spanned by {sin(kπx)}Nk=1. In
this way, we obtain

v′′n(t)+ n2π2vn(t)+ 2
∞∑

k=1
vk(t)

∫ 1

0
a(x) sin(kπx) sin(nπx) dx

+2f (t)
∫ 1

0
h(x) sin(nπx) dx = 0, n = 1, . . . , N. (5)

We now truncate the sum, leaving the first N terms,

v′′n(t)+ n2π2vn(t)+ 2
N∑

k=1
vk(t)

∫ 1

0
a(x) sin(kπx) sin(nπx) dx

+2f (t)
∫ 1

0
h(x) sin(nπx) dx = 0. n = 1, . . . , N. (6)

It is convenient to write this system in matrix form

V ′′ = −(D + Pa)V − f (t)Fh, (7)

where

V =

⎛

⎜⎜
⎝

v1

v2

. . .

vN

⎞

⎟⎟
⎠ , D = π2

⎛

⎜⎜
⎝

12 0 . . . 0
0 22 . . . 0
. . .

0 0 . . . N2

⎞

⎟⎟
⎠ , (8)

Pa is the N ×N matrix with components

(Pa)ij = 2
∫ 1

0
a(x) sin(iπx) sin(jπx) dx, (9)

andWh is the column vector with components

(Fh)n = 2
∫ 1

0
h(x) sin(nπx) dx, n = 1, . . . , N. (10)



Boundary Controllability of the Wave Equation 107

To compute the initial condition for (7), we consider the Fourier representation
of v0(x) and v1(x),

v0(x) =
∞∑

k=1
u0k sin(kπx), v1(x) =

∞∑

k=1
u1k sin(kπx),

where {v0k }Nk=1 and {v1k }Nk=1 are the corresponding Fourier coefficients.
Therefore,

V (0) = V 0 =

⎛

⎜⎜
⎝

v01
v02
. . .

v0N

⎞

⎟⎟
⎠ , V ′(0) = V 1 =

⎛

⎜⎜
⎝

v11
v12
. . .

v1N

⎞

⎟⎟
⎠ .

Finally, we obtain the following second-order system for V , which is a finite
dimensional approximation of (3):

{
V ′′ = −(D + Pa)V − Fhf (t),
V (0) = V 0, V ′(0) = V 1.

(11)

Here, the vector Fh defined in (10) is not completely explicit since h(x) is the
solution of the boundary value problem (2). The same can be said about the initial
data (V 0, V 1). In order to find a numerical approximation for these vectors, we
adopt again the projection method. We start with Fh that requires to solve (2).

We first homogenize the boundary condition. Consider

g(x) = h(x)− x,

and then g is solution of

{
g′′(x)− a(x)g(x) = xa(x), x ∈ (0, 1)
h(0) = g(1) = 0.

(12)

Now we write

g(x) =
∞∑

k=1
gk sin(kπx), gk = 2

∫ 1

0
g(x) sin(kπx) dx,

which we replace in (12)

∞∑

k=1
gk(−k2π2 − a(x)) sin(kπx) = xa(x).
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Truncating the series up to the first N terms and projection on the subspace
generated by the first N functions {sin(nπx)}Nn=1, we easily obtain the system

−n2π2gn − 2
N∑

k=1
a(x) sin(kπx) sin(nπx) = 2

∫ 1

0
xa(x) sin(nπx) dx.

This can be written in matrix form

− (D + Pa)G = Fa, (13)

where G and Fa are the column vectors with components (G)j = gj and

(Fa)j = 2
∫ 1

0
xa(x) sin(jπx). (14)

Finally,

(Fh)j = 2
∫ 1

0
h(x) sin(jπx) dx = 2

∫ 1

0
g(x) sin(jπx) dx + 2

∫ 1

0
x sin(jπx) dx

= gj + (−1)j+1
jπ

. (15)

Thus, in order to find Fh in (11), we have to solve first the linear system (13) to
obtain G and then use formula (15).

We now compute (V 0, V 1) from (4). Following the previous approach, we easily
see that V i (i = 1, 2) is solution of

− (D + Pa)V i = Ui, (16)

where Ui is the column vector with the first N components of ui(x), i.e.,

(Ui)k = 2
∫ 1

0
ui(x) sin(kπx) dx, i = 1, 2, k = 1, . . . , N. (17)

Thus, in order to find a finite dimensional approximation of (1), we have to follow
the following steps:

Algorithm 1 Numerical approximation of the controlled solution

Step 1 Choose N , the dimension of the projecting space XN .
Step 2 Compute (V 0, V 1) the initial data of system (11)

(1) Compute the vectors U0 and U1 given by (17), i.e., the Fourier
coefficients of the initial data u0(x) and u1(x).
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(2) Compute the diagonal matrix D, given in (8), and Pa the matrix with
components in (9).

(3) Solve the linear systems (16) to obtain (V 0, V 1).

Step 3 Compute Fh, the secondhand term of system (11).

(1) Compute the vector Fa whose components are given by (14), i.e., the
Fourier coefficients of the function xa(x).

(2) Solve the linear system (13) to obtain G.
(3) Use formula (15) to obtain Fh.

Step 4 Solve (11) to obtain V (t) (we assume f (t) known). In the experiments
below, we used the Newmark method.

Step 5 Compute the approximation vN(x) from the Fourier coefficients

vN(x, t) =
N∑

k=1
vk sin(kπx).

Step 6 Compute the approximation of g(x), gN(x) from the Fourier coefficients.
These are the components of G

gN(x) =
N∑

k=1
Gk sin(kπx).

Step 7 The approximate solution of (1), uN , is given by

uN (x, t) = (vN )′′(x, t)+ (g(x)+ x)f (t) =
N∑

k=1

[
(vk)

′′(t)+Gkf (t)
]
sin(kπx)+ xf (t).

Concerning the control problem, we see that, as we assume that f is compactly
supported in t ∈ (0, T ), any control f for (1) is also a control for (3) that drives
(V 0, V 1) to (0, 0) and reciprocally. Therefore, the numerical approximation of
the control f associated with (3) provides also a numerical approximation for the
control in (1).

The discrete control problem associated with (3) is that given T > 2, for any
initial data (V 0, V 1) ∈ R

N × R
N , find f N ∈ L2(0, T ) such that the solution V of

system (11) satisfies

V (T ) = V ′(T ) = 0.

As we have said before, this f N provides an approximation of the control f
associated with (1).
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3 Minimal L2-Weighted Controls

In this section, we introduce a class of controls for both (1) and (11), which are
compactly supported in t ∈ [0, T ].

For T > 2, the minimal time to have controllability of system (1), we consider
a positive smooth weight function η ≥ 0 with compact support in (0, T ), i.e., η ∈
C∞0 (0, T ), and such that η(t) > η0 > 0 in a subinterval [δ, T − δ] ⊂ (0, T ) with δ
such that T − 2δ > 2.

Definition 2 Let η be the weight function introduced above. For any (y0, y1) ∈
L2 × H−1, we define the minimal L2-weighted control f (t) associated with (1) as
the control that minimizes the following L2-weighted norm:

‖f ‖2h =
∫ T

0

|f (t)|2
η(t)

dt. (18)

Analogously, for any (V 0, V 1) ∈ R
N×RN , the minimalL2-weighted control f N(t)

associated with (11) is defined as the control that minimizes the above L2-weighted
norm.

Minimal L2-weighted controls were introduced in [5] to recover smooth controls
from smooth data. Here, we adopt the same idea but in order to have compactly
supported controls. A similar technique was used in [2] to prove convergence of
controls in a different context.

The existence and uniqueness of the minimal L2-weighted control for system (1)
is easily obtained when T > 2 from the results in [10]. In fact, the main ingredient
is the following observability inequality:

‖(ϕ0, ϕ1)‖2
H 1
0×L2 ≤ C

∫ T

0
|ϕx(1, t)|2dt,

which holds for all the solutions of the adjoint uncontrolled problem

⎧
⎨

⎩

ϕ′′(t, x)− ϕxx(t, x)+ a(x)ϕ(t, x) = 0 t ∈ (0, T ), x ∈ (0, 1)
ϕ(t, 0) = 0, ϕ(t, 1) = 0, t ∈ (0, T )
ϕ(0, x) = ϕ0(x), ϕ′(0, x) = ϕ1(x) x ∈ (0, 1)

(19)

with a constant C > 0, which only depends on T > 2 and the L∞-norm of a(x).
Concerning the approximate system (11), the existence and uniqueness of

weighted controls is more involved (see [1]). In order to see that, we write
system (11) in the usual form, i.e., as a first-order system, to apply the control
techniques for ordinary differential systems. Thus, we write

{
y′ = Ay + Bf, t ∈ [0, T ],
y(0) = y0 ∈ R

2N,
(20)
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where

y =
(
V

V ′
)
, A =

(
0 I

D + Pa 0

)
, B =

(
0
Fh

)
. (21)

Then, the existence of controls is equivalent to the following observability
inequality:

‖ϕ0‖2Rn ≤ cT

∫ T

0
|B∗(t)ϕ(t)|2dt, ∀ϕ0 ∈ R

2N, (22)

where ϕ is the solution of the adjoint system with final data ϕ0,

{−ϕ′ = A∗(t)ϕ, t ∈ [0, T ],
ϕ(T ) = ϕ0.

Here, A∗ is the transpose matrix and ϕ0 ∈ R
2N .

It is well known that such observability inequality can be reduced to the so-called
Kalman rank condition, which reads

rank[B AB A2B . . . A2N−1B] = 2N.

Either the observability inequality (22) or the rank condition is difficult to
establish in this type of problems. We refer to [1] for the existence result of such
control problem. In [1], it is proved that the constant in (22) can be chosen uniform
with respect to N as long as T > T0 with T0 sufficiently large. This result is used to
prove the convergence of the minimal L2-weighted controls for (11) to those of the
corresponding limit problem (1), as N →∞.

Here, we assume that the discrete approximate control problem has solution, and
therefore, there exists a unique minimal L2-weighted control for (11). Then, we
focus on implementation issues and numerical simulation.

It turns out that for ordinary differential controllability systems, as (20) the min-
imal L2-weighted control can be computed explicitly. Let F(t) be the fundamental
solution of the uncontrolled equation, i.e., S(t) = eAt , which solves

{
S′ = AS, t ∈ [0, T ],
S(0) = I,

where I is the identity matrix. Then, the solution of the controlled system (20) can
be written with the Duhamel formula

y(t) = F(t)y0 +
∫ t

0
S(t − s)Bf (s)ds, t ∈ [0, T ].
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On the other hand, if we define the controllability GramiamQT by

QT =
∫ T

0
η(t)S(t)BB∗S∗(t)dt, (23)

then, when the system is controllable, this matrixQT is nonsingular and the control
with minimal L2-weighted norm is given by

f (t) = −η(t)B∗S∗(T − t)Q−1T S(T )y0. (24)

Thus, in order to find a finite dimensional approximation of the control, we follow
the steps:

Algorithm 2 Numerical approximation of the control

Step 1 Choose N , the dimension of the projecting space XN .
Step 2 Compute (V 0, V 1) the initial data of system (11)

(1) Compute the vectors U0 and U1 given by (17), i.e., the Fourier
coefficients of the initial data u0(x) and u1(x).

(2) Compute the diagonal matrix D, given in (8), and Pa the matrix with
components in (9).

(3) Solve the linear systems (16) to obtain (V 0, V 1).

Step 3 Compute Fh, the secondhand term of system (11).

(1) Compute the vector Fa whose components are given by (14), i.e., the
Fourier coefficients of the function xa(x).

(2) Solve the linear system (13) to obtain G.
(3) Use formula (15) to obtain Fh.

Step 4 Choose the final time T and the discretization parameter dt
Step 5 Define the cutoff function η(t) at the discrete time mesh.
Step 6 Compute the matrixes A and B and the vector y0 as in (20)–(21).
Step 7 Approximate the Gramiam in (23) with the trapezoidal rule.
Step 8 Compute the control with formula (24).

We refer to the appendix for a MATLAB code which computes the control and
solution following the above steps.

4 Numerical Experiments

In this section, we show some experiments that illustrate the method. The aim of
the first two experiments is to check how the regularity of the initial data affects
the approximation of the control, as we consider more Fourier coefficients. The
third experiment shows the behavior of the controls as we consider larger potentials.
Finally, the last experiment aims to check the well-known homogenization result
when consider an oscillating potential.
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Table 1 Experiment 1.
‖u(x, T )‖L2 for the
controlled solution

‖u(x, T )‖L2 Nf = 10 Nf = 50 Nf = 100

dt = 10−2 3.6× 10−3 1.34× 10−2 1.35× 10−2

dt = 10−3 4.38× 10−4 7.62× 10−4 1.20× 10−3

Table 2 Experiment 1.
Condition number for the
controllability matrixQT

Cond(QT ) Nf = 10 Nf = 50 Nf = 100

dt = 10−2 7.42× 104 4.72× 107 2.91× 1015

dt = 10−3 2.34× 104 1.36× 107 2.19× 108

Experiment 1 Here, we consider as initial data the function

u0(x) = max{0, 1− 4|x − 1/2|}, u1(x) = 0,

which is Lipschitz continuous but not in C1[0, 1]. The final time is chosen to T =
2.5, and the time step is set to dt = 10−2, 10−3 and the space discretization to
compute the Fourier coefficients dx = 10−3. The potential a(x) is given by

a(x) = 50χ(1/2,1/4)(x),

where χ(1/2,1/4)(x) is the characteristic function of the interval (1/2, 1/4).
We compute the control for a different number of Fourier coefficients. In Table 1,

we show the norm of the controlled solution at time T for different time steps and
Fourier coefficients. We see that decreasing the time step the error decreases but not
when considering a larger projection space with more Fourier coefficients.

In Table 2, the condition number of the controllability matrix QT is given. We
observe that this condition number grows very fast, with the number of Fourier
coefficients, and this is probably the reason why the norm of the controlled solution
at t = T does not decrease. For larger values in the number of Fourier coefficients
Nf , the condition number is too large and the control becomes wildly oscillating.
One way to decrease this condition number is to consider a smaller time step dt , as
illustrated in Table 2.

In Fig. 1, the solution and controls for Nf = 10, 100 Fourier coefficients are
drawn.

Experiment 2 Here, we consider the same parameters as in the previous experi-
ment but with a more singular discontinuous initial data,

u0(x) =
{
x, if x < 1/2
0, if x ≥ 1/2

, u1(x) = 0.

We compute the control for a different number of Fourier coefficients. In Table 2,
we show the norm of the controlled solution at time T . The condition number of the
controllability matrixQT is the same as in the previous experiment. The results are
very similar to those of the previous experiment (Table 3).
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Fig. 1 Experiment 1. Initial position u0(x) and controlled solution at t = T (upper), control
(medium), and space-time controlled solution (lower). The left column corresponds to Nf = 10
Fourier coefficients and the right one to Nf = 100. The time step is set to dt = 10−3

Table 3 Experiment 2.
‖u(x, T )‖L2 for the
controlled solution

‖u(x, T )‖L2 Nf = 10 Nf = 50 Nf = 100

dt = 10−2 2.70× 10−2 3.70× 10−2 4.05× 10−2

dt = 10−3 1.55× 10−4 9.45× 10−4 1.14× 10−2
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Fig. 2 Experiment 2. Initial position u0(x) and controlled solution at t = T (upper), control
(medium), and space-time controlled solution (lower). The left column corresponds to Nf = 10
Fourier coefficients and the right one to Nf = 100. The time step is set to dt = 10−3

In Fig. 1, the solution and controls for Nf = 10, 100 Fourier coefficients are
drawn. We see how oscillations in the control and the solution are larger in this more
singular case and increase as the number of Fourier coefficients increases (Fig. 2).

We can solve this system of ordinary differential equations with the Newark
method (see, for instance, [9]) with parameters β = 1/2 and γ = 1/4 that provides
a second-order accurate method.
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Table 4 Experiment 3.
‖u(x, T )‖L2 for the
controlled solution

‖u(x, T )‖L2 Nf = 10 Nf = 50 Nf = 100

a0 = 1 1.68× 10−4 1.40× 10−3 1.15× 10−2

a0 = 10 2.61× 10−4 1.30× 10−3 1.14× 10−2

a0 = 102 2.09× 10−4 1.20× 10−3 1.14× 10−2

Experiment 3 Here, we consider see how the control is affected by a large
potential. We consider the same data as in Experiment 2 but with a potential

a(x) = a0χ[1/2,1/4](x), (25)

for different values of a0.
We compute the control for a different number of Fourier coefficients. In Table 4,

we show the norm of the controlled solution at time T . We observe that the efficiency
of the method is not affected by large positive potentials. For larger values of a0, we
require a finer mesh to compute the Fourier coefficients (in this experiment, we have
considered N = 103).

It is interesting to observe that the method works fine also for “small” non-
positive potentials. However, in this case, the method becomes unstable when we
take very large negative potentials. In our experiments, this starts with the potential
in (25) with a0 = −10. This is due to the condition number of the controllability
Gramiam, which becomes very large in this case.

In Fig. 1, the controls for Nf 10, 100 Fourier coefficients are drawn (Fig. 3).

Experiment 4 Here, we see how the control is affected by a very oscillating
potential. We consider the same data as in experiment 2 but with a potential

a(x) = 1+ 10 sin(mπx),

for different values of m. It is well known that the control of (1) converges, as
m → ∞, to the control of the limit equation where the potential is replaced by
the homogenized one, in this case the constant potential with value the average
aav =

∫ 1
0 a(x)dx = 1.

We compute the control when projecting in a space with a different number of
Fourier coefficients. In Table 5, we show the norm of the difference between the
control fm and the one corresponding to the limit homogenized equation f∞. This
illustrates the convergence to the homogenized limit as m→∞.
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Fig. 3 Experiment 3. Controls for a0 = 1 (upper), a0 = 10 (medium), and a0 = 100 (lower). The
left column corresponds to Nf = 10 Fourier coefficients and the right one to Nf = 100. The time
step is set to dt = 10−3

Table 5 Experiment 4.
‖fm − f∞‖L2(0,T ) for the
controlled solution

‖fm − f∞‖L2(0,T ) Nf = 10 Nf = 50 Nf = 100

m = 1 1.43 1.43 1.43

m = 10 3.40× 10−2 3.7× 10−2 3.70× 10−2

m = 102 1.77× 10−6 3.42× 10−5 8.02× 10−5
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5 Appendix

The program below is a combination of the two algorithms presented in Sects. 2
and 3 above. It computes the approximation of the boundary control of the wave
equation with a potential a(x) (following Algorithm 2) and then simulates the
controlled solution (following Algorithm 1). The experiments in this paper are
obtained with this code.

1 % Sp e c t r a l app rox ima t i on and s im u l a t i o n o f t h e wave
2 % equa t i o n w i t h a boundary c o n t r o l f
3 % Data problem
4 c l e a r a l l
5 L=1;
6 T=2 . 5 ;
7 Nf =50; % number o f Fou r i e r c o e f f i c i e n t s
8

9 %% D i s c r e t i z a t i o n da ta
10 N=100;
11 h=L /N;
12 x =0: h : L ;
13 d t =0 . 0 1 ;
14 t =0 : d t : T ;
15 Nt= l eng th ( t ) ;
16

17 %% i n i t i a l da ta
18 u0=max(0 ,1−4∗ abs ( x−1/2) ) ;
19 u1=0∗x ;
20 %y0=s i n (5∗ p i ∗x ) ;
21 % Four i e r c o e f f i c i e n t s
22 %y=0;
23 U0= zero s ( Nf , 1 ) ;
24 U1= zero s ( Nf , 1 ) ;
25 f o r k =1:Nf
26 fk= s i n ( k∗pi ∗x ) ;
27 U0( k ) =2∗ t rapz ( x , fk .∗ u0 ) ;
28 U1( k ) =2∗ t rapz ( x , fk .∗ u1 ) ;
29 end
30

31 %% Po t e n t i a l
32 a=abs ( x−1/2) <0 .25 ;
33

34 %% Mat r i x e s
35 D=diag ( ( 1 : Nf ) . ^2∗ pi ^2 ) ; % Lap lac i an
36 Pa= zero s ( Nf , Nf ) ; % Po t e n t i a l
37 f o r i i =1 :Nf
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38 f o r j j =1 :Nf
39 f i = s i n ( i i ∗pi ∗x ) ;
40 f j = s i n ( j j ∗pi ∗x ) ;
41 Pa ( i i , j j ) =2∗ t rapz ( x , a .∗ f i .∗ f j ) ;
42 end
43 end
44

45 %% I n i t i a l da ta f o r V
46 V0=−(D+Pa ) \U0 ;
47 V1=−(D+Pa ) \U1 ;
48

49 %% Ca l cu l u s o f Fh :
50 % Four i e r c o e f f i c i e n t s o f xa ( x )
51 Fa= zero s ( Nf , 1 ) ;
52 f o r k =1:Nf
53 f i = s i n ( k∗pi ∗x ) ;
54 Fa ( k ) =2∗ t rapz ( x , f i .∗ x .∗ a ) ;
55 end
56 % Compute G
57 G=−(D+Pa ) \ Fa ;
58 % Compute Fh
59 Fh= zero s ( Nf , 1 ) ;
60 f o r i i =1 :Nf
61 Fh ( i i ) =G( i i ) +(−1) ^ ( i i +1) / ( i i ∗pi ) ;
62 end
63

64 %% e t a f u n c t i o n
65 e t a 0 =1;
66 e t a = e t a 0 ∗exp (−( t −1/4) . ^ 2 / 0 . 0 1 ) ;
67 i n d i =( t >1 / 4 ) ;
68 e t a ( i n d i ) = e t a 0 ;
69 e t a _ i = f l i p l r ( e t a ) ;
70 i n d i 2 =( t >=T / 2 ) ;
71 e t a ( i n d i 2 ) = e t a _ i ( i n d i 2 ) ;
72 %p l o t ( t , e t a )
73

74 %% Con t r o l Ma t r i x e s
75 % i n i t i a l da ta
76 y0 =[V0 ;V1 ] ;
77 % Matr i x A
78 A=[ zero s ( Nf , Nf ) , eye ( Nf ) ;−(D+Pa ) , zero s ( Nf , Nf ) ] ;
79 B=[ zero s ( Nf , 1 ) ;−Fh ] ;
80

81 %% Gramiam QT( t )
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82 QT= zero s (2∗Nf ,2∗Nf ) ;
83 f o r j j =1 : l eng th ( t )
84 S t=expm (A∗ t ( j j ) ) ;
85 QT=QT+d t ∗ e t a ( j j ) ∗St ∗ (B∗B’ ) ∗St ’ ;
86 end
87

88 %% Con t r o l
89 f1=expm (A∗T) ∗y0 ;
90 f2=QT\ f1 ;
91 f = t ∗0 ;
92 f o r j j =1 : l eng th ( t )
93 f ( j j )=−B’∗ ( expm (A∗ (T−t ( j j ) ) ) ) ’∗ f2 ∗ e t a ( j j ) ;
94 end
95 f i g u r e ( 1 )
96 p l o t ( t , f )
97

98 %% So l v e t h e 2nd l i n e a r s y s t em
99 % V’ ’=−(D+Pa )V−Fh f ( t )

100 % V( 0 )=V0 ; V ’ ( 0 )=V1
101 % Newmark method
102 % Newmark parame t e r s
103 beta =0 . 2 5 ;
104 gamma= . 5 ;
105 % de = d i s p l a c emen t a t n
106 % dep= d i s p l a c emen t a t n+1
107 de=V0 ;
108 ve=V1 ;
109 K=−(D+Pa ) ;
110 ac=K∗de−Fh∗ f ( 1 ) ;
111

112 % Time i t e r a t i o n s
113 s o l ( : , 1 ) =ac ;
114 f o r i t e r =1 :Nt−1
115 det = de + d t ∗ve + ( . 5 ∗ d t ^2 ) ∗(1−2∗ beta ) ∗ ac ;
116 v e t = ve + (1−gamma ) ∗ d t ∗ ac ;
117

118 % New ac
119 ac = ( eye ( Nf )−(beta∗ d t ^2 ) ∗K) \(−Fh∗ f ( i t e r +1)+K∗det ) ;
120

121 % New de and ve
122 de = det+beta ∗ ( d t ^2 ) ∗ ac ;
123 ve = v e t +gamma∗ d t ∗ ac ;
124 s o l ( : , i t e r +1)=ac ;
125 end
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126

127 %% Aprox ima t i on i n x−v a r i a b l e
128 s o l x = zero s ( Nt ,N+1) ;
129 funh=x ∗0 ;
130 f o r i i =1 :Nf
131 f i = s i n ( i i ∗pi ∗x ) ;
132 coe f = s o l ( i i , : ) ;
133 s o l x = s o l x +( coef ’+G( i i ) ∗ f ’ ) ∗ f i ;
134 end
135 s o l x = s o l x +f ’∗ x ;
136 [ xx , t t ]=meshgrid ( x , t ) ;
137 f i g u r e ( 2 )
138 sur f ( xx , t t , s o l x )
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to Singular Measure
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1 Introduction

This work is concerned with the study of the two-dimensional aggregation equation
with the Newtonian potential:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(v ρ) = 0, t ≥ 0, x ∈ R2,

v(t, x) = − 1
2π

∫

R2

x − y
|x − y|2 ρ(t, y)dy,

ρ(0, x) = ρ0(x).

(1)

This model with more general potential interactions is used to explain some
behavior in physics and population dynamics. As a matter of fact, it appears
in vortex densities in superconductors [1, 21, 27], material sciences [26, 33],
cooperative controls and biological swarming [2, 11, 12, 24, 31, 32, 35], etc. During
the last few decades, a lot of intensive research activity has been devoted to explore
several mathematical and numerical aspects of this equation. It is known according
to [8, 33] that classical solutions can be constructed for short time. They develop
finite time singularity if and only if the initial data is strictly positive at some points
and the blowup time is explicitly given by T� = 1

max ρ0
. This follows from the

equivalent form
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∂tρ + v · ∇ρ = ρ2,

which, written with Lagrangian coordinates, gives exactly a Riccati equation. Note
that similarly to Yudovich result for Euler equations [37], weak unique solutions in
L1∩L∞ can be constructed following the same strategy; for more details see [3, 5–
8, 20, 22, 23, 28, 29]. Since L1 norm is conserved at least at the formal level, then lot
of efforts were done in order to extend the classical solutions beyond the first blowup
time. In [34], Poupaud established the existence of global generalized solutions with
defect measure when the initial data is a nonnegative bounded Radon measure. He
also showed that when the second moment of the initial data is bounded, then for
such solutions atomic part appears in finite time. This result is at some extent in
contrast with what is established for Euler equations. Indeed, according to Delort’s
result [19], global weak solutions without defect measure can be established when
the initial vorticity is a nonnegative bounded Radon measure and the associated
velocity has finite local energy. During the time, those solutions do not develop
atomic part contrary to the aggregation equation. This illustrates somehow the gap
between both equations not only at the level of classical solutions but also for
the weak solutions. The literature dealing with measure valued solutions for the
aggregation equation with different potentials is very abundant, and we refer the
reader to the papers [10, 13–15, 30] and the references therein.

Now, we shall discuss another subject concerning the aggregation patches.
Assume that the initial data takes the patch form

ρ0 = 1D0

with D0 a bounded domain, then solutions can be uniquely constructed up to the
time T � = 1, and one can check that

ρ(t) = 1

1− t 1Dt with (∂t + v · ∇)1Dt = 0.

Note that v is computed from ρ through the Biot–Savart law. To filter the time
factor in the velocity field and find analogous equation to Euler equations, it is more
convenient to rescale the time as it was done in [8]. Indeed, set

τ = − ln(1− t), u(τ, x) = − 1

2π

∫

R2

x − y
|x − y|2 1D̃τ (y)dy, D̃τ = Dt,

and then we get

(∂τ + u · ∇)1D̃τ = 0, D̃0 = D0.

We observe that with this formulation, the blowup occurs at infinite time and so the
solutions do exist globally in time. To alleviate the notations, we shall write this
latter equation with the initial variables. Hence, the vortex patch problem is reduced
to understanding the evolution equation
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⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + v · ∇ρ = 0, t ≥ 0,

v(t, x) = − 1
2π

∫

Dt

x − y
|x − y|2 dy,

ρ(0) = 1D0 .

(2)

Let us point out that the area of the domainDt shrinks to zero exponentially, that is,

∀ t ≥ 0, ‖ρ(t)‖L1 = e−t |D0|. (3)

The solution to this problem is global in time and takes the form ρ(t) = 1Dt ,Dt =
ψ(t,D0), where ψ denotes the flow associated with the velocity v. Similarly
to Euler equations [4, 16], Bertozzi, Garnett, Laurent, and Verdera proved in
[9] the global-in-time persistence of the boundary regularity in Hölder spaces
C1+s , s ∈ (0, 1). However, the asymptotic behavior of the patches for large time
is still not well-understood despite some interesting numerical simulations giving
some indications on the concentration dynamics. Notice first that the area of the
patch shrinks to zero which entails that the associated domains will converge in
Hausdorff distance to negligible sets. The geometric structure of such sets is not well
explored, and hereafter we will give two pedagogic and interesting simple examples
illustrating the concentration, and one can find more details in [8]. The first example
is the disk which shrinks to its center leading after normalization procedure to the
convergence to Dirac mass. The second one is the ellipse patch which collapses to a
segment along the big axis, and the normalized patch converges weakly to Wigner’s
semicircle law of density

x1 �→
2
√
x02 − x21
πx02

1[−x0,x0], x0 = a − b.

It seems that the mechanisms governing the concentration are very complex and
related in part for some special class to the initial distribution of the local mass.
Indeed, the numerical experiments implemented in [8] for some regular shapes
indicate that generically the concentration is organized along a skeleton structure.
The aim of this chapter is to investigate this phenomenon and try to give a complete
answer for special class of initial data where the concentration occurs along disjoint
segments lying in the same line. More precisely, we will deal with a onefold
symmetric patch, and by rotation invariant we can suppose that its axis of symmetry
coincides with the real axis. We assume in addition that the boundary of the upper
part is the graph of a slightly smooth function with small amplitude. Then, we will
show that we can track the dynamics of the graph globally in time and prove that the
normalized solution converges weakly toward a probability measure supported in
the union of disjoint segments lying in the real axis. The results will be formulated
rigorously in Sect. 2. The chapter is organized as follows. In the next section, we
formulate the graph equation and state our main results. In Sects. 3 and 4, we shall
discuss basic tools that we use frequently throughout the chapter. In Sect. 5, we
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prove the local well-posedness for the graph equation. The global existence with
small initial data is proved in Sect. 6. The last section deals with the asymptotic
behavior of the normalized density and its convergence toward a singular measure.

2 Graph Reformulation and Main Results

The main purpose of this section is to describe the boundary motion of the
patch associated with Eq. (2) under suitable symmetry structure. One of the basic
properties of the aggregation equation that we shall use in a crucial way concerns
its group of symmetry which is much more rich than Euler equations. Actually, in
addition to rotation and translation invariance, the aggregation equation is in fact
invariant by reflection. To check this property and without loss of generality, we can
look for the invariance with respect to the real axis. Set

X = (x, y) ∈ R2 and X = (x,−y),

and introduce

ρ̂(t, X) = ρ(t,X), v̂(t, X) = − 1

2π

∫

R2

X − Y
|X − Y |2 ρ̂(t, Y )dY.

Using straightforward change of variables, it is quite easy to get

v(t, X) = v̂(t, X), div
(
v ρ

)
(t, X) = div

(
v̂ρ̂

)
(t, X).

Therefore, we find that ρ̂ satisfies also the aggregation equation

∂t ρ̂ + div
(
v̂ ρ̂

) = 0.

Combining this property with the uniqueness of Yudovich solutions, it follows that
if the initial data belongs to L1 ∩ L∞ and admits an axis of symmetry, then the
solution remains invariant with respect to the same axis. In the framework of the
vortex patches, this result means that if the initial data are given by ρ0 = 1D0 and
the domain D0 is symmetric with respect to the real axis, the domain Dt defining
the solution ρ(t) = 1Dt remains symmetric with respect to the same axis for any
positive time. Recall that in the form (2) Yudovich type solutions are global in time.
To be precise about the terminology, here, contrary to the standard definition of
domain in topology which means a connected open set, we mean by domain any
measurable set of strictly positive measure. In addition, a patch whose domain is
symmetric with respect to the real axis (or any axis) is called onefold symmetric.

In the current study, we shall focus on the domains D0 such that the boundary
part lying in the upper half-plane is described by the graph of a C1 positive function
f0 : R→ R+ with compact support. This is equivalent to say
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D0 =
{
(x, y) ∈ R2; x ∈ supp f0, −f0(x) ≤ y ≤ f0(x)

}
.

We point out that concretely we shall consider the evolution not of D0 but of its
extended set defined by

D̂0 =
{
(x, y) ∈ R2; x ∈ R, −f0(x) ≤ y ≤ f0(x)

}
.

This does not matter since the domain Dt remains symmetric with respect to the
real axis, and then we can simply track its evolution by knowing the dynamics of its
extended domain: we just remove the extra lines located on the real axis.

One of the main purpose of this chapter is to follow the dynamics of the graph
and investigate local and global well-posedness issues in different function spaces.
In the next lines, we shall derive the evolution equation governing the motion of the
initial graph f0. Assume that in a short time interval [0, T ], the part of the boundary
in the upper half-plane is described by the graph of a C1−function ft : R → R+.
This forces the points of the boundary of ∂Dt located on the real axis to be cusp
singularities. As a material point located at the boundary remains on the boundary,
then, any parametrization s �→ γt (s) of the boundary should satisfy

(
∂tγt (s)− v(t, γt (s))

) · &n(γt (s)) = 0,

with &n(γt ) being a normal unit vector to the boundary at the point γt (s). Now, take
the parametrization in the graph form γt : x �→

(
x, f (t, x)

)
, and then the preceding

equation reduces to the nonlinear transport equation

{
∂tf (t, x)+ u1(t, x)∂xf (t, x) = u2(t, x), t ≥ 0, x ∈ R
f (0, x) = f0(x),

(4)

where (u1, u2)(t, x) is the velocity (v1, v2)(t, X) computed at the point X =
(x, f (t, x)). Sometimes, along this chapter, we use the following notations:

ft (x) = f (t, x) and f ′(t, x) = ∂xf (t, x).

To reformulate Eq. (4) in a closed, form we shall recover the velocity components
with respect to the graph parametrization. We start with the computation of v1(X).
Here, for the sake of simplicity, we drop the time parameter from the graph and
the domain of the patch. One writes, according to Fubini’s theorem and canonical
change of variables,

v1(X) = 1

2π

∫

R

{
arctan

(f (y)− f (x)
y − x

)
+ arctan

(f (y)+ f (x)
y − x

)}
dy
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= 1

2π

∫

R

{
arctan

(f (x + y)− f (x)
y

)
+ arctan

(f (x + y)+ f (x)
y

)}
dy.

Similarly, we obtain

v2(x, f (x)) = 1

4π

∫

R

log

(
y2 + (

f (x + y)− f (x))2
y2 + (

f (x + y)+ f (x))2
)
dy.

With the notation adopted before for (u1, u2), we finally get the formulas

u1(t, x) = 1

2π

∫

R

{
arctan

(ft (x + y)− ft (x)
y

)
+ arctan

(ft (x + y)+ ft (x)
y

)}
dy

u2(t, x) = 1

4π

∫

R

log

(
y2 + (

ft (x + y)− ft (x)
)2

y2 + (
ft (x + y)+ ft (x)

)2

)
dy. (5)

We emphasize that for the coherence of the model, the graph equation (4) is
supplemented with the initial condition f0(x) ≥ 0. According to Proposition 5.2,
the positivity is preserved for enough smooth solutions. Furthermore, once again
according to this proposition, we have a maximum principle estimate:

∀ t ≥ 0, ∀x ∈ R, 0 ≤ f (t, x) ≤ ‖f0‖L∞ .

Notice that the model remains meaningful even when the function ft changes the
sign. In this case, the geometric domain of the patch is simply obtained by looking
to the region delimited by the curve of ft and its symmetric with respect to the real
axis. This is also equivalent to deal with positive function ft , but its graph will be
less regular and belongs only to the Lipschitz class. Another essential element that
will be analyzed later in Proposition 5.2 concerns the support of the solutions which
remains confined through the time. More precisely, if suppf0 ⊂ [a, b] with a < b,
then provided that the graph exists for t ∈ [0, T ] one has

suppf (t) ⊂ [a, b].

This follows from the fact that the flow associated with the horizontal velocity
u1 is contractive on the boundary. It is not clear whether global weak solutions
satisfying the maximum principle can be constructed. However, to deal with
classical solutions, one should control higher regularity of the graph, and it seems
from the transport structure of the equation that the optimal scaling for local well-
posedness theory is Lipschitz class. Thus, in what follows, we say that a function
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space is critical if it scales as Lipschitz class and subcritical if it scales above like
Hölder spaces C1+s , s > 0. Denote by g(t, x) = ∂xf (t, x) the slope of the graph,
and then it is quite obvious from (4) that

∂tg + u1∂xg = −∂xu1g + ∂xu2. (6)

For the computation of the source term, we proceed in a classical way using the
differentiation under the integral sign, and we get successively

2π∂xu1(x) = p.v.

∫

R

f ′(x + y)− f ′(x)
y2 + (f (x + y)− f (x))2 ydy

+ p.v.

∫

R

f ′(x + y)+ f ′(x)
y2 + (f (x + y)+ f (x))2 ydy (7)

and

2π∂xu2(x) = p.v.

∫

R

(
f (x + y)− f (x))(f ′(x + y)− f ′(x))

y2 + (f (x + y)− f (x))2 dy

− p.v.

∫

R

(
f (x + y)+ f (x))(f ′(x + y)+ f ′(x))

y2 + (f (x + y)+ f (x))2 dy, (8)

where the notation p.v. is the Cauchy principal value. It is worth pointing out that
the first two integrals appearing in the right-hand side of the expressions of ∂xu1 and
∂xu2 are in fact connected to Cauchy operator associated with the curve f defined
in (24). This operator is well studied in the literature, and some details will be given
later in Sect. 4. Next, we shall check that the integrals appearing in the right-hand
side of the preceding formulas can actually be restricted over a compact set related to
the support of f . Let [−M,M] be a symmetric segment containing the setK0−K0,
with K0 being the convex hull of the support of f0 denoted by suppf0. It is clear
that the support of ∂xu1f ′ is contained in K0, and thus, for x ∈ K0, one has

p.v.

∫

R

f ′(x + y)− f ′(x)
y2 + (f (x + y)− f (x))2 ydy=p.v.

∫
M

−M

f ′(x + y)− f ′(x)
y2 + (f (x + y)− f (x))2 ydy.
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Consequently, we obtain for x ∈ R

2πf ′(x)∂xu1(x) = f ′(x)p.v.

∫
M

−M

f ′(x + y)− f ′(x)
y2 + (f (x + y)− f (x))2 ydy

+ f ′(x)p.v.

∫
M

−M

f ′(x + y)+ f ′(x)
y2 + (f (x + y)+ f (x))2 ydy.

Coming back to the integral representation defining ∂xu2, one can see, using a
cancellation between both integrals, that the support of ∂xu2 is contained in K0.
Furthermore, for x ∈ K0, one may write

2π∂xu2(x) = p.v.

∫
M

−M

(
f (x + y)− f (x))(f ′(x + y)− f ′(x))

y2 + (f (x + y)− f (x))2 dy

− p.v.

∫
M

−M

(
f (x + y)+ f (x))(f ′(x + y)+ f ′(x))

y2 + (f (x + y)+ f (x))2 dy.

Gathering the preceding identities, we deduce that

2π
(− ∂xu1f ′(x)+ ∂xu2

) = F(x)−G(x) (9)

with

F(x) � p.v.

∫
M

−M

[
f (x + y)− f (x)− yf ′(x)](f ′(x + y)− f ′(x))

y2 + (f (x + y)− f (x))2 dy

and

G(x) � p.v.

∫
M

−M

[
f (x + y)+ f (x)+ yf ′(x)](f ′(x + y)+ f ′(x))

y2 + (f (x + y)+ f (x))2 dy.

One should keep in mind, and this will be useful for some points, that the foregoing
integrals can also be extended to the full real axis. Sometimes, in order to reduce the
size of the integral representation, we use the notations
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�±y f (x) = f (x + y)± f (x). (10)

Thus, F and G take the form

F(x) = p.v.

∫
M

−M

[
�−y f (x)− yf ′(x)

]
�−y f ′(x)

y2 + (�−y f (x))2
dy (11)

and

G(x) = p.v.

∫
M

−M

[
�+y f (x)+ yf ′(x)

]
�+y f ′(x)

y2 + (�+y f (x))2
dy. (12)

The first main result of this chapter is devoted to the local well-posedness issue.
We shall discuss two results related to subcritical and critical regularities. Denote
by X one of the following spaces: Hölder spaces Cs(R) with s ∈ (0, 1) or Dini
space C�(R). For more details about classical properties of these spaces, we refer
the reader to Sect. 3.

Theorem 2.1 Let f0 be a positive compactly supported function such that f ′0 ∈ X.
Then, the following results hold true:

(1) Equation (4) admits a unique local solution such that f ′ ∈ L∞([0, T ], X),
where the time existence T is related to the norm ‖f ′0‖X and the size of the
support of f0. In addition, the solution satisfies the maximum principle

∀ t ∈ [0, T ], ‖f (t)‖L∞ ≤ ‖f0‖L∞ .

(2) There exists a constant ε > 0 depending only on s and the size of the support
of f0 such that if

‖f ′0‖Cs < ε, (13)

then Eq. (4) admits a unique global solution f ′ ∈ L∞(R+;Cs(R)). Moreover,

∀ t ≥ 0, ‖∂xf (t)‖L∞ ≤ C0e
−t

with C0 a constant depending only on ‖f ′0‖Cs .
Before outlining the strategy of the proofs, some comments are in order. Now, we
shall give some details about the proofs. First we establish local-in-time a priori
estimates based on the transport structure of the equation combined with some
refined studies on modified curved Cauchy operators implemented in Sect. 4 and
essentially based on standard arguments from singular integrals. The construction of
the solutions is slightly intricate than the usual schemes used for transport equations.
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This is due to the fact that the establishment of the a priori estimates is not only
energetic. First, at some levels, we use some nonlinear rigidity of the equation like
in Theorem 2.1-(3) where the factor f ′ behind the operator should be the derivative
of the function f that appears inside the operator. Second, we use at some point the
fact that the support is confined in time. Last, we use at different steps the positivity
of the solution. Hence, it seems quite difficult to find a linear scheme taking into
account of those constraints. The idea is to implement a nonlinear scheme with two
regularizing parameters ε and n. The first one is used to smooth out the singularity
of the kernel and the second to smooth the solution through a nonlinear scheme.
We first establish that one has uniform a priori estimates on n but on some small
interval depending on ε. We are also able to pass to the limit on n and get a solution
for a modified nonlinear problem. Second, we check that the a priori estimates still
be valid uniformly on ε. This ensures that the time existence can be in fact pushed
up to the time given by the a priori estimates obtained for the initial equation (4).
As a consequence, we get a uniform time existence with respect to ε, and finally
we establish the convergence toward a solution of the initial value problem using
standard compactness arguments.

The global existence for small initial data requires much more careful analysis
because there is no apparent dissipation or damping mechanisms in the equation.
Notice that the estimates of the source term G contain some linear parts as it is
stated in Proposition 5.1. The basic ingredient to get rid of those linear parts is to
implement a kind of linearization allowing to capture a weak damping effect in G
that can just absorb the growth of the linear part. We do not know if the damping
proved for lower regularity still happen in the resolution space. As to the nonlinear
terms, they are always associated with some subcritical norms, and thus using an
interpolation argument with the exponential decay of the L1 norm, we get a global-
in-time control that leads to the global existence.

The second result that we shall discuss deals with the asymptotic behavior of the
solutions to (2) and (4). We shall study the collapse of the support to a collection of
disjoint segments located at the axis of symmetry. Another interesting issue that will
be covered by this discussion concerns the characterization of the limit behavior of
the probability measure

dPt � et
1Dt
|D0|dA, (14)

with dA being Lebesgue measure, and |D0| denotes the Lebesgue measure of D0.

Our result reads as follows.

Theorem 2.2 Let f0 be a positive compactly supported function such that f ′0 ∈
Cs(R), with s ∈ (0, 1). Assume that suppf0 is the union of n-disjoint segments,
satisfying the smallness condition (13). Then, there exists a compact set D∞ ⊂ R
composed of exactly of n-disjoint segments and a constant C > 0 such that
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∀ t ≥ 0, dH (Dt ,D∞) ≤ Ce−t , |D∞| ≥ 1

2
|D0|,

with dH being the Hausdorff distance, and |D∞| is the one-dimensional Lebesgue
measure of D∞. In addition, the probability measures {dPt }t≥0 defined in (14)
converge weakly as t goes to +∞ to the probability measure

dP∞ := δD∞⊗{0},

with  being a compactly supported function in D∞ belonging to Cα(R), for any
α ∈ (0, 1), which can be expressed in the form

(x) = f0(ψ
−1∞ (x))

‖f0‖L1
eg(x), (15)

with g a function that can be implicitly recovered from the full dynamics of solution
{ft , t ≥ 0} and

ψ∞ = lim
t→+∞ψ(t).

Note that ψ(t) is the one-dimensional flow associated with u1 defined in (29) and

Dt =
{
(x, y), x ∈ supp ft ; −ft (x) ≤ y ≤ ft (x)

}
.

The proof of the collapse of the support to a disjoint union of segments can be
easily derived from the formula (15), which ensures that the support of the limit
measure is exactly the image of the support of f0 by the limit flow ψ∞, which
is a homeomorphism of the real axis. To get the convergence with the Hausdorff
distance, we just use the exponential damping of the amplitude of the curve. As
to the characterization of the limit measure, it is based on the exponential decay
of the amplitude of graph combined with the scattering as t goes to infinity of the
normalized solution etf (t). In fact, we prove that the density is nothing but the
formal quantity

(x) = 2 lim
t→+∞ e

tf (t, x)

whose existence is obtained using the transport structure of the equation through
the method of characteristics combined with the damping effects of the nonlinear
source terms.
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3 Dini and Hölder Spaces

In this section, we set up some function spaces that we shall use and review some of
their important properties. Let f : R→ R be a continuous function, and we define
its modulus of continuity ωf : R+ → R+ by

ωf (r) = sup
|x−y|≤r

|f (x)− f (y)|.

This is a nondecreasing function satisfying ωf (0) = 0 and sub-additive, that is, for
r1, r2 ≥ 0, we have

ωf (r1 + r2) ≤ ωf (r1)+ ωf (r2). (16)

Now we intend to recall Dini and Hölder spaces. Dini space denoted by C�(R) is
the set of continuous bounded functions f such that

‖f ‖L∞ + ‖f ‖D <∞ with ‖f ‖D =
∫ 1

0

ωf (r)

r
dr.

Another space that we frequently use throughout this chapter is the Hölder space.
Let s ∈ (0, 1), and we denote by Cs(R) the set of functions f : R→ R such that

‖f ‖L∞ + ‖f ‖s <∞ with ‖f ‖s = sup
0<r<1

ωf (r)

rs
.

Let K be a compact set of R, and we define C�K as the subspace of C�(R) whose
elements are supported inK.Note that C�K ↪→ L∞(R), which means that a constant
C depending only on the diameter of the compact K exists such that

∀ f ∈ C�K, ‖f ‖L∞ ≤ C‖f ‖D. (17)

This follows easily from the observation

∀ r ∈ (0, 1/2], ω(r) ln 2 ≤ ‖f ‖D.

From (17), we deduce that for any A ≥ 1

∫ A

0

ωf (r)

r
dr ≤ ‖f ‖D + 2‖f ‖L∞ lnA

≤ C‖f ‖D
(
1+ lnA

)
. (18)
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Coming back to the definition of Dini semi-norm, one deduces the product laws: for
f, g ∈ C�K ,
‖fg‖D ≤ ‖f ‖L∞‖g‖D + ‖g‖L∞‖f ‖D and ‖fg‖D ≤ C‖f ‖D‖g‖D. (19)

Another useful space is CsK , which is the subspace of Cs(R) whose functions are
supported on the compact K. It is quite obvious that

CsK ↪→ C�K ↪→ L∞. (20)

We point out that all these spaces are complete. Another property that will be very
useful is the following composition law. If f ∈ Cs(R) with 0 < s < 1 and ψ : R→
R a Lipschitz function, then f ◦ ψ ∈ Cs(R) and

‖f ◦ ψ‖s ≤
[‖f ‖s + 2‖f ‖L∞

]‖∇ψ‖sL∞ . (21)

It is worth pointing out that in the case of Dini space C�(R), we get more precise
estimate of logarithmic type,

‖f ◦ ψ‖D ≤ C
(‖f ‖D + ‖f ‖L∞

)(
1+ ln+

(‖∇ψ‖L∞
))
, (22)

with the notation

ln+ x �
{
ln x, if x ≥ 1
0, otherwise.

Another estimate of great interest is the following product law:

‖fg‖s ≤ ‖f ‖L∞‖g‖s + ‖g‖L∞‖f ‖s . (23)

In the next task, we will be concerned with a pointwise estimate connecting a
positive smooth function to its derivative and explore how this property is affected
by the regularity. This kind of property will be required in Sect. 4 in studying Cauchy
operators with special forms. The following result will be very useful later.

Lemma 3.1 LetK be a compact set of R and f : R→ R+ be a continuous positive
function supported in K such that f ′ ∈ C�(R). Then, we have

∀ x ∈ R, |f ′(x)| ≤ C
‖f ′‖D + ‖f ′‖L∞
1+ ln+

( ‖f ′‖D
f (x)

) .

A weak version of this inequality is

∀x ∈ R, |f ′(x)| ≤ C

(‖f ′‖D + ‖f ′‖L∞
)(
1+ ln+(1/‖f ′‖D)

1+ ln+( 1
f (x)

) ,
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with C an absolute constant. If in addition f ′ ∈ Cs(R) with s ∈ (0, 1), then

∀x ∈ R, |f ′(x)| ≤ C‖f ′‖
1

1+s
s [f (x)] s

1+s

and the constant C depends only on s.

4 Modified Curved Cauchy Operators

This section is devoted to the study of some variants of Cauchy operators which
are closely connected to the operators arising in (7) and (8). Let us first recall
the classical Cauchy operator associated with the graph of a Lipschitz function
f : R→ R,

Cf g(x) =
∫

R

g(x + y)− g(x)
y + i(f (x + y)− f (x))dy, (24)

which is well defined at least for smooth function g.According to a famous theorem
by Coifman, McIntosh, and Meyer [17], this operator can be extended as a bounded
operator from Lp to Lp for 1 < p < ∞. By adapting the proof of the paper by
Wittmann [36], this operator can also be extended continuously from CsK to Cs(R)
for 0 < s < 1, provided that f belongs to C1+s(R). However, this operator fails
to be extended continuously from Dini space C�K to itself as it can be checked from
Hilbert transform. The structure of the operators that we have to deal with, as one
may observe from the expression of F following (9), is slightly different from the
Cauchy operators. It can be associated with the truncated bilinear Cauchy operator
defined as follows: for givenM > 0, θ ∈ [0, 1],

Cθf (g, h)(x) =

∫
M

−M

(
g(x + θy)− g(x))(h(x + y)− h(x))

y + i(f (x + y)− f (x)) dy.

The real and imaginary parts of this operator are given, respectively, by

Cθ,(f (g, h)(x) =

∫
M

−M

y
(
g(x + θy)− g(x))(h(x + y)− h(x))

y2 + [f (x + y)− f (x)]2 dy (25)

and

Cθ,)
f

(g, h)(x) = −

∫
M

−M

(
f (x + y)− f (x))(g(x + θy)− g(x))(h(x + y)− h(x))

y2 + [f (x + y)− f (x)]2 dy.
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In what follows, we denote by X one of the spaces CsK, with 0 < s < 1 or C�K .
The result that we shall discuss deals with the continuity of the preceding bilinear
operators on the spaces X. The proof of the next result is detailed in [25].

Proposition 4.1 Let K be a compact set of R and f be a compactly supported
function such that f ′ ∈ X. Then the following assertions hold true.

(1) The bilinear operator Cθf : X × X → X is well defined and continuous. More
precisely, there exists a constant C independent of θ such that for any g, h ∈ X

‖Cθ,(f (g, h)‖X ≤ C
(
1+ ‖f ′‖L∞‖f ′‖X

)(‖g‖D‖h‖X + ‖h‖D‖g‖X
)

and

‖Cθ,)f (g, h)‖X ≤ C‖f ′‖X
(
1+ ‖f ′‖2L∞

)(‖g‖D‖h‖X + ‖g‖X‖h‖D
)
.

The second kind of Cauchy integrals that we have to deal with and related to the
integral terms in (7) and (8) is given by the following linear operators:

T
α,β
f g(x) = p.v.

∫

R

y g(αx + βy)
y2 + [f (x)+ f (x + y)]2 dy

with α and β being two given parameters. The continuity of these operators in
classical Banach spaces is not in general easy to establish and could fail for some
special cases. We point out that it is not our purpose in this exposition to implement
a complete study of those operators. A more complete theory may be achieved, but
this topic exceeds the scope of this chapter, and we shall restrict ourselves to some
special configurations that fit with the application to the aggregation equation. Our
result in this direction reads as follows, and for the proof, we refer the reader to [25].

Theorem 4.2 Let α, β ∈ [0, 1], K be a compact set of R, and f : R → R+ be
a compactly supported continuous positive function such that f ′ ∈ C�K . Then, the
following assertions hold true:

(1) The operator T α,βf : C�K → L∞(R) is well defined and continuous

‖T α,βf g‖L∞ ≤ C
(
1+ ‖f ′‖2L∞ + ‖f ′‖L∞‖f ′‖D

)
‖g‖D

with C a constant depending only on K and not on α and β.
(2) The modified operator f ′T α,βf : C�K → C�K is continuous. More precisely,

‖f ′T α,βf g‖D ≤ C‖f ′‖D
(
Cβ ln+(1/‖f ′‖D)+ ‖f ′‖14D

)
‖g‖D

with C a constant depending only on K and
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Cβ �
{
(1− lnβ), β ∈ (0, 1]
1, β = 0.

(3) Let s ∈ (0, 1) and assume that f ′ ∈ CsK , and then f ′T α,βf : CsK → CsK(R)
is well defined and continuous. More precisely, there exists a constant C
depending only on the compact K and s such that

‖f ′T α,βf g‖s ≤ C
(
Cβ‖f ′‖

1
1+s
L∞ + ‖f ′‖14s

)
‖g‖s . (26)

In addition, one has the refined estimate

‖f ′T α,βf g‖s ≤ C‖f ′‖
1

2+s
L∞

[
‖f ′‖

1
2+s
s Cβ + ‖f ′‖14s

]
‖g‖s

+ C‖g‖
1

2+s
L∞ ‖g‖

1+s
2+s
s ‖f ′‖s , (27)

with

Cβ �
{
β− 1

2 , β ∈ (0, 1]
1, β = 0.

5 Local Well-Posedness

The main goal of this section is to discuss the local well-posedness result stated in
the first part of Theorem 2.1. The approach that we follow is classical and will be
done in several steps. We start with a priori estimates of smooth solutions in suitable
Banach spaces. As to the rigorous proof about the existence, it can be implemented
in a classical way, and for more details about that, we refer the reader to the paper
[25]. To go ahead this program, we need first the following result where we provide
a priori estimates of the source terms F andG described in (11) and (12). The proof
is described in [25].

Proposition 5.1 Let K be a compact set of R and s ∈ (0, 1). We denote by X one
of the spaces C�K and CsK. There exists a constant C > 0 depending only onK such
that the following estimates hold true:

(1) For any f ∈ X, we have

‖F‖L∞ ≤ C‖f ′‖L∞‖f ′‖D, ‖F‖X ≤ C‖f ′‖D
(‖f ′‖X + ‖f ′‖3X

)
.

(2) For any f ∈ X, we have
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‖G‖L∞ ≤ C‖f ′‖L∞
(
1+‖f ′‖3D

)
, ‖G‖X ≤ C

(
1+‖f ′‖

1
3
D

)(‖f ′‖X+‖f ′‖16X
)
.

Now, we shall give the a priori estimates needed for the local well-posedness.

Proposition 5.2 Let f : [0, T ] × R → R be a smooth solution for the graph
equation (4). Assume that the initial data is positive and with compact support K0.

Then, the following assertions hold true:

(1) For any t ∈ [0, T ], the function ft is positive and

∀t ∈ [0, T ], ‖f (t)‖L∞ ≤ ‖f0‖L∞ .

(2) For any t ∈ [0, T ], we have

‖f (t)‖L1 = ‖f0‖L1e
−t .

(3) The support a supp ft is contained in the convex hull of K0, that is,

∀ t ∈ [0, T ], supp f (t) ⊂ ConvK0.

(4) Set X = C�K or X = CsK, with s ∈ (0, 1). If f ′0 ∈ X, then there exists T
depending only on ‖f ′0‖X such that f ′ ∈ L∞([0, T ];X).

Proof (1) To get the first part about the persistence of the positivity, we shall prove
that

∀x ∈ R, u2(t, x) = f (t, x)U(t, x) (28)

with

‖U(t)‖L∞ ≤ C
(
1+ ‖f ′(t)‖6D

)

and C being a constant depending only on the size of the support of ft . Note from
the point (2) of the current proposition that the support of ft is contained in a fixed
compact, and therefore the constantC can be taken independent of the time variable.
Assume for a while (28), and let us see how to propagate the positivity. Denote by
ψ the flow associated with the velocity u1, that is, the solution of the ODE

∂tψ(t, x) = u1(t, ψ(t, x)), ψ(0, x) = x. (29)

Recall that

u1(t, x) = 1

2π

∫

R

{
arctan

(f (t, x + y)− f (t, x)
y

)
−arctan

(f (t, x + y)+ f (t, x)
y

)}
dy.
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Set

η(t, x) = f (t, ψ(t, x)),

and then

∂tη(t, x) = u2(t, ψ(t, x)) (30)

= η(t, x)U(t, ψ(t, x)).

Consequently,

η(t, x) = f0(x)e
∫ t
0 U(τ,ψ(τ,x))dτ .

Since the flow ψ(t) : R→ R is a diffeomorphism, we get the representation

f (t, x) = f0
(
ψ−1(t, x)

)
e
∫ t
0 U [τ,ψ(τ,ψ−1(t,x))]dτ . (31)

As an immediate consequence, we get the persistence through the time of the
positivity of the solution. Let us now come back to the proof of the identity (28). To
alleviate the notation, we remove the variable t from the functions. Applying Taylor
formula to the function,

τ ∈ [0, f (x)] �→ g(τ) � log

[
y2 + (

τ − f (x + y))2
y2 + (

τ + f (x + y))2
]

yields to

−2πu2(x) = f (x)

∫ 1

0

∫
M

−M

f (x + y)− τf (x)
y2 + [

f (x + y)− τf (x)]2
dτdy

+ f (x)

∫ 1

0

∫
M

−M

f (x + y)+ τf (x)
y2 + [

f (x + y)+ τf (x)]2
dτdy

� f (x)V1(x)+ f (x)V2(x).

Using once again the Taylor formula, we get the following expressions:

V1(x) =
∫ 1

0

∫
M

−M

(1− τ)f (x)
y2 + [

(1− τ)f (x)+ y ∫ 1
0 f

′(x + θy)dθ]2
dτdy
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+ p.v.

∫ 1

0

∫
M

−M

y
∫ 1
0 f

′(x + θy)dθ
y2 + [

f (x + y)− τf (x)]2
dτdy

� V1,1(x)+ V1,2(x)

and

V2(x) =
∫ 1

0

∫
M

−M

(1+ τ)f (x)
y2 + [

(1+ τ)f (x)+ y ∫ 1
0 f

′(x + θy)dθ]2
dτdy

+ p.v.

∫ 1

0

∫
M

−M

y
∫ 1
0 f

′(x + θy)dθ
y2 + [

f (x + y)+ τf (x)]2
dτdy

� V2,1(x)+ V2,2(x).
To estimate V1,1 and V2,1, we can assume that f (x) > 0. Then, making the change
of variables z �→ y = (1− τ)f (x)z leads to

V1,1(x) =
∫ 1

0

∫ M
(1−τ )f (x)

− M
(1−τ )f (x)

dτdz

z2 + [
1+ z ∫ 1

0 f
′(x + θ(1− τ)f (x)z)dθ]2

· (32)

We deduce that

‖V1,1‖L∞ ≤ C
(
1+ ‖f ′‖2L∞

)
. (33)

Similarly, we get

‖V2,1‖L∞ ≤ C
(
1+ ‖f ′‖2L∞

)
. (34)

Let us now bound Vj,2, j = 1, 2. First, by symmetry, we write

V1,2(x) =
∫ 1

0

∫
M

0

y
∫ 1
0 f

′(x + θy)dθ[f (x − y)− f (x + y)]ψτ (x, y)(
y2 + [f (x + y)− τf (x)]2

)(
y2 + [f (x − y)− τf (x)]2

)dydτ

+
∫ 1

0

∫
M

0

y
∫ 1
0
[
f ′(x + θy)− f ′(x − θy)]dθ

y2 + [f (x − y)− τf (x)]2 dydτ,

where

ψτ (x, y) = f (x + y)+ f (x − y)− 2τf (x)

= 2(1− τ)f (x)+ y
∫ 1

0

[
f ′(x + θy)− f ′(x − θy)]dθ.
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Thus

‖V1,2‖L∞ ≤ C

∫ 1

0

∫
M

0

‖f ′‖2
L∞y

2[(1− τ)f (x)+ yωf ′(y)
]

(
y2 + [f (x + y)− τf (x)]2

)(
y2 + [f (x − y)− τf (x)]2

)dydτ

+ C

∫ 1

0

∫
M

0

ωf ′(y)
y

dydτ.

Similarly to V1,1, one gets

∫ 1

0

∫
M

0

y2(1− τ)f (x) dydτ
(
y2 + [f (x + y)− τf (x)]2

)(
y2 + [f (x − y)− τf (x)]2

) ≤ C
(
1+ ‖f ′‖4L∞

)
.

It follows that

‖V1,2‖L∞ ≤ C‖f ′‖2L∞
(
1+ ‖f ′‖4L∞ +

∫ M

0

ωf ′(y)

y
dy

)
+ C‖f ′‖D

≤ C‖f ′‖2L∞
(
1+ ‖f ′‖4L∞ + ‖f ′‖D

)
+ C‖f ′‖D. (35)

The estimate of V2,2 can be done in a similar way, and one obtains

‖V2,2‖L∞ = C‖f ′‖2L∞
(
1+ ‖f ′‖4L∞ + ‖f ′‖D

)
+ C‖f ′‖D. (36)

Combining both last estimates with (33) and (34), we finally get according to the
embedding (17)

‖U‖L∞ ≤ C
(
1+ ‖f ′‖6D

)
,

where the constant C depends only on the size of the support of f.
Now, let us establish the maximum principle. From (5) combined with the

positivity of ft , one gets

∀t ∈ [0, T ], ∀x ∈ R u2(t, x) ≤ 0.

Coming back to (30), we deduce that

∂tη(t, x) ≤ 0,

which implies in turn that

∀t ∈ [0, T ], ∀x ∈ R f (t, x) ≤ f0
(
ψ−1(t, x)

)
.
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Combined with the positivity of f (t), we deduce immediately the maximum
principle

∀t ∈ [0, T ], ‖f (t)‖L∞ ≤ ‖f0‖L∞ .

Now, we intend to provide more refined identity that we shall use later in studying
the asymptotic behavior of the solution. Actually, we have

u2(t, x) = −f (t, x)
(
1+ R(t, x)), (37)

with

‖R(t)‖L∞ ≤ C‖f ′(t)‖D
(
1+ ‖f ′(t)‖5L∞

)
.

First, note that R = ∑2
i,j=1 Vi,j . The estimates of V1,2 and V2,2 are done in (35)

and (36). However, to deal with V1,1 and similarly V2,1, we return to the expression
(32). Set

τ �→ K(τ) = 1

z2 + [
1+ zτ ]2

·

Easy computations show the existence of a positive constant C such that

∀τ, z ∈ R, |K ′(τ )| = 2|z||1+ zτ |
(
z2 + [1+ zt]2)2

≤ 1

z2 + [1+ zτ ]2

≤ C
1+ τ 2
1+ z2 ·

Applying the mean value theorem yields

|K(τ)− 1

1+ z2 | ≤ C|τ |1+ τ
2

1+ z2 ·

Therefore, we get

∣∣∣∣V1,1(x)−
∫ 1

0

∫ M
(1−τ )f (x)

− M
(1−τ )f (x)

dzdτ

1+ z2
∣∣∣∣ ≤ C‖f ′‖L∞

(
1+ ‖f ′‖2L∞

)
,
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which implies that

∣∣∣∣V1,1(x)− π
∣∣ ≤ C‖f ′‖L∞

(
1+ ‖f ′‖2L∞

)
+ C‖f ‖L∞ . (38)

Similarly, we obtain

∣∣V2,1(x)− π
∣∣ ≤ C‖f ′‖L∞

(
1+ ‖f ′‖2L∞

)
+ C‖f ‖L∞ . (39)

Putting together (35), (36), (38), and (39), we get (37).
(2) Integrating the Eq. (2) in the space variable, we get after integration by parts

d

dt

∫

R
ρ(t, x)dx =

∫

R
div v(t, x)ρ(t, x)dx

= −
∫

R
ρ2(t, x)dx

= −
∫

R
ρ(t, x)dx,

where in the last line we have used that for the characteristic function one has ρ2 =
ρ. The time decay follows then easily.
(3) According to the representation of the solution given by (31), we have easily

that the support of f (t) is the image by the flow ψ(t) of the initial support, that is,

Kt = ψ(t,K0). (40)

We have to check that if K0 ⊂ [a, b], with a < b, then Kt ⊂ [a, b]. To do so, it is
enough to prove that

ψ(t, [a, b]) ⊂ [a, b].

This means that the flow is contractive on the boundary of the support. As ψ(t) is a
homeomorphism then necessary ψ(t, [a, b]) = [ψ(t, a), ψ(t, b)]. Hence, to get the
desired inclusion, it suffices to establish that

at � ψ(t, a) ≥ a and bt � ψ(t, b) ≤ b.

This reduces to study the derivative in time of at and bt . First, one has

ȧt = u1(t, at ) and ḃt = u1(t, bt ).
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Since f (t, y) = 0,∀y /∈ (at , bt ) and ft is positive everywhere, then

u1(t, at ) = 1

π

∫ bt−at

0
arctan

(ft (at + y)
y

)
dy ≥ 0.

Hence, ȧt ≥ 0, and therefore at ≥ a, for any t ∈ [0; T ].
Similarly, we get

u1(t, bt ) = − 1

π

∫ bt−at

0
arctan

(ft (bt − y)
y

)
dy ≤ 0,

which implies that bt ≤ b, for any t ∈ [0; T ]. This ends the proof of the point (2).
(4) Recall from (6) and (9) that g � f ′ satisfies the equation

∂tg + u1∂1g = 1

2π

(
F −G).

Set h(t, x) = g(t, ψ(t, x)), where ψ is the flow defined in (29). Then,

∂th(t, x) = 1

2π

(
F
(
t, ψ(t, x)

)−G(t, ψ(t, x))
)
.

Thus,

g(t, x) = g0(ψ
−1(t, x)+ 1

2π

∫ t

0
(F −G)(τ, ψ(τ, ψ−1(t, x))dτ.

Recall the classical estimate

∥∥∂x
[
ψ
(
τ, ψ−1(t, ·))]∥∥

L∞ ≤ e
∫ t
τ ‖∂xu1(t ′,·)‖L∞dt ′, (41)

which we may combine with the composition laws (21) and (22) to get

‖g(t)‖X ≤ CeV (t)
[
‖g0‖X+

∫ t

0
‖(F−G)(τ)‖Xdτ

]
, V (t) �

∫ t

0
‖∂xu1(τ )‖L∞dτ.

(42)
To estimate ‖∂xu1(t)‖L∞ , we come back to (7). The first integral term can be
restricted to a compact set [−M,M] and thus

∣∣∣∣p.v.

∫
M

−M

f ′(x + y)− f ′(x)
y2 + (f (x + y)− f (x))2 ydy

∣∣∣∣ ≤ 2

∫
M

0

ωf ′(y)

y
dy

≤ C‖f ′‖D.
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As to the second term, the integral can be restricted to [−M,M] and we simply
write

p.v.

∫

R

f ′(x + y)+ f ′(x)
y2 + (f (x + y)+ f (x))2 ydy = p.v.

∫
M

−M

f ′(x + y)− f ′(x)
y2 + (f (x + y)+ f (x))2 ydy

+ p.v.

∫

R

2f ′(x)
y2 + (f (x + y)+ f (x))2 ydy.

The first term of the right-hand side is controlled as before

∣∣∣p.v.
∫ M

−M
f ′(x + y)− f ′(x)

y2 + (f (x + y)+ f (x))2 ydy
∣∣∣ ≤ C‖f ′‖D.

However, for the last term, it can be estimated as in the proof of Theorem 4.2-(1).
One gets
∣∣∣∣p.v.

∫

R

y

y2 + (f (x + y)+ f (x))2 dy
∣∣∣∣ ≤ C

(
‖f ′‖2L∞ + ‖f ′‖L∞‖f ′‖D +‖f ′‖L∞

)
.

Hence, using the embedding X ↪→ C�K ↪→ L∞, we find

‖∂xu1(t)‖L∞ ≤ C
(
‖f ′‖D + ‖f ′‖L∞‖f ′‖D

)

≤ C
(
‖f ′(t)‖X + ‖f ′(t)‖2X

)
, (43)

which implies that

V (t) ≤ Ct
(
‖f ′‖L∞t X + ‖f ′‖2L∞t X

)
. (44)

Using Proposition 5.1, we obtain

‖(F −G)(t)‖X ≤ C
(
‖f ′(t)‖X + ‖f ′(t)‖17X

)
. (45)

Plugging (44) and (45) into (42), we obtain

‖f ′‖L∞T X ≤ e
CT

(
‖f ′‖L∞

T
X+‖f ′‖2L∞

T
X

)[
‖f ′0‖X + T

(‖f ′‖L∞T X + ‖f ′‖17L∞T X
)]
.

This shows the existence of small T depending only on ‖f ′0‖X and such that

‖f ′‖L∞T X ≤ 2‖f ′0‖X,

which ends the proof of the proposition. ��
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6 Global Well-Posedness

We are concerned here with the global existence of strong solutions already
constructed in Theorem 2.1. This will be established under a smallness condition
on the initial data, and it is probable that for arbitrary large initial data the graph
structure might be destroyed in finite time. The basic ingredient that allows to
balance the energy amplification during the time evolution is a damping effect
generated by the source terms. Note that this damping effect is plausible from the
graph equation (4) according to the identity (37). However, as we shall see in the
next section, it is quite complicate to extend this behavior for higher regularity at
the level of the resolution space due to the existence of linear part in the source
term governing the motion of the slope (6). This part could in general bring an
amplification in time of the energy. To circumvent this difficulty, we establish a
weakly damping property of the linearized operator associated with the source term
that we combine with the time decay of the solution for weak regularity using an
interpolation argument.

6.1 Weak and Strong Damping Behavior of the Source Term

Note from Proposition 5.1 that F does not contribute at the linear level, which is
not the case of the functional G. We shall prove that actually there is no linear
contribution forG. This will be done by establishing a damping property that occurs
at least at the linear level. This is described by the following proposition whose proof
is done in [25].

Proposition 6.1 LetK be a compact set of R and s ∈ (0, 1). Then, for any f ∈ CsK ,
we have the decomposition

G(x) = 2πf ′(x)+ L(x)+N(x)

with

‖L‖s ≤ 2π
(‖f ′‖s + 2‖f ′‖L∞

)+ C‖f ′‖sL∞‖f ′‖s and ‖N‖s ≤ C‖f ′‖
1
3
D

(
‖f ′‖s + ‖f ′‖16s

)
,

where C > 0 is a constant depending only on K and s. Moreover,

‖L‖L∞ ≤ Cmin
(‖f ‖sL∞‖f ′‖s , ‖f ′‖L∞

)
and ‖N‖L∞ ≤ C‖f ′‖L∞

(
‖f ′‖D+‖f ′‖3D

)
.
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6.2 Global a Priori Estimates

The main goal of this section is to show how we may use the weakly damping effect
of the source terms stated in Proposition 6.1 in order to get global a priori estimates
when the initial data is small enough. The basic result reads as follows and the proof
can be found in [25].

Proposition 6.2 LetK be a compact set of R and s ∈ (0, 1). There exists a constant
ε > 0 such that if ‖f ′0‖s ≤ ε, then Eq. (4) admits a unique global solution

f ′ ∈ L∞(R+;CsK).

Moreover, there exists a constant C0 depending on the initial data such that

∀ t ≥ 0, ‖f ′(t)‖L∞ ≤ C0e
−t .
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Geometric Control of Eigenfunctions
of Schrödinger Operators
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1 Introduction

The purpose of this note is to explore the connections between three problems
arising in (linear) PDE that involve a compact Riemannian manifold (M, g), an
open subset ω ⊆ M , and the Laplace–Beltrami operator (or simply, the Laplacian)
�x on M associated with the metric g (complemented with suitable boundary
conditions when ∂M �= ∅):
• Uniform decay for solutions to the damped wave equation (with damping

coefficient supported on ω)
• Exact controllability of the Schrödinger equation (with controls supported on
ω)

• Observability of eigenfunctions of the Laplacian (from the open set ω)

The first of these problems involves the damped wave equation:
{
∂2t u(t, x)−�xu(t, x)+ a(x)∂tu(t, x) = 0, (t, x) ∈ R×M,
(u(0, ·), ∂tu(0, ·) = (u0, u1) ∈ H 1

0 (M)× L2(M).

Here, the damping coefficient a ∈ L∞(M) is supposed to be nonnegative; for
instance,
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a := c1ω, for some open set ω ⊂ M and some c > 0,

and when ∂M = ∅, one defines H 1
0 (M) := H 1(M)/R.

It is easy to check that the energy

E(t, u) :=
∫

M

(|∂tu(t, x)|2 + |∇xu(t, x)|2)dx

of any non-constant solution u decays

d

dt
E(t, u) = −2

∫

M

a(x)|∂tu(t, x)|2dx < 0.

It is natural to ask whether or not this decay is uniform with respect to the initial
data:

E(t, u) ≤ f (t)E(0, u), for some f (t)→ 0+ as t →+∞,

for every initial datum (u0, u1) ∈ H 1
0 (M) × L2(M). If such an f (t) exists, it is

known (see for instance [31]) that it must be of the form:

f (t) = Me−αt , for some α,M > 0,

hence the terminology exponential decay or stabilization.
It is possible to show that uniform decay for solutions to the damped wave

equation holds if and only if the following observability estimate

E(0, v) ≤ CT,ω

∫ T

0

∫

ω

|∂tv(t, x)|2dxdt (OW(ω))

is verified for some T ,CT,ω > 0 uniformly for every solution of the free wave
equation:

{
∂2t v(t, x)−�xv(t, x) = 0, (t, x) ∈ R×M,
(v(0, ·), ∂t v(0, ·) = (v0, v1) ∈ H 1

0 (M)× L2(M).
(1)

Again, see [31] for a proof.
In order to describe the second problem we are interested in, we must introduce

the forced Schrödinger equation:

{
i∂t! (t, x)+�x! (t, x) = F(t, x),

!(0, ·) = !0,

where the forcing term satisfies
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F ∈ L2
loc(R×M), F (t, x) = 0 for a.e. x ∈ M \ ω.

This equation is said to be exactly (null) controllable from ω at some time T > 0
provided that given any !0 ∈ L2(M), it is always possible to find a forcing term F

as above such that the corresponding solution ! satisfies

!(T , ·) = 0.

An application of the closed graph theorem shows that controllability from ω at
time T is equivalent to the existence of a constant C = CT,ω > 0 such that every
ψ0 ∈ L2(�) satisfies the observability estimate

||ψ0||2
L2(M)

≤ C

∫ T

0

∫

ω

|ψ(t, x)|2dx dt, (OS(ω))

where ψ is the solution of the homogeneous Schrödinger equation

{
i∂tψ (t, x)+�xψ (t, x) = 0,
ψ(0, ·) = ψ0.

(2)

The proof of this fact is standard, but the reader may consult for instance the
introduction of [28].

This estimate is essentially the same as (OW(ω)), when the wave propagator
associated with −�x is replaced by the Schrödinger group.

The last problem of the list we presented at the beginning of this introduction
involves eigenfunctions of �x . SinceM is compact, the Laplacian can be diagonal-
ized and its spectrum is discrete. There exists an orthonormal basis (ϕk) of L2(M)

consisting of eigenfunctions of −�x :

−�xϕk(x) = λkϕk(x), x ∈ M,

with

0 ≤ λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk →+∞.

When ∂M �= ∅, we will assume in what follows that −�x is the self-adjoint
extension of the Laplacian over C∞c (M) obtained by imposing Dirichlet boundary
conditions. An important question in Quantum Mechanics is that of understanding
the localization properties of high-frequency eigenfunctions. The following defini-
tion is aimed at quantifying this property, following the same spirit as (OW(ω)),
(OS(ω)).

Definition 1 (Observability of Eigenfunctions) We say that the eigenfunctions of
the Laplacian are observable from ω if a constant C = Cω > 0 exits such that
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||ϕ||L2(M) ≤ Cω‖ϕ‖L2(ω) (OE(ω))

holds for every L2(M)-eigenfunction of the Laplacian:

−�xϕ(x) = λϕ(x), x ∈ M.

Note that it is crucial in this definition that the constant Cω is required to be uniform
with respect to the eigenvalue λ.

If ϕ is an eigenfunction of the Laplacian with ‖ϕ‖L2(M) = 1 and eigenvalue λ,
then

• v(t, ·) := e−it
√
λϕ is a solution to the wave equation (1) and

E(0, v) = λ.

• ψ(t, ·) = e−itλϕ is a solution to the Schrödinger equation (2).

Note that

|∂tv(t, ·)|2 = λ|ϕ|2, |ψ(t, ·)|2 = |ϕ|2;

therefore,

(OW(ω)) or (OS(ω)) �⇒ (OE(ω)).

2 The Geometric Control Condition

Let us briefly recall at this point some geometric notions that we will use in the
sequel. From now on, SM denotes the sphere bundle ofM:

SM =
⊔

x∈M
SxM, SxM := {v ∈ TM : ‖v‖x = 1},

where ‖ · ‖x denotes the norm on TxM induced by the Riemannian metric g. Given
any z0 := (x0, v0) ∈ SM , there exists a unique geodesic γz0(t) satisfying

γz0(0) = x0, γ̇z0(0) = v0.

The map φt that associates with every z0 ∈ SM the point

φt (z0) := (γz0(t), γ̇z0(t)) ∈ SM

is called the geodesic flow on SM .
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The open subset ω ⊆ M satisfies the Geometric Control Condition (GCC)
provided that every geodesic of (M, g) intersects ω. SinceM is compact, the GCC
can be also written in the form it is sometimes found in the literature:

∃T0 > 0, KT0
ω := {z0 ∈ SM : φt (z0) �∈ Sω, ∀t ∈ [0, T0]} = ∅, (GCC)

since KT0
ω consists of those points z0 ∈ SM with the property that the geodesic of

length T0 issued from z0 does not enter the region ω.
The GCC is sufficient and (almost) necessary for the uniform decay of damped

waves.

Theorem 2 The following statements hold:

• Suppose that ω satisfies (GCC). Then, (OW(ω)) holds.
• Suppose thatM \ ω contains a geodesic. Then, (OW(ω)) does not hold.

This result was proved in [31] for manifolds without boundary. The case of
manifolds with boundary was established in [5]. Note that the necessary and
sufficient conditions are slightly different, and in fact the necessary condition can
be refined, see, for instance, [7, 35].

The GCC is sufficient for the controllability of the Schrödinger equation, as was
first proved by Lebeau [20].

Theorem 3 Suppose that ω satisfies (GCC). Then, (OS(ω)) holds.

As a consequence,

(OW(ω)) �⇒ (OS(ω)) �⇒ (OE(ω)).

However, GCC is not necessary in general in order to have (OS(ω)). The
simplest setting where this kind of behavior takes place is the flat torus T

d =
R
d/Zd .

Theorem 4 Suppose that M = T
d equipped with the flat metric. Then, (OS(ω))

holds for every open set ω ⊆ T
d and therefore so does (OE(ω)).

Therefore, (OS(ω)) and (OE(ω)) hold unconditionally, and this is not the case
for (OW(ω)). This was first proved by Jaffard [18] for the free Laplacian when
d = 2 and generalized to the multidimensional case by Komornik [19]. The proof
is based on the theory of nonharmonic Fourier series. This type of result holds
for general Quantum Completely Integrable systems (in particular for manifolds
with completely integrable geodesic flow). This was done in [2] using tools from
Microlocal Analysis.

One can also find examples of manifolds for which (OS(ω)) holds under a weaker
but nontrivial condition than (GCC). The simplest of such examples is the Euclidean
disk D := {z ∈ R

2 : |z| < 1}, see [3]; one also has this type of behavior in products
of spheres [16]. Estimates (OS(ω)) and (OE(ω)) do not hold for every open set ω,
yet (GCC) is not necessary. The precise result on the disk is the following.
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Theorem 5 ([3]) Suppose thatM = D equipped with the flat metric and that ω ⊆
D is open. Estimates (OS(ω)) and (OE(ω)) hold if and only if ω ∩ ∂D �= ∅.
The fact that ω ∩ ∂D �= ∅ is necessary for (OE(ω)) is known for a long time and
is related to the existence of sequences of eigenfunctions, called whispering gallery
modes, that concentrate on the boundary of the disk. In polar coordinates, these
modes are

ϕk(re
iθ ) = ckJk(αkr)e

ikθ ,

where k ∈ N, Jk is the k-th Bessel function, αk is its first positive zero, and ck is
chosen such that ‖ϕk‖L2(D) = 1. One can check that

−�zϕk(z) = α2kϕk(z), z ∈ D, ϕk|∂D = 0,

and that, for any open set ω such that ω ⊂ D,

lim
k→∞

∫

ω

|ϕk(z)|2dz = 0.

Therefore, the main contribution of Theorem 5 is proving the reverse implication.
This is done following the strategy proposed in [1, 2, 24], which uses tools
from Microlocal Analysis rather than the arithmetic properties of eigenvalues and
eigenfunctions. It is worth noting that, as a consequence of this fact, the results
of [1–3] still hold when −�z is replaced by a Schrödinger operator −�z + V ,
V ∈ C∞(M;R).

The examples we have examined so far are such that (OS(ω)) and (OE(ω))
hold under the same condition on ω, but (OW(ω)) holds under a strictly stronger
condition on ω than (OS(ω)).

Let us finish this section with a third example, suppose nowM = S
d is the round

sphere. In this case, (GCC) is necessary for (OE(ω)) (and therefore for (OS(ω)):

if (M, g) = (Sd , can), then (OW(ω)) ⇐⇒ (OS(ω)) ⇐⇒ (OE(ω)).

This is the content of the next result, which is well known. See [4, 23] for similar
results in a more general context.

Theorem 6 Suppose that Sd \ω contains a geodesic. Then, (OE(ω)) does not hold.

Proof Write the sphere as

S
d := {x ∈ R

d+1 : |x| = 1}.

Let

ϕk(x) = ck(x1 + ix2)k, with ck :=
√
�(k + (d + 1)/2)

2π
d+1
2 k!

∼ k
d−1
4 .
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This function is a spherical harmonic and therefore an eigenfunction of the
Laplacian:

−�xϕk(x) = k(k + d − 1)ϕk(x), x ∈ S
d , ||ϕk||L2(Sd ) = 1.

Clearly,

|ϕk(x)|2 = (ck)
2(|x1|2 + |x2|2)k = (ck)

2(1− |x′|2)k,

where x = (x1, x2, x
′). This shows that |ϕk|2 concentrates on the equator {x′ = 0}.

If ω ∩ {x′ = 0} = ∅, then no constant C > 0 can exist such that

||ϕk||L2(Sd ) ≤ C‖ϕk‖L2(ω)

holds uniformly in k ∈ N, since

lim
k→∞

∫

ω

|ϕk(x)|2dx = 0, and ||ϕk||L2(Sd ) = 1.

Since any other geodesic of Sd can be obtained by applying a rotation to {x′ = 0}
and the composition of a spherical harmonic with a Euclidean rotation is again a
spherical harmonic, the claim follows. ��

3 Are There Examples for Which (OE(ω)) Holds
and (OS(ω)) Does Not?

There are indeed geometries (M, g) and open sets ω ⊂ M for which (OE(ω)) holds
and (OS(ω)) fails. This was first shown in [27]. The geometric setting is particularly
simple.

Theorem 7 ([27]) There exist infinitely many surfaces of revolution M with the
following properties:

• (OW(ω)) and (OS(ω)) hold if and only if ω satisfies (GCC).
• There are infinitely ω such that (OE(ω)) holds, but (OS(ω)) does not.

All these examples are Zoll surfaces, i.e., surfaces all of whose geodesics are
closed (just like the sphere). The particular class of Zoll surfaces that are useful
to our purposes are surfaces of revolution, or equivalently, Riemannian metrics
on S

2 that are invariant by rotations along the z-axis (a surface of revolution is
isometric to S

2 equipped with such a metric). Zoll surfaces of revolution (S2, g)
are characterized by the existence of a parametrization (r, θ) of the sphere (θ is the
longitude and r is a function of the geodesic distance to north pole) such that the
Riemannian metric g is given by
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g = (1+ h(cos r))2dr ⊗ dr + sin2 rdθ ⊗ dθ,

where h is an odd function from [−1, 1] to (−1, 1) with h(1) = h(−1) = 0 (see [6,
Proposition 4.10, Corollary 4.16]).

The reader may consult [6] for a comprehensive account on the subject of Zoll
manifolds. Let us just mention here that the existence of orientable Zoll surfaces that
are not surfaces of revolution is known (see [15]), although they all are topologically
spheres. Additional visual examples of this class of surfaces can be found in [17].

In order to get an insight on the main ideas of the proof of Theorem 7, it is useful
to place ourselves in an a priori simpler setting: the sphere M = S

d with its usual
metric, but, instead of considering eigenfunctions of the Laplacian −�x , one looks
at eigenfunctions of a Schrödinger operator −�x + V where V ∈ C∞(Sd;R). It is
not hard to prove that the addition of this potential does not affect the conditions on
ω under which (OS(ω)) holds.

Theorem 8 ([25, 27]) Suppose that (M, g) is a Zoll manifold, V ∈ C∞(M;R), and
that ω ⊆ M is an open set such that

‖ψ0‖2
L2(M)

≤ C

∫ T

0

∫

ω

|eit (�x−V )ψ0(x)|2dx dt

holds uniformly on ψ0 ∈ L2(M) for some choice of T ,C > 0. Then, γ ∩ω �= ∅ for
every geodesic γ ofM .

We are going to show that this is no longer the case for (OE(ω)). In fact, it is
possible to construct explicit examples of potentials V such that the open sets ω for
which (OE(ω)) holds satisfy much weaker assumptions than (GCC). A particularly
extreme situation is the one described by the following result.

Theorem 9 There exists a family of potentials T ⊂ C∞(S2;R) such that, for every
V ∈ T , there exist three distinct geodesics of S2, γ1, γ2, and γ3 with γ1∩γ2∩γ3 = ∅
such that, for every open set ω ⊆ S

2 satisfying

ω ∩ γi �= ∅, i = 1, 2, 3,

the estimate

‖ϕ‖L2(S2) ≤ C‖ϕ‖L2(ω)

holds for some C > 0 uniformly for every solution to

(−�x + V (x))ϕ(x) = λϕ(x), x ∈ S
2.

A sketch of the proof of this result will be presented in the next section (full details
can be found in [29]. Let us just mention here that the set ω can be very small: if
P ∈ γ1 ∩ γ2 and Q ∈ γ2 ∩ γ3, then ω can be any arbitrarily small neighborhood of
{P,Q}.
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The key ingredient in the proof of Theorem 9 is establishing that observability
for eigenfunctions of the Schrödinger operator −�x + V holds under a geometric
assumption on ω that involves the Radon transform or X-Ray transform of the
perturbation:

I(V )(x, v) = 1

2π

∫ 2π

0
V (γ(x,v)(s))ds, (x, v) ∈ SS2,

which is nothing but the average of V along geodesics of the sphere.
The function I(V ) defines a Hamiltonian vector field XI(V ) on SS2 (with

respect to the symplectic form obtained by identification of T ∗M and TM using
the Riemannian metric g). Its flow ϕVs commutes with the geodesic flow. As a
consequence, it transforms orbits of the geodesic flow into orbits of the geodesic
flow. In other words, given geodesic γ0, write

(γs, γ̇s) := ϕVs (γ0, γ̇0),

then γs is a geodesic for every s ∈ R.
This flow on the space of geodesics induces a new geometric condition on ω,

which we name the V -Geometric Control Condition, that holds provided that

KV
ω := {γ0 geodesic : φVs (γ0, γ̇0) ∩ Sω �= ∅, ∀s ∈ R} = ∅. (V -GCC)

In other words, ω satisfies (V -GCC) provided that, given any geodesic γ0, one can
find s ∈ R such that γs ∩ ω �= ∅. It is shown in [28] that (V -GCC) implies that the
eigenfunctions of our Schrödinger operator are observable.

Theorem 10 ([28]) Suppose that ω satisfies (V -GCC). Then, there exists C > 0
such that

‖ϕ‖L2(S2) ≤ C‖ϕ‖L2(ω)

uniformly for every solution to

(−�x + V (x))ϕ(x) = λϕ(x), x ∈ S
2. (3)

The strongest obstruction to V -GCC comes from the fact that I(V ) always has
critical points:

C(V ) = {γ geodesic : dI(V )(γ, γ̇ ) = 0} �= ∅.

If γ0 ∈ C(V ), then γs = γ0 for every s ∈ R. Therefore, if ω satisfies V -GCC, then
necessarily

ω ∩ γ �= ∅ for every γ ∈ C(V ).
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In the next section (Proposition 12), we will show that as soon as C(V ) �= S
2, there

exist open sets ω ⊂ S
2 such that (V -GCC) holds, but (GCC) does not. Theorem 9

follows from the construction of a V such that, after identification of geodesics with
the same image but different oritentations, #C(V ) = 3 (which, as we shall see, is the
minimal cardinal of a set of critical points on the space of geodesics on the sphere)
and the analysis of the corresponding flow φVs .

Remark 11 Some remarks are in order.

• Theorem 10 holds for spheres of any dimension, not only the two-dimensional
sphere.

• If V is odd (meaning V (x) = −V (−x)), then I(V ) = 0 and (V -GCC) is
equivalent to (GCC). However, in [28], it is shown that a similar result holds
under a new geometric condition, in which the Radon transform of the potential
is replaced by a different nonlinear transform of V , whose expression is a bit
more complicated.

• This yields the following question: suppose that (OE(ω)) holds for every
eigenfunction of (3) if and only if ω satisfies (GCC). Does this imply that V
is constant?

Let us conclude this section giving some insight on how Theorem 7 essentially
follows from Theorem 10. The first step is to use a normal form result due to
Weinstein [32], see also [8, 10, 33], in order to write the Laplacian of a Zoll surface
(S2, g) (whose geodesic flow has period 2π ) as

−�x = A2 +Q,

where A andQ are pseudo-differential operators on S2 of order one and order zero,
respectively, such that

• The spectrum of A is contained in N+ α
4 , with α a fixed integer.

• [�x,A] = [�x,Q] = 0.

One then reproduces the argument that leads to Theorem 10 replacing −�x by
A2 and V by Q. One can show that the same result holds in this case, modulo
replacing I(V ) by σ0(Q), the principal symbol of Q. Hence, it suffices to show
that σ0(Q) is non-constant; this will ensure that φ

Q
s is nontrivial and therefore that

(Q-GCC) is non-empty and non-equivalent to (GCC).
Fortunately, a formula for the principal symbol of Q involving Jacobi fields has

been obtained by Zeldtich [34] for Zoll surfaces of revolution. Although the formula
is not completely explicit, it is not difficult to show that σ0(Q) is not constant, and
therefore C(σ0(Q)) �= S

2. This is enough to prove the theorem, by Proposition 12
below. See [27, 28] for full details.
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4 A Geometric Interpretation of (V -GCC) and Proof
of Theorem 9

A nice consequence of working in the two-dimensional sphere is that its space of
oriented geodesicsG(S2) can be identified to the sphere S2 itself and the symplectic
form on T S2 induces a symplectic structure on G(S2) (which must necessarily be a
non-zero multiple of the volume form on S2). This is due to the fact that any oriented
geodesic can be canonically identified to a unique point in S

2: every geodesic γ of
S
2 is obtained by intersecting the sphere by a plane that is uniquely determined by
γ . The two unit normal vectors of this plane (which define two distinct points in S2)
are then identified to the two orientations of the geodesic. For instance,

γ = {x3 = 0} is identified to (0, 0, 1) and (0, 0,−1).

The set of all geodesics issued from the same point x0 ∈ S
2 is then identified to the

geodesic in S2 that lies in the plane through the origin that is orthogonal to x0.
With this identification in mind, the Radon transform can be identified to an

operator:

I : C∞(S2) −→ C∞(S2),

and, see [15],

ker I = C∞odd(S2) := {u ∈ C∞(S2) : u(−x) = −u(x), ∀x ∈ S
2},

whereas

I(C∞(S2)) = C∞even(S2) := {u ∈ C∞(S2) : u(−x) = u(x), ∀x ∈ S
2}.

Therefore,

I : C∞even(S2) −→ C∞even(S2) is bijective. (4)

Analogously, the Hamiltonian vector field XI(V ) can be identified to a vector field
on S

2 that is Hamiltonian with respect to the new symplectic form. In particular,

φVs : S2 −→ S
2, and I(V ) ◦ φVs = I(V ), ∀s ∈ R. (5)

Once this has been established, we are able to prove the following result.

Proposition 12 Suppose that I(V ) is not identically constant. Then, there exists an
open set ω ⊂ S

2 that satisfies (V -GCC) but for which (GCC) fails.

Proof Suppose that I(V ) does not have critical points in a neighborhood of γ0 ∈
G(S2). Given ε > 0, write
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ωε :=
{
x ∈ S

2 : dist(x, γ0) > ε
}
;

these sets are open and do not satisfy (GCC).
Now, if γ0 is identified to ±x0 ∈ S

2, then the set of those geodesics that are
contained in S2 \ωε is identified to a neighborhood Uε of ±x0 in S2. By choosing ε
small enough, we can ensure that I(V ) has no critical points in a neighborhood that
is slightly bigger than Uε . Then, the Poincaré–Bendixon theorem implies that given
any x ∈ Uε , there exist t > 0 such that the Hamiltonian flow φVt maps x to some
point in S2 \ Uε . Therefore, (V -GCC) is satisfied, whereas (GCC) is not. ��
We conclude this section by proving Theorem 9. We first define the class of
potentials T . Let

Q(a,b,c)(x) = ax21 + bx22 + cx23 , x ∈ R
3.

Then,Q(a,b,c,|S2 ∈ C∞even(S2;R), and we define, using (4),

T := I−1({Q(a,b,c)|S2 : 0 < a < b < c}).

For any V ∈ T , the function I(V ) = Q(a,b,c,|S2 ∈ C∞even(S2;R) has exactly six
(nondegenerate) critical points:

C(V ) = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},

and

min
S2

I(V ) = a, max
S2

I(V ) = c.

The orbits of φVt are contained in the connected components of the level sets
I(V )−1(E), E ∈ [a, c], by (5). These orbits are equilibria when E = a, c, closed
simple orbits around equilibrium points when E �∈ {a, b, c}. When E = b, the level
set consists of two equilibrium points and four heteroclinic orbits.

The geodesic corresponding to the critical points of I(V ) is

γi = {xi = 0}, i = 1, 2, 3.

Suppose that ω ⊆ S
2 is an open set that intersects these geodesics at points p1, p2,

and p3, respectively. This means that the set of all geodesics that intersect ω contains
all geodesics issued from pi , i = 1, 2, 3. The set of these geodesics corresponds,
via our identification, to the three geodesics

S
2 ∩ p⊥i , i = 1, 2, 3,
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whose union has non-empty intersection with all the orbits of φVt . There-
fore, (V -GCC) is satisfied, and the result follows from Theorem 10.

Let us mention that six is the least number of critical points an even Morse
function on S

2 may have. This is due to the fact that any such function induces
a Morse function on the projective plane P. Since the Euler characteristic of P is
equal to one, the Poincaré–Hopf theorem implies

1 = χ(P) =
2∑

j=0
(−1)j#{γ ∈ C(V ) : γ has index j}.

There are at least one critical points of index zero and index two, and therefore one
must have also at least one saddle point. The number of critical points of I(V )when
viewed as a function of P must be at least three, hence the claim.

5 On the Proof of Theorem 10

The proof is based on an argument by contradiction involving semiclassical defect
measures that goes back to [21]. We make an extensive use of properties of
semiclassical pseudo-differential operators; the reader may consult [9, 12, 30, 36] for
background on the theory. Introductory accounts on semiclassical defect measures
can be found in [11, 14, 26].

Suppose that ω satisfies (V -GCC) but that (OE(ω)) fails. This means that there
exist sequences λn →∞ and ϕn such that

(−�x + V )ϕn = λnϕn, ‖ϕn‖L2(S2) = 1, (6)

and

lim
n→∞‖ϕn‖L2(ω) = 0.

Along a subsequence, which we do no relabel, one has, for the weak-∗ topology on
the set of Radon measures on S

2,

|ϕn|2dx ∗
⇀ ν, n→∞,

where, since S2 is compact, ν is a probability measure on S
2 and

ν(ω) = 0.

The goal now is to show that ν = 0 in order to obtain a contradiction. To this aim,
we are going to prove that ν enjoys additional regularity properties that come from
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the fact that ϕn solves (6). This is achieved by replacing position densities |ϕn|2dx
by phase-space densities (distribution on T ∗S2):

P(S2) � |ϕn|2 � wϕn ∈ D′(T ∗S2).

We lift the positive density

φ �−→
∫

S2
φ(x)|ϕn|2(x)dx = (φ ϕn |ϕn)L2(S2)

to the Schwartz distribution

wϕn : a �−→ (Ophn(a)ϕn |ϕn)L2(S2),

with a ∈ C∞c (T ∗S2), hn = 1/
√
λn, and Oph(a) stands for the Weyl semiclassical

pseudo-differential operator of symbol a. The distribution wϕn is called theWigner
distribution of ϕn. Note that we use the cotangent T ∗S2 as our phase-space instead
of T S2, this is because the (principal) symbol of a pseudo-differential operator is
defined intrinsically as a function on T ∗S2.

One can consider Wigner distributions of arbitrary L2-functions uh. The choice
of h is then dictated by the frequency behavior of uh. This is easier to understand in
R
d . Consider a wave-packet or coherent state:

uh := 1

hd/4
ρ

(
x − x0√

h

)
ei

ξ0
h
·x.

Then,

wuh
∗
⇀ δx0 ⊗ δξ0 , h→ 0+, in D′(T ∗S2).

Accumulation points μ of (wϕn) are always probability measures on T ∗S2 [13,
14, 22]. They are called semiclassical measures. In addition, for every φ ∈ C(S2),

∫

S2
φ(x)ν(dx) =

∫

S2

∫

T ∗x S2
φ(x)μ(dx, dξ),

which means that μ is a lift of ν, and therefore ν(ω) = 0 translates into

μ

(
⋃

x∈ω
T ∗x S2

)

= 0.

By noting that the eigenvalue equation can be rewritten as

−h2n�xϕn + h2nV ϕn = ϕn, hn = 1/
√
λn,
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one can use the symbolic calculus of semiclassical pseudo-differential operators to
conclude that, see for instance [13, 26],

(‖ξ‖2x − 1)μ(dx, dξ) = 0 �⇒ suppμ ⊆ {‖ξ‖x = 1} =: S∗S2,

and μ is invariant by the geodesic flow: for every a ∈ C∞c (T ∗S2),
∫

T ∗S2
{a, ‖ξ‖2}μ(dx, dξ) = 0 �⇒ (φt )∗μ = μ, ∀t

that is, μ can be identified to a measure on the space of geodesics of S2. All the
properties mentioned so far hold on any compact Riemannian manifold.

The main step of the proof is the following fact.

Proposition 13 The measure μ is also invariant by the Hamiltonian flow φVs
associated with I(V ). This means that μ is constant along orbits of φVs . In
particular,

ν(γs) = ν(γ0), ∀s ∈ R.

If one combines this property with:

• ω satisfies V -GCC.
• μ

(⋃
x∈ω S∗xS2

) = 0.

one concludes that μ = 0 and therefore ν = 0, which is a contradiction.

Proof of Proposition 13 This is based on theQuantum AveragingMethod, which
goes back to Weinstein [32]. Write

−� = A2 − 1

4

so that the spectrum of A equals N+ 1/2. Then,

e2iπA = eiπ Id. (7)

Given a in C∞c (T ∗Sd \ {0}), write h = 1/
√
λ and, by analogy with the Radon

transform of functions, we define the quantum average of the operator Oph(a):

Iqu(Oph(a)) :=
1

2π

∫ 2π

0
e−isA Oph(a)e

isAds.

Then, it follows from (7) that

[
Iqu(Oph(a)), A

] = [
Iqu(Oph(a)),�

] = 0.



166 F. Macià

Moreover, Egorov’s theorem [9, 12, 36] implies

Iqu(Oph(a)) = Oph(I(a))+O(h).

With these identities in mind, we deduce that if

(−h2�+ h2V )ψh = ψh, ‖ψh‖L2(S2) = 1,

then

0 = (
[
−h2�+ h2V, Iqu(Oph(a))

]
ψh|ψh) = h2(

[
V, Iqu(Oph(a))

]
ψh|ψh)

and

0 = (
[
V, Iqu(Oph(a))

]
ψh|ψh) = h

i
(Oph ({V, I(a)}) ψh|ψh)+O(h2).

Let μ be the semiclassical measure of the sequence (ψh). Then, after letting h go to
0, one finds that

lim
h→0+

(Oph ({V, I(a)}) ψh|ψh) =
∫

S∗S2
{V, I(a)}(x, ξ)μ(dx, dξ) = 0.

Applying the invariance by the geodesic flow twice, one finally gets that

∫

S∗S2
{I(V ), a}(x, ξ)μ(dx, dξ) =

∫

S∗S2
{I(V ), I(a)}(x, ξ)μ(dx, dξ) = 0,

which implies that μ is invariant by the Hamiltonian flow associated with I(V ). ��
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1 Introduction

Viscoelastic materials, as their name suggests, combine two different properties:
viscosity and elasticity. They are used for isolating vibration, dampening noise, and
absorbing shock. They are intended to dissipate mechanical energy from vibrations
or noises, to limit their propagation in structures, they have a decisive impact on the
fatigue of these structures and on our comfort.

Viscoelastic materials have applications in all fields of engineering and mechan-
ical systems, from the automotive to civil engineering, from space to home
appliances (engine and machine mounts and supports, transmission seals and belts,
glazing edges and fixing of subsystems, damping of metal plates and shells, parts of
seats and interior of cabs, tire and wheels, tuned damping systems) [7, 15, 24, 40].

Since the 1980s, the development of modern technologies has required the use
of innovative materials with high mechanical properties, suitable for their use, and
having low densities. A composite material meets most of these requirements; it is
a kind of mixture of different materials whose properties are superior to each of its
components taken separately. These materials were first developed and used in the
1940s in the aeronautical field (essentially for military airplanes and helicopters)
and are today in automobile construction, in shipbuilding, and in buildings. But
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these materials are excellent transmitters of mechanical and acoustic vibrations,
which can affect the integrity of the entire system. Also, thanks to these composite
materials it is possible to reduce the number of parts of a structure, there would
then be less frictions at connections between elements. It is, therefore, imperative to
associate with these materials effective damping techniques. One solution is to add
full or partial layers of viscoelastic materials, glued on (or incarnated between) the
parts. A viscoelastic product can be integrated into the composite material [28, 36].

In this context we have chosen to study a network of elastic and viscoelastic
materials; More precisely, we investigate the asymptotic stability of a graph of
elastic strings with local Kelvin–Voigt damping.

Models of the transient behavior of some or all of the state variables describing
the motion of flexible structures have been of great interest in recent years, for
more details about physical motivation for the models, see also [23, 29], and
the references therein. Mathematical analysis of transmission partial differential
equations is detailed in [29]. For the feedback stabilization problem for the wave or
Schrödinger equations (in networks, in particular), we refer the readers to references
[3–6, 8–13, 29].

A wave equation on a (single) string of length �, with (local) Kelvin–Voigt
damping is modeled by the following equation

∂2u

∂t2
− ∂

∂x

(
∂u

∂x
+ a(x) ∂

2u

∂x∂t

)
= 0 in (0, �)× (0,∞), (1)

where a(x), x ∈ [0, �] is a nonnegative function.
As boundary conditions, we often associate the Dirichlet conditions:

u(0, t) = u(�, t) = 0.

From a mathematical point of view, the Kelvin–Voigt damping model (1) has
been studied by several authors. let us recall some results in the literature,

• Huang proved in 1988 [27] that when the damping is global (i.e., distributed
over the entire domain), the corresponding semigroup is not only exponentially
stable but also analytic. Thus, the Kelvin–Voigt damping is much stronger than
the viscous damping (i.e., the damping term is replaced by −a(x) ∂u

∂t
), where the

corresponding semigroup is only exponentially stable and not analytic (see, e.g.,
[21] and [18]).
Such a comparison is not valid anymore if the damping is localized:

• Chen et al. [21] proved in 1991 that in the case of localized viscous damping, the
associated semigroup is exponentially stable no matter the size or the location
of the subinterval where the damping is effective, and even if the damping
coefficient function has a jump discontinuity at the interface.

However, the local Kelvin-Voigt damping does not follow the same analogue.
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• It was first proved in 1998 by S. Chen et al. [30] that, when the viscoelastic
damping is locally distributed ( precisely, they took a(x) = a0χ(α,β), with a0 >
0), the associated semigroup is not exponentially stable.

• In 2002, K. Liu and Z. Liu [31] proved that if a ∈ C2[0, �], and ∫ �0 a(x)dx > 0,
then the system is exponentially stable: the asymptotic behavior depends on the
regularity of the damping coefficient.

The works cited below consider the domain [−1, 1] instead of [0, �] and suppose
that a(x) = 0 on [−1, 0) and a(x) = b(x) on (0, 1].
• In 2004, Renardy [41] supposed that a(x) = 0 on [−1, 0] and a(x) > 0 on (0, 1]

and he assumed that

lim
x→0+

a′(x)
xα

= k > 0 for some α > 0, (2)

then the eigenvalues of the system (1) are such that the decay rate tends to infinity
with frequency.

• Z. liu and B. Rao [32], 2005, and M. Alves et al. [2], 2014, proved that if b(x) ≥
c > 0 on (0, 1) and b ∈ C(0, 1). The associated semigroup is polynomially stable
of order 2.

• In 2010, Q. Zhang [43] improved the result in [32]: the author took a ∈
C1[−1, 1], b(0) = b′(0) = 0 and supposed the existence of a positive constant

c such that
∫ x
0
|b′(s)|2
b(s)

ds ≤ c|b′(x)| for all x ∈ [0, 1], ( for example, b(x) =
xα, α > 1).

• In 2016 Z. Liu and Q. Liu [35] took over the condition (2) of Renardy. Precisely
they took a ∈ L∞(−1, 1), b(x) > 0 on (0, 1] and b(0) = 0; b′, b′′ ∈ L∞(0, 1),
and supposed that lim

x→0+
a(x)
xα

= k > 0. Then the system (1) is exponentially

stable for α = 1 and polynomially, nonexponentially stable for 0 ≤ α < 1.
• It is proved [33] in 2017 that if a ∈ C1[−1, 1] and satisfies conditions in the last

point, then the system (1) remains exponentially stable for α > 1.

In this work we study a more general case, it is about a network of strings with
local Kelvin–Voigt damping.

We first introduce some notations needed to formulate the problem under
consideration (as introduced in [1, 37] or [7]. Let G be a planar connected graph
embedded inR3,withN edges e1, . . . , eN , N ≥ 1 and p vertices s1, . . . , sp, p ≥ 2.
By degree of a vertex of G we mean the number of edges incident at the vertex. If
the degree is equal to one, the vertex is called exterior; otherwise, it is said to be
interior. We denote by Iint and Iext , respectively, the sets of indices of interior and
exterior vertices, then I := Iint ∪ Iext is the set of indices of all vertices. Finally,
we define J := {1, · · · , N} and for k ∈ I, we will denote by Jk the set of indices
of edges adjacent to the vertex sk. If k ∈ Iext , then the unique element of Jk will be
denoted by jk.
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The length of the edge ej is denoted by �j . Then, ej may be parametrized by
its arc length by means of the functions πj : [0, �j ] −→ ej , x �−→ πj (x). But
sometimes, we identify ej with the interval (0, �j ).

For a function u : G −→ C we set uj = u ◦ πj its restriction to the edge ej . For
simplicity, we will write u = (u1, . . . , uN) and we will denote uj (x) = uj (πj (x))

for any x ∈ (0, �j ).
The incidence matrix D = (dkj )p×N is defined by,

dkj =
⎧
⎨

⎩

1 if πj (�j ) = sk,

−1 if πj (0) = sk,

0 otherwise.

Suppose that the equilibrium position of our network of elastic strings coincides
with the graph G. Then, we consider the following initial and boundary value
problem (Fig. 1):

∂2uj

∂t2
(x, t)− ∂

∂x

(
∂uj

∂x
+ aj (x) ∂

2uj

∂x∂t

)

(x, t) = 0, 0 < x < �j , t > 0, j ∈ J,
(3)

ujk (sk, t) = 0, k ∈ Iext , t > 0, (4)

Fig. 1 A Graph
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uj (sk, t) = ul(sk, t), t > 0, j, l ∈ Jk, k ∈ Iint , (5)

∑

j∈Jk
dkj

(
∂uj

∂x
(sk, t)+ aj (sk) ∂

2uj

∂x∂t
(sk, t)

)

= 0, t > 0, k ∈ Iint , (6)

uj (x, 0) = u0j (x),
∂uj

∂t
(x, 0) = u1j (x), 0 < x < �j , j ∈ J, (7)

where uj : [0, �j ] × (0,+∞) → R, j ∈ J, be the transverse displacement in ej ,
aj ∈ L∞(0, �j ) and, either aj is zero, that is, ej is a purely elastic edge, or there
exists a subinterval wj of (0, �j ), nonreduced to a singleton, such that aj (x) > 0,
a.e. on wj . Such edge will be called a K-V edge.

We assume that G contains at least one K-V edge and contain at least one external
node (i.e., Iext �= ∅). Furthermore, we suppose that every maximal subgraph of
purely elastic edges is a tree, whose leaves are attached to K-V edges.

Our aim is to prove, under some assumptions on damping coefficients aj , j ∈ J ,
exponential and polynomial stability results for the system (3)–(7).

We define the natural energy E(t) of a solution u = (uj )j∈J of (3)–(7) by

E(t) = 1

2

∑

j∈J

∫ �j

0

(∣∣∣∣
∂uj

∂t
(x, t)

∣∣∣∣

2

+
∣∣∣∣
∂uj

∂x
(x, t)

∣∣∣∣

2
)

dx. (8)

It is straightforward to check that every sufficiently smooth solution of (3)–
(7) satisfies the following dissipation law

d

dt
E(t) = −

∑

j∈J

∫ �j

0
aj (x)

∣∣∣∣∣
∂2uj

∂x∂t
(x, t)

∣∣∣∣∣

2

dx ≤ 0, (9)

and; therefore, the energy is a nonincreasing function of the time variable t .
The main results of this paper then concern the precise asymptotic behavior of

the solutions of (3)–(7). Our technique is a special frequency domain analysis of the
corresponding operator.

This work is organized as follows: In Sect. 2, we give the proper functional setting
for system (3)–(7)and prove that the system is well-posed. In Sect. 3, we analyze the
resolvent of the wave operator associated with the dissipative system (3)–(7) and
prove the asymptotic behavior of the corresponding semigroup. For more details in
the proofs, see [14].
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2 Well-Posedness of the System

In order to study system (3)–(7) we need a proper functional setting. We define the
following space

H = V ×H,

whereH =
∏

j∈J
L2(0, �j ) and V =

⎧
⎨

⎩
u ∈

∏

j∈J
H 1(0, �j ) : ujk (sk) = 0, k ∈ Iext , satisfies (10)

⎫
⎬

⎭

uj (sk) = ul(sk) := u(sk), k ∈ Iint , j, l ∈ Jk, (10)

and equipped with the inner products

< (u, v, (ũ, ṽ) >H=
∑

j∈J

∫ �j

0

(
vj (x) ¯̃vj (x)+ u′j (x) ¯̃u′j (x)

)
dx. (11)

System (3)–(7) can be rewritten as the first order evolution equation

⎧
⎪⎪⎨

⎪⎪⎩

∂

∂t

(
u
∂u

∂t

)

= A
(
u
∂u

∂t

)

,

u(0) = u0,
∂u

∂t
= u1

(12)

where the operator A : D(A) ⊂ H→ H is defined by

A
(
u

v

)
:=

(
v

(u′ + a ∗ v′)′
)
,

with

a := (aj )j∈J and a ∗ v′ := (aj v
′
j )j∈J ,

and

D(A) :=
⎧
⎨

⎩
(u, v) ∈ H, v ∈ V, (u′ + a ∗ v′) ∈

∏

j∈J
H 1(0, �j ) : (u, v) satisfies (13)

⎫
⎬

⎭
,

∑

j∈Jk
dkj

(
u′j (sk)+ aj (sk)v′j (sk)

)
, t > 0, k ∈ Iint . (13)
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Lemma 2.1 The operator A is dissipative, 0 ∈ ρ(A) : the resolvent set of A.
Proof For (u, v) ∈ D(A), we have

Re(
〈
A(u, v), (u, v)

〉
H) = Re

∑

j∈J

(∫ �j

0
v ′̄αu′j dx +

∫ �j

0
(u′j + ajv′j )′vjdx

)
.

Performing integration by parts and using transmission and boundary conditions,
a straightforward calculations leads to

Re(
〈
A(u, v), (u, v)

〉
H) = −

∑

j∈J

∫ �j

0
aj (x)

∣∣∣v′j (x)
∣∣∣
2
dx ≤ 0

which proves the dissipativeness of the operator A inH.
Next, using Lax–Milgram’s lemma, we prove that 0 ∈ ρ(A). For this, let (f, g) ∈

H and we look for (u, v) ∈ D(A) such that

A(u, v) = (f , g)

which can be written as

vj = fj , j ∈ J, (14)

(u′j + ajv′j )′ = gj , j ∈ J. (15)

v is completely determined by (14). Let w ∈ V ; multiplying (15) by wj , then
summing over j ∈ J , we obtain, using transmission and boundary conditions,

∑

j∈J

∫ �j

0

(
u′j + ajv′j

)
w′j dx = −

∑

j∈J

∫ �j

0
gjwjdx. (16)

Replacing vj in the last equality by (14), we get

ϕ(u,w) = ψ(w), (17)

where

ϕ(u,w) =
∑

j∈J

∫ �j

0
u′jw′j

and

ψ(w) = −
∑

j∈J

(∫ �j

0
gj wjdx +

∫ �j

0
ajf

′
jw

′
j dx

)
.



176 K. Ammari et al.

The function ϕ is a continuous sesquilinear form on V × V and ψ is a continuous
anti-linear form on V ; here V is equipped with the inner product

〈
f , g

〉
=
∑

j∈I

∫ �j

0
u′jw′j .

Since ϕ is coercive on V, by the Lax–Milgram lemma, equation (17) has a unique
solution u ∈ V. Then taking w ∈

∏

j∈J
D(0, �j ) in (17) and integrating by parts, we

deduce that (u′ + a ∗ v′) ∈
∏

j∈J
H 1(0, �j ) and (u, v) satisfies (15). Moreover (u, v)

satisfies (13).
Return back to the Lax–Milgram lemma, (u, v) verifies

∥∥(u, v)
∥∥H ≤

∥∥∥(f , g)
∥∥∥H .

In conclusion (u, v) ∈ A and A−1 ∈ L(H), which assert that 0 ∈ ρ(A). ��
By the Lumer–Phillip’s theorem (see [38, 42]), we have the following proposi-

tion.

Proposition 2.2 The operator A generates a C0-semigroup of contraction
(Sd(t))t≥0 on the Hilbert space H.

Hence, for an initial datum (u0, u1) ∈ H, there exists a unique solution(
u,

∂u

∂t

)
∈ C([0, +∞), H) to problem (12). Moreover, if (u0, u1) ∈ D(A), then

(
u,
∂u

∂t

)
∈ C([0, +∞), D(A)).

Furthermore, the solution (u, ∂u
∂t
) of (3)–(7)with initial datum in D(A) satisfies

(9). Therefore, the energy is decreasing.

3 Asymptotic Behavior

In order to analyze the asymptotic behavior of system (3)–(7), we shall use
the following characterizations for exponential and polynomial stability of a C0-
semigroup of contraction:

Lemma 3.1 ([26, 39]) A C0-semigroup of contraction (etB)t≥0 defined on the
Hilbert space H and such that

iR ⊂ ρ(B) (18)
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is exponentially stable if and only if

lim sup
β∈R,|β|→+∞

∥∥∥(iβI − B)−1
∥∥∥L(H)

<∞. (19)

Lemma 3.2 ([19]) A C0-semigroup of contraction (etB)t≥0 on the Hilbert spaceH
such that iR ⊂ ρ(B) satisfies

∥∥∥etB
∥∥∥L(D(B),H)

≤ C

t
1
α

for some constant C > 0 and for α > 0 if and only if

lim sup
β∈R,|β|→+∞

1

|β|α
∥∥∥(iβI − B)−1

∥∥∥L(H)
<∞. (20)

Lemma 3.3 (Asymptotic Stability) The operator A verifies (18) and then the
associated semigroup (S(t))t≥0 is asymptotically stable onH.

Proof Since 0 ∈ ρ(A) we only need here to prove that (iβI − A) is a one-to-one
correspondence in the energy spaceH for all β ∈ R

∗. The proof will be done in two
steps: in the first step we will prove the injective property of (iβI − A) and in the
second step we will prove the surjective property of the same operator.

• Suppose that there exists β ∈ R
∗ such that Ker(iβI − A) �= {0}. So λ = iβ is

an eigenvalue ofA, then let (u, v) an eigenvector ofD(A) associated with λ. For
every j in J we have

vj = iβuj , (21)

(u′j + ajv′j )′ = iβvj . (22)

We have

〈
A(u, v), (u, v)

〉
H =

∑

j∈J

∫ �j

0
aj

∣∣∣v′j
∣∣∣
2
dx = 0.

Then ajv′j = 0 a.e. on (0, �j ).
Let ej a K-V edge. According to (21) and the fact that ajv′j = 0 a.e. on

(0, �j ), we have u′j = 0 a.e. on ωj . Using (22), we deduce that vj = 0 on ωj .
Return back to (21), we conclude that uj = 0 on ωj .

Putting y = u′j + ajv
′
j = (1 + iβaj )u′j , we have y ∈ H 2(0, �j ) and y′ =

−β2uj . Hence y satisfies the Cauchy problem
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y′′ + β2

1+ iβaj
y = 0, y(z0) = 0, y′(z0) = 0

for some z0 in ωj . Then y is zero on (0, �j ) and hence u′j and uj are zero on
(0, �j ). Moreover uj and u′j + ajv′j vanish at 0 and at �j .

If ej is a purely elastic edge attached to a K-V edge at one of its ends, denoted
by xj , then uj (xj ) = 0, u′̄α(xj ) = 0. Again, by the same way we can deduce
that u′j and uj are zero in L2(0, �j ) and at both ends of ej . We iterate such
procedure on every maximal subgraph of purely elastic edges of G (from leaves
to the root), to obtain finally that (u, v) = 0 in D(A), which is in contradiction
with the choice of (u, v).

• Now given (f , g) ∈ H, we solve the equation

(iβI −A)(u, v) = (f , g)

or equivalently,

{
v = iβu− f
β2u+ u′′ + iβ (a ∗ u′)′ = (a ∗ f ′)′ − iβf − g. (23)

Let us define the operator

Au = −u′′ − iβ (a ∗ u′)′, ∀u ∈ V.

It is easy to show that A is an isomorphism from V onto V ′ (where V ′ is the dual
space of V obtained by means of the inner product in H ). Then the second line
of (23) can be written as follows

u− β2A−1u = A−1
(
g + iβf − (a ∗ f ′)′

)
. (24)

If u ∈ Ker(I − β2A−1), then β2u− Au = 0. It follows that

β2u+ u′′ + iβ(a ∗ u′)′ = 0. (25)

Multiplying (25) by u and integrating over T , then by Green’s formula we obtain

β2
∑

j∈J

∫ �j

0
|uj (x)|2 dx−

∑

j∈J

∫ �j

0
|u′j (x)|2 dx−iβ

∑

j∈J

∫ �j

0
aj (x) |u′j (x)|2 dx = 0.

This shows that
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∑

j∈J

∫ �j

0
aj (x) |u′j (x)|2 dx = 0,

which imply that a ∗ u′ = 0 in G.
Inserting this last equation into (25) we get

β2u+ u′′ = 0, in G.

According to the first step, we have that Ker(I − β2A−1) = {0}. On the other
hand, thanks to the compact embeddings V ↪→ H andH ↪→ V ′ we see that A−1
is a compact operator in V . Now thanks to Fredholm’s alternative, the operator
(I − β2A−1) is bijective in V , hence the Eq. (24) have a unique solution in V ,
which yields that the operator (iβI−A) is surjective in the energy spaceH. The
proof is thus complete.

��
Before stating the main result, we define a property (P) on a as follows

(P ) ∀j ∈ J, a′j , a′′j ∈ L∞(0, �j ) and ∀k ∈ IM,
∑

j∈Jk
dkj a

′
j (sk) ≤ 0.

Theorem 3.4 Suppose that the function a satisfies property (P ), then

(i) If a is continuous at every inner node of T , then (Sd(t))t≥0 is exponentially
stable on H.

(ii) If a is not continuous at least at an inner node of T , then (Sd(t))t≥0 is
polynomially stable on H, in particular, there exists C > 0 such that for all
t > 0 we have

∥∥∥eAt (u0, u1)
∥∥∥H ≤

C

t2

∥∥∥(u0, u1)
∥∥∥D(A) , ∀ (u

0, u1) ∈ D(A).

Proof According to Lemmas 3.1, 3.2, and 3.3, it suffices to prove that for γ = 0,
when a is continuous at every inner node, or γ = 1/2, when a is not continuous at
an inner node, there exists r > 0 such that

inf‖(u,v)‖H,β∈R
βγ

∥∥(iβI −A)(u, v)
∥∥H ≥ r. (26)

Suppose that (26) fails. Then there exists a sequence of real numbers βn, with βn →
∞ (without loss of generality, we suppose that βn > 0 ), and a sequence of vectors
(un, vn) in D(A) with

∥∥(un, vn)
∥∥H = 1 such that

β
γ
n

∥∥(iβnI −A)(un, vn)
∥∥H → 0. (27)
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We shall prove that
∥∥(un, vn)

∥∥H = o(1), which contradict the hypotheses on
(un, vn).

Writing (27) in terms of its components, we get for every j ∈ J,

β
γ
n (iβnuj,n − vj,n) =: fj,n = o(1) in H 1(0, �j ), (28)

β
γ
n (iβnvj,n − (u′j,n + ajv′j,n)′) =: gj,n = o(1) in L2(0, �j ). (29)

Note that

β
γ
n

∑

j∈J

∫ �j

0
aj (x)

∣∣∣v′j (x)
∣∣∣
2
dx = Re

(〈
β
γ
n (iβnI −Ad)(un, vn), (un, vn)

〉
H
) = o(1).

Hence, for every j ∈ J

β
γ
2
n

∥∥∥∥a
1
2
j v
′
j,n

∥∥∥∥
L2(0,�j )

= o(1). (30)

Then from (28), we get that

β
γ
2
n

∥∥∥∥a
1
2
j βnu

′
j,n

∥∥∥∥
L2(0,�j )

= o(1). (31)

Define Tj,n = (u′j,n + ajv′j,n) and multiplying (29) by β−γn qTj,n where q is any

real function in H 2(0, �j ), we get, using (28) and some integrations by parts,

1

2

∫ �j

0
q ′
∣∣vj,n

∣∣2 dx + 1

2

∫ �j

0
q ′
∣∣Tj,n

∣∣2 dx − Im
∫ �j

0
qajβnvj,nv

′
j,ndx

−1

2

([
q(x)

∣∣vj,n(x)
∣∣2
]�j
0
+
[
q(x)

∣∣Tj,n(x)
∣∣2
]�j
0

)
= o(1). (32)

��
Lemma 3.5 The following property holds

Im

∫ �j

0
qajβnvj,nv

′
j,ndx = o(1). (33)

Proof Since β
γ
2
n a

1
2
j v
′
j,n → 0 in L2(0, �j ) and q ∈ L∞(0, �j ), it suffices to prove

that

β
1− γ

2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
L2(0,�j )

= O(1). (34)
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For this, taking the inner product of (29) by iβ1−2γn aj vj,n leads to

β
2−γ
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(0,�j )
= −iβ1−γn

∫ �j

0
T ′j,naj vj,ndx − iβ1−2γn

∫ �j

0
gj,naj vj,ndx.

(35)
Since aj ∈ L∞(0, �j ) and gᾱ,n → 0 in L2(0, �j ) we can deduce the inequality

− Re(iβ1−2γn

∫ �j

0
gᾱ,naj vj,ndx) ≤ 1

4
β
2−γ
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(ωj )

+ o(1). (36)

On the other hand, we have [14]

− Re(iβ1−γn

∫ �j

0
T ′j,navj,ndx) ≤ −Re

[
iβ1−γn Tj,n(x)aj (x)vj,n(x)

]�j
0

+ 1

2

[
β
−γ
n a′j (x)

∣∣vj,n(x)
∣∣2
]�j
0
+ 1

4
β
2−γ
n

∥∥∥∥a
1
2
j
vj,n

∥∥∥∥

2

L2(0,�j )
+O(1). (37)

Note that in the proof of (37) we have used that a′j and a′′j belong to L∞(0, �j ).
Thus, substituting (36) and (37) into (35) leads to

1

2
β
2−γ
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(0,�j )
≤ −Re

[
iβ1−γn Tj,n(x)aj (x)vj,n(x)

]�j
0

+1

2

[
β
−γ
n a′j (x)

∣∣vj,n(x)
∣∣2
]�j
0
+O(1). (38)

Summing over j ∈ J,

∑

j∈J
β2n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(0,�j )
≤ −2

∑

k∈Iint
Re

⎛

⎝iβ1−γn vn(sk)
∑

j∈Jk
dkj ajk (sk)Tjk,n(sk)

⎞

⎠

+β−γn
∑

k∈Iint

∣∣vn(sk)
∣∣2
∑

j∈Jk
dkj a

′
jk
(sk)+O(1). (39)

We have used the continuity condition of vn and the compatibility condition (7) at
inner nodes and the Dirichlet condition of u and v at external nodes.

Notes that from property (P) we have

∑

k∈IM

∣∣vn(sk)
∣∣2
∑

j∈Jk
dkj a

′
j (sk) ≤ 0, (40)

then to conclude, it suffices to estimate
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∑

k∈Iint
Re

⎛

⎝iβ1−γn vn(sk)
∑

j∈Jk
dkj ajk (sk)Tjk,n(sk)

⎞

⎠ .

Case (i), corresponding to γ = 0: Here a is continuous in all nodes. It follows that
∑

k∈Iint Re
(
iβ1−γn vn(sk)

∑
j∈Jk dkj ajk (sk)Tjk,n(sk)

)
= 0.

Then, (39) and (40), yield

β2n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(0,�j )
= O(1)

for every j ∈ J, and the proof of Lemma 3.5 is complete for case (i).
Case (ii), corresponding to γ = 1

2 : Recall that here the function a is not
continuous at some internal nodes. We want estimate the first term in the right hand
side of (38). To do this it suffices to estimate Re(iβ1−γn Tj,n(x)aj (xj )vj,n(x)) at an
inner node x = xj when aj (xj ) �= 0. By means of some Gagliardo–Nirenberg
inequality [34] we proved in [14] the following estimate

−Re(iβ
1
2
n Tj,n(xj )vj,n(xj )) = o(1).

We then conclude that the first term on the right hand side of (39) converges to zero.
Then, again, using (40), we obtain that

∑

j∈I
β

1
2
n

∥∥∥∥a
1
2
j βnvj,n

∥∥∥∥

2

L2(0,�j )
= O(1),

then

β
3
2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(0,�j )
= O(1)

for every j ∈ I, and the proof of Lemma 3.5 is complete for case (ii). ��
Return back to the proof of Theorem 3.4. Substituting (33) in (32) leads to

1

2

∫ �j

0
q ′

∣∣vj,n
∣∣2 dx+1

2

∫ �j

0
q ′
∣∣Tj,n

∣∣2 dx−1

2

[
q(x)

(∣∣vj,n(x)
∣∣2 + ∣∣Tj,n(x)

∣∣2
)]�j

0
= o(1)

(41)
for every j ∈ J.

Let j ∈ J such that ej is a K-V string. First, note that from (34), we deduce that

∥∥∥∥a
1
2
j vj,n

∥∥∥∥

2

L2(0,�j )
= o(1).
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Then, we take q(x) = ∫ x
0 aj (s)ds in (41) to obtain

1

2

∫ �j

0
aj

∣∣Tj,n
∣∣2 dx − 1

2

(∫ �j

0
aj (s)ds

)(∣∣vj,n(�j )
∣∣2 + ∣∣Tj,n(�j )

∣∣2
)
= o(1).

(42)

Since 1
2

∫ �j
0 aj

∣∣Tj,n
∣∣2 dx = o(1) and

∫ �j
0 aj (s)ds > 0, then (42) implies

∣∣Tj,n(�j )
∣∣2 + ∣∣vj,n(�j )

∣∣2 = o(1). (43)

Therefore, (41) can be rewritten as

1

2

∫ �j

0
q ′

∣∣vj,n
∣∣2 dx + 1

2

∫ �ᾱ

0
q ′

∣∣Tj,n
∣∣2 dx

+1

2

(
q(0)

∣∣vj,n(0)
∣∣2 + q(0) ∣∣Tj,n(0)

∣∣2
)
= o(1). (44)

By taking q = x + 1 in (44) we deduce that

∥∥vj,n
∥∥
L2(0,�j )

= o(1) and
∥∥∥u′j,n

∥∥∥
L2(0,�j )

= o(1) (45)

and moreover

vj,n(�j ) = o(1) and Tj,n(�j ) = o(1) (46)

implies that
∥∥vj,n

∥∥
L2(0,�j )

= o(1) and
∥∥Tj,n

∥∥
L2(0,�j )

= o(1).

Moreover,
∥∥∥u′j,n

∥∥∥
L2(0,�j )

= ∥∥Tj,n − ajvj,n
∥∥
L2(0,�j )

= o(1). Also we have

vj,n(0) = o(1) and Tj,n(0) = o(1). (47)

Finally, notice that (43) signifies that

vj,n(�j ) = o(1) and Tj,n(�j ) = o(1). (48)

To conclude, it suffices to prove that (45) holds. For every j ∈ I such that ej is
purely elastic. As in the proof of Lemma 3.3, we start by proving (45) for a string
ej attached at one end to only K-V strings. Then we iterate such procedure on each
maximally connected subgraph of purely elastic strings (from leaves to the root).

Thus
∥∥(un, vn)

∥∥H = o(1), which contradicts the hypothesis
∥∥(un, vn)

∥∥H = 1.

Remark 6

1. If for every j ∈ J , aj is continuous on [0, �j ] and not vanish in such interval,
then we do not need the property (P) in the Theorem 3.4.
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Indeed (P) is used only to estimate

−Re
(
iβ1−γn

∫ �j

0
T ′j,naj vj,ndx

)

in (35), according to β
1− γ

2
n

∥∥∥∥a
1
2
j vj,n

∥∥∥∥
L2(0,�j )

.

This is equivalent to estimate

−Re
(
iβ1−γn

∫ �j

0
T ′j,nvj,ndx

)

according to β
1− γ

2
n

∥∥vj,n
∥∥
L2(0,�j )

:

−Re
(
iβ1−γn

∫ �j

0
T ′j,nvj,ndx

)

= −Re
[
iβ1−γn Tj,n vj,n

]�j
0
+ Re

(
iβ1−γn

∫ �j

0
Tj,nv

′
j,ndx

)

= −Re
[
iβ1−γn Tj,n(x) vj,n(x)

]�j
0
+ o(1)

as in case (ii) (proof of Theorem 3.4) we prove without using (P) that

−Re
[
iβ1−γn Tj,n(x) vj,n(x)

]�j
0
≤ β

2−γ
n

4

∥∥vj,n
∥∥2
L2(0,�j )

+ o(1).

2. We find here the particular cases studied in [2, 25, 30, 31, 33]. Note that
concerning the result of polynomial stability in [2, 25] the authors proved that
the 1

t2
decay rate of solution is optimal when the damping coefficient is a

characteristic function.
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