
Automated Threat Modeling Approaches:
Comparison of Open Source Tools

Daniele Granata(B) , Massimiliano Rak , and Giovanni Salzillo

Department of Engineering, University of Campania Luigi Vanvitelli, via Roma 29,
81031 Aversa, CE, Italy

{daniele.granata,massimiliano.rak,giovanni.salzillo}@unicampania.it

Abstract. The software systems of modern architectures are character-
ized by high heterogeneity and by the use of a model that delegates the
control of individual components to third parties, making these systems
more vulnerable to cyber-attacks. As a consequence, best practices, such
as the Security-by-Design development methodologies, suggest taking
into account security all over the systems life cycle, starting from the very
early stages (e.g. from initial requirement analysis). Thus, one of the most
relevant practices is Threat Modeling (TM), i.e. the activity devoted to
identifying the possible threats that may affect the system. According to
most security-related best practices, TM should be done as early as pos-
sible, in order to help in the requirement elicitation. Threat Modeling is a
complex activity, that requires security experts with consolidated skills,
able to predict and anticipate the possible issues: as a consequence, it is
a costly activity, both in terms of time and money. Due to the continuous
need of enforcing security, the effect of new regulation and the wide diffu-
sion of ICT systems, there is a recent growth of tools and techniques that
support and aims at automatizing Threat modelling activities. This work
illustrates the approach adopted by our research team and compares the
results of our technique with two other existing tools, in order to offer
a brief overview of the state of the art of threat modelling automation
techniques and of state of art limits and open research topics. It is worth
noting that our comparison does not aims at being complete and focuses
only on open tools (or on their free/community version), but offers a
basis for understanding the progress of security automation processes in
terms of threat modelling.

Keywords: Security · Threat modelling · Security assessment

1 Introduction

Nowadays, Software systems are more and more complex and heterogeneous.
Due to the widespread use of such IT solutions, the process of ensuring their
security has become a strong requirement, as evidenced by the new regulations
(e.g. GDPR, Cybersecurity Act) that impose hard privacy and security require-
ments. However, it is not easy to take into account security in application devel-
opment and the problem grows up in emerging paradigms, like the Cloud, that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 250–265, 2022.
https://doi.org/10.1007/978-3-031-14179-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_17&domain=pdf
http://orcid.org/0000-0002-6776-9485
http://orcid.org/0000-0001-6708-4032
http://orcid.org/0000-0001-6491-9655
https://doi.org/10.1007/978-3-031-14179-9_17


Automated Threat Modeling Approaches 251

delegate resources and services to third parties. Cloud-native applications, as
an example, often rely on micro-services architectures and/or on the integra-
tion of Commercial-Off-The-Shelf (COTS) components, an approach that has
great advantages in terms of costs and time-to-market, but heavily affects the
security. In order to address the security, best practices suggest the adoption of
threat modeling and risk analysis methodologies that allow the security admin-
istrator to obtain (in a preliminary way) information on the security problems
from the early stages of the software life cycle. The adoption of these proce-
dures increases awareness of cybersecurity issues in all the involved personnel
and allows the security administrator to evaluate and accordingly manage the
risk, applying mitigation strategies. However, at the state of the art, there is a
lack of standards and consolidated practices devoted to helping security admin-
istrators systematically apply security checks and mitigate threats [22]. As a
consequence, there are many tools that offer support to threat modeling, but
each relies on (i) different modeling approaches and (ii) describing threats and
threat models in different ways. This paper aims at offering a simple descrip-
tion of the main open source tools, describing the threat modeling approaches
on which the tools rely and the results they are able to produce. In particular,
this paper focuses on three different tools, that adopt different modeling tech-
niques: Threat Modeling tool by Microsoft [1], Threat Dragon by OWASP [11]
and Sla-Generator [12] which implements the methodology proposed in MUSA
H2020 European research project. The comparison was carried out on a simple,
but significant case study, involving a well-known Content Management System
(CMS) platform: Wordpress. The remainder of the paper is organized as follows:
Section 2 briefly summarizes the threat modeling techniques proposed in litera-
ture, while Sect. 3 describes the three tools that we addressed in our analysis.
Section 4 compares the tools, using the Wordpress application as a basis for the
comparison. Finally, Sect. 5 summarizes our conclusions and future work.

2 Threat Modeling Practices

Threat modelling processes give an organized representation of all the informa-
tion that influences the security of an application and it can be related to a
wide run of things, as stated by OWASP [9], threat modeling works to iden-
tify, communicate, and understand threats and mitigations within the context of
protecting something of value. As highlighted by the OWASP threat modelling
manifesto [17], threat modeling aims at achieving thoroughness and reproducibil-
ity by applying security and privacy knowledge in a structured manner. It is also
supported by some tools that allow you to enable repeatability and provide mea-
surability. The use of threat modelling provides a structured representation of all
the information that affects the security of an application and it can be applied
to a wide range of things, including software, applications, systems, networks,
distributed systems, Internet of Things (IoT) devices, and business processes.

At the state of the art, there are various methodologies that aim at mod-
elling the threats applicable to a system, one of the related problems is that



252 D. Granata et al.

these practices are (often) carried out by a human and require a lot of execu-
tion time [21]. In order to reduce the time of these practices, there are, at the
state of the art, some automated (or semi-automated) approaches: Schaad et al.
[19] proposed a STRIDE-based threat modelling technique for software archi-
tecture diagrams. They introduced their own conceptual data model, consisting
of assets, asset shapes and components. These concepts can be used to describe
software systems and perform security evaluations. Additionally, they imple-
mented a supporting tool, TAM, that performs an automated threat analysis,
based on the described assets. Casola et al. [6–8] proposed a Security-by-Design
methodology to evaluate the security of IoT systems by the means of an almost
automated process for threat modeling and risk assessment. Their approach also
helps at identifying the security controls to implement in order to mitigate the
existing security risks. We invite the interested reader to deepen the existing
automated [10,14,15] and semi-automated [4,20] threat modeling approaches.
As a summary, the state of the art highlights, as can be seen especially from
the literature review in [22], that there is a wide need for automating the full
process, leaving to humans only the role of final control result and evaluation.

3 Threat Modeling Tools

As outlined in the previous section, even if threat modeling is a well accepted
practice, it commonly relies on security expert skills and experience. As a conse-
quence, there are no standards that aim at listing possible threats. As an exam-
ple, the standard ISO 15408, Common Criteria, imposes a structured section
for security threats and security objectives (the countermeasures to address the
threats), but, while security requirements are catalogued in long documents,
threats should be defined case-by-case in the standard documents (security pro-
files and/or security target) by the expert for the specific product or class of prod-
ucts. However, Security experts are costly and the human-driven threat modeling
is costly both in terms of money and time. Accordingly, there are now a few tools
that aim at offering support to experts in threat modeling, simplifying the work,
requiring less experienced experts (most of the threats are catalogued) and offer-
ing solution that produce the models in limited time. According to our studies,
three of this tools are the most interesting ones: Microsoft Threat Modeling Tool,
which is probably the most largely adopted one, the OWASP Threat Dragon,
supported by the OWASP consortium, and the SLAgenerator tool, developed
in the H2020 MUSA European project. In the following we briefly outline the
threat modeling approaches they support.

3.1 Microsoft Threat Modeling Tool

Microsoft Threat Modeling Tool we tested was released in September 2018 [1].
It aims at reducing threat modelling times, generating the threats to which a
system is subjected automatically, relying on a model of the system. The system
under analysis (SuA) is modeled by the user through a graph-based model. The



Automated Threat Modeling Approaches 253

user has the possibility to choose various stencils to be included in the applica-
tion. Each node of the graph represents an application service, while each edge
indicates a Generic Data Flow (i.e. Request or Response). The Microsoft Model-
ing technique requires that each node is characterized by two labels: Component
type and Component Value. The first one describes the type of the compo-
nent while the second provides further functional information. Most of the pairs
(componenttype, componentvalue) are shown in Table 1. For instance, a node
can represent a generic database, so it can be modelled as a Generic Data Store
type and Database value. The table does not represent all possible values for
brevity’s sake.

Table 1. Example values related to each Component Type.

Component type Component value

Generic Data Store Azure Cosmos DB

Azure Key Vault

Azure Redis Cache

Database

Cache

Generic External Interactor Browser

Dynamics CRM Mobile Client

IoT Device

Generic Process Azure AD

Azure ML

Host

Web Application

IoT Cloud Gatewat

Once the application is modeled, the tool generates a threat report automat-
ically. Threats are associated with each interaction between components. Each
threat is selected from a proprietary catalog taking into account the type of
components involved in the interaction and the type of interaction. For exam-
ple, requests made by a web application toward a storage service can generate
the SQL Injection threat. In addition to providing threats associated with sys-
tem assets, the tool suggests possible mitigations selected from a proprietary
Microsoft database.

3.2 OWASP Threat Dragon

Threat Dragon is a free, open-source, cross platform threat modelling appli-
cation based on diagram models and rule engine to auto-generate threats and
mitigations [5]. It supports STRIDE [3] classification and CIA. The tool was



254 D. Granata et al.

presented during the OWASP Open Security Summit in June 2020 by OWASP
Lab Project and it is available as open-source code in [11]. The tool requires
the application to be modelled through a graph-based model in which the nodes
represent the components, while the edges define the transfer of data between
them. Each node can be: (i) A generic running process, (ii) An actor or (iii) A
component that stores the data. Each element (node or edge) is characterized
by a set of attributes that can be used to identify its security problems. All the
parameters related to each element of the graph are described in the Table 2.

Table 2. Parameters related to each Component Type.

Component type Parameters

Actor Provide authentication

Process Handle card payment

Is a web application

Handles goods and services

Store Is a log

Stores credentials

Stores inventory

Is encrypted

Is signed

Data Flow Protocol

Is encrypted

Is over a public network

The pair (componentType, associatedParameters) is used to obtain the
threats associated with the component/flow (i.e. asset) of the diagram. For exam-
ple, a store that has is encrypted as a parameter may be subject to the Vulnerable
encryption algorithm threat that could lead a malicious user to obtain data out
of the application. The threats are obtained from the related catalog [16] in a
fully automatic way. The user can also define some custom threats and associate
them with each element of the application. For each pair (asset, threat), the tool
asks the user for the Threat status (Open or Mitigated) field and a priority level
(Low, Medium, high) and then suggest a list of possible Mitigations.

3.3 SLAGenerator

The SLAGenerator threat modelling technique [12,18] relies on MACM (Multi-
purpose Application Composition Model) an expressive model that describes
WHAT to assess and test. The MACM is a graph-based modelling technique
in which each graph node represents a component of the system, and each edge
characterizes the existing connection between two different components. MACM



Automated Threat Modeling Approaches 255

offers a simple way to synthesize an application architecture, focusing on its
main components and relationships, enabling the security evaluation automation
of the assessed systems. Nodes have a primary label, which identifies the asset
class and may have a secondary label, which further specifies the primary class.
Moreover, each node has a set of properties that better describe more specific
aspects. A mandatory property is the Asset Type, which specifies the functional
behaviour of the asset represented by the node. The allowed Asset Types for a
node depends on the labels. Labels and supported Asset Types are listed and
described in Table 3.

Table 3. MACM node labels and assets.

Primary label Secondary label Asset type(s) Description

CSC CSC.Human A customer that uses

services

CSP CSP A service Provider like

Amazon, Google, or a

telecom provider

Service IaaS VM, Container Virtual Machine or

Containers

Service PaaS VM, Container Virtual Machine or

Containers

Service SaaS Service.Web, Service.DB,

Service.IOTGW,

Service.MQTTBroker

Software (typically COTS)

offered as a service

Network WAN Internet A wide area Network,

typically the Internet

Network LAN Network.WiFi,

Network.Wired

Network, the assets differs

depending on the involved

technologies

Network PAN Network.BLE,

Network.ZigBee

Personal Area Network, the

assets differs depending on

the involved technologies

HW HW.server, HW.PC,

HW.UE

HW.micro, HW.IOTDevice

A physical hosting

hardware

The possible relationships between the nodes are uses, hosts, provides, con-
nects, described extensively in some works, cited above. In order to manage the
MACM model the tool represent them in a graph database, namely Neo4j. The
MACM is preliminary produced by the user in Neo4j and then requested by
the tool (available at link1) for the threat modeling phase. The tool commu-
nicates with the graph database, obtaining the correctly modeled applications.
The technique selects all the threats applicable to the SuA by evaluating the
asset-type field of each component (i.e. MACM node). The technique relies on
a Threat Catalogue, which organizes the threats according to their asset type.
The catalogue describes the threats with 8 parameters, as shown in Table 4.
1 https://github.com/DanieleGranata94/SlaGenerator.

https://github.com/DanieleGranata94/SlaGenerator


256 D. Granata et al.

Table 4. Threat catalogue template

Threat catalogue field Description

Threat A synthetic high-level label of the behaviour

Asset type The asset typology to which the threat is subject

Relationship Relation Type

Protocol Protocol used in the communication

Role in relationship Role in communication

Behaviour Detailed description of the threat

STRIDE Stride classification [3]

Compromised Which assets the malicious behaviour compromises

A threat can be linked to an asset (asset type) or a communication protocol.
For this reason, some fields may be left blank. For example, if a threat affects a
specific asset typology, i.e. the Read DB Configuration threat for a service.DB
asset type, both the relationship and role fields are left unspecified.

The Compromised field indicates the asset that is compromised by the mali-
cious behaviour and it can assume the following values:

– self, if the threat compromises only the node specified by the asset type;
– source(relation), when it compromises the node pointing from the arch;
– target(relation), when it compromises the node pointed by the arch;

It is worth noting that when the Compromised field is source or target, the
argument relation can be uses, connects or hosts. The threats are then obtained
by the tool by considering both the asset-type field of the component and the
related communication protocols used by the component. The tool also suggests,
for each selected threat, one (or more) NIST SP-800-53 [13] controls.

4 Tool Comparison

In this chapter we want to compare the different threat modeling tools and
the approaches they adopt. In order to show the differences, we will use a very
common application, typically executed on a cloud infrastructure: an e-commerce
site developed on top of WordPress. Considering this application, we modeled
the system with the three different tools and documented the threat modelling
results each tool offered.

4.1 The WordPress Case Study

WordPress is an open source content management system, which allows the
creation and distribution of an Internet site made up of textual or multimedia
contents, which can be managed and updated dynamically. The web application
WP is hosted on a cloud virtual machine on top of an Apache web server and



Automated Threat Modeling Approaches 257

interfaced with a mySQL database. In order to enable scalability, the WordPress
component can be deployed multiple times, reusing always the same Database
(that can scale only vertically, i.e. adding memory and/or CPU to the hosting
VM). A Load Balancer distributes the Client requests to the connected WP
instances. The developer simply customizes the WP instances, through custom
plugins and customizing the application behaviour.

Even if the development of such systems is simple and commonly relies on
very limited skills from the developer/system administrators, the application
manages money and personal data, so it has strict security requirements. It must
be considered that an incredible amount of WordPress instances on the web are
vulnerable (see [2]), due to incorrect security planning and management.

4.2 Microsoft Tool Analysis

The Microsoft tool allowed us to describe the Wordpress application in complete
way, as it supports a large number of stencils. As described above, the Microsoft
tool considers the interactions between components (arcs of the graph) as assets
and obtains security information by evaluating the type of the two components
involved in the communication (Fig. 1).

Fig. 1. Microsoft tool model Wordpress

In order to model the application, the client was modeled as a Browser, while
Wordpress and Load Balancer as a Web Application. MySQL Database instead
was modelled as a Database component value. Each service is running on a
Host node. Once the used has modelled the application, the tool automatically
generates the threats for each asset (i.e. threat model) by producing a report in
HTML format. Part of the threat model is described in the Table 5.

It is important to note that the threat model shows, in this case, three values
as asset field: sourcenode, typeofrelationship, destinationnode. From the results
it can be noted that, for example, each service exposes some threats in the
relation to the Generic process it hosts. As an example, a malicious user can get
sensitive data from the service configuration files. A possible countermeasure that
the tool suggests is to encrypt only the configuration files that contain sensitive



258 D. Granata et al.

Table 5. Part of the Threat Model Wordpress using Microsoft tool.

Asset Threat STRIDE Mitigation

VM-hosts-
Service

An adversary can gain
access to sensitive data
stored in Web App’s
config files

Tampering Encrypt sections of
Web App’s
configuration files that
contain sensitive data

Client-request-
LoadBalancer

An adversary can steal
sensitive data like user
credentials

Spoofing Explicitly disable the
autocomplete HTML
attribute in sensitive
forms and inputs, ...

LoadBalancer-
request-
Wordpress

An adversary can
reverse weakly
encrypted or hashed
content

Information
Disclosure

Do not expose security
details in error
messages, Implement
Default error handling
page

Wordpress-
request-
MySQL

An adversary can gain
access to sensitive data
by sniffing traffic to
database

Information
Disclosure

Ensure SQL server
connection encryption
and certificate
validation

data. The sending of the access credentials by the user to the service can also be
compromised. In fact, a malicious user can steal these data in different ways. In
order to reduce the risk that this threat happens, Microsoft tool suggests some
countermeasures. Ad an example, the user can disable the auto-complete HTML
attribute in sensitive forms and inputs. The analysis also shows problems related
to the use of weak encryption algorithms in the communication between the Load
Balancer and Wordpress. In fact, a malicious user can intercept the packets
containing the encrypted data and apply an encryption reversing algorithm to
recover the plain-text data.

4.3 Dragon Analysis

We modeled the system using Threat Dragon diagram tool. The number of
stencils available is limited, so, as shown in Fig. 2, The Wordpress application
was modeled using only the Process, Store and Actor.

Fig. 2. Threat Dragon model Wordpress



Automated Threat Modeling Approaches 259

Load Balancer and Wordpress were modeled as two processes, while for the
Client and Mysql Database we have chosen the stencil of Actor and Store respec-
tively. Each node of the graph communicate through a DataFlow relationship.
As highlighted in the previous section, the tool considers both the nodes and
the arcs of the graph as assets (i.e. resource to be protected). Each asset has a
set of properties aimed at selecting the related threats, as shown in the Table 6.
We modeled the Load Balancer service and Wordpress application as a Web
Application. In particular, we assumed that the Wordpress-based website is an
e-commerce (manages payment cards) that stores data and encrypted credentials
in a MySQL database. Each communication is made on a public network with
http protocol. Considering the selected parameters, the tool automatically col-
lects threats (i.e. threat name, description and STRIDE classification) for each
component of the application and suggests the related mitigations. A partial list
of threats for each component is shown in the Table 7. As the user can access from
a public network, a malicious user can exploit a fingerprinting threat against the
data exchange between the client and the load balancer, sending specific requests
to obtain information in order to profile the application. The Wordpress-based
web application on the other hand it can be subject to Card Cracking threat
since it manages payment cards. In this case, the malicious user can carry out a
brute force attack on the payment process in order to identify the missing values
of the card (i.e. expiry date, security code etc.) A brute force attack prevention
system can (partially) mitigate the threat.

Table 6. Parameters related to each Component Type.

Component Selected parameters

Client Provide authentication

Load Balancer Web application

Handles goods and services

Wordpress Web application

Handles goods and services

Handles card payment

MySQL Database Stores credentials

Is a stores inventory

Is encrypted

Each Data Flow protocol: http

Is over a public network



260 D. Granata et al.

Table 7. Part of the Threat Model Wordpress using Dragon TM.

Asset Threat Description STRIDE Mitigation

Client →
Load
Balancer

Fingerprinting Specific requests
are sent to the
application
eliciting
information in
order to profile
the application

Information
Disclosure

Defence includes
restricting what
information is
provided, for
example version
numbers and package
details

Use
encryption

Unencrypted
data sent over a
public network
may be
intercepted and
read by an
attacker

Information
Disclosure

Data should be
encrypted either at
the message or
transport level

Load
Balancer

Sniping Automated
exploitation of
system latencies
in the form of
timing attacks

Elevation
of
privileges

Anti-automation and
prevention of abuse
of functionality

Wordpress Denial of
Service

Usage may
resemble
legitimate
application usage
but leads to
exhaustion of
resources

Elevation
of
privileges

Providing backoff,
resource
management and
avoiding forced
deadlock

Card Cracking Brute force
attack against
application
payment card
process to
identify the
missing values

Information
Disclosure

Interaction
frequency, preventing
brute force attacks
and anti-automation

MySQL
Database

Account
Creation

Bulk account
creation, and
sometimes profile
population, by
using the
application’s
account signup
processes

Elevation
of
privileges

Interaction
frequency,
enforcement of a
single unique a
action and
enforcement of
behavioral workflow



Automated Threat Modeling Approaches 261

4.4 SLAgenerator Analysis

Figure 3 shows the MACM model of our case study. Each label affect the color
of the nodes, while attributes are not visible in the picture. As anticipated, the
system is composed of a Cloud Service Provider (e.g. Azure or a private Cloud)
that provides three virtual machines. Which are labeled as IaaS, and their Asset
Type is VM, e.g. virtual machine. One VM hosts a Load Balancer service while
the other two VMs host respectively a WordPress instance and a MySQL a
database instance. We modeled the Load Balancer (LB) and WordPress (WP)
as SaaS nodes and we set their Asset Type as Web Application. The MySQL
instance, instead, was labeled as a SaaS, but with Database (DB) value as Asset
Type. The LB uses the WP that, in turn, uses the DB. The Client (modeled
as a CSC node) uses the Load Balancer service, that acts as application inter-
face. Each SaaS service is connected to the public Network. Applying our threat
modelling technique we produce a list of threats but, for simplicity’ sake we
report in Table 8 just one for each asset type. The full list of Threats is not
compatible with the length of the paper. The results show how nodes labelled
as SERVICE.Web can be subject to Injection threat in which an attacker legit-
imately sends commands to the exposed service without proper authorization.
In order to mitigate this threat, we suggest the usage of NIST Control SI-10,
Invalid input validation. The tool also models the threats associated with the
Network, such as Message Reply threat for which an attacker can re-transmit
some packets (previously intercepted) in order to obtain data.

Fig. 3. Wordpress MACM



262 D. Granata et al.

Table 8. Part of the Threat Model Wordpress using SlaGenerator.

Asset Asset type Threat Description STRIDE NIST Control

Wordpress SERVICE.Web Injection The attacker’s hostile

data can trick the

interpreter into executing

unintended commands

Tampering SI-10 Invalid

input validation

MySQL

Database

SERVICE.DB Remote DoS Made the DBMS

unaccessible to remote

clients

Denial Of

Service

SC-5, DoS

Protection

VMs SERVICE.VM Authorization

Abuse

An adversary is able to

circumvent the

authorization controls

Elevation of

privileges

CA-6

Authorization

Network Network Message Reply An adversary can

re-transmit the content of

the packets coming from

the asset at a later time

Spoofing AC-12, Session

Termination

4.5 Comparison

It is worth noting that, as highlighted above, all the tool rely on a graph-based
model to describe the target system, where the node represent the asset and the
edge their connections. However, the tools differ on the interpretation and meta-
data associated to both nodes and edges of the graph. According to Microsoft’s
approach, there is a large variety of possible nodes, but the key role in the
threat modeling is associated to the connection among them: in fact the threat
are listed per-connection, taking into account the connected nodes and the con-
nection attributes. According to OWASP, on the other hand, the Threat Dragon
tool evaluates both the nodes and the arcs of the graph as assets, associating
the threats to each element. However the type of nodes and edges are very lim-
ited and the threats are selected according to few attributes associated to both
nodes and relationship. The SLAGenerator, on the other hand, focuses on sys-
tem assets (the graph nodes) and identifies the possible threats relying on the
asset type attribute, which offer a large variety of different values, similarly to
the Microsoft Threat Modeling tool. Moreover, relationships affect the possible
threats to which each node, but the threats are always listed as associated to
nodes. It is out of the scope of this work to say which approach is better (we aim
at comparing the ideas not at making a rank of the tools), but it is worth noting
that in the graph they made completely different choice: one focuses on edge,
one on nodes and the last on both of them. However, the final result, in all the
cases, is a list of threats that contains an explicit description of the malicious
behaviour (in natural language) and the classification of the threat according to
STRIDE or respect to the threat impact on Confidentiality, Integrity and Avail-
ability. The three tools, even in the case of the Wordpress application, which
is pretty simple, produce a pretty long list of threats (88 for the MS threat
Modeling tool, 84 for SLAgenerator and 31 for the Dragon tool). We, acting as
experts, consider that the choice of listing threats only respect to assets or only
respect to relationships (the choices done by SLAGenerator and by MS Threat
Modeling Tool) helps the expert work in the analysis of the results, but this is



Automated Threat Modeling Approaches 263

and remain a subjective choice. However, the number of threat outlined by the
OWASP tool looks, at state of art, limited respect to the other tools. This is due
to the limited set of parameters available for the selection and, probably, to the
underlying threat catalogue dimension.

Table 9. Comparison table.

Asset SLAGenerator
threat

Microsoft threat OWASP
threat

Wordpress Data Leakage Read web app’s config
files

Fingerprinting

Steal sensitive data like
user credentials

Carding

Card cracking

Wordpress Injection SQL injection through
Web App

–

Database Read Injection SQL injection –

Database Insert
Injection

Account
Creation

VM Data Breach Access to sensitive data
from log files

–

VM Denial of
Service

–

Another interesting aspect is that the three techniques present threats at
different levels of granularity, as shown in the Table 9. As an example, the Sla-
Generator tool underlines how Wordpress can be subject to data leakage. The
same threat is (partially) expressed by the Microsoft tool with read configuration
files and steal user credentials threats. According to OWASP, instead, data loss
can be caused both by an application profiling technique (e.g. fingerprinting) and
by techniques that aim at obtaining information on users’ virtual cards. In gen-
eral, the threats affecting Wordpress were 10 for both OWASP and SlaGenerator
and 25 according to Microsoft. It is important to note, however, that threats are
expressed with different levels of detail. The analysis also shows how a Injection
threat can affect both Wordpress and the database. Considering Database as an
asset, a Microsoft SQL injection can be as SlaGenerator Read/Insert injection
that takes into account that a malicious user wants to get information from the
database or write to it (e.g. create an account). In this case, the threats accord-
ing to SlaGenerator tool are 15, while OWASP and Microsoft consider only 8.
Virtual machines, on the other hand, are not considered in the OWASP model,
the table shows the comparison only between SLAGenerator and Microsoft tool.
One of the 13 threats described by the SLAGenerator is that of Data Breach,
partially mapped with Access to sensitive data from log files by Microsoft (which



264 D. Granata et al.

instead considers 6 threats). Network assets were modeled only by the SLAGen-
erator and threat modeling reported 12 threats2.

5 Conclusion

In this paper we have analyzed three threat modeling techniques that make
use of different models in order to select the threats applicable to the system.
The tools analyzed were SlaGenerator, Microsoft tool and Threat Dragon by
OWASP. The analysed tools require a very simplified graph-based model of the
application in which the nodes represent the components of the system and the
arcs represent the interactions between the various components. The simplicity
of modeling allows the user in all three approaches to obtain security information
in a fully automatic way. The approaches were applied to a case study involving
Wordpress, a Content Management System that allows you to manage a website.
The results show that the threats are described at different levels of detail, but
still compatible. In particular, OWASP threat dragon has proved to be the tool
that produces a less complete threat model than the others. The number of
threats related to the Wordpress component was greater (25) with the Microsoft
tool, while the threat model related to the database and virtual machines was
more complete with SlaGenerator. Furthermore, the tool also considered the
network as an asset, highlighting 12 threats.

References

1. Microsoft threat modeling tool (2018). https://docs.microsoft.com/it-it/azure/
security/develop/threat-modeling-tool

2. Abela, R.: Statistics show why WordPress is a popular hacker target (2020)
3. Ansari, M.T., Pandey, D., Alenezi, M.: STORE: security threat oriented require-

ments engineering methodology (2019)
4. Arsac, W., Bella, G., Chantry, X., Compagna, L.: Multi-attacker protocol valida-

tion. J. Autom. Reason. 46(3–4), 353–388 (2011)
5. Bhattacharya, D.: OWASP threat dragon review (2020)
6. Casola, V., Benedictis, A.D., Rak, M., Villano, U.: Preliminary design of a

platform-as-a-service to provide security in cloud. In: Proceedings of the 4th Inter-
national Conference on Cloud Computing and Services Science - CLOSER, pp.
752–757 (2014)

7. Casola, V., De Benedictis, A., Rak, M., Rios, E.: Security-by-design in clouds:
a security-SLA driven methodology to build secure cloud applications. Procedia
Comput. Sci. 97, 53–62 (2016). 2nd International Conference on Cloud Forward:
From Distributed to Complete Computing

8. Casola, V., De Benedictis, A., Rak, M., Villano, U.: Toward the automation of
threat modeling and risk assessment in IoT systems. Internet Things 7, 100056
(2019)

9. Drake: Threat Modeling. https://owasp.org/www-community/Threat Modeling

2 Full threat modelling comparison is available on request.

https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool
https://owasp.org/www-community/Threat_Modeling


Automated Threat Modeling Approaches 265

10. Frydman, M., Ruiz, G., Heymann, E., César, E., Miller, B.P.: Automating risk
analysis of software design models. Sci. World J. 2014, 805856 (2014)

11. Goodwin, M.: OWASP Threat Dragon. https://github.com/owasp/threat-dragon/
releases

12. Granata, D., Rak, M.: Design and development of a technique for the automation
of the risk analysis process in IT Security, p. 14 (2021)

13. Joint Task Force Interagency Working Group: Security and privacy controls for
information systems and organizations. NIST (2020)

14. Kornecki, A.J., Janusz, Z.: Threat modeling for aviation computer security.
CrossTalk 28, 21–27 (2015)

15. Musman, S., Turner, A.J.: A game oriented approach to minimizing cybersecurity
risk. Saf. Secur. Stud. 8, 212–222 (2018)

16. OWASP: OWASP Automated Threats to Web Applications (2018)
17. OWASP: Threat Modeling Manifesto. https://www.threatmodelingmanifesto.org/
18. Rak, M., Salzillo, G., Granata, D.: EssecA: an automated expert system for threat

modelling and penetration testing for IoT ecosystems. Comput. Electr. Eng. 99,
107721 (2022)

19. Schaad, A., Borozdin, M.: TAM: automated threat analysis. In: Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC 2012, pp. 1103–1108.
Association for Computing Machinery, New York (2012)

20. Singh, S., Tu, H., Allanach, J., Areta, J., Willett, P., Pattipati, K.: Modeling
threats. IEEE Potentials 23(3), 18–21 (2004)

21. Tatam, M., Shanmugam, B., Azam, S., Kannoorpatti, K.: A review of threat mod-
elling approaches for apt-style attacks. Heliyon 7(1), e05969 (2021)

22. Xiong, W., Lagerström, R.: Threat modeling - a systematic literature review. Com-
put. Secur. 84, 53–69 (2019)

https://github.com/owasp/threat-dragon/releases
https://github.com/owasp/threat-dragon/releases
https://www.threatmodelingmanifesto.org/

	Automated Threat Modeling Approaches: Comparison of Open Source Tools
	1 Introduction
	2 Threat Modeling Practices
	3 Threat Modeling Tools
	3.1 Microsoft Threat Modeling Tool
	3.2 OWASP Threat Dragon
	3.3 SLAGenerator

	4 Tool Comparison
	4.1 The WordPress Case Study
	4.2 Microsoft Tool Analysis
	4.3 Dragon Analysis
	4.4 SLAgenerator Analysis
	4.5 Comparison

	5 Conclusion
	References




