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Preface

This book gathers the extended versions of a selection of the best contributions
presented in the seventh edition of the International Conference on Time Series and
Forecasting, ITISE 2021, held in Gran Canaria (Spain) in July 2021. Unfortunately,
the 2020 edition had to be canceled due to the recent (at the time) outbreak of
the COVID-19 coronavirus. After the decision of this cancellation, we all took it
for granted that the next edition, that of 2021, was going to be exempt from any
problems derived from the pandemic and that it was going to be a congress that was
going to be held in a totally normal way, with all face-to-face sessions. However,
a year later, the situation was still quite serious, although the experience gained
during the previous months on how to act in these very special situations allowed
the congress to be held in a hybrid way, that is, with a mixture of online sessions
and face-to-face sessions where both speakers and listeners, regardless of whether
they were physically at the conference venue, could participate in reasonably good
conditions. The organization of the congress was very complex, but it could be
carried out successfully. This would not have been possible without the excellent
predisposition of all the participants, and for this, we want to heartily thank them.

On the other hand, the pandemic itself turned out to be a very important source of
information that is being exploited by many researchers to achieve the capability to
analyze, for example, the way in which infections spread and how these pandemics
influence the economy of each country or how the characteristics of a country
influence the evolution of infections, and, from there, the ability to predict this
evolution in the future. Although some contributions in this direction have already
appeared (some even in this book), it is clear that the pandemic is not yet over and
that there is still much work to be done. This congress, in some way, contributes
its grain of sand to being able to answer the questions just raised above as the main
objective of this conference is none other than to provide a friendly discussion forum
for scientists, engineers, educators, and students to debate about the latest ideas and
realizations in the foundations, theory, models, and applications in the field of time
series analysis and forecasting. More specifically, the main topics in the last edition
of the Conference were:

v
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1. Time series analysis and forecasting

– Nonparametric and functional methods.
– Vector processes.
– Probabilistic approaches to modeling macroeconomic uncertainties.
– Uncertainties in forecasting processes.
– Nonstationarity.
– Forecasting with Many Models. Model integration.
– Forecasting theory and adjustment.
– Ensemble forecasting.
– Forecasting performance evaluation.
– Interval forecasting.
– Data preprocessing methods: data decomposition, seasonal adjustment, singu-

lar
– spectrum analysis, detrending methods, etc.

2. Econometrics and forecasting

– Econometric models
– Economic and econometric forecasting
– Real macroeconomic monitoring and forecasting
– Advanced econometric methods

3. Advanced methods and online learning in time series

– Adaptivity for stochastic models
– Online machine learning for forecasting
– Aggregation of predictors
– Hierarchical forecasting
– Forecasting with computational intelligence
– Time series analysis with computational intelligence
– Integration of system dynamics and forecasting models

4. High dimension and complex/big data

– Local vs global forecasts
– Dimension reduction techniques
– Multiscaling
– Forecasting Complex/Big data

5. Forecasting in real problems

– Health forecasting
– Atmospheric science forecasting
– Telecommunication forecasting
– Hydrological forecasting
– Traffic forecasting
– Tourism forecasting
– Marketing forecasting
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– Modelling and forecasting in power markets
– Energy forecasting
– Climate forecasting
– Financial forecasting and risk analysis
– Forecasting electricity load and prices
– Forecasting and planning systems

High-quality candidate papers from the Conference ITISE 2021 (24 contribu-
tions) were invited to submit an extended version of their conference paper to be
considered for this special publication in the Springer book series Contributions
to Statistics. For the selection procedure, the information/evaluation of the chair
of every session, in conjunction with the review comments and the summary of
reviews, was taken into account.

So, now we are pleased to have reached the end of the whole process and present
the readers with these final contributions that we hope will provide a clear overview
of the thematic areas covered by the ITISE 2021 conference ranging from theoretical
aspects to real-world applications.

For the sake of readability, the contributions presented in this book have been
classified into different chapters according to their content. Some chapters of the
book contain pure theoretical contributions. On the other hand, there are chapters
with more practical contributions with the intention of providing the readers with
a more real-world view of the field. As is common in these editions, a specific
chapter of the book has been dedicated to econometrics, one of the most prominent
applications of time series modelling .& forecasting. In the following, we will make
a short summary of what the reader may find in every chapter of the book:

– Part 1. “Theoretical Aspects of Time Series” Although in the field of time
series it is difficult to separate the theoretical aspects from the practical ones,
since the presentation of many of the theoretical developments usually ends with
practical examples where these developments could be applied, the papers in
this first chapter have been selected for being mainly theoretical. It is the largest
chapter in this book, which is reasonable since theoretical contributions are the
seed of numerous practical advances that can be derived from them. The chapter
begins with a very original paper to forecast and detect structural breaks in
time series using fuzzy natural logic. In the second contribution, the authors
investigate approaches to automatically detect and replace anomalies in time
series to enable accurate forecasts with special emphasis on energy consumption
time series. In the third contribution the size and power of a large set of unit
root tests on time series from the M4 competition data are evaluated and then a
conditional random forest-based elimination algorithm is used to assess which
tests should be combined to improve the performance of each individual test.
The next contribution is dedicated to how to improve probabilistic forecasting
accuracy in seasonal time series. To that end, the authors propose a framework in
which a combination of several machine learning techniques is used to identify
typical seasons and to forecast a probability distribution of the next season. Next,
the fifth paper deals with a comparison between statistical and non-statistical
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methods for the analysis, forecasting, and mining of time series. As the authors
state, “our goal is not to beat statistical methods, but vice versa – to benefit from
the synergy of both.” The last two contributions of this first chapter can also be of
high interest for many readers: the first one deals with forecasting of time series
whose samples are non-negative integer values (count processes), and the second
one, and last contribution of this chapter, deals with discrete-time series observed
at irregularly spaced times.

– Part 2. “Econometric and Forecasting”. This chapter aims at presenting some
recent developments of time series research applied to forecasting methods in
econometrics. Five contributions have been selected. The first one develops
an economic policy uncertainty index for the USA and Canada using natu-
ral language processing methods which are capable of successfully capturing
COVID-19-related uncertainty. In the second contribution, the authors pro-
pose two semi-nonparametric distributions to estimate the value-at-risk and the
expected shortfall in four indices related to energy, metals, mining, and physical
commodities. The third contribution deals with forecasting the long-term trend
of housing prices in the Spanish cities with more than 25 thousand inhabitants,
a total of 275 individual municipalities. According to the author, the results
obtained give a comprehensible evolution of the long-term component of housing
prices, and the model also provides a way to understand the main drivers of
housing prices in each Spanish region. The next paper combines different models
to obtain a unique prediction model for Bitcoin dollars time series. Finally,
in the last contribution of this chapter, the authors estimate the historical cost
of the Hungarian retail debt program, taking portfolio effects and risks into
account so that they can afterwards simulate the future effects of retail debt based
on security-level transaction data and a vector error correction macroeconomic
model. Finally, the last contribution of this chapter makes a deep analysis of how
important is to utilize information about exchange rate movements closer to the
publication date to improve the prediction of the Exchange Rate Path.

– Part 3. “Time Series Prediction Applications”. The third chapter of the book
is dedicated to real applications of time series forecasting different from the
ones related to econometrics. The idea is to state explicitly that applications of
time series prediction reach practically any scientific discipline imaginable. Four
contributions were selected for this chapter. The first studies how to combine the
forecasting capability of very different methods such as Neural Network Auto
Regression, Box-Cox Transformation, ARMA residuals Trend and Seasonality,
Trigonometric Box-Cox Transformation, Holta’s Linear Trend, autoregressive
integrated moving average, and cubic smoothing splines with the aim to improve
the forecast of infection cases of COVID-19. The next two contributions deal
with daily electricity demand. The first one, targeting Uruguay, makes use of
Markov switching models, and the second one is based on calendar features
and temporal convolutional networks for some regions in Germany. This chapter
ends with a paper focused on network security situation awareness forecasting.
The authors try first to estimate the influence of the loss function on network
security situation awareness forecasting and then compare the performance of
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both statistical and neural networks-based methods in network security situation
awareness forecasting.

– Part 4. “Advanced Applications in Time Series Analysis”. The last chapter
of the book is dedicated to specific applications of time series analysis. The
first contribution of this chapter analyzes daily COVID-19 contagion time series
of different countries using Markov switching models with ARMA structure.
The second contribution investigates the temporal trends of the diffusion process
of renewable energies, namely wind and solar, in leading countries for their
consumption. The third contribution tries to find answers to the question of
how to turn negative employment trends in the Croatian water transport system
into positive ones. To that end, the authors make use of descriptive statistics
and correlation and regression analysis to compare the state of employment and
employment trends in the water transport system of the European Union and
the Republic of Croatia. Finally, this chapter, and therefore this book, concludes
with a contribution that analyzes the relationship between economic growth,
demographic development, and CO2 emissions for 30 industrialized countries
from time-series data. According to the authors, the results confirm that GDP per
capita growth rates of highly industrialized economies are significantly driven by
the development of CO2 emissions, population, and energy intensity.

Last but not least, we would like to point out that this edition of ITISE was
organized by the University of Granada (UGR), Spain, together with the Spanish
Chapter of the IEEE Computational Intelligence Society. The guest editors would
also like to express their gratitude to all the people who supported them in
the compilation of the book, and especially to the contributing authors for their
submissions, the chairs of the different sessions, and to the anonymous reviewers
for their comments and useful suggestions in order to improve the quality of the
papers.

We wish to thank our main sponsors as well: the Department of Computer
Architecture and Technology at the UGR, the Faculty of Science at the UGR,
the Research Center for Information and Communications Technologies (CITIC-
UGR), the Spanish Network on Time Series (RESeT), and the Ministry of Science
and Innovation for their support and grants. Finally, we wish also to thank Prof.
Alfred Hofmann, Vice President Publishing – Computer Science, Springer-Verlag,
and Dr. Veronika Rosteck, Springer Editor, for their interest in editing a book series
of Springer based on the best papers of ITISE 2021.

We hope the readers of this book find these contributions interesting and helpful.
Granada, Spain, January 2021

Granada, Spain Olga Valenzuela
Héctor Pomares

Luis Javier Herrera
Fernando Rojas

Ignacio Rojas
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Diffusion of Renewable Energy for Electricity: An Analysis for
Leading Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Alessandro Bessi, Mariangela Guidolin, and Piero Manfredi



Contents xiii

The State and Perspectives of Employment in the Water
Transport System of the Republic of Croatia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Drago Pupavac, Ljudevit Krpan, and Robert Maršanić
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An Improved Forecasting and Detection
of Structural Breaks in Time Series Using
Fuzzy Techniques

Thi Thanh Phuong Truong and Vilém Novák

Abstract In this paper, we address nonstatistical methods for forecasting and detec-
tion of structural breaks in time series. Our methods are based on the application
of the unique fuzzy modeling method called fuzzy transform (F-transform) and
selected methods of fuzzy natural logic (FNL). The latter provides a formal model
of the semantics of a part of natural language and methods for reasoning based
on it. Using F-transform, we first estimate the trend-cycle. Then, using methods of
FNL, we extract a sort of expert information that enables us to forecast the trend-
cycle. Since F-transform also makes it possible to estimate the slope of time series
over an imprecisely specified area (ignoring its volatility), we identify structural
breaks through evaluation of changes in the slope by a suitable evaluative linguistic
expression. We will demonstrate the effectiveness of our methods on several real
time series and compare our results of forecasting with the classical ARIMA
statistical method. Our methods are computationally very effective.

Keywords Time series · ARIMA · Fuzzy transform · Evaluative linguistic
expressions · Fuzzy natural logic

The work was supported from ERDF/ESF by the project “Centre for the development of Artificial
Intelligence Methods for the Automotive Industry of the region” No. CZ.02.1.01/0.0/0.0/17-
049/0008414.
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Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Ostrava, Czech
Republic
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© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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4 T. T. P. Truong and V. Novák

1 Introduction

In this paper, we discuss a nonstatistical approach to forecasting time series and
detection of structural breaks in them. We apply special techniques of fuzzy
modeling, namely, the F-transform and methods based on the theory of fuzzy natural
logic (FNL).

We stem from the assumption that we can decompose the time series additively
into trend-cycle, seasonal component, and random noise. The fuzzy transform
makes it possible to find the arbitrary shape of the trend-cycle and detect specific
areas or intervals of monotonous behavior. We can also estimate the slope (average
value of the first derivative) of the time series in a given though imprecisely
delineated area and evaluate it using methods based on the FNL theory. A brief
overview of our other methods is provided in the paper [5] (this volume). More
details can be found in the citations therein and in the book [7].

The mentioned methods are applied to the data collected from the Internet using
an experimental software LFL Forecaster.1

The paper is structured as follows. In the next section, we introduce the
decomposition of time series and provide a brief overview of the main concepts of
the fuzzy transform and fuzzy natural logic. In Sect. 3, we explain our forecasting
method. In Sect. 4, we describe our approach to location and identification of
structural breaks. Section 5 is devoted to demonstrating the forecasting on real-time
series and comparison with the ARIMA method. The second part of this section is
devoted to demonstrating our method for detecting structural breaks.

2 Processing Time Series Using Fuzzy Modeling Methods

2.1 Time Series Decomposition

A time series X is a mapping

.X : T × Ω → R,

where .T = {0, . . . , n} ⊂ N is a finite set of numbers interpreted as time moments
and .Ω is a nonempty set of elementary random events.

We assume that the time series is decomposed into four components:

.X(ω, t) = Tr(t) + C(t) + S(t) + R(ω, t), t ∈ T, (1)

1 This is an experimental software developed in the Inst. for Research and Applications of Fuzzy
Modeling of the University of Ostrava, Czech Republic, which implements the described method
(see http://irafm.osu.cz/en/c110_lfl-forecaster/). Its author is Viktor Pavliska.

http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
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where .Tr(t) and .C(t) are trend and cyclic components of time series. These two
components are usually joined into one component called trend-cycle .TC(t) =
Tr(t) + C(t).

The .S(t) is the seasonal component and .R(ω, t) is a random noise. The
trend, cycle, and seasonal components are ordinary functions not having stochastic
character. The noise .R(ω, t) is assumed to be a sequence of independent random
variables with the mean .μ = 0 and variance .σ 2 < +∞. Since in practice we have
one realization for a fixed .ω ∈ Ω of the time series at disposal, we will omit .ω from
the arguments in (1).

2.2 Fuzzy Transform (F-Transform)

Recall that by a fuzzy set in the universe U , we understand a function .A : U →
[0, 1].2 The set of all fuzzy sets on U is denoted by .F(U) = {A | A : U → [0, 1]}.

The fuzzy transform is a technique for approximation of bounded continuous
functions. In our case, it can be effectively applied to analysis and forecasting of
time series. Let a bounded real continuous function .f : [a, b] → [c, d] be given,
where .a, b, c, d ∈ R. The fundamental concept is that of fuzzy partition.

Definition 1 Let .c0 < · · · < cn be fixed nodes in the interval .[a, b] where .c0 = a,
.cn = b with .n ≥ 2 and .a, b ∈ R. The set .A = {A0, . . . , An} of fuzzy sets is called
a fuzzy partition of .[a, b] if the following conditions are fulfilled:
– .Ak : [a, b] → [0, 1], .Ak (ck) = 1;
– .Ak (x) = 0 if .x /∈ (ck−1, ck+1) (for .c−1 = a and .cn+1 = b);
– .Ak is continuous;
– .Ak strictly increases on .[ck−1, ck] for .k = 1, . . . , n and .Ak strictly decreases on

.[ck, ck+1] for .k = 0, . . . , n − 1;

– .

n∑

k=0
Ak(x) = 1 for all .x ∈ [a, b];

– Let .ck = a + hk, where .h = (b − a)/n, .Ak(ck − x) = Ak(ck + x), for all
.x ∈ [0, h] and .k = 1, . . . , n − 1;

– .Ak(x) = Ak−1(x − h), .Ak+1(x) = Ak(x − h) for .k = 1, . . . , n − 1 and .x ∈
[ck, ck+1].

The fuzzy sets .Ak are also called basic functions. Note that Definition 1 specifies
their properties but not their shape. Most usual are triangular .Ak , but any shape
fulfilling Definition 1 can be considered. Note that the width of basic functions is
equal to 2h.

The F-transform has two phases: direct and inverse.

2 The interval .[0, 1] can be replaced by a proper bounded lattice.
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Definition 2 Given a fuzzy partition by Definition 1 and .f : [a, b] → [c, d] be a
continuous function on .[a, b]. The .(n + 1)-tuple .Fm[f ] = (Fm

0 [f ], . . . , Fm
n [f ]) is

called m-th degree direct fuzzy transform of f if

.Fm
k [f ](x) = β0

k [f ] + β1
k [f ](x − ck) + · · · + βm

k [f ](x − ck)
2, (2)

for all .k = 0, . . . , n. We call .Fm
k [f ] in (2) components of the fuzzy transform.

Precise computation of the components (2) is in detail described in [8, 9] and
elsewhere.

Definition 3 Given a fuzzy partition due to Definition 1 and .Fm[f ] be the direct
F-transform of f due to Definition 2. Then the function .f̂ : [a, b] → R denoted by

.f̂ (x) =
n∑

k=0
Fk[f ]Ak(x) is called the inverse fuzzy transform of f .

The fuzzy transform is linear, has a universal approximation property, and has a
linear computational complexity (cf. [2, 8, 9]).

2.3 Fuzzy Natural Logic

In our applications to time series, we will also use some methods of fuzzy natural
logic (FNL). The latter is a set of special theories of mathematical fuzzy logic whose
aim is to provide a mathematical model of common-sense human reasoning that is
based on the use of natural language. Our methods for time series analysis apply two
theories of FNL: the theory of evaluative linguistic expressions and fuzzy/linguistic
IF-THEN rules.

Evaluative linguistic expressions are special expressions of natural language in
the form

.〈linguistic hedge〉 〈TE-adjective〉

where .〈linguistic hedge.〉 is a special adverb standing before .〈TE-adjective.〉 that
makes the adjective more or less specific. Examples of the former are “roughly,
very, quite, significantly,” etc., and examples of the latter are canonical adjectives
“small, medium big,” but also “shallow, medium deep, deep,” and many other ones.

To determine the semantics of evaluative expressions, we need the concept of
context that, in our case, is the interval .w = [vL, vS ] ∪ [vS, vR] where .vL, vS, vR ∈
R. The numbers have the following meaning: .vL is the left bound, .vS is a typical
middle value, and .vR is the right bound.

The meaning of an evaluative expression .A is modeled by a function .W → F(R)

where W is a set of all contexts. Such a function is called intension of .A.
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If the context .w ∈ W and a value .x ∈ R are given, then we can generate
an evaluative expression .Ev characterizing linguistically x w.r.t. w using a special
function of local perception:

.Ev = LPerc(x,w). (3)

A special class of evaluative expressions are those characterizing trend:

.Trend is 〈direction〉 (4)

where

– .〈direction〉:= stagnating .| 〈special hedge〉〈sign〉
– .〈sign〉:= increasing .| decreasing
– .〈special hedge〉 := .∅ .| negligibly .| slightly .| somewhat .| clearly .| roughly .| sharply

.| quite largely .| fairly large.| hugely.| significantly.
We must also consider the context .wtg for tangent (cf. Subsection 2.3) that is here
extended to have two parts: positive .w+

tg for increase of time series and negative .w−
tg

for its decrease.
Fuzzy/linguistic IF-THEN rules are the main tool used in the forecasting. These

rules are taken as conditional sentences of natural language having the form “IFX is
.A THEN Y ” is .B” where .A and .B are evaluative linguistic expressions. The relation
between the antecedent “X is A” and the consequent “Y is B” is modeled using
a fuzzy implication. A set of fuzzy/linguistic IF-THEN rules is called linguistic
description since it describes in natural language the way how forecast was obtained.
We have developed also a procedure for learning linguistic description from data
(i.e., from the given time series).

A special reasoning method based on linguistic description is called perception-
based logical deduction (PbLD) and is used in forecasting. For the details about
the theory of evaluative linguistic expressions, fuzzy/linguistic IF-THEN rules, and
PbLD, see [7].

3 Forecasting Time Series

By forecasting, we understand determining future values of the time series on the
basis of the previous available values. To do it, we divide the time series into two
subsets: learning set and validation set. The learning set is used for searching the
best model of time series. The quality of the model is evaluated using special indexes
computed on the basis of the validation set. The learning and validation sets form
in-samples.

To test whether our forecast really works, we can cut off the last part of the
time series and form a testing set (out-samples) that is not used in the computations
but only to test the quality of our forecast. We use the standard quality indexes: root
mean square error (RMSE) or symmetric mean absolute percentage error (SMAPE).
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Forecasting Procedure

• From a time series X in (1), compute the F-transform components .F1[f |Ah],
.. . . , Fn[f |Ah]. With respect to the model (1), we can forecast the trend-cycle .TC
or trend T and the seasonal component (S). This depends on the choice of the
distance h between nodes. As has been proved in [6], to remove all frequencies
higher than a given one, we have to set .h = dT where T is the corresponding
periodicity (found using periodogram) and d is a number that we usually set as
.d ∈ {1, 2}.

• The forecast is obtained by combination of the theory of F-transform, learning
a linguistic description and PbLD inference. The variables in the latter are the
F-transform components above, and their first and second differences:

.ΔF [f |Ah]i = F [f |Ah]i − F [f |Ah]i−1, i = 2, . . . , n − 1.. (5)

Δ2F [f |Ah]i = ΔF [f |Ah]i − ΔF [f |Ah]i−1, i = 3, . . . , n − 1. (6)

The learned linguistic description consists of the rules having the form

.IF Xi−1 is Ai−1 AND Xi is Ai THEN Xi+1 is Bi+1 (7)

where .Xi stands either for the components .F [f |Ah]i , their first (5), or second
differences (6).

The linguistic description gives us information both about dynamic behavior
of the time series as well as logical dependencies inside the trend-cycle (or trend).

• The seasonal component is assumed to be stationary. The future vector .Sp+1 is
computed as a linear combination of p previous vectors. We can also use other
methods for its forecast, i.e. ARIMA or neural nets.

4 Detection of Structural Breaks in Time Series

Detection of structural breaks in time series means determining time moments when
the course of the time series is abnormally changed. Our detection method is based
on finding short intervals with a steep slope of trend (big tangent) and on the
characterization of their steepness. The intervals are characterized by fuzzy sets, i.e.,
imprecisely. They are constructed from the last time moment of the time series to
the first one. Each found interval is characterized by a specific evaluative expression
(4). If the expression is of the kind “fairly large (hugely) decreasing/increasing,” this
is the candidate for a structural break.

Let X be a time series and .T̄ ⊆ T be a time interval, .β1[X|T̄ ] be the slope
of trend of X over the period .T̄ , and .w−

tg, w
+
tg be the corresponding negative

and positive parts of the context, respectively. Then, the evaluative expression
.±Ev[X|T̄ ] is obtained using the function of local perception: .±Ev[X|T̄ ] :=



Forecasting and Detection of Structural Breaks 9

LPerc(±β1[X|T̄ ], w±
tg). We thus decompose the time domain .T into a set of

intervals

.T = {T̄i | i = 1, . . . , s},
⋃

T = T

Let .T̄i = {ti1, . . . , tim} be processed being evaluated by the expression .±Ev[X|T̄i].
The interval .T̄i ∈ T is an area of a structural break in the course of X if the trend
of X in the interval .T̄i is hugely increasing (decreasing). The algorithm for finding
structural breaks is in detail described in [3, 4].

5 Demonstration of Nonstatistical Forecast and Detection of
Structural Breaks on Real Data

In this section, we will work with two datasets. The first one contains four monthly
time series that are used in our experiments. The dataset is picked up from Time
Series Data Library (TSDL) on the Internet.3 It will be used for forecasting time
series by using both methods: ARIMA and LFL Forecaster tool.

The second dataset also contains four time series that will be used for detection
of the structural breaks’ task.

5.1 ARIMA Model

The ARIMA.(p, d, q) (autoregressive integrated moving average)4 (see [1]) is one
of the most successful forecasting models. The p is the order of AR (autoregressive)
term, q is the order of MA (moving average) term, and d is the number of
differencing needed for the time series to be stationary. To fit the ARIMA model
in this paper, we applied the function “auto.arima()” in R program. By combination
of order parameters, “auto.arima()” can choose the triple (p,d,q) that optimizes and
fits the model.

Figure 2 shows results of forecasting horizons that are represented by testing
data (out-sample date) of the four time series depicted in Fig. 1. The parameters
of the ARIMA model were as follows: (a) ARIMA(4,1,4), (b) ARIMA(0,1,2), (c)
ARIMA(5,1,1), (d) ARIMA(0,1,2). In Table 1 are the corresponding RMSE errors.5

3 https://robjhyndman.com/tsdl/.
4 Also Box-Jenkins model.

5 .RMSE =
√

1
n

n∑

i=1
(yi − xi )

2, where .yi are the predicted values, .xi are the actual values, and n is

the number of observations.

https://robjhyndman.com/tsdl/
https://robjhyndman.com/tsdl/
https://robjhyndman.com/tsdl/
https://robjhyndman.com/tsdl/
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Fig. 1 Panel (a) describes the data that contain 144 observations, which is the number of monthly
international airline passengers (in thousands) from January 1949 to December 1960. Panel (b)
describes data of red wine that contains the monthly sale of red wine (in thousands of liters) in
Australia from January 1980 to December 1995. Panel (c) describes data of the number of births per
month in New York City, from January 1946 to December 1959 (originally collected by Newton).
Panel (d) describes data that contain monthly sales for a souvenir shop at a beach resort town in
Queensland, Australia, for January 1987–December 1993 (original data from Wheelwright and
Hyndman (1998)

5.2 Forecasting Using LFL Forecaster

In this section, we present the results obtained using the experimental software LFL
Forecaster developed in the IRAFM of the University of Ostrava. Using it, we divide
the time series into in-samples and out-samples (testing data). The in-samples are
then divided into the learning and testing part, where the latter is used for testing the
best model.

In our case, the learning set consists of 120 observations, 12 validation sets, and
12 testing sets. The quality of forecasting process is measured both by RMSE and
by SMAPE errors.

Unlike ARIMA, LFL Forecaster provides, besides the forecast, also linguis-
tic description of how the forecast was obtained. The description consists of
fuzzy/linguistic IF-THEN rules of the form (7). The obtained description of the
forecasts of the mentioned four time series are in Figs. 3, 4, 5, and 6.
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Fig. 2 Forecasts (dotted line) of four selected time series—comparison within the testing (out-
sample) data (black line): (a) Air passengers, (b) red wine, (c) births, (d) souvenir sale. The forecast
of (a)–(c) is 12 months, (d) is 6 months (cf. Fig. 1)

Table 1 Comparison of ARIMA and LFL Forecaster by RMSE and SMAPE errors

RMSE SMAPE

Data ARIMA LFL ARIMA LFL

Air passengers 53.36 40.80 0.0938 0.0840

Red wine 677.42 373.99 0.2071 0.1022

Births 1.44 1.36 0.0455 0.0433

Souvenir 36,541 12,409 0.5746 0.1207

5.3 Demonstration of Found Structural Breaks

Datasets In this section, we work with four time series (see Figure 7). Two time
series in panel (a) and (b) are the real data and taken from micro subset of time
series from the M4-Competition published on the Internet.6 The last two time
series in panel (c) and (d) are real data on ECG heartbeat taken from the MIT-
BIH Arrhythmia Dataset and the PTB Diagnostic ECG Database published on the
Internet.7

6 https://forecasters.org/blog/2018/01/19/m4-competition/.
7 https://www.kaggle.com/shayanfazeli/heartbeat.

https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://forecasters.org/blog/2018/01/19/m4-competition/
https://www.kaggle.com/shayanfazeli/heartbeat
https://www.kaggle.com/shayanfazeli/heartbeat
https://www.kaggle.com/shayanfazeli/heartbeat
https://www.kaggle.com/shayanfazeli/heartbeat
https://www.kaggle.com/shayanfazeli/heartbeat
https://www.kaggle.com/shayanfazeli/heartbeat
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Fig. 3 Linguistic description of the air passengers time series forecast. The width of basic
functions is .2h = 27, i.e., .h = 13.5. For example, from Rule 4, we learn that, in the current 2
years, rather medium number of passengers and its more or less increase will lead to significantly
small increase in the following 2 years

Fig. 4 Linguistic description of the red wine sale time series forecast. The width of basic
functions: .2h = 36, i.e., .h = 18. For example, from Rule 4 we learn that if, in the current 3
years, typically medium amount of red wine is sold and the medium increase is encountered for
the past 6 years, then we may expect significantly big increase in the following 3 years

Fig. 5 Linguistic description of the births time series forecast. The width of basic functions: .2h =
26. For example, from Rule 7, we learn that if, in the current 2 years, very roughly big number of
births happens and rather medium increase and more or less small decrease in the previous 2 years
are encountered, then we may expect rather medium increase in the following 3 years

The following periodicities were detected using periodogram:

• Time series (a): 9.2, 11.8, 15.3, 21.8, 28, 32.5, 38.1, 45.8, 57.2, 86.6, 150;
• Time series (b): 7.9, 10.5, 14.4, 18.9, 27.2, 47.9;
• Time series (c): 7.5, 11.2, 18, 22.4, 29.7, 38.4, 45.9, 51.8, 57.5, 61, 67.3, 86.5,

91.6, 102.6;
• Time series (d): 5, 8.8, 13.1, 17.7, 25.7, 33.1, 39.2, 53, 57.6, 69.3, 87.5, 115;
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Fig. 6 Linguistic description of the souvenir sales time series forecast. The width of basic
functions: .2h = 12. For example, from Rule 10, we learn that if in this year the number of souvenir
sales is extremely big and the increase is also extremely big, then we may expect that next year the
increase will be zero

On the basis of the detected periodicities (cf. [6]), we put .h(a) = 19, .h(b) = 9,
.h(c) = 22, and .h(d) = 20.

To find the structural breaks, we need to specify the width of the basic functions
(2h) and the increment interval p, i.e., a shift of the basic function along the time
axis. We used the following parameters: (a) .2h = 5 and .p = 2; (b) .2h = 5 and
.p = 3; (c) .2h = 4 and .p = 2; and (d) .2h = 5 and .p = 1.

Tables 2 and 3 show the results for detection of structural breaks in four time
series using the LFL Forecaster software. The intervals typeset in bold font and
characterization of their trend point out the sudden change (hugely increasing and
hugely decreasing) in the course of the time series. The results above are applied in
Fig. 8 to show the structural breaks. Intervals with the increasing trend are depicted
in a continuous line, and the decreasing ones are in a dashed line.

6 Conclusion

In this paper, we gave an overview of fuzzy modeling methods for analysis,
forecasting, and detecting structural breaks in time series. The methods are based
on the theory of fuzzy transform and selected methods of fuzzy natural logic.
We provided a demonstration of the forecast and detection of structural breaks on
real data taken from the Internet. We compared the forecasts using our methods
with those of the ARIMA model. The results demonstrate that our forecasts are
well comparable with those obtained using the classical statistical methods. An
additional asset of our methods is in the ability to provide information about time
series in natural language.
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Fig. 7 Four time series with various kinds of structural breaks. Time series (a) and (b) appear
breaks increase and decrease suddenly. Time series (c) and (d) breaks occur in roughly equal time
periods, and breaks are symmetric and have almost similar shapes
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Table 2 Intervals with monotonous trend detected in time series (a) and (b). The evaluative
expressions characterizing trend are derived using the function of local perception (3) w.r.t. the
context .wtg determined by the minimal and maximal values of the time series

Interval Trend characterization (a) Interval Trend characterization (b)

(46,50) Very little decreasing (25,29) Hugely increasing
(50,54) Hugely increasing (29,33) Negligibly increasing

(54,58) A little decreasing (41,45) Hugely decreasing
(204,210) Hugely increasing (45,49) Somewhat increasing

(210,114) Clearly increasing (53,57) Hugely decreasing
(246,250) Hugely increasing (57,61) A little increasing

(250,254) A little increasing (65,69) Hugely increasing

Table 3 Intervals with monotonous trend detected in time series (c) and (d)

Interval Trend characterization (c) Interval Trend characterization (d)

(1,5) Hugely decreasing (1,5) Hugely increasing
(5,8) Clearly decreasing (58,63) Hugely decreasing

(88,91) Hugely increasing (107,112) Hugely increasing
(91,94) Hugely decreasing (112,117) Hugely increasing
(94,97) Clearly decreasing (163,168) Hugely decreasing

(178,181) Hugely increasing (217,221) Stagnating

(181,184) Hugely decreasing (221,225) Hugely increasing
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Fig. 8 Structural breaks detected in the four selected time series
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Anomaly Detection Algorithm Using a
Hybrid Modelling Approach for Energy
Consumption Time Series
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Abstract Many energy time series captured by real-time systems contain errors
or anomalies that prevent accurate forecasts of time series evolution. However,
accurate forecasting of load time series and fluctuating renewable energy feed-
in as well as subsequent optimisation of the dispatch of controllable generators,
storage and loads is crucial to ensure a cost-effective, sustainable and reliable
energy supply. Therefore, we investigate methods and approaches for a system
solution that automatically detect and replace anomalies in time series to enable
accurate forecasts. Here, we introduce a hybrid anomaly detection system for energy
consumption time series, which consists of two different neural networks (Seq2Seq
and autoencoder) and two more classical approaches (entropy, SVM classification).
This network is able to detect different types of anomalies, namely, outliers,
zero points, incomplete data, change points and anomalous (parts of) time series.
These types are defined for the first time mathematically. Our results show a clear
advantage of the hybrid modelling approach for detecting anomalies in previously
unknown energy time series compared to the single approaches. In addition, due to
the generalisation capability of the hybrid model, our approach allows very good
estimation of energy values without requiring a large amount of historical data to
train the model.
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1 Introduction

Many energy data sets of real-time systems include errors or anomalies, which
hinder an appropriate prediction. However, the prediction and the following opti-
misation of energy load, generation and storage are crucial to prevent blackouts
or brownouts due to unbalanced fluctuations in the energy grid [9]. For critical
infrastructures, e.g. the energy sector, new challenges arise due to the increasing
amount of data to handle, the increasing automation level and possible threats
by cyberattacks. Thus, resilience, i.e. to be prepared for and to prevent threats,
to protect systems against them, to respond to threats and to recover from them,
became more and more important.

Therefore, we study a system which automatically detects and replaces anomalies
in time series to enable accurate predictions.

Thereby, we define anomalies as data, which do not belong to the normal
characteristics of time series, whereas errors are normal or anomalous parts of
time series, which are known to be erroneous due to external information, e.g.
information of fallen power pole.

To classify anomalies, we distinguish outliers, zero points, incomplete data,
change points and anomalous (part of) time series similarly to [3, 10], but we
concertised their definitions mathematically (see Sect. 2). To study our detection
methods, we manipulated real, highly accumulated energy consumption time series,
which were manually verified and corrected [1].

An example is shown in Fig. 1 in which a part of such an accumulated energy
consumption time series [1] (green) is shown. A classical approach to detect
anomalies is to calculate the difference between a prediction and an observation
[15]. This difference is called “surprise” by Goldberg et al. [4] and is calculated
as the difference between the true and the observed values. Unfortunately, this
approach is only applicable if a precise prediction can be calculated, which in case
of a regression needs sufficient amount of data. Alternatively, neural networks show
good results using unknown data, either by default or by techniques such as domain
adaption [16].

Three approaches to detect anomalies in energy data sets were suggested by
Zhang et al. [19], namely, using Shannon entropy, classification or a regression
approach. For unknown data sets, the regression approach is obviously inadequate
since the amount of training data is too small. However, using the well-known Shan-
non entropy from information theory [12] to measure the surprise or uncertainty
of data points in a time series, it is possible to detect anomalous data points in
previously unknown time series to a limited amount. The entropy H is calculated
as:

.H(x) =
n∑

i=1

p(xi)logbp(xi) ,
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Fig. 1 Example of an anomalous time series including outliers with different anomaly delta

where p is the probability of the energy consumption x. We also have b as the
base of the logarithm. The two common used bases are 10 or 2 [12]. However, this
measured accuracy and precision is not as high as a regression approach.

A neural network approach can be created by using Seq2Seq networks, which
are able to predict values of time series [5, 6]. Thus, we can classify by using the
surprise.

Autoencoders otherwise show strong in the reconstruction of data in general
[14] and also in time series [11]. Hence, it can also be used to evaluate a time
series by calculating a surprise based on the reconstruction error. Furthermore,
support vector machines (SVM) have a strong theoretical foundation and are fast
implementable to classify data. Yet, SVM have some disadvantages, like overfitting
and the need for labelled data, which are the common weaknesses of supervised
learning. Additionally, SVM needs good kernel (function) to separate between
classes [17], i.e. normal data and anomalies.

To overcome the limitations and drawbacks of these approaches, a hybrid model
was developed for all defined anomalies.
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2 Our Definitions

In general, we consider a time series X as a sequence of n-tuples:

.((c1, t1), . . . , (cn, tn)) .

The discussed anomalies are defined in the following:

Definition 1 (Noise Data) Noise data is incomprehensible for either computers or
unstructured data. These can be logical errors or inconsistent data [3], e.g. string in
databases, not detected bit flips.

Definition 2 (Outlier) A time series .X∗ with outlier can be created by modifying
tuples ofX by multiplying .ci with factor .oi ∈ R

+
0 \[0.9, . . . , 1.1] to the left elements

of the chosen tuples were the predecessor and successor of the single tuples are not
modified, i.e.

.(oi ∗ ci , ti),where as i ∈ {2, . . . , n − 1}

Then the modified tuple is an outlier.

Definition 3 (Zero Point) Based on Definition 2, an outlier is called zero point if
the modifying factor .oi is 0 instead.

Definition 4 (Change Point) For given time series X is .2 ≤ m ≤ n − 2. Then a
time series .X∗ with change points can be created by replacing a consecutivem-sub-
sequence of X by .oi ∈ R

+
0 . Additionally, the first modifier .oj of the sub-sequence

has to satisfy .oj /∈ [0.9, . . . , 1.1], to the left elements of the chosen tuples were the
predecessor and successor of this m-sub-sequence are not modified, i.e.

.(oi ∗ ci, ti ), where as i ∈ {j, . . . , j + m − 1}, |oi − 1| > |oi+1 − 1| and:
.oi > 1 and oi+1 > 1 or

.oi < 1 and oi+1 < 1, ∀i ∈ {j, . . . , j + m − 1}.

The points of this consecutivem-sub-sequence are called change points.

Definition 5 (Incomplete Data) For given time series X is .2 ≤ m ≤ n − 2. A
time series .X∗ with incomplete data can be created by replacing a consecutive m-
sub-sequence of X by using factors .oi ∈ R

+
0 \ [0.9, . . . , 1.1], with .oj being the

first modifier of the m-sub-sequence and .oj = oi , where .i ∈ {j, . . . , j + m − 1},
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to the left elements of the chosen tuples were the predecessor and successor of this
m-sub-sequence are not modified, i.e.

.(oi ∗ ci, ti ), where as i ∈ {j, . . . , j + m − 1}

The points of this consecutivem-sub-sequence are called incomplete data.

Definition 6 (Anomalous Time Series/Outlier Type B) For given time series X
is .2 ≤ m ≤ n − 2. An anomalous time series .X∗can be created by replacing a
consecutive m-sub-sequence of the n-sequence X by multiplying factors .oi ∈ R,
with .oj being the first modifier of the m-sub-sequence and .oi �= 1, where .i ∈
{j, . . . , j + m − 1}, to the left elements of the chosen tuples were the predecessor
and successor of thism-sub-sequence are not modified, and where the sub-sequence
is either incomplete data or change point, i.e.

.(oi ∗ ci, ti ), where as i ∈ {j, . . . , j − m − 1}

The points of this consecutivem-sub-sequence are called incomplete data.
Information: Anomalous time series are similar to a set of outliers; therefore, we

decided to use the name outlier type B.

3 Our Hybrid Model

Our developed architecture is shown in Fig. 2.
It contains of the two previously mentioned neural networks, an autoencoder

and a Seq2Seq networks, and the Shannon entropy and SVM as more classical
approaches.

Autoencoder is able to reconstruct time series to find anomalous data points [2].
Thus, autoencoder can be trained to reconstruct a time series, and such a recon-
structed time series can be compared with the original time series using the mean
squared error (MSE) or alternatives like RMSE to classify them.

We improved this approach by calculating the (squared) difference of every
single data point and using this as input for a convolutional neural network (CNN),
which is trained together with the autoencoder. The training process utilises loss
weight to comply with the fact that a good classification is more important than
a good reconstruction. To evaluate a whole time series, we used a rolling window
(standard size 24 time stamps) to evaluate each single data point with the single
autoencoder.

Additionally, we created a Seq2Seq prediction network similar to the network by
Hwang et al. [6]. Seq2Seq networks are well known for their strong capabilities in
the field of natural language processing [8].
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Fig. 2 Our solution

The Seq2Seq networks use the unrolling properties of RNN [13] to evaluate an
input. Again, a full time-set evaluation was be done using a rolling window.

By combining the two classical approaches (entropy and SVM) and the two
neural networks (autoencoder and Seq2Seq), a hybrid model was built (as shown in
Fig. 2), which takes advantage of each of the single approaches. The hybrid network
in Fig. 2 itself is a SVM, which evaluates the different results and computes a more
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precise final decision. Decision trees or a neural network could be used as well.
These approaches have shown similar or even better scores in other tasks [7]. The
next step was used to substitute all detected anomalies by using either interpolation,
extrapolation or an autoencoder, depending which of those replacement algorithms
is suited best for a given time series.

4 Results

Before we show the hybrid results, we explain some benefits of our hybrid solution.
In Fig. 3, we plotted the MSE of anomalies and of normal data after reconstruc-

tion by the autoencoder as orange and blue lines, respectively. Here, anomalies
have a MSE of approx. .1.0, whereas for normal data, it fluctuates around .0.1. A
classification based on the plotted MSE was done by using, e.g .0.4 as the limit for
normal data. This approach yields F1-scores around .0.8, but some data points are
wrongly classified.

Here, we developed a different approach based on CNN as described in Sect. 3.
Instead of using the MSE, we used the squared error in a CNN for each single
data point which improved the F1-score. However, the reconstruction result of

Fig. 3 MSE output of the autoencoder
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the autoencoder is no longer usable for replacing the abnormal data, since both
networks, autoencoder and CNN, are trained together focusing on MSE for classifi-
cation. Thus, it will yield a large difference between MSE of normal and abnormal
data points but not necessarily anomalies will have a larger MSE.

The Seq2Seq network used the introduced surprise calculating approach. There-
fore, the network classifies data by building an internal confidence window [18].
Additionally, we used a similar CNN-based approach as for the autoencoder. This
approach showed that the prediction accuracy of a Seq2Seq network depends on
the placement of the data point within the sample window, i.e. the closer to the
window borders, the worser the prediction accuracy. For better classification results,
we combine the different anomaly detection results for a single data point, i.e. 24
decisions for each data point due to a standard rolling window size of 24. The result
of an (part of an) energy consumption time series is shown in Fig. 4 as green line.
In this figure, the time series is shown as red line and the time stamp of generated
anomalies (as a Boolean index in the (not-shown) range between 0 and 1). It is
observable that abrupt changes in the time series result in an increased detection
rate by the Seq2Seq network as desired. Thus, points with a higher surprise are
detected more often than normal data. This Seq2Seq worked to a certain degree as
seen in Fig. 4. Here, the network detected a normal spike on data point 30 as outlier,
but detected the real outlier only six times. This behaviour is explainable because

Fig. 4 Seq2Seq output
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the network learned that outliers are always single points, and, thus, it is not capable
to distinguish correctly between the two data points with high surprise. After adding
change points or incomplete data to our train set, this behaviour was not observed
anymore. Unfortunately, Seq2Seq networks, trained only with long anomalies, are
always detected at least 3 points as anomalies in test with single-point outliers. Our
approach of deciding upon majority votes can be used to decrease the amount of
false positive or false negative. The hybrid solution is trained on using a higher or
lower limit depending on the Seq2Seq networks.

It is notable that the capability of the Seq2Seq network to generalise is not as high
as in case of the autoencoder. Therefore, only inter-domain tests can be well detected
by the Seq2Seq network. A domain transfer approach is highly recommended to get
Seq2Seq networks, which can be usable for a larger variety of data.

So far, we have shown two approaches for detecting anomalies separately,
yielding reasonable results, but still improvable ones.

In consequence, this leads to our hybrid network, which combines both
approaches. Before presenting the results, we want to emphasise that for
the achieved results, our hybrid model was trained with manipulated energy
consumption data from Germany and tested it with manipulated consumption
data from Austria. So, the evaluation was done with unknown data. The results for
the Germany consumption test set showed slightly better results. An example of the
F1-score for our networks and the hybrid network can be found in Table 1 and in
Fig. 5. Here, we were able to reach F1-scores for outliers above .0.99. Additionally,
we studied the influence of the ratio between normal and abnormal values, here
called anomaly delta. As shown in Table 1, even anomalies with a deviation of only
.5% are detectable by the presented hybrid model. The accuracy for the substitution
of outliers is already satisfying as seen in Fig. 5 by comparing the real (broken
yellow line) and corrected data (black solid line). The substitution was done with
an RBF Interpolation.

If domain adaption techniques were used, the F1-Score of the hybrid solution
was decreased by .0.01.

Also the results of the other anomaly types are shown in Table 2.

Table 1 F1-scores for
different anomaly deltas

Anomaly delta Hybrid result F1-score Type

10% 0.9976 0.848 Autoencoder

0.899 Seq2Seq

7.5% 0.9948 0.748 Autoencoder

0.812 Seq2Seq

6% 0.9917 0.564 Autoencoder

0.845 Seq2Seq

5% 0.9908 0.567 Autoencoder

0.904 Seq2Seq
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Fig. 5 Example of the hybrid solution with anomaly delta of .10%

Table 2 Comparison of
different anomaly types for a
delta of 10%

Anomaly type Autoencoder Seq2Seq Hybrid network

Outlier 0.5715 0.8403 0.9941

Incomplete data 0.7970 0.6209 0.8805

Change points 0.8170 0.7623 0.9622

5 Summary

We presented a hybrid model approach that uses two classical mathematical
approaches and neural networks to detect anomalies and substitute them with an
appropriate algorithm. The results showed clear advantages of the hybrid model
for detecting anomalies in previously unknown energy time series compared to the
single approaches for outliers, but also for other types of anomalies. In addition, due
to the generalisation capability of the hybrid model, this approach allows very good
estimation of energy values without requiring a large amount of historical data to
train the model.

Our anomaly definitions were defined mathematically based on examples of
anomalies and will be adapted to better reflect statistical properties of time series
and their anomalies in future studies.
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Unit Root Test Combination via Random
Forests

Luca Nocciola, Daniel Ollech, and Karsten Webel

Abstract There is a wide variety of non-seasonal and seasonal unit root tests.
However, it is not always obvious which tests can be relied upon due to uncertainties
in identifying the data generating process, often with respect to the presence of
deterministic terms and the initial conditions. We evaluate the size and power of
a large set of unit root tests on time series that are simulated to be representative
of economic time series in the M4 competition data. Furthermore, using a condi-
tional random forest-based elimination algorithm, we assess which tests should be
combined to improve the performance of each individual test.

Keywords ARIMA time series · Conditional inference trees · Monte Carlo
simulation · Sequential testing · Supervised machine learning

1 Introduction

The question of whether a given macroeconomic time series contains a unit root is
important since the presence (absence) of such a root implies that exogenous shocks
have a persistent (transient) effect on the data. It is also well-known that unit roots
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cause problems in inference and forecasting. First, we know that, for independent
random walks, we cannot rely on sample correlations and regression coefficients
as consistent measures of the relationships within the population, since they can
spuriously take on any value within the interval .[−1, 1] and .IR, respectively, even
asymptotically. Second, the rejection rate of standard t-tests for the null hypothesis
of a unit root increases with sample size. Accordingly, these tests are not helpful
due to the fact that t-statistics do not converge to any asymptotic distribution
unless properly normalised at a customised rate [16, 20, 23, 36, 49]. Third, forecast
accuracy under unit roots in the autoregressive polynomial steadily deteriorates
as the horizon increases, since the forecast error variance grows linearly with the
forecast horizon and tends towards infinity in the limit [6], contrary to the stationary
case.

The large number of competing non-seasonal and seasonal unit root tests can
complicate the researcher’s decision regarding which test to apply in a given
situation, even if the seasonal status of the data is known, or suggested by a
seasonality test. Size distortions and power issues have been reported for various
scenarios of practical importance [48], including finite samples [7], near-unit root
behaviour and particularly large negative roots in the moving average polynomial
[30, 40]. Contradictory conclusions have also been repeatedly reported when several
tests are applied to the same data, especially for seasonal unit root tests as a
result of the different model specifications that they impose [40]. Uncertainty
surrounding the deterministic mean function and the initial conditions is also known
to affect the tests’ performance [14, 29, 47] and, moreover, make the assumptions
of standard testing procedures unlikely to be met. Various strategies for dealing
with these types of uncertainty have been suggested for non-seasonal unit root
tests, including sequential pre-testing for trend specifications and unit roots, data-
dependent weighted averaging of unit root tests and running union-of-rejections
decision rules [1, 22, 35]. Although these strategies may involve multiple tests,
they usually work with only a small preselection of tests, often from the same
family. We elaborate on this approach by reinterpreting the unit root hypothesis
as a classification problem with two classes. Our sequential approach utilises
the conditional random forest classifier to identify, rank and combine the most
informative tests. It is thus capable of incorporating a larger set of unit root tests and
naturally extends to seasonal unit root tests. Our approach can help practitioners to
select unit root tests with lower misclassification rates.

The remainder of this paper is organised as follows: Sect. 2 reviews widely
applied tests for non-seasonal and seasonal unit roots, Sect. 3 provides basic
information about random forests, Sect. 4 explains our proposed testing strategy,
Sect. 5 reports our results, and, finally, Sect. 6 summarises.
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2 Unit Root Tests

Let .{yt} be a discrete time series with .τ observations per year and assume that the
series can be adequately described by the model:

.φ(B) (yt − μt) = θ(B) εt , (1)

where B is the backshift operator, .Bkxt = xt−k, .φ(B) is an autoregressive (AR)
polynomial that has roots on or outside the unit circle, .θ(B) is a moving average
(MA) polynomial that has roots outside the unit circle, .{μt } is a deterministic
function of time and .{εt } is a zero-mean white noise process with finite variance.

The series .{yt} is said to be integrated of order .d ∈ IN0, denoted by .{yt } ∼ I (d),
if .φ(B) contains the factor .(1 − B)d . Similarly, the series is said to be seasonally
integrated of order .D ∈ IN0, denoted by .{yt} ∼ SI (D), if .φ(B) contains the factor
.(1 −Bτ )D . Thus, .{yt } is stationary around .{μt } if .(d,D) = (0, 0), non-stationary if
.(d,D) �= (0, 0) and invertible in either case.

2.1 Non-seasonal Unit Roots

The problem of testing for a non-seasonal unit root can be stated as

.H0 : {yt } ∼ I (1) versus H1 : {yt} ∼ I (0) (2)

and several tests have been suggested under different assumptions for the AR
and MA polynomials in (1), with the common assumption being that there is no
seasonality, or at least no seasonal unit root (.D = 0), in the data. The function .{μt }
is usually represented by

.μt = μ + βt , (3)

covering absence of deterministic terms (.μ = β = 0) as well as deviations of .{yt }
from a constant mean (.β = 0), from a linear trend with a zero mean (.μ = 0) and
from a linear trend with a non-zero mean (unrestricted model).

The Dickey-Fuller (DF) test [10, 11] considers the pure first-order AR case, i.e.
.φ(B) = 1−ρB and .θ(B) = 1, so that (2) is reduced to testing .ρ = 1 against .ρ < 1.
The DF test is based on the time series regression:

.yt = μt + ρyt−1 + ηt , (4)

where .{ηt } coincides with .{εt } of (1) under Gaussianity and the initial condition is
.y0 = 0. The two proposed one-sided tests are the conventional t-statistic .DFτ =(
ρ̂ − 1

) × σ̂−1
ρ̂

and .DFρ = T
(
ρ̂ − 1

)
, where T is the sample size and estimates are
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obtained by ordinary least squares (OLS). However, the null distribution of either
statistic depends on the form of .{μt } and is non-standard in each case, so that revised
sets of critical values apply [11, 18].

Higher-order AR and ARMA models can be dealt with by the augmented Dickey-
Fuller (ADF) test [41], even for unknown model orders. Letting .Δ = 1−B, this test
is usually carried out by testing .ρ� = 0 against .ρ� < 0 in the augmented regression:

.Δ yt = μt + ρ�yt−1 +
k−1∑

j=1

φ�
jΔ yt−j + εt , (5)

using the OLS t-statistic .ADFτ = ρ̂�×σ̂−1
ρ̂� . If the lag length satisfies .k = p for pure

AR(p) models and .k → ∞ at a controlled rate as .T → ∞ for ARMA models, then
the DF critical values apply. Counterparts to critical F -values for testing against
specific trend alternatives have also been tabulated [11].

Allowing for correlated and possibly heterogeneously distributed innovations,
the Phillips-Perron (PP) statistics .PPτ and .PPρ [37, 38] rely on non-parametric
transformations rather than augmentation to correct the .DFτ and .DFρ statistics for
the effects of nuisance parameters associated with the distribution of .{ηt }. The PP
statistics also follow the DF limiting null distributions and thus the DF critical values
apply for each form of .{μt }.

Several extensions of the (A)DF and PP tests have been suggested, especially
with respect to the proper treatment of the uncertainty surrounding .{μt }. For
example, the Zivot-Andrews (ZA) test [50] allows for the estimation of breakpoints
in .{μt } under the alternative hypothesis, and the Elliott-Rothenberg-Stock (ERS)
tests [15] are essentially feasible asymptotically point-optimal .DFρ tests of .ρ = ρ̄

with .ρ̄ < 1 being fixed against local-to-unity alternatives, allowing for polynomial
trends. The test statistic is .ERSρ = [S(ρ̄) − ρ̄S(1)]×ω̂−2, where .S(α) is the sum of

the squared quasi-.α-detrended series .

{
yt − μ̂

(α)
t

}
and .ω̂2 is a consistent estimator

of the sum of the covariances of .{ηt }. A special member of the ERS family is a
modified .ADFτ test that results from a specific choice of .ρ̄� given T and nominal
size. This test, denoted by .ERSτ , is essentially the .ADFτ test applied to the quasi-
.ρ̄�-detrended series in (5) without .{μt }.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [26] considers the problem
of testing for (trend) stationarity against non-stationarity, i.e.

.H0 : {yt} ∼ I (0) versus H1 : {yt } ∼ I (1) ,

assuming that .{yt} is decomposable into a deterministic trend, random walk and
stationary error. The test regression is essentially model (4) with .ρ = 0 and .{μt }
being replaced with a random walk .{μ̃t }:

.yt = μ̃t + βt + ηt with μ̃t = μ̃t−1 + κt , (6)
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where .{κt } is white noise with a zero mean and finite variance .σ 2
κ . The KPSS test is

the one-sided upper-tail Lagrange multiplier (and also the locally best invariant) test
of .σ 2

κ = 0 against .σ 2
κ > 0, i.e. .KPSS = σ̂−2

η

∑T
t=1 S2

t , where .{St } is the partial-sum
process of the residuals estimated from (6) under the null hypothesis and .σ̂ 2

η is the
sum of the squared residuals divided by T . The asymptotic distribution of the KPSS
statistic had been derived initially under the assumption that .{ηt } is Gaussian white
noise with finite variance but has then been shown to also hold under weaker (strong
mixing) regularity conditions of the PP tests [38].1

As an alternative to classical unit root tests, the Gómez-Maravall (GM) algorithm
[19] determines the appropriate non-seasonal differencing order for ARIMA models
by iteratively analysing the roots in the AR and MA polynomials of different
predefined seasonal ARMA models. Any root of the characteristic polynomial is
defined to indicate a unit root if its modulus is larger than a predefined threshold
that, by default, depends on the ARMA model under consideration.

2.2 Seasonal Unit Roots

In analogy to (2), several tests for the general problem

.H0 : {yt} ∼ SI (1) versus H1 : {yt} ∼ SI (0) (7)

exist, where the deterministic component .{μt } may now also contain seasonal
dummies in (1), so that (3) is extended to

.μt = μ + βt + γ �dt , (8)

where .γ = (γ1, . . . , γτ )
� is the vector of the .τ fixed seasonal effects and .dt =

(d1t , . . . , dτ t )
� with .dit = 1 if t falls within the i-th month or quarter and .dit = 0

otherwise.
The Dickey-Hasza-Fuller (DHF) test [12] is essentially a seasonal variant of the

DF test as it considers the pure first-order seasonal AR case, i.e. .φ(B) = 1 − ρτB
τ

and .θ(B) = 1, so that (7) is reduced to testing .ρτ = 1 against .ρτ < 1 in the time
series regression:

.yt = μt + ρτ yt−τ + ηt ,

where .{μt } is now given by (8). The two proposed one-sided tests are based on the
conventional t-statistic .DHFτ = (

ρ̂τ − 1
)× σ̂−1

ρ̂τ
and on .DHFρ = T

(
ρ̂τ − 1

)
. OLS

and symmetric least squares variants (including revised sets of critical values) are
provided for the zero-mean (.μ = β = 0 and .γ = 0), constant-mean (.μ �= 0, .β = 0

1 To accommodate weaker assumptions about the errors, the KPSS test requires a consistent long-
variance estimator rather than a variance estimator.



36 L. Nocciola et al.

and .γ = 0) and seasonal-means cases (.μ = β = 0 and .γ �= 0). An ADF-like
extension, which is referred to as the augmented DHF (ADHF) test, can be obtained
via augmentation with lags of .{Δτyt } as in (5), where .Δτ = 1 − Bτ .

The Osborn-Chui-Smith-Birchenhall (OCSB) test [32, 40] considers .φ(B) =
(1 − ρB)(1 − ρτB

τ ) and tests .(ρ, ρτ ) = (1, 1) against .(ρ, ρτ ) �= (1, 1) in the
(re-parameterised) regression:

.ΔΔτyt = μt + β1Δτyt−1 + β2Δ yt−τ + ηt (9)

with the F -test for .(β1, β2) = (0, 0). However, model (9) also allows for sequential
t-tests against one-sided (stationary) alternatives. If .β2 = 0, then the t-test for .β1 =
0 is the (A)DF test for the need of .Δ in addition to .Δτ . Similarly, if .β1 = 0, then
the t-test for .β2 = 0 is the DHF test for the need of .Δτ in addition to .Δ. Revised
critical values apply in either case. Moreover, assuming the validity of .Δ, (9) can be
rewritten as

.Δτzt = μt + β1 S(B) zt−1 + β2 zt−τ + ηt ,

where .{zt } = {Δ yt} and .S(B) = 1 + B + · · · + Bτ−1 is the annual aggregation
operator, allowing for separate treatments of the roots in .Δτ = Δ S(B).

The Hylleberg-Engle-Granger-Yoo (HEGY) test [2, 17, 25] extends this factori-
sation principle even further as it expands .φ(B) about all roots of .Δτ , additionally
allowing for individual assessments (and different moduli) of the .τ − 1 unit roots of
.S(B). The test regression reads

.Δτyt = μt +
τ∑

i=1

πi xi,t−1 + ηt ,

where the processes .{xi,t−1} are non-singular linear transformations of lagged
versions of .{yt }. The DHF null hypothesis thus implies that .πi = 0 for all
.i ∈ {1, . . . , τ }, but specific sub-hypotheses for single (real-valued or pairs of
complex-valued) unit roots in .Δτ can also be tested with separate t-tests and F -
tests, respectively. Depending on the specified alternative and the form of .{μt }, the
DF and DHF critical values apply except for .γ �= 0, where critical values are found
through simulations by [25].

The GM algorithm discussed above can also be used to determine the seasonal
differencing order.

3 Random Forests

A random forest (RF) [4] is a supervised machine learning algorithm. It is a
collection of classification trees constructed on bootstrap samples of the original
training data. Additionally, at each split, the trees are restricted in that only a
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subsample of the available predictors is taken into consideration to determine the
optimal split. A conditional RF [24] enhances the classical RF in the presence of
correlated predictors.

3.1 Classical Random Forests

Let .X = (x1, . . . , xP ) be a set of predictors with .xj = (x1j , . . . , xNj )
� for all .j ∈

{1, . . . , P } and .y = (y1, . . . , yN)� be a vector of N responses with .yi ∈ {0, . . . , k}
for all .i ∈ {1, . . . , N}, constituting our training set .L.2 Let .Lb be a bootstrap sample
of size N drawn from .L, from which we grow an unpruned classification tree .Tb

with M terminal nodes corresponding to M classification regions. To create a binary
split of any terminal node m, we draw a random sample .X̃ of size .P̃ < P without
replacement from .X. For each sampled predictor .x̃j , we determine the best split of
node m amongst all possible splits of m, and the predictor that generates it (say
.x̃j∗) is chosen as the splitting predictor for m. The optimal split is identified by, for
example, the Gini index. Let .q̂mk = N−1

m

∑
xi∈Rm

I{yi = k} be the share of training
data in node m from class k, where .Nm = ∑

i I{xi ∈ Rm} and .xi = (xi1, . . . , xiP )

and .Rm denote the i-th observation of the P predictors and the classification region
corresponding to m, respectively. The Gini index is given by

.Qm(Tb) =
∑

k

q̂mk(1 − q̂mk) .

We stop the trees from growing whenever a pre-specified minimum number of
observations in the terminal nodes is reached (say .Nmin) or node impurity cannot
be decreased further. Classification in the RF is obtained by an unweighted mode of
the tree classifications. Moreover, we can determine predictor importance in an RF,
for example, via the mean decrease in prediction accuracy after randomly permuting
the values of the predictor .xj in the out-of-bag samples (i.e. the training data not
bootstrapped in .Lb), denoted by .Ob, to mimic the absence of .xj . Let .ŷi(Tb, xj ) and
.ŷi(Tb, xπ(j)) be the predicted classes of .yi obtained from .Tb before and after random
permutation of the values of .xj in .Ob, where .π(·) is the permutation scheme. The
predictor importance of .xj is then given by

.PI (xj ) = 1

B

B∑

b=1

∑

i∈Ob

[
I{yi �= ŷi(Tb, xπ(j))}

|Ob| − I{yi �= ŷi(Tb, xj )}
|Ob|

]
,

where B is the number of classification trees in the forest.

2 In our case, .yi is binary (.k = 1). However, .k = 3 could also be used if we considered the
combination of possibilities of having seasonal and non-seasonal unit roots.
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3.2 Conditional Random Forests

The conditional RF introduces two adaptations with respect to predictor selection
and the predictor importance measure. Predictors that are not related to .y (identified
via a test of independence between .y and .x̃j ) are excluded in advance, whilst,
amongst the predictors that exhibit association with .y (via the same test), the
predictor with the strongest association with .y, say .x̃j∗, is chosen as a splitting
predictor used to determine the optimal split of node m. Let each node m be
represented by a vector of integer case weights .wm = (wm,1, . . . , wm,N)�, where
.wm,i > 0 if (.xi , .yi) belongs to m and equals zero otherwise. Formally, the global
null hypothesis can be formulated as

.H(m)
0 :

P̃⋂

j=1

H(m,j)
0 with H(m,j)

0 : D(y|x̃j ,wm) = D(y|wm) ,

where .D(·) denotes an arbitrary distribution. The rejection rule of this hypothesis is
based on the minimal (adjusted) p-value for rejecting the local hypothesis .H(m,j)

0 .

The predictor .x̃j∗ can be selected from the local null hypothesis .H(m,j∗)
0 rejected at

the smallest (adjusted) p-value. Finally, .x̃j∗ is used as a splitting predictor to find
the best binary split of m according to a pre-specified splitting criterion, after which
the case weights .wmL and .wmR of the left and right descendents of m are computed.

To determine predictor importance, the conditional RF uses a conditional
permutation taking into account correlations amongst predictors, thus preventing
seemingly influential predictors (due to their correlation with the truly influential
predictors) from being attached high importance. The random permutation .π(·) is
now applied to the values of .xj only within subgroups of observations, say .xC

j .3 The
conditional permutation-based predictor importance is given by

.PIC(xj ) = 1

B

B∑

b=1

∑

i∈Ob

[ I{yi �= ŷi(Tb, xπ(j)|xC
j
)}

|Ob| − I{yi �= ŷi(Tb, xj )}
|Ob|

]
,

(10)

where .π(·)|xC
j is the conditional permutation scheme and, for each tree .Tb, the

permutation grid for .xj is given by the cut-points of .xC
j in .Tb.

3 Alternatively, though less conservative, we can condition only on those predictors .xC
j whose

correlation with .xj exceeds a certain threshold.
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4 Test Evaluation

We aim to evaluate the unit root tests on ARIMA time series that are representative
of the data used in the M4 competition [27, 28]. To this end, we simulate correlated
Gaussian ARMA parameters and transform them so that their distribution is similar
to the empirical distribution estimated from the M4 competition data [31]. This is
achieved by combining the “NORmal-To-Anything” (NORTA) algorithm [5] with
logspline density estimation [44]. We simulate ARMA parameters and use these
to simulate 120,015 time series. The set consists of 40,005 time series with 5, 10
and 20 years of monthly data, respectively. The set of time series is balanced in the
sense that half of them contain a (seasonal) unit root. We then run the unit root tests
on the raw and first-differenced simulated data and use their p-values as predictors
in the conditional RF in order to classify the simulated data into time series with
and without unit roots.4 Finally, we use (10) to quantify the importance of each
individual test.

Based on the test results, we run a conditional RF-based recursive feature
elimination (CRFE) algorithm [46]. The key idea is to start with the full set of
candidate tests and to grow a sequence of conditional RF by (1) eliminating the
least important test in each round and (2) re-estimating the conditional RF with the
reduced set of tests in the next round. This scheme is repeated until an “optimal” set
of tests is obtained. In each round, we use the conditional RF to classify a test set of
simulated time series not considered in tree growing. By evaluating the means and
standard deviations of the misclassification rates in each round, we can assess the
performance of the respective set of tests and eventually identify the “optimal” set.

5 Results

Table 1 reports the rejection rates for the non-seasonal unit root tests, using a
nominal 1% significance level.5 The ERS and GM tests have acceptable size
properties but the former have relatively low power. The ADF, KPSS and PP tests
display severe size distortions but compensate those with a relatively high power
(above 70% except for the ADF test without deterministic terms). The ZA test has
the worst size properties but the highest power amongst all tests considered. Overall,
size issues seem to increase with the length of series for most tests, whereas the
power tends to improve. Similar results are reported in [8, 9, 13, 42]. In particular,
[8] do not recommend using unit root tests for series with less than 100 observations.

4 For computational reasons and parsimony, the tests have been performed with minimal lag length.
Seasonal differences and the seasonal status of the series are not considered. The finite-sample
critical values that we obtained from our own simulations in R (version 3.5.1) are very similar to
the ones tabulated in the original papers (details are available upon request).
5 Similar results are obtained for a nominal 5% significance level.
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Table 1 Rejection rates for non-seasonal unit root tests (%, .α = 0.01)

.d = 0 .d = 1

Test Model (3) All 5-year 10-year 20-year All 5-year 10-year 20-year

.ADFτ .μ = 0, .β = 0 25.5 17.2 23.2 36.2 19.0 17.0 19.1 20.9

.μ �= 0, .β = 0 76.6 73.7 77.5 78.6 23.4 21.2 24.4 24.6

.μ �= 0, .β �= 0 88.9 82.1 92.8 91.9 32.7 27.8 35.4 34.9

.ERSτ .μ �= 0, .β = 0 31.6 19.3 32.5 43.1 3.3 2.3 3.5 4.1

.μ �= 0, .β �= 0 40.4 17.3 44.2 59.7 8.1 5.6 8.8 9.8

.ERSρ .μ �= 0, .β = 0 49.4 41.7 49.4 57.0 6.2 8.2 6.0 4.5

.μ �= 0, .β �= 0 46.5 36.7 45.6 57.3 9.3 11.1 8.7 8.1

GM .μ �= 0, .β = 0 77.9 75.9 78.2 79.6 9.6 17.0 8.7 3.2

.PPρ .μ �= 0, .β = 0 85.0 87.4 84.9 82.8 15.3 15.7 16.0 14.4

.μ �= 0, .β �= 0 97.0 96.5 98.0 96.6 27.5 26.1 29.1 27.2

.PPτ .μ �= 0, .β = 0 85.9 87.9 85.8 84.1 28.5 27.8 29.4 28.3

.μ �= 0, .β �= 0 97.3 96.7 98.3 97.0 38.6 36.6 40.5 38.7

ZA .μ �= 0, .β = 0 97.2 94.9 98.2 98.5 42.7 36.1 44.8 47.3

.μ = 0, .β �= 0 97.4 94.7 98.3 99.0 45.6 37.6 47.2 52.0

.μ �= 0, .β �= 0 97.2 94.7 98.0 98.8 45.7 37.6 47.3 52.3

KPSS .μ �= 0, .β = 0 23.4 22.0 22.4 25.9 83.4 76.4 82.5 91.3

.μ �= 0, .β �= 0 11.9 7.5 12.4 15.8 70.0 50.5 70.1 89.3

Table 2 contains the rejection rates for the seasonal unit root tests, where we
restrict ourselves to the use of the joint F -test for all roots for the HEGY tests and
to the t-statistic for the seasonal unit root for the OCSB tests. All tests show severe
size distortions except for the GM test when being applied to the raw time series.
The HEGY tests are especially biased as they reject a true unit root null hypothesis
in almost all cases, in particular for the longer series. On the contrary, almost all
tests display an acceptable power of more than 80%, especially for the 10- and 20-
year series, with the exception of the ADHF test with seasonal dummies when being
applied to the raw data.

Table 3 shows the overall misclassification rates of the non-seasonal and seasonal
unit root tests. Whilst especially the .PPρ and the GM tests perform well in
comparison to some of the other tests, they still misclassify about 15% of the time
series. This clearly leaves room for improvement by combination of tests, even more
so as no individual test dominates the others. For detecting the absence or presence
of seasonal unit roots, the GM test—in both variants—clearly outperforms the other
tests considered here.

We now seek to find a combination of unit root tests that has lower misclas-
sification rates than any individual test. To this end, we run the CRFE algorithm
with 50 conditional RFs in each round. The use of conditional RFs is suggested
by the empirical cross-correlations between the p-values of the individual tests,
as those range from .−0.80 to .0.91 for the non-seasonal unit root tests and from
.−0.40 to .0.97 for the seasonal unit root tests. To reduce the computational burden,
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Table 3 Misclassification rates (MCR) of unit root tests (%, .α = 0.01)

Non-seasonal unit root tests Seasonal unit root tests

Test Model (3) MCR Test Model (8) MCR

.ADFτ .μ = 0, .β = 0 .46.7 .ADHFτ .μ = 0, .β = 0, .γ = 0 36.4

.μ �= 0, .β = 0 .23.4 .μ = 0, .β = 0, .γ = 0, .Δ 38.0

.μ �= 0, .β �= 0 .21.9 .μ = 0, .β = 0, .γ �= 0 40.8

.ERSτ .μ �= 0, .β = 0 .35.8 .μ = 0, .β = 0, .γ �= 0, .Δ 42.8

.μ �= 0, .β �= 0 .33.8 GM .μ �= 0, .β = 0, .γ = 0 7.1

.ERSρ .μ �= 0, .β = 0 .28.4 .μ �= 0, .β = 0, .γ = 0, .Δ 11.5

.μ �= 0, .β �= 0 .31.4 HEGY .μ �= 0, .β �= 0, .γ �= 0 47.7

GM .μ �= 0, .β = 0 .15.8 .μ �= 0, .β �= 0, .γ �= 0, .Δ 47.7

.PPρ .μ �= 0, .β = 0 .15.2 .μ �= 0, .β = 0, .γ = 0 42.3

.μ �= 0, .β �= 0 .15.2 .μ �= 0, .β = 0, .γ = 0, .Δ 44.7

.PPτ .μ �= 0, .β = 0 .21.3 .μ �= 0, .β = 0, .γ �= 0 48.3

.μ �= 0, .β �= 0 .20.7 .μ �= 0, .β = 0, .γ �= 0, .Δ 47.5

ZA .μ �= 0, .β = 0 .22.8 .μ �= 0, .β �= 0, .γ = 0 41.7

.μ = 0, .β �= 0 .24.1 .μ �= 0, .β �= 0, .γ = 0, .Δ 41.7

.μ �= 0, .β �= 0 .24.3 OCSB .μ = 0, .β = 0, .γ = 0 33.9

KPSS .μ �= 0, .β = 0 .20.0 .μ = 0, .β = 0, .γ = 0, .Δ 31.0

.μ �= 0, .β �= 0 .21.0

the initial set of tests only includes tests with misclassification rates less than 50%
for .d = 0 and .d = 1 in the non-seasonal case and for .D = 0 and .D = 1 in
the seasonal case, resulting in a set of 12 non-seasonal and 4 seasonal unit root
tests. Also, the conditional RF in the i-th round is grown on .Ni time series, where
.Ni = max {1000−(ki −1)×100, 200} with .ki being the number of tests considered
in the i-th round.

In general, due to the random selection of predictors, unit root tests that do
not contribute to, or even worsen, the performance are eliminated during the early
rounds. The overall misclassification rate is reduced by leaving out these tests,
and, in most rounds, the standard deviation of these rates, calculated over the 50
conditional RFs, is decreased. Eventually, the most important tests remain in the set
and eliminating more tests increases the overall misclassification rate. As this lower
bound is reached, the optimal set of tests is identified.

Table 4 reports the CRFE results for non-seasonal unit root tests, indicating that
a minimum misclassification rate of almost 10% is achieved when four tests remain
in the set: the .PPρ test with a trend, the GM algorithm and the KPSS tests with
a constant and a trend. Thus, the classification performance is increased by more
than 5 percentage points compared to the best individual non-seasonal unit root test
(.PPρ tests and GM algorithm; see Table 3). Table 5 reports the CRFE results for the
seasonal unit root tests. The initial set of tests already achieves a misclassification
rate of almost 6%. The CRFE approach does not improve this initial benchmark, but
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Table 4 Recursive feature elimination for non-seasonal unit root tests

Elimination after round i Misclassification rates

Round i Test Model (3) Mean SD .Ni

1 .ADFτ .μ �= 0, .β �= 0 11.1 0.8 200

2 .PPτ .μ �= 0, .β = 0 11.3 0.8 200

3 ZA .μ �= 0, .β �= 0 11.1 0.7 200

4 ZA .μ = 0, .β �= 0 11.3 0.9 200

5 .ADFτ .μ �= 0, .β = 0 10.7 0.7 300

6 ZA .μ �= 0, .β = 0 10.4 0.5 400

7 .PPρ .μ �= 0, .β = 0 10.4 0.6 500

8 .PPτ .μ �= 0, .β �= 0 10.1 0.6 600

9 KPSS .μ �= 0, .β = 0 10.1 0.5 700

10 KPSS .μ �= 0, .β �= 0 10.4 0.5 800

11 GM .μ �= 0, .β = 0 12.3 1.2 900

12 .PPρ .μ �= 0, .β �= 0 12.3 0.5 1000

Table 5 Recursive feature elimination for seasonal unit root tests

Elimination after round i Misclassification rates

Round i Test Model (8) Mean SD .Ni

1 .ADHFτ .μ = 0, .β = 0, .γ �= 0 6.4 0.3 700

2 OCSB .μ = 0, .β = 0, .γ = 0, .Δ 6.5 0.4 800

3 GM .μ �= 0, .β = 0, .γ = 0, .Δ 6.6 0.4 900

4 GM .μ �= 0, .β = 0, .γ = 0 7.3 0.2 1000

still we are able to improve about 1 percentage point over the best individual test by
combining only four tests.

6 Summary

We set out to evaluate the size and power of a large set of unit root tests and
their capabilities of correctly identifying non-seasonal and seasonal unit roots. To
this end, we simulate time series that are representative of the economic time
series in the M4 competition. Furthermore, we employ a conditional random forest-
based elimination algorithm to assess which combination of tests decreases the
misclassification rates the most.

The best individual unit root tests misclassifies the absence or presence of a non-
seasonal unit root in more than 15% of all cases. By combining the p-values of not
more than eight unit root tests, the misclassification rate can be reduced to almost
10%. In the case of seasonal unit roots, the reduction is less pronounced. Still, a
combination of tests slightly improves the performance of the best individual test.
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For future research, we aim to devise an overall unit root test, possibly in
combination with a random forest-based overall seasonality test [46]. In this regard,
we could also consider a more nuanced lag-length selection for the augmented tests
studied here as well as additional unit root tests in order to improve the design of our
approach. This strategy could then be compared with recent bootstrap approaches
to unit root testing [21, 33, 34, 39, 45]. Future research could also aim to gain
further insights into the theoretical properties of our approach. Some results on
the consistency of random forests are already available [3], but, to the best of our
knowledge, those have not been demonstrated for conditional random forests and
the CRFE algorithm so far.
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Combining Clustering and Classification for
Forecasting
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Alexis Bondu, Laurence Rozé, Alexandre Termier, and Régis Marguerie

Abstract In this article, we propose a framework for seasonal time series proba-
bilistic forecasting. It aims at forecasting (in a probabilistic way) the whole next
season of a time series, rather than only the next value. Probabilistic forecasting
consists in forecasting a probability distribution function for each future position.
The proposed framework is implemented combining several machine learning tech-
niques (1) to identify typical seasons and (2) to forecast a probability distribution
of the next season. This framework is evaluated using a wide range of real seasonal
time series. On the one side, we intensively study the alternative combinations of
the algorithms composing our framework (clustering, classification), and on the
other side, we evaluate the framework forecasting accuracy. As demonstrated by
our experiences, the proposed framework outperforms competing approaches by
achieving lower forecasting errors.
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1 Introduction

Forecasting the evolution of a temporal process is a critical research topic, with
many challenging applications. In this work, we focus on time series forecasting
and on data-driven forecasting models. A time series is a timestamped sequence
of numerical values, and the goal of forecasting is, at a given point of time, to
predict the next values of the time series based on previously observed values
and possibly on other linked exogenous variables. Data-driven algorithms are used
to predict future time series values from past data, with models that are able to
adapt automatically to any type of incoming data. The data science challenge is to
learn accurate and reliable forecasting models with as few human interventions as
possible. Time series forecasting has many applications in medicine (for instance,
to forecast blood glucose of a patient [1]), in economics (for instance, to forecast
macroeconomic variable changes [2]), in the financial domain (forecasting financial
time series [3]), in electricity load [4] or in industry (for instance, to forecast the
server load [5, 6]).

Time series forecasting algorithms provide information about possible situations
in the future and can be used to anticipate crucial decisions. Taking correct decisions
requires anticipation and accurate forecasts. Unfortunately, these objectives are
often contradictory. Indeed, the larger the forecasting horizon, the wider the range
of expectable situations. In such case, a probabilistic forecasting algorithm is a
powerful decision support tool, because it handles the uncertainty of the predictions.
Probabilistic or density forecasting is a class of forecasting that provides intervals
or probability distributions as outcomes of the forecasting. It is claimed in [7] that,
in recent years, probabilistic forecasts have become widely used. For instance, fan
charts [8], highest density regions [9] or functional data analysis [10] enables to
forecast ranges for possible values of future data.

We are particularly interested in time series that have some periodic regularities
in their values. This kind of time series is said to be seasonal. For instance, time
series related to human activities or natural phenomena are often seasonal, because
they often exhibit daily regularities (also known as the circadian cycle). Knowing
that a time series is seasonal is a valuable information that can help for forecasting.
More specifically, learning the seasonal structures can help to generate longer-term
predictions as it provides information about several seasons ahead.

Furthermore, seasonality of a time series gives a natural midterm forecasting
horizon. Classical forecasting models (e.g. SARIMA [11]) predict the future values
of a given time series stepwise. The predicted values are used by further steps.
At each step, there is then a risk of the error to be accumulated due to the
recursive nature of the forecasts. The prediction of a whole season at once aims
at spreading the forecasting error all along the season. Thus, we expect to forecast
more accurately the salient part of a season that may lie in the middle of the season.
More practically, the prediction of a whole season at once allows applications where
such prediction is required to plan actions (e.g. to plan electricity production a day
ahead, it is necessary to predict the consumption for the next 24 hours).
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A second limitation of usual seasonal forecasting methods is the assumption that
the seasons have the same shape, i.e. the values evolve in the same way over the
season. The differences with each other are due to noise and an additive constant.
Nevertheless, most of the real seasonal time series often contains more than just one
periodic pattern. For instance, daily connections to a given website exhibit different
patterns for a weekday or for a Sunday, for instance. This kind of structure cannot
be well captured by classical forecasting methods.

In this article, we propose a generic framework called P-F2C (which stands for
“Probabilistic Forecasting with Clustering and Classification”) for seasonal time
series forecasting. This approach extends the F2C framework [6] (which stands for
“Forecasting with Clustering and Classification”). P-F2C predicts future values for
a complete season ahead at once, and this in a probabilistic manner. The P-F2C
predictions may be used for supporting decision-making about the next season,
handling the uncertainty in the future through the probabilistic presentation of the
result.

2 Probabilistic Seasonal Time Series Forecasting

In this section, we introduce the notations and the problem of seasonal time series
forecasting.

2.1 Seasonal Time Series

A time series Y is an ordered sequence of values .y0:n = y0, . . . , yn−1, where .∀i ∈
[0, n−1], yi ∈ R (univariate time series). n denotes the length of the observed time
series.

Y is said to be (ideally) seasonal with season length s if there exists .S =
{S1, . . . , Sp} a finite collection of p sub-series (of length s) called typical seasons
such that

.∀i ∈ [0,m − 1] , y(s×i):s×(i+1) =
p∑

j=1

σi,j S
j + εi (1)

where m is the number of seasons in the time series, .εi ∈ R
s represents a white

noise and .
∑

j σi,j = 1 for all j . In other words, it means that for a seasonal time
series Y , every season in Y is a weighted linear combination of typical seasons.
Intuitively, this modelling of a typical season corresponds to additive measurements
(e.g. consumption or traffic) for which the observed measure at time t is the sum
of individual behaviours. In this case, a typical season corresponds to a typical
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behaviour of individuals, and the .σ·,j represents the proportion of individuals of
type j contributing to the observed measure.

In the following, .yi = y(s×i):s×(i+1) ∈ R
s denotes the i-th season of Y .

2.2 Seasonal Probabilistic Forecasting

Let .Y = y0, . . . , yn−1 be a seasonal time series and s be its season length. Note that
the season length of a time series (s) is estimated using Fisher’s g-statistics [12].
Without loss of generality, we assume that the length of a time series is a multiple of
the season length, i.e. .n = m × s. m denotes the number of seasons in the observed
time series. The goal of seasonal probabilistic forecasting is to estimate

.Pr(y∗
n:n+s | y(n−γ×s):n) = Pr(y∗

m | y(m−γ ):m) (2)

where .y∗
m = y∗

n:n+s are the forecasts of the s next values (next season) of the
observed time series and .y(m−γ ):m = y(n−γ×s):n are the observed values of the
last .γ seasons. .γ is a parameter given by the user.

We now propose an equivalent formulation of this problem considering our
hypothesis on seasonal time series and we denote .S = {S1, . . . , Sp} the set of p

typical seasons. Thus, Eq. 2 can be rewritten as follows:

.Pr
(
y∗

m | y(m−γ ):m
) =

∑

S∈S
Pr

(
y∗

m | S
)
. Pr

(
S | y(m−γ ):m

)
(3)

where .Pr(y∗
m | S) is the probability of having .y∗

m given the type of the next season
and .Pr(S | y(m−γ ):m) is the probability that the next season is of type S given past
observations.

The problem formulation given by Eq. 3 turns the difficult problem of Eq. 2 into
two well-known tasks in time series analysis:

• Estimating the first term, .Pr(y∗
m | S) leads to a problem of time series clustering.

The problem is both to define the typical seasons, .S, and to estimate the
distributions of the season values. A clustering of the seasons .(yi )i=0:m of
the observed time series identifies the typical seasons (clusters) and gives the
required empirical distributions .P̂r(y, S).

• Estimating the second .Pr(S | ym−γ :m) is a probabilistic time series classification
problem. This distribution can be empirically learnt from the past observations
.
(
yi−γ :i , S∗

i+1

)
i=γ :m where .S∗

i denotes the empirical type of the i-th season
obtained from the clustering assignment above.

This problem formulation and remarks sketch the principles of a probabilistic
seasonal time series forecasting. P-F2C is an implementation of these principles
with a specific time series clustering.
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3 The P-F2C Forecaster

P-F2C is composed of a clusterer that models the latent typical seasons and a
classifier that predicts the next season type given the recent data. The forecaster
is fit on the historical data of a time series. Then, the forecaster can be applied on
the time series to predict the next season(s).

P-F2C clusterer is based on a probabilistic co-clustering model that is presented
in the next section. In Sect. 3.2, we present how to use classical classifiers to predict
the next seasons.

3.1 Co-clustering of Time Series: A Probabilistic Model

Co-clustering is a particular type of unsupervised algorithm which differs from
regular clustering approaches by creating co-clusters. The co-clustering approach
consists in simultaneously partitioning the lines and the columns of an input data
table. Thus, a co-cluster is defined as a set of examples belonging to both a group of
rows and a group of columns. In [13], Boullé proposed an extension of co-clustering
to tri-clustering in order to cluster time series. In this approach, a time series with
an identifier C is seen as a set of couples .(T , V ), where T is a timestamp and V a
value of a measurement. Thus, the whole set of time series is a large set of points
represented by triples .(C, T , V ). The tri-clustering approach handles the three
variables (C is categorical and T , V are numerical) to create homogeneous groups.
A co-cluster gathers time series (group of identifiers) that have similar values
during a certain interval of time. Contrary to the classical clustering approaches
(e.g. KMeans, K-shape, GAK) [14] that are based on the entire time series, the co-
clustering approach uses a local criterion. This difference is illustrated in Fig. 1: A
distance-based clustering (on the left) evaluates the distance between whole time

COMPLETE MATCH SUBMATCH 1 SUBMATCH 2

Fig. 1 Difference between clustering (on the left), which matches the entire time series, with co-
clustering (on the right), which is able to match subintervals of the time series of various other time
series
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Fig. 2 Illustration of a trivariate co-clustering model where a slice referred to forecasting “grid”
is extracted

series; in the co-clustering approaches, the distance is based on subintervals of the
seasons. This enables to identify which parts of the season are the most discriminant.
Besides, tri-clustering is robust to missing values in time series.

The tri-clustering approach of Boullé is based on the MODL framework [10].
The MODL framework makes a constant piecewise assumption to estimate the joint
distribution .Pr(C, T , V ) by jointly discretising the variables T , V and grouping
the time series identifiers of the variable C. The resulting model consists of the
Cartesian product1 of the three partitions of the variables C, T , V . This model can
be represented as a 3D grid (see Fig. 2, on the left). In this 3D grid, if one considers
a given group of time series (i.e. a given group of C), the model provides a bivariate
discretisation which estimates .Pr(T , V | C) = Pr(C,T ,V )

Pr(C)
as a 2D grid (see Fig. 2, on

the right). This 2D grid gives the probability to have a given range of values during
a given interval of time. Therefore, knowing that a time series belongs to a given
cluster, the corresponding 2D grid may then be used for crafting forecasts (see next
section).

In the MODL approach, finding the most probable tri-clustering model is turning
into a model selection problem. To do so, a Bayesian approach called maximum a
posteriori (MAP) is used to select the most probable model given the data. Details
about how this 3D grid model is learned may be found in [13, 15]. The main idea
could be summarised as finding the grid which maximises the contrast compared to
a grid based on the assumption that .T , V and C are independent (i.e. .Pr(V , T ,C)

compared to .Pr(V ) Pr(T ) Pr(C)). Therefore, the estimation of this MAP model
outputs: (i) .ν intervals of values .Vi = [vl

i , v
u
i ] for .i = 1, . . . , ν, (ii) .τ intervals

of times .Ti = [t li , tui ] for .i = 1, . . . , τ , (iii) groups of time series. These groups of
time series correspond to the typical seasons, denoted .S in the above model. .|S| is

1 The Cartesian product of the three partitions is used as a constant piecewise estimator—i.e. a 3D
histogram.
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the number of clusters at the finer level that is optimal in the sense of the MODL
framework.

In the time series forecasting approach proposed in this paper, the right number
of (tri-)clusters is optimised regarding to the forecasting task. More precisely, this
number is optimised according to the performance of the model at prediction time,
using the validation ensemble. This value could differ from .|S|. Therefore, the
MODL co-clustering approach allows applying a hierarchical clustering to the finest
level to have a coarse level with a lower number of clusters called .C∗, .C∗ < |S|. A
grid search selects the .C∗ value based on the forecast accuracy on the valid dataset.

Let us now come back to the formalisation of probabilistic time series forecast-
ing: .P̂r(y∗

m | S) is estimated by the MODL model from the conditional probabilities
.Pr(V , T | C = S) where S denotes one of the time series groups, i.e. a typical
season. In practice, the grid is used to estimate the distribution of values at each
time point of a season. With MODL, the distribution is modelled by a piecewise
constant function. It is worth noting that MODL is a non-parametric approach.

3.2 Predict the Next Type of Seasons

The problem is here to estimate empirically .Pr(Si+1 | y(i−γ ):i ) the probability of
having a type of season .Si+1 ∈ S for the .(i + 1)-th season given the observations
over the .γ past seasons. We consider two different sets of features to represent the
.γ previous seasons. The first approach consists in having only the time series values
.y(i−γ ):i as features. The second approach uses the time series values and the types
of the previous seasons as features.

Then, the next season prediction problem consists in learning a probabilistic
classifier (naive Bayes classifier, logistic regression, decision tree or random forests)
or a time series classifiers (TSForest [16], Rocket [17]). Note that time series
classifiers can use only the time series values.

3.3 Select the Best Parameters (Portfolio)

The P-F2C forecaster is parameterised by the number of seasons in the past (.γ )
used for learning next season type, a maximum number of typical seasons to detect
in a non-supervised way and the type of classifier. The .γ parameter is introduced
in the problem definition and its choice is left to the user who specifies what is
the forecasting task. On the other hand, the other parameters may be difficult to
be set by the user, and we do not think that one of the classifiers will outperform
the others for all the time series. For these reasons, the portfolio approach (denoted
PP-F2C) implements a grid search for the best parameters by splitting the dataset
into a training (75%) and a validation dataset (25%) to identify the best value of the
parameters. Once the best values have been set, the clusterer and the classifier are
fitted on the entire dataset.
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4 Illustration on a Synthetic Dataset

This section shows results with synthetic data. The goal is to illustrate the
probabilistic grid used in P-F2C method and to give intuitions behind probabilistic
forecasting that are provided by P-F2C. We compare the output of P-F2C against
the output of DeepAR [18], a state-of-the-art probabilistic time series forecaster.

4.1 The Data Generated

Generating data is a good strategy for checking assumptions before launching
experiments at scale. Indeed, the shape of the generated data is often simpler, and
completely controlled. Experiments may be executed with various parameters, to
plot understandable results and to validate basic expectations.

The seasonal data generated for this section follows some well-established
seasonal sequences. Three different time series patterns are defined for three
different latent types of season of length 10. In Fig. 3, one type of season (.s1 in
dashed-line orange) with always increasing values is observed, one type of season
(.s2 in dotted-line green) with two peaks is observed, etc. Those three different types
of season are then repeated 50 times in a defined order (.s1, s1, s2, s0, s1, s1, s0, s2,
as observed in Fig. 3, on the right, which shows the entire sequence that is being
repeated), and noise is added to the final time series to make the forecasting process
less straightforward.

4.2 Grid Probabilistic Forecasts

Once trained, we apply the P-F2C forecaster after the penultimate season of the time
series illustrated in Fig. 3 (at time 70). Knowing the sequence of patterns, we can
guess that a season of type .s2 is coming ahead. Indeed, the last three patterns seems

Fig. 3 On the left: typical seasons of length 10 used for generating the time series. On the right:
examples of generated time series with white noise (8 seasons)
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Fig. 4 One season ahead grid forecasts for the generated time series with .γ = 1 at the top left and
.γ = 3 at the top right, and DeepAR at the bottom

to follow the sequence .[s1, s1, s0]; thus, the next type of season can be deduced from
the known patterns.

Figure 4 shows two examples of forecasts with different values of .γ .
The real values of the predicted time series are in blue (noisy version of the

.s2 pattern). The probabilistic forecasts are shown in a red overlay. It is a set of
rectangles that visualise the homogeneous regions that have been identified by
MODL co-clustering. The darker the red, the more probable next season ahead lay
in this (T , V ) interval.

Figure 4 top left is the forecast obtained with .γ = 1. It illustrates a probabilistic
forecast with uncertainty. Indeed, light red cells are observed in the figure where
the data are predicted to lay (with a low probability). In this case, the classifier is
unable to predict accurately the next type of season. With .γ = 1 the classifier has
only the information of the preceding season (of type .s0). In this case, the forecaster
encountered two types of season after a .s0 season: .s1 or .s2 with the same probability.
Then, the predicted grid is a mixture of the two types of grids. For the first half of the
season, the forecast is confident in predicting the linear increase of the value (darker
red cells), but for the second half, the forecast suggests two possible behaviours:
continue the linear increase (.s1) or a decrease (.s2). Note that the grids of all typical
seasons share the same squaring. MODL necessarily creates the same cuttings of a
dimension (V or T ) along the others (C).
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Figure 4 top right is the forecast obtained with .γ = 3. It illustrates a good
probabilistic forecast. The real values (in blue) often appear in the red boxes where
the red is very dark. It means that the season type was both well described byMODL
and well predicted by the classifier. In this case, a larger memory of the forecaster
disentangles the two possible choices it had above. After a .[s1, s1, s0], the forecaster
always observed seasons of type .s2. Thus, the grid of this pattern is predicted.

It is worth noting that, for .γ = 1, the use of theMODL probabilistic grid suggests
two distinct possible evolutions of the time series, but there is an uncertainty
on which evolution will actually occur. In the classical probabilistic forecasts,
probabilities are distributed around a mean time series. This is illustrated in Fig. 4
at the bottom with DeepAR using the seven seasons in the past to predict the next
season. On the second half of the season, the predicted probabilistic distribution
suggests a behaviour in between .s1 and .s2 with a larger uncertainty. Such model
makes confusion between uncertainty of behaviour and imprecise forecast. In the
case of seasonal time series with different types of season, the mean time series has
no meaning for an analyst.

5 Experiments

This section presents experiments to assess the accuracy of P-F2C. We start by
introducing the experimental settings, then we investigate some parameters of our
model and finally we present the result of an intensive comparison of P-F2C to
competitors.

5.1 Experimental Protocol

The framework has been developed in Python 3.5. The MODL co-clustering is
performed by the Khiops tool [19]. The classification algorithms are borrowed from
the sklearn library [20].

In our experiments, we used a dataset made of 36 time series (see Annexes),
from various sources and nature: technical devices, human activities, electricity
consumption, natural processes, etc. All these datasets have been selected because
seasonality was identified and validated with a Fisher g-test [12]. Each time series
is normalised using a z-normalisation prior to data splitting, in order to have
comparable results. For the experiments, 90% of the time series are used to train
the forecaster (this train test is internally split in training and valid datasets), and
10% of the original time series are used to evaluate the accuracy.

P-F2C and PP-F2C are compared with classical deterministic time series fore-
casters (ARIMA, SARIMA, HoltWinters), with LSTM [21], with Prophet [22]
and with the F2C method [6] which uses the principles as P-F2C but with K-
means clustering algorithm and random forest classifiers to learn the structure in
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the season sequence. P-F2C being a probabilistic methodology, we also compare it
with DeepAR [18].

We use mean absolute error (MAE) and continuous ranked probability score
(CRPS) to compare the forecasts to the real time series. The MAE is dedicated to
deterministic forecasts, while CRPS is to probabilistic ones. It is worth noting that
the CRPS is analogous to MAE for deterministic forecasts. Therefore, comparing
MAE measure for deterministic forecasts against CRPS values for probabilistic
forecasts is technically sound [23]. The CRPS is used for DeepAR and P-F2C.
All the other approaches forecast crisp time series and their accuracy is evaluated
through MAE. For each experiment, we illustrate the results with critical difference
diagrams. A critical difference diagram represents the mean rank of the methods
that have been obtained on the set of the 36 times series. The lower the better. In
addition, the representation shows horizontal bars that group some methods. In a
same group, the methods are not statistically different according to the Nemenyi
test.

5.2 Parameters’ Sensitivity

In this section, an analysis of the alternative settings of the P-F2C methodology is
conducted. We investigate the effect of two choices: the choice of the .γ value, i.e.
the number of seasons to consider in the history, and the choice of the classifier to
predict the next type of season in case we do not use the portfolio optimisation.

Figure 5 on the left shows a critical diagram that compares the ranking of P-
F2C with different values of .γ (1, 2 or 3). For this experiment, the classifier is the
RandomForestClassifier (and we had the same results with the other classifiers).
We notice that the larger .γ , the lower the error. Indeed, as seen in Sect. 4, larger
.γ improves the accuracy of the forecast of the next season type. Nonetheless, we
observed that for some time series, lower .γ may be better. We explain this counter-
intuitive results by the small length of some of the time series. In these cases, the
number of seasons in the training set is too small to fit the numerous parameters of
a classifier with .γ × s features.

1 2 3

CD

gamma = 3

gamma = 2

gamma = 1

2 3 4

CD

TimeSeriesForestClassifier

LogisticRegression

RandomForestClassifier

DecisionTreeClassifier

GaussianNB

Fig. 5 Critical diagrams used to find the best parameters for the P-F2C implementation
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Figure 5 on the right shows a critical diagram that compares the classifiers
used to predict the next type of season. It shows that time series forest classifier
[16] is on average in first position. This classifier has been designed specifically
for time series classification; it explains why it outperforms the other approaches.
Nonetheless, the differences with logistic regression and random forest are not
statistically significant. Their capability to use extra information, such as the type of
seasons, may be an interesting advantage to improve performances.

5.3 P-F2C and PP-F2C vs Opponents

The critical diagram of Fig. 6 compares the performances of the methods. P-F2C
denotes our approach configured with the best parameters on average found in
Sect. 5.2. PP-F2C denotes P-F2C that is optimised on the valid test for each dataset
(portfolio). It shows that rank-wise, the seasonal forecaster F2C, P-F2C and PP-F2C
are performing better than the others. We can first notice that the portfolio actually
improves the performances of P-F2C. Nonetheless, the non-probabilistic approach
outperforms PP-F2C.

2 3 4 5 6 7 8

CD

F2C

PP_F2C

P_F2C

LSTM

SARIMA

HOLTWINTERS

PROPHET

DeepAR

ARIMA

DeepAR win: 5
PP_F2C win: 27
p−value=4.597e−06

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
DeepAR

PP
_F

2C

DeepAR vs PP_F2C in terms of CRPS error.

Fig. 6 At the top: critical diagram of the comparison between different prediction approaches
(acronyms of method are detailed in the text). At the bottom: win/tie/lose graph between PP-F2C
and DeepAR
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We also notice that F2C outperforms PP-F2C. Even if a PP-F2C forecast fits
the time series (see Fig. 4), the piece-wise approximation generates a spread of the
probabilistic distribution that penalises the CRPS. Nonetheless, it is worth noting
that the rank difference with F2C is not statistically significant and that a probabilis-
tic forecast provides meaningful information which increase the trustworthy in the
forecasts.

Then, we compared PP-F2C with another probabilistic forecaster (DeepAR). The
critical diagram of Fig. 6 shows that PP-F2C outperforms DeepAR significantly
(.p < 10−6). The win/tie/lose graph at the bottom shows howmany times PF2C won
against DeepAR (points below the diagonal) and the relative values of CRPS. The
point positions illustrate that PP-F2C outperforms DeepAR significantly on most of
the datasets.

6 Conclusion

P-F2C is a probabilistic forecaster for seasonal time series. It assumes that seasons
are a mixture of typical seasons to transform the forecasting problem into both
a clustering and a classification of time series. The P-F2C applies parameterless
co-clustering approach that generates grid forecasts, each typical grid being a
typical seasonal behaviour. In addition, we proposed PP-F2C that adjusts P-F2C
parameters for each time series. PP-F2C outperforms on average the competitors
except F2C on various seasonal time series. F2C is based on the same principle as
PP-F2C but is not probabilistic and parameterless. Nonetheless, we have shown the
value of probabilistic grid forecasting to give information about uncertain distinct
mean behaviours. Indeed, the probabilistic grid mixture is more interpretable than
combining probabilistic distribution around a mean.

Annexes

Table 1 gives the detailed description of the dataset used in the experiments.
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Table 1 Datasets used for experimentations

Acquisition No. No.

Dataset Origin freq. pts/seas seas

Monthly beer
production
Australia
megalitres

kaggle (https://www.kaggle.com/
mpwolke/australian-monthly-beer-
production)

1 month 12 39

Electricity
production

kaggle (https://www.kaggle.com/
robikscube/hourly-energy-consumption)

1 h 12 32

Daily maximum
temperatures in
Melbourne,
Australia,
1981–1990

hdrcde (https://pkg.robjhyndman.com/
hdrcde/reference/maxtemp.html)

1 day 7 470

Internet traffic
data I from Jun.
7, 2005 to Jul.
31, 2005

tsdl [24] 1 h 24 51

Internet traffic
data II from Nov.
19, 2004 to Jan.
27, 2005

tsdl [24] 1 h 24 69

Monthly sunspot
Zuerich

R dataset [25] 1 month 12 235

Mon pax web Adelaide Airport Aircraft Movements
(source: Australian Bureau of
Infrastructure, Transport and Regional
Economics: (https://data.gov.au/data/
dataset/airport-traffic-data))

Monthly 12 114

Currency kaggle (https://www.kaggle.com/
kashnitsky/topic-9-part-1-time-series-
analysis-in-python)

1 day 3 100

Weather Canada kaggle (https://www.kaggle.com/
selfishgene/historical-hourly-weather-
data?select=temperature.csv)

1 h 24 57

Enedis Electricity consumption (source: Enedis
(https://data.enedis.fr))

30 min 48 143

Traffic New York Traffic Volume (source: New
York Metropolitan Transportation Council
(https://opendata.cityofnewyork.us/))

1 hour 24 106

Bidmc Electrocardiogram (ECG) (source:
Physionet, https://physionet.org/content/
bidmc/1.0.0/)

125 Hz 45 69

Rossman Sales kaggle (https://www.kaggle.com/c/
rossmann-store-sales)

1 day 7 82

311SF Number of calls for ‘Graffitis’ cases to the
San Francisco call center (source: SF
Open data, https://data.sfgov.org/City-
Infrastructure/311-Cases/vw6y-z8j6)

1 h 24 75
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Table 1 (continued)

Acquisition No. No.

Dataset Origin freq. pts/seas seas

Tide San Francisco sea level (source: NOAA
https://coastwatch.pfeg.noaa.gov/erddap/)

6 min 124 112

Pedestrian
Counting System

City of Melbourne [26] 1 h 24 1490

Orange Hits per
quarter

Orange 15 min 96 512

CO.GT Air quality indicators from Mar. 10, 2004
to Apr. 04 2005 in an Italian city [27]

1 h 12 250

PT08.S1.CO Air quality indicators [27] 1 h 12 250

C6H6.GT Air quality indicators [27] 1 h 12 250

PT08.S2.NMHC Air quality indicators [27] 1 h 12 250

NOx.GT Air quality indicators [27] 1 h 12 250

RH Air quality indicators [27] 1 h 24 125

Global horizontal
radiation

Solar radiation monitoring from Apr. 25,
2016 to Aug. 25, 2016 [28]

1 h 14 214

Direct normal
radiation

Solar radiation [28] 1 h 14 214

Diffuse
horizontal
radiation

Solar radiation [28] 1 h 14 214

Amial Porto water consumption from different
locations in the city of Porto from Nov.
11, 2015 to Jan. 11, 2016 [28]

30 min 48 62

Preciosa mar water consumption [28] 30 min 48 62

Humidity Bike sharing from Jan. 1, 2011 [28] 1 h 23 58

No. of Births in
Quebec from Jan.
1, 1977 to Dec.
31, 1990

tsdl [24] 1 day 7 428

Electricity total
load

Hospital energy loads from Jan. 1, 2016 to
Mar. 25, 2016 [28]

1 h 24 125

Electricity Total
demand

Hospital energy loads [28] minutes 48 59

Equipment load Hospital energy loads [28] 1 h 24 125

Gas energy Hospital energy loads [28] 1 h 24 125

Gas heat energy Hospital energy loads [28] 1 h 24 125

Water heater
Energy

Hospital energy loads [28] 1 h 24 125
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Nonstatistical Methods for Analysis,
Forecasting, and Mining Time Series

Vilém Novák and Irina Perfilieva

Abstract This is an overview paper, in which we briefly present results obtained
over several years in the analysis, forecasting, and mining information from time
series using methods that predominantly have nonstatistical character. Our main
goal is to show the readers from the area of probability theory and statistics that
nonstatistical methods can be pretty successful in time series processing. Besides
the standard tasks such as estimation of trend/trend-cycle and forecasting, our
methods are also powerful in providing additional information that can hardly be
obtained using the statistical methods, namely, evaluation of the local course, finding
perceptually important points, identification of structural breaks, finding periods
of monotonous behavior including its evaluation, or summarization of information
about large sets of time series. Our goal is not to beat statistical methods, but vice
versa—to benefit from the synergy of both.

Keywords Time series · Fuzzy transform · Evaluative linguistic expressions ·
Fuzzy natural logic · Mining information from time series

1 Introduction

The main goal of this paper is to provide overview of the results that have been
obtained over several years in analyzing, forecasting, and mining information from
time series using methods that predominantly have nonstatistical character. Since
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our methods are not sufficiently known among statisticians, we want to fill in this
gap. We argue that our methods can be successful in time series processing and
demonstrate this on examples. On the one hand, they provide similar results as
statistical methods but give a different point of view on them. On the other hand,
they also give an explanation of the obtained results. Moreover, our methods can
provide additional information that can hardly be obtained using statistical methods.
We will discuss this feature of our methods in the sequel. However, let us emphasize
that our goal is not to beat statistical methods but rather to extend the power of time
series processing methods and benefit from the mutual synergy. Let us remark that
all methods described below have been developed by the authors of this paper and
their collaborators.

Recall that by a fuzzy set A on the universe U , we understand a function .A :
U → [0, 1].1 We often write A ⊂∼ U or .A ∈ F(U) where .F(U) is the set of all
fuzzy sets on U .

It is important to note that there is an essential difference between the proba-
bilistic and fuzzy techniques, which we extensively argued in [32] and elsewhere.
Recall from the latter that the probability theory provides a model of the uncertainty
characterized by a lack of information about possible results of some event
(experiment). Fuzzy sets, on the other hand, provide a mathematical model of the
vagueness phenomenon. The latter rises if we want to form a class of all objects with
vague property (e.g., “warm,” “strong,” “steep,” etc.). No random event (a result of
some experiment) occurred in this case and so, it cannot be considered.

Both phenomena are occurring in reality and should be treated using different
mathematical principles. While probability theory is based on the properties of
measure and a key notion is that of independence of events, fuzzy set theory (and
fuzzy logic) is based on the properties of ordered structures. Thus, both probability
and fuzzy set theory are complementary rather than competitive.2

In this paper, we present special techniques of fuzzy modeling suitable for
applications in time series processing. The first one is the fuzzy transform (F-
transform) and the second one are a few selected methods of fuzzy natural logic
(FNL). These techniques are in detail described in various papers. A comprehensive
explanation including applications can be found in the book [34].

Our methods can be applied to processing of classical time series. There is also
a branch focusing on elaboration of the so-called fuzzy time series [36, 42] which
are sequences .{A(t) | t ∈ T} where .A(t) are fuzzy sets. We do not deal with this
approach in this paper.

This paper is structured as follows. In the first two sections, we introduce
the basic concepts of fuzzy transform and fuzzy natural logic. In Sect. 4, we
introduce the decomposition of time series into components that are later elaborated

1 The interval .[0, 1] is a set of truth values where 0 means falsity, 1 truth, and the other values
express partial truth. This interval can be replaced by a suitable bounded lattice.
2 It has a good sense to speak about the probability of fuzzy events. For example, what is the
probability that in the next few minutes, we will meet a tall woman.
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separately. Section 5 describes basic principles of forecasting of time series. In
Sect. 6, we overview three main kinds of information that can be mined from time
series. Its last subsection is a brief overview of other applications of our methods in
time series processing.

2 Fuzzy Transform

This is a universal technique introduced by I. Perfilieva in [37, 39] that is widely
applied in many areas. Its fundamental idea is to transform a real bounded
continuous function .f : [a, b] → [c, d], where .[a, b], [c, d] ⊂ R, to a finite vector
of components and then transform it back. The former is called a direct F-transform
and the latter an inverse one. The result of the inverse F-transform is a function
.f̂ : [a, b] → R that approximates the original function f . We can set the parameters
so that the approximating function .f̂ has the desired properties.

The F-transform has several strengths: excellent approximation abilities, ability
to filter out high frequencies, ability to reduce noise [18, 19, 35], and ability to
estimate values of the first and second derivatives in an approximately specified
area (cf. [11]).

The first step of the F-transform procedure is to form a fuzzy partition of the
domain .[a, b] which consists of a finite set of fuzzy sets on .[a, b]

.Ah = {A0, . . . , An}, n ≥ 2, (1)

defined over the set of nodes .a = c0, . . . , cn = b such that .ck+1 = ck + h where
.h > 0. Each fuzzy set .Ak has a support defined over three nodes .ck−1, ck, ck+1
where .A(ck) = 1 and .A(ck−1) = A(ck+1) = 0. The fuzzy sets .Ak are often called
basic functions. The properties of basic functions are defined axiomatically; for the
details, see [37] and elsewhere.

If the fuzzy partition is given, then an .(n + 1)-tuple

.Fm[f ] = (Fm
0 [f ], . . . , Fm

n [f ])

is called m-th degree direct fuzzy transform of f if

.Fm
k [f ](x) = β0

k [f ] + β1
k [f ](x − ck) + · · · + βm

k [f ](x − ck)
2, (2)

for all .k = 0, . . . , n. We call .Fm
k [f ] in (2) components of the fuzzy transform.

Precise computation of the components (2) is in detail described in [20] and
elsewhere.

The F-transform is linear, namely, if .f = α1g1 +α2g2 where .α1, α2 are numbers
and .g1, g2 real bounded functions on the same domain, then

.Fm
k [f ] = α1F

m
k [g] + α2F

m
k [g2]
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for all .k = 1, . . . , n.
The inverse F-transform is

.f̂ m
h (x) =

n∑

k=0

Fm
k [f ] · Ak(x), x ∈ [a, b]. (3)

It can be proved that the function .f̂ m
h approximates the original function f with

arbitrary precision depending on the choice of h when forming the fuzzy partition
.Ah. The computational complexity of fuzzy transform is linear.

The following holds for the coefficients .β
j
k in (2) (see [39]):

.β0
k [f ] = f (ck) + O(h2), . (4)

β1
k [f ] = f ′(ck) + O(h2), . (5)

β2
k [f ] = f ′′(ck)

2
+ O(h2). (6)

Hence, each coefficient .β
j
k provides a weighted average of values as well as of

derivatives of the function f over the area characterized by the fuzzy set .Ak ∈ Ah.

3 Fuzzy Natural Logic

This is a class of special theories of mathematical fuzzy logic whose goal is to model
the reasoning of people based on using natural language. So far, it consists of the
following theories:

(a) A formal theory of evaluative linguistic expressions explained in detail in [24]
(see also [23, 34]) that are expressions of natural language such as small,
medium, big, very short, more or less deep, quite roughly strong, extremely high,
etc.

(b) A formal theory of fuzzy/linguistic IF-THEN rules and approximate reasoning
[22, 30, 33, 34]. The basic concept here is that of a linguistic description, that
is, a finite set of fuzzy/linguistic IF-THEN rules:

R1 = IF X is A1 THEN Y is B1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

Rm = IF X is Am THEN Y is Bm

where “.X is Aj ,” “.Y is Bj ,” .j = 1, . . . ,m are evaluative linguistic predications
(e.g., “trend is very steep, difference is small, trend-cycle is stagnating,” etc.).
The linguistic description can be learned from data.
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To find a proper conclusion on the basis of linguistic description, it is
necessary to use a special reasoning method called perception-based logical
deduction (PbLD). This method is based on the mathematical model of the used
evaluative predications. To find conclusion, it acts locally so that it mimics the
way how people make their reasoning on the basis of linguistic information.
More detailed description of PbLD can be found in [34].

(c) A formal theory of intermediate and generalized fuzzy quantifiers [6, 15, 25]
and elsewhere. These are expressions of natural language such as most, many, a
lot of, a few, several, etc.

Theory (b) is applied in forecasting. Theories (a) and (c) are applied in mining
information from time series described in Sect. 6. For more details about FLN,
see the cited literature. Less informal explanation of methods of FLN including
description of applications can be found in [34].

4 Analysis of Time Series

Application of techniques of fuzzy modeling in time series analysis is based on the
assumption that time series can be decomposed as follows: let .T = {1, . . . , p} be
a set of natural numbers interpreted as time moments. Then a time series is a set
.X = {X(t, ω) | t ∈ T ,ω ∈ Ω} where

.X(t, ω) = TC(t) + S(t) + R(t, ω), t ∈ T, ω ∈ Ω. (8)

The .TC(t) is a trend-cycle that can be further decomposed into trend and cycle, i.e.,
.TC(t) = Tr(t) + C(t). The .S(t) is a seasonal component that is a mixture of r

periodic functions:

.S(t) =
r∑

j=1

Pj e
iλj t (9)

where .λ1, . . . , λr are frequencies and .Pj , .j = 1, . . . , r are constants. Without loss
of generality, we assume that the frequencies are ordered .λ1 < · · · < λr (this
corresponds to ordering of periodicities .T1 >, . . . , Tr ).

Note that .TC and S are ordinary non-stochastic functions. Only R is a random
noise and we assume that it is a stationary stochastic process with the mean
.E(R(t, ω)) = 0 and variance .Var(R(t, ω)) < σ , .t ∈ T.

In practice, we always have only one realization of time series at disposal, which
is obtained by fixing .ω ∈ Ω . Then

.X = {X(t) | t ∈ T} (10)

is an ordinary real (or complex) valued function.
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Let us now choose a fuzzy partition .Ah for some .h > 0 and apply the F-transform
to X in (10). The result of the inverse F-transform is

.X̂(t) = T̂C + Ŝ(t) + R̂(t), t ∈ T. (11)

Then the following can be proved:

Theorem 1 ([16, 17, 35])

(a) If we set .h = d̄ T̄ where .d > 0 and .T̄ is the longest periodicity occurring in S,
then .limd→∞ |Ŝ(t)| = 0.

(b) .limh→∞ Var(R̂(t)) = 0.
(c) There is a number .D(m, h), .m ∈ N, such that

.|X̂(t) − TC(t)| ≤ 2ω(h,TC) + D(m, h), t ∈ [c1, cn−1] (12)

where .limh→∞ D(m, h) = 0 and .ω(h,TC) is a modulus of continuity w.r.t. h

and .TC.

It follows from this theorem that, by proper setting of h, the F-transform makes it
possible to “wipe out” part or the whole of the seasonal component S of the time
series and significantly reduce its noise. To set h, we follow the general OECD
specification: Trend (tendency) is a component of a time series that represents
variations of low-frequency, high-frequency, and medium-frequency fluctuations
having been filtered out. Trend-cycle is a component that represents variations of
low and medium frequency in a time series, the high-frequency fluctuations having
been filtered out.

Hence, we proceed as follows:

(i) Find periodicities:

.T1 > · · · > Ts (13)

using periodogram (see [1, 2, 8] and elsewhere). Choose a proper periodicity T

from the list (13) and due to Theorem 1(a), set .h = dT for some d (we usually
put .d ∈ {1, 2}).

(ii) Form a fuzzy partition (1) and compute F.m-transform components:

.Fm[X] = (Fm
0 [X], . . . , Fm

n−1[X]) (14)

for .m ∈ {0, 1}.
(iii) Compute estimation of trend or trend-cycle using the inverse F-transform (3).

Taking into account the equality (11) and Theorem 1, we can estimate trend-
cycle as (by .≈ we denote approximate equality)

.TC ≈ X̂hT C
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and trend as

.T (t) ≈ X̂hT (t)

where .hT C is set according to a periodicity T that is chosen from the middle
of the list (13) and for .hT it is chosen from the left part of it .

Note that (3) provides also analytic form of the estimation. As a consequence of
Theorem 1, we conclude that the F-transform makes it possible to estimate trend
or trend-cycle with high fidelity. A convincing demonstration of this statement is
presented in [35].

5 Forecasting Time Series

Recall that the direct F-transform provides estimation of the trend-cycle .TC (or
trend) in the form of the vector of components (14). Then, using the special learning
method developed in FNL (see [34]), we can learn the linguistic description which
characterizes the principles of the behavior of .TC. Then, using the PbLD method,
we can forecast k future F-transform components:

.Fm
n [X], . . . , Fm

n+k−1[X]. (15)

Finally, from (15) we compute the forecast of the trend-cycle as the inverse F-
transform .X̂(t) for .t = p + 1, . . . , p + K where K is the forecast horizon. In
our case, it is k-times the width of the basic functions, i.e., .K = 2kh. The idea of
the forecast is depicted in Fig. 1.

Fig. 1 Scheme of the forecasting idea: The component .Fn+1 is forecasted using PbLD method
on the basis of the learned linguistic description
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Fig. 2 Example of the time series forecasting. The left part is validation part; on the right is
testing part (never used in computation): The dotted lines are real and forecasted trend-cycle; the
full lines are real and forecasted values of time series

Example of such a learned linguistic description is

R1 = IF Fi [X] is extremely big AND ΔFi[X] is rather medium

THEN Fi+1[X] is roughly big,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

Rm = IF Fi [X] is almost zero AND ΔFi [X] is very small

THEN Fi+1[X] is significantly small

Let us emphasize that the learned linguistic description (16) explains in natural
language the way how the forecast was obtained. This can be interesting information
for the user that he/she can use in further decision or strategy of behavior (Fig. 2).

The seasonal component is forecast separately. The forecast of the whole time
series is obtained by summing predictions of .TC and S (cf. (8)). Demonstration of
our forecasting method on real time series is presented in [21, 44] and elsewhere.

6 Mining Information from Time Series

One of the essential characteristics of our methods is the possibility to characterize
various features of time series using expressions of natural language. Hence, our
methods have a big potential in the area of mining information from time series
since they can provide information that cannot be obtained using statistical methods.
Below we will mention some of them. A concise overview of methods for mining
information from time series is given in [7].

Linguistic Evaluation of Local Trend An exciting question is what trend (ten-
dency) of the time series can be recognized in a specific time interval. Surprisingly,
recognizing the trend is by no means a trivial task even when people watch the time
series graph. Moreover, it can be essentially influenced by a subjective opinion.
Therefore, objective and independent tool for this task is welcome. A convenient
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one is the F.
1-transform since it makes it possible to estimate the average slope

(tangent) over an imprecisely determined area, and using methods of FNL, it can
be characterized in natural language. For example, we can say “clear decrease (or
huge increase) of trend,” “the trend is negligibly increasing (or stagnating),” etc.
Such linguistic expressions characterize trend (tendency) of the time series in an
area specified by the user. The ability to generate such linguistic evaluations is a
quite important achievement of the fuzzy techniques. The method is based on the
theoretical results in fuzzy natural logic and is described in more detail in [26, 27].

Evaluation of the steepness of the slope in natural language is determined using
the function of local perception:3

.A = LPerc(β1, wtg) (17)

which assigns a proper evaluative expression .A to the value .β1 w.r.t. the context
.wtg. To determine it, we must first specify what does it mean “extreme (utmost)
increase (decrease)” in a given context. It can be determined as the largest acceptable
difference of time series values in relation to a given (basic) time interval (e.g., 12
months, 31 days), i.e., a minimal and maximal tangent. In practice, we set only
the maximal tangent .vR , while the smallest one is usually .vL = 0. The typically
medium value .vS is determined analogously as .vR . The result is the context .wtg =
〈vL, vS, vR〉 that determines the interval .[vL, vS] ∪ [vS, vR]. Demonstration of the
evaluation of the slope is in Fig. 3.

A related task is to find intervals in which the time series has a monotonous trend
(see [32]). This means that we decompose the time domain .T into a set of intervals:

.T = {Ti | i = 1, . . . , s},
⋃

T = T (18)

so that the time series .X|Ti (restriction of X to the interval .Ti ) has a monotonous
trend and each two adjacent time intervals .Ti ,Ti+1 have a common time point.
Each .Ti is the largest interval that is evaluated using the same evaluative expression
.A. For example, it is the largest interval, in which the trend is stagnating (sharply
increasing/decreasing, etc.), while the interval .Ti+1 has a different slope.

Finding Perceptually Important Points Finding perceptually important points is
another task successfully solved using our methods. According to [7], these are
points where the time series essentially changes its course. In this paper, however,
the authors have in mind just isolated points in the time series. However, its
character can be quite complicated, various frequencies and noise are present, and,

3 Such a function is implemented in the experimental software LFL Forecaster (see http://irafm.
osu.cz/en/c110_lfl-forecaster/) developed in the Inst. for Research and Applications of Fuzzy
Modeling of the University of Ostrava, Czech Republic, which implements the described methods.
Its author is Viktor Pavliska. The results demonstrated in this paper were obtained using the
mentioned software.

http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
http://irafm.osu.cz/en/c110_lfl-forecaster/
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Fig. 3 Demonstration of the slope determined by the value of .β1 computed over an area
characterized by a triangular basic function (depicted above the x-axis). It can be characterized
linguistically w.r.t. context .wtg of the tangent which is determined by the ratio of the largest
difference between values of the time series and the basic time interval (day, week, month, etc.).
The evaluation in this picture is “slightly decreasing.” Note that human eye does not immediately
see this slope from the course of the time series

therefore, we cannot expect that perceptually important point is just one isolated
time point, but it is better an area that cannot be precisely determined. Therefore,
we suggest a method based on the higher-degree F-transform because it makes it
possible to estimate the first and second derivatives (5) and (6) of a function with
complicated course in a vaguely specified area. The perceptually important points
can be recognized in areas .Ak ∈ Ah for .k ∈ {1, . . . , k} in which estimation of the
slope (2) is close to zero, i.e., .β1

k ≈ 0. The method is in more detail explained in
[29].

Recently, a new promising method for finding perceptually important points in
time series has been presented in [38]. It is based on construction of a special
Laplacian with kernels producing fuzzy partition used in fuzzy transform. The
method can further be used to register similar time series or in a new algorithm
for their forecasting.

Structural Breaks Structural breaks are sudden, considerable changes in the
ordinary course of the time series X. In statistics, there are many methods suggested
to solve this task [4, 5, 40].

In [28], we suggested a method for their detection which is similar to finding
intervals of monotonous behavior described above. We check the slope of time
series within two subsequent intervals determined by two adjacent fuzzy sets
.Ai,Ai+1 ∈ Ah for a particular fuzzy partition .Ah with shorter h (in practice, we
set .h ∈ {4, . . . , 7}). The main difference lays in searching intervals .Ti in which the
slope of .X|Ti is largely of hugely increasing/decreasing and the slope .X|Ti+1 in
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the adjacent interval .Ti+1 is much less increasing/decreasing or even stagnating.
Examples demonstrating our method in identification of structural breaks are in
[44] (this volume). Let us remark we have also developed a method for detection
of structural breaks in time series volatility.

Other Applications On the basis of our theories, we also developed the following
methods:

(a) Detection of “bull and bear” phases of financial time series—see [21].
(b) Measures of similarity between time series — see [12, 31]. We suggested two

indexes that measure similarity (and, potentionally, dependence) between two
time series. Both indexes are based on the F-transform and give convincing
results.

(c) Automatic summarization of knowledge about one or several time series. This
task is addressed by various authors (see, e.g., [3, 7, 9, 10, 13, 41]). The theory
of fuzzy natural logic contains a sophisticated formal theory of intermediate
quantifiers that are expressions of natural language such as “many, almost all,
most, a few,” etc. Using them, it is possible to derive statements that provide
summarization of knowledge about time series. A typical example of such
summarizing statement is

The trend during the past three years is in almost all tracked time series is clearly
increasing.

The theory enables also humanlike syllogistic reasoning on the basis of the
formal model of generalized Aristotle’s syllogisms. For more details, see [14,
26].

(d) It is well-known that there are many methods for time series forecasting but
none of them outperforms all the other ones. The reason is that each method
is well suited to time series having specific features that, however, may not be
fulfilled by the other ones and so, the given method fails. This suggests the
idea to form a linear combination of several forecasting methods using weights
that express a certain degree of successfulness of each method. However,
it is difficult to set the weights. Our idea is to find a linguistic description
(7) based on specific features of time series, for example, trend, seasonality,
stationarity, and other ones. The linguistic description is learned using a method
for mining linguistic associations. Our approach is described in [43] where also
experimental justification is provided.

All our methods are robust and very fast because of the linear time complexity
of the F-transform.
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7 Conclusion

In this paper, we gave an overview of a few nonstatistical methods for analyzing
and forecasting time series and mining information from them. The theoretical
background of our methods is the theory of fuzzy transform and the theory of
fuzzy natural logic. The former enables to estimate trend or trend-cycle with high
fidelity and to reduce noise. Moreover, the F-transform also provides an analytic
form of the latter. Using selected methods of FNL, we can accompany these results
by explanation in natural language.

Moreover, a combination of the latter and the F-transform provides a forecast of
time series. Further applications of our methods are in the area of mining informa-
tion from them. They include finding intervals of monotonous behavior completed
by its linguistic evaluation, detection of perceptually important points and structural
breaks, summarization, measuring of similarity, and other applications.
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10. Kacprzyk, J., Wilbik, A., Zadrożny, S.: An approach to the linguistic summarization of time

series using a fuzzy quantifier driven aggregation. Int. J. Intell. Syst. 25, 411–439 (2010)
11. Kreinovich, V., Perfilieva, I.: Fuzzy transforms of higher order approximate derivatives: A

theorem. Fuzzy Sets Syst. 180, 55–68 (2011)
12. Mirshahi, S., Novák, V.: A fuzzy method for evaluating similar behaviour between assets. Soft

Computing 25, 7813–7823 (2021)
13. Moyse, G., Lesot, M.: Linguistic summaries of locally periodic time series. Fuzzy Sets Syst.

285, 94–117 (2016)
14. Murinová, P., Novák, V.: A formal theory of generalized intermediate syllogisms. Fuzzy Sets

Syst. 186, 47–80 (2012)
15. Murinová, P., Novák, V.: The structure of generalized intermediate syllogisms. Fuzzy Sets Syst.

247, 18–37 (2014)
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PMF Forecasting for Count Processes: A
Comprehensive Performance Analysis

Annika Homburg, Christian H. Weiß, Layth C. Alwan, Gabriel Frahm,
and Rainer Göb

Abstract Coherent forecasting techniques account for the discrete nature of count
processes. Besides point and interval forecasts, a third way for achieving coherent
forecasts is to consider the full predictive probability mass function (PMF) as the
actual forecast value. For a large variety of count processes, the performance of PMF
forecasting under estimation uncertainty is analyzed. Furthermore, also Gaussian
approximate PMF forecasting is investigated. Different approaches for performance
evaluation are taken into consideration, with the main focus on mean squared errors
computed for either the full PMF or its lower and upper tails, respectively. A real-
world example from finance is presented for illustration.

Keywords Coherent forecasting · Count time series · Estimation error · Forecast
distribution · Mean squared error

1 Introduction

In many real-world situations, we are concerned with count time series .x1, . . . , xT ,
.T ∈ N = {1, 2, . . .}, where the observations .xt are nonnegative integer values,
.xt ∈ N0 = {0, 1, . . .} [12]. Examples include the numbers of transactions of
financial products per trading day (see also the data example below), yearly numbers
of natural disasters, monthly counts of major strikes, or daily numbers of new
infections with a certain disease. The forecasting of the underlying count process
.(Xt)t∈N should be done with different approaches than those used if we would be
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concerned with a real-valued process, as the computed forecasts should account for
the discrete nature of the counts. This task is referred to as coherent forecasting by
[2]. Coherent forecasting is achieved by first deriving the (discrete) h-step-ahead
conditional distribution of .XT +h (with forecast horizon .h ∈ N, given the past
.xT , . . . , x1), and by then computing

• The median or mode of .XT +h given .xT , . . . , x1 as a central point forecast (PF)
• An extreme quantile of .XT +h given .xT , . . . , x1 as a noncentral PF
• A finite subset of .N0 satisfying the coverage requirement as a discrete type of

prediction interval (PI) for .XT +h given .xT , . . . , x1

Such types of coherent forecasts have been investigated by many researchers,
including [2, 5–7]. PFs generally suffer from the fact that the observation .XT +h

rarely agrees with the PF value (for real-valued processes, the agreement probability
is even 0, whereas it is truly positive for discrete count processes). PIs for discrete
count processes, in turn, often have a true coverage probability being much larger
than the given coverage requirement (while in the real-valued case, an exact match is
possible). Therefore, if forecasting a discrete-valued process, some authors suggest
the full predictive probabilitymass function (PMF) itself as the actual forecast value;
see [1, 8–11, 14]. Then, the user can judge which value will occur with which
probability.

Two real-world examples (about transaction counts) of such PMF forecasts
(PMFFs) are shown in Fig. 1. There, inspired by [13], the PMFF at time t is plotted
as a vertical band of gray levels, where the intensity is proportional to the respective
probability (white = zero probability). For comparison, also the actual observations
are plotted in Fig. 1 such that we can judge their plausibility. Further details on these
data, and on how to compute the PMFFs, are discussed in Sect. 5.

In this article, we provide a comprehensive analysis on the performance of
coherent PMFFs in the presence of estimation uncertainty, where the latter results
from fitting a model to the available time series data .x1, . . . , xT . We consider a
broad variety of data-generating processes (DGPs) to cover the practically relevant
cases of unbounded counts (i.e., having full .N0 as their range) and bounded
counts (i.e., having range .{0, . . . , n} with some .n ∈ N), of different marginal
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Fig. 1 PMFFs (expressed by gray levels) for two data sets of transaction counts, and actual
observations plotted as dots against time t ; see (a) and (b), respectively
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features such as equi-/overdispersion (variance equal/larger than the mean) or
zero inflation (excessive number of zeros), and of different dependence structures
(different autoregressive schemes of different orders). The detailed definitions and
descriptions of the considered DGPs are provided by Supplement S.1 in the file
“PmfPredCountTS_suppl.pdf”.

Although coherent approaches are commonly recommended for the forecasting
of count processes, practitioners often use approximate forecasts instead (derived
from, e.g., a fitted Gaussian autoregressive moving-average (ARMA) model).
Typical reasons are an insufficient communication of count models and coherent
approaches, as well as the ease of implementation because of readily available
software solutions for Gaussian ARMA forecasting; see [6] for further details.
Thus, as the second main research question, we compare the performance of
PMFFs obtained from a Gaussian approximation (approximate PMFFs) with that
of the coherent PMFFs. Both research questions are analyzed by means of a
comprehensive simulation study.

Because of the strict page limit, the main manuscript focuses on a discussion of
these simulation results. We refer the reader to the supplemental material for the
full simulation results (file “PmfPredCountTS_suppl.zip”, found at https://www.
hsu-hh.de/mathstat/en/research/projects/forecastingrisk). The outline of the article
is as follows. Section 2 presents details on the definition and computation of the
different types of PMFF. Section 3 provides a literature review on ways of evaluating
the performance of PMFFs, and it concludes with a description of the approach
considered in this research. Section 4, where we discuss our comprehensive
performance analyses, constitutes the main part of our research. From the simulation
results being provided there (and the full results in the supplemental material), it
becomes clear that approximate PMFFs perform considerably worse than coherent
PMFFs. The real-world application introduced in Fig. 1 is continued in Sect. 5, and
the article concludes in Sect. 6.

2 Coherent and Approximate PMF Forecasting

In this section, we introduce the relevant terminology and notations regarding
PMFFs, and we provide a clear description how coherent and approximate PMFFs
are computed. For the count DGP .(Xt), let the model be determined by some
parameter vector .θ , covering all distributional and dependence parameters. We
consider three types of h-step-ahead PMFF, namely, .̂pT +h(θ), .̂pT +h

(

θ̂
)

, and

.̂pT +h,a
(

ϑ̂
)

, which are defined as follows.
Having observed the time series .x1, . . . , xT , the conditional PMF of .XT +h

given .xT , . . . , x1 is the true h-step-ahead PMFF value. We denote this forecast
value by .̂pT +h(θ), where the xth component equals .p̂T +h,x(θ) = P(XT +h =
x

∣

∣ xT , . . . , x1) for .x ∈ N0. Equivalently, we may consider the cumulative distri-
bution function (CDF) instead. In that case, we use the letters .f and f instead
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of .p and p, respectively, where . ̂fT +h,x(θ) = P(XT +h ≤ x
∣

∣ xT , . . . , x1). In
practice, the model parameters are usually not known, so .θ has to be estimated
based on .x1, . . . , xT . Then, the coherent PMFF is computed by using the parameter
estimate .θ̂ instead of .θ , leading to the forecast value .̂pT +h

(

θ̂
)

. Because of estimation

errors, .̂pT +h

(

θ̂
)

will usually deviate from .̂pT +h(θ). Ways of evaluating the forecast

inaccuracy, i. e., the discrepancy between .̂pT +h

(

θ̂
)

and .̂pT +h(θ), are discussed in
Sect. 3.

If forecasting is based on a Gaussian ARMA approximation, then first the
Gaussian ARMA model is fitted to .x1, . . . , xT , leading to the estimate .ϑ̂ for the
ARMA parameters .ϑ . Then, the approximate PMFF is derived from the condi-
tional normal distribution of this Gaussian model, say .N

(

μ̂T +h, σ̂ 2
T +h

)

, leading

to .̂pT +h,a
(

ϑ̂
)

, where the subscript “a” abbreviates “approximate.” Now, the forecast

inaccuracy, i. e., the deviation between .̂pT +h,a
(

ϑ̂
)

and .̂pT +h(θ), is caused by both
approximation and estimation error. As discussed by [4], there are two common
ways of deriving a Gaussian approximation .̂pT +h,a

(

ϑ̂
)

from .N
(

μ̂T +h, σ̂ 2
T +h

)

. Let .Φ
denote the CDF of the standard normal distribution, .N(0, 1), then:

• The simple normal approximation implies to define . ̂fT +h,a,x
(

ϑ̂
) := Φ

(

(x −
μ̂T +h)/σ̂T +h

)

• Whereas the continuity-corrected normal approximation would lead to define
. ̂fT +h,a,x

(

ϑ̂
) := Φ

(

(x − μ̂T +h + 0.5)/σ̂T +h

)

In any case, the PMFF .̂pT +h,a
(

ϑ̂
)

is computed as discrete differences of .̂f T +h,a
(

ϑ̂
)

.

3 Performance Evaluation: A Critical Literature Review

To judge the performance of the different forecast approaches, we evaluate the
forecast inaccuracy of the considered PMFF .̂p with respect to the true PMFF .̂p0.
In our case, we take .̂p ∈ {

p̂T +h

(

θ̂
)

, p̂T +h,a
(

ϑ̂
)}

and .̂p0 = p̂T +h(θ). Different
solutions have been proposed in the literature yet.

In [4], it is distinguished between global and local inaccuracymeasures. A global
inaccuracy measure (or a visual tool used for global comparison) compares the
PMFFs across the full support .N0, e. g., by using one of the probability metrics
(divergence measures) reviewed by [3]. By contrast, local inaccuracy measures are
restricted to certain properties of the PMFF that are judged as being particularly
important, such as certain moments or quantiles of the PMFF. For example, if
solely focusing on the PMFF’s median, then we essentially end up in evaluating
the resulting central PF’s performance, as it was comprehensively investigated by
[5]. In what follows, we take a global view at the PMFFs’ performance.

In [14], a .χ2-distance between .̂p and .̂p0 is used, i. e., the distance is proportional
to .

∑∞
x=0(p̂x−p̂0,x)

2/p̂0,x ; also see [3]. So we are concernedwith a type of weighted
mean squared error (MSE) between .̂p and .̂p0, with the weights being .1/p̂0,x for
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.x ∈ N0. This is similar to [10], who consider an unweightedMSE between .̂p and .̂p0

as one of their inaccuracymeasures, i. e., .
∥

∥p̂−p̂0

∥

∥

2 = ∑∞
x=0(p̂x −p̂0,x)

2, while [4]
used the Kullback-Leibler divergence, the Kolmogorovmetric, and Raff’s maximum
error for this purpose. It should be noted, however, that the actual conclusions
from the different global inaccuracy measures were quite similar, i. e., the overall
evaluation of the different forecast competitors in [4] was the same for all metrics.

In [1], such global inaccuracy measures are criticized as being misleading in
some applications, because overall goodness-of-fit may not exclude a rather poor
performance in the upper tail, for example. Hence, [1] suggest to quantify the
inaccuracy in terms of deviations between a set of upper quantiles; also see [4]. [10]
did not only use the global MSE between .̂p and .̂p0 for performance evaluation,
but also two MSEs referring to the lower and upper tail, respectively: one MSE is
computed for the probabilities referring to the lower 25%-tail of .̂p0, and another
one for the upper 10%-tail of .̂p0. With .̂f , ̂f 0 denoting the CDFs corresponding
to .̂p, p̂0, we compute the local MSEs as .

∑∞
x=0(p̂x − p̂0,x)

2 1( ̂f0,x ≤ 0.25) and
.
∑∞

x=0(p̂x − p̂0,x)
2 1( ̂f0,x ≥ 0.90), respectively, where the indicator function .1(A)

equals 1 (0) if A is true (false).
Finally, [8, 11] used different types of scoring rules for assessing the predictive

performance. [8] recommends to use the quadratic score (Brier score), .sqs
(

p̂, x
) =

−2 p̂x + ∥

∥p̂
∥

∥

2. It should be noted, however, that considering the increase in the
expected score by using .̂p instead of .̂p0, we end up with

.

E
[

sqs
(

p̂,X
) − sqs

(

p̂0,X
)

∣

∣

∣X ∼ p̂0

]

=
∞
∑

x=0

(

∥

∥p̂
∥

∥

2 − ∥

∥p̂0

∥

∥

2 + 2 (p̂0,x − p̂x)
)

p̂0,x

=
∞
∑

x=0

(

p̂2
x − 2 p̂x p̂0,x + p̂2

0,x

)

= ∥

∥p̂ − p̂0

∥

∥

2
,

(1)

which is one of the MSE measures used by [10]. Similarly, if using the ranked
probability score .srps

(

̂f , x
) = ∑∞

k=0

(

̂fk − 1(x ≤ k)
)2 = ∑∞

k=0

(

̂f 2
k + (1 −

2 ̂fk)1(x ≤ k)
)

based on the CDFs [8, 11], then

.

E
[

srps
(

̂f ,X
) − srps

(

̂f 0,X
)

∣

∣

∣ X ∼ p̂0

]

=
∞
∑

x,k=0

(

̂f 2
k − ̂f 2

0,k + 2
(

̂f0,k − ̂fk

)

1(x ≤ k)
)

p̂0,x

=
∞
∑

k=0

(

̂f 2
k − ̂f 2

0,k + 2
(

̂f0,k − ̂fk

)

̂f0,k

)

= ∥

∥̂f − ̂f 0

∥

∥

2
.

(2)

So again, we end up with an MSE as the inaccuracy measure, now relying on the
CDFs instead of the PMFs.

To sum up, in view of the practice in evaluating PMFFs, we decided to use MSE-
based inaccuracy measures. To avoid possibly misleading results as pointed out by
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[1], we consider both the global measures computed for the full support .N0 and
the local measures restricted to the lower-25% tail and the upper-10% tail of .̂p0,
respectively, where the latter choices are in accordance with [10]. Further details on
performance evaluation are provided in the subsequent Sect. 4.

4 Results from a Comprehensive Simulation Study

For the DGPs described in Supplement S.1 and for each corresponding scenario
according to Table 1, we simulated 1000 time series and fitted the respective
model to the data. Here, we used the method of moments together with the
moment formulae provided by Supplement S.1. Then, the PMF forecasts (or CDF
forecasts, respectively) were computed according to the formulae for the transition
probabilities in Supplement S.1. These PMF or CDF forecasts were used to compute
the different types of MSE described in Sect. 3:

• Global MSEs .
∥

∥p̂ − p̂0

∥

∥

2 = ∑∞
x=0(p̂x − p̂0,x)

2 (coherent PMF), .
∥

∥̂f − ̂f 0

∥

∥

2

(coherent CDF), .
∥

∥p̂a − p̂0

∥

∥

2
(approximate PMF), and .

∥

∥̂f a −̂f 0

∥

∥

2
(approximate

CDF)
• Local MSEs .

∑∞
x=0(p̂x − p̂0,x)

2 1( ̂f0,x ≤ 0.25) (lower-25% tail MSE for
coherent PMF) and .

∑∞
x=0(p̂x − p̂0,x)

2 1( ̂f0,x ≥ 0.90) (upper-10% tail MSE
for coherent PMF), and the respective tail versions for approximate and CDF
forecasts

If solely analyzing the coherent PMFFs’ performance, we investigate the MSE
values themselves. If comparing the approximate PMFFs’ performance to the
coherent ones, we focus on the differences computed between the approximate and

the coherent MSEs, such as .
∥

∥p̂a − p̂0

∥

∥

2 − ∥

∥p̂ − p̂0

∥

∥

2
or the respective tail and

CDF versions. Here, a value .> 0 implies that the approximate MSE is larger than
the coherent one.

Either the 1000 MSE values per scenario themselves or the 1000 MSE differ-
ences were analyzed by using a “lean type of boxplot”:

• The median of the MSE (difference) values is plotted as a black dot.

Table 1 Scenarios for different DGPs of simulation study, with 1000 replications each

Means .μ ∈ {1, 1.075, . . . , 9.925, 10} for unbounded counts,

upper bounds .n ∈ {10, . . . , 130}, and probability .π ∈ {0.15, 0.45} for bounded counts

Dispersion ratios .I ∈ {1.4, 2.4} if considering overdispersion

Dependence parameter .α in .{0.33, 0.55, 0.8} (ACF at lag 1),

and .α2 ∈ {0.25, 0.35, 0.45} as well as .α1 = α (1 − α2) for AR.(2)-like models

Sample sizes .T ∈ {75, 250, 2500}
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• The quartiles are connected by a thick gray line (as a substitute of the boxplot’s
box).

• The 10%- and 90%-quantiles are connected by a thin black line (as a substitute
of the whiskers).

These boxplots are then plotted (closely together) against increasing mean .μ. The
full set of plots is provided in the supplemental material (but a few illustrative graphs
are also shown below). There, we distinguish between boxplots for PMF and CDF
forecasting, between the simple normal approximation (i. e., without continuity
correction) and the continuity-corrected one, and between boxplots for the MSE
values and for the MSE differences.

4.1 General Results

Before discussing the specific DGPs in some more detail (see Supplement S.1 for
their definition), let us present some general conclusions drawn from the obtained
simulation results. First, we compared the performance evaluation in terms of the
PMF-based MSE (1) with the CDF-based MSE (2). In most cases, there was not
much difference between both approaches. Although the actual MSE values might
be different, the drawn conclusions regarding, e. g., the effects of overdispersion, or
the performance difference between coherent and approximate PMFF forecasts, are
the same. Thus, we focus on the PMF-based MSE values in the sequel, like it is
done in [10].

Second, comparing the simple normal approximation to the continuity-corrected
one, recalling Sect. 2, it turns out that the simple approximation does by far worse. In
some cases, the MSE values of the simple approximation are increased by a factor
between 5 and 10, both regarding the global MSE and the tail MSEs. Thus, the
simple normal approximation is not further considered in the remaining discussion.
If referring to approximate PMFFs, from now on, it is always assumed that the
continuity correction described in Sect. 2 is used.

4.2 Performance of Coherent Forecasting

Let us start our discussion with the Poi-INAR(1) DGP (see Supplement S.1). The
coherent PMFFs are generally close to the true PMFFs, with decreasing MSE
values (of all types) for increasing mean .μ and sample size T . Increases of the
dependence parameter .α, by contrast, lead to increased MSE values. Furthermore,
see the upper panel in Fig. 2 for illustration; the lower-tail MSE is slightly larger
than the upper-tail MSE, i. e., the estimation error becomes more apparent there.
Note that in Fig. 2 (also later in Fig. 3), the “lean boxplots” defined on page 84 are
shown, which should not be confused with the PMFFs of Fig. 1. If now considering
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Fig. 2 Different types of MSE for coherent PMFFs with .α = 0.55, .T = 250, and .h = 1, plotted
against mean .μ. Upper panel, Poi-INAR.(1) DGP; lower panel, NB-INAR.(1) DGP with dispersion
ratio .I = 2.4
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Fig. 3 Different types of MSE differences. PMFFs for Poi-INARCH.(2) DGP with .α = 0.55,
.α2 = 0.45, .T = 250, and .h = 1, plotted against mean .μ

additional overdispersion caused by the NB- or ZIP-INAR(1) model, see also the
lower panel in Fig. 2; we observe increasing MSE values. This happens mainly for
low .μ (say .μ ≤ 4) and large .α (such as .α = 0.8), and especially for low T (such
as .T = 75). The increase is stronger for the lower- than for the upper-tail MSE.
Also, the increase is slightly more pronounced for the ZIP model, i. e., where the
overdispersion is caused by a single point mass in zero (“zero inflation”).
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Next, let us investigate for a possible effect of the dependence structure, caused
either by a different AR-type count DGP (Poi-INARCH vs. INAR family) or by an
increased model order. In view of the effect of .α already noted before, it is plausible
that a further increase of the model order also further increases the MSEs. However,
this happens again mainly for low T and large .α as before. But it is interesting
to note that the MSEs are generally larger for the INAR-type DGPs than for the
INARCH-type ones. This seems to be due to the different types of sample paths
generated by these models: highly dependent INAR DGPs lead to long constant
segments (“runs,” i. e., low conditional variance), whereas INARCH sample paths
always exhibit a lot of fluctuation; also see Section 4 in [12].

Finally, let us turn to the bounded counts generated by either the BinAR(1) or
BinARCH(1) model. For the low value 0.15 of the normalized mean .π = μ/n, the
MSE values are very similar to those of the respective (unbounded) Poi-INAR(CH)
model. This is plausible in view of the Poisson limit theorem. Like before, the
MSEs increase with increasing .α, and BinARCH usually leads to smaller MSEs
than BinAR. A notable difference is observed for .π = 0.45, i. e., if the PMFFs are
nearly symmetric distributions. Then, the MSE values get by far smaller (also those
of the tails), and they are again smaller for the BinARCH than for the BinAR case.

To sum up, coherent PMFFs are affected by estimation error mainly for low
sample size and large serial dependence. For sample size .T ≥ 250 or lag-1 ACF
.α ≤ 0.55, there is hardly anyMSE left. PMFFs perform slightly better for INARCH-
than INAR-type DGPs, and they further improve for bounded counts with nearly
symmetric distribution. Overdispersion, by contrast, leads to a slight deterioration
of forecast performance.

4.3 Performance of Approximate Forecasting

To compare the performance of the approximate PMFFs to those of the coherent
ones, we analyzed the MSE differences; see Fig. 3 for illustration. In the large
majority of all simulation runs, the approximate PMFFs produce clearly larger
MSEs. This is particularly clear if T increases, because then, the coherent PMFFs’
performance notably improves (recall the Sect. 4.2), while this does not necessarily
happen for the approximate PMFFs. The discrepancy between approximate and
coherent PMFFs is particularly large for low means (say, .μ ≤ 6), where the counts
exhibit a rather asymmetric distribution. In view of this, it is also plausible that the
approximate PMFFs perform rather well only for bounded counts with .π = 0.45
(nearly symmetric distribution) and upper bound .n ≥ 20.

The discrepancy also intensifies for increasing overdispersion or increasing
dependence. Regarding higher-order dependence, it can be recognized that the
approximation especially increases the lower-tail MSE; also see Fig. 3. While the
approximation error is stronger for Poi-INAR(2) than for Poi-INARCH(2), it is the
other way round for the first-order models. In the presence of overdispersion, the
approximation leads to increases in the global and the lower-tail MSE, while the
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upper-tail MSE increases mainly if .α is large (and then more for the ZIP- than for
the NB-DGP).

All in all, we must clearly advise against the use of the approximate PMFFs.
In a few situations, such as nearly symmetric bounded counts, the approximation
does slightly worse, only. But in most of the considered scenarios (especially with
increasing serial dependence or overdispersion), we observe a strong deterioration
in forecast performance, independent of the sample size.

5 Application: PMF Forecasting of Transaction Counts

Let us pick up the data example of Fig. 1. We analyzed count time series about
transaction numbers per trading day, referring to structured products from on-market
and off-market trading as offered by the Cascade-Turnoverdata1 of Deutsche Börse
AG. Two exemplary time series are shown in Figs. 1 and 4. The first data set consists
of .T1 = 381 counts (February 2017–July 2018) used for model fitting (see Fig. 4a),
while the 23 counts from August 2018 are left for out-of-sample forecasting in
Fig. 1a. The second data set from Fig. 4b includes one additional year of data
(.T2 = 636 counts for February 2017–July 2019) for model fitting, and the 22 counts
from August 2019 for forecasting in Fig. 1b. Figure 4 also shows the sample PACFs
for both examples, which indicate that data set 1 might be well described by an
AR.(1)-like model, and data set 2 by an AR.(2)-like model. Furthermore, data set 2
has a low mean (.≈ 0.719) and a dispersion ratio close to one (.≈ 0.913) such that a
Poi-model seems appropriate, while data set 1 has the mean .≈ 1.493 and exhibits
overdispersion (dispersion ratio .≈ 1.518). After thorough investigation, we decided
to fit an NB-INAR.(1) model to data set 1, and a Poi-INAR.(2) to data set 2. Then,
we applied these model fits to compute the 1-step-ahead PMFFs shown in Fig. 1.

A possible application of the obtained PMFFs is their integration into a “risk
alert” system. The achieved transaction counts could be compared with their
respective PMFFs to judge their plausibility, which is similar to a control chart
application in statistical process control [12]. A visual inspection of Fig. 1, for
example, suggests a possibly “unusual order book behavior” for data set 2, namely,
for the counts at .t = 12, 17. This could give rise to inform the traders on these
days. In fact, such real-time risk alerts are a relevant topic for market infrastructure
providers such as Deutsche Börse AG.2 Certainly, if generating risk alerts based on
PMFFs, also the estimation uncertainty due to model fitting should be taken into
account. The PMFFs for data set 2 rely on .T2 = 636 observations, while those
for data set 1 only use .T1 = 381. In view of our simulations, we do not expect a

1 Retrieved December 15, 2020, from https://datashop.deutsche-boerse.com/reference-data.
2 Retrieved December 15, 2020, from https://www.deutsche-boerse.com/dbg-en/media/press-
releases/Deutsche-B-rse-supports-traders-with-real-time-risk-alerts-for-most-liquid-Eurex-
futures-683428.
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Fig. 4 Time series plot and sample PACF for two data sets of transaction counts; see (a) and (b),
respectively

notable effect of parameter estimation, especially for data set 2. But since risk alerts
are typically generated based on the tails of the PMFF, a careful investigation is
recommended anyway. A possible solution could be to use a parametric bootstrap
approach in analogy to [13].

6 Conclusions

For PMF forecasting, the full predictive PMF is taken as the forecast value, which
is much more informative than a simple PF value, and which is more flexible than a
PI with fixed coverage requirement. We did a comprehensive performance analysis
of PMFFs for count processes, namely, by computing MSEs for the full predictive
PMF as well as for its lower and upper tail, respectively, for a large variety of count
processes. For coherent PMFFs, the effect of estimation error is generally rather
low: deteriorations happen mainly for low sample size and strong dependence, and
they are more pronounced for low means and in the presence of overdispersion.
Thus, for the real-world examples on transaction counts in Sect. 5, we do not expect
a notable effect of parameter estimation on PMFF performance.

The situation is quite different if PMFFs rely on a Gaussian approximation
rather than on a coherent count model. Then, we observe a strong deterioration
in forecast performance, even if a continuity correction is used for computing the
approximate PMFFs. Also an increased sample size does not guarantee an improved
performance. Thus, although such approximations may seem tempting in terms of
implementation benefits, their use in practice is strongly discouraged.



90 A. Homburg et al.

Acknowledgments The authors thank the referees for their useful comments on an earlier draft
of this article. The transaction count data of Sect. 5 were kindly made available to the authors by
Deutsche Börse AG. This research was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Projektnummer 394832307.

References

1. Boylan, J., Synteto, A.: Accuracy and accuracy-implication metrics for intermittent demand.
Foresight 4, 39–42 (2006)

2. Freeland, R.K., McCabe, B.P.M.: Forecasting discrete valued low count time series. Int. J.
Forecast. 20(3), 427–434 (2004)

3. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3),
419–435 (2002)

4. Homburg, A.: Criteria for evaluating approximations of count distributions. Comm. Stat.
Simul. Comput. 49(12), 3152–3170 (2020)

5. Homburg, A., Weiß, C.H., Alwan, L.C., Frahm, G., Göb, R.: Evaluating approximate point
forecasting of count processes. Econometrics 7(3), 30 (2019)

6. Homburg, A., Weiß, C.H., Alwan, L.C., Frahm, G., Göb, R.: A performance analysis of
prediction intervals for count time series. J. Forecast. 40(4), 603–625 (2021)

7. Jung, R.C., Tremayne, A.R.: Coherent forecasting in integer time series models. Int. J. Forecast.
22(2), 223–238 (2006)

8. Kolassa, S.: Evaluating predictive count data distributions in retail sales forecasting. Int. J.
Forecast. 32(3), 788–803 (2016)

9. McCabe, B.P.M., Martin, G.M.: Bayesian predictions of low count time series. Int. J. Forecast.
21(2), 315–330 (2005)

10. McCabe, B.P.M., Martin, G.M., Harris, D.: Efficient probabilistic forecasts for counts. J. Roy.
Stat. Soc. Ser. B 73(2), 253–272 (2011)

11. Snyder, R.D., Ord, J.K., Beaumont, A.: Forecasting the intermittent demand for slow-moving
inventories: A modelling approach. Int. J. Forecast. 28(2), 485–496 (2012)

12. Weiß, C.H.: An Introduction to Discrete-Valued Time Series. Wiley, Chichester (2018).
13. Weiß, C.H., Homburg, A., Alwan, L.C., Frahm, G., Göb, R.: Efficient accounting for estimation

uncertainty in coherent forecasting of count processes. J. Appl. Stat. 49(8), 1957–1978 (2022)
14. Willemain, T.R.: Forecast-accuracy metrics for intermittent demands: Look at the entire

distribution of demand. Foresight 4, 36–38 (2006)



A Novel First-Order Autoregressive
Moving Average Model to Analyze
Discrete-Time Series Irregularly
Observed

César Ojeda, Wilfredo Palma, Susana Eyheramendy, and Felipe Elorrieta

Abstract A novel first-order autoregressive moving average model for analyzing
discrete-time series observed at irregularly spaced times is introduced. Under
Gaussianity, it is established that the model is strictly stationary and ergodic. In the
general case, it is shown that the model is weakly stationary. The lowest dimension
of the state-space representation is given along with the one-step linear predictors
and their mean squared errors. The maximum likelihood estimation procedure
is discussed, and their finite-sample behavior is assessed through Monte Carlo
experiments. These experiments show that the bias, the root mean square error,
and the coefficient of variation are smaller when the length of the series increases.
Further, the method provides good estimations for the standard errors, even with
relatively small sample sizes. Also, the irregularly spaced times seem to increase
the estimation variability. The application of the proposed model is made through
two real-life examples. The first is concerned with medical data, whereas the second
describes an astronomical data set analysis.
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1 Introduction

In statistics, time series analysis establishes a principal tool for studying time-
ordered observations that are naturally dependent. Nowadays, to study discrete-time
series, many methods assume that time series are regularly observed; that is, the
interval between observations is constant over time [5, 6, 15]. However, there are
several fields as diverse as astronomy, climatology, economics, finance, medical
sciences, and geophysics, where time series are observed at irregularly spaced
intervals [2, 3, 8, 10, 12, 13, 17, 21, 23–26, 37]. For example, author [26] mentions
that conventional time series analysis largely ignored irregularly spaced structures
that climate time series has to consider.

The statistical analysis of irregular structures in time series poses several
difficulties. First, the overwhelming majority of the available time series methods
assume regularly observed data, as mentioned above. Second, when this assumption
is dropped, several technical problems arise including the issue of formulating
appropriate methodologies for carrying out statistical inferences. Third, most of the
currently available numerical algorithms for computing estimators and forecasts are
based on the regularity of the data collection process.

According to the paper [19], irregularly spaced time series can occur in two
different ways. On the one hand, data can be regularly spaced with missing obser-
vations. On the other hand, data can be truly irregularly spaced with no underlying
sampling interval. Techniques considering discrete-time series in the presence of
missing data have been studied, for instance, by [9, 18, 30, 32]. Nevertheless, these
techniques cannot be applied if data are really irregularly spaced. When data are
irregularly observed, it has been treated through two approaches. First, it could be
transformed irregularly spaced time series into regularly spaced time series through
interpolation to use traditional techniques. In paper [1] can be found a summary
of such transformations frequently used to analyze astronomical data. However,
these interpolation methods typically produce bias (for instance, over smoothing),
changing the dynamic of the process. Second, irregularly spaced time series can
be treated as discrete realizations of a continuous stochastic process [31, 33, 35].
Nevertheless, continuous time series models tend to be computationally demanding
and complicated (mostly due to the difficulty of estimating and evaluating them from
discretely sampled data). To analyze discrete-time series observed at irregularly
spaced times directly, authors [13] propose a first-order autoregressive model, while
authors [29] propose a first-order moving average model. Consequently, a novel
model is proposed in this paper which allows for the treatment of moving averages
and autoregressive structures with irregularly spaced discrete-times.

The remainder of the paper is organized as follows. Section 2 introduces the
construction of the model. The model definition and its properties are given in
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Sect. 3. Also, this section provides the state-space representation of the model
along with one-step linear predictors and their mean squared errors. The maximum
likelihood estimation method is introduced in Sect. 4. The finite-sample behavior of
this estimator is studied via Monte Carlo in Sect. 5. Two real-life data applications
are discussed in Sect. 6, while conclusions are given in Sect. 7.

2 Model Formulation

This section describes a stationary stochastic process with an autoregressive moving
average structure that allows to consider irregularly spaced times. The pattern of
irregular spacing is assumed to be independent of the stochastic process properties.
Also, it is assumed that all joint moments up to order two are finite.

Let .T = {tn}n∈N+ be a set of given times such that its consecutive differences,
.Δn+1 = tn+1 − tn, are such that there is .ΔL > 0 such that .ΔL ≤ Δn+1 for all n.
Without loss of generality, it is assumed that .ΔL = 1. Otherwise, each .tn can be
rescaled by .ΔL. These conditions are compatibles with any physical measurement
and determine .T as a discrete and therefore countable subset of .R.

Let .{ζtn}tn∈T be a sequence of uncorrelated-standardized random variables and
define the following sequence of real-valued random variables:

.Xt1 = υ
1/2

1 ζt1, Xtn+1 = φΔn+1Xtn + υ
1/2

n+1ζtn+1 + �nυ
1/2
n ζtn,

where .0 ≤ φ < 1; .{υn}n∈N+ and .{�n}n∈N+ are time-varying sequences that
characterize the moments of the process. Thus, for all n, .E(Xtn) = 0, .Var(Xt1) = υ1,
.Var(Xtn+1) = φ2Δn+1Var(Xtn) + υn+1 + � 2

n υn + 2φΔn+1�nυn, and

.Cov(Xtn,Xtn+k ) =
{

φΔn+1Var(Xtn) + �nυn, k = 1,

φΔn+kCov(Xtn,Xtn+k−1), k ≥ 2.
(1)

By successive substitutions, for .k ≥ 2,

.Cov(Xtn,Xtn+k ) = φtn+k−tn+1Cov(Xtn,Xtn+1).

To obtain a stationary process, it is required that, for all n, .Var(Xtn) = γ0 and
.Cov(Xtn,Xtn+1) = γ1,Δn+1 with .γ0 time-independent and .γ1,Δn+1 a function of
.Δn+1 and not of the times itself. Thus,

.φ2Δn+1γ0 + υn+1 + � 2
n υn + 2φΔn+1�nυn = υ1 = γ0, and. (2)

φΔn+1γ0 + �nυn = γ1,Δn+1 . (3)
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From (3),

.�n = γ1,Δn+1 − φΔn+1γ0

υn

. (4)

Replacing (4) into (2),

.υn+1 = γ0 + φ2Δn+1γ0 − 2φΔn+1γ1,Δn+1 − (γ1,Δn+1 − φΔn+1γ0)
2

υn

, with υ1 = γ0.

Also, since the process must be real-valued (i.e., without complex components),
it is necessary that .υn > 0, for all n. Thus, particular forms can be specified to
.γ0 and .γ1,Δn+1 that satisfy this condition to get the desired model. In this case,
these forms are chosen to obtain the traditional ARMA(1,1) model when times are
regularly observed. Consequently, consider .γ0 = σ 2(1+2φθ+θ2)/(1−φ2) and .γ1,Δn+1 =
φΔn+1γ0 + σ 2θΔn+1 with .σ 2 > 0 and .0 ≤ φ, θ < 1. Thence, .�n = σ 2θΔn+1/υn and

.υn+1 = σ 2
(

(1 + 2θφ + θ2)

(1 − φ2)
(1 − φ2Δn+1) − 2φΔn+1θΔn+1 − σ 2θ2Δn+1

υn

)

with .υ1 = γ0. To show that .υn > 0, for all n, define

.cn+1(φ, θ) = c1(φ, θ)(1 − φ2Δn+1) − 2φΔn+1θΔn+1 − θ2Δn+1

cn(φ, θ)

with .c1(φ, θ) = (1+2φθ+θ2)/(1−φ2). Hence, .υ1 = σ 2c1(φ, θ), .υn+1 = σ 2cn+1(φ, θ),
and it would only be necessary to show that .cn(φ, θ) > 0 for all n. Since .0 ≤ φ, θ <

1, then .c1(φ, θ) ≥ 1+θ2/1−φ2 ≥ 1 + θ2 = c1(θ) > 0. Also, since .1 ≤ Δn+1 for all
n, then .φθ ≥ φΔn+1θΔn+1 for all n. Thus,

.cn+1(φ, θ) ≥ 1 + θ2 − θ2Δn+1

cn(φ, θ)
= cn+1(θ).

Here, .cn(φ, θ) = cn(θ) since it is only a function of .θ . So, it suffices to show that
.cn(θ) > 0 for all n with .c1(θ) = 1 + θ2 and .cn+1(θ) = c1(θ) − θ2Δn+1/cn(θ). From
[20], the sequence .{cn(θ)}n∈N+ is known as a general backward continued fraction.
In [29], it is shown that assuming .1 ≤ Δn+1 for all n and .0 ≤ θ < 1, this sequence
is strictly positive. Thus, .υn > 0 for all n, and the desired model has been obtained.



The iARMAModel 95

3 An Irregular Observed First-Order Autoregressive Moving
Average Model

A novel stationary stochastic process with an autoregressive moving average
structure that allows considering irregularly observed times is defined. It is called
irregularly observed first-order autoregressive moving average (iARMA) model.

Definition 1 (iARMA Model) Let .{εtn}tn∈T be a sequence of uncorrelated random
variables with mean 0 and variance .σ 2cn(φ, θ) with .σ 2 > 0, .0 ≤ φ, θ < 1,

.c1(φ, θ) = 1+2θφ+θ2

1−φ2 , and

.cn+1(φ, θ) = c1(φ, θ)(1 − φ2Δn+1) − 2φΔn+1θΔn+1 − θ2Δn+1

cn(φ, θ)
.

The process .{Xtn}tn∈T is said to be an iARMA process if .Xt1 = εt1 , and

.Xtn+1 = φΔn+1Xtn + εtn+1 + θΔn+1

cn(φ, θ)
εtn. (5)

It is said that .{Xtn}tn∈T is an iARMA process with mean .μ if .{Xtn − μ}tn∈T is an
iARMA process.

In the iARMA model, when .φ = 0, it is obtained the so-called iMA process
[29], while when .θ = 0, the so-called iAR process [13] is obtained. Also, when
.Δn+1 = 1 for all n, it is obtained the traditional ARMA(1,1) process.

3.1 Properties

For the iARMA process, the mean and the autocovariance functions are

.E(Xtn) = 0, and Cov(Xtn,Xtn+k ) =

⎧⎪⎪⎨
⎪⎪⎩

σ 2c1(φ, θ), k = 0,

γ1,Δn+1, k = 1,

φtn+k−tn+1γ1,Δn+1, k ≥ 2,

for all n, where .γ1,Δn+1 = σ 2[φΔn+1c1(φ, θ)+θΔn+1 ]. The autocorrelation function
is

.Cor(Xtn,Xtn+k ) =

⎧⎪⎪⎨
⎪⎪⎩
1, k = 0,

ρ1,Δn+1, k = 1,

φtn+k−tn+1ρ1,Δn+1, k ≥ 2,
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for all n, where .ρ1,Δn+1 = φΔn+1 + θΔn+1/c1(φ,θ). Since the process has a constant
mean and a covariance function that depends only on the time differences, the
process is weakly stationary. In particular, if .{εtn}tn∈T are independent random
variables each .N(0, σ 2cn(φ, θ)), then the iARMA process would be a weakly
stationary Gaussian process, and therefore strictly stationary.

Now, from (5), consider .Ytn+1 = εtn+1 + [θΔn+1/cn(φ,θ)]εtn with .Var(Ytn+1) =
σ 2[c1(φ, θ)(1− φ2Δn+1) − 2φΔn+1θΔn+1]. Hence, .Xtn+1 = φΔn+1Xtn + Ytn+1 for all
n, with .Xt1 = εt1 and .Cov(Xtn , Ytn+1) = σ 2θΔn+1 . By successive substitutions,

.Xtn+1 = φtn+1−t1εt1 +
n∑

j=1

φtn+1−tj+1Ytj+1 . (6)

Consequently, for larger n, the initial condition effect vanishes. Thus, the process
“forgets” its initial starting value. Also, from (6), .Xtn can be expressed as a function
of .{εtj }nj=1, for each n. Then, under independence between these errors, .Xtn is
ergodic [34].

3.2 State-Space Representation

From Definition 1, it is presented a state-space representation of the model (5). It
enables the application of the Kalman filter for prediction and allows the maximum
likelihood estimation; see [16]. This representation has the lowest dimension of the
state vector and is given by

.Xtn = αtn + εtn, αt1 = 0, αtn+1 = φΔn+1αtn +
(

φΔn+1 + θΔn+1

cn(φ, θ)

)
εtn.

In this representation, measurement and transition equation disturbances are corre-
lated. From put off [16], these equations can be transformed into a new system with
disturbances uncorrelated, which are

.Xtn = αtn + εtn, αt1 = 0, αtn+1 =
(

φΔn+1 + θΔn+1

cn(φ, θ)

)
Xtn − θΔn+1

cn(φ, θ)
αtn .

(7)

The inclusion of .Xtn in (7) does not affect the Kalman filter, as .Xtn is known at time
.tn.
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3.3 Prediction

Using the innovations algorithm [6], the one-step linear predictors for the iARMA
model are .X̂t1(φ, θ) = 0, with mean squared error .E{(Xt1 − X̂t1(φ, θ))2} =
σ 2c1(φ, θ), and

.X̂tn+1(φ, θ) = φΔn+1Xtn + θΔn+1

cn(φ, θ)
(Xtn − X̂tn(φ, θ)), n ≥ 1,

with mean squared errors .E{(Xtn+1 − X̂tn+1(φ, θ))2} = σ 2cn+1(φ, θ).

4 Maximum Likelihood Estimation

Let .Xt be observed at points .t1, . . . , tN. The log-likelihood under Gaussianity is

. − N

2
ln 2π − N

2
ln σ 2 − 1

2

N∑
n=1

ln cn(φ, θ) − 1

2

N∑
n=1

(Xtn − X̂tn(φ, θ))2

σ 2cn(φ, θ)
,

where .φ, θ , and .σ 2 are any admissible parameter values. Now, optimizing it for
.σ 2, replacing the optimum into the log-likelihood, and organizing terms, it is
obtained the reduced likelihood .qN(φ, θ) = ln σ̂ 2

N(φ, θ)+1/N
∑N

n=1 ln cn(φ, θ)with

.σ̂ 2
N(φ, θ) = 1/N

∑N
n=1

(Xtn−X̂tn (φ,θ))2/cn(φ,θ). The maximum likelihood estimates of
.φ and .θ , denoted as .φ̂N and .θ̂N, respectively, are the values minimizing .qN(φ, θ).
The estimate of .σ 2 is .σ̂ 2

N = σ 2
N(φ̂N, θ̂N). The optimization can be done through

the method proposed by [7], which allows general box constraints. Specifically,
.qN(φ, θ) can be minimized under the constraint .0 ≤ φ, θ < 1. Also, this method
allows for finding the numerically differentiated Hessian matrix at the solution
given. Solving it, and according to [15], estimated standard errors can be obtained.

5 Monte Carlo Experiments

This section provides a Monte Carlo study that assesses the finite-sample perfor-
mance of the maximum likelihood (ML) estimator. The simulation considers .σ 2 =
1, .φ ∈ {0.5}, .θ ∈ {0.1, 0.5, 0.9}, and .N ∈ {100, 500, 1500}, where .N represents
the length of the series. Furthermore, .M = 1000 trajectories are simulated, and for
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each, .φ and .θ are estimated. It is regarded as regular (.Δn = 1 for .n = 2, . . . ,N)

as well as irregular spaced times, where .Δn
ind∼ 1 + exp(λ = 1), for .n = 2, . . . ,N.

Now, let .φ̂m and .θ̂m be the ML estimations for the m-th trajectory with .ŝe(φ̂m) and
.ŝe(θ̂m) their estimated standard errors. These standard errors are estimated through
the curvature of the likelihood surface at .φ̂m and .θ̂m (see Sect. 4). As a summary
of these quantities, the mean value of the .M maximum likelihood estimations are
computed. For example, for the moving average parameter, .θ̂ = 1/M

∑M
m=1 θ̂m and

.ŝe(θ̂ ) = 1/M
∑M

m=1 ŝe(θ̂m).

5.1 Performance Measures

As a measure of estimator performance, root mean square error (RMSE) and
coefficient of variation (CV) are considered. For example, for the ML estimator for
.θ , .RMSE

θ̂
= (ŝe(θ̂ )2+bias2

θ̂
)
1/2, and .CV

θ̂
= ŝe(θ̂)/|θ̂ |, where .bias

θ̂
= θ̂ −θ . Further-

more, as an approximate variance of the estimator, .s̃e2(θ̂ ) = 1/M−1
∑M

m=1(θ̂m − θ̂ )2

is used. Finally, according to [22], the Monte Carlo error (MCE) is estimated for
every simulation via asymptotic theory through .s̃e(θ̂)/

√
M. Remember that the MCE

is a estimation of the standard deviation of the Monte Carlo estimator, taken across
repetitions of the simulation, where each simulation is based on the same design and
consists of M replications.

5.2 Simulation Results

Table 1 shows the performance measures of the estimator for maximum likelihood
method. Bias, RMSE, and CV are smaller when .N increases as expected. Also,
the method provides good estimations for the standard error, even with relatively
small sample sizes. Furthermore, although it is not shown, comparing these results
with the one obtained assuming regularly spaced times (the conventional first-
order ARMA model), the irregularly spaced times seem to increase the estimation
variability.
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Table 1 Monte Carlo results for the irregularly spaced time case. The maximum MCE estimated
(in all simulations) is .0.008. When .φ = 0.5, we use .θ = 0.5

N .θ .θ̂ .ŝe(θ̂) .s̃e(θ̂ ) .bias
θ̂

.RMSE
θ̂

.CV
θ̂

100 .0.1 .0.294 .0.245 .0.245 .0.194 .0.312 .0.835

.0.5 .0.500 .0.252 .0.263 .0.000 .0.252 .0.505

.0.9 .0.796 .0.232 .0.228 .−0.104 .0.255 .0.292

500 .0.1 .0.192 .0.158 .0.179 .0.092 .0.183 .0.827

.0.5 .0.501 .0.149 .0.160 .0.001 .0.149 .0.298

.0.9 .0.885 .0.090 .0.094 .−0.015 .0.091 .0.102

1500 .0.1 .0.131 .0.102 .0.116 .0.031 .0.106 .0.780

.0.5 .0.499 .0.094 .0.098 .−0.001 .0.094 .0.188

.0.9 .0.895 .0.050 .0.049 .−0.005 .0.050 .0.056

N .φ .φ̂ .ŝe(φ̂) .s̃e(φ̂) .bias
φ̂

.RMSE
φ̂

.CV
φ̂

100 .0.5 .0.448 .0.155 .0.167 .−0.052 .0.163 .0.346

500 .0.488 .0.076 .0.079 .−0.012 .0.077 .0.156

1500 .0.497 .0.046 .0.048 .−0.003 .0.046 .0.092

6 Applications

This section illustrates the application of the proposed time series model to two real-
life data sets. The first example is concerned with medical data, whereas the second
application describes the analysis of an astronomical data set.

6.1 Lung Function of an Asthma Patient

In put off [3], measurements of the lung function of an asthma patient are analyzed.
The observations are collected mostly at 2-hour time intervals but with irregular
gaps (see the unequal spaced of tick marks in Fig. 1). However, as it was shown in
[36], the trend component (obtained by decomposing original time series into trend,
seasonal, and irregular components via the Kalman smoother) exhibits structural
changes after 100th observation. Thus, the first 100 observations are considered
here to analyze such a phenomenon. Below, the ML estimates are reported along
with their respective estimated standard errors. Here, the autoregressive estimate
is not significant (not shown), but the other estimates are significant at the 5%
significance level suggesting an iMA model:

.θ̂ = 0.853 ŝe(θ̂ ) = 0.069 σ̂ 2 = 258.286 ŝe(σ̂ 2) = 36.537

From Fig. 1, the fit seems adequate. Also, the standardized residuals seem to
follow a standard normal distribution. Furthermore, this figure shows the ACF
estimated and the results from a Ljung-Box test for the standardized residuals.
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Fig. 1 On the left-top, the lung function of an asthma patient with the predicted values and
their respective variability bands. For the standardized residuals: on the right-top, the quantile-
quantile plot with normality reference bands [27]; on the bottom-left, the autocorrelation function
estimated; on the bottom-right, the Ljung-Box test for randomness

Observe that the residuals satisfy the white noise test at the 5% significance level.
Note that, since the standardized residuals are assumed to be realizations of a
random sample, its correlation structure does not depend on the irregularly spaced
between observations. Thus, unlike the original time series, the ACF and the Ljung-
Box test can be applied to the standardized residuals.

6.2 Light Curve of an Astronomical Object

In astronomy, the study of the temporal behavior of the brightness of different
objects is a matter of interest (see, for instance, [11]). The time series of the
brightness of an astronomical object is called as light curve. Light curves are
commonly measured at irregular times. In this work, it is also assessed the
performance of the iARMA model in a light curve of an astronomical object. The
light curve that it is used was observed with the Zwicky Transient Facility (ZTF)
(see [4]) and belongs to a Blazar astronomical object coded as “ZTF18aabxyhf.”
The time series data of this Blazar were processed by the ALeRCE broker [14]. The
light curve of this object has 65 measurements of the brightness of this object in a
range of approximately 584 days. The average gap of the observations of this light
curve is 9.13 days. The iARMA model parameters were estimated via maximum
likelihood method in this light curve yielding the following results:

.φ̂ = 0.702 ŝe(φ̂) = 0.112 θ̂ = 0.682 ŝe(θ̂ ) = 0.366

σ̂ 2 = 0.209 ŝe(σ̂ 2) = 0.064.
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Fig. 2 On the left-top, the light curve of the Blazar object with the predicted values and
their respective variability bands. For the standardized residuals: on the right-top, the quantile-
quantile plot with normality reference bands [27]; on the bottom-left, the autocorrelation function
estimated; on the bottom-right, the Ljung-Box test for randomness

According to this results, both the .φ and .θ parameters are significative at 10% level.
Furthermore, in Fig. 2, it is shown that the residuals of the iARMA model do not
hold an autocorrelation structure. In other words, the iARMA explains all the time
dependence of the observed light curve. Also, the standardized residuals seem to
follow a standard normal distribution.

7 Conclusions

An irregularly observed first-order autoregressive moving average model was
proposed that allows treating first-order autoregressive moving averages structures
with irregularly spaced times. It is established that, under Gaussianity, the model
is strictly stationary and ergodic. The lowest dimension of the state-space repre-
sentation along with the one-step linear predictors and its mean squared errors
were given. Through the Monte Carlo study, for the ML estimation method, it is
shown that bias, RMSE, and CV are smaller when .N increases. Also, the method
provides good estimations for the standard errors, even with relatively small sample
sizes. Furthermore, the irregularly spaced times seem to increase the estimation
variability. It should be noted that, despite not being presented here, the same Monte
Carlo study was done for a proposed bootstrap estimation method. It showed a
consistent behavior similar to what was found for the ML method. Finally, the
practical application of the proposed methodology was illustrated by means of two
real-life data examples involving medical and astronomical time series.
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Using Natural Language Processing to
Measure COVID-19-Induced Economic
Policy Uncertainty for Canada and the
USA

Shafiullah Qureshi, Ba Chu, Fanny S. Demers, and Michel Demers

Abstract In this paper, we develop an economic policy uncertainty (EPU) index for
the USA and Canada using natural language processing (NLP) methods. Our EPU-
NLP index is based on an application of several algorithms, including the rapid
automatic keyword extraction (RAKE) algorithm, a combination of the RoBERTa
and the Sentence-BERT algorithms, a PyLucene search engine, and the GrapeNLP
local grammar engine. For comparison purposes, we also develop an index based on
a strictly Boolean method. We find that the EPU-NLP index captures COVID-19-
related uncertainty better than the Boolean index. Using a structural VAR approach,
we find that a one-standard deviation (SD) economic policy uncertainty shock
with EPU-NLP leads, both for Canada and the USA, to larger declines in key
macroeconomic variables than a one SD EPU-Boolean shock. In line with the
COVID-19 impact, the SVAR model shows an abrupt contraction in economic
variables both in Canada and the USA. Moreover, an uncertainty shock with the
EPU-NLP caused a much larger contraction for the period including the COVID-19
pandemic than for the pre-COVID-19 period.

Keywords EPU · Impulse response · NLP · BERT · Uncertainty index ·
COVID-19 · RoBERTa · SBERT

1 Introduction

The sudden incursion of the COVID-19 pandemic and the worldwide recession
that followed have generated great interest in measuring the resulting uncertainty
and its impact on macroeconomic variables. An increase in uncertainty has been
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shown to have a very important impact on economic decisions, particularly on
investment decisions, if firms face irreversibility, [6, 8, 10], fixed costs [7], or
financial constraints, and also on consumption decisions when consumers are
risk averse, prudent, or face binding budget constraints. Obtaining a measure of
the degree of uncertainty is important for assessing its macroeconomic impact
and for guiding policymakers in making appropriate monetary and fiscal policy
decisions. Furthermore, policy itself may lead to uncertainty. Thus, for example, [2]
investigate the impact of tax-policy uncertainty on the dynamic investment decisions
of the firm. Several authors have given priority to developing an index to measure
uncertainty. One prominent example is the forward-looking Baker-Bloom-Davis
newspaper-based economic policy uncertainty index [3]. Other notable examples
are the model-based uncertainty measures of [14] for the USA and [16] for Canada.
With the COVID-19 shock as a backdrop, [1] note that while model-based measures
have the benefit of being well grounded in a model in which the role and the
nature of uncertainty are well-defined, such measures are essentially backward-
looking and are based on the premise that the underlying model has not changed
and that the statistical relationship among variables is still the same even after large
and unprecedented shocks. Furthermore, the macroeconomic variables (leading
indicators) in the underlying model are only available with a lag, and hence,
not available in real time. In the wake of the COVID-19 shock, [1] thus point
to the importance of having alternative measures of uncertainty that are forward
looking and available in real time. As mentioned above, an important and very
widely used measure of uncertainty is the economic policy uncertainty (EPU) index
developed by [3, henceforth,BBD]. Being forward-looking in nature, the BBD-EPU
newspaper-based index has been found by various authors to successfully capture
uncertainty, especially policy uncertainty. Currently, an index is available for 26
countries (including the USA and Canada). The use of this index is so widespread
that data providers such as Bloomberg, FRED, Haver, and Reuters also make the
EPU available for users on their website. Their index has also been used in numerous
economics articles since its development. We describe in detail the development of
the BBD-EPU index in Sect. 2. Let us simply note here, however, that the BBD-
EPU (at least the one for the USA) was very human-input intensive and expensive
to develop. In this paper, we suggest an alternative newspaper-based, and (almost
entirely) computer-based, approach to developing an EPU index directly related
to COVID-related uncertainty for Canada and the USA, by appealing to natural
language processing (NLP) techniques [11]. These techniques are widely used by
Data scientists, but have not yet received much attention in economics. Our index
circumvents the necessity to rely very heavily on human resources, which is less
expensive and faster to obtain. These attributes make it useful for developing EPUs
for country-specific policy categories and subcategories, for developing monthly
or daily EPUs, and also for EPUs for countries not yet having their own BBD-
EPU.We use a “text mining” approach that uses NLP to transform unstructured data
(such as ordinary texts) into structured data (i.e., data or texts that are organized into
categories, such as username, user ID, address, etc.) that in turn permit computers
to understand, interpret, and classify human language. Our method differs markedly
from a Boolean method. In contrast to the latter, our method is capable of capturing
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contextual and implied meanings of EPU-related terms, thanks to our use of the
RoBERTa [15] algorithm1 which we combine with its specialization for semantic
searches, SBERT [18]. To ensure greater accuracy and robustness with respect to
capturing the contextual meaning of words, we also use an additional independent
NLP algorithm, namely, GrapeNLP, developed by [20], which is based on Unitex-
GramLab [12, 17].

In order to highlight the important difference between a Boolean method and the
EPU-NLP, we also develop an alternative, strictly Boolean, index (EPU-Boolean)
which we compare with our NLP-based one. We show that the EPU-NLP is
better able to track COVID-19-related uncertainty than the EPU-Boolean. We also
compare the EPU-NLP with other leading uncertainty indices, such as the BBD-
EPU, BBD’s equity market volatility (EMV) index, and the Chicago Board Options
Exchange’s (CBOE) volatility (VIX) index, and find that it is closely correlated with
them.

We then conduct a structural vector autoregression (SVAR) analysis to observe
the impact of a one-standard deviation (SD) EPU-NLP shock on some macroeco-
nomic variables for Canada and the USA. We also compare the impact of a one-SD
EPU-NLP shock on pre-COVID-19 data (January 2015–December 2019) with its
impact on the data range including COVID-19 data (January 2015–October 2020).
The VAR results show that a one-SD shock in the EPU-NLP index provokes a larger
contraction in real GDP and other macroeconomic variables for Canada and the
USA than a one-SD shock in the EPU-Boolean index. Moreover, a EPU-NLP shock
results in a stronger decline in these variables for the span of time that includes
the COVID-19 pandemic than the one that excludes it. The remainder of the paper
proceeds as follows. Section 2 explains the development of the BBD-EPU. Section 3
presents the stages of the construction of the EPU-NLP and describes the algorithms
that were used in its development. Section 4 presents the SVAR results, and Sect. 5
concludes. Figures are given in the Appendix.

2 The Development of the Baker-Bloom-Davis EPU
(BBD-EPU)

As [3] explain extensively in their paper, the construction of their index was done
in two stages over 2 years and involved a great deal of human resources. The
authors first developed a 65-page guideline over a 6-month period. Then, under
close supervision by the authors, different teams of students were trained as readers
(auditors) on the basis of the guideline and were given the task of sifting through
12,000 newspaper articles to identify those that contained three terms, one from
each of the following three sets: (economic or economy), (uncertain or uncertainty),

1 RoBERTa is the “robustly optimized” version of [9]’s seminal neural network-based BERT
(Bidirectional Encoder Representations from Transformers). We describe these algorithms below.



110 S. Qureshi et al.

and at least one policy-related term from the third set (Congress, deficit, Federal
Reserve, legislation, regulation, orWhite House.) [3, p. 1594]. The (human) auditors
gave a coding of EPU.H=1 or EPU.H=0 depending on whether they contained the
three categories of terms or not. The authors also generated a computer-based
coding of articles which they compared to the human-based records to eliminate
the false positives and false negatives generated by the computer-based records.
They found a correlation of 0.89 between their human- and computer-generated
indices for the 1989–2012 period. They also developed for the US specialized EPU
indices for 11 different policy categories and subcategories (such as fiscal, tax,
monetary, healthcare, national security, etc.) As the authors themselves indicate, the
development of this index was very intensive in terms of human input and required
substantial resources (i.e., it was “expensive” [3, p. 1608]). In addition, one of the
reasons for the false positives and false negatives generated during their computer-
based records is due to the Boolean nature of their procedure, and to words being
evaluated out of context by their computer-based method. They were able to sift
these out by comparing the computer-generated records with their very meticulously
developed human-based records.2

3 Constructing the EPU-NLP Index: Data, Methodology,
and Algorithms

We describe here the procedure used to develop our EPU-NLP index. To ensure
greater accuracy and robustness, we use two NLP techniques consecutively to refine
our search for relevant articles: the RoBERTa/SBERT algorithm and the GrapeNLP
approach. Our motivation for using these techniques is that each of them was
very successful in a Kaggle competition whose aim was to extract summary tables
from the COVID-19 Open Research Dataset comprising 500,000 COVID-19-related
articles. In particular, [22] used GrapeNLP to find the impact of temperature and
humidity on the spread of the virus. We base ourselves on articles gathered from
eight newspapers from Canada and seven newspapers from the USA from January
2015 to October 2020.3 We first enumerate the six steps that we followed and
then explain the procedure in greater detail below. (1) Use the RAKE algorithm
to search for frequently used economy, uncertainty, and policy-related words in the
newspapers. (2) Select articles that contain the words obtained from step 1 using a
Python filter (1,182,945 articles for Canada and 720,266 for the USA). (3) Use a

2 It would seem that in the case of the BBD-EPU for countries with a native language other than
English, there was a more cursory verification process and that the selection of articles was entirely
Boolean in nature (see the online Appendix to [3]).
3 We used the Calgary Herald, the Financial Post, the Montreal Gazette, the National Post, the
Ottawa Citizen, the Toronto Star, and the Vancouver Sun for Canada and USA Today, the Los
Angeles Times, The Wall Street Journal, The Dallas Morning News, the Miami Herald, and The
New York Times for the USA.
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combination of RoBERTa and SBERT to filter out those articles having a cosine-
similarity score of 0.75 or more. (We remain with 622,948 articles for Canada
and 379,166 for the USA.) (4) Use a rapid Python-based Apache Lucene search
engine (PyLucene) to break the short-listed articles into words and form an index
containing the word-id, the number of documents in which it is present, and the
exact position of the word in that document. (5) Develop a “local grammar” with
Unitex/GramLab based on the keywords obtained from the previous steps and use
it with the GrapeNLP Python package developed by [20] (We finally remain with
18,526 articles for Canada and 18,032 articles for the USA.). (6) Calculate the EPU-
NLP index following the method indicated in BBD [3].

To highlight the benefits of using the NLP approach, we also constructed another
index on the basis of the same data set, using a strictly Boolean approach, assigning
a EPU.Boolean=1 or 0 depending on the presence or absence of uncertainty related
keywords (but without the ability to discern the context in which these keywords
appear). We now explain in greater detail the RAKE, RoBERTa/SBERT, and
GrapeNLP algorithms that were used in the construction of the EPU-NLP and the
calculations used in the last step.

3.1 The RAKE (Rapid Automatic Keyword Extraction)
Algorithm

RAKE is a language-independent, unsupervised ML algorithm developed by [19].
A “keyword” (also called a “token”) is defined as a sequence of one or more words.
This algorithm splits text into a list of keywords, by using “stop words” (like “the,”
“a,” “for,” etc.), and punctuation as a means of separating one string of contiguous
words from another. These strings are candidates for keywords. The algorithm then
creates a table of “co-occurrences” (i.e., words that occur together within the string)
and assigns a score to each word based on its frequency of occurrence within the
entire text (freq(w)) and also on the number of times it appears in conjunction with
another word (deg(w)). The score assigned to a word is the ratio of deg(w)/(freq(w)),
and the score assigned to a keyword string is the sum of the score assigned to
the words composing it. We built an initial short list of simple keywords, such
as uncertain, economic, recession, COVID-19, and coronavirus, as a means of
initializing the RAKE algorithm and fed these words into RAKE in order to observe
their frequency of occurrence in the articles. We thus produced a list of bigrams
(two-word groups), and trigrams which had a high frequency of occurrence and a
high score, such as coronavirus crisis (3218 times), virus crisis (3290), economic
crisis (2029),job losses (2009), virus lockdown (2309), global recession (1081), and
make ends meet (583). These terms also helped us in developing a “local grammar”
as we will see below.



112 S. Qureshi et al.

3.2 The BERT, RoBERTa, and SBERT Algorithms

In step 3 of our procedure, we use a combination of RoBERTa and SBERT in order
to develop sentence embeddings and further refine our selection of articles. Word or
sentence embedding is a technique in machine learning that is used to map words
or phrases into vectors of real numbers. We develop a list of queries (full sentences)
on the basis of the RAKE results, which are then processed by the SBERT and
RoBERTa algorithms to extract sentence embeddings. These algorithms are exten-
sions of the neural network-based BERT (Bidirectional Encoder Representations
from Transformers) algorithm developed by [9] at Google. One of the important
particularities of the BERT algorithm is that it is bidirectional. That is, it can better
detect the context within which a word occurs by taking into account words that
appear both before and after the keyword (i.e., both to its left and to its right) and
will perform a different embedding depending on the context. Thus, for example, the
following sentences given below will be embedded (encoded) differently in view of
the different contextual meaning of the word taxing: Bicycling up this steep hillside
is very taxing on one’s legs. The new policy involves taxing the rich at a higher
rate. In this respect, it can resolve ambiguities related to words having different
meanings in different contexts and therefore can better avoid false positives or
false negatives and better select the relevant articles. The BERT algorithm is pre-
trained by using a technique called masked learning modeling which essentially
“hides” (or “masks”) 15% of the keywords in each query by replacing them with
another token or mask and requiring the algorithm to predict the true keywords.4

The RoBERTa algorithm developed by [15] is a “robustly optimized” version of the
BERT algorithm that uses a much larger training data set (160G instead of 16G). The
RoBERTa algorithm presents several other advantages over the BERT algorithm.
Thus, for example, it uses dynamic “masking” as opposed to the static masking
used in BERT. The dynamic masking pattern of RoBERTa implies that the pattern
of masking changes with each sequence that is fed into the algorithm, whereas
in BERT, the pattern is set at the initial sequence and remains fixed throughout.
The RoBERTa algorithm requires fine-tuning depending on the application, and we
fine-tuned it by using unlabeled newspaper articles and using the “hugging face”
open-source NLP platform.

The SBERT algorithm [18] is a further refinement of BERT that is better suited
for semantic searches and that uses two identical (“siamese”) sub-networks (both
of them RoBERTa algorithms) so as to better compare two sentence (or document)
embeddings. It then applies the cosine-similarity measure to assess the degree of
similarity between sentence or document pairs.5 In the third step of our procedure,

4 To be more precise, 10% of the masked terms are replaced with randomly selected keywords,
10% are replaced with the true word, and 80% are replaced with the token [MASK].
5 The cosine-similarity measure is given by .σ (A,B) = A·B

‖A‖2‖B‖2 where A and B are n dimensional

vectors and .‖.‖2 is .L2 norm. The cosine-similarity measure .σ(A,B) takes the value 1 when the two
vectors are exactly the same and the value .−1 when they are completely dissimilar. Comparing this
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we pair the articles obtained in step 2 with sentences from the queries that we
developed on the basis of the RAKE results and feed them into SBERT. After a
pooling process6 needed to transform the contextual embeddings obtained from
each RoBERTa sub-network into vectors of fixed length, SBERT calculates the
cosine-similarity measure between the articles and the queries. We choose articles
that have a cosine-similarity measure of 0.75 or greater.

3.3 GrapeNLP Grammar

In step 5, we use GrapeNLP grammar to further refine our choice of articles. As
mentioned above, we follow [22] who used this approach (developed in [20]) to
extract research papers from the COVID-19 Open Research Dataset. We build a
local grammar using the Unitex grammar editor7 [17]. We then use GrapeNLP to
convert the grammar to a form that may be processed by Python. This approach
involves a “human-assisted” training of grammar. We review the results of an initial
trial and then change the “grammar” accordingly. While space constraints preclude
us from providing the extensive grammars that we have developed, we illustrate the
concept by using an example given in [21]. This example (shown in Fig. 1 in the
Appendix) is a grammar that is built to recognize sentences that may be used by
someone requesting to make a phone call. The sentence may take different forms:
I (want/would like) (to) (call) (<E>a/my/the) (TOKEN) or (phone number). The
box containing an <E> is optional, in the sense that none of the terms in that box
need to be present (e.g., I want to call 911). Boxes without an <E> are compulsory
and at least one of the words in that box must be present. The box labeled TOKEN
may contain any name (e.g., Mary, mother, emergency, etc.), while the box (phone
number) is a subgrammar (i.e., another grammar that is evoked by this one) which
recognizes phone numbers and which may contain symbols such as + in the case of
country codes, or parentheses, etc. Alternatively, the sentence might take the form
“Could you call my sister, please?” We again note that the comma and the word
“please” are optional.

For our purpose of finding phrases expressing policy or COVID-19-related
uncertainty in the newspaper articles, we adapt this methodology by building four
grammars (which are linked to one another) to find phrases such as “economic

similarity measure to cross-entropy or to mean-squared error (which uses Euclidean distance as its
measure of closeness), this measure has the advantage of being dependent only on the direction
of the vectors and not on their magnitudes and, hence, is independent of the scaling of the two
vectors.
6 We use the RoBERTa model to map tokens in a sentence to the contextual word embeddings from
RoBERTa. The next layer in our model consists of averaging (“mean-pooling”) all contextualized
word embeddings obtained from RoBERTa. In other words, each sentence is passed first through
the word_embedding_model (in Roberta) and then through the pooling_model to give fixed-sized
vectors. Vectors of fixed length are required by SBERT.
7 Unitex/GramLab is an open-source, cross-platform, multilingual, lexicon- and grammar-based
corpus processing tool. It can be downloaded from https://unitexgramlab.org/.

https://unitexgramlab.org/
https://unitexgramlab.org/
https://unitexgramlab.org/
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uncertainty caused by the coronavirus lockdown” or more complex ones such
as “During the prolonged period of the coronavirus crisis, targeted transfers are
urgently needed to stay above the poverty line.” We use the frequently encountered
terms that were selected by RAKE in developing these grammars.8

3.4 Calculating the EPU-NLP

In step 6, we follow [3, p.1599]’s method to calculate the EPU. Let .ci,t .i =
1, . . . , N , .t = 1, . . . , T denote the raw count of articles found to be uncertainty-
related in newspaper i in month t and let .T otalit be the total number of articles
in newspaper i in month t . The scaled count is then given by .C∗

it where .C∗
it =

cit

T otalit
, i = 1, . . . , N; t = 1, . . . , T . Compute the standard deviation of scaled

counts as .σi
2 = (1/T )ΣT

t=1(C
∗
it − Ci)

2 where .Ci = (1/T )ΣT
i=1C

∗
it is the average

over the entire period of the scaled counts of articles in newspaper i. Divide the
scaled counts by the standard deviation : .Yit = C∗

it /σi , i = 1, ..., N; t = 1, ...T
(Thus, e.g., .Yit = 2 would indicate that this scaled count obtained in month t is two
standard deviations above the mean for newspaper i for the entire time period and
would point to a period of higher uncertainty.). Compute the .Zt = (1/N)ΣN

i=1Yit ,

where .Zt is the average of the scaled standardized counts over all newspapers
for month .t . Calculate .M = (1/T )ΣT

i=1Zt, where M is the average of the
scaled standardized counts over all newspapers and for all months in the data set.

Calculate the normalized EPU time-series index as .EPUNLP
t =

(
100
M

)
Zt . With

this normalization, the EPU-NLP has a mean of 100.

4 Testing the Model

We adopt a structural vector autoregression approach (SVAR) to test our EPU-NLP
index and our EPU-Boolean index for both Canada and the USA using data from
January 2015 to October 2020. As in [4] and [1], we detrend all the variables using
the Hamilton filter [13] and then take the first difference of the log of these variables.

Even though VARmodels may not be used to establish causality, as [1] note, they
can indicate whether uncertainty shocks are precursors to a slowdown in economic
activity, such as a fall in GDP and employment. Using a vector autoregression
analysis, they find significant contractions in economic variables during COVID-19
for both the USA and the UK. Baker et al. [4] use stockmarket volatility, newspaper-

8 We used the GPU accelerator offered by Google Colab Pro for data cleaning, semantic search,
and RAKE (Python), the Nvidia Tesla P100 GPU offered by the Kaggle platform for the grammar,
and an Intel Xeon i9-7980Xe 36-core server with Nvidia Titan V GPU and 126GB DDR4 RAM
for fine-tuning the RoBERTa model.
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based economic uncertainty, and subjective uncertainty in business expectation
surveys to measure the COVID-19-induced uncertainty for the USA. As mentioned
earlier, [16] constructed an uncertainty measure for Canada by applying the method
of [14] and assessed the impact of COVID-induced uncertainty on economic
variables using a SVAR analysis for Canada. To indicate the advantages of a SVAR,
let us start with a standard VAR model which in our case may be described as
follows:

.yt = A1y t−1 + A2yt−2 + · · · + Apyt−p + εt (1)

where .yt is a 5.×1vector of four macroeconomic variables and one uncertainty
index and p denotes the number of lags. The .Ai , .i = 1, ...p are .5 × 5 matrices
of parameters, while .εt is a .5 × 1 vector of innovations with .εt ∼ N(0,Σ) and
.E(εtε

′
s ) = 0 for all .s �= t . Equation (1) is a standard VARwhich describes a reduced

form model and which does not allow contemporaneous effects of the endogenous
variables on each other. It also has the underlying counterfactual assumption that
the innovations of the different equations are mutually uncorrelated. Since the
innovations are in fact correlated in our model (as an analysis of the covariance
matrix .Σ reveals), a shock to one variable will have an impact on the innovation
of another variable, precluding a clear interpretation of the impulse responses. We
therefore adopt a SVAR approach and use a Cholesky decomposition in order to
identify the shocks. Our equation may be written as:

.A(I 5 − A1L − A2L
2 − ... − ApLp)yt = Bet (2)

where .A is a lower triangular matrix with ones in the diagonal, .B is a diagonal
matrix, and .et is a .5 × 1 vector of orthogonalized innovations with .et ∼ N(0, I 5)

and .E(ete
′
s) = 0 for all .s �= t such that .Bet ≡ Aεt . The structure of the matrices

.A and .B is set in accordance with the order of the variables in the VAR. The order
of the variables matters for the results. The variable that is listed first is assumed to
have a contemporaneous impact on the rest of the variables, while none of the other
variables has a contemporaneous impact on the first. Similarly, each of the variables
will have a contemporaneous impact on the rest of the variables that are listed after
it, but will not be affected by them contemporaneously. In our case, since we wish to
analyze the impact of a EPU shock on the macroeconomic variables and since our
uncertainty measures are news-based, it seems reasonable to consider them to be
exogenous and to order them first. Consequently, we adopt the following order of the
variables for Canada : EPU-NLP (or EPU-Boolean), TSX, employment, industrial
production, and GDP. For the USA, the order of the variables is EPU-NLP (or EPU
Boolean), S&P 500, employment, industrial production, and consumption.9.,10

9 We use industrial production at the monthly frequency as a proxy for real GDP in the case of the
USA since real GDP is not available on a monthly basis for the USA.
10 Since our primary purpose is not to make a comparison of the EPU-NLP.Canada and EPU-
NLP.USA indices, using different variables is not consequential.
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In accordance with the optimal lag criteria SBIC and HQIC, we choose three lags
for Canada and one lag for the USA.

Before analyzing the impulse response functions, we first present a comparison
of the EPU-NLP and EPU-Boolean. As is shown in Fig. 2, EPU-NLP better captures
the large increase in uncertainty in March and April 2020 due to COVID-19
compared to EPU-Boolean for both Canada and the USA.

We then estimate the response of the economic variables to an uncertainty shock
as captured by a one-standard deviation (SD) innovation in EPU-NLP and EPU-
Boolean, respectively, for Canada (Fig. 4) and for the USA (available upon request)
for the period including COVID-19 (January 2015–Oct 2020). The Canada SVAR
results indicate that a one-SD EPU-NLP shock leads to declines of 1.04% in real
GDP, 0.95% in employment, 1% in industrial production, and 1.08% in TSX,
respectively. By contrast, a one-SD shock with EPU-Boolean results in declines of
only 0.42% in real GDP, 0.41% in employment, 0.33% in industrial production,
and 1.02% in TSX. Similarly for the USA, we find that a one-SD EPU-NLP
shock results in a 0.90% drop in industrial production, 0.70% in real consumption,
0.83% in employment, and 2.1% in S&P 500. On the other hand, one-SD shock to
uncertainty with EPU-Boolean provokes only a 0.19% fall in industrial production,
0.11% in real consumption, 0.16% in employment, and 0.60% in S&P 500. Hence,
for both the USA and Canada, we observe a much less pronounced response to a
one-SD shock when we use the EPU-Boolean instead of the EPU-NLP.

We also experimented with different orders of the macroeconomic variables
(while keeping the EPU variable as the first) but did not observe any difference
in the results. In addition, in view of the small sample size, we also conducted a
Bayesian VAR analysis using a conjugate Minnesota (multivariate normal) prior
distribution for the regression coefficients and an inverse-Wishart prior distribution
for the error covariance as recommended by [5]. While space constraints prevent us
from reporting these results, we observed that they are qualitatively analogous to
the ones for the SVAR, and in particular, a comparison of the EPU-NLP and EPU-
Boolean shocks again indicates that a EPU-NLP shock has a greater impact on the
macro variables.

Next, with the SVAR approach, we follow [1] and compare the impact of a one-
SD shock with our EPU-NLP index for the period including COVID-19 (January
2015–October 2020) with the pre-COVID-19 period (January 2015–December
2019) for Canada (Fig. 5). and for the USA (available upon request). These results
are striking. For the period including COVID-19, a one-SD innovation with EPU-
NLP leads to declines of 1.04% in real GDP, 1% in industrial production, 0.95%
in employment, and 1.08% in TSX, respectively. By contrast, for the pre-COVID-
19 period, a one-SD innovation with EPU-NLP results in no change in real GDP,
0.025% in employment, 0.6% in TSX, and 0.17% in industrial production. We
obtain similar results for the USA: For the period including COVID-19, one-SD
shock to uncertainty (with EPU-NLP) results in a drop of 0.90% in industrial
production, 0.70% in real consumption, 0.83% in employment, and 2.1% in S&P
500. By contrast, for the pre-COVID-19 period, one-SD shock to uncertainty
(with EPU-NLP) provokes a fall of 0.06% in industrial production, 0.05% in real
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consumption, 0.015% in employment, and 0.34% in S&P 500. In other words, for
both the USA and Canada, we observe a less pronounced response to a one-SD
shock to uncertainty (with EPU-NLP) for the pre-COVID-19 period. Hence, the
EPU-NLP index is able to capture the COVID-19-induced uncertainty and its severe
negative impact on economic variables.

We also compared EPU-NLP to other uncertainty measures such as VIX and
BBD-EPU. As is shown in Fig. 3, EPU-NLP and VIX closely follow each other
with matching peaks and troughs during the COVID-19 period for Canada and the
USA. We find a correlation of 0.85 between EPU-NLP.Canada and VIX, and of 0.80
between EPU-NLP.USA and VIX, whereas [3] found a correlation of 0.58 between
the BBD-EPU and VIX. As they explain, their EPU is more specialized in policy
uncertainty as opposed to financial uncertainty captured by the VIX. They therefore
developed an EMV (equity market volatility) index that better captures financial
uncertainty. In our case, in view of our search words, the EPU-NLP may be more
attune to generalized uncertainty, and COVID-19 uncertainty in particular. This may
be an explanation of its closer correlation with the VIX.We find a correlation of 0.79
between BBD’s EMV index and our EPU-NLP.Canada and of 0.70 between the EMV
index and EPU-NLP.USA. The correlation between the EPU-NLP.USA index and
BBD-EPU.USA is 0.85 and is 0.72 between EPU-NLP.Canada and BBD-EPU.Canada.

5 Conclusion

This paper described a new approach based on NLP techniques for constructing
an EPU index based on newspaper articles. For this purpose, we use the RAKE,
RoBERTa/SBERT, and GrapeNLP algorithms. RAKE is used to determine high-
frequency words or phrases related to policy uncertainty and COVID-19, which are
then used to filter articles and develop search queries and local grammars. We use
the RoBERTa algorithm which is pre-trained on a large new dataset (CC-News).
We fine-tune it on our own newspaper data and combine it with SBERT which is
better suited for semantic searches. Finally, we use the GrapeNLP grammar engine
to select the final EPU-related articles on the basis of which we calculate our EPU-
NLP index.

We compare the EPU-NLP index with a EPU-Boolean index which we construct
on the basis of the same dataset using a strictly Boolean approach. We observe
that EPU-NLP better captures the COVID-19-induced uncertainty than the EPU-
Boolean. We also compare the EPU-NLP with other leading uncertainty indices
and find that it is closely correlated with several of them (BBD-EPU, EMV, and
VIX). We further assessed the impact of EPU-NLP and EPU-Boolean using a VAR
model with Canadian and US economic variables. We found that EPU-NLP created
a greater dip in economic variables compared to EPU-Boolean. Lastly, we compare
the impact of a one-SD EPU-NLP shock on pre-COVID-19 data (January 2015–
Dec. 2019) with its impact on the entire data range including COVID-19 data
(January 2015–October 2020). The VAR results showed once more that EPU-NLP
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generated a greater dip in economic variables for Canada and the USA for the period
including COVID-19 than for the pre-COVID-19 period. The proposed method can
be employed to construct a high-frequency EPU index which can then be used to
predict financial variables. This point is left for future research.
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Appendix

See Figs. 1, 2, 3, 4, 5.

I
want
woud like to

call

<E>
a
my
the

<TOKEN>

<name> </name>

<number> </number>

phone_number
can
could you </phone_call>

<E>
,

<E>
please

Fig. 1 A GrapeNLP grammar diagram

Fig. 2 EPU-NLP vs EPU-Boolean for Canada (left subfigure) and the USA (right subfigure)

Fig. 3 EPU-NLP vs VIX for Canada and the USA
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Fig. 4 SVAR results, Canada: Comparing EPU-NLP and EPU-Boolean
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Fig. 5 EPU-NLP shock for Canada: period including COVID-19 (left panel) vs pre-COVID-19
period (right panel)
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Asymptotic Expansions for Market Risk
Assessment: Evidence in Energy
and Commodity Indices

Daniel Velásquez-Gaviria , Andrés Mora-Valencia , and Javier Perote

Abstract The increasing volatility experienced in financial and commodity mar-
kets has motivated the search of frequency functions with more complex attributes to
characterize their asset returns distribution. In this research, two semi-nonparametric
distributions are proposed and compared, the Gram-Charlier expansion and a novel
Edgeworth expansion for the Student’s t, to estimate the value-at-risk and the
expected shortfall in four indices related to energy, metals, mining, and physical
commodities. Backtesting performance is assessed in terms of Kupiec and Inde-
pendence tests for value at risk and the recent proposal by Acerbi and Székely for
the expected shortfall. Our results indicate that the Student’s t expansion density
adequately fits the returns of different indices and exhibits the best performance
for value at risk and expected shortfall backtesting. Consequently, the Student’s
t expansion density, which encompasses the Gram-Charlier distribution as the
degrees of freedom parameter tends to infinity, reveals as a flexible and accurate
methodology for risk management purposes in energy and commodity markets.
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1 Introduction

From a parametric perspective, the non-normality of financial returns has been
traditionally tackled by proposing distributions capable of featuring thick tails and
asymmetries by adding additional parameters. For instance, Student’s t, inverse
Gaussian, hyperbolic, exponential, gamma, Weibull distributions, among many oth-
ers, have been generalized with many different parametrizations. The extensions of
these distributions include an entire family of Student’s t (see, e.g., [1–3]; Jones and
Faddy [4], [5, 6]), but also generalized inverse Gaussian [7], generalized hyperbolic
[8, 9], generalized exponential [10], generalizedWeibull [11], or generalized gamma
[12] have been widely studied.

A direct and rigorous framework to generalize (continuous and differentiable)
probability density functions (pdfs) is the semi-nonparametric approach (SNP)
method that expands parametric pdfs in terms of their derivatives, which allow
asymptotically approximating any frequency function. Such expansions arise from
the early work of Edgeworth [13], who provided a former GC Type A series of
orthogonal polynomials, named Hermite polynomials, derived from the expansion
of a Gaussian probability density function. The SNP expansions incorporate an
arbitrary degree of flexibility that allows to model the moments of the returns and
provide outstanding performance for risk assessment, although at the cost of some
instability in the density that might result in negative values when finite expansions
are considered. This problem, stated by Barton and Dennis [14], has been tackled
by studying the positivity regions [15] or imposing positivity transformations [16].
However, from an empirical perspective, it only requires that maximum likelihood
(ML) algorithms converge to global optima.

In this research, we compare two SNP distributions, the traditional Gram-
Charlier expansion (GCE) and the novel expansion on Student’s t basis, STE,
whose Hermitian-type of polynomials are arbitrarily derived up to the eighth term.
The polynomials of the STE are more complex than those of the GCE since they
depend on the degrees of freedom parameter. Nevertheless, the series converges to
the GCE as this parameter goes to infinity. This property makes the STE a valid
asymptotic expansion more flexible than the GCE, meaning that similar data fits
might be obtained through shorter expansions. The estimation of the STE expansion,
however, seems more challenging and computationally demanding. The empirical
results for daily data of four indices on energy and commodity indices indicate that
both expansions seem to be accurate representations of these indices’ daily returns
since the 90s. However, the STE seems to provide better risk assessment measures
in terms of both VaR and ES, thus being an accurate tool for risk management.

The rest of this work is divided as follows. Section 2 presents the methodology
and introduces our proposed STE density. Section 3 analyzes the VaR and ES
backtesting results for four energy and commodity indices, and Sect. 4 summarizes
the main conclusions.
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2 Methodology

2.1 Gram-Charlier Expansion

The traditional theory for SNP density modeling lies in the construction of
orthogonal polynomials. According to Abramowitz and Stegun [17], a system of
s polynomials, Ps(x), is orthogonal to a weight function ω(x), if

∫ ∞

−∞
Ps(x)Pj (x)ω(x)dx = 0, ∀ �= j, s, j = 0, 1, 2, . . . , (1)

The Hermite polynomials consider the standard normal pdf, .φ(x) =
1√
2π

e
−x2/

2 , as the weight function and form a natural basis for defining a family
of pdfs. These polynomials emerge from the s-th order the derivative of the weight
function and thus Hs(x) are obtained by solving Eq. (2)

Hs(x) = (−1)sφ(x)−1 dsφ(x)

dxs
, (2)

e.g. H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x,

H6(x) = x6 − 15x4 + 45x2 − 15, H7(x) = x7 − 21x5 + 105x3 − 105x and
H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105.

(3)

Based on these polynomials, the GCE can be expressed as

fn (x, ds) =
[
1 +

n∑
s=1

dsHs(x)

]
φ(x). (4)

where ds is directly related to the s-th order cumulant (or moment) of the pdf
f (x). This GCE “truncated” at the order n is a well-defined pdf in virtue of the
orthogonality condition in Eq. (1) and provided that fn(x, ds) ≥ 0. The (central)
moment of order s of the GCE, μs = E[xs], can be expressed as a linear function of
the first s even (odd) parameters, in case s is even (odd)—see Kendall and Stuart [18]
for this and other properties of the GCE and Trespalacios, Cortés, and Perote [19] for
a recent application to energymarkets. Further characterizations of the GCE in terms
of the moment generating function are possible (see [20]). For quantile computation
(q), exists a closed form for the cumulative distribution function (cdf)—see, e.g.,
Cortés, Mora-Valencia, and Perote [21].

Fn (x, ds) =
∫ q

−∞
φ(x)dx − φ(q)

s∑
i=1

diPi−1(q). (5)
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2.2 Student’s t Expansion

The pdf of a random variable x that is distributed as Student’s t with v > 2 degrees
of freedom—�(.) stands for the gamma function—is given by

tv(x) =
�

(
v+1
2

)
√

vπ�
(

v
2

)
(
1 + x2

2

)− v+1
2

. (6)

According to the theory on GCE series, a direct expansion can be defined by
considering tv(x) as the weight function and computing orthogonal polynomials on
the basis of its derivatives [22], i.e.

Ps(x) = (−1)s

tv(x)
· dstv(x)

dxs
(7)

Therefore for a vector .δ′
s = (δ1, δ2, . . . , δs) such that tn(x, v, δs) ≥ 0, the STE

with v degrees of freedom and Ps(x) can be characterized in terms of the pdf

tn (x, v, δs ) =
[
1 +

n∑
s=1

δsPs(x)

]
tv(x), (8)

where tv(x) is the Student’s t pdf in Eq. (6) and Ps(x) the s-th order orthogonal
polynomial in Eq. (7), particularly the first eight polynomials are:

P1(x) = x (v + 1)

x2 + v
, P2(x) = (v + 1)

(
x2 (v + 2) − v

)
(
x2 + v

)2 ,

P3(x) = (v + 1) (v + 3)
(
x3 (v + 2) − 3xv

)
(
x2 + v

)3 ,

P4(x) = (v + 1) (v + 3)
(
x4 (v + 4) (v + 2) + 3v2 − 6x2v (v + 4)

)
(
x2 + v

)4 ,

P5(x) = (v + 1) (v + 3) (v + 5)
(
x5 (v + 4) (v + 2) + 15xv2 − 10x3v (v + 4)

)
(
x2 + v

)5 ,

P6(x) =

(v + 1) (v + 3) (v + 5)
(
x6 (v + 6) (v + 4) (v + 2)

+45x2v2 (v + 6) − 15v3 − 15x4v (v + 6) (v + 4)
)

(
x2 + v

)6 ,
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P7(x) =

(v + 1) (v + 3) (v + 5) (v + 7)(
x7 (v + 6) (v + 4) (v + 2) + 105x3v2 (v + 6)

−105xv3 − 21x5v (v + 6) (v + 4)
)

(
x2 + v

)7 and

P8(x) =

(v + 1) (v + 3) (v + 5) (v + 7)(
x8 (v + 8) (v + 6) (v + 4) (v + 2) + 210x4v2 (v + 8) (v + 6) + 105v4

− 420x2v3 (v + 8) − 28x6v (v + 8) (v + 6) (v + 4)
)

(
x2 + v

)8
(9)

As in the case of the GCE, the even (odd) moment of order s depends linearly on
the first s even (odd) parameters. For instance, the first eight moments are given by:

μ1 = δ1, v > 1, μ2 = v

v − 2
+ 2δ2, v > 2, μ3 = 6δ3 + 3δ1

v

v − 2
, v > 3,

μ4 = 3

[
v2

v2 − 6v + 8
+ 4δ2

v

v − 2
+ 8δ4

]
, v > 4,

μ5 = 15

[
v [4δ3 (v − 4) + vδ1]

(v − 4) (v − 2)
+ 8δ5

]
, v > 5,

μ6 =

15�
(v

2
− 3

)
[48δ6 (v − 6) (v − 4) (v − 2)

+24δ4v (v − 6) (v − 4) + 6v2 (v − 6) + v3
]

8�
(

v
2

) , v > 6,

μ7 = 105
[
δ1v

3 + 6 (v − 6)
[
δ3v

2 + 4 (v − 4) [δ5v + δ72 (v − 2)]
]]

(v − 6) (v − 4) (v − 2)
, v > 7 and

μ8 =

�
(v

2
− 4

) [
v4 + 147456δ8 + 8v [(v − 8)[

v2δ2 + 6 (v − 6) [vδ4 + 4δ6 (v − 4)]
]

+48δ8 (v − 10) [40 + (v − 10) v]]]

2
, v > 8.

(10)

Note that unlike the GCE, where moments of all order exist, in the STE the
existence of moments depends directly on the value of the degrees of freedom. This
shortcoming is partially solved by the fact that in practical applications, degrees of
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freedom of the STE seems to increase from those of the Student’s t. Furthermore,
the GCE is nested on the STE since, by construction, it follows that as v → ∞.

tn (x, v, δs ) =
[
1 +

n∑
s=1

δsPs(x)

]
tv(x) →

[
1 +

n∑
s=1

δsHs(x)

]
φ(x) = fn (x, ds)

(11)

since Ps(x) → Hs(x) and tv(x) → φ(x).
In addition, the cdf of the STE can be obtained similarly as the cdf of the GCE

in Eq. (5)

Tn (x, v, δs ) =
∫ q

−∞
tv(x)dx − tv(q)

n∑
s=1

δsPs−1(q). (12)

2.3 Model and Maximum Likelihood Estimation

Asset returns use to exhibit a small predictable component in conditional mean,
but clusters and long memory in conditional volatility. Consequently, an AR(1)-
GARCH(1,1) has traditionally been used for capturing such behavior. Therefore,
we consider that asset returns, rt, can be modeled as:

rt = ϕ + φrt−1 + εt , (13)

σ 2
t = ω + αε2t−1 + βσ 2

t−1, (14)

zt = εt
/

σt
, zt ∼ iid G (θ) , (15)

where −1 < φ < 1, ϕ > 0, α > 0, β > 0, α + β < 1 and ω > 0. zt represents
independent and identically distributed innovations characterized by the pdf G(θ),
which may be either a GCE or STE—or their corresponding nested distributions,
normal and Student’s t, respectively. Models are estimated by ML in one step,
which, for the case of STE, imply maximizing the following log-likelihood function
given a sample of size T:

LST E = T log

⎡
⎣ �

(
v+1
2

)

�
(

v
2

) √
π (v − 2)

⎤
⎦ − 1

2

T∑
t=1

log
(
σ 2

t

)

−v + 1

2

T∑
t=1

log

[
1 + εt

2

(v − 2) σ 2

]
+

T∑
t=1

log

[
1 +

n∑
s=1

δsPs

(
εt

2

σ 2
t

)]
.

(16)
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The ML estimation overcomes the problem of negativity values, provided that
the algorithms converge to a global optimum. In order to avoid local optima in joint
estimation, different procedures can be used to refine the initial values and simplify
the convergence. The initial values for the second step can be obtained through
the method of moments in Del Brio and Perote [23]. However, to guarantee the
convergence to global optima, it is convenient to perform a last step with a joint
estimation of the total density parameters. For this purpose, Newton-Raphson and
Broyden-Fletcher-Goldfarb-Shannomethods implemented in R packages.

2.4 Risk Measures

The performance of the SNP expansions is assessed in terms of both VaR and ES.
The former is the most standard risk measure since it is the maximum expected
loss for a given confidence and time horizon and corresponds to a quantile of the
distribution. Given a stochastic variable X with cdf FX , the VaR can be defined as:

V aRα(X) = inf {x ∈ R : FX(x) ≤ α} , (17)

where α represents the significance level, which conforming to the regulation is
set at 1% and 2.5%. According to this notation, VaR is quantified in the left tail
of the density and it is denoted VaR at 99% and ES at 97.5%. Therefore, VaR
can be computed from the inverse cdf or quantile function, .V aRα(X) = F−1

x (α),
displayed in Eqs. (5) and (12).

The ES is the expected loss conditioned on the fact that the VaR has been
exceeded. This measure has been recently proposed to replace VaR by international
organizations on banking supervision. In the left tail of the density, it can be
computed as

ESα(x) = E [−x |x ≤ −V aRα] = − 1

α

∫ α

0
V aRξdξ = − 1

α

∫ −V aRα

0
xf (x)dx.

(18)

Therefore, and according to Del Brio, Mora-Valencia, Perote [24] the ES for the
GCE can be computed as

ESα(X) = −φ
(
−1 (α)

)
α

×
[
1 +

n∑
s=3

ds

[
Hs

(
−1 (α)

)
+ sHs−2

(
−1 (α)

)]]
.

(19)
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then, the ES for the STE is

ESα(X) = −Tν

(
t−1
ν (α)

)
α

(
ν + (

t−1
ν (α)

)2
ν − 1

)

×
[
1 +

n∑
s=3

δs

[
Ps

(
t−1
ν (α)

)
+ sPs−2

(
t−1
ν (α)

)]]
.

(20)

2.5 Backtesting

The performance of the GCE and STE is tested through backtesting techniques
along with a rolling window size of 500 observations. For the backtesting of VaR,
the unconditional coverage test proposed by Kupiec [25] and the independence test
of Christoffersen [26]. Kupiec’s test identifies the VaR exceptions, which happens
when realized losses exceed the estimated VaR with a significance level α during
the backtesting period. The “unconditional coverage” examines if the sequence of
exceptions follows an iid Bernoulli process with probability α(1 − α), the null
hypothesis assuming that the number of exceptions is correct. The Christoffersen
test investigates the independence of the VaR exceptions, which holds under the
null hypothesis.

For the backtesting of ES, we follow Acerbi and Székely [27], who prove that
their ZES test is not to be sensitive to possible values of VaR and ES is equivalent to

ES1−α,t = V aR1−α,t − 1

α
E

[(
Xt + V aR1−α,t

)
It

]
, (21)

where It is an indicator function that takes the value 1 if Xt + VaR1 − α, t < 0, and 0
otherwise. Then, the ZES statistic becomes

ZES

(
⇀

X

)
=

T∑
t=1

α (ES1−α − V aR1−α) + (Xt + V aR1−α) It

T αES1−α,t

, (22)

Under the null, the model represents adequate performance for ES and under
the alternative ES is rejected regardless of the VaR. The test’s critical values are
obtained by Monte Carlo simulation, for details see Velásquez-Gaviria, Mora-
Valencia, and Perote [28].
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3 Empirical Results

3.1 Data

The database consists of four indices observed at daily frequency: MSCI World
Energy Sector Index (World Energy), MSCI World Metals & Mining Index
(World Metals & Mining), S&P GSCI Industrial Metals Spot Index (Metals), and
the Bloomberg Commodity Spot Index (Commodity). For the first two indices,
we have 6300 observations (January 1995/August 2019), for the third index
7400 observations (January 1990/August 2019, and for the fourth index 7600
observations (January 1990/August 2019). Logarithmic returns are calculated as
rt = log (Vt/Vt − 1), where Vt is the value of each index at time t. Table 1 reports
the main descriptive statistics of the series.

3.2 In-Sample Analysis

GCE Innovations The AR(1)-GARCH(1,1) model is firstly fitted with GCE
innovations. For each index, five different models are estimated according to the
involved parameters in the GCE density to compare the risk measure performance
with larger expansions. The first model considers the d3 and d4 parameters, as in
most financial applications. Then, a new parameter is added in each model until the
fifth model, which considers parameters from d3 to d8. Considering the four series,
a total of 20 models, denoted by ML(1)–ML(20), were estimated by ML. Results
are not provided for the sake of saving space but are available upon request.

STE Innovations Table 2 contains the estimations of the AR(1)-GARCH(1,1)
model with STE innovations. The first model includes δ1, δ2, and δ3 parameters.
Subsequently, a new parameter is added in each model, and the sixth model
incorporates from δ1 parameter to δ8 parameter. In this case, a total of 24 models—
ML(21)–ML(44)—were estimated by ML. The δ1 parameter, related to the mean,
is significant and positive in all cases, except for the Commodity index. The δ2
parameter is negative and significant in all cases. This may be explained because
the degrees of freedom estimation vary between 7 and 10 for the analyzed returns.

Thus, the ratio v/(v − 2) results to be greater than the second moment of the
empirical distribution. The δ3 parameter is negative and significant in all cases. This
parameter is related to the asymmetry and represents the leverage effect of financial
returns. The δ4 parameter results to be significant in all the expansions for theMetals
and Commodity indices, while for the World Energy index, it is significant only
in the fourth and fifth-order expansions, this parameter is related to the shape of
the tails in returns. On the other hand, for the Commodity index, this parameter is
significant when the expansions of orders six and seven are involved. In summary,
the estimation of the δ4 parameter is positive in expansions of orders four and five
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for all cases. For higher orders, the estimation turns out to be negative. This implies
that the pointing and the shape of the tail shifts as higher order polynomials are
involved in the estimation. Regarding the other parameters, δ5 estimation presents
a positive sign in every case, whereas the δ7 parameter estimation is not significant
but remains positive. The δ6 parameter is significant in most cases, and it is negative.
The δ8 parameter is significant for the World Energy and Commodity indices, with
a positive sign when expansions of orders two, four, and six are jointly estimated.

According to the log-likelihood and AIC criteria, the STE distribution with
the first four-order expansion is the model that best fits the whole sample for all
the analyzed indices. This is in line with results obtained for GCE density. The
significance of the estimated parameters for STE innovations highlights that the SNP
distributions better capture asymmetry, heavy-tails, and multimodality in the tails.
This is confirmed in Fig. 1 that depicts the fit for the left tails of the standardized
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returns. The plots provided the comparison of the larger GCE and STE with their
respective basis distributions, the normal and standard Student’s t.

The plot highlights the outstanding performance of the expansions, especially the
STE, for fitting both the peak at the mean and the behavior of the tails. This evidence
has a remarkable implication for risk management purposes since underestimating
the impact of the extreme values will not enable the model to anticipate extreme
losses and could lead to bankruptcy.

3.3 Backtesting

This section presents the backtesting validation techniques applied through a rolling
window of 500 days on a backtesting period of 5800 observations for World Energy
and World Metals & Mining indices, 6800 observations for Metals index, and 7100
observations for Commodity index. The analysis covers the comparison between
different versions of the GCE, the STE, and their respective basis distributions as
the benchmark. Notably, we consider the most widely used GCE with two versions
with 3 and 4 parameters. For the case of GCE we choose parameters d3, d4, d6,
and d8 (since a single parameter seems to be enough to capture skewness) and
for the case of STE we consider δ1, δ2, δ3, and δ4 (since the properties for higher
moments should be studied, emphasizing on the importance of the correlations of
all parameters with v). We employ the traditional Kupiec and Independence tests
for testing purposes, which have been consistent with the results of new and more
sophisticated techniques for validating VaR amounts. Moreover, we apply the recent
methodology proposed by Acerbi and Székely [27] to test ES, and it seems to be an
adequate technique considering the lack of elicitability property for ES itself.

VaR Backtesting Results Following the recommendation of the Basel Committee,
the backtesting displayed in Table 3 is validating at VaR at 99% (backtesting at
97.5% provides similar, and these results are available upon request). For the models
in red (green) the null is rejected (not rejected). As expected, the normal distribution
performs the worst. For Student’s t, the results are better. There is no statistical
evidence to reject the null hypothesis of the Kupiec and the independence tests
for Metals and Commodity indices. For the case of GCE distribution with three-
and four-order expansion, the null hypothesis for the Kupiec and independence test
cannot be rejected for the Metals and World Metals & Mining indices. For larger
expansions, GCE truncated up to the sixth order does not perform well for all cases.
In contrast, the largest expansion considered in our applications only works well for
the World Metals & Mining index. This is consistent with the in-sample analysis,
where the larger expansions did not provide significant improvements. The STE
density that considers the first four parameters performs the best, while STE with
the first three parameters works well for the World Energy and World Metals &
Mining indices.
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Table 3 99%-VaR backtesting. Kupiec and independence tests

ev is the expected number of exceptions. V and VR are the number and ratio of violations,
respectively. The critical value of the Kupiec test (KT) is 3.84. The critical value of the
Independence test (IT) is 5.99. For Kupiec’s test, the null hypothesis implies correct VaR
exceedances. In the independence test, the null hypothesis implies correct and independent
exceedances

Table 4 Backtesting of ES at 97.5%. Test Zes

The backtesting period (T) and the critical value (cv) for the test are displayed in the third row of
the table. The Null hypothesis is rejected when the estimated test is greater than the cv

ES Backtesting Results For ES testing, we employ Acerbi and Székely [27]
proposal, where the model performs well if the ZES statistic—Eq. (22)—is close
to zero, otherwise, the model underestimates risk if it is significantly negative.
Therefore, the critical value is approximately−0.24 calculated by employingMonte
Carlo simulation. For more details about the calculation of the critical value, see
the algorithm proposed in Acerbi and Székely [27] and the references therein. The
results show that normal and Student’s t underpredict risk in all cases. Again, the
GCEwith the shortest expansion performs better than other expansions, while all the
analyzed STE expansions present adequate performance for all the indices. These
results are summarized in Table 4. For the models in red (green) the null is rejected
(not rejected).
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4 Conclusions

In general, commodities as oil and related assets present higher volatility than
equity assets. Among the reasons is greater exposure to geopolitical, climatical,
and the speculation of investors, highlighting the need to resort to models capable
of adapting to unexpected extreme losses. This study examines two important risk
measures, namely VaR and ES applied to four indices: MSCI World Energy Sector
Index (World Energy), MSCI World Metals & Mining Index (World Metals &
Mining), S&P GSCI Industrial Metals Spot Index (Metals), and the Bloomberg
Commodity Spot Index (Commodity). To this end, we filter the returns of the
indices through the AR-GARCH process with four different distributions for
the innovations: Normal and Student’s t and their respective semi-nonparametric
versions, Gram-Charlier expansion (GCE), and the Student’s t expansion (STE)
densities.

We introduce the STE in terms of the derivatives of the Student’s t and provide
some of its main properties that result in valid asymptotic approximations to the
true density and its risk measures obtained as a by-product. Mainly, we provide
its pdf and log-likelihood function for future applications and replication purposes.
Furthermore, we derive a closed-form expression to calculate ES for STE density.
Interestingly, GCE and STE distributions share multiple similarities, among them
that they are Edgeworth expansions of a weight function, the resulting polynomials
of the expansion are orthogonal to each other, the even (odd) moment of order s
depend linearly on the first s even (odd) parameters. The even polynomials are
related to kurtosis and the odd ones to asymmetry. In fact, the STE converges to
the GCE as the degrees of freedom parameter tends to infinity. This parameter is
notably higher than that of the basis Student’s t distribution and its co-movements
with the rest of the density parameters seem to be the cornerstone for the accuracy
of this expansion.

Model performance is tested through backtesting techniques. The VaR backtest-
ing is performed through the well-known Kupiec and Independence tests, while we
apply the proposal of Acerbi and Székely [27] for ES testing. The results show that
GCE and STE densities with the shortest expansions fit adequately to the empirical
distributions of the indices. In addition, STE density is the model that performs the
best in our VaR and ES backtesting results.

Consequently, we recommend the use of the STE distribution for risk measure
purposes since its capacity to anticipate extreme values originated in the commodi-
ties, energy, and metals & mining markets. Future research will be focused on
applying our proposed distribution to different assets and different ES backtesting
techniques. Moreover, the performance of STE density may be compared with other
parametric and flexible distributions.
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Predicting Housing Prices for Spanish
Regions

Paloma Taltavull de La Paz

Abstract This paper aims to forecast the long-term trend of housing prices in
the Spanish cities with more than 25,000 inhabitants, a total of 275 individual
municipalities. Based on a causal model explaining housing prices based on six
fundamental variables (changes in population, income, number of mortgages, inter-
est rates, vacant and housing prices), a pool VECM technique is used to estimate a
housing price model and calculate the ‘stable long-term price’, a central concept
defined in the formal valuation process. The model is estimated for the period
1995–2020, and the long term is approached from 2000 to 2026, so the prediction
exercise includes backcast and forecast period allowing to extract the long-term
cycle housing price have followed during last 20 years and project it further 6 years.
The analytical process follows three steps. Firstly, it identifies the cities following
a common pattern in their housing market by clustering twice the cities: (1) using
house price time series and (2) using a machine learning approach with the six
fundamental variables. Results give a comprehensible evolution of the long-term
component of housing prices, and the model also permits the understanding of the
main drivers of housing prices in each Spanish region. Clustering cities with two
statistical tools gives pretty similar results in some cities but is different in others.
The challenge of finding the correct grouping is critical to understanding the housing
market and forecasting their prices.
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1 Introduction and Motivation

The interest in knowing the future evolution of residential prices has different
motivations. On the one hand, anticipating future prices allows assessing the
residential household wealth in an economy and its potential as a generator of
consumption growth through the wealth effect [1]. On the other hand, predicting
future prices reduces uncertainty in investment markets and facilitates the movement
of capital and the decision to build.

Other relevant reasons support the interest in advancing housing prices, but one
stands out for its great relevance to the economic system. Residential prices and their
evolution are part of macroprudential policy. To the extent that housing (and real
estate in general) serves as collateral for the financing granted for its provision or
purchase, a stable property value is part of the risk assumed by the financial system.
In an economy with a developed mortgage market, correctly pricing real estate can
be vital to keeping risk levels under control and avoiding situations that can lead to a
loss of confidence with negative results for the institution or the financial system as
a whole. The reason lies in the fact that the credits backing real estate are long
term, and even if the financial institution acts correctly in granting them taking
care of their risk levels, the economic situation can change completely during their
lifetime so that operations that are robust at one point in time would fail when the
cycle changes. A massive fall in residential prices resulting from an economic or
another shock would dramatically increase the risk level of the loans granted (and
the financial assets issued on them). In contrast, a generalized increase in prices
would generate the opposite effect, encouraging the financial system to grant more
credit with very low-risk levels (at the moment), leading to increased exposure to
real estate risk. Therefore, it is understandable that there is an interest in detecting
real estate price bubbles or price corrections.

Predicting residential prices is not a simple matter. On the one hand, housing is
a highly heterogeneous good, and its value depends on different groups of factors.
The literature identifies the most relevant as location (AMM model, [48]); housing
characteristics [49]; neighbourhood and demander characteristics [2]; but also the
evolution of a set of the so-called fundamental factors ([1, 2, 3]) that determine
the existence of demand pressure (generally due to migratory movements, [50]),
and the payment capacities of potential demanders or their financial activity. It is
considered the fundamentals that delimit the evolution of prices in the long run,
although their local particularities determine the specific value levels of residential
goods. Property heterogeneity and the bundle of variables affecting housing prices
convert price prediction into a complex and challenging task.

Housing prices are critical for the financial system due to property acts as
collateral of the loan. It is why appraisal techniques have been developed and
embraced in most of the developed countries. In the Spanish system, financial
institutions take, as a reference value when granting mortgages, the value resulting
from the appraisal of the property (the so-called mortgage price, [42]). Such
calculation is under complex rules that include the precise measurement of the
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property, the location and certain adjustments that attempt to identify its market
price independently of the price that has been offered in the transaction or declared.
Valuations in Spain are calculated in real-time by institutions endorsed by the Bank
of Spain and specialized training.

The financial crisis has globally evidenced how property values can be influenced
by market shocks from stable levels (with precise valuations), towards scenarios
of extreme risk, so that interest in anticipating these shocks is growing among
institutions with macroprudential responsibility (see the alert mechanism of the
EU’s Macroeconomic Imbalance Procedure). Institutions responsible for prop-
erty valuation methodology (IVS—International Valuation Standards, white book;
TEGoVA, European Valuations Standards, blue book; RICS, red book) agree on the
relevance of determining a stable value, although only some regulations in Europe,
such as the Spanish ECO/805, include the obligation to estimate a long-term value
to serve as a guide for the granular valuations carried out. This price concept is
known as the ‘Equilibrium Value’ and would be the long-term value around which
the observed price of the property evolves.

This paper aims to estimate long-term value for housing prices in Spanish
municipalities and predict the following 5 years.

2 Previous Experiences and Evidence: Literature Review
of Housing Price Prediction

There is ample evidence of price predictability in the literature. There is also a
debate between those who advocate whether residential prices are predictable and
those who do not [4], which stems from the difficulty of approximating complex
goods’ prices and the multiple influences they receive from the environment and
their dynamics.

The literature is extensive, covering the issue of predicting prices, most of
them paying attention to price formation from different perspectives as a means
of evaluating its model and prediction. The main contributions follow the theory of
residential price behaviour and assess the effects of aggregate economic variables
(the fundamentals) on their dynamics.

Existing works explain that housing prices evolved based on their demand
fundamentals as drivers. Economic fundamentals are macroeconomic and general
variables affecting the housing market, such as demographic [51], income levels
and ability to pay [2], investment flows, inflation [52]; or market expectations
[5, 6]; with previous studies demonstrating that housing prices receive differential
effects according to territorial behaviour [2]. The indirect effect of housing prices
is spread out to the economy and society. Evidence shows that residential prices
play a relevant role in driving economic growth by developing income and wealth
effects [1, 7], and their effects are maximized at the urban level [8]. Wealth effects
have been estimated in numerous countries, and the debate remains on the table,
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with different studies finding strong wealth effects on those economies with housing
markets led by homeownership while others reject the hypothesis of wealth effect
influence [53]. Housing prices also receive influences from and would affect the
Monetary Policy. Several studies have found causality between housing prices and
lending activity [9]; and a rule relating monetary policy and property prices [10] in
the way that changes in housing prices would affect significantly macroeconomic
and financial variables through the housing price channel ([11, 12, 47]).

The impact of residential prices on the economy is amplified through the wealth
effect and liquidity channels in periods of significant overgrowth. These phases have
been referred to as bubbles ([3, 44]), and there is also a rich literature that attempts
to estimate the evolution and reasons for them ([3, 13] would be two initial papers)
and to establish mechanisms for their detection [14]. Analyses that delve deeper into
the bubble identify price reactions in the short run.

Demand fundamentals are not sufficient to justify the different dynamics by
geographical areas. The literature support that the structure and composition of the
development sector, as well as its reaction to the market price signal (the supply
response to changes in prices), are relevant factors to explain the actual evolution
of housing construction ([15, 43]). The determinants of the supply function are
construction costs and technology (coming from the production function theorem),
but also geographical aspects [16] and regulation [17], which are decisive in
identifying in which markets developers react to market signal. Regulatory structure
or/and geographical components would have more significant weight driving the
development reactions in particular markets [18, 19]. This reaction is relevant for its
subsequent effects on prices [20].

Price estimation correcting for existing spatial effects is also a very fruitful line
of work with Basu and Thibodeau [21], Anselin [22], Montero et al. [23], among
others. See [46] for a summary of this literature.

Techniques used for estimating housing prices predictions fall under an extensive
range of methods, from pure econometrics ([24–27], among others) to those
statistical ([28] using Kriging tool; Pagourtzi et al. [29] using the PYTHIA model,;
using network lasso to cluster variables). An increasing number of papers use
Machine Learning algorithms, like in Gu et al. [30] or Rico-Juan and Taltavull [31],
among others. Kauko and D’Amato [32] summarize the methods used for Mass
Appraisal.

3 Theoretical Basis

Housing markets experience a well-known pseudo-equilibrium situation derived
from a mismatch between prices in the short run and an adjustment over time. The
long-run price behaviour adopted in this paper is considered to depend on their
fundamental factors, such as changes in population, income, financing flows, and
interest rates (Mayo, 1981, [3, 4, 33], as relevant references), and adjusted for the
supply response in each municipality. Supply responses to prices are captured here



Predicting Housing Prices for Spanish Regions 147

through the vacancies, according to the housing supply literature. The model could
be represented as in Eq. (1).

phit | Hsit = �
(
�popit , Incit, h_nit , irt , μt

)
(1)

where �pop is the change in the resident population in each municipality, Inc is
the average income of the city, h_n captures capital flows for house purchases, Hs
is an indicator of housing supply and corrects for the price reaction in each market
adjusted for its idiosyncratic particularities, and ir represents the interest rate in
nominal terms. The subscript ‘i’ refers to the municipality and t to the observed
period. The function is a dynamic operator in a panel framework, which allows
the prediction of the dependent variable. This approach defines a dynamic model
representing causal relationships, used to forecast the housing price trend-cycle
to approach the ‘long-run price’. It would approximate the stable long-run value
associated with the residential market determinants in each market location.

The prediction minimizes the difference between the observed and estimated
price value with the long-term components at each point in time and location (Eq. 2).

phobs
i − p̂hi = μi (2)

where the first term, phi
obs refers to the observed price, (ph) ^i hat is the estimated

price, and μ is the error component.

4 Data

The data used in this article comes from secondary sources of Spanish statistics.
The six variables included in the long-term housing market model are: population
changes (which are the proxy for potential new demand), municipality income
(which is a proxy for the population’s ability to pay and level of income in the city),
investment flows for housing purchases (which are proxied by financial flows or
mortgages reflecting new funds coming to the market to facilitate purchase), interest
rates (which proxy for the user cost of capital), and housing supply which captures
the idiosyncratic supply elasticity response (constraining the price reaction) in each
market. House prices are measured using MITMA statistics on appraised prices
[45]. The average price per square metre is used. This information has been obtained
for Spanish cities with more than 25,000 inhabitants, 275 cities. The cities included
in the analysis are listed in the appendix. The model uses annual data, and the time
series covers 25 years, 1995–2020.

The whole period for some variables is not available, and the missing observa-
tions are extrapolated. The explanation of the data reconstruction process can be
found in Table 1 and their sources and basic statistics for each variable.

The variables allow constructing a panel with 275 cross-sections and 25 years
(1995–2020) and six variables to analyse the causal relationships between house
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prices, and four demand-oriented variables considered capturing the long-term
fundamentals and controlling for housing supply.

5 Methodology

5.1 Empirical Strategy to Estimate the Model

The econometric strategy is developed through the following steps. In the first step,
cities are clustered to find those followed the closer housing market reaction pattern
according to the literature. Three cities grouping are calculated: firstly, a clustering
based on proximity (arbitrary decision, obtaining 17 clusters); secondly, clustering
time series of prices following [34–36, 41] (obtaining eight clusters). Thirdly, using
Machine Learning range of methods; the best one based on Catboost (16 clusters).1

The second step analyses the stationarity properties of the variables through the
panel unit root tests giving, as a result, that all of them show a unit root. The third
step investigates the presence of a cointegration relationship between the variables.
Pool unit root tests developed by Levin, Lin and Chu [37] and Im, Pesaran and Shin
[38] are calculated to check the stationarity properties of the variables. LLC tests the
existence of a common unit root process across the cross-sections against the null
of no unit root, while IPS tests whether individual unit root processes exist across
the cross-sections. The first test suggests a homogeneous autoregressive root, while
IPS tests for the existence of heterogeneous autoregressive coefficient, both under
the alternative hypothesis.

After cointegration relationships are identified, Pedroni (Engle-Granger Based)
Cointegration Tests allowing for individual-specific fixed effects are applied to
test for a long-run relationship among the variables contained in the model. The
cointegration tests imply long-run relationships among variables, identifying the
causal patterns of residential market price reaction. Thus, model (3) is estimated
through a panel VECM approach to examine the causal relationship between the
variables in which the error correction term (ECT) is included in the VAR system
as an additional variable. In this step, long- and short-run causality are investigated
and serve to define the final model.

The best model is chosen in the next step regarding its predictive capacity among
those potential models, which are demonstrated to be stable (all roots inside the
circle) and LM test rejecting the null of residual serial correlation.

Model (1) is fitted through the Vector Autoregressive framework, adjusting
an Error Correction Model. Technically, the whole model captures the effects of

1 Details of the 275 cities clustered are available upon request.
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residuals in the long-run relationship (ECT) and changes in its components in the
short run. Formally, the models could be represented by (3).

�Xt = A + Xt−1�m + �Xt−j Bj + Nt (3)

or in a matrix formalization:
⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

�Phi,t

�
(
�Popi,t

)

�Ini,t

�hni,t

�iri,t

�
(
�Stocki,t

)

⎤

⎥⎥⎥⎥⎥
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If extracting the price function from the endogenous system, the functional form
is (4).

�Phit = α1 + 	1..6
[
Phit−1 + δ1,1d(Pop)it−1 + δ1,2Init−1

+δ1,3hnit−1 + δ1,4irit−1 + δ1,5d(Stock)it−1 + c1
]

+∑j

i=1βj�Xit−j + μ1,t

(4)

where X is a matrix including the variables in the model so that X={ph, �(Pop),
Inc, h_n, int, �(stock)}, the subscript ‘i’ refers to the city, m is the number of
variables in the model (m = 6). In specification (3), the matrix expression reflects
the structure of the computed system of endogenous equations.

The first component on the right-hand side of Eq. (4) is the long-run relationship.
If it exists and is statistically significant, it represents the long-term causal pattern
that quantifies how long-term prices contribute to equilibrium convergence in the
short run. There can be more than one long-term relationship, so the omega
parameter can take different values depending on calculated ‘n’ relationships.
Each long-run relationship would be capturing an economic mechanism that acts
autonomously on the evolution of prices in each cluster of cities. These mechanisms
show permanent effects on the dependent variable. The second component is known
as the Error Correction and captures the short-run reactions. This block identifies
and quantifies the factors that produce deviations from equilibrium in the short run
and have temporary effects. The number of lags is computed as ‘j’. It is possible
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to determine the short-term causality through the significance of the lagged error
correction term based on the t-test.

Each model is estimated separately for each cluster, in which the test mentioned
above is calculated to define the final cluster-model functional form. Models should
fulfil the following conditions: (1) Be stable (all roots into the circle) and VEC
residual normality test failing to reject the null of multivariate normal. (2) The
lowest number of lags, in case of inconclusive VAR lag Order Criteria (including
LR, FPE, AIC, SC AND HQ tests) and (3) having the lowest AIC tests of the full
model.

When multiple estimated models are fulfilling the conditions, the final model
chosen for use in the forecasting step is the better predictions and lower error
predicting the out-of-sample data one (trial data are in the three last years). As
the objective is to extend the long-term cycle by forecasting the period further
to the observed data (predicting the future), when multiple potential models are
acceptable, the choice is made by the expert judgement approach [39]. The model
is estimated starting in the earlier period (backcast prediction), seeking to identify
whether the future model prediction is consistent with the previous long-term cycle
observed in the data. This decision is taken to reduce the subjectivity implicit in the
judgement approach.

5.2 Forecast Methodology

Model (3) is fitted separately for each group of municipalities required, and the
forecast is calculated as in (5).

�P̂ht+k = α̂1 + ̂	1..n

[
Pht+k−1 + δ̂1,1d(Pop)t+k−1 + δ̂1,2Int+k−1

+δ̂1,3hnt+k−1 + δ̂1,4irt+k−1 + δ̂1,5d(Stock)t+k−1 + ĉ1
]

+
∑j

i=1
β̂i�Xt+k−j

(5)

where ‘k’ is the number of future periods calculated, and the sign ˆ(hat) refers to
the estimated value. Note that this methodology predicts all the variables and uses
each of the predictions in one period to calculate the next period according to the
estimated model, where the first prediction is the one made with the parameters
set in the base period. These multiple predictions allow assessing whether the
future quantification is according to the economic logic. The forecast method is
multidirectional based on performing a dynamic-stochastic simulation using the
estimated model, following Broyden solver with iterative calculations until reaching
the convergence (allowed a maximum of 5000 iterations) at 95% of the confidence
interval. The covariance matrix is scaled to equation specified variances, and the
system allows for a maximum of 1000 repetitions converging to (1/1e8).
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The model is accepted depending on the forecast precision in two steps. The first
step evaluates the out-of-sample prediction during the period 2017–2020. The model
with better precission (lower error) is the chosen and which fulfils two conditions of
having large explanatory capacity (R2) and lower AIC test. The second condition is
when the backcast prediction from 2000 to 2020 gives a long-term cycle with lower
errors. The RMA measures errors.

6 Results Empirical Evidence

The entire exercise has produced three groups of predictions estimated over the
three cluster methods of the cities explained above. The first corresponds with the
naïve forecast based on the arbitrary aggregation of cities. The second is made
using clustering based on housing prices time series, and the third corresponds with
clustering based on machine learning methods.

Figures 1 and 2 represent the estimation results in a selected number of cities
estimated in the second grouping (clustering based on time series) with the dynamic
prediction made for the model’s backcast and forecast for the period 2004–2026. A
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comparison of the forecast estimated in the three grouping for selected cities is in
Fig. 3.2

6.1 Discussion

Forecast housing prices requires a complex estimation. Firstly, the causal model
explaining the long-term trend of housing prices identifies common housing price
patterns in a particular group of cities, suggesting that each market receives shocks

2 Full results are not presented here due to the limited space. They are available upon request.
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from fundamental variables and generates the reaction of prices similarly but pretty
closer in each group of cities. Those could be interpreted as that housing prices
react to distinct stimuli from fundamentals following a long-term pattern and
that patterns represent both economic and idiosyncratic features combination. The
exercise demonstrates similar patterns in the housing price reaction across Spain and
not necessarily associated with physical proximity and that the prediction is feasible
and very accurate in some areas. The prediction errors are found to be the lowest
in the two Spanish archipelagos, Bask Country and central cities, which confirms
the general belief that proximity (and accessibility as the ripple effect principles
support) acts as a convergence channel in housing prices and fundamentals in
particular areas with some degree of isolation, although not in others.

The clusters of municipalities calculated reveal group of cities with common
reactions of their housing prices to changes in key variables so-called fundamentals.
Cluster shows different patterns of price responses between them, but capture those
municipalities with close housing price responses whithin them, that is showing
those with a common pattern. The aggregation of cities made through statistical
tools does capture the common housing market patterns, allowing us to estimate the
long-term trend of housing prices and the potential deviations from the equilibrium
in each city due to idiosyncratic features. However, it fails in classifying some of
the cities accordingly.

In addition, the method is critical to determine the trend in the future. Clustering
using the dependent variable time series fits better the data but tends to estimate an
upward trend for prices. On the contrary, clustering using machine learning methods
combining the six fundamental variables time series gives more smooth long-term
cycles. Both clustering methods produce more accurate and closed results than a
baseline prediction in general.

This analysis represents the first attempt to estimate the long-term cycle for
housing prices in Spain at the municipal level and their forecast, as well as it sets
a methodology to advance the trend of prices allowing to prevent future shocks
affecting housing prices, with its strong effects on the financial system. It serves
to make decisions at a macroprudential policy level. The critical issue to obtain
accurate predictions is determining the standard pattern to which every city pertains,
which offers better precision.

7 Conclusions

This paper contains an empirical application of a method to forecast the future
evolution of residential prices for 270 municipalities in Spain, grouped according
to relevant parameters. This paper is the first one providing a precise forecast of
long-term housing prices at the municipality level.

The estimation uses annual information from 1995 to 2020 in residential prices,
interest rates, and mortgage concessions. It applies non-stationary time-series
forecasting methods based on a conventional long-run behavioural model based on
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fundamentals, according to the main variables identified by the literature as long-run
drivers of housing prices.

The analysis strategy consists of applying a Vector Error Correction model
(VECM) to estimate the housing price long-term trend through forecasting and
backcasting the observed data. The model allows forecasting 6 years onwards based
on the behavioural mechanisms that have been identified by the model chosen with
the best functional form (with lower error) fitting the actual data used.

For the modelling, municipalities are grouped. The groups are built, firstly
arbitrarily (grouping by proximity), and secondly by calculating clusters based on
(1) residential prices, time-series clusters and (2) machine learning approach, using
the six time-series variables. Seventeen clusters were chosen in the first grouping
method, 8 in the second case and 16 in the latter. In each estimated cluster model,
the method identifies two types of influences, on housing prices. The first is the
long-run relationships calculated as cointegrating relationships (linear combinations
representing a stable and permanent long-run relationship between variables) that
determine the fundamental evolution of prices in the long run. The second group
identifies the short-term effects of changes in the variables on price developments
and is responsible for the equilibrium’s price deviation. These short-run components
are considered to have transitory effects.

The best model for 1995–2017 is selected for the forecast estimation phase
and done in two steps. Firstly, forecasting out-of-sample 2017–2020 period and
secondly, with a backcast estimation from 2004 to 2026 applying the estimated
parameters. As VECMs are a dynamic system of equations with endogenous
variables, their structure allows predicting the actual data. Broyden algorithm has
been used, with a maximum of 5000 iterations until convergence is reached in the
parameters to obtain a dynamic solution. Results suggest:

– Less accuracy in the models resulting from the first grouping (grouping by
proximity). Inaccurate prediction appears in a more significant number of
municipalities than in the other two grouping methods.

– The second prediction is more accurate than the third. In most municipalities, it
can adjust the evolution of house prices with minor deviations and shallow errors.

– There are a low number of cities where the third estimate is the best accurate.
Nevertheless, the third prediction shows better accuracy in the long-term cycle
than the second forecast in 40% of cases.

The forecasting exercise reveals the economic mechanisms leading housing
markets in the groups of municipalities. In each of them, the behaviour of housing
markets in the long and short term has been disentangled, identifying those hidden
patterns that act permanently and the sources of short-term price deviations.

The detailed analysis allows identifying two types of reactions across Spanish
municipalities that lead the responses of residential prices. These reactions are found
in different markets and allow us to understand the dynamics in cities. Interestingly,
cities are grouped with others far away, contradicting the principle of proximity to
determine housing prices and supporting the evidence of ripple effect [40].
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The inference derived from the different mechanisms is consistent and reflects
a heterogeneous group of responses that affect the diversity of the mechanisms at
work in Spanish housing markets.
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Optimal Combination Forecast for
Bitcoin Dollars Time Series

Marwan Abdul Hameed Ashour and Iman A. H. Aldahhan

Abstract Bitcoin has been the most used blockchain platform in business and
finance in recent years. This paper aims to find a reliable prediction model that
improves a combination of prediction models. Exponential smoothing, ARIMA,
artificial neural networks (ANNs) models, and forecasts combination models are
among the techniques used in this Paper. The effect of artificial intelligence models
in enhancing the results of compound prediction models is the study’s most obvious
finding. The second major finding was that a model of a robust combination
forecasting model that responds to the many variations that occur in the bitcoin
time series and Error improvement should be adopted. The results of the prediction
accuracy criterion and matching curve fitting in this paper showed that if the
residuals of the changed model are white noise, the forecasts are unbiased. A future
study investigating robust combination forecasting would be very interesting.

Keywords Exponential smoothing · ARIMA model · ANNs · Combination
forecast · Optimization · Robust predictions

1 Introduction

In recent years, there has been a growing interest in forecasting economic and
financial time series data which is a challenging task due to uncertain events or
incomplete information in current economies. The volatility in time series is high in
this situation. Authors have over time applied increasingly sophisticated predicting
techniques to predict it more accurately. The most common cryptocurrency in the
world is Bitcoin.
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Since Bitcoin values are highly volatile, we need to use a robust model. Using
many different approaches on the same time series and averaging the resulting
predictions is a simple way to increase forecast accuracy.

John Bates and Clive Granger wrote a famous paper, showing that combining
forecasts often leads to better forecast accuracy. In recent years, Clemen wrote
the results almost universal agreement exists that integrating numerous forecasts
improves forecast accuracy. By merely averaging the projections, one may often
increase performance dramatically. Time series forecasting may also be done using
ARIMAmodels. The two most generally used techniques for time series forecasting
are exponential smoothing, ARIMA, and artificial neural network models, which
provide complementary approaches to the problem. ARIMA models try to charac-
terize the autocorrelations in the data, whereas exponential smoothing methods are
based on a description of the data’s trend and seasonality.

Artificial neural networks (ANNs) are one of the nonlinear models and are
the foundation of artificial intelligence (AI). It has the property of self-learning
and adaptation. Research efforts on neural networks as forecasting models are
commendable, and many studies have reported on the use of ANNs for forecasting.
Although some theoretical and empirical issues remain unresolved, the field of
neural network forecasting has unquestionably advanced over the last decade. It
is not surprising that the next decade will see even more progress and success.

Previous studies have primarily concentrated on Comparison between traditional
(exponential smoothing, ARIMA) and modern models (artificial neural network
ANN) of forecasting methods to determine the best model, without interest in the
fluctuations in time series behavior that may arise in the future [1–7].

The contribution of this study is obvious as the resulting outcomes can be
capitalized as guidelines for Comparison between traditional and modern models
of prediction methods.

In this paper, the well-known implementation of actual data collected from
the period January 2018 to February 2021, which is the closing price data for
Bitcoin (digital currency). This paper is divided into five sections: introduction (the
objective of the study, and literature review), theoretical, implementation, analysis,
and conclusion.

2 Method

2.1 Exponential Smoothing Model

Exponential smoothing is a method for forecasting time series based on univariate
observations that can be applied to data with a systemic trend or seasonal compound.
It is a strong method of forecasting that can be used as an alternative to the common
Box-Jenkins ARIMA family of methods.

To forecast data with trends, Holt expanded single exponential smoothing to
linear exponential smoothing with trends. Holt’s linear exponential smoothing
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consists of two constants, α and β (with values between 0,1), and three equations
[8–10]:

Lt = αyt + (1 − α) (Lt−1 + bt−1) (1)

bt = β (Lt − Lt−1) + (1 − β) bt−1 (2)

Ft+m = It + btm (3)

where:
yt= time series
Lt:estimation of the time series level at time t.
bt : an estimate of the slop time series at time t.
Ft + m : forecast at time t + m.

2.2 Optimization

The majority of exponential smoothing techniques need the definition of several
smoothing parameters (constant). These determine how quickly the forecast reacts
to changes in data. Because the computer time required to optimize these parameters
was so costly, methods involving more than one or two parameters were seldom
employed, and parameter values were limited to a narrow number of options.
With the introduction of considerably quicker commutes, choosing a nonlinear
optimization technique to optimize parameters is rather simple. All competent
forecasting software will automatically optimize parameter values [7, 11–13].

2.3 ARIMA Model

A variable’s future value is supposed to be a linear function of many past
observations and random errors in an autoregressive integrated moving average
model. As a result, a nonseasonal time series can be modeled as a mixture of past
values and errors, which can be expressed as ARIMA (p,d,q) or as follows [1, 8, 11,
14, 15]:

∅(B)(1 − B)dyt = θ(B)∈t (4)
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Fig. 1 ARIMA model methodology

where:
yt : is the time series
∈t: error
B: backward shift operator.
p: order of the autoregressive part.
d: a degree of first differencing involved.
q: order of the moving average part.
Figure 1 illustrates the methodology for the ARIMA model.

2.4 Artificial Neural Network

An artificial neural network (ANN) is a computing framework inspired by a
biological neural system and is made up of small, interacting processors known as
neurons. Weighted connections bind the neurons, allowing signals to flow through
them. Each neuron receives multiple inputs proportional to its contact weights from
other neurons and produces a single output that can be propagated to multiple
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other neurons. An artificial neural network is capable of learning and generalizing
relationships in a data set, as well as providing fast and accurate estimates.

In computing applications, the Back Propagation Neural Network (BP) is the
most widely used neural network technique. It’s a multilayer artificial neural
network (ANN) with a feed-forward connection from the input layer to the hidden
layers and finally to the output layer. The BP algorithm aims to reduce the mean
square error between the forecast and desired outputs. Figure 2 shows the structure
of the BP.

2.5 Forecast’s Combination

Combining data enhances predicting accuracy without a doubt. This empirical
observation holds when it comes to statistical forecasting, judging estimations, and
averaging statistical and subjective forecasts. Also, combining results in a significant
reduction in the variance of post-sample forecasting inaccuracy. The empirical
findings contradict the statistical theory, requiring a reassessment of what constitutes
effective forecasting methods and how they should be used [3, 8, 16].

Forecasting is combined as well as the best mix of forecasting. Furthermore,
the root means square error (RMSE), which measures the variance or level of
uncertainty in our forecast, is lower with a simple combination than with either
the individual approach or the best combination. The rationale for this is that the
average reduces the RMSE by canceling big prediction errors. The fact that a simple
combination decreases the RMSE of the post-sample forecast is another incentive
to use it in reality; reduced error equals less uncertainty, which translates to smaller
inventories and, thus, minimizes costs [1, 3, 6, 8].
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2.6 Measuring Forecast Accuracy

In most forecasting situations, accuracy is treated as an overarching criterion for the
selection of the forecasting method. In many cases, the word “accuracy” refers to
“goodness of fit,” which in turn refers to the extent to which the forecasting model
can reproduce the data already known to the forecast consumer. The accuracy of
the future forecast is the most important thing. The most common measure of error
accuracy is [1, 8, 10, 16, 17]:

Root mean squared error (RMSE)

RMSE =
√∑n

i=1 (yt − ft )
2

n
(5)

Mean Absolute Percentage Error (MAPE)

MAPE = 1

n

n∑
i=1

√
yt − ft

yt

(6)

R2 = 1 − RSS

T SS
(7)

where:
n: number of observations (number of non-missing data points)
yt: actual value
ft: forecast value
R2: coefficient of determination
RSS: sum of squares of residuals.
TSS: the total sum of squares.

3 Results and Discussion

Figure 3 presents the time series from 1/1/2018 to 18/2/2021 for bitcoin’s daily
closed price (Source data: the wall street journal website).

As shown in Fig. 3 there is a clear trend in time series, the closed price of bitcoin
is rising significantly between the end of 2020 and the end of 2021, with a slight
decline at the end of February. Because of the high level of volatility in the market,
such as during the COVID-19 pandemic, there is inconsistency in the actions of the
bitcoin closing price sequence. The following are the forecasting methods’ findings
for the time series under study:
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Fig. 3 Closed price bitcoin series

Table 1 Optimal parameter
of Holt model

Optimal parameter Estimate

α 0.98
β 0.18

Table 2 Model fit statistics
of Holt model

Model fit statistics
R2 RMSE MAPE

0.994 600.864 2.63

3.1 Exponential Smoothing Model Result

Figure 3 illustrates the series has a linear trend, so the best model is Holt’s linear
exponential smoothing. Use a statistical program (V.12) to find optimal parameters,
and the results are as follows (Table 1).

The results of the evaluation of this model were as follows (Table 2):
The finding of the present study suggests that it is clear from the result that

significant parameter and the ACF and PACF coefficients of the residues are random
behavior and white noise. This model is appropriate and the best (Figs. 4 and 5).

3.2 ARIMA Model Result

The best ARIMA model for the time series under research is ARIMA (1,0,0), based
on the analysis of ACF and PACF. The ARIMA model was computed using SPSS
(V.23), and the model parameter estimates are shown in Table 3.
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Fig. 5 Curve fitting of exponential smoothing model

Table 3 ARIMA model
parameters

Estimate SE t Sig.

0.96 .002 634.324 .00
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Table 4 Model fit statistics
of ARIMA model

R2 RMSE MAPE

0.994 605.626 2.64

Fig. 6 Autocorrection and partial autocorrection function for residual

The results of the evaluation of this model were as follows (Table 4):
Thus, the mathematical model of the ARIMAmodel is according to the following

formula:

yt = 0.99 yt−1 + ∈t (8)

The findings suggest that it was found that the ACF and PACF of the residuals
are random behavior and white noise, and the significance of the Ljung-Box test,
and curve fiiting (Figs. 6 and 7), the estimated model is the best.
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Fig. 7 Curve fitting of ARIMA model

Table 5 Accuracy error of
ANN model

R2 RMSE MAPE

0.997 502.95 2.53

3.3 Artificial Neural Networks

MATLAB was used to provide the following results for the time series under search
from the BP:

Input layer: This layer has one node, which is represented by the variables yt − 1,
with a one-degree time series lag.

Hidden layer: The maximum number of nodes in this layer is 15, and there is
only one layer (after several trials).

The output layer consists of only one node, which is represented by the yt vector.
Figures 3 and 4 show the performer’s performance for the BP network for the
time series under consideration. Table 5 shows the results of the error evaluation
by comparing the two methods used.

Time series response and the response of output element for time series are shown
in Fig. 8.

From the data in Fig. 8, it is apparent that network evaluation results are
significant. It appears from Table 5 that the error accuracy results are good (Fig.
9).
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Fig. 8 Performance of ANN

Fig. 9 Curve fitting of ANN
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3.4 Combination Model Result

In this section two combination models will be used, the first includes the traditional
models only and the second includes the traditional and modern models.

Model I
The first model includes ARIMA and exponential smoothing, based on the error
weight of each model. Therefore, the mathematical model is as follows:

ct+1 = w1ARIMA (1, 0, 0) + w2EXP (9)

ct+1 = 0.49 (0.99yt )

+0.51 (0.98yt + 0.02 (It−1 + bt−1) + 0.18 (It − It−1) + 0.82bt−1)
(10)

Table 6 demonstrates that the evaluation of model I.

Model II
The combination model combines ANN, ARIMA, and exponential smoothing.
based on the error weight of each model. Therefore, the mathematical model is
as follows:

ct+1 = w1ANN + w2ARIMA (1, 0, 0) + w3EXP (11)

ct+1 = 0.34 [t] + 0.32 (0.99yt )

+0.34 (0.98yt + 0.02 (It−1 + bt−1) + 0.18 (It − It−1) + 0.82bt−1)

(12)

where:
t: output of ANN
Table 6 provides the results of the evaluation of this model.

As Table 6 shows, there is a significant difference between the two models.
The combination model that includes artificial neural network models enables error
minimization.

The author found that modern models (ANN) have improved error results, which
is in good agreement with the results of the present study. The finding provides
evidence of the efficiency of the results of traditional and modern models.

Table 7 demonstrates the prediction values for the next 25 days.

Table 6 Fit statistics of two
combination model

Models Criteria
R2 RMSE MAPE

Model I 0.994 603.25 2.63
Model II 0.995 467.09 2.59
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Table 7 Forecasting values Period Forecast

02/27/21 48,476.98
02/28/21 48,789.19
03/01/21 49,101.41
03/02/21 49,413.62
03/03/21 49,725.83
03/04/21 50,038.04
03/05/21 50,350.25
03/06/21 50,662.47
03/07/21 50,974.68
03/08/21 51,286.89
03/09/21 51,599.1
03/10/21 51,911.32
03/11/21 52,223.53
03/12/21 52,535.74
03/13/21 52,847.95
03/14/21 53,160.17
03/15/21 53,472.38
03/16/21 53,784.59
03/17/21 54,096.8
03/18/21 54,409.02
03/19/21 54,721.23
03/20/21 55,033.44
03/21/21 55,345.65
03/22/21 55,657.86
03/23/21 55,970.08

4 Conclusion

Important conclusions drawn from this work include:

1. These findings suggest that in general all traditional and modern methods are
competitive and have proven to be efficient.

2. The relevance of the combination model is supported by the current findings.
3. The results of this study indicate that artificial neural network models minimize

error and improve the results of the model compound.
4. The results of this investigation show that residual behavior is white noise.
5. The results of this study also suggest that the combination model with ANN is

best the model.
6. The results presented here may facilitate improvements in the forecasting and

adopt a model of a robust forecasting model that replies to the many fluctuations
that occur in the bitcoin time series.
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The Impact of the Hungarian Retail Debt
Program

An Estimation of the Past and Future Effects of the
Retail Sector on Hungarian Public Debt

Bianka Biró, Dávid Tran, András Stark, and András Bebes

Abstract This paper presents an analysis of both the past and future of the
Hungarian retail debt program from a cost-risk standpoint. A quarter of the
Hungarian central government debt is held through retail securities. From purely
a nominal coupon point of view and analyzed in isolation, retail debt seems to be
a comparatively more expensive form of funding. The paper has two goals. First,
to estimate the historical cost of the retail debt program compared to alternative
domestic sources of funding, taking portfolio effects and risks into account. Second,
to simulate the future effects of retail debt based on security-level transaction data
and a Vector Error Correction macroeconomic model in order to utilize quantitative
tools for the perspective rethink of the retail debt strategy once the current strategic
objectives are achieved in the near future.

Keywords Public debt · Retail debt program · Household assets ·
Macroeconomics forecasting · Vector error correction model

1 Introduction

The mission of the Hungarian Government Debt Management Agency (“ÁKK”)
is to finance Hungary’s central government (“CG”) debt at the lowest possible
cost with acceptable risks. ÁKK is acting on behalf of Hungary when managing
Hungary’s CG debt, that amounted to HUF 36,684 billion or 77% of the GDP at the
end of 2020. Of this debt, approximately 26% was in retail securities, a sizeable
increase compared to the 2.3% figure of end-2011. Simultaneously, during this
period the share of FX debt decreased from nearly 50% to under 20%. This shift,
however, required Hungary to pay a higher interest rate for retail debt compared

B. Biró · D. Tran · A. Stark · A. Bebes (�)
Government Debt Management Agency Pte. Ltd., Budapest, Hungary
e-mail: bebes.andras@akk.hu; strategia@akk.hu
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to domestic wholesale government securities with similar maturities. The average
interest of HUF retail debt was approximately 4.2% compared to the 2.5% of
domestic wholesale domestic bonds, while the average term-to-maturity of the
former was only 3.1 years as opposed to the 5.6 years of wholesale domestic bonds
as of December 31, 2020.

However, due to limited demand for domestic wholesale bonds taking into
account the Government’s strategic objective to gradually reduce foreign partici-
pation, it has to be investigated whether the realistic alternative to retail financing
is wholesale domestic bonds or FX debt. The latter is a higher risk alternative
compared to the perceived stability and diversification advantage of having the retail
sector as a significant source of financing.

The goal of this paper is twofold. First, to estimate the historical cost of the retail
debt program compared to alternative sources of funding, taking portfolio effects,
and risks into account. Second, to calculate the future effects of the Hungarian retail
debt program from the end of 2020 to the end of 2025.

2 The Hungarian Retail Debt Program

2.1 Main Objectives

The Government considers the expansion of outstanding debt owned by households
a key objective since 2012. The share of retail securities dropped from the 7.3%
figure of 1999 to 2.3% by end-2011 due to competing investment products and the
relatively low interest rates of retail securities compared to the domestic wholesale
market.

The primary goals of the retail debt program are to improve the attitude of the
household sector regarding savings and investment, diversify the investment base
of government debt in order to make funding more diverse and secure, reduce FX
exposure, and comparatively reduce the reliance on the wholesale HUF government
bond market.

In order to reverse the 1999–2012 downwards trend, retail debt had to be made
into an attractive investment opportunity through product development, better and
cheaper accessibility through financial institutions and also directly via the Hun-
garian State Treasury’s branch network and electronic platforms as well as higher
yields compared to competing investment products. Consistently providing positive
real interest rates for the household sector has been the primary consideration behind
the pricing of retail securities to ensure financial inclusion of the widest possible
range of retail investors. This economic policy goal, against the backdrop of the
prevailing negative real interest rate environment globally are the two main factors
behind the higher cost of retail debt compared to the domestic wholesale market
rates.
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The favorable conditions and security of retail debt also offer households a
viable alternative to holding cash or bank deposits. Reducing the sizeable and
unproductive cash reserves of the household sector is another important objective
of economic policy that the retail debt program can support. Therefore, in this
analysis, it is assumed that demand for retail instruments is the primary factor
driving the outstanding retail debt, and ÁKK readily accepts all demand without
further consideration.

2.2 The Retail Debt Portfolio

The Hungarian retail debt portfolio consists of several different instruments. The
flagship product MÁP+ is a 5-year step-up coupon bond with a 4.95% internal
rate of return (if held until maturity) that can be redeemed at face value at interest
payment dates. Interest is automatically reinvested into the bond. PMÁP is an
inflation-linked bond with 3- and 5-year tenors. They at present pay a 1% and
a 1.25% premium over Hungarian CPI, respectively. They have 3- and 5-year
EUR-denominated equivalents (“PEMÁP”) as well with a premium over the Euro
Area CPI. A 1-year security (“1MÁP”) is also available. It is Pareto-dominated
by the MÁP+ from an investor standpoint, and yet, its demand is significant.
Three materialized (printed) securities exist as well, one equivalent to the MÁP+
(“NYMÁP+”) as well as a 1- and a 2-year security (“KTJ1, KTJ2”), both largely
inferior to the MÁP+ or its printed version. Rounding out the portfolio is the Baby
Bond (“BABA”), an inflation-linked bond with a 3% premium that can be bought
for children under 18. Approximately 90% of the retail debt portfolio consists of
MÁP+, PMÁP, and 1MÁP, with MÁP+ being 53% by itself.

3 The Historical Cost of Retail Debt

By 2012, the share of retail securities in the debt portfolio dropped to 2.3%.
Concurrently, the share of government securities in the total assets of households
was also 2.3%, down from the 5.4% figure of 2008. It is safe to assume that
without an improved retail debt program consisting of higher interest rates, product
development and extra marketing activities, the share of government securities in
household assets would not have reached the end-2020 figure of 13.8%.
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3.1 Methodology

ÁKK conducted a what-if simulation based on these assumptions and historical
Hungarian Government Bond auction data. Since the goal of the simulation was
to estimate the real extra cost of the retail debt program, ÁKK aimed to compare
the realized costs of retail and domestic wholesale debt with the costs of a
hypothetically lower (in both outstanding amount and interest rates) retail debt and
extra issuances in the domestic wholesale market. The simulation consists of two
main phases. First, it was necessary to simulate the retail debt without the improved
retail debt program along with its costs. Second, based on the funding gap left by
lower retail issuances, ÁKK simulated the modified domestic wholesale issuances
considering the new, mostly higher amounts and yields. As the reduction of FX debt
was a strategic goal of the government, no extra FX issuance is considered.

ÁKK assumed that in the absence of an improved retail program, starting from
2012, the initial 2.3% proportion of government securities in household assets would
have risen linearly to 5.4% by the end of 2014 and would have remained unchanged
until the end of 2020. According to this assumption, the amount of government
securities owned by households would have reached HUF 3,563 billion by the end
of 2020, leaving a gap of HUF 5,555 billion compared to the factual value of HUF
9,118 billion, as shown in Fig. 1.

Assuming also that the retail debt structure would have not changed over
the years in the absence of product development, it is possible to estimate the
hypothetical costs of retail financing as well.

The difference between the observed and hypothetical retail debt volume repre-
sents the surplus that would have had to be financed through the domestic wholesale
market. The conducted simulation is based on ÁKK’s historical auction data from
2012 to 2020, containing the bid amounts and yields of primary dealers with the
accepted amounts and yields for each auctions. In the analysis, ÁKK simulated the
possible domestic wholesale issuances that would have been necessary without the
enhanced retail financing, also considering the impact of higher issued amounts

Fig. 1 Volume of government securities owned by households. Source: NBH, ÁKK
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on the yields. The simulation has three main steps. First, an adjustment was made
on the bids by taking into account that a lower retail debt volume would have
resulted in a higher volume of cash and bank deposits, increasing the demand
for government bonds from the primary dealers’ side. Second, the new accepted
amounts and the corresponding yields were calculated based on the adjusted bids
and increased financing need. Third, an adjustment was added to the new yields,
with a consideration that higher auction yields for several consequent auctions could
have had an increasing effect on the bid yields of the following auctions, resulting
in even higher auction yields.

When estimating the possible volume of cash and bank deposits, it was assumed
that similarly to other retail asset types, it could have followed a similar quadratic
trend as the total household assets. Given that between 2012 and 2020, the volume
of total household assets can be estimated by the polynomial

F(x) = 16x2 + 358.52x + 32, 044, (1)

where x is the number of quarters starting from 2012 (Fig. 2).
Based on historical data, it was assumed that the share of cash and bank deposit

volume could have stayed around 30% of the total household assets. The simulated
volume can be given by

DS(x) = 4.8x2 + 107.56x + 10, 681. (2)

Denoting the observed cash and bank deposit volume by D and the applicable
adjustment by r, the latter is given by

r(i) = DS(i)

D(i)
(3)

Fig. 2 Observed and simulated household assets, cash and bank deposits. Source: NBH, ÁKK
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Fig. 3 Extra issuances vs. the Treasury Single Account. Source: ÁKK

at the ith auction. Suppose that there are d primary dealers, m papers. Let us denote
the original submitted bid amount of primary dealer k for paper j on the ith auction
by AB(i, j, k). Thus, the adjusted bid amounts can be given by

∼
AB (i, j, k) = r(i) ∗ AB (i, j, k) , (4)

Let IE(i) denote the extra amount of bonds that needs to be issued at auction i,
AC(i, j) the original accepted amount, and IP(i, j) the possible amount that can be
issued in addition to paper j according to the adjusted bid amounts. Then let

IT otal
P (i) =

m∑

j=1

IP (i, j) =
d∑

k=1

∼
AB (i, j, k) − AC (i, j) . (5)

The new accepted amounts of paper j at auction i can be calculated as

∼
AC (i, j) = AC (i, j) + q (i, j) ∗ min

(
IE(i), I T otal

P (i)
)

, (6)

where q (i, j) = IP (i,j)
IE(i)

.
It is important to note that as the comparison of IE and the Treasury Single

Account (the cash account of the Hungarian State) shows (Fig. 3), the simulated
domestic wholesale demand would not have always been enough to cover the gap
left by the absence of an improved retail program. However, due to the limitations1

1 Due to the success of MÁP+ in mid-2019, ÁKK modified its financing plan. The bids of primary
dealers may have been higher without this modification, which is not reflected in the model.
Furthermore, the November 2019 spike in IE is due to a large extra (simulated) issuance of 2016
maturing. In reality, a different maturity profile could have been constructed with a slightly longer
maturity bond.
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of the methodology, this does not mean that an alternative source of funding (FX)
would have been required without an improved retail program.

The new accepted amounts determine the new yields as

∼
YC (i, j) =

∑h
k=1 YB (i, j, k)

∼
AB (i, j, k)

∑h
k=1

∼
AB (i, j, k)

(7)

where h = argmin

(∑m
k=1

∼
AB (i, j, k) ≥ ∼

AC (i, j)

)
.

Since issuing bonds with higher yields for several auctions could have also
indicated higher bid yields on the following auctions, ÁKK adjusted the new auction
yields with this effect. The time series of the yields were modeled by autoregressive
processes. As the ADF [1] tests pointed out, both the original and new yields are
integrated in the first order. To achieve stationarity, linear trends were removed
from the time series by setting a breakpoint to early 2017 when the decreasing
trend stopped. Let YD

C denote the time series of the detrended original auction

yields and
∼
Y

D

C the detrended new auction yields. ÁKK considered the AR(3) to be
the best model intuitively but in case of tenors 1 and 5, AR(2) was found to be a
better fit according to the Akaike [2] and Bayesian [3] information criteria and the
significance of parameters (Table 1).

The AR model parameters represent the innovation dynamics of the yields with
respect to the previous auctions, while the ε~N(0, 1) i.i.d. random process represents
the effect of market events, which are considered to be independent from the retail
debt program. Let YC(i, j) denote the original accepted yield of a bond in tenor j

at auction i, and ∇Y (i, j) = ∼
YC (i, j) − YC (i, j). In order to capture the rollover

effect of ∇Y on the level of yields and incorporate the innovation dynamics with
the observed market events, the yields were adjusted as shown in Table 2, where Ŷ

denotes the estimated yields after the adjustment.
ÁKK applied the estimated AR parameters and added ∇Y recursively, starting

from the initial values of the new auction yields. With this approach, it was possible

Table 1 The selected AR models for the original yields

Tenor Model

1Y AR(2) YD
C (i, 1) = 1.24YD

C (i − 1, 1) − 0.3YD
C (i − 2, 1) + ε (i, 1)

3Y AR(3) YD
C (i, 3) =

0.98YD
C (i − 1, 3) − 0.15YD

C (i − 2, 3) + 0.12YD
C (i − 3, 3) + ε (i, 3)

5Y AR(2) YD
C (i, 5) = 0.85YD

C (i − 1, 5) − 0.07YD
C (i − 2, 5) + ε (i, 5)

10Y AR(3) YD
C (i, 10) =

0.93YD
C (i − 1, 10) − 0.17YD

C (i − 2, 10) + 0.16YD
C (i − 3, 10) + ε (i, 10)

15Y AR(3) YD
C (i, 15) =

0.9YD
C (i − 1, 15) − 0.23YD

C (i − 2, 15) − 0.29YD
C (i − 3, 15) + ε (i, 15)

Source: ÁKK
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Table 2 Estimated yield adjustments

Tenor Estimation

1Y Ŷ (i, 1) = 1.24Ŷ (i − 1, 1) − 0.3Ŷ (i − 2, 1) + ∇Y (i, 1) + ε (i, 1)

3Y Ŷ (i, 3) = 0.98Ŷ (i − 1, 3)− 0.15Ŷ (i − 2, 3)+ 0.12Ŷ (i − 3, 3)+∇Y (i, 3)+ ε (i, 3)

5Y Ŷ (i, 5) = 0.85Ŷ (i − 1, 5) − 0.07Ŷ (i − 2, 5) + ∇Y (i, 5) + ε (i, 5)

10Y Ŷ (i, 10) =
0.93Ŷ (i − 1, 10) − 0.17Ŷ (i − 2, 10) + 0.16Ŷ (i − 3, 10) + ∇Y (i, 10) + ε (i, 10)

15Y Ŷ (i, 15) =
0.9Ŷ (i − 1, 15) − 0.23Ŷ (i − 2, 15) − 0.29Ŷ (i − 3, 15) + ∇Y (i, 15) + ε (i, 15)

Source: ÁKK

Fig. 4 Observed and simulated historical yields. Source: NBH, ÁKK

to calculate the yields for each auction so that the higher levels had already been
incorporated in the previous yields.

Finally, the earlier removed trends were added back, resulting in the simulated
yields which are illustrated in Fig. 4 in comparison with the original observed yields.

It can be observed that the difference between the observed and simulated yields
are higher in case of short-term bonds than long-term bonds. The reason behind this
is that demand for short-term bonds is more flexible, therefore most of the extra
financing need was covered by these two tenor segments.

3.2 Results

The annual costs of the domestic wholesale issuances were calculated based on the
conducted simulation. In order to compare them appropriately with the retail results,
ÁKK considered the cumulative annual domestic wholesale costs, meaning that the
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Table 3 Cost effects proportional to GDP

Fact cost Simulated cost Retail effect Wholesale effect Total effect

2012 4.56% 4.62% −0.05% 0.00% −0.05%
2013 4.52% 4.60% 0.01% −0.09% −0.08%
2014 3.97% 4.20% 0.13% −0.35% −0.23%
2015 3.44% 3.55% 0.25% −0.36% −0.11%
2016 3.09% 3.22% 0.32% −0.45% −0.13%
2017 2.65% 2.63% 0.40% −0.38% 0.02%
2018 2.33% 2.28% 0.46% −0.41% 0.05%
2019 2.23% 2.03% 0.59% −0.39% 0.20%
2020 2.36% 2.21% 0.69% −0.54% 0.15%
Total 3.09% 3.10% 0.35% −0.35% 0.00%

Source: ÁKK, HCSO

cost calculated for a specific year includes the costs of those bonds as well that were
issued in the previous years and have not matured until the year in question.

As Table 3 shows, there is no significant difference in financing costs on this
9-year horizon. It is mostly due to the fact that the yields of domestic wholesale
bonds were higher in the first years than retail yields over the past years and the
average time to maturity and re-fixing of domestic wholesale debt is also higher
than the retail debt. This also means that issuing shorter-term retail bonds with yields
adjusting to market changes may have meant less cost than issuing a 10-year bond in
2012 and paying an 8% coupon each year. It is worth noting that this effect is mainly
the result of the decreasing yields both in the Eurozone and in Hungary. However,
it is also important to note that at the same time, retail cost effect is constantly
increasing. It is mostly due to the fact that while the Hungarian economic policy
aims to provide positive real interest rates to retail investors, the wholesale real
interest rates have been in negative territory over the past few years.

The simulated retail costs are higher in 2012 than the factual costs because ÁKK
changed the yields of 1-year retail bonds several times varying between 6.75% and
8%. The simulation, on the other hand, relies on the assumption that yields change
only once annually and they are linked to the last 1-year T-Bill yields of the previous
year, which was 7.7%.

4 Forecasting the Important Macroeconomic Variables

A macroeconomic model was created with a goal of forecasting the most important
variable for retail debt: the total assets of households. A Vector Error Correction
(VEC) [4] model was constructed to allow for cointegrating relationships between
the variables. Quarterly macroeconomic data (nominal and real GDP, GDP deflator,
CPI, inflation target, household assets) provided the input of the model. The sources
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of the data are the National Bank of Hungary (NBH) and the Hungarian Central
Statistical Office (HCSO). Several assumptions were made regarding the model:

1. Nominal and real GDP as well as household assets have a long-term linear
relationship.

2. The GDP deflator is a linear function of the CPI and the inflation target.
3. Quarterly forecasts are ex-post transformed into monthly data using linear

interpolation (to serve as inputs for the simulation model).
4. The model does not adjust for quarterly seasonality in GDP (not problematic for

a 5-year forecast).
5. The estimated parameters are time-invariant so they do not change in the short-

term.

4.1 Methodology

The model has two primary parts. First, a baseline VEC model for GDP, GDP
deflator, and household assets. Second, the calculation of CPI from the VEC model.

In the first step, a three-dimensional VEC model was fitted to the quarterly macro
data of Hungary for the period 1999Q4–2020Q4. The main variables used for VEC
are the following:

• GDPnom(t): GDP at current prices (HUF billion)
• GDPdef (t): GDP price deflator based on averages prices of 2015 (%)
• F(t): The total assets of households (HUF billion)

Real GDP is determined by the product of nominal GDP and GDP deflator. The
input variables need to be I (1) (integrated of order one) for VEC fitting. To ensure
this, and for scaling reasons, the variables were transformed to log-scale with the
y = 100 ∗ ln (x) function. Then the Augmented Dickey-Fuller [1] and Phillips-
Perron [5] unit root tests were performed. The results of the statistics are shown in
Table 4.

Three different variants of the tests were used, testing for drift-stationarity and
trend-stationarity as well. According to the simple stationarity test, the unit root
null hypothesis cannot be rejected at the 5% significance level. However, if a drift or
trend term is assumed, the value of p is less than 0.05 for each variable. Therefore, by

Table 4 Unit root tests

p-Values ADF (none) ADF (drift) ADF (trend) PP (none) PP (drift) PP (trend)

ln(GDPnom(t)) 0.999 0.001 0.004 0.999 0.001 0.004
ln(GDPdef (t)) 0.999 0.001 0.001 0.999 0.001 0.001
ln(F(t)) 0.162 0.001 0.024 0.999 0.001 0.024

Source: HCSO, NBH, ÁKK
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Table 5 Trace statistics r R T c p

0 True 32.4927 29.7976 0.0077
1 False 10.0656 15.4948 0.3106
2 False 1.7391 3.8415 0.1877

Source: HCSO, NBH, ÁKK

filtering out the drift (for example by differentiation, the unit root can be eliminated.
Thus, it can be assumed that the processes are I(1).

The number of cointegrating relationships was determined using Johansen
method based on the values of the trace statistics [6]. The minimum number of
quarterly lags was determined by the minimum values of Akaike [2] and Bayesian
[3] information criteria. Based on these, three quarters was the optimal lag parameter
in case of VEC. The following form with deterministic linear trends and intercepts
in the cointegrated time series was used:

A
(
B ′y(t) + c0

) + c1, (8)

where A is 3 by 1 matrix of adjustment speed, B is a 3 by 1 cointegration matrix,
y(t) is the level of the data, and c0, c1 are intercepts. The likelihood ratio tests show
that the process involves a drift rather than a time trend. After that, the values of the
trace statistics can be determined, as shown in Table 5.

The null hypothesis is that H(r) rank of cointegration is less than or equal to r.
Since the null hypothesis was first accepted for r = 1, a first degree cointegration
relationship is identified. Thus, by fixing the lag and rank parameters, the VEC
model form is the following:

�y(t) = c + AB ′y (t − 1) +
3∑

j=1

�j�y (t − j) + ε(t), (9)

where �j, j = 1, 2, 3 are 3 by 3 matrices of short-run coefficients, εt is a noise
process, and c is the overall constant. The parameters were estimated using the
maximum likelihood method.

In the second part, the consumer price index was estimated. Consumer price
index also has a relevant effect on the cost of retail debt. CPI estimation is a complex
task, it can be influenced by many external factors (net exports, policy changes,
global market expectations, etc.) and thus it is difficult to integrate directly into the
existing VEC framework. Hence, for simplicity reasons it was considered that it is
better to derive CPI from the change in the GDP deflator. This was accomplished by
simple linear regression.

π(t) = β1X(t) + β2π
target (t) + ε(t), (10)
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Table 6 Regression
coefficients

Parameters OLS SE t-stat p-value Adj. R2

X(t) 0.586 0.115 5.092 0.001 0.40
π target(t) 0.440 0.181 2.429 0.017

Source: HCSO, NBH, ÁKK

Fig. 5 Results of the VEC macroeconomic model. Source: ÁKK, HCSO, NBH

where π (t) is the CPI, X(t) is the inflation proxy calculated from the annual delta of
the GDP deflator, π target(t) is the inflation target set by the central bank, and ε(t) is
a noise process.

The inflation target set by the National Bank of Hungary did not change since
2006. It is assumed that the 3% target will remain unchanged in the 5-year forecast
horizon. The OLS estimates for π are displayed in Table 6.

The estimation was performed for the period of 2000Q4–2020Q4. Based on
the adjusted R2, a moderately fitting model was obtained with a relatively high
noise. The explanatory variables are significant and the error term follows a normal
distribution.

4.2 Results

Figure 5 shows the results of the macroeconomic forecast with a 95% confidence
interval. During the 5-year forecast horizon, real GDP is expected to grow by 10.4%,
reaching its pre-crisis level in Q4 2022.

The level of nominal GDP is expected to increase by 33%, with the assets of
households increasing by 49% from the end of 2020 to the end of 2025. In the long
run, inflation is expected to slightly increase according to the results of the model.
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After a spike of 4.6% in mid-2021, it is expected to stabilize at 3.7%, remaining
within the inflation target range of 2–4%.

5 The Future of the Retail Debt Program

5.1 Estimation of the Factors Driving the Outstanding Amount
of Retail Debt

Several approaches have been considered to calculate the outstanding amount of
retail debt for the next 5 years. A bottom-up agent-based approach was rejected due
to the lack of individual investor level data. A top-down, macro-driven approach
was found problematic as the asset allocation of retail investors, especially between
different retail government securities, depends on more than just macroeconomic
factors. Therefore, a security-level simulation model was constructed where the
most important factors are new money flowing into retail securities, the ongoing
buybacks (redemptions before maturity) of debt securities and the reinvestment of
maturing debt into newly issued securities by retail investors. These factors depend
on historical transactions as well as macroeconomic variables.

The factors were estimated using ÁKK’s transaction data. Several adjustments
had to be made due to severe structural breaks in the data. First of all, before 2018,
non-household investors (e.g., foundations, municipal governments, and churches)
were allowed to buy retail securities. Even at the start of 2020, over HUF 1,000
billion outstanding retail securities were not owned by households. The data was
corrected to exclude non-household owners to reflect that new retail debt can only
be bought by households.

Sales channels for the three main securities (MÁP+, PMÁP, 1MÁP) include both
banks and the Hungarian State Treasury. The rest of the dematerialized securities
are only available at the Treasury, while the materialized ones can be bought
and redeemed at post offices. For the three main securities, separate parameters
have been estimated for the two different sales channels, as buyback mechanics
are completely different for the two institutions. Buybacks at the Treasury appear
immediately as a transaction, while banks can re-sell or hold papers that were
bought back by them. They only appear as buybacks in the transaction data if ÁKK
exercises a buyback option from the banks.

Reactions of retail investors to changes in retail instruments or the macroeco-
nomic environment are difficult to predict due to the apparent irrational behavior of
investors. As mentioned, 1MÁP is Pareto-dominated by MÁP+ from an investor
standpoint and there is still a significant demand for this instrument. Also, past
changes in PMÁP interest premium had no statistically significant effect on its
demand. In addition, changes in CPI had no effects on the demand of the fixed
rate MÁP+ versus the demand of the inflation-linked PMÁP.
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Another challenge was the structural break caused by the June 2019 introduction
of the flagship product MÁP+ that captured over 50% of the market share in less
than 2 years. It drastically changed the landscape of retail debt due to a high and
predictable yield, automatic reinvestment of coupons, and high liquidity due to
favorable redemption conditions. Therefore, meaningful data could only be obtained
from the post-MÁP+ period.

The introduction of MÁP+ also coincided with the abolition of interest tax on
retail securities that had a negative effect on the sales of the prior months due to
retail investors opting to wait for the introduction of more favorable conditions.
Unfortunately, there is no way of separating the effects of these two structural
breaks.

The concept of new money inflows is somewhat difficult to grasp. Theoretically,
it is gross sales minus reinvestment, however reinvestment cannot be calculated
easily due to the lack of individual-level data. Maturities cause no statistically
significant changes in sales past 1 month, but in reality, it might take more than
that for an individual to decide to reinvest. In the model, reinvestments past 1 month
are treated as new inflows.

Maturities for 1MÁP occur every week. A robust linear regression of sales on
the past 2 weeks of maturities proved to be the best fit, with the constant term
being the new money inflows. It was found that 1MÁP series issued before the
first MÁP+ were partly reinvested into MÁP+, while those issued afterwards
(maturities starting June 2020) were reinvested only into 1MÁP.

PMÁP and PEMÁP maturities occur only a few times per year, while issuances
happen on a daily frequency. PMÁP renewal rates were calculated using lagged
maturities of the past 9 working days. Both the 3-year and 5-year maturities were
significant predictors for both PMÁP instruments, so a full transition matrix had to
be estimated. For PEMÁP, no 5-year maturities happened since its introduction, but
3-year maturities had an effect on 5-year issuances. Therefore, a transition matrix
similar to PMÁP was estimated.

The introduction of the MÁP+ changed reinvestment behaviors as well. There-
fore, MÁP+ sales had to be corrected using PMÁP maturities to calculate the
new money inflows as well as transition parameters from PMÁP to MÁP+. The
reinvestment of eventual MÁP+ maturities is also an important issue, as 3 trillion
HUF of MÁP+ is expected to mature in 2024. Due to the lack of data, the best
estimation is that the total reinvestment percentage will be equal to the instrument
with the closest similarity, the 5-year PMÁP.

The landscape of the printed securities also underwent some change since
the November 2020 introduction of the NYMÁP+. The traditional (and largely
inferior) KTJ had high reinvestment rates that plummeted after November 2020.
This difference in KTJ reinvestment, under the assumption that it was reinvested
into NYMÁP+, was used to calculate the new money inflows into NYMÁP+.

Buybacks were estimated for all securities as the percentage of buybacks
compared to the outstanding amount of the previous month.

According to the estimation, almost 2/3 of the new money flows into MÁP+.
There is also a significant ongoing transition process, with about half of the
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Table 7 ARIMAX model
for new money inflows
(values in HUF billion)

Coefficient SE t-stat p-value

Constant 22.56 24.93 0.91 0.37
AR(1) 0.11 0.07 1.68 0.09
AR(2) 0.06 0.08 0.76 0.45
AR(3) 0.23 0.07 3.24 0.00
Beta 0.19 0.07 2.83 0.00
DoF 2.54 0.68 3.75 0.00
Variance 14,488.76 12,237.37 1.18 0.24

Source: ÁKK

maturing PMÁP flowing into MÁP+ as well. Monthly outflows through buybacks
are approximately 1% of the total debt portfolio, while outflows due to non-renewed
maturities are in the 10–25% range for most instruments, occurring every 1–5 years
depending on the tenor.

Historical new money inflows were calculated on a monthly frequency from
2013 using gross sales minus the estimated renewal rates. New money inflows into
retail debt can be explained by a change in household assets, one of the variables
in the macro model. The new money inflows were modeled and forecasted using
an ARIMAX model [7]. The best fit was an ARIMA(3, 0, 0) specification with
innovations drawn from the t distribution and change of household assets as an
external explanatory variable.

Table 7 shows that changes in household assets are a significant predictor for new
money inflows into retail debt. Based on the macroeconomic forecast, new money
inflows are expected to increase by approximately 25% by 2025 compared to 2020.

5.2 Simulation and Results

The monthly new inflow, buyback, and reinvestment factor were used to simulate
future transactions of retail securities. The simulation uses a weekly frequency with
buybacks and issuances occurring on Mondays, the monthly factors divided evenly
between the 4 or 5 weeks. Renewal of maturities based on the parameters occurs
over a 3-week period in the model, with 60% reinvested in the first week, 30%
in the second week, and 10% in the third week after the maturity. The simulation
takes the inherent features of the different retail securities into account, including
automatic reinvestment of MÁP+ and BABA interest.

The boundary conditions for the simulation include no significant changes in the
prevailing interest rate regime, no newly developed retail debt instruments, and no
changes in the pricing of retail securities.

Figure 6 shows the quarterly total growth rate of the retail debt portfolio as well
as the contribution of different instrument categories to the total growth rate. Most of
the increase in outstanding comes from MÁP+. PMÁP is expected to remain steady
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Fig. 6 Quarterly growth rate decomposition of the retail debt portfolio. Source: ÁKK

Table 8 Average interest of
the retail debt portfolio

2021 2022 2023 2024 2025

Average interest (%) 4.20 4.46 4.66 4.65 4.46

Source: ÁKK

in absolute terms, while 1MÁP is expected to dwindle further. The current strategic
goal of reaching HUF 11,000 billion will be reached by mid-2022 according to the
model. Throughout the 5-year simulation horizon, a yearly growth rate of 10.8%
is predicted by the model, with retail debt reaching approximately 15.7% of the
forecasted household assets, up from the 14.0% value of end-2020. Compared to the
out-of-sample outstanding amounts of January–August 2021, the model oscillated
in the [−50 ; +50] range (HUF billion), the maximum percentage deviation being
about 0.5% of the factual outstanding amount.

Interest expenditures are calculated using an accrual methodology, with the
future interests of the inflation-linked PMÁP calculated using the forecasted infla-
tion, while interest expenditures related to changes in the EUR/HUF exchange rate
(only relevant for PEMÁP) are calculated using ÁKK’s Markov regime switching
model [8].

Table 8 shows the average interest rate of the retail debt portfolio. The variance
of the average interest is explained mainly by the large amount of MÁP+ issued
in 2019 that is going to reach a 6% interest by 2024 and start over at 3.5% after
renewal.

6 Conclusion

This paper has two main results. First, it proves that the retail program was beneficial
in reducing the external vulnerability of Hungarian government debt and providing
a stable, domestic source of financing.
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During the 2011–2020 period, the share of retail debt in the debt portfolio
increased from 2% to over 25%, whereas the share of FX debt decreased signifi-
cantly from nearly 50% to under 20%. Due to the success of the retail debt program,
the share of non-retail HUF-denominated debt increased only by 5 percentage
points, while foreign ownership in domestic wholesale debt decreased from 41%
to 24%. The interest expenditures of Hungary relative to GDP decreased from 4.1%
to 2.4%. Thus, the retail debt program helped in creating a stable, reliable investor
base and in diversifying funding.

Based on the what-if analysis between 2012 and 2016, the increased retail
financing helped to reduce the interest costs of the debt portfolio, albeit at a
lower ATM. From 2017 onwards, with negative real yields becoming prevalent
and older, higher interest domestic wholesale debt maturing, the extensive retail
debt became progressively more expensive compared to the alternative scenario.
However, providing positive real interest rates in a negative real yield environment
is necessary to further the policy goal of increasing the willingness of households to
invest. In total, over the 9-year estimation period, there was no difference between
the interest expenditures of the factual and the alternative scenario.

The results of the analysis also show that retail debt program helped in pushing
the short end of the HUF yield curve lower by not putting too much pressure on
domestic wholesale funding.

Second, if the current favorable conditions for retail investors remain intact,
the outstanding amount of retail debt is going to continue to grow by 10.8% per
year on average in the next 5 years under the prevailing market conditions and
the macroeconomic forecast. However, with retail debt becoming increasingly more
expensive, with the forecasting model presented in this paper, ÁKK has an effective
tool to reassess and fine-tune the retail debt program in the future.

The methodology used has several limitations. For example, government expen-
ditures were treated as externally given, unaffected by liquidity, in the what-if
analysis. In addition, due to recent structural breaks, useful data for forecasting
the retail debt is limited to 1.5 years, and assumptions had to be made regarding
MÁP+ renewals. Furthermore, due to irrational investor behavior and a lack of data,
predicting responses to changes in pricing was out of the scope of this paper.

There are several ways the retail debt forecast can be improved in the future.
First, the creation of a more complex macroeconomic model is an avenue for
improvement. Combining it with ÁKK’s Markov regime switching model [8] would
allow for more comprehensive forecasts. Second, an agent-based approach may be
possible in the future should individual-level transaction data become available.
Third, the retail forecast can be integrated into the Hungarian optimal debt portfolio
model [9, 10], with the purpose of having a complex quantitative tool to update the
retail debt strategy once its current goals are met.

Disclaimer
The authors of this paper are employees being responsible for the support of
decision-making in the course of the development of the debt management strategy
of the Hungarian Government Debt Management Agency Pte. Ltd. (in Hungarian:
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Államadósság Kezelő Központ Zrt.; “ÁKK”). Therefore, this paper should be
construed as how ÁKK implements its respective policies and, for the purposes
of this paper, how the authors demonstrate the modeling thereof.

All data provided by ÁKK, as well as formulas, models, and methodologies
created by the authors and contained in this paper are the exclusive intellectual
property of ÁKK and are protected by copyright and other protective laws. Any
use or other exploitation of such data, formulas, models, and methodologies in any
manner is subject to express prior written authorization.

All data and formulas contained in this paper are provided solely for the purpose
of illustrating the modeling framework for projecting possible outcomes under
different economic scenarios. The data contained in this paper is a computer-
generated output from respective mathematical models using available statistical
and economic data and the output of the models should not be regarded as
representative of any current data or forecasts, furthermore, must not be relied upon
as an accurate prediction of current or future market performance, etc.

Results published in this paper, including but not limited to macroeconomic
forecasts and the composition of the Hungarian government debt, do not represent
the official views of ÁKK regarding debt financing. The only purpose of disclosing
such results is to illustrate the features and possibilities of the optimal debt portfolio
model.

The authors give no warranty and make no representation as to the accuracy,
reliability, timeliness, or other features of any data contained in this paper or data
obtained from using the model.

All models must be scientifically validated by the user for the strategy for which it
is to be used, and for the most appropriate and safe application of models, scientific
and expert interpretation and adequate advice are required.
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Predicting the Exchange Rate Path: The
Importance of Using Up-to-Date
Observations in the Forecasts

Håvard Hungnes

Abstract Central banks, statistical agencies, and international organizations such
as the IMF and OECD typically use information about the exchange rate some
weeks before the publication date as the basis for their exchange rate forecasts.
This paper tests if exchange rate forecasts can be made more accurate by utilizing
information about exchange rate movements closer to the publication date. To
this end, we apply recent tests of equal predictability and encompassing for path
forecasts. We find that the date on which the exchange rate forecast is based is
crucial. Using exchange rate forecasts made by Statistics Norway over the period
2001–2018, we find that the random walk, when based on the exchange rate 1
day ahead of the publication deadline, encompasses the predicted path by Statistics
Norway. However, when using the exchange rate 15 days before the publication
deadline, the random walk path and the predicted exchange rate path by Statistics
Norway have equal predictability.

Keywords Forecast performance · Forecast evaluation · Forecast comparison

1 Introduction

The efficient market hypothesis implies that the current exchange rate reflects
all available information. However, the hypothesis does not mean that we cannot
predict exchange rate changes. In the absence of risk premiums, the return in
two countries—measured in a common currency—must be equal. If the countries
have different interest rates, this difference in return must be compensated by an
equivalent expected exchange rate change. This relationship between the interest
rate difference and the expected exchange rate change is known as the uncovered
interest rate parity theory.
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The theory of uncovered interest rate parity has repeatedly been rejected in
empirical studies. A country’s currency is often found to appreciate if the country
has a higher interest rate than other countries; see, for example, [6, 21].

Random walk models are often better at projecting the exchange rates than other
exchange rate models [17]. This finding is probably why several forecasters, like the
Bank of Canada and the European Central Bank, assume unchanged exchange rates
in their forecasts [1, 8]. The IMF assumes unchanged exchange rates in real terms
in its projections [15].

However, even if these forecasters use unchanged (nominal or real) exchange
rates ahead, the exchange rate used as the basis for the prediction is not the most
recent observed exchange rate. For example, in its forecast from January 2020, the
IMF used the average real exchange rates in a period broadly covering the end of
October and the beginning of November 2019 as their forecast for the real exchange
rate [15]. The European Central Bank used, in their forecast published March 12,
2020, the exchange rates equal to the average in the first half of February [8].

Each quarter, following the publication of new quarterly national account data,
Statistics Norway publishes forecasts for the Norwegian economy 3–4 years ahead
in annual terms. Among the variables Statistics Norway publishes forecasts for is
the krone exchange rate measured against a basket of currencies of Norway’s most
important trading partners in terms of import value (also known as the Norwegian
import-weighted krone). Until 2018, the exchange rate forecast was partly based
on judgmental forecasts and partly on an econometric model for the exchange rate.
An early version of the exchange rate model used by Statistics Norway applies data
from the years 1983–2002 to estimate the model [2]. Since the beginning of 2019,
Statistics Norway has forecasted an unchanged exchange rate.

Norway has experienced large exchange rate fluctuations in the period we are
considering, which is the period after Norway started its inflation targeting at the
beginning of 2001 and until 2020. In this period, the cost of one euro has been as
low as 7.22 Norwegian kroner and as high as 12.32 (when considering the official
daily rates published by Norges Bank). The cost of one dollar varied between 4.96
and 11.40 Norwegian kroner in the same period. In the analysis, we consider the
Norwegian import-weighted krone, which also has fluctuated much in this period.
With these large fluctuations, we might get more precise results from our tests of
equal predictability and encompassing for path forecasts than one could get from
similar studies for other countries with smaller exchange rate variations.

This paper uses the equal predictability test of path forecasts to compare the
exchange rate forecasts by Statistics Norway with the exchange rate path that
follows from a random walk [12]. We also apply the encompassing test for path
forecasts to test if the forecasts of the random walk model based on the exchange
rate at two different time points encompass the forecasts by Statistics Norway [11].

Section 2 presents the test of equal predictability for path forecasts and the
encompassing test for path forecasts. Section 3 defines the import-weighted krone
exchange rate. This section also applies the equal predictability test and the
encompassing test to evaluate the exchange rate forecasts by Statistics Norway.
Section 4 provides a conclusion.
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2 Theory

Let .si
t+h|t = log Si

t+h|t be the forecast of the log of the exchange rate for period
.t + h, made in period t by forecaster (or forecasting method) i. We assume that the
exchange rate for period t is not known in period t; thus, exchange rate forecasts for
the current period—also referred to as now-casting—can be made and is denoted
.si
t |t . The forecast error for the exchange rate in period .t + h for the forecast made in
period t by forecaster i is given by

.ei
t+h|t ≡ st+h − si

t+h|t , (1)

where .st+h is the log of the actual exchange rate in period .t + h. As we apply the
logarithmic scale, the forecast error is approximately a measure of the percentage
error in the forecasts.

The mean squared forecast error (MSFE) of T forecasts with forecast horizon h

for forecaster i is

.T −1
T∑

t=1

(
ei
t+h|t

)2
. (2)

Unfortunately, the MSFE is not invariant to linear transformations of the forecasts
when .h > 0 [3, 4]. For example, the MSFE will differ depending on whether the
forecasts are measured in levels or first-differences. However, we can avoid this
problem by considering the full path of forecasts. We define the vector of exchange
rate forecasts by forecaster i for the current and the next 2 years, made in year t

by .sit,H |t =
(
si
t |t , si

t+1|t , s
i
t+2|t

)′
, where the forecast horizon is given by .H = 2

measured in years. The actual exchange rate path in these years is given by .st,2 =
(st , st+1, st+2)

′, which implies that the vector of forecast errors of forecaster i is

given by .ei
t,2|t =

(
ei
t |t , e

i
t+1|t , e

i
t+2|t

)′
, where the elements are defined in (1).

A general test of equal predictability for two univariate forecasts is previously
suggested [23]. Adjusted to a vector of forecasts, the regression that forms the basis
of the test is given by

.st,2|t = (1 − α)sAt,2|t + αsBt,2|t + εt , (3)

where the expectation of the vector .εt is zero if the forecast of forecasters A and B

is unbiased. In (3), the weights of forecasterA and forecaster B sum to unity, where
.α is the weight on the forecast of forecaster B. If .α = 1

2 , the two forecasts have
equal weights, and this is the basis of our equal predictability test. If .α = 0, the
forecast by forecaster A is the best, and the additional information in the forecast
by B cannot be used to improve the forecast. This is the basis of our test of whether
the forecast by forecaster A encompasses the forecast by forecaster B. Similarly,
if .α = 1, forecaster B provides the best forecast and the forecast by forecaster A

cannot be used to improve the forecast.
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By using the definition of forecast errors, (3) can be reformulated as

.eA
t,2|t = α

(
eA
t,2|t − eB

t,2|t
)

+ εt . (4)

The conditional estimators of .α and the variance of .ε are given by

.α̂(�) =
T −1 ∑T

t=1

(
eA
t,2|t − eB

t,2|t
)′

�−1eA
t,2|t

T −1
∑T

t=1

(
eA
t,2|t − eB

t,2|t
)′

�−1
(
eA
t,2|t − eB

t,2|t
) , and. (5)

�̂(α) = 1

T

T∑

t=1

(
eA
t,2|t − α

(
eA
t,2|t − eB

t,2|t
)) (

eA
t,2|t − α

(
eA
t,2|t − eB

t,2|t
))′

. (6)

The conditional estimators above do not account for the likely autocorrelation
structure in the residual in (4) due to the overlapping forecast horizons. The quasi-
maximum likelihood estimates .α̂

(�̂)
and .�̂(α̂) can be obtained by an iterative

procedure until convergence is achieved [19].
The loss-difference function between the forecast errors of forecaster A and

forecaster B is

.dt = eA′
t,H |tHeA

t,H |t − eB′
t,H |tHeB

t,H |t , (7)

where .H—which is an .(H + 1) × (H + 1) matrix—represents the parameters in
the loss function [20]. Testing the null hypothesis of .α = 1

2—i.e., when forecast
A and forecast B have equal predictability—is identical to testing the population
equivalent of .d̄ being zero, where .d̄ = T −1 ∑T

t=1 dt , with .dt defined in (7) where
.H = �̂−1

(α̂)
[12].

The test statistic we apply is

.T 1/2w
1/2
0 d̄ q̂−1/2, (8)

where .w0 is a small sample correction factor. The estimated variance of the estimator
is1

.q̂ = 1

T

[
T∑

t=1

d̃2
t + 2

τH∑

l=1

T −l∑

t=1

wld̃t d̃t+l

]
, with d̃t =

(
eA′
t,H |t − eB′

t,H |t
)

�̂−1
(α̂)

ε̂t ,

(9)

1 We can also include a small sample correction for the heteroskedasticity. In this appli-
cation, we apply the HC3 correction [16], which we operationalize by defining .d̃t =

1
1−ht

(
eA′
t,H |t − eB′

t,H |t
)

�̂−1
(α̂)

ε̂t , where .ht = D′
t

(∑T
j=1 Dj D′

j

)−1
Dt with .Dt = eAt,H |t − eBt,H |t .
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where .τH is the truncation lag, .τH ≥ H . To secure this variance to be positive,
we may use .wi = 1 − i

τH +1 for .i = 1, . . . , τH [18]. The small sample correction

.w0 = T −1[T −1−2τH +T −1τH (τH +1)] is suggested and applied here [10]. The
test statistic is asymptotically standard normally distributed when the forecasting
models are estimated using a rolling sample [9]. However, the deviation between the
actual distribution of the test statistic and the normal distribution can be substantial
in small samples. Therefore, we apply a t-distribution with .T K − K degrees of
freedom [11].

In investigating the exchange rate path forecasts, we will also test if one path
forecast encompasses another path forecast. We can conclude that forecast A
encompasses forecast B if we cannot reject the hypothesis .α = 0 but can reject
the hypothesis of .α = 1 [7]. Also, for this type of test, the test statistic in (8) can
be applied [11]. For the test of the hypothesis .α = 0, the definition of .dt is changed

to .dt =
(
eA′
t,H |t − eB′

t,H |t
)

�̂−1
(α̂)

eA
t,H |t . With this definition of .dt , .d̄ is identical to

the numerator of the estimator of .α. For the test of the hypothesis .α = 1, we

use .dt =
(
eA′
t,H |t − eB′

t,H |t
)

�̂−1
(α̂)

eB
t,H |t . With this definition of .dt , .d̄ = 0 if the

.α̂(�) = 1. The test statistic in (8) with .q̂ given by (9) is also used for these tests
for encompassing.

3 Results

Statistics Norway publishes macro-economic forecasts of the Norwegian economy
each quarter. Since the beginning of 2001, these forecasts have included year-to-
year forecasts for the import-weighted krone (I-44) for the same year as the forecast
is made and (at least) the two subsequent years.2 In this section, we consider the
exchange rate forecasts made in the years 2001–2018. With a 2-year horizon of the
forecasts, the forecasts made in 2018 include forecasts of the exchange rate in 2020.
The data set and the ox code used in this paper are available to download [5, 14].

The I-44 exchange rate index is a geometric weighted average of the exchange
rates of 44 countries. The weights are updated annually and based on Statistics
Norway’s statistics for imports to Norway from the 44 largest countries measured
in import value. Norges Bank updates the composition of countries annually.

2 There are two exceptions: First, in the publication of the forecast made the first quarter in 2001,
Statistics Norway only published a forecast for I-44 for the years 2001 and 2002. In our analysis,
we assume that the forecasted value of I-44 for 2003 in the forecast published in the first quarter of
2001 is equal to the forecasted value for 2002, i.e., no change in the I-44 from 2002 to 2003 on a
year-to-year basis. Second, Statistics Norway did not publish forecasts in the third quarter of 2013.
In this analysis, we have set this forecast equal to the forecast made in the second quarter of that
year. For the forecast based on the random walk, we have also used the exchange rate equal to the
exchange rate in the market relative to the time the second quarter forecast from Statistics Norway
was made.
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Table 1 reports the weights used from September 4, 2018. These weights are
based on the value of imports to Norway in 2017. The number of currencies in the
table is less than 44 since some currencies are used in more than one country (e.g.,
the euro).

Table 1 Weights used for import-weighted krone exchange rate, I-44, based on import to Norway
in the year 2017

Country, currency Short name Weight

Bangladesh, Taka BDT 0.003

Brazil, Real BRL 0.015

Canada, Dollar CAD 0.020

Switzerland, Franc CHF 0.012

China, Yuan Renminbi CNY 0.101

Colombia, Peso COP 0.002

Czech Republic, Koruna CZK 0.011

Denmark, Krone DKK 0.056

European Union, Euro EUR 0.325

United Kingdom, Pound GBP 0.049

Hungary, Forint HUF 0.004

Indonesia, Rupiah IDR 0.002

India, Rupee INR 0.006

Iceland, Krone ISK 0.004

Japan, Yen JPY 0.021

South Korea, Won KRW 0.070

Malaysia, Ringgit MYR 0.005

Peru, New sol PEN 0.002

Poland, Zloty PLN 0.035

Romania, New leu RON 0.004

Russia, Ruble RUB 0.019

Sweden, Krone SEK 0.118

Singapore, Dollar SGD 0.004

Thailand, Baht THB 0.009

Turkey, Lira TRY 0.011

Taiwan, New Dollar TWD 0.006

United States, Dollar USD 0.070

Vietnam, Dong VND 0.007

Coopération Financiére en Afrique Centrale, CFA
-franc

XAF 0.002

South Africa, Rand ZAR 0.004

Mexico, Peso MXN 0.003

Sum 1

Source: Norges Bank
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Fig. 1 The Norwegian import-weighted krone exchange rate index, I-44, 2001–2020, quarterly
averages (index equal to 100 in 1995)

The calculation of the I-44 index is based on Laspeyres’ index formula:

.St = St−1

N∏

j=1

(
S

(j)
t

S
(j)

t−1

)α
(j)

t−1

, (10)

where .St is the I-44 index at time t; .S
(j)
t is the exchange rate j at time t (where

we use the round brackets for the top index to not confuse it with the index of the
forecaster); and .α

(j)
t−1 is the weight of the exchange rate j from time .t − 1, where

.
∑N

j=1 α
(j)
t = 1, with N being the number of currencies in the 44 countries. Figure 1

shows the I-44 index in the years 2001–2020.
Norges Bank publishes the official I-44 index. The published annual figures of I-

44 are the arithmetic average of the trading day observations of the index. Hence—if
t runs over the major time period, here years, and .ς runs over the minor time period,
here the trading days within year t—the annual figure of the I-44 period index for
year t is

.St = 1

ςmax(t)

ςmax (t)∑

ς=1

St,ς , (11)

where .ςmax(t) is the number of trading days in year t .
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The random walk forecast of the I-44 index in year t made when .ς ′ is the latest
observed trading day in year t is

.SRW
t |t (ς ′) = ς ′

ςmax(t)

⎛

⎝ 1

ς ′
ς ′∑

ς=1

St,ς

⎞

⎠ + ςmax(t) − ς ′

ςmax(t)
St,ς ′ , (12)

where the term in the round brackets is the average of the index from trading day
1 to trading day .ς ′ in year t and where .St,ς ′ in the last term reflects that the latest
observed value of the index is the best forecast under the random walk hypothesis
of the exchange rate for all the remaining trading days of year t . The random walk
forecast of the annual value of the exchange rate index in the coming years is equal
to the last observation of the index, that is,

.SRW
t+h|t (ς ′) = St,ς ′ for h = 1, 2, . . . (13)

Tables 2 and 3 compare the forecasts by Statistics Norway with forecasts

generated by a random walk. Let .sFt+2|t (q) =
(
sF
t |t (q), s

F
t+1|t (q), s

F
t+2|t (q)

)′
be the

vector of the exchange rate forecasts by Statistics Norway up to horizon .H = 2,
where the forecasts are made in quarter q of year t . Furthermore, let .sRW

t+2|t (ς ′) =
(
sRW
t |t (ς ′), s

RW
t+1|t (ς ′), s

RW
t+2|t (ς ′)

)′
be the implied forecasts by a random walk where

the last observation is .t (ς ′), with elements given by (12) and (13). To test the

Table 2 Equal predictability and encompassing tests for path forecasts (.H = 2)—random walk
based on the exchange rate 1 day before the publication deadline

Projection
Weight
F

Weight
.RW1

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 .−0.28 1.28 1.21 [0.23] 1.98 [0.05] 0.43 [0.67]

Q2 .−0.47 1.47 1.39 [0.17] 2.11 [0.04].∗ 0.67 [0.50]

Q3 .−0.27 1.27 1.31 [0.19] 2.17 [0.04].∗ 0.46 [0.64]

Q4 0.05 0.95 2.51 [0.02].∗ 5.33 [0.00].∗∗ 0.30 [0.77]

All .−0.11 1.11 2.26 [0.02].∗ 4.10 [0.00].∗∗ 0.42 [0.68]

F indicates the forecasts made by Statistics Norway. .RW1 (.RW15) indicates the random walk
forecasts, which are set equal to the official exchange rate 1 day (15 days) before the publishing
deadline for the forecasts by Statistics Norway. “Q1” denotes the forecasts made in the first quarter
of the year, in the years 2001–2018. Similarly, for “Q2,” “Q3,” and “Q4.” “All” implies that we
consider the forecasts from all quarters in the analysis. The p-values in square brackets are based
on a two-sided test; the corresponding p-value for a one-sided test is either .p1−sided = p2−sided/2
or .p1sided = 1 − p2−sided/2, depending on the direction of the one-tailed hypothesis. .∗∗ and .∗
indicate significance at the 1% and the 5% level for the two-sided test. In the estimation, we use
.τH = 2 for the forecasts made in Q1, Q2, Q3, and Q4, and .τH = 11 for “All”
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Table 3 Equal predictability and encompassing tests for path forecasts (.H = 2)—random walk
based on the exchange rate 15 days before the publication deadline

Projection
Weight
F

Weight
.RW15

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 0.38 0.62 0.25 [0.80] 1.29 [0.20] 0.79 [0.43]

Q2 0.22 0.78 0.47 [0.64] 1.32 [0.19] 0.38 [0.70]

Q3 0.09 0.91 0.68 [0.50] 1.52 [0.14] 0.16 [0.88]

Q4 0.59 0.41 0.73 [0.47] 3.14 [0.01].∗∗ 4.61 [0.00].∗∗

All 0.38 0.62 0.50 [0.62] 2.61 [0.01].∗∗ 1.61 [0.11]

Note: See Table 2

encompassing and equal predictability hypothesis, we apply (3) with .sAt+H |t =
sFt+H |t (q) and .sBt+H |t = sRW

t+H |t (ς).
The forecasts by Statistics Norway are published quarterly, usually at the

beginning of the third month in the quarter. The publication day is (with a few
exceptions) Thursday, with a deadline of preparing the forecasts on Tuesday the
same week they are published. The work with the predictions starts (usually)
Monday two and a half weeks before the publication. Thus, the forecasts are
typically made in about 12 working days. Until the end of 2018, the path for the
exchange rate index was usually decided at the beginning of this period, though it
could be revised during the process of making the forecasts.

Table 2 reports the results of the equal predictability test and the encompassing
test when the random walk forecasts are based on the exchange rate only 1 day
before the deadline. This observation of the exchange rate is the most updated
official exchange rate it can use in the forecasts as Norges Bank publishes the official
quote of the exchange rate approximately at 16:00 CET. In the table, we consider
forecasts made in each of the four quarters of the year separately. Thus, in the row
marked “Q1,” forecasts made each year in the first quarter from 2001 to 2018 are
considered. For this first quarter of the year forecasts, we see that the estimated
weight of the forecasts by Statistics Norway is negative. Due to the small number
of observations, we cannot reject that the weights are 0.5. However, the hypothesis
that the forecasts by Statistics Norway have a weight of at least 1 is rejected at the 5
percent level when applying a one-sided test. (The p-value barely exceeds 5 percent
with the two-sided test.) The last test in the row shows that we cannot reject that
the random walk forecasts have a weight of 1. The previous two tests imply that the
random walk forecast encompasses the forecasts made by Statistics Norway.

For the forecasts made in the second, third, and fourth quarter, we see similar
results as for the forecasts made in the first quarter of the year: The hypothesis
of equal weights cannot be rejected in two of these three quarters; the hypothesis
that forecasts made by Statistics Norway has a weight of 1 is rejected for all of
the quarters, and the opposite hypothesis that the random walk has a weight of 1
cannot be rejected in any of the quarters. Therefore, also for forecasts made in these
quarters, we find that a random walk-based forecast encompasses the forecast by
Statistics Norway.
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In the last row, marked “All,” we have stacked all forecasts made by Statistics
Norway in these years (2001–2018) after each other (in the order they were made).
We have also taken into account that this will lead to an autocorrelation of a higher
order, as more forecasts overlap in time. The estimated weight on the forecasts by
Statistics Norway is close to zero, indicating that the projected exchange rate path
has no value over a path given by a randomwalk model. The test statistics for .α = 0
and .α = 1 confirm this finding. We also reject the hypothesis of equal weights for
the two forecasts at the 5 percent level. The overall conclusion is that the exchange
rate forecasts by Statistics Norway add no extra information to the future values of
the exchange rate beyond what the random walk-based forecasts give.

In Table 3, we examine how important it is for the results that the exchange rate
used for the random walk forecasts are as up-to-date as possible. We do this by
letting the random walk forecasts be based on the exchange rate 15 days before the
publication deadline for the forecasts by Statistics Norway, the exchange rate from
the day Statistics Norway usually started its work with the forecasts. Here also, we
consider the forecasts made in the four different quarters of the year separately, in
addition to considering the forecasts from all quarters jointly. The estimated weights
for the forecasts made by Statistics Norway are now positive, no matter what quarter
the forecasts were made, and we cannot reject the hypothesis that the weights are 0.5
in any of the considered cases. When considering forecasts from all quarters jointly,
see the last row of the table, the hypothesis that the forecasts made by Statistics
Norway have a weight of 1 is rejected, whereas the hypothesis that the random
walk-based forecasts have a weight of 1 is not rejected. Thus, we cannot reject that
the forecasts made by Statistics Norway and the random walk-based forecasts have
equal predictability. At the same time, we cannot reject that the random walk-based
forecasts encompass the forecasts by Statistic Norway. However, the hypothesis that
the forecasts by Statistics Norway encompass the random walk-based forecasts is
clearly rejected.

The change in the estimates of the weights from Tables 2 to 3 shows the
importance of the additional 2 weeks of exchange rate data for the forecasts. In
Table 4, we compare the two random walk forecasts directly. Considering the
random walk forecasts for each quarter separately, the weight on the most updated

Table 4 Equal predictability and encompassing tests for path forecasts (.H = 2)—random walk
based on the exchange rate 1 day vs. 15 days before the publication deadline

Projection
Weight
.RW1

Weight
.RW15

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 2.51 .−1.51 2.54 [0.01].∗ 1.91 [0.06] 3.16 [0.00].∗∗

Q2 1.36 .−0.36 3.68 [0.00].∗∗ 1.55 [0.13] 5.81 [0.00].∗∗

Q3 0.89 0.11 2.01 [0.05].∗ 0.59 [0.56] 4.62 [0.00].∗∗

Q4 1.09 .−0.09 2.66 [0.01].∗ 0.42 [0.67] 4.90 [0.00].∗∗

All 1.68 .−0.68 4.73 [0.00].∗∗ 2.73 [0.01].∗∗ 6.73 [0.00].∗∗

Note: See Table 2
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random walk forecast varies from 0.89 to 2.51. We cannot reject that this weight is
1 (i.e., .α = 0) for any of the four quarters. For all of the four quarters, we can also
reject the hypothesis that the weight of randomwalk forecast based on the exchange
rates 15 days ahead of the deadline for Statistic Norway’s forecasts is equal to 1 (i.e.,
.α = 1). Thus, when considering forecasts made in each quarter separately, we may
conclude that the forecasts based on the exchange rate 1 day prior to the publication
deadline encompass the forecast based on the exchange rate 15 days prior to the
publication deadline.

Table 4 also reports the estimated weights when considering the random walk-
based forecasts at the time of all the publication dates of forecasts by Statistics
Norway in the years 2001–2018. When considering forecasts made in all four
quarters jointly, the estimated weight for the most recent based forecast is 1.68 and
exceeds 1 significantly. Based on the estimation results for the individual quarter the
forecasts are made, we see that it is for the forecasts made in the first quarter that
the estimated weight deviates mostly from 1.

Tables 2, 3, 4 compare different exchange rate forecasts up to horizon 2, i.e.,
up to 2 years ahead. When comparing the forecast paths, the test statistics applied
here weight the nowcast with the forecasts 1 and 2 years ahead (i.e., .H = 2).
The weights are given by the inverse of the estimated covariance matrix in (6).
Typically, the variance of the forecast error for the exchange rate in the same year
(i.e., the nowcast) will be smaller than the variance of the forecast errors 1 and 2
years ahead. This implies that the test statistics typically will put a higher weight on
the nowcasts. Now, we consider this further by repeating the tests in Tables 2, 3, 4
with smaller forecasting horizons. Tables 5, 6, 7 report the results with .H = 1, i.e.,
when considering path forecasts consisting of a nowcast and a 1-year-ahead forecast
of the exchange rate. Tables 8, 9, 10 report the results with .H = 0, i.e., when only
considering nowcasts of the exchange rate. The tests with .H = 0 are all univariate
tests.

The results in Tables 5, 6, 7, 8, 9, 10 more or less confirm the results with the
longer forecast horizon in Tables 2, 3, 4. When considering forecasts made in all
quarters jointly, Tables 5 and 8 confirm that the random walk forecasts based on the
exchange rate 1 day before the publication deadline encompass the forecasts given

Table 5 Equal predictability and encompassing tests for path forecasts (.H = 1) — random walk
based on the exchange rate 1 day before the publication deadline

Projection
Weight
F

Weight
.RW1

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 .−0.18 1.18 1.35 [0.18] 2.35 [0.02].∗ 0.36 [0.72]

Q2 .−0.48 1.48 1.32 [0.19] 1.99 [0.05] 0.64 [0.52]

Q3 .−0.40 1.40 1.88 [0.07] 2.93 [0.01].∗∗ 0.84 [0.41]

Q4 0.03 0.97 2.85 [0.01].∗ 5.87 [0.00].∗∗ 0.17 [0.86]

All .−0.12 1.12 1.86 [0.06] 3.35 [0.00].∗∗ 0.37 [0.71]

Note: See Table 2
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Table 6 Equal predictability and encompassing tests for path forecasts (.H = 1) — random walk
based on the exchange rate 15 days before the publication deadline

Projection
Weight
F

Weight
.RW15

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 0.43 0.57 0.16 [0.88] 1.32 [0.19] 1.00 [0.32]

Q2 0.32 0.68 0.33 [0.74] 1.24 [0.22] 0.57 [0.57]

Q3 0.10 0.90 0.73 [0.47] 1.63 [0.11] 0.18 [0.86]

Q4 0.46 0.54 0.22 [0.82] 2.94 [0.00].∗∗ 2.49 [0.02].∗

All 0.46 0.54 0.18 [0.86] 2.23 [0.03].∗ 1.87 [0.06]

Note: See Table 2

Table 7 Equal predictability and encompassing tests for path forecasts (.H = 1) — random walk
based on the exchange rate 1 day vs. 15 days before the publication deadline

Projection
Weight
.RW1

Weight
.RW15

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 2.47 .−1.47 1.79 [0.08] 1.33 [0.19] 2.24 [0.03].∗

Q2 1.40 .−0.40 2.38 [0.02].∗ 1.6 [0.29] 3.69 [0.00].∗∗

Q3 0.86 0.14 1.24 [0.22] 0.48 [0.64] 2.96 [0.00].∗∗

Q4 1.09 .−0.09 2.07 [0.04].∗ 0.33 [0.74] 3.81 [0.00].∗∗

All 1.70 .−0.70 4.35 [0.00].∗∗ 2.55 [0.01].∗ 6.16 [0.00].∗∗

Note: See Table 2

Table 8 Equal predictability and encompassing tests for path forecasts (.H = 0) — random walk
based on the exchange rate 1 day before the publication deadline

Projection
Weight
F

Weight
.RW1

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 .−0.09 1.09 1.20 [0.24] 2.21 [0.03].∗ 0.18 [0.86]

Q2 .−0.62 1.62 2.19 [0.03].∗ 3.17 [0.00].∗∗ 1.21 [0.23]

Q3 .−0.55 1.55 2.53 [0.01].∗ 3.73 [0.00].∗∗ 1.33 [0.19]

Q4 0.04 0.96 3.06 [0.00].∗∗ 6.40 [0.00].∗∗ 0.28 [0.78]

All .−0.26 1.26 1.91 [0.06] 3.16 [0.00].∗∗ 0.66 [0.51]

Note: See Table 2

by Statistics Norway. However, when considering the random walk forecasts based
on the exchange rate 15 days before the publication deadline, Tables 6 and 9 confirm
that we cannot reject that this forecast path has equal predictability to the forecast
path given by Statistics Norway. Finally, Tables 7 and 10 confirm that the random
walk forecast based on the exchange rate 1 day before the publication deadline is
superior to the random walk forecasts based on the exchange rate 2 weeks earlier.
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Table 9 Equal predictability and encompassing tests for path forecasts (.H = 0) — random walk
based on the exchange rate 15 days before the publication deadline

Projection
Weight
F

Weight
.RW15

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 0.69 0.31 0.64 [0.52] 1.06 [0.29] 2.35 [0.02].∗

Q2 0.47 0.53 0.04 [0.97] 0.63 [0.53] 0.55 [0.58]

Q3 0.11 0.89 0.60 [0.55] 1.38 [0.17] 0.17 [0.87]

Q4 0.49 0.51 0.04 [0.97] 2.51 [0.02].∗ 2.44 [0.02].∗

All 0.61 0.39 0.43 [0.67] 1.43 [0.15] 2.29 [0.02].∗

Note: See Table 2

Table 10 Equal predictability and encompassing tests for path forecasts (.H = 0)—random walk
based on the exchange rate 1 day vs. 15 days before the publication deadline

Projection
Weight
.RW1

Weight
.RW15

t-test (two-sided)

quarter .1 − α .α .H0 : α = 1
2 .H0 : α = 0 .H0 : α = 1

Q1 2.57 .−1.57 3.38 [0.00].∗∗ 2.56 [0.01].∗ 4.19 [0.00].∗∗

Q2 1.35 .−0.35 2.36 [0.02].∗ 0.97 [0.34] 3.76 [0.00].∗∗

Q3 0.87 0.13 1.03 [0.31] 0.37 [0.71] 2.43 [0.02].∗

Q4 1.08 .−0.08 2.18 [0.03].∗ 0.31 [0.76] 4.05 [0.00].∗∗

All 1.80 .−0.80 5.73 [0.00].∗∗ 3.53 [0.00].∗∗ 7.94 [0.00].∗∗

Note: See Table 2

4 Conclusions

We have used new tests for equal predictability and encompassing for path forecasts
to compare the predicted exchange rate path by Statistics Norway with a random
walk forecast [11, 12]. The date the random walk forecast is based on is shown
to be crucial. When the random walk is generated from the exchange rate at the
deadline of the publication of the forecasts made by Statistics Norway, the random
walk forecast path encompasses the forecasted path by Statistics Norway. However,
when the randomwalk forecast path is generated based on the exchange rate 15 days
before the publication deadline, the random walk path and the forecasted exchange
rate path by Statistics Norway have equal predictability.

We can draw two lessons. First, there is no indication that the exchange rate
forecasts by Statistics Norway were better than a random walk forecast. The
exchange rate path forecast from Statistics Norway has equal predictability as the
random walk forecast based on the exchange rates 15 days before the publication
deadline. Therefore, starting from the forecasts made in the first quarter of 2019,
Statistics Norway has forecasted an unchanged exchange rate [22]. Second, using
the exchange rate as close to the projection deadline as possible improves the
forecasts. Therefore, Statistics Norway updates its exchange rate forecasts until the
projection deadline.
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Mostafa Abotaleb and Tatiana Makarovskikh

Abstract Forecast systems related to forecasting infection cases of Covid-19 are
based on time series models because they are considered to be highly accurate
in forecasting Covid-19 cases due to their accuracy over epidemiological models
that are related to forecasting Covid-19 cases. In this paper, we have two tasks.
The first task is to improve forecasting and decrease MAPE% errors in forecast-
ing infection cases through the development of the “Epidemic.TA” system. The
development of this algorithm will be called the ensembling time series and neural
network system (ET-system). The development of the system was completed by
adding a cubic smoothing spline model. This system also applies the method of
ensembling between these models in the system (neural network autoregression,
Box-Cox transformation, ARMA residuals Trend and Seasonality, trigonometric
Box-Cox transformation, ARMA residuals Trend and Seasonality, Holt’s linear
trend, autoregressive integrated moving average, and cubic smoothing splines). We
applied ensembling by using two methods. The first is the aggregation (average) of
results from these models, and the second is ensembling by using average weight
by using a prioritizer. The prioritizer gives weights to time series models and neural
network models and then gets the ensembling model’s average weight and compares
the errors between these models to choose the best forecast model. The results of
the developed system (ET-system) were more accurate than the “Epidemic.TA.” On
the other hand, the second task in this paper is to use the bootstrap aggregating
(bagging) methodology for the NNAR model to decrease the error value of the peak
of the wave of infection cases.
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Keywords Time series models · Neural network model · Cubic smoothing spline
model · Holt’s linear trend model · BATS model · TBATS model · ARIMA
model · Epidemic.TA system · Covid-19

The List of Acronyms

ET-system Ensembling time series and neural network model system
E.W Ensembling models by using weight average
E.A Ensembling models by using average
Bagging Bootstrap aggregating
NNAR Neural networkauto regression
BATS Box-Cox transformation ARMA residuals, Trend and Seasonality
ARIMA Auto regressive integrated moving average
NHS 111 calls National Health Service 111 calls

1 Introduction

Since the beginning of Covid-19 in Wuhan, China, mathematical models and time
series models have been powerful tools for modeling and forecasting of Covid-19
infection cases. In [1] we compared two models for forecasting infection, deaths,
and recovery in three countries, and we concluded that Holt’s linear trend is better
than the ARIMA model in these three countries. In [2] we concluded that without
periodically updating the model’s hyperparameters, it is difficult to obtain a highly
accurate forecast of Covid-19 cases. As a result, the development of a dynamic
system to automatically select the best forecasting model and its best parameters
is critical to improving forecasting. In [3] we developed an “Epidemic.Network”
system that has been implemented and includes BATS, TBATS, Holt’s linear trend,
ARIMA, and SIR models. It was a SIR model with the highest error rate (mean
absolute percentage error) MAPE % for forecasting infection cases in Chelyabinsk.

In [4] they conducted an experimental study on the forecasting of the Covid-19
epidemic pattern and compared the actual and predicted values in both principle
and practical aspects. The ARIMA model was used to provide an effective linear
model for capturing the linear pattern of the Covid-19 series. The ARIMA model
can display (1) AR for past values and (2) MA for current and previous residual
series historical knowledge. Decomposition methods are most effective when the
sequence matches the decomposition hypothesis. The weakness of the model is
that only the data from the time series can derive linear relationships. This does
not work well with occurrences that are influenced by several elements, such as
meteorological and unique societal effects. When used in other cases, the findings
based on a particular disease may not be replicable when applied to other cases.
Moreover, there are several other theories about the long-term trend in methods
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of decomposition, which assume a nonlinear function in the time series, such as
support vector machine (SVM) and generalized models.

In [5] the cubic-spline, Holt, and Holt-Winter models performed well in the
majority of our experiments. In [6] they used NNAR (1,1) and ARIMA (0,2,1) for
forecasting the infection fatality rate of Covid-19 in Brazil. They concluded that the
NNAR model is better than the ARIMA model, an error rate of 6.85% for NNAR
and 7.11% for ARIMA.

In the Isfahan province of Iran, in [7] they simulated and forecasted the infection
cases of Covid-19 from February 14 to April 11. There are three scenarios that
differ in terms of the stringency level of social distancing. Although the constructed
SIR model was able to forecast at short-term intervals, in the long term, it was
unable to forecast the actual infection cases’ spread and pattern of Covid-19.
Remarkably, most of the published SIR models developed to forecast Covid-
19 for other communities suffered from similar features. In addition, the based
assumptions of the SIR model do not seem appropriate in the case of Covid-19 [7].

In [8] we developed the “Epidemic.TA” system that included the neural network
model NNAR; the time series models BATS, TBATS, and Holt’s linear trend; and
the ARIMA model. The results of “Epidemic.TA” are very accurate for forecasting
cumulative infection cases, and we excluded the SIR model from this system, since
it produced the highest error rates.

In [9] the authors concluded that the multilayer perceptron network (MLP) is
the best for forecasting daily infection cases, and the Holt-Winter model is good for
death cases. They also forecasted that they would have 2484 infection cases and 114
death cases on September 14, 2020, but actually had 2089 infection cases and 128
death cases. It means that MAPE was equal to 18.91% for infection cases and to
10.94% for death cases, and MAPE for 30 days for infection cases is 17.49% and
for death cases is 13.53%. This means that the best models were not able to forecast
for a month with minimal errors.

In [10] the authors concluded that the ARIMAmodel and cubic smoothing spline
models have lower forecast errors and narrower forecast intervals compared to the
Holt and TBATS models.

In this study [11], the authors have created a simple model for forecasting
that can be used to forecast Covid-19 daily infection cases at the local level. The
proposed MLR model exploits the relationship between the infection cases and the
phone call data (NHS 111 calls) in addition to other patterns, such as trends, the
effect of weekends, and autoregressive lags of confirmed cases. They compared
the performance of the model with ETS, ARIMA, seasonal naive, Prophet, and an
MLR model without using phone call data using an empirical study. The analysis
showed that the proposed model could provide accurate and reliable forecasts. It
outperforms all benchmarks based on all accuracy measures considered in the study.
They also provide evidence that using phone call data is an important predictor of
Covid-19 confirmed cases and should be considered in forecasting models. They
could propose that this might be due to the connection between phone calls to the
health service and the dynamics related to Covid-19. It is very hard to get data
about the numbers of calls for each country. That makes that new model very hard



216 M. Abotaleb and T. Makarovskikh

to implement. So we decided to develop a system ensembling time series and neural
network system (ET-system) dependent on time series models, implementing initial
data of infection cases of Covid-19, but not using calls (NHS 111 calls) data.

In our paper, we developed the “Epidemic.TA” system to improve forecasting
and reduce the error of MAPE% for daily infection cases. The newly developed
system is called ensembling time series and neural network system (ET-system).1

In this system, we added a cubic smoothing spline model. On the other hand, to
improve the forecast, we used two ensembling methods by using two approaches:
(1) the aggregation (average) of results from time series and neural network models
(NNAR, BATS, TBATS, Holt’s linear trend, ARIMA, and cubic smoothing splines)
and (2) applying the average weight by using a prioritizer, which gives weights to
time series models that were previously mentioned, and then getting the ensembling
model’s average weight.

In [8] we were able to forecast the date of the occurrence of the third wave
peak in both Italy and Spain. We obtained accurate results on the date of the
onset of maximum Covid-19 infection cases, which coincided with the actual time.
On February 22, 2021, we simulated by using the NNAR model to anticipate the
occurrence of the third wave in the Russian Federation, and tested the last 50 days
from that date, where the third wave was forecasted on July 19, 2021, but the
actual timing of the wave was July 9, 2021. Here comes the second task of this
work, which is to improve forecasting to reduce errors in the value of the peak. For
example, we will implement a bootstrap aggregating (bagging) NNAR to minimize
errors in forecasting in the Russian Federation and Chelyabinsk and on other hand,
comparative between its errors to choose minimize the least errors in forecasting.

2 Data and Materials

To hold our experiments, we used the Covid-19 data set from January 1, 2020, to
August 15, 2021, for the Russian Federation from the World Health Organization
(WHO), and the data set[12] for Chelyabinsk from March 12, 2020, to August 15,
2021, by Yandex DataLens [13]. The lengths of time series data set about Covid-19
infection cases used in our experiments are shown in Table 1.

It is possible to download the source code for the developed ensembling time
series and neural network system (ET-system) by using R-programming and data
sets from GitHub [14].

1 Here and later, the acronyms of ensembling time series and neural network system (ET-system)
are listed at the end of the Introduction section.
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Table 1 Data set used for forecasting waves of infection cases in the Russian Federation

Russian Federation

Wave number First value date Last value date The peak of the wave date

1 January 1, 2020 April 30, 2020 May 11, 2020

2 January 1, 2020 November 30, 2020 December 24, 2020

3 January 1, 2020 June 30, 2021 July 9, 2021

Chelyabinsk region

1 March 12, 2020 May 31, 2020 June 23, 2020

2 March 12, 2020 November 30, 2020 December 19, 2020

3 March 12, 2020 August 10, 2021 Unknown

3 The Review of Ensembling Time Series and Neural
Network System (ET-System) for Forecasting Covid-19
Cases and Waves for Infection Cases

3.1 The Algorithm Schema of the Ensembling Time Series and
Neural Network System (ET-System)

From Fig. 1 the following six steps describe how the algorithms of the ensembling
time series and neural network system (ET-system) work:

Step 1. Insert Covid-19 time series and global variables; see [14] and [8].
Step 2. Preprocess data and split the data into training and testing.
Step 3. Run TS-System and ensembling time series and neural network system

(ET-system).
Step 4. Calculate the accuracy of the training data (ME-RMSE-MAE-MPE-

MAPE-MASE-ACF1).
Step 5. Calculate the accuracy of the testing data (MAPE%).
Step 6. Select the best model for forecasting with the least error MAPE%.

3.2 The Scheme of the Algorithm for Dynamic Prioritizer

Figure 2 describes how the prioritizer works. The prioritizer gives weights. After
obtaining errors of trained data from the time series models and neural networks,
they are ensembling and given weights. It was found that by giving a weight of
0.9 to the best model of the time series and neural networks, and distributing (1–
0.9) equally over the other models, gives accurate results and improves forecasts
with low error. For more details, the prioritizer worked after the data was trained
for Covid-19, where the errors obtained were calculated from the trained data
incrementally. The weights are distributed based on these errors, so the best model
that has the lowest mean absolute percentage error (MAPE) gets 0.9, and the other
models are distributed (1–0.9) equally over the other models.
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Fig. 1 Scheme of ensembling time series and neural network model system

3.3 The Scheme for Bagging and Bootstrapping the NNAR
Model for Improving Forecasting of the Waves of Infection
Cases

When we used the NNAR model to forecast the peak of the third wave of infection
cases in the Russian Federation, [8], we used the NNAR (8,50) model (Fig. 3).

Let us consider the improvement in forecasting the peaks of infection cases and
introduce the new methodology of bootstrapped time series (Tables 6 and 7) to
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Fig. 2 The scheme of the algorithm for dynamic prioritizer

improve forecast accuracy. So, in our case, we will divide training data into three
samples with replacement, as it is possible to divide training data into 100 samples
with replacement. The main reason for choosing to divide training data into three
samples with replacement is that our Covid-19 data (pattern of data) finds that we
get the least error when divided into three samples with replacement. If we produce
forecasts from each of the samples and average the resulting forecasts, we get better
forecasts than if we simply forecast the training data directly. Figure 4 describes
the development of the NNAR model for forecasting waves by using bagging and
bootstrapping.

3.4 Design of the Software for Forecasting

Figure 3 describes how this software deals with univariate time series data where
the schema describes the dynamic of this software.

Step 1. Start software.
Step 2. Input global variables and time series data; see [14] and [8].
Step 3. Run the (ET-system) algorithm on software.
Step 4. Extract results for testing data, accuracy, plots, and graphs, and forecast-

ing in txt and csv format.
Step 5. Finish.
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Fig. 3 The scheme of the advanced software system for forecasting Covid-19

Fig. 4 Developed NNAR for forecasting the waves of infection cases of Covid-19 by using
bootstrap aggregating (bagging) for the NNAR model



Development of Algorithm for Forecasting System Software 221

4 Results

The simulation results are shown in Tables 2, 3, 4, 5, 6, 7. From Tables 2 and 3
The experiment results were performedusing four selection or prediction criteria:

testing lasted 7 days, 14 days, 21 days, and 30 days, respectively. With the
help of these measures, we have found that our proposed system for ensembling
average and ensembling average weight performance is better than all other models,
which achieved the lowest error rates compared to other models for data used in
experiments (Russian Federation and Chelyabinsk).

Tables 4 and 5 show the experiment held for the data, including the period from
August 9, 2021, to August 15, 2021 (tested last 7 days), in the Russian Federation
and Chelyabinsk region. For the Russian Federation, the range of error is between
0.605 % and 3.032 %and MAPE for the tested period is 1.644 % . For Chelyabinsk,
the range of error is between 0.173% and 0.992% and the MAPE for the tested
period is 0.580%. As soon as all the obtained MAPE is lower than 1–3%, we can
conclude that the obtained results have very high accuracy.

Table 2 Accuracy MAPE% daily Covid-19 infection cases for testing data last (7-14-21-30) days
for Russian Federation

Model 7 days 14 days 21 days 30 days

NNAR model 2.468 7.412 4.177 13.105

BATS model 3.952 3.384 1.518 10.425

TBATS model 4.223 3.957 11.739 30.398

Holt’s linear trend model 3.937 3.308 11.310 31.794

ARIMA model 4.269 3.950 6.580 9.791

Cubic smoothing spline model 1.838 4.111 6.181 9.276

Ensembling average 2.156 1.573 4.480 14.391

Ensembling average weight 1.644 3.041 1.200 6.439

Best model E.W E.A E.W E.W

Table 3 Accuracy MAPE% daily Covid-19 infection cases for testing data last (7-14-21-30) days
for Chelyabinsk

Model 7 days 14 days 21 days 30 days

NNAR model 2.460 10.613 13.879 11.590

BATS model 1.009 4.318 4.135 11.337

TBATS model 1.202 4.220 3.702 7.894

Holt’s linear trend model 1.186 3.822 4.451 7.822

ARIMA model 2.756 4.635 9.837 14.532

Cubic smoothing spline model 5.851 11.519 17.656 27.299

Ensembling average 0.580 1.438 1.003 4.705

Ensembling average weight 0.881 3.536 3.338 7.448

Best model E.A E.A E.A E.A
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Table 4 Accuracy MAPE% daily Covid-19 infection cases for forecasted 1 week ahead by using
best model ensembling weight average

Date Actual Forecasted MAPE %

August 9, 2021 22,160 21,820.300 1.533 %

August 10, 2021 21,378 21,755.740 1.767 %

August 11, 2021 21,571 21,705.190 0.622 %

August 12, 2021 21,932 21,653.990 1.268 %

August 13, 2021 22,277 21,601.640 3.032 %

August 14, 2021 22,144 21,550.930 2.678 %

August 15, 2021 21,624 21,493.070 0.605 %

Weekly MAPE % for forecasted daily infection cases by using best model E.W 1.644 %

Table 5 Accuracy MAPE% daily Covid-19 infection cases for forecasted 1 week ahead
(Chelyabinsk region) by using best model ensembling average

Date Actual Forecasted MAPE %

August 9, 2021 360 363.572 0.992 %

August 10, 2021 363 365.776 0.765 %

August 11, 2021 365 367.997 0.821 %

August 12, 2021 368 369.696 0.461 %

August 13, 2021 371 371.642 0.173 %

August 14, 2021 375 373.949 0.28 %

August 15, 2021 378 375.847 0.569 %

Weekly MAPE % for forecasted daily infection cases by using best model E.A 0.580%

Table 6 Forecasted peaks of Covid-19 infection cases waves for the Russian Federation

NNAR bootstrap model

No. peak of wave Actual value Forecasted value MAPE% Testing days Bootstrapping

1 11656 10885.7 6.61% Last 7days 100

2 29935 27250.98 8.97% Last 25 days 3

3 25766 25885.61 0.46% Last 120 days 3

NNAR model

1 11656 5364.59 53.98% Last 3 days –

2 29935 18919.69 36.80% Last 25 days –

3 25766 23191.05 9.99% Last 120 days –

From Table 8 (see Appendix), we implemented the ET-system for forecasting
daily Covid-19 infection cases in the Russian Federation and in Chelyabinsk to the
end of August 2021 by using the best model which achieved the lowest error. We
forecasted for the Russian Federation by using an ensembling average weight and
for Chelyabinsk by using an ensembling average, which achieved the least error of
MAPE in the (ET-system) for testing in the last 7 days. See Tables 4 and 5 tables.

From Table 6 and 7 we simulated the NNAR bootstrap model for the Russian
Federation and Chelyabinsk to forecast the peak value of the first, second, and
third waves. All the experiments were performed using three selection or prediction
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Table 7 Forecasted peaks of Covid-19 infection cases waves for Chelyabinsk region

NNAR bootstrap model

No. peak of wave Actual value Forecasted value MAPE % Testing days Bootstrapping

1 258 242.13 6.15 Last 7 days 3

2 317 318 0.32 Last 25 days 3

3 386 380.78 1.35 last 3 days 3

NNAR model

1 258 128.81 50.07 Last 7 days –

2 317 218.80 30.98 Last 25 days –

3 386 298.86 22.58 last 3 days –

criteria. Testing lasts 7 days, 25 days, and 120 days. With the help of these measures,
we have found that our bootstrap aggregating (bagging) performance is better than
NNAR models. The proposed model achieves the lowest MAPE% throughout the
experiment under various selection criteria.

.

MAPE% =
∣
∣
∣
∣

Actual value in the wave − Forecasted value in the wave date

Actual value in the wave

∣
∣
∣
∣

∗ 100
(1)

5 Conclusions and Further Research

Time series for infection: The cases of Covid-19 are the ones for which classical
time series models no longer have sufficient ability to accurately forecast future
values. It is obvious, because there are lots of different factors influencing the
process. The forecast obtained today is suitable only for the current situation with
a fixed number of infected in hospitals, a fixed number of vaccinated, a fixed
policy, etc. Surely, it is impossible to fix any of these factors in life. In our paper,
we considered the approach in which we combined the existing models by using
ensembling aggregationweights and ensembling aggregation results of these models
to obtain accurate predictions in the short term, which may extend to 10 days. This
indicates the importance of developing and building new models that can detect the
pattern of spreading Covid-19 infection.

For the experimental evaluation, we compared the performance of six traditional
forecasting models: (1) neural network autoregressive model (NNAR), (2) BATS,
(3) TBATS, (4) Holt’s linear trend, (5) ARIMA, and (6) cubic smoothing spline
model to find out their suitability and correctness. The mean absolute percentage
error (MAPE) has been used as a performance measure. The performance of each
model has been calculated using these performance measures to determine the best
suitable forecasting model among them. All the experiments were performed using
four selection or prediction criteria: (1) testing lasts 7 days, (2) 14 days, (3) 21 days,
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and (4) 30 days. With the help of these measures, we have found that our proposed
model’s performance is better than all other models. The proposed model achieves
the lowest MAPE throughout the experiment under various selection criteria. Apart
from that, we have found the significance of bootstrapping and bagging, as well as
the importance of the ensembling average and the ensembling average weight. To
obtain highly accurate forecasts, the data must be updated weekly.

We have also used the proposed model to forecast the number of daily Covid-19
confirmed cases at the national level, the Russian Federation, and the Chelyabinsk
region. The overall performance is very similar to the local level. The proposed
model, ensembling average and ensembling average weight, outperforms others.
However, we have not provided the analysis here due to the space limit and the
focus of the study at the local level, but it can be provided on request.

In the future, we will again analyze the proposed model with different data sets
and find out further boosting techniques which can boost the model efficiency. The
bootstrapping and bagging process, method, and forecasting the extreme values of
functions is one of the probable solutions. It will be appended to the software, and
complete the software.

Appendix

See Table 8.

Table 8 Forecasted infection cases of Covid-19 (with prediction criteria: testing lasts 7 days)

Date Russian Federation Chelyabinsk

Date Actual Forecasted MAPE% Actual Forecasted MAPE%

August 16, 2021 20,765 21,431.630 3.21 381 377.962 0.80

August 17, 2021 20,958 21,374.780 1.99 384 380.142 1.00

August 18, 2021 20,914 21,311.840 1.90 386 381.691 1.12

August 19, 2021 21,058 21,264.120 0.98 385 383.568 0.37

August 20, 2021 20,992 21,212.800 1.05 383 385.738 0.71

August 21, 2021 21,000 21,154.790 0.74 382 387.592 1.46

August 22, 2021 20,564 21,099.460 2.60 380 389.641 2.54

August 23, 2021 19,454 21,047.150 8.19 379 391.712 3.35

August 24, 2021 18,833 20,984.740 11.43 377 393.250 4.31

August 25, 2021 19,536 20,925.730 7.11 378 394.998 4.50

August 26, 2021 19,630 20,874.220 6.34 377 397.156 5.35

August 27, 2021 19,509 20,819.720 6.72 379 398.940 5.26

August 28, 2021 19,492 20,767.670 6.54 378 400.913 6.06

August 29, 2021 19,286 20,715.250 7.41 377 402.984 6.63

August 30, 2021 18,325 20,657.720 12.73 377 404.410 7.27

August 31, 2021 17,813 20,598.640 15.64 376 406.165 8.02

MAPE% MAPE% for 16 days 4.35 MAPE% for 16 days 3.10

Best model Ensembling average weight Ensembling average
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Forecasting High-Frequency Electricity
Demand in Uruguay

Bibiana Lanzilotta and Silvia Rodríguez-Collazo

Abstract This paper proposes a model for the daily electricity demand in Uruguay,
identifying the incidence of special days (calendar effects, holidays, among others)
and climatic variables such as temperature, humidity, winds, and heliophany. We
propose a non-linear model to represent the association between energy consump-
tion and climate variables. Applying Markov switching models and considering
hot and cold months separately, identify breaks in the energy demand function
associated with temperature thresholds. Predictive analysis during 2020, the first
year of the health emergency, shows that the COVID-19 sanitary crisis did not
deteriorate the model performance.

Keywords Non-linear time series models · Daily time series · Electricity ·
Climatic variables

1 Introduction

The electric sector has traditionally had an intensive use of predictive models.
In vertical integration environments, with tariffs centrally fixed by regulators, the
punctual forecast of daily domestic demand of energy is an essential requirement to
accomplish an efficient generation, given the overrun costs associated with a poor
prediction. Overestimating implies generating energy that will not be consumed, and
therefore it will be lost or sold to derisory prices. On the other side, underestimating
the demand may cause blackouts and high costs [1]. By modeling the demand, it is
possible to acquire a more refined knowledge of consumers and markets, as well as
a better positioning, by reducing uncertainty when making decisions.
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Our objective is to characterize and model the daily demand for electric energy in
Uruguay between 01.01.2010 and 31.07.2020, identifying the incidence of specific
events, individually and integrated with the short-term dynamic. Following [2, 3], a
daily single model is proposed that accounts for the non-linear association between
energy consumption and climatic variables.

In Uruguay, the daily electricity demand has significantly grown in the past years,
doubling between the early 1990s and 2020. The Uruguayan electricity generation
system is acquiesced by a single state-owned generator (Usinas y Transmisiones
Eléctricas, UTE), mainly based on hydraulic, wind, and thermal sources.

As is known, electric energy demand presents different seasonal patterns
throughout the year. On one side, the seasonal factor associated with the climate
seasons, in general, the highest peaks take place in winter (in Uruguay, between
June and August), and more recently, in summer (December to March in Uruguay).
In fall and spring, the demand is lower due to the moderation of the temperature and
the climatic variables in general. In Uruguay, seasonality associated with the seasons
has changed since the ‘90s, diminishing the gap between winter and summer, but
always maintaining higher levels in the cold season of the year. Regarding the
weekly pattern, peaks and valleys are repeated with a 7-day frequency, which is
mainly explained by the dynamic of the economic activity. This pattern does not
suffer significant changes in the last decades.

A wide range of methodologies and models for electricity forecasting are given
in the literature. Some methods are based on statistical and econometrics models
while other ones are based on computational models (see [4] for a comprehensive
systematic review).

This research, within a time-series methodological framework, follows [1, 5, 6]
proposals. This approach has the advantage, over the computational methodologies,
of providing an interpretable explanation of the behavior of the variable, in addition
to its forecast. This paper updates and revises a previous one [7], which considers
data till 18.11.2012. The updated results show changes in the demand curve as a
function of temperature, probably linked to changes in the uses of electrical energy
when temperatures rise above the annual average.

The document is organized as follows. The following section presents the
methodological approach and, while in the third section, a brief characterization
of the electric energy demand in Uruguay is exposed. The estimated model and
its predictive performance in a regular year and during the COVID-19 health
emergency are presented in the fourth section. Finally, the fifth section concludes.

2 Methodological Approach

[2, 3], following [1, 5, 6] formulate a forecasting method for the energetic demand
in Spain using high-frequency data. In order to do so, they focus on the non-linear
link between energetic consumption and climate variables, incorporating a detailed
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analysis of intervention on special days (holidays, vacations, strikes), all in a single
equation for the whole sample.

2.1 General Model and the Treatment of Special Days

Equation (1) represents daily electricity demand (Dt) as:

Dt = FSt + ESt + CDEt + CVCt + εt, (1)

being FSt a trend associated with socioeconomic factors that influence the energetic
demand, ESt the weekly seasonal pattern, CDEt the special days contribution to
the energetic demand, CVCt the climate variables contribution, and εt random
shocks not taken into account in any previous variables. Excluding the most volatile
components (the contributions of special days and the climate variables) to the total
demand, we have the DBt (the most stable component) that can be expressed as an
ARIMA model:

��7DBt = ηt, (2)

being ηt a stationary ARMA(p,q) process. Combining Eqs. (1) and (2) we can write:

��7Dt = ��7 CDEt + ��7CVCt + ηt, (3)

Expressing CDEt and CVCt as vectors of polynomials associated with de L lag
operator, CDEt = f1(L)’DEt, and CVCt= f2(L)’VCt (with DEt, an mxt a matrix of
m special days variables, and VCt an nxtmatrix of the n climate variables) we have:

��7Dt = ��7f1(L)
′
DEt + ��7f2(L)

′
V Ct + ηt, (4)

From Eq. (4) we estimate a function that allows us to forecast the short-term
Uruguayan electricity demand. Considering the dependent variable in logarithms
does not introduce substantial distortions in the short-term predictions, while it
allows improving its variance. Equation (4) models all the effects associated
with socioeconomic variables, such as the country’s growth, prices, demographic
changes, and seasonal effects derived from differences in the series studied. While
the first difference aims to eliminate the previously described effects, the difference
of order 7 models the differential behavior of the energetic demand between
weekdays. The usage of ARIMA models for this kind of modeling, and mainly
to forecasting is well documented in [2, 3, 6, 8–12]. Once special day effects are
adjusted, the remaining components that include the climate variable effects are
denominated, the electricity demand depurated from special days effects (DAD),
that is represented in Eq. (5).
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��7DADt = ϕt, (5)

2.2 A Non-linear Approach to Model the Effect of Climate
Variables

One of the unarguable features about the link between climate variables and
energetic demand is its nonlinearity. On one side, when temperature is low, a
rise in it carries a reduction in the energy demand; this is known as the “heating
effect” [13]. On the other side, the “cooling effect” takes place when a rise in the
temperature implies an increment of the energy demand (given that strong heats
encourage refrigerating electrical appliances).

Most of the existing literature tries to model this functional form by thresh-
old variables, arbitrarily fixed dummies. Another way to tackle this consists
of estimating the energy demand function through estimated splines from non-
parametric models, which not only seek to find a value for function parameters
but also the functional form [14]. Our approach departs from [2, 3] that postulate
a non-linear link between the different observed temperatures, approximated by
piecewise functions. Our contribution consists of using the Markov Switching
Models methodology to estimate the breakpoints of the demand function, using the
demand calculated in Eq. (4), sectioning the sample into the hottest and the coldest
months of the year. In addition to the variables used by [2], we include different
climatic variables such as wind, relative humidity, and sunlight (heliophany) that
affect the apparent temperature and therefore the thermal comfort needs.

An additional feature to consider in the modeling of energetic demand is the
inertia of the climate effect on it. The environments where we live have the
characteristic of keeping ambient temperature, at least for a few days. This is why
even if there is a hot day during winter we still need to heat our houses, so energy
demand will not decrease despite higher temperatures. For the same reason, a given
temperature does not have the same effect in summer as in winter, and different
breaking points have to be found for different seasons. To capture this effect we
include two qualitative variables: cold and warm, which reflect the months when
the average temperature is higher than the year average temperature and those when
it is not, respectively. Considering the average temperature in the last 5 years months
May, June, July, August, September, and October are included in the cold dummy.
Warm dummy is defined by difference.

Two-step Procedure for Estimating Breaking Points
Starting from the demand adjusted for the effect of special days (Eq. 5), we apply
Markov’s Switching Models methodology to find the breaking points in the link
between energetic demand and temperature. In order to do so, we propose a two-
stage methodology.

The first step is the estimation of a linear function to determine relevant climatic
variables to model energetic demand, as well as its structure and main outliers
(Eq. 6).
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��7DADt = ��7Tempt f21(L)
′∗Warmt + ��7Tempt f22(L)

′∗Coldt
+��7Heliophanyt f31(L)

′∗Warmt + ��7Heliophanyt f32(L)
′∗Coldt

+��7RHt f41(L)
′∗Warmt + ��7RHt f32(L)

′∗Coldt
+��7Windt f51(L)

′∗Warmt + ��7Windt f52(L)
′∗Coldt

+��7WinWintert + ��7Savet + �1
11 ��7Monthi,t

+�1
S ��7Outlieri,t + θ (L) /φ (L) at,

(6)

being Temp, the average observed temperature measured in Celsius degrees, Helio-
phany the number of hours of light during the day, RH the relative humidity,
Wind the wind speed, WinWinter represents the sequence of warm days in the
middle of winter, the dummy Save captures the times when the generating entity
imposed saving measures, and Outlier, the binary variables used to correct atypical
observations. Finally, an ARMA structure is fitted for residuals.

The second step consists of the estimation of breaking points on energy demand
related to the observed temperature applying Markov’s Switching Model procedure.
Once a breaking point candidate is found, Wald tests were applied, in order
to confirm that the coefficients above and below the threshold are significantly
different. We discard 5% of the lowest and highest observed temperatures on
each season (“warm” and “cold”), in order to count with a sufficient number of
observations to perform the first and last breaking test. This simplification does not
limit the search of breaking points, because it is not expected to find them in the
extreme values. The final estimated equation is the following

��7DADt = �1
v��7W t

i f21a(L)
′∗Warmt + ��7

(
Tempt -W t

i
)
f
′
21b(L)

′∗Warmt

+�1
r��7 Ct

i f
′
22a(L)

′∗Coldt + �1
r��7

(
Tempt - Ct

i
)
f
′
22b(L)

′∗Coldt

+��7Heliophanyt f31(L)
′∗Warmt + ��7Heliophanyt f32(L)

′∗Coldt
+��7RHt f41(L)

′∗Warmt + ��7RHt f32(L)
′∗Coldt

+��7Windt f51(L)
′∗Warmt + ��7Windt f52(L)

′∗Coldt
+��7WinWintert + ��7Savet + �1

11 ��7Monthi,t
+�1

S ��7Outlieri,t + θ (L) /φ (L) at.
(7)

where Wt
i
.Wi

t and .Ci
tCt

i are threshold variables for warm and cold season, respec-
tively.
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3 The Data

The electricity demand series with daily frequency presents different seasonality as
well as long-term growth, explained by economic, social, and technologic factors.

In Uruguay, electricity demand has significantly grown in the past years: while
in 1992, the average daily demand was around 14.5 thousand MWh, in the late 90s
exceeded the 20 thousand MWh daily average, in 2010, reached 25 thousand MWh,
and in 2019, 30 thousand MWh.

During this period, seasonality underwent changes (see Fig. 1). While in the
period 1992–2000, the energy consumption during summers represented 88% of
that of the winter, between 2010 and 2019 that amount rose to 93%. The change
in the seasonal pattern is mainly explained by the universalization of electric
appliances to guarantee comfort during summers (particularly, air-conditioning
equipment). From 2010 to nowadays, the seasonal pattern seems to stabilize.
Regarding the weekly pattern, it seems clear that peaks and valleys are repeated
with a 7-day frequency, which is mainly explained by the dynamic of the economic
activity. The average of consumption on Saturdays and Sundays represents nearly
95% and 85% (respectively) of the business days demand (Monday, Tuesday,
Wednesday, Thursday, Friday).

Our study divides the daily data sample into training data and test data. We use
demand data measured in MWh from January 1, 2010 to December 31, 2018 as part
of the training sample and the testing sample is from January 1 to December 31,

Fig. 1 Seasonal factor of electricity demand (1992–2020). Source: Own elaboration based on
UTE data
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2019. Subsequently, the predictive performance of the model during the COVID-19
sanitary crisis is analyzed. The out-of-sample evaluation of forecasting accuracy is
performed by rolling evaluations [15].

Applying the Augmented Dickey–Fuller (ADF) test, we find that in this period
electricity demand presents a regular unit root.1 As for the seasonal weekly pattern,
we apply a seasonal difference to obtain a flexible stationary structure to capture the
variations of this component of the series. Therefore, the stationary transformation
of the series requires regular and seasonal differencing (��7). Finally, to stabilize
the variability of the series throughout the sample, we took logarithms. This
transformation does not distort short-term forecasts. In this way, we will work with
a proxy of the energetic demand daily weekly growth rate.

4 Results

4.1 Modelization of Special Days

In the first term, we estimate the impact of special days on electric consumption.
There are different methodologies to cope with the problem. [16, 17] model this
effect separately, [18] resembles the special days to Sundays, [19] opts to replace
them with a similar day of the previous week. An alternative methodological option
widely used is to model these days with deterministic variables [3, 8, 20]. This
option enables to capture differentially the effects of different special days and then
provides better forecasts. In this paper, we follow this last proposal in order to find
a stable behavioral pattern that lets us incorporate this information in our forecast
models. We consider both workable and not: Easter, Carnival, holidays, and strikes.

Their impact on energetic consumption is different according to which day of
the week they occur. They also have lagged and forward effects on the demand. To
capture these effects and to reduce the loss of degrees of freedom, we assembled
four groups according to the incidence of each holiday in the electricity demand.2

Table 1 summarizes the impact of each group and also the coefficients corresponding
to Carnival holidays and the Easter effect.

Consequently, for each group, we created seven dummy variables, each one
representing a day of the week, in order to capture the different effects of the
holidays according to the weekday. 28 variables were included, as well as lagged and
forward effects for each one. Variables representing Easter, Carnival, and strikes
were also included in the special day filter equation (Eq. 8).

1 These results and full estimations are available on request from the authors.
2 The individual incidence was estimated in a broader sample (1992–2018).



234 B. Lanzilotta and S. Rodríguez-Collazo

Table 1 Holiday Groups and effects (average dynamic effects)

Group (Gj) National holidays Sample 2010–2019

Group 1 January 1, December 25 −0.097
Group 2 May1, August 25, March 1 −0.061
Group 3 January 6, July 18, November 2 −0.036
Group 4 April 19, May 18, June 19, October 12 −0.015
Easter −0.051
Carnival −0.037

Note: Impacts are on ��7lnDt as specified in [8]. Source: Authors estimations

��7lnDt = �1
4��7

(
Gj, t

∗Sunt
)
fG(L)’ + �1

4��7
(
Gj, t

∗Sat
)
fG(L)’

+�1
4��7

(
Gj, t

∗Frit
)
fG(L)’ + �1

4��7
(
Gj, t

∗Thut
)
fG(L)’

+�1
4��7

(
Gj, t

∗Wedt
)
fG(L)’ + �1

4��7
(
Gj, t

∗Tuet
)
fG(L)’

+�1
4��7

(
Gj, t

∗Mont
)
fG(L)’ + ��7Eastert fEa(L)’

+��7Carnt fCa(L)’ + ��7Striket fCa(L)’ + ϕt

(8)

where Gi is a qualitative variable that represents the holidays on each group i using
ones, and Sun, Sat, Fri, Thu, Wed, Tue, Mon correspond to representative dummy
variables of the days of the week. The interaction of holiday variables (grouped)
and day of the week variables allows us to measure the impact of the holidays of
the previously defined groups depending on the weekday they fall. East indicates
Easter Sunday, while Carn designates the Carnival holiday. fi(L)’ is a polynomial
vector associated with the lag operator L. Finally, ϕt = ��7DADt, as is defined in
Eq. (5).3

4.2 Nonlinear Modelization of the Effect of Climate Variables

The results are presented in Table 2 and plotted in Fig. 2. We found two breaking
points on the energy demand function for each of the defined seasons: warm and
cold. For the warm one, we find the first break at 16 ◦C. For lower values, no
significant effects of the temperature on the energetic demand were found. Given
that in the sample the average minimum temperature of a warm-season day is 9 ◦C,
we can establish the zone defined between these two points as a neutral or comfort
zone, where the temperature does not affect the electricity demand.

The second estimated break in the warm season occurs at 25 ◦C. For values
between 16 ◦C and 25 ◦C, a 1 ◦C increase in temperature increases the daily growth

3 The estimated coefficients in Eq. (7), for each group of special holidays, are available as
Complementary Material.
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Table 2 Main results of breaking point estimation on the electric demand function

Function section Lag Coeff. � coeff.

Warm Between 16 ◦C and 25 ◦C 0 0.7424%
1 0.1494% 0.8918%

More than 25 ◦C 0 0.2942%
1 0.0293% 0.3235%

Cold Less than 10 ◦C 0 0.5223%
1 0.2541% 0.7764%

Source: Authors estimations
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Fig. 2 Graphic representation of temperature impact on the daily weekly growth rate energetic
demand, Base Index 100 = 0% growth. Source: Authors estimations

rate compared to that of the previous week by 0.89%, with a contemporaneous
effect of 0.74% on the same day and an increase of 0.15% on the following day.
For average temperatures observed above 25 ◦C we found an overall positive effect
of the temperature increase of 0.32% on energy demand, which shows that once
this threshold is exceeded, each 1-degree increase in temperature has a smaller
influence on energy demand than if the same increase were to occur at temperatures
below 25 ◦C. This finding can be explained by the temperature saturation effect on
electricity consumption (saturation in the use of cooling equipment).

In the cold season, the first break occurred at 16 ◦C. Between 10 ◦C and 16 ◦C,
each degree of temperature drop raises daily growth by 0.37% (compared to the
same time the previous week). This contemporaneous effect is 0.23% and 0.13%
the following day. The second break is at 10 ◦C, with 3.7 ◦C being the average
minimum temperature observed in this season during the period analyzed. Between
these two values, a 1 ◦C decrease in temperature increased the daily energy demand
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Table 3 Climatic variable
effects on electricity demand

Climatic variable Lag Coeff. � coeff.

Warm Heliophany 0 0.0069%
1 0.0357% 0.0426%

Relative humidity 0 0.0262% 0.0262%
Cold Heliophany 1 0.0262% 0.0262%

Wind 1 0.0013% 0.0013%

Source: Authors estimations

growth rate (with respect to the same change in the previous week) by 0.78%, with
0.52% being the contemporaneous effect and 0.25% on the following day. Within
this temperature range, the displacement of energy demand per unit degree is the
highest in the temperature range between 16 and 10 ◦C.

Regarding other climatic variables (heliophany, relative humidity, and wind), the
results of the estimations are presented in Table 3. They show that their influence is
more significant during the warmer months.

Model evaluation and validation results are the following: residuals mean is zero,
standard error of the regression is with a 0.0266; no statistical evidence indicating
error autocorrelation was found and the null hypothesis of Jarque–Bera normality
test was accepted.4

4.3 Predictive Evaluation

In order to assess the model’s predictive capability we left out the last year of the
sample. The testing period runs from 1 January 2019 to 31 December 2019 and
the forecast error for each of the following months was calculated. This year was
selected because it was the last year prior to the onset of the pandemic (in Uruguay,
a health emergency is declared on March 13, 2020).

It is implemented a rolling-origin evaluation, we successively update the fore-
casting origin and produce forecast from each new origin. In the testing period, the
stability of the estimated parameters is maintained. The prediction at 7 and 14 steps
is performed for each week of each month of the year.

Models show relatively good performance according to the predictive perfor-
mance indicators selected (see Table 4): the Mean Absolute Percentage Error
(MAPE) and the Mean Relative Error.

The averageMAPE of the year 2019 corresponding to the 7-step forecast is 2.7%,
with a deviation of 0.7. The minimum value of the monthly MAPE corresponds to
April and the maximum is recorded in October. In the 14-step forecast, the annual
average MAPE is 3.1%, with a deviation of 1.2; the minimum and maximum take
place in the same months.

4 Full estimates are available on request from the authors.
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The worst performance of the model, assessed by these two indicators, is in
the month of October, at both the 7-step and 14-step horizons. For the purpose
of analyzing whether these errors correspond to atypical events that occurred in
October 2019 or whether the models do not adequately represent the seasonal
characteristics corresponding to the early spring months, forecast evaluation was
performed for two additional years 2018 and 2020. As a result, both the mean
relative error and the mean absolute relative error are larger in magnitude in 2019.
In any case, the maximum MAPE for the month of October is approximately twice
as high as the month with the lowest MAPE. These results suggest that the bad
predictive performance of the model in October is not a regular issue.

Finally, note that those errors were estimated from predictions with exogenous
variables already observed. Failing to have this information, uncertainty arising
from forecasting these variables must be added.

4.4 Evaluation of the Prediction System During the Health
Emergency

In Uruguay, the sanitary emergency was decreed on March 13, 2020. At no time
was quarantine mandatory, but social isolation was promoted in different ways. The
response of the population to this social isolation was very intense during the second
half of March and until May.

During this period, on-site classes were suspended in all education and the
service sector immediately reduced its activity. Other sectors of activity, such as
construction, stopped their activities for a month and a return to activities was
organized by establishing a sanitary protocol accompanied by a follow-up of
possible contagions. The industry was paralyzed at the beginning, with workers
being sent to unemployment insurance; other sectors, such as agriculture, almost did
not stop their activities. The majority of public sector workers gradually developed
their activities in teleworking mode, as well as teaching activities at all levels, both
public and private.

During the second quarter of 2020, Uruguayan GDP contracted by 13%, and in
2020 economic activity fell by 6%. Employment and the activity rate declined while
unemployment increased. The majority of informal workers in Uruguay, which is
below 25%, were unable to adhere to the social distancing measures promoted by
the government.

Against this backdrop of profound and unexpected changes in economic activity
during 2020, but without the constraints of a mandatory quarantine, we propose
to analyze the degree of adaptation of our model. The predictive performance was
evaluated, without an adaptation of the models to this break in order to analyze
the degree of flexibility they have. Table 5 and Figs. 3 and 4 present the results of
the predictive performance assessment through the MAPE and mean relative errors
(MPE) for 2020, comparing them with the results during 2019.
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Table 5 Mean absolute relative errors (MAPE) and mean relative errors (MRE) by prediction
horizons and month

MAPE MRE
2019 2020 2019 2020
h = 7 h = 14 h = 7 h = 14 h = 7 h = 14 h = 7 h = 14

January 3.40 3.65 2.71 3.25 3.40 3.65 2.71 3.25
February 3.26 4.04 2.84 3.57 3.26 4.04 2.84 3.57
March 1.99 2.30 1.47 1.96 1.99 2.30 1.47 1.96
April 1.60 1.91 1.59 2.16 1.60 1.91 1.59 2.16
May 1.99 2.37 2.21 2.51 1.99 2.37 2.21 2.51
June 2.86 3.50 2.65 3.18 2.86 3.50 2.65 3.18
July 2.75 3.35 2.02 2.41 2.75 3.35 2.02 2.41
August 3.02 3.66 2.43 2.83 3.02 3.66 2.43 2.83
September 2.05 2.60 2.41 2.56 2.05 2.60 2.41 2.56
October 3.90 4.69 3.01 3.12 3.90 4.69 3.01 3.12
November 2.09 2.41 1.85 2.32 2.09 2.41 1.85 2.32
December 2.91 3.26 1.60 2.58 2.91 3.26 1.60 2.58

Note: Prediction during 4 weeks for each month. h—Steps
Source: Authors calculations

Fig. 3 Mean absolute relative errors at 7 steps for each month (%). 2019–2020

The average absolute relative errors (both of the 7- and 14-step forecasts)
are lower in 2020 in 10 of the 12 months of the year. This result suggests the
model is flexible enough to adapt to great shocks such as the pandemic meant for
Uruguay. The fact that no mandatory quarantines were decreed and that the mobility
restrictions that occurred during 2020 were mainly focused between the months of
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Fig. 4 Mean absolute relative errors at 14 steps for each month (%). 2019–2020

March and May, as well as teleworking in some sectors and the partial return of
education to face-to-face work from August 2020, may also explain this result.

In this first stage, no modifications have been made to the specifications of
the models that will represent the sanitary emergency during 2020. As a result of
the evaluation of the performance of the electric power demand prediction system
during the first year of the health emergency, it is concluded that the set of models
shows a high flexibility, which allows it to predict the electric power demand during
the first year of the COVID-19 pandemic with error levels similar to a non-atypical
year.

5 Main Conclusions

We propose a time series non-linear model for daily electricity demand in Uruguay.
We took the training sample between January 2010 and December 2018, and
a testing sample between January 2019 and December 2019. Subsequently, the
predictive performance of the model during the year 2020 (seriously affected by
the pandemic of COVID-19) is analyzed.

The method followed has the advantage over computational approaches of
providing an interpretable explanation of the variable’s behavior in addition to
forecasting it.

Our results show, on the one hand, the incidence of special days (calendar effects,
holidays) and energy-saving measures. The results show the relevance of capturing
these effects with the selected approach, to capture the heterogeneity of the joint
impact of public holidays according to the day of the week on which they fall and
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their temporal dynamics. Additionally, we represent the association between energy
consumption and climate variables (temperature, humidity, winds, and heliophany)
with a non-linear model with estimated breaks (estimated by applying Markov
switching models). The breaks were identified by considering the division of the
sample into warm months (November, December, January, February, March, and
April) and cold months (May, June, July, August, September, and October) at 16 ◦C,
25 ◦C (in the warm months) and at 10 ◦C in the cold months.

The estimated coefficients show that the electricity demand function as a function
of temperature has been modified concerning [7]. At high temperatures, the demand
function increases at a higher rate, and therefore the curve is sharper. In contrast to
the previous study for a decade ago, a saturation period is reached. The section of
the function corresponding to colder temperatures remains relatively similar. These
changes are probably associated with the increased use and availability of cooling
equipment by households.

The results of the predictive evaluation show good performance over a 7- and 14-
day horizon. Finally, the paper examines the predictive performance of the model
during the first year of the health emergency, as a result, it is concluded that the
model shows high flexibility, which allows it to predict the electric power demand
during the first year of the COVID-19 pandemic with error levels similar to a non-
atypical year.
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Day-Ahead Electricity Load Prediction
Based on Calendar Features and
Temporal Convolutional Networks
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Abstract Transmission system operator (TSO) have to ensure grid stability eco-
nomically. This requires highly accurate load forecasts for the transmission grids.
The ENTSO-E transparency platform (ETP) currently provides a load estimation
and a day-ahead load prediction for different TSO in Germany. This paper shows a
hybrid model architecture of a feedforward network based on calendar features to
extract the general behaviour of a time-series and a temporal convolutional network
to extract the relations between short-historical and future time-series values. This
research shows a significant improvement of the current day-ahead load forecast and
additionally a model robustness while training with a non-optimal data set.
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LSTM Long short-term memory
ARIMA Autoregressive integrated moving average
ARIMAX Autoregressive integrated moving average with explanatory variable
x load ENTSO-E transparency platform—actual electrical load
xcal Calendar features
ycal Output of calendar feature network
hol Holidays
shol School holidays
bday Bridge days

1 Introduction

TSO must keep power generation and consumption in balance at all times to
ensure a stable and reliable energy supply. Therefore, an accurate and efficient
grid load forecast is needed to plan reliable and cost-optimal grid operation,
taking into account the feed-ins of conventional and renewable generation plants.
This requires a precise knowledge about the current grid state. The latter one
has been integrated in different load forecast models to predict future values of
electricity load time-series [8–10]. Load time-series are generally characterised
by short-term periodicities and depend on the individual consumption behaviour
of consumers. This behaviour is mainly affected by calendar effects concerning
different weekdays, holidays and daytime hours [6]. This paper presents a two-
step model approach to improve the day-ahead electricity load forecast [1]. First, a
normalisation function is applied on a multi-year load time-series to make the values
comparable to each other. After this pre-processing step, calendar information is
used inside a neural network to extract a generalised behaviour considering date,
hour, holidays and school holidays. In the second step, the output of the latter neural
network is combined with the actual load inside a temporal convolutional network
to adjust to the real values.

2 Data

ETP is an online data platform for European electricity system data [1]. It was
established in early 2015 under EU Regulation 543/2013 [1] to support market
participants, reduce insider trading and make this electricity data available to various
actors. EU Members States are engaged to publish essential information related to
electricity load, generation, transmission and balancing [1]. The data has generally a
temporal resolution of 15 min and can be officially downloaded for customer usage.

This study uses the ENTSO-E transparency platform—actual electrical load
(xload ) (see Sect. 2.1) and the ENTSO-E transparency platform—day-ahead fore-
cast (xload−da) (see Sect. 2.2) time-series of a German TSO in the period 2015 to
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Fig. 1 Electricity consumption of 2015 and 2020 scaled between 0.1 and 0.9

2020 [1]. In Fig. 1, the time-series of 2015 and 2020 are exemplarily illustrated to
get an impression of the Covid-19 effect. The data has a temporal resolution of 15
min. Additionally Calendar features (xcal) (see Sect. 2.3) are used. The values of
xload are normalised to its minimum and maximum of the last year between 0.1 and
0.9 to allow some variations around its historical boundaries.

2.1 Electricity Load

The electricity load is the total electricity feed-in of all known power stations and
imports into the grid minus all exports and the consumption of pumped-storage
power plants [2]. In real time the electricity load has to be estimated due to missing
or false values of different stations. In consequence, the load estimation comes
with uncertainties which have to be considered in the model creation process (see
Sect. 4). After a certain period of time, all stations have to correct their missing or
false values and publish them to the TSO. These values sum up to the billed time-
series.

2.2 Electricity Load Prediction

Current time-series values are mostly used to tune the forecast. In consequence,
load prediction models mainly depend and are trained on its estimated values to
provide day-ahead predictions for the TSO several times a day. The uncertainty of
the measurement estimation has to be considered properly by the prediction model
(see Sect. 3).
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Table 1 Monday holiday from 23.00 to 23.45 o’clock in January

Jan . . . Dec Mon . . . Sun hour0 . . . hour23 min0 . . . min45 hol shol bday

1 0 0 1 0 0 0 0 1 1 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0 1 0 1 0 0

1 0 0 1 0 0 0 0 1 0 1 0 1 0 0

1 0 0 1 0 0 1 0 0 0 0 1 1 0 0

2.3 Calendar Data

Electricity load time-series depend strongly on calendar features (see Sect. 3). To
extract this dependence considering Holidays (hol), Bridge days (bday) and School
holidays (shol), it is strongly recommended to use these calendar features. In the
first step, calendar information is taken from a Python API [3] and [4]. Based on this
data, bday are extracted. To make the data usable for a neural network, the format
and values have to be adapted. xcal has the same temporal resolution as xload and is
divided into one-hot encodings (see Table 1) of month, weekday, hour, minutes, hol
and shol per German province.

3 Data Analysis

Figure 1 shows the first and the last year of xload representing its annual cycle with
and without the Covid-19 effect. Both years contain local minima during Easter
and Christmas time. Concerning this effect, it will be interesting to analyse the
robustness of the model (see Sect. 4.3) by choosing a training set which is strongly
affected by Covid-19 (see Sect. 5). Additionally, the load time-series possess a
strong annual cycle with a summer minimum and a winter maximum due to the
fact that human behaviour depends strongly on daylight hours. During winter times,
humans switch the lights earlier on and also devices such as television and stove are
used more.

The weekday-behaviour considering the entire daytimes is shown in Fig. 2 by
applying a principal component analysis on xload . While workdays Monday to
Thursday possess quite similar characteristics, Friday differ to the latter ones and the
weekend-days Saturday and Sunday are very distinctive to all other days. This effect
is also detected on hol, shol and bday in an additional dimension and is considered
by using one-hot encodings (see Table 1) as calendar features inside the prediction
model (see Sect. 4.3).

As already mentioned, the estimated values possess an inherent uncertainty.
Figure 3 depicts the values of xload and the ycal (see Sect. 4.1) for a certain
time interval in July 2019. Besides a strong correlation between both time-series,
a varying deviation is detectable, especially for minimal and maximal values. This
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Fig. 2 PCA scatterplot of different weekdays Monday to Sunday

Fig. 3 Example time-series of xload vs. ycal (see Sect. 4.3)

deviation seems not to change randomly, but approximately stays constant over a
proper time interval considering local minima.

To handle this deviation inside the model and to make it robust against this
changing behaviour, a new score concerning the standard deviation (sd) of the mean
difference between xload and ycal over n-days is introduced:

.sdmeandiff
(n) = sd

(
k∑

i=0

∣∣∣∣xload [i] − ycal[i]
xload [i]

∣∣∣∣
)

(1)

where n: number of days per time interval

i: the ith time interval of n-days of the time-series



248 L. Richter et al.

Fig. 4 Standard deviation of rel. mean difference per n-days

Figure 4 depicts Eq. (1) applied for different number of n-days. While sdmeandiff
decreases within the first 7 days, it stays nearly constant afterwards. This can be
explained by adjusting ratios between xload and ycal over a specific time interval.
Based on this analysis, 7 days as historical input data for xload and ycal are chosen
inside the prediction model to prevent overfitting due to the increasing parameter
space with more input data while training data is limited.

4 Model Architecture

Time-series possess a trend, a seasonal and a cyclic component which are considered
in the classical time-series decomposition methods. Electricity load time-series
generally possess a seasonal and a trend component. Classical prediction methods
are linear stochastic time-series models such as Autoregressive integrated moving
average (ARIMA), and, if exogenous variables are included, there are various
extensions such as Autoregressive integrated moving average with explanatory
variable (ARIMAX). These models are well suited if the structure of the data is
well understood and a sufficient amount of data is available. For problems with a
large number of variables and an increasing influence of non-linear or unknown
dependencies, machine learning methods promise a significant advantage over
existing methods [5, 12].
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4.1 Feedforward Network Based on Calendar Features

Calendar information was already used to predict electricity prices for short and long
terms [11], to extract the general behaviour of a time-series and to use the latter one
as stabilisation feature inside a neural network. Rementol et al. constructed a neural
architecture with calendar information and renewable energy generation as input
variables which are processed separately. In the first step, calendar information is
featured into embedding layers (Emb) which can be seen as state vectors of the
this exogenous variable. In the next step, Emb and renewable energy generation are
concatenated and flattened to process them in several dense layers to fit finally to
the output variable (see Fig. 5). This simple architecture was able to outperform
conventional Long short-term memory (LSTM) prediction models clearly and can
be applied to various time-series which mostly depend on calendar effects (see
Sect. 3) and less on other exogenous variables. In this paper, a calendar network
Feedforward neural network based on calendar features (CAL) is separately trained
to fit xload . Finally the ycal can be used as an exogenous variable inside a Temporal
convolutional network (TCN).

4.2 Temporal Convolutional Network

TCNs were originally developed to identify and time segment patterns in signals
[7]. TCNs are able to capture and model long-range dependencies and relationships
in historical observations. The TCN architecture uses a hierarchy of temporal
convolution filters, with the special feature that input sequences of any length can
be mapped to any length output sequence (see Fig. 6). The convolution operations
are performed using residual blocks to extract all information from the historical
observations to achieve higher forecast accuracy. This also offers the possibility of

Fig. 5 Hybrid model to predict electricity price [11]
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Fig. 6 Scheme of a temporal convolutional network with d for dilation rate

including exogenous variables in addition to the past observations when training
the model. In the research, it was shown that TCNs achieve a higher prediction
quality in time-series prediction compared to competing LSTM-based recurrent
neural networks and reduce the configuration effort as well as the training time.

4.3 Hybrid Model

This paper now combines two neural architectures CAL and a TCN (see Sects. 4.1
and 4.2) to a Temporal convolutional network with calendar features (CTCN) to
predict the day-ahead electricity load: (i) For generalisation of a model based on
calendar information, CAL uses xcal as input in conjunction with multiple dense
layer to fit to xload . (ii) CTCN uses ycal as an exogenous variable as well as seven
historical days of xload inside a TCN (see Fig. 6). In short, a TCN is able to consider
a very long history of input values by using causal dilated convolutional layers with
a dropout inside a residual block wherein the input is added to the output of each
layer. This architecture helps to combine elder and more recent values of xload and
ycal to predict day-ahead values of xload as well as to consider inputs of different
lengths. Additionally, this architecture should address the uncertainty of the load
estimation of the past n-days in comparison to its mean values ycal (see Fig. 7).

5 Training and Evaluation Set

The data set is divided into three parts: (i) The years from 2015 to 2018 are used
to train a generalised CAL. This is very important due to the fact that Covid-19
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Fig. 7 Temporal convolutional network with calendar features

Table 2 RMSE and MAPE
for xload−da and CTCN

RMSE in GW MAPE in %

xload−da 1.046 4.50

CTCN 0.552 2.88

changed the characteristics of xload . (ii) The time-series of xload and ycal from
mid of 2019 to mid of 2020 are used to train the CTCN. (iii) The trained model is
evaluated to the time-series from mid of 2020 to end of 2020. In the last two data
sets, the impact of the Covid-19 pandemic can be seen with the temporary shutdown
of the German economy. This circumstance can be considered as a stress test to the
CTCN.

6 Results

The CTCN clearly outperforms xload−da in terms of the root mean squared error
(RMSE) and mean absolute percentage error (MAPE) (see Table 2, Fig. 8), despite
the model being trained with a data set of changepoints due to the Covid-19 effect.
While the deviations of xload−da depend more on its absolute ones, CTCN fits very
well to xload . In addition, the CTCN has a lower variance and adjusts better to
external influences, such as the temporary shutdown of the German economy during
2020. This can be explained by the optimised model architecture and the fact that
CTCN can handle long- and short-term dependencies of recent time-series.
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Fig. 8 xload−da and CTCN plotted against xload

7 Conclusion

This paper shows a hybrid network architecture of CAL and TCN that greatly
improves the day-ahead electricity load forecast and its robustness during the Covid-
19 crisis compared to xload−da . Furthermore, the electrical load behaviour depends
strongly on human behaviour in addition to the given variables. In the next step of
further research, weather data will be included in addition to calendar features to
further improve the results.
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Network Security Situation Awareness
Forecasting Based on Neural Networks

Richard Staňa , Patrik Pekarčík , Andrej Gajdoš , and Pavol Sokol

Abstract The increasing number of cybersecurity threats affects the security
situation of organisations. The maintenance of the operational picture of the
organisation, which integrates all relevant information for selecting appropriate
countermeasures, becomes a vital role for organisations. In this paper, we focus
on network security situation awareness forecasting. The paper aims to answer two
questions—the influence of loss function in neural networks on network security
situation awareness forecasting and a comparison of statistical methods and neural
networks in network security situation awareness forecasting. For this purpose, we
used two-time series representing cybersecurity alerts collected by system Warden.
This paper shows an analysis according to which the MAE and MASE loss functions
give better results than MSE. Also, we can state that neural networks are more
accurate for network security situation awareness forecasting.

Keywords Cybersecurity · Network security · Network security situation
awareness · Forecasting · Time series

1 Introduction

Nowadays, the number of new cybersecurity threats and cybersecurity incidents is
on the rise. The main goal of organisations’ security teams is to prevent cybersecu-
rity incidents or minimise their impact. For example, the organisations’ network
administrators or security teams may prevent these incidents by disallowing the
specific network protocols or updating systems to address security vulnerabilities.
In this respect, we observe a trend of transition from reactive activities to proactive
activities [1].
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An important element in ensuring the proactive activities of the organisation
is the maintenance of the operational picture of the organisation, which inte-
grates all relevant information for identifying attacks and selecting appropriate
countermeasures [2]. This operational picture can be defined as network security
situation awareness (NSSA). Bass et al. introduced the origin, concept, target and
characteristics of NSSA in more detail in [3].

According to a different perception of an object, NSSA can be divided into the
network security situation assessment and network security situation forecasting [4].
Forecasting the security situation is an essential part of the NSSA and allows
anticipating cybersecurity attacks and cybersecurity threats. It provides network
administrators and security teams time to make adequate decisions on their next
steps. Overall, this allows better analysing security threats and management of
cybersecurity incidents.

Researchers have proposed and used various approaches to forecast network
security situation awareness in recent years, such as statistical methods, game theory
methods or neural networks. In the following section, we focus on state of the art
in statistical methods and neural networks in more detail. At the same time, there
are some problems in these methods, such as the loss of network data information
caused by situation assessment and the low forecasting accuracy of the neural
network model used for the NSSA forecasting [5]. To improve the accuracy of the
NSSA forecasting, this paper aims to (I) analyse the influence of loss function in
neural networks on the NSSA forecasting and (II) compare statistical methods and
neural networks in NSSA forecasting.

This paper is based on previous research [6, 7]. Within this paper, we assume
the fact that in the NSSA forecasting, there is a lot of time series forecasting with
neural networks that look like naive forecasting with drift [8]. Definition of the
mean absolute scaled error (MASE) shows that it compares forecasting with naive
forecasting. Using MASE as a loss function, we can “punish” neural network when
its forecasting looks like naive forecasting with drift.

This paper is organised into six sections. Section 2 reviews state of the art in
network security awareness forecasting. Section 3 is devoted to research methodol-
ogy and outlines the dataset and methods used for the analysis. Section 4 states the
experimental evaluation. Section 5 discusses the results. The last section concludes
the paper and discusses the challenges for future research.

2 Related Works

This section overviews papers and research groups’ activities related to network
security situation awareness forecasting. This section is divided into two parts:
the statistical time series approach and the neural network approach. Most of the
papers focus on the detection of attacks rather than a prediction of attacks or NSSA
forecasting [9].
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In the field of the NSSA, the autoregressive integrated moving average (ARIMA)
models are a very frequently used approach. Examples of research work using these
forecasting methods are [10–12]. Above-mentioned ARIMA models are often used
in combination with other models. For example, ARIMA models are used with
the Bayesian networks to predict future cyberattack (malware, malicious URL and
malicious e-mail) occurrences [13]. Another example is a combination of ARIMA
models and grey-box models. In the paper [14], the authors responded to the
disadvantages of the separate usage of these models. ARIMA models require strict
inputs, and the grey-box models do not consider the system’s randomness. This
combination is used in the extreme-value phenomenon analysis [15]. An exciting
combination of methods for forecasting purposes is used in several research papers.
The analysis of the fitting of ARMA and GARMA models to the cyberattack process
is an objective of paper [16].

Neural networks are commonly used in the field of time series prediction in
cybersecurity. There are a lot of papers that use older types of smaller feedforward
networks or wavelet neural networks trained by backpropagation or genetics
algorithm (and its variants) to forecast network security situations (e.g. [17, 18]). On
the other hand, modern approaches like recurrent neural networks (GRU, LSTM)
were used in the paper [19] for forecasting the network security situation. In
the paper [20], authors compare the ARIMA approach, LSTM and GRU neural
networks for cyberattack prediction. This prediction is based on the combination of
time series and external signals. Another research paper [21] predicts time series
based on data collected by the honeypot. For this prediction, the authors used a
bidirectional LSTM neural network. Several research groups have been working
with recurrent neural networks like LSTM and GRU to predict cyberattacks based
on time series created from industrial data [22–24].

3 Methodology

3.1 Dataset

Our research used a dataset collected and preprocessed by a Warden system [25].
This system was created for sharing cybersecurity alerts between hosts connected
to this sharing system. Security alerts are stored in a descriptive data model using a
key-value JSON extensible structure called IDEA (Intrusion Detection Extensible
Alert) format [26]. Primary data sources for the Warden system may include
honeypots, intrusion detection systems, network flow probes, system log records and
other sensors and data sources. The data used in the research are collected from real
operation in the computer networks of the Czech National Research and Education
Network and other Czech commercial organisations.

Security alerts in the IDEA format contain several mandatory fields (form, ID,
detect time, category) [26] and many optional fields. The fields we used in this
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experiment are the category of security alert, source and destination IP addresses,
source and destination ports, network protocol and detection time. The Warden
system collected the data we used in this research for 1 year (from 2017-12-11
to 2018-12-11). Our dataset contains approximately one billion security alerts from
various data sources (mainly honeypots).

In our research, we used time series with 30-min time period. We deal with the
creation of time series and selection of periods in more detail in the papers [6, 27].
Also, we used two selected time series, such as time series representing the total
number of alerts and time series representing alerts related to the services running on
port 445/TCP. These time series are representatives of two categories of time series
for the area of NSSA forecasting (well-predictable time series and unpredictable
time series) [8].

3.2 Method Description

There is a wide range of quantitative forecasting methods, and their usage often
depends on the specific disciplines, the nature of data or specific purposes. Our
research compared the accuracy of three different loss functions’ mean absolute
error (MAE), mean squared error (MSE) and MASE, by implementing five different
neural networks to obtain predictions. After that, we compare the best methods
with usually used statistical methods for time series forecasting. From neural
networks, we employ five types of neural networks: dense network, LSTM, GRU,
convolutional neural networks, and encoder-decoder networks. From the statistical
method, we choose the following: ARIMA models, exponential smoothing models
(state-space models), the naive approach (with drift), and combination (average)
of ARIMA and exponential smoothing models. A complete description of the
mentioned architectures can be found below.

3.3 Neural Networks

There is a lot of work done in time series forecasting with neural networks, for
example, in the field of stock prediction [28–30], traffic prediction [31, 32], etc. We
developed five multilayer neural networks, most of them were inspired by Brownlee
[33], and similar networks were previously used in our work [8].

In the following text, we provide a description of the architectures (abbreviations,
used later and denoting individual architectures are in parentheses):

– Dense network (DN)—four dense layers (1024, 512, 256, 128 units, activation
relu) and one dense layer (1 unit, activation linear)

– Long short-term memory (LSTM)—three LSTM layers (256, 256, 256 units,
default parameters) and one dense layer (1 unit, activation linear)
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– Gated recurrent unit (GRU)—three GRU layers (256, 256, 256 units), one
SimpleRNN layer (128 units) and one dense layer (1 unit, activation linear)

– 1D convolution (Conv1D)—three Conv1D layers (256, 256, 256 filters, 3, 3, 3
kernel size, activation relu, pading same), one dense layer (64 unit, activation
relu) and one dense layer (1 unit, activation linear)

– Encoder-decoder LSTM (e1d1)—one LSTM encoder layer (512 units encoder,
return state True), RepeatVector layer, one LSTM decoder layer (512 units
encoder, return state True) and TimeDistributed (1 dense unit, activation linear)

3.4 Statistical Methods

The choice of statistical methods for this research is based on our previous research
activity [8, 27]. ARIMA and exponential smoothing (ETS) [34] are the most
commonly used statistical models in the modelling and time series prediction
classes.

ARIMA models represent a generalisation of the ARMA model class, including
a wide range of non-stationary series. These models ensure the stationarity of the
time series by a finite number of differentiations. ARMA models are a combination
of automatic regression (AR) and moving average (MA) [35].

The ETS class provides additional access to time series modelling and forecast-
ing. Prediction using models in this class is characterised by a weighted combination
of older observations with new ones. The new observations have a relatively higher
weight compared to the older observations. Exponential smoothing reflects that
weights decrease exponentially with the age of the observations. On the one hand,
ETS models are based on trend descriptions and seasonality in the data. On the other
hand, ARIMA models aim to describe autocorrelations in the book [34] data.

In the research, we also use the naive methods [35, 36] as a benchmark for
statistical methods. These methods can process large datasets and, at the same time,
do not have high computational demands. We also added a combination (average)
of ARIMA and ETS methods to the experiments to compare standard methods with
their diversity. The idea of averaging or increasing is currently nothing new [43].

4 Experiment Evaluation

We consider only one-step ahead predictions.
For forecast accuracy evaluation, we employ two commonly used metrics—

MASE used [37] and MAE.
MASE is a preferred metric as it is less sensitive to outliers, more easily

interpreted and less variable on small samples. MASE is defined as [34]:

.MASE = mean(|qj |) (1)
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where .qj is:

.qj = ej
1

T−1

∑T
i=2 |yi − yi−1|

, (2)

where .yi represents observed value and T is the length of time series.
For a better view of accuracy in both time series, we take into account also MAE,

which is defined as follows [34]:

.MAE = mean(|ej |) (3)

In both cases, .ej is forecast error, i.e. the difference between an observed value and
its forecast.

Both time series we used consist of 17,473 values. We did not use the first 27
and last 14 values because there were primarily zeros or missing values. Due to
missing values between 15,550 and 15,601 in the whole dataset, we split the dataset
into three parts. In the first part, there were values between 28 and 15,549 (15,522
values), the second part included values between 15,602 and 16,601 (1000 values),
and the last part contained values between 16,602 and 17,458 (857 values).

The first and the second parts were used for training neural networks. The third
part was used for testing. During neural network training, we employed a window
containing 384 values (8 days) for every model and time series. We trained all
five neural networks in 40 epochs. From every type of network, we trained four
instances with Adam optimiser, two with fixed learning rate (lr) to 0.001 and two
with decreasing lr from 0.001 to 0.0001 decreasing by two when testing loss did
not decrease in four epochs. If testing loss of a particular neural network had a
decreasing tendency (at the end of training), we trained it for more than 20 epochs.
After training, we choose the best model from four instances based on MASE
metrics.

It is essential to prepare dataset before training a neural network. To our time
series, we applied standardisation (subtraction of mean and division by standard
deviation—mean and standard deviation were calculated using the first part of the
dataset). For neural network training, we employed three different loss functions,
MAE, MSE and MASE. For both, we used standard implementation, which is
in TensorFlow pages. In our implementation of the MASE loss function, we first
describe the predicted value and real value as inputs. This was done because
we wanted to calculate MASE according to unscaled data. Then MASE was
implemented as described by Eqs. 1 and 2.

GPU NVidia GTX 1080 and 1060, Keras and TensorFlow [38] version 2.4 were
used to train neural networks. The batch size was set to 128. To make model
comparisons easier, we used the tool Weights & Biases [39]. In total, we trained
more than 120 neural networks (five networks described in Methodology x three
loss functions x four instances x two-time series).

Additionally, we compared predictions based on neural networks with fore-
castings based on statistical approaches described in the previous section. Due to
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missing data in the dataset, long training time when using the extensive dataset and
weak impact of older data on statistical methods, we used only values from the
second part of the dataset for fitting statistical methods (as described in the previous
section). We used values from the third part of the dataset to test their forecasting
accuracy. On the other side, we train neural networks on both (first and second)
parts of the dataset because, generally, more data means better results from neural
networks. With more data, neural networks can find more patterns in data, generalise
them better and get better results, even with older data.

The methods were evaluated according to principles and implementations pre-
sented in our previous work [6, 8, 27]. For our research, we used R functions
from one of the most common R-packages for time series predictions called
forecast [40]. This package contains valuable features when working with large
datasets or potentially in real-time prediction. In addition, these functions are used to
adjust ARIMA and ETS model classes automatically. These functions are designed
to automatically select the best model from the considered class under the given
conditions, for example, considering the information criterion [40].

In the next part of our research, we focused on two ways of adapting statistical
models: the classical model and the “rolling window” approach. With the classical
model, we kept the entire training datasets. Step by step, we added one more
observation to the training set in each round of evaluation. In the second method,
we focused on the “rolling window” approach (“‘one in, one out” approach). As in
the previous method, we added one new observation from the test set to the training
set. The difference was that in each round of evaluation, we removed the oldest
observation from the training set.

Seasonality was not taken into account due to its minimal impact on forecasting
performance as shown in paper [27] where we used the same dataset.

At this place, it is essential to note that we have modified the denominator in
MASE. The reason was the difference between the size of the training dataset in
the case of statistical methods and neural network models. The aim was to achieve
comparability of forecasting for both approaches. For this reason, the denominator
calculations in the Eq. 2 were based on the 1000 training values used to adjust the
statistical models.

5 Results and Discussion

In this section, we compared the results which were obtained according to the
description in the previous section. Because MAE was used as a metric, we present
some statistical information about the dataset:

– Time series of the total number of alerts: minimum 22, maximum 155,818 and
mean 34,594.25

– Time series of the alerts related to the services running on port 445/TCP:
minimum 0, maximum 16,168 and mean 5972.56
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Table 1 MASE and MAE comparison for three loss functions on all neural network forecasting
for the total number of alerts on testing dataset. Every bold number is the best result for the actual
neural network from three loss functions

Test metrics Loss function DN LSTM GRU e1d1 Conv1D

MASE MAE 0.9950 0.9213 0.9286 0.9166 0.9254
MSE 1.0245 0.9442 0.9550 0.9430 0.9567

MASE 1.0147 0.9192 0.9352 0.9178 0.9362

MAE MAE 2645.9203 2449.9389 2469.3886 2437.3081 2460.6580
MSE 2724.2048 2510.7505 2539.4539 2507.7080 2543.9238

MASE 2698.3200 2444.1826 2486.8879 2440.6539 2489.3861

Table 2 MASE and MAE comparison for three loss functions on all neural networks forecasting
port 445/TCP on the testing dataset. Every bold number is the best result for the actual neural
network from three loss functions

Test metrics Loss function DN LSTM GRU e1d1 Conv1D

MASE MAE 0.6972 0.6633 0.6307 0.6408 0.7080
MSE 0.7215 0.7118 0.7321 0.7038 0.8201

MASE 0.7020 0.6617 0.6210 0.6582 0.7208

MAE MAE 1186.1808 1128.4426 1072.9371 1090.1418 1204.4519
MSE 1227.4236 1210.9351 1245.5377 1197.3586 1395.2064

MASE 1200.1366 1125.6894 1056.5102 1119.8305 1226.3334

Tables 1 and 2 show the results of comparison of neural network models for
selected time series (the total number of alerts –Table 1– and security alerts related
to the service running on network port 445/TCP, Table 2). In the analysis, we used
MASE and MAE metrics to evaluate the results. Each neural network was used with
a specific loss function. According to the results shown in the given tables, it can be
stated that the MSE loss function shows the worst results in all investigated neural
networks. The MAE loss function achieves the best results or approaches them. The
MASE loss function implemented by us is comparable to the MAE loss function.

At the same time, we analysed statistical methods in the research. Their
comparison according to MASE and MAE metric may be seen in Table 3. As may
be seen from the results, the value of the MASE metric for NSSA forecasting in the
time series of the number of cybersecurity alerts is bigger than 1. It means that the
given forecasting method is worse than the average naive forecast. The time series
of alerts associated with services running on port 445/TCP has another result. As
may be seen from the table, the used models have a MASE metric value below 1.
Exponential smoothing appears to be the best method in both cases. These results
confirm the findings from previous research [6]. Similar time series were used in the
current article, but with a different period.

Finally, we compared the best statistical method (exponential smoothing) and the
best neural network (e1d1 MAE, respectively GRU MASE). As may be seen from
Table 4, in both cases, neural networks have better MASE and MAE metrics.
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Table 3 Performance comparison of statistical models. Notes: A, ARIMA model; E, exponential
smoothing; N, naive model; AE, ARIMA .+ exponential smoothing (average); w, rolling window

Time series The total number of alerts Port 445/TCP

Test metrics MASE MAE MASE MAE

A 1.0536 2801.7281 0.7950 1352.5694

Aw 1.0569 2810.3664 0.8046 1368.8168

E 1.0319 2744.0770 0.7661 1303.3641
Ew 1.0374 2758.7118 0.7741 1317.0408

AE 1.0411 2768.4691 0.7661 1303.3641
AEw 1.0450 2778.8436 0.7741 1317.0408

N 1.1851 3151.4376 0.9910 1686.0467

Nw 1.1854 3152.1949 0.9912 1686.3547

Table 4 Comparison of best models based on neural networks and statistical models on both
time series. Notes: NN, neural network; E, exponential smoothing; AE, ARIMA .+ exponential
smoothing (average)

Time series The total number of alerts Port 445/TCP

Best NN/statistical model e1d1 MAE E GRU MASE AE

MASE 0.9166 1.0319 0.6210 0.7661

MAE 2437.3081 2744.0770 1056.5102 1303.3641

Figure 1 shows one-step predictions with the best statistical approach and neural
network approach for the total number of alerts that are similar to the naive
forecasting with drift. In the same way, in Fig. 2 are predictions for port 445/TCP
that are way more accurate in the case of the neural network approach.

In addition to the above, we also compared the accurate predictions of the
best methods from statistical and neural network approaches. For this purpose,
we used the Diebold-Mariano test [41] and its implementation in the R package
multDM [42]. If two forecasts have the same accuracy, it represents the null
hypothesis (H0). On the other hand, the alternative hypothesis (H1) had the setting
w .= “less” (the first forecast is less accurate than the second forecast). Since we
leave a 5% uncertainty rate, the p-value to confirm the null hypothesis (H0) should
be higher than 0.05.

In our evaluation, we compared all combinations of the statistical and neural
methods used in this paper for two cases—“count of all alerts” and “port 445/TCP.”
We tested the situation that forecasts have the same accuracy (null hypothesis)
against the situation that a forecast based on the statistical method is less accurate
than the forecast based on the neural network method (alternative hypothesis). For
example, in the Diebold-Mariano test, the p-value of comparison of ARIMA and
dense with MAE loss is 0.003633, which is less than 0.05. In this case, an alternative
hypothesis was accepted (the null hypothesis was rejected). It means that for the
time series marked “count of all alerts,” the forecast based on the statistical method
(ARIMA) is less accurate than the forecast based on the neural method (dense with
MAE loss).
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Fig. 1 Graphical comparison of best models based on neural networks (e1d1 with MAE loss) and
statistical models (exponential smoothing) for the total number of alerts

Results of Diebold-Mariano test of statistical methods and neural network
methods for one-step forecasting of the “count of all alerts” time series are shown in
Tables 5 and 6. In these tables, in the first column, there are neural network methods
and the other columns contain p-value for the Diebold-Mariano test for a couple
of the statistic and neural methods. The forecasts based on statistical methods are
less accurate than a forecast based on neural network methods in almost all cases. In
two cases, the combination of the forecasting methods has the same accuracy. These
cases are highlighted (bold font) in Table 6.

Results of Diebold-Mariano test of statistical methods and neural network
methods for one-step forecasting of the port 445/TCP are shown in Tables 7 and 8.
In these tables, in the first column, there are neural network methods, and the other
columns contain p-value for the Diebold-Mariano test for a couple of the statistic
and neural methods. The forecasts based on statistical methods are less accurate
than a forecast based on neural network methods in all cases.
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Fig. 2 Graphical comparison of best models based on neural networks (Gru with MASE loss) and
statistical models (combination of ARIMA and exponential smoothing) for port 445/TCP

These calculations confirm our results expressed by MAE and MASE measures
described above.

6 Conclusion and Future Works

Within the paper, we focused on NSSA forecasting. For this purpose, we used two-
time series (the total number of alerts and alerts related to the services running
on port 445/TCP). These time series represent two categories of time series for
the area of NSSA forecasting (well-predictable time series and unpredictable time
series) [8]. This paper aimed to analyse the impact of loss function on the accuracy
of NSSA forecasting based on neural networks. According to the obtained results,
we found that the loss function has an effect and the MAE and MASE loss function
give comparable results. At the same time, we compared the best neural networks
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Table 5 Results of Diebold-Mariano test for one-step forecasting of the count of all alerts (Part
I). Notes: A, ARIMA; AE, ARIMA .+ exponential smoothing (average); w, rolling window

A Aw AE AEw

cnn MAE .3.331 × 10−07 .1.004 × 10−07 .2.355 × 10−06 .8.033 × 10−07

cnn MASE .2.87 × 10−05 .1.379 × 10−05 .0.0001242 .6.342 × 10−05

cnn MSE .3.794 × 10−07 .1.338 × 10−07 .2.427 × 10−06 .9.099 × 10−07

dense MAE .0.003633 .0.002393 .0.01623 .0.009665

dense MASE .0.009035 .0.005458 .0.04873 .0.02757

dense MSE .0.0055 .0.003181 .0.02018 .0.0121

e1d1 MAE .1.509 × 10−07 .6.281 × 10−08 .9.142 × 10−07 .3.617 × 10−07

e1d1 MASE .4.465 × 10−08 .1.45 × 10−08 .3.009 × 10−07 .1.011 × 10−07

e1d1 MSE .2.301 × 10−08 .7.747 × 10−09 .1.509 × 10−07 .5.148 × 10−08

gru MAE .2.303 × 10−07 .9.031 × 10−08 .1.721 × 10−06 .6.213 × 10−07

gru MASE .6.323 × 10−08 .2.475 × 10−08 .5.847 × 10−07 .1.976 × 10−07

gru MSE .7.88 × 10−08 .3.027 × 10−08 .5.738 × 10−07 .2.036 × 10−07

lstm MAE .7.155 × 10−08 .2.748 × 10−08 .4.925 × 10−07 .1.827 × 10−07

lstm MASE .2.239 × 10−08 .8.27 × 10−09 .1.679 × 10−07 .5.845 × 10−08

lstm MSE .2.393 × 10−08 .1.022 × 10−08 .1.887 × 10−07 .6.967 × 10−08

Table 6 Results of Diebold-Mariano test for one-step forecasting of the count of all alerts (Part II).
The cases where the p-value is greater than 0.05 are highlighted (bold font). Notes: E, exponential
smoothing; N, naive method; w, rolling window

E Ew N Nw

cnn MAE .1.124 × 10−05 .4.263 × 10−06 .1.644 × 10−06 .1.629 × 10−06

cnn MASE .0.0003741 .0.0001893 .5.355 × 10−06 .5.323 × 10−06

cnn MSE .1.059 × 10−05 .4.168 × 10−06 .1.061 × 10−06 .1.048 × 10−06

dense MAE .0.04673 .0.02514 .5.046 × 10−05 .4.973 × 10−05

dense MASE 0.1431 0.07876 .0.0003169 .0.0003122

dense MSE .0.04932 .0.02911 .0.0001261 .0.0001246

e1d1 MAE .3.876 × 10−06 .1.491 × 10−06 .6.964 × 10−07 .6.9 × 10−07

e1d1 MASE .1.435 × 10−06 .5.127 × 10−07 .5.35 × 10−07 .5.297 × 10−07

e1d1 MSE .7.057 × 10−07 .2.531 × 10−07 .3.218 × 10−07 .3.183 × 10−07

gru MAE .8.847 × 10−06 .3.151 × 10−06 .2.218 × 10−06 .2.19 × 10−06

gru MASE .3.693 × 10−06 .1.202 × 10−06 .2.027 × 10−06 .1.993 × 10−06

gru MSE .3.028 × 10−06 .1.051 × 10−06 .1.006 × 10−06 .9.934 × 10−07

lstm MAE .2.402 × 10−06 .8.777 × 10−07 .7.2 × 10−07 .7.123 × 10−07

lstm MASE .8.959 × 10−07 .3.085 × 10−07 .4.627 × 10−07 .4.575 × 10−07

lstm MSE .1.059 × 10−06 .3.633 × 10−07 .6.262 × 10−07 .6.194 × 10−07

and the best statistical methods. According to the MASE and MAE metrics, we can
state that neural networks are more accurate for NSSA forecasting. As part of future
works, we would like to focus on NSSA forecasting on time series created from
other security alerts (obtained by a platform other than the Warden system).
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Table 7 Results of Diebold-Mariano test for one-step forecasting of the port 445/TCP (Part I).
Notes: A, ARIMA; AE, ARIMA .+ exponential smoothing (average); w, rolling window

A Aw AE AEw

cnn MAE .6.793 × 10−07 .7.495 × 10−08 .0.0004185 .8.341 × 10−05

cnn MASE .6.963 × 10−06 .5.428 × 10−07 .0.00301 .0.0005788

cnn MSE .4.434 × 10−06 .7.059 × 10−07 .0.003503 .0.0008352

dense MAE .2.788 × 10−13 .3.497 × 10−14 .1.722 × 10−08 .9.922 × 10−10

dense MASE .6.11 × 10−12 .3.202 × 10−13 .1.73 × 10−07 .7.755 × 10−09

dense MSE .5.697 × 10−14 .1.508 × 10−15 .3.285 × 10−09 .5.847 × 10−11

e1d1 MAE .2.055 × 10−13 .6.905 × 10−15 .8.538 × 10−09 .7.248 × 10−10

e1d1 MASE .1.624 × 10−14 .2.595 × 10−16 .8.628 × 10−10 .4.84 × 10−11

e1d1 MSE .8.302 × 10−15 .1.028 × 10−15 .2.572 × 10−10 .3.39 × 10−11

gru MAE .<2.2 × 10−16 .<2.2 × 10−16 .6.626 × 10−13 .2.885 × 10−14

gru MASE .<2.2 × 10−16 .<2.2 × 10−16 .<2.2 × 10−16 .<2.2 × 10−16

gru MSE .<2.2 × 10−16 .<2.2 × 10−16 .1.712 × 10−12 .1.165 × 10−13

lstm MAE .4.18 × 10−11 .1.474 × 10−12 .2.657 × 10−07 .2.998 × 10−08

lstm MASE .1.245 × 10−10 .2.13 × 10−11 .6.396 × 10−07 .1.287 × 10−07

lstm MSE .8.967 × 10−11 .1.966 × 10−11 .6.882 × 10−07 .1.398 × 10−07

Table 8 Results of Diebold-Mariano test for one-step forecasting of the port 445/TCP (Part II).
Notes: E, exponential smoothing; N, naive method; w, rolling window

E Ew N Nw

cnn MAE .0.0004185 .8.341 × 10−05 .<2.2 × 10−16 .<2.2 × 10−16

cnn MASE .0.00301 .0.0005788 .<2.2 × 10−16 .<2.2 × 10−16

dense MAE .1.722 × 10−08 .9.922 × 10−10 .<2.2 × 10−16 .<2.2 × 10−16

dense MASE .1.73 × 10−07 .7.755 × 10−09 .<2.2 × 10−16 .<2.2 × 10−16

dense MSE .3.285 × 10−09 .5.847 × 10−11 .<2.2 × 10−16 .<2.2 × 10−16

e1d1 MAE .8.538 × 10−09 .7.248 × 10−10 .<2.2 × 10−16 .<2.2 × 10−16

e1d1 MASE .8.628 × 10−10 .4.84 × 10−11 .<2.2 × 10−16 .<2.2 × 10−16

e1d1 MSE .2.572 × 10−10 .3.39 × 10−11 .<2.2 × 10−16 .<2.2 × 10−16

gru MAE .6.626 × 10−13 .2.885 × 10−14 .<2.2 × 10−16 .<2.2 × 10−16

gru MASE .<2.2 × 10−16 .<2.2 × 10−16 .<2.2 × 10−16 .<2.2 × 10−16

gru MSE .1.712 × 10−12 .1.165 × 10−13 .<2.2 × 10−16 .<2.2 × 10−16

lstm MAE .2.657 × 10−07 .2.998 × 10−08 .<2.2 × 10−16 .<2.2 × 10−16

lstm MASE .6.396 × 10−07 .1.287 × 10−07 .<2.2 × 10−16 .<2.2 × 10−16

lstm MSE .6.882 × 10−07 .1.398 × 10−07 .<2.2 × 10−16 .<2.2 × 10−16
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43. Husák, M., Komárková, J., Bou-Harb, E., Čeleda, P.: Survey of attack projection, prediction,
and forecasting in cyber security. IEEE Commun. Surv. Tutor. 21(1), 640–660 (2018)



Part IV
Advanced Applications in Time Series

Analysis



Modeling Covid-19 Contagion Dynamics:
Time-Series Analysis Across Different
Countries and Subperiods

Zorica Mladenović, Lenka Glavaš, and Pavle Mladenović

Abstract This study offers two sets of empirical results to model the daily COVID-
19 contagion time series. The Markov-switching models with ARMA structure are
implemented assuming that time-series dependence is nonlinear, whereas regimes
are data-driven. The first set of results consists of models estimated for the following
European countries: Italy, Germany, the United Kingdom, and Russia during the
first epidemic wave. The second set of results deals with modeling time series for
Italy over the second and the third epidemic waves. Given the empirical findings
reached, we have distinguished among several regimes during the epidemic wave.
The persistence of time series over each regime is also discussed.

Keywords COVID-19 · Count data · Markov-switching models · ARMA
models · Persistence

1 Introduction

The Markov-switching (MS) models were introduced and developed by Hamilton
[9–11]. They have been implemented extensively in different areas of economics
because economic time series are often subject to shifts from one type of behavior to
another and back again, where the causes of the regime shifts are unobservable. The
application of MS models in epidemiology was first advocated by Strat and Carrat
[20] and further elaborated in [15]. Most empirical studies are based on the two-state
model to detect epidemic and non-epidemic regimes. Flexible Bayesian version of
the MS model [15] enables identification of several phases within the epidemic that
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would have clear implications (pre-epidemic, epidemic growth, epidemic plateau,
epidemic decline, and post-epidemic). The same idea can be followed in time-series
analysis of daily new cases of COVID-19 contagion.

This study examines the daily dynamics of COVID-19 new cases in those
European countries that have faced the largest numbers of positive cases. The MS
models are used as the main framework. The goal of the study is twofold. First, we
compare modeling results for the period that contains the first peak of the epidemic
for the following countries: Italy, Germany, the United Kingdom, and Russia.
Second, for the case of Italy, we provide results of MS modeling for the subperiods
of the second and third peaks. Data are taken from https://ourworldindata.org/covid-
cases.

Our models have an ARMA structure. However, the model’s key characteristic
is that constant error variability and ARMA coefficients change across different
regimes. We associate identified phases with the estimated level of persistence. For
stationary time series, persistence is represented by the infinite sum of weights in
its linear representation [17]. Persistence is commonly measured according to the
values of parameters in corresponding autoregressive (AR) representation. As a
baseline case, if the autoregressive parameter in AR (1) model is statistically not
different from 1, then we are dealing with high persistence or a unit-root presence.
The lower the value of the autoregressive parameter, the smaller the persistence
and higher the probability that undertaken measures would be effective. If the
autoregressive parameter is greater than 1, then the time series is explosive, which
implies an extremely high level of unpredictability. If the AR model of order greater
than 1 is chosen and estimated, then the level of persistence may be assessed by the
absolute values of roots of the corresponding characteristic equation.

Time series considered in this study represent count time series. Statistical
literature offers a variety of models for such time-series data. Among them, Poisson
autoregression and log-linear Poisson autoregression models defined in [8] and [7]
have been frequently used. The log-linear Poisson autoregression model has been
employed by Agosto and Giudici [1], Turasie [22], and Agosto et al. [2] to capture
the spread of the COVID-19 virus. However, our previous empirical findings in
[18] clearly suggest that this model estimated for several countries does not exhibit
satisfactory statistical properties because it fails several diagnostic tests.

The MS approach has been employed in modeling COVID-19 data for several
countries, for example, [3, 16], and [19], but not as often as standard epidemiological
models.

The paper has the following structure. In Sect. 2, the MS models are briefly
described. Section 3 contains modeling results of COVID-19 new cases for the
selected countries (Italy, Germany, the United Kingdom, and Russia) over the
subperiod of the first peak. Findings for Italy over proceeding peaks are given by
Sect. 3. The empirical results for Italy related to the second and the third peaks are
given in Sect. 4. Conclusions are offered in Sect. 5.

https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
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2 The Markov-Switching Time-Series Models

In this study, we shall use the approach of modeling time series with changes in
a regime that will be referred to as Markov-switching models. These models were
introduced by Hamilton [9, 10, 12]. For the presentation of the theory, see also [11].

Suppose that the observations .x1, .x2, .. . . , .xn are realizations of the random
process .X1, .X2, .. . . , .Xn. For every .t ∈ {1, 2, . . . , n}, an unobserved random variable
.St is associated with .Xt and determines the state of the process, that is, determines
the conditional distribution of .Xi given .Si .

We suppose here that random variable .St takes values from some finite set
.{1, 2, . . . , m} and the probability that the random variable .St takes some particular
value j depends on the past only through the value .St−1, that is,

.P {St = j | St−1 = i, St−2 = it−2, St−3 = it−3, . . . } = P {St = j | St−1 = i}.
(1)

Let us denote

.pij = P {St = j | St−1 = i}, i, j ∈ {1, 2, . . . , m}, (2)

that is, .pij is the probability that state i will be followed by state j . The sequence
.(St ) is then referred to as an m-state homogeneous Markov chain with stationary
transition probabilities .{pij }i,j=1,2,...,m. Obviously, for every .i ∈ {1, 2, . . . , m}, the
following equality holds:

.pi1 + pi2 + · · · + pim = 1. (3)

The general autoregressive moving average models of order (K,L) for the
sequence .(Xt ), notation MS-ARMA(K,L), are given by

.Xt = cSt +
K∑

k=1

φkSt Xt−k +
L∑

l=1

θlSt εt−l + εSt , (4)

where the constants .cSt , .φkSt and .θlSt depend on the regime, and .εi , .i ∈ {1, . . . , m}
are independent random variables with the variance that depend only on the regime,
that is, for .St = i we have .εi ∼ N (0, σ 2

i ). The special case of the general model (4)
is the first-order autoregressive model (AR) that is given by

.Xt = cSt + φSt Xt−1 + εSt , (5)
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where the constants .cSt and .φSt depend on the regime and .ε’s are independent zero
mean and normally distributed random variables with .εi ∼ N (0, σ 2

i ). If .St = i, the
conditional distribution of .Xt is assumed to be given by the density

.f (xt |St = i, Xt−1, Xt−2, . . . ,α). (6)

In the case of the first-order AR model, the components of .α to be estimated are .ci ,
.φi , .σ 2

i where .1 � i � m and the transition probabilities .pij , .i, j ∈ {1, . . . , m}. In
the case of the general ARMA model, the components of .α are

.ci, φ1i , . . . , φKi, θ1i , . . . , θLi, σ 2
i , (7)

where .1 � i � m and the transition probabilities .pij , .i, j ∈ {1, . . . , m}.
Several methods were considered from the literature for obtaining the estimates

of the unknown parameters of the models considered here. The number of states
(regimes) is also subject to estimation. In practical work, it is chosen according to
the maximum value of the sample likelihood function or equivalently to the min-
imum values of information criteria. Additionally, we consider several diagnostic
statistics when determining the number of states.

The likelihood of the Markov-switching model can be evaluated using the
filtering procedure in [10] followed by the smoothing algorithm in [13] and [11],
Ch. 22. The log-likelihood, which is a function of the components of .α, can then
be maximized subject to the constraint that the probabilities lie between 0 and 1
and sum to unity. Most of the literature suggests using the EM algorithm of [5],
following [10]. All estimations are performed using OxMetrics 8; see [6]. The
feasible nonlinear programming approach of [14] is used to maximize the log-
likelihood of the MS model. As emphasized in [6], it converges more quickly and is
more robust than other available techniques.

The essential part of MS modeling consists of investigating whether it outper-
forms ARMA linear model with constant parameters. Defining a linearity test is a
demanding task because parameters are not identified under the null hypothesis that
there is no difference between the MS and ARMA. Thus, the likelihood-ratio test
does not have the standard asymptotic .χ2 distribution, [21].

We provide results of a test for linearity available in OxMetrics 8, derived from
the likelihood-ratio statistic between the estimated and implied linear models. Two
p-values are reported. The first one is based on the standard .χ2 distribution. The
second one is the so-called approximate upper bound for the significance level of
the likelihood-ratio statistic; see [4].
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3 Empirical Results for Early Dynamics

In this section, modeling results are described separately for each of the following
countries: Italy, Germany, the United Kingdom, and Russia. At the end of this
section, summary findings are reported.

3.1 Italy (Sample: February 22–May 31, 2020)

The four-state MS-AR (1) model fits well the dynamics of COVID-19 new cases
in Italy. Identified regime three is detected as the most extreme episode. It covers
.31% of the sample. This regime is the most persistent one, given the estimate of
autoregressive parameter 0.995. Variability is estimated to be the highest during
regime three. This episode has been preceded and shortly interrupted by regime one
that lasted on average 2 days. Regime one is associated with strong upward and
downward trends in the data, estimated to take approximately .15% of the sample.
The persistence is estimated to be low. Identified regime four is also characterized
by high persistence, 0.942. It marks the subperiods at the beginning and the end of
the sample covering half of it. This regime describes time intervals during which the
number of new cases was relatively low compared to other regimes. Nevertheless,
the finding of the high persistence at the end of the sample indicates that the
epidemic episode was far from being over at the beginning of June 2020. Regime
two is the shortest one because it includes only 3 days spread randomly over the
sample. These dates are characterized by very high jumps and low persistence.

Of all estimated transition probabilities, the highest one, 0.95, is the probability
of staying in regime four of relatively high persistence.

The estimated model is provided in Table 1. Together with the estimated
parameters .φ̂i and .̂ci , we provide the p-value in the brackets. With estimated param-
eters .̂σi , the corresponding standard errors are reported. The associated transition
probabilities are given in Table 2. The estimated model performs statistically well,
as shown by diagnostic tests in Table 3. Figure 1 captures actual and estimated data
along with detected regimes.

Table 1 .m = 4: Constant .ci ,
autoregressive .φi , and st.
error .σi parameters

State .φ̂i .̂ci .̂σi

1 .0.296 (0.00) .2749 (0.00) . 83.33 (19.37)

2 .0.741 (0.00) .1567 (0.00) .829.42 (250.3)

3 .0.995 (0.00) .3453 (0.00) .536.91 (75.49)

4 .0.942 (0.00) .1159 (0.00) .187.07 (20.68)
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Table 2 .m = 4: Transition
probabilities

Probability .State1,t .State2,t .State3,t .State4,t

.State1,t+1 0.45 0.25 0.21 0.00

.State2,t+1 0.08 0.00 0.00 0.06

.State3,t+1 0.47 0.00 0.79 0.00

.State4,t+1 0.00 0.74 0.00 0.94

Table 3 Specification tests Linearity Normality ARCH 1-2 Autocorr. Q

.χ2
14 .χ2

2 F(2,78) .χ2
10

.63.5 (0.00, 0.00) .1.5 (0.48) .0.1 (0.93) .8.0 (0.63)

Fig. 1 Italy: actual and estimated numbers of daily COVID-19 new cases, and estimated regimes

3.2 Germany (Sample: January 28–May 31, 2020)

The four-state MS-AR (1) model also performs statistically well for German daily
data of new COVID-19 cases. These states, along with the actual and estimated new
COVID-19 cases, are provided by Fig. 2. The most extreme period is detected as
regime three. During regime three, the variability is the highest, but the autoregres-
sive parameter is estimated to be the lowest (0.366). Therefore, high persistence
was not a key feature of regime three. Relatively low persistence indicates that
although being at a high level, the number of new cases was not unpredictable.
Regime three is followed by regime one, during which the number of cases started
to fall. This downward trend in the data is estimated by the autoregressive parameter
0.565 (moderate persistence), whereas variability remained high.
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Fig. 2 Germany: actual and estimated numbers of daily COVID-19 new cases, and estimated
regimes

Table 4 .m = 4: Constant .ci ,
autoregressive .φi , and st.
error .σi parameters

State .φ̂i .̂ci .̂σi

1 .0.565 (0.01) .2268.3 (0.00) . 716.81 (135)

2 .0.823 (0.00) . 601.6 (0.00) . 204.87 (20.53)

3 .0.366 (0.07) .4655.5 (0.00) .1004.46 (171.2)

4 .0.999 (0.00) . 579.2 (0.00) . 1.13 (0.14)

This regime one covers approximately .17% of the sample. The remaining part
of the sample is identified as regime two, including the time interval before the
most extreme episode of regime three. Approximately .40% of the sample is covered
by regime two. Variability decreased, although the persistence increased (0.823).
The very beginning of the sample with the lowest number of cases is found as
regime four that lasted 30 days with .20% of the sample. During this regime, the
persistence was substantial (0.999), but the variability was estimated to be low.
Therefore, such a combination of persistence and variability did not result in an
explosion of the new cases. The estimated model is given in Table 4, and diagnostic
tests are reported in Table 5. The highest transition probability is estimated to be
0.98. It refers to the probability of staying in regime two of lower variability and
moderate persistence. The second highest transition probability is estimated to be
0.97. This is the probability of switching from the most extreme regime three to the
regime of the lowest number of cases.

The transition probabilities are the following: .p11 = 0.95, .p12 = 0.05, .p13 =
0.00, .p14 = 0.00, .p21 = 0.00, .p22 = 0.98, .p23 = 0.02, .p24 = 0.00, .p31 = 0.04,
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Table 5 Specification tests Linearity Normality ARCH 1-2 Autocorr. Q

.χ2
14 .χ2

2 F(2,102) .χ2
11

.489.9 (0.00, 0.00) .0.4 (0.81) .0.6 (0.58) .19.2 (0.06)

Fig. 3 United Kingdom: actual and estimated numbers of daily COVID-19 new cases, and
estimated regimes

.p32 = 0.00, .p33 = 0.96, .p34 = 0.00, .p41 = 0.00, .p42 = 0.03, .p43 = 0.00,

.p44 = 0.97.

3.3 The United Kingdom (Sample: February 24–May 31, 2020)

The three-state MS-AR (2) is estimated to describe well new daily cases of COVID-
19 in the United Kingdom (see Fig. 3). The most extreme episode is captured
by regime three, covering approximately .40% of the sample. During this regime,
data are estimated to have the highest variability. Persistence is determined to be
moderate since the largest absolute value of root is 0.57. Before and after this
regime, data are estimated to belong to regime one, which includes approximately
.41% of the sample. Regime one is associated with a strong upsurge of new cases
in the second half of March and the beginning of April and a mild downward
trend at the end of the sample. This regime one exhibits strong persistence given
that the estimated AR (1) parameter is 0.975 (parameter AR (2) is insignificant).
The variability is estimated to be the second highest. This finding highlights the
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Table 6 .m = 3: Constant .ci ,
autoregressive .φ1i , and .φ2i

parameters

State .̂ci .φ̂1i .φ̂2i

1 .2268.30 (0.00) .0.975 (0.00) .−0.054 (0.75)

2 .2118.53 (0.00) .1.067 (0.00) .−0.070 (0.74)

3 .4797.55 (0.01) .0.350 (0.14) .−0.327 (0.04)

Table 7 Standard error .σi

parameter
Parameter .̂σ1 .̂σ2 .̂σ3

Estimate 404.09 16.67 636.96

Standard error 60.80 3.05 94.32

Table 8 Specification tests Linearity Normality ARCH 1–3 Autocorr. Q

.χ2
10 .χ2

2 F(3,72) .χ2
9

.158.1 (0.00, 0.00) .2.7 (0.26) .0.4 (0.79) .12.7 (0.18)

severeness of the augmentation of new COVID-19 cases over this subperiod. At
the beginning of the time series, the remaining data are detected as part of regime
two, which takes .19% of the sample. Although this regime is associated with a
subperiod when the number of new cases has just started to increase, the dynamics
of time series are found to be extremely persistent, given that the greatest root of the
characteristic equation is 1.067 (parameter AR (2) is insignificant).

Estimated parameters are given in Tables 6 and 7, with diagnostic tests provided
by Table 8. The highest transition probability is estimated to be 0.95, being the
probability of staying in the episode during which time series followed the explosive
path. Slightly lower is transition probability 0.94 representing the probability of
staying in the regime with the highest number of new cases.

The transition probabilities are the following: .p11 = 0.93, .p12 = 0.01, .p13 =
0.06, .p21 = 0.05, .p22 = 0.95, .p23 = 0.00, .p31 = 0.06, .p32 = 0.00, .p33 = 0.94.

Note: Two impulse dummy variables are included. The first one is designed to
take only nonzero value 1 for April 12, 2020, whereas the second is 1 for May 21,
2020, and 0 otherwise.

3.4 Russia (March 3–May 31, 2020)

The four-state MS-AR (2) model was chosen for the number of new COVID-19
cases in Russia. Tables 9 and 10 contain estimation results and statistical tests.
Figure 4 captures actual and estimated data along with detected regimes. Four
regimes are clustered throughout the sample. The most extreme episode is given
as regime three, with persistence estimated to be high, 0.99, and variability the
second highest. This regime takes one-third of the data. The lowest level episode
covers approximately .20% of the data. This is given as regime four. The persistence
also appears to be high, 0.966. Between regimes three and four, regimes one and
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Table 9 .m = 3: Constant .ci , AR parameters .φi1 and .φi2, and st. error .σi

. i .̂ci .φ̂1i .φ̂2i .̂σi

1 . 488.78 (0.11) .0.470 (0.00) .0.599 (0.00) 571.29 (118.5)

2 . 110.40 (0.30) .0.847 (0.00) .0.347 (0.02) 155.50 (21.41)

3 .2121.00 (0.00) .0.555 (0.00) .0.433 (0.00) 491.69 (68.41)

4 . 93.52 (0.26) .0.585 (0.01) .0.368 (0.06) 8.85 (1.49)

Table 10 Specification tests Linearity Normality ARCH 1–3 Autocorr. Q

.χ2
10 .χ2

2 F(3,63) .χ2
9

.187.2 (0.00, 0.00) .0.3 (0.84) .0.2 (0.92) .8.5 (0.48)

Fig. 4 Russia: actual and estimated numbers of daily COVID-19 new cases, and estimated regimes

two are detected. Regime two continues after regime three up to April 19, covering
.32% of the sample. During this subsample, we observe a strong upward trend that
is estimated to describe explosive behavior, given that the largest root is 1.15 (also
sum of AR (1) and AR (2) estimates is 1.19). Mild explosiveness is also found
during regime one (the largest root is 1.04 and the sum of autoregressive coefficients
is 1.07), characterized by the highest variability among all four episodes. During
regime one, which lasted approximately .15% of the period, the series still exhibits
an upward trend, but with a smaller slope than in regime two.

The transition probabilities are the following: .p11 = 0.92, .p12 = 0.00, .p13 =
0.08, .p14 = 0.00, .p21 = 0.04, .p22 = 0.96, .p23 = 0.02, .p24 = 0.00, .p31 = 0.00,
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.p32 = 0.00, .p33 = 1, .p34 = 0.00, .p41 = 0.00, .p42 = 0.05, .p43 = 0.00, .p44 =
0.95.

All transition probabilities of staying in a given regime are greater than 0.9.
The probability of staying in the regime of the highest number of cases is even
1, indicating that similar behavior was expected.

3.5 Results Summary

This subsection briefly summarizes key modeling results. We first consider findings
for the most extreme episode given the level of persistence estimated (Table 11).

The most extreme episode is identified as regime three in each country, but it
differs significantly across them. It is given as one cluster in all cases, except for
Italy. Its shortest duration is found in Germany. A much longer duration is detected
in the United Kingdom and Russia. The case of Italy is specific because this regime
is estimated for several time-series blocks. Variability is found to be the highest
in almost all countries during this epidemic plateau regime. Meanwhile, different
time-series dynamics are revealed, given the estimated parameters and values of the
roots of an AR characteristic equation. The persistence runs from low in Germany
to moderate in the United Kingdom and high in Italy and Russia. A combination
of low/moderate persistence and high uncertainty suggests that no inertial behavior
was found during the epidemic peak in the United Kingdom and Germany.

Results for the pre-peak and post-peak subsamples are presented in Table 12.
Except for Germany and Russia, in all other countries, pre-peak and post-peak
episodes are identified by the same regime (regime one). In Russia, in the period
covered, the epidemic curve did not fall; therefore, we cannot talk about the post-
peak episode. However, the persistence is estimated to be extreme in Russia before
the epidemic plateau. It is found to be high in the United Kingdom and moderate
in Italy. In each case, this regime lasted shorter than the most extreme regime
three. Different results are reached for Germany: regime one covers only pre-peak
episodes that were found to be highly persistent.

Table 11 Regime three: the most extreme episode

Country Italy The United Kingdom Germany Russia

Persistence 0.99 0.57 0.37 0.99

Share .31% .40% .19% .33%

Table 12 Regime one:
pre-peak and post-peak
episodes

Country Italy The United Kingdom Russia

Persistence 0.296 0.975 1.040

Share of the sample .15% .13% .15%
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4 Empirical Results for Italy: The Second and the Third
Peak

We further explore the time series for Italy so the data that includes the second and
the third peak of the COVID-19 pandemic are considered. Given that AR order three
is selected, the magnitude of the persistence is assessed from the largest absolute
value of the roots of the corresponding characteristic equation.

4.1 The Second Peak (Sample: October 1, 2020–January 31,
2021)

The three-state MS-ARMA (3,1) model was chosen for the second peak data in
Italy. The peak subsample is contained by regime three, covering .18% of the
sample (first 22 days of November 2020). Persistence is estimated to be moderate
to high, given that the largest absolute value of roots of the characteristic equation
is 0.69. Variability is estimated to be the highest during regime three. Regime one is
identified to cover several data just before epidemic peak and just after it, taking only
.14% of the sample. Persistence is measured by the absolute value of the root 1.25.
Most of the sample (.68%) belongs to regime two, representing pre-epidemic and
post-epidemic subperiod. Persistence is estimated to be the second highest, given
the root of 0.91. Therefore, one may argue that the MS model distinguishes pre-
peak, peak, and post-peak regimes. We take regimes one and three to explain the
same peak interval, whereas regime two captures both pre-peak and post-peak data
(Fig. 5).

Table 13 presents the estimation of constant and AR parameters, whereas
Table 14 presents the MA parameter and error variability estimates and gives roots
of the AR corresponding characteristic equation. According to several diagnostic
tests, the model is not misspecified (Table 15).

4.2 The Third Peak (Sample: February 1–May 15, 2021)

The three-state MS-ARMA (3,1) model is again found to explain well the third peak
data in Italy. The distribution of episodes across the sample differs from the previous
peak period. Regime three is detected to be associated with the largest number of
COVID-19 data and includes .32% of the sample (the end of February and March
2021). Persistence is again estimated to be moderate, with the largest absolute value
of the characteristic equation root 0.83. Variability is estimated to be the highest.
Regime one takes .36% of the sample covering one cluster before and one cluster
after regime three. It is characterized by moderate persistence—measured again by
the value 0.83. The rest of the sample (.32%) is described by regime two, containing



Modeling COVID-19 Contagion Dynamics 285

Fig. 5 Actual and estimated numbers of daily COVID-19 new cases, and estimated regimes in
Italy: the second peak

Table 13 .m = 3: Constant .ci , AR parameters .φi1, .φi2, and .φi3

. i .̂ci .φ̂1i .φ̂2i .φ̂3i

1 .28676.5 (.00) .1.035 (.00) .−0.809 (.00) .−0.787 (.00)

2 .22576.1 (.00) .1.301 (.00) .−0.768 (.00) .0.376 (.00)

3 .37865.9 (.00) .0.242 (.07) .−0.038 (.76) .−0.272 (.01)

Table 14 .m = 3: MA
parameter .θi1, .σi , and roots of
AR char. equation

. i .̂θi1 .̂σi Roots

1 . − 0.117 (0.00) .790.4 (298.5) .−0.50, 0.77 ± 0.99i

2 . − 0.269 (0.00) .2522.5 (230) .0.91, 0.20 ± 0.61i

3 . − 0.117 (0.00) .3424.5 (348) .−0.58, 0.41 ± 0.55i

Table 15 Specification tests Normality ARCH 1–2 Autocorr. Q

.χ2
2 F(2,94) .χ2

20

.1.1 (0.59) .0.33 (0.72) .29.8 (0.07)

two clusters: at the beginning and the end of the sample. Its persistence is not high
in magnitude, as the largest root is 0.61. Again, as in previous cases, we underline
different time-series dynamics within the MS model estimation, which depend on
the regime found. Regime three is the peak episode, whereas regimes one and two
capture pre-peak and post-peak behavior (Fig. 6).

Tables 16 and 17 provide estimates of constant, ARMA parameters, variability,
and report roots of the AR corresponding characteristic equation. The model has
good statistical properties, although it fails to explain the autocorrelation at higher
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Fig. 6 Actual and estimated numbers of daily COVID-19 new cases, and estimated regimes in
Italy: the third peak

Table 16 .m = 3: Constant .ci , AR parameters .φi1, .φi2, and .φi3

. i .̂ci .φ̂1i .φ̂2i .φ̂3i

1 .1100.1 (.00) .0.466 (.01) .−0.140 (.40) .−0.43 (.00)

2 .6986.7 (.00) .0.613 (.01) .0.008 (.97) .−0.193 (.30)

3 .22, 544.0 (.00) .0.532 (.00) .−0.284 (.10) .−0.279 (.00)

Table 17 .m = 3: MA
parameter .θi1, .σi , and roots of
AR char. equation

. i .̂θi1 .̂σi Roots

1 .0.336 (0.00) .1834.2 (250.2) .−0.63, 0.55 ± 0.62i

2 .0.413 (0.00) .1730.3 (406.7) .0.61, 0, 0

3 .−0.04 (0.06) .2673.4 (334) .−0.41, 0.47 ± 0.68i

Table 18 Specification tests Normality ARCH 1–2 Autocorr. Q

.χ2
2 F(2,75) .χ2

10

.1.2 (0.55) .1.19 (0.31) .24.3 (0.01)

lags (Table 18). A model with AR order four solves the problem, but basic results
remain unchanged. Therefore, we keep the model with fewer lags to provide an
easier comparison for two peak periods.
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4.3 Comparison of Two Subsamples

For both subsamples, the same MS specification is chosen. The distinction among
regimes is similar: extreme data are contained by regime three, lower values before
and after the extreme by regime one, and relatively long episodes of much lower
data by regime two. Durations of peak, post-peak, and pre-peak episodes appear to
be similar. The peak episode is given by regimes three and one during the second
subsample, which covers .32% of the sample. For the third subsample, only regime
three is a peak interval, again with .32% of a given sample. Pre-peak and post-peak
episodes are proportionally identical (regime two, .68%, and regimes one and two,
.68%). The relative size of the regime variability is the same for two subsamples: the
highest variability of regime three is followed by the variability of regime one and
then regime two.

However, estimated ARMA parameters do not indicate the same level of
persistence nor the same influence of isolated shocks, as measured by MA (1)
parameter. Persistence is found to be moderate for the most extreme period—regime
three (0.69 and 0.83) and much higher for the associated regime one (1.25 and 0.83).
The similarity in the persistence is not found for regime two (0.91 vs. 0.61).

During the second peak subsample, the relevance of some adverse shocks
is determined for all three regimes, given the negative estimate of the MA (1)
parameter. Meanwhile, during the third subsample peak, positive isolated shocks
are found according to the same parameter estimates in regimes one and two. All
model estimates reflect differences in epidemic measures taken during these two
subperiods, including the vaccination process that started during the third wave.

For both models, the highest transition probabilities are found for staying in
extreme regime three, and also for remaining in regime two.

5 Concluding Remarks

Our study presents the empirical modeling of daily dynamics of COVID-19 new
cases for the following European countries: Italy, Germany, the United Kingdom,
and Russia. MS models with ARMA structure are implemented as a key method-
ological framework. Two aspects are considered. First, for all four countries, the
sample includes the first peak. The MS model is a useful approach because it
successfully describes the daily dynamics of COVID-19 new cases. However, a
different pattern of behavior has been identified across countries. Second, MS
models are estimated for Italy’s second and third waves. A similar duration of peak,
pre-peak, and post-peak episodes is found, and the same specification is chosen.
Nevertheless, estimated parameters indicate different dynamics over the second
and third peak periods. These empirical findings differ to a greater extent when
compared with the results for the first peak.
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In summary, MS specification represents a data-driven approach that allows for
enough flexibility in modeling pandemic data and extracting episodes of epidemic
peak, growth, and decline. It provides valuable information on data dynamics and
persistence. It also highlights the necessity of careful data examination for each
country separately, given that different epidemiological measures are implemented
and that these measures have been subject to change within the same country over
time.
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Diffusion of Renewable Energy for
Electricity: An Analysis for Leading
Countries

Alessandro Bessi, Mariangela Guidolin, and Piero Manfredi

Abstract Many countries are undertaking their energy transition process, by invest-
ing in renewable energy technologies, in order to face climate change and energy
security problems. This paper investigates the temporal trends of the diffusion
process of renewable energies, namely, wind and solar, in leading countries for their
consumption. In doing so, a bivariate diffusion model is employed to investigate
the possibly competitive dynamics between renewables and the top source for
electricity production in each country. The obtained results confirm a significant
competitive pressure enacted by renewables on the top source. A notable exception
is represented by the USA, where renewables appear to reinforce the dominant
position of gas.

Keywords Renewable energy · Multivariate diffusion models · Competition ·
Electricity · Energy transition

1 Introduction

In recent years, in order to face climate change and energy security issues, many
countries have undertaken a process of energy transition, characterized by the
progressive substitution of nonrenewable energy sources, namely, coal, oil and
gas, with renewable energy technologies (RETs), such as photovoltaic, wind,
hydroelectric, and biomass. Essentially, energy transition implies a large-scale
process of decarbonization [7, 26].
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Although the switch to renewables is a multidimensional phenomenon, involving
a wide variety of social, economic, cultural, and human factors [7], and therefore a
multilevel perspective should be adopted in order to capture the complexity of these
dynamics [26], there is a certain agreement on the idea that an energy transition
primarily involves a transformation of the electricity system [9, 10]. As observed
by Geels et al. [7], electricity systems have some specificities that facilitate the
integration of RETs.

Focusing on electricity markets, the COVID-19 pandemic has posed extraordi-
nary challenges, or, using the words of the BP’s chief economist Spencer Dale, “the
global pandemic was the mother of all stress tests” [3], calling the attention on how
power systems behave under extreme pressure. At the same time, the COVID-19
pandemic has given the opportunity to learn some important lessons, in order to
ensure secure, flexible, and resilient power systems in the future [15–17, 20].

According to [18] and [19], the main phenomena observed during the first
COVID-19 pandemic year have been a decline in the consumption of coal and
gas, with a relative more resilient pattern of gas, and an extraordinary growth
of renewables, despite the critical phase suffered by all world economies. Again
quoting Spencer Dale, “these trends are exactly what the world needs to see as it
transitions to net zero emissions: strong growth in renewable generation crowding
out coal.” At the same time, it must be recognized that the strong growth in RETs
registered in recent times appears not yet sufficient to phase out nonrenewables, and
coal in particular, so that a real transformation of the power sector will require a
long time to be realized [3].

Stimulated by the strong growth of renewables within the overall electricity mix
in many countries, in this paper, we aim to study this process of transformation, by
focusing on RETs diffusion in the countries representing top absolute consumers of
renewables, as reported in [3]. In detail, the renewable energy sources considered
are the “new” RETs, namely, wind and solar, that, according to BP and IEA,
have been the major responsible for the recent success of renewables. As already
pinpointed, the countries analyzed are the top consumers of new RETs in absolute
terms, namely, Australia, Brazil, Canada, China, France, Germany, India, Italy,
Japan, Spain, the UK and the USA. Moreover, eight of them are among the 12
major energy consumers worldwide. This choice was motivated by the fact that,
though many of these countries lie somewhat behind in the per-capita ranking
of RETs adopters, meaning that we are leaving out some “virtuous countries” in
terms of RETs adoptions, nonetheless they currently represent at the same time
massive RETs adopters as well as major carbon dioxide emitters worldwide. It is
also reasonable to expect that they will likely keep these roles in the forthcoming
decades, thereby playing a central role in the battle against climate change.

To perform the analysis, the paper compares the temporal trend of new (wind
and solar jointly considered) RETs consumption with those of the “top source”
for electricity production in each of the countries considered. Such comparison has
been considered crucial to understand the dynamics of substitution and integration
of renewables within power systems, by detecting possible competition effects
between energy sources. In particular, the “top source” was defined as the one
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currently holding the largest share of the energy consumption mix. The latter
definition has the advantage of being simple while giving –in view of the simple
temporal trend of the top source in most countries considered– the same result of
more refined ones.

From the methodological viewpoint, the paper employs a well-accepted approach
for the analysis of energy dynamics, based on diffusion models in a competitive
setting. Specifically, a bivariate diffusion model is applied to capture –for each
country considered– the dynamic interplay between new renewables and the top
energy source and detect possibly significant relationships between different energy
sources.

The paper has the following structure: Sect. 2 provides the motivation of the
research, Sect. 3 resumes some relevant background literature, Sect. 4 illustrates
the model employed for the analysis, Sect. 5 describes the obtained results by the
selected model, and Sect. 6 proposes some discussion and concluding remarks.

2 Motivation: Energy Trends

As illustrated in the Introduction, the purpose of the paper is to study the diffusion of
renewables by considering their dynamic relationship with the major energy source
employed for electricity provision. To this end, the set of countries considered
is Australia, Brazil, Canada, China, France, Germany, India, Italy, Japan, Spain,
the UK, and the USA. This selection has appeared reasonable, because these are
currently the global leaders in terms of absolute consumption of the new RETs;
additionally, they represent a large subset of major energy consumers worldwide,
thus possibly major contributors to current and prospective carbon emissions.

The data for each country are displayed in the various panels of Fig. 1 and cover
the period 1965–2020. The black dots represent the time series of RETs, while
the blue ones are referred to the time series of the top energy source. The top
energy source for electricity provision is represented by natural gas in six countries
(Germany, Italy, Japan, Spain, UK, USA), by coal in three (Australia, China, India),
by nuclear in France, and by hydropower in Brazil and Canada. In each graph, the
scale is determined by the top source trend, leading to significant inter-country
differences as absolute energy consumption levels are reasonably influenced by,
other things being equal, GDP and population size. As for the trends of (new)
RETs, the only countries that showed a robust growth already in the late 1990s were
Germany and Spain, while the remaining countries showed their take-off not before
2005. Nevertheless, the trajectories of renewables show a similar structure in most
of the countries analyzed, being characterized by an initially flat behavior followed
by a phase of marked growth. Such flat dynamics is arguably connected to higher
upfront costs and a number of systemic problems [25], which hindered the process
in its early stages, thus justifying the need of incentive policies and subsidies.
Although most of the countries show a substantially growing trend, one may observe
noteworthy exceptions. In particular, in Canada, Italy, and Spain, renewables have
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recorded a fast growth phase, likely due to effective incentives, and a slowdown
phase after incentives faded off. Brazil, instead, seems to have suffered from the
pandemic breakout, registering minimal changes in 2020.

On the other hand, in most cases, the temporal shape of the top source presents
the typical behavior of a mature technology, though at different stages of the energy
cycle. In particular, in most countries, it may be observed a phase of sustained
growth up to a peak, followed afterward by a recession or by a plateauing epoch
(e.g., Brazil, Canada, and China). Notable exceptions to this are represented by
India and the USA, where the top source for electricity has been experiencing a
continuing increase in recent years, with the only exception of 2020, the first year
of the pandemic crisis.

3 Background

The impact of RETs in energy markets has been at the center of a large branch
of literature, aimed at modeling the technological, economic, social, and human
aspects that may stimulate or hinder their diffusion. For a recent review on some
of these streams of research, especially focusing on modeling and forecasting
aspects, see [27]. A well-known approach for studying the temporal patterns of
energy sources and the related transitions has relied on growth curves such as the
logistic equation; see [23, 24], and [8]. Following the lines of research opened by
Marchetti and collaborators, in the early 2000s, many contributions applied growth
curves for modeling the diffusion of renewables. For a review, especially focused
on the diffusion of renewables, see [28]. In particular, some of these works used
suitable extensions of the logistic equation, namely, the Bass model [1] and the
generalized Bass model [2], to describe the evolution in time of energy sources, both
nonrenewables and renewables, and to capture the effects of external shocks, such
as ad hoc incentive measures set to accelerate market growth. Among others, we
recall [5, 11, 14], and [4]. However, the use of Bass-type models fails to account
for the complexity of energy environments that are typically characterized by
competition and substitution effects. A first answer to this problem was provided by
employing multivariate diffusion models under duopolistic conditions. For example,
[10] analyzed the case of Germany’s energy transition, by modeling the competitive
relationship between RETs and nuclear energy. In [6], the substitution between
traditional sources and renewables was modeled for four countries (USA, Europe,
China, and India), by also accounting for the effect of external shocks. In [9] the
case of Australia was analyzed, by focusing on the relationship, either competitive
or collaborative, between coal, gas, and renewables.

The study proposed in this paper aims at providing further insight within this
branch of literature.
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4 Model

Consistent with the aforementioned literature, this paper employs a general model
for a diachronic duopolistic competition proposed in [12]. This model, termed
the unbalanced competition and regime change diachronic model, UCRCD for
brevity, is a bivariate generalization of the Bass model, whose purpose is to
represent diffusion processes in a competitive environment with two competitors
(see [12, 13, 21, 22], and [29]). The UCRCD model describes a diffusion process
evolving through two sequential phases: an initial phase where only one agent
(“player”) occupies the market, thus giving rise to a monopolistic setting, and a
second stage where, following the entrance of a concurrent player, true competition
occurs. Given these different phases, the market potential is assumed to take
different levels: .ma , the market potential in the monopolistic phase, and .mc, the
market potential in the competition phase. Letting .z(t) denote the overall cumulative
number of adoptions at time t , in the competition phase, it holds .z(t) = z1(t)+z2(t)

where .z1(t) and .z2(t) denote adoptions from the first player, the one occupying the
market in the monopolistic phase, and from his competitor, respectively. During the
competition phase, the residual market .m−z(t) is assumed to be shared. The second
player enters the market at time .t = c2 with .c2 > 0.

The model is described through the following system of two differential equa-
tions where the time derivatives .z′

1(t) and .z′
2(t) represent instantaneous adoptions of

the first and of the second competitor, respectively, and .IA is the indicator function
of time interval A:

.z′
1(t) = m

{[
p1a + q1a

z(t)

m

]
(1 − It>c2)

+
[
p1c + (q1c + δ)

z1(t)

m
+ q1c

z2(t)

m

]
It>c2

}[
1 − z(t)

m

]
, (1)

z′
2(t) = m

[
p2 + (q2 − γ )

z1(t)

m
+ q2

z2(t)

m

] [
1 − z(t)

m

]
It>c2,

m = ma(1 − It>c2) + mcIt>c2

z(t) = z1(t) + z2(t)It>c2 .

In the monopolistic phase spanning over the time period .t ≤ c2, the trajectory of the
first player, .z′

1(t), is described according to a standard Bass model with parameters
.p1a , .q1a , and .ma . Following Bass’ terminology, these parameters represent the
market’s innovation rate (.p1a), reflecting the hazard of spontaneous adoption
under the pressure of the existing communication system; the imitation rate (.q1a),
reflecting the strength of adoptions due to social contacts (word-of-mouth) between
agents; and the market potential (.ma), respectively.

In the competition phase, occurring when .t > c2, competitors influence each
other. This requires a number of additional parameters. The first market player is
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now described through (i) the innovation coefficient under competition, .p1c; (ii) the
within imitation coefficient .q1c + δ, describing internal growth dynamics; and (iii)
the cross-imitation one, .q1c, which multiplies .z2/m and measures the influence of
the second market player on the first.

The second player has a symmetric structure: (i) the innovation coefficient .p2;
(ii) the within imitation coefficient .q2, modulating internal growth through the ratio
.z2/m; and (iii) the cross-imitation coefficient .q2 − γ , which tunes the effect of the
first player on the second. When parameters .δ and .γ are identical, i.e., the restriction
.δ = γ holds, the model has a reduced form, called standard UCRCD [12], implying
a symmetric behavior between the two competitors. The standard UCRCD model
has a closed-form analytical solution.

Typically, internal growth parameters .q1c+δ and .q2 have a positive sign, and their
magnitude provides a measure of the intensity of growth. Instead, the cross-imitation
parameters may take either a negative or a positive sign: a negative sign implies a
competition effect, that is, the competitor has a negative effect on the absolute rate of
change of the given player, while a positive one describes a collaborative dynamics.

4.1 Estimation and Model Selection

The statistical implementation of the UCRCD models is based on nonlinear least
squares, NLS, [30]. The structure of a nonlinear regression model is as follows:

.w(t) = η(β, t) + ε(t), (2)

where .w(t) is the observed response, .η(β, t) is the deterministic component
depending on parameter vector .β and time t , and .ε(t) is a residual term, generally
independent and identically distributed (i.i.d.). As for the deterministic component,
the literature has considered either the cumulative adoption function .z(t) or the
instantaneous adoption function .z′(t).

Model goodness-of-fit may be evaluated through the determination .R2 index.
Moreover, the choice between the unrestricted UCRCD model, with .δ �= γ , U , and
the standard UCRCD model, with .δ = γ , S, may be evaluated through a squared
multiple partial correlation coefficient .R̃2 (lying in the interval .[0; 1]):

.R̃2 = (R2
U − R2

S)/(1 − R2
S), (3)

The .R̃2 coefficient has a monotone relationship with the F -ratio, i.e.,

.F = [R̃2(n − v)]/[(1 − R̃2)k], (4)

where n is the number of observations, v the number of parameters of the extended
model U , and k the incremental number of parameters from S to U .
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5 Application

In order to statistically test the existence of a dynamic relationship between
renewables and the main energy source for electricity production in each country,
both an unrestricted (.δ �= γ ) and a standard (.δ = γ ) UCRCD models were fitted.
After conducting a model comparison by means of the statistical tools described
in Sect. 4.1, the standard model (.δ = γ ) was selected in all cases, except for
the USA where the unrestricted model (.δ �= γ ) had a better performance. A
graphical inspection of the model fitting in Fig. 2 allows to appreciate the adequacy
of the UCRCD model in reproducing the competing diffusion dynamics of RETs
against the top source in all countries considered. Specifically, the increasing trend
in renewables observed in all countries was efficiently described, and just in the
case of Italy, the model slightly overestimated the behavior of the series. Pairwise,
the model reproduction of the key features of the top source temporal trend was
also highly satisfactory. Some lack-of-fit arose only when the patterns in the data
revealed more complicated than what the flexibility of the model itself can afford,
e.g., the fall-rise-fall phases observed in many countries due to the 2008 subprime
crisis, the subsequent slow recovery, and the subsequent, possibly definitive, decline
in recent years. Some lack-of-fit also occurred, though in some cases only, at the
switch between the “monopolistic” and the competition phase.

Table 1 displays parameter estimates of the full UCRCD for the 12 countries.
As a general insight, it may be observed that almost all parameters are significant,
providing evidence of meaningful relationships in all the cases analyzed. The only
exception is represented by parameter .p2c, which always proved nonsignificant,
confirming findings in previous studies about the lack of meaningful external
supports to the market for renewables [4, 11]. Since the focus of the analysis was
to characterize the dynamic interplay between renewables and the underlying “top
sources” for electricity production, parameter estimates referred to the competition
phase, .t > c2, are analyzed with more detail and displayed in Table 2. As for
the top source, both innovation, .p1c, and within imitation coefficient, .q1c + δ, are
significant and strictly positive. The significant and strongly negative value assumed
by the cross-imitation parameter .q1c suggests the existence of a strongly competitive
pressure exerted by RETs toward the top source.

Further interesting insights on the dynamic relationship come from the coeffi-
cients concerning renewables. The nonsignificance of the innovation coefficient .p2c

and the significant, high value of parameter .q2c may be interpreted as an indication
of an essentially logistic process meaning that the early stages of RETs life cycle
were primarily driven by internal growth forces, namely, imitation and collective
learning, in the absence of a sustained support by the public and the media system.
Further policy efforts, aiming to foster the continued adoption of renewables by
overcoming existing barriers, should keep this into account. The cross-imitation
parameter, .q2 −γ , though significant, appears very small in all countries, especially
if compared with .q1c: this detected regularity would suggest a regime change
characterized by an independent path behavior of renewables, being marginally
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Table 1 Parameter estimates of the UCRCD model for the 12 countries selected

Country Parameter Estimate s.e. Lower c.i. Upper c.i. p-value .R2

Australia .mc 98.5 3.24 92.2 104.9 <0.0001 0.999980

.p1c 0.015 0.0004 0.014 0.016 <0.0001

.p2c −0.0001 0.0003 −0.0007 0.0006 0.861

.q1c −0.3606 0.055 −0.4687 −0.2524 <0.0001

.q2c 0.4204 0.054 0.3152 0.5255 <0.0001

.δ 0.4199 0.0547 0.3127 0.5272 <0.0001

Brazil .mc 225.8 42.1 143.2 308.4 <0.0001 0.999941

.p1c 0.011 0.0019 0.008 0.015 <0.0001

.p2c −0.0002 0.0003 −0.0008 0.0004 0.561

.q1c −0.253 0.063 −0.378 −0.129 <0.0001

.q2c 0.298 0.061 0.178 0.418 <0.0001

.δ 0.296 0.063 0.173 0.418 <0.0001

Canada .mc 580.2 206.5 175.5 984.9 0.0065 0.999992

.p1c 0.0052 0.0018 0.0017 0.0087 0.0053

.p2c −0.0001 0.0001 −0.0002 0.0001 0.447

.q1c −0.139 0.026 −0.189 −0.088 <0.0001

.q2c 0.154 0.025 0.105 0.202 <0.0001

.δ 0.153 0.025 0.103 0.202 <0.0001

China .mc 3445.5 270.2 2916.0 3975.0 <0.0001 0.999712

.p1c 0.0039 0.0004 0.0032 0.0046 <0.0001

.p2c 0.0001 0.0004 −0.0006 0.0008 0.782

.q1c −0.456 0.188 −0.825 −0.086 0.0189

.q2c 0.551 0.185 0.188 0.914 0.0043

.δ 0.552 0.187 0.185 0.919 0.0046

France .mc 208.5 6.2 196.3 220.7 <0.0001 0.999987

.p1c 0.0152 0.0004 0.0145 0.0160 <0.0001

.p2c −0.0001 0.0002 −0.0005 0.0003 0.541

.q1c −0.262 0.049 −0.357 −0.166 <0.0001

.q2c 0.309 0.048 0.216 0.403 <0.0001

.δ 0.308 0.048 0.214 0.403 <0.0001

Germany .mc 467.6 122.3 227.9 707.3 0.0003 0.999905

.p1c 0.0043 0.0010 0.0022 0.0063 <0.0001

.p2c −0.0002 0.0001 −0.0004 0.0001 0.208

.q1c −0.0935 0.009 −0.112 −0.075 <0.0001

.q2c 0.127 0.011 0.106 0.147 <0.0001

.δ 0.122 0.110 0.101 0.144 <0.0001

(continued)
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Table 1 continued

Country Parameter Estimate s.e. Lower c.i. Upper c.i. p-value .R2

India .mc 690.9 60.2 573.0 808.9 <0.0001 0.999948

.p1c 0.0096 0.0007 0.0081 0.0110 <0.0001

.p2c 0.0001 0.0003 −0.0004 0.0006 0.576

.q1c −0.281 0.163 −0.600 0.039 0.0951

.q2c 0.377 0.160 0.064 0.069 0.0249

.δ 0.380 0.163 0.059 0.700 0.0271

Italy .mc 133.1 7.7 118.1 148.2 <0.0001 0.999874

.p1c 0.0106 0.0005 0.0095 0.0116 <0.0001

.p2c −0.0002 0.0004 −0.0010 0.0006 0.610

.q1c −0.189 0.053 −0.293 −0.085 0.0007

.q2c 0.254 0.051 0.155 0.354 <0.0001

.δ 0.252 0.052 0.149 0.355 <0.0001

Japan .mc 427.0 107.5 216.2 637.8 0.0002 0.999929

.p1c 0.0039 0.0009 0.0021 0.0056 <0.0001

.p2c 0.0001 0.0001 −0.0001 0.0003 0.440

.q1c −0.273 0.033 −0.337 −0.208 <0.0001

.q2c 0.320 0.032 0.257 0.383 <0.0001

.δ 0.322 0.033 0.257 0.3871 <0.0001

Spain .mc 50.9 2.0 47.1 54.8 <0.0001 0.999358

.p1c 0.0029 0.0007 0.0017 0.0042 <0.0001

.p2c 0.0002 0.0007 −0.0012 0.0015 0.810

.q1c −0.089 0.026 −0.141 −0.037 0.0014

.q2c 0.229 0.025 0.179 0.278 <0.0001

.δ 0.224 0.032 0.162 0.286 <0.0001

UK .mc 143.8 6.6 130.9 156.6 <0.0001 0.999674

.p1c 0.0014 0.0007 0.0124 0.0150 <0.0001

.p2c −0.0004 0.0007 −0.0017 0.0009 0.550

.q1c −0.291 0.083 −0.454 −0.128 0.0009

.q2c 0.363 0.081 0.205 0.521 <0.0001

.δ 0.360 0.083 0.198 0.522 <0.0001

USA .mc 1340.3 102.3 1139.8 1540.7 <0.0001 0.999976

.p1c 0.0123 0.0009 0.0105 0.0140 <0.0001

.p2c 0.000004 0.0002 −0.0003 0.0004 0.981

.q1c 1.266 0.295 0.687 1.845 <0.0001

.q2c 0.392 0.062 0.269 0.514 <0.0001

.δ −1.232 0.294 −1.807 −0.656 <0.0001

.γ 0.392 0.063 0.268 0.515 <0.0001
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Table 2 Parameter estimates of the UCRCD model for the dynamic relationship between the
consumption of the top energy source (in brackets) and that of renewables for the 12 countries
considered. The reported parameter estimates refer to the competition phase only (.t > c2)

Country .mc .p1c .(q1c + δ) .q1c .q2 .(q2 − γ ) .δ .γ

Australia (R vs C) 99 0.015 0.06 −0.36 0.42 0.0004 0.42

Brazil (R vs H) 226 0.011 0.04 −0.25 0.30 0.0022 0.30

Canada (R vs H) 580 0.005 0.01 −0.14 0.15 0.0010 0.15

China (R vs C) 3445 0.004 0.10 −0.46 0.55 −0.0012 0.52

France (R vs N) 209 0.015 0.05 −0.26 0.31 0.0011 0.31

Germany (R vs G) 468 0.004 0.03 −0.09 0.13 0.0042 0.12

India (R vs C) 691 0.010 0.10 −0.28 0.38 −0.0029 0.38

Italy (R vs G) 133 0.011 0.06 −0.19 0.25 0.0023 0.25

Japan (R vs G) 427 0.004 0.05 −0.27 0.32 −0.0017 0.32

Spain (R vs G) 51 0.003 0.14 −0.09 0.23 0.0043 0.22

UK (R vs G) 144 0.014 0.07 −0.29 0.36 0.0029 0.36

USA (R vs G) 1340 0.012 0.03 1.27 0.39 −0.0002 −1.23 0.39

influenced by the dominant source, as already pointed out in previous studies based
on a duopolistic model [9, 10].

To sum up, some evident regularities emerge from the analysis, highlighting a
highly competitive pressure of renewables on the top source, while the top source
seems to aid the integration of renewables, although with a very small quantitative
effect.

Notable exceptions to this general pattern are China, India, and Japan, where both
.q1c and .q2 − γ are negative, indicating the presence of a pure competition dynamic
relationship between the two energy sources.

Last but not least, a unique relationship characterizes the case of the USA,
where .q1c is extremely high and positive, while .q2 − γ is negative, though
negligible, suggesting a competitive effect of the top source toward the growth of
renewables. This exceptional behavior is arguably connected to the renewed strength
of natural gas in the US energy market, where the growth of renewables appears to
“collaborate” to establish a new energy regime of electricity production, namely,
from a previous one essentially based on coal and nuclear to a new one centered
on natural gas, where renewables appear to play –at least in this stage of RETs
lifecycle– a supporting role to the gas dominance.

6 Discussion

This paper performed a multicountry analysis, which aimed at identifying signif-
icant dynamic relationships between the diffusion process of renewables and that
of the top source for electricity production currently prevailing in each country
considered. Since the transformation of electricity systems through a progressive



Diffusion of Renewable Energy for Electricity 303

expansion and integration of renewables is seen as a necessary step for the current
ecological and energy transitions, grounding the growth of renewables against that
of the top source in the electricity mix has appeared a natural choice, in order to
provide a credible representation of current trends.

From this viewpoint, the present findings appear especially interesting since
the same model has been applied to different countries, giving rise to a number
of evident regularities in diffusion patterns: a clear competitive effect exerted by
renewables that seems to follow a robust and somehow independent growth path
within the electricity market.

A special attention should be devoted to the last observation available in the data,
referring to year 2020, for which a decline in electricity consumption from the top
source has been observed in almost all countries with respect to year 2019. The only
exception is represented by China, for which a slight increase in coal consumption
has been observed in 2020. However, these variations do not indicate a negative
shock in consumption, as confirmed by the good UCRCD fit in this part of the data:
indeed electricity continued to be a primary good, also, or perhaps especially, during
the pandemic crisis and the related lockdown periods during 2020, so that a strong
decrease in consumption was not a plausible outcome.

This work has a number of limitations. First, in order to follow a parsimonious
approach, the study was based on some key simplifying hypotheses, purposely
overlooking sources of heterogeneity among countries, such as the availability of
multiple energy sources, socioeconomic conditions, national policies, international
agreements, etc. In this sense, some lack-of-fit was observed especially in the first
phase, i.e., the one prior to the start of the market for renewables, that we termed the
“monopolistic” phase owing to the two-dimensional nature of the adopted UCRCD
modeling framework. Clearly, representing the initial phase prior to renewables
onset as a “monopolistic” one driven by a simple Bass-like trend is a strong
hypothesis entailing a simplification. Indeed, it ignores that in the energy market
of most countries considered, there already was (in the pre-renewables epoch) a
competition among several energy sources (e.g., in the US case among natural
gas, coal, and nuclear). Therefore, the trajectory of the top energy source in the
“monopolistic” phase was generated by a dynamic process far more complicated
than the simple Bass model adopted here. So we unavoidably expected that –at least
in some cases– the fit to the data would be sub-optimal. Future research may aim
at improving the fit also for this phase, by relaxing the assumption of a Bass-like
behavior, allowing for the introduction of a more suitable function.

A further clear limitation of the proposed analysis is the absence of an out-of-
sample forecasting exercise. However, especially in light of the likely structural
changes that will be induced by the enduring pandemic and especially by the
national post-pandemic recovery plans, we preferred not to provide forecasts for
the next years and to definitely bound our analysis on the characteristics of the
competition on energy markets until the year 2020. A future perspective of research
will focus on clarifying and possibly modeling the still uncertain role of the
pandemic and related recovery plans in the growth of renewables, in order to propose
realistic future scenarios.
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The State and Perspectives
of Employment in the Water Transport
System of the Republic of Croatia

Drago Pupavac , Ljudevit Krpan , and Robert Maršanić

Abstract The main aim of this paper is to investigate the state of employment
and employment trends in the water transport system of the European Union
and the Republic of Croatia. The purpose of this paper is to find answers to the
question of how to turn negative employment trends in the Croatian water transport
system into positive ones. To answer this question, several scientific methods were
applied, in particular descriptive statistics and correlation and regression analysis.
The increase in goods transport and the growth of the gross domestic product have
been recognized as major factors in increasing employment in the water transport
system. The main findings of this paper can be helpful to transport managers at all
levels for human resource planning in the water transport system.

Keywords Water transport · Maritime transport · Inland waterway transport ·
Employment

1 Introduction

Water transport covers the transport of goods and persons by ships that travel on
the sea or on inland waterways. The Republic of Croatia is a maritime country [1]
and Croatia’s water transport system is part of both the European and the global
transport system [2]. Since there is no strongly oriented maritime economy and the
connection between sea and river ports is rather poor, this precious resource remains
insufficiently used in Croatia [3]. This is especially true with regard to Croatia’s
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inland waterway transport [4]. The largest transport volume in inland waterway
transport, amounting to 5.48 million tonnes (7.7% of the total land transport), was
recorded in 1980, whereas today it is almost nine times smaller and amounts to
only 632 thousand tons [5]. In the pre-transition period in 1988, water transport
employed 15.5 thousand people whereas today it employs only 3529 people or 4.39
times less [6]. Reasons for this should be looked for in decreased economic activity,
insecure industrial production [7], decreased employment in transport activity as a
whole [8], insufficient integration between Croatian sea ports and river ports, loss of
large shipping companies [9], closing of steelworks and the Oil Refinery in Sisak,
non-maintenance of inland waterways, and the lack of qualified employees (river
ship operators). The negative economic trends that emerged in 2009 had an adverse
effect on employment in the whole Croatian transport sector [10]. About 57,000
transport system jobs were lost, of which water transport has lost 13,000 in the
past three decades [11]. The water transport system is a part of Croatia’s transport
system, which has suffered the adverse effects of numerous crises over the past three
decades: the transition crisis (1991–2000), the global financial crisis, the fallout of
which was felt in Croatia from 2009 to 2014, and the crisis caused by the COVID-19
pandemic (2020–2021). Accordingly, the purpose of this paper is to find an answer
to the question of how to turn negative employment trends in the water transport
system into positive ones.

2 Theoretical Framework

The most important types of water transport are shown in Fig. 1.

Fig. 1 Types of water transport
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1. Sea transport. Sea transport is also called sea shipping. The main features of
sea transport are that it is undertaken at sea, on a natural and free-of-charge
waterway, in various types of ships and vessels, and that it requires artificially
built starting and finishing points—seaports. The world merchant fleet is made
up of some 100,000 commercial vessels, about one third of which are controlled
by EU countries. Maritime industries are an important source of employment and
income for the European economy [12]. The total capacity of Croatian maritime
shipping has declined in the last three decades and at the end of 2016 it amounted
to 127 ships—86 passenger ships and 41 cargo ships [5].

2. Inland waterway transport is, together with road and rail transport, one of the
three main land transport modes. Goods are transported by ships via inland
waterways, such as: (a) rivers, (b) lakes, and (c) canals. A brief description of
each type of inland waterway transport is given below:

(a) River transport and traffic. It is carried out on navigable rivers, on a natural
and free-of-charge waterway, in various types of vessels: ships, cargo barges,
small vessels, barges, push boats, and tug boats, and it requires artificially
built starting and finishing points—docks. The European inland waterway
network represents the most significant and most developed regional market
of river transport. The basic feature of river waterways worldwide is their
under-utilization. River transport of the developed countries of the European
Union accounts for 25% of their total transport, resulting in multiple savings
in costs for the economy.

(b) Lake transport and traffic. It is maintained on navigable lakes, on a natural
and free-of-charge waterway, in various types of vessels, and similar to
sea and river transport and traffic, it requires artificially built starting and
finishing points—docks.

(c) Canal transport and traffic. It has all relevant features of sea, river, and lake
transport and traffic, however with a significant difference—it is carried
out on artificial canals. Canal transport has particular significance in the
international transport of goods and passengers. The basic feature of canal
transport is reflected in its ability to fundamentally change the transport
importance of individual parts of the world and the transportation routes
of goods by removing geographical barriers to transport. By connecting
different seas, canal transport has contributed to the increase of international
trade exchange almost as much as technical progress in transport. On a global
level, the Suez Canal and the Panama Canal are of particular importance
whereas the Kiel Canal and the Corinthian Canal are of regional significance.

Water transport as a whole, together with its individual (sub)types (sea, river,
lake, and canal transport) has numerous technical, technological, organizational,
economic, and legal idiosyncrasies that all active stakeholders of this system should
follow, know, and put into practice, since only by doing so can they materially affect
the safety, speed, and rationality of the very complex process of transport services
production.
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3 Descriptive Analysis of Employment in Water Transport
in the EU

3.1 Descriptive Analysis of Employment in Sea Transport
in the EU

Maritime countries, among which the EU-27 plays a special role, are the primary
drivers of the development of international exchange and trade around the world.
Bringing together production and consumption across the far corners of the world,
sea transport has always been a factor in the integration of countries and the world
market as a whole [13]. The steady growth of international seaborne trade, measured
in the number of tonnes carried, has increased 4.25 times [14] in the past 50 years,
implying the continuous growth of total ship capacities and the number of persons
employed in sea transport. The number of seafarers in the world is estimated at 1.65
million [15], with the EU countries accounting for about 230,000 [16], and Croatia
for over 18,000. Due to continuous improvements to the technological structure of
sea-going ships, the number of people employed in sea transport has not grown
proportionally with the increase in ship capacities. Hence, it comes as no surprise
that there is a positive and weak correlation (r = 0.23; p < 0.5) between the number
of sea-going ships and the number of employees in Croatia’s sea transport system
[6] and that the global demand for officers is greater than the global supply, while
the global supply of ratings exceeds the global demand (see Fig. 2).

The graphs in Fig. 2a, b demonstrate what occurs when, given the economic
reality on the global seafarer labor market, the rate of pay is set at the W1 level
for ratings and the W2 level for officers. Namely, in economic reality, wages do not
adjust to the equilibrium wage rate but rather are inelastic and slow to respond to
economic changes. When wages fail to adjust to the equilibrium rate, a disbalance

Fig. 2 Global supply and demand for officers and ratings in sea transport



The State and Perspectives of Employment in the Water Transport System. . . 311

may occur between the number of workers looking for a job and the number of job
vacancies. In the first case (Fig. 2a), the number of ratings looking for work (Ls or
AC) is larger than the demand for ratings according to the number of job vacancies
(Ld or AB). When Ld (or CE) ratings find a job, Ls-Ld or BC become involuntarily
unemployed ratings (119,000), that is, ratings who wish to work for current wages
but cannot find a job. In the second case (Fig. 2b), the situation differs essentially,
because wages are set below the We level. In this case, there is a shortage of workers
and shipping companies are not able to fill all the vacant officer positions. This
occurs because the number of workers seeking work (Ls or DF) is smaller than
the number of vacant officer positions (Ld or DG). As Ld (or DF) officers become
employed, Ld-Ls (or FG) represents the shortage of workers (16,500) that shipping
companies want to employ at current wages but cannot find.

The number of persons employed in sea transport in the EU-28 in 2017 varied
considerably, from only 200 employed in Slovenia to over 48,000 employed in Italy.
The average number of people employed in sea transport per member country (see
Table 1) was 6.37 (SD = 10.30).

According to the number of sea transport workers, the Republic of Croatia,
with 3429 workers, is below the EU-28 average. However, having 18,658 seafarers
[6], Croatia is substantially above the average of EU countries (M = 10,491;
SD = 1807.73). Eastern Member States such as Bulgaria (33,269), Romania
(24,343), Poland (22,669), and Croatia (18,658) employ more than 35% of the total
number of seafarers.

Table 1 Descriptive
statistics on employment in
sea transport in EU-28, 2017
(000)

Mean 6.37
Standard Error 1.94
Median 1.3
Standard Deviation 10.3
Sample Variance 106.16
Kurtosis 10.35
Skewness 2.86
Range 48.9
Minimum 0
Maximum 48.9
Sum 178.3
Count 28
Confidence Level (95.0%) 3.99

Source: Prepared by the authors
according to [17]
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3.2 Descriptive Analysis of Employment in the EU Inland
Waterway Transport

Inland waterway transport is very developed in the EU-27, in particular in the
Netherlands, Germany, and France. The network of the inland waterways of EU
countries has more than 37,000 km [18] of waterways.

The Rhine–Danube network, with a length of 14,360 km, represents the main
international inland waterway network. The most important basins are: (a) the Rhine
basin—around 80% of the overall inland waterway freight transport is carried on
this river and (b) the Danube basin—around 9% of the overall inland waterway
transports is carried out on the Danube and the Rhine–Main–Danube canal [19].
The Danube basin has the potential to guarantee river navigation between the North
Sea and the Black Sea.

Croatia possesses significant natural and geographical potential for the devel-
opment of river transport. The determining factors of this potential are the rivers
Danube and Sava, and a part of the waterway of the river Drava (to 22 rkm).

Croatia has 534.7 km of waterways, of which 287.4 km or 53.75% complies with
the requirements of international waterway norms [20]. The inland waterways are
located in the northern part of the country. The construction of the Danube–Sava
canal would result in the creation of a singular national navigable network, which
would become an integral part of the singular navigable waterway network of the
EU-27. This would contribute considerably to increasing the volume of traffic on
Croatian waterways.

The EU-28 inland water transport system in 2017 employed 44,300 workers or
0.42% of the total number of employees in the EU-28 transport system, or 27.4% of
the total number of employees in the EU-28 water transport system. Five European
Union countries do not keep records of the number of employees in inland water
transport while five European Union countries have only 100 employees in inland
water transport. Croatia is one of them. Below is a brief overview of employment in
the EU-28 inland water transport traffic based on the method of descriptive statistics
(Table 2).

Based on data from Table 2, it is evident that average employment per member
country is 1580 people (SD = 3.07). The largest number of people 13,400 are
employed by the inland water transport system of the Netherlands. According to
the number of inland water transport workers, Croatia is below the EU-28 average.

4 Data and Research Methodology

In order to make a model for evaluating total employment in waterway transport in
Croatia (TEWT), it is necessary to first make two partial models (a separate model
for evaluating employment in sea transport and another one for inland waterway
transport), and then combine these two to obtain one integral model.
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Table 2 Descriptive
statistics on employment in
inland water transport in
EU-28, 2017 (000)

Mean 1.58
Standard Error 0.58
Median 0.6
Standard Deviation 3.07
Sample Variance 9.42
Kurtosis 9.86
Skewness 3.15
Range 13.14
Minimum 0
Maximum 13.4
Sum 44.3
Count 28
Confidence Level (95.0%) 1.19

Source: Prepared by the authors
according to [17]

The first model to be presented starts from the premise that the number of persons
employed in sea transport depends on (1) the number of passenger ships—NPS,
(2) the number of cargo ships—NCS, (3) passengers carried—PC, (4) passenger
miles—PM, (5) goods carried—GC, (6) tonne-miles—TM, and (7) GDP.

The model can be presented in the following way:

NES = b0 + b1NPS + b2NCS + b3PC + b4GC + b5PM + b6TM + b7GDP
(1)

bi—(i = 0,1,2,3,4,5,6,7) = model parameters.
The second model to be presented starts from the premise that the number of

persons employed in inland waterway transport depends on the (1) transport of
goods in national transport, (2) transport of goods in international transport, and
(3) gross domestic product.

Its linear form would be as follows:

NER = b0 + b1NT + b2IT + b3GDP (2)

bi—(i = 0,1,2,3) = model parameters.
This approach to inland waterway transport was chosen because the Croatian

Bureau of Statistics does not keep records of the total transport volume of passengers
in Croatian river ports, and data on river fleet per years are not available.

By combining the two models, an integrated model for estimating the total
number of persons employed in Croatia’s waterway transport system is obtained.

TEWT = NES + NER (3)
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Table 3 Employment in sea transport, passenger ships, cargo ships, passengers carried, passenger
miles, goods carried, tonne-miles and GDP, 2005–2016

PM in TM in PC in GC in GDP constant

Year NE mln NPS mln NCS 000 000t price in HRK

2005 4255 233 86 68,069 69 11,440 29,975 292,859.83
2006 4203 245 86 73,971 69 12,079 31,423 306,739.8
2007 4290 265 91 74,230 67 12,723 32,420 323,522.76
2008 4154 265 88 77,199 68 12,861 30,768 331,155.41
2009 3862 263 88 74,160 64 12,550 31,371 308,305.68
2010 3870 266 85 87,878 68 12,506 31,948 301,214.65
2011 3830 315 80 83,929 67 12,926 30,348 301,214.65
2012 4018 325 91 67,861 64 12,474 25,636 295,190.36
2013 3397 331 85 68,727 46 12,770 24,744 292,238.45
2014 3281 335 84 58,158 45 13,029 20,335 290,777.26
2015 3427 337 84 65,995 43 13,082 21,376 295,430.00
2016 3429 352 86 61,071 41 13,525 20,951 303,997.47

Source: Prepared by the authors according to [21]

Table 4 Employment trends, transport of goods on inland waterways, and GDP, 2005–2014

Year NER National (000t) International (000t) GDP constant price in HRK

2005 552 195 1251 292,859.83
2006 671 189 1320 306,739.8
2007 714 163 1305 323,522.76
2008 759 141 739 331,155.41
2009 695 127 406 308,305.68
2010 134 145 370 301,214.65
2011 133 91 411 301,214.65
2012 128 50 596 295,190.36
2013 104 42 535 292,238.45
2014 100 102 441 290,777.26

Source: Prepared by the authors according to [21]

Accordingly, the available relevant data for sea transport (see Table 3) and inland
waterway transport (see Table 4) were collected from secondary sources.

Data on employment in inland waterway transport (NER) and goods carried in
national and international transport are taken from the Croatian Bureau of Statistics,
while data regarding the GDP in constant prices are the result of the author’s
calculations (see Table 4).
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5 Research Result and Discussion

Based on the data collected in Tables 3 and 4, correlation analysis was performed
first for sea transport (see Table 5) and then for river transport (see Table 6).

The conducted correlation analysis confirms there is a strong and positive
correlation between the number of people employed in sea transport and the number
of cargo ships (r = 0.91; p < 0.05) and goods carried (r = 0.84; p < 0.05). The
negative correlation between the number of employees in maritime transport and
indicators of labor in passenger traffic can be explained by the under-utilization
of the existing capacities, especially off season. This claim is substantiated by the
findings of Pupavac, Plazibat, Krcum [22] in their research, which identified a
statistically positive and strong correlation between the number of tourist arrivals
and sea passenger demand in Croatia (r = 0.81; p < 0.05). It is the main reason why
we focused on the employment effects in the sea transport related to the transport
of goods. The second reason is that calculations conducted to determine the value
of parameters of the function in the form (2) yielded no conclusive and logical
regression models.

To estimate the future number of employees in the sea transport system, a simpler
conclusive model has been developed.

NES = 2008.510 + 0.066GC (R = 0.84;F (1,10) = 24.758;p < 0.01)

(4)

The results of correlation analysis for inland waterway transport are shown in
Table 6.

Table 6 shows there is a strong positive interdependence between the number of
people employed in inland waterway transport and GDP (r = 0.75; p < 0.05) and
a positive but moderate interdependence between the number of people employed
in inland waterway transport and national (r = 0.71; p < 0.05) and international
(r = 0.64; p < 0.05) goods transport.

Regression analysis between the number of employees in inland waterway
transport and gross domestic product has resulted in the following model of linear
regression:

NER = −4605.97 + 0.02 GDP (R = 0.75;F (1,8) = 10.29;p < 0.01)

(5)

Accordingly, total employment in water transport in Croatia can be expressed
as the sum of employment in sea transport and employment in inland waterway
transport, or

TEWT = −2597.46 + 0.066GC + 0.02 GDP. (6)
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Table 7 Estimate of total employment in water transport by 2027 in Croatia

Year
Goods carried
in 000t

GDP constant
price in HRK

Employment in
sea transport

Employment in
inland
waterway
transport

Total
employment in
water transport

2016 22,220.60355 304,059.4927 3478.317 394.68 3872.997
2017 22,887.22165 308,620.3851 3522.411 469.69 3992.101
2018 23,573.8383 313,249.6909 3567.828 545.83 4113.658
2019 24,281.05345 317,948.4363 3614.608 623.11 4237.718
2020 25,009.48505 322,717.6628 3662.791 701.54 4364.331
2021 25,759.76961 327,558.4277 3712.419 781.15 4493.569
2022 26,532.56269 332,471.8042 3763.536 861.96 4625.496
2023 27,328.53957 337,458.8812 3816.187 943.98 4760.167
2024 28,148.39576 342,520.7644 3870.417 1027.23 4897.647
2025 28,992.84763 347,658.5759 3926.274 1111.73 5038.004
2026 29,862.63306 352,873.4545 3983.807 1197.49 5181.297
2027 30,758.51205 358,166.5564 4043.066 1284.55 5327.616

Assuming that goods transport in sea transport were to increase by 3% and GDP
by 1.5% per year, employment in water transport in Croatia would range as follows:

The implications of COVID-19 crisis are not included in this projection because
we have no sufficient data. Also, we believe that negative effects of Covid-19 crisis
for GDP moving and total goods transport will be short-term. The assumption that
goods transport would increase by 3% in sea transport is based on the fact that in
the next decade Croatia should reach the average level of tonnes of goods carried
(30,361.24) as in the period from 1996 to 2016. The assumption that the GDP would
increase by 1.5% per year seems realistic for the next decade although it is not high
enough. Given the above and based on the data in Table 7 it can be concluded that
employment in water transport in Croatia by 2027 is expected to increase by slightly
more than 1798 jobs, specifically by 614 jobs in sea transport and by as many as
1184 jobs in river transport. Although the assumption about employment increase
in sea transport seems realistic, the assumption about employment increase in river
transport can be argued as unsustainable. Nevertheless, the obtained information
points to the enormous potential of river transport when new workplaces are created
in Croatia. To exploit that potential, however, it will be necessary to re-industrialize
Croatia, create a single inland waterway network in Croatia, and develop economic
cooperation with countries in the region, primarily with Bosnia and Herzegovina,
and Serbia.



The State and Perspectives of Employment in the Water Transport System. . . 319

6 Conclusion

Wide-ranging, frequent, and unpredictable economic, technological, and political
changes have marked and aggravated business conditions in the global, European,
and Croatian waterway transport markets. As waterway transport is vulnerable to
impacts from the global market, its long-term development must be aligned with
international business conditions. Employment in Croatia’s waterway transport has
shrunk 4.37 times relative to employment in the pre-transition period. The reasons
behind this decline should be sought in the deindustrialization of the Croatian
economy, the lack of singular navigable waterway networks, insufficient integration
of Croatian sea ports and river ports, the loss of large shipping companies, and
the failure to fully tap into the potential of Croatia’s geographic and traffic position.
Croatia is below the EU average considering the number of water transport workers.
Sea transport prevails in employment in water transport in Croatia, which is
understandable considering that Croatia is a maritime country. Due to a series
of objective and subjective factors, employment in river transport has become
almost irrelevant. The increase of goods transport in sea transport and the growth
of the gross domestic product, i.e., an increase in industrial production in river
transport, have been recognized as major factors in increasing employment in water
transport. Assuming modest economic growth at an average annual rate of only
1.5% and an average increase of tonnes of goods carried of 3%, employment in
Croatia’s waterway transport system could grow by about 1800 jobs by 2027.
The potential for increasing employment in waterway transport in the short run is
especially high in river transport. The main preconditions to achieving the above
projections are economic growth, the integration of sea ports and river ports, greater
international exchange of goods, and cooperation with countries in the region. The
rapid development of the maritime economy would spur economic growth, as a
special feature of the maritime economy is the fact that its multiplier effect on the
development of the land economy is much greater than the multiplier effect that the
land economy has on the maritime economy.
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Reversed STIRPAT Modeling: The Role
of CO2 Emissions, Population,
and Technology for a Growing Affluence

Johannes Lohwasser , Axel Schaffer, and Tom Brökel

Abstract The presented paper analyzes the relationship between economic growth,
demographic development, and CO2 emissions for 30 industrialized countries using
time-series data from 1982–2014 in the well-known IPAT/STIRPAT setting. In
contrast to the general assumption of IPAT/STIRPAT modeling, which in most
cases proposes a one-way causality running from the anthropogenic factors to the
environment, applied Granger-causality tests indicate a reversed causal relationship.
Therefore, the paper suggests to add a new perspective to the IPAT/STIRPAT
approach by setting up a stochastic model that explains impacts on economic growth
(affluence) by regression on population, carbon emissions (as a proxy for energy
use or ecosystem services), and technology. The results confirm that GDP per
capita growth rates of highly industrialized economies are significantly driven by
the development of CO2 emissions, population, and energy intensity. Coefficients
remain robust with or without integrating structural and energy variables and for the
short- and long-run perspective.

Keywords STIRPAT · IPAT · Energy · Carbon emissions · GDP per capita ·
Population

1 Introduction

Despite broad consensus that economic production has substantially altered the
global environment, empirical findings on the causal relationship between economic
growth and environmental impacts are (at least in some parts) inconclusive. While
some authors identify a monocausal relationship running from economic growth to
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the production of anthropogenic greenhouse gases, others find strong evidence for a
reversed causality running from environmental emissions to economic growth. Yet
others observe bidirectional relationships or no causal link at all. In conclusion,
the rich portfolio of empirical studies reveal no universal direction of causality,
findings rather depend on the considered time periods as well as countries’ stage
of development and sectoral structure [1, 2].

Against this background the presented paper seeks to analyze the relationship
between economic growth, demographic development, and CO2 emissions for 30
industrial countries in the well-known STIRPAT (STochastic Impacts by Regression
on Population, Affluence and Technology) setting. However, in contrast to the
general assumption of STIRPAT modeling, which proposes a one-way causality
running from the anthropogenic factors to the environment, applied Granger-
causality tests indicate a reversed causal relationship for the sample at hand.
Thus, in contrast to existing applications of the STIRPAT model, this paper uses,
to our best knowledge for the first time, the STIRPAT framework to estimate
environmental impacts on economic growth. This means CO2 emissions can be,
for industrial countries and the time period between 1982 and 2014, considered a
driver of economic growth rather than vice versa. Based on these results we suggest
to complement the STIRPAT model family by a reversed version that explains
stochastic impacts on affluence (rather than on the environment) by regression on
population, technology, and environmental impacts or inputs.

The remainder of the paper is organized as follows. Section 2 discusses the
general issue of causality and offers a new perspective on the IPAT and STIRPAT
modeling. Section 3 continues with methodological remarks followed by the
empirical application of the revised model for 30 advanced economies and the
discussion of results in Sects. 4 and 5, respectively. Finally, the paper closes with
concluding remarks and some brief policy implications in Sect. 6.

2 Perspectives of Causality in the STIRPAT Model Approach

One way to analyze the relationship of anthropogenic factors and the environment
is the so-called IPAT approach, which presumes that environmental impacts (I) are
the multiplicative product of population (P), affluence (A), and technology (T) [3]:

I = P · A · T . (1)

Notably the formula proposes a functional relation between anthropogenic
factors and the environment but does not tell us much about the causality of this
relationship (e.g., [4]). As a mathematical identity, the equation can be solved for
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any variable, e.g., for technology T, defined as environmental impact per unit output
(e.g., CO2 emissions per unit of GDP; [5, 6]) or affluence A (Eq. 2):

A = I

P · T
(2)

Accordingly affluence (typically operationalized as GDP per capita) rises with
environmental impacts or inputs (operationalized by CO2 emissions) and technical
progress T (if defined as decreasing fossil fuel consumption per unit of GDP).1

At the same time it decreases with an increasing population P. Or, the other way
around, a shrinking population pushes GDP per capita.

While clarity and simplicity certainly add to the popularity of the IPAT approach,
the pure identity undermines hypothesis testing and causal interpretation (e.g.,
[4]). This is why [7] suggests to transfer the IPAT equation into the so-called
STIRPAT model that explains Stochastic Impacts on the environment by Regression
on Population, Affluence and Technology and provides the framework for empirical
analysis (Eq. 3):

Ii,t = ct · P α
i,t · A

β
i,t · T

γ

i,t · ei,t , (3)

where Ii,t is the environmental impact of country i at time t, Pi,t is the population,
Ai,t is the affluence, Ti,t is the technology, ct is the constant, and ei,t is the residual
error term. α, β, and γ are the environmental outcome elasticities with respect to
population, affluence, or technology, respectively. In order to address the skewness
and non-stationarity of variables, STIRPAT models commonly take logs and use
first-differences (Eq. 4) (e.g., [8, 9]):

� ln Ii,t = � ln Ct + α· � ln Pi,t + β· � ln Ai,t + γ · � ln Ti,t + � ln ei,t .

(4)

where � ln Ii, t is the change of log CO2 emissions in country i from time t−1 to t.
� ln Pi, t is the change of log population, � ln Ai, t is the change of GDP per capita,
� ln Ti, t is the change of log technology, � ln ct is the change of the log constant,
and � ln ei, t is the change of the log error term.

In contrast to the simple IPAT identity, the very thought of setting up the
main STIRPAT equation already implies the assumption of causality. Considering
affluence, population, and technology as key driving forces, contributing factors,
predictive or explanatory variables that explain, determine, or lead to environmental
impacts further strengthens the underlying assumption of causality (e.g., [4, 9, 10]).
After all, it is probably fair to say that the large majority of STIRPAT models assume
a one-way causal impact through affluence (typically GDP per capita), population,

1 For a better traceability the environmental/energetic input is still denoted as I.
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and technological progress (measured as environmental impact per output) on the
environment (typically CO2 emissions).

However, this monocausal perspective is not undisputable. First, many studies
analyzing the relationship between economic growth and the environment propose
a bidirectional causality running from economic growth to the environment but
also—e.g., through the provision of ecosystem services—from the environment to
economic growth (e.g., [11]). This can easily be shown for CO2 emissions, which
are frequently used to illustrate and measure regulative services of the terrestrial
ecosystem. Increasing carbon concentration, possibly exceeding the ecosystem’s
regulative capacity, is not only the result of industrial production but might as well
affect production factors and outputs and hamper economic growth (and affluence)
in the long-run.

Second, the estimates of CO2 emissions, probably the most common indicator for
measuring environmental impacts within the STIRPAT analysis, generally derive
from (fossil) energy consumption. This means they are not only a proxy for
environmental impacts but equally reflect the use of (cheap) fossil fuels, which,
until now, clearly dominates global energy use.

Empirical findings in this field cannot answer the question of causality unequiv-
ocally. Following the “conservation hypothesis,” mainstream economics literature
seems to focus on how a growing economy affects energy consumption rather than
the other way around. Significant results indicating a causality in this direction can
be found for developing and advanced countries (e.g., [12, 13]).

In comparison with this and deeply rooted in Georgescu-Roegen’s (e.g., [14])
work on the physical basis of economic production, biophysical economists argue
that any production process relies on material and energy inputs (flows), which are
transformed by use of human labor, physical capital, and Ricardian land (funds) into
production outputs. Thus, the availableness of (cheap) energy can be considered a
key prerequisite for economic growth and the constitution of the “age of affluence”
[15, p. 155]. This so-called growth hypothesis played a minor role in economics for
a long time, but gained in importance when some economists could convincingly
explain the economic recession in the aftermath of the major oil crises by the
declining availableness of cheap fossil fuels (e.g., [16]). Since then many empirical
studies in this field confirm the idea that energy use drives economic growth (e.g.,
[17, 18]).

3 Methodological Remarks

Overall, both ways of causality are plausible and there is good reason to assume a
bidirectional relationship over a longer-term perspective, as the economy is passing
through different stages of development. We therefore propose to check for the
direction of causality before setting up the final (STIRPAT) model. One way to do
so is the application of the Granger-causality test, which provides valuable insights
about the forecasting quality of one variable on another by the help of its past values.
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For example, a vector autoregression (VAR) model with two variables y and x allows
to test whether, after controlling for past values of y, past values of x help to forecast
y [19]. Formally, x Granger-causes y if

E (yt |It−1) �= E (yt |Jt−1) , (5)

where It − 1 contains past information on y and x, and Jt − 1 contains only infor-
mation on past y. Thus, Granger-causality does not mean causality per se and does
not imply a contemporaneous causality between variables but rather a variable’s
feasibility of predicting the other variable according to its past development.

In order to test for Granger-causality most empirical studies either apply time
series and cointegration analysis (e.g., [20, 21]) or use VAR models (e.g. [22, 23]).
For the paper at hand we follow the VAR approach and estimate a panel vector
autoregression (PVAR) model by the cross-sectional series of variables. The general
PVAR structure is given by:

yi,t = ci + Ayi,t−1 + ei,t , (6)

where yi,t = (Ii,t, Yi,t)´. Ii,t is CO2 emissions (or population or energy intensity) and
Yi,t is GDP per capita of country i at time t. ct is a country-specific intercept term,
A is the coefficient matrix, and ei,t is the residual term. In a next step Eq. (6) is
transformed by taking logs and applying first-differences (Eq. 7):

�ln yi,t = A · �ln yi,t−1 + �ln ei,t . (7)

Equation (7) is estimated by the generalized method of moments (GMM) while
applying lagged values as instruments. The PVARs include first-order lags accord-
ing to the Moment Model Selection Criterion (MMSC) and Akaike Information
Criterion (AIC).

In case the empirical analysis reveals a monocausal relationship running from
anthropogenic factors to the environment, the conventional STIRPAT model (Eq.
4) should be applied. If, however, findings indicate a reverse causality, we suggest
to add a new perspective to the STIRPAT approach. By analogy with the transfor-
mation from IPAT to STIRPAT [7], a stochastic model could then be based on Eq.
(2) and explain stochastic impacts on economic growth (affluence) by regression on
population, carbon emissions (as a proxy for energy use or ecosystem services), and
technology:

Ai,t = ct · P α
i,t · I δ

i,t · T
γ

i,t · ei,t , (8)

where Ai,t is the affluence of country i at time t, Pi,t is the population, Ii,t is
the environmental input (e.g., energy use, availability of energy or ecosystem
service measured by CO2 emissions), Ti,t is technology and ei,t is the residual error
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term.2 α, δ and γ are the economic outcome elasticities with respect to population,
environmental input or technology, respectively.

After taking logs and applying first-differences Eq. (8) yields:

� ln Ai,t = � ln Ct + α· � ln Pi,t + β· � ln Ii,t + γ · � ln Ti,t + � ln ei,t . (9)

where � ln Ai, t is the change of log GDP per capita in country i from time t−1 to t.
� ln Pi, t is the change of log population, � ln Ii, t is the change of CO2 emissions,
� ln Ti, t is the change of log technology, � ln ct is the change of the log constant,
and � ln ei, t is the change of the log error term.

4 Empirical Application

4.1 Granger-Causality, Non-stationarity, and Cointegration

For the empirical part, a balanced yearly cross-country panel dataset of 30 advanced
countries from 1982 to 2014 is used. The classification of advanced economies
is according to IMF [24]. CO2 emissions are measured in kilotons and the data
stem from Oak Ridge National Laboratory [25]. The variables GDP (in millions
US$2011), population (in millions) and technology [defined as the energy intensity
level of primary energy (in MJ per US$2011)],3 are taken from the Penn World
Tables version 9.0 [27] and the World Bank data base [28], respectively.

Following Eqs. (5)–(7), the Granger-causality between CO2 emissions (environ-
ment) and GDP per capita (affluence) is estimated and tested in the first step (results
for the underlying PVAR estimations are available upon request). Findings for the
logarithmized and first-differenced variables confirm the “growth hypothesis” (with
a causality running from CO2 emissions to GDP per capita). Equally population
Granger-causes GDP per capita but not vice versa. With regard to technology,
however, Granger-causality only runs from GDP per capita to energy intensity
(Table 1). In general, the findings of the Granger-causality test support the idea
to consider environmental impacts or inputs a main driving factor for affluence in
industrially mature economies rather than vice versa (Eq. 8). As the Hadri Lagrange
Multiplier (LM) test, the Im-Pesaran-Shin (IPS) test and the Levin-Lin-Chu (LLC)
test suggest that niveau parameters (order of differences: 0) are not stationary but
first-differences variables are (results are available upon request), we setup the
modified STIRPAT model according to (Eq. 9).

2 In contrast to Eq. (2), P and T are not expressed inversely. This does not affect the estimation
results.
3 Generally, the STIRPAT studies treat technology differently. This paper uses energy intensity in
order to stay close to existing STIRPAT literature [26]. Often, technology is approximated and
assumed to be partly captured of the error term.
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Table 1 Granger-causality Wald test (Chi2-statistic) based on PVARs (Eq. 7)

GDP per
capita →
CO2-emission

CO2-emission
→ GDP per
capita

GDP per
capita →
population

Population →
GDP per
capita

GDP per
capita →
Energy
intensity

Energy
intensity →
GDP per
capita

1.20 19.30*** 0.01 8.82*** 9.67*** 1.67

***p < 0.01.; H0: Variable does not Granger-cause the other variable

In addition, the variables are tested for panel cointegration. Cointegration can
be interpreted as evidence of a long-run equilibrium relationship between variables
(e.g., [29]). In case of cointegration, the evaluation of short-run dynamics between
variables by using a first-differences regression should be complemented by the
evaluation of long-run dynamics by using error correction models. In order to check
for cointegration, the Kao and the Pedroni tests are applied. Most test statistics reject
the null hypothesis assuming no cointegration (see appendix, Table A.1). Thus,
there is evidence for a long-run cointegrating relationship among economic impacts,
carbon emissions, population and structural variables (see next section).

Consequently, both short-run and long-run impacts on economic growth are
estimated. In order to evaluate the short-run dynamics, a standard random-effects
(RE) estimator is used (estimation of Eq. 9). In order to evaluate long-run dynamics,
the fully modified ordinary least squares (FMOLS) estimator is applied. In addition
to FMOLS, dynamics ordinary least squares (DOLS) and canonical cointegration
regression (CCR) estimators are applied. Results confirm the findings of FOMLS
qualitatively. Further, the pooled mean group estimator is used. This approach
allows for estimation of short- and long-run dimensions within one error correction
model. Results confirm the validation of RE OLS first-differenced results (results
are available upon request).

4.2 Reversed STIRPAT

Coefficients are estimated for three slightly different model variations (Table 2).
In the first basic setup affluence (GDP per capita) is explained by CO2 emissions,
population, and energy intensity [Table 2, column (1)]. Not surprisingly, and in
line with the results of the Granger-causality tests, CO2 emissions positively and
significantly affect GDP per capita. In fact, GDP per capita growth rises by 0.3%
when CO2 emissions growth rises by 1%. In contrast, impacts of population growth
have a negative impact on affluence. Further, an increase in energy intensity has a
negative and significant effect on GDP per capita. This means that an improvement
of energy intensity (i.e., a decrease of energy intensity measured in MJ per $)
positively relates to GDP per capita.

In the second model setup, the basic model is augmented by structural variables.
In accordance with the most STIRPAT models, we control for the share of urban
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Table 2 Determinants of GDP per capita (RE Model)

Ln GDP p.c. (1) (2) (3)

Ln CO2 0.30***(0.05) 0.28***(0.06) 0.26***(0.04)
Ln Population −0.56***(0.13) −0.65***(0.12) −0.73*(0.42)
Ln Energy Intensity −0.43***(0.08) −0.40***(0.08) −0.39***(0.07)
Ln Urban 0.05(0.44) −0.33(0.44)
Ln Globalization −0.18*(0.10) −0.11(0.09)
Ln Expectancy 0.55***(0.21) 0.60(0.77)
Ln Nuclear 0.04***(0.01)
Ln Renewable −0.01(0.01)
Constant 0.01*(0.01) 0.02**(0.01) 0.01(0.01)
R2 (within) 0.42 0.42 0.56
R2 (between) 0.58 0.63 0.19
R2 (overall) 0.43 0.43 0.54
Observations 685 685 336
Countries 30 30 15

Robust standard errors clustered at country level in parentheses; Year fixed-effects are included;
all variables first-differenced
***p < 0.01, **p < 0.05, *p < 0.1

population (% of total population; [28]) and thus for the effects of an increasing
urbanization on economic growth. It can be assumed to have a positive impact on
affluence due to agglomeration effects [30]. Furthermore, the impacts of globaliza-
tion (Globalization Index; [31]) on economic growth are investigated. At least in
the long-run, globalization is assumed to have positive effects on economic growth
due to various scale and spill-over effects [32]. Finally, we test for possible effects
of life expectancy (at birth in years; [28]) on economic growth. Life expectancy is
assumed to play a crucial role regarding the so-called quantity-quality trade-off. In
this context, educational attainment rises if life expectancy increases. This process
affects economic growth (e.g., [33]).

With regard to the size and sign of the coefficients, impacts of the key variables
(CO2 emissions, population, and technology) remain almost unchanged compared
to the basic model [Table 2, column (2)]. Further, results show that globalization has
a negative impact on affluence in the short-run. In contrast, life expectancy positively
and significantly drives GDP per capita. At the same time, we find no significant
impact of urbanization.

Assuming that CO2 emissions reflect the utilization of terrestrial regulation
services and fossil energy inputs, affluence might further be affected by the use
of other (less carbon intensive) energy sources. For this reason, the third model
setup additionally accounts for the share of renewable energy consumption (% of
total; [28]) and electricity production from nuclear sources (% of total; [28]). The
findings on short-run impacts suggest that the use of (comparatively cheap) nuclear
energy positively and significantly relates to affluence [Table 2, column (3)]. With
regard to renewable energy, no significant impacts can be observed in the short-run.
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Results are confirmed for most variables in the long-run. Interestingly, globaliza-
tion and renewable energy consumption turn significantly positive (see Appendix,
Table A.2). Generally, results are hardly affected qualitatively, if niveau parameters
and size effects are taken into consideration (short- versus long-run model).

5 Discussion of Results

The results indicate that GDP per capita growth rates are significantly driven by
the development of CO2 emissions, population, and energy intensity. Coefficients
remain rather robust with or without integrating structural and energy variables as
well as for the short- and long-run perspective.

In conclusion, the empirical results confirm the “growth hypothesis,” which
considers (cheap) energy inputs a key driver of affluence. The positive impact of
(comparatively cheap) nuclear energy further supports this hypothesis. In contrast,
increasing shares of renewable energy have, in the short-run, no particular effect on
welfare. However, results show that renewable energy consumption drives affluence
in the long-run. Reasons are, for example, a slow accompanying infrastructure or
market accessibility needed for renewable energy sources.

Similar to conventional STIRPAT results, the findings should not be interpreted
in a general way but with respect to the underlying country group [10]. This means,
the results of this paper particularly hold for advanced economies but not necessarily
for other countries. However, it is the governments of the advanced economies that
have a particular responsibility to decarbonize their economies and to implement
the intended energy turnaround toward renewable energy. This will not necessarily
boost the welfare, but as long as prices are reasonably low, switching to renewables
will not hamper the economic development either—renewables are more or less
growth neutral in the short-run.

Further, findings indicate that population growth has a negative impact on
economic growth. This is in line with unified growth theory, according to which
positive impacts of a shrinking population on the economy are still visible for
advanced industries, even long time after the demographic transition (i.e., process
from high to low mortality and fertility rates) has taken place [34].

The findings are less conclusive on the role of technology. On the one hand, there
is clear evidence that technical progress (in the form of decreasing energy intensity)
relates significantly and positively to GDP per capita. On the other hand, causality
analysis indicates that GDP per capita Granger-causes energy intensity rather than
vice versa.

Increases in the share of urban population cannot be identified as a significant
factor. This does not mean that the degree of urbanization is irrelevant for affluence.
Rather advanced countries show generally very high levels of urbanization for the
whole period of observation, so further increases might be less important in this case
or even hamper economic growth [35].
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In contrast, there is evidence that globalization affects economic growth neg-
atively in the short-run and positively in the long-run. The various channels
of globalization take time to gain momentum regarding clear positive effects
on economic growth. For example, an increasing knowledge acquiration due to
globalization cannot immediately translate into research improvements and thus
economic growth [36].

Finally, life expectancy significantly and positively affects affluence in the
short- and long-run. Existing literature points out that life expectancy increases
economic growth due to effects on the age structure or improvements on educational
attainment and labor productivity [33].

6 Concluding Remarks

The STIRPAT approach is commonly used to estimate anthropogenic impacts
(growing affluence, increasing population, and technological change) on the envi-
ronment. Today, much of the debate in a continuously developing STIRPAT
literature is on the choice of the control variables and the relative contribution
of an increasing population, economic growth, and technological change to the
production of greenhouse gases and other environmental impacts. We largely stay
clear of this discussion. Instead, our main interest lies in the causal relationship of
the key variables.

The presented paper proposes an alternative extension of the IPAT identity
for analysis. Similar to the STIRPAT studies a directional relationship between
variables is presumed. However, in contrast to STIRPAT literature and based on a
Granger-causality test it seems plausible, at least for the sample at hand, to activate
the IPAT identity toward affluence and to estimate stochastic impacts on economic
growth (affluence) by regression on population, carbon emissions (as a proxy for
energy use or alternatively ecosystem services), and technology. The significant
and robust regression results (short- and long-run estimations) with respect to the
main variables (CO2 emissions, population, and energy intensity) in all model
variants demonstrate the reasonableness of applying this setup in addition and
complementary to the traditional STIRPAT model.

In addition, the findings confirm the ongoing high dependence of advanced
economies on the availableness and consumption of cheap energy. Breaking the
fossil path dependency and decarbonizing the economy, which in light of climate
change is without alternatives, could in case of rising energy prices be accompanied
with comparatively small growth rates of affluence (if measured as GDP per
capita) in advanced economies in the near future. Policies should enhance the use
of renewable energy and further support the substitution of non-renewable with
renewable energy sources. So, a framework could be created that is able to foster
economic growth during the energy transition.

Without doubt, IPAT and particularly STIRPAT modeling has evolved to a pow-
erful tool for illustrating and estimating anthropogenic impacts on the environment.
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However, this approach could be extended and also used to identify the relevance of
environmental inputs on affluence. Following this line of thought further research
might analyze other country groups (e.g., emerging economies) or earlier stages
of development of industrialized countries. Furthermore it might be interesting to
use other, arguably more inclusive measures of environmental impacts, such as
ecological footprints or ecosystem services, rather than fossil energy inputs.

Appendix

Table A.1 Results of the Kao- and Pedroni Cointegration Tests

Kao-test Pedroni-test

H0: No cointegration H0: No cointegration
GDP per capita, CO2-Emission, Population, Energy Intensity, Urban, Globalization,
Life Expectancy (all variables logged)

Modified Dickey-Fuller t 1.27 (0.10) Modified Phillips-Perron t 4.78*** (0.00)
Dickey-Fuller t 1.30* (0.09) Phillips-Perron t −2.25** (0.01)
Augmented Dickey-Fuller t 1.09 (0.14) Augmented Dickey-Fuller t −2.87*** (0.00)

p-value in parentheses; Kao-test assumes a constant cointegration vector; Pedroni-test assumes
panel-specific AR parameters; Cross-sectional averages are subtracted. More results regarding
cointegration between variables are available upon request
***p<0.01, **p<0.05, *p<0.1

Table A.2 Determinants of GDP per Capita for the Long-run (FMOLS)

Ln GDP p.c. (1) (2) (3)

Ln CO2 0.37***(0.07) 0.44***(0.06) 0.55***(0.06)
Ln Population −0.34***(0.07) −0.42***(0.06) −0.51***(0.07)
Ln Energy Intensity −0.13(0.10) −0.20**(0.09) −0.42***(0.07)
Ln Urban −0.09(0.18) −0.17(0.21)
Ln Globalization 1.68***(0.23) 1.17***(0.25)
Ln Expectancy 6.18***(1.58) 3.75***(1.13)
Ln Nuclear 0.04**(0.02)
Ln Renewable 0.08***(0.02)
Constant 6.83***(0.58) −27.14***(7.08) −14.99**(6.09)
R2 0.53 0.30 0.06
Observations 551 551 263
Countries 30 30 15

Standard errors in parentheses; Year fixed-effects are included
***p<0.01, **p<0.05, *p<0.1



332 J. Lohwasser et al.

References

1. Costantini, V., Martini, C.: The causality between energy consumption and economic growth:
a multi-sectoral analysis using non-stationary cointegrated panel data. Energy Econ. 32(3),
591–603 (2010)

2. Ozturk, I.: A literature survey on energy–growth nexus. Energy Policy. 38(1), 340–349 (2010)
3. Ehrlich, P.R., Holdren, J.P.: Impact of population growth. Science. 171(3977), 1212–1217

(1971)
4. York, R., Rosa, E.A., Dietz, T.: STIRPAT, IPAT and ImPACT: analytic tools for unpacking the

driving forces of environmental impacts. Ecol. Econ. 46(3), 351–365 (2003)
5. Raskin, P.: Methods for estimating the population contribution to environmental change. Ecol.

Econ. 15(3), 225–233 (1996)
6. Ehrlich, P., Holdren, J.: Impact of population growth. Popul. Resour. Environ. 3, 365–377

(1972)
7. Dietz, T., Rosa, E.A.: Effects of population and affluence on CO2 emissions. Proc. Natl. Acad.

Sci. 94(1), 175–179 (1997)
8. Lohwasser, J., Schaffer, A., Brieden, A.: The role of demographic and economic drivers on the

environment in traditional and standardized STIRPAT analysis. Ecol. Econ. 178 (2020)
9. Liddle, B.: Impact of population, age structure, and urbanization on carbon emissions/energy

consumption: evidence from macro-level, cross-country analyses. Popul. Environ. 35(3), 286–
304 (2014)

10. Singh, M.K., Mukherjee, D.: Drivers of greenhouse gas emissions in the United States:
revisiting STIRPAT model. Environ. Dev. Sustain. 21(6), 3015–3031 (2019)

11. Guo, X.R., Cheng, S.Y., Chen, D.S., Zhou, Y., Wang, H.Y.: Estimation of economic costs of
particulate air pollution from road transport in China. Atmos. Environ. 44(28), 3369–3377
(2010)

12. Akinloo, A.E.: Energy consumption and economic growth: evidence from 11 SubSahara
African countries. Energy Econ. 30(5), 2391–2400 (2008)

13. Bowden, N., Payne, J.E.: The causal relationship between US energy consumption and real
output: a disaggregated analysis. J. Policy Model. 31(2), 180–188 (2009)

14. Georgescu-Roegen, N.: Feasible recipes versus viable technologies. Atl. Econ. J. 12, 21–31
(1984)

15. Hall, C.A., Klitgaard, K.: Energy and the wealth of nations: an introduction to biophysical
economics. Springer (2018)

16. Cleveland, C.J., Costanza, R., Hall, C.A., Kaufmann, R.: Energy and the US economy: a
biophysical perspective. Science. 225(4665), 890–897 (1984)

17. Apergis, N., Payne, J.E.: Renewable energy consumption and economic growth: evidence from
a panel of OECD countries. Energy Policy. 38(1), 650–655 (2010)

18. Lee, C.C., Chang, C.P., Chen, P.F.: Energy-income causality in OECD countries revisited: the
key role of capital stock. Energy Econ. 30(5), 2359–2373 (2008)

19. Wooldridge, J.: Introductory econometrics: a modern approach (with economic applications
online, econometrics data sets with solutions manual web site printed access card). MIT press
(2015)

20. Lee, C.C., Chang, C.P.: Energy Consumption and GDP revisited: a panel analysis of developed
and developing. Energy Econ. 29, 1206–1223 (2007)

21. Stern, D.I.: A multivariate cointegration analysis of the role of energy in the US macroeconomy.
Energy Econ. 22(2), 267–283 (2000)

22. Stern, D.I.: Energy and economic growth in the USA: a multivariate approach. Energy Econ.
15(2), 137–150 (1993)

23. Hamilton, J.D.: Oil and the macroeconomy since World War II. J. Polit. Econ. 91(2), 228–248
(1983)

24. IMF: World Economic Outlook, October 2015. International Monetary Fund (2016)



Reversed STIRPAT Modeling: The Role of CO2 Emissions, Population,. . . 333

25. Boden, T., Marland, G., Andres, R.: Global, Regional, and National Fossil-Fuel CO2 Emissions
in Trends. Carbon Dioxide Information Analysis Centre (CDIAC), UK (2015)

26. Vélez-Henao, J.A., Vivanco, D.F., Hernández-Riveros, J.A.: Technological change and the
rebound effect in the STIRPAT model: a critical view. Energy Policy. 129, 1372–1381 (2019)

27. Feenstra, R.C., Inklaar, R., Timmer, M.P.: The next generation of the penn world table. Am.
Econ. Rev. 105(10), 3150–3182 (2015)

28. The World Bank: Population ages 15–64 (% of total), urban population (% of total), energy
intensity level of primary energy (in MJ per US$ 2011), renewable energy consumption (% of
total) and electricity production from nuclear sources (% of total). Data retrieved from World
Bank Open Data, http://data.worldbank.org (2018)

29. Liddle, B.: Consumption-driven environmental impact and age structure change in OECD
countries: a cointegration-STIRPAT analysis. Demogr. Res. 24, 749–770 (2011)

30. Turok, I., McGranahan, G.: Urbanization and economic growth: the arguments and evidence
for Africa and Asia. Environ. Urban. 25(2), 465–482 (2013)

31. Gygli, S., Haelg, F., Potrafke, N., Sturm, J.E.: The KOF globalisation index–revisited. Rev. Int.
Organ. 14(3), 543–574 (2019)

32. Chang, C.P., Lee, C.C.: Globalization and economic growth: a political economy analysis for
OECD countries. Glob. Econ. Rev. 39(2), 151–173 (2010)

33. Cervellati, M., Sunde, U.: Life expectancy and economic growth: the role of the demographic
transition. J. Econ. Growth. 16(2), 99–133 (2011)

34. Reher, D.S.: The demographic transition revisited as a global process. Popul. Space Place.
10(1), 19–41 (2004)

35. Nguyen, H.M.: The relationship between urbanization and economic growth: an empirical
study on ASEAN countries. Int. J. Soc. Econ. (2018)

36. Grossman, G.M., Helpman, E.: Globalization and growth. Am. Econ. Rev. 105(5), 100–104
(2015)


 6179
9656 a 6179 9656 a
 

	Preface
	Contents
	Part I Theoretical Aspects of Time Series
	An Improved Forecasting and Detection of Structural Breaks in Time Series Using Fuzzy Techniques
	1 Introduction
	2 Processing Time Series Using Fuzzy Modeling Methods
	2.1 Time Series Decomposition
	2.2 Fuzzy Transform (F-Transform)
	2.3 Fuzzy Natural Logic

	3 Forecasting Time Series
	4 Detection of Structural Breaks in Time Series
	5 Demonstration of Nonstatistical Forecast and Detection of Structural Breaks on Real Data
	5.1 ARIMA Model
	5.2 Forecasting Using LFL Forecaster
	5.3 Demonstration of Found Structural Breaks

	6 Conclusion
	References

	Anomaly Detection Algorithm Using a Hybrid Modelling Approach for Energy Consumption Time Series
	1 Introduction
	2 Our Definitions
	3 Our Hybrid Model
	4 Results
	5 Summary
	References

	Unit Root Test Combination via Random Forests
	1 Introduction
	2 Unit Root Tests
	2.1 Non-seasonal Unit Roots
	2.2 Seasonal Unit Roots

	3 Random Forests
	3.1 Classical Random Forests
	3.2 Conditional Random Forests

	4 Test Evaluation
	5 Results
	6 Summary
	References

	Probabilistic Forecasting of Seasonal Time Series
	1 Introduction
	2 Probabilistic Seasonal Time Series Forecasting
	2.1 Seasonal Time Series
	2.2 Seasonal Probabilistic Forecasting

	3 The P-F2C Forecaster
	3.1 Co-clustering of Time Series: A Probabilistic Model
	3.2 Predict the Next Type of Seasons
	3.3 Select the Best Parameters (Portfolio)

	4 Illustration on a Synthetic Dataset
	4.1 The Data Generated
	4.2 Grid Probabilistic Forecasts

	5 Experiments
	5.1 Experimental Protocol
	5.2 Parameters' Sensitivity
	5.3 P-F2C and PP-F2C vs Opponents

	6 Conclusion
	Annexes
	References

	Nonstatistical Methods for Analysis, Forecasting, and Mining Time Series
	1 Introduction
	2 Fuzzy Transform
	3 Fuzzy Natural Logic
	4 Analysis of Time Series
	5 Forecasting Time Series
	6 Mining Information from Time Series
	7 Conclusion
	References

	PMF Forecasting for Count Processes: A Comprehensive Performance Analysis
	1 Introduction
	2 Coherent and Approximate PMF Forecasting
	3 Performance Evaluation: A Critical Literature Review
	4 Results from a Comprehensive Simulation Study
	4.1 General Results
	4.2 Performance of Coherent Forecasting
	4.3 Performance of Approximate Forecasting

	5 Application: PMF Forecasting of Transaction Counts
	6 Conclusions
	References

	A Novel First-Order Autoregressive Moving Average Model to Analyze Discrete-Time Series Irregularly Observed
	1 Introduction
	2 Model Formulation
	3 An Irregular Observed First-Order Autoregressive Moving Average Model
	3.1 Properties
	3.2 State-Space Representation
	3.3 Prediction

	4 Maximum Likelihood Estimation
	5 Monte Carlo Experiments
	5.1 Performance Measures
	5.2 Simulation Results

	6 Applications
	6.1 Lung Function of an Asthma Patient
	6.2 Light Curve of an Astronomical Object

	7 Conclusions
	References

	Part II Econometric and Forecasting
	Using Natural Language Processing to Measure COVID-19-Induced Economic Policy Uncertainty for Canada and the USA
	1 Introduction
	2 The Development of the Baker-Bloom-Davis EPU (BBD-EPU)
	3 Constructing the EPU-NLP Index: Data, Methodology, and Algorithms
	3.1 The RAKE (Rapid Automatic Keyword Extraction) Algorithm
	3.2 The BERT, RoBERTa, and SBERT Algorithms
	3.3 GrapeNLP Grammar
	3.4 Calculating the EPU-NLP

	4 Testing the Model
	5 Conclusion
	Appendix
	References

	Asymptotic Expansions for Market Risk Assessment: Evidence in Energy and Commodity Indices
	1 Introduction
	2 Methodology
	2.1 Gram-Charlier Expansion
	2.2 Student's t Expansion
	2.3 Model and Maximum Likelihood Estimation
	2.4 Risk Measures
	2.5 Backtesting

	3 Empirical Results
	3.1 Data
	3.2 In-Sample Analysis
	3.3 Backtesting

	4 Conclusions
	References

	Predicting Housing Prices for Spanish Regions
	1 Introduction and Motivation
	2 Previous Experiences and Evidence: Literature Review of Housing Price Prediction
	3 Theoretical Basis
	4 Data
	5 Methodology
	5.1 Empirical Strategy to Estimate the Model
	5.2 Forecast Methodology

	6 Results Empirical Evidence
	6.1 Discussion

	7 Conclusions
	References

	Optimal Combination Forecast for Bitcoin Dollars Time Series
	1 Introduction
	2 Method
	2.1 Exponential Smoothing Model
	2.2 Optimization
	2.3 ARIMA Model
	2.4 Artificial Neural Network
	2.5 Forecast's Combination
	2.6 Measuring Forecast Accuracy

	3 Results and Discussion
	3.1 Exponential Smoothing Model Result
	3.2 ARIMA Model Result
	3.3 Artificial Neural Networks
	3.4 Combination Model Result

	4 Conclusion
	References

	The Impact of the Hungarian Retail Debt Program
	1 Introduction
	2 The Hungarian Retail Debt Program
	2.1 Main Objectives
	2.2 The Retail Debt Portfolio

	3 The Historical Cost of Retail Debt
	3.1 Methodology
	3.2 Results

	4 Forecasting the Important Macroeconomic Variables
	4.1 Methodology
	4.2 Results

	5 The Future of the Retail Debt Program
	5.1 Estimation of the Factors Driving the Outstanding Amount of Retail Debt
	5.2 Simulation and Results

	6 Conclusion
	References

	Predicting the Exchange Rate Path: The Importance of Using Up-to-Date Observations in the Forecasts
	1 Introduction
	2 Theory
	3 Results
	4 Conclusions
	References

	Part III Time Series Prediction Applications
	Development of Algorithm for Forecasting System Software
	The List of Acronyms
	1 Introduction
	2 Data and Materials
	3 The Review of Ensembling Time Series and Neural Network System (ET-System) for Forecasting Covid-19 Cases and Waves for Infection Cases
	3.1 The Algorithm Schema of the Ensembling Time Series and Neural Network System (ET-System)
	3.2 The Scheme of the Algorithm for Dynamic Prioritizer
	3.3 The Scheme for Bagging and Bootstrapping the NNAR Model for Improving Forecasting of the Waves of Infection Cases
	3.4 Design of the Software for Forecasting

	4 Results
	5 Conclusions and Further Research
	Appendix
	References

	Forecasting High-Frequency Electricity Demand in Uruguay
	1 Introduction
	2 Methodological Approach
	2.1 General Model and the Treatment of Special Days
	2.2 A Non-linear Approach to Model the Effect of Climate Variables

	3 The Data
	4 Results
	4.1 Modelization of Special Days
	4.2 Nonlinear Modelization of the Effect of Climate Variables
	4.3 Predictive Evaluation
	4.4 Evaluation of the Prediction System During the Health Emergency

	5 Main Conclusions
	References

	Day-Ahead Electricity Load Prediction Based on Calendar Features and Temporal Convolutional Networks
	Acronyms
	1 Introduction
	2 Data
	2.1 Electricity Load
	2.2 Electricity Load Prediction
	2.3 Calendar Data

	3 Data Analysis
	4 Model Architecture
	4.1 Feedforward Network Based on Calendar Features
	4.2 Temporal Convolutional Network
	4.3 Hybrid Model

	5 Training and Evaluation Set
	6 Results
	7 Conclusion
	References

	Network Security Situation Awareness Forecasting Based on Neural Networks
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset
	3.2 Method Description
	3.3 Neural Networks
	3.4 Statistical Methods

	4 Experiment Evaluation
	5 Results and Discussion
	6 Conclusion and Future Works
	References

	Part IV Advanced Applications in Time Series Analysis
	Modeling Covid-19 Contagion Dynamics: Time-Series Analysis Across Different Countries and Subperiods
	1 Introduction
	2 The Markov-Switching Time-Series Models
	3 Empirical Results for Early Dynamics
	3.1 Italy (Sample: February 22–May 31, 2020)
	3.2 Germany (Sample: January 28–May 31, 2020)
	3.3 The United Kingdom (Sample: February 24–May 31, 2020)
	3.4 Russia (March 3–May 31, 2020)
	3.5 Results Summary

	4 Empirical Results for Italy: The Second and the Third Peak
	4.1 The Second Peak (Sample: October 1, 2020–January 31, 2021)
	4.2 The Third Peak (Sample: February 1–May 15, 2021)
	4.3 Comparison of Two Subsamples

	5 Concluding Remarks
	References

	Diffusion of Renewable Energy for Electricity: An Analysis for Leading Countries
	1 Introduction
	2 Motivation: Energy Trends
	3 Background
	4 Model
	4.1 Estimation and Model Selection

	5 Application
	6 Discussion
	References

	The State and Perspectives of Employment in the Water Transport System of the Republic of Croatia
	1 Introduction
	2 Theoretical Framework
	3 Descriptive Analysis of Employment in Water Transport in the EU
	3.1 Descriptive Analysis of Employment in Sea Transport in the EU
	3.2 Descriptive Analysis of Employment in the EU Inland Waterway Transport

	4 Data and Research Methodology
	5 Research Result and Discussion
	6 Conclusion
	References

	Reversed STIRPAT Modeling: The Role of CO2 Emissions, Population, and Technology for a Growing Affluence
	1 Introduction
	2 Perspectives of Causality in the STIRPAT Model Approach
	3 Methodological Remarks
	4 Empirical Application
	4.1 Granger-Causality, Non-stationarity, and Cointegration
	4.2 Reversed STIRPAT

	5 Discussion of Results
	6 Concluding Remarks
	Appendix
	References




