
Antonio Vallecillo
Joost Visser
Ricardo Pérez-Castillo (Eds.)

15th International Conference, QUATIC 2022
Talavera de la Reina, Spain, September 12–14, 2022
Proceedings

Quality of Information
and Communications
Technology

Communications in Computer and Information Science 1621

Communications
in Computer and Information Science 1621

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://springerlink.bibliotecabuap.elogim.com/bookseries/7899

Antonio Vallecillo · Joost Visser ·
Ricardo Pérez-Castillo (Eds.)

Quality of Information
and Communications
Technology
15th International Conference, QUATIC 2022
Talavera de la Reina, Spain, September 12–14, 2022
Proceedings

Editors
Antonio Vallecillo
University of Malaga
Málaga, Spain

Ricardo Pérez-Castillo
University of Castila-La Mancha
Ciudad Real, Spain

Joost Visser
Leiden University
Leiden, The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-14178-2 ISBN 978-3-031-14179-9 (eBook)
https://doi.org/10.1007/978-3-031-14179-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8139-9986
https://orcid.org/0000-0002-9271-3184
https://orcid.org/0000-0003-0158-3095
https://doi.org/10.1007/978-3-031-14179-9

Preface

The International Conference on the Quality of Information and Communications
Technology (QUATIC) serves as a forum for disseminating advanced methods,
techniques, and tools for supporting quality approaches to ICT engineering and
management. Practitioners and researchers meet at the conference to exchange ideas
and approaches on how to adopt a quality culture in ICT process and product
improvement and to provide practical studies in varying contexts.

QUATIC 2022 was held during September 12–14, 2022, in Talavera de la Reina,
Spain, with Antonio Vallecillo (University of Málaga) and Joost Visser (University of
Leiden) as Program Chairs. The Organizing Chair of this 15th edition of QUATIC was
Ricardo Pérez-Castillo (University of Castilla-La Mancha) and it was locally organized
by the University of Castilla-La Mancha. Fortunately, it was the first edition conducted
in a face-to-face manner after the effects of the COVID-19 pandemic.

This volume collates the papers selected by the members of the Program Committee
to be presented at the conference and published in the conference proceedings. QUATIC
2022 attracted a good number of submissions from different areas spanning several
thematic tracks, proposed in the call for papers, in various cutting-edge technologies of
specialized focus. The following ten thematic tracks (together with their track chairs)
were considered in QUATIC 2022:

• ICT Verification and Validation (Domenico Amalfitano, University of Naples, Italy)
• Safety, Security, and Privacy (Valentina Casola, University of Naples Federico II,
Italy)

• ICTProcess Improvement,Organisation, andGovernance (Karol Frühauf, INFOGEM
AG, Switzerland)

• Quality Aspects in Modeling and Low Code Environments (Alfonso Pierantonio,
Università degli Studi dell’Aquila, Italy)

• Quality Aspects in Software Product Management and Requirements Engineering
(Emilio Insfran, Valencia Polytechnic University, Spain)

• Quality Aspects in Machine Learning, AI and Data Analytics (Michael Felderer,
University of Innsbruck, Austria)

• Quality Aspects in Digital Twins and Cyber-physical Systems (Aitor Arrieta,
Mondragon University, Spain)

• Quality Aspects in Quantum Computing (Rui Abreu, University of Porto and
INESC-ID, Portugal)

• Software Quality Education and Training in Academia and Industry (Kathia Oliveira,
Université Polytechnique Hauts-de-France, France)

• Quality Aspects in Software Evolution (Péter Hegedűs, University of Szeged,
Hungary)

Due to the exigent review process, some of the tracks had no papers accepted, while
others with few accepted papers were merged into another related session. As a result,

vi Preface

the following five sessions were finally organized within the scientific program of
QUATIC 2022, which correspond with the proceedings’ sections:

• Smart and Advanced Systems
• Verification and Validation
• Skills and Education
• Industrial Experiences and Applications
• Safety, Security and Privacy

TheProgramCommittee ofQUATIC2022was formedby164 international academic
and industrial domain experts, from organizations in 31 different countries on five
continents. Based on a rigorous peer-reviewprocess by theProgramCommitteemembers
along with external experts as reviewers, the best quality papers were identified for
presentation and publication.

The review was carried out using a double-blind process, with a minimum of three
reviews per submission. Submitted papers came from more than 32 countries and
accepted papers originated from 14 countries. Out of the submission pool of 54 papers,
18 (33.3%) were accepted as full papers for inclusion in the proceedings, and three
(5.5%) as short papers. Thus, the total acceptance ratio was 38.9%.

Apart from these papers, three ‘Journal-first’ papers were included in the QUATIC
2022 program. These papers correspond to articles published in 2021 or 2022 in top-
notch journals that did not have any prior publication as workshop or conference papers.
These three papers were the following:

• Amna, A. R., & Poels, G. (2022). Ambiguity in user stories: A systematic literature
review. Information and Software Technology, 145, 106824. https://doi.org/10.1016/
j.infsof.2022.106824

• Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., & Murillo, J. M.
(2022). Quantum Software as a Service Through a Quantum API Gateway. IEEE
Internet Computing, 26(1), 34–41. https://doi.org/10.1109/MIC.2021.3132688

• Gualo, F., Rodriguez, M., Verdugo, J., Caballero, I., & Piattini, M. (2021). Data
quality certification using ISO/IEC 25012: Industrial experiences. Journal of Systems
and Software, 176, 110938. https://doi.org/10.1016/j.jss.2021.110938

QUATIC 2022 featured three invited talks presented by outstanding keynote
speakers.

The first keynote speaker was Mauricio Aniche. Mauricio leads the Tech Academy
of Adyen, a Dutch payment company that allows businesses to accept e-commerce,
mobile, and point-of-sale payments. Mauricio is also an assistant professor of software
engineering at Delft University of Technology in the Netherlands, where he conducts
research on improving developers’ productivity in testing and maintenance. His talk
in QUATIC 2022 was entitled “Software Engineering Theory in Practice: The Good,
The Bad, and The Ugly”. In the talk, he described many examples from industry and
academia where both worlds are perfectly aligned, and where they are not.

The second keynote speaker was Sergio Segura, who is an associate professor at the
University of Seville, Spain, and a senior member of the Applied Software Engineering

https://doi.org/10.1016/j.infsof.2022.106824
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1016/j.jss.2021.110938

Preface vii

(ISA) research group. He is also a co-founder and a member of the direction board of
the Unit of Excellence Smart Computer Systems Research and Engineering (SCORE),
where he leads the university’s research line on software and services engineering. His
talk entitled “Quality assessment of untestable programs: themetamorphicway” aimed to
guide researchers and practitioners through the area ofmetamorphic testing, including an
introduction to the technique, its evolution, successful applications, and open problems.

Last but not least, Nicole Novielli, who is an assistant professor at the University
of Bari, Italy, delivered the third keynote speech. Her research interests lie at the
intersection of software engineering and affective computing, with a specific focus on
emotion mining from software repositories, natural language processing of developers’
communication traces, and biometric recognition of developers’ emotions. Her talk
was entitled “Recognizing Developers’ Emotions: Advances and Open Challenges”,
which provided an overview of recent research findings of sentiment analysis in soft-
ware engineering (SE), addressed the open challenges, and provided empirically-based
guidelines for safe (re)use of SE-specific tools in order to obtain meaningful results.

As proceedings editors, we wish to thank all the people and organizations that
directly or indirectly supported this event. Thanks to the thematic track chairs and all
other members of the Program Committee for their many contributions and reviews that
guarantee the overall quality of the QUATIC 2022 conference.

Thanks to our colleagues from the University of Castilla-La Mancha for all the
organizational details required for hosting the conference. Thanks to our colleagues that
participate at different levels in the organization of the conference. Thanks to the Steering
Committee members for trusting us to organize the conference, and for their guidance
and support throughout this process.

Also, a special thanks to all the organizations involved in this conference, including
supporters at the University of Castilla-La Mancha (Facultad de Ciencias Sociales de
Talavera de la Reina, Instituto de Tecnologías y Sistemas de Información, Departamento
de Tecnologías y Sistemas de Información, and Alarcos Research Group), as well as our
sponsors (AQC Lab, aQuantum, DQTeam, Cátedras Telefónica, and Aula SMACT by
avanttic) and promoters (IPQ and CS03).

Finally, special thanks to all the authors and participants at the conference. Without
their efforts, there would be no conference or proceedings. Thank you for contributing
to the critical mass of researchers that keep this conference alive for what we expect to
be many years to come.

September 2022 Antonio Vallecillo
Joost Visser

Ricardo Pérez-Castillo

Organization

Program Committee Chairs

Antonio Vallecillo University of Málaga, Spain
Joost Visser Leiden University, The Netherlands

Thematic Track Chairs

ICT Verification and Validation

Domenico Amalfitano University of Naples, Italy

Safety, Security, and Privacy

Valentina Casola University of Naples Federico II, Italy

ICT Process Improvement, Organisation, and Governance

Karol Frühauf INFOGEM AG, Switzerland

Modeling and Low Code Environments

Alfonso Pierantonio Università degli Studi dell’Aquila, Italy

Software Product Management and Requirements Engineering

Emilio Insfran Valencia Polytechnic University, Spain

Machine Learning, Artificial Intelligence and Data Analytics

Michael Felderer University of Innsbruck, Austria

Digital Twins and Cyber-physical Systems

Aitor Arrieta Mondragon University, Spain

Quality Aspects in Quantum Computing

Rui Abreu University of Porto and INESC-ID, Portugal

x Organization

Software Quality Education and Training in Academia and Industry

Kathia Oliveira Université Polytechnique Hauts-de-France,
France

Software Evolution

Péter Hegedűs University of Szeged, Hungary

Program Committee

Ákos Horváth IncQuery, Hungary
Alessandra Bagnato Softeam, France
Alessandra De Benedictis University of Napoles Federico II, Italy
Alessio Gambi University of Passau, Germany
Alessio Merlo University of Genoa, Italy
Alexander Chatzigeorgiou University of Macedonia, Greece
Alin Stefanescu University of Bucharest, Romania
Amleto Di Salle Università degli Studi dell’Aquila, Italy
Ana Cavalli Telecom SudParis, France
Ana Paiva University of Porto, Portugal
Ana Regina Rocha Federal University of Rio de Janeiro, Brazil
Andreas Nehfort Nehfort IT-Consulting, Austria
Andreas Ulrich Siemens AG, Germany
Andrew Meneely Rochester Institute of Technology, USA
Andriy Miranskyy Ryerson University, Canada
Antonia Bertolino ISTI-CNR, Italy
Antonio Cicchetti Mälardalen University, Sweden
Barbara Plank IT University of Copenhagen, Denmark
Bartosz Walter Poznan University of Technology, Poland
Benoit Combemale University of Rennes 1 and Inria, France
Bin Lin Università della Svizzera italiana, Switzerland
Breno Miranda Federal University of Pernambuco, Brazil
Bruno Lima University of Porto, Portugal
Carmelo R. Cartiere NEXTSENSE SRL, Italy
Christian Esposito University of Salerno, Italy
Christophe Kolski Université Polytechnique Hauts-de-France,

France
Claudia Werner Federal University of Rio de Janeiro, Brazil
Csaba Nagy Università della Svizzera italiana, Switzerland
Daniel Fernández Lanvin University of Oviedo, Spain
David White University of Sheffield, UK
Dragos Truscan Åbo Akademi University, Finland
Eduard Paul Enoiu Mälardalen University, Sweden

Organization xi

Eduardo Figueiredo Federal University of Minas Gerais, Brazil
Elena Navarro Universidad de Castilla-La Mancha, Spain
Emily Oh Navarro University of California, Irvine, USA
Erkuden Rios Tecnalia Research & Innovation, Spain
Esther Guerra Universidad Autónoma de Madrid, Spain
Eva Navarro-Lopez University of Wolverhampton, UK
Fabio Palomba University of Salerno, Italy
Farnaz Fotrousi University of Hamburg, Germany
Felipe Ebert Eindhoven University of Technology,

The Netherlands
Ferdinand Gramsamer INFOGEM AG, Switzerland
Foutse Khomh Polytechnique Montréal, Canada
Francesca Lonetti ISTI-CNR, Italy
Frank Leymann University of Stuttgart, Germany
Frank Phillipson TNO, The Netherlands
Gabriel García-Mireles Universidad de Sonora, Mexico
Gemma Catolino Tilburg University, The Netherlands
Gerhard Fessler Fessler Sprenger und Partner GmbH, Switzerland
Goeran Wendin Chalmers University of Technology, Sweden
Gopi Krishnan Rajbahadur Queen’s University, Canada
Gordana Rakic University of Novi Sad, Serbia
Guido Peterssen aQuantum, Spain
Guillermo Hernandez aQuantum, Spain
Gunel Jahangirova Universitá della Svizzera italiana, Switzerland
Hans-Bernd Kittlaus InnoTivum Consulting, Germany
Harald Foidl University of Innsbruck, Austria
Hausi A. Muller University of Victoria, Canada
Hieke Keuning Utrecht University, The Netherlands
Ignacio G-Rodríguez de Guzmán University of Castilla–La Mancha, Spain
Isabel Brito Instituto Politécnico de Beja, Portugal
Jaejoon Lee University of East Anglia, UK
Jaelson Castro Universidade Federal de Pernambuco, Brazil
Javier Troya University of Malaga, Spain
Jean Carlo R. Hauck Universidade Federal de Santa Catarina, Brazil
Jianjun Zhao Kyushu University, Japan
Jingyue Li Norwegian University of Science and Technology,

Norway
Joachim Denil University of Antwerp, Belgium
João Araújo Universidade Nova de Lisboa, Portugal
Joao Fernandes University of Porto, Portugal
João Paulo Fernandes Universidade do Porto, Portugal
João-Pascoal Faria Universidade do Porto, Portugal

xii Organization

Johannes Noppen BT Group, UK
Johnny Marques Instituto Tecnológico de Aeronáutica, Brazil
Jordi Tura Max-Planck-Institut für Quantenoptik, Germany
Jose A. Cruz-Lemus Universidad de Castilla-La Mancha, Spain
Jose Campos University of Lisbon, Portugal
José de la Vara University of Castilla-La Mancha, Spain
José Luis Hevia aQuantum, Spain
Jose Oliveira University of Minho, Portugal
Juan Manuel Murillo Universidad de Extremadura, Spain
Juan Pablo Carvallo Universidad del Azuay, Ecuador
Juncal Alonso Tecnalia Research & Innovation, Spain
Jürgen Grossmann Fraunhofer FOKUS, Germany
Juri Di Rocco Università degli Studi dell’Aquila, Italy
Kevin Moran College of William & Mary, USA
Konstantinos Barmpis University of York, UK
Krzysztof Wnuk Blekinge Tekniska Högskola, Sweden
Leandro Minku University of Birmingham, UK
Lei Zhang Ryerson University, Canada
Leire Orue Echevarria Tecnalia Research & Innovation, Spain
Lerina Aversano Università degli Studi del Sannio, Italy
Lidia López Universitat Politècnica de Catalunya, Spain
Loek Cleophas Eindhoven University of Technology,

The Netherlands
Loli Burgueno Open University of Catalonia, Spain
Luigia Petre Åbo Akademi University, Finland
Luis Olsina National University of La Pampa, Argentina
Luís Soares Barbosa University of Minho, Portugal
Lydie du Bousquet LIG, France
M. J. Escalona University of Seville, Spain
Macario Polo Universidad de Castilla-La Mancha, Spain
Man Zhang Kristiania University College, Norway
Manuel Wimmer Johannes Kepler University Linz, Austria
Marcela Ruiz Zurich University of Applied Sciences,

Switzerland
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro,

Brazil
Maria Lencastre Escola Politécnica de Pernambuco, Brazil
Mario Piattini aQuantum, Spain
Markus Borg RISE SICS AB, Sweden
Martin Gonzalez-Rodriguez University of Oviedo, Spain
Massimiliano Rak University of Campania Luigi Vanvitelli, Italy
Massimo Tisi IMT Atlantique, France

Organization xiii

Matteo Camilli Free University of Bozen-Bolzano, Italy
Maya Daneva University of Twente, The Netherlands
Michael Felderer University of Innsbruck, Austria
Miguel Ehécatl Morales Trujillo University of Canterbury, New Zealand
Moisés Rodríguez AQCLab and Universidad de Castilla-La Mancha,

Spain
Nelly Condori-Fernández Universidade da Coruña, Spain
Niklas Lavesson Blekinge Institute of Technology, Sweden
Paolo Arcaini National Institute of Informatics, Japan
Pedro Molina Metadev, Spain
Pekka Aho Open Universiteit, The Netherlands
Pierre-Emmanuel Arduin Paris-Dauphine University, France
Rafael Capilla Rey Juan Carlos University, Spain
Rafael Duque University of Cantabria, Spain
Ralf Kneuper IU International University, Germany
Ricardo Pérez-Castillo University of Castilla-La Mancha, Spain
Richard Paige McMaster University, Canada
Roberto Nardone Mediterranean University of Reggio Calabria,

Italy
Rolf-Helge Pfeiffer IT University of Copenhagen, Denmark
Ronnie E. de Souza Santos Recife Center for Advanced Studies and Systems

(CESAR), Brazil
Rudolf Ramler Software Competence Center Hagenberg, Austria
Rui Maranhao Abreu University of Porto and INESC-ID, Portugal
Salvatore Barone University of Napoles Federico II, Italy
Samira Cherfi Conservatoire National des Arts et Métiers,

France
Santiago Matalonga University of the West of Scotland, UK
Sebastian Feldt Delft University of Technology, The Netherlands
Sebastiano Panichella Zurich University of Applied Science,

Switzerland
Shaohan Hu IBM, USA
Shaukat Ali Simula Research Laboratory, Norway
Sheila Reinehr Pontifical Catholic University of Parana, Brazil
Shingo Takada Keio University, Japan
Silverio Martínez-Fernández Universitat Politècnica de Catalunya-Barcelona

Tech, Spain
Silvia Abrahao Universitat Politecnica de Valencia, Spain
Sotirios Liaskos York University, Canada
Stefan Wagner University of Stuttgart, Germany
Steffen Herbold Clausthal University, Germany
Steve Counsell Brunel University London, UK

xiv Organization

Sybille Caffiau Université Grenoble Alpes, France
Takashi Ishio Nara Institute of Science and Technology, Japan
Tao Yue Nanjing University of Aeronautics and

Astronautics, China
Thomas Bach SAP AG, Germany
Tim Lethbridge University of Ottawa, Canada
Toacy Oliveira Federal University of Rio de Janeiro, Brazil
Tommi Mikkonen University of Helsinki, Finland
Torsten Bandyszak Paluno - The Ruhr Institute for Software

Technology, Germany
Umberto Villano University of Sannio, Italy
Valentina Lenarduzzi University of Oulu, Finland
Vera Werneck Universidade do Estado do Rio de Janeiro, Brazil
Wasif Afzal Mälardalen Univesity, Sweden
Wille Robert Johannes Kepler University Linz, Austria
Wissam Mallouli Montimage, France
Wolfgang Mauerer OTH Regensburg, Germany
Xiaodi Wu University of Maryland, USA
Yannis Zorgios Zapdev, Greece

Additional Reviewers

Alessandra Somma
Daniele Granata
Huu Nghia Nguyen
Joost Mertens
Luong Nguyen
Manh-Dung Nguyen
Vinh-Hoa La

Organizing Committee

Organizing Chair

Ricardo Pérez-Castillo University of Castilla-La Mancha, Spain

Proceedings Chair

Jose Antonio Cruz Lemus University of Castilla-La-Mancha, Spain

Web Chair

Américo Rio ISCTE-IUL and Universidade Nova de Lisboa,
Portugal

Organization xv

Publicity Chair

Paula Muñoz University of Málaga, Spain

Volunteer Chair

Luis Jiménez-Navajas University of Castilla-La Mancha, Spain

Contributing Organizations

Supporters

Sponsors

Promoters

Contents

Smart and Advanced Systems

Quality Characteristics of a Software Platform for Human-AI Teaming
in Smart Manufacturing . 3
Philipp Haindl, Thomas Hoch, Javier Dominguez, Julen Aperribai,
Nazim Kemal Ure, and Mehmet Tunçel

Architectural Decisions in AI-Based Systems: An Ontological View 18
Xavier Franch, Silverio Martínez-Fernández, Claudia P. Ayala,
and Cristina Gómez

Verification and Validation

An Empirical Study to Quantify the SetUp and Maintenance Benefits
of Adopting WebDriverManager . 31
Maurizio Leotta, Boni García, and Filippo Ricca

Assessing Black-box Test Case Generation Techniques for Microservices 46
Luca Giamattei, Antonio Guerriero, Roberto Pietrantuono,
and Stefano Russo

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 61
Morena Barboni, Francesco Casoni, Andrea Morichetta,
and Andrea Polini

Is NLP-based Test Automation Cheaper Than Programmable and Capture
&Replay? . 77
Maurizio Leotta, Filippo Ricca, Simone Stoppa, andAlessandro Marchetto

Effective Spectrum Based Fault Localization Using Contextual Based
Importance Weight . 93
Qusay Idrees Sarhan and Árpád Beszédes

Comparing the Effectiveness of Assertions with Differential Testing
in the Context of Web Testing . 108
Maurizio Leotta, Davide Paparella, and Filippo Ricca

xviii Contents

Skills and Education

Roadblocks to Attracting Students to Software Testing Careers:
Comparisons of Replicated Studies . 127
Rodrigo E. C. Souza, Ronnie E. de Souza Santos,
Luiz Fernando Capretz, Marlon A. S. de Sousa,
and Cleyton V. C. de Magalhães

Analyzing Quality Issues from Software Testing Glossaries Used
in Academia and Industry . 140
Luis Olsina, Philip Lew, and Guido Tebes

Can Source Code Analysis Indicate Programming Skills? A Survey
with Developers . 156
Johnatan Oliveira, Maurício Souza, Matheus Flauzino, Rafael Durelli,
and Eduardo Figueiredo

Industrial Experiences and Applications

Improving the Quality of ICT and Forestry Service Processes with Digital
Service Management Approach: A Case Study on Forestry Liquids 175
Marko Jäntti and Markus Aho

Towards a Process Reference Model for Clinical Coding . 190
Ismael Caballero, Júlio Souza, Fernando Lopes, João Vasco Santos,
and Alberto Freitas

Digital Twin for IoT Environments: A Testing and Simulation Tool 205
Luong Nguyen, Mariana Segovia, Wissam Mallouli,
Edgardo Montes de Oca, and Ana R. Cavalli

Safety, Security and Privacy

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 223
Marta Catillo, Antonio Pecchia, and Umberto Villano

A Proposal for FPGA-Accelerated Deep Learning Ensembles in MPSoC
Platforms Applied to Malware Detection . 239
Alessandro Cilardo, Vincenzo Maisto, Nicola Mazzocca,
and Franca Rocco di Torrepadula

Automated Threat Modeling Approaches: Comparison of Open Source
Tools . 250
Daniele Granata, Massimiliano Rak, and Giovanni Salzillo

Contents xix

Understanding Black-Box Attacks Against Object Detectors from a User’s
Perspective . 266
Kim André Midtlid, Johannes Åsheim, and Jingyue Li

Alice in (Software Supply) Chains: Risk Identification and Evaluation 281
Giacomo Benedetti, Luca Verderame, and Alessio Merlo

Evaluating Tangle Distributed Ledger for Access Control Policy
Distribution in Multi-region Cloud Environments . 296
Carlo Mazzocca, Andrea Sabbioni, Rebecca Montanari,
and Michele Colajanni

Toward the Adoption of Secure Cyber Digital Twins to Enhance
Cyber-Physical Systems Security . 307
Alessandra De Benedictis, Christiancarmine Esposito,
and Alessandra Somma

Author Index . 323

Smart and Advanced Systems

Quality Characteristics of a Software
Platform for Human-AI Teaming

in Smart Manufacturing

Philipp Haindl1(B) , Thomas Hoch1 , Javier Dominguez2 ,
Julen Aperribai2, Nazim Kemal Ure3 , and Mehmet Tunçel3

1 Software Competence Center Hagenberg, Hagenberg, Austria
{philipp.haindl,thomas.hoch}@scch.at

2 IDEKO Research Center, Elgoibar, Spain
{jdominguez,japerribai}@ideko.es

3 Istanbul Technical University, Istanbul, Turkey
{ure,tuncelm}@itu.edu.tr

Abstract. As AI-enabled software systems become more prevalent in
smart manufacturing, their role shifts from a reactive to a proactive one
that provides context-specific support to machine operators. In the con-
text of an international research project, we develop an AI-based software
platform that shall facilitate the collaboration between human operators
and manufacturing machines.

We conducted 14 structured interviews with stakeholders of the
prospective software platform in order to determine the individual rele-
vance of selected quality characteristics for human-AI teaming in smart
manufacturing. These characteristics include the ISO 25010:2011 stan-
dard for software quality and AI-specific quality characteristics such as
trustworthiness, explicability, and auditability. The interviewees rated
trustworthiness, functional suitability, reliability, and security as the
most important quality characteristics for this context, and portabil-
ity, compatibility, and maintainability as the least important. Also, we
observed agreement regarding the relevance of the quality characteristics
among interviewees having the same role. On the other hand, the rele-
vance of each quality characteristics varied depending on the concrete
use case of the prospective software platform.

The interviewees also were asked about the key success factors related
to human-AI teaming in smart manufacturing. They identified improving
the production cycle, increasing operator efficiency, reducing scrap, and
reducing ergonomic risks as key success criteria. In this paper, we also
discuss metrics for measuring the fulfillment of these quality character-
istics, which we intend to operationalize and monitor during operation
of the prospective software platform.

Keywords: Quality characteristics · Human-AI teaming · Smart
manufacturing · Trustworthiness · Explicability · Auditability

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-031-14179-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_1&domain=pdf
http://orcid.org/0000-0001-6075-5286
http://orcid.org/0000-0003-0074-0052
http://orcid.org/0000-0001-8960-0595
http://orcid.org/0000-0003-2660-2141
http://orcid.org/0000-0002-6798-2876
https://doi.org/10.1007/978-3-031-14179-9_1

4 P. Haindl et al.

1 Introduction

The applications of AI in smart manufacturing are numerous, ranging from
improving maintenance times for machinery to detecting defects in the machine
or the product to preventing injury to workers. In general, collaborative pro-
cesses in smart manufacturing are characterized by alternating phases of reactive
and proactive elements, with each actor supporting the other alternately. AI-
enabled smart manufacturing systems are capable of self-sensing, self-adapting,
self-organizing, and self-decision [19,21], enabling them to respond to physical
changes in the production environment in a variety of ways. AI-guided inter-
actions in the manufacturing process might include stopping machines, adapt-
ing production tasks, or suggesting a change in production parameters. Achiev-
ing effective teaming between machine operators and AI-enabled manufacturing
systems, however, requires mutual trust based primarily on self-sensing and self-
adaptation of each actor. In the frame of the EU-funded Teaming.AI project1, we
develop a software platform that allows for human-AI teaming in smart man-
ufacturing. While we already presented a reference architecture in [9], in this
work we elaborate on the individual relevance of different quality characteristics
towards such a software platform. For this purpose we conducted 14 structured
interviews with different stakeholders of the prospective platform in which they
rated the individual relevance of 11 different quality characteristics. A further
objective of our study was the identification of key success factors and met-
rics that serve to evaluate the fulfillment of these quality characteristics during
development and operation of the platform.

The remainder of the paper is structured as follows: Subsequently, we sketch
the research context of the project in Sect. 2, before we elaborate on the current
state of research in this field in Sect. 3. Afterwards, in Sect. 4 we describe our
research questions and the used methodology in this study. Following to that,
in Sect. 5 we present the results of this study and discuss our findings in Sect. 6.
Subsequently, in Sect. 7 we describe possible threats to the validity of our study
and conclude our paper in Sect. 8.

2 Research Context

The research consortium of our project consists of six research and development
centers and universities, three specialized SMEs for software development of AI-
based software systems, two industry partners in the automotive industry for
plastic injection of car components, and one industry partner for wind power
plant assembly. One key contribution of this research project is the develoment
of an AI-based software platform for human-AI teaming in smart manufacturing.
In the following, we describe the use cases (UC) of the three industry partners
that shall be supported by this software platform.

1 https://www.teamingai-project.eu.

https://www.teamingai-project.eu

Quality Characteristics for Human-AI Teaming 5

2.1 UC1: Quality Inspection

Our first industry partner manufactures injection molded components for the
automotive industry. The main objective of this use case is to support the
machine operator during visual quality inspection. The software platform shall
classify products as OK or not-OK (NOK) with the latter being double-checked
by the machine operator. Therefore, it interacts with the machine operator dur-
ing quality inspection and fault analysis and provides context-specific informa-
tion for adjusting parameters in order to mitigate product defects.

2.2 UC2: Parameter Optimization

The second industry partner also produces plastic parts for the automotive indus-
try and its use case focuses primarily on optimizing injection parameters. To this
end, the software platform should predict possible process deviations and iden-
tify likely root failure causes. Thereby, it can provide explanations for its findings
(e.g. likelihoods), and the machine operator can provide feedback to the soft-
ware platform. As opposed to the previous use case, in this instance visual quality
inspection is performed by the machine operator. Moreover, in this use case, the
software platform shall monitor the interaction between the machine operator
and the injection machine as well as analyze its sensor data and parameters in
order to detect process deviations prematurely.

2.3 UC3: Large-Scale Parts Assembly

The third industrial partner specializes in high-precision manufacturing of large-
scale parts used in wind turbines, as an example. In this time-consuming pro-
duction process, automated and manual tasks are incorporated. Both of these
production tasks are characterized by high variability in their execution times,
making task management challenging. The software platform should identify
manual tasks associated with milling operations of large-scale parts and collect
information about the estimated time for each of these tasks. With its tracking
system, the software platform can determine the location of the machine oper-
ator. By combining this information with context information, such as machine
data, the software platform acts as a mediator between the milling machine
and the operator. Therefore, it should (a) improve communication between the
operator and the machine, (b) allow rescheduling of similar assembly tasks, for
example, combining automatic milling tasks with manual tasks, and (c) perform
an ergonomic risk assessment of two simultaneous tasks as regards static loads.

2.4 Stakeholder Roles

In the following we describe the different stakeholder roles with their exemplary
activities, which were identified during requirements engineering.

6 P. Haindl et al.

– Data Protection Officer (DPO): Ensures that a company respects the
laws protecting individuals’ personal data (e.g., the GDPR, by controlling
the processing of data and auditing the system.

– Software Scientist (SS): Queries runtime data of the software components
of the software platform, e.g., logging information, for evaluating and opti-
mizing the behaviour of the system.

– Data Scientist (DS): Applies statistical methods onto data processed by
the software platform, e.g., parameter tuning of ML components.

– Machine Operator (MO): Visually inspects the produced parts, clamping
and adjusting the workpieces or performing manual tasks on the machine,
e.g., obtaining measurements and making parameter adjustments.

– Production Line Manager (PLM): Monitors and optimizes the processes
for producing and assembling the product or its parts on the shopfloor.

3 Related Work

We separate the current state of research related to our study into three streams.
The first stream focuses on quality requirements of ML-based software systems.
Based on a qualitative interview study with ten requirements engineers, Habibul-
lah and Horkoff [8] explored the engineers’ experiences and perceptions of quality
requirements for ML-based software systems. The study shows that most engi-
neers in industrial settings have difficulties formulating quality requirements for
ML-based software systems. This often leads to quality requirements neither
being organized, prioritized, nor effectively monitored during the development
of such systems. Vogelsang and Borg [26] interviewed four data scientists using
semi-structured questionnaires to examine how they elicit and specify functional
and quality requirements of ML-based software systems. The authors stress that
it is vital to understand ML-related performance measures to state good func-
tional requirements for such systems. Also, systems must be designed from the
beginning in such a manner that additional requirements towards explainabil-
ity, trustworthiness, or even specific legal requirements can later be implemented
with moderate effort. Horkoff [11] examined requirements engineering (RE) prac-
tices for eliciting quality requirements towards ML-based software systems. The
author states that researchers and users of ML-based software systems lack an
effective methodology to express and specify quality requirements for ML-based
software systems, including targets and trade-offs, e.g., based on domain-specific
best practices. Khan et al. [15] reviewed current RE methodologies for eliciting
and documenting quality requirements for ML-based IIoT systems. To this end,
the authors compared SysML, GORE-MLOps [12], and Pinto’s RE methodol-
ogy [20] for autonomous systems. The paper stresses the lack of a generic RE
methodology for elicitating quality requirements of ML-based software systems.

The second stream of related works examines quality characteristics of ML-
based software systems. Siebert et al. [23] presented a categorization of quality
characteristics complemented by an operational software quality model for ML-
based software systems. The definition and relevance of the quality character-
istics is based on a literature-based review, complemented by workshops with

Quality Characteristics for Human-AI Teaming 7

industrial partners. The quality model allows to objectively assess the adher-
ence to quality requirements throughout the development of ML-based software
systems. An important prerequisite for the operationalization of the quality char-
acteristics relates to their decomposition using metrics which can be measured
throughout the engineering cycle of such systems. Lenarduzzi et al. [17] elabo-
rated a method for identification of quality issues in ML-based software systems,
gathered from experience reports of their research group and self-ethnography.
According to the authors, root failure causes for the most frequent quality issues
can be attributed to six groups, ranging from lack of developer skills, deficiencies
in development and test processes, model version incompatibilities, and commu-
nication problems. They argue that training software developers is the most
efficient way to mitigate quality issues in ML-based systems.

Finally, the third stream of related works focuses on quality assurance and
quality models for ML-based software systems. Fujii et al. [5] conducted a sur-
vey to evaluate the usefulness of quality guidelines for ML-based software sys-
tems. These quality guidelines address the handling of quality characteristics,
test architecture, and test viewpoints for different domains. The authors criti-
cize that the analyzed guidelines do not address the integration of explainability
tools in the engineering activities of ML-based software systems. The authors
assume that in practice this often leads to disregarding the quality assurance of
explainability requirements or conducting it incompletely. Kuwajima et al. [16]
studied quality models for safety-critical ML-based software systems. Therefore
they analyzed the gaps between the ISO 25010:2011 (SQuaRE) standard [13] for
software quality and quality characteristics relevant for ML-based software sys-
tems. Their results show that the quality requirements towards machine learning
models are often vaguely specified, which in turn negatively affects their inter-
pretability and robustness. Felderer and Ramler [4] analyzed terminology and
challenges for quality assurance of AI-based software systems along the perspec-
tives of artifact type, process, and quality characteristics. In total, they identified
eight key challenges for this context, e.g., understandability and interpretabil-
ity of AI models, accuracy and correctness measures, or the handling of quality
requirements in AI-based software systems.

4 Research Questions and Methodology

Our study started with the definition of candidate scenarios [24,25] that encom-
pass the context and the anticipated functionality from the stakeholders’ per-
spectives when interacting with the prospective software platform. These sce-
narios were originally defined by our research group and were therefore only
described at a high level of abstraction. Based on these candidate scenarios we
designed an interview-based case study to (a) refine these scenarios into more
fine-grained functional requirements, (b) assess the completeness of the scenar-
ios to fully cover the required functionality of the software platform, (c) assess
each of 11 quality characteristics in terms of its importance to the overall plat-
form from the stakeholders’ perspective, and (d) elicit the key success criteria

8 P. Haindl et al.

Candidate Scenarios

Scenario Scenario
Completeness
Assessment

Relevance Assessment of
Quality Characteristics

Elicitation of Key
Success Criteria

Elicitation of
Functional

Requirements

Software Quality
Characteristics

AI Trustworthiness,
Explicability & Auditability

Fig. 1. Structure and process of the interview-based case study.

related to the software platform. Figure 1 shows the structure and process of the
case study. In total, we conducted 14 interviews with stakeholders from the 3
industry partners and from the 3 specialized SMEs for software development of
AI-based systems. The numbers of interviewees per stakeholder role distributed
as follows: DPO (2), SS (2), DS (3), MO (4), PLM (3). As in this paper our
research concentrates on the individual relevance of quality characteristics and
success criteria of the software platform, we only describe the results of steps 3
and 4 of the case study in more detail. To this end, we formulated the following
three research questions:

– RQ1: How do the stakeholders of the software platform assess the relevance
of the ISO 25010:2011 (SQuaRE) [13] characteristics for software quality, AI
trustworthiness, explicability, and auditability?

– RQ2: What are the key success factors of the stakeholders for human-AI
teaming in smart manufacturing?

– RQ3: What are potential metrics to evaluate these key success factors?

Based on the guidelines by Runeson and Höst [22], we designed a question-
naire2 for interviewing the stakeholders in step 3 and 4 of the case study regard-
ing the relevance of quality characteristics and their success criteria towards the
software platform. These interviews followed the refinement of the scenarios into
functional requirements (step 1) and the completeness assessment of the scenar-
ios (step 2). We also conducted a pilot interview as suggested by Yin [28] with
a highly experienced stakeholder and used his feedback to improve the ques-
tionnaire. Specifically, we refined definitions of quality characteristics in order to
ensure a uniform level of understanding among the stakeholders.

At the beginning of the interviews we explained the research context of our
study - human-AI teaming in smart manufacturing - to the interviewees. Each
interviewee had a thorough understanding of the research context since they have
been participating in the project for over one year. Interviewees holding roles
such as production line manager, data protection officer, and machine operator
came from our industry partners. Likewise, interviewees holding roles such as
software and data scientists came from the three specialized SMEs for software
development of AI-based systems (cf. Section 2).
2 https://bit.ly/3lV3aFw.

https://bit.ly/3lV3aFw

Quality Characteristics for Human-AI Teaming 9

The questionnaire comprised two closed and one open questions. In the first
closed question, we asked the interviewees to select the role (cf. Sect. 2.4) that
they most frequently perform. In order to not overlook any important stakeholder
role, we deliberately asked them whether their most frequently performed role is
on the presented list. The second closed question of the questionnaire examined
the individual relevance of 11 quality characteristics, i.e., 8 quality character-
istics of the ISO 25010:2011 (SQuaRE) [13] standard for software quality and
3 AI-specific quality characteristics such as trustworthiness, explicability, and
auditability. For easier reading, this question was divided into 11 sub-questions.
To ensure common understanding of the quality characteristics, we presented the
interviewees with a uniform definition of them. For the relevance assessment we
adapted the Quality Attribute Workshop format [1] and asked the interviewees
to assign, in total, 100 points to the different quality characteristics according
to their subjective relevance for human-AI teaming in smart manufacturing. In
the final open question, we asked them to describe the key success factors in this
context for their typical role.

Interview Transcripts

Researcher 1

Researcher 2

Assessments,
Success Criteria

RQ1

RQ2

RQ3

coding and
extraction

Final Relevance
Assessments

Candidate Key
Success Criteria

Candidate
Evaluation Metrics

Final Key
Success Criteria

Final
Evaluation

Metrics

iterative

iterative

Researcher 3

cross-check
and validation

Fig. 2. Overview of research process and activities to answer the research questions.

Figure 2 shows the research process that structures the activities and spec-
ifies the outcome of each process step. The interviews were conducted by
two researchers and the transcripts analyzed according to a predefined cod-
ing scheme. This scheme defined the coding and extraction of quantitative and
qualitative data for each research question. The quantitative data related to RQ1
(relevance assessments of the quality characteristics) did not require further anal-
ysis. In the first step of analyzing the qualitative data from RQ2 and RQ3, two
researchers highlighted the individual statements in the interview transcripts.
After that, they iteratively refined the candidate key success criteria and evalu-
ation metrics until they arrived at a consolidated set of criteria and metrics. A
third researcher continuously checked and validated this refinement process. We
repeated this process until we reached an agreement among all researchers.

10 P. Haindl et al.

5 Results

In the following we present the results of our research questions, as defined in
Sect. 4.

5.1 RQ1

The results of this research question include the relevance ratings of the 11
quality characteristics by the interviewees. In Fig. 3, we show the rating results
for each use case as well as the average rating for each quality characteristic.
As shown in the illustration, the interviewees considered trustworthiness, func-
tional suitability, and reliability as the most important quality characteristics
for human-AI teaming.

Figure 4 analyzes if the relevance assessments of the quality characteristics
are also influenced by the stakeholder role (cf. Sect. 2.4) of the interviewee. As we

7.6

6.0

8.1

11.4

7.5

7.7

3.9

10.9

10.8

16.4

9.8

Auditability

Compatibility

Explicability

Functional
Suitability

Maintainability

Performance
Efficiency

Portability

Reliability

Security

Trustworthiness

Usability

0 10 20 30
Points

Q
ua

lit
y

C
ha

ra
ct

er
is

tic

Use Case UC1 UC2 UC3

Fig. 3. Relevance assessments of the quality characteristics (per use case).

Quality Characteristics for Human-AI Teaming 11

can see, each quality characteristic has a different relevance to each stakeholder
role. In the following, we present the two quality characteristics rated most rel-
evant for each stakeholder role, with the average rating in brackets. Software
Scientist (SS): Performance Efficiency (17.5) and Maintainability (15); Data
Scientist: (SS): Reliability (15) and Trustworthiness (11.7); Data Protection
Officer (DPO): Trustworthiness (30) and Security (25); Machine Operator
(MO): Trustworthiness (25) and Usability (10); Production Line Manager
(PLM): Functional Suitability/Trustworthiness (ex aequo 18.3) and Reliabil-
ity (10.7). In order to assess the dispersion of the relevance assessments, we
finally calculated the standard deviation per quality characteristic: Trustwor-
thiness (9.29), Maintainability (6.12), Security (6.04), Functional Suit-
ability (6.02), Performance Efficiency (5.89), Reliability (5.71), Compat-
ibility (5.57), Auditability (5.00), Explicability (4.86), Usability (4.84),
Portability (3.39). In this context, the standard deviation can serve as a basic
indicator of consensus or disagreement among the interviewees about the rele-
vance of a quality characteristic.

5.2 RQ2 and RQ3

Following, we summarize key success criteria for human-AI teaming in smart
manufacturing and metrics for evaluating them for each stakeholder role.

Data Protection Officer (DPO): The interviewees mentioned (a) Traceabil-
ity of data processing, (b) Ensuring operator anonymity, and c) Ensuring oper-
ator and machine data confidentiality as key success criteria. We consider these
identified success criteria to be functional requirements and did not formulate
metrics for them.

Table 1. Key success criteria and metrics for data scientists.

UC Key success criteria Metrics

1–3 Extensibility of data sources –

1–3 Customizability of dashboards –

1–3 Interoperability with explainable AI frameworks –

3 Reliable production scene recognition Scene recognition accuracy

3 Reliable operator posture recognition Operator posture recognition accuracy

Software Scientist (SS): The condensed two key success criteria for this role
cover a) Monitoring of realtime and historical production data, and b) Cus-
tomizability of dashboards. Similary to the previous role, we regard these success
criteria as functional requirements and abstained from formulating metrics.

12 P. Haindl et al.

Functional Suitability Trustworthiness

Usability Security Reliability

Auditability Performance Efficiency Explicability

Portability Compatibility Maintainability

0 10 20 30 0 10 20 30

0 10 20 30

MO
DPO

DS
PLM

SS

MO
DPO

DS
PLM

SS

MO
DPO

DS
PLM

SS

MO
DPO

DS
PLM

SS

Points

R
ol

e

Fig. 4. Relevance assessments of the quality characteristics (per stakeholder role).

Data Scientist (DS): In Table 1 we enlist the condensed key success criteria
from the perspective of data scientists. Similarly to the previous roles, not for
all identified criteria meaningful metrics can be defined.

Machine Operator: For this role, we identified eight key success criteria and
seven metrics for their evaluation. As shown in Table 2, the criteria and metrics
tend to focus on time spans for failure detection and notification, as well as idle
(waiting) times for either the machine or operator.

We use the frequency of particular unfavorable postures taken by the operator
within the manufacturing process to assess the ergonomic risk. In this context,
the notion of unfavorable postures is taken from workplace safety methods (e.g.,
WISHA Caution Zone Checklist [27], RULA [18], REBA [10], OWAS [14]). This
includes, for example, awkward postures, heavy hand forces, repetitive motions,

Quality Characteristics for Human-AI Teaming 13

Table 2. Key success criteria and metrics for machine operators.

UC Key success criteria Metrics

1 Reduction of scrap rate Scrap rate

1 Shortening of production cycle time Production cycle time

1 Reliable prediction of faulty parts Faulty part prediction
accuracy

1 Facilitating root cause analysis –

2 Realtime detection of product quality deviations Time between product
part analysis and
prediction result

2 Realtime notification of production failures Time between detection
and notification of
production failures

3 Prevention of ergonomic risk Freq. of unfavorable
operator postures

3 Improvement of operator efficiency Operator idle time

Table 3. Key success criteria and metrics for production line managers.

UC Key success criteria Metrics

1 Reduction of scrap rate Scrap rate

1 Shortening of production cycle time Production cycle time

1 Reliable prediction of faulty parts Faulty part prediction accuracy

1–3 Improvement of OEE OEE

2 Realtime failure prediction Time between product part
analysis and failure notification

2 Shortening of machine downtimes Machine downtime

2 Shortening of machine idle times Machine idle time

3 Prevention of ergonomic risk Frequency of unfavorable operator
postures

3 Improvement of OLE OLE

3 Increasing operator satisfaction Operator satisfaction score

repeated impacts on the limbs, heavy or frequent lifting, and moderate to high
hand-arm vibrations.

Production Line Manager (PLM): As depicted in Table 3, the majority of
success criteria for this role focus on maximizing efficiency and effectiveness in
the production process.

In this regard, Overall Equipment Effectiveness (OEE) is used to determine
how well machines are utilized in comparison to their potential. Similarly, Overall

14 P. Haindl et al.

Labor Effectiveness (OLE) quantifies the utilization, performance, and quality
of the human workforce in the manufacturing process. In order to measure the
satisfaction of the machine operator, we define the Operator Satisfaction Score
similarly to the System Usability Score (SUS) [2,3]. It measures operator sat-
isfaction with specific aspects of the manufacturing process using Likert scales.
This shall facilitate detecting changes in operator satisfaction as a result to
changes in the production process.

6 Discussion

From the perspective of the use cases, the quality characteristics related to the
SQuaRE standard [13], portability, compatibility, and maintainability were rated
as least relevant. Out of the three AI-specific quality characteristics, the inter-
viewees rated auditability as the least important. Also it can be noted that the
relevance of each quality characteristic is assessed differently for each use case.
The use cases for parameter optimization (UC2) and large-scale parts assembly
(UC3) directly affect the manufacturing process, whereas the use case for quality
inspection (UC1) only supports the machine operator during quality inspection.
The assessment results confirm this slightly different objective of the use cases,
with functional suitability and security ranking less important for UC1 than for
UC2 and UC3. However, we cannot identify a generic pattern that describes the
connection between the use cases and their impact on the relevance assessments
of each quality characteristic.

The qualitative analysis of the interview responses revealed that some of the
key success criteria are more closely related to functional requirements than to
quality (non-functional) requirements. Broy and Glinz [6,7] already pointed out
that there is often a lack of clarity in practice regarding the difference between
functional and quality requirements. Unlike functional requirements, however,
quality requirements can also be assessed by evaluating the extent to which they
have been met. Therefore, we only defined metrics for key success criteria that
are implicitly linked to quality requirements.

7 Threats to Validity

Different interpretations of the quality characteristics by the interviewees under-
mine the construct validity of this study, which is primarily due to the fact that
they have different roles and experiences. We tried to mitigate this threat by
showing each interviewee a uniform definition of the quality characteristics that
did not require any specialized knowledge. In addition, each interviewee was
asked to raise any questions prior to the interview so that we could clarify any
ambiguities. We also considered the role of each interviewee within the company
when summarizing the interview answers, so we could determine from what per-
spective and with what intent each statement was delivered.

Because our research project focuses on the applicability of AI in smart
manufacturing, the greatest threat to internal validity can be observed among

Quality Characteristics for Human-AI Teaming 15

interviewees, who tend to emphasize exclusively the AI-related quality charac-
teristics. In our opinion, however, this threat is negligible, since as soon as we
noticed this trend, we made the interviewee aware that overemphasizing one
quality characteristic may result in underestimating the significance of others.
In addition, only 100 points were available to distribute among the quality char-
acteristics to reflect their relative importance.

As a final point, we recognize that the small sample size of interviewees
in total might undermine the external validity of our study. To mitigate this
threat, we conducted interviews with different companies and with interviewees
who hold different roles. Despite this, we see a threat to the generalizability of
the results to other industries due to the functional and quality requirements
their products must meet.

8 Conclusion and Future Work

This paper presented the results of an interview-based case study to examine
the relevance of 11 quality characteristics for human-AI teaming in smart man-
ufacturing. The quality characteristics comprised the 11 characteristics of the
ISO 25010:2011 standard for software quality (SQuaRE) and 3 AI-specific qual-
ity characteristics such as trustworthiness, explicability, and auditability. In the
frame of an international research project, we develop an AI-based software plat-
form that shall facilitate the cooperation between machine operators and manu-
facturing systems. For the presented case study, we conducted 14 interviews with
stakeholders working in automotive industry, wind power plant assembly, and
software development for AI-based software systems to assess the individual rel-
evance of the 11 quality characteristics. Therefore, they were asked to distribute
100 points across the quality characteristics according to their relevance.

The interviewees rated trustworthiness, functional suitability, reliability, and
security as the most important quality characteristics, and portability, com-
patibility, and maintainability as the least important. Furthermore, the results
indicate consensus regarding the relevance of the quality characteristics among
interviewees with the same role. However, we also recognized that the relevance
of the quality characteristics varies according to the concrete use case for the
prospective software platform. Accordingly, we identified the improved produc-
tion cycle efficiency, lower faulty parts and scrap, and reduced ergonomic risks
as the key success criteria for human-AI teaming in smart manufacturing. The
time span for detecting deviations (product or process quality), Overall Equip-
ment Effectiveness (OEE), Overall Labor Effectiveness (OLE), the accuracy of
fault prediction and scene recognition, and the accuracy of operator posture
recognition are the most relevant metrics for evaluating these criteria.

Future research should focus on operationalizing these quality characteris-
tics so that they can be continuously monitored during operation of AI-based
smart manufacturing systems. In addition, an empirical study on the relevance of
these quality characteristics is recommended after the interviewees have acquired
experience with the prospective software platform.

16 P. Haindl et al.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement number
957402.

References

1. Barbacci, M.R., Ellison, R.J., Lattanze, A., Stafford, J.A., Weinstock, C.B., Wood,
W.: Quality Attribute Workshops (QAWs), 3rd edn (2003)

2. Brooke, JDCUVK.: SUS: A ’Quick and Dirty’ Usability Scale. In: Usability Eval-
uation In Industry. CRC Press, Boca Raton (1996)

3. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)
4. Felderer, M., Ramler, R.: Quality assurance for AI-based systems: overview and

challenges (Introduction to Interactive Session). In: Winkler, D., Biffl, S., Mendez,
D., Wimmer, M., Bergsmann, J. (eds.) SWQD 2021. LNBIP, vol. 404, pp. 33–42.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65854-0 3

5. Fujii, G., et al.: Guidelines for quality assurance of machine learning-based artificial
intelligence. Int. J. Software Eng. Knowl. Eng. 30, 1589–1606 (2020)

6. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference (RE 2007), pp. 21–26 (2007)

7. Glinz, M.: Rethinking the notion of non-functional requirements. In: Proceedings of
the Third World Congress for Software Quality (3WCSQ 2005), vol. 2, pp. 55–64.
Munich, Germany (2005)

8. Habibullah, K.M., Horkoff, J.: Non-functional requirements for machine learning:
understanding current use and challenges in industry. In: 2021 IEEE 29th Interna-
tional Requirements Engineering Conference (RE), pp. 13–23 (2021)

9. Haindl, P., Buchgeher, G., Khan, M., Moser, B.: Towards a reference software
architecture for human-AI teaming in smart manufacturing. In: 2022 IEEE/ACM
44th International Conference on Software Engineering: New Ideas and Emerg-
ing Results (ICSE-NIER), pp. 96–100 (2022). https://doi.org/10.1109/ICSE-
NIER55298.2022.9793509

10. Hignett, S., McAtamney, L.: Rapid entire body assessment (REBA). Appl. Ergon.
31(2), 201–205 (2000)

11. Horkoff, J.: Non-functional requirements for machine learning: challenges and new
directions. In: 2019 IEEE 27th International Requirements Engineering Conference
(RE), pp. 386–391 (2019)

12. Ishikawa, F., Matsuno, Y.: Evidence-driven requirements engineering for uncer-
tainty of machine learning-based systems. In: 2020 IEEE 28th International
Requirements Engineering Conference (RE), pp. 346–351 (2020)

13. ISO/IEC 25010: ISO/IEC 25010:2011, Systems and Software Engineering - Sys-
tems and Software Quality Requirements and Evaluation (SQuaRE) - System and
Software Quality Models (2011)

14. Karhu, O., Kansi, P., Kuorinka, I.: Correcting working postures in industry: a
practical method for analysis. Appl. Ergon. 8(4), 199–201 (1977)

15. Khan, A., Siddiqui, I.F., Shaikh, M., Anwar, S., Shaikh, M.: Handling non-fuctional
requirements in IoT-based machine learning systems. In: 2022 Joint International
Conference on Digital Arts, Media and Technology with ECTI Northern Section
Conference on Electrical, Electronics, Computer and Telecommunications Engi-
neering), pp. 477–479 (2022)

https://doi.org/10.1007/978-3-030-65854-0_3
https://doi.org/10.1109/ICSE-NIER55298.2022.9793509
https://doi.org/10.1109/ICSE-NIER55298.2022.9793509

Quality Characteristics for Human-AI Teaming 17

16. Kuwajima, H., Yasuoka, H., Nakae, T.: Engineering problems in machine learning
systems. Mach. Learn. 109(5), 1103–1126 (2020). https://doi.org/10.1007/s10994-
020-05872-w

17. Lenarduzzi, V., Lomio, F., Moreschini, S., Taibi, D., Tamburri, D.A.: Software
quality for AI: where we are now? In: Winkler, D., Biffl, S., Mendez, D., Wimmer,
M., Bergsmann, J. (eds.) SWQD 2021. LNBIP, vol. 404, pp. 43–53. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-65854-0 4

18. McAtamney, L., Nigel Corlett, E.: RULA: a survey method for the investigation
of work-related upper limb disorders. Appl. Ergon. 24(2), 91–99 (1993)

19. Phuyal, S., Bista, D., Bista, R.: Challenges, Opportunities and future directions of
smart manufacturing: a state of art review. Sustain. Futures 2, 100023 (2020)

20. Pinto, A.: Requirement specification, analysis and verification for autonomous sys-
tems. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 1315–
1318 (2021)

21. Qu, Y.J., Ming, X.G., Liu, Z.W., Zhang, X.Y., Hou, Z.T.: Smart manufacturing
systems: state of the art and future trends. Int. J. Adv. Manuf. Technol. 103(9),
3751–3768 (2019)

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Soft. Eng. 14(2), 131–164 (2009)

23. Siebert, J., et al.: Towards guidelines for assessing qualities of machine learning Sys-
tems. In: Shepperd, M., Brito e Abreu, F., Rodrigues da Silva, A., Pérez-Castillo, R.
(eds.) QUATIC 2020. CCIS, vol. 1266, pp. 17–31. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58793-2 2

24. Sutcliffe, A.: Scenario-based requirements engineering. In: Proceedings. 11th IEEE
International Requirements Engineering Conference, vol. 2003, pp. 320–329 (2003)

25. Sutcliffe, A., Maiden, N., Minocha, S., Manuel, D.: Supporting scenario-based
requirements engineering. IEEE Trans. Software Eng. 24(12), 1072–1088 (1998)

26. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspec-
tives from data scientists. In: 2019 IEEE 27th International Requirements Engi-
neering Conference Workshops (REW), pp. 245–251 (2019)

27. Washington state department of labour industries: hazard zone checklist (2022).
https://lni.wa.gov/safety-health/ docs/HazardZoneChecklist.pdf. Accessed 31
May 2022

28. Yin, R.: Case Study Research and Applications: Design and Methods. SAGE Pub-
lications Inc, Los Angeles, 6th edn. (2017)

https://doi.org/10.1007/s10994-020-05872-w
https://doi.org/10.1007/s10994-020-05872-w
https://doi.org/10.1007/978-3-030-65854-0_4
https://doi.org/10.1007/978-3-030-58793-2_2
https://doi.org/10.1007/978-3-030-58793-2_2
https://lni.wa.gov/safety-health/_docs/HazardZoneChecklist.pdf

Architectural Decisions in AI-Based Systems:
An Ontological View

Xavier Franch(B) , Silverio Martínez-Fernández , Claudia P. Ayala ,
and Cristina Gómez

Universitat Politècnica de Catalunya, Barcelona, Spain
{xavier.franch,silverio.martinez,claudia.ayala,

cristina.gomez}@upc.edu

Abstract. Architecting AI-based systems entails making some decisions that are
particular to this type of systems. Therefore, it becomes necessary to gather all
necessary knowledge to inform such decisions, and to articulate this knowledge
in a form that facilitates knowledge transfer among different AI projects. In this
exploratory paper, we first present themain results of a literature survey in the area,
and then we propose a preliminary ontology for architectural decision making,
which we exemplify using a subset of the papers selected in the literature review.
In the discussion, we remark on the variety of decision types and system contexts,
highlighting the need to further investigate the current state of research and practice
in this area. Besides, we summarize our plans to move along this research area by
widening the literature review and incorporating more AI-related concepts to this
first version of the ontology.

Keywords: AI-based systems · Software architecture · Architectural decisions ·
Ontologies · Quality attributes · Architectural Views · UML class diagrams

1 Introduction

The conception, development and deployment of software systems that embed artificial
intelligence (AI), what we call AI-based systems, has become commonplace in the last
decade. This is mostly due to the increased computer processing power, availability of
larger datasets, and constant formulation of better AI algorithms which has advanced
the AI field to unprecedented levels of adoption [2]. Classical software engineering
disciplines have been used to produce AI-based systems, from requirements engineering
to testing, remarkably including software design principles, methods and techniques to
deliver software architectures for AI-based systems [17].

Given that an AI-based system is nothing else than a particular type of software
system, it can be thought that the whole discipline of software design and software
architectures apply. However, the literature has reported significant challenges that are
particular to architecting AI-based systems, related to design principles, design quality
and software structure [17]. As a response to these challenges, a number of research
approaches have formulated design strategies to cope with specific quality attributes

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 18–27, 2022.
https://doi.org/10.1007/978-3-031-14179-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_2&domain=pdf
http://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0001-9928-133X
http://orcid.org/0000-0002-6262-3698
http://orcid.org/0000-0002-3872-0439
https://doi.org/10.1007/978-3-031-14179-9_2

Architectural Decisions in AI-Based Systems 19

and concrete AI infrastructure proposals [23]. However, these research approaches take
a pragmatic perspective, focusing more on resolving the problem at hand rather than
considering the particular problem as an instance of a more generic situation. This fact
hinders knowledge transfer from one experience to another and makes it difficult to
decide whether a solution formulated in one paper applies to a new problem.

In order to overcome this challenge, in this exploratory paper we present our ongoing
research towards the formulation of a unifying conceptual framework aimed at defining
the concepts that characterise the process of architectural decision-making [22]. Through
a literature review upon a set of 41 papers in the field of software design and software
architectures in AI-based systems, we extract the main concepts relevant to architectural
decisions for this type of systems, and propose a preliminary ontology that captures the
knowledge that is relevant to that process. We finalise the paper with a research agenda
for this line of investigation.

2 Background

2.1 Architecting AI-Based Systems

Software design and architecture of AI-based systems, like other software development
activities, differs on AI-based systems with respect to traditional software systems. As a
result, there has recently been emerging research on software architecture for AI-based
systems, as well as dedicated events (e.g., CAIN@ICSE, SAML@ECSA).

Two of themost studied topics have been design strategies to cope with specific qual-
ity attributes (e.g., classical attributes such as safety and reliability [11], or emerging
attributes such as energy efficiency [7]), and AI infrastructure proposals (e.g., for sharing
models as microservices) [17]. Serban et al. argue that traditional software architecture
challenges (e.g., component coupling) also play an important role when using AI com-
ponents; along with new AI specific challenges (e.g., the need for continuous retraining)
[20]. They establish a link between architectural solutions and software quality attributes,
to provide twenty architectural tactics used to satisfy individual quality requirements of
systems with ML components. Furthermore, Yokoyama et al. have studied architectural
patterns for AI systems [25].

2.2 Architectural Decisions

Architectural decision-making is a well-established research area in the field of software
architecture. In a recent semi-systematic literature review, Bhat et al. report over 250
publications on the area, with a clear increase from the year 2005 [3]. Research proposals
can be arranged according to several dimensions, mainly: 1) what are the drivers that
influence architectural decisions (e.g., quality attributes [1]), 2) in which type of system
architectural decisions apply (e.g., microservice APIs [26]).

In our paper, we are interested in the study of architectural decisions on AI-based
systems. Studies in this area are scarce. A notable exception is the work byWarnett et al.,
which provides initial industrial evidence of architectural decisions faced bypractitioners
when designing an ML pipeline [24]. While the information provided in this paper is

20 X. Franch et al.

really valuable, it is focused in one particular AI context (ML pipelines) and does not
articulate the gathered knowledge into a comprehensive framework, which is our final
aim in this exploratory paper.

3 Research Questions and Method

The purpose of this paper is to present the main ideas, current research and future
agenda for our research on AI-based system architectural decision making. To this aim,
we formulate the following research questions:

RQ1. What are the concepts that influence architectural decisions in AI-based
systems?

RQ2. How can we specify a conceptual framework for these concepts and
decisions?

With RQ1, we want to elicit and characterise the concepts that need to be considered
when designing AI-based systems. We expect these factors to be related to classical
quality attributes such as time efficiency or accuracy [11], but also to emergent concerns,
e.g. related to green AI [19].

To answer this research question, we use the result of a recent systematic mapping
study on software engineering practices for AI-based systems [17], which includes soft-
ware design as one of the SWEBOK knowledge areas. In addition, we consider the
contributions presented in two recent venues, namely the 1st International Workshop
on Software Architecture and Machine Learning1 (SAML) and the March 2022 special
issue on AI and software engineering published in IEEE Computer2. We analysed the
resulting 41 papers (34 papers from [17] related to software design, and 5 papers from
the SAML workshop and 2 architecture-related papers in the IEEE Computer issue)
and extracted relevant information that we use to respond to RQ1. In more detail: (i)
we split the 41 papers among the four authors at approximately equal share; (ii) every
author read and extracted data of the papers assigned to them; (iii) we met at weekly
basis and commented the result of the work in that week, consolidating the analysis and
converging into a shared understanding; (iv) as we advanced, we synthesised the result
in a data extraction form represented with a spreadsheet. It is worth noting that some
of these 41 papers do not present concrete proposals because they are empirical studies
reporting current research or practice; therefore, we were not able to extract information
related to RQ1 from them.

For answering RQ2, we synthesised the knowledge gained from this extracted infor-
mation using an ontology to present the concepts and their relationships. Ontologies are
a widely used artefact used for knowledge representation and management [13], which
is the primary goal of our work. In the area of architectural decisions, ontologies are
widely used to represent architectural knowledge [10, 18]. Therefore, it seems a natural

1 https://saml2021.disim.univaq.it/.
2 https://www.computer.org/csdl/magazine/co/2022/03.

https://saml2021.disim.univaq.it/.
https://www.computer.org/csdl/magazine/co/2022/03.

Architectural Decisions in AI-Based Systems 21

choice for our goal. In this exploratory paper, we represent ontologies in a lightweight
form, using UML class diagrams [14] and a glossary of terms. We define the terms
relying on standards and former papers as much as possible, although in some cases we
have opted by providing our own definitions, better aligned to the pursued objective of
the paper.

4 An Ontology for AI-Based Systems Architectural
Decision-Making

Table 1 compiles the main concepts emerging from our analysis, and Fig. 1 presents
a class diagram relating these concepts. Central to the ontology is the basic concept
of Architectural Decision, which we adopt from De Boer et al. [4]. Important to this
definition is the understanding that an architectural decision may call for the need of
subsequent architectural decisions. Architectural decisions can be classified into one
Decision Type and may be constrained in their applicability to one or more Contexts.
We do not impose a closed enumeration of neither decision types nor contexts; instead
we foresee that these types will naturally emerge as the knowledge on AI-based systems
architecture grows.

Table 1. Concepts of the ontology.

Concept Definition Source

Architectural Decision Decision that is assumed to
influence the architectural
design of an AI-based system
and can be enforced upon this
architectural design, possibly
leading to new concerns that
result in a need for taking
subsequent decisions

[4]

Decision Type A type in which an architectural
decision may be classified

From authors

Context Any information related to an
AI-based system that can be
used to characterise the
applicability of an architectural
decision

Adapted and simplified from
[9]

Quality Attribute Measurable physical or abstract
property of an AI-based system
that bears on its ability to satisfy
stated and implied needs

Adapted from [11]

(continued)

22 X. Franch et al.

Table 1. (continued)

Concept Definition Source

Impact The degree in which an
architectural decision relates to
a quality attribute

From authors

Architectural Element Any type of element that can
appear in an architecture, either
an abstract concept (e.g., an
architectural style) or some
binary object (e.g., a software
component or a data file)

From authors

AI-related Architectural
Element

A class of Architectural Element
that embeds or represents AI
knowledge, e.g. an ML model,
an implemented AI algorithm or
a dataset

From authors

Architectural View Representation of the whole
system from the perspective of a
related set of concerns

From [12]

Architectural decisions are taken according to their impact on a number of Quality
Attributes that are considered relevant for the AI-based system under development. To
measure the impact of an architectural decision, we use the qualitative scale proposed in
the iStar language [8] with four scales ranging from strong positive influence (“make”)
to strong negative influence (“break”). On the other hand, an architectural decision
affects a number of Architectural Elements (at least one), which can eventually be AI-
based Architectural Elements, typically embedding some ML model or offering some
AI algorithm (maybe in the form of a library) or even a dataset. Components are related
to a particular Architectural View, since architectural decisions may be made at different
levels of abstraction. Types of architectural elements and views are left open, subject to
further investigation.

The ontology recognizes the hierarchical nature of architectural decisions, architec-
tural elements and quality attributes by means of recursive many-to-many associations
in the class diagram.

Table 2 exemplifies the conceptual framework on a subset of the 41 selected papers,
by giving values to the concepts represented in the class diagram. We describe in more
detail three particular cases below.

Example 1. Kumar et al. [16] propose an AI-system to decide the best location of
chargers for electric vehicles based on spatiotemporal data from citizens’ vehicles. Of
course, this raises privacy concerns. The paper wants to exploit the fact that vehicles
currently have enough computational power to train AI models.

What We Learnt. Kumar et al. start the architectural decision-making process by apply-
ing the design principle (a decision type) of distributing theAImodel among the vehicles,

Architectural Decisions in AI-Based Systems 23

Fig. 1. Class diagram relating all concepts of the ontology

using the cars for privacy-sensitive calculations. This decision implies other subsequent
decisions, for instance the need of incorporating technologies over a Blockchain infras-
tructure to keep track of updates in data through a logging software component (sup-
porting accountability then). As it stands out from the study, the solution given works
for a particular context, namely highly distributed systems, from which the smart city
design (in relation to smart vehicles) is an exemplification in the paper.

Example 2. Yokohama [25] addresses the problem of ensuring stability of the system
when errors occur, in the context of AI-based systems organised according to a three-
layered architecture.

What We Learnt. The solution is based on a simple design principle, namely keeping
separated AI-components from non-AI-components. Compared to the previous case,
the solution is close to the design level and assumes one particular way to structure the
overall architecture of the system (three layers). This also makes it possible to get a
domain-independent solution. Later in the paper, they elaborate their design principle
into a concrete architecture pattern, an AI-aware 3-layer architecture pattern.

Table 2. Ontology in some of the selected papers for our study.

Ref Architectural
decision

Decision type Context Quality attribute Impact Architectural
element

Architectural
layer

[16] Distribute
model

Design
principle

Highly
distributed
systems

Privacy,
Resilience

Supports Vehicle Physical

Log updates New
technology

Accountability Blockchain Component

Manage
access

Scalability

[25] Keep AI and
non-AI
components
separated

Design
principle

N/A Stability Supports Three layers Logical

3-layer
AI-aware
pattern

Architectural
pattern

Subsystem

[5] Component
replacement

Architectural
tactic

Self-adaptation Modularity Supports ML
component

Component

Retrain Maintainability Logical

24 X. Franch et al.

Example 3. Casimiro et al. developed a preliminary framework aimed to self-adapt
systems that rely on AI components [5].

What We Learnt. Theyoffer five adaptation tactics forAI-based systems.Wediscuss two
of them. First, the “component replacement” tactic, consisting of replacing an under-
performing component by one that better matches the current environment (dealing
with concept drift). While this is fast and inexpensive, it may not be available in all
scenarios. Second, the “retrain” tactic, which uses new data for retraining and updating
themachine learningmodel’s hyper-parameters. This is a generic and robust method, but
effective only once a relatively large number of instances of the new data are available,
computationally intensive, and with a significant increase of the accuracy and latency of
the retrain process.

5 Discussion and Research Agenda

The work reported in this paper is answering two research questions. With respect to
RQ1, this preliminary literature review has uncovered a number of remarkable facts:

• The types of architectural decisions are diverse and at different levels of abstraction
and detail. In Table 2, we have provided some examples, but there are more, e.g.
design pattern or architectural style. Eliciting and categorising these types is utterly
important for our research goal.

• Similarly, knowledge about the different contexts and architectural levels in which
architectural decisions are made need to be further elicited and consolidated. Con-
cerning the context, we expect research papers to include a proper reflection on the lim-
itations of applicability of their findings, through an appropriate statement of external
validity threats.

• While the relevance of quality attributes as decisional drives has become evident in
our literature study, papers usually focus on one particular attribute supported by
their approach, but they only occasionally discuss negative impact on other attributes.
Quality trade-off analysis is well-known to be crucial in architectural decision-making
[6], therefore we can expect research in this direction once the area becomes more
mature.

• The papers that have surveyed focus on the static view of architecture decisions but
they do not include much information about dynamic (process, using Kruchten’s 4+
1 model [15]) view. We also expect this aspect to be targeted in future works because
it is of uttermost importance when deciding the most appropriate architecture for the
system at hand.

On its turn, some points related to the ontology are worth to mention:

• At a first glance, the ontology seems to incorporate very little AI-related aspects. In
fact, looking at the class diagram currently used for this preliminary proposal, only
a subclass reflects our focus on AI-based systems. The reason is that, currently, AI-
related concepts emerge in the instance level of the class diagram, as we can see in
Table 2.

Architectural Decisions in AI-Based Systems 25

• Given the need to consolidate the current knowledge, as stated above in relation to
RQ1, we have chosen not to predefine the values of the different classes e.g. using
enumerate values (as we have done with the Impact type, which is the only exception
to this rule since it is not really related to theAI domain but to the architectural decision
domain only).

From this discussion, we highlight a few points that characterise our research agenda:

• Widen our literature review. The systematic mapping that we have used as baseline
includes papers only until March 2020. Given the ever-growing plethora of research
contributions in the AI field, we can expect a good number of papers that we have not
considered yet.

• Complement the literature review with more practice-oriented knowledge sources, in
the form of grey literature and interviews with practitioners.

• Consolidate the architectural knowledge from the literature review. As commented
above, we would like to complete a catalogue of decision types, contexts, qual-
ity attributes and architectural views which gather all the knowledge related to
architecting AI-based systems.

• Refine the ontology to include more specific and low-level AI concepts. This means
reflecting in the ontology the consolidationmentioned in the point above. So, for exam-
ple, we could specialise the concept of AI-relatedArchitectural Element including e.g.
Data Ingestion or ML model as subtypes.

6 Conclusions

This exploratory paper presents a summary of concepts related to architectural decisions
in AI-based systems, and articulates them in the form of an ontology. This proposed,
preliminary ontology can help to improve knowledge transfer among projects by har-
monising concepts and actions used in diverse experiences, thus supporting (i) better
understanding of the effects and implications of design decisions in different contexts;
(ii) consolidation of architectural knowledge in specific domains and the subsequent
definition of useful architectural and design patterns for AI-based systems. We plan to
apply to our research agenda to further deepen our understanding and conceptualization
of the AI-based systems architectural decision-making area.

Acknowledgment. This paper has been funded by the Spanish Ministerio de Ciencia e Inno-
vación under project/funding scheme PID2020-117191RB-I00/AEI/https://doi.org/10.13039/501
100011033.

References

1. Ameller, D., Galster, M., Avgeriou, P., Franch, X.: A survey on quality attributes in service-
based systems. Softw. Qual. J. 24(2), 271–299 (2016)

2. Anthes, G.: Artificial intelligence poised to ride a new wave. Commun. ACM 60(7), 19–21
(2017)

https://doi.org/10.13039/501100011033

26 X. Franch et al.

3. Bhat, M., Shumaiev, K., Hohenstein, U., Biesdorf, A., Matthes, F.: The evolution of archi-
tectural decision making as a key focus area of software architecture research: a semi-
systematic literature study. In: Proceedings of the IEEE International Conference on Software
Architecture (ICSA), pp. 69–80 (2020)

4. de Boer, R.C., Farenhorst, R., Lago, P., van Vliet, H., Clerc, V., Jansen, A.: Architectural
knowledge: getting to the core. In: Overhage, S., Szyperski, C.A., Reussner, R., Stafford, J.A.
(eds.) QoSA. LNCS, vol. 4880, pp. 197–214. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77619-2_12

5. Casimiro, M., et al.: Self-adaptation for machine learning based systems. In: Proceedings
of the 1st International Workshop on Software Architecture and Machine Learning (SAML)
(2021). Paper 6

6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison-Wesley (2001)

7. Creus, R., Martínez-Fernández, S., Franch, X.: Which design decisions in AI-enabled mobile
applications contribute to greener AI? CoRR abs/2109.15284 (2021)

8. Franch, X., López, L., Cares, C., Colomer, D.: The i* framework for goal-oriented modeling.
In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling,
pp. 485–506. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39417-6_22

9. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness.
In: Proceedings of theACMWorkshop on theWhat,Who,Where,When andHow of Context-
Awareness (2000)

10. Di Noia, T., et al.: A fuzzy ontology-based approach for tool-supported decision making in
architectural design. Knowl. Inf. Syst. 58, 83–112 (2019)

11. ISO/IEC 25010:2011: Systems and software engineering—Systems and software Quality
Requirements and Evaluation (SQuaRE)—System and software quality models (2011)

12. ISO/IEC 42010: Systems and Software engineering - Recommended Practice for Architec-
tural Description of Software-intensive Systems (2007)

13. Jurisica, I., Mylopoulos, J., Yu, E.: Ontologies for knowledge management: an information
systems perspective. Knowl. Inf. Syst. 6(4), 380–401 (2004). https://doi.org/10.1007/s10115-
003-0135-4

14. Kogut, P., et al.: UML for ontology development. Knowl. Eng. Rev. 17(1), 61–64 (2002)
15. Kruchten, P.B.: The 4 + 1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
16. Kumar, A., Braud, T., Tarkoma, S., Hui, P.: Trustworthy AI in the age of pervasive

computing and big data. In: IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pp. 1–6 (2020)

17. Martínez-Fernández, S., et al.: Software engineering for AI-based systems: a survey. ACM
Trans. Softw. Methodol. 31(2), 1–59 (2022)

18. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural styles.
Inf. Softw. Technol. 51, 1739–1749 (2009)

19. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commun. ACM 63(12), 54–63
(2020)

20. Serban, V., Visser, J.: Adapting software architectures to machine learning challenges. In:
Proceedings of the 29th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER) (2022)

21. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented
Programming. Pearson Education (2002)

22. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE Softw. 22(2),
19–27 (2005)

23. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change software
development practices? IEEE Trans. Softw. Eng. 47(9), 1857–1871 (2019)

https://doi.org/10.1007/978-3-540-77619-2_12
https://doi.org/10.1007/978-3-319-39417-6_22
https://doi.org/10.1007/s10115-003-0135-4

Architectural Decisions in AI-Based Systems 27

24. Warnett, S.J., Zdun, U.: Architectural design decisions for the machine learning workflow.
IEEE Comput. 55(3), 40–51 (2022)

25. Yokoyama, H.: Machine learning system architectural pattern for improving operational sta-
bility. In: Proceedings of the IEEE International Conference on Software Architecture – Com-
panion Volume (ICSA-C), pp. 267–274 (2019)

26. Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., Lübke, D.: Guiding architectural
decision making on quality aspects in microservice APIs. In: Pahl, C., Vukovic, M., Yin, J.,
Yu, Q. (eds.) Proceedings of the International Conference on Service-Oriented Computing
(ICSOC), pp. 73–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_5

https://doi.org/10.1007/978-3-030-03596-9_5

Verification and Validation

An Empirical Study to Quantify the SetUp
and Maintenance Benefits of Adopting

WebDriverManager

Maurizio Leotta1(B) , Boni García2 , and Filippo Ricca1

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS),
Università di Genova, Genova, Italy

{maurizio.leotta,filippo.ricca}@unige.it
2 University Carlos III of Madrid, Madrid, Spain

boni.garcia@uc3m.es

Abstract. Test automation brings several benefits but also presents significant
problems that often force developers/testers to carry out tiring and costly man-
ual tasks. Among these tiring tasks while using Selenium WebDriver for testing
Web applications, driver management (i.e., version discovery, download, setup
and maintenance) ranks in a top position.

Recently, an open source Java library, namedWebDriverManager, that carries
out automatically the driver management process for Selenium WebDriver has
been proposed to alleviate the burden of the developers. This library appears to
be very promising but until now no one has experimentally evaluated its effec-
tiveness.

In this paper, we present an empirical study aimed at understanding whether
the use of WebDriverManager allows to reduce both initial and long-term setup
efforts of a multibrowser test suite.

The results are in favor of WebDriverManager as it allows an average sav-
ing of more than 33% of the time for an initial setup which translated annually
corresponds to many hours of bare manual driver management to which must be
added the hours for understanding that the outdated driver is the cause of the prob-
lems reported by the test suite. Having almost weekly, as we estimated, outdated
drivers brings also to a reduction in the perceived reliability of E2E test suites.
The adoption ofWebDriverManager can help to drastically reduce all these prob-
lems.

Keywords: E2E testing · Selenium WebDriver · Empirical study

1 Introduction

Selenium1 is an open source umbrella project devoted to web browser automation.
Although it can be used for automating different tasks in the browser, Selenium is
mainly used to carry out automated end-to-end (E2E) tests for web applications [7].

1 https://www.selenium.dev/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 31–45, 2022.
https://doi.org/10.1007/978-3-031-14179-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_3&domain=pdf
http://orcid.org/0000-0001-5267-0602
http://orcid.org/0000-0003-1808-8410
http://orcid.org/0000-0002-3928-5408
https://www.selenium.dev/
https://doi.org/10.1007/978-3-031-14179-9_3

32 M. Leotta et al.

A recent survey about software testing identified Selenium as the most valuable testing
framework nowadays, followed by JUnit and Cucumber [4].

Selenium WebDriver, the main component of Selenium, automates browsers by
providing an Application Programming Interface (API) in different programming lan-
guages and uses the native capabilities of each browser to support the automation. For
this reason, the execution of a Selenium WebDriver test suite requires an intermedi-
ate component, constituted by a binary file, called driver that is specific for a certain
browser’s version (e.g., Firefox 99.0). Thus, in order to run and keep a test suite updated
over time, it is necessary to download the driver corresponding to the browser ver-
sion and keep the versions browser-driver aligned during the natural evolution of the
browsers, indeed modern browsers automatically upgrade to the next stable version.
This alignment task is usually executed manually by developers and is even more tiring
(and costly) if the developed test suite is multi-browser.

In 2015, an open source Java library, named WebDriverManager2, able to carry
out automatically this driver management process for Selenium WebDriver test suites
has been released. Since then, it has become a well-known helper utility for Selenium
WebDriver developers using Java as language bindings [11].

Since this library appears to be very promising for reducing driver management
times, we decided to design an empirical study to evaluate the benefits deriving from its
usage (differently from us, García et al. [11] assessed, by means of a survey, the extent to
which WebDriverManager is adopted and used, and evaluated the WebDriverManager
API following Clarke’s usability dimensions). More in detail, by means of a controlled
experiment conducted with 25 MSc students in Computer Science, we measured the
time the participants took to setup a test suite with and without WebDriverManager.
Subsequently, using (1) the data deriving from this first part of the experiment and (2)
the number of driver versions actually released for each browser, we tried to estimate
the cumulative yearly effort required adopting and non-adopting WebDriverManager.

This paper is organized as follows: Sect. 2 presents the object of our experimental
study, that is WebDriverManager. Section 3 reports definition, design and settings of our
controlled experiment. Section 4 reports the results of the experiment. Finally, Sect. 5
summarizes related works and Sect. 6 concludes the paper.

2 WebDriverManager

The Selenium ecosystem is composed of three main core components, namely:

– Selenium WebDriver, which is a library for handling browsers via programming;
– Selenium Grid, which is a infrastructure that allows controlling remote browsers
installed in different nodes with Selenium WebDriver.

– Selenium IDE (Integrated Development Environment), which is a browser extension
that allows recording and replay of user interactions against web browsers.

Selenium WebDriver is considered the core component of Selenium. For this rea-
son, it is a common practice to use “Selenium” to refer to the library for web browser
automation. This paper uses “Selenium WebDriver” to refer to the library and “Sele-
nium” for the umbrella project or the ecosystem to avoid misleading.
2 https://bonigarcia.dev/webdrivermanager/.

https://bonigarcia.dev/webdrivermanager/

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 33

2.1 Selenium WebDriver

SeleniumWebDriver automates browsers by providing a cross-browser API in different
programming languages. The languages officially supported by the Selenium project
are five: Java, JavaScript, Python, C#, and Ruby. A very recent survey identified Java
as the preferred language binding for Selenium WebDriver, followed by Python and
JavaScript [8].

Selenium WebDriver uses the native capabilities of each browser to support the
automation. For this reason, a test script using the Selenium WebDriver API in order to
function correctly requires an intermediate component called driver in the Selenium jar-
gon. Each browser vendor provides a specific driver. For example, the driver to control
Chrome with SeleniumWebDriver is called chromedriver3, geckodriver4 for Firefox, or
msedgedriver5 for Edge.

In practice, a driver is a server-side component that receives incoming messages
from SeleniumWebDriver test scripts using a standard protocol called W3CWebDriver
[22]. This protocol is based on JSON messages over HTTP. The driver translates each
W3C WebDriver message to a native command that the browser can understand—such
as the DevTools protocol in Chromium-based browsers (such as Chrome and Edge) or
Marionette in Firefox. Therefore, the Selenium WebDriver architecture has three layers
composed by the test scripts using the Selenium WebDriver API, the driver, and the
browser.

2.2 Driver Management

A driver is a binary file that must be known by the test script using the Selenium
WebDriver API. To implement a Selenium WebDriver test script, a practitioner must
first resolve the proper driver required by Selenium WebDriver (e.g., chromedriver for
Chrome, geckodriver for Firefox, etc.). This process is known as driver management,
and it is composed of three main steps [11]:

1. Download. The first step is obtaining the proper driver to control a given browser.
The driver is a platform-dependent binary file (e.g., geckodriver for Windows).
Moreover, the driver version needs to be compatible with the underlying browser
version. For that reason, the user needs to find out the browser version and down-
load the correct driver version from its online repository (typically, checking the
driver documentation to select the appropriate version).

2. Setup. Once the driver is downloaded and available, it needs to be appropriately
configured in the Selenium WebDriver test scripts. For example, the driver’s abso-
lute path needs to be exported using a given system property before creating a
WebDriver object. The following snippet shows an example for Chrome in Linux
using Java:

System.setProperty("webdriver.chrome.driver", "/opt/chromedriver");
WebDriver driver = new ChromeDriver();

3 https://chromedriver.chromium.org/.
4 https://github.com/mozilla/geckodriver.
5 https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/.

https://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

34 M. Leotta et al.

3. Maintenance. Modern web browsers (such as Chrome, Firefox, or Edge) are some-
times called evergreen browsers. This term reflects a common feature of these
browsers that automatically and silently upgrade to the next stable version. Due to
this upgrade, the previously downloaded driver will need to be updated eventually
since the driver-browser compatibility is not satisfied in the long run.

Nowadays, the driver management process is mainly carried out manually [8]. This
manual activity has different inconveniences, such as:

– Development effort. Developers need to invest some time in discovering the browser
version and driver, download it, and make it available for test scripts.

– Lack of test portability. As explained above, the absolute driver path is required in
a Selenium WebDriver Java test script. As a result, the resulting test script cannot
be executed on a different machine, for example, in a Continuous Integration (CI)
server.

– Maintenance effort. To avoid a “mismatch problem” between the browser and the
driver, the user needs to keep track of the driver version. Otherwise, the execution of
then Selenium WebDriver test will fail in the long run. For example, with Chrome,
the message that is shown as a consequence of this error is the following: “this
version of chromedriver only supports chrome version N” (being N is the latest
version of Chrome supported by a particular version of chromedriver). As reported
periodically in StackOverflow6, this is a recurrent problem for Selenium WebDriver
users.

2.3 Automated Driver Management

To overcome the problems related to manual driver management and listed above, the
automation of this process through a helper utility namedWebDriverManager7 has been
proposed. WebDriverManager is an open source Java library that carries out the driver
management process (i.e., download, setup, and maintenance) for Selenium WebDriver
in a completely automated manner.

WebDriverManager is based on a resolution algorithm that automatically manages
the drivers required by each browser [11]. This algorithm implements the following
steps:

1. Browser version discovery. WebDriverManager uses an internal component called
commands database to execute this step. This database contains a list of shell com-
mands (in different operating systems) that allow discovering the browser versions
(e.g., google chrome --version in Linux).

2. Driver version discovery. To that aim, WebDriverManager uses another component
called versions database. This database stores the knowledge to keep the compati-
bility between the versions of browsers and drivers. Both commands and versions
database are automatically updated from an online repository. In this way, Web-
DriverManager always uses the latest knowledge database.

6 https://stackoverflow.com/search?q=this+version+of+chromedriver+only+supports+Chrome+version.
7 https://bonigarcia.dev/webdrivermanager/.

https://stackoverflow.com/search?q=this+version+of+chromedriver+only+supports+Chrome +version
https://bonigarcia.dev/webdrivermanager/

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 35

3. Driver download. WebDriverManager downloads the resolved driver, connecting
to the proper repository (e.g., chromedriver, geckodriver, msedgedriver, etc.). Web-
DriverManager stores the downloaded drivers in the local filesystem into a folder
called driver cache. This driver cache allows reusing the drivers. In addition, Web-
DriverManager uses a local properties file called resolution cache. Inspired by
the Domain Name System (DNS), this cache stores the relationship between the
resolved driver versions following a time-to-live (TTL) approach [21]. In subse-
quent invocations, the driver is considered fresh during the TTL (1 day by default).
When the TTL expires, the resolution algorithm is executed again. This mechanism
prevents the usage of outdated driver versions when the browser automatically gets
upgraded.

4. Driver path export. Finally, WebDriverManager exports the downloaded driver path
using the proper Java system property (e.g., webdriver.chrome.driver for
chromedriver).

WebDriverManager provides a fluent API based on a set of singletons (called man-
agers) to execute the above mentioned resolution algorithm. These singletons are acces-
sible through the WebDriverManager Java class. For instance, it is possible to
invoke the method chromedriver() to manage the driver required by Chrome, i.e.,
chromedriver, as follows:

WebDriverManager.chromedriver().setup();
WebDriver driver = new ChromeDriver();

WebDriverManager promises the following benefits for its users:

1. Development effort reduction. The drivers are downloaded automatically and trans-
parently, thanks to the automatic browser and driver discovery. In addition, and
thanks to the driver and resolution cache, the resolution algorithm does not affect
the overall test performance since the driver management is executed locally during
the TTL duration.

2. Portability. The resulting Selenium WebDriver test scripts that use WebDriverMan-
ager can be executed in different machines without any code change or extra config-
uration.

3. Maintainability. Since the resolution algorithm is executed at runtime, the driver
version is checked each time the test script runs. In this way, the driver maintenance
is also done automatically and transparently.

3 Experiment Definition, Design and Settings

Based on the Goal Question Metric (GQM) template [2], the main goal of our experi-
ment can be defined as follows: “Analyze the use of WebDriverManager with the pur-
pose of understanding if there is an impact w.r.t. the management efforts of test suites
(in particular due to download, setup, and maintenance of the drivers) from the point
of view of SQA Managers and Testers in the context of Junior Testers executing tasks of
test suites management.”

Thus, our research questions are:

36 M. Leotta et al.

RQ1. Initial Setup Effort. Does the effort required to setup a test suite project vary
when using WebDriverManager (or vice-versa) instead of Plain WebDriver (i.e., the
traditional setProperty mechanism to setup the drivers)?
RQ2. Annual Maintenance Effort. How the cumulative yearly effort varies in the time,
adopting WebDriverManager instead of Plain WebDriver, by considering several dif-
ferent releases of the application under test?

To quantitatively investigate the first research question, we measured the time the
participants took to setup the test suites using both Plain WebDriver and WebDriver-
Manager. It is important to note that this initial setup effort is part of the total develop-
ment effort of a testsuite. For the second research question instead, we evaluated how
many time a change in the test suites setup is required during a year (on average) to
compute the total time required. In both cases, the time is a proxy for measuring the
effort. With these two RQs we can understand the overall effort required for the entire
test suites management, i.e., both the test suites first setup and the subsequent mainte-
nance required when the browsers evolve.

The perspective is of SQA Managers and Testers interested in selecting the bet-
ter option to manage the libraries controlling the web browsers programmatically with
the final goal of improving testers productivity. The context of the experiment consists
of two sample test suites (i.e., the objects) both to be implemented with both Plain
WebDriver and WebDriverManager and of participants, 25 Computer Science master
students.

We conceived and designed the experiment following the guidelines by Wohlin
et al. [23]. Table 1 summarizes the main elements of the experiment. For replication
purposes, the experimental package has been made available: http://sepl.dibris.unige.it/
WebDriverManager.php.

Table 1. Overview of the experiment

Goal Analyse the use of Plain WebDriver and
WebDriverManager during test suites management to
understand if there is a difference in terms of required
efforts

Quality focus Effort in test suite management

Context Objects: two test suites

Participants: 25 MSc students in Computer Science

Null hypothesis No effect on effort (measured as time required to complete
the tasks)

Treatments Plain WebDriver andWebDriverManager

Dependent variable Time required to complete the tasks

In the following, we present in detail: treatments, objects, participants, design of the
experiment, hypotheses, variables and other aspects of the experiment.

http://sepl.dibris.unige.it/WebDriverManager.php
http://sepl.dibris.unige.it/WebDriverManager.php

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 37

Treatment. Our experiment has two treatments: “WD” (Plain WebDriver) or “WDM”
(WebDriverManager). Thus, the tasks require adopting, in the former (latter) case, the
Plain WebDriver (WebDriverManager) libraries.
Objects. The objects of the study are two sample test suites requiring to develop a sim-
ple “Hello World” multibrowser test case. In particular, the test case has to be executed
on different browsers: Firefox, Chrome, and Edge (for participants working on Linux
system, the latter was replaced8 by Opera). We provided the participants with two sim-
ilar Eclipse projects containing the code of the"Hello World" test case but with some
parts left blank: one project to be completed using WebDriverManager and the other
to be completed with Plain WebDriver, i.e. using the setProperty mechanism (see the
previous section). In this way, the entire effort of the participants was focused on the
test suite setup and management and not on test case development, since the goal of our
experiment.
Participants. The experiment was conducted in a research laboratory under controlled
conditions (i.e., online). Participants were 25 students from the Advanced Software
Engineering course, in their first year of the MSc degree in Computer Science at the
University of Genova (Italy). They had strong skills in the Eclipse IDE usage, matured
through the course of the previous year with significant project activity. Automated test-
ing was explained during the Advanced Software Engineering course (i.e., the course in
which the experiment was conducted), where detailed explanations on both Plain Web-
Driver and WebDriverManager were provided. Students participated into our experi-
ment on a voluntary base, after two mandatory labs about software engineering, includ-
ing one about unit test automation using both Plain WebDriver andWebDriverManager.
Thus, before the experiment, all the participants have been trained on Plain WebDriver
and WebDriverManager with a one-hour presentation including various kind of test
suite management tasks (similar to the ones required in the experiment).
Experiment Design. The experiment adopts a counterbalanced design planned to fit
two Lab sessions (see Table 2). Each participant worked in Lab 1 on a treatment and in
Lab 2 on the other treatment.

Table 2. Experimental design (WD = Plain WebDriver, WDM = WebDriverManager)

Group A Group B

Lab 1 WD WDM

Lab 2 WDM WD

Dependent Variables and Hypothesis Formulation. Our experiment has only one
dependent variable, on which treatments are compared measuring the effort construct
for which we defined the relative metric (as done, e.g., in [20]). The time required for the
test suite management was used as a proxy to measure effort. For each participant and
lab, the Time variable was recorded by noting down on the experimental sheet. Since

8 Note that the setup of different drivers has approximately the same effort, so adopting different
browsers/Drivers do not impact the results of our study.

38 M. Leotta et al.

we could not find any previous empirical evidence that points out a clear advantage of
one approach vs. the other, we formulated H0 as non-directional hypothesis:

H0. The use of a test suite management approach w.r.t. the other does not reduce
the total effort

The objective of a statistical analysis is to reject the null hypotheses above, so
accepting the corresponding alternative one H1 (stating instead that an effect exist).
Material, Procedure and Execution.
To answer RQ1, we performed a controlled experiment. Initially, to assess the experi-
mental material and to get an estimate of the time needed to accomplish the tasks, a pilot
experiment with a PhD student in Computer Science at University of Genova was per-
formed. The student finished both tasks in 24min overall and gave us some information
on how improving the experimental material, in particular concerning the description
of the procedure to follow. Given the times of the student and the time constraint of the
labs, we set the total time of the entire experiment to about one hour.

The experiment took place in a laboratory room and was carried on using Eclipse.
The participants participated in two laboratory sessions (Lab 1 and Lab 2), with a short
ten-minutes break between them. Finally, they were asked to compile a post-experiment
questionnaire. It included questions about: availability of sufficient time to complete the
tasks, documentation clarity, exercise usefulness, willingness to adopt WebDriverMan-
ager and Plain WebDriver in some future real-world projects, competencies required.

For each group (see Table 2), each lab session required to setup a test suite using
Plain WebDriver and WebDriverManager, respectively. For each Lab session, we pro-
vided to the participants a detailed procedure to follow in order to complete the setup of
the test suite: the procedure to setup a multi-browser test suite for Plain WebDriver and
WebDriverManager are different but have an initial part in common that is devoted to
the standard configuration of the Eclipse project containing the test suite and low level
WebDriver setup (also required when using WebDriverManager). For this reason, we
asked to the participants to record three times for each test suite: (a) the starting time;
(b) the ending time for the common part (Part 1); (c) the final time of the complete test
suite setup (Part 2). The time spent between (a) and (b) is expected to be almost equal
(Part 1), for each participant, for both the treatments (i.e., Plain WebDriver and Web-
DriverManager), while the difference, if any, should appear in the time spent between
(b) and (c), (Part 2)
To answer RQ2, we decided to note down the number of releases in last three years
(April 2019, March 2022) of the various drivers related to the browsers used in the
experiment (Chrome9, Firefox10, Edge11, and Opera12, for the students using Linux).
Then, we computed the average number of annual releases for each driver. We combined
the additional Time efforts derived from RQ1 with the number of releases in order to
compute a minimum effort estimate. Indeed, they do not include several other efforts
that cannot be measured with the data of this study but can be by far higher, overall. It
is important to highlight that in general it is considered a good practice to maintain the

9 https://chromedriver.chromium.org/.
10 https://github.com/mozilla/geckodriver.
11 https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/.
12 https://github.com/operasoftware/operachromiumdriver/.

https://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://github.com/operasoftware/operachromiumdriver/

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 39

drivers always updated. However, in case the test suite does not use advanced Selenium
WebDriver commands, often even a slightly outdated driver can work fine providing
only minor warnings during execution. In this study, to adhere to quality standards, we
computed the efforts of maintaining the drivers always updated to the latest version, as
it can be required in the case of complex industrial case studies requiring to reach the
maximum reliability.
Analysis Procedure. Because of the sample size we adopted non-parametric tests
to check the null hypothesis. This choice follows the suggestions given by [16,
Chapter 37]. In particular, after computing descriptive statistics, we applied the fol-
lowing analysis procedure: since participants setup two test suites with the two possible
treatments (i.e., Plain WebDriver andWebDriverManager), we used a paired Wilcoxon
test to compare the effects of the two treatments on each participant. In the performed
statistical tests, we decided, as it is customary, to accept a probability of 5% of com-
mitting Type-I-error [23], i.e., rejecting the null hypothesis when it is actually true
(α = 0.05). While the statistical tests allow checking the presence of significant differ-
ences, they do not provide any information about the magnitude of such a difference.
Therefore, we used the non-parametric Cliff’s delta (d) effect size [12]. The effect size
is considered small for 0.148 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474 and large
for |d| ≥ 0.474.

4 Results

To answer RQ1, let us start with a short description of the results from the experiment,
analyzing the effect of the main factor on the dependent variable. Table 3 summarizes
the essential descriptive statistics (i.e., median, mean, and standard deviation) of Time.

Table 3. Time: descriptive statistics per treatment. Overall results and detail for part 1 and part 2
measured in minutes.

Exp. Plain WebDriver WebDriverManager

Mean Median SD Mean Median SD

Part 1 3.400 2 3.697 3.800 3 2.784

Part 2 17.520 16 8.106 10.280 9 5.120

Total 21.120 19 9.144 14.080 12 8.495

Figure 1 (left) summarizes the distribution of the Time required to complete the
Part 1 of the experiment by means of boxplots. Observations are grouped by treatment
(Plain WebDriver and WebDriverManager). The y-axis represents the time measured
in minutes. The boxplots clearly show, as expected, that the participants spent a similar
time to complete Part 1. By applying aWilcoxon test (paired analysis), we found that for
Part 1, the difference in terms of time is not statistically significant, as p-value=0.7739.

Figure 1 (center) summarizes the distribution of the Time required to complete the
Part 2 of the experiment by means of boxplots. The boxplots clearly show that the

40 M. Leotta et al.

Fig. 1. Boxplots of time for completing Part 1 (left) and Part 2 (center) of the experiment. Box-
plots on the right show total time (Part 1 + Part 2). For optimizing the readability each boxplots
pair has been shown with optimal Y-scale values.

participants spent a different time to complete Part 2 depending on the treatment. By
applying a Wilcoxon test (paired analysis), we found that for Part 2, the difference in
terms of time is statistically significant, as p-value=0.000392. The effect size is large
d=-0.7008.

Figure 1 (right) summarizes the distribution of the Time required to complete the
setup of the test suites by means of boxplots. As for Part 2, also in this case boxplots
clearly show that the participants spent a different time to setup the entire test suites
depending on the treatment. By applying a Wilcoxon test (paired analysis), we found
that overall, the difference in terms of correctness is still statistically significant, as p-
value=0.0004862. The effect size is large d=-0.6288. Therefore, we can reject the null
hypothesis H0 and accept H1.

RQ1 Summary: The adoption of WebDriverManager instead of Plain WebDriver
significantly reduces (of about –33%) the time required to setup a multi-browser test
suite.

RQ2: Table 4 summarizes the statistics of the analyzed drivers, in particular it reports
the number of releases available on the official repositories in the three-years interval
we decided to analyze, the identifier of the first and last version considered, and the
average number of releases for each year.

While analyzing the results for RQ1, we discovered that the time required to setup
a multi-browser test suite (i.e., including three drivers) using WebDriverManager is,
on average, of about 7min (21.120-14.080, see Table 3) lower compared with the time
needed when using only Plain WebDriver (i.e., manual driver management). Thus, the
additional time effort due to the manual management of each of the three drivers can
be estimated in about 2min and 20 s per driver. This value appears reasonable since
represents the time required to (a) visit the official software repository for the driver of
a specific browser, (b) download the driver executable file, and (c) place it in the correct
directory as reported in the test suite settings.

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 41

Table 4. Drivers: Details of the drivers considered in the 3 years interval (April 2019–March
2022) to answer RQ2. For each driver, we reported the number of releases available on the official
repositories, the identifier of the first and last version considered and the average number of
releases for each year.

Releases Chrome driver Firefox driver Edge driver Opera driver

04/19->03/22 58 7 1128 25

First version 75.0.3770.8 0.25.0 75.0.139.20 2.45

Last version 100.0.4896.60 0.30.0 101.0.1210.0 99.0.4844.51

Avg. Annual 19.33 2.33 376.00 8.33

Table 5. Drivers: Annual effort of maintaining the drivers updated to the latest releases available
on the repositories.

Effort (Time) Chrome driver Firefox driver Edge driver Opera driver

Annual estimate 45.10 m 5.43 m 877.33 m 19.44 m

The estimated annual efforts (Time) of maintaining the drivers updated to the latest
releases available on the repositories is reported in Table 5. These estimates include
only the bare time required to update the drivers; however, they do not include the
major efforts of having a multitude of “false alarms”. Such “false alarms” are due to the
test suites reporting problems or errors during their runs usually scheduled overnight
not caused by real regression of the application under test but only by outdated drivers.
A false alarm can require to perform a non-negligible troubleshooting to pin-point the
root cause of the problem (i.e., the outdated driver) and differentiate it from the real
regressions in the application under test. Moreover, having a large number of “false
alarms” could drastically reduce the confidence of the test managers in the usage of
E2E test suites.

By looking Table 4, it is evident that the update frequency of the various drivers
is by far different when considering the various browsers: by 2.33 times a year for
Firefox to 376 for Edge. Even excluding Edge, for the three remaining drivers we can
observe about 30 novel driver releases per year. This translates in about a “false alarm”
every about 12 days. Although it may seem little, we have experienced in industrial
collaborations that this frequency of false alarms is considered a big problem by our
industrial partners [18].

RQ2 Summary: The times required for maintaining updated the drivers in a test
suite for an entire year span from a few minutes (5.43) to several hours (14.61h)
depending on the browser (and thus driver) used for such test suite. However, the
time for updating the outdated driver is only a small fraction of the total effort that
includes: (a) understanding that the outdated driver is the cause of the problems
reported during the execution of the test suite and (b) the reduction in the perceived
reliability of E2E test suites. The adoption of WebDriverManager can help to dras-
tically reduce all these efforts.

42 M. Leotta et al.

4.1 Post-Experiment Questionnaire

The post-experiment questionnaire is summarized in Table 6, together with the medians
of the answers given by the students. The possible choices for each answer, on a 5-point
Likert scale, were: Strongly Agree (1), Agree (2), Unsure (3), Disagree (4), Strongly
Disagree (5).

Table 6. Post-experiment questionnaire, medians and avg. of the answers

ID Question Median Avg.

PQ1 WebDriverManager simplifies driver management and thus speeds up code production Strongly agree 1.28

PQ2 WebDriverManager is also useful during the maintenance phase when browsers are updated automatically Agree 1.56

PQ3 WebDriverManager is simple to use Strongly agree 1.36

PQ4 WebDriverManager is useful Strongly agree 1.16

PQ5 Finding the right driver to use, consulting the documentation, isn’t always easy Agree 2.24

PQ6 When developing the Selenium WebDriver test suites in the future, I will definitely use WebDriverManager Strongly agree 1.52

PQ7 I found the exercise useful Strongly agree 1.24

PQ8 I had enough knowledge to answer the questions (i.e., training was sufficient) Agree 1.80

Students perceived the adoption of WebDriverManager as a positive factor sup-
porting both the initial test suites setup (PQ1 median strongly agree) and the subse-
quent maintenance (PQ2 median agree). They found also WebDriverManager simple
to use (PQ3 median strongly agree) and useful (PQ4 median strongly agree). They con-
sider the necessary setup operations (for example, how to find the driver) difficult (PQ5
median agree). Finally, they would chooseWebDriverManager in the future to develop
and maintain Selenium test suites (PQ6 median strongly agree).

As experimenters, we are also comforted by the medians relative to PQ7 and PQ8
as the students considered the exercise carried out during the experiment useful and
considered the training phase to be sufficient.

4.2 Threats to Validity

This section discusses the threats to validity that could affect our results: internal, con-
clusion and external validity threats [23].
Internal validity threats concern factors that may affect a dependent variable (in our
case, Time). Since the students had to participate in two labs (WebDriverManager and
Plain WebDriver), a learning/fatigue effect may intervene. However, the students were
previously trained and the chosen experimental design, with a break between the two
labs, should limit this effect. Moreover, the tasks are not really demanding and long (1 h
in total), so we believe that fatigue is not an issue.
Threats to conclusion validity can be due to the sample size of the experiment (in our
case, 25 MSc students) that may limit the capability of statistical tests to reveal any
effect, and the object size, that could be insufficient to significantly reveal any effect.
However, the Wilcoxon test provided sharp results and the difference between the two
treatments is relevant.
Threats to external validity can be related to the use of students as experimental partic-
ipants. We cannot expect students to perform as well as professionals, but we expect to

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 43

be able to observe similar trends as in other studies [3,14,15]. Clearly, further experi-
ments with different test suites and/or more experienced developers (e.g., software prac-
titioners) are needed to confirm or contrast the obtained results.

5 Related Work

The driver management process related to Selenium WebDriver is a novel technique
first reported in the Selenium ecosystem survey by García et al. [8]. That article pre-
sented the results of a descriptive study conducted in 2019 by 72 participants from
24 countries. That study revealed how practitioners use Selenium concerning its main
features, test development, System Under Test (SUT), test infrastructure, testing frame-
works, community, or personal experience. Regarding driver management, that survey
revealed that 38.89% of the respondents declared to manage driver managers manually,
while 34.72% of the respondents declared to carry out this process automatically. The
remaining users (26.39%) claimed not to know how drivers are managed in their test
codebase. This outcome indicates that around a third of the Selenium users have already
adopted automated driver management but remain manual (or unknown) by most users.

In this line, another work by García et al. [11] presents a complete methodology to
carry out the driver management process in three stages: download, setup, and mainte-
nance. The reference implementation of that methodology is WebDriverManager. This
paper evaluated the usability of the WebDriverManager API following Clarke’s dimen-
sions [5]. Nevertheless, the benefits of WebDriverManager for Selenium WebDriver
users related to development effort reduction or improved maintainability remain unex-
plored in that paper.

Finally, again García et al. [10] presents Selenium-Jupiter, a JUnit 5 extension for
Selenium WebDriver. Jupiter is the name given to the programming model provided
by JUnit 5 [6]. Selenium-Jupiter aims to ease the development of Selenium WebDriver
tests thanks to an automated driver management process and the seamless integration
with Docker. Selenium-Jupiter delegates the automation of the driver management to
WebDriverManager. Then, and thanks to the use of Docker, Selenium-Jupiter allows
advanced features for cross-browser testing, load testing, or troubleshooting (e.g., ses-
sion recordings). That paper presented an end-to-end performance testing example case
about video conferencing systems based on WebRTC [9]. That paper suggests that
development and maintenance costs promise to be lower using an automated driver
management process. Nevertheless, it does not provide any experimental validation of
these benefits, declared as future research in that paper.

In addition to the empirical work related to the driver mechanism already mentioned
in the context of Selenium WebDriver test cases, there are several other articles in the
literature dealing with the comparison of testing tools for Web [17] and Mobile appli-
cations [1] and codeless testing frameworks [13,19].

6 Conclusions and Future Work

In this paper, we have described a controlled experiment aimed at quantifying the ben-
efits of adopting WebDriverManager, an open source Java library that carries out auto-
matically the driver management process in the context of Selenium WebDriver test

44 M. Leotta et al.

suites. WebDriverManager has been proposed to alleviate the burden of the develop-
ers in maintaining the drivers updated w.r.t. the actual browsers installed on the testing
machine.

Results of the experiment with 25 MSc students show that the adoption of Web-
DriverManager (instead of Plain WebDriver) significantly reduces the time required
to setup/update a multi-browser test suite (p-value < 0.01). Even if the actual saving
for updating a single outdated version of a driver can be quantified in a just few min-
utes, our analyses show that in a multi-browser test suite this maintenance intervention
is required quite often. Moreover, the time for updating the outdated driver is only a
fraction of the total efforts that usually include other efforts difficult to quantify: (a)
understanding that the outdated driver is the cause of the problems reported by the fail-
ing test suite and, (b) the reduction in the perceived reliability of E2E test suites. The
adoption of WebDriverManager can help to reduce all these efforts.

As a future work, we plan to further extend our experiment with replication includ-
ing participants having different skills such as professional Testers and PhD students in
Software Engineering. Moreover, we are organizing with the help of a industrial part-
ner a long term case study to evaluate the actual benefits of WebDriverManager on the
field.

Acknowledgement. This work was partially supported in part by the Ministerio de Ciencia e
Innovación-Agencia Estatal de Investigación (10.13039/501100011033) through the H2O Learn
project under Grant PID2020-112584RB-C31, and in part by the Madrid Regional Government
through the e-Madrid-CM Project under Grant S2018/TCS-4307.

References

1. Ardito, L., Coppola, R., Morisio, M., Torchiano, M.: Espresso vs. eyeautomate: an experi-
ment for the comparison of two generations of android gui testing. In: Proceedings of the
Evaluation and Assessment on Software Engineering, EASE 2019, pp. 13–22. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3319008.3319022

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Encyclo-
pedia of Software Engineering, Wiley, Hoboken (1994)

3. Cerioli, M., Lagorio, G., Leotta, M., Ricca, F.: Fight silent horror unit test methods by con-
sulting a TestWizard. J. Softw. Evol. Proc. (JSEP) e2396 (2022). https://doi.org/10.1002/smr.
2396

4. Cerioli, M., Leotta, M., Ricca, F.: What 5 million job advertisements tell us about testing: a
preliminary empirical investigation. In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing, pp. 1586–1594 (2020)

5. Clarke, S.: Measuring API usability. Dr. Dobb’s J. Windows/.NET Suppl. 9(5), S6–S9 (2004)
6. Garcia, B.: Mastering Software Testing with JUnit 5: Comprehensive Guide to Develop high

Quality Java Applications. Packt Publishing Ltd, Birmingham (2017)
7. García, B.: Hands-On Selenium WebDriver with Java. O’Reilly Media, Sebastopol (2022)
8. García, B., Gallego, M., Gortázar, F., Munoz-Organero, M.: A survey of the selenium ecosys-

tem. Electronics 9(7), 1067 (2020)
9. Garcia, B., Gortazar, F., Lopez-Fernandez, L., Gallego, M., Paris, M.: WebRTC testing: chal-

lenges and practical solutions. IEEE Commun. Stand. Mag. 1(2), 36–42 (2017)
10. García, B., Kloos, C.D., Alario-Hoyos, C., Munoz-Organero, M.: Selenium-jupiter: a JUnit

5 extension for selenium WebDriver. J. Syst. Softw. 189, 111298 (2022)

https://doi.org/10.1145/3319008.3319022
https://doi.org/10.1002/smr.2396
https://doi.org/10.1002/smr.2396

Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager 45

11. García, B., Munoz-Organero, M., Alario-Hoyos, C., Kloos, C.D.: Automated driver man-
agement for selenium WebDriver. Empir. Softw. Eng. 26(5), 1–51 (2021). https://doi.org/10.
1007/s10664-021-09975-3

12. Grissom, R.J., Kim, J.J.: Effect sizes for Research: A Broad Practical Approach. 2nd edn.
Lawrence Earlbaum Associates, Mahwah (2005)

13. Kirinuki, H., Matsumoto, S., Higo, Y., Kusumoto, S.: NLP-assisted web element identifica-
tion toward script-free testing. In: 2021 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 639–643 (2021). https://doi.org/10.1109/ICSME52107.
2021.00072

14. Leotta, M., Biagiola, M., Ricca, F., Ceccato, M., Tonella, P.: A family of experiments to
assess the impact of page object pattern in web test suite development. In: Proceedings of
13th IEEE International Conference on Software Testing, Verification and Validation (ICST
2020), pp. 263–273. IEEE (2020). https://doi.org/10.1109/ICST46399.2020.00035

15. Leotta, M., Cerioli, M., Olianas, D., Ricca, F.: Two experiments for evaluating the impact of
Hamcrest and AssertJ on assertion development. Software Qual. J. 28(3), 1113–1145 (2020).
https://doi.org/10.1007/s11219-020-09507-0

16. Motulsky, H.: Intuitive Biostatistics: a Non-Mathematical Guide to Statistical Thinking.
Oxford University Press, Oxford (2010)

17. Naidu, T.J., Basri, N.A., Nagenthram, S.: SAHI vs. selenium: a comparative analysis. In:
2014 International Conference on Contemporary Computing and Informatics (IC3I), pp.
967–970 (2014). https://doi.org/10.1109/IC3I.2014.7019594

18. Olianas, D., Leotta, M., Ricca, F., Villa, L.: Reducing flakiness in end-to-end test suites: an
experience report. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R.
(eds.) QUATIC 2021. CCIS, vol. 1439, pp. 3–17. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85347-1_1

19. Phuc Nguyen, D., Maag, S.: Codeless web testing using selenium and machine learning. In:
ICSOFT 2020: 15th International Conference on Software Technologies, pp. 51–60. 15th
International Conference on Software and Data Technologies (ICSOFT), ScitePress, France,
July 2020. https://doi.org/10.5220/0009885400510060

20. Ricca, F., Torchiano, M., Leotta, M., Tiso, A., Guerrini, G., Reggio, G.: On the impact of
state-based model-driven development on maintainability: a family of experiments using
UniMod. Empir. Softw. Eng. 23(3), 1743–1790 (2017). https://doi.org/10.1007/s10664-017-
9563-8

21. Sazoglu, F.B., Cambazoglu, B.B., Ozcan, R., Altingovde, I.S., Ulusoy, Ö.: Strategies for
setting time-to-live values in result caches. In: Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management, pp. 1881–1884 (2013)

22. Stewart, S., Burns, D.: WebDriver, W3C Working Draft. https://www.w3.org/TR/webdriver/
(2022). Accessed 1 Apr 2022

23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering - An Introduction. Kluwer Academic Publishers, Dordrecht (2000)

https://doi.org/10.1007/s10664-021-09975-3
https://doi.org/10.1007/s10664-021-09975-3
https://doi.org/10.1109/ICSME52107.2021.00072
https://doi.org/10.1109/ICSME52107.2021.00072
https://doi.org/10.1109/ICST46399.2020.00035
https://doi.org/10.1007/s11219-020-09507-0
https://doi.org/10.1109/IC3I.2014.7019594
https://doi.org/10.1007/978-3-030-85347-1_1
https://doi.org/10.1007/978-3-030-85347-1_1
https://doi.org/10.5220/0009885400510060
https://doi.org/10.1007/s10664-017-9563-8
https://doi.org/10.1007/s10664-017-9563-8
https://www.w3.org/TR/webdriver/

Assessing Black-box Test Case
Generation Techniques for Microservices

Luca Giamattei(B) , Antonio Guerriero , Roberto Pietrantuono ,
and Stefano Russo

DIETI, Università Degli Studi di Napoli Federico II, Napoli, Italy
{luca.giamattei,antonio.guerriero,

roberto.pietrantuono,stefano.russo}@unina.it

Abstract. Testing of microservices architectures (MSA) – today a pop-
ular software architectural style - demands for automation in its sev-
eral tasks, like tests generation, prioritization and execution. Automated
black-box generation of test cases for MSA currently borrows techniques
and tools from the testing of RESTful Web Services.

This paper: i) proposes the uTest stateless pairwise combinatorial
technique (and its automation tool) for test cases generation for func-
tional and robustness microservices testing, and ii) experimentally com-
pares - with three open-source MSA used as subjects - four state-of-the-
art black-box tools conceived for Web Services, adopting evolutionary-,
dependencies- and mutation-based generation techniques, and the pro-
posed uTest combinatorial tool.

The comparison shows little differences in coverage values; uTest
pairwise testing achieves better average failure rate with a considerably
lower number of tests. Web Services tools do not perform for MSA as
well as a tester might expect, highlighting the need for MSA-specific
techniques.

Keywords: Microservices · Black-box testing · Robustness testing

1 Introduction

Microservice Architectures (MSA) are a service-oriented software architectural
style where services are loosely coupled, run in their own processes, and interact
via lightweight mechanisms [1]. These characteristics favours services’ develop-
ment by different teams and possibly in various programming languages, and
their independent deployment. MSA are often engineered with agile practices,
enabling rapid and frequent software releases (even many per day).

Testing automation is essential to fully benefit from the MSA architectural
paradigm and related practices. Techniques for black-box (or specification-based)
automated generation of test cases for microservices are mainly borrowed from
testing of RESTful web services, enabled by documentation of their interfaces [2].
The most notable open format for specifying web services and MSA Application
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 46–60, 2022.
https://doi.org/10.1007/978-3-031-14179-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_4&domain=pdf
http://orcid.org/0000-0003-3767-4036
http://orcid.org/0000-0002-8104-3832
http://orcid.org/0000-0003-2449-1724
http://orcid.org/0000-0002-8747-3446
https://doi.org/10.1007/978-3-031-14179-9_4

Black-box Test Case Generation for Microservices 47

Programming Interfaces (API) is OpenAPI/Swagger [3].1 Specifications include
service Uniform Resource Identifier (URI), HTTP method, type and name of
every parameter, and HTTP body. OpenAPI allows to automatically retrieve
the interface of a microservice of interest from its IP address and port number.

Testing RESTful services may be challenging, due to dependencies of tests
from the state of internal resources (e.g., a database) or from external services
[2]. Thus, many test generation techniques are stateful [4–6]. They aim at max-
imizing coverage values, like those defined by Martin-Lopez et al. [7].

With respect to generic RESTful web services, microservices are expected
to have finer granularity and to be self-contained (being designed with a single
business responsibility), polyglot and independent. An MSA typically includes
many RESTful services, whose complex dependencies are challenging to cover
by stateful techniques when microservices are tested independently.

This paper provides an empirical comparison of five techniques for test case
generation for microservices. Four of them are state-of-the-art techniques for
RESTful web services, claimed to be applicable to microservices, namely: Evo-
Master [2], RestTestGen [4], RESTler [5] and bBOXRT [8]. The fifth technique
(uTest) is a pairwise combinatorial strategy that we propose here with its sup-
port tool, which automatically retrieves OpenAPI specifications of microservices
to test, generates test cases, executes them and gathers results.

The experimental comparison uses as subjects three well-known open-source
MSA (Train Ticket, SockShop, FTGO), with reference to two scenarios:

i) generation of a suite of tests with only valid inputs, i.e., adhering to the
service API specification; this is a typical functional testing scenario;

ii) generation of a test suite with both valid and invalid inputs (thus includ-
ing tests violating the specification); this may serve to test the service for
robustness against unexpected inputs, or for coverage of return codes.

The results of experiments show that tools reach comparable values for eight
coverage metrics (five input and three output coverage metrics), but exhibit
different average failure rate and test generation/execution cost. The proposed
combinatorial approach shows to be more cost-effective as it generates a lower
number of test cases - thus exhibiting the best average failure rate.

The rest of the paper is so organized: Sect. 2 discusses related work. Section 3
describes uTest. Sections 4 and 5 present experiments and results, respectively.
Section 6 discusses threats to validity. Section 7 contains final remarks.

2 Related Work

Automated black-box generation of test cases specifically for microservices is a
research topic not much investigated so far, yet techniques/tools for Web Services
may by applied to microservices as well.

A state-of-the-art tool for automated testing of RESTful web services is Evo-
Master [2]; initially conceived for white-box testing, it has been extended for
1 https://www.openapis.org.

https://www.openapis.org

48 L. Giamattei et al.

black-box testing. This is performed by random testing, adding heuristics to
maximize the HTTP response code coverage. During the evolutionary search,
EvoMaster runs tests as HTTP service requests and evaluates the fitness of
every generation (in the evolutionary meaning) of test cases. The test suite is
produced in several formats (e.g., for JUnit).

RestTestGen is a stateful test generator proposed by Corradini et al. [4], that
infers operation dependencies, first statically from OpenAPI specifications, and
then dynamically, using feedback from executed tests. Input values are generated
from a dictionary, from documentation examples, randomly, or re-using past
observed values. It generates nominal as well as invalid test cases; these are
obtained by mutating successful test cases (those that returned 2xx or 4xx HTTP
codes), e.g. by removing values of mandatory parameters.

RESTler has been proposed by Atlidakis et al. at Microsoft Research [5], as
a tool for stateful input generation via fuzzing, aiming to find security vulner-
abilities. It generates sequences of requests based on data dependencies among
operations. These are detected by first statically inferring producer-consumer
relations from the OpenAPI specification, and then - like RestTestGen - dynam-
ically analyzing responses of executed tests. Input values are selected from a
user-configurable dictionary, or from previously observed values.

bBOXRT is a tool for robustness testing of REST services proposed by Laran-
jeiro et al. [8]. The authors designed a method for injecting faults in requests,
attempting to trigger erroneous behaviors. The tool generates and executes valid
requests with random values compliant with the OpenAPI specification, and
then mutates inputs observing the system behaviour under a faulty workload.
bBOXRT supports a large number of mutations of input parameters values.

Martin-Lopez et al. [6] propose a black-box technique/tool RESTest for
RESTful APIs, based on dependencies among parameters, expressed in an Inter-
parameter Dependency Language (IDL). Results may benefit from available
additional information on dependencies, that however testers need to write in
IDL; this is time-consuming and requires a deep knowledge of the system under
test.

Three further OpenAPI-based techniques are proposed by Ed-douibi et al.
[9], Karlsson et al. [10], and Banias, et al. [11]. The first generates (JUnit) tests
inferring both valid and invalid parameter values. The second (QuickREST)
includes property-based stateless and stateful generators, that are compared in
response codes coverage and fault finding ability. The third performs combi-
natorial generation, adding human intervention to augment the quality of the
generation.

An important empirical comparison of black-box techniques for RESTful
services, based on the coverage metrics of Martin-Lopez et al. [7], has been
presented by Corradini et al. [12]. They analyzed existing tools and selected
a number of them for comparison based on “robustness”, meant as the ability
to run on different case studies. The compared tools include RestTestGen [4],
RESTler [5] and bBOXRT [8], but not EvoMaster, whose black-box version was
not available yet, and RESTest, that did not pass the robustness filtering.

Black-box Test Case Generation for Microservices 49

With respect to the analyzed literature, our contribution is twofold: i) we
propose the uTest automated stateless combinatorial test generation technique
for microservices; ii) we analyze experimentally the performance of the main
existing tools for Web Services when used for testing MSA, and compare uTest

to them. Table 1 summarizes compared tools.2

Table 1. Compared tools/techniques

Tool Test specification Test case generation

EvoMaster [2] State-based Evolutionary

RestTestGen [4] State-based Data/Operation dependencies
random dictionary mutation

RESTler [5] State-based Data/Operation dependencies
dictionary

bBOXRT [8] Classes from API specification Random mutation

uTest Classes from API specification
combinatorial

Random

3 The UTEST combinatorial testing strategy

3.1 Background

Combinatorial design is a consolidated strategy for automatic test generation
[13], extensively studied in the literature [14]. It aims to detect multi-factor faults
with the use of combinatorial methods, that demonstrated good fault detection
ability [15]. The definition of an Input Space Model, to identify factors (and
their values) that might affect the output, is crucial in this strategy. Exhaustive
enumeration of all combinations of factor’s values can be impractical, as these
rapidly explode in number [16]. A solution is to generate a so-called t-way test
suite, composed of (a subset of all) combinations of t factors.

3.2 Combinatorial Test Case Generation Strategy

We adopt a pairwise strategy to generate a 2-way test suite covering combina-
tions of pairs of input classes. Tests are derived from the specification of the
microservice; factors are the parameters of HTTP requests, and their values are
generated in compliance to the specification. For any pair of classes ci, cj of
parameters pi, pj , a test case is generated with values vi ∈ ci and vj ∈ cj ,
respectively.

The generation of a test suite is composed of three main steps:
2 Our comparison does not include the techniques in references [6,9,10], and [11],

whose tools are probably still at proof-of-concept stage. For instance, like Corradini
et al. [12] we did not manage to run RESTest on our case studies. However, differ-
ently from [12], our comparison includes Evomaster, besides RestTestGen, Restler,
bBOXRT.

50 L. Giamattei et al.

1. Input space partitioning. The OpenAPI specification of all microservices in
the MSA is parsed to extract an Input Space Model consisting of HTTP meth-
ods, URIs and body templates, HTTP status codes and parameters’ details
(type, bounds, default value, etc.); equivalence classes for all parameters are
then categorized into valid and invalid.

2. Test cases specification. Based on equivalence classes, test cases specifications
are produced according to a pairwise combinatorial strategy.

3. Test cases generation. Actual test cases are generated, randomly choosing
values from equivalence classes based on the test cases specifications.

Listing 1. A sample microservice OpenAPI specification
� �

host : exampleHost :8080
paths : ‘/ c a r t s /{ customerId }/ items ’ :

post :
parameters :

− name : customerId
in : path
r equ i r ed : t rue
type : s t r i n g
example : 579 f21ae98684924944651bf
− name : body
in : body
requ i r ed : t rue
schema : ‘ $ re f ’ : ‘#/ d e f i n i t i o n s /CartItem ’

r e sponse s :
‘ 2 01 ’ : d e s c r i p t i o n : ‘ Created ’
‘ 4 00 ’ : d e s c r i p t i o n : ‘Bad Request ’

d e f i n i t i o n s : CartItem :
type : ob j e c t
p r op e r t i e s :

i temId :
type : In t eg e r

d i scount :
type : boolean

requ i r ed :
− i temId

� �

Listing 1 shows a snippet of the OpenAPI specification of a microservice with
three parameters - one in path (customerId, required) and two in body (itemId,
required, and discount, optional). It returns 201 or 400 HTTP status codes.

At step 1, the domain of values of each parameter is partitioned into equiv-
alence classes. We define them like Bertolino et al. [17], based on the parame-
ter type and, when specified, value bounds, example value, default value, and
obligatoriness. Then, we categorize classes into valid or invalid : valid classes
(invalid classes) contain for input parameters only values compliant to (violat-
ing) the microservice specification. An example of input space partitioning for
the microservice of Listing 1 is shown in Table 2.

At step 2, test case specifications are derived. Table 3 shows an example for
the microservice of Listing 1, derived from the partitioning of Table 2. The URI
and body templates include for each parameter the equivalence classes, from
which a value shall be chosen for a test case. For instance, a test case generated
from the specification in Table 3 shall have for p1 (customerId) a value chosen
from class c1,2 (the example value in Listing 1); for p2 (itemId) a value from
class c2,2 (negative value in range), and for p3 (discount) the value true or false.

Black-box Test Case Generation for Microservices 51

Table 2. Input space partitioning for the microservice of Listing 1

Parameter Name Type Equivalence classes Category

p1 (required, in path) customerId string c1,1: string in range valid

c1,2: specified example value(s) valid

c1,3: empty string invalid

c1,4: no string invalid

p2 (required, in body) itemId integer c2,1: positive value in range valid

c2,2: negative value in range valid

c2,3: alphanumeric string invalid

c2,4: no value invalid

p3 (optional, in body) discount boolean c3,1: {true,false} valid

c3,2: no value valid

c3,3: empty string invalid

c3,4: alphanumeric string invalid

Table 3. A test case specification for the microservice of Listing 1

URI template http://examplehost:8080/carts/ {c1,2}/items

HTTP method POST

body template {“itemId”:{c2,2},“discount”:{c3,1}}
HTTP status code 201, 400

A test suite shall entail test cases combining values from input classes accord-
ing to a pairwise strategy. To this aim, uTest uses a recursive algorithm. Two
valid equivalence classes per parameter are selected to generate a nominal test
suite (when available, examples and default values are preferred as valid classes).
Then, for each method of each path uTest builds a binary tree, whose leaves
represent all combinations of classes. The tree for the example of Listing 1 is
shown in Fig. 1, having selected the (only) two valid classes for each parameter
in Table 2; leaves represent all combinations of pairs of selected classes. Test case
specifications like the one in Table 3 shall be generated only for the subset of four
combinations in the red boxes in Fig. 1 (output combinations), which includes all
possible pairs of classes selected for the three parameters; the example of Table 3
corresponds to the combination in the green box. For functional and robustness
testing, one valid and one invalid class are selected per parameter.

At step 3, actual test cases are finally generated, by randomly picking values
from equivalence classes defined in the produced test cases specifications. This is
done statically: no test is generated depending on the result of the execution of
some previous tests. We call valid test cases those containing for all parameters
values belonging to valid equivalence classes. We call invalid test cases those
where the value of at least one parameter belongs to an invalid class.

3.3 The UTEST tool

The proposed pairwise strategy is prototyped in the uTest tool, whose archi-
tecture is in Fig. 2. It is designed as a microservice deployable in a Docker con-
tainer along with the MSA under test; it retrieves the API of microservices in

52 L. Giamattei et al.

Fig. 1. Generation of valid test cases specifications for microservice of Listing 1

Fig. 2. uTest architecture

the MSA, including those not directly accessible by the user perspective (e.g.,
hidden behind a gateway or so-called edge microservices). uTest includes a Gen-
erator of the test suite, a tests’ Executor, and an Analyzer, for the computation
of coverage metrics.

The generator is fed with a specification (currently, in OpenAPI version 2.0)
of the entry points of the microservice under test. uTest automatically retrieves
the specifications of application’s microservices, exposed through an OpenAPI
interface. Otherwise, it is possible to feed specifications to uTest manually.
uTest pairwise generation produces test cases specifications for all combina-
tions of two selected equivalence classes of any pair of input parameters. The
generated test suite is stored inside the Docker container and can be executed
(or exported) by the tester.

Tests are run by the Executor which sends HTTP requests to microservices.
It is possible to execute requests also in case of authentication, credentials or
tokens must be specified in the configuration file. This component provides, as
output, all the request-response pairs. The responses are automatically evaluated
based on the HTTP response code. We consider failures the 5xx codes, as they
point out the inability of the service to perform the request, due to an error
condition, an unhandled exception, or in general an unexpected behaviour.

The Analyzer takes a set of request-response couples as input from the Execu-
tor, and provides a set of basic statistics as output. It provides the results of the
test process as output to console and/or to file.

Black-box Test Case Generation for Microservices 53

Table 4. Experimental subjects

MSA Microservices URIs Methods Lines of code

TrainTicket 34 1,152 1,442 20,015

SockShop 5 24 29 5,287

FTGO 7 16 16 14,976

Further details on the implementation and on usage can be found in the
GitHub repository3.

4 Experimental Comparison

4.1 Subjects

For the experimentation, we consider as subjects three open-source MSA, pub-
licly available on GitHub. They are:

– TrainTicket4: a benchmark MSA (a booking system for train tickets) [18];
– SockShop5: the user-facing part of an online shop that sells socks;
– FTGO6: the Richardson’s book sample MSA [19].

Table 4 lists their characteristics.

4.2 Experiments

To investigate the ability of the tools in generating effective test cases, we con-
sider the following two scenarios:

– Scenario 1 (functional testing): valid test cases;
– Scenario 2 (functional and robustness testing) valid and invalid test cases.

Scenario 1 is meant to test the MSA behavior with inputs complying to the API.
Here we compare EvoMaster and uTest; additionally, we consider as baseline
the generation of a single test per method with randomly chosen valid input
values (in the example in Fig. 1, this corresponds to the leaf at extreme left).

Scenario 2 mixes both valid and invalid inputs; the latter emulate a robust-
ness testing scenario, where input specifications are intentionally violated for
instance to verify return of proper status codes, or to check how the MSA reacts
to unexpected inputs. For this scenario we compare RestTestGen, bBOXRT,
RESTler and uTest (EvoMaster does not generate invalid inputs). The baseline
in this Scenario is the generation of two tests per method, one with all parameter
values chosen from valid classes and one with all values from invalid classes (this
is a sort of 1-way testing).

The compared tools were configured, when possible, with the values that were
shown in the literature to yield the best performance, otherwise with default
values. We ran tests 10 times for each microservice of the three subjects.
3 https://github.com/uDEVOPS2020/uTest.
4 https://github.com/FudanSELab/train-ticket.
5 https://github.com/microservices-demo/microservices-demo.
6 https://github.com/microservices-patterns/ftgo-application.

https://github.com/uDEVOPS2020/uTest
https://github.com/FudanSELab/train-ticket
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-patterns/ftgo-application

54 L. Giamattei et al.

Table 5. Coverage metrics (as defined in ref. [12])

Coverage metric Description

Path Ratio of the number of tested paths to the total number of paths
documented in the OpenAPI specification. 100% path coverage if
its tests send at least one request directed to each path of the
API

Operation Ratio of the number of tested operations to the total number of
operations described in the OpenAPI specification. 100%
operation coverage if there exists at least one request directed to
each path for all documented HTTP methods.

Parameter Ratio of the number of input parameters used by test cases to
the total number of parameters documented in the OpenAPI
specification. 100% parameter coverage if all input parameters of
all operations are included in requests at least once.

Parameter value Ratio of the number of the exercised parameter values to the
total number of values that parameters can assume according to
the OpenAPI specification. Applicable only to domain-limited
parameters (es. boolean, enum)

Request content-type Ratio of the number of tested content-types to the total number
of accepted content-types as per the OpenAPI specification.
100% request content-type coverage if there exists at least a test
request for each accepted content-type.

Status code class A test suite reaches 100% status code class coverage when it is
able to trigger both correct and erroneous status codes. If it
triggers only status codes belonging to the same class (either
correct or erroneous), coverage equals 50%. 2XX class represents
a correct execution and 4XX and 5XX classes represent an
erroneous execution.

Status code Ratio of the number of obtained status codes to the total
number of status codes documented in the OpenAPI
specification, for each operation. 100% status code coverage if,
for each operation, all status codes are tested.

Response content-type Ratio of the number of obtained content-types to the total
number of response content-types as per the OpenAPI
specification. 100% response content-type coverage if there exists
at least one test response whose body matches each documented
content-type, for each operation

4.3 Metrics

We adopt the coverage metrics defined by Martin-Lopez et al. [7], used also in
ref. [12]. The definitions are provided in Table 5. The first five metrics concern
the goodness of the generation with respect to the input specification (input
metrics), while the last three are computed on response codes (output metrics).
Coverage metrics are computed with the tools Burp Suite [20] and Restats
[21]. Burp Suite logs each request-response pair; we export logs and compute
metrics with Restats. This is the same process adopted in ref. [12].

In addition with respect to [12], we compare tools in terms of cost, namely
the average number of executed tests, and average failure rate (average number
of failures exposed by executed tests over all microservices).

Black-box Test Case Generation for Microservices 55

5 Results

5.1 Scenario 1: Tests with Valid Input

We compare the effectiveness of uTest and EvoMaster, when testing MSA
microservices as independent services, with inputs complying to their API.

Figure 3 shows boxplots for the eight metrics. Values are averaged over repeti-
tions for all microservices of all subjects. (For all metrics, the standard deviation
over repetitions is less than 1.2% of the mean.) The results point out comparable
values of uTest and EvoMaster with respect to the baseline, outperforming it
only in parameter value coverage. uTest achieves slightly better results for all
metrics, except for response content-type.

Fig. 3. Scenario 1 (valid test cases): coverage

56 L. Giamattei et al.

Figure 4a shows the average failure rate. uTest achieves a slightly better
rate than EvoMaster. As for cost, Fig. 4b shows that the average number of
tests executed by EvoMaster is one order of magnitude greater than the other
two. Among these, uTest generates a test suite approximately three times bigger
than the baseline, but detecting almost six times more failures.

Fig. 4. Scenario 1 (valid test cases): average failure rate and executed tests

5.2 Scenario 2: Tests with Valid and Invalid Input

We evaluate coverage, average failure rate, and cost of test suites containing
both valid and invalid test cases genereted by RestTestGen, bBOXRT, RESTler,
uTest, and compare them to the baseline.

Figure 5 shows boxplots of the average coverage. The tools reveal compa-
rable performance, except for parameter value coverage (Fig. 3d): in this case,
RestTestGen and bBOXRT show full coverage, whereas RESTler, uTest and
baseline test boolean values with either true or false, and coverage equals 0.5.

As for failure rate, Fig. 6a shows that uTest and baseline achieve higher
values. As for cost, Fig. 6b shows that the average number of tests needed by
bBOXRT, RestTestGen and RESTler is an order of magnitude higher than
uTest and the baseline. Similarly to Scenario 1, the pairwise strategy generates
a test suite approximately three times bigger than the baseline, but detecting
almost five times more failures. In addition, the higher average failure rate and
the comparable values of coverage metrics of the combinatorial approach with
respect to the other tools are confirmed. The results achieved by the baseline are
particularly interesting, as it generates only a single test case for each method
in API (greater cost/benefit ratio compared to stateful approaches).

Failures reported by tests execution need to be investigated by debuggers.
Microservices in an MSA may originate more complex invocation paths than
single RESTful services, making the analysis of failure causes challenging. As
for most distributed systems, observability is key to debug and troubleshooting
MSA [22,23]. Solutions exist to monitor systems at the microservice level [24],
or to mock dependencies in the MSA under test [2].

Black-box Test Case Generation for Microservices 57

Fig. 5. Scenario 2 (valid and invalid test cases): coverage

6 Threats to Validity

Concerning internal validity, despite our best efforts, the presence of defects
in the uTest prototype cannot be ruled out and might skew the results. The
prototype is made anonymously available for reproducibility and repeatability.

External validity is threatened by the case studies adopted. While the three
MSA used for experiments are the most used ones in the literature, they are
open-source projects far from realistic MSA. However, finding real-world MSA
for scientific experiments is a recognized problem [25].

An additional remark in respect to output coverage for the case studies is in
order. Stateful tools generate tests trying to cover operation and/or parameter
dependencies. When more dependencies are covered, higher HTTP status code
coverage values can be achieved, because of 2xx codes that may not been covered

58 L. Giamattei et al.

Fig. 6. Scenario 2 (valid and invalid test cases): average failure rate and tests

otherwise. In our experiments, output coverage values are close to the minimum
(e.g., 50% status code class, meaning that on average all tests generated per
method were able to return only codes of 2xx or 4−5xx classes). This points out
the difficulties of tools in finding realistic valid values and/or operation sequences
to cover all successful responses – the majority of codes returned belong to the
4xx class. For an MSA, dependencies are challenging to cover with a black-box
approach that tests microservices independently. We noted that most tools reach
the maximum execution time configured, generating plenty of worthless tests. A
contributing cause might be the poor specifications for the case studies, which
might affect the trustworthiness of results.

7 Conclusions

We presented an experimental comparison of techniques/tools, borrowed from
black-box RESTful Web Services testing, for automatic test case generation
for microservices in an MSA, and compared them to a newly proposed own
combinatorial strategy. This is a more comprehensive comparison of black-box
tools than past studies, as it includes the state-of-the-art tool EvoMaster, and
for the first time it includes a stateless pairwise technique.

The experiments show that specification-based techniques can support MSA
testers both in functional testing (e.g., for system and acceptance testing) and
in robustness testing (e.g., testing fault tolerance means, error handling), indeed
alleviating the burden of manually writing tests. Although results may be threat-
ened by actual representativeness of the three case studies, the proposed com-
binatorial approach demonstrated to achieve coverage comparable to stateful
techniques, while requiring an order of magnitude lower number of test cases.
However, uTest like existing tools reach low values of output coverage.

It might be argued that applying specification-based test generation tech-
niques (often, conceived for RESTful Web Services) to the many individual
microservices of an MSA may be insufficient to cover complex interaction pat-
terns among them. Microservices have probably better not be tested indepen-
dently, but considering the entire architecture they are part of. In future work,
we will investigate grey-box strategies to test microservice architectures.

Black-box Test Case Generation for Microservices 59

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No. 871342.

References

1. Lewis, J., Fowler, M.: Microservices - a definition of this new architectural term.
http://martinfowler.com/articles/microservices.html (2014)

2. Arcuri, A.: Automated black- and white-box testing of RESTful APIs with Evo-
Master. IEEE Softw. 38(3), 72–78 (2021)

3. Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., Hsueh, N.: Using service dependency
graph to analyze and test microservices. In 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), vol. 02, pp. 81–86 (2018)

4. Corradini, D., Zampieri, A., Pasqua, M., Viglianisi, E., Dallago, M., Ceccato, M.:
Automated black-box testing of nominal and error scenarios in RESTful APIs.
Softw. Test. Verification Reliab. 32, e1808 (2022)

5. Atlidakis, V., Godefroid, P., Polishchuk, M.: RESTler: Stateful rest API fuzzing.
In: IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 748–758. IEEE (2019)

6. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: RESTest: black-box constraint-
based testing of RESTful web APIs. In: Kafeza, E., Benatallah, B., Martinelli,
F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol.
12571, pp. 459–475. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65310-1 33

7. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Test coverage criteria for RESTful
web APIs. In: Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation (A-TEST), pp. 15–21.
ACM (2019)

8. Laranjeiro, N., Agnelo, J., Bernardino, J.: A black box tool for robustness testing
of rest services. IEEE Access 9, 24738–24754 (2021)

9. Ed-douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases for
REST APIs: a specification-based approach. In: IEEE 22nd International Enter-
prise Distributed Object Computing Conference (EDOC), pp. 181–190. IEEE
(2018)

10. Karlsson, S., Čaušević, A., Sundmark. D.: QuickREST: property-based test gen-
eration of OpenAPI-described RESTful APIs. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), pp. 131–141.
IEEE (2020)

11. Bania, O., Florea, D., Gyalai, R., Curiac, D.: Automated specification-based testing
of REST APIs. Sensors 21(16), 5375 (2021)

12. Corradini, D., Zampieri, A., Pasqua, M., Ceccato, M.: Empirical comparison of
black-box test case generation tools for RESTful APIs. In: 2021 IEEE 21st Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 226–236. IEEE (2021)

13. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design
approach to automatic test generation. IEEE Software 13(5), 83–88 (1996)

14. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
1–29 (2011)

http://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.1007/978-3-030-65310-1_33

60 L. Giamattei et al.

15. Hu, L., Wong, W.E., Kuhn, D.R., Kacker, R.N.: How does combinatorial testing
perform in the real world: an empirical study. Empirical Software Eng. 25(4),
2661–2693 (2020). https://doi.org/10.1007/s10664-019-09799-2

16. Pezzè, M., Young, M.: Software Testing and Analysis - Process, Principles and
Techniques. Wiley, Hoboken (2007)

17. Bertolino, A., De Angelis, G., Guerriero, A., Miranda, B., Pietrantuono, R.. Russo,
S.: DevOpRET: continuous reliability testing in DevOps. J. Softw. Evol. Process.
e2298 (2020). smr.2298

18. Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D.: Fault analysis
and debugging of microservice systems: industrial survey, benchmark system, and
empirical study. IEEE Trans. Softw. Eng. 47(2), 243–260 (2021)

19. Richardson, C.: Microservices Patterns. Manning Publications, Shelter Island
(2018)

20. Portswigger: burp suite. https://portswigger.net/burp
21. Corradini, D., Zampieri, A.. Pasqua, M., Ceccato, M.: Restats: a test coverage tool

for RESTful APIs. CoRR, abs/2108.08209 (2021)
22. Indrasiri, K., Siriwardena, P.: Microservices for the Enterprise: Designing, Devel-

oping, and Deploying, 1st edn. Apress, USA (2018)
23. Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G.: Design, monitoring,

and testing of microservices systems: the practitioners’ perspective. J. Syst. Softw.
182, 111061 (2021)

24. Cinque, M., Della Corte, R., Pecchia, A.: Microservices monitoring with event logs
and black box execution tracing. IEEE Trans. Serv. Comput. 15(1), 294–307 (2022)

25. Zhou, X., et al.: Poster: benchmarking microservice systems for software engi-
neering research. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion), pp. 323–324. IEEE (2018)

https://doi.org/10.1007/s10664-019-09799-2
https://portswigger.net/burp

ReSuMo: Regression Mutation Testing
for Solidity Smart Contracts

Morena Barboni(B) , Francesco Casoni , Andrea Morichetta ,
and Andrea Polini

University of Camerino, Camerino, Italy
{morena.barboni,francesco.casoni,

andrea.morichetta,andrea.polini}@unicam.it

Abstract. Mutation testing is a powerful test adequacy assessment
technique that can guarantee the deployment of more reliable Smart Con-
tract code. Developers add new features, fix bugs, and refactor modern
distributed applications at a quick pace, thus they must perform continu-
ous re-testing to ensure that the project evolution does not break existing
functionalities. However, regularly re-running the entire test suite can be
time intensive, especially when mutation testing is involved. This paper
presents ReSuMo, the first regression mutation testing approach and tool
for Solidity Smart Contracts. ReSuMo uses a static, file-level technique
to select a subset of Smart Contracts to mutate and a subset of test files
to re-run during a regression mutation testing campaign. ReSuMo incre-
mentally updates the mutation testing results considering the outcomes
of the old program version; in this way, it can speed up mutation testing
on evolving projects without compromising the mutation score.

Keywords: Mutation testing · Regression testing · Smart contract

1 Introduction

Nowadays, a growing number of industries are using blockchain platforms to
perform trustless computations using Smart Contracts. Applications ranging
from financial services to supply chains are being developed on the Ethereum
blockchain (e.g. [6,7]). The most peculiar feature of a Smart Contract is that its
code is immutable; once deployed to the distributed ledger it cannot be updated,
even if it contains severe programming defects. As the use of Smart Contracts
expands across application domains, the demand for robust testing methodolo-
gies has skyrocketed. In our previous work, we proposed SuMo [3], a mutation
testing tool for Solidity Smart Contracts; SuMo allows developers to improve
their test suites by injecting a wide variety of traditional and Solidity-specific
flaws in the Smart Contract code. Despite being a powerful adequacy assessment
technique, mutation testing is extremely costly and time-intensive. Developers
create new features, fix bugs, and refactor modern distributed applications at
a quick pace, thus they must frequently perform re-testing to verify that the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 61–76, 2022.
https://doi.org/10.1007/978-3-031-14179-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_5&domain=pdf
http://orcid.org/0000-0002-1281-4058
http://orcid.org/0000-0003-4482-8195
http://orcid.org/0000-0003-1738-9043
http://orcid.org/0000-0002-2840-7561
https://doi.org/10.1007/978-3-031-14179-9_5

62 M. Barboni et al.

project evolution does not break existing functionalities. However, re-running
the whole test suites on a regular basis, especially when mutation testing is used,
can be exceedingly time-consuming. Here, we tackle this problem by enhancing
SuMo with a regression testing mechanism that aims to reduce time and compu-
tational effort during mutation testing campaigns. We call the updated version
of the tool ReSuMo, a mutation of REgression SOlidity MUtator. The rest of this
paper is organized as follows: in Sect. 2 we provide background knowledge about
the topics discussed in this paper. Section 3 describes the proposed regression
mutation testing approach, while the design and the workflow of ReSuMo are
presented in Sect. 4. In Sect. 5 we describe the experimental setup and we dis-
cuss the results of our study. Section 6 reports related work, while 7 summarizes
our findings and identifies areas for further research.

2 Background

Ethereum Smart Contracts. Ethereum is a blockchain platform that enables the
deployment and execution of Smart Contracts. These are programs that auto-
matically enforce the agreements specified within their code, without the need
for a central authority. Most Smart Contracts are written in Solidity, an object-
oriented programming language with dedicated features for blockchain develop-
ment. The most peculiar characteristic of a Smart Contract is its immutability:
the code and the resulting transactions cannot be altered once published to the
blockchain, even if programming flaws are discovered after deployment. Thus,
inadequate pre-release testing campaigns could lead to permanent losses of finan-
cial assets or the disclosure of sensitive data.

Mutation Testing. Mutation testing was established as one of the most powerful
test adequacy assessment techniques [17]. It purposefully injects minor changes
into the code under test to generate faulty versions of the original program,
called mutants. Then, it tests each mutant to see if the provided test suite can
detect the artificial faults. Testing the mutants helps the developer to assess the
fault-detection capabilities of the test suite, but also to design new or improved
test cases [2]. The core element of mutation testing is a set of replacement rules,
called mutation operators, which systematically inject mutations into the code
under test. Mutation testing performs the adequacy assessment considering the
output of the test cases with respect to each mutant; if at least one test case
fails the mutant is considered to be killed, otherwise it is said to be live. The
ratio of killed mutants over all valid mutants generated, called the Mutation
Score (MS), measures the adequacy of the test suite. The set of valid mutants
does not include mutants that do not compile (i.e., stillborn) and mutants that
caused infinite loops during testing (timed-out). Moreover, dedicated techniques
like the Trivial Compiler Equivalence [16] must be employed to limit the number
of equivalent or redundant mutants included in the calculation of the mutation
score. Equivalent mutants contain syntactic modifications, but they behave like
the original program, while redundant mutants behave like other mutants, skew-
ing the mutation score.

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 63

Regression Testing. Regression testing is an essential step in almost all commer-
cial software development processes. This type of testing improves confidence in
the correctness of existing and unchanged code after the developers incorporate
corrective and progressive changes into the system under test. Every Regression
Test Selection (RTS) technique aims to reduce the test suite of a given program
by selecting a minimal test set that traverses the code impacted by the changes.
The key requirement for an RTS technique to be adopted is that the end-to-end
testing time, on average, is shorter than the time to execute the entire test suite.

SuMo (SOlidity MUtator). SuMo [3] is a mutation testing approach and tool for
Solidity Smart Contracts. It includes a set of 44 mutation operators capable of
simulating both traditional and Solidity-specific faults. SuMo permits to auto-
matically run a mutation testing process on a Solidity-based project, so as to
evaluate the fault-detection capabilities of the implemented test suite. SuMo is
open-source and can be found on Github1.

3 The ReSuMo Approach

In this section, we present ReSuMo, a Regression Mutation Testing (RMT)
approach for Solidity Smart Contracts. ReSuMo applies a static file-level regres-
sion technique to speed up mutation testing on evolving projects without com-
promising the reliability of the mutation score. To this end, it only performs the
adequacy assessment on those tests that traverse smart contracts affected by
some changes. The innovation ReSuMo embodies is to reduce the mutants to be
generated and tested, yet it is built following the guidelines and best practices
that mature Regression Test Selection (RTS) tools drawn to date [9,12]. The
concept behind contract selection is as follows: if a contract was not influenced
by the latest code changes, it will certainly generate the same mutants as the
previous revision. Thus, we can safely re-use the test results for such mutants
to calculate the mutation score of the current revision. The RMT technique of
ReSuMo includes four phases:

1. Computation of changed files;
2. Computation of files dependencies;
3. Selection of contracts to be mutated;
4. Selection of regression tests.

ReSuMo must compute 1) program revisions differences and 2) test
dependencies to achieve regression testing and mutant selection. Starting from
these artifacts, our tool can compute: 3) a set of affected contracts to be
mutated and tested and 4) a set of modification traversing tests to include
in the regression suite. In the following, we discuss in detail the RMT technique of
ReSuMo. We start by explaining the chosen granularity of computation (section
3.1). Then, we describe how ReSuMo computes program changes (Sect. 3.2) and
file dependencies (Sect. 3.3), and how it uses such information to identify con-
tracts to be mutated (Sect. 3.4) and regression tests (Sect. 3.5).
1 SuMo repository: https://github.com/MorenaBarboni/SuMo-SOlidity-MUtator.

https://github.com/MorenaBarboni/SuMo-SOlidity-MUtator

64 M. Barboni et al.

3.1 Granularity of Computation

The granularity of computation is the nature of the atomic parts in which a
program can be divided: basic blocks, methods, or files. The selected granular-
ity heavily affects the RTS process in terms of results, safety, and performance.
A basic block-level RTS technique only selects those tests that exercise the
modified statements of a program. In method-level, a small modification to
the code causes the entire function to be marked as changed; Any test exercising
the function would be included in the regression suite even if it does not reach
the changed part. In both cases, the regression test suite would be very accurate
and minimized. However, computation at the basic blocks and method levels is
extremely costly due to the explosion of statements (or methods) to be analyzed
and traced. For instance, the ReMT [18] technique can substantially reduce
mutation testing cost, but no tools to date support it due to its fine-grained
computation level. Thanks to the STARTS [13] and the Ekstazi [8] works we
know that, compared to file-level, a finer-grained analysis incurs large overheads
and too often in severe mutation testing precision issues. ReSuMo implements a
file-level static RTS technique, meaning that entire files (contracts or tests) are
treated as the atomic parts of the SUT. File-level computation is more conser-
vative than the other techniques because one small modification causes an entire
contract file to be mutated and tested. However, computing programs differences
does not require syntax trees comparisons with graph traversal procedures. Most
importantly, selecting more contract and test files can often be safer, which is a
priority in the case of business-critical programs like Smart Contracts.

3.2 Computing File Changes

To enable the selection of contract and test files, ReSuMo must detect differences
among program revisions. Since the implemented approach works at file-level,
this can be done with a simple checksum, making the computation of revisions
differences almost instantaneous. As soon as ReSuMo begins the mutation testing
process, it saves a hash for each contract and test file. If a file has an execution
history, the newly computed hash is compared to the previous one to determine
whether the file was modified since the latest revision. Otherwise, the file is
automatically marked as changed and hence saved for further computations.
Note that we do not consider changed files that included trivial modifications,
like comments or whitespaces.

3.3 Computing File Dependencies

ReSuMo computes dependencies between contracts and test files via static
program analysis, eliminating the need to re-run test suites. Dynamic RTS
approaches are widely studied and used, but they are also intrinsically unsafe.
Indeed, the results can be imprecise if a program includes non-deterministic
paths. Time costs are also a big concern; computing dependencies at run-time

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 65

can be time-intensive for large projects with many contracts and test files. More-
over, a static technique is unlikely to miss some dependency due to code changes
because the computation is performed on the new code revision. Since mutations
can easily divert the regular control flow of a contract, using a more conservative
RTS static technique can be beneficial.

Since the chosen RTS technique is static, ReSuMo builds a dependency
graph to store each file as a node, and each dependency as an oriented arc
connecting two nodes. To clarify how the proposed strategy works, we show in
Fig. 1 the dependency graph generated by ReSuMo for a rather simple Solidity
project. Here, the white circles represent Solidity Smart Contracts, the grey
squares represent the test files, and the grey circles are used to denote Solidity
test contracts. First, ReSuMo adds one node to the dependency graph for each
test and for each contract file. Then, it parses and visits each file in search of
Import Directives: statements let a file import another file.

Fig. 1. Example of dependency graph generated by ReSuMo

For instance, let’s consider the JavaScript test file T5 shown in Listing 1.1;
the artifact.require import directive (line 1) lets T5 use contract D, while
the require statement (line 2) imports another test file T4. ReSuMo uses such
statements to quickly establish dependencies among files (both JavaScript tests
and Solidity contracts are supported, including Solidity test contracts).

Listing 1.1. A test file T5.js that depends on a contract D.sol and on a test file T4.js
1 var D = a r t i f a c t s . r e qu i r e (‘ ‘D' ') ;
2 r e qu i r e (‘ ‘ . / T4 ' ') ;
3

4 cont rac t (‘ ‘D” , function (accounts) {
5 i t (‘ ‘ should do something . . . ' ' , async function () {
6 d = new D(some address) ;
7 . . .
8 })
9 })

3.4 Identifying Contracts to Be Mutated

Selecting the contract files to be mutated can concretely reduce time and
resources consumption, but it must be performed carefully to avoid safeness
problems. Let’s consider a project composed of a set of Smart Contracts C, and

66 M. Barboni et al.

a set of test files T . A developer commits some changes, and the project goes
from revision R1 to revision R2. We define C ′ as the set of changed contracts,
and T ′ as the set of changed test files. We can identify the following scenarios
depending on the nature of the revision:

1. Changed Contracts: c1, . . . , cn ∈ C changed since R1 (T ′ = ∅);
2. Changed Test Files: t1, . . . , tn ∈ T changed since R1 (C ′ = ∅);
3. Changed Contracts and Test Files: (C ′ �= ∅) and (T ′ �= ∅);

The starting point of the contract selection technique is the set of changed
files C ′ ∪T ′. A recent work on Commit-Aware Mutation Testing [15] shows how
mutating only the evolved code parts fails to consider the possible interactions
between the unmodified and changed code. Thus, we also consider the unchanged
contract files that might be impacted by the commit. In the following we briefly
discuss how we choose the contracts to be mutated for each scenario: 1) changed
C, 2) changed T and 3) changed CT.
Changed C. Any contract c ∈ C ′ will certainly generate some different mutants.
Thus, we mutate and (re)test c, its dependencies (i.e., contracts used by c) and
its dependants (i.e., contracts that use c or inherit from it). Indeed, dependen-
cies and dependants might be affected by the evolution of c, leading to a different
behavior given some inputs.
Changed T. If C ′ = ∅, each contract of revision R2 will generate the same
mutants of revision R1. However, each test file t ∈ T ′ might produce different
results on the same set of mutants. Thus, each contract c ∈ C used by an evolved
test file is mutated and (re)tested.
Changed CT. If both some contract(s) and some test file(s) changed since R1,
we combine the previous strategies selecting: 1) any c ∈ C ′, together with its
dependencies and dependants 2) any c ∈ C used by any t ∈ T ′.

3.5 Identifying Regression Tests

When a project hits a new revision, running the test suite against the mutants
could produce a different mutation score. The core idea of regression mutation
testing is excluding those tests that produce redundant results when paired with
(executed against) mutants. Indeed, such results can be copied from the kill
matrix generated for the previous revision. To select regression tests we answer
the following question: “Which tests can produce different results when executed
against the mutated contracts?”. Thus, we only select those test files that execute
a changed contract c ∈ C ′, or its dependants, since they can affect the mutation
score. Those tests that execute a dependency of a changed contract c - but do
not test c itself - are discarded. Indeed, they would test the same mutants of the
previous revision.

3.6 Mutation Score Calculation

The mutation score calculated after a regression mutation testing only accounts
for some mutants a project can produce. In order to state the adequacy of the

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 67

entire test suite on the whole SUT, we update the results of a RMT campaign
using the test results stored from the previous run. To this aim, ReSuMo memo-
rizes the test outcomes of each mutant during a testing campaign (more details
about this aspect are reported in Sect. 4). This allows us to obtain the same
mutation score produced by a complete mutation campaign, without actually
rerunning the whole process.

4 The ReSuMo Tool

In this section, we present ReSuMo, a regression mutation testing tool for Solid-
ity Smart Contracts. ReSuMo advances the functionalities of SuMo through 1) a
regression testing mechanism for evolving projects, and 2) the possibility of using
Trivial Compiler Equivalence (TCE) for automatically discarding equivalent and
redundant mutants. ReSuMo is open-source and can be found on Github2. The
implementation and functioning of SuMo were already covered in our previous
work [3], thus we will explain how the original SuMo design (Sect. 4.1) and work-
flow (Sect. 4.2) change based on the integration of the novel Regression Mutation
Testing (RMT) approach.

4.1 Design

ReSuMo has been implemented to permit running regression mutation testing on
a Solidity project in a NodeJS environment. The architecture of ReSuMo main-
tains the main high-level modules of SuMo: 1) Mutation Runner, 2) Mutation
Generator, and 3) Reporter. However, it includes a novel logical module, called
Regression, which permits to perform contract and test files selection during
mutation testing on new project revisions. Moreover, ReSuMo includes auto-
matic instrumenting functionalities that permit to extend the test configuration
file (i.e., truffle-config.js) of the project under test with additional fields. This
serves two main purposes: 1) adding compiler optimization options to permit the
correct functioning of the TCE, and 2) expanding the reporting functionalities
of the underlying testing framework with the mochawesome3 reporter. The latter
is required to obtain the outcome of each test file with respect to each mutant
and incrementally calculate the mutation score among revisions.

ReSuMo still relies on the testing environment set up by the original project
developers, which must include: 1) a testing framework and 2) an Ethereum
blockchain simulator where the contracts can be deployed and tested. In par-
ticular, ReSuMo was designed to work with Truffle and Ganache, as they are
popular among Smart Contract developers. Even so, it is possible to disable
Ganache and to make ReSuMo interact with different testing frameworks (e.g.,
Hardhat) with some manual configurations.

2 ReSuMo repository: https://github.com/MorenaBarboni/ReSuMo.
3 Mochawesome: https://www.npmjs.com/package/mochawesome.

https://github.com/MorenaBarboni/ReSuMo
https://www.npmjs.com/package/mochawesome

68 M. Barboni et al.

4.2 Workflow

Fig. 2 shows the regression mutation testing process of ReSuMo. In the following
we summarize the high-level steps of mutation testing when regression is enabled:

Fig. 2. Regression mutation testing process of ReSuMo

1. Pre-Test: ReSuMo performs some setup operations and checks whether the
user configuration is valid. Then it verifies whether the provided test suite
passes on the original project. If not, the process is interrupted.

2. File differences computation: The regression module checks if some con-
tract or test files have changed since the last revision by comparing their
checksum. The checksum of the current revision is saved for the next muta-
tion campaign.

3. File dependencies computation: The regression module calculates and
saves the dependencies among contracts and test files. Then, it creates the
dependency graph required for the selection of contract and test files

4. File selection: The regression module applies its selection strategy to select
a list of contracts to be mutated, and a list of regression tests to be run.

5. Mutation testing preparation: ReSuMo performs several steps prepara-
tory to the mutation testing run. First, it sets up the mutation process con-
sidering the user configuration file (i.e., the files to be ignored) and the files
computed by the regression module; in particular, it removes from the test
folder any test file that must not be re-run. This step is necessary because the
Truffle interface does not yet support the execution of individual tests. Then,
ReSuMo compiles the original Smart Contracts and stores their bytecode;
this will be later used for applying the Trivial Compiler Equivalence (TCE).

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 69

Lastly, it instruments the test configuration file (e.g., truffle-config.js) of the
project under test to enable compiler optimizations and the mochawesome test
reporter.

6. Mutations generation: ReSuMo visits the AST (Abstract Syntax Tree) of
the Smart Contracts to be mutated, and produces mutations according to the
rules specified by each user-enabled mutation operator.

Once the mutations are available, ReSuMo applies each mutation to the rel-
ative contract, and repeats the following steps for each generated mutant:

7. Compilation and TCE: ReSuMo spawns a Ganache instance and compiles
the mutant with the underlying testing infrastructure. If the mutant does not
compile it is marked as stillborn and discarded, otherwise the Trivial Compiler
Equivalence (TCE) is run on its bytecode. ReSuMo compares the bytecode of
the mutant with the bytecode of its original contract, and with the bytecode
of previously generated mutations, to detect if it is equivalent or redundant.

8. Testing: If the mutant is neither equivalent nor redundant, it must be tested.
To this end, ReSuMo starts a new Ganache instance and runs the regression
tests on the mutated contract. Once the tests have run, ReSuMo updates the
state of the mutant (live, killed or timed-out), restores the mutated contract so
that the next mutation can be applied, and closes the Ganache instance. The
latter step is necessary to guarantee a clean room testing environment for each
mutant. ReSuMo also saves the test results to file through the mochawesome
reporter so as to enable the calculation of the mutation score on the next
regression run.

When all the mutants have been tested, ReSuMo performs two final steps:

9. File restore: At the end of the Mutation Testing run, ReSuMo restores all
the files that were removed or modified during step 5;

10. Results computation: ReSuMo integrates the regression test results with
the ones achieved during the previous run, then it calculates the mutation
score and saves relevant information to file.

5 Validation

To evaluate ReSuMo we performed regression mutation testing on an open-source
Solidity project. In Sect. 5.1 we describe the selected project and the experimen-
tal setup, while the results of the experiment are discussed in Sect. 5.2.

5.1 Experiment Set-up

In order to choose a suitable project for the regression mutation testing cam-
paign, we defined three selection criteria. First, the application must have a
rather high mutation testing time cost. Indeed, regression testing is performed
on evolving systems when the testing effort can be significant. Since ReSuMo

70 M. Barboni et al.

computes dependencies and version changes at file level granularity, the appli-
cation under test must also be complex in structure; if a change occurs in a
project with few contract and test files, ReSuMo will likely re-run the entire test
suite against all mutants, defeating the purpose of Regression Mutation Testing.
Lastly, there must be some commits that alter contract or test files, so that we
can simulate the evolution of the application in a real development setting.

Considering these criteria, our choice fell on Safe Contracts4, a smart
contract wallet with multi-signature functionalities for the management of
blockchain assets. Specifically, we selected three sequential commits that alter
the contract or the test files of the project under test: Commit1

5, Commit2
6 and

Commit3
7. Based on these commits, we can identify four corresponding project

revisions, R1, ..., R4, such that: R1
Commit1−−−−−−→ R2

Commit2−−−−−−→ R3
Commit3−−−−−−→ R4.

Safe-Contract features 20 smart contracts and 21 test files with high coverage
adequacy; throughout the revisions, the test suite achieved on average 95.5%
statement coverage, and 98.5% branch coverage. Note that the metrics refer to
a subset of contract and test files: we excluded libraries, interfaces, migrations,
and unused contracts from the evaluation. The complete list of contract and test
files considered for the experiment is shown in Table 1.

To assess the effectiveness of our approach in terms of mutation score and
time costs, we used ReSuMo to mutate and test each project revision.First, we
executed four complete mutation testing runs, one for each project revision,
and then we repeated the experiment with Regression Mutation Testing (RMT)
enabled. On each run, we used the default set of mutation operators implemented
by SuMo, with the Trivial Compiler Equivalence (TCE) enabled.

5.2 Results

Table 2 shows the effects of the ReSuMo selection strategy when traversing the
selected revisions of the project under test. Here, we provide the revision ID
(Col. 1), the number of contract files (Col. 2) and test files (Col. 3) that changed
since the previous revision, and the number of contracts to be mutated (Col. 4)
and regression tests (Col. 5) selected by ReSuMo (considering the files reported
in Table 1). Table 3 shows the results of the mutation testing process performed
on the selected revisions. For each revision, the table reports the results for
both types of run (Col. 1), which are Complete (marked as C) and Regression
(marked as R). The results include the total number of generated mutants (Col.
2), stillborn mutants (Col. 3), timed-out mutants (Col. 4), equivalent mutants
discarded by the TCE (Col. 5), and tested mutants (Col. 6). Col. 7 shows the
Mutation Score (%) reached by the test suite. Lastly, the table provides the time
(in minutes) required for completing the considered run (Col. 8), and the time
savings achieved by Regression Mutation Testing (Col. 9). In the following we
discuss the results with respect to each revision.
4

https://github.com/gnosis/safe-contracts.
5

https://github.com/gnosis/safe-contracts/commit/b34157d1bea6e9027cc1ea5ea7d135b4f04a4213.
6

https://github.com/gnosis/safe-contracts/commit/9b305a0f80da7f1107d1181f52c844f089557d05.
7

https://github.com/gnosis/safe-contracts/commit/53122d14af0a3f6aa30c5fcd3861573d44c9d7b9.

https://github.com/gnosis/safe-contracts
https://github.com/gnosis/safe-contracts/commit/b34157d1bea6e9027cc1ea5ea7d135b4f04a4213
https://github.com/gnosis/safe-contracts/commit/9b305a0f80da7f1107d1181f52c844f089557d05
https://github.com/gnosis/safe-contracts/commit/53122d14af0a3f6aa30c5fcd3861573d44c9d7b9

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 71

Table 1. Considered smart contracts and test files of the safe-contracts project

Contract files Test files

SimulateTxAccessor.sol SimulateTxAccessor.spec.ts

Executor.sol GnosisSafe.Estimation.spec.ts

FallbackManager.sol GnosisSafe.Execution.spec.ts

GuardManager.sol GnosisSafe.FallbackManager.spec.ts

ModuleManager.sol GnosisSafe.GuardManager.spec.ts

OwnerManager.sol GnosisSafe.Incoming.spec.ts

Enum.sol GnosisSafe.Messages.spec.ts

EtherPaymentFallback.sol GnosisSafe.ModuleManager.spec.ts

SecuredTokenTransfer.sol GnosisSafe.OwnerManager.spec.ts

SelfAuthorized.sol GnosisSafe.Setup.spec.ts

SignatureDecoder.sol GnosisSafe.Signatures.spec.ts

Singleton.sol GnosisSafe.StorageAccessible.spec.ts

StorageAccessible.sol Proxy.spec.ts

CompatibilityFallbackHandler.sol ProxyFactory.spec.ts

DefaultCallbackHandler.sol DelegateCallTransactionGuard.spec.ts

HandlerContext.sol CompatibilityFallbackHandler.spec.ts

GnosisSafeProxy.sol DefaultCallbackHandler.spec.ts

GnosisSafeProxyFactory.sol HandlerContext.spec.ts

IProxyCreationCallback.sol GnosisSafe.0xExploit.spec.ts

GnosisSafe.sol GnosisSafe.ERC1155.spec.ts

GnosisSafe.ReservedAddresses.spec.ts

Revision R1. As can be seen from Table 3, the complete mutation testing
run on the initial project revision generated 773 valid mutants over 20 Smart
Contracts. The provided test suite required almost 7 h to test all the mutants
and achieved a mutation score of 73,6%.
Revision R2. After applying Commit1 to Safe-Contracts, we re-run the muta-
tion testing process on R2, with and without RMT enabled. This revision fea-
tures three modified Smart Contracts: CompatibilityFallbackHandler.sol,
OwnerManager.sol, and SecuredTokenTransfer.sol. As can be seen from the
data of the complete run (Table 2), the commit caused the generation of the
same amount of mutants with respect to R1, and the testing process was com-
pleted in 6,7 h. When we enabled RMT, ReSuMo selected 16 Smart Contracts
and 20 regression tests for mutation and re-testing. The tool generated 685 valid
mutants and completed the testing process in around 6 h. Although ReSuMo
selected many files due to the dense dependency structure of the changed con-
tracts, the regression run saved ∼ 10% of the time required by the complete
run.

72 M. Barboni et al.

Table 2. Output of ReSuMo for different program revisions

Rev. Changed contracts Changed test files Mutated contracts Regression tests

R1 – – 20 21

R2 3 0 16 20

R3 1 0 3 1

R4 1 1 18 20

Table 3. Experimental results

Run Total mutants Stillborn mutants Timed-out mutants Equivalent mutants Tested mutants MS Time (m) Time saved

R1 (C) 943 139 2 29 773 73,6 407 –

R2 (C) 943 139 2 29 773 73,6 402 9,7%

R2 (R) 826 113 2 26 685 73,6 363

R3 (C) 941 140 2 29 770 74 403 98,3%

R3 (R) 32 7 0 0 25 74 7

R4 (C) 947 143 2 29 773 74.1 423 5,7%

R4 (R) 893 127 2 29 735 74,1 399

Revision R3. Revision R3 differs from R2 by a single Smart Contract,
SimulateTxAccessor.sol. The changes introduced by Commit2 triggered the
mutation of three contracts and the execution of a single test file. Although
ReSuMo saved about 40 min when re-testing R2, the benefits of the RMT strat-
egy are clear for R3. The process generated 25 valid mutants, which were tested
in only 7 min; enabling RMT allowed us to reduce the testing time by 98, 3%.
In this case, the overall mutation score slightly increased, indicating a better
adequacy of the tests with respect to the changes applied by Commit2.
Revision R4. R4 features a modified contract and a modified test file. The
changes affected GnosisSafe.sol, the main contract of the project, which is
densely interconnected to other contracts and test files. The evolution of this con-
tract, combined with the changes applied to the GnosisSafe.Signatures.spec
test file, caused the selection of 18 contracts and the re-run of 20 test files. As
can be seen from Table 3, R4 (C) took 20 minutes longer than R3 (C), despite
the latter only producing 3 valid mutants less. This is due to the introduction
of the new test methods within the GnosisSafe.Signatures.spec file. In this
case, enabling RMT generated 54 less mutants with respect to the complete run,
reducing the time needed for completing mutation testing by ∼ 5, 7%.

Overall, the time and effort that can be saved using ReSuMo strictly depend
on two factors: 1) the organization and the granularity of the commits and
2) the structure of the project under test. In other words, if a developer does
not let the modifications pile up, but instead uses ReSuMo to frequently re-run
mutation testing, the time required for assessing the quality of the test suite
can be significantly reduced. Moreover, since the implemented approach works
at file-level, ReSuMo performs better if the commit changes are not scattered

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 73

over many files. Lastly, the approach seems to be extremely effective when the
changed files are loosely coupled. This is the case for commit C2, where the
affected file, SimulateTxAccessor.sol, has two contract dependencies and one
test dependant, and the regression mutation testing can be completed in a few
minutes. However, if a commit affects a central contract (e.g., GnosisSafe.sol)
that has many connections in the dependency graph, the conservative strategy
implemented by ReSuMo can end up selecting many contracts and test files for
mutation and re-testing. In such scenarios, a file-level RMT approach can still
help to decrease time, but the overall effort for performing mutation testing can
still be rather high, as is the case for revision R2.

6 Related Work

To date, there are no works that propose a regression mutation testing app-
roach for Ethereum Smart Contracts; the studies closer to our proposal concern
1) approaches for mutating Smart Contracts and 2) techniques that combine
regression and mutation testing on traditional software systems.
Regression Mutation Testing. Zhang et al. [18] first introduced Regression
Mutation Testing (ReMT), a technique that speeds up mutant execution on
evolving systems by progressively calculating the mutation score. ReMT explores
the control flow graphs of two program versions to discover edges that may result
in different test behaviors. ReMT can identify mutant-test pairs whose execution
results can be safely reused, reducing mutation testing costs on evolving systems.

Cachia et al. [4] advocate the usage of incremental mutation testing, a variant
of mutation testing that limits the scope of mutant generation to areas of code
that changed since the last project version. They showed that this approach can
considerably decrease the number of generated mutants and the time required
to run the tests against them.

Recently, Ma et al. [15] introduced commit-aware mutation testing, an assess-
ment metric capable of evaluating the extent to which some committed modifi-
cations affect program behavior. They conduct experiments on both C and Java
projects and showed that traditional mutant selection is non-optimal, as it has
fewer chances of revealing commit-introducing faults.
Mutation Testing for Ethereum Smart Contracts. In the latest years,
several mutation testing approaches and tools for Ethereum Smart Contracts
were proposed, but none of them implements a mechanism for regression testing.

Wu et al. [14] proposed MuSC, the first mutation testing framework for assess-
ing the quality of Smart Contract test suites. The authors introduced a compact
set of JavaScript-oriented and Solidity-specific mutation operators to inject faults
in the Smart Contract code.

Andesta et al. [1] studied known faults in Ethereum Smart Contracts to
design a novel set of mutation operators, which was then included in the Uni-
versal Mutator tool. The proposed classes of operators can recreate the bugs
found in 10 of 15 famous Smart Contracts that caused severe financial losses.

74 M. Barboni et al.

The Deviant tool proposed by Chapman et al. [5] includes a broad set of
mutation operators that work at four levels: inter-module, intra-module, intra-
function, and intra-statement. The authors evaluated the approach on three real-
world projects and showed that Deviant can help developers to deliver higher
quality Solidity applications.

Honig et al. [11] propose a prototype implementation, called Vertigo, that
targets Smart Contracts written in Solidity. Vertigo also relies on the function-
alities exposed by the Truffle interface to enable testing; however, it discourages
the use the of Ganache simulator, as some Truffle tests might not use its clean
environment feature, leading to unreliable test results. ReSuMo overcomes this
problem by re-spawning a clean Ganache instance for each mutant, so as to
guarantee isolation between multiple test re-runs.

Lastly, Hartel & Schumi [10] implemented mutation operators derived from
the Mothra set, in addition to four Solidity-specific mutation operators, and
implemented them in their ContractMut tool. The authors also introduced a
novel killing condition based on deviations in the gas consumption to improve
the effectiveness of the mutation approach.

7 Conclusions and Future Work

This work presented ReSuMo, the first Regression Mutation Testing (RMT) app-
roach for Solidity Smart Contracts. ReSuMo extends the SuMo [3] tool with a
regression testing and mutant selection technique to speed up mutation test-
ing on evolving projects without compromising the precision of testing results.
ReSuMo applies a static, file-level technique for selecting contracts to mutate and
tests to execute during the mutation process, and is responsible for integrating
the mutation results with previous data produced by the mutation of unchanged
files. In this way, the time and resources consumption of mutation testing can
be amortized during the software development life cycle. As a result, ReSuMo
permits a faster calculation of the Mutation Score, encouraging the continuous
improvement of the test suite during the development of the Smart Contracts.

We evaluated the effectiveness of ReSuMo by running it on a real-world
Ethereum application shipped with a high-coverage test suite. The analyzed sce-
nario considers the evolution of the project over three commits pushed on Github
by the original developers. Our results show that ReSuMo can help developers
to write higher quality test suites and deliver more reliable Solidity applications
using mutation testing, without paying the full time costs of this powerful tech-
nique. Indeed, ReSuMo can significantly reduce mutation testing time; for one
commit, we observed that enabling the proposed RMT technique decreased the
testing time from over 6 h to only 7 min. Our results suggest that the time sav-
ings strictly depend on the organization and granularity of the commits, but
also on the structure of the project under test. If a commit changes a densely
interconnected file, or if the modifications are scattered over many contracts and
tests, ReSuMo can select many files for mutation and re-testing, while projects
with a loosely-coupled structure can benefit the most from the regression.

ReSuMo: Regression Mutation Testing for Solidity Smart Contracts 75

Future work should apply ReSuMo on more distributed applications, so as to
gain additional insights on the benefits of the RMT approach. To further improve
the effectiveness of ReSuMo, especially for small and tightly-coupled Smart Con-
tract projects, future work should also focus on analyzing more fine-grained (e.g.,
method-level) regression mutation testing approaches. Then, it would be possi-
ble for the tester to specify a chosen level of computation granularity, so as to
adapt the regression testing process to their needs.

References

1. Andesta, E., Faghih, F., Fooladgar, M.: Testing smart contracts gets smarter.
CoRR abs/1912.04780 (2019)

2. Andrews, J., Briand, L., Labiche, Y., Namin, A.: Using mutation analysis for assess-
ing and comparing testing coverage criteria. IEEE Transactions on Software Engi-
neering 32(8), 608–624 (2006)

3. Barboni, M., Morichetta, A., Polini, A.: Sumo: A mutation testing strategy for
solidity smart contracts. In: 2nd IEEE/ACM International Conference on Automa-
tion of Software Test, AST@ICSE 2021. pp. 50–59. IEEE (2021)

4. Cachia, M.A., Micallef, M., Colombo, C.: Towards incremental mutation testing.
Electronic Notes in Theoretical Computer Science 294, 2–11 (2013)

5. Chapman, P., Xu, D., Deng, L., Xiong, Y.: Deviant: A mutation testing tool
for solidity smart contracts. In: IEEE International Conference on Blockchain,
Blockchain 2019. pp. 319–324. IEEE (2019)

6. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Engi-
neering trustable choreography-based systems using blockchain. In: 35th ACM/SI-
GAPP Symposium on Applied Computing. pp. 1470–1479. ACM (2020)

7. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Scala, E.,
Tiezzi, F.: Model-driven engineering for multi-party business processes on mul-
tiple blockchains. Blockchain: Research and Applications 2(3), 100018 (2021)

8. Gligoric, M., Eloussi, L., Marinov, D.: Ekstazi: Lightweight test selection. In: 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015. vol. 2,
pp. 713–716. IEEE Computer Society (2015)

9. Gligoric, M., Eloussi, L., Marinov, D.: Practical regression test selection with
dynamic file dependencies. In: Young, M., Xie, T. (eds.) Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015. pp. 211–
222. ACM (2015)

10. Hartel, Pieter, Schumi, Richard: Mutation testing of smart contracts at scale. In:
Ahrendt, Wolfgang, Wehrheim, Heike (eds.) TAP 2020. LNCS, vol. 12165, pp.
23–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50995-8 2

11. Honig, J.J., Everts, M.H., Huisman, M.: Practical Mutation Testing for Smart
Contracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 289–303. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9 19

12. Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., Marinov, D.: An extensive
study of static regression test selection in modern software evolution. In: Pro-
ceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016. pp. 583–594. ACM (2016)

https://doi.org/10.1007/978-3-030-50995-8_2
https://doi.org/10.1007/978-3-030-31500-9_19

76 M. Barboni et al.

13. Legunsen, O., Shi, A., Marinov, D.: STARTS: static regression test selection. In:
Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2017. pp. 949–954. IEEE Computer Society (2017)

14. Li, Z., Wu, H., Xu, J., Wang, X., Zhang, L., Chen, Z.: Musc: A tool for mutation
testing of ethereum smart contract. In: 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019. pp. 1198–1201. IEEE (2019)

15. Ma, W., Laurent, T., Ojdanic, M., Chekam, T.T., Ventresque, A., Papadakis, M.:
Commit-aware mutation testing. In: IEEE International Conference on Software
Maintenance and Evolution, ICSME 2020. pp. 394–405. IEEE (2020)

16. Papadakis, M., Jia, Y., Harman, M., Le Traon, Y.: Trivial compiler equivalence:
A large scale empirical study of a simple, fast and effective equivalent mutant
detection technique. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. vol. 1, pp. 936–946. IEEE (2015)

17. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Mutation
testing advances: An analysis and survey. In: Advances in Computers, pp. 275–378.
Elsevier (2019)

18. Zhang, L., Marinov, D., Zhang, L., Khurshid, S.: Regression mutation testing.
In: International Symposium on Software Testing and Analysis, ISSTA 2012. pp.
331–341. ACM (2012)

Is NLP-based Test Automation Cheaper Than
Programmable and Capture&Replay?

Maurizio Leotta1(B) , Filippo Ricca1 , Simone Stoppa1,
and Alessandro Marchetto2

1 Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS),
Università di Genova, Genova, Italy

{maurizio.leotta,filippo.ricca}@unige.it,
4251721@studenti.unige.it
2 University of Trento, Trento, Italy

alessandro.marchetto@unitn.it

Abstract. Nowadays, there is a growing interest in the use of Natural-Language
Processing (NLP) for supporting software test automation. This paper investi-
gates the adoption of NLP in web testing. To this aim, a case study has been
conducted to compare the cost of the adoption of a NLP testing approach, with
respect to more consolidated approaches, i.e., programmable testing and capture
and replay testing, in two testing tasks: test cases development and test case evo-
lution/maintenance. Even if preliminary, results show that NLP testing is quite
competitive with respect to the more consolidated approaches since the cumula-
tive testing effort of a NLP testing approach, computed considering both develop-
ment and evolution efforts, is almost always lower than the one of programmable
testing and capture&replay testing.

Keywords: Test automation · Web testing · NLP · Artificial intelligence

1 Introduction

End-to-End testing frameworks for web applications, such as e.g., SeleniumWebDriver
and Selenium IDE are nowadays consolidated solutions because they have proven their
value in practice by reducing the cost of manual testing and improving the quality of
released applications [6]. For this reason, they are used in combination with continuous
integration to carry out continuous testing in DevOps processes [4].

However, the cost of test cases development, the cost of maintaining test cases, and
the need for experienced developers to develop test suites are limiting their adoption
and thus the benefits to the applications under test [9].

Recently, new tools and frameworks called code-less and based on Artificial intelli-
gence (AI) [17]—and more specifically on Natural Language Processing (NLP)—have
appeared on the market with the aim of reducing development and maintenance costs.
The novelty of NLP-based test automation tools/frameworks is that the test cases are
written in natural language and therefore even software testers with limited program-
ming skills can produce executable test cases.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 77–92, 2022.
https://doi.org/10.1007/978-3-031-14179-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_6&domain=pdf
http://orcid.org/0000-0001-5267-0602
http://orcid.org/0000-0002-3928-5408
http://orcid.org/0000-0002-6833-896X
https://doi.org/10.1007/978-3-031-14179-9_6

78 M. Leotta et al.

Many vendors have understood the enormous potential of AI in the context of test-
ing and thus have proposed several different NLP-based test automation frameworks/-
tools (e.g., TestSigma1, TestRigor2 and TestProject3) capable of interpreting and exe-
cuting test cases written in natural language. However, the benefits of this new category
of approaches, in terms of costs reduction, have not yet been demonstrated in the field
and thus, these are currently only promises.

The goal of our research is precisely to test NLP-based test automation tool-
s/frameworks by means of a case study and comparing them on different aspects—
e.g., test suite development and maintenance time—with more mature and consolidated
solutions: i.e., with tools/frameworks belonging to programmable and capture&replay
approaches.

Even if, at the moment, we are still a long way off, the contribution of this work is to
start laying the foundations towards an empirical knowledge base that is able to guide
project managers in choosing the most suitable category of testing frameworks/tools for
their purposes. At the moment, thanks to this case study, we have found that this new
generation of testing frameworks is very promising.

This paper is organized as follows: Sect. 2 sketches related works while Sect. 3
describes the three compared testing approaches used to implement E2E test suites
(i.e., programmable, capture&replay, and NLP). Section 4 describes the main aspects
of the empirical study we carried out to compare the approaches, while Sect. 5 reports
the results of the study. Finally, Sect. 6 concludes the paper.

2 Related Work

In the literature, there is a growing interest in the adoption of techniques based on
Natural Language Processing (NLP) for supporting the software testing automation.

Garousi et al. [7] survey the state-of-the-art. Most existing works investigate
approaches to conduct and automate NLP-based analysis (i.e., morphologic, syntactic,
and semantic NLP approaches) for assisting software testing in: (i) clustering related
test cases, e.g., [12,18]; (ii) generating test cases and defining input values from require-
ment specifications, written in natural language (NL), e.g., [16,19]; and (iii) identify-
ing test oracles aiming at verifying exceptional software behaviors, e.g., [14]. Some
approaches adopt an intermediate representation, e.g., behavioral models represented as
state machines, between the natural language specifications and the generated test cases
and test artifacts (e.g., [1,5]). Gupta et al. [8] pointed-out relevant issues related to the
adoption of NLP in software testing: (i) requirement specifications are often constrained
to a specific structure that limits their expressiveness; (ii) intermediate behavioral mod-
els are often large and complex since they need to be precise and comprehensive; (iii)
manual rectification of models is often required; and (iv) additional intervention is often
needed to obtain executable test cases.

The development of executable test cases is, in fact, a complex task when NLP
techniques are adopted. For instance, in the programmable testing approach, executable

1 https://testsigma.com/.
2 https://testrigor.com/.
3 https://testproject.io/.

https://testsigma.com/
https://testrigor.com/
https://testproject.io/

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 79

test cases are developed according to the API/interfaces of the application under test.
In model-based testing, (quasi-executable) test cases are developed from an abstract
representation of the application under test (e.g., a UML model), thus transformation
approaches are required to obtain executable test cases. Similarly, when NLP-based
approaches are used to support testing, adequate transformation approaches are required
to transform abstract test cases into executable test cases.

Requirement specifications are often written in natural language. Gherkin4 is a
structured quasi-natural language that lets testers specify test cases by using a natu-
ral language structured around a set of predefined keywords. Colombo et al. [3] con-
vert Gherkin specifications into models used within a web testing tool. In the work
of Cauchi et al. [2], Gherkin is adopted for improving the communication gap, about
safety-critical system properties, between developers and non-technical experts. Fit-
nesse is another structured quasi-natural language adopted for specifying NL-based
acceptance test cases. Both Marchetto et al. [15] and Longo et al. [13] evaluate the
adoption of Fitnesse. While Marchetto et al. [15] compare Fitnesse with programmable
acceptance test cases, Longo et al. [13] compares the adoption of Fitnesse and Gherkin
for writing acceptance test cases.

Differently from the literature, this work conducts a preliminary evaluation about
the adoption of NLP for test case development and evolution. To the best of our knowl-
edge, in fact, there is a lack in the literature of objective and comparative evaluations
of the proposed NLP methods with respect to more traditional approaches, e.g., pro-
gramming and capture&replay procedures, and others, in test case development and
evolution [9–11]. We start filling the gap by reporting a cases study conducted in the
Web testing domain.

3 Background

Gherkin is a test specification language that aims at providing a unique language for
specifying test cases. The Gherkin language is a structured language composed of a set
of keywords including the following ones:

– Feature: provide a high-level description of the test
– Example/Scenario: show an example of the test
– Given: represent the initial context of the test
– When: describe an action occurred
– And: another action occurred
– Then: describe the result

The code in Listing 1.1 shows a small example in which Gherkin is used to specify
a test case for an online e-commerce application. The test aims at verifying the correct
price of a product when it is added to the shopping cart.

Several testing approaches can be adopted for the functional testing of web appli-
cations. The choice among them could depend on different aspects including, e.g., the

4 https://cucumber.io/docs/gherkin.

https://cucumber.io/docs/gherkin

80 M. Leotta et al.

technology used in the implementation of the application, the available tools (e.g., Sele-
nium WebDriver and Selenium IDE5), and the expertise of the involved testers [9].
In this work, we consider three testing approaches: programmable testing (PT), cap-
ture&replay testing (CRT), and NLP-based testing (NLT).

Programmable web testing (PT) is based on the manual implementation of test
scripts (test cases) using ad-hoc programming languages, e.g., Java, PHP. A test case
is a script composed of a set of instructions and programming commands written by
developers and executed to exercise the application functionality. Often, testers can use
libraries that expose APIs for interacting with web applications and providing the use of
commands, e.g., click a button, fill fields and submit a form. Then, the test script is com-
pleted by developers with input values and assertions to check the obtained execution
results.

Listing 1.1. Example of test case specified with Gherkin

1. // Gherkin TC 1: TestVerifyPriceOfaSingleProduct
2. Feature: Add a product to cart and verify the price
3. Scenario: A Customer wants to add a product to the cart
4. Given the user views the homepage
5. When the user adds an item to the cart
6. And clicks to cart
7. Then the page shows the cost for the product on the cart

Figure 1 shows a fragment of a programmable test script written adopting the
design pattern Page Object6 that implements the Gherkin code 1.1 in Listing 1.1.
@BeforeEach and @AfterEach are constructs defining commands to be executed
before and after the execution of the test case body. In the body, methods provided by
the Page Objects, such as addFirstProductToCart that contribute to the logic
of the test cases, i.e., add a product to the shopping cart in our example, are provided.
Assertions (assertEquals condition) are used to verify the price of the product
added to the cart. Selenium WebDriver is an example of tool supporting programmable
web testing. The advantage of programmable testing is its flexibility and the reusabil-
ity of the test cases. In fact, working with programming languages allows developers
to directly handle in the scripts conditional statements, loops, logging, exceptions, as
well as to create parametric (i.e., data-driven) test cases. The drawbacks, however, are
that: (i) developers need to be skilled; (ii) to be effective, test development has to be
subject to the programming guidelines and best practices typically used for software
development; and (iii) a remarkable initial effort is required to develop test cases.

Capture&replay web testing (CRT) is usually used for regression testing. This test-
ing approach is based on a first manual execution in which the tester manually exercises
a web application by using a tool that records the whole execution session, thus all user
events and interactions with the application elements, as well as all key pressed, mouse
movements, link clicks, scripts’ execution, are recorded. Test cases are scripts that are
automatically composed by the tool and that can be used to replay the recorded testing
sessions. Test cases are hence executed by re-executing the whole recorded sessions that

5 https://www.selenium.dev.
6 https://martinfowler.com/bliki/PageObject.html.

https://www.selenium.dev
https://martinfowler.com/bliki/PageObject.html

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 81

Fig. 1. Example of PT test script

Fig. 2. Example of CRT test script

Fig. 3. Example of NLP test script

can be also enriched with assertions for checking the result of the re-execution. Testers
can also customize each re-execution by slightly changing input values and assertions,
that can also be parametric to make the test scripts more flexible. Figure 2 shows a frag-
ment of a test script recorded with a capture&replay tool that implements the Gherkin
code in Listing 1.1, as example. We see that the starting web page to test is defined at
the beginning of the test, then a set of click operations have been performed by the
tester to add a product to the shopping cart, then the text content of a page element is
checked with an assertion (verify text). Selenium IDE is an example of tool sup-
porting capture&replay web testing. The advantage of capture&replay tools is that they
are relatively simple to use. Hence, even testers without programming skills are able to
build complex and complete test suites. The drawbacks, however, are that the resulting
test scripts (1) have a lot of duplicated code, (2) are difficult to read in case of com-
plex scenarios, and (3) contain hard-coded values (e.g., data inputs and page references
and objects) that make the test scripts strongly coupled with the web application under
test and as a consequence difficult to modify, e.g., for test maintenance and evolution
purpose.

NLP-based testing uses NLP techniques to let testers write test scripts by using the
natural language. NLP, in fact, is the part of artificial intelligence that allows machines
to interpret natural language. The use of NLP techniques for testing purposes is still
at the infancy and its effectiveness has to be empirically investigated. Figure 3 shows a
fragment of a test script that implements the Gherkin code in Listing 1.1, as example.
We can see that the test script is written as a sequence of simple natural language sen-
tences in which verbs such as open, click, check, and their synonyms, are used to
describe the actions to be executed on the application under test. TestSigma, TestRigor,

82 M. Leotta et al.

and TestProject are three examples of commercial tools supporting natural language
web testing. The advantage of NLP testing is that it can help in reducing the effort
required to human testers for producing test cases. Furthermore, specific programming
skills are not required as for the programmable approach. NLP can be used to write test
cases in natural language, to transform such descriptions in executable test cases and to
run them. The drawbacks, however, are that an adequate transformation approach based
on NLP techniques is required to transform test cases written in natural language into
executable test cases able to exercise the application under test.

4 Case Study Design

This section details planning and design of the case study we conducted to com-
pare three web testing approaches: programmable testing (PT), capture&replay testing
(CRT), and NLP-based testing (NLT). In terms of tools supporting these three testing
approaches, we selected Selenium WebDriver (PT) and Selenium IDE (CRT) because
they are well known and used. As representative of the NLT available tools, we selected
a commercial tool, according to a preliminary analysis we conducted7. The rest of this
section presents the design of the case study.

4.1 Study Design

The goal of this study is to compare three web testing approaches, PT, CRT and
NLT with the purpose of assessing both short-term and long-term (i.e., across multiple
releases) effort required in two main testing scenarios: (1) test case development and (2)
test case evolution. In fact, we are mainly interested in comparing the effort required for
the implementation of the initial test suites from scratch, and the effort required for the
evolution of the test suites across subsequent releases of the applications. The results
of the study can be useful for (i) practitioners (developers and managers), interested
in understanding the usual costs and the possible returns of their investment associated
with the adoption of the different web testing approaches; and (ii) researchers, interested
in collecting empirical evidence about the usage of the different testing approaches.

The context of the study is defined as follows. The involved human subjects are:
one of the authors, who defined the test specifications, and a junior professional web
developer, who developed the test cases with the three approaches. The objects of the
study are three open-source web applications.

4.2 Software Objects

To perform our experiment, we took into account three web applications (experimental
objects) named: ExpressCart, Shopizer and OIM. These applications have been selected
since they are: (1) medium-size applications; (2) quite representative of usual web appli-
cations in terms of functionality they provide and technology they use, i.e., program-
ming languages, databases, libraries and frameworks; and (3) there are at least two

7 Being a commercial tool, we think it is better not to disclose its identity. In all cases, the other
NLP tools considered were also very similar to the one chosen.

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 83

major releases available (minor releases have not been considered since small changes
between the applications releases lead to a large reuse of test cases, thus limiting the
amount of empirical data for our study). This last point is relevant for the estimation of
the test case evolution effort, i.e., the effort required to evolve and reuse the test cases
for more than one software release. For each application, hence, we consider two sub-
sequent major releases extracted from the application code repository that expose both
logical and structural changes. While a logical change is a change in a system function-
ality that foresees the modification of the process underlying the specific functionality,
a structural change is instead a change on the application structure that implies only
some changes to the elements, e.g., of the application GUI layout/structure.

ExpressCart8 is an e-commerce application that implements functionalities such
as: shopping carts, payment methods, and administrative functions. The application is
very rich and dynamic: it is mainly written in Javascript, by using frameworks such
as Node.js and Express.js. Shopizer9 is another e-commerce application, mainly writ-
ten in Java, that implements functionalities such as: catalog management, shopping
carts, marketing components, smart pricing management, ordering, payment and ship-
ping management. OIM10 is an inventory management that implements transactions
management, raw material management, batch, supplier, items, categories, and storage
management. The application has been mainly developed in PHP by using AppGini11,
a web-database framework for applications building.

4.3 Research Questions and Metrics

The research questions of our study are the following ones:

– RQ1: Developing Time. What is the initial development effort required for creating
test suites by adopting NLT with respect to more traditional approaches such as PT
and CRT?

– RQ2: Reuse. How much of the test suites generated by adopting NLT can be reused
’as-is’ with respect to more traditional approaches such as PT and CRT, when a new
release of the application needs to be tested?

– RQ3: Evolution Time. What is the effort required for the evolution of test suites
generated by adopting NLT with respect to the effort required to evolve test suites
developed with traditional approaches such as PT and CRT, when a new release of
the application needs to be tested?

– RQ4: Trend in Releases. How the cumulative effort (i.e., combining development
and evolution effort) required by NLT varies in the time, with respect to the one
required for applying traditional approaches such as PT and CRT, by considering
several different application releases?

The first research question deals with the development cost in terms of time required
to develop test suites from test specifications. We aim at verifying whether the adoption

8 https://expresscart.markmoffat.com/documentation.html (last access: February 2022).
9 https://shopizer-ecommerce.github.io/documentation/#/starting (last access: February 2022).
10 https://bigprof.com/appgini/applications/online-inventory-manager (last access: February
2022).

11 https://appgini.en.softonic.com/.

https://expresscart.markmoffat.com/documentation.html
https://shopizer-ecommerce.github.io/documentation/#/starting
https://bigprof.com/appgini/applications/online-inventory-manager
https://appgini.en.softonic.com/

84 M. Leotta et al.

of NLT is costly in terms of required time, with respect to the time required to apply
the more traditional approaches, PT and CRT. This could give practitioners an idea of
the initial investment to be made to adopt the testing approaches. To answer RQ1, we
measured the test suite development effort in terms of time (minutes) needed by a tester
to develop the executable test cases. We compared the different efforts and estimated
the ratio between NLT and the more traditional approaches.

The second research question deals with the resilience to changes of the developed
test suites. We aim at verifying the capability of the testing approaches in developing
test suites that can be reused to test newmajor releases of the application under test. This
could give practitioners an idea of the capability of the testing approach to implement
reusable test suites, i.e., suites that can be reused (as-is) to test a new software release.
To answer RQ2, we considered the next major release of each web application under test
(v2) and counted the number of test cases reusable (as-is) for testing this new release,
i.e., for which the execution does not fail in the new application release.

The third research question deals with the evolution cost required to evolve test
suites by making them working for testing the new major release of the application
under test. We aim at verifying whether a testing approach requires additional evolution
costs, with respect to others, and we aim at estimating the ratio between the differ-
ent costs. This could give practitioners an idea of the effort to be provided to make
test suites usable for more than one software release. To answer RQ3, we considered
the next major release of each web application under test and we evolved the initially
developed test suites so as to make them usable also for testing this new release. We,
hence, measured the test suite evolution effort, in terms of time (minutes) needed by
a tester to fix the test cases that cannot be executed directly with the new application
release (v2).

The last research question is about the return on investment conducted for the adop-
tion of the testing approaches. We aim at verifying how the cumulative testing effort
(computed combining development and evolution effort) required to apply the NLT
approach varies over the time and the application releases, with respect to the one
required to apply the more traditional approaches PT and CRT. This could give prac-
titioners an idea of the overall effort needed. To answer RQ4, we computed the cumu-
lative testing effort for each approach as proposed in [9] and estimated the number
of application releases after which the cumulative effort trend changes. For instance,
let C0 and N0 the effort required for the initial development of CRT and NLT test
cases, respectively, and let C1, C2,... and N1, N2 the test case evolution effort associ-
ated with the successive application releases. We are seeking the lowest value n such
that:

∑n
n=0 Ci ≥ ∑n

n=0 Ni. That value corresponds to the release number after which
NLT test cases start to be cumulatively more convenient than CRT ones. Under the
assumption that Ci = C ∀i > 0 and that Ni = N ∀i > 0 i.e., the same evolution effort
is required for the software releases, we can find the following solution to the equation
above: N0−C0

C−N . Hence, after n releases, the cumulative effort of the initial development
and evolution of NLT test cases is lower than the one of CRT test cases. It is worth to
notice that a negative value obtained for n means that the cumulative cost of the NLT is
always lower than the one of CRT. Similarly we can estimate the value of n for NLT vs
PT and CRT vs PT. By estimating n, we could give practitioners an idea about when the

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 85

investment in the adoption of a given testing approach could become of interest with
respect to the other testing approaches, considering both development and evolution
effort.

4.4 Procedure

In the study, programmable testing, capture&replay testing, and NLP-based testing
have been adopted in two different testing tasks: (i) test case development and (ii) test
case evolution. Two sub-sequent application releases of the objects of the study have
been considered: ExpressCartv1 / ExpressCartv2, Shopizerv1 / Shopizerv2, and OIMv1

/ OIMv2. In detail, the following procedure has been applied.

1. A preliminary training phase has been organized by asking the junior developer to
test the PetClinic12 application with the three different testing approaches, by start-
ing from Gherkin test specifications, thus to practice them and their corresponding
tools.

2. Each application and artifact (e.g., code and documentation) has been analyzed by
the junior developer and by one of the authors to acquire knowledge about them,
their functionalities, and the technology used to implement them.

3. A test suite specification has been defined by one of the authors by describing a set
of end-to-end functional test cases for each application object of the study: Express-
Cart, Shopizer, and OIM. The main functionalities provided by each applications’
version v1 considered in the study have been covered at least once (mainly covered
only normal cases, and not many corner cases). The test cases have been specified
using the Gherkin language.

4. Test cases development: PT, CRT and NLT have been used, by the involved
developer, for implementing the previously created test cases specifications for
ExpressCartv1, Shopizerv1, and OIMv1. In other terms, three executable test suites
have been developed for testing the first release of the applications under test by
using the three different tools considered in this case study. The three developed test
suites are equivalent from the functional point of view, since they test exactly the
same functionalities and have been developed by trying to adhere to the defined test
specifications.

5. Test case evolution:
– The executable test suites built at the previous point have been executed, by the
developer, on the second application releases (i.e., ExpressCartv2, Shopizerv2,
and OIMv2) and identified the failing test cases, i.e., those test cases that, due to
application changes between the first and the second application release, report
a failure or an error.

– Both structural and logical changes implemented in ExpressCartv2, Shopizerv2,
and OIMv2, with respect to the previous release of the same application, have
been identified and considered.

– The failed test cases have been repaired, by the junior developer, so that the full
test suites can be executed without problems also in the second release (v2) of
the applications under test.

12 https://projects.spring.io/spring-petclinic.

https://projects.spring.io/spring-petclinic

86 M. Leotta et al.

During the whole process, the development effort required for the development of
the three test suites, as well as the evolution effort required for the evolution of the test
suites, have been measured by the junior developer noting down the times. To balance
as much as possible the learning effects in the experiment, the order of test suite devel-
opment and evolution has been alternated. Finally, metrics (i.e., test cases development
and evolution time, number of failed test cases, and cumulative effort trend) needed to
answer the four research questions, have been analyzed.

4.5 Threats to Validity

Internal validity threats concern factors that may affect a dependent variable that are
not considered in the study. The most relevant threat to the internal validity concerns
the subjectivity and variability of the test cases implementation task, e.g., selection of
the application functionalities to test, definition of test steps and input data. We tried to
limit this threat by involving two persons, one for the definition of the test specifica-
tions and another one (the junior developer) for the test development, and by applying
well-known testing criteria. Another (possible) impacting threat is related to the learn-
ing effect during the test case development and evolution tasks. As explained, we tried
to consider it in the experiment design by altering the order of test suite development
and evolution. Construct validity threats concern the relationship between theory and
observation. The most relevant threat to the construct validity concerns the use of time
(development and evolution time) as measure of the testing effort. Even if we are con-
scious that it is questionable since several different aspects could impact the testing
effort, we consider time as a reasonably proxy for estimating the testing effort since it
is a widely adopted practice in the empirical software engineering. Another threat con-
cern the fact that test cases have been specified in Gherkin: such specifications can be
considered quite similar to the one used for NLT. On the one side, however, Gherkin
test cases are abstract while NLT test cases are concrete test scripts characterized by
executable steps, specific input values and assertions to check the output. Moreover, on
the other side, this mimics what normally happens in the industry where E2E test cases
are often specified in natural language.

Conclusion validity concerns the relationship between the treatment and the out-
come. To analyze the data and answer the research questions of interest we chose to
use non-parametric tests (i.e., Wilcoxon paired test), due to the size of the sample and
because we could not safely assume normal distributions. Moreover, we applied correc-
tions (specifically, Holm correction) to the statistical tests due to multiple re-executions.

External validity threats are related to the generalization of the results. The most rel-
evant threat to external validity concerns the involvement of only one junior developer.
Concerning this point, the involved developer has some industrial experience in theWeb
domain and testing with SeleniumWebDriver and thus is a good representative of junior
web developers, in general. Moreover, it is important to underline that the case study
is challenging and time-consuming and therefore finding candidates to re-execute it is
not easy. Another threat could be related to the applications adopted in the study. The
applications are medium-size, realistic and representative of their domain, and based on
modern technologies and languages. Other potentially impacting threats are related to
the developed test suites and the used tools. Test suites have been developed as much as

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 87

possible by following a systematic approach and by constructing, at least, one test case
for each functionality provided by the applications. In terms of adopted tools, we used
third-party frameworks/tools, well-known and available on the Internet, thus avoiding
any bias of the authors.

5 Analysis of Results

5.1 RQ1: Developing Time

Table 1 reports general information about the developed test suites in terms of number
and characteristics (e.g., lines of code) of test cases developed. To compare the CRT
and PT code, we exported the native Selenese code (column “Sel”)—the language used
by Selenium IDE—in Java using the export feature provided by Selenium IDE. In two
cases, as expected, the Java test code (excluded the page objects - POs) is shorten than
the CRT one, while in the case of Shopizer, this does not happen since several manual
waits has been added by the junior developer in the PT code (on the contrary, CRT
manages automatically such cases). Moreover, it is interesting to note that the number
of NLT test case lines are always less than the number of Selenese lines: this is reason-
able since Selenium records every interaction with the web application (e.g., click on a
“name” field + type “John”: i.e., 2 lines) while NLT provides a higher level view (e.g.,
write “John” in the “name” field: i.e., 1 line). The last column of the table shows the
average number of steps for the NLT test cases.

Table 1. Test suites code details

Application #Test cases Code
PT CRT NLT

Test LOCs PO LOCs Total LOCs #PO Sel lines Java LOCs Lines AVG lines

ExpressCart 40 842 932 1774 18 635 934 361 9.0

Shopizer 28 506 483 989 7 273 417 150 5.3

OIM 32 462 1065 1527 18 552 765 351 10.9

Table 2 reports the total test suite and average test case development effort
(expressed in minutes) and the statistical difference observed (if any) between the dis-
tributions of the test development effort, to compare PT and CRT with NLT, computed
using the Wilcoxon paired test with Holm correction. The last two columns report the
effort ratio measured between PT and CRT with NLT. For instance, a value higher than
1 in the ratio between PT and NLT means that the PT test suite required more develop-
ment effort (time) than the corresponding NLT test suite.

That Table shows that the development effort for PT is always higher than for NLT
(p-value < 0.01), while there is also a trend, statistically relevant for two out of three
applications, for which the development effort for NLT is higher than the one of CRT.
This is confirmed by the ratio (last columns of Table 2), indeed PT required more effort
than NLT (PT/NLT ratio value is higher than 1) and CRT required less effort than NLT
(CRF/NLT ratio is lower than 1). The observed result shows that PT requires more

88 M. Leotta et al.

Table 2. Test suite development time (minutes)

Application Total Average p-value Ratio
Time (min) Time (min) PT-NLT CRT-NLT PT/NLT CRT/NLT

PT CRT NLT PT CRT NLT

ExpressCart 315.7 45.8 156.6 9.6 1.4 4.7 <0.01 <0.01 2.02 0.29
Shopizer 225.1 47.7 75.4 8.0 1.7 2.7 <0.01 <0.01 2.98 0.63

OIM 310.4 86.4 93.2 10.0 2.8 3.0 <0.01 0.07 3.33 0.93

development time than NLT, since the former requires to develop the testing code (e.g.,
in Java) and the latter requires only to describe the test scenarios using a step-by-step
natural language description (e.g., derived from the Gherkin descriptions). At the same
time, the result of our case study shows also that CRT allows to produce test cases faster
than NLT. In fact, the NLT approach requires, unlike CRT, the analysis of the descrip-
tion of test scenarios (written in Gherkin), their conversion in step-by-step actions/steps
that exercise the application under test, and the definition of the needed input values.
By analyzing the developed NLT test cases, we noticed that the junior developer tried
to describe the test actions/steps by using a simple natural language, avoiding com-
plex linguistic constructs; this was done to simplify the task and to avoid problems of
understanding by the NLT tool.
RQ1. Summarizing, with respect to the research question RQ1, we can observe that: (i)
the programmable test suites (PT) required the largest initial development effort; and
(ii) there is a trend for which natural language test suites (NLT) require more effort
compared to that required for capture&replay (CRT) suites.

5.2 RQ2: Reuse

Table 3 reports some information about the fixed/repaired test cases, i.e., those test cases
developed for testing the application release v1 and that failed in exercising the appli-
cation release v2, thus requiring some effort to be fixed. In particular, Table 3 reports,
for each testing approach, the number of fixed test cases (column “Fixed”) and also the
statistical difference (if any) between PT and CRT with NLT distributions, computed
by using the Wilcoxon paired test with the Holm correction.

Table 3. Test suites evolution: changes

Application PT CRT NLT p-value

#Test fixed #Test fixed #Test fixed PT-NLT CRT-NLT

ExpressCart 19 23 19 0.33 1
Shopizer 17 16 17 1 1
OIM 26 28 15 0.01 0.03

Total 62 67 51 – –
Average 20.7 22.7 17 – –

About the fixed test cases, we mainly observe trends that are not statistically relevant
in most of the cases, apart for OIM.While for OIM, we observed that tests to be repaired

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 89

differ significantly between PT/CRT and NL, for the other two applications no relevant
difference has been observed. In general, we can observe that a large amount of test
cases needs to be fixed (in the range between 48% and 90%). CRT has the largest
number of test cases to be fixed, on average 73%, and variability for application under
test 17% with respect to PT (respectively 67% and 14%) and NLT (respectively 56%
and 6%).

As we have already said, the changes between the two selected versions of the
web applications v1 and v2 considered in the experimentation were of two types: struc-
tural and logical. The number of structural changes were the following: ExpressCart
14, Shopizer 9 and OIM 9. While the logical changes were: ExpressCart 6, Shopizer 8
and OIM 14. It is possible to note that the number of changes is well distributed both
between applications and types.

As expected, PT and CRT show overall a similar levels of reusability (see Table 3)
since they are based on the same DOM-based interaction paradigm. More interest-
ing is the result of NLT that appears to be able, on average more often than the
other approaches, to compensate for the change and thus finding a working solu-
tion in the novel version of the app. This is due to the fact that the NLT actions
are more abstract (e.g., Enter “John” into “name” field) than the one required
in the PT and CRT approaches (e.g., driver.findElement(By.xpath(”//*[@id=’user-
name’]”)).sendKeys(”John”); where the web element is localized using a XPath expres-
sion) that suffer more from changes to the DOM.
RQ2. Summarizing, with respect to the research question RQ2, we can observe that:
(i) the capture&replay suites (CRT) show the lowest reusability, while (ii) the natural
language suites (NLT) show the highest test case reusability.

5.3 RQ3: Evolution Time

Table 4 reports (i) general information about the evolution test suites effort in terms of
time (expressed in minutes) required to fix the failed test cases and (ii) the statistical
difference observed between the distributions of the test evolution time to compare PT
and CRT with NLT, which is computed using the Wilcoxon paired test with the Holm
correction. The Table also reports the evolution effort ratio measured between PT and
CRT with NLT. For instance, a value higher than 1 in the ratio between PT and NLT
means that the PT test suite required more evolution time than the corresponding NLT
test suite.

Table 4. Test suite evolution time (expressed in minutes)

Application Total Average p-value Ratio
Time (min) Time (min) PT-NLT CRT-NLT PT/NLT CRT/NLT

PT CRT NLT PT CRT NLT

ExpressCart 88.1 95.6 44.7 2.7 2.9 1.3 0.01 0.04 1.97 2.14

Shopizer 62.0 30.1 42.5 2.2 1.1 1.5 0.03 0.66 1.46 0.71

OIM 62.6 60.9 38.5 2.1 2.0 1.2 0.08 0.06 1.63 1.58

90 M. Leotta et al.

From Table 4 it is apparent that: (i) PT required a higher evolution effort of NLT
in all the applications; and (ii) CRT required a higher evolution effort than NLT in two
out of three applications. Indeed, the penultimate column of Table 4 shows that PT has
a ratio greater than 1 with respect to NLT. While CRT shows, with respect to NLT
(last column), a ratio greater than 1 in two out of three applications. The fact that NLT
requires less time to evolve the failed test cases with respect to PT is reasonable since
in such a case no programming activities are required and to complete the maintenance
task it is enough to edit the test description text. On the other hand, NLT is also faster
than CRT for two applications out of three: also in this case edit the test description
text seems to be simpler than directly editing the Selenese code, or re-recording the
entire scenario. In the case of Shopizer, we can observe that the evolution time of NLT
is higher of about 12min with respect to CRT. This is explainable why the novel ver-
sion of the application introduced a banner for the user-management of the cookies not
straightforward to be managed using the NLT tool. The banner requested, in NLT, a
few attempts before finding the correct interaction solution while in the case of CRT a
simple recording of the interaction with the approve button was sufficient to solve the
problem.
RQ3. Summarizing, concerning the research question RQ3, we can observe that: (i)
the programmable test suites (PT) required a higher evolution effort compared to NLT;
and (ii) the evolution effort required by the capture&replay suites (CRT) shows a high
variability (but in two cases out of three is higher than the one required for NLT).

5.4 RQ4: Cumulative Effort

Table 5 reports the estimated application release n in which we foresee a significant
change of the cumulative testing effort trend. Concerning the adoption of NLT, Table 5
shows that the cumulative testing effort of NLT is almost always lower than the one
of PT and CRT, apart the case of Shopizer for CRT. The three negative values for n
in column PT-NLT confirm what reported in the previous tables: NLT cost less during
the initial development and also the cost of each evolution step is lower. Thus, the
straight lines representing the cumulative costs never intersect for any positive value of
n. Moreover, the two positive values of n in column CRT-NLT means that NLT have an
initial higher cost w.r.t. CRT but just after a few releases the cumulative costs of NLT
are lower since it requires lower maintenance costs. The only exception is the case of
Shopizer, where both the development and evolution costs are lower for CRT, meaning
that CRT shows a lower cumulative cost for any positive value of n. Also in this case
the explanation could be attributable to the introduction of the banner (see the answer
to RQ3).
RQ4. Summarizing, with respect to the research question RQ4, we can observe that
overall the natural language suites (NLT) required the lowest cumulative testing effort
with respect to the other approaches (i.e., PT and CRT) with only one exception
(Shopizer that costs less when adopting CRT).

Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay? 91

Table 5. Evolution cost: an approach that costs less starting from a release n < 0 means that it
costs less for both the initial development and the evolution costs.

Application Application releases: n
PT-NLT CRT-NLT

ExpressCart NLT costs less for n > −3.6 NLT costs less for n > +2.2

Shopizer NLT costs less for n > −7.7 CRT costs less for n > −2.2

OIM NLT costs less for n > −9.0 NLT costs less for n > +0.3

6 Conclusions

This paper reports a study conducted to compare NL-based web testing (NLT) and
two more traditional testing approaches, i.e., programmable testing (PT) and cap-
ture&replay testing (CRT). The comparison is based on: the effort required for devel-
oping test suites; the resilience to changes and the effort required to evolve test suites;
and the overall effort needed to apply each testing approach over multiple application
releases.

Results show that: (i) NLT requires less development effort than PT but more effort
than CRT; (ii) NLT shows the highest test case reusability, as well as (iii) the lowest evo-
lution effort in most of the cases, with respect to traditional approaches; and (iv) NLT
tends to require the lowest cumulative testing effort over the time, with respect to other
approaches (we observed only an exception in one of the considered web application
using CRT).

For the future, we are planning to: (i) conduct a larger study by extending the set
of the considered web applications and involving others developers, currently we have
involved only one participant, aiming at consolidating the obtained results; (ii) con-
sider different tools than Selenium IDE/WebDriver and the one for NLT to support the
obtained results, and (iii) conduct a study to estimate the expressiveness of the natural
language used to develop test cases with the NLT approach and to exploit the poten-
tiality of the engine underlying the NLT approach (i.e., the engine used to transform
natural language based test cases into executable test cases).

References

1. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Blackburnc, M.:
Nat2testscr: Test case generation from natural language requirements based on scr specifi-
cations. Sci. Comput. Program. 95, 275–297 (2014). https://doi.org/10.1016/j.scico.2014.06.
007

2. Cauchi, A., Colombo, C., Francalanza, A., Micallef, M., Pace, G.: Using gherkin to extract
tests and monitors for safer medical device interaction design. In: 8th Symposium on Engi-
neering Interactive Computing Systems (SIGCHI), ACM, June 2016. https://doi.org/10.
1145/2933242.2935868

3. Colombo, C., Micallef, M., Scerri, M.: Verifying web applications: from business level spec-
ifications to automated model-based testing. Electron. Proc. Theor. Comput. Sci. 141, 14–28
(2014). https://doi.org/10.4204/eptcs.141.2

4. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. 33(3), 94–100
(2016). https://doi.org/10.1109/ms.2016.68

https://doi.org/10.1016/j.scico.2014.06.007
https://doi.org/10.1016/j.scico.2014.06.007
https://doi.org/10.1145/2933242.2935868
https://doi.org/10.1145/2933242.2935868
https://doi.org/10.4204/eptcs.141.2
https://doi.org/10.1109/ms.2016.68

92 M. Leotta et al.

5. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.: SPEC-
MATE: automated creation of test cases from acceptance criteria. In: 13th International
Conference on Software Testing, Validation and Verification (ICST), IEEE, October 2020.
https://doi.org/10.1109/icst46399.2020.00040

6. Garcı́a, B., Gallego, M., Gortázar, F., Organero, M.: A survey of the selenium ecosystem.
Electronics 9, 1067 (2020). https://doi.org/10.3390/electronics9071067

7. Garousi, V., Bauer, S., Felderer, M.: NLP-assisted software testing: a systematic mapping of
the literature. Inf. Softw. Technol. 126, 106321 (2020). https://doi.org/10.1016/j.infsof.2020.
106321

8. Gupta, A., Mahapatra, R.P.: A circumstantial methodological analysis of recent studies on
NLP-driven test automation approaches. In: Udgata, S.K., Sethi, S., Srirama, S.N. (eds.)
Intelligent Systems. LNNS, vol. 185, pp. 155–167. Springer, Singapore (2021). https://doi.
org/10.1007/978-981-33-6081-5 14

9. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-replay vs. Programmable web testing:
an empirical assessment during test case evolution. In: Proceedings of 20th Working Confer-
ence on Reverse Engineering (WCRE 2013), pp. 272–281. IEEE (2013). https://doi.org/10.
1109/WCRE.2013.6671302

10. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Visual vs. DOM-based web locators: an empir-
ical study. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541,
pp. 322–340. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08245-5 19

11. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated end-to-end
web testing. Adv. Comput. 101, 193–237 (2016). https://doi.org/10.1016/bs.adcom.2015.11.
007

12. Li, L., et al.: Clustering test steps in natural language toward automating test automation. In:
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ACM, November 2020. https://doi.org/10.1145/
3368089.3417067

13. Longo, D.H., Vilain, P., da Silva, L.P.: Measuring test data uniformity in acceptance tests for
the FitNesse and gherkin notations. J. Comput. Sci. 17(2), 135–155 (2021). https://doi.org/
10.3844/jcssp.2021.135.155

14. Malik, M., Sindhu, M., Abbasi, R.: Test oracle using semantic analysis from natural lan-
guage requirements. In: 22nd International Conference on Enterprise Information Systems.
SCITEPRESS (2020). https://doi.org/10.5220/0009471903450352

15. Marchetto, A., Ricca, F., Torchiano, M.: Comparing “traditional” and web specific fit tables
in maintenance tasks: a preliminary empirical study. In: 12th European Conference on Soft-
ware Maintenance and Reengineering. IEEE, April 2008. https://doi.org/10.1109/csmr.2008.
4493327

16. Pribisalic, M.: Automatic generation of test cases from use-case specification using natural
language processing. In: 33rd Bled eConference - Enabling Technology for a Sustainable
Society, pp. 725–734 (2020). https://doi.org/10.18690/978-961-286-362-3.52

17. Ricca, F., Marchetto, A., Stocco, A.: Ai-based test automation: a grey literature analysis. In:
IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 263–270 (2021). https://doi.org/10.1109/ICSTW52544.2021.00051

18. Tahvili, S., Hatvani, L., Ramentol, E., Pimentel, R., Afzal, W., Herrera, F.: A novel method-
ology to classify test cases using natural language processing and imbalanced learning. Eng.
Appl. Artif. Intell. 95, 103878 (2020). https://doi.org/10.1016/j.engappai.2020.103878

19. Wang, C., Pastore, F., Goknil, A., Briand, L.C.: Automatic generation of acceptance test
cases from use case specifications: an NLP-based approach. IEEE Trans. Softw. Eng. 48(2),
585–616 (2022). https://doi.org/10.1109/tse.2020.2998503

https://doi.org/10.1109/icst46399.2020.00040
https://doi.org/10.3390/electronics9071067
https://doi.org/10.1016/j.infsof.2020.106321
https://doi.org/10.1016/j.infsof.2020.106321
https://doi.org/10.1007/978-981-33-6081-5_14
https://doi.org/10.1007/978-981-33-6081-5_14
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1007/978-3-319-08245-5_19
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1145/3368089.3417067
https://doi.org/10.1145/3368089.3417067
https://doi.org/10.3844/jcssp.2021.135.155
https://doi.org/10.3844/jcssp.2021.135.155
https://doi.org/10.5220/0009471903450352
https://doi.org/10.1109/csmr.2008.4493327
https://doi.org/10.1109/csmr.2008.4493327
https://doi.org/10.18690/978-961-286-362-3.52
https://doi.org/10.1109/ICSTW52544.2021.00051
https://doi.org/10.1016/j.engappai.2020.103878
https://doi.org/10.1109/tse.2020.2998503

Effective Spectrum Based Fault
Localization Using Contextual Based

Importance Weight

Qusay Idrees Sarhan1,2(B) and Árpád Beszédes1

1 Department of Software Engineering, University of Szeged, Szeged, Hungary
2 Department of Computer Science, University of Duhok, Duhok, Iraq

{sarhan,beszedes}@inf.u-szeged.hu

Abstract. In Spectrum-Based Fault Localization (SBFL), a suspicion
score for each program element (e.g., statement, method, or class) is cal-
culated by using a risk evaluation formula based on tests coverage and
their results. The elements are then ranked from most suspicious to least
suspicious based on their scores. The elements with the highest scores
are thought to be the most faulty. The final ranking list of program
elements helps testers during the debugging process when seeking the
source of a fault in the program under test. In this paper, we present
an approach that gives more importance to program elements that are
executed by more failed test cases and appear in different contexts of
method calls (both as callees and as callers) in these tests compared to
other elements. In essence, we are emphasizing the failing test cases factor
because there are comparably much less failing tests than passing ones.
We multiply each element’s suspicion score obtained by a SBFL formula
by this importance weight, which is the ratio of covering failing tests
over all failing tests combined with the so-called method calls frequency.
The proposed approach can be applied to SBFL formulas without mod-
ifying their structures. The experimental results of our study show that
our approach achieved a better performance in terms of average ranking
compared to the underlying SBFL formulas and comparable approaches.
It also improved the Top-N categories and increased the number of cases
in which the faulty method became the top-ranked element.

Keywords: Debugging · Fault localization · Spectrum-based fault
localization · Importance weight · Method calls

The research was supported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence National Laboratory Program (RRF-
2.3.1-21-2022-00004) and the project no. TKP2021-NVA-09 which was implemented
with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 93–107, 2022.
https://doi.org/10.1007/978-3-031-14179-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_7&domain=pdf
http://orcid.org/0000-0001-8708-0063
http://orcid.org/0000-0002-5421-9302
https://doi.org/10.1007/978-3-031-14179-9_7

94 Q. I. Sarhan and Á. Beszédes

1 Introduction

Many aspects of our daily lives are automated by software. They are, however, far
from being faultless. Software bugs can result in dangerous situations, includ-
ing death. As a result, various software fault localization techniques, such as
spectrum-based fault localization (SBFL) [14], have been proposed over the last
few decades. SBFL calculates the likelihood of each program element of being
faulty based on program spectra collected from executing test cases and their
results. SBFL, on the other hand, is not yet widely used in the industry due to
a number of challenges and issues [11].

One of such issues is that program elements are ranked from most to least
suspicious in order of their suspicion scores. Testers check each element starting
at the top of the ranking list to determine whether it is faulty or not. Thus, the
faulty element should be placed near the top of the ranking list to aid testers in
discovering it early in the evaluation process and with least effort. Many times,
SBFL formulas place the faulty elements far from the ranking list top.

In this paper, we are addressing this issue by presenting an approach that
gives more importance to program elements that are executed by more failed test
cases and appear in different contexts of method calls (both as callees and as
callers) in these tests compared to other elements. The intuition is the following.
A typical SBFL matrix is unbalanced in the sense that there are much more
passing tests than failing ones, and many SBFL formulas treat passing and
failing tests similarly. Also, program elements might behave differently when
appearing in different calling contexts. We propose to emphasize the factor of
the failing tests in the formulas, which is achieved by introducing a multiplication
factor to any SBFL formula. This factor is called the importance weight, and is
given as the ratio of executed failing tests for a program element with respect
to all failing tests combined with the so-called method calls frequency. In other
words, a program element will be more suspicious if it is affected by a larger
portion of the failing tests and appears in a variety of calling contexts during
such test cases. The proposed approach can be applied to any SBFL formula
without modifying it.

The experimental results of our study show that our approach achieved a
better performance in terms of average ranking and Top-N categories compared
to well-known underlying SBFL formulas and Vancsics et al.’s approach in [12].

The following are the main contributions of the paper:

1. A new approach that successfully improves the performance of SBFL in many
cases is proposed.

2. The analysis of the impact of the new approach on the overall SBFL effec-
tiveness is discussed.

We defined the following Research Questions (RQs) for this paper:

– RQ1: What level of average ranks improvements can we achieve using the
proposed enhancing approach?

Effective Spectrum Based Fault Localization Using Contextual 95

– RQ2: What is the impact of the proposed approach on SBFL effectiveness
across the Top-N categories?

The rest of the paper is structured as follows: Sect. 2 introduces SBFL’s work
and its key concepts in a nutshell. Section 3 provides a summary of the most
relevant works. Section 4 introduces our approach of enhancing SBFL formulas.
Section 5 provides an overview on the used subject programs, data collection,
and the evaluation baselines. Section 6 presents the experimental results of this
study compared to the existing approaches and provides some analysis about the
effectiveness of our proposed approach. Section 7 reports the potential threats to
validity. Finally, we present our conclusions and potential future works in Sect. 8.

2 Background of SBFL

This section explains SBFL and how it can be used to find software faults by
ranking program elements according to their likelihood of being faulty.

2.1 SBFL Process

Many techniques have been proposed in the literature to automate the process of
software fault localization [14]. However, SBFL is the most dominant because of
its straightforward but potent nature, i.e. it only uses test coverage and results
to calculate the suspiciousness of each program element of being faulty.

The execution of test cases on program elements is recorded to extract the
spectra (i.e., tests coverage and test results) for the program under test. Program
spectra information is a two-dimensional matrix that demonstrate the relation-
ship between test cases and program elements. Its columns depict the test cases,
while its rows depict the program elements. If a test case covers an element in
the matrix, it is assigned a value of 1; otherwise, it is assigned a value of 0. The
test results are also stored in the matrix, where 0 means the test case is passed
and 1 when it is failed. For each program element e, the following four basic
statistical numbers are frequently calculated from the program spectra: (a) ef:
number of failed tests executing e; (b) ep: number of passed tests executing e;
(c) nf: number of failed tests not executing e; (d) np: number of passed tests not
executing e.

Then, these four basic statistics can be used by a SBFL formula to output a
ranked list of program elements. Whichever element is at the top of the list is
the most likely to be buggy. As a result, SBFL can assist testers in locating the
faulty element in the target program’s code.

2.2 Code Example

To demonstrate SBFL’s work, consider a Java program, adopted from [12], which
consists of four main methods (a, b, f , and g), and its four test cases (t1, t2, t3,
and t4) as shown in Fig. 1. It can be noted that there is a fault in method g (the
correct statement is x+=i) and only t1 and t4 execute that faulty method.

96 Q. I. Sarhan and Á. Beszédes

Fig. 1. Running example – program code and test cases

2.3 Program Spectra and Basic Statistics

Assume the tests were run on the program and the program spectra (i.e., infor-
mation on how the four program methods were executed in passed and failed
test cases) were captured. This data is presented in Table 1.

A 1 in the cell corresponding to the method a and the test case t1 indicates
that t1 has covered the method a, while a 0 indicates that the method a has
not been covered. A 1 in the “Results” row indicates that the relevant test case
failed, and a 0 indicates that it passed. The t2 test case, for example, calls the
methods a, b, and g, but it fails because the output of this calls sequence should
be 3, not 4.

Table 1’s last four columns represent the four basic statistics (i.e., ef, ep, nf,
and np) that are calculated from the program spectra. For example, the value of
ef of the method a is 2 because it has been executed by two failed tests t1 and t2.

2.4 SBFL Formulas

A SBFL formula is a mathematical expression that often uses these four basic
statistics to compute the suspicion score of each program element of being faulty.

Effective Spectrum Based Fault Localization Using Contextual 97

Table 1. Program spectra and four basic statistics

t1 t2 t3 t4 ef ep nf np

a 1 1 1 1 2 2 0 0

b 1 1 1 1 2 2 0 0

f 1 0 0 1 1 1 1 1

g 1 1 1 1 2 2 0 0

Results 1 1 0 0

We apply various popular formulas [9] for the experimental evaluation in this
paper, as shown in Table 2.

Table 2. SBFL formulas used in the study

Name Formula

Jaccard (J) ef
ef+nf+ep

Barinel (B) ef
ef+ep

SorensenDice (S) 2∗ef
2∗ef+nf+ep

DStar (DS) ef∗ef
ep+nf

Dice (D) 2∗ef
ef+nf+ep

Interest (I) ef
(ef+nf)∗(ef+ep)

Kulczynski1 (K) ef
nf+ep

Cohen (C) 2∗(ef∗np)−2∗(nf∗ep)
(ef+ep)∗(ep+np)+(nf+np)∗(ef+nf)

2.5 Suspiciousness Scores

We can get the suspiciousness score for each method in Table 3 by applying
some formulas to the spectra of our Java program example in Table 1. It is
worth noticing that for several methods in this example, each SBFL formula
returns the same suspiciousness score. To put it another way, SBFL formulas in
this circumstance are unable to distinguish the techniques just on the basis of
their pure scores. Thus, the buggy method g is hardly distinguishable from the
other methods. As a result, in this scenario, the SBFL effectiveness is reduced
by the tie problem among program methods [11].

2.6 Suspiciousness Ranking

We use the average rank approach in Eq. 1, where S denotes the tie’s starting
position and E denotes the tie’s size, to analyze SBFL efficiency in general.
Here, the program elements with the same suspicion score are ranked using the

98 Q. I. Sarhan and Á. Beszédes

Table 3. Program example scores and average ranks

Method J Rank B Rank S Rank

a 0.5 2 0.5 2.5 0.67 2

b 0.5 2 0.5 2.5 0.67 2

f 0.33 4 0.5 2.5 0.5 4

g 0.5 2 0.5 2.5 0.67 2

average rank, such elements are called tied elements, by taking the average of
their positions after they get sorted, in descending order, based on their scores.

MID = S +
(

E - 1
2

)
(1)

Table 3 presents the average ranks of the sample program using the SBFL
formulas that were chosen. Ranks that are part of a tie are highlighted in gray.
It can be noted that based on the ranks, Barinel (B) is unable to distinguish the
methods from each other, while the other formulas result in a tie-group of three
methods.

As a result, such methods are grouped together in the ranking and cannot be
distinguished from one another in terms of which one should be investigated first.
Therefore, additional information besides the basic hit-spectra are required to
break these ties. For example, with a satiable additional information, the buggy
method can be moved to a higher place in the ranking list.

3 Related Works

This section summarizes the most important efforts to improve SBFL by focusing
on its formulas.

One strategy to improve SBFL is to create new SBFL formulas that out-
perform the current ones. The authors of [13] presented a new SBFL formula
named “DStar”, for example. The proposed formula was compared to a number
of commonly used formulas, and it outperformed them all. Using Genetic Pro-
gramming (GP), SBFL formulas can also be created automatically. The authors
in [1] employed GP to create SBFL formulas automatically based on program
spectra. The authors were able to come up with a total of 30 formulas. Accord-
ing to their findings, the GP is a good strategy for producing effective SBFL
formulas.

Improvements can also be achieved by modifying existing SBFL formulas.
The authors in [16] also tweaked three well-known SBFL formulas to account
for the possibility that some failed tests yield more information than others. As
a result, different weights for improving SBFL performance for failed tests were
allocated to the three formulas and then used using multi-coverage spectra.

Combining existing SBFL formulas with one another is a different technique.
The authors in [3] developed a method for mixing 40 distinct SBFL formulas

Effective Spectrum Based Fault Localization Using Contextual 99

to create a new SBFL formula suitable to a certain program. The suggested
method pulls information from the program via mutation testing, and then uses
different voting systems to merge numerous formulae depending on the acquired
information to build a new formula. Experiments reveal that the formula created
by their method is superior to a number of current formulas. It is worth noting
that researchers attempted to combine multiple formulas in order to build new
ones. The new formula is regarded as a hybrid formula since it combines the
benefits of multiple previous formulations. As stated in [7,10], the performance
of a hybrid formula should be superior to that of existing formulas.

Another way is to supplement existing SBFL formulas with new data. The
authors in [12] added new contextual information to the underlying SBFL for-
mulas by using the method calls frequency of the subject programs during the
execution of failed tests. In each formula, the frequency ef was substituted for
the ef . Their findings showed that incorporating additional data from method
calls into the underlying formulas can boost SBFL effectiveness. In addition, the
authors in [17] proposed a method for improving SBFL by applying the PageR-
ank algorithm to differentiate tests. Their method takes the original program
spectrum information and recomputes it using PageRank, taking into account
the contributions of various test cases. The standard SBFL formulas on the
recomputed spectrum information can be used to improve fault localization.

SBFL can also be improved by breaking ties. Ties in SBFL are dominant; thus
it is unlikely that any of the known SBFL formulas will generate distinct scores
for all program elements. The authors in [5] proposed an approach, also based
on method calls frequency, to break tied program elements. Their experimental
results showed that employing information from method calls frequency in failed
tests cases for tie breaking can improve the effectiveness of SBFL.

SBFL’s performance was improved in several ways as a result of the afore-
mentioned studies. Our proposed approach improves the SBFL performance by
giving more importance to program elements that are executed by more failed
test cases and appear in different contexts of method calls (both as callees and
as callers) in these tests. The advantages of our proposed approach over others
are: (a) It does not modify the existing SBFL formulas. Thus, it can be applied
to any SBFL formula to enhance its effectiveness. This is very important as
it makes the proposed approach more applicable than other approaches. (b) It
solves the issue of unbalanced SBFL matrix in the sense that there are much
more passing tests than failing ones, and many SBFL formulas treat passing and
failing tests similarly. (c) Finally, it also involves information outside the regular
SBFL matrix, namely the calling context information.

4 The Proposed SBFL Enhancing Approach

In this section, we present the concept of our proposed approach to enhance
the effectiveness of the underlying SBFL formulas and how it works. Then, we
present its effectiveness when applied on our motivational example.

100 Q. I. Sarhan and Á. Beszédes

4.1 The Frequency-Based Ef (φ)

To obtain the frequency-based ef (φ), we first create the frequency-based SBFL
matrix, which replaces the traditional hit-based one. As a result, instead of
{0, 1}, each element will receive an integer reflecting the number of occurrences
of the given element in the unique call stacks while running in various calling
contexts. In other words, unique call stacks are data structures that store call
stack state information during test case execution and count the number of
method occurrences within these structures [12].

Table 4 presents the frequency-based matrix for our Java example. The
unique call stacks of t1, for example, are (a, f), (a, g), and (b, g), hence the
frequency of g for test t1 will be 2.

Table 4. Frequency-based matrix

a b f g Results

t1 2 1 1 2 Failed

t2 1 1 0 2 Failed

t3 1 1 0 1 Passed

t4 3 1 1 2 Passed

φ 3 2 1 4

φ is determined by adding the frequency-based values for the failing test cases
in the matrix. The greater the value of φ for a method, the more suspicious is.
For instance, adding the frequency-based values of the faulty method g (i.e., 2
and 2) in the matrix for the failing test cases (i.e., t1 and t2) will yield 4 as the
value of φ for the method g, which is the biggest φ value compared to others.

4.2 The Proposed Approach

Using the selected SBFL formulas on the program spectra, we calculate the sus-
picion scores of program methods. The output are the initial suspicion scores of
methods. Then, we multiply each initial score of each method by its importance
weight which is computed via Eq. 2.

Importance Weight =
(

ef * φ

ef + nf

)
(2)

The order of methods in the initial ranking list will be rearranged based
on the value of each method’s importance weight, resulting in a final improved
ranking list. From Table 5, it can be seen that the faulty method g will get the
rank 1 after applying our proposed approach instead of 2 (in case of J and S)
or 2.5 (in case of B) as its weight is greater than others. The rationale behind
using the φ is that if a method appears in a lot of calls during a failed test, it

Effective Spectrum Based Fault Localization Using Contextual 101

will be considered more suspicious and will be given a higher rank than other
methods. We combine the φ with ef/(ef + nf) because the later emphasizes
the failing test cases factor because there are comparably much less failing tests
than passing ones.

Table 5. Program example scores and average ranks after applying our approach

Method J** Rank B** Rank S** Rank

a 1.5 2 1.5 2 2.0 2

b 1.0 3 1.0 3 1.33 3

f 0.17 4 0.25 4 0.25 4

g 2.0 1 2.0 1 2.67 1

5 Evaluation

5.1 Subject Programs

In this study, we used the faulty programs of version v1.5.0 of Defects4J [6]; where
6 open-source Java programs had 438 actual faults found in their repositories1.
However, due to instrumentation issues or incorrect test results, 27 defects were
eliminated from this analysis. As a result, the final dataset used contained a total
of 411 faults. Each program’s primary characteristics are presented in Table 6.

Table 6. Subject programs

Project Number of bugs Size (KLOC) Number of tests Number of methods

Chart 25 96 2.2 k 5.2 k

Closure 168 91 7.9 k 8.4 k

Lang 61 22 2.3 k 2.4 k

Math 104 84 4.4 k 6.4 k

Mockito 27 11 1.3 k 1.4 k

Time 26 28 4.0 k 3.6 k

All 411 332 22.1 k 27.4 k

5.2 Granularity of Data Collection

Method-level granularity was used as a program spectra/coverage type in this
work. It provides users with a more understandable level of abstraction [2,18].
However, in terms of the proposed approach, there is no theoretical barrier to
investigate other granularity levels as well.
1 https://github.com/rjust/defects4j/tree/v1.5.0.

https://github.com/rjust/defects4j/tree/v1.5.0

102 Q. I. Sarhan and Á. Beszédes

5.3 Evaluation Baselines

Several well-studied SBFL formulas were utilized as baselines in this paper, as
presented in Table 2, to evaluate and compare our proposed approach to. It is
worth mentioning that Vancsics et al.’s approach proposed in [12] is comparable
to ours; thus, we will compare our results to it too.

6 Experimental Results and Discussion

6.1 Achieved Improvements in the Average Ranks

Table 7 presents the average ranks before (column 2) and after (column 3) using
our proposed approach (denoted with **) and Vancsics et al.’s approach in [12]
(denoted with *), as well as the difference between them (column 4). If the
difference is negative, it indicates that the used approach has the potential to
improve.

Table 7. Average ranks comparison

Diff. Diff.

J = 38.51 J* = 23.58 J** = 21.83 J-J* = –14.93 J-J** = –16.68

B = 38.5 B* = 23.66 B** = 21.7 B-B* = –14.84 B-B** = –16.8

S = 38.51 S* = 23.77 S** = 21.96 S-S* = –14.74 S-S** = –16.55

DS = 149.03 DS* = 150.59 DS** = 136.67 DS-DS* = 1.56 DS-DS* = –12.36

D = 38.51 D* = 23.58 D** = 21.83 D-D* = –14.93 D-D** = –16.68

I = 38.5 I* = 23.66 I** = 21.7 I-I* = –14.84 I-I** = –16.8

K = 153.34 K* = 138.26 K** = 136.66 K-K* = –15.08 K-K** = –16.68

C = 38.54 C* = 20.76 C** = 17.87 C-C* = –17.78 C-C** = –20.67

We can see that our proposed approach achieved improvements with all of
the selected SBFL formulas: the average rank reduced by about 17 overall, which
corresponds to 8–54% with respect to the total number of methods in the used
dataset. It can be noted that the Cohen formula reduced the average rank more
than the others. Considering the formulas that have the lower average ranks
after applying our proposed approach, Cohen, Barinel, and Interest are the best
ones, respectively.

Vancsics et al.’s approach also achieved improvements in the average ranks
of all the selected formulas except in the case of DS** formula, disimprovement
was observed. However, the average rank reduced by this approach was about
13 overall. The difference is 4 positions between the two approaches. In other
words, our approach outperformed Vancsics et al.’s approach by 4 positions in
terms of reducing the average rank.

Effective Spectrum Based Fault Localization Using Contextual 103

RQ1: Our proposed approach enhanced all the SBFL formulas compared to
Vancsics et al’s approach. The improvement of average ranks by our approach
in the used benchmark was about 17 positions overall while in Vancsics et
al’s approach was about 13. In terms of average ranks, our approach reduced
more positions. This indicates that using an importance weight could have
a positive impact and enhances the SBFL results. Also, it encourages us to
investigate other forms of importance weights in the future and measure their
impacts on the effectiveness of SBFL.

It is worth mentioning that only using average ranks as an evaluation metric
for SBFL effectiveness has its own set of drawbacks: (a) outlier average ranks
could distort the overall information on the performance of any proposed app-
roach. (b) it tells nothing about the distribution of the rank values and their
changes before and after applying a proposed approach. Therefore, there is a
more important category of evaluation than average ranks: improvements in the
Top-N ranks, where the advantages are more obvious, as presented below.

6.2 Achieved Improvements in the Top-N Categories

According to [8] and [15], testers believe that examining the first five program
elements in an SBFL ranking list is acceptable, with the first ten elements being
the highest limit for inspection before the list is dismissed. Thus, the success of
SBFL can also be measured by concentrating on these rank positions, which are
collectively known as Top-N, as follows: (a) Top-N: When the rank of a faulty
program element is less or equal to N . (b) Other: When the rank of a faulty
program element is more than the highest N value used in the categorizations
(it is 10 in our experiments).

Figure 2 shows the number of bugs in the Top-N categories for each approach.
Here, improvement is defined as a decrease in the number of cases in the “Other”
category and an increase in any of the Top-N categories.

Fig. 2. Top-N categories

104 Q. I. Sarhan and Á. Beszédes

It is evident that by relocating many bugs to higher-ranked categories, our
proposed approach and Vancsics et al.’s approach improved all Top-N categories.
However, our approach placed more bugs (i.e., 19–25 bugs) into one of the Top-N
categories from the “Other” category (with rank > 10) compared to Vancsics et
al.’s approach (i.e., 16–21 bugs). This is significant since it raises the possibility
of finding a bug with our approach while it was not very probable without it. This
kind of interesting improvements is also known as enabling improvements [4].
Table 8 presents the enabling improvements achieved by each approach.

Table 8. Enabling improvements

Rank > 10 (%) Enab. impr. (%) Enab. impr. (%)

J vs. J* vs. J** 161 (39.2%) 19 (4.6%) 21 (5.1%)

B vs. B* vs. B** 163 (39.7%) 21 (5.1%) 25 (6.0%)

S vs. S* vs. S** 161 (39.2%) 16 (3.9%) 20 (4.9%)

DS vs. DS* vs. DS** 179 (43.6%) 10 (2.4%) 19 (4.6%)

D vs. D* vs. D** 161 (39.2%) 19 (4.6%) 21 (5.1%)

I vs. I* vs. I** 163 (39.7%) 21 (5.1%) 25 (6.0%)

K vs. K* vs. K** 181 (44.0%) 18 (4.4%) 21 (5.1%)

C vs. C* vs. C** 161 (39.2%) 20 (4.9%) 22 (5.4%)

It can be noted that each new formula achieves enabling improvements, the
average enabling improvements was about 5% of the total number of faults in
the used dataset by our approach. In these cases the basic SBFL formulas ranked
the faulty method in the other category, but our proposed approach managed to
bring it forward into the Top-10 (or better) categories. Note that, the formulas
B**, I**, and C** are the best in this aspect. Overall, each formula based on our
proposed approach was able to achieve enabling improvements in the possible
cases. It can be noted that Vancsics et al.’s approach improvements was about
4% of the total number of faults in the used dataset with the formulas B*, I*,
and C* as the best ones. Here, this improvement seems modest considering the
fact that only an importance weight was used. Other, more complex weights may
yield much more improvement which will be investigated in the future. Higher
categories have significant improvements as well, with roughly 8–15 bugs moving
to Top-1 by our approach compared to Vancsics et al.’s approach with 1–11 bugs,
for example. Here also, our approach outperformed Vancsics et al.’s approach by
moving more bugs to the Top-1 category.

Effective Spectrum Based Fault Localization Using Contextual 105

RQ2: We were able to raise the number of cases when the faulty method was
ranked first by 11–23%. While Vancsics et al’s approach moved less number
of bugs to Top-1 category. Another interesting finding is that our approach
achieved more enabling improvement compared to Vancsics et al’s approach
by moving 19-25 bugs from the Other category into one of higher-ranked
categories. These cases are now more likely to be discovered and then fixed
than before.

7 Threats to Validity

In software engineering, each experimental study has some threats to its validity.
In this work, the following actions were considered to avoid or mitigate the
threats of validity:

– Selection of evaluation metrics: to be certain that our findings and conclusions
are correct, we selected well-known evaluation metrics (i.e., average ranks and
Top-N categories) that have been utilized in prior studies too.

– Correctness of implementation: a code review was performed numerous times
to guarantee that our experiment implementation was correct. Furthermore,
we have executed our proposed strategy multiple times to ensure that it is
properly implemented.

– Selection of subject programs: we used Defects4J as a benchmark dataset
in our study. Therefore, our findings cannot be generalized to other Java
programs. However, we believe that the programs of Defects4J are represen-
tative and contain real faults of varied types and complexity. Defects4J is also
extensively utilized in other software fault localization research.

– Exclusion of faults: due to technical limits, we had to eliminate 27 faults from
the Defects4J dataset (about 6% of the total number of faults). The question
is whether or not other researchers working with the same dataset will be
able to reproduce our results. Our findings were not influenced in any way
by this exclusion and the excluded faults were scattered almost uniformly
throughout the dataset, thus we believe that this threat is very low.

– Selection of SBFL formulas: we used a collection of well-known SBFL formulas
in our experiment to evaluate the effectiveness of our proposed approach,
which represents only a small percentage of the reported formulas in the
literature. The results demonstrate that all of them have improved. However,
we cannot guarantee that using other different formulas would yield the same
results. We used the formulas which are extensively used in other software
fault localization research to limit the effect of this issue.

8 Conclusions

This paper presents the use of importance emphasis on the failing tests that
execute the program element under consideration in SBFL. We rely on the intu-
ition that if a code element gets executed in more failed test cases and appear

106 Q. I. Sarhan and Á. Beszédes

in more calling contexts in such tests compared to other elements, it will be
more suspicious and gets a higher rank position. This is achieved by multiplying
the initial suspicion score, computed by underlying SBFL formulas, of each pro-
gram method by an importance weight that represents the rate of executing a
method in failed test cases combined with the so-called method calls frequency.
The following are the primary characteristics of the proposed approach: (a) it
can be used to any SBFL formula without changing the structure or notion of
the formula. (b) it overcomes the problem of an unbalanced SBFL matrix since
there are far more passing tests than failing tests, and many SBFL formulas treat
passing and failing tests in the same way. The findings of this study’s experi-
ments reveal that relocating many bugs to the top Top-N rankings improved the
average ranks for all formulas studied and surpassed previous approaches.

We would like to evaluate the effectiveness of our approach at different levels
of granularity in the future, such as at the statement level. Incorporating other
SBFL formulas into the study to determine which formulas produce the great-
est results and classifying them into groups would be fascinating to investigate
further. We would also like to use other expressions of importance weights and
see how they affect SBFL efficacy.

References

1. Ajibode, A.A., Shu, T., Ding, Z.: Evolving suspiciousness metrics from hybrid data
set for boosting a spectrum based fault localization. IEEE Access 8, 198451–198467
(2020)

2. Le, B., T.D., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault
localization approach using likely invariants. In: Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, pp. 177–188, ISSTA 2016,
Association for Computing Machinery, New York (2016)

3. Bagheri, B., Rezaalipour, M., Vahidi-Asl, M.: An approach to generate effective
fault localization methods for programs. In: International Conference on Funda-
mentals of Software Engineering, pp. 244–259 (2019)

4. Beszédes, A., Horváth, F., Di Penta, M., Gyimóthy, T.: Leveraging contextual
information from function call chains to improve fault localization. In: IEEE
27th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 468–479 (2020)

5. Idrees Sarhan, Q., Vancsics, B., Beszedes, A.: Method calls frequency-based tie-
breaking strategy for software fault localization. In: 2021 IEEE 21st International
Working Conference on Source Code Analysis and Manipulation (SCAM), pp.
103–113 (2021). https://doi.org/10.1109/SCAM52516.2021.00021

6. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable
controlled testing studies for Java programs. In: International Symposium on Soft-
ware Testing and Analysis (ISSTA), pp. 437–440. ACM Press (2014)

7. Kim, J., Park, J., Lee, E.: A new hybrid algorithm for software fault localization.
In: Proceedings of the 9th International Conference on Ubiquitous Information
Management and Communication, pp. 1–8 (2015)

8. Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated
fault localization. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ISSTA 2016, pp. 165–176. Association for Computing
Machinery, New York (2016)

https://doi.org/10.1109/SCAM52516.2021.00021

Effective Spectrum Based Fault Localization Using Contextual 107

9. Neelofar: spectrum-based fault localization using machine learning (2017).
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-
fault-localization-using-machine-learning

10. Park, J., Kim, J., Lee, E.: experimental evaluation of hybrid algorithm in spec-
trum based fault localization. In: International conference on Software Engineering
Research and Practice (SERP) (2014)

11. Sarhan, Q.I., Beszedes, A.: A survey of challenges in spectrum-based software
fault localization. IEEE Access 10, 10618–10639 (2022). https://doi.org/10.1109/
ACCESS.2022.3144079

12. Vancsics, B., Horvath, F., Szatmari, A., Beszedes, A.: Call frequency-based fault
localization. In: 2021 IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pp. 365–376 (2021)

13. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The dstar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014)

14. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

15. Xia, X., Bao, L., Lo, D., Li, S.: “Automated debugging considered harmful” con-
sidered harmful: a user study revisiting the usefulness of spectra-based fault local-
ization techniques with professionals using real bugs from large systems. In: 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 267–278 (2016)

16. You, Y.S., Huang, C.Y., Peng, K.L., Hsu, C.J.: Evaluation and analysis of
spectrum-based fault localization with modified similarity coefficients for software
debugging. In: 2013 IEEE 37th Annual Computer Software and Applications Con-
ference, pp. 180–189 (2013)

17. Zhang, M., Li, X., Zhang, L., Khurshid, S.: Boosting spectrum-based fault local-
ization using pagerank. In: Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 261–272 (2017)

18. Zou, D., Liang, J., Xiong, Y., Ernst, M.D., Zhang, L.: An empirical study of fault
localization families and their combinations. IEEE Trans. Softw. Eng. 47(2), 332–
347 (2021)

https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://findanexpert.unimelb.edu.au/scholarlywork/1475533-spectrum-based-fault-localization-using-machine-learning
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079

Comparing the Effectiveness of Assertions
with Differential Testing in the Context of Web

Testing

Maurizio Leotta(B) , Davide Paparella, and Filippo Ricca

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS),
Università di Genova, Genova, Italy

{maurizio.leotta,filippo.ricca}@unige.it,
3559361@studenti.unige.it

Abstract. Differential testing applied in the Web context compares the current
web page under test with a snapshot considered correct taken from a previous
version. This technique appears to be promising and an alternative to assertions
in catching regressions due to the evolution of the web application under test.

This paper empirically compares Selenium WebDriver test scripts equipped
with (1) assertions and (2) differential testing implemented in the Recheck tool.
The comparison included costs (both test scripts development time and execution
time) and effectiveness (bugs detection capability) considering two different ver-
sions of differential testing implemented in Recheck, named implicit and explicit.

Results show that, on average, Recheck (both explicit and implicit) is able to
detect more bugs than classic assertions (up to +34% on complex apps). The
development time is similar between the two approaches. The execution time is
slightly higher than classic assertions for Recheck explicit (+33%), while it is by
far higher when Recheck implicit is adopted (3.6 times). In conclusion, the best
choice, considering both the effectiveness and the costs, appears to be Recheck
explicit.

Keywords: Selenium WebDriver · Recheck · Assertions · End-to-end web
testing

1 Introduction

Software testing is a critical phase of the software development process, having the
goal of detecting defects as early as possible in the produced code. It can be performed
at different levels (e.g., unit, integration, and system) and using different techniques
and approaches. But regardless of the technique, level, domain of the application being
tested or objective, the concept of oracle always plays a fundamental role. Indeed, Soft-
ware testing implies the execution of a Application Under Test (AUT) using specific
input values to assess the outcome. The oracle is used in this last passage for determin-
ing whether a test has passed or not. The term “oracle” was introduced in an old paper
by William E. Howden [5] and since then many other scientific works (e.g., [1,13,16])

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 108–124, 2022.
https://doi.org/10.1007/978-3-031-14179-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_8&domain=pdf
http://orcid.org/0000-0001-5267-0602
http://orcid.org/0000-0002-3928-5408
https://doi.org/10.1007/978-3-031-14179-9_8

Comparing the Effectiveness of Assertions with Differential Testing 109

have investigated, both theoretically and empirically, the nature and properties of this
important verification mechanism.

The oracle is also of paramount importance in automated testing. In fact, the struc-
ture of a test script in a modern testing framework, as for example JUnit1 or TestNG2 is
always logically made up of four steps, and the oracle comes into play in step three:

1. SetUp: the test script initializes the AUT;
2. Exercise: the test script performs actions to get some outcome from the AUT;
3. Verify: the test script (i.e., the oracle) decides if the obtained outcome from the AUT

is as expected;
4. Teardown: the test script returns the AUT to the initial state.

A common approach used very often in modern testing frameworks at the ‘verify’
step is that of assertions [16]. An assertion is a boolean-valued function that compares
if an expected condition is true at a certain point of a test script. The execution of an
assertion generates a test verdict, i.e., pass or fail. Although the assertion mechanism is
widely used in testing frameworks and there are many libraries providing rich sets of
fluent assertions (e.g., AssertJ3 and Truth4) this is not the only way to implement the
oracle concept. An alternative mechanism is differential testing [4,9]. It consists of a
comparison of outcomes, usually generated by the execution of two different systems’
versions; one the old one, considered correct (often called Golden Master), and the
other, the new one that is to be tested. In case the comparison leads to (unexpected)
differences, then a probable bug has been identified in the new version.

In this paper, we empirically compare these two types of oracles in the Web context,
using the state of the art testing framework SeleniumWebDriver [3] based on assertions
as a baseline and the Recheck tool that implements differential testing. We considered
several factors: test script development time, test script execution time, and bugs detec-
tion capability.

This paper is organized as follows: Sect. 2 describes the two investigated approaches
to implement oracle mechanisms (i.e., classical assertions and differential testing).
Section 3 briefly describes the tools and frameworks implementing the two aforemen-
tioned approaches. Section 4 describes the main aspects of the empirical study we car-
ried out to compare the approaches, while Sect. 5 reports the results of the study, and
Sect. 6 concludes the paper.

2 Differential Testing vs Assertions

The classical way for evaluating tests’ results is to employ assertions. A test assertion
is a boolean expression that asserts if the output of the system under test is correct (i.e.,
assert expression is true) or not (i.e., assert expression is false). Usually, a single asser-
tion verifies a chunk of independent information and asserts if the expected information

1 https://junit.org/.
2 https://testng.org/.
3 https://assertj.github.io/doc/.
4 https://truth.dev/.

https://junit.org/
https://testng.org/
https://assertj.github.io/doc/
https://truth.dev/

110 M. Leotta et al.

is the actual output information of the AUT. Some examples of value-based assertions
taken by JUnit are the following: assertTrue, assertFalse, assertNull, assertNotNull,
assertEqual, assertNotEqual. Some, like the equality ones, need two values (expected
and actual), others need only one. To create an assertion, a human tester must have a
good knowledge of the AUT, because he/she must know in advance the expected result
to be checked.

Differential testing (or diff testing) is a testing technique formally introduced by
McKeeman as a new method for regression testing of large software systems [4,9].
Differential testing consists of a comparison of outcomes: these are generated by the
execution of two different systems’ versions, both using the same system under test and
the same inputs. One is the test version, modified and needing to be tested, the other
is the base version that is previously verified and guaranteed to produce a correct out-
come [4]. The base version could be a live version of the software that can be executed
whenever the testing procedure is launched; alternatively, it can be just statically stored
in case of a fixed expected outcome. In practice, this approach verifies that the behavior
of the software remains unchanged. Thus, a difference between the two versions (test
and base) highlights a likely bug in the new version. Diff testing is generally closely
associated with regression testing due to the natural ability of catching bugs introduced
in newer versions of the software. The main peculiarity of diff testing is that no manu-
ally created oracle is required: the base version of the system under test, that is verified
to be corrected, is the oracle itself. “A base version is chosen with the assumption that
it is bug-free” [4] is an ambitious assumption and maybe either the strong or the weak
point of diff testing. On the contrary, the assertions created by test developers play the
role of the oracle. Diff testing attempts in part to solve the problem of the generation
of the oracle; due to the issue about its generation, differential testing is more appli-
cable to software whose quality is already under control, with few known errors [9].
Indeed, applying diff tests to a software with many bugs in active development and
many changes between two versions is harmful to the testing process. When a tester
approaches the creation of a new test suite, she/he usually analyzes the “functional
requirements”, considering them a complete and correct specification, like an “oracle”.
The following step is to “translate” the requirements specification in a test suite that
checks and validates them. The assertions can be more or less thorough, but the pro-
cedure is always the same: i.e., asserting if the application implements the described
functionality correctly. A fundamental difference between diff testing and assertions in
the web application context concerns “what is tested”. With assertions usually only the
functional part of the SUT is verified. On the contrary, differential test also considers
other aspects, not only functional ones, such as the style or GUI-related changes, since
it compares the entire web pages.

3 Testing Tools and Framework Considered

This section describes the tools and frameworks we used to compare the two
approaches: classical assertions vs. differential testing.

Comparing the Effectiveness of Assertions with Differential Testing 111

3.1 Selenium WebDriver

Selenium WebDriver5 is a testing framework belonging to the Selenium ecosystem6

which “drives a browser natively, as a user would” [14]; more specifically, it is an object-
oriented API that allows test developers to effectively write test scripts able to drive
browsers. This framework is used for automating web-based application testing in order
to verify that the AUT performs as expected [17]. The great success of this framework
is mainly due to two aspects:

1. it is open-source and thus freely modifiable and usable;
2. test scripts can be written in any programming language (e.g., Java or Python), there-

fore a test suite can be developed and maintained like every other software project.

We chose Selenium WebDriver in our experiment because it is a mature, open-
source, and widely-used state-of-the-art framework for web application testing [3,7].
The assertions were produced using JUnit 5.

3.2 Differential Testing with Recheck

Recheck is a testing framework supporting differential testing in the context of web
testing. It is proposed by Retest, a start-up company7 based in Germany founded in
2017 that provides a specific set of tools for test automation. Recheck is constituted by
four different software products. In our experiment, we used Recheck-web Maven plug-
in, that integrates with Selenium WebDriver and replaces assertions with differential
testing8.

In practice, Recheck is a library written in Java that is importable in any JVM-based
test suite project. It provides methods to apply differential testing on Selenium Web
Elements. Given a Selenium Web Element (or also the entire driver) Recheck does the
following: (1) generates a snapshot if one doesn’t already exist, (2) compares the snap-
shot previously generated with the current one. Recheck fails the test if: (1) no snapshot
is present, so there is nothing to compare with (it happens in the very first run of the
test); (2) at least one difference is found between the previously stored snapshot and
the current one. Golden Master is the name chosen to call the stored snapshots of a
web element (or a whole web page). This snapshot is elaborated exclusively from the
HTML and CSS code. Recheck creates the Golden Master with its own format (in xml
language), storing all the information that is needed to represent the page itself. The
Golden Master is generated the first time the test script is executed, or more gener-
ally, whenever the execution does not find the correspondent Golden Master to com-
pare with. A single test can have one or more Golden Masters associated; every check
required in the test has its own Golden Master. This is the oraclemechanism of Retest’s
differential testing.

5 www.selenium.dev/documentation/webdriver/.
6 www.selenium.dev/.
7 https://retest.de.
8 https://github.com/retest/recheck-web.

www.selenium.dev/documentation/webdriver/
www.selenium.dev/
https://retest.de
https://github.com/retest/recheck-web

112 M. Leotta et al.

Recheck provides two differential testing approaches9 inside Selenium tests:

1. Explicit check. By means of the Recheck object, it is possible to explic-
itly call the Recheck check in the Java test method at any point of the
test. With it we can create an instance of Recheck, e.g. via Recheck
re = new RecheckImpl() and check the complete current webpage via
re.check(driver, "check-name") or individual web elements via
re.check(webElement, "check-name");

2. Implicit check. Using the Recheck WebDriver that wraps the Selenium WebDriver,
Recheck implicitly performs automatic checks inside the test, basically one check
after each WebDriver action.

The flowchart in Fig. 1 shows in detail the operation of Recheck with implicit checks
inside a Selenium test.

Fig. 1. Flowchart of Recheck driver differential testing

4 Empirical Evaluation

This section describes the definition, design, and settings of the case study we conducted
following the guidelines by Wohlin et al. [18] and Runeson et al. [15] to design exper-
imental studies. We decided to compare the costs and effectiveness of the test scripts
based on differential testing and classical assertions. For cost, we mean the time needed

9 https://retest.de/feature-unbreakable-selenium/.

https://retest.de/feature-unbreakable-selenium/

Comparing the Effectiveness of Assertions with Differential Testing 113

to develop a test suite and the time of execution required with the given test technique;
for effectiveness, we mean the ability to detect bugs. However, the comparison is not
just between assertions and differential testing since we considered three oracle mech-
anisms: assertions, Recheck with explicit checks, and Recheck with implicit checks.

The goal of the study is to investigate the benefits and costs of adopting different
oracle mechanisms in web test scripts. The results of the experiments are interpreted
from two perspectives: (1) researchers interested in empirically evaluating the effects
of adopting different oracle mechanisms in E2E web testing, and (2) quality managers
who want to understand what bugs detection improvement (if any), can be achieved by
adopting differential testing instead of assertions and at which cost.

The context of the study is constituted by a professional software tester executing
web test scripts development tasks using the three different treatments, and two open-
source web applications. The professional tester conducted the experiment under the
supervision of the researchers. He is a full-stack developer and software tester having
more than five years of experience in the field. He has good knowledge in developing
Selenium WebDriver test suites. Moreover, before performing the experiment, he prac-
ticed with Recheck by creating several sample test suites for various web applications.

The two web applications included in the study are: Petclinic and Shopizer. Both
applications have common technical properties important for our experiment, such as:
being open-source, written in Java programming language, based on Spring Boot frame-
work10, rely on Apache Maven as build automation tool, are bootable by Maven com-
mand locally, support the PIT Maven plug-in (important for applying mutations auto-
matically), support the Surefire Maven plug-in (important for collecting testing reports
automatically). These common characteristics were fundamental to automate the eval-
uation of the bug detection capability as we will describe in the next sections.

Petclinic (@spring-projects/spring-petclinic on GitHub11) is a sample application of
Spring. It is the official application built by the developers of Spring Boot framework to
demonstrate how to use it. It allows managing basic data simulating a veterinary clinic.

Shopizer (@shopizer-ecommerce/shopizer on GitHub12) is a customizable e-
commerce web application. It provides the creation of accounts and several functional-
ities about e-commerce. The HTML forms are rich and dynamic: there are actions with
animations, therefore delayed, and there is a loading overlay in many parts of the app.

4.1 Research Questions

The research questions of the study are the following:

RQ1 (Developer productivity) Which oracle mechanism among those considered is the
most advantageous in terms of development effort?

RQ2 (Effectiveness) Which oracle mechanism is the most effective in finding web
application bugs?

RQ3 (Efficiency) Which oracle mechanism achieves the fastest execution time?

10 https://stackify.com/what-is-spring-boot/.
11 https://github.com/spring-projects/spring-petclinic.
12 https://github.com/shopizer-ecommerce/shopizer.

https://stackify.com/what-is-spring-boot/
https://github.com/spring-projects/spring-petclinic
https://github.com/shopizer-ecommerce/shopizer

114 M. Leotta et al.

The metrics used to answer the RQs are: development time of the test suites it
took the developer (RQ1), quantity of bugs found (RQ2), and test suites execution time
(RQ3). The three test suites developed for each web app contain the same test cases
(i.e., steps) but different test oracle mechanisms (i.e., assertions, Recheck with explicit
checks, and Recheck with implicit checks).

4.2 Experimental Procedure

We asked the professional tester to develop three test suites for each of the two appli-
cations under test; one for the assertions, one for differential testing using the explicit
checks of Recheck, and one using the implicit checks of Recheck. This means that
there are six test suites in total. We, therefore, have three test suite types: (1) Asser-
tions, (2) Recheck explicit, and (3) Recheck implicit. There are 53 test scripts in each
Shopizer test suite type, whereas Petclinic has 31 test scripts. The test suites are realized
as ‘Java 8’ projects using JUnit 5 as unit testing framework. Web element locators have
been created using ChroPath13, a Chrome plugin that automatically generates XPaths
inspecting the web element using the browser’s developer tools. Selenium WebDriver
has been adopted to perform the actions in the web browser for all three test suite types.
To develop the three kinds of test suites for each web app, the developer applied the
following procedure:

1. Analyze the AUT and select the functionalities to be tested trying to reach a good
coverage of the most important features available for a user;

2. Describe the test cases in Gherkin;
3. Develop the test cases in Selenium WebDriver test scripts without any oracle mech-

anisms;
4. Forking the test suite in three different test suites (one for each treatment) and:

(a) Add the specific test oracle mechanism to each test script in order to have three
distinct test suites (i.e., one with Assertions, one using Recheck implicit, and
one using Recheck explicit). Assertions typically check a value on the current
page, such as the total value of a cart, while the other test oracle mechanisms
checks multiple values as described in Sect. 3.2;

(b) Validate the application with the test suite; all test scripts must pass.

For Recheck tool, the developer tuned the ignore files (i.e., ignore-rule) so that the
minimum number of rules is used to pass the tests. A ignore-rule14 is a filter used to
ignore volatile elements, attributes, or sections, using a Git-like syntax. This mechanism
is very useful to avoid false positives in the testing phase. For example, the portion of
a page showing the current time changes from one snapshot to another, thus without an
ignore-rule Recheck would highlight the difference causing the test script to fail without
the presence of a real bug.

To answer RQ1, the developer annotated the time needed to implement the test
cases in test scripts and the test oracle mechanism for each test suite. The Darkyen’s
Time Tracker IntelliJ IDEA plugin has been adopted to take the effective time spent in

13 https://www.autonomiq.io/deviq-chropath.html.
14 https://github.com/retest/recheck-web.

https://www.autonomiq.io/deviq-chropath.html
https://github.com/retest/recheck-web

Comparing the Effectiveness of Assertions with Differential Testing 115

development. Note that the developer ran each test script several times and verified that
the result is always “passed”; this to be reasonably sure that no flakiness is present.

To answer RQ2 we decided to simulate bugs in web apps using Mutation Test-
ing [10]. Mutation testing is a technique that consists in exercising the test suite against
slight variations of the original code, simulating the errors a developer could introduce
during development and maintenance activities. These variations of the original soft-
ware system, named mutants, are used to identify the weaknesses in the test artefacts
by determining the parts of software that are poorly or never tested. For each mutant,
the test scripts are executed: if at least one test script fails, the mutant has been detected
(killed), and this proves the effectiveness of the test suite in detecting the kind of fault
introduced by the mutant. If no test fails, the mutant is not detected (i.e., it survives),
and this proves the test suite’s weakness in detecting the fault introduced by the mutant.
Thus, we decided to measure the bug-detection capability of the three considered test
suites (for each app) as the number of mutants detected by each test suite over the total
number of mutants generated. In particular, the metric we used to evaluate the overall
test suite quality is the percentage of mutants killed out of the total (i.e., the higher, the
better).

To answer RQ3, the developer re-executed the three test suites (for each considered
web app) against the original AUT 30 times and calculated the average to mediate any
fluctuations.

4.3 Additional Details on the Mutations Analysis (RQ2)

To carry out the experiment required to answer RQ2, we implemented a tool based
on PIT15, a Maven plugin that creates the code mutations of the application under test
working at the bytecode level. PIT currently provides many built-in mutators able to
modify the bytecode in many ways; the complete list of mutators, used in this exper-
imental work, can be found in the PIT web site16. Our tool can automatically execute
each test suite against each mutated version of the current web application and records
the number of killed mutants. Our tool is also able to compute the coverage of the test
suites against the mutants (i.e., analyze if each mutated line is actually executed or not).
It is important to underline that the development of the tool was necessary because the
activities described above cannot be carried out simply using PIT.

Number of generated mutants per Web app. PIT generated 107 mutants for the Pet-
clinic application (1932 lines of code, not counting blank lines and comments) and
15025 for Shopizer (86333 lines of code, not counting blank lines and comments).

Coverage of the Mutants. Thanks to our tool, we analyzed the mutation coverage
reached by the test suites developed in the context of the empirical evaluation. Basically,
we labeled (in the original version of the app) all the lines mutated as covered if they
were executed during the test suite execution against the original version of the app.
Note that the coverage is the same for all the three versions of each test suite since the
Selenium WebDriver actions are the same. The mutation coverage for Petclinic is 98
mutants out of 107 (91.6%). On the contrary, for Shopizer we found that the coverage

15 https://pitest.org/.
16 https://pitest.org/quickstart/mutators/.

https://pitest.org/
https://pitest.org/quickstart/mutators/

116 M. Leotta et al.

is lower: 1882 mutants covered (12.53%) by the test suites. This low percentage is due
to the fact that: (1) Shopizer is very complex and, (2) the developer focused only on the
main features.

Execution of the Test Suites against the Mutants. The execution of the three Petclinic
test suites against each of the 98 mutants (i.e., the mutants covered by the test suites)
took about six hours. On the other hand, for Shopizer, the execution of the test suites
against each of the 1882 covered mutants generated would have taken too long (esti-
mated at about 220 h). So we decided to discard a part of the mutants by reducing the
set of considered mutants to 491 (in practice, we decided to select up to three mutations
for each Java method and therefore we have eliminated about the 74% of the mutations
covered by the test suite). Executing 491 mutants still took at least 62 h of computation
to run the test suites. So, we decided to use virtual machines in order to parallelize the
computation and speed up the evaluation.

5 Results

The following sections report the results for answering each research question.

5.1 RQ1 Development Time

Figure 2 reports in detail data concerning the Petclinic’s and Shopizer development
times. In addition, to provide a more complete overview, we also provide other infor-
mation, such as the number of page objects (POs), XPaths, and “Recheck ignore-rules”
created during the development process together with some statistical data. It is impor-
tant to underline that when assertions are adopted, often new POs and new POs getter
methods must be created to retrieve from the current page the values to be checked in
the assertions.

Fig. 2. Petclinic and Shopizer test suite development times (Color figure online)

Comparing the Effectiveness of Assertions with Differential Testing 117

To help to visualize and compare the data, we also report the charts in Figs. 3 and
4. On the left, for each app, we can see in blue the time required to develop the test
suite without considering the final oracle mechanism. Then, the time required to add
the three kinds of oracle mechanisms (respectively in yellow, green, and light blue) is
shown. On the right is instead shown the total time, including both development and
oracle mechanisms.

Fig. 3. Petclinic test suite development times. On the left, the times are displayed by separating
them by test script and oracle. On the right, considering the total times. (Color figure online)

From the charts, it is possible to observe that: 1) the introduction of the oracle in
the test scripts has a very high relative impact in terms of time (this is also because the
addition of these checks involved the re-execution of the test scripts) and, 2) there is no
winner considering the development time.

Table 1 shows the time difference in percentage terms with respect to the assertions.
From these combined data, it is possible to appreciate the fact that the most convenient
option seems to be Recheck explicit.

Fig. 4. Shopizer test suite development times. On the left, the times are displayed by separating
them by test script and oracle. On the right, considering the total times.

118 M. Leotta et al.

Table 1. Time difference in percentage terms with respect to the assertions

Recheck explicit Recheck implicit

Petclinic −18.31% −20.19%

Shopizer −17.40% 5.30%

Average −17.86% −7.45%

Recheck explicit has shown a certain advantage, both against assertions and
Recheck implicit: for Petclinic, assertions required about 24% more time to be devel-
oped compared to Recheck (both explicit and implicit); for Shopizer, Recheck explicit
has been 17% faster to develop than assertions, while Recheck implicit has been 5%
slower. The implementation of Recheck implicit becomes increasingly difficult with
the complexity of the application under test on the other hand, assertions and Recheck
explicit seem to be less affected by the complexity of the application under test.

In conclusion, to answer the RQ1 we can say that our data support the hypothesis
that Recheck explicit is more advantageous in terms of Developer productivity.

5.2 RQ2 Effectiveness in Detecting Bugs

Concerning bugs detection, we discovered that of the 98 mutants (i.e., the bugs arti-
ficially inserted by mutation) generated for Petclinic the assertions killed 80 of them,
Recheck explicit 88, and Recheck implicit 89. In the case of Shopizer, 491 mutants
were generated and the assertions killed 190 of them (about 39%), Recheck explicit
249 (about 51%), and Recheck implicit 255 (about 52%).

Figures 5 and 6 shown the charts summarizing the number of mutants killed by the
three kinds of test suites divided by application.

Table 2 shows the percentage difference of the number of mutants killed with
respect to the assertions. There is a clear advantage from using differential testing
(both Recheck implicit and explicit) with respect to the assertions. Recheck implicit
is slightly better at killing mutants than Recheck explicit, which is reasonable given
the much higher number of differential checks. It is worth noting that for Shopizer, a

Fig. 5. Mutants killed in Petclinic Fig. 6.Mutants killed in Shopizer

Comparing the Effectiveness of Assertions with Differential Testing 119

Table 2. Percentage difference of number of mutants killed compared to assertions

Recheck explicit Recheck implicit

Petclinic 10.00% 11.25%

Shopizer 31.05% 34.21%

Average 20.53% 22.73%

realistic and complex web app, Recheck’s differential testing methods have been able
to kill a much higher amount of mutants, about 31–34% more compared to assertions.
This can be explained why often a bug in complex code can unpredictably affect the
behavior of the app—for instance, causing a small modification of a web page—and
being that differential testing checks the entire web page content (and not just a web
element as assertions usually do) it has been found to be more effective.

When it comes to RQ2, Recheck implicit is the most effective solution; alongside
the other techniques, it performs more checks during the test case actions, which makes
it the most effective in finding bugs. However, Recheck explicit is also effective.

5.3 RQ3 Execution Time

In Fig. 7 the full data details and some statistics about the execution time for the test
suites are provided, while in Figs. 8 and 9, we provide a graphical representation of the
data.

Fig. 7. Petclinic and Shopizer test suite execution times

The answer to RQ3 is more straightforward w.r.t. the previous research questions:
the execution time is always shorter for the test suites relying on assertions; Recheck
uses differential testing, which involves more elaborated calculations requiring more
time. Also from Table 3 it is evident that Recheck is slower than the mechanism of
assertions in running tests. Recheck explicit takes one-third more of the assertions’
execution time. Recheck implicit is remarkably slower, with 3.6 times the assertions’
execution time. By looking at Figs. 8 and 9 the difference is graphically remarkable.
This can be explained by the numerous checks carried out by Recheck implicit, com-
paring the current page with a Golden Master at each WebDriver command.

120 M. Leotta et al.

Fig. 8. Petclinic test suite execution times Fig. 9. Shopizer test suite execution times

Table 3. Percentage of execution time difference compared to assertions

Recheck explicit Recheck implicit

Petclinic 30.70% 352.71%

Shopizer 35.38% 379.05%

Average 33.04% 365.88%

Table 4. Overall comparison in terms of development and execution time

Assertions Recheck explicit Recheck implicit

Sum of development times (min) 753 620 739

Sum of execution times (s) 210 283 998

Average of mutants killed (%) 60.17% 70.26% 71.38%

5.4 Discussion

Development time is undoubtedly an important factor to consider when developing an
industrial automated test suite. From this point of view, Recheck explicit seems to be
the best because it requires less development time than the other solutions (mediating
on the two applications). This is clearly perceptible in the Shopizer context, which is
a real and complex web application. The development time of the Recheck implicit
method is similar to that of the Recheck explicit when the application under test is
very simple (like in the case of Petclinic, which is a demo application), but with a
more realistic AUT, its development time increases more quickly due to the multiple
checks performed during the test case actions (possibly requiring, for instance, more
ignore-rules to implement). This leads Recheck implicit to be the slowest method to
implement.

Execution time is another important factor that influences the costs to choose a
testing approach: if a test suite takes a very long time to execute, it could be discarded in
several contexts requiring short execution times (as e.g., in software agile development
methods requiring daily and rapid releases). To this end, we have carefully analyzed
the execution times of the three approaches: the assertions remain the fastest in this

Comparing the Effectiveness of Assertions with Differential Testing 121

respect, but where the explicit Recheck has a reasonable (but acceptable) increase in
the execution time, the implicit Recheck is much slower.

Table 4 shows the overall results considering both applications under test, Petclinic
and Shopizer. A simple conclusion of the current study, considering the three analyzed
aspects (RQ1 productivity, RQ2 effectiveness, and RQ3 efficiency), could be as follows:

Assertions

– The best approach considering execution time (Efficiency)
– The worst approach considering the number of bugs found (Effectiveness)

Recheck explicit

– The best approach considering development time (Productivity)

Recheck implicit

– (Slightly) the best approach considering the number of bugs found (Effectiveness)
– (Greatly) the worst approach considering execution time (Efficiency)

Recheck implicit is the most effective in finding bugs, but it is enormously slower
in running tests, and it showed a tendency to be the slowest to be developed in complex
web applications therefore, the effectiveness/costs ratio of Recheck implicit is some-
what unfavorable. Regarding assertions, their main advantage is having the lowest exe-
cution time, but they significantly lose in efficacy when it comes to finding bugs, and
they are not even the fastest method to implement. From our analysis, it would appear
that the best approach, taking into account benefits and costs, is probably Recheck
explicit: it has a great increment of efficacy in finding bugs (up to +31% and on aver-
age +21%) without considerably increasing the costs; it is one third slower to run tests
compared to assertions, but in return, it is also the quickest regarding development time.
Note that our opinion is based on the fact that increasing the bug detection capability of
the 21% is much more valuable than requiring about 33% more execution time: the two
metrics cannot be compared directly since bugs detection is, in general, a more impor-
tant characteristic. Clearly, if the execution time increases several orders of magnitude,
this could be a problem, as in the case of Recheck implicit.

5.5 Threats to Validity

The main threats to validity affecting an empirical study are: Internal, External, Con-
struct, and Conclusion validity [18].

Internal Validity threats concern confounding factors that may affect a dependent
variable. In our case, mainly the number of detected mutants for RQ2. In this context,
the main threat is probably related to the choice of the tool for executing the muta-
tions. Indeed, different tools could be potentially able to generate different mutants.
This could, potentially, change the mutant-detection capability of the three considered
approaches. To reduce as much as possible this threat, we selected PIT, a mature muta-
tion tool already used in other scientific works [2,6,12]. In fact, PIT is capable of gen-
erating a variety of possible mutations in the web apps’ source code mimicking realistic
bugs.

122 M. Leotta et al.

External Validity threats are related to the generalization of results. In our case study,
there could be two threats of this type. The limited number of web apps and the fact that
only one developer was involved in the study. However, both the web apps employed in
our study are examples of real systems and the involved developer is very experienced in
developing SeleniumWebDriver test suites. This makes the context quite realistic, even
though further studies with existing, more complex applications and more developers
will improve the generalizability of the results. It is, however, important to highlight
that only the results for RQ1 are strongly influenced by the developer’s abilities, while
the results for RQ2 and RQ3 are relatively little dependent on who developed the test
suites (the only factor is that, in principle, a more skilled developer could adopt more
effective assertions when defining the Gherkin test cases specifications, but we believe
that the professional tester already performed an accurate job in this context). So having
only one developer involved in the experiment is mainly a threat only to RQ1.

Construct validity threats concern the relationship between theory and observation.
Concerning RQ2, they are due to how we measured the effectiveness of the oracle
mechanisms in detecting bugs/faults. To minimize this threat, we decided to measure
the effectiveness objectively, thanks to mutation testing (a technique that we already
adopted in previous works [8,11]). Instead, for RQ1 and RQ3, construct validity threats
are due to how we measured the times. We believe that the measure is objective since
we measured times automatically and, to minimize any fluctuation (due to possible
active processes during the calculation), for RQ3, we averaged the obtained values over
multiple executions.

Threats to conclusion validity concern issues that may affect the ability to draw a
correct conclusion, i.e., issues that may affect an adequate analysis of the data, as for
example, using inadequate statistical methods. As our empirical study is a case study
and based only on two web apps, we found it inappropriate to use statistical tests and
therefore, this threat to validity does not apply to our case.

6 Conclusions and Future Work

To evaluate the potential benefits of differential testing applied to E2E Web test scripts,
in this work, we empirically compared: (1) classical assertions and (2) two different
oracle mechanisms implemented in the Recheck tool. In the study, we considered three
factors: the development time (developer productivity), the number of detected bugs
(effectiveness), and the execution time (efficacy).

Results show that, on average, Selenium WebDriver test scripts equipped with the
Recheck oracle mechanisms (both explicit and implicit) can detect more bugs than clas-
sic assertions (up to +34% on complex apps). The development time is similar between
the approaches. The execution time is slightly higher than classic assertions for Recheck
Explicit (+33%), while it is by far higher when adopting Recheck Implicit (3.6 times
more). Mediating the considered factors, from our study Recheck explicit seems to be
the best choice: it can detect considerably more bugs without significantly increasing
the overall costs.

As future work, we plan to extend our study in many directions by: (1) including
more web applications, (2) implementing more complex test suites, (3) evaluating the

Comparing the Effectiveness of Assertions with Differential Testing 123

maintenance cost of the three kinds of oracle mechanisms during the evolution of AUT,
(4) replicating the experiment with less skilled developers, in order to evaluate if and
how the observed results (in particular for RQ1) vary depending on the seniority of
the tester, and (5) analyzing whether the considered approaches are complementary, in
which phases of the development they can be used advantageously, how they can be
combined, and whether they are able to discover the same error types.

References

1. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software
testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015). https://doi.org/10.1109/
TSE.2014.2372785

2. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: Pit: a practical mutation
testing tool for java. In: Proceedings of the 25th International Symposium on Software Test-
ing and Analysis, pp. 449–452 (2016)

3. Garcı́a, B., Gallego, M., Gortázar, F., Organero, M.: A survey of the selenium ecosystem.
Electronics 9, 1067 (2020). https://doi.org/10.3390/electronics9071067

4. Gulzar, M.A., Zhu, Y., Han, X.: Perception and practices of differential testing. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), pp. 71–80 (2019). https://doi.org/10.1109/ICSE-SEIP.2019.00016

5. Howden, W.: Theoretical and empirical studies of program testing. IEEE Trans. Softw. Eng.
SE-4(4), 293–298 (1978). https://doi.org/10.1109/TSE.1978.231514

6. Laurent, T., Papadakis, M., Kintis, M., Henard, C., Le Traon, Y., Ventresque, A.: Assessing
and improving the mutation testing practice of pit. In: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp. 430–435. IEEE (2017)

7. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated end-to-end
web testing. Adv. Comput. 101, 193–237 (2016). https://doi.org/10.1016/bs.adcom.2015.11.
007

8. Leotta, M., Olianas, D., Ricca, F.: A large experimentation to analyze the effects of imple-
mentation bugs in machine learning algorithms. Future Gener. Comput. Syst. 133, 184–200
(2022). https://doi.org/10.1016/j.future.2022.03.004

9. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100–107 (1998)
10. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E. (eds) Muta-

tion Testing for the New Century. The Springer International Series on Advances in Database
Systems, vol. 24. Springer, Boston (2001). https://doi.org/10.1007/978-1-4757-5939-6 7

11. Olianas, D., Leotta, M., Ricca, F.: MATTER: a tool for generating end-to-end IoT test scripts.
Software Qual. J. 1–35 (2021). https://doi.org/10.1007/s11219-021-09565-y

12. Papadakis, M., Shin, D., Yoo, S., Bae, D.H.: Are mutation scores correlated with real fault
detection? A large scale empirical study on the relationship between mutants and real faults.
In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp.
537–548. IEEE (2018)

13. Peters, D., Parnas, D.L.: Generating a test oracle from program documentation: work in
progress. In: Proceedings of the 1994 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 58–65. ISSTA 1994, Association for Computing Machinery, NY
(1994). https://doi.org/10.1145/186258.186508

14. Project, S.: Selenium webdriver documentation (2021). https://www.selenium.dev/
documentation/webdriver/

15. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineer-
ing: Guidelines and Examples. Wiley Publishing, 1st edn. (2012)

https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.3390/electronics9071067
https://doi.org/10.1109/ICSE-SEIP.2019.00016
https://doi.org/10.1109/TSE.1978.231514
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1016/j.future.2022.03.004
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1007/s11219-021-09565-y
https://doi.org/10.1145/186258.186508
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/

124 M. Leotta et al.

16. Shrestha, K., Rutherford, M.J.: An empirical evaluation of assertions as oracles. In: 2011
Fourth IEEE International Conference on Software Testing, Verification and Validation, pp.
110–119 (2011). https://doi.org/10.1109/ICST.2011.50

17. Unadkat, J.: Selenium webdriver tutorial: getting started with test automation (2021). https://
www.browserstack.com/guide/selenium-webdriver-tutorial

18. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29044-2

https://doi.org/10.1109/ICST.2011.50
https://www.browserstack.com/guide/selenium-webdriver-tutorial
https://www.browserstack.com/guide/selenium-webdriver-tutorial
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Skills and Education

Roadblocks to Attracting Students to Software
Testing Careers: Comparisons of Replicated

Studies

Rodrigo E. C. Souza1, Ronnie E. de Souza Santos1,2(B), Luiz Fernando Capretz3,
Marlon A. S. de Sousa1, and Cleyton V. C. de Magalhães1

1 Agile Testing Program, CESAR School, Recife, Pernambuco, Brazil
souzasantos.ronnie@gmail.com, mass@cesar.school

2 Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
3 Department of Electrical and Computer Engineering, Western University,

London, ON, Canada
lcapretz@uwo.ca

Abstract. Context. Recently, a family of studies highlighted the unpopularity of
software testing careers among undergraduate students in software engineering
and computer science courses. The original study and its replications explored the
perception of students in universities in four countries (Canada, China, India, and
Malaysia), and indicated that most students do not consider a career in software
testing as an option after graduation. This scenario represents a problem for the
software industry since the lack of skilled testing professionals might decrease
the quality of software products and increase the number of unsuccessful projects.
Goal. The present study aims to replicate, in Brazil, the studies conducted in
the other four countries to establish comparisons and support the development
of strategies to improve the visibility and importance of software testing among
undergraduate students across the globe.Method. We followed the same protocol
in the original study to collect data using a questionnaire and analyzed the answers
using descriptive statistics and qualitative data analysis. Results. Our findings
indicate similarities among the results obtained in Brazil in comparison to those
obtained from other countries. We observed that students are not motivated to
follow a testing career in the software industry based on a belief that testing
activities lack challenges and opportunities for continuous learning.Conclusions.
In summary, students seem to be interested in learningmore about software testing.
However, the lack of discussions about the theme in software development courses,
as well as the limited offer of courses focused on software quality at the university
level reduce the visibility of this area, which causes a decrease in the interest in
this career.

Keywords: Software testing · Software engineering education · Replication

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 127–139, 2022.
https://doi.org/10.1007/978-3-031-14179-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-14179-9_9

128 R. E. C. Souza et al.

1 Introduction

Testing is an indispensable part of software development. It is the activity responsible
for verifying that a system meets the planned requirements and validating that it satis-
fies its intended purpose [1]. The history of software development indicates that testing
activities existed before the establishment of processes, practices, and models for soft-
ware development [2, 3], which reinforces the importance of this area. The relevance
of software testing has been studied and practiced since the beginning of computing
as researchers and practitioners are consistently following the way this activity evolved
from a simple task focused on checking the results obtained from the source code exe-
cution to a leading and interactive process essential for the development of software
products [2]. As a result, especially given the agile nature of software development,
testing activities are widely spread throughout the development process and the system
is continuously tested [1, 2, 3].

Precisely because testing has proven to be a vital activity in software develop-
ment, researchers and practitioners are frequently searching for different approaches
and techniques to improve the testing process and the resulting software quality. Among
other strategies, such improvement could be reached by increasing the number of
joint industry-academia collaborations [4]. However, recent studies have indicated that
researchers and practitioners are not collaborating enough to solve industrial problems
[5, 6, 7, 8]. The reality is that the distance between industry and academia likely existed
before scientific and research contexts, as careers focused on software testing appear
to be underrated by undergraduate students in software and computer engineering pro-
grams [9]. The unpopularity of software testing among students is pointed to as the main
finding of a family of replications recently published in two studies that investigated
the perception of students in universities across four countries, namely, Canada, China,
India, and Malaysia [10, 11].

These findings have direct implications for academia and industry since they demon-
strate the need for improving the perception of testing careers among students to prepare
highly skilled professionals to work in this area in software companies. However, since
the results are dependent on cultural and social factors related to the country where the
data was collected, more replications would be the appropriate next step for extending
discussions and increasing generalizability. The lack of skilled testing professionals is a
major issue for the software industry because of the centrality of core quality elements
to a successful project. In addition, usually testing processes take up about 40–50% of
a project’s time [5], which produces a direct impact on costs and deliveries. Therefore,
understanding the interests of students from several different regions in software testing,
as well as their reasons for taking up or not testing careers is an aspect of software engi-
neering that requires immediate attention. In this sense, the present study is a replication
of the above-cited studies [10, 11] focused on answering the following general research
question:

RQ: How do Brazilian undergraduate students from software and computer
engineering perceive software testing careers?

In this paper, we present the initial results obtained by utilizing the same survey
used in [10] and [11], and this introduction, is organized as follows. In Sect. 2, we
present a brief background about [10, 11] hereafter referred to as original study and

Roadblocks to Attracting Students to Software Testing Careers 129

first replication, respectively. In Sect. 3, we describe how this replication was conducted
and how the research method was applied. In Sect. 4, we present the main findings and
discussions. Finally, in Sect. 5, we present our conclusions and directions for future
investigations.

2 Background

This section discusses findings from the literature on software testing in software and
computer engineering programs and presents the original study and the first replication,
which were replicated in this research.

2.1 Software Testing in Academic Curricula

The way students are trained in the academy including the content they study, but also
their experiences in class—impacts their development as professionals. In other words,
the professional education that individuals receive before joining any organization will
have a direct effect on their perception of the work, and consequently, onwhat profession
they will opt to take up [12].

When young software professionals start to work in the industry, they will depend
almost exclusively on what they have learned at the university over the previous four
or five years. However, recent studies have emphasized the existence of a gap between
the software engineering industry and software engineering education. Such a gap arises
from a series of elements, such as a lack of activities to develop soft skills, and con-
siderable differences between projects developed at the university and real-life indus-
try projects (e.g., size, requirement details, management, etc.), which leads to a third
element, the distance of the school from the actual industry reality [13, 14].

In this scenario, the role of software testing in software and computer engineering
programs is curious. Since the early 2000’s researchers have noted that this area received
little treatment in most curricula, even though it can represent almost 50% of the cost of
software [15]. Over the years, as quality became essential, companies started to indicate
that students should develop good problem solving, debugging, and analysis skills, since
many graduates begin their careers in industry with exceptional programming skills, but
lack competence in testing, debugging, and analysis skills [16, 17].

To address this problem,we need to introduce and improve teaching in undergraduate
software testing programs. This will have the goal of enabling students to recognize the
importance of testing and quality in software development, while also solving practical
problems by applying contemporary technologies and methods to verification and vali-
dation processes [16, 18]. However, a recent study reported an additional new challenge
regarding this difficulty, the unpopularity of testing careers among software practitioners
[19].

2.2 Replications of Empirical Studies in Software Engineering

The replication of empirical studies represents an important component in the construc-
tion of knowledge in software engineering. Through replications, studies can be repeated,

130 R. E. C. Souza et al.

results can be checked, and the validity of outcomes can be expanded to different contexts
[21].

In software engineering, replications are mostly used to generalize the results of an
original study to a different population [24]. According to [25] other uses for replications
in software engineering include:

a) confrontation of results from a new study in contrast to previous ones.
b) improve the research design of a previous study.
c) increase the external validity of results from previous investigations.
d) improvement research skills.
e) understand costs and efforts for future studies.

According to this definition, the main goal of the present research is related to (a) and
(c), since we replicated a study conducted in four different countries to check how the
findings apply to a fifth one.

2.3 Original Study and First Replication

The present study is a replication of two previous research papers conducted in Canada,
China, and India (original study) [10], and posteriorly inMalaysia (first replication) [11].
Both research papers aimed to investigate the perception of undergraduate students in
software and computer engineering programs of a career in software testing to discuss
the (un)popularity of this profession [19]. Based on the classification of replications
in software engineering, we consider the present study as an external replication. This
means that the replication was performed by a different group of researchers [24].

In all three studies, the research method conducted to address this problem was a
survey, which was designed to collect the opinion of several undergraduate students by
applying a questionnaire to answer three main questions:

a) What is the likelihood of them taking up a career in software testing?
b) What are the advantages of taking up a career in software testing?
c) What are the drawbacks of taking up a career in software testing?

For the first question, the participants selected one of the provided options, namely,
Certainly Yes, Yes, Maybe, No, and Certainly Not. The following two questions were
open-ended. For data analysis, the authors pointed out that a qualitative approach was
applied to explore the phenomena within their real-life context.

The original study obtained answers from 254 computer and software engineering
students from three different countries, 85 participants from Canada, 99 participants
from China, and 70 participants from India. Following this study, the first replication
surveyed 82 students from software engineering-related programs, such as information
technology and computer science at two Malaysian universities. The general results
demonstrated that software testing is very unpopular, especially among students from
Canada, China, and India, while a career in this area would be considered by an average
number of Malaysian students. Table 1 summarizes these results, which will be used to
discuss the results obtained from the current replication.

Roadblocks to Attracting Students to Software Testing Careers 131

Table 1. Choosing a career in testing

Responses Canada China India Malaysia

Certainly no 31% 24% 14% 1%

No 27% 0% 31% 7%

Maybe 33% 74% 47% 52%

Yes 7% 2% 7% 34%

Certainly yes 2% 0% 0% 6%

Regarding the advantages of working with software testing, the original study and
the first replication demonstrated that viewing this career as a learning opportunity and as
comprising easy tasks were the main benefits observed across Canada, China, India, and
Malaysia, although the percentage varies considerably among the four countries. The
number of positions available caught the attention of Canadian, Chinese, and Malaysian
students, while Canadian, Indian, and Malaysian students consider software testing an
important job, which represents an advantage. Other benefits highlighted by the par-
ticipants include monetary benefits and fun during work, e.g., exploring and finding
bugs.

On the other hand, the drawbacks associated with the work in software testing are the
monotony, which is present across the four countries, and the complexity, which is less
perceived byCanadian students. The lack of development activities is also a disadvantage
pointed out by all the groups of students. Other drawbacks include a lack of interest,
especially in finding others’ mistakes (code mistakes), and the lack of recognition in
the industry. Minor disadvantages would be related to low salary in comparison to other
professionals and stressful activities.

In summary, the results obtained from the original study and the first replication
demonstrate that the perception of students about a career in software testing varies
significantly depending on the country, which will require specific and targeted actions
to emphasize the importance of testing activities to undergraduates and to highlight the
perks of working with software testing in the industry. In addition, the findings revealed
the existence of myths among students, such as the belief that the testing process always
lacks programming.

We expect that our replication represents a step forward in improving the knowledge
acquired so far. Thus, based on the data collected from five countries and over 400
students we will be able to start designing and proposing strategies to improve the
popularity of software testing in the academy, and consequently increase the number of
highly skilled professionals to work in this area in the software industry.

Lastly, even though we are replicating two previous studies that are interrelated,
e.g., the original study [10] and the first replication [11], it is important to mention
that additional studies focused on this theme may be available in the literature, and
these can be analyzed in the future to improve the results of the current research. As
an example, Deak et al. [20] investigated the factors that influence Norwegian students

132 R. E. C. Souza et al.

when deciding to choose a career in the area of software testing and based on the results
identified strategies that can be used to motivate students and improve course contents.

3 Method

In this study, we consider replication as a conscious and systematic repeat of an original
study [22]. Therefore, we followed the same protocol used by the original study and the
first replication to collect and analyze data, as described below.

3.1 Data Collection

Following the previous studies, in the present replication, we applied the same ques-
tionnaire to collect data from undergraduate students from software and computer
engineering-related programs. However, the instrument was slightly modified to achieve
the goal of our research. First, the questionnairewas translated into the native language of
the targeted participants (i.e., Portuguese). Second, we introduced the questionnaire with
a quick definition of software testing, so all respondents would have basic knowledge
of the topic under study. Third, we added to the questionnaire a quick question asking
about the undergrad level of the respondents, e.g., what year of the undergraduate pro-
gram the students are enrolled in. Lastly, we added an extra question asking students to
justify why they would consider or not consider a career in software testing. We believe
that more qualitative data associated with this closed question presented in the previous
studies could help in the process of proposing solutions to the main problem observed
in this context, e.g., motivating young professionals to work with software quality in the
industry.

The translated questionnaire was validated through a pilot round, conductedwith five
members of our research group, which are not involved in this study. They were asked to
read and compare the original questions with the translations, answer the questionnaire,
and provide feedback about it. No update was performed after the pilot round since the
questions are straightforward. Table 2 presents the final version of the questionnaire
applied in this study. Once the instrument was validated the research team started to
announce the research and the questionnaire to student groups, professors, researchers,
and professionals, asking for help to collect the data from the targeted population.

Regarding the population, our study focused on all students enrolled in soft-
ware/computer engineering programs and popular related programs in this area in Brazil
such as information systems, computer science, and technology, among others. Invita-
tions were sent to all regions of the country and no restriction was defined regarding
the student level, which means that we were expecting data from individuals that were
starting at the university right up to those about to graduate. Data collection ran for about
two months and all questionnaires received were anonymous.

3.2 Data Analysis

The nature of the questions posed to participants in this study required both quantitative
and qualitative approaches to data analysis. Descriptive statistics were applied to analyze

Roadblocks to Attracting Students to Software Testing Careers 133

Table 2. Questionnaire

According to the SWEBOK, software testing is defined as the dynamic process of verifying
and validating a software under development to attest it works as expected and possesses all
the planned features and behaviors. Based on this definition and your previous
knowledge/experience with software testing before your graduation, please answer the
following questions

Topic Questions

Choosing a career in software testing 1. After you graduate, would you consider a career in
software testing?
() Certainly No
() No
() Maybe
() Yes
() Certainly Yes
2. Please, briefly justify our answer for the previous
question

Advantages and Drawbacks 3. What are three advantages (from the most to less
important) of taking up a career in software testing?
4. What are three drawbacks (from the most to the less
important) of taking up a career in software testing?

the answers to closed-ended questions designed to assess the likelihood of students
deciding to work in software testing. Following this, qualitative analysis was applied to
consolidate, reduce, and interpret all data obtained from open-ended questions, which
were focused on revealing the advantages and drawbacks of software testing from the
participants’ perspective, along with a descriptive answer to the close-ended question.

The guidelines for conducting qualitative research suggest that the process should
be based on coding the answers provided by participants and making sense of them [23].
In qualitative analysis, open coding is the process of reducing the narratives collected
in interviews or questionnaires into discrete parts which can be closely examined and
compared, looking for similarities and differences, and organizing concepts into repre-
sentative categories [23]. This is the main process followed in this research to synthesize
the answers collected from students. Figure 1 illustrates the open coding process and the
construction of categories developed in this study.

4 Findings

We obtained 92 valid questionnaires with answers from Brazilian students, distributed
as follows: 29% of students were in their first year, 32% in their second year, 16% in
their third year, 13% in the fourth, and 10% in the fifth year. Unlike in other countries,
it is common in Brazil for students to take up to 5 years of instruction in colleges
and universities. However, in computer/software engineering programs the dropout rate
tends to increase after the second year. This is one of the factors that explains the
larger number of participants in the first and second years of this study. Following this

134 R. E. C. Souza et al.

Fig. 1. Qualitative analysis: open coding.

general characterization of our sample, we answer each of the questions presented on
the questionnaire.

4.1 After you Graduate, Would you Consider a Career in Software Testing?

Initial results indicate asymmetry in the perception of Brazilian students regarding the
popularity of working with software testing since the likelihood of respondents choosing
towork in this area is demonstrated to bewell-balanced.About 27%of students expressed
an interest in taking up this career. The same percentage of respondents expressed no
desire to work in this area whatsoever. On the other hand, almost half of the sample
(46%) indicated that they could (or could not) choose this career by answering maybe
to this question. Figure 2 summarizes this information.

By comparing the results from the present study with the results from the original
study and the first replication, we observed that considering the countries surveyed so far,
work in software testing is more popular in Malaysia, followed by Brazil, then, Canada,
India, and China at lowest. Table 3 summarizes these results.

However, both Malaysia and Brazil present a similar outcome regarding the per-
centage of students who would be inclined to work in software testing, which are those
individuals who answeredmaybe. Many factors could explain this reality. However, such
explanations are outside of the scope of this study at this point. We can only hypothesize,
based on the literature, that cultural aspects of each country and the dynamics of univer-
sity programs might be core factors influencing this reality. Further, unlike the previous
studies, our study also requested participants to justify their answers to this question.

Roadblocks to Attracting Students to Software Testing Careers 135

11%

16%

46%

14% 13%

Certainly No No Maybe Yes Certainly Yes

Fig. 2. Likelihood of Brazilian students choosing a career in software testing

Table 3. Choosing a career in testing - Second replication

Responses Brazil Canada China India Malaysia

Certainly no 11% 31% 24% 14% 1%

No 16% 27% 0% 31% 7%

Maybe 46% 33% 74% 47% 52%

Yes 14% 7% 2% 7% 34%

Certainly yes 13% 2% 0% 0% 6%

Thus, by applying open coding we obtained the main broad reasons students cited for
being willing or unwilling to consider a career focused on testing.

There are two main reasons associated with the fact that 27% of students would
not work with software testing after graduation (Certainly No, and No responses). First,
some individuals in this group have already developed interests in other areas of software
development and expect to work in those areas in the future. Second, some students
have an outdated perception about the job and the impact of software testing on software
development, e.g., individuals relate testing with a lack of opportunity for coding and
monotony atwork,while in other cases they cannot even perceive the connection between
testing and the rest of the software development activities.

Thosewho answeredCertainly Yes andYes to the possibility ofworkingwith software
testing in the future seem to be oriented by the previous contact with the area. First,
some students who attended courses or lectures focused on software testing, developed
a positive attitude regarding this career, which turned into a willingness to experiment
more in this area. Second, some students first interacted with software testing through

136 R. E. C. Souza et al.

internships and now they want to continue working in this area. Finally, some students
do not have software testing as their main interest, but they are open to working with
it depending on several factors, such as payment, benefits, and learning opportunities,
among others.

In our analysis, the reasons for theMaybe response proved to be more dynamic and
fluid than the Yes/No answers. Therefore, this analysis will be part of our future work.
Table 4 presents quotations extracted from the questionnaires that elucidate the students’
reasons.

Table 4. Students’ reasons for choosing a career in testing

After you graduate, would you consider a career in software testing?

Answer Justification (quotations)

Certainly no/No - “I am not an enthusiastic of software testing. I rather be coding new
features”
- “Certainly, never caught my attention”
- “I want to create games in the future, not this thing.”
- “Testing is not really of my taste. I like challenges and working with new
people, new problems…”

Certainly yes/Yes - “Since I am working with this lately, I don’t really see me working with
something else [after graduation]. This is what I like”
- “I liked it, since I learnt about it on a lecture.”
- “Testing is an area that caught my attention, it will give opportunity to
learn a lot”

4.2 What are the Advantages and Drawbacks of Taking up a Career in Software
Testing?

Similar to what was pointed out in the previous paragraph, in this paper, the analysis
of advantages and drawbacks pointed out by students is still underway. Based on the
data, it is possible to indicate the most often cited advantages and drawbacks. However,
further analysis is necessary to provide a representative description for each of these
elements, considering not only their meaning but also their relationship with several
factors, e.g., the student’s level (years), their attitude towards software testing (more
positive or negative), their previous experience with testing, e.g., through internships,
among others.

We identified 28 advantages of working with software testing based on participant
responses. In the sample, the most prominent benefits are:

a) The number job of positions and opportunities currently available for professionals
was cited by 39% of individuals.

b) Payment and financial compensation for professionals in this career were cited by
38% of individuals.

Roadblocks to Attracting Students to Software Testing Careers 137

c) The sense of satisfaction in supporting the release of the software with high levels
of quality was cited by 28% of individuals.

d) Constant learning and training opportunities were cited by 17% of the subjects.
e) Challenges at work were cited by 16% of individuals.

The list includes other advantages such as the possibility of supporting other areas
of software development, working with programming (test automation), do not work
with programming, and teamwork, among others. On the other hand, we obtained 32
different drawbacks cited by students regarding the workwith software testing. Themost
representative disadvantages of this profession would be:

a) The fact that the work is monotonous and not interesting enough was mentioned by
30% of the participants.

b) The repetitiveness of tasks was cited by 22% of participants.
c) The work is stressful, according to 16% of participants.
d) The salary is low in comparison to other professionals, according to 15% of

participants.

In addition, 15% of participants claim to have e no knowledge about the area, which
would explain several drawbacks. The list of disadvantages also includes a lack of
opportunity for coding activities, complexity, low number of positions available, and
low relevance for software development as software testing career.

5 Conclusions

We presented the results obtained from the replication of studies that were conducted
in Canada, China, India, Malaysia, and Brazil. In summary, our analysis demonstrates
similarities among the results obtained in Brazil, India, and Malaysia regarding the per-
ception of undergrad students towards working with software testing. In these countries,
students tend to be more receptive and enthusiastic about testing careers. Further anal-
ysis can reveal aspects related to these places, e.g., cultural, educational, economic, or
technical, that can be used to discuss strategies to improve the visibility of software
testing for students in other countries.

Future works include additional analysis of the supplementary qualitative data that
we collected from Brazilian students, which can be used to further explore and describe
the scenario in Brazil while raising detailed comparisons among the countries researched
so far. Long-term future work includes replicating this study with professionals working
in the industry to draw a line between expectations (students’ perception) and reality
(practitioners’ routine) regarding the advantages and drawbacks of a software testing
career.

This study has implications for both the academy and the software engineering
profession. For academia, the comparisons established among the replications might
be used to create strategies for improving software/computer engineering programs by
including more testing courses to provide students with the knowledge and the skills
necessary to work in software testing careers in the industry. For industry, these results

138 R. E. C. Souza et al.

create awareness of the need of developing strategies to motivate and engage software
QA professionals, in particular trainees and individuals at the beginning of their career.
Both strategies are crucial for the development of high-quality software.

References

1. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: Future of
Software Engineering (FOSE 2007), pp. 85–103. IEEE, May 2007

2. Gillenson,M.L., Zhang,X., Stafford, T.F., Shi,Y.:A literature reviewof software test cases and
future research. In: 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 252–256. IEEE, October 2018

3. Alaqail, H., Ahmed, S.: Overview of software testing standard ISO/IEC/IEEE 29119. Int. J.
Comput. Sci. Netw. Secur. (IJCSNS) 18(2), 112–116 (2018)

4. Beecham, S., O’Leary, P., Baker, S., Richardson, I., Noll, J.: Making software engineering
research relevant. Computer 47(4), 80–83 (2014)

5. Garousi, V., Herkiloglu, K.: Selecting the right topics for industry-academia collaborations in
software testing: an experience report. In 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 213–222. IEEE, April 2016

6. Garousi, V., Felderer,M., Kuhrmann,M., Herkiloğlu, K.:What industry wants from academia
in software testing? Hearing practitioners’ opinions. In: Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering, pp. 65–69, June 2017

7. Garousi, V., Petersen, K., Ozkan, B.: Challenges and best practices in industry-academia
collaborations in software engineering: a systematic literature review. Inf. Softw. Technol.
79, 106–127 (2016)

8. Garousi, V., Felderer, M.: Worlds apart: industrial and academic focus areas in software
testing. IEEE Softw. 34(5), 38–45 (2017)

9. Santos, R.E., Bener, A., Baldassarre, M.T., Magalhães, C.V., Correia-Neto, J.S., da Silva,
F.Q.: Mind the gap: are practitioners and researchers in software testing speaking the same
language?. In: 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th InternationalWorkshop on Software EngineeringResearch
and Industrial Practice (SER&IP), pp. 10–17. IEEE, May 2019

10. Capretz, L.F., Waychal, P., Jia, J.: Comparing the popularity of testing careers among Cana-
dian, Chinese, and Indian students. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), pp. 258–259. IEEE,
May 2019

11. Capretz, L.F., Basri, S., Adili, M., Amin, A.: What Malaysian software students think about
testing?. In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp. 195–196, June 2020

12. Tomer, G., Mishra, S.K.: Professional identity construction among software engineering
students: a study in India. Inf. Technol. People (2016)

13. Oguz, D., Oguz, K.: Perspectives on the gap between the software industry and the software
engineering education. IEEE Access 7, 117527–117543 (2019)

14. Karunasekera, S., Bedse, K.: Preparing software engineering graduates for an industry career.
In: 20th Conference on Software Engineering Education & Training (CSEET 2007), pp. 97–
106. IEEE, July 2007

15. Jones, E.L.: Software testing in the computer science curriculum--a holistic approach. In:
Proceedings of theAustralasianConference onComputing education, pp. 153–157,December
2000

Roadblocks to Attracting Students to Software Testing Careers 139

16. Astigarraga, T., Dow, E.M., Lara, C., Prewitt, R., Ward, M.R.: The emerging role of soft-
ware testing in curricula. In: 2010 IEEE Transforming Engineering Education: Creating
Interdisciplinary Skills for Complex Global Environments, pp. 1–26. IEEE, April 2010

17. Bin, Z., Shiming, Z.: Curriculum reform and practice of software testing. In: International
Conference on Education Technology and Information System (ICETIS 2013), pp. 841–844
(2013)

18. Sampath, P.: The emerging role of software testing in curriculum. Poster presented at the
Computing and Information Technology Research and Education New Zealand (CITRENZ),
Queenstown, New Zealand. CITRENZ (2015)

19. Capretz, L.F., Waychal, P., Jia, J., Varona, D., Lizama, Y.: International comparative studies
on the software testing profession. IT Prof. 23(5), 56–61 (2021)

20. Deak, A., Stålhane, T., Cruzes, D.: Factors influencing the choice of a career in software
testing among Norwegian students. Softw. Eng. 796 (2013)

21. de Magalhães, C.V., da Silva, F.Q., Santos, R.E., Suassuna, M.: Investigations about repli-
cation of empirical studies in software engineering: a systematic mapping study. Inf. Softw.
Technol. 64, 76–101 (2015)

22. La Sorte,M.A.: Replication as a verification technique in survey research: a paradigm. Sociol.
Q. 13(2), 218–227 (1972)

23. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE Trans.
Software Eng. 25(4), 557–572 (1999)

24. Bezerra, R.M., da Silva, F.Q., Santana, A.M., Magalhaes, C.V., Santos, R.E.: Replication of
empirical studies in software engineering: an update of a systematic mapping study. In: 2015
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pp. 1–4. IEEE, October 2015

25. deMagalhães, C.V., Baldassarre, T., Santos, R.E., da Silva, F.Q.: Ooops, I replicated again. Let
me tell you why!. In: Proceedings of ROSE Festival 2018 - Recognizing and Rewarding Open
Science in Software Engineering.ACMJoint European Software EngineeringConference and
Symposium on the Foundations of Software Engineering, vol. 2018 (2018)

Analyzing Quality Issues from Software Testing
Glossaries Used in Academia and Industry

Luis Olsina1(B), Philip Lew2, and Guido Tebes1

1 GIDIS_Web, Facultad de Ingeniería, UNLPam, General Pico, LP, Argentina
{olsinal,guido_tebes}@ing.unlpam.edu.ar

2 XBOSoft, Woodbridge, VA, USA

Abstract. This paper analyzes quality issues from three software testing glos-
saries used in academia and industry. The quality issues we analyzed primarily
deal with a sub-characteristic of information quality such as consistency, which
includes syntactic and semantic consistency. To conduct the study for the testing
domain, eight terminological categories were conceived, in which, for each can-
didate glossary, a corresponding term is included in a category, considering the
semantics intended by the authors of these standards. To count the occurrence
frequency of a term in the glossaries, a tool was built that also takes into account
the matching of synonyms. Then, a consistency analysis was performed for all
terms ending with the word “testing”. This study identifies some inconsistencies
that merit further attention and efforts to promote agreement and harmonization
among the authors/editors of these three glossaries in order to provide their readers
with the most consistent and easiest way to learn and understand software testing
concepts.

Keywords: Training · Glossary · Terms · Consistency · Software testing

1 Introduction

It is been said that the only constant is change. However, as we have discovered with the
pandemic, change is not constant. In fact, it is accelerating. We encounter a new virus,
we develop a vaccine; then the virus mutates. Keeping up with accelerating change is
difficult. What can we do? Two primary strengths of the human race are communication
and the ability to understand abstract concepts. These two primary reasons have been
critical to our success as a species. Can you imagine any other animal that can collaborate
on such a large scale? For instance, over 10 million Portuguese belong to a nation
called Portugal due to collaboration and communication at a national level. Can other
animals collaborate like this? No. Can other animals conceive of such an abstract idea
as a country or money? No. And communication, especially when it comes to abstract
concepts, requires a common language and understanding. Hence, our optimal use of
written language is critical to creating understanding and thus helping us to deal with
change. Software, as one of the primary drivers of change in our society, is crucial to
understand, especially its quality.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 140–155, 2022.
https://doi.org/10.1007/978-3-031-14179-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-14179-9_10

Analyzing Quality Issues from Software Testing Glossaries 141

To support the understanding of software quality and testing, several organizations
have developed software testing glossaries. A glossary, regardless of whether it is for
software testing or not, includes entries, that is, terms and their definitions –and occasion-
ally synonyms, acronyms, and relevant notes– considering themost significant sources in
a given domain. Glossaries certainly serve as a reference to establish a common ground
for terms and definitions not only in learning and understanding but in communicating
with others.

Thus, an entire profession and field have been focused on improving software engi-
neering processes and any professional in the field of software engineering will have
come across and used many glossaries, either in their formal training or in their daily
work. In particular, most professionals in the field of software testing are familiar to
some degree with glossaries such as ISO/IEC/IEEE 29119-1 [3], TMMi (Test Matu-
rity Model integration) [9], and ISTQB (International Software Testing Qualifications
Board) [2]. We chose these three glossaries because they are all focused on software
testing. Even though their usage context, intended purpose, and audience varies, they
provide a common foundation and intersection of terms related to software testing.

The ISO 29119-1 glossary is part of a series of standards designed to be used by
an organization when performing software testing as a reference for the other parts
of the standard. Thus, the glossary is written to assist those reading and interpreting
the five parts of the standard by introducing concepts and vocabulary as a basis for
understanding. TMMi is a reference model to support organizations to “improve their
software and system testing and achieve higher and sustainable levels of product quality
for the systems they are developing and maintaining. With TMMi, these organizations
can assess and improve their test processes and, if required, become formally certified”
[9]. Hence, the TMMi glossary is intended to support organizations in their test process
improvement efforts.

ISTQB is a training and certification organization. Thus, its glossary is intended to
help those taking training and certification syllabus in understanding software testing
and specifically to obtain certifications.

As mentioned, each of the glossaries has a different purpose and context, hence
different size, scope, and audience related to the other materials in context. Thus, ISTQB
is intended to assist individuals whereas both ISO and TMMi are intended to assist larger
organizational entities. While individuals studying for certifications may have different
needs than organizations looking for definitions as a means for collaborative discussion,
many of the terms intersect and have different usages as well as synonyms.

Certifications in the software testing field and formal training are often based on
some of these glossaries, and in light of this, these glossaries should be of high quality.
But what is quality when it comes to analyzing glossaries?

As a starting point, and without giving a complete answer to the previous question,
the authors of this work carried out a comparison and analysis of syntactic and semantic
consistency of the terms in the three cited glossaries, mainly highlighting the often incon-
sistent use of the word “testing”. Through a systematic categorization of terms coupled
with an analysis of quality issues, we have identified inconsistencies in these glossaries
that we hope will benefit the profession in eliminating confusion and misunderstanding

142 L. Olsina et al.

amongst their readers/users while also providing the authors of these glossaries a foun-
dation for improvement. Ultimately, we argue that the proposed categorization, quality
requirements, metrics, and analysis techniques can be utilized not only for the current
candidate glossaries that we have analyzed but also for examining the quality of other
glossaries from other professions in general.

The rest of the paper is organized as follows. Section 2 provides the rationale for
dividing software testing glossaries into terminological categories and motivates the
scope of this quality exploratory study. Section 3 shows the comparison and analysis
of syntactic and semantic consistency between the three glossaries. In addition, other
quality issues are outlined and discussed. Section 4 provides a summary of related work
and discussion. Finally, Sect. 5 describes our conclusions and future work.

2 Terminological Categories for Testing and Study Scope

Despite attempts to standardize software testing concepts structured in glossaries by
various initiatives such as ISO, TMMi, and ISTQB, in addition to many attempts to doc-
ument testing terms and relationships structured in ontologies by different researchers
as analyzed in a secondary study in [7], there is often a lack of broad consensus in the
software testing literature and among practitioners on the explicit definition of many
terms and their purpose. For instance, Arnicane et al. [1] found quality issues in the
ISTQB glossary related to consistency, completeness, and correctness. Instead of focus-
ing solely on a glossary as in [1], the present work mainly tries to obtain evidence of
syntactic and semantic consistency among the glossaries mentioned above for a subset
of categorized terms. In particular, to reduce the complexity of this exploratory study, a
consistency analysis is carried out for terms ending with the word “testing”.

Therefore, Subsect. 2.1 presents the terminological categories and numbers for each
glossary of the software testing domain, while Subsect. 2.2 details the scope of this
quality exploratory study.

2.1 Terminological Categories and Numbers

To carry out this study in a systematic way, eight terminological categories were con-
ceived, in which, per each glossary, a corresponding term is included in a category,
considering the semantics intended by the authors of the quoted glossaries. The inclu-
sion of terms in categories was initially carried out independently by the authors of
the present work followed by multiple collaborative sessions to verify the coherence in
their placement. As a result of this verification via video streaming, some issues were
raised and categorization discrepancies in the placement of terms according to the given
semantics were resolved.

Table 1 exhibits the eight terminological categories we have designed for software
testing glossaries. The terms included in categories 1 (C1) to 6 (C6) are domain-specific
for software testing. In turn, C7 incorporates terms somewhat related to software testing,
while C8 covers terms beyond the domain of software testing that belongs to broader
fields such as software engineering or software quality requirements and evaluation. It is
important to note that the terminological coverage of a glossary is often a bit broader than

Analyzing Quality Issues from Software Testing Glossaries 143

the specific terms of a field or domain that it conceptualizes. In this sense, [2] indicates
that “some related non-testing terms are also included if they play a major role in testing,
such as terms used in software quality assurance and software lifecycle models”.

The main reason for designing categories C1 to C6 adheres to the development
idea of TestTDO [8], which is a software testing top-domain ontology. In the process
of defining the ontology scope using competency questions, the authors of that work
found it helpful to devise conceptual blocks for them. From these conceptual blocks, we
designed the categories C1 to C6 shown in Table 1. The keywords used in the label of
each category name are borrowed from terms or properties in TestTDO, so the reader
can refer to their definitions in [8].

Let us briefly describe, not in sequential order, categories C1 to C6, which are
intended to include, in particular, terms from the field of software testing. Category 2
is called “Testing Work Process-, Activity-related Terms”, which is intended to include
termswith the semantics of testing process or activity. The terms testing process, activity,
or task encompass the meaning of ‘what to do’ rather than ‘how to do’ a testing activity.
Instead, Category 5 (labeled “Testing Method-, Technique-, Procedure-, Rule-related
Terms” in Table 1) is dedicated to including testing method terms, which have the
semantics of ‘how to do’ a testing task description. For example, the termTestingMethod
is defined in [8] as “a specific and particular way to perform the specified steps for a
task included in a Testing Activity”. The explicit semantic distinction between glossary
terms that represent ‘what to do’ and ‘how to do’ has a clear benefit for learning and
understanding. According to the authors of [8], to the same Design Testing activity,
different Testing Design Methods or techniques can be assigned.

Category 4 is labeled “Test Work Product-related Terms”, which is devoted to cover-
ing terms with the semantics of artifacts or results produced or consumed by processes,
activities, or tasks. Category 6 (labeled “Testing Agent-, Role-, Tool-related Terms”) is
expected to encompass termswith both automated and human agent semantics. The term
tool represents an instrument that facilitates the automation and execution of procedures
and rules of methods/techniques, whereas the term role embraces skills that an agent
must possess in order to perform activities or tasks.

Category 1 is called “Test Project-, Strategy-, Organizational Test-related Terms”.
ISO 29119-1 states that the term test strategy “…describes the approach to testing for
a specific test project or test sub-process or sub-processes.”. While in [8] is defined
as “Principles, patterns, and particular test domain concepts and framework that can
be specified by a set of core testing processes, in addition to a set of appropriated
testing methods and tools, as core resources, for helping to achieve the project’s test
goal purpose.” Hence, a strategy for testing simultaneously encompasses at least the
concepts of ‘what to do’ and ‘how to do’ testing in a test project. It is worth noting that
organizational test-related terms include concepts at a higher level than at the project
level.

Lastly, Category 3 is labeled “Test Goal-, Requirements-, Entity-related Terms”,
which is devoted to covering terms with the semantics of test goal, purposes, test
requirements, systems, or entities under test including the environment or context
entities.

144 L. Olsina et al.

Table 1. Labels of the eight terminological categories for terms in software testing glossaries

Category ID Terminological category name

C1 Test Project-, Strategy-, Organizational Test-related Terms

C2 Testing Work Process-, Activity-related Terms

C3 Test Goal-, Requirements-, Entity-related Terms

C4 Test Work Product-related Terms (e.g. Artifact, Report, Result, Specification)

C5 Testing Method-, Technique-, Procedure-, Rule-related Terms

C6 Testing Agent-, Role-, Tool-related Terms

C7 Other Terms somewhat related to Test (e.g., Anomaly, Defect, etc.)

C8 Terms beyond the Test Domain related to Quality or Software Engineering

Table 2. Metrics, values, and category percentages for all three software testing glossaries

Metric name/acronym ISO 29119 TMMi ISTQB

Total Number of Terms with Synonyms per Glossary (#TwithSxG) 105 283 748

Total Number of Unique Terms per Glossary (#UTxG) 88 279 588

Number of Synonyms per Glossary (#Sy = #TwithSxG - #UTxG) 17 4 160

Number of Unique Terms per Glossary in Category1 (#UTxGC1) 7 19 38

Percentage of Unique Terms per Glossary in Category1 [%UTxGC1 =
(#UTxGC1/#UTxG) * 100]

7.95% 6.81% 6.46%

Number of Unique Terms per Glossary in Category2 (#UTxGC2) 45 43 103

Percentage of Unique Terms per Glossary in Category2 [%UTxGC2 =
(#UTxGC2/#UTxG) * 100]

51.14% 15.41% 17.52%

Number of Unique Terms per Glossary in Category3 (#UTxGC3) 5 9 10

Percentage of Unique Terms per Glossary in Category3 [%UTxGC3 =
(#UTxGC3/#UTxG) * 100]

5.68% 3.23% 1.70%

Number of Unique Terms per Glossary in Category4 (#UTxGC4) 25 42 63

Percentage of Unique Terms per Glossary in Category4 [%UTxGC4 =
(#UTxGC4/#UTxG) * 100]

28.41% 15.05% 10.71%

Number of Unique Terms per Glossary in Category5 (#UTxGC5) 2 27 46

Percentage of Unique Terms per Glossary in Category5 [%UTxGC5 =
(#UTxGC5/#UTxG) * 100]

2.27% 9.68% 7.82%

Number of Unique Terms per Glossary in Category6 (#UTxGC6) 0 20 32

Percentage of Unique Terms per Glossary in Category6 [%UTxGC6 =
(#UTxGC6/#UTxG) * 100]

0.00% 7.17% 5.44%

Number of Unique Terms per Glossary in Category7 (#UTxGC7) 3 25 57

Percentage of Unique Terms per Glossary in Category7 [%UTxGC7 =
(#UTxGC7/#UTxG) * 100]

3.41% 8.96% 9.69%

Number of Unique Terms per Glossary in Category8 (#UTxGC8) 1 94 239

Percentage of Unique Terms per Glossary in Category8 [%UTxGC8 =
(#UTxGC8/#UTxG) * 100]

1.14% 33.69% 40.66%

After designing the above categories, we classified each term into its appropriate
category. The reader can find the ISO glossary terms categorized in Appendix II of the

Analyzing Quality Issues from Software Testing Glossaries 145

document at https://arxiv.org/ftp/arxiv/papers/2205/2205.10668.pdf. The TMMi glos-
sary terms and the ISTQB glossary terms are classified and documented in Appendixes
III and IV, respectively. As a result, Table 2 shows the size and scale of each of the
glossaries as well as the numbers of classified terms and percentages for all categories.

2.2 Scope of the Quality Exploratory Study

Once the terms were categorized and the basic numbers obtained, comparison and anal-
ysis of syntactic and semantic similarities and discrepancies between the three glossaries
can be performed. Asmentioned earlier, we have scoped this exploratory study to include
the term “testing” both as a single term or as part of others. Table 3 depicts the unique
term “Testing” found in the three glossaries.

First, we can state as a result of this observational comparison that the term “Testing”
syntactically matches and therefore has full syntactic similarity. Or, in other words, it
has an occurrence frequency of 3, simultaneously considering the three glossaries as the
target entity to be observed and analyzed. It should be noted that this term does not have
a synonym in any glossary studied. Second, looking at the definition of the “Testing”
term in the three glossaries, we can state that it has the semantics of process or activity.
The three terms were then included accordingly in C2 as introduced above.

Table 3. Definitions of the “Testing” term in the three glossaries

Term Definition Glossary Category

Testing Set of activities conducted to facilitate discovery and/or evaluation of properties of
one or more test items

ISO 29119-1 C2

Testing The process consisting of all lifecycle activities, both static and dynamic, concerned
with planning, preparation and evaluation of a component or system and related work
products to determine that they satisfy specified requirements, to demonstrate that
they are fit for purpose and to detect defects

ISTQB C2

Testing The process consisting of all lifecycle activities, both static and dynamic, concerned
with planning, preparation and evaluation of software products and related work
products to determine that they satisfy specified requirements, to demonstrate that
they are fit for purpose and to detect defects

TMMi C2

Additionally, the reader may notice that the “Testing” entry in TMMi and ISTQB
fullymatch semantically, while a slightly different definition is in ISO.However, they are
closely similar,which iswhy they fell into the same semantic categoryC2. In otherwords,
we can state that the entries are syntactically and semantically consistent concerning the
information suitability sub-characteristic, as we will see below.

As indicated at the beginning of this section, the scope of this study analyzes only
terms ending with the word “testing”. Thus, terms such as “white-box testing”, “scenario
testing” and “risk-based testing” are included, among many others.

Table 4 exhibits summed values for the three glossaries. For example, the Total Sum
of Unique Terms is 955. Considering that the word “testing” is domain-specific, no term
ending with “testing” must be categorized in C7 and C8. Therefore, the “Total Sum of
UniqueTerms endingwith thewordTesting inCategories 1 to 6” is 154,which represents

https://arxiv.org/ftp/arxiv/papers/2205/2205.10668.pdf

146 L. Olsina et al.

28.73% of the unique terms in categories C1 to C6. So, we consider the selected subset
of terms from categories C1 to C6 to be significant for illustration purposes, due to the
numbers and percentages shown.

The underlying hypothesis the reader can assume is that considering both the syntac-
tic and semantic aspects of the terms ending with “testing” according to the definitions
given by authors of these glossaries to the term “Testing” (Table 3), all these terms should
fall in C2 (what to do). But this will not be the case. After filtering the terms ending
with the word “testing” and calculating the syntactic frequency (similarity), we ana-
lyzed the semantic match of these categorized terms. As a result, the terms fell into three
categories, namely: C1, C2, and C5. Consequently, there are syntactic and/or semantic
inconsistencies between the glossary terms that could make learning and understanding
somewhat difficult.

Table 4. Summed values of unique terms for the three software testing glossaries. Recall that the
values per each glossary (#UTxGlossary) are in Table 2, while the others are in Appendix V

Metric name/acronym Value

Total Sum of Unique Terms [TUT = (#UTxISO + #UTxTMMi + #UTxISTQB)] 955

Total Sum of Unique Terms in Categories 1 to 6 [TUTC1-6 = (TUTC1 + TUTC2 + TUTC3 + TUTC4 +
TUTC5 + TUTC6)]

536

Percentage of Unique Terms in Categories 1 to 6 [%TUTC1-6 = (TUTC1-6/TUT) * 100] 56.13%

Total Sum of Unique Terms ending with the word “Testing” in Categories 1 to 6 [(TUTeTC1-6 = (TUTeTC1 +
TUTeTC2 + TUTeTC3 + TUTeTC4 + TUTeTC5 + TUTeTC6)]

154

Percentage of Unique Terms ending with the word “Testing” in Categories 1 to 6 [%TUTeTC1-6 =
(TUTeTC1-6/TUTC1-6) * 100]

28.73%

The recorded syntactic and semantic similarities and discrepancies promote the
detection of quality problems not only for the three glossaries as a whole but also for
the terms within each glossary. Table 5 defines some characteristics and attributes of
Information Quality (adapted from [5]) that will be used in the next sections to analyze
the glossaries. But the main aim of this work is to analyze the syntactic and semantic
consistency (coded 2.3 in Table 5) and give some recommendations for improvement.

3 Analyzing Quality Issues Between Glossaries

This section discusses the results obtained by the analysis of syntactic and semantic
consistency carried out. The analysis is documented in Subsect. 3.2 and was performed
for the three glossaries terms considering terms’ names endings with the word “testing”.
Also, it is important to note that we have developed a tool to calculate the syntactic
frequency (similarity) between terms of the glossaries,which is presented in Subsect. 3.1.
Finally, Subsect. 3.3 analyzes other quality issues detected in the glossaries related to
missing terms and coverage.

Analyzing Quality Issues from Software Testing Glossaries 147

Table 5. Characteristics and attributes of Information Quality. Extract adapted from [5]

Characteristic/Attribute Definition (Note that definitions start with “Degree to which”)

Information Quality … a product or system delivers accurate and suitable information which meets stated and
implied needs when used under specified conditions

1 Information Accuracy … a product or system delivers information that is correct, credible, and current

1.1 Correctness … the information is correct both semantically and syntactically in a given natural language

1.1.1 Semantic correctness … the information is unambiguous in a given natural language

2 Information Suitability … a product or system delivers information with the right coverage, added value, and
consistency, considering the specified user tasks and intended goals

2.1 Added value … the information can be novel, beneficial, and contribute to causing a reaction for a given
user and task at hand

2.1.1 Beneficialness … the information is advantageous, meaningful, and contributes to making better decisions
for an intended user goal

2.2 Coverage … the information is appropriate, complete, concise, and not redundant for the task at hand
for an intended user

2.2.1 Completeness … the pieces of information regarding coverage are the sufficient amount of information for
an intended user goal

2.2.2 Conciseness … the piece of information is compactly represented without being overwhelming

2.2.3 Non-redundancy … the pieces of information regarding coverage are not repeated unnecessarily

2.3 Consistency …the information is coherent both semantically and syntactically against informational
things, parts, categories, or human expressions previously shown or stated and agreed

2.3.1 Syntactic consistency … the information has the necessary and sufficient keywords to coherently convey the
message in a given natural language in front of something previously stated and agreed upon

2.3.2 Semantic consistency … the information coherently conveys and harmonizes meaning with something previously
stated and agreed upon

3.1 Procedure to Get Syntactically Matching Terms Between Glossaries

When we started to collect all the terms and their corresponding synonyms from each
software testing glossary, we have noticed different situations similar to the following:

• The ISTQB glossary has the main term “white-box testing” with the following
synonyms: clear-box testing, code-based testing, glass-box testing, logic-coverage
testing, logic-driven testing, structural testing, and structure-based testing.

• The ISO glossary has the main term “structure-based testing” with the following
synonyms: structural testing, glass-box testing, and white box testing.

• The TMMi glossary has only the term “white-box testing” without synonyms.

Consequently, the term “white box testing” has a syntactic frequency of 3. One way
to obtain this result is that “white box testing” is synonymous with the term “structural
testing” in the ISTQB glossary, and the ISO glossary has the term “structural testing” as
a synonym for the term “structure-based testing”. Hence, we have a syntactic matching
between the terms of these two glossaries. In addition, the TMMi glossary has the
term “white-box testing” which syntactically matches with the term “white-box testing”
of the ISTQB glossary and, therefore, the TMMi glossary “white-box testing” term
syntactically matches with the term structure-based testing of the ISO glossary or any of

148 L. Olsina et al.

its synonyms (structural testing, glass-box testing, and white box testing) by transitivity
between glossary terms and synonyms.

Note that we can get the same result (frequency 3) in different ways, e.g. considering
the “structure-based testing” synonym in ISTQB and the main term “structure-based
testing” in ISO. Also, at this point, it is important to remark that we considered removing
the hyphens in the terms for the syntactic analysis. Note that ISO has the term “white
box testing” and the other glossaries have the terms “white-box testing”.

Therefore, considering the above example, we have used the following rule when
we calculated the syntactic frequency between glossary terms: Let’s suppose that we
have the term T1 in the glossary G1, and T2 is a synonym of T1. Also, we have the
term T2 in the glossary G2, and T3 is a synonym of T2. Then, if we have the term T3
in the glossary G3, the term T1 syntactically matches with the term T3 by transitivity of
terms and synonyms between glossaries. Therefore, T1 (or T2 or T3) has a syntactical
frequency of 3.Note that we have developed a tool that follows this rule to automatically
calculate the syntactic matching between glossary terms and their synonyms.

3.2 Analysis of Syntactic and Semantic Consistency

Once the results of the syntactic frequency of each glossary term have been obtained
using the tool described above, we filtered the terms that end with the word “testing”.
We then only analyzed these terms and calculated the numbers and percentages shown
in Table 6. Note that we used a set of metrics, which are described below.

The first metric shown in Table 6 is the Number of Terms ending with the word
“testing” with Frequency 3 in Categories 1 to 6 (#TeTFq3C1-6). Note that Frequency
3 implies a Syntactic Similarity of the same term, considering the synonyms, in the 3
glossaries, e.g. the same term “dynamic testing” is in the 3 glossaries. Also, we found 9
terms more with a frequency of 3, so #TeTFq3C1-6 is 10 in total.

Then,we calculated the Percentage of Terms endingwith theword “testing”with Full
Syntactic Similarity in Categories 1 to 6 (%TeTFSySC1-6) and it resulted in 19.48%.

Table 6. Metrics and their values for the syntactic frequencies of the terms ending with the word
“testing” in the three glossaries. Recall that TUTeTC1-6 = 154 according to Table 4

Metric name/acronym Value

Number of Terms ending with the word “Testing” with Frequency 3 in Categories 1 to 6 (#TeTFq3C1-6) 10

Percentage of Terms ending with the word “Testing” with Full Syntactic Similarity in Categories 1 to 6
[%TeTFSySC1-6 = ((#TeTFq3C1-6*3)/TUTeTC1-6) * 100]

19.48%

Number of Terms ending with the word “Testing” with Frequency 2 in Categories 1 to 6 (#TeTFq2C1-6) 25

Percentage of Terms ending with the word “Testing” with Partial Syntactic Similarity in Categories 1 to 6
[%TeTPSySC1-6 = ((#TeTFq2C1-6*2)/TUTeTC1-6) * 100]

32.47%

Number of Terms ending with the word “Testing” with Frequency 1 in Categories 1 to 6 (#TeTFq1C1-6) 74

Percentage of Terms ending with the word “Testing” without Syntactic Similarity in Categories 1 to 6
[%TeTwSySC1-6 = (#TeTFq1C1-6/TUTeTC1-6) * 100]

48.05%

At this point, it is important to remark that the metric %TeTFSySC1-6 uses the
value obtained in #TeTFq3C1-6 multiplied by 3 since we have 3 terms per each term

Analyzing Quality Issues from Software Testing Glossaries 149

with frequency 3. Also, the total amount of terms in the calculated percentage is 154
corresponding with TUTeTC1-6. Although we considered analyzing categories 1 to 6,
we noted that the 3 selected glossaries only have terms ending with the word “testing”
in categories 1, 2, and 5.

Analogously to what we made for terms with syntactic frequency 3, we did the same
for termswith syntactic frequency 2 and 1. For frequency 2, the Number of Terms ending
with the word “Testing” with Frequency 2 in Categories 1 to 6 (#TeTFq2C1-6) is 25.
This implies that a term in a certain glossary syntactically matches with another term of
only one of the other 2 remaining glossaries.

For example, the term “acceptance testing” is in ISTQB and TMMi glossaries, and
the term “accessibility testing” is in ISTQB and ISO glossaries. Hence, the Percentage
of Terms ending with the word “Testing” with Partial Syntactic Similarity in Categories
1 to 6 (%TeTPSySC1-6) is 32.47% (25∗2154 ∗ 100). The reader can see the other obtained
values for frequency 1 in Table 6. Note that frequency 1 may imply absent terms in
the other two glossaries. If we compare the obtained results shown in Table 6 for the
glossaries terms ending with “testing” in categories 1 to 6, we can conclude that the 3
glossaries have few terms with full syntactic similarity (19.48%). Furthermore, most of
the terms have a frequency of 1 (48.05%).

On the other hand, in Table 7, we illustrate the results of metrics related to seman-
tic similarities. Regarding the semantic similarities and discrepancies of the 10 terms
with a syntactic frequency of 3 (Table 6), only 6 terms have full semantic similarity
(#TeTFSSFq3C1-6 = 6), i.e., the 3 syntactically same terms in the 3 glossaries have
the same intended semantics as well. Also, 3 terms have a partial semantic similarity
(#TeTPSSFq3C1-6 = 3), i.e., they have a semantic similarity of only 2 terms out of 3.
Additionally, we found only 1 term (“exploratory testing”) with a syntactic frequency
of 3 and having 3 different intended semantics (#TeTwSSFq3C1-6 = 1).

We show in Fig. 1 a word cloud that illustrates the abovementioned 10 terms with
a syntactic frequency of 3. Note that the biggest size terms (blue highlighted) have a
full semantic similarity, the medium size ones (red highlighted) have a partial semantic
similarity, and the single smallest one (the “exploratory testing” term highlighted in
purple) has no semantic similarity.

Thus, the term “white-box testing” has a full semantic/syntactic similarity, and the
term “risk-based testing” has a full syntactic similarity but partial semantic similarity.

To explain what a “semantic matching” between two terms from 2 glossaries with the
same syntax means in this work, we will use Table 8. The term “white-box testing” (or
structure-based testing) is a kind of “dynamic testing” in ISO. Also, the term “dynamic
testing” is a kind of “testing”, which in turn is a set of activities (recall Table 3). Then,
we conclude that testing, dynamic testing, and structure-based testing fall in C2 since
they are terms related to processes/activities according to their definitions. Something
similar happens for the term “white-box testing” in the other 2 glossaries. As a result,
the term “white-box testing” falls in the same category for the 3 glossaries.

Furthermore, if we take a deep look at the 3 definitions of “white-box testing”, we
can conclude that all 3 glossariesmention the structure of the test object (i.e. the test item,
system, or component) and then the intended semantics of the term is closely similar for
all 3 glossaries. Therefore, there is a semantic consistency.

150 L. Olsina et al.

Table 7. Metrics and their values for syntactic frequencies and semantic similarities/discrepancies
of the terms ending with the word “testing” that are included in the three glossaries. The results
were taken from the data processed and recorded in Appendix VI at http://arxiv.org/abs/2205.
10668. Recall that TUTeTC1-6 = 154 according to Table 4

Metric name/acronym Value

Number of Terms ending with the word “Testing” with Full Semantic Similarity for Frequency 3 in Categories 1
to 6 (#TeTFSSFq3C1-6)

6

Number of Terms ending with the word “Testing” with Partial Semantic Similarity for Frequency 3 in
Categories 1 to 6 (#TeTPSSFq3C1-6)

3

Number of Terms ending with the word “Testing” without Semantic Similarity for Frequency 3 in Categories 1
to 6 (#TeTwSSFq3C1-6)

1

Number of Terms ending with the word “Testing” with Full Semantic Similarity for Frequency 2 in Categories 1
to 6 (#TeTFSSFq2C1-6)

25

Number of Terms ending with the word “Testing” without Semantic Similarity for Frequency 2 in Categories 1
to 6 (#TeTwSSFq2C1-6)

0

Percentage of Total Terms ending with the word “Testing” with Full Syntactic and Semantic Similarity in
Categories 1 to 6 [%TTeTFSSSC1-6 = (#TeTFSSFq3C1-6 * 3/TUTeTC1-6) * 100]

11.69%

Percentage of Total Terms ending with the word “Testing” with Partial Semantic Similarity in Categories 1 to 6
[%TTeTPSSC1-6 = ((#TeTPSSFq3C1-6 * 2 + #TeTFSSFq2C1-6 * 2)/TUTeTC1-6) * 100]

36.36%

Percentage of Total Terms ending with the word “Testing” without any Semantic Similarity in Categories 1 to 6
[%TTeTwSSC1-6 = ((#TeTPSSFq3C1-6 + #TeTwSSFq3C1-6 * 3 + #TeTwSSFq2C1-6 * 2 +
#TeTFq1C1-6)/TUTeTC1-6) * 100]

51.95%

Fig. 1. Word cloud for glossary termswith a full syntactic similarity that includes 10 terms ending
with “testing” belonging to categories 1 to 6 and with a syntactic frequency of 3. Among them,
the largest terms (6 blue terms) have full semantic similarity, the medium size terms (3 red terms)
have partial semantic similarity, and the single smaller one (the “exploratory testing” term purple
highlighted) don’t have any semantic similarity (Color figure online)

On the other hand, if we do the same analysis above for the term “exploratory
testing”, we can conclude that the intended semantics for the term in the TMMi glossary
is technique and therefore falls in C5. In TMMi the term “test design technique” (in bold
in Table 8) is defined as “Procedure used to derive and/or select test cases”, which has
the semantics of technique/procedure (C5) according to our judgment. In ISO, the term
“exploratory testing” falls in C2, i.e., it has the semantics of process/activity. Lastly,
in ISTQB, it falls in C1 since its definition mention that is an “approach”, i.e., has the

http://arxiv.org/abs/2205.10668

Analyzing Quality Issues from Software Testing Glossaries 151

Table 8. Definitions of the “white-box testing”, “exploratory testing” and “risk-based testing”
terms in the 3 candidate glossaries, as well as some related terms with their definitions. See the
definitions of the “Testing” term in the 3 glossaries in Table 3

Term Definition Glossary Category

Dynamic testing Testing that requires the execution of the test item ISO 29119-1 C2

Structure-based testing Dynamic testing in which the tests are derived from an examination
of the structure of the test item. Note that “structure-based testing”
is a synonym of “white-box testing” in ISO 29119-1

ISO 29119-1 C2

White-box testing Testing based on an analysis of the internal structure of the
component or system

ISTQB C2

White-box testing Testing based on an analysis of the internal structure of the
component or system

TMMi C2

Exploratory testing Experience-based testing in which the tester spontaneously designs
and executes tests…

ISO 29119-1 C2

Exploratory testing An approach to testing whereby the testers dynamically design and
execute tests…

ISTQB C1

Exploratory testing An informal test design technique where the tester actively controls
the design of the tests…

TMMi C5

Risk-based testing Testing in which the management, selection, prioritisation, and use
of testing activities and resources are consciously based on
corresponding types and levels of analyzed risk

ISO 29119-1 C2

Risk-based testing Testing in which the management, selection, prioritization, and use
of testing activities and resources are based on corresponding risk
types and risk levels

ISTQB C2

Risk-based testing An approach to testing to reduce the level of product risks and
inform stakeholders on their status, starting in the initial stages of a
project. It involves the identification of product risks and…

TMMi C1

semantics of approach/strategy. In order to be “syntactically consistent” (recall 2.3.1
attribute in Table 5), the TMMi term “exploratory testing” could be called “exploratory
testing technique” or change the definition by explicitly mentioning that it is a kind of
testing (i.e., activity or process). Likewise, ISTQB could name “exploratory testing” as
“exploratory testing approach” or “exploratory testing strategy”.

Another term to analyze is “risk-based testing”. To this, ISO and ISTQB share the
same semantics and are, according to our criterion, syntactically consistent since both
names end with the word “testing” and fall into C2. But, in TMMi, “risk-based testing”
falls inC1 since its definitionmention that is an “approach”. Therefore, to be syntactically
consistent, we suggest disambiguation by using the term “risk-based testing approach”.

Recall that, in Table 5, the attribute Semantic consistency (2.3.2) is defined as the
“degree to which the information coherently conveys and harmonizes meaning with
something previously stated and agreed upon”. Therefore, if the definition of the “Test-
ing” term states that it is a kind of process/activity (Table 3), thus falling into category 2,
we would expect any other glossary term ending with the word “testing” must fall into
category 2 as well. In other words, and according to the definition of attribute 2.3.2, we
would expect the semantics of glossary terms ending with the word “testing” to be con-
sistent with the semantics of the term “Testing”, which is previously stated and agreed

152 L. Olsina et al.

Table 9. Metrics and their values related to glossary terms that end with the word “testing” in
categories 1, 2 and 5

Metric name/acronym Values per Glossary

ISO 29119-1 TMMi ISTQB

Total Number of Terms that end with the word “Testing” in Categories 1 to 6 per
Glossary (#TeTC1-6xG)

28 33 93

Total Number of Terms that end with the word “Testing” in Category1 per Glossary
(#TeTC1xG)

0 4 9

Percentage of Total Terms that end with the word “Testing” in Category1 per Glossary
[%TTeTC1xG = (#TeTC1xG/#TeTC1-6xG) * 100]

0% 12.12% 9.68%

Total Number of Terms that end with the word “Testing” in Category2 per Glossary
(#TeTC2xG)

28 18 63

Percentage of Total Terms that end with the word “Testing” in Category2 per Glossary
[%TTeTC2xG = (#TeTC2xG/#TeTC1-6xG) * 100]

100% 54.55% 67.74%

Total Number of Terms that end with the word “Testing” in Category5 per Glossary
(#TeTC5xG)

0 11 21

Percentage of Total Terms that end with the word “Testing” in Category5 per Glossary
[%TTeTC5xG = (#TeTC5xG/#TeTC1-6xG) * 100]

0% 33.33% 22.58%

upon as a kind of activity/process. Therefore, we show the metrics in Table 9 to analyze
this issue.

Table 9 shows in the%TTeTC2xG (Percentage of Total Terms that end with the word
“Testing” in Category2 per Glossary) metric that most of the terms having the “testing”
word in their names fall in C2 in the 3 glossaries. Recall that we classified the terms
analyzing their semantics given by the authors of the glossaries and not by the name of the
entry. However, only ISO uses the “testing” word consistently (%TTeTC2xG = 100%).
ISO includes 28 terms that have the word “testing” in the term name and, considering
that the “Testing” term definition has the semantics of activity/process, these 28 terms
fall in the category C2 accordingly. The same does not happen in the other two glossaries,
since the %TTeTC2xG metric gives 54.55% in TMMi and 67.74% in ISTQB. This can
lead to semantic consistency issues in these glossaries.

Although ISO uses the “testing” word consistently in C2, we noted in the definition
of the term “test design technique” that it has the given process/activity semantics when
it should have the method/technique semantics (i.e., related to C5 as TMMi and ISTQB
did). Besides, ISO has the terms “statement testing” and “scenarios testing”, and we
categorized them in C2 since their definitions mention that are a kind of “test design
technique” and therefore, considering that in ISO semantically a “test design technique”
falls in C2, then these 2 terms fall in C2 as well. However, if the given semantics of
“test design technique” were more accurate, the terms “statement testing” and “scenario
testing” would fall in C5 and ISO will not be 100% consistent with using the word
“testing” in the terms’ names. We might recommend updating the definition of “test
design technique” in ISO to be more accurate, and then falling into C5, as well as adding
the word “technique” at the end of these 2 terms to harmonize them.

Analyzing Quality Issues from Software Testing Glossaries 153

3.3 Other Quality Issues

When we look at the result of the Percentage of Terms ending with the word “Test-
ing” without Syntactic Similarity in Categories 1 to 6 (%TeTwSySC1-6 = 48.05%)
in Table 6, we can note that most glossaries’ terms do not have a syntactic similarity
with other glossary terms, considering terms ending with “testing”. This issue implies
a large absence of terms in the glossaries. A cause of this is the different proportions
of glossaries’ terms. As shown in Fig. 2, ISTQB contributes to TUTeTC1-6 (Total Sum
of Unique Terms ending with the word “Testing” in Categories 1 to 6, in Table 4) with
more than half of all the glossaries terms.

Fig. 2. The ratio of glossaries’ terms ending with the word “testing” for categories C1-6. Recall
that TUTeTC1-6 = 154 according to Table 4

Regarding the 2.2.1 completeness attribute (Table 5), we note that ISTQB is the
glossary with more coverage in general. As shown in Fig. 2, ISTQB is the glossary with
more terms ending with “testing” in categories 1-6 (60.39%). Also, according to Table
2 and comparing the metrics “Number of Unique Terms per Glossary in Categories
1-8” (i.e., #UTxGC1, #UTxGC2, #UTxGC3, …, and #UTxGC8), ISTQB has more
terms than the other 2 glossaries in all categories, i.e., ISTQB semantically covers all
categories to a greater extent than the other 2 glossaries. Also, we noted that ISO does not
consider including terms in C6 (testing agent/role/tool related terms) since #UTxGC6
= 0. Additionally, ISO has fewer terms in C5, C7, and C8 than the other 2 glossaries.

4 Related Work and Discussion

On the one hand, when searching for categories of glossary terms, we only found two
works for software testing in the literature. One of them is the classification of the ISTQB
glossary represented in a recent draft document. It has the following terminological cate-
gories: Testing, Requirements, Software Engineering, Quality, andGeneral. Considering
the terms that are specific to the software testing domain, the Testing category is the most
used; although the Requirements category also includes some test-specific terms. Con-
trary to this, we have designed six categories as shown in Table 1, in which terms for Test
Requirements are included in C3. Additionally, for the rest of the ISTQB categories, we
have conceived C7 and C8.

The other somewhat related work for categorization carried out by Kuļešovs et al.
[4] aims at structuring testing concepts into eight categories or classes. For example,

154 L. Olsina et al.

the category called “How to test (approach, method, technique)?” corresponds mainly
to C5 and a lesser extent to C1, in which the testing approach and strategy-related terms
are placed. However, an explicit class for C2 (Testing Work Process-, Activity-related
Terms) is missing in [4].

On the other hand, regarding measurement, comparison, and analysis, to the best
of our knowledge, no directly related work in the literature considers a comparative
analysis of syntactic and semantic consistency for a set of software testing glossaries.
In order to look at related work in digital libraries, we primarily searched Scopus with a
variety of keywords and operators, even including glossaries outside the software testing
domain. The result was less than 10 papers, which we analyzed in depth. Among them,
the most relevant research was done by Arnicane et al. [1]. Contrary to our research,
they analyzed only inconsistencies in a software testing glossary, i.e., in ISTQB, without
performing a comparative analysis across glossaries.

In [1] the authors detected some syntactic and semantic issues in the ISTQB glossary.
For example, they detected that the terms “test process” and “testing” have the same
semantics in ISTQB. So they assume that one of them is a redundant term in this glossary.
Recalling the definition of non-redundancy given in Table 5, we noted that the same
situation occurs in the other two glossaries.

Lastly, a seminal but preliminary work that analyzes consistency and conflict in
terminology in software engineering standards is documented in [6]. But this paper, in
thewords of Rout, the author, is merely an attempt to identify and provide some scope for
the problem of consistency of terminology in software engineering standards. It seems
that the author has no more publications on this after 2000.

Looking at the results evidenced in Sect. 3 and taking into account the hypothesis
stated in Subsect. 2.2 that according to the definitions given by the authors of the ISTQB,
TMMi, and ISOglossaries to the term“Testing”, all terms ending in “testing” should have
fallen into C2, but fell into C1, C2, and C3, so we would like to stress at least one easy-
to-adopt recommendation that can promote harmonization, consistency and ultimately
learnability. Regarding the syntactic aspect of naming terms in C2 (what to do) and C5
(how to do), we recommend a clear distinction between them, for example, adding the
word “technique” or “method” to some terms in C5. Instead, for C1, particularly for the
analyzed terms, we recommend adding the word “approach” or “strategy”.

5 Conclusions and Future Work

Thiswork has analyzed the quality of the information between the terms of three software
testing glossaries (ISTQB, TMMI, and ISO) used in academia and industry. Quality
issues have been addressed primarily for a subcharacteristic of information quality,
such as consistency, which includes syntactic and semantic consistency. Other quality
attributes have been also addressed initially. The analysis has been limited to all the
terms that end with the word “testing” and has been supported by the use of a set of
categories and metrics that helped us semantically categorize all the terms and obtain
results.

Based on the hypothesis mentioned in Subsect. 2.2, and discussed in Sect. 4, a
list of recommendations was outlined that can promote consistency, harmonization,

Analyzing Quality Issues from Software Testing Glossaries 155

and ultimately improve the understanding and learnability capabilities of the different
stakeholders. As a matter of fact, the last statement should be supported by a set of
experimental studies that might be planned and carried out further.

Nevertheless, what became clear from this study is that there are opportunities to
improve terminologies in order to achieve broader standardization in the area of software
testing.

As future work, we will extend the analysis of this work considering other families
of terms included in the categories mentioned above for the domain of software testing.
In addition, we will explore the information quality characteristic for terms in other
software engineering glossaries, such as for the area of project management.

Acknowledgments. This line of research is supported partially by the Engineering School at
UNLPam, Argentina, in the project coded 09/F079.

References

1. Arnicane, V., Arnicans, G., Borzovs, J.: Building of concept system to improve systematic
collection of terminology. Front. Artif. Intell. Appl. 291, 313–326 (2016). https://doi.org/10.
3233/978-1-61499-714-6-313

2. International Software Testing Qualifications Board (ISTQB®): Standard Glossary of Terms
used in Software Testing, version 3.5 (2021). https://www.istqb.org/

3. ISO/IEC/IEEE 29119-1: Software and systems engineering – Software Testing – Part 1:
Concepts and definitions (2013)

4. Kuļešovs, I., Arnicane, V., Arnicans, G., Borzovs, J.: Inventory of testing ideas and structuring
of testing terms. Balt. J. Mod. Comput. 1(3–4), 210–227 (2013)

5. Olsina, L., Lew, P., Dieser, A., Rivera, B.: Updating quality models for evaluating new gen-
eration web applications. J. Web Eng. 11(3), 209–246 (2012). Special Issue: Abrahão, S.,
Cachero, C., Cappiello, C., Matera, M. (Eds.) Quality in New Generation Web Applications.
Rinton Press, USA

6. Rout, T.P.: Consistency and conflict in terminology in software engineering standards. In: 4th
IEEE International Software Engineering Standards Symposium and Forum (ISESS 1999),
Best Software Practices for the Internet Age, pp. 67–74 (1999)

7. Tebes, G., Peppino, D., Becker, P., Matturro, G., Solari, M., Olsina, L.: Analyzing and docu-
menting the systematic review results of software testing ontologies. Inf. Softw. Technol. 123,
106298 (2020). https://doi.org/10.1016/j.infsof.2020.106298

8. Tebes, G., Olsina, L., Peppino, D., Becker, P.: Specifying and analyzing a software testing
ontology at the top-domain ontological level. J. Comput. Sci. Technol. 21(2), 126–145 (2021).
https://doi.org/10.24215/16666038.21.e12

9. TMMi Foundation: Test Maturity Model Integration (TMMi®) - Guidelines for Test Process
Improvement, Release 1.2 (2018)

https://doi.org/10.3233/978-1-61499-714-6-313
https://www.istqb.org/
https://doi.org/10.1016/j.infsof.2020.106298
https://doi.org/10.24215/16666038.21.e12

Can Source Code Analysis Indicate
Programming Skills? A Survey

with Developers

Johnatan Oliveira1(B), Mauŕıcio Souza2, Matheus Flauzino2, Rafael Durelli2,
and Eduardo Figueiredo1

1 Department of Computer Science, Federal University of Minas Gerais (UFMG),
Belo Horizonte, Brazil

{johnatan.si,figueiredo}@dcc.ufmg.br
2 Department of Computer Science, Federal University of Lavras (UFLA),

Lavras, Brazil
{mauricio.ronny,rafael.durelli}@ufla.br,

matheus.flauzino2@estudante.ufla.br

Abstract. Background: Both open-source and proprietary software sys-
tems have become increasingly complex. Despite their growing com-
plexity and increasing size, software systems must satisfy strict release
requirements that impose quality, putting significant pressure on devel-
opers. Therefore, software projects’ success depends on the identification
and hiring of qualified developers. Several approaches aim to address
this problem by automatically proposing models and tools to automati-
cally identify programming skills through source code. However, we still
lack empirical knowledge on the applicability of these models in prac-
tice. Aims: Our goal is to evaluate and compare two models proposed to
support programming skill identification. Method : This paper presents
a survey with 110 developers from GitHub. This survey was conducted
to evaluate the applicability of two models for computing programming
skills of developers based on the metrics Changed Files and Changed
Lines of Code. Results: Based on the survey results, we conclude that
both models often fail to identify the developer’s programming skills.
Concerning precision, the Changed Files model obtained 54% to identify
programming languages, 53% for back-end & front-end profiles, and 45%
for testing skills. About the Changed Lines of Code model, we obtained
36% of precision to identify programming languages, 45% for back-end
& front-end profiles, and 30% for testing. Conclusion: Practitioners can
use our survey to refine the practical evaluation of professional skills for
several purposes, from hiring procedures to the evaluation of team.

Keywords: Hard skills · Programming skills · Developer expertise

1 Introduction

In large and nontrivial software systems, it is crucial to identify developers with
the right skills for maintaining a piece of code—although it is a challenging and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 156–171, 2022.
https://doi.org/10.1007/978-3-031-14179-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-14179-9_11

A Survey with Developers 157

time-consuming task [7]. This problem is even more critical since open-source
and proprietary systems have become increasingly complex. Therefore, successful
software projects demand the identification and hiring of qualified developers to
build strong and cohesive teams with comprehensive sets of programming skills.
Programming skills are the set of previous knowledge a software developer holds,
such as in programming languages and libraries [1]. The current practice in
industry and research for assessing programming skills is mainly based on proxy
variables of skills, such as education, years of experience, and multiple-choice
knowledge tests [1]. However, poor hiring decisions may hurt the success of a
software system [7]. In particular, software projects have many open positions
and not as many qualified candidates [1]. Identifying qualified candidates with
the right combination of skills is crucial to the success of a software project.

Several approaches aim at addressing this problem by proposing mod-
els [3,5,8,15,21] and tools [7,12] to identify the programming skills via source
code analysis. Many data about developers and projects are available from social
coding platforms, such as GitHub. Such social and programming data about
developers have a vast potential to support the effective identification of pro-
gramming skills. For instance, Greene and Fischer [7] proposed a tool (CVEx-
plorer) to identify developers with programming skills, such as expertise in pro-
gramming languages, libraries, and frameworks. Although previous approaches
may potentially identify the programming skills, we still lack empirical knowl-
edge on their applicability based on an independent evaluation.

To fill this gap, this paper provides a survey with 110 developers from the
GitHub platform to understand how automatically generated curricula of devel-
opers map to the perception of developers about their programming skills. We
identified candidate participants by mining 1,678 public repositories. Then, we
developed a tool for creating a curriculum for each candidate, based on two
typical source code metrics, named Changed Files and Changed Lines of Code.
Finally, we sent the curricula for the participants and invited them to answer in
a survey to assess the precision of both models to calculate skills.

In general, the precision of the models evaluated in this paper are low. For
programming languages skills, we obtained a precision of 54% using Changed
Files versus 36% using Changed Lines of Code. Concerning back-end & front-
end profiles, we obtained a precision of 53% using Changed Files versus 45%
using Changed Lines of Code. Finally, about test skills, we obtained a precision
of 45% using Changed Files versus 30% using Changed Lines of Code. Despite
the low precision of both models, our results indicate that Changed Files seem
more suitable than Changed Lines of Code to identify programming skills.

Our contribution targets both researchers and practitioners. Researchers can
use our results to design studies related to skills and reflect on the complicated
relationship between source code activities and skills. Practitioners can use it to
refine practical evaluation of professional skills for several purposes, from hiring
procedures to the evaluation of team formation. Understanding the effectiveness
of the different approaches is the first and necessary step for building tools that
will genuinely indicate programming skills by analyzing software repository [26].

158 J. Oliveira et al.

2 Identifying Programming Skills

The goal of this study is to evaluate 2 models for the identification of skills
of developers from the analysis of source code activities. Therefore, we imple-
mented 2 models, (i) one based on Changed Files (CF) and (ii) the other based
on Changed Lines of Code (CLOC) to compute programming skills. We imple-
mented these models inspired by previous work [7,14,15,22]. For each model,
we compute 3 programming skills: Programming Language, Back-end & Front-
end profiles, and Testing. To illustrate how the models work, let’s suppose Mary
changed 8 files and 5 lines of code in the file “A.py”. John changed only 5 files
and changed 3 lines of code (LOC) in file “A.py”.

Concerning the CF model, we compute Programming Languages by the num-
ber of files changed that share the same file extensions. Mary modified 3 Python,
2 Java, 2 CSS, and 1 HTML files. Therefore, according to the CF model, her skill
in programming languages is distributed as follows: 37.5% Python, 25% Java,
25% CSS, and 12.5% HTML. In a similar fashion, the model CLOC considers the
number of LOC added or removed by a specific developer. To calculate Johns’
skill distribution in programming languages, we need to count the total number
of changed LOC for all files that share the same file extension. John, for instance,
has a skill distribution in programming languages as follows: 70% Python, 0%
Java, 20% CSS, and 10% HTML.

Besides skill distribution for programming languages, we also analyzed (a)
alignment between back-end & front-end profiles and (b) skills in test develop-
ment. For the former, we classified a set of programming languages as front-end
(e.g., CSS) and another set as back-end technologies (e.g., Java). Therefore, we
also used the models previously described to calculate back-end & front-end
profiles. To calculate the test skills, we to identify if a particular folder con-
tains test files. The source code is parsed, and we search for directory structures
mentioning “tests”.

3 Study Settings

3.1 Goal and Research Questions

It is important to collect the perception of developers about their programming
skills to get insights into the main strengths and weaknesses of the evaluated
models. We performed the study following a predefined protocol and document-
ing the results of each step. This allows the traceability between our study goal,
the research questions, the questionnaire design, and the collected data from
the participants. It also supports future studies that may aim at replicating.
We define the scope of our study following the Goal/Question/Metric (GQM)
method [2]. Therefore, the scope of this study can be summed up as follows.

A Survey with Developers 159

Analyze two models that compute programming skills
for the purpose of evaluating their applicability
with respect to developers perception of their programming skills
from the point of view of researchers and practitioners
in the context of source code analysis of open-source software projects.

To achieve this goal, we framed our research around the following research
questions (RQs).

RQ1 – What is the precision of source code analysis to compute the programming
language skills of a developer?

RQ2 – What is the precision of source code analysis to compute the back-end &
front-end profiles of a developer?

RQ3 – What is the precision of source code analysis to compute the test devel-
opment skills of a developer?

RQ4 – What feedback do developers provide about source code analysis to compute
programming skills?

3.2 Evaluation Steps

The main idea of our analysis is to collect data for different variables to investi-
gate the feasibility of computing programming skills from source code. Therefore,
our study consists of computing the skills of actual developers using the mod-
els described in Sect. 2, and asking the developers’ agreement level regarding the
results of these models. This way, we design this study in three steps: (1) Dataset
Collection, (2) Survey Design, and (3) Data Analysis.

Step 1 – Dataset Collection: We randomly selected 1,137 developers from
GitHub. The inclusion criterion was that the developer had to have at least 10
public repositories because we need vast source code data to be analyzed. As
a result, we obtained a list of 2,758 repositories from these developers to be
analyzed. We present this step in Sect. 3.3.

Step 2 – Survey Design: We then conducted an empirical study through a
survey with the selected developers. More specifically, we sent emails asking
them their agreement with the estimated programming skills computed by each
model evaluated in this study. This step is presented in Sect. 3.4.

Step 3 – Data Analysis: In this last step, we conducted a qualitative and
quantitative data analysis about the results. In addition, we translate the RQ
into hypotheses. Section 3.5 shows this step.

3.3 Dataset

To create our dataset, we conduct a process of filtering to select the developers.
Figure 1 shows the steps performed. First, we select 2,000 developers randomly
according to trending GitHub1. Second, we made a filter by developers with the

1 https://github.com/trending/developers.

https://github.com/trending/developers

160 J. Oliveira et al.

top-10 programming languages2 investigated in this paper: JavaScript, Python,
Java, Go, C++, Ruby, PHP, TypeScript, C#, and C. Besides, we selected the
style sheet language CSS and HTML. Note that programming languages selected
are between top-10 most used from GitHub3. As a result of this filtering step,
we remove 300 developers. Third, from the last filter, we delete developers with
less than ten projects. Therefore, we remove 271 developers and select 1,429
developers. Fourth, we select from the previous step, developers with at least 100
commits in projects. Consequently, we discard 136 developers and select 1,293.
In the fifth and last step, we select developers with at least a thousand lines of
code committed. That way, we eliminated 156 developers and obtained the 1,137
developers able to participate in our analysis. After, we automatically cloned
2,758 repositories from these developers through Ghcloneall4. We extracted from
each commit: lines of code and files modified organized by the file extensions,
such as, .py, .java, and .css.

Finally, we computed the developers’ skills. These repositories provide the
dataset with high variability in the size, complexity, domains, and technolo-
gies. Together, these repositories have a history of over 2.5 million commits. We
obtained in total 110 responses from the survey (10% response rate).

Fig. 1. Steps to select developers from GitHub

3.4 Survey Design

According to Easterbrook et al. [6], survey studies are used to identify the char-
acteristics of a population and are usually associated with the application of
questionnaires. Besides, surveys are meant to collect data to describe, compare
or explain knowledge [10,18]. In this study, the survey is the main empirical
strategy used to collect data to evaluate the two models for computing develop-
ers’ programming skills.

Target group – The survey is composed of developers from GitHub.
Questionnaire Structure – Based on our goal and RQs, we designed a ques-

tionnaire supported with a README that explains the details of the study.

2 https://madnight.github.io/githut/#/pull requests/2021/4.
3 https://githut.info/.
4 https://pypi.org/project/ghcloneall/.

https://madnight.github.io/githut/#/pull_requests/2021/4
https://githut.info/
https://pypi.org/project/ghcloneall/

A Survey with Developers 161

Type of questions – The questionnaire consists of a single answer. The goal
of the questionnaire was to collect the participant opinion of two mini curricula
generated from our scripts based on the CF (Option A) and CLOC (Option B)
models. Each item of the questionnaire asked the participants to rate the agree-
ment with the curriculum items in their skills. The items used five Likert-scale
options for answers: “Strongly agree”, “Agree”, “Neither agree nor disagree”,
“Disagree”, and “Strongly disagree”. The questionnaire had no mandatory item.
Therefore, participants are not forced to answer when they are not sure about
a specific technology.

Pilot study – We performed a pilot study with eight developers to assess the
understandability of the questions and to estimate the time required to answer
them. We encouraged the eight developers to take notes on any problems or
doubts regarding the meaning of the questions and track the time they spent
filling out the questionnaire. As a result, we changed one question classified
as confused by two developers. Worth emphasizing that this pilot study was
applied in October 2021. The final survey execution was between November and
December 2021. The survey remained open for twenty days.

Questionnaire length – The designed questionnaire includes up to five ques-
tions written in English (Google Forms)5. The time needed for answering the
questions of the questionnaire was between three and five minutes (Table 1).

Table 1. Survey questions

ID Questions

SQ1 Your GitHub username:

Option A Option B

SQ2 With respect to programmings languages: Likert-scale Likert-scale

we mined some languages you are likely to know

How much do you agree or disagree with the
level distribution presented in Option A and
Option B?

SQ3 With respect to back-end & front-end: Likert-scale Likert-scale

we mined your possible profile

How much do you agree or disagree with the
level distribution presented in Option A and
Option B?

SQ4 With respect to software test: Likert-scale Likert-scale

we mined your likely knowledge

How much do you agree or disagree with the
level distribution presented in Option A and
Option B?

SQ5 Please leave any comments that you consider
relevant to our research

5 https://www.google.com/forms/.

https://www.google.com/forms/

162 J. Oliveira et al.

3.5 Data Analysis

From the survey results, we performed quantitative and qualitative data analyses
to address the research questions. For research questions RQ1, RQ2, and RQ3,
we conducted a descriptive analysis of the data and statistical tests to identify
the precision similarity of both models. For the statistical tests, each research
question was translated into hypotheses, as follows.

Regarding RQ’s, we defined the following hypotheses:

Null Hypothesis, H0RQ1||RQ2||RQ3: there is no difference in the preci-
sion of both models regarding the < programming language || back-end
& front-end || test > skills of a developer.
Alternative Hypothesis, H1RQ1||RQ2||RQ3: there is a difference
between both models regarding < programming language || back-end &
front-end || test > skills of a developer.

Then, our hypotheses can be formally stated as:

H0RQ1||RQ2||RQ3: xchangeFile = xchangeLOC

and

H1RQ1||RQ2||RQ3: xchangeFile <> xchangeLOC

We perform statistical tests over the data in RQ1, RQ2, and RQ3. The inde-
pendent variables for the first three research questions are the CF and CLOC
models. Precision is our dependent variable. We verify if answers from every case
deviate from normality using the Shapiro-Wilk test (p-value ranges from 0.7 to
0.9). Since normality was not always met, we used a Wilcoxon Signed-Rank Test
with a 95% confidence interval. We conducted a Wilcoxon signed-rank test [19]
to check the significance of the difference between the two paired groups. Because
we are interested in the differences of the values, we report the effect size with
the median and mean differences. We use R to conduct these analyses.

For RQ4, we used an approach inspired by the open and axial coding phases
of Ground Theory [23]. Two researchers analyzed the responses of open questions
individually and marked relevant segments with “code”. Later, the researchers
compared their codes to reach a consensus and grouped them into relevant cate-
gories. We examined the data line-by-line using the following questions as a lens
to identify codes (open coding) [23]: (1) What is this saying? What does it rep-
resent? (2) What is happening here? (3) What is at issue here? (4) What is the
participant trying to convey? (5) What process is being described? Consequently,
it is possible to count the number of occurrences of codes and the number of
items in each category to understand what recurring aspects are pointed by the
participants and then discuss possible lessons learned. The developers are our
oracle to evaluate the models. For this, we calculated the precision.

A Survey with Developers 163

4 Results

4.1 Overview

This section presents an overview of results for the CF and CLOC models.
Figure 2 shows the opinion of the developers of each model. In this figure, we
have 3 blocks, one for each evaluated programming skill. The first block of charts
represents programming language skills. The second block depicts the back-end
& front-end profiles. Finally, the last block shows the test skills. Concerning
the CF model agreement, we observe in the programming language perspective
that 27% of the participants answered “strongly agree” and “agree” with this
model. On the other hand, we observe that to the CLOC model, 14% and 22% of
the participants answered respectively “strongly agree” and “agree”. Concerning
disagreements, we have 12% and 18% to “strongly disagree” and “disagree” to
the CF model. While for CLOC, we observe 18% and 19%, respectively, to
“strongly disagree” and “disagree”. This way, we note that the CF models,
in general, are better evaluated by developers to capture their programming
language skills.

Fig. 2. Overview

4.2 Programming Language Skill

In this section, we answer the first research question (RQ1). For RQ1, we
found a statistically significant difference between CF and CLOC model (p-
value = 0.02423) with Wilcoxon-Signed Rank test. This result allows us to reject
the null hypothesis. Therefore, the models CF and CLOC are statistically differ-
ent. To analyze the precision, we sum “agree” with “strongly agree”. This way,
we obtained the 54% precision to CF and 36% to CLOC.

In general, the developers do not agree with the models evaluated. To under-
stand the factors leading a developer not to agree, we create 3 categories: Hard
Divergence, Soft Divergence, and Convergence. The category Hard Divergence

164 J. Oliveira et al.

indicates the number of developers against one of the models and favorable to
the other. Soft Divergence means that a developer agrees or disagrees with a
given model and is neutral about the other. Finally, Convergence indicates they
share the same opinion (agree, disagree, or neutral) for both models. Our focus
is on Hard Divergence because our goal is to understand how the models differ.

Figure 3 presents the opinion of the developers into these 3 categories. In this
figure, we use 3 colors for convergence: light grey (negative), dark grey (neutral),
and black (positive). “Hard Divergence” and “Soft Divergence” correspond to,
respectively, 20% (22) and 33.64% (37) of the answers. Therefore, we can observe
that 20% of the developers agree with a model and disagree with another, 33.64%
agree with one and are neutral with the other. The remainder of the answers
(46.37%) shows convergence, where: 17.27% agree on neither of the two mod-
els, 24.55% agree with both models, and 4.55% are neutral towards both. Our
qualitative analysis (SQ5) investigates patterns of answers.

We note that the models were discrepant in some causes. That is, they pre-
sented a result different from the other. In some cases, the models present the
same languages. However, a model presented a different sorting. In general, the
model that prioritizes the most mainstream languages from the viewpoint of a
developer is that they agree-for example, Python and JavaScript were considered
mainstream languages. On the other hand, when the model ranks CSS above the
other languages, overall, the developers disagree with this model.

Fig. 3. Programming language skills

RQ1 summary: We obtained 54% precision to CF versus 36% to CLOC. How-
ever, it is possible to see that less than 20% strongly disagree with both evaluated
models (negative convergence).

4.3 Back-end & Front-end Profiles

In this section, we answer the second research question (RQ2). To investigates
RQ2, we conducted the same configuration presented in RQ1. The Wilcoxon

A Survey with Developers 165

signed-rank test indicated p-value= 0.06896. Since the p-value is 0.06896, which
is greater than our 0.05 significance level, we could not reject the null hypothesis
in this case. Figure 4 shows the results of this RQ. In this figure, we have the
same configurations presented previously. “Hard Divergence” and “Soft Diver-
gence” correspond to, respectively, 34.55% (38) and 25.45% (28) of the answers.
On the other hand, “Convergence” corresponds to 40% of the answers, where
15.45% (17) of the developers did not agree with the either models (negative
convergence). This way, to these developers, both models cannot represent their
Back-end & Front-end profiles. For this RQ, we obtained a precision of 53% to
CF versus 45% to CLOC. Therefore, we observe that CF from survey results
obtained better precision than CLOC.

Fig. 4. Back-end & Front-end Skill

RQ2 summary: Overall, the precision of the model evaluated is low to back-end
& front-end profiles. We obtained 53% precision to CF versus 45% to CLOC.

4.4 Test Development

To answer RQ3, we investigate the test skills of developers computed by the 2
models, CF and CLOC. For this, we used the same configurations presented in
the last RQs. The Wilcoxon signed-rank test indicated p-value < 0.01. Since the
p-value is smallest than the 0.05 significance level, we reject the null hypothesis.
Therefore, there is a difference between the 2 models evaluated concerning test
development skills.

Figure 5 presents the results in the same way as presented previously. From
all skills evaluated, tests obtained the worst results. We compute 52.73% (58) of
answers for Hard Divergence against 12.73% (14) to Soft Divergence. From these
results, we can observe that 17.27% (19) converge negatively to both models.
Therefore, to 19 developers, both models cannot compute their skills in tests.
We also note that only 10.91% (12) of developers agree with models evaluated,

166 J. Oliveira et al.

Fig. 5. Test skill

and 6.36% (7) are neutral. For this RQ, we obtained a precision of 45% to CF
versus 30% to CLOC. The precision did not achieve 50% in either models.

RQ3 summary: We obtained a precision of 45% to CF versus 30% to CLOC.
We argue that the models need to improve the precision to compute program-
ming skills for test development.

4.5 Feedback from Developers

In this section, we address the results the fourth research question (RQ4). To
gather and synthesize such feedback, we employed an approach inspired by the
coding phrase of Ground Theory (as discusses in Sect. 3.5). We grouped the
identified codes into 8 categories (shown in Table 2): Imprecision of detecting
skills, Expertise not captured, Lack data from private repositories, Problems in
presentation, Positive feedback, Negative Feedback, and others.

Table 2. Feedback categories

Category #

Imprecision of detecting skills 17

Expertise not captured 16

Others 6

Positive feedback 6

Problems in presentation 5

Lack data from private repositories 4

Negative feedback 4

Time factor 3

The most frequent feedback is related to Imprecision of detecting skills and
to Expertise not captured, mentioned by 17 and 16 participants, respectively.

A Survey with Developers 167

The first represents the imprecise detection of programming language, back-
end & front-end, and test. Seven participants expressed concerns about the lack
of treatment of what was created by the developer in contrast to what was
committed. Six participants did not agree with the models for calculating their
front-end & back-end profiles. Four participants pointed problems in the models
for calculating language skills, such as wrong recognition of languages. Two
participants pointed criticism towards the results of test development.

The codes categorized as Expertise not captured are mostly related to the
absence of specific programming languages or testing skills in the resulting cur-
riculum. Eight participants indicated that the results did not compute any test-
ing skills. These comments helped us understand that the models of simply
considering directory path referencing to test are not enough to capture frag-
ments of codes that implement tests. Seven participants mentioned they missed
specific languages in their respective curriculum. From these cases, six partici-
pants mentioned languages that our scripts did not capture them. Finally, one
participant mentioned that the model could not assess their front-end/back-end
orientation since they do not post it on GitHub.

Concerning Positive feedback, we have a favorable opinion of the develop-
ers about the evaluated models. Between these comments, we highlight one in
particular, which the developer said that the models have the potential to use
in the industry if improved. Another category we created was Problems in pre-
sentation. This category represents the problems concerning the presentation
of the curriculum. For instance, type of charts, layout, percentage, and text at
curriculum. This problem typically occurred when the curriculum showed sim-
ilar data for both models, for example. The codes categorized as Lack of data
from private repositories indicate the observations of developers about data not
captured at private repositories. Some developers related that their skills were
not computed correctly because most of their source code is available in private
repositories. Negative Feedback reports comments from developers that did not
like the results presented by the models. For example, a developer stated: “None
of these results captures the useful nuance”.

5 Discussion

5.1 Accuracy of the Evaluated Heuristics

From the developers’ comments, we observe that many of them cited low accu-
racy of the models evaluated. Given this scenario, we investigate the causes of
these comments. We checked developers on GitHub that reported these prob-
lems, and we verified that both models fail to compute skills, particularly for
tests. Each heuristic used the same procedure to classify the file as test through a
path with the substring “test”. Therefore, we observe that the evaluated models
need to improve to show better results, mainly to compute test skills. Table 3
presents a summary about precision presented in RQs 1, 2 and 3. In this table, it
is possible to see an overview of the models precision and observe that all models

168 J. Oliveira et al.

were below 60%. This value indicates low precision to both models to identify
programming skills from source code.

Table 3. Summary of precision

Model Skill Precision

CF Programming languages 54%

Back-end & Front-end profile 53%

Test 45%

CLOC Programming languages 36%

Back-end & Front-end profile 45%

Test 30%

6 Threats to Validity

In this section, we detail the threats that may affect the validity of the study
and how they are handled.

Construct Validity– Self-selection is a threat. However, we try to select the
biggest group of developers from GitHub without evaluating the number of com-
mits, amount of stars, programming languages, and organizations. The use of
generated distribution of skills based on GitHub contributions as a proxy for
general individual skill level evaluation is a limitation. Professional experiences
can be much broader than individual contributions to open-source projects.

Internal and External Validity– We developed many steps to mitigate this
threat: (i) Respondents were assured of their anonymity to avoid evaluation
apprehension; (ii) We sent an email only to developers mined by GitHub; and
(iii) All questions were not mandatory. The survey target number might not be
a representative sample. However, our sample is diversified; the subjects have
different programming experiences and work with freelancers or other companies.
Therefore, we believe that these steps contributed to obtaining a sample that is
quite heterogeneous in terms of knowledge, job role, profile, and company.

Conclusion Validity– The participants may not answer the questionnaire hon-
estly. Participants may feel that they needed to provide positive feedback for
better scores. This threat is minimized by announcing that the questionnaire
is not mandatory (feedback without pressure). In this study, we only used the
absolute number and percentages to compute programming skills.

7 Related Work

Studies to identify the knowledge of developers based on their contributions to
online platforms have gained relevance in the field of software engineering [4,20,
24]. The evaluation of such approaches is essential to guarantee the quality of the

A Survey with Developers 169

analysis and to ensure an effectiveness of the specialist identification model [16].
Just like us, some studies use reports through forms [20] or choose to carry out
such an assessment manually [17,25]. Others compare it to previous studies [13].
Researchers performed automatic evaluations comparing data extracted from
GitHub with the content of responses made in Stack Overflow [5,20].

Approaches to identify and extract technical skills, known as hard skills, have
gained prominence among research, often supported by tools to perform the
extractions [9,11]. Greene and Fischer [7] proposed a tool named CVExplorer,
which can be used to assist non-technical users to extract, filter, and identify
developers according to technical skills (programming languages, libraries, and
frameworks) demonstrated across all of their open-source contributions, in order
to support more accurate candidate identification. Tags are mined from the
project’s READMEs and from commit messages. Note that we did not evaluate
the models using CVExplorer [7] because this tool relies on ReadMe file, number
of commits, number of files, and file extension. However, CVExplorer did not use
changed lines of code as parameter.

8 Conclusion and Future Work

In this paper we described a survey that evaluated two models based on, (i)
Changed Files and (ii) Changed Lines of Code. We conducted a survey with
110 developers from GitHub. These developers received a curriculum generated
automatically by the two models investigated in this study and were invited to
answer 5 questions. Our study evaluates 3 perspectives of programming skills,
(i) Programming Languages, (ii) Back-end & Front-end profile, and (iii) Test
Development. We conclude that both models evaluated need more investigations
to improve the accuracy of skills detection. However, we believe that both mod-
els may be combined for better results. We also hope that this paper paves the
way for more research related to programming skills detection. As future work,
we plan to extend to following directions. First, we plan to extend both mod-
els to other programming languages and explore other approaches to compute
programming skills. Second, we intend to develop a tool capable of computing
programming skills from the source code from findings identified in this paper.

Acknowledgments. This research was partially supported by Brazilian funding agen-
cies: CNPq, CAPES, and FAPEMIG.

References

1. Baltes, S., Diehl, S.: Towards a theory of software development expertise, pp. 187–
200 (2018)

2. Basili, V., Caldiera, G., Rombach, H.D.: The goal question metric approach. Online
Technical Report (1994)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. In: Semantic
Services, Interoperability and Web Apps: Emerging Concepts, pp. 205–227 (2011)

170 J. Oliveira et al.

4. Constantino, K., Zhou, S., Souza, M., Figueiredo, E., Kästner, C.: Understanding
collaborative software development: an interview study. In: Proceedings of the 15th
International Conference on Global Software Engineering, pp. 55–65 (2020)

5. Constantinou, E., Kapitsaki, G.M.: Identifying developers’ expertise in social
coding platforms. In: 42th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA) (2016)

6. Easterbrook, S., Singer, J., Storey, MA., Damian, D.: Selecting empirical methods
for software engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds)
Guide to Advanced Empirical Software Engineering. Springer, London (2008).
https://doi.org/10.1007/978-1-84800-044-5 11

7. Greene, G.J., Fischer, B.: CVExplorer: identifying candidate developers by min-
ing and exploring their open source contributions. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 804–809 (2016)

8. Hauff, C., Gousios, G.: Matching GitHub developer profiles to job advertisements.
In: IEEE/ACM 12th Working Conference on Mining Software Repositories (MSR),
pp. 362–366 (2015)

9. Huang, W., Mo, W., Shen, B., Yang, Y., Li, N.: CPDScorer: modeling and evaluat-
ing developer programming ability across software communities. In: International
Conference on Software Engineering and Knowledge Engineering (ICISDM) (2016)

10. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Shull, F., Singer, J.,
Sjøberg, D.I.K. (eds) Guide to Advanced Empirical Software Engineering. Springer,
London (2008). https://doi.org/10.1007/978-1-84800-044-5 3

11. Kourtzanidis, S., Chatzigeorgiou, A., Ampatzoglou, A.: RepoSkillMiner: identify-
ing software expertise from GitHub repositories using natural language processing.
In: 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 1353–1357 (2020)

12. Marlow, J., Dabbish, L.: Activity traces and signals in software developer recruit-
ment and hiring. In: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work, pp. 145–156 (2013)

13. Matturro, G.: Soft skills in software engineering: a study of its demand by software
companies in Uruguay. In: 6th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), pp. 1–10 (2013)

14. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identi-
fying expertise. In: Proceedings of the 24th International Conference on Software
Engineering (ICSE), pp. 503–512 (2002)

15. Montandon, J.E., Silva, L.L., Valente, M.T.: Identifying experts in software
libraries and frameworks among GitHub users. In: IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 276–287 (2019)

16. Mori, A., et al.: Evaluating domain-specific metric thresholds: an empirical study.
In: Proceedings of the 2018 International Conference on Technical Debt, pp. 41–50.
TechDebt 2018, Association for Computing Machinery, NY (2018)

17. Oliveira, J., Viggiato, M., Figueiredo, E.: How well do you know this library?
Mining experts from source code analysis. In: Proceedings of the XVIII Brazilian
Symposium on Software Quality, pp. 49–58. SBQS 2019, Association for Computing
Machinery, NY (2019)

18. Pfleeger, S.L., Kitchenham, B.A.: Principles of survey research: part 1: turning
lemons into lemonade. SIGSOFT Softw. Eng. Notes 26, 16–18 (2001)

19. Rosner, B., Glynn, R.J., Lee, M.L.: The Wilcoxon signed rank test for paired
comparisons of clustered data. Biometrics 62, 185–192 (2006)

https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_3

A Survey with Developers 171

20. Saxena, R., Pedanekar, N.: I know what you coded last summer: mining candidate
expertise from GitHub repositories. In: 17th Conference on Computer Supported
Cooperative Work and Social Computing (CSCW), pp. 299–302 (2017)

21. da Silva, J.R., Clua, E., Murta, L., Sarma, A.: Niche vs. breadth: calculating exper-
tise over time through a fine-grained analysis. In: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER) (2015)

22. Singer, L., Filho, F.F., Cleary, B., Treude, C., Storey, M.A., Schneider, K.: Mutual
assessment in the social programmer ecosystem: an empirical investigation of devel-
oper profile aggregators. In: 13th Conference on Computer Supported Cooperative
Work (CSCW), pp. 103–116 (2013)

23. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering
research: a critical review and guidelines. In: 38th International Conference on
Software Engineering (ICSE), pp. 120–131 (2016)

24. Tantisuwankul, J., et al.: A topological analysis of communication channels for
knowledge sharing in contemporary GitHub projects. J. Syst. Softw. 158, 110416
(2019)

25. Teyton, C., Palyart, M., Falleri, J.R., Morandat, F., Blanc, X.: Automatic extrac-
tion of developer expertise. In: 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE), pp. 1–10 (2014)

26. Vadlamani, S.L., Baysal, O.: Studying software developer expertise and contribu-
tions in stack overflow and GitHub. In: 36th International Conference on Software
Maintenance and Evolution (ICSME), pp. 312–323 (2020)

Industrial Experiences and Applications

Improving the Quality of ICT
and Forestry Service Processes

with Digital Service Management
Approach: A Case Study on Forestry

Liquids

Marko Jäntti1(B) and Markus Aho2

1 CEMIS, Kajaani University of Applied Sciences,
P.O. Box 52, Ketunpolku 1, 87101 Kajaani, Finland

marko.jantti@cemis.fi
2 Funlus Oy, Sepontie 15, 73300 Nilsia, Finland

markus.aho@funlus.fi

Abstract. Harvesting forests requires consumption of various types of
liquids: fuels, lubricating oil for harvester saw chains, marking colours
in liquid form, and urea-based fungicide. Forest machines consume large
amounts of these liquids that are ordered from several sources. Forest
machine operators have challenges in measuring the consumption of liq-
uids and receiving up-to-date information on liquid levels, especially in
remote storage areas. In this action research study, we focus on improv-
ing the quality of ICT and forestry service processes and monitoring
consumption of liquids through Internet of Things (IoT) sensors and a
mobile application. The research problem of this study is: how to improve
quality of ICT and forestry service processes with digital technologies?
The main contribution of this paper is to describe the development of an
IoT-based order system with an action research method and present chal-
lenges, activities and benefits of using IoT technology in quality improve-
ment of service processes.

Keywords: Service request management · ICT quality · Internet of
Things · Forest machine operator

1 Introduction

Companies that ignore the value of digital service management shall likely strug-
gle with keeping customers satisfied in the long run, suffer from poor productivity
in dealing with service requests and incidents from users, deliver products and

Supported by Development of AIKA Ecosystem in Kainuu project (Regional Coun-
cil of Kainuu, A78688) and DIH-World (co-funded by the Horizon 2020 Framework
Programme of the EU under grant agreement No 952176).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 175–189, 2022.
https://doi.org/10.1007/978-3-031-14179-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-14179-9_12

176 M. Jäntti and M. Aho

services tool later than their competitors losing competitive advantage little by
little, and may lose their key employees to other companies due to old fashioned
tools.

Although typical companies starting adopting digital service management
are ICT or technology companies, organizations from other business domains
such as forestry could also benefit from combining digital transformation and
service management approaches together.

Previous studies on service management improvement have mainly focused
on improving service management based on IT Infrastructure Library [5], explor-
ing challenges related to service desk operations [11], utilizing knowledge-centric
approaches in improving help desk processes [6], and impact of IT service man-
agement implementations [14]. There are only few studies that have focused
directly on service request management [12] and to our knowledge none of these
studies have dealt with a merger of digital service management and service
request management. Modern service request management should be data-based
and should utilize opportunities of data analytics [15].

Digital service management as a research field has evolved from various
service-related research areas such as services computing [22], service science,
service operation management and service process improvement. Service science
focuses on studying service systems, aiming to create a basis for systematic ser-
vice innovation [13].

Basically, service science aims at using scientifical knowledge and understand-
ing to design, improve, and scale service systems. It is important to understand
the varying scope of a service system, it is definitely not a single application,
tool or technology used by the organization. Rather, it is a model represent-
ing how all the components and activities of an organization work together to
facilitate value creation [1]. Spohrer et al. emphasize that a service system is the
basic abstraction of service Science [20]. In order to fully understand the concept
of service systems and its underlying behavioral elements, a service researcher
should exposure him/herself to different types and scopes of service systems
from different domains. The following examples of service systems have different
scopes, objectives, roles and operative models:

– A digital technology-enabled business service system (IoT-based order system
for a forest machine operator, IoT-enabled plantation monitoring system [21])

– A service organization (a company providing services to its customers, such
as IT services)

– A Service Management System based on a service management standard
(ISO/IEC 20000:1 [9] and ISO/IEC 20000:2 [10])

– An Enterprise Service Management system (set of tools, technologies and
data the organization is using to run daily service management and manage
records)

– A Service Management Office (organizational function, typically involved in
service management governance and making decisions on broader process
improvement such as Continual Service Improvement (CSI) [2] or maturity
improvement of service processes based on CMMI for services [19])

Improving the Quality of ICT and Forestry Service Processes 177

However, all of the above mentioned service systems could be found within a
single organization. This demonstrates the versatility, complexity and granular-
ity of service systems. In our study, we focus on the first service system on the
list: the digital technology-enabled business service system. Modern service sys-
tems are increasingly digital service systems that merge various digital technolo-
gies and tools, methodology frameworks, and process management approaches
together. In IT service management, IT Infrastructure Library (ITIL) has been
the most widely used service management process framework providing guidance
for implementing service operation processes including service request manage-
ment [3].

Latest editions of ITIL [1] highlight the role of digital services in service
management, but clear definition of digital service management is still missing.
Thus, we extend the service management definition of IT Infrastructure Library
to cover a clear digital dimension of service management. Thus, digital service
management can be defined as a set of specialized organizational capabilities
for enabling value for customers in form of services and operating with digital
mindset and modern digital technologies, tools, processes and practices. In this
paper, we focus on applying IoT technologies for monitoring tank levels. There
are only few academic studies that have dealt with the topic but in the different
context than forestry [17,23].

What does the digital dimension of service management mean in practice
in the context of order management? The traditional way of providing service
support is that a helpdesk answers phone calls and email messages from users
to solve their worries. In order to get rid off the unstructural data due to phone
calls and emails, companies started deploying ticket systems. When organiza-
tions evolved further, they started to change their business orientation from
delivering products and projects towards service delivery model. Service deliv-
ery model resulted a need for introducing entirely new processes for managing
service provision such as service request management, service level management
and service catalogue management. Shrestha et al. discuss in their paper [18]
how to select service management processes for improvement by using a system-
atic model. However, in many cases, the improvement of service management
starts from an identified business challenge that in our case was how to monitor
the consumption of forestry liquids.

The remainder of the paper is organized as follows. Section 2 describes the
research methods. Section 3 presents the results of the action research study
Sect. 4 provides an analysis, and conclusions are given in Sect. 5.

2 Research Methods

This study aimed at answering the following research problem: how to improve
quality of ICT and forestry business processes with digital technologies? In this
study, we used an action research method to answer the research problem with
a single case organization, Motoajo Oy, a forest machine operator from Finland.
The research problem was divided into following three research questions:

178 M. Jäntti and M. Aho

– What types of challenges exist in applying IoT technology to service request
management?

– What activities are specific to IoT-based digital transformation and ICT qual-
ity improvement?

– How new digital technologies and digital transformation help in creating busi-
ness value for a forest machine operator’s service management?

In our study, we focused on exploring a digital transformation initiative (dig-
ital experiment) in the context of forest machine operator company. In order to
guide digital transformation and information system development, we utilized
digital service management approach as well as information system research
framework (see Fig. 1).

Fig. 1. The context of the study.

The information system research framework was used to increase understand-
ing of the research target including high level description of people, organization,
technology applied during the digital experiment as well as theory foundations
such as theories, frameworks, artifacts, instruments, constructs models, method
and instantiations.

Improving the Quality of ICT and Forestry Service Processes 179

2.1 Target Organization

Our target organization Motoajo Oy (SME) is a family-owned professional
forestry contractor company with 70 employees. The company’s office is located
in Nurmes, Eastern Finland, where the company also mainly operates. While log-
ging and transporting roundwood and coppice, Motoajo always pays attention
to the nature and operates by all means to protect it. The company’s vehicles (45
forest machines) are modern and made according to current emission standards.
With harvesters the company follows the Measuring Instruments Act with ran-
dom sampling of tree trunks. All the vehicles are equipped with loader scales.
Motoajo’s aim is to work cost-effective and on schedule with professional staff
and modern vehicles also in challenging environments, not forgetting safety at
work. The company has several quality certificates (ISO9001 quality manage-
ment system, ISO14001 environmental management systems and OHSAS 18001
occupational health and safety management system) that guide managers and
employees in managing operations and the quality. The case organization was
selected because it was a representative case of an SME that aims at improve its
operations through digital transformation. This study was an exploratory case
study [16] documenting the first steps of a digital experiment funded by Horizon
2020 programme.

Receiving forestry liquids (fungicide, diesel exhaust fluid, fuel) in time to
right destinations is critical to the company’s harvesting business. Digital trans-
formation is needed to automate the process of monitoring inventory of liquids,
especially in remote storage areas. There are growing sustainability requirements
towards forestry actors due to EU forest policies.

2.2 Data Collection Methods

Data for this study was collected by using multiple sources of evidence from the
case organization during a 8-month data collection period: August 2021–March
2022. The data was captured by both authors that participated in implementing
the digital experiment and documenting the case study findings.

– Documentation: Experiment handbook, safety instruction document, quality
manual.

– Archival records: Internet of Things data records in the IoT dashboard.
– Interviews/discussions: discussions and interviews with CEO of Motoajo,

CEO of IoT provider, technical specialist of IoT provider, 2 work managers
of Motoajo, discussions with IoT sensor providers (Teams, phone calls).

– Participative observation: Experiment Handbook meetings, field visits to case
organization’s storage and remain mote storage areas.

– Physical artifacts: Fuel containers (metal), Fungicide containers (metal),
AdBlue and marking colour containers (plastic), IoT sensor modules, IBC
container cap, waste collection containers, printed QR codes. These artifacts
were studied while scoping the experiment and choosing the relevant moni-
toring target.

– Direct observations: Observations during the field visit to Motoajo’s logging
destination in the forest.

180 M. Jäntti and M. Aho

2.3 Data Analysis Methods

Data analysis of this study focused on analyzing the action research cycle from
the perspective of four research questions. The first research question focused on
the challenges and was analyzed by categorizing challenges by four viewpoints of
service management [1]: people and organizations, information technology and
data, processes and value streams, suppliers and partners.

3 Results

The results of this study are presented in this paper according to five steps
of the action research cycle: problem diagnosis, action planning, action taking,
evaluating action and specifying learning.

3.1 Diagnose Problem

Diagnosing the problem started by initiating discussions between researchers
and Motoajo’s employees. The first site visits were conducted to Motoajo’s main
storage area and one of the remote storage areas. The remote storage area was
unmanned with two large metal containers and several plastic IBC containers
filled with blue liquids. In the container, there was a QR code that we scanned
and received a link to a MS Forms form designed for entering information on
refilling liquid containers (container truck drivers) and information on retrieving
liquids (forest machine drivers) from a container. We observed that instructions
for both truck drivers and forest machine drivers could have been more clearer
and one could have provided an URL to the form next to the QR code in case
the employee who wants to enter information on refilling/retrieval of liquids does
not have a QR code scanner in his/her mobile phone.

As part of Problem Diagnosis stage an experiment kick off event (Novem-
ber 11th, 2021) was organized. Both researchers and representatives of Motoajo
participated in the event. The foreman and CEO explained the benefits of more
accurate monitoring capabilities for forestry liquids: “Information on liquid levels
helps in predicting when orders for more liquids need to be placed. For example,
regarding fungicide we can estimate when forest machine drivers retrieve liquids
from remote storages and we can also monitor total amount of consumption,
how much liquids were consumed this year versus last year. There may also be
liquids from three different organizations in the container”.

The following challenges were identified in service request management
related to forestry liquids:

– No sensors were used to monitor liquid levels. Monitoring consumption is
based on manual check through the surface glass where one can see the liquid
level of the container.

– The company does not have any digital means to receive information on the
contents of containers (especially in a situation where the consumption rate
is rapid).

Improving the Quality of ICT and Forestry Service Processes 181

– Major fuel companies in Finland have refused to transport fuel to remote
harvesting destinations without an official street address.

– Location data related to forest machines is changing and inaccurate in many
cases (due to different types of GPS systems) causing challenges for automat-
ing orders.

– Truck drivers do not enter systematically information on refilling of contain-
ers or retrieval of liquids from containers. This might be due to poor user
experience (inconsistency of questions) of MS Forms form that is currently
used for collecting data. Thus, the company does not have accurate informa-
tion on the liquid levels of containers and there may occur situations that
important forestry liquids are unavailable.

– The coverage of IoT data network in Nurmes was a question mark during the
experiment. Lack of 4G and 5G, even 3G coverage in some areas might cause
challenges for monitoring containers.

– There is lack of job introduction material for operating liquids safely.
– The company does not have a digital channel (such as mobile app) for ordering

and monitoring liquids.

Based on our site visits and discussions with Motoajo we observed that the
service process regarding refilling containers as well as retrieving liquids from
containers was in large extent manual, except the Forms form that was not used
in a systematic manner. The main challenge is that company does not have
accurate view on inventories of forestry liquids that forest machines consume.
This may result in a situation that forest machine drivers may not get mandatory
liquids. This in turn may further lead to expensive interruptions in production or
increased costs if liquids need to be purchased at rapid notice in small quantities
through alternative channels.

We also realized that automating fuel orders is more complicated than
expected. The orders cannot be fully automated in a way that a delivery truck
would deliver fuel directly to the forest. One of the main fuel companies in Fin-
land requires an official street address for deliveries and this information is not
always available because logging and harvesting destinations can be located in
very remote places. A phone call between a forest machine driver and a fuel
delivery truck driver seems to be necessary to provide information of exact fuel
delivery location. Because of high complexity of the fuel ordering process, we
decided to focus on the request process of other forestry liquids: marking dyes
(red and blue marking colour used to mark different types of roundwood), fungi-
cide (a chemical needed to prevent forest diseases during the summer season from
May to November, when the average temperature is over 0 Celsius) and Diesel
Exhaust Fluid (DEF) that is delivered to Motoajo in 600–1000 liter cubics or as
container deliveries. To the forest destinations, Diesel Exhaust Fluid, is delivered
in smaller amounts.

182 M. Jäntti and M. Aho

3.2 Action Planning

The Action Planning stage started by describing improvements to the liquids
ordering process. We decided that our proposed solution is an IoT-based moni-
toring system for liquid containers (Adblue, fungicide) located in remote storage
areas. The monitoring system would contain a mobile app that machine drivers
use when they pick up supplies and liquids from storage areas. The app would
provide ability (a simple dashboard) to monitor containers remotely showing the
level of liquids (with traffic light colour codes), how much liquid a specific driver
took from a container, a history data on the container and ability to trigger alert
to a work manager’s email address when 3/4 of liquids has been consumed.

Additionally, our solution would improve job introduction of new employees
from the viewpoint of dealing with forestry liquids (how to position a fuel con-
tainer safely in the forest, how to sort forestry waste in main storage area, where
is the engine oil, and what type of protection is required while dealing with the
fungicide).

Action planning stage involved many discussions with several providers of
tank level sensors and through these discussions we were able to learn the lim-
itations in IoT sensor systems as well as pricing models, issues related to data
processing and different options for implementing data network for IoT sensors.
In this stage, we had to finally reject the fuel monitoring scenario because of its
complexity and we decided to focus on monitoring containers in remote storage
areas (Diesel Exhaust Fluid, marking colour). Additionally, we had to make a
build or buy decision regarding IoT dashboard and we decided to purchase a
cost efficient service from a provider that was familiar to our development team.
Here the main challenge was to find a service provider with reasonable pricing
model. Some of the providers would have charged a basic fee 700–900 eur per
sensor module, 40–50 eur for dashboard per each container, 1000–2000 eur for
installation of sensors and integration fees for any integration work. There were
no existing well-defined integration APIs we could have tested before purchasing
IoT sensors.

3.3 Action Taking

The Action Taking stage started with writing trial handbook parts 1–2 (Nov
1–15, 2021) because it was a project deliverable that each experiment team
had to deliver as part of project results. Capturing user stories (Nov 19) was
carried out by using both agile methods and service blueprint approach of the
service automation framework (SAF). While developing the service blueprint, we
focused on an end-user perspective and analyzed how a container truck driver
and a forest machine driver would act when they approach the remote storage
area and how they enter the data related to refilling the container and retrieving
liquids from the container. As a result of this exercise, we observed that both of
these situations (refilling, retrieving liquids) are kind of service requests although
they look like informational events. Notifications related to retrieving liquids
can be seen requests for access to liquids and notification related to refilling

Improving the Quality of ICT and Forestry Service Processes 183

containers can be seen a part of a service request fulfillment (order fulfillment).
Additionally, this stage involved the following activities:

– Technical specification and purchasing IoT sensors (November 2021)
– Development of mobile app (sprints), IoT dashboard, configuring and coding
– Delivery of tank level sensors to Motoajo, 360 demo from a storage (Dec 22)
– UI design review (Jan 5, 2022)
– 360/Video shootings in arctic conditions −23 C (Jan 11, 2022) (challenges

due to cold weather)

In action taking, we experienced new types of challenges. When we delivered
the tank level sensors to Motoajo, we immediately observed that the IoT sensor
module was too large and could not be installed to the cap of the container due
to a tank refilling pistol (see Fig. 2):

Fig. 2. The IoT sensor module installed in the cap of the marking colour container.

Thus, Motoajo staff needed to make a new adapter in order to install the tank
level sensor to the marking colour container. Another challenge was to create a
data conversion for the IoT data. The default data that was received from the
IoT module (ultrasound sensor) showed the distance from the sensor to the
surface of the liquid in centimeters. However, this data was not very illustrative
for end user purposes and needed to be converted into different format, showing
the container level in percentages (100% meaning a full container). Additionally,
CEO of Motoajo commented that one container could involve liquids of three

184 M. Jäntti and M. Aho

different organizations: “The problem with fungicide is that some customers
want to pay for liquids as a service, but some companies bring their own liquids
to our containers as a refill. So liquids can be stored in the same tank. This is
one reason why we want remote monitoring.”

In order to create an invoice for one of those organizations based on real
consumption, Motoajo would have first to identify the service consumer and then
record the consumption of liquids in litres. In addition to IoT based monitoring
of liquids consumption, we also aimed at developing virtual job introduction
environment for increasing employees’ awareness of recycling such as reusable
oil and marking colour canisters.

3.4 Evaluating Action

In general, our digital transformation experiment was success. Motoajo can use
the knowledge (derived from data of tank level sensors) to make informed deci-
sions when to order more liquids and to ensure availability of liquids. Data-
oriented service processes help Motoajo to transition towards a learning organi-
zation [7] by converting the data and information to knowledge.

Motoajo has communicated to research team several further development
ideas both for IoT-based monitoring and virtual job introduction. These have
a lot of new business potential. Global component outage caused some minor
delays in obtaining sensors and also affected the decision which data network
solution we would apply. The estimated order time for GSM-based IoT modules
was 4–6 months when we started our experiment. LoraWAN modules in turn
were available in stock. However, there was a small delay caused by ordering of
adapters needed for installing sensor modules to the cap of the container. Addi-
tional delay (a week) was caused by installation challenges due to large size of
the tank level sensor module. During the evaluating stage, the war situation in
Ukraine affected the availability of forestry liquids, especially Adblue, because
Finland imports it mainly from Russia. Motoajo’s employee addressed the chal-
lenges: “At the moment, we can not get Adblue ordered in containers although
we shall pick up it from gas stations with smaller canisters (everything we can
get because they have set restrictions for buying Adblue)”.

A clear process description for ordering, monitoring, delivering and consum-
ing liquids would have helped the research team to better get familiar with
Motoajo’s service operation practices. However, data collection through discus-
sions and workshops was easy because Motoajo’s staff was very helpful and they
had assigned right persons to the digital transformation experiment.

From a technological perspective, LoraWAN public mode seems to be a rea-
sonable option for implementing data network for IoT solutions in Finland. We
would have needed more information and hands on experiences on implement-
ing IoT solutions with other data network options (GSM, Zigbee, NB-IoT).

Improving the Quality of ICT and Forestry Service Processes 185

In Finland, there is only one major LoraWAN network provider that also pro-
vides IoT devices such as sensors and gateways as well as IoT consultancy ser-
vices (with the help of partner network). Regarding virtual job introduction envi-
ronment, one of the potential future improvement directions might be adding
some type of gamification [4] to the process. This virtual job introduction envi-
ronment could also include a question and answer system for knowledge sharing
[8] among Motoajo’s employees.

From a financial perspective, IoT based monitoring also seems profitable with
the technological components, services and data transmission models we selected
for the experiment. The solution shall result in cost savings in labor costs and
fuel costs while traveling to remote storage areas shall be minimized.

4 Analysis

Table 1 shows the analysis of action research results related to the three research
questions of the study. Data source has been described by using abbreviations:
IN= Interviews of Motoajo employees DI = Discussions, DO = Documentation,
PO = Partic. observation, DOB = Direct observation, PA= Physical artifactsts.

One of the most important challenges we observed during the study was that
Motoajo did not get reliable and timely data on inventory of liquids. Main rea-
sons for this seemed to be inconsistent data logging during refilling containers
(truck drivers) and retrieving liquids (forest machine providers). Invoicing data
showed actual ordered amounts but was not useful for proactive order manage-
ment.

We also recorded activities that were specific to IoT-based digital transforma-
tion of service processes and ICT quality improvement. These included making a
decision on data network solution GSM, LoraWAN, Zigbee, other) in early phase
of the project, defining the data storage and data sharing points (JSON) between
IoT sensor provider and other developers as well as performing data conversion
for data received from IoT sensors because original data values showed distance
between sensor and surface of liquids. This data needed to be transformed into
user friendly format to show the liquid level of the container in percents.

Additionally we analyzed how digital technologies such as IoT and digital
transformation help in creating business value for a forest machine operator’s
service management. Remote checking and alerting were mentioned multiple
times as benefits by case organization’s representatives. They also used terms
‘proactive’ and ‘predictive’ to describe the future state of order management.
Identifying consumption trends was mentioned as one of the future benefits
when more data has been collected.

186 M. Jäntti and M. Aho

Table 1. Key findings from the action research study

Research question Findings (source)

RQ1 challenges Lack of API for testing IoT DO

Data on refilling not systematically entered IN

Calibration of sensors data DOB

Data conversion needed for IoT data AR, DO

Unreliable or missing data on liquids consumption PO

Sensor installation challenges PO

Data on machine locations is not always accurate DI

Lack of alerts DI, IN

Protecting sensors from movements IN

Identifying a cost-effective sensor provider DI, IN

Selecting a data network solution DI, PO

Poor availability of DEF (Adblue) due to a war DI

A container may involve liquids of several orgs DI

External order for liquids is not automated IN

IoT monitoring target is changing PO

Unclear development boundaries PO

Awareness of recycling liquids canisters DI

Manual checks require traveling to storage areas IN

RQ2 IoT activities Select the IoT sensor type DI

Make a decision on data network solution DI, DO

Data conversion needed for IoT data AR, DO

Define the data storage for IoT stream DI

Install IoT module to the container AR, PO

Calibration of sensors DOB

RQ3 value Foremen can check liquid levels remotely IN, DI

Enables setting alerts on critical levels DI

Proactive way to ensure availability of liquids DI

Provides data on consumption trends DI

May reveal unauthorized acces DI

Easy access to container data by QR AR, PO

IoT data enables automated charging for liquids IN

5 Conclusions

This study aimed at answering the research problem: how to improve quality of
ICT and forestry service processes with digital technologies? As main contribu-
tion of this paper, we described the development of an IoT-based order system for
forestry liquids by using an action research method. The action research method

Improving the Quality of ICT and Forestry Service Processes 187

suited very well to this study because it focuses on capturing the details of a
change situation. In our case, the context was a digital transformation project
co-implemented by a Finnish SME and Digital Innovation Hub.

Regarding the first research question, our findings showed that merging IoT
and service request management is not a simple task. During our experiment,
we identified several challenges such as unreliable data, lack of clear APIs for
testing, unavailability of certain IoT components due to global component out-
age and mechanical sensor installation problems. Additionally, difficulties were
caused by changing monitoring target and complex decision making on IoT data
network selection. Field visits to remote storage areas revealed valuable infor-
mation on the scope and limitations of IoT system boundaries. Concerning the
second research question, we highlighted activities that were specific to IoT-based
digital transformation such as selecting right sensor and data network solution,
performing data conversion, defining data storage mechanism for IoT data as
well as installing the sensor modules. All of these require work efforts. Finally,
related to the third research question, we studied benefits of integrating new
technologies to the service process. Using IoT helped Motoajo to achieve a bet-
ter situational overview of forestry liquids inventories and to have a proactive
approach on ordering liquids decreasing stress and extra efforts due to unex-
pected unavailability of liquids.

The following limitations are related to this study: First, our study included
only one action research cycle. Documenting and analyzing multiple research
cycles could have provided a richer view on the change situation of the SME.
However, providing a detailed description of multiple cycles was not possible due
to page limitations of conference papers. Second, the study was performed dur-
ing a relatively short period of time between from August 2021 to March 2022.
Broadening the time line could have provided fruitful information on the back-
ground of our experiment. However, we decided to focus solely on the time period
when the digital transformation project was implemented in order to have clear
scope and boundaries of the study. Third, the study included the research effort
of two researchers. Involving a larger research team to participate in exploring
the business operations of Motoajo could have given a deeper analysis on chal-
lenges that Motoajo is aiming at resolving by investing in digital transformation.
However, we had a limited number of researchers available in this study.

Further research on digital transformation and ICT quality could focus on
delivering more information on technology choices, limitations and drawbacks
of Internet of Things projects especially those that focus on automating order
management processes.

References

1. Axelos: ITIL Foundation - ITIL 4 Edition. Stationary Office Books, UK (2019)
2. Cabinet Office: ITIL Continual Service Improvement. The Stationary Office, UK

(2011)
3. Cabinet Office: ITIL Service Operation. The Stationary Office, UK (2011)

188 M. Jäntti and M. Aho

4. da Conceicao, F.S., da Silva, A.P., de Oliveira Filho, A.Q., Silva Filho, R.C.:
Toward a gamification model to improve IT service management quality on ser-
vice desk. In: 2014 9th International Conference on the Quality of Information and
Communications Technology, pp. 255–260 (2014)

5. Duffy, K., Denison, B.: Using ITIL to improve IT services. In: AMCIS08: Pro-
ceedings of the Fourteenth American Conference on Information Systems 2008.
Association for Information Systems, Toronto (2008)

6. Halverson, C.A., Erickson, T., Ackerman, M.S.: Behind the help desk: evolution
of a knowledge management system in a large organization. In: Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, pp. 304–313.
CSCW 2004, ACM, NY (2004)

7. Henninger, S.: Using software process to support learning software organizations.
In: 1st International Workshop on Learning Software Organizations. Kaiserslautern
(1999)

8. Iske, P., Boersma, W.: Connected brains: question and answer systems for knowl-
edge sharing: concepts, implementation and return on investment. J. Knowl.
Manag. 9(1), 126–145 (2005). https://doi.org/10.1108/13673270510583018

9. ISO/IEC 20000-1:2018: Information technology - Service management - Part 1: Ser-
vice management system requirements. ISO/IEC JTC1/SC40 Secretariat (2018)

10. ISO/IEC 20000:2: Part 2: Guidance on the application of service management
systems. ISO/IEC JTC 1 Secretariat (2019)

11. Jäntti, M.: Examining challenges in it service desk system and processes: a case
study. In: Proceedings of the 7th International Conference on Systems 2012, pp.
105–108. CPS Publishing (2012)

12. Ludwig, H., et al.: Catalog-based service request management. IBM Syst. J. 46(3),
1–18 (2007)

13. Maglio, P., Spohrer, J.: Fundamentals of service science. J. Acad. Mark. Sci. 36,
18–20 (2007)

14. Marrone, M., Kolbe, L.: Impact of IT service management frameworks on the IT
organization: an empirical study on benefits, challenges, and processes. Bus. Inf.
Syst. Eng. J. 3(1), 5–18 (2011)

15. Roedder, N., Dauer, D., Laubis, K., Karaenke, P., Weinhardt, C.: The digital
transformation and smart data analytics: an overview of enabling developments
and application areas. In: 2016 IEEE International Conference on Big Data (Big
Data), pp. 2795–2802 (2016)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

17. Shah, P., Patil, A., Ingleshwar, S.: IoT based smart water tank with android appli-
cation. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Ana-
lytics and Cloud) (I-SMAC), pp. 600–603 (2017)

18. Shrestha, A., Cater-Steel, A., Tan, W.G., Toleman, M.: A model to select processes
for IT service management improvement. In: Proceedings of the 23rd Australasian
Conference on Information Systems. Deakin University (2012)

19. Software Engineering Institute: Capability Maturity Model Integration for Services
v1.3. Carnegie Mellon University (2010)

20. Spohrer, J., Vargo, S., Caswell, N., Maglio, P.: The service system is the basic
abstraction of service science. In: Proceedings of the 41st Annual Hawaii Interna-
tional Conference on System Sciences (HICSS 2008). IEEE Press, NY (2008)

21. Wang, Y., Song, J., Liu, X., Jiang, S., Liu, Y.: Plantation monitoring system based
on internet of things. In: 2013 IEEE International Conference on Green Computing

https://doi.org/10.1108/13673270510583018

Improving the Quality of ICT and Forestry Service Processes 189

and Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, pp. 366–369 (2013)

22. Zhang, L.J., Zhang, J., Cai, H.: Services Computing. Tsinghua University Press,
Beijing. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-38284-3

23. Zhou, C., Jiang, P.: A design of high-level water tank monitoring system based on
internet of things. In: 2020 7th International Forum on Electrical Engineering and
Automation (IFEEA), pp. 769–774 (2020)

https://doi.org/10.1007/978-3-540-38284-3

Towards a Process Reference Model for Clinical
Coding

Ismael Caballero1(B) , Júlio Souza2,3 , Fernando Lopes2,3 ,
João Vasco Santos2,3,4 , and Alberto Freitas2,3

1 Institute of Technology and Information Systems (ITSI), University of Castilla-La Mancha
(UCLM), Ciudad Real, Spain

Ismael.Caballero@uclm.es
2 Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine,

University of Porto, Porto, Portugal
3 Department of Community Medicine, Information and Health Decision Sciences

(MEDCIDS), Faculty of Medicine, University of Porto, Porto, Portugal
4 Public Health Unit, ACES Grande Porto VIII–Espinho/Gaia, Espinho, Portugal

Abstract. Coding of medical data is a very important previous step for many
activities in Health Care management, since it is the basis for several activities
ranging from hospital reimbursement to clinical research. Literature identifies
some issues related to coding clinical data, which derives in inadequate levels
of quality leading to some in acceptable situations in health care organizations,
impacting even to their sustainability. To alleviate these undesirable effects, we
posse that the standardization of some best practices around clinical coding can
lead to a better performance of the clinical coding process. One of themost relevant
concerns in the process is the quality of the data used at the various stages of the
data life cycle from its generation by clinicians up to the usage and exploitation
of the data once coded. The main contribution of this work is twofold: on a hand
to identify which are the best practices related to clinical coding, and on the other
hand to investigate how these best practices can be enriched with some other
related to data quality management and data governance. As a result, we produced
CODE.CLINIC, a framework that can be used to support institutions to better code
their medical data. This framework consists of two main components: a Process
Reference Model (PRM) and a Process Assessment Model (PAM). In this paper
we are going to first introduce the CODE.CLINIC PRM, which gather 16 process
grouped in 4 blocks.

Keywords: Coding of medical data process · Data quality management ·
CODE.CLINIC

1 Introduction

Most of the actions happening in health care institutions are based and largely depends
on data. While data regarding patients are typically stored in their corresponding health
records [1], it is also necessary to gather how the medical attendance processes have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 190–204, 2022.
https://doi.org/10.1007/978-3-031-14179-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_13&domain=pdf
http://orcid.org/0000-0002-5189-1427
http://orcid.org/0000-0002-8576-1903
http://orcid.org/0000-0002-2278-2264
http://orcid.org/0000-0003-4696-1002
http://orcid.org/0000-0003-2113-9653
https://doi.org/10.1007/978-3-031-14179-9_13

Towards a Process Reference Model for Clinical Coding 191

been conducted: which the diagnostics tests were driven, which diseaseswere diagnosed,
which treatments were applied and where the patients went once treated. In this sense,
relevant diagnoses and treatment procedures should be abstracted and conveniently cate-
gorized for ulterior inspections about the performance of the health institution. Examples
of these inspection include calculations to reimbursement to health institutions, medical
research, epidemiological surveillance, or the calculation of numerous quality indicators,
performance monitoring, hospital output, and benchmarking among other purposes [2].
In different countries, specific ways to gather and store all this data once categorized are
proposed. For instance, in Portugal, the Hospital Morbidity Database (HMD) maintains
a wide range of information on inpatient and outpatient episodes occurring in National
Health System (NHS) health institutions, a type of diagnosis-related groups (DRGs) [3].

This comprehensive set of clinical data, the HMD, results from a series of routine
processes in hospitals, typically embracing the clinical coding process [4]. These routines
begin by documenting all clinical information and services provided to patients through
data collection instruments, either in paper or digital format; after patient discharge,
this set of information is then accessed by coding physicians, who must translate and
classify the diagnoses and procedures according to any of the varieties of the WHO’s
International Classification of Disease, 10th Revision (ICD-10) codes manually or being
supported for automatic classification systems [4, 5]. For instance, in Portugal – the first
European country implementing a DRG-based hospital systems in 1989 – the current
version used is ICD-10 Clinical Modification (ICD-10-CM/PCS) [6].

Given the importance of this information for the wide range of purposes previously
pointed, it is then essential to ensure that the clinical data coded in the different hospitals
are of high quality and have accurate, reliable, and fully reported procedure and diagnosis
codes to support the reuse of these data at different levels.

In this sense, the literature points to the existence of several quality problems in coded
clinical data [7], and many of these stems from barriers that exist in the clinical coding
processes themselves in general terms [8], or more specifically in Portugal to some
barriers as [9] identified. Differences in coding of diseases and procedures between
coding physicians and hospitals, interpretation of guidelines and instruments used, as
well as gaps in clinical documentation, delays and lack of health record standards are
some of the several problems already mentioned [10].

In this investigation, the researcher team posed that to mitigate or at least to alleviate
these problems, it was possible to gather, and group set of best practices (also known
as process) that can be used to ensure homogeneous behavior during the clinical coding
process and during the use of the resulting data either internally in every health institution
or externally when this health institution needs to exchange data with third parties like
national governments. This set of best practices should cover aspects of the clinical
coding process as well as some other aspects of data quality management and data
governance.

In this sense, the research team relied on the idea of the process-based approach set
forth in international standards such as ISO/IEC 8000-61 [11] for data quality manage-
ment or ISO 12207 [12] for the case of software process to develop a framework called
CODE.CLINIC to better support the clinical coding. Thus, the idea of CODE.CLINIC
is to serve as reference that every health institution can use to customize their own set of

192 I. Caballero et al.

clinical coding practices according to their own restrictions, possibilities, and demands.
CODE.CLINIC consists of two main components:

• A Process Reference Model (PRM), containing four groups of processes addressing
specific aspects of the clinical coding activities considering the various stages of the
clinical coded data lifecycle. This PRM also meets the data governance, data man-
agement and data quality management process requirements included in the Alarcos’
Model for Data Improvement (MAMDv3.0) [13], an ISO 8000-61-framework com-
pliant. In Sect. 3, explanations about the construction of the PRM has been provided.
In addition, this PRM can be also used as a body of knowledge for the various pro-
cesses of the clinical coding, for instance, to identify relevant stakeholders, specific
information systems to better support the processes, or even recommended key pro-
cess indicators to monitor the institutionalization of the PRM processes. The current
version of CODE.CLINIC PRM is the main contribution of this paper.

• A Process Assessment Model (PAM), containing the elements required for organi-
zations to assess and improve their clinical coding activities according to the provided
PRM. This PAM will be built by meeting the requirements of ISO/IEC 33003 [14]
along with some other parts of ISO/IEC 33000 series. One of the most important
components of the PAM is a Maturity Model, in which the processes of the PRM
are ordered in an increasing level of difficulty according to the capabilities of the
health institution. The CODE.CLINIC Maturity Model has been developed meeting
the requirements of ISO/IEC 33004 [15], and it is compliant with MAMD-Maturity
Model based on ISO 8000-62 [16]. However, the description of CODE.CLINIC PAM
and the corresponding Maturity Model is outside of the scope of this paper.

The paper is structured as follows. Section 2 described the state of the art of the
best practices in clinical coding processes. Section 3 summarizes the research method
that we have used to produce the framework. Section 4 introduce the Process Reference
Model (PRM) of the CODE.CLINIC process, describing the structure of the four groups
of processes along the structure of every process. Finally, Sect. 5 introduces discussion,
some conclusions, and future works.

2 State of the Art and Related Works

2.1 Existing Works on Clinical Coding

Alonso et al. in [10] identified several problems during the process of the clinical coding
in Portugal through the conclusion raised after a the conduction of a focus group like: (1)
Variability in clinical coding – (1a) coding process-electronic vs paper, (2) Difficulties
in the clinical coding process: (2a) Difficulties in assigning diagnoses code, (2b) Coding
process by clinical specialty; (3) Coding delay; (4) Hospital resources made available to
coding activities; (5) Clinical coding audits. They also identified two important barriers:
(1) limited understanding of medical terminology by coders, and (2) coder experience
or problems in health records. All these problems and barriers were grouped in four
main categories: (1) the standardization of the documents used for coding an episode,

Towards a Process Reference Model for Clinical Coding 193

(2), the adoption of the electronic coding, (3), the development of tools to help coding
and audits, and (4) the recognition of the importance of coding by the management.

As of 2014, the CHKS produced the report “The quality of clinical coding in the UK’s
NHS” [17]. In this report, the following areas are identified for a senior management to
support with the aim of assuring the adequate levels of quality for the patient care data:
(1) source of documentation, (2) discharge summaries, (3) deadline and completeness
for the clinical coding, (4) clinical engagement, (5) audit and analysis, (6) staffing, (7)
training and guidance, (8) IT systems, (9) assessment units, and (10) broader users.

The Australian CCSA produced in 2019 the “Clinical Coding Practice Framework”
[18], whose main aim is “to provide guidance in defining and promoting good practices
for those involved in the clinical coding process (e.g. clinical coders, clinical documen-
tation improvement specialist, clinical coding auditors, health information managers
and managers (at all levels) of the coding process)”. The framework engaged all those
involved in the clinical coding process to: (1) gain access to all relevant and pertinent
clinical information, (2) ensure the assignment and diagnoses and intervention codes
include all the necessary information, (3) apply conveniently the classification conven-
tions stated in the official recommendation of the Australian National Health Services,
(4) actively participate in the interdisciplinary meeting for the purpose of clarification
of diagnosis and intervention, and (5) improve the clinical understanding of the roles
of those involved in the clinical coding process. In addition, the framework establishes
that involved in the clinical coding process must not: (1) assign diagnoses or interven-
tion codes without the adequate supporting information, (2) deliberately committing
errors in code assignment to minimize financial losses, (3) deliberately manipulating
the interdisciplinary engagement inappropriately to maximize financial benefits for the
health institution, (4) omit information about an episode of care to prevent the accurately
reporting, and (5) submit to pressure from other or to others to misrepresent the patient’s
episode of care or prevents adherence to the stated classification conventions.

Reid et al. in [19] and in [20] they presented some insights obtained by using four
research methods (literature review, workshop, assessment of coding services, and med-
ical record audit) from the state of clinical coding services in the Republic of Ireland as
of 2017 studied during one year. The reports raised relevant results and recommended
some best practices in several concerns: (1) quality of medical records, (2) coding work
allocation and supervision processes, (3) data quality control measures, (4) communica-
tion with clinicians, and (5) visibility of clinical coders, their managers, and the coding
services. They find that the best managed coding services had the following characteris-
tics: (1) they did larger use of the available checking resources, (2) the medical records
were more electronic, and (3) there were much higher levels of direct clinical coders
contact with clinicians.

As consequence, it can be said that the coded clinical data often lacks quality enough
to successfully be used in the management or research activities.

2.2 Alarcos’ Model for Data Improvement (MAMDv3.0)

The Alarcos’ Model for Data Improvement (MAMDv3.0) [13] is a framework to assess
and improve the maturity of the organization’s processes related to data management,

194 I. Caballero et al.

governance and quality. MAMDv3.0, which is publicly accessible1, is aligned to several
international open standards such as ISO/IEC 8000-61 [11], ISO/IEC 8000-62 [16], ISO
38505-1 [21], ISO 38505-2 [22], and it also gather some best practices from standards
like COBIT 2019 [23] or DAMA’s DMBOK 2 [24].

It consists of two main components:

• A Process Reference Model (PRM) consisting of twenty processes grouped in three
categories: Data Management (DM), Data Quality Management (DQM) and Data
Governance (DG).

• A Process Assessment Model (PAM), with indications to assess and improve the
maturity of an organization regarding the capability of the organization of their DM,
DQMandDG processes. One of themost important elements of the PAM is amaturity
model which can be used for the both the certification of the maturity model and to
outline roadmaps for the improvements.

These components can be used within any type or organization to enrich the design
and execution of the business processes with DM, DQM and DG concerns to make them
more efficient and effective. In addition, it is important to state that organizations can
certify with external thirds their maturity regarding to these disciplines.

3 Research Method

To produce the CODE.CLINIC framework, we are following the Action Research (AR)
Method [25] because it is necessary to “focus on social systems and put knowledge into
action as soon as possible”. AR is a collaborative research form that seeks to unite theory
and practice between researchers and practitioners through a process that is cyclical in
nature, producing new knowledge that is useful in practice. AR has been successfully
used in Information Systems [26] and Software Engineering [27], and given the very
nature of the medical domain of our research we feel it can be successfully used given
the strong component about the “social” fact.

In this case, the research goal is the “design and testing of clinical coding frame-
work”. To achieve our goal, three AR cycles has been planned. For each AR cycle we
identified different critical reference groups, but we maintained as potential beneficia-
ries, any Portuguese health institution (mainly hospitals) that wants to customize and
institutionalize their own clinical coding process.

• An Initial AR Definition Cycle, where the main goal is to build a first version of
CODE.CLINIC PRM. In this initial cycle, we explored the corresponding literature
and existing documentation to identify the common problems in the coding clinical
process; once identified the problems, we proposed an initial version of the processes
in the PRM grouped in four groups (see Sect. 4) with the idea of tackling the specific
problems, along with common ways to address data quality problems by means of
the alignment of the alignment of the proposed processes with MAMDv3.0. This

1 MAMDv3.0 can be downloaded for free from https://mamd.dqteam.es.

https://mamd.dqteam.es

Towards a Process Reference Model for Clinical Coding 195

first version was validated with the Portuguese Associação dos Médicos Auditores e
Codificadores Clínicos (AMACC)2, who acted as critical reference group. Through
four cycles of meetings with the underlying refinements, we produce the first version
of the PRM, which is introduced in this paper.

• A Second AR Acceptance Cycle, where the main goal is to present the whole frame-
work to several preidentified stakeholderswith different responsibilities for the clinical
coding process in various Portuguese health institutions (mainly hospitals), to identify
its weaknesses and strengths from various points of view. This is to be done by means
of surveys and personal interviews. With the obtained feedback, we will produce a
more refined PRM, and a refined version of the PAM.

• The Third AR Validation Cycle, where the final version of CODE.CLINIC will be
applied to a reference hospital following the case study research methodology.

4 The CODE.CLINIC Process Reference Model

In this section the PRM is to be introduced. The main purpose of the PRM is to identify
the processes that can be used to describe and characterize the entire lifecycle and formal
pathways of coded data in health institution to identify differences and constraints to
achieve higher data quality under the perspective of the various stakeholders, ranging
from medical coders to clinical coding office managers. This set of processes can be
used as body of knowledge to address the required specific practices during the clini-
cal coding. In this sense, every process can be seen as a box where every stakeholder
can find the required knowledge (including the common activities and work products,
like communication schemas or underlying key process indicators) for the clinical cod-
ing activities. In addition, this knowledge can be reviewed over the time to enrich by
including new activities and/or work products. This knowledge can be used to outline
the clinical coding activities when designed from scratch or to review or enrich existing
ones by identifying potential root causes for existing problems.

The structure of the organization of the sixteen processes included in the PRM
is adapted from the concept of Primary, Support and Organizational process in
ISO/IEC/IEEE 12207:2017 [12]. This enables a better understanding of the purpose
of every process, and it can be also used to better determine the contribution of every
process to the general goal of the clinical code. As a result, we identified the follow-
ing groups of processes: (1) Strategic Processes (G Processes), (2) Main Processes (M
Processes), (3) Support Processes (S Processes), and (4) Other Processes (O Processes).
See Sects. 4.1–4.4 for a larger description of this groups of processes.

As said, the definition of the PRM has been aligned to MAMDv3.0. Due to this
reason, and for the sake of interoperability with MAMD, and other process-approaches
based on ISO standards, the process description of every process in the CODE.CLINIC-
PRMhas been done according to ISO/IEC/TR24774 [28], and it consists of the following
elements:

• Title, which is a descriptive heading for the process at task.

2 https://amacc.med.up.pt.

https://amacc.med.up.pt

196 I. Caballero et al.

• Purpose, which describes the main goal of the health institution when executing the
corresponding process.

• Outcomes, which represent the observable results expected from the successful
execution of the process.

• Activities, which is a list of actions (best practices) that can achieve the outcomes.

It is worthy to state that, due to length paper restrictions, unfortunately we will not
include the full description (e.g., the full description of the four previous elements for
every process). However, we will show the title and purpose of everyone, and we will
offer some outcomes and activities for some relevant processes.

In the following subsections we identify the types of process, we listed the title and
purpose of every process providing some examples of outcomes and activities.

4.1 The Strategic Process Group

This group of processes (see Error! Reference source not found.) address the concerns
related to the governance of the clinical coding activities, namely, those related to the
creation of internal standards, identification of best practices, norms, guidelines, and
policies to rule all details –including data quality concerns from the organizational point
of view– regarding the various stages of all data considered for clinical coding. It is also
worthy to note the special focus on the organizational structure and human resource parts.
It should be addressed not only who should oversee the various activities, but also how
the communication should be established. To better support the clinical coding activities,
specific competences, and hard and soft skills are required, and health institutions must
provide training plan to their workers to achieve such competences and skills for the
sake of the sustainability of the organization.

Just an example, we introduce the outcomes we identified for G.01:

• Updated list of best practices in clinical coding.
• Updated list of clinical coding data guidelines.
• Updated list of clinical coding data policies.
• Resources to propagate the best practices, norms, policies, and guidelines.

To achieve and manage the previous outcomes for the processes G.01, we identified
the following activities:

• AG01.1. To select and define the best coding practices for different medical areas.
• AG01.2. To assign episodes to medical coders according to pre-defined rules.
• AG01.3. To list and define and develop the corresponding controls to the most impor-
tant norms and regulations regarding data protection/security, quality, and access/use,
to comply with the General Data Protection Regulation (EU GDPR).

• AG01.4. To define norms regarding standard reference books, supporting instruments
and clinical coding guidelines.

• AG01.5. To define and harmonize patient documentation sources to be considered for
clinical coding.

Towards a Process Reference Model for Clinical Coding 197

• AG01.6. To ensure continuous awareness, training, and preparation on clinical
terminologies and DRG grouper updates.

• AG01.7. To define norms and standards regarding software and hardware resources
to be used within the clinical coded data lifecycle (Table 1).

Table 1. The strategic processes.

Process title Purpose

G.01. Creation or Selection, implementation,
and maintenance of standards, best practices,
norms, guidelines, and policies

The main goal of this process is to set up the
management environment required to execute
the coding clinical activities according to the
capabilities of the health institutions and
following the criteria and recommendations
provided by the authorized organizations at a
national level

G.02. Development and maintenance of
controls to meet policies

The main aim of this process is to develop and
maintain the corresponding controls to check if
the proposed policies are being met during the
execution of the coding clinical activities

G.03. Organizational Structure Management This process is aimed to establish and maintain
a supportive organization for the coding
clinical data processes, identifying roles and
responsibilities and to also define the
competences and skills that are required for
every responsibility. In addition,
communication means, and protocols are also
observed in this process

G.04. Stakeholders’ skills and competences
management

The process is aimed at maintaining a
catalogue of the training required for assuring
different stakeholders can achieve the
associated competences and skills required to
play their roles

4.2 The Main Process Group

This group of seven processes is aimed at covering all the concerns related to the proper
clinical coding itself describing the various activities related to the coded data lifecycle,
from data acquisition (e.g., health records) to the use and exploitation of the coded data
for health institution management or for medical and epidemiologic research. See Table
2 for the purpose of every Main process.

Following the same structure of the previous subsection, the outcomes for two rel-
evant processes are introduced as example. In this sense, the following outcomes for
process M.01 are introduced:

198 I. Caballero et al.

• Identification and access to all required patient documentation.
• Reports on the levels of quality of the acquired patient documentation.

And the corresponding activities for this process M.01 are the following one:

• AM01.1. To list and identify all patient documentation sources to be used for clinical
coding.

• AM01.2. To access patient documentation sources for clinical coding.
• AM01.3. To ensure that all medical coders have access to all patient documentation
sources for clinical coding.

Table 2. The main processes group

Process title Purpose

M.01. Data acquisition This process is aimed at selecting and
acquiring the required data from the typical
data sources (e.g., health records both
paper-based and electronically)

M.02. Data Integration (internal) In this process, the integration coming from
the various data sources should be achieved to
create a solid basis for the clinical coding
process

M.03. Data Coding This process is aimed at properly coding the
data

M.04. Submission of clinically coded data to
the national repository

This process covers the exportation of the
results of the codification of the data
corresponding to the episodes towards the
considered destinations

M.05. Incorporation of Coded Data to
APR-DRG (DRG grouper software)

The purpose of this process is to incorporate
the coded data into the APR-DRG

M.06. Data exploitation for hospital
management, financing (billing), and public
health

The objective of this process is to support all
the necessary operations for hospital
management, billing, and public health

M.07. Data exploitation for clinical and
epidemiologic research

The main purpose of this process is to
produce research reports on clinical aspects

The main intention of CODE.CLINIC is to be a generic framework valid for any
country, for any health institution, and for any technology. CODE.CLINIC should be
customized for any context. In this sense, as an example, the activities of process M.04
can be customized for Portugal as follows:

• AM04.1. To submit coded data to SIMH.
• AM04.2. To retrieve coded data from SIMH to perform corrections.

Towards a Process Reference Model for Clinical Coding 199

Being SIMH the Sistema de Informação de para a Morbilidade Hospitalar3, whose
main goal is to gather, edit and group in Homogeneous Diagnoses Groups the patient
episodes.

4.3 The Support Process Group

In this group of four processes, the specifics of quality management of the data used as
input (patient documentation) and output (coded data) of the coding clinical is covered.
In addition, the concerns related to technological infrastructure management along with
the maintenance of the reference data standards are also covered. See Table 3 to see the
process title and purpose.

Table 3. The support processes group

Process title Purpose

S.01. Data quality management of patient
documentation

The main aim of this process is to evaluate and
improve the level of the quality of the health
record documents

S.02. Data quality management of coded
data

Once produced the data, the main aim of this
process is to evaluate and improve the quality of
the resulting clinical coded data

S.03. Reference data management This process is aimed at maintaining the various
reference data involved in the codification of the
clinical data (e.g., ICD-10-CM)

S.04. Technological infrastructure
management

This process is aimed at establishing the required
technology to support the flow of information
through all the main processes, as well as to
interact with some other agents (e.g., some other
hospitals, some other regulatory organizations)

For illustrative purpose, and due to its importance, we proposed the following
activities for the S.01 processes:

• AS01.1. Identify the most relevant data quality characteristics/dimensions for health
records.

• AS01.2. Definemeasurement methods to assess the levels of quality of health records.
• AS01.3. Analyze the root causes of inadequate levels of quality.
• AS01.4. To perform internal auditing of health records.
• AS01.5. Analyze the root causes of inadequate levels of quality.
• AS01.6. Improve the levels of quality of health records.
• AS01.7. Generate data quality management reports for health records, with learned
lessons.

3 https://www.spms.min-saude.pt/2021/03/simh/.

https://www.spms.min-saude.pt/2021/03/simh/

200 I. Caballero et al.

And forS.02.Data qualitymanagement of codeddata process, the following activities
were proposed:

• AS02.1. To perform internal auditing of coded data according to established norms.
• AS02.2. To retrieve episodes with coding issues from SIMH.
• AS02.3. To correct (recode) and resubmit the episodes to SIMH.
• AS02.4. To define standard auditing controls.

Once again, let us recall that the framework should be customized for the specific
reality of the county in which they will be applied. In this sense, the outcomes of the
M.06. Data exploitation for hospital management, financing (billing), and public health
would be customized for Portugal, by including the following outcome:

• ACSS benchmarking tool4.

4.4 The Other Process Group

Finally, in the other processes group, consists of the process shown in Table 4.

Table 4. The other group processes group

Process title Purpose

O1. Health care taking process This process is aimed at diagnosing diseases and providing
the corresponding treatment these diseases. This process
should produce and store the corresponding the necessary data
to describe the most relevant details

To illustrate this process, the following activities have been proposed:

• AO01.1. To report accurate and complete information in the admission note (e.g.,
symptoms, comorbidities), following the patient’s admission.

• AO01.2. To report accurate and complete information in the discharge notes (e.g.,
patient’s diagnoses, treatment, and disease progression), following the end of the
episode.

• AO01.3. To report accurate and complete information in the anesthesia report.
• AO01.4. To report accurate and complete information in the surgical report.
• AO01.5. To report accurate and complete information in the pathology report.
• AO01.6. To report accurate and complete information in the nursing records.

4.5 Customization of the Framework for a Specific Context

We intended the PRM of CODE.CLINIC would be complete and flexible enough to be
adapted and suitably customized for various context (e.g., specific countries). In this

4 https://benchmarking-acss.min-saude.pt/.

https://benchmarking-acss.min-saude.pt/

Towards a Process Reference Model for Clinical Coding 201

sense, the outcomes and activities should be selected and reinterpreted for the specific
context. This involves, for instance, to identify who are themost relevant actor and stake-
holders for the various process groups in every context. In this sense, we have identified
specific actors/stakeholders that are relevant for the customization of CODE.CLINIC for
Portuguese health institutions, considering the various stages of the coded data lifecycle.
We classify them in three large groups:

Consultive Roles and Responsibilities. General policymakers or policy-proposers
for health domain, that are typically outside of the organization, mainly in the regional
or national government. They provide some hints about general concerns and recom-
mendations for the clinical coding activities. Some of these concerns consists in recom-
mendations for technical support (e.g., like the AMACC), while others are more related
to management and interoperability support (e.g., SPMS). This are not typically active
roles in the specific case of Portugal we can list:

1. Administração Central do Sistema de Saúde (ACSS).
2. Serviços Partilhados do Ministério da Saúde (SPMS).
3. Ordem dos Médicos.
4. Colégio Competência de Codificação Clínica da Ordem dos Médicos.
5. Associação dos Médicos Auditores e Codificadores Clínicos (AMACC).

Active Roles and Responsibilities for the Process. Workers that are somehow
involved in clinical coding tasks at institutional level for the Strategic and Main
and Support Processes.

6. Hospital managers (departments and services).
7. Health care provider.
8. IT (Information Technology) Staff.
9. Hospital manager for clinical coding.
10. Clinical coding office managers (internal auditors).
11. Medical coders.
12. Physicians.

Benefited Roles, played by workers that will use the coded data for the various
purposes.

13. PublicHealth authorities and health care administrators (healthmanagement users).
14. Researchers (health research users).

Customization of CODE.CLINIC for Health Institutions.The institutionalization
of CODE.CLINIC involves the identification and customization of the various outcomes
and activities for the reality of the health institutions, by considering the specifics for
the regular flow of data (episodes and coded data) following the main processes. During
the presentation of the processes in Sects. 4.1–4.4 we introduced some examples of
customization. As part of the customization of the activities, the specific positions in the
health institutions corresponding to the previously introduced roles must be identified
and their responsibilities conveniently assigned, and the communication protocol and
means adequately established. Regarding outcomes and work products, every health
institution should raise consensus on how to name, store and establish guidelines by
means of policies and procedures to exploit them.

202 I. Caballero et al.

Finally, it is important to note that the customization will be better supported by the
CODE.CLINIC PAM along with the underlying maturity model, as it will enable the
creation of roadmaps.

5 Discussion, Conclusions and Future Work

This research has been motivated by the hypothesis that having and implementing a
framework for clinical coding will not only contribute to a greater homogenization of
clinical coding processes not only internally in health institutions, but also to enable
better interoperability between other organizations, enabling even benchmarking. In
addition, the institutionalization of the framework will make the clinical coding much
more efficient, interoperable, and error-free, by facing the list of problems listed in
Sect. 2.1 in a unified and controlled way from an organizational point of view.

The main expected impact of this PRM is not only to identify, map and structure the
various processes and activities related to clinical coding in day-to-day life at health insti-
tutions (mainly hospitals), but also to provide a working tool to promote data reuse, good
clinical coding practices and to organize processes, promoting data quality improvement,
and body of knowledge.

As part of our near-term future work, we will conduct the AR acceptance cycle,
in which we aim to gain buy-in from the medical community involved in the clinical
coding process. To this end, we will conduct a series of questionnaires and interviews
with representatives of the various stakeholders described in Sect. 4.5. The feedback
obtained will be used to refine both the process reference model and the evaluation
model. Once the framework will be refined, we will disseminate it in different forums.

Acknowledgements. We would like to first thank to Associação dos Médicos Auditores e
Codificadores Clínicos for the valuable support during the AR Definition Cycle.

This investigation is partially supported by the Grant PID2020-112540RB-C42, AETHER-
UCLM (A smart data holistic approach for context-aware data analytics), funded by
MCIN/AEI/10.13039/501100011033/; The project “Clikode - Automatic Processing of Clinical
Coding, (3I) Innovation, Research of AI models for hospital coding of Procedures and Diag-
noses”, POCI-05-5762-FSE-000230, is financed by Portugal 2020, through the European Social
Fund,within the scope ofCOMPETE2020 (Operational ProgrammeCompetitiveness and Interna-
tionalization of Portugal 2020), and the project ADAGIO: Alarcos’ DAta Governance framework
and systems generation (SBPLY/21/180501/000061), funded by the Consejería de Educación,
Cultura y Deportes of the Junta de Comunidades de Castilla-La Mancha (Spain).

References

1. Gesulga, J.M., Berjame, A., Moquiala, K.S., Galido, A.: Barriers to electronic health record
system implementation and information systems resources: a structured review. Procedia
Comput. Sci. 124, 544–551 (2017)

2. Alonso, V., et al.: Health records as the basis of clinical coding: is the quality adequate? A
qualitative study of medical coders’ perceptions. Health Inf. Manag. J. 49(1), 28–37 (2020)

3. Fetter, R.B.: Diagnosis related groups: understanding hospital performance. Interfaces 21(1),
6–26 (1991)

Towards a Process Reference Model for Clinical Coding 203

4. Stanfill,M.H.,Williams,M., Fenton, S.H., Jenders, R.A., Hersh,W.R.: A systematic literature
review of automated clinical coding and classification systems. J. Am. Med. Inform. Assoc.
17(6), 646–651 (2010)

5. Hazelwood, A.C.: ICD-9 CM to ICD-10 CM: implementation issues and challenges. In:
ICD-9 CM ICD-10 CM: Implementation Issues and Challenges/AHIMA, American Health
Information Management Association (2003). http://library.ahima.org/doc?oid=59978

6. CMS: ICD-10-CM Official Guidelines for Coding and Reporting. Centers for Medicare and
MedicaidServices (2021). https://www.cms.gov/files/document/2021-coding-guidelines-upd
ated-12162020.pdf

7. Carvalho, R., et al.: Analysis of root causes of problems affecting the quality of hospital
administrative data: a systematic review and Ishikawa diagram. Int. J. Med. Inf. 156, 104584
(2021). https://doi.org/10.1016/j.ijmedinf.2021.104584

8. de Lusignan, S.: The barriers to clinical coding in general practice: a literature review. Med.
Inform. Internet Med. 30(2), 89–97 (2005). https://doi.org/10.1080/14639230500298651

9. Alonso,V.:ACodificaçãoClínica e os problemas associados à qualidade dos dados: perspetiva
dos codificadores. Maestrado em Informática Médica. Faculty of Medicine. University of
Porto, Porto (2018). https://repositorio-aberto.up.pt/bitstream/10216/118231/2/306324.pdf

10. Alonso, V., et al.: Problems and barriers during the process of clinical coding: a focus group
study of coders’ perceptions. J.Med. Syst. 44(3), 1–8 (2020). https://doi.org/10.1007/s10916-
020-1532-x

11. ISO: ISO/IEC 8000-61:2016: Data quality – Part 61: Data quality management: Process
reference model. ISO (2016). https://www.iso.org/cms/render/live/en/sites/isoorg/contents/
data/standard/06/30/63086.html. Accessed 4 Aug 2021

12. ISO: ISO/IEC/IEEE 12207:2017 – Systems and software engineering – Software life cycle
processes. ISO/IEC/IEEE 12207:2017 (2017). https://www.iso.org/cms/render/live/en/sites/
isoorg/contents/data/standard/06/37/63712.html. Accessed 11 Apr 2022

13. DQTeam:MAMD:ModeloAlarcosMejora Datos (2020). https://mamd.dqteam.es. Accessed
11 Apr 2022

14. ISO: ISO/IEC 33003:2015: Information technology – Process assessment – Requirements for
process measurement frameworks. ISO (2015). https://www.iso.org/cms/render/live/en/sites/
isoorg/contents/data/standard/05/41/54177.html. Accessed 11 Apr 2022

15. ISO: ISO/IEC 33004:2015: Information technology – Process assessment – Requirements for
process reference, process assessment and maturity models. ISO (2015). https://www.iso.org/
cms/render/live/en/sites/isoorg/contents/data/standard/05/41/54178.html. Accessed 11 Apr
2022

16. ISO: ISO 8000-62:2018: Information technology – Process assessment – Requirements for
process reference, process assessment and maturity models. ISO (2018). https://www.iso.org/
cms/render/live/en/sites/isoorg/contents/data/standard/06/53/65340.html. Accessed 11 Apr
2022

17. Capita: The quality of clinical coding in the NHS: payment by results data assurance frame-
works. Capita Health and Wellbeing Limited (2014). https://www.chks.co.uk/userfiles/files/
The_quality_of_clinical_coding_in_the_NHS.pdf

18. CCSA: Clinical Coding Practice Framework. Clinical Coders’ Society of Australia
(2019). https://www.ccsofa.org.au/wp-content/uploads/2021/05/HIMAA-CCSA-CCPF-FIN
AL5-Sep2019.pdf

19. Reid, B.A., Ridoutt, L., O’Connor, P.,Murphy, D.: Best practice in themanagement of clinical
coding services: insights from a project in the Republic of Ireland, Part 1. Health Inf. Manag.
J. 46(2), 69–77 (2017)

20. Reid, B.A., Ridoutt, L., O’Connor, P.,Murphy, D.: Best practice in themanagement of clinical
coding services: insights from a project in the Republic of Ireland, Part 2. Health Inf. Manag.
J. 46(3), 105–112 (2017)

http://library.ahima.org/doc?oid=59978
https://www.cms.gov/files/document/2021-coding-guidelines-updated-12162020.pdf
https://doi.org/10.1016/j.ijmedinf.2021.104584
https://doi.org/10.1080/14639230500298651
https://repositorio-aberto.up.pt/bitstream/10216/118231/2/306324.pdf
https://doi.org/10.1007/s10916-020-1532-x
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/30/63086.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/37/63712.html
https://mamd.dqteam.es
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/41/54177.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/41/54178.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/53/65340.html
https://www.chks.co.uk/userfiles/files/The_quality_of_clinical_coding_in_the_NHS.pdf
https://www.ccsofa.org.au/wp-content/uploads/2021/05/HIMAA-CCSA-CCPF-FINAL5-Sep2019.pdf

204 I. Caballero et al.

21. ISO: ISO/IEC 38505-1:2017 Information technology – Governance of IT – Governance of
data – Part 1:Application of ISO/IEC38500 to the governance of data. ISO/IEC38505-1:2017
Information technology – Governance of IT – Governance of data – Part 1: Application of
ISO/IEC 38500 to the governance of data (2017). https://www.iso.org/standard/56639.html.
Accessed 9 May 2021

22. ISO: ISO/IEC TR 38505-2:2018 Information technology – Governance of IT – Governance
of data – Part 2: Implications of ISO/IEC 38505-1 for data management. ISO/IEC TR 38505-
2:2018 Information technology–Governance of IT–Governance of data –Part 2: Implications
of ISO/IEC 38505-1 for data management (2018). https://www.iso.org/standard/70911.html.
Accessed 23 May 2021

23. ISACA: COBIT 2019 Framework. Introduction and methodology. Schaumburg, IL. EE.UU
(2018)

24. DAMA: DAMA-DMBOK: Data Management Body of Knowledge. Technics Publications,
LLC (2017)

25. Wohlin, C., Runeson, P.: Guiding the selection of researchmethodology in industry–academia
collaboration in software engineering. Inf. Softw. Technol. 140, 106678 (2021). https://doi.
org/10.1016/j.infsof.2021.106678

26. Avison, D.E., Davison, R.M., Malaurent, J.: Information systems action research: debunking
myths and overcoming barriers. Inf. Manage. 55(2), 177–187 (2018). https://doi.org/10.1016/
j.im.2017.05.004

27. Staron, M.: Action Research in Software Engineering. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-32610-4

28. ISO: ISO/IEC/IEEE 24774:2021 Systems and software engineering – Life cycle manage-
ment – Specification for process description. ISO (2021). https://www.iso.org/cms/render/
live/en/sites/isoorg/contents/data/standard/07/89/78981.html. Accessed 11 Apr 2022

https://www.iso.org/standard/56639.html
https://www.iso.org/standard/70911.html
https://doi.org/10.1016/j.infsof.2021.106678
https://doi.org/10.1016/j.im.2017.05.004
https://doi.org/10.1007/978-3-030-32610-4
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/89/78981.html

Digital Twin for IoT Environments: A Testing
and Simulation Tool

Luong Nguyen1 , Mariana Segovia2 , Wissam Mallouli1(B) ,
Edgardo Montes de Oca1 , and Ana R. Cavalli1,2

1 Montimage, 39 rue Bobillot, 75013 Paris, France
{luong.nguyen,wissam.mallouli,edgardo.montesdeoca}@montimage.com

2 Telecom SudParis, 9 rue Charles Fourier, 91011 Evry, France
{ana.cavalli,segovia}@telecom-sudparis.eu

Abstract. Digital Twin (DT) is one of the pillars of modern information tech-
nologies that plays an important role on industry’s digitalization. A DT is com-
posed of a real physical object, a virtual abstraction of the object and a bidirec-
tional data flow between the physical and virtual components. This paper presents
a DT-based tool, called TaS, to easily test and simulate IoT environments. The
objective is to improve the testing methodologies in IoT systems to evaluate the
possible impact of it on the physical world. We provide the conditions to test, pre-
dict errors and stress application depending on hardware, software and real world
physical process. The tool is based on the DT concept in order to detect and pre-
dict failures in evolving IoT environments. In particular, the way to prepare the
DT to support fault injection and cybersecurity threats is analyzed. The TaS tool
is tested through an industrial case study, the Intelligent Transport System (ITS)
provided by the INDRA company. Results of experiments are presented that show
that our DT is closely linked to the real world.

Keywords: Digital Twins · IoT · Sensors · Actuators · Gateway · Simulation ·
Testing

1 Introduction

Testing is a crucial step of any software development process [3]. As a result, various
test cases (e.g., unit tests, integration tests, regression tests, system tests) need to be
designed and executed in a production-like environment that reproduces the same con-
ditions where the software under test would run. However, having access to such an
environment may be hard to achieve and it is even particularly challenging in the IoT
area.

The access to IoT devices might be non-trivial or limited due to many factors. For
example, networks of physically deployed devices are typically devoted to production
software. Testing applications on top of those networks might involve additional testing
software, which might affect the overall performance and the revenue generated by the
devices (e.g., applications need to be stopped to load their new versions).

Software simulators proved to be valuable in easing the verification of the soft-
ware requirements. They provide software developers a testing environment to at least
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 205–219, 2022.
https://doi.org/10.1007/978-3-031-14179-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_14&domain=pdf
http://orcid.org/0000-0003-2701-3971
http://orcid.org/0000-0001-8343-1049
http://orcid.org/0000-0003-2548-6628
http://orcid.org/0000-0001-6771-0689
http://orcid.org/0000-0003-2586-9071
https://doi.org/10.1007/978-3-031-14179-9_14

206 L. Nguyen et al.

manage the execution of test cases. IoT Testbeds play a similar role in testing IoT appli-
cations. They offer a deployed network of IoT devices where developers can upload
their applications and test their software in a physical environment. IoT-Lab [1] and
SmartSantander [17] are good examples of IoT testbeds. Testbeds often have a prede-
fined fixed-configuration and architecture. They are also usually shared with other users,
which can be a problem for measuring application quality. Hence, this problem might
make simulators more attractive since they provide a more customized and controlled
environment. Furthermore, simulators avoid the need for a more expensive physical
network of devices.

The main issue regarding simulators is that they are not directly linked to the real
environment and any evolution of this latter (e.g., addition or deletion of a new IoT device
or gateway) is not automatically taken into account in the simulation mode. Also, physi-
cal process dynamics may be hard to be reproduced in simulations. As a result, physical
properties and events, such as process disturbances or devices failure, may not be quanti-
fied during the software testing process. Besides, simulation can rely on predefined sce-
narios that can have different behaviours in real environments since simulation is based
on the abstraction of some layers. The continuous monitoring of real systems is needed
to feed simulators in order to have more accurate results. In addition, recommendations
from simulators can be taken into account in the real world if a bidirectional relationship
between these two worlds exist. This is exactly the essence of Digital Twins.

The main contribution of our paper is the design of a tool, called TaS (stands for
Test and Simulation), based on the concept of Digital Twin, to simulate, test and pre-
dict errors in real IoT systems. The tool supports functional and non-functional test-
ing through the real-time connection of the physical system to a new software version
deployed in the DT. This way, it is possible to verify that the changes made in the code
do not impact the existing software functionality. Also, the DT may be used to elabo-
rate a what-if analysis resulting in a better evaluation of attacks, error cases, scalability
and performance stress situations. For example, it is possible to perturb the system to
test unexpected scenarios and analyze the response. TaS has been validated through
different experiments performed in the context of H2020 ENACT project1.

The paper is organized as follows: Sect. 2 presents several solutions for the sim-
ulation of IoT environments as well as the usage of DT for this kind of technology.
Section 3 presents the basics to understand the concepts of DT as well as simulation
and testing. Section 4, presents the TaS tool, its architecture and different details of its
implementation. In Sect. 5, we present the application of such DT-based Test and Sim-
ulation tool on an industrial experimental case study called ITS. Finally, we conclude
the paper and discuss future work in Sect. 6.

2 Related Work

In recent years, both academia and the commercial market offered solutions in the
design of DT. Following we present some relevant works regarding DT as well as sim-
ulation and testing for IoT systems. We also explain the existing challenges in IoT
applications and how our approach can help to solve these limitations.

1 https://www.enact-project.eu/.

https://www.enact-project.eu/

Digital Twin for IoT Environments: A Testing and Simulation Tool 207

Digital Twins—are a digital representation of a physical object or system or a
system of systems (like an IoT network). The technology behind Digital Twins has
expanded to include complex elements such as buildings, factories and networks, and
some even consider that people and processes can have DTs.

A DT is composed of a virtual object that models a physical component. Both
components exchange information and the virtual object continually adapts to oper-
ational changes based on the collected data from the physical component. The con-
nection between the physical and virtual objects can forecast the future of the phys-
ical component using the collected data [19]. This way, DTs supply a system with
information and operating status providing capabilities to create new business mod-
els and decision support systems. Also, it is possible to make more accurate predictions
and information-based decisions using analytic, predictive diagnosis, and performance
optimization. Other uses of DT include reducing costs and risks, improving efficiency,
security and resilience.

The idea first arose at NASA, where full-scale mockups of early space capsules,
used on the ground to mirror and diagnose problems in orbit, eventually gave way to
fully digital simulations [14]. But the term became very popular when Gartner named
DTs as one of its top 10 strategic technology trends for 20172 saying that within three to
five years, “billions of things will be represented by Digital Twins, a dynamic software
model of a physical thing or system”. In essence, a Digital Twin is a computer program
that takes real-world data about a physical object or system as inputs and produces as
outputs predictions or simulations of how that physical object or system will be affected
by those inputs.

IoT Simulation and Testing—The field of simulation and testing in IoT also has
gained momentum when it comes to generating novel, cutting-edge ideas. In the recent
years, academia proposed several IoT simulators each mostly focusing on a particu-
lar layer of the communication stack. For instance, Cooja3 and OMNeT++4 focus on
simulating networking aspects of the systems. Other simulators, like SimIOT [18] or
IOTsim [22], focus on data analytics rather than lower aspects of the systems. Another
approach, like iFogSim [7], try to perform a complete simulation. However, having a
full stack simulation from a single component or product can be challenging. Other
alternatives proposed hybrid models, such as [2], which try to leverage several simula-
tors, each for a particular layer, to reproduce the behaviour of a system from a holistic
perspective.

The DTs are a development of modelling and simulation technology. Traditional
simulation methods are of limited capabilities in evaluating system performance. By
integrating IoT technology, DTs are the breakthrough of the existing limitations on the
modelling and analysis capabilities of simulation [11]. The major difference between
a simulation and a DT is the data interconnection that allows to exchange information
between the physical and the virtual object, i.e., a simulation predicts future states of
a physical system based on a set of initial assumptions [21]. However, a DT tracks the
current and past states of the physical component that is being used in operation and

2 https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017.
3 https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja.
4 https://omnetpp.org/.

https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://omnetpp.org/

208 L. Nguyen et al.

is being simulated within the virtual object. Often the computational models which are
used to infer the current state of the physical objects are the same models which can be
used in simulation to predict future states. The simulation models can provide additional
decision-making information for optimizing future operations, forecasting degradation
mechanisms, and predicting future failures.

Research-based simulators often ignore problems such as the lack of standardiza-
tion, which poses a challenge when it comes to creating synergies and inter-operation
between different simulators. A research-based simulator can be volatile and can change
its application interface rapidly. This volatility generates extra overhead since develop-
ers need to adapt their code to the new changes. In addition, simulators created by
research are often not maintained or discontinued, i.e. bugs remain and new features or
improvements are not made. Nevertheless, some simulators are open source, allowing
contributions from the community to their development and maintenance.

Testing Challenges—The research work regarding testing point out that there is a
need for a complete set of tests and simulation solutions for IoT. Systems should be
tested based on different scenarios that involve the generation and use of high amounts
of sensor and actuator data, which is not always practical to set up in a given IoT envi-
ronment, but serves to stress the boundaries of the environment in order to detect poten-
tial problems. This is exactly what we propose in this paper by conceiving a DT-based
on a simulation and testing tool. Notice that the concept of DT for IoT has been used the
first time in 2016 [6] where the authors proposed first ideas to define DT for industrial
IoT. Then this concept has been studied mainly from a research point of view in [15] to
address, e.g., smart grids and smart factories. The proposed tool that we present in this
paper is generic enough so that it can be applied to different sectors (e-health, transport,
telecommunication, etc.) and tackle different test objectives such as security, scalabil-
ity, energy consumption. In addition, most of the existing DT proposals are designed
for optimization of the physical object, system security and resilience, real-time mon-
itoring, prediction of future behavior or training for operator users. Less attention has
been paid to DTs applications to overcome the mentioned simulation limitations and
improve IoT testing methodologies. Some proposals that have addressed this problem
are analyzed as follows.

The paper [13] presents a survey providing the DT original definition and address-
ing the relevant aspects that a DT should support. It illustrates the application of the
DT concept in four application scenarios. One of them is of particular interest for us,
this regarding DT for sensors. Following this paper, sensors can be represented by a
logical object or several ones, which are associate to the physical entities. In this DT,
it is required that logical objects should be strongly synchronized with the physical
objects. The objects are continuously updated. We have the same requirements regard-
ing the sensor DT we defined in this paper. In addition, we go beyond this approach by
developing a tool that implements the proposed solution.

In [16], it is presented an IoT-based DT of a cyber-physical system that interacts
with the control system to ensure its proper operation. The proposed DT is validated on
a distributed control system. Security measures are also implemented based on cloud
computing. This work has the advantage that the proposed DT can contribute to mitigate
individual as well as coordinated attacks.

Digital Twin for IoT Environments: A Testing and Simulation Tool 209

The work in [9] proposes a tool to validate models of legacy systems. Their objec-
tive is to test the models of an existing production system through simulation and then
incorporate this validated model in a DT. In this case, the proposition is oriented to cre-
ate the modelling of an existing system. In our proposal, we go further by proposing a
tool that test the whole system considering also the physical interaction.

The authors of [8] designed an open-source toolkit composed by five open-source
tools (Eclipse Hono5, Eclipse Ditto6, Apache Kafka7, Influx DB8 and Grafana9) for
each data processing layer of IoT and DT reference architectures. The toolkit is eval-
uated using a benchmark dataset. The architecture of the toolkit is more complex than
the proposed for our tool. Some experimentation showed that Hono and Ditto platforms
have some limitation on massive packet processing [10] which may be a serious limita-
tion to scale IoT applications.

In [4], the authors propose a DT for testing properties and characteristics of the
physical object, i.e., for physical experimentation. Their work is motivated by the lim-
ited possibilities to physically experiment with convoy belts and how time-consuming
this activity is. DT present a solution to create an environment to test objects using
models without carrying out it physically. Our work provides also testing functionali-
ties but with a focus in the software that controls the physical process and which are
the possible impacts of it in the physical world. In this paper, we explore the creation
of a DT to improve the development process of the software that controls the physical
system. For that, we present a testing tool to evaluate functional and stress tests.

3 A Test and Simulation (TaS) Tool Based on Digital Twin for IoT
Environment

This section contains three subsections. In the first subsection, the architecture of the
tool called TaS enabler is presented. The second section presents its functionalities. The
third section describes its implementation.

3.1 The Approach and Architecture of the Tool

In this subsection, we present the architecture of the TaS enabler, which is based on the
concept of DTs [5]. Figure 1 illustrates the TaS enabler architecture.

On the left-hand side, we have the system in a real (production) environment. The
communication between the sensors, actuators with the IoT component is typically done
via a broker. The sensors capture and send the surrounding information (e.g., “temper-
ature”) to the IoT system. Based on input data, the IoT system reacts differently and
sends actuation data to change the actuator settings (e.g., “change the heating level”).

On the right-hand side of the figure, we have the Smart IoT System (SIS) in a test
environment and the TaS enabler. The system under test is the SIS that needs to be

5 http://www.eclipse.org/hono/.
6 https://www.eclipse.org/ditto/.
7 http://kafka.apache.org/.
8 https://www.influxdata.com/.
9 https://grafana.com/.

http://www.eclipse.org/hono/
https://www.eclipse.org/ditto/
http://kafka.apache.org/
https://www.influxdata.com/
https://grafana.com/

210 L. Nguyen et al.

Fig. 1. Test and Simulation (TaS) enabler approach and architecture

tested. The TaS enabler simulates sensors and actuators. The topology on the left side
is very similar to the topology on the right side. The only difference is the simulated
sensors and actuators. The simulated actuators collect the actuation data sent from the
IoT system. The simulated sensors play the same role as the physical sensors providing
the data signal to the IoT components. However, they are much more valuable than a
physical sensor in terms of testing in the following ways:

– Firstly, by using the dataset recorded from the physical environment, the simulated
sensors can repeatedly simulate the surrounding environment at a specific time. In
reality, an event may happen only once, but the simulated sensor can generate the
same event as many times as needed for testing purposes.

– Secondly, the physical sensors passively capture the state of the surrounding envi-
ronment. It can be challenging to obtain different data from the physical sensors. In
contrast, the simulated sensors use the dataset in the Data Storage as a data source.
Therefore, we can generate various testing scenarios by modifying the events in the
Data Storage.

– Moreover, the TaS enabler also provides a module to manipulate the data from the
sensors. The Regular and Malicious Data Generator can generate regular data to test
the functionalities, operations, performance, and scalability (relying on pre-recorded
data). It can also generate malicious data to test the resiliency of the system to
attacks.

Besides the simulated sensors and actuators, the TaS enabler also provides some
modules which support the testing process 1. The Data Recorder module records all
the messages going through the broker in the physical environment. Each message can
be considered as an event happening in the physical environment. Then, the recorded
messages are forwarded to the broker in the testing environment. In this way, we have
a “twin version” of the physical environment. What has happened in the physical envi-
ronment is reproduced in the testing environment. Besides, the recorded messages are
stored in a Data Storage as a dataset for later testing. The recorded dataset can be mod-
ified (muted) to create a new dataset, e.g., “change the event order”, “delete an event”,

Digital Twin for IoT Environments: A Testing and Simulation Tool 211

“add a new event”. All the testing datasets are stored in the Data Storage. The Regu-
lar and Malicious Data Generator enables the simulation of different sensor behaviors,
from normal behavior to abnormal behavior, such as a DOS attack (the sensor pub-
lishes massive data messages in a short time), node failure (the sensor stops sending
data). With data mutation, the TaS enabler can help build datasets for testing many dif-
ferent cases hard to produce in real life. Finally, the Evaluation module analyses the
simulation input and output and combines them with the logs collected from the IoT
system to provide the final result of a testing process.

The next section presents more details on the functionalities of the tool.

3.2 Tool Implementation

Most of the testing scenarios are defined by the information about the surrounding envi-
ronment captured by sensors. The following subsection goes into detail about the sim-
ulation of sensors.

The Simulation

The simulation of sensors—The sensor provides the input data of an IoT system. The
simulation of a sensor corresponds to the simulation of the data stream it provides. The
simulated sensor has been designed for flexibility in the following ways:

– It supports different types of data report formats:
– It supports different data sources which are used for simulation:
– It supports simulating several abnormal behaviours, such as, low energy, node fail-
ure, DOS attack, and slow DOS attack.

– It supports multiple measurements with the different data types, such as Boolean,
Integer, Float and Enum. For each measurement, there are several abnormal
behaviours that can be selected, such as “fixed value”, “value out of range”, and
“invalid value”.

The simulation of actuators—An actuator can be considered as a device that receives the
IoT system reaction based on the input data. We simulate the actuator as a component
that will receive the reaction signal (actuation data) from the IoT system.

The simulation of a IoT device—In an IoT system, the sensor and actuator are usually
part of the same device. An IoT device can contain one to many sensors as well as one
to many actuators

The simulation of a network topology—A list of simulated IoT devices forms the simu-
lated network topology. Besides the list of devices, a network topology can also provide
the identifier of the dataset (datasetId),which contains the data to simulate the SIS in a
given time, the global replaying options, the configuration to connect with the database,
and the definition of the new dataset where the data generated from the simulations will
be stored.

The Testing Methodologies. In this section, we present the testing methodologies and
techniques we have adapted in the TaS enabler.

212 L. Nguyen et al.

Data Driven Testing—The Data Storage contains the datasets recorded from the IoT
system or entered manually. Each dataset contains sensor data (inputs for TaS) and
expected actuator outputs. The expected actuator outputs can be the value recorded from
the IoT system in a normal scenario. Engineers can also enter them manually via the
Graphical Interface. The Evaluation module will use the expected outputs to compare
them with the simulation output to determine if they match. A test case passes if the
simulation output is within the range of the expected output. The Data-Driven Testing
method is suitable for functional and regression testing.

The Data-Driven Testing has been implemented as the main testing methodology of
the TaS enabler.

Data Mutation Testing—The Mutant Generator generates new sensor data from existing
data stored in the Data Storage by applying one or many mutated functions, such as
“change the event order”, “change a value”, and ”delete an event”. The mutated data
are input for the simulation. The Evaluation module generates a report about the output
differences when testing the system with the mutated and the original input data. The
Data Mutation Testing method is for penetration, robustness, security, and scalability
testing (e.g., mutating the device identifier to obtain new devices). In the TaS enabler,
we can mutate the device identity to generate many devices while testing the system
scalability. There is also an interface to apply some mutation functions to a dataset
manually.

Model-Based Testing [20] and Risk-Based Testing [12] are two other methodologies
that we have studied but not yet implemented in the TaS enabler at the time of writing
of this paper.

The Testbeds

The Data Recorder—The TaS enabler provides the possibility to simulate an IoT system
using historical data.The data is used to create a model that represents the behavior of
the physical controlled process. This way, the model works as a digital copy of the phys-
ical components. To this end, a Data Recorder module is needed. The Data Recorder
records all the events in the real system (coming from the broker). This data (including
both sensor and actuator data) is stored in the Data Storage as a dataset. The sensor data
can be forwarded directly to the testing system (using the forwarding broker). The more
data from sensors are recorded, the more test scenarios are tested. By synchronizing the
Sensor simulator timestamps with the Data Recorder, it is possible to simulate a partic-
ular SIS (following the DT concept). By monitoring the SIS input and output, we can
build an automatic testing process for a complex IoT system.

The Regular and Malicious Data Generator—When testing the IoT system, there are
many testing scenarios and cases that do not frequently occur in reality. With the real
IoT system, it is almost impossible to collect the datasets for many testing scenarios.
The Regular and Malicious Data Generator module helps developers to create a testbed
which contains sensor data for various scenarios, e.g., making the temperature too high
or too low. By combining multiple data, one can create a testbed that includes many
incidents or attack scenarios, such as DDoS and data poisoning. The Data Storage stores
all the generated data for further use.

Digital Twin for IoT Environments: A Testing and Simulation Tool 213

4 Experimentation and Validation

This section presents the application of TaS in a use case which provided by INDRA
company10.

Overview. The rail domain requires infrastructure and resources that are usually expen-
sive and require a long-time planning and execution. Therefore, the usage of the rail sys-
tems must be highly optimized, following strict security and safety regulations. Several
functionalities could be implemented within the rail systems to ensure that the system
could tackle its high critical requirements as planned.

The implemented measurements to track and keep a safe behavior of the rail system
are developed by the Intelligent Transport Systems (ITS) Domain Use Case. This Use
Case will describe logistic and maintenance rail activities. The focus of the demonstra-
tor is placed in the logistics activities.

A Logistics and Maintenance scenario is defined with the aim to provide informa-
tion of the wagons that conform the rolling stock to assure the well-functioning of the
system. These events are only possible through the confirmation of the train integrity,
when the different wagons are locked and moving together. This situation ensure the
proper transportation of the rolling stock, avoiding possible accidents. A representation
for an architecture of this scenario is shown in the Fig. 2.

Fig. 2.Wireless sensor network architecture. Source: INDRA

In the Fig. 2, the ITS system is located in the Logistics and Maintenance Platform,
it receives and handles the data provided from the train (OnBoard) and from the track
(OnTrack). On each train, there is a WSN (Wireless Sensor Network) which includes
several sensors, such as: accelerometer, ultra sound sensor, RSSI (Received Signal
Strength Indicator) detector, GNSS (Global Navigation Satellite System) receivers,

10 https://www.indracompany.com/en/.

https://www.indracompany.com/en/

214 L. Nguyen et al.

RFID (Radio Frequency Identification), Humidity, Temperature, CO2 concentrations,
Title Detectors; actuators: LED and Display. One OnBoard gateway on each train to
send sensor’s data to and receive actuated data from the ITS system on the Cloud. The
WSN on track contains only a single sensor: RFID. An OnTrack gateway send sensor’s
data to the ITS system on the Cloud.

The DevOps role in the Use Case consists in providing useful tools to manage the
behavior of the different rail components through SW tools. One of themwas TaS which
focus on simulating and testing the ITS system on two aspects:

– To ensure the ITS handles properly all kind of input data, such as: normal input data,
malformed input data, invalid input data, etc.

– To ensure the ITS is able to handle a large number of trains.

4.1 Application of TaS to ITS Use Case

Figure 3 presents the TaS-ITS integration architecture. EDI (Elektronikas un
datorzinātn, u institūts, Lavia) provides a testing train on which there are 13 sensors
in total. The OnBoard gateway on the testing train connect with the Partners Gateway
in INDRA infrastructure. The Partners Gateway receives the input data, then do some
validation and pre-processing, the final data is forwarded to the Central Gateway. The
TaS tool located in Montimage infrastructure, connects with the Partners Gateway and
the Central Gateway to provide three main functions:

– Use a recorder model to record the Partners Gateway data, the recorded data is stored
in a Data Storage.

– Use a simulation model to simulate the behaviors of a train based on historical data
which was recorded and stored in the Data Storage.

– Use a recorder model to monitor the status of the Central Gateway. The metrics
on the Central Gateway are the key values to evaluate the performance of the ITS
system.

4.2 Results

The tests are divided in two stages. At the first stage, a recorder model has been used to
record the normal behaviors of a single train. The second stage consists on re-injecting
the recorded data to perform some tests:

– Scalability testing: adding some scaling factor to check if the gateway can deal with
a specific number of trains.

– Penetration testing: adding some data mutation to check if the gateway can deal with
some invalid data such as: malformed, invalid value.

The recording stage is shown in the following figures. The Fig. 4 shows the status of
the Central Gateway before activating the train. At this phase, there is no sensors data,
however there are still some messages which are the internal messages of the gateways.
The Fig. 5 shows the state of the Central Gateway after activating the train. As shown
on the figure, the traffic peak is recorded, the published rate is around 170 messages/s,

Digital Twin for IoT Environments: A Testing and Simulation Tool 215

Fig. 3. The TaS-ITS integration architecture

Fig. 4. Before activating the train

and the received rate is around 150 messages/s. This traffic is constant as it is required
by the the safety system. The recorded data is stored in the Data Storage, then it can be
used as an input of a simulation, or it can be duplicated, then mutated to generate a new
testing data-set.

Functional Testing—The Table 1 has shown the result of functional testing, as it must
be noted that the system can handle malformed and invalid value data without crashing.

216 L. Nguyen et al.

Table 1. Functional testing result summary

Mutation operation Partners gateway Central gateway

Add a valid data row Processed and forwarded Received

Delete an existing data row Operators as normal Operators as normal

Modify - malformed data Dropped the modified data row Did not receive

Modify - invalid data Dropped the modified data row Did not receive

Fig. 5. After activating the train

Scalability Testing—For scalability testing, several scale factors have been tested as
shown in Table 2.

Table 2. Scale factors in scalability testing

Scale factor Number of simulated trains Total number of sensors

1 1 13

5 5 65

10 10 130

20 20 260

50 50 650

The Fig. 6 shows that with the scale factors of 1, 5, 10 and 20, the messages are
carried without any issues, the metrics of the Central Gateway are scaled up with a
ratio almost the same with the scale factor. However, with the factor of 50, the Central
Gateway started to show some delays and the outputs messages are not the same as
the input messages, there are some failure indicators which means the ITS Gateway is
starting to queue the messages.

Digital Twin for IoT Environments: A Testing and Simulation Tool 217

Fig. 6. Scalability testing result

5 Discussion

The proposed TaS tool helps testing new IoT applications and overcome the simulation
limitations. For that it uses data from the real system to create a model of the behavior
and create functional, security and stress tests. The tool allows to improve the detection
capabilities by automating several steps (e.g., test execution). But still test generation
can be improved to cover relevant test scenarios according to defined objectives (e.g.,
functional testing, regression testing, performance or security testing etc.). The automa-
tion of this task will allow to reduce the time of testing the target system as well as
improving its coverage.

In the same way, an analysis of real system traces and logs can be used to automate
its model building. This reverse engineering task is a complex task that can be also
explored as an enhancement of TaS tool.

6 Conclusion and Future Work

In this paper we presented a Digital Twin based tool for an IoT environment, named
Digital Twin Test and Simulation tool (TaS). The main objective of this Digital Twin
tool is to detect and predict failures in real IoT environments. The TaS tool has been
applied in different domains (e-health, transport, telecommunications, smart houses,
etc.) showing that the proposed solution is generic and can be applied to achieve differ-
ent test objectives: security, scalability, energy, etc. In the future, it will be adapted and
used in several other collaborative projects dealing with other domains and contexts. To
illustrate its application we present a case study, an Intelligent Transport System (ITS)
application that provides a simulation of a rail system describing logistic and mainte-
nance activities. Experiments show that our Digital Twin is closely linked to the real
world. We can say that both worlds, the real and the digital one are synchronised. In
practice, it can help the IoT application developer save time and money on setting up
the testing environment and, thus, allows faster delivery of the applications.

218 L. Nguyen et al.

Acknowledgements. This paper has received funding from the European Union’s H2020 Pro-
gramme under grant agreement no 780351 for the ENACT project as well as grant agreement
no 101021668 for the PRECINCT project. Thanks are also addressed to INDRA team that con-
tributed to the experimentation.

References

1. Adjih, C., et al.: Fit IoT-lab: a large scale open experimental IoT testbed. In: 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT), pp. 459–464 (2015). https://doi.org/10.1109/
WF-IoT.2015.7389098

2. D’Angelo, G., Ferretti, S., Ghini, V.: Distributed hybrid simulation of the internet of things
and smart territories. CoRR abs/1710.04252 (2017). http://arxiv.org/abs/1710.04252

3. Faber, F.: Testing in DevOps. In: The Future of Software Quality Assurance, pp. 27–38.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29509-7 3

4. Fedorko, G., Molnár, V., Vasil’, M., Salai, R.: Proposal of digital twin for testing and mea-
suring of transport belts for pipe conveyors within the concept Industry 4.0. Measurement
174, 108978 (2021). https://doi.org/10.1016/j.measurement.2021.108978

5. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and
open research. IEEE Access 8, 108952–108971 (2020). https://doi.org/10.1109/ACCESS.
2020.2998358

6. Grieves, M.: Origins of the digital twin concept (2016). https://doi.org/10.13140/RG.2.2.
26367.61609

7. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and
simulation of resource management techniques in internet of things, edge and fog computing
environments. CoRR abs/1606.02007 (2016). http://arxiv.org/abs/1606.02007

8. Kamath, V., Morgan, J., Ali, M.I.: Industrial IoT and digital twins for a smart factory: an
open source toolkit for application design and benchmarking. In: 2020 Global Internet of
Things Summit, GIoTS 2020, Dublin, 3 June 2020, pp. 1–6. IEEE (2020). https://doi.org/10.
1109/GIOTS49054.2020.9119497

9. Khan, A., Dahl, M., Falkman, P., Fabian, M.: Digital twin for legacy systems: simulation
model testing and validation. In: 2018 IEEE 14th International Conference on Automa-
tion Science and Engineering (CASE), pp. 421–426 (2018). https://doi.org/10.1109/COASE.
2018.8560338. ISSN 2161-8089

10. Lee, J., Kang, S., Chun, I.G.: mIoTwins: design and evaluation of mIoT framework for pri-
vate edge networks. In: 2021 International Conference on Information and Communication
Technology Convergence (ICTC), pp. 1882–1884. IEEE, Jeju Island (2021). https://doi.org/
10.1109/ICTC52510.2021.9621144

11. Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., Chen, X.: Digital twins-based smart manufac-
turing system design in Industry 4.0: a review. J. Manuf. Syst. 60, 119–137 (2021). https://
doi.org/10.1016/j.jmsy.2021.05.011

12. Matheu-Garcı́a, S.N., Hernández-Ramos, J.L., Skarmeta, A.F., Baldini, G.: Risk-based auto-
mated assessment and testing for the cybersecurity certification and labelling of IoT devices.
Comput. Stand. Interfaces 62, 64–83 (2019). https://doi.org/10.1016/j.csi.2018.08.003

13. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical
features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020). https://
doi.org/10.1109/JPROC.2020.2998530

14. Muhissen, M., Shaikh, N., Salah, Z.: Digital twin in artificial intelligence empowerment
pisiq. Open Artif. Intell. J. 2 (2018)

https://doi.org/10.1109/WF-IoT.2015.7389098
https://doi.org/10.1109/WF-IoT.2015.7389098
http://arxiv.org/abs/1710.04252
https://doi.org/10.1007/978-3-030-29509-7_3
https://doi.org/10.1016/j.measurement.2021.108978
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.13140/RG.2.2.26367.61609
https://doi.org/10.13140/RG.2.2.26367.61609
http://arxiv.org/abs/1606.02007
https://doi.org/10.1109/GIOTS49054.2020.9119497
https://doi.org/10.1109/GIOTS49054.2020.9119497
https://doi.org/10.1109/COASE.2018.8560338
https://doi.org/10.1109/COASE.2018.8560338
https://doi.org/10.1109/ICTC52510.2021.9621144
https://doi.org/10.1109/ICTC52510.2021.9621144
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1016/j.csi.2018.08.003
https://doi.org/10.1109/JPROC.2020.2998530
https://doi.org/10.1109/JPROC.2020.2998530

Digital Twin for IoT Environments: A Testing and Simulation Tool 219

15. Park, K.T., et al.: Design and implementation of a digital twin application for a connected
micro smart factory. Int. J. Comput. Integr. Manuf. 32, 1–19 (2019). https://doi.org/10.1080/
0951192X.2019.1599439

16. Saad, A., Faddel, S., Youssef, T., Mohammed, O.A.: On the implementation of IoT-based
digital twin for networked microgrids resiliency against cyber attacks. IEEE Trans. Smart
Grid 11(6), 5138–5150 (2020). https://doi.org/10.1109/TSG.2020.3000958

17. Sanchez, L., et al.: SmartSantander: IoT experimentation over a smart city testbed. Comput.
Netw. 61, 217–238 (2014). https://doi.org/10.1016/j.bjp.2013.12.020

18. Sotiriadis, S., Bessis, N., Asimakopoulou, E., Mustafee, N.: Towards simulating the internet
of things. In: 2014 28th International Conference on Advanced Information Networking and
Applications Workshops, pp. 444–448 (2014). https://doi.org/10.1109/WAINA.2014.74

19. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE
Trans. Industr. Inform. 15(4), 2405–2415 (2019). https://ieeexplore.ieee.org/document/
8477101/

20. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication via active
automata learning. In: 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp. 276–287 (2017). https://doi.org/10.1109/ICST.2017.32

21. VanDerHorn, E., Mahadevan, S.: Digital Twin: generalization, characterization and imple-
mentation. Decis. Support Syst. 145, 113524 (2021). https://doi.org/10.1016/j.dss.2021.
113524

22. Zeng, X., Garg, S.K., Strazdins, P., Jayaraman, P.P., Georgakopoulos, D., Ranjan, R.: IOT-
Sim: a simulator for analysing IoT applications. J. Syst. Archit. 72, 93–107 (2017). https://
doi.org/10.1016/j.sysarc.2016.06.008

https://doi.org/10.1080/0951192X.2019.1599439
https://doi.org/10.1080/0951192X.2019.1599439
https://doi.org/10.1109/TSG.2020.3000958
https://doi.org/10.1016/j.bjp.2013.12.020
https://doi.org/10.1109/WAINA.2014.74
https://ieeexplore.ieee.org/document/8477101/
https://ieeexplore.ieee.org/document/8477101/
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1016/j.dss.2021.113524
https://doi.org/10.1016/j.dss.2021.113524
https://doi.org/10.1016/j.sysarc.2016.06.008
https://doi.org/10.1016/j.sysarc.2016.06.008

Safety, Security and Privacy

Simpler Is Better: On the Use
of Autoencoders for Intrusion Detection

Marta Catillo , Antonio Pecchia , and Umberto Villano(B)

Dipartimento di Ingegneria, Università degli Studi del Sannio, Benevento, Italy
{marta.catillo,antonio.pecchia,villano}@unisannio.it

Abstract. The ever-growing occurrence of computer security incidents
calls for advanced intrusion detection techniques. A wide body of lit-
erature dealing with Intrusion Detection Systems (IDSes) is based on
machine learning; many proposals rely on the use of autoencoders (AEs),
due to their capability to analyze complex, high-dimensional and large-
scale data. Most of the times, AEs are used as building blocks of much
more complex detection architectures, possibly in combination with
sophisticated feature selection techniques. This paper summarizes sev-
eral years of work in this field, suggesting that “simpler is better” and
that a carefully tuned and trained AE can be used in isolation, obtain-
ing recognition results comparable with those attained by more complex
designs. The best practices presented here, regarding dataset production
and sanitization, AE set-up and training, threshold setting, possible use
of simple feature selection techniques for performance improvement can
be valuable for any practitioner willing to use autoencoders for intrusion
detection purposes.

Keywords: Intrusion detection · Autoencoders · Denial of service

1 Introduction

Due to the ever-growing occurrence and complexity of computer security inci-
dents, intrusion detection is, and will steadily remain, a hot research topic. A
wide body of literature aims at proposing effective solutions to the lack of security
of the computer networks and devices our lives currently rely on, by presenting
new proposals of Intrusion Detection Systems (IDSes) [12]. The aim of these
systems is to discover (and possibly block or divert) on-going attacks before any
harm can be done. For a number of different reasons, present-day IDSes are only
partially successful to avoid the occurrence of security incidents. These reasons
include the high complexity and the huge bandwidth of currently used networks,
the use of brand new or unknown exploits, the amplitude of the so-called attack
surface. Moreover, often the security problem is blamelessly ignored, and suitable
countermeasures are set up only when it is too late.

In this situation, given the growing success of machine learning (ML) tech-
niques and the availability of processors suitably designed for this domain, a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 223–238, 2022.
https://doi.org/10.1007/978-3-031-14179-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_15&domain=pdf
http://orcid.org/0000-0002-5025-7969
http://orcid.org/0000-0003-2869-8423
http://orcid.org/0000-0001-5382-4650
https://doi.org/10.1007/978-3-031-14179-9_15

224 M. Catillo et al.

very large number of proposals in the cybersecurity field rely on ML [7]. The
“pattern” followed by most papers on ML and IDSes is typically the same: an
algorithm or an architecture based on neural networks (possibly deep ones) are
proposed, then they are tested on reference datasets, very high performance fig-
ures (often close to 100% intrusion detection capabilities) are proven by limited-
width experiments. But the continuous flow of new proposals clearly indicates
the intrusion detection problem is still there, and that the experiments men-
tioned in the papers have only limited validity in real-world networks.

Our previous work has tackled the problem of the lack of transferability of
the impressive results obtained on reference datasets (possibly outdated and not
free from statistical biasing) in even slightly-different data collection settings
[4]. This paper will instead focus on the unnecessary complexity of many exist-
ing IDS proposals. Among the wide corpus of the existing proposals, multiple
autoencoder (AEs) networks are often used in complex configurations, possibly
complemented by sophisticated feature selection methods. We develop around
the intuition that this complexity is not justified because a single autoencoder
–if suitably trained and correctly used– is enough to obtain similar (if not better)
performance figures compared to existing proposals. This proposition is investi-
gated in the context of the widely-used CICIDS2017 intrusion detection bench-
marking dataset. The IDS solution proposed in this paper achieves 0.988 recall,
0.976 precision and 0.982 F1 with no feature selection and a single autoencoder;
moreover, the results indicate that the use of feature selection yields negligible
improvements over the metrics, at the cost of demanding tuning attempts. Based
on the results, we discuss all our findings in several years of use of autoencoders
for IDS, pointing out a number of best practices that can lead to successful
performance results without unnecessary architectural complications.

The rest of this paper is organized as follows. Section 2 presents related work;
Sect. 3 deals with the basics of autoencoders, their use for classification and the
reference dataset. Section 4 discusses our proposal based on a single autoencoder
for intrusion detection, the issues related to its design and training. Section 5
investigates the possibility to perform feature selection, and present the results
obtained on the dataset. Section 6 closes with lessons, conclusions and directions
of future research.

2 Related Work

Despite decades of research and development, existing intrusion detection sys-
tems still face challenges in improving the detection rate, reducing the false
positives and –possibly– detecting unknown attacks. To solve the above prob-
lems, many researchers and practitioners have focused on developing intrusion
detection systems that capitalize on machine learning and deep learning
methods [13]. Moreover, in order to tune and test these techniques, many ready-
to-use public intrusion detection datasets have been produced [23]. Most
of these datasets are collected in synthetic environments under normative condi-
tions and different intrusion scenarios. They emulate real network traffic and –at

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 225

least in theory– they do not contain any confidential data. Almost all datasets are
released as labeled network flows, organized in comma-separated values files spe-
cially crafted to apply modern machine learning techniques. In particular, each
record is a flow and the label states if it is an attack or not. An example of an
intrusion detection dataset, flow-based and widely used in literature is certainly
CICIDS2017 [24]. Released by the Canadian Institute for Cybersecurity (CIC)
in 2017, it simulates real-world network data and uses the tool CICFlowMeter
–more on this later– to produce labeled flow records. Other known flow-based
intrusion datasets are USB-IDS-1 [1], UGR’16 [17] and UNSW-NB15 [21].

Over the last few years, a boundlessness of machine learning methods for
misuse detection as well as anomaly detection have been proposed [16]. In gen-
eral, these approaches can be denoted as supervised or unsupervised depending
on whether there is a need to train the algorithm on labeled instances. In the
case of supervised learning techniques, the algorithm is trained on labeled data
points and it determines a function to map points to classes. Many supervised
approaches rely on a limited number of classifiers or only one classifier by achiev-
ing outstanding performance –detection close to 100% [22]. However, a large
number of supervised methods also exploit artificial neural networks [25]. In the
case of unsupervised techniques, instead, there is no need for labeled data points
during the training phase. In this context the aim is to find the hidden struc-
ture of unlabeled data. Indeed, the vast majority of the unsupervised detection
schemes proposed in the literature are based on clustering and outliers detection
[11,28].

Autoencoders are neural networks capable of learning features from unla-
beled data by automatically uncovering the underlying structure of the data
and by removing sources of variation in the input. They are designed to map
the input data points to an internal latent representation, which is then used to
reconstruct the input. Autoencoders were first developed as nonlinear exten-
sion of the standard linear principal component analysis (PCA) in order to
make dimensionality reduction [14]. For example, in [15] the authors use an
autoencoder to perform automatic features extraction with the aim to reduce the
dimensions of the data being processed. Thereafter, they classify the attacks by
means of the support vector machine algorithm. Feng et al. [9] show a graph and
autoencoder-based feature selection (GAFS) method, which projects the data
to a lower-dimensional space using a single-layer autoencoder. The approach
proved to be effective when compared with existing state-of-the-art methods.
In [26] the authors propose a model which adopts two types of autoencoder. A
generic autoencoder is used to capture the generic features which are common
to all intrusions, while several ad-hoc autoencoders are trained with the aim to
capture patterns that are specific only to particular groups of intrusions. Com-
bining these two feature maps the authors propose a new feature map to classify
the intrusions by means of the random forest classifier.

However, autoencoders are often used also in recent studies for anomaly
detection purposes. In this context they are mainly components of a more
complex network, specially crafted with the aim to design sophisticated

226 M. Catillo et al.

detectors. In [20] the authors propose Kitsune, an unsupervised learning app-
roach to detect attacks online. Kitsune’s core algorithm is KitNet, which uses
a collection of auto-encoder neural networks to distinguish between normative
and abnormal traffic. The approach involves the integration of multiple autoen-
coders into a classifier. Experimental results show that Kitsune is effective with
different attacks, and its performance is as outstanding as offline detectors. In
[29], instead, the authors propose an effective deep learning method, namely
autoencoder-IDS (AE-IDS) based on random forest. In particular, they use the
random forest algorithm to select the actual features from the original dataset.
The main innovation of the approach lies in the combination of 3-layer shal-
low autoencoders and traditional unsupervised machine learning clustering algo-
rithm. The experimental results show that the proposed approach, evaluated by
means of the CSE-CIC-IDS 2018 dataset, is superior to traditional machine
learning methods in terms of easy training, strong adaptability and high detec-
tion accuracy. A further heterogeneous ensemble method for intrusion detection
is proposed by Zhong et al. [30]. In particular, the authors propose HELAD (Het-
erogeneous Ensemble Learning Anomaly Detection), an unsupervised approach
where an autoencoder is combined with a long short-term memory (LSTM) pre-
dictor. The authors evaluate their approach by means of the MAWILab3 and
CICIDS2017 datasets. The experimental results show that the HELAD algo-
rithm has better adaptability and accuracy than other state-of-the-art algo-
rithms. Min et al. [19] propose a network intrusion detection method using
a memory-augmented deep autoencoder (MemAE), which can solve the over-
generalization problem of autoencoders. MemAE solves this problem by bringing
the reconstruction of the attack inputs closer to the normal sample through the
memory module. Experiments are conducted on the NSL-KDD, UNSW-NB15,
and CICIDS2017 datasets.

It is worth pointing out that all the aforementioned autoencoder systems
adopt fairly sophisticated infrastructures. The detection of different classes of
anomalies has been recently addressed by means of system log analysis and a
deep autoencoder [2]: the proposed approach, called AutoLog, is based solely on
a deep autoencoder network without any kind of artifice in the infrastructure.

3 Background and Datasets

3.1 Autoencoders (AE)

An autoencoder (AE) is a feedforward neural network where the output layer
has the same dimension as the input layer. In fact, the purpose of an AE is
to “reconstruct” the input at the output layer. The middle hidden layer of an
autoencoder is also known as the bottleneck layer and its dimension is lower
than the input/output layer. Figure 1 shows the representation of a basic autoen-
coder with three hidden layers.

It is possible to design different types of autoencoders [10]. In particular, deep
learning can be applied to autoencoders: multiple hidden layers are used to pro-
vide depth. The resulting network is known as deep or stacked autoencoder [27].

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 227

Fig. 1. Representation of an autoencoder.

An autoencoder consists of two parts: encoder and decoder. Let x be an
input vector of n real numbers [x1, x2, ..., xn], the encoder maps x to a code
vector or hidden representation y at the bottleneck layer. On the other hand,
the decoder transforms y into a vector of n real numbers z = [z1, z2, ..., zn]. It
tends to reconstruct the input vector x from y. Encoding-decoding formulas are
given in Eq. 1 and Eq. 2. They represent the case of a “basic” autoencoder with
only one hidden layer:

y = σ(Wx + b) (1)

z = σ′(W ′y + b′) (2)

where W , W ′, b and b′ are weight matrices and bias vectors, while σ and σ′ are
activation functions.

Regardless of the architecture, an autoencoder has one primary objective:
reconstruct its input as accurately as possible. The goodness of the reconstruc-
tion is given by the reconstruction error (RE), which measures the difference
between the reconstructed, i.e., z, and the original version of the input, i.e., x:

RE =
1
n

n∑

i=1

(zi − xi)2 (3)

where zi and xi (with 1 ≤ i ≤ n) denote the components of the output and input
vector, and n is the dimensionality.

3.2 AE for Classification and Evaluation Metrics

The rationale underlying the use of the AE for classification is that it can be
trained to reconstruct a given set of inputs. After training, the autoencoder will
reconstruct accurately, i.e., obtaining low RE, future points “similar” to those
used for training, while it will reconstruct badly, i.e., obtaining high RE, future
points “different” from those used for training.

228 M. Catillo et al.

Threshold Setting. In order to discriminate good from bad reconstructions
we rely on a cutoff threshold value. The threshold is the value of RE over
which the flows are considered malign. In our first attempts [3], the threshold
was set in a supervised manner, reserving a small part of the dataset in hand to
obtain an optimal balance between false positives (benign flows falling over the
threshold) and false negatives (malign flows under the threshold). In our attempt
to set up an autoencoder that never sees malign flows and it is potentially fit
to detect any type of attack, we resorted successively to a threshold set at a
given percentile of the RE [2]. This approach was not completely satisfactory,
because it may produce some false positives. In this paper, thresholds are set
in unsupervised manner (i.e., without any cognition of the attack flows) by
considering the outliers produced in the reconstruction of the benign flows used
in the training step.

Evaluation Metrics. The overall performance of the classification is measured
by analyzing the typical metrics of recall (R), precision (P), false positive rate
(FPR), and F1 score. These metrics are computed as follows:

R =
TP

TP + FN
P =

TP

TP + FP
(4)

FPR =
FP

FP + TN
F1 score = 2 · P · R

P + R
(5)

where True Positive (TP) and True Negative (TN) represent the points that
are correctly classified, while False Positives (FP) and False Negatives (FN)
indicate misclassifications. For example, TP is the set of attack points whose RE
is higher that the threshold; similarly, TN is the set of normal points whose RE
is lower that the threshold.

3.3 Reference Dataset: CICIDS2017

CICIDS2017 is a flow-based dataset based on CICFlowMeter1. The flows synthe-
size the characteristics of any interaction between two systems on the net, and
can be generated from network captures by many existing tools. CICFlowMeter
derives from a tool originally conceived to recognize the type of encrypted traf-
fic and provides detailed information on the flow of packets occurring and their
timing. Table 1 shows the 83 features associated with a flow by CICFlowMeter. It
is a fact that this information can be successfully exploited to recognize malign
flows, which is the primary aim of an IDS.

Extensive research on erroneously classified flows lead us to discover that
often the attack flows contained in CICIDS2017 do not really harm a correctly-
configured server [5] and that the flows produced by the original release of the
CICFlowMeter tool –commonly used in the context of IDS research– contain
inexplicable flows. These are actually fragments of an incorrectly truncated flow.
A patch to the latter issue was recently provided in [8], along with a new version
1 https://github.com/ahlashkari/CICFlowMeter.

https://github.com/ahlashkari/CICFlowMeter

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 229

Table 1. The features of a network flow produced by CICFlowMeter

Feature Short Feature Short Feature Short

Flow ID f1 Fwd IAT Std f29 ECE Flag Count f57

Source IP f2 Fwd IAT Max f30 Down/Up Ratio f58

Source Port f3 Fwd IAT Min f31 Average Packet Size f59

Destination IP f4 Bwd IAT Total f32 Avg Fwd Segment Size f60

Destination Port f5 Bwd IAT Mean f33 Avg Bwd Segment Size f61

Protocol f6 Bwd IAT Std f34 Fwd Avg Bytes/Bulk f62

Timestamp f7 Bwd IAT Max f35 Fwd Avg Packets/Bulk f63

Flow Duration f8 Bwd IAT Min f36 Fwd Avg Bulk Rate f64

Total Fwd Packets f9 Fwd PSH Flags f37 Bwd Avg Bytes/Bulk f65

Total Backward Packets f10 Bwd PSH Flags f38 Bwd Avg Packets/Bulk f66

Total Length of Fwd Packets f11 Fwd URG Flags f39 Bwd Avg Bulk Rate f67

Total Length of Bwd Packets f12 Bwd URG Flags f40 Subflow Fwd Packets f68

Fwd Packet Length Max f13 Fwd Header Length f41 Subflow Fwd Bytes f69

Fwd Packet Length Min f14 Bwd Header Length f42 Subflow Bwd Packets f70

Fwd Packet Length Mean f15 Fwd Packets/s f43 Subflow Bwd Bytes f71

Fwd Packet Length Std f16 Bwd Packets/s f44 Init Win bytes forward f72

Bwd Packet Length Max f17 Min Packet Length f45 Init Win bytes backward f73

Bwd Packet Length Min f18 Max Packet Length f46 act data pkt fwd f74

Bwd Packet Length Mean f19 Packet Length Mean f47 min seg size forward f75

Bwd Packet Length Std f20 Packet Length Std f48 Active Mean f76

Flow Bytes/s f21 Packet Length Variance f49 Active Std f77

Flow Packets/s f22 FIN Flag Count f50 Active Max f78

Flow IAT Mean f23 SYN Flag Count f51 Active Min f79

Flow IAT Std f24 RST Flag Count f52 Idle Mean f80

Flow IAT Max f25 PSH Flag Count f53 Idle Std f81

Flow IAT Min f26 ACK Flag Count f54 Idle Max f82

Fwd IAT Total f27 URG Flag Count f55 Idle Min f83

Fwd IAT Mean f28 CWE Flag Count f56

of both CICIDS2017 and CICFlowMeter: the experimentation presented in this
paper is based on the fixed version of CICIDS20172.

We consider 490,968 flows related to normal traffic and Denial of Service
(DoS) attacks, the CICIDS2017 capture of Wednesday, July 5, 2017. Flows are
split into three disjoint subsets used for training, validation and test by a strat-
ified sampling strategy with no replacement. This means that the ratio between
benign and attack classes of the total flows is preserved in the splits. Flows are
divided as follows:

– CICIDS-TRAINING: 70% of the total (i.e., 343,680) divided into 223,430
BENIGN and 120,250 ATTACK flows;

– CICIDS-VALIDATION: 15% of the total (i.e., 73,644), divided into 47,877
BENIGN and 25,767 ATTACK flows;

– CICIDS-TEST: 15% of the total (i.e., 73,644), divided into 47,877 BENIGN
and 25,767 ATTACK flows.

2 https://downloads.distrinet-research.be/WTMC2021/tools datasets.html.

https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html

230 M. Catillo et al.

4 Proposed IDS Approach with a Single AE

The idea of leveraging a relatively simple neural network and to train it with
normative traffic (thus using a semi-supervised approach), making it possible to
detect intrusions simply because of their divergence from the “normal” behavior
the AE was trained on, is indeed fascinating. Our first results, obtained by
setting the threshold with a supervised approach (balancing false positives and
false negatives on a labeled portion of the dataset) and published in [3], were
not so bad (F1 score = 0.942), but inferior to those obtained by supervised
detection methods [18]. A successive attempt exploiting three AEs lead to better
performance [6].

In the following, we discuss our best practices for setting up an AE for suc-
cessful intrusion detection, using the above mentioned dataset as case study. It is
worth noting that out of the 83 features in Table 1, six of them (f1–f5, f7) can be
neglected outright for detection purposes –it is too easy to detect malign flows
in a dataset by exploiting the IP of the attacker– as such, the initial experiment
is conducted with the 77 features in Table 2. We will demonstrate that even a
single-AE design can obtain remarkable results, avoiding unnecessary complica-
tions and undue overhead. Along with our indications for AE tuning and set-up,
we will outline the research issues still open.

Table 2. Initial features used in experiments

77-features set

f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,

f30, f31, f32, f33, f34, f35, f36, f37, f38, f39, f40, f41, f42, f43, f44, f45, f46, f47, f48, f49, f50, f51,

f52, f53, f54, f55, f56, f57, f58, f59, f60, f61, f62, f63, f64, f65, f66, f67, f68, f69, f70, f71, f72, f73,

f74, f75, f76, f77, f78, f79, f80, f81, f82, f83

4.1 AE Dimensions and Depth

The first step to set-up an AE for intrusion detection is to choose a suitable form
factor, i.e., the number of levels and neurons at each level. Given the number of
input and output units, which are necessarily equal to the number of features
considered, it is necessary to choose the number of hidden levels and the number
of units at each level. Unfortunately, there are no rules to guide this choice, and
so the only way is to proceed by trial and error.

Almost unexpectedly, we have found that the number of levels and units is
not a particularly-critical parameter. It is possible to obtain low RE with three
hidden levels (encoding-bottleneck-decoding), or with five hidden levels as well.
The only criticality is the number of units at the bottleneck, which have to hold
the encoded flow state. In the case of network flow processing considered here
we have found the best results by using a bottleneck made of 6 up to 8 units.

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 231

In the following, we will always present results relative to a 48-24-8-24-48 relu
units deep AE.

It is interesting to note that there exist frameworks to automatize the search
of a “good” network (e.g., Keras optimizers). For a simple network such as our
AE, we think that the use of extensive optimization procedures is overkill.

4.2 Training and Validation

Unlike the previous step, the modality of training is critical to obtain high detec-
tion performance. The AEs we have used for IDS are always trained in semi-
supervised mode. By semi-supervised training we mean that a subset of the
dataset in hand is reserved for training, from which only the normative traffic
(benign label) is selected: during training, the AE sees no flows related to attacks.
Benign flows are presented in input to the AE, whose weights are progressively
tuned trying to obtain low RE, i.e., an output as close as possible to the flow
presented in input, feature by feature.

The rationale is to instruct the AE to reproduce normative flows, hoping
that any divergence with respect to a “benign behavior” could lead to a high
reconstruction error, making it possible to recognize attack flows. We will not
discuss here if an AE could be some sort of “universal” detector. The issue is
tough; however, at the state of the art there is evidence that, even if an AE can
be fooled by a hand-crafted or adversarial learning-produced attack, it tends to
behave better than supervised networks for unseen attack flows (see for example
the experiments reported in [3,4]).

Our AEs are implemented by the ubiquitous deep learning framework Keras,
which in its turn founds on Tensorflow. As for any learning framework, train-
ing is based on training-validation sets (i.e., CICIDS-TRAINING and CICIDS-
VALIDATION after having filtered out the attack flows). When the training is
started, the AE neurons are randomly initialized and input data are presented
in batches through a given number of epochs. The system tries to minimize the
loss, setting aside a small ratio of reserved data to validate the optimization
actions performed –modifications of the weights in the network– so as to signal
overfitting. A solution is to compute the loss as the mean squared error at the
output units; this matches the definition of reconstruction error (RE) above.

Issue 1: The training process is highly dependent on the hardware running
Keras/Tensorflow.

Different CPUs (or GPUs) will lead to different schedules of the threads used
for optimization in the training phase, and in the end to different weights in the
network. The same is true for the seed of the pseudo-random generator used
for units initialization. This is a physiologic characteristic of machine learning
environments as Keras/Tensorflow: while we would expect only a slight variabil-
ity of the results from run to run due to the seed, this is not the case for a
semi-supervised autoencoder to be used for intrusion detection, as shown in the
following subsection.

232 M. Catillo et al.

(a) seed = 1116, F1 = 0.9851 (b) seed = 4, F1 = 0.8904

Fig. 2. Reconstruction error for different seed values measured with the test set
(CICIDS-TEST).

4.3 Results

It is a fact that all possible trainings on the same input data lead to fairly similar
loss values. In other words, whatever the hardware used or the random seed, it
works. The bad surprise is that at equal values training losses do not correspond
equal abilities to detect malign flows.

Issue 2: A successful training leading to low loss values does not guarantee
good classification performance.

Figure 2 shows two plots of the reconstruction error obtained on the CICIDS-
TEST file (i.e., the split of benign and malicious flows held out from training) by
the same AE in perfectly equal conditions, let aside the random seed value. Both
networks are perfectly able to recognize benign flows, which are mostly under the
threshold. However, in the plot on the right the dots corresponding to malign
flows are in a lower position, and so the detection performance is completely
unsatisfactory. Simply by changing the seed, the F1 score falls from 0.9851 (a
fairly good result) to 0.8904 (an unsatisfactory detection performance). Most
notably, the two networks have similar final training loss values (1.2119e−04
and 1.3234e−04, respectively), but different detection performance.

The RE (or the loss measured by Keras, which is the same) is a mean
of squares, extended to all features. The loss being equal, the contributions
of the single features may be distributed differently. Possibly, one of the non-
deterministic distribution of weights might lead to high error on the features that
are most fit to recognize a given type of attack. There is no possible solution,
as the attempt to provide an “universal” detector makes it impossible to assign
higher weights to some of the features when computing the loss, simply because
we do not know which could be the most relevant features for an unknown or
new type of attack.

Issue 3: The seed used to start the random sequence generation matters, in
that it leads to different trained models.

This is an open research issue. For the time being, the only viable solution
is to validate the training performed using a (labeled) subset of the dataset (the
validation file reserved for this purpose), and try to change the random seed until

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 233

(d) Slowhttptest-anova (e) Slowhttptest-mutual (f) Slowhttptest-rndforest

(a) Hulk-anova (b) Hulk-mutual (c) Hulk-rndforest

Fig. 3. Scores of the 77 features, Hulk and Slowhttptest from USBIDS1 dataset

Table 3. Reduced sets of features used in experiments

67-features set

f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,

f30, f31, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f45, f46, f47, f48, f49, f50, f51, f52, f53, f54,

f55, f57, f58, f59, f60, f61, f68, f69, f70, f71, f72, f73, f74, f75, f76, f77, f78, f79, f80, f81, f82, f83

57-features set

f6, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,

f30, f31, f32, f33, f34, f35, f36, f37, f41, f42, f43, f44, f45, f46, f47, f48, f49, f50, f51, f52, f53, f54,

f55, f57, f58, f59, f60, f61, f68, f70, f71, f72, f73, f75

47-features set

f6, f8, f9, f10, f11, f12, f13, f15, f16, f17, f19, f20, f21, f22, f23, f24, f25, f27, f28, f29, f30, f32, f33,

f34, f35, f36, f37, f41, f42, f43, f44, f46, f47, f48, f49, f50, f51, f53, f54, f58, f59, f60, f61, f71, f72,

f73, f75

satisfactory results are obtained. It is clear that this process leads to a detector
able to manage at best the attacks present in the dataset, but that possibly could
be less successful for different types of attack.

5 Feature Selection

Feature selection techniques are widely used in the intrusion detection context to
help obtain higher detection accuracy, neglecting the features which are redun-
dant or statistically do not contribute significantly to the classification of flows.
Out of the features listed in Table 1, it is very unlikely that all of them are use-
ful for detection purposes. Sometimes a few ones are constant through all the
dataset, and so have no utility for flow classification. Given the problems linked
to the mean used to compute the loss discussed in Subsect. 4.3, any reduction of
the number of features actually used can help to obtain, being equal the loss, an

234 M. Catillo et al.

Fig. 4. Reconstruction error and confusion matrix of the 47-features AE

Table 4. Classification performance of the feature sets

77-features set 67-features set 57-features set 47-features set

R 0.988 0.987 0.986 0.987

P 0.976 0.982 0.984 0.987

FPR 0.013 0.009 0.008 0.007

F1 0.982 0.984 0.985 0.987

AE better tuned to the “significant” features. But, once again, without knowing
the characteristic of attacks is not possible to know which features can be useful
for malign flow recognition and which are useless.

Figure 3 shows a sample of the results of widely used statistical tests (ANOVA
f-test, mutual information statistic, random forest) performed on different type
of attacks3. Each histogram reports the scores (y-axis) of the 77 features (x-
axis). Higher score means higher contribution to the classification of the flow as
a malign one. As can be seen at a glance comparing the histograms, the set of the
most relevant features is not uniform across all types of attack, and also depend
on the statistical test performed. In light of the above, selecting only some of the
77 features can help detection, but the detector loses “universality”, as at least in
principle unknown attacks could be spotted by the neglected features. However,
a reasonable trade-off can be made by neglecting a small number of features
which are ranked in the lowest positions according to the tests performed.

We have tried to discard the lowest-ranked 10, 20 and 30 features, obtain-
ing “reduced” sets of 67, 57 and 47 features, respectively, as shown in Table 3.
As expected, reducing the features helps a bit to obtain good classification per-
formance. Table 4 shows the P, R, FPR and F1 values obtained; the best per-
formance is obtained with the 47-features set. Most notably, the reduction of
features makes it possible to halve the false positive rate. However, it should be
noted that this might involve bad classification performance on unseen attacks
(i.e., those not present in the dataset used to compute the feature rankings).

3 Attacks are taken from the USB-IDS-1 dataset.

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 235

5.1 Results

As previously shown in Table 4, the best performance results have been obtained
by the AE processing 47 features, with seed = 1062 and 90 training epochs. In
Fig. 4 we present the graph of the RE over the testing set and corresponding the
confusion matrix. Maybe further tuning could help to obtain a slightly higher
performance, but at these levels of precision and recall, it is likely to would be
simply a waste of time, since the flows misclassified are only 674 (329 + 345)
on a total of 73,644 test flows. By the way, many of these flows are “tails” of
long-duration flows (namely, those generated by slow DoS attacks) that have
been truncated after the standard CICFlowMeter timeout of 120 s.

Our figures are comparable with the results obtained on the CICIDS2017 or
similar datasets by supervised methods [22] or by AEs as components of more
complex classification architectures. For example, the authors of HELAD system
[30] –autoencoder combined with a long short-term memory– achieve an F1 score
of 0.995. The performance is even worse –F1 score of 0.955 for DoS slowloris–
for the approach using memory-augmented deep auto-encoder (MemAE) [19].

In our opinion, resorting to a single “basic” AE without any assistance from
other neural networks or complex feature selection methods is a clear advan-
tage in term of simplicity of training and tuning, use of processing power at
recognition time. Another strong point of our solution is good adaptability to
unknown attacks, as only feature selection –which is just an option, not a strict
requirement– requires a minimum notion of the attacks to be detected. A solu-
tion as ours requires no powerful or specialized processor, and is amenable to
processing large quantity of data in real-time. This is why we claim that “simpler
is better” and promote the use of a single autoencoder in future IDS designs.

6 Lessons Learned and Conclusion

In this paper we have explored the use of a single autoencoder to classifly network
flows for intrusion detection purposes. We have presented the results of several
year of research on this topic, the lessons learned and the open research issues.
It is worth summarizing the main lessons learned throughout our research on
AE for network flow classification:

– if the AE is developed by Keras/Tensorflow, the trained models obtained with
the same training data on different computing systems (alternative CPUs or
GPUs) are likely to differ;

– the seed used to start the random sequence generation matters, in that leads
to different trained models;

– trained models characterized by similar values of loss can be very different as
far as their classification performance is concerned. Hence, multiple models
should be produced and suitably tested on a validation subset of the dataset
so as to make it possible to choose the one with the best performance;

236 M. Catillo et al.

– a rigorous feature selection procedure requires information on the attacks to
be detected. If this information is available, discarding scarcely significant
features can improve classification accuracy. However, this is obtained at the
expense of possible accuracy losses on unconsidered attacks.

The results obtained show that a single AE can obtain classifications accu-
racy comparable to the ones published in the research literature for supervised
networks and for more complex designs built around one or several AEs. Our sin-
gle autoencoder detection scheme is less probe to transferability problems than
supervised schemes and can be more easily tuned and managed than designs
adopting AE as components.

The accuracy results obtained on the CICIDS2017 dataset leave little room
for further improvements. Our future research will oriented to the study of a
training procedure and to the production of normative training data able to
pave the way to the set up of an autoencoder able to recognize even unseen
attack flows with reasonable accuracy.

References

1. Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., Villano, U.: USB-IDS-1: a
public multilayer dataset of labeled network flows for IDS evaluation. In: Proceed-
ings International Conference on Dependable Systems and Networks Workshops
(DSN-W), pp. 1–6. IEEE (2021)

2. Catillo, M., Pecchia, A., Villano, U.: AutoLog: anomaly detection by deep autoen-
coding of system logs. Expert Syst. Appl. 191, 116263 (2022)

3. Catillo, M., Rak, M., Villano, U.: Discovery of DoS attacks by the ZED-IDS
anomaly detector. J. High Speed Netw. 25(4), 349–365 (2019)

4. Catillo, M., Del Vecchio, A., Pecchia, A., Villano, U.: Transferability of machine
learning models learned from public intrusion detection datasets: the CICIDS2017
case study. Softw. Qual. J. (2022). https://doi.org/10.1007/s11219-022-09587-0

5. Catillo, M., Pecchia, A., Rak, M., Villano, U.: Demystifying the role of public
intrusion datasets: a replication study of DoS network traffic data. Comput. Secur.
108, 102341 (2021)

6. Catillo, M., Rak, M., Villano, U.: 2L-ZED-IDS: a two-level anomaly detector for
multiple attack classes. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Tak-
izawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp. 687–696. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44038-1 63

7. Dina, A.S., Manivannan, D.: Intrusion detection based on machine learning tech-
niques in computer networks. Internet Things 16, 100462 (2021)

8. Engelen, G., Rimmer, V., Joosen, W.: Troubleshooting an intrusion detection
dataset: the CICIDS2017 case study. In: 2021 IEEE Security and Privacy Work-
shops (SPW), pp. 7–12. IEEE (2021)

9. Feng, S., Duarte, M.F.: Graph regularized autoencoder-based unsupervised fea-
ture selection. In: Proceedings International Conference on Signals, Systems, and
Computers, pp. 55–59. IEEE (2018)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

https://doi.org/10.1007/s11219-022-09587-0
https://doi.org/10.1007/978-3-030-44038-1_63

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection 237

11. Jiang, J., Han, G., Liu, L., Shu, L., Guizani, M.: Outlier detection approaches based
on machine learning in the Internet-of-Things. IEEE Wirel. Commun. 27(3), 53–59
(2020)

12. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detec-
tion systems: techniques, datasets and challenges. Cybersecurity 2(1), 1–22 (2019).
https://doi.org/10.1186/s42400-019-0038-7

13. Kilincer, I., Ertam, F., Sengur, A.: Machine learning methods for cyber security
intrusion detection: datasets and comparative study. Comput. Netw. 188, 107840
(2021)

14. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neu-
ral networks. AIChE J. 37(2), 233–243 (1991)

15. Kunang, Y.N., Nurmaini, S., Stiawan, D., Zarkasi, A., Firdaus, Jasmir: Automatic
features extraction using autoencoder in intrusion detection system. In: Proceed-
ings International Conference on Electrical Engineering and Computer Science
(ICECOS), pp. 219–224. IEEE (2018)

16. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep
learning-based network anomaly detection. Clust. Comput. 22(1), 949–961 (2017).
https://doi.org/10.1007/s10586-017-1117-8

17. Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., Garćıa-Teodoro, P.,
Therón, R.: UGR’16: a new dataset for the evaluation of cyclostationarity-based
network IDSs. Comput. Secur. 73, 411–424 (2017)

18. Maseer, Z.K., Yusof, R., Bahaman, N., Mostafa, S.A., Foozy, C.F.M.: Benchmark-
ing of machine learning for anomaly based intrusion detection systems in the
CICIDS2017 dataset. IEEE Access 9, 22351–22370 (2021)

19. Min, B., Yoo, J., Kim, S., Shin, D., Shin, D.: Network anomaly detection using
memory-augmented deep autoencoder. IEEE Access 9, 104695–104706 (2021)

20. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of
autoencoders for online network intrusion detection. In: Proceedings Interna-
tional Conference of Network and Distributed System Security Symposium (NDSS)
(2018)

21. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: Proceedings Interna-
tional Conference Military Communications and Information Systems Conference,
pp. 1–6. IEEE (2015)

22. Panigrahi, R., et al.: Performance assessment of supervised classifiers for design-
ing intrusion detection systems: a comprehensive review and recommendations for
future research. Mathematics 9(6), 690 (2021)

23. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of
network-based intrusion detection data sets. Comput. Secur. 86, 147–167 (2019)

24. Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward generating a new intru-
sion detection dataset and intrusion traffic characterization. In: Proceedings Inter-
national Conference on Information Systems Security and Privacy, pp. 108–116.
SciTePress (2018)

25. Taher, K.A., Mohammed Yasin Jisan, B., Rahman, M.M.: Network intrusion detec-
tion using supervised machine learning technique with feature selection. In: Pro-
ceedings International Conference on Robotics, Electrical and Signal Processing
Techniques (ICREST). IEEE (2019)

26. Thakur, S., Chakraborty, A., De, R., Kumar, N., Sarkar, R.: Intrusion detection
in cyber-physical systems using a generic and domain specific deep autoencoder
model. Comput. Electr. Eng. 91, 107044 (2021)

https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1007/s10586-017-1117-8

238 M. Catillo et al.

27. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

28. Wei-Chao, L., Shih-Wen, K., Chih-Fong, T.: CANN: an intrusion detection system
based on combining cluster centers and nearest neighbors. Knowl. Based Syst. 78,
13–21 (2015)

29. XuKui, L., Wei, C., Qianru, Z., Lifa, W.: Building auto-encoder intrusion detection
system based on random forest feature selection. Comput. Secur. 95, 101851 (2020)

30. Zhong, Y., et al.: HELAD: a novel network anomaly detection model based on
heterogeneous ensemble learning. Comput. Netw. 169 (2020)

A Proposal for FPGA-Accelerated Deep
Learning Ensembles in MPSoC Platforms

Applied to Malware Detection

Alessandro Cilardo , Vincenzo Maisto(B) , Nicola Mazzocca ,
and Franca Rocco di Torrepadula

Department of Electrical Engineering and Information Technologies (DIETI),
University of Naples Federico II, Naples, Italy

{acilardo,vincenzo.maisto2,nicola.mazzocca,
franca.roccoditorrepadula}@unina.it

Abstract. Ensembles of Deep Neural Networks can be profitably
employed to improve the overall network performance in a range of appli-
cations, including for example online malware detection performed by
edge computing systems. In such edge applications, which are often dom-
inated by inference operations, FPGA-based MPSoC platforms may play
a competitive role compared to GPU devices because of higher energy
efficiency. Furthermore, their hardware reconfiguration capabilities offer
a perfect match with the requirement of model diversity posed by Ensem-
ble Learning. This exploratory short paper presents a research plan
towards an FPGA-based MPSoC platform exploiting dynamic partial
reconfiguration in edge systems for accelerating Deep Learning Ensem-
bles. We present the background and the main rationale behind our envi-
sioned architecture. We also present a preliminary security analysis dis-
cussing possible threats and vulnerabilities along with the mitigations
enabled by the architecture we plan to develop.

Keywords: Deep learning ensemble · MPSoC · FPGA · Malware
detection

1 Introduction

Deep Neural Networks (DNNs) have today become ubiquitous. Emerging
approaches towards improved performance in DNNs include solutions based
on combining outputs from different networks by voting or more sophisticated
approaches. The combined use of different models is referred to as Ensemble
Learning (EL) and has been explored in different domains, as model diversity
featured by EL enables more accurate and robust results. Among other appli-
cation domains, DNNs have been applied to security-related tasks, such as mal-
ware detection [13,17]. EL can bring significant benefits in this field, as it can
help reduce false negatives and detect more complex attacks. In that respect,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 239–249, 2022.
https://doi.org/10.1007/978-3-031-14179-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_16&domain=pdf
http://orcid.org/0000-0002-1685-8736
http://orcid.org/0000-0002-1631-1597
http://orcid.org/0000-0002-0401-9687
http://orcid.org/0000-0003-4099-5244
https://doi.org/10.1007/978-3-031-14179-9_16

240 A. Cilardo et al.

online malware detection is an important application area for Edge Comput-
ing (EC) systems, referring to systems placed at the edge of a distributed net-
worked infrastructure. In this work, we focus on dedicated acceleration of Deep
Learning computing tasks. While Graphics Processing Units (GPUs) are the
leading technology for DNN acceleration in high-end general-purpose comput-
ing environments, Field-Programmable Gate Arrays (FPGAs) have proven to
be competitive in terms of energy efficiency for edge applications dominated by
DNN inference. Furthermore, hardware reconfiguration capabilities offered by
FPGAs provide a perfect match with the requirement of model diversity posed
by Ensemble Learning.

Driven by the above considerations, this exploratory short paper presents
a research plan towards an FPGA-based Multi-Processor System-on-Chip
(MPSoC) platform exploiting dynamic partial reconfiguration in edge systems for
accelerating Deep Learning Ensembles, with possible applications to online mal-
ware detection. We analyse the state of the art and observe that current FPGA-
based MPSoC platforms support fully fledged software stacks, even including vir-
tualization. Based on that, we aim at a scenario where run-time hardware recon-
figurability is exploited in a hypervisor-based hardware/software co-designed
architecture to offer a pool of virtualized functionalities, which are loaded on-
demand to the FPGA fabric [15,22]. Indeed, as we discuss in the paper, virtu-
alization can provide support for isolation at the platform level, a key security
property improving the attack confinement capabilities of the architecture. We
anticipate the possible adoption of Virtual Machine Introspection (VMI) tech-
niques to collect data related to the execution of user Virtual Machines (VMs) [8],
then analysed through DNNs or Ensembles of DNNs to detect anomalies, e.g.,
malware or intrusions [3].

The rest of the paper is organised as follows. Section 2 describes the back-
ground that is relevant for our proposal, including Ensemble Learning, DNN-
based solutions for malware detection, and state-of-the-art platforms for DNN
acceleration in edge applications. Section 3 presents the hardware/software archi-
tecture we envision for our research plan, along with a preliminary security
analysis discussing possible threats and mitigation strategies. Finally, Sect. 4
concludes the paper with a few final remarks.

2 Preliminaries and Related Works

2.1 Ensemble Learning

Although Deep Learning techniques are able to obtain considerable levels of accu-
racy, Neural Networks (NNs) are still prone to mistakes. Ensemble Learning [21]
is a way to address this issue by combining the outputs of several NNs through
voting or more sophisticated operations. The benefit of Ensemble Learning can
be explained through the bias-variance decomposition, in which the error of a
Machine Learning model can be calculated as the sum of three terms, namely:
the bias, caused by erroneous assumptions in the learning algorithm; the vari-
ance, related to an excessive sensitivity of the model to the variations of the

A Proposal for FPGA-Accelerated Deep Learning Ensembles 241

training set; the irreducible error, resulting from noise in the problem itself,
which cannot be avoided. In order to increase the model performance we need
to reduce the bias, by better fitting the data, and the variance, by reducing
the overfitting. To achieve this objective, EL combines several models that are
different in terms of structure/technique or the training set [9]. Several policies
are available to combine models’ outputs. The easiest way is majority voting, in
which the output class is the one predicted by the majority of models. In case of
numeric outputs, a simple strategy is computing the average of the outputs. On
the other hand, a more complex solution is stacking Ensemble Learning, where
the output aggregator is another learner, namely the metalearner.

Ensemble Learning for Malware Detection. Malwares are malicious soft-
wares designed to exploit vulnerabilities of computer systems, with the intention
of altering core functions, stealing or corrupting sensitive data, or monitoring
users activities [13,17]. Several Machine Learning techniques have been applied
to malware detection. They can be broadly classified into a static and a dynamic
approach: the former analyses malware code without executing it, the latter exe-
cutes the malware to analyse its behavior [1]. However, the use of Machine Learn-
ing requires a phase of feature engineering, preliminary to the classification step,
which is time consuming and can be easily invalidated by small changes in mal-
wares [24]. Deep Learning can mitigate this problem, as it automatically performs
feature extraction [23]. Furthermore, Nataraj et al. [14] demonstrated that: 1) a
malware binary file can be represented as a grey scale image; 2) through this rep-
resentation, malwares of the same family have common visual pattern. Based on
this result, Convolutional Neural Networks (CNNs) can be effectively exploited
for malware detection, by setting the problem as an image-classification one [13].
Nevertheless, selecting the best model for a specific problem is a complex task
and the variety of possible malwares may potentially degrade the effectiveness
of a trained model. Therefore, EL can be effective also in this domain, as it per-
mits combining multiple models to improve performance [21]. For instance, Sang
et al. [17] use different methods to extract features from portable executable files,
and then DNNs with different structural complexity to detect malwares. The
DNN output, i.e. the probability values, are combined by computing their aver-
age. Saharkizan et al. [16] designed a system to detect cyber-attacks against IoT
systems. They integrate a set of Long Short-Term Memory (LSTM) modules,
and then merge their outputs using a decision tree. Last, Yan et al. [24] extract
different malware representation (i.e., greyscale image and opcode sequence) and
combine the CNN and the LSTM to detect malware. On the one hand, by using
the CNN they learn from the greyscale image. On the other hand, with LSTM
they analyse the opcode sequence. The DNN outputs are then combined with a
stacking Ensemble approach.

Ensemble Learning at the Edge. The Edge Computing paradigm refers to
technologies allowing computation to be performed at the edge of the network,
on downstream data on behalf of cloud services and upstream data on behalf of

242 A. Cilardo et al.

IoT services [19]. The main advantages is the reduction of network overhead and
latency. For this reason, some studies propose approaches to employ Ensemble
Learning at the edge, whenever the latency caused by the cloud is not acceptable
for the task to be performed. For example, in [25] the authors use EL at the edge
for anomaly detection in e-healthcare systems. They combine weak classifiers
selected with a Classification and Regression Tree classifier (a type of decision
tree algorithm) by majority voting. In [2], an Ensemble of DNNs is used for
image classification on IoT devices. To deal with the limited resources of an IoT
environment, the authors use pruned DNNs.

2.2 Deep Learning Hardware Solutions

GPUs have become the leading hardware technology for Deep Learning algo-
rithms. However, GPUs are energy-hungry devices and are not viable for applica-
tions with limited energy budgets. Ensemble techniques further increase require-
ments in terms of computation, hence energy consumption. This poses a poten-
tial limitation to the use of Deep Learning in the embedded realm. In order to
replace GPUs, matrix/tensor co-processors from industry (i.e., Google TPUs)
and academia [5] have been developed and matrix extensions [12] have been
added to Intel R© ISA for server processors. Albeit effective in their respective
fields of application, these approaches do not match the requirements of an
embedded system.

Quantization. Deep Learning applications require the movement of large
amounts of data, which causes increased energy consumption. Reducing the vol-
ume can thus simultaneously boost performance and energy efficiency. A com-
mon approach in this direction is network quantization. Such technique consists
in reducing the precision of the data types for the network weights and biases,
from floating-point to fixed-point, short integers, and even binary values, i.e.,
Binarized Neural Networks (BNNs) [6]. This approach can be adopted in the
training and/or inference phase. Other techniques, like pruning, layer merging,
and parameter sharing can be also used to reduce the computational needs and
the energy consumption of the network.

Implementing DNNs on FPGAs. During the last years FPGA technologies
have made their entrance in the Deep Learning domain. Hardware reconfigura-
tion makes them a good candidate for synthesizing Deep Learning co-processors,
although the number of logic and memory elements available for synthesis lim-
its parallelism and performance. In that respect, quantization can help reduce
synthesis requirements of a co-processor, increasing energy efficiency and perfor-
mance. Targeted at edge applications, current FPGA-based MPSoC platforms
provide tight integration of general-purpose CPUs and the reconfigurable hard-
ware fabric, enabling lower energy consumption and simplifying collaborative
CPU-FPGA computation. Although FPGAs can be used for both training and
inference, they are best fit for inference when the model is deployed on the field,
while training is performed offline. There are two main approaches for imple-
menting DNNs accelerators on FPGAs: 1) instruction-based programmable co-

A Proposal for FPGA-Accelerated Deep Learning Ensembles 243

processors, or 2) model-specific hardware accelerators. The former allows us to
re-use the same device for the execution of a stream of instructions, compiled
from a DNN model. The latter can only execute one model. This poses a trade-
off as a more specialised accelerator can deliver better performance in terms
of execution time and energy consumption, while a more general co-processor
offers greater programmability. Examples of frameworks from Xilinx R© include
Vitis-AI1 featuring the Deep Learning Processing Unit (DPU) programmable
solution, and the FINN framework [20], supporting the synthesis of specialised
BNNs accelerators. Both of these approaches use quantization and only sup-
port CNNs. Above we mentioned how RNNs, and LSTMs in particular, are
also relevant Deep Learning schemes for malware detection. Similarly to CNNs,
FPGA accelerators for RNNs have been proposed in the literature, e.g., [10].
The hardware logic for CNNs and RNNs is inherently different and, typically,
FPGA-based accelerators do not support both CNNs and RNNs at the same
time. The interested reader can refer to [4] for a detailed discussion.

Dynamic Partial Reconfiguration. FPGAs can be fully reconfigured at run-
time for deploying another instance of an accelerator. The downside of this
approach is that the timing overhead of full configuration can be nonnegligi-
ble. Modern FPGAs support Dynamic Partial Configuration (DPR), allowing
reconfiguration of a subset of the device with lower time overheads. DPR has
been used in several research works to time-multiplex layers of DNNs on an
FPGA [7,18]. In this exploratory paper, we propose the use of DPR to enlarge
the pool of hardware functionalities, rather than fit larger models, while at the
same time reducing the reconfiguration time. Such feature will enable the accel-
eration of CNNs and RNNs on the same integrated platform. In order to increase
the portability and extensibility of our design, we plan to use the Linux FPGA
Manager driver2 to handle partial and full reconfiguration. This will allow us to
possibly contribute to the Linux project and port our hardware/software design
on FPGA architectures from different models and vendors.

Deep Learning Ensembles on FPGA. Most of the work in the literature
concerning the implementation of DNN accelerators on FPGAs focuses on the
execution of a single DNN per run. Supporting ensembles of DNNs, presented
in Sect. 2.1, requires the capability of executing a pool of heterogeneous DNNs.
In edge settings, FPGAs are a preferred solution compared to GPUs because of
reduced energy requirements, while DPR can enable a pool of diverse DNNs to
be integrated in the same platform by changing the hardware functionality at
run-time with minimal overhead. Furthermore, FPGA-based MPSoC platforms
support fully fledged software stacks, even including virtualization. In server set-
tings, virtualization of accelerators has been explored [15,22], e.g. by means of
Single Root I/O Virtualization (SR-IOV) technology of PCI Express R©, letting
physical devices expose Virtual Functions, internally mapped to Physical Func-
tions, each assigned by the Hypervisor to a single Virtual Machine. Likewise, we

1 https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.
2 https://www.kernel.org/doc/html/v4.19/driver-api/fpga/fpga-mgr.html.

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.kernel.org/doc/html/v4.19/driver-api/fpga/fpga-mgr.html

244 A. Cilardo et al.

envision a scenario where a virtualization layer in the MPSoC platform will sup-
port multiple DNN acceleration Virtual Functions, which time-share the FPGA
fabric, assigned by the Hypervisor to one of multiple user Virtual Machines.

3 A Proposal for an FPGA-Based MPSoC EL Platform

This exploratory short paper is aimed to define a research plan towards an
FPGA-based MPSoC platform exploiting DPR for accelerating Deep Learning
Ensembles. In this section, we describe the envisioned hardware/software archi-
tecture and a preliminary vulnerability analysis. We address a situation where
different applications/processes run on the same system, each being a poten-
tial target of a malware. The considerable degree of diversity in this scenario
encourages the use of an Ensemble of DNNs, as discussed earlier. In principle,
each DNN model would require a different co-processor. Furthermore, we aim to
confine a malware affecting an application, preventing it from impacting other
applications. Therefore, we identify the following key requirements for our archi-
tecture (Fig. 1):

1. offer a rich pool of diverse DNN accelerators;
2. provide secure access to them;
3. securely isolate applications;
4. support monitoring of applications with Deep Learning techniques;
5. deploy the architecture on a compact and integrated hardware platform;
6. limit the complexity of the software ecosystem.

Fig. 1. Conceptual architecture and functionalities provided per layer.

3.1 System Architecture

This section provides a detailed discussion of the various components of the
envisioned architecture (depicted in Fig. 2(a)) and anticipates the technical chal-
lenges for the future developments of our planned research.

A Proposal for FPGA-Accelerated Deep Learning Ensembles 245

(a) Software Architecture (b) Hardware Platform Management

Fig. 2. Details of the proposed architecture.

Hypervisor-Based Architecture. We envision a hypervisor-based architec-
ture since virtualization technologies, like para- or full-virtualization, provide iso-
lation among VMs, integrity, and confidentiality of data and computation. User
applications will be deployed in User VMs. The latter are considered untrusted
entities, as they might threat both other VMs and the hardware platform itself.
By using virtualization, we plan to improve the confinement capabilities of the
platform in case of a malware attack to a specific user VM. We discard container-
based virtualization, like Docker or Linux Containers (LXC), since it lacks iso-
lation between containers and introduces a nonnegligible complexity for device
virtualization. Separation-based hypervisors, like Jailhouse, are also not fit for
our device-sharing requirements. The hardware would be statically assigned to
VMs, and once a VM is launched, in a so-called cell, the hypervisor loses control
on the resources assigned to it. Although we plan to use FPGA-level virtual-
ization, the complexity behind sharing physical resources by mapping statically
assigned virtual devices is out of the scope of our proposal. Last, the device vir-
tualization capabilities available in the software stack of state-of-the-art MPSoC
platforms offer a perfect framework for heterogeneous accelerator virtualization.
As for traditional device virtualization, we plan a split-driver architecture.

Detection Module. The detection module is in charge of performing malware
detection with advanced Deep Learning techniques, used within an Ensemble
learning approach, as discussed earlier. Note that if the detection module were
deployed in a User VM, it could easily become the target of a malware tamper-
ing with the VM. For this reason, we envision the deployment of the detection
module in a privileged VM, namely the Monitoring VM. In this way, thanks
to the isolation enforced by the hypervisor, an attacker is precluded from tar-
geting this module from within a User VM. One technical option enabled by
the use of a Monitoring VM is the ability to detect malware by inspecting VM
performance and resource utilization metrics, obtained through Virtual Machine
Introspection [3], a technique for monitoring the activity of VMs as a black box,
e.g., from a privileged VM [11]. VMI will thus be considered as a technique
supporting intrusion/malware detection in our plan.

Hardware Platform Management. In Sect. 2.2 we outlined the potential of
FPGA-based MPSoC platforms matching the key requirement of DNN accelera-

246 A. Cilardo et al.

tor diversity. We plan to leverage the support for DPR and virtualization to offer
a variety of DNN accelerators on the same hardware with time-sharing access
to the FPGA fabric. The envisioned architecture can be integrated in a single
FPGA-based MPSoC hardware platform, avoiding the complexity of external
acceleration management and hence improving energy efficiency.

Hardware Allocator. The hardware platform is managed by the hardware
allocator, responsible for DNN accelerators. It works as a proxy in a client-
proxy-server driver architecture. Client VMs submit DNN inference requests to
the module, which forwards each request to the low-level driver of a compatible
accelerator or, potentially, to an available CPU in case of software emulation.
As soon as a request is assigned to a hardware accelerator, it is immediately
served in case the accelerator is already available on the FPGA. Otherwise,
exploiting DPR the FPGA fabric is reconfigured with the required hardware
design, loaded from an external memory in the form a bitstream, and then the
request is served. Figure 2(b) also shows how inference requests are fed to the
hardware allocator through a queue, which is in charge of enforcing priorities
and security policies. The key requirement is to maximise the utilization of the
currently loaded co-processor, while enforcing possibly conflicting security poli-
cies. Reconfiguration operations are time-consuming and should be minimised by
proper scheduling, i.e., performed in idle FPGA cycles. As part of our research
plan, we will carefully evaluate the timing overheads and reliability implications
of frequent reconfiguration operations.

3.2 Preliminary Security Analysis

This section discusses possible attacks, threats and vulnerabilities our system
might face, along with proposed mitigations and trade-offs.

First, as mentioned in Sect. 3.1, the proposal of a hypervisor-based architec-
ture ensures isolation among VMs, integrity, and confidentiality of data. Further-
more, the deployment of the detection module in a privileged monitoring VM
precludes an attacker from targeting this module from within a User VM. The
VMI mechanism is employed to inspect the performance and resource utilization
metrics of VMs, from the outside, in order to perform malware detection.

Denial of Service (DoS). Exposing the same hardware and accelerators to
untrusted User VMs threats the availability of the platform. Therefore, we must
reserve a finite amount of bandwidth for inference requests to each VM and
prioritise requests of privileged VMs over User VMs. Furthermore, user infer-
ence operations will be completely preemptable. This is in contrast with those
of the Monitoring VM, which have to be prioritised and served with a larger and
granted bandwidth. This conservative approach causes a quality of service degra-
dation for User inference, as they are served with a best effort policy, but it is
necessary to allow the sharing of resources and defend from malicious behaviours.

A malicious user might try to stall or slow down the system with maliciously
designed data which he/she can place in memory. Therefore, a kill switch will
be added to inference requests. Such behaviour can be easily implemented with

A Proposal for FPGA-Accelerated Deep Learning Ensembles 247

a reset sequence. This poses a requirement on the interface of the accelerators,
which must always provide an effective and efficient reset interface.

We choose to disallow the synthesis of custom designs on the FPGA fabric.
If this were the case, a malicious user could corrupt the state of the underlying
hardware, e.g., by indefinitely stalling its own inference requests with the help
of its custom hardware design. A time bound on the inference time could not be
enforced, since the reset signal could be ignored by the malicious accelerator.

Side-channel attacks are theoretically possible from several sources:

State of the Accelerators. A possible mitigation is to force a reset sequence on
the accelerator at the beginning of each User inference request. Depending on
the type of accelerator, the states it holds might not be a security asset. For
accelerators where this is the case, the reset sequence can also be a simple stop
operation for the kill switch discussed above.

Parallel Execution of Several Accelerators. Depending on the hardware require-
ments of each design, two or more accelerators could be accommodated in the
FPGA fabric at the same time, and executed in parallel. We choose to disallow
this for both performance and security-related reasons. FPGA-based MPSoC
platforms usually offer a single memory interface from the FPGA to memory.
Parallel execution of accelerators will cause interference and performance degra-
dation. More importantly, this also violates the user-isolation requirement of a
virtualized system.

Service Time of the Inference. An attacker could derive the reconfiguration time
of the FPGA fabric by measuring the service time of its requests. Such informa-
tion could expose the single accelerator and the Ensemble configuration. In case
this information is sensitive, a mitigation technique is necessary: the service time
of User inference requests will have to be forced to a constant value with respect
to the particular data input or the DNN required. This approach is conservative
and causes a significant performance degradation, as the enforced constant time
must account for the longest reconfiguration-inference time among the available
accelerators. Therefore, in our plan this feature will be optional.

4 Conclusion

This exploratory short paper draws a research plan towards an FPGA-based
MPSoC platform exploiting dynamic partial reconfiguration in edge systems
for accelerating Deep Learning Ensembles, with possible applications to online
malware detection. We analysed the security and functional requirements of
such a platform and discussed the opportunities and challenges posed by its
implementation. We also presented a preliminary security analysis discussing
possible threats and mitigation strategies. A central aspect of the envisioned
architecture lies in its hypervisor-based organization, enabling malware detection
and monitoring strategies such as Virtual Machine Introspection. Virtualization
will also support the effective management of a rich pool of DNN accelerators to

248 A. Cilardo et al.

be used for Ensemble Learning, and will enable isolation at the platform level
as a key security property improving attack confinement capabilities.

Acknowledgements. This work was partly founded by the PON “Ricerca e Inno-
vazione” 2014–2020, Azione IV.5, Ministerial Decree n. 1061 of the Italian Ministry of
University and Research.

References

1. Abdelsalam, M., Krishnan, R., Huang, Y., Sandhu, R.: Malware detection in cloud
infrastructures using convolutional neural networks. In: 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD), pp. 162–169. IEEE (2018)

2. Alhalabi, B., Gaber, M.M., Basura, S.: MicroNets: a multi-phase pruning pipeline
to deep ensemble learning in IoT devices. Comput. Electr. Eng. 96, 107581 (2021)

3. Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J., Aslam, J., Kaeli, D.: Virtual
machine monitor-based lightweight intrusion detection. ACM SIGOPS Oper. Syst.
Rev. 45(2), 38–53 (2011)

4. Blaiech, A.G., Khalifa, K.B., Valderrama, C., Fernandes, M.A., Bedoui, M.H.: A
survey and taxonomy of FPGA-based deep learning accelerators. J. Syst. Architect.
98, 331–345 (2019)

5. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circuits 52(1), 127–138 (2017). https://doi.org/10.1109/JSSC.2016.2616357

6. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: training deep neural networks with weights and activations constrained
to +1 or −1 (2016). https://doi.org/10.48550/ARXIV.1602.02830

7. Farhadi, M., Ghasemi, M., Yang, Y.: A novel design of adaptive and hierarchical
convolutional neural networks using partial reconfiguration on FPGA. In: 2019
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7 (2019).
https://doi.org/10.1109/HPEC.2019.8916237

8. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: NDSS, vol. 3, pp. 191–206. Citeseer (2003)

9. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Comput. 4(1), 1–58 (1992)

10. Guan, Y., Yuan, Z., Sun, G., Cong, J.: FPGA-based accelerator for long short-
term memory recurrent neural networks. In: 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 629–634 (2017). https://doi.org/
10.1109/ASPDAC.2017.7858394

11. Hebbal, Y., Laniepce, S., Menaud, J.M.: Virtual machine introspection: techniques
and applications. In: 2015 10th International Conference on Availability, Reliability
and Security, pp. 676–685. IEEE (2015)

12. Intel R©: Intel R© Architecture Instruction Set Extensions and Future Features (2021)
13. Kalash, M., Rochan, M., Mohammed, N., Bruce, N.D., Wang, Y., Iqbal, F.: Mal-

ware classification with deep convolutional neural networks. In: 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS),
pp. 1–5. IEEE (2018)

14. Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, pp. 1–7 (2011)

https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.48550/ARXIV.1602.02830
https://doi.org/10.1109/HPEC.2019.8916237
https://doi.org/10.1109/ASPDAC.2017.7858394
https://doi.org/10.1109/ASPDAC.2017.7858394

A Proposal for FPGA-Accelerated Deep Learning Ensembles 249

15. Pinneterre, S., Chiotakis, S., Paolino, M., Raho, D.: vFPGAmanager: a virtualiza-
tion framework for orchestrated FPGA accelerator sharing in 5G cloud environ-
ments. In: 2018 IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting (BMSB), pp. 1–5 (2018). https://doi.org/10.1109/BMSB.2018.
8436930

16. Saharkhizan, M., Azmoodeh, A., Dehghantanha, A., Choo, K.K.R., Parizi, R.M.:
An ensemble of deep recurrent neural networks for detecting IoT cyber attacks
using network traffic. IEEE Internet Things J. 7(9), 8852–8859 (2020)

17. Sang, D.V., Cuong, D.M., Cuong, L.T.B.: An effective ensemble deep learning
framework for malware detection. In: Proceedings of the Ninth International Sym-
posium on Information and Communication Technology, pp. 192–199 (2018)

18. Seyoum, B., Pagani, M., Biondi, A., Balleri, S., Buttazzo, G.: Spatio-temporal
optimization of deep neural networks for reconfigurable FPGA SoCs. IEEE Trans.
Comput. 70(11), 1988–2000 (2021). https://doi.org/10.1109/TC.2020.3033730

19. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

20. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network
inference. In: Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, February 2017. https://doi.org/10.1145/
3020078.3021744

21. Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and
anomaly detection. In: Proceedings of the Workshop on Big Data Analytics and
Machine Learning for Data Communication Networks, pp. 1–6 (2017)

22. Vu, D.V., Sander, O., Sandmann, T., Baehr, S., Heidelberger, J., Becker, J.:
Enabling partial reconfiguration for coprocessors in mixed criticality multicore
systems using PCI express single-root I/O virtualization. In: 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14), pp. 1–6
(2014). https://doi.org/10.1109/ReConFig.2014.7032516

23. Xiao, Y., Xing, C., Zhang, T., Zhao, Z.: An intrusion detection model based on
feature reduction and convolutional neural networks. IEEE Access 7, 42210–42219
(2019)

24. Yan, J., Qi, Y., Rao, Q.: Detecting malware with an ensemble method based on
deep neural network. Secur. Commun. Netw. 2018, 1–16 (2018)

25. Yao, W., Zhang, K., Yu, C., Zhao, H.: Exploiting ensemble learning for edge-
assisted anomaly detection scheme in e-healthcare system. In: 2021 IEEE Global
Communications Conference (GLOBECOM), pp. 1–7. IEEE (2021)

https://doi.org/10.1109/BMSB.2018.8436930
https://doi.org/10.1109/BMSB.2018.8436930
https://doi.org/10.1109/TC.2020.3033730
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1109/ReConFig.2014.7032516

Automated Threat Modeling Approaches:
Comparison of Open Source Tools

Daniele Granata(B) , Massimiliano Rak , and Giovanni Salzillo

Department of Engineering, University of Campania Luigi Vanvitelli, via Roma 29,
81031 Aversa, CE, Italy

{daniele.granata,massimiliano.rak,giovanni.salzillo}@unicampania.it

Abstract. The software systems of modern architectures are character-
ized by high heterogeneity and by the use of a model that delegates the
control of individual components to third parties, making these systems
more vulnerable to cyber-attacks. As a consequence, best practices, such
as the Security-by-Design development methodologies, suggest taking
into account security all over the systems life cycle, starting from the very
early stages (e.g. from initial requirement analysis). Thus, one of the most
relevant practices is Threat Modeling (TM), i.e. the activity devoted to
identifying the possible threats that may affect the system. According to
most security-related best practices, TM should be done as early as pos-
sible, in order to help in the requirement elicitation. Threat Modeling is a
complex activity, that requires security experts with consolidated skills,
able to predict and anticipate the possible issues: as a consequence, it is
a costly activity, both in terms of time and money. Due to the continuous
need of enforcing security, the effect of new regulation and the wide diffu-
sion of ICT systems, there is a recent growth of tools and techniques that
support and aims at automatizing Threat modelling activities. This work
illustrates the approach adopted by our research team and compares the
results of our technique with two other existing tools, in order to offer
a brief overview of the state of the art of threat modelling automation
techniques and of state of art limits and open research topics. It is worth
noting that our comparison does not aims at being complete and focuses
only on open tools (or on their free/community version), but offers a
basis for understanding the progress of security automation processes in
terms of threat modelling.

Keywords: Security · Threat modelling · Security assessment

1 Introduction

Nowadays, Software systems are more and more complex and heterogeneous.
Due to the widespread use of such IT solutions, the process of ensuring their
security has become a strong requirement, as evidenced by the new regulations
(e.g. GDPR, Cybersecurity Act) that impose hard privacy and security require-
ments. However, it is not easy to take into account security in application devel-
opment and the problem grows up in emerging paradigms, like the Cloud, that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 250–265, 2022.
https://doi.org/10.1007/978-3-031-14179-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_17&domain=pdf
http://orcid.org/0000-0002-6776-9485
http://orcid.org/0000-0001-6708-4032
http://orcid.org/0000-0001-6491-9655
https://doi.org/10.1007/978-3-031-14179-9_17

Automated Threat Modeling Approaches 251

delegate resources and services to third parties. Cloud-native applications, as
an example, often rely on micro-services architectures and/or on the integra-
tion of Commercial-Off-The-Shelf (COTS) components, an approach that has
great advantages in terms of costs and time-to-market, but heavily affects the
security. In order to address the security, best practices suggest the adoption of
threat modeling and risk analysis methodologies that allow the security admin-
istrator to obtain (in a preliminary way) information on the security problems
from the early stages of the software life cycle. The adoption of these proce-
dures increases awareness of cybersecurity issues in all the involved personnel
and allows the security administrator to evaluate and accordingly manage the
risk, applying mitigation strategies. However, at the state of the art, there is a
lack of standards and consolidated practices devoted to helping security admin-
istrators systematically apply security checks and mitigate threats [22]. As a
consequence, there are many tools that offer support to threat modeling, but
each relies on (i) different modeling approaches and (ii) describing threats and
threat models in different ways. This paper aims at offering a simple descrip-
tion of the main open source tools, describing the threat modeling approaches
on which the tools rely and the results they are able to produce. In particular,
this paper focuses on three different tools, that adopt different modeling tech-
niques: Threat Modeling tool by Microsoft [1], Threat Dragon by OWASP [11]
and Sla-Generator [12] which implements the methodology proposed in MUSA
H2020 European research project. The comparison was carried out on a simple,
but significant case study, involving a well-known Content Management System
(CMS) platform: Wordpress. The remainder of the paper is organized as follows:
Section 2 briefly summarizes the threat modeling techniques proposed in litera-
ture, while Sect. 3 describes the three tools that we addressed in our analysis.
Section 4 compares the tools, using the Wordpress application as a basis for the
comparison. Finally, Sect. 5 summarizes our conclusions and future work.

2 Threat Modeling Practices

Threat modelling processes give an organized representation of all the informa-
tion that influences the security of an application and it can be related to a
wide run of things, as stated by OWASP [9], threat modeling works to iden-
tify, communicate, and understand threats and mitigations within the context of
protecting something of value. As highlighted by the OWASP threat modelling
manifesto [17], threat modeling aims at achieving thoroughness and reproducibil-
ity by applying security and privacy knowledge in a structured manner. It is also
supported by some tools that allow you to enable repeatability and provide mea-
surability. The use of threat modelling provides a structured representation of all
the information that affects the security of an application and it can be applied
to a wide range of things, including software, applications, systems, networks,
distributed systems, Internet of Things (IoT) devices, and business processes.

At the state of the art, there are various methodologies that aim at mod-
elling the threats applicable to a system, one of the related problems is that

252 D. Granata et al.

these practices are (often) carried out by a human and require a lot of execu-
tion time [21]. In order to reduce the time of these practices, there are, at the
state of the art, some automated (or semi-automated) approaches: Schaad et al.
[19] proposed a STRIDE-based threat modelling technique for software archi-
tecture diagrams. They introduced their own conceptual data model, consisting
of assets, asset shapes and components. These concepts can be used to describe
software systems and perform security evaluations. Additionally, they imple-
mented a supporting tool, TAM, that performs an automated threat analysis,
based on the described assets. Casola et al. [6–8] proposed a Security-by-Design
methodology to evaluate the security of IoT systems by the means of an almost
automated process for threat modeling and risk assessment. Their approach also
helps at identifying the security controls to implement in order to mitigate the
existing security risks. We invite the interested reader to deepen the existing
automated [10,14,15] and semi-automated [4,20] threat modeling approaches.
As a summary, the state of the art highlights, as can be seen especially from
the literature review in [22], that there is a wide need for automating the full
process, leaving to humans only the role of final control result and evaluation.

3 Threat Modeling Tools

As outlined in the previous section, even if threat modeling is a well accepted
practice, it commonly relies on security expert skills and experience. As a conse-
quence, there are no standards that aim at listing possible threats. As an exam-
ple, the standard ISO 15408, Common Criteria, imposes a structured section
for security threats and security objectives (the countermeasures to address the
threats), but, while security requirements are catalogued in long documents,
threats should be defined case-by-case in the standard documents (security pro-
files and/or security target) by the expert for the specific product or class of prod-
ucts. However, Security experts are costly and the human-driven threat modeling
is costly both in terms of money and time. Accordingly, there are now a few tools
that aim at offering support to experts in threat modeling, simplifying the work,
requiring less experienced experts (most of the threats are catalogued) and offer-
ing solution that produce the models in limited time. According to our studies,
three of this tools are the most interesting ones: Microsoft Threat Modeling Tool,
which is probably the most largely adopted one, the OWASP Threat Dragon,
supported by the OWASP consortium, and the SLAgenerator tool, developed
in the H2020 MUSA European project. In the following we briefly outline the
threat modeling approaches they support.

3.1 Microsoft Threat Modeling Tool

Microsoft Threat Modeling Tool we tested was released in September 2018 [1].
It aims at reducing threat modelling times, generating the threats to which a
system is subjected automatically, relying on a model of the system. The system
under analysis (SuA) is modeled by the user through a graph-based model. The

Automated Threat Modeling Approaches 253

user has the possibility to choose various stencils to be included in the applica-
tion. Each node of the graph represents an application service, while each edge
indicates a Generic Data Flow (i.e. Request or Response). The Microsoft Model-
ing technique requires that each node is characterized by two labels: Component
type and Component Value. The first one describes the type of the compo-
nent while the second provides further functional information. Most of the pairs
(componenttype, componentvalue) are shown in Table 1. For instance, a node
can represent a generic database, so it can be modelled as a Generic Data Store
type and Database value. The table does not represent all possible values for
brevity’s sake.

Table 1. Example values related to each Component Type.

Component type Component value

Generic Data Store Azure Cosmos DB

Azure Key Vault

Azure Redis Cache

Database

Cache

Generic External Interactor Browser

Dynamics CRM Mobile Client

IoT Device

Generic Process Azure AD

Azure ML

Host

Web Application

IoT Cloud Gatewat

Once the application is modeled, the tool generates a threat report automat-
ically. Threats are associated with each interaction between components. Each
threat is selected from a proprietary catalog taking into account the type of
components involved in the interaction and the type of interaction. For exam-
ple, requests made by a web application toward a storage service can generate
the SQL Injection threat. In addition to providing threats associated with sys-
tem assets, the tool suggests possible mitigations selected from a proprietary
Microsoft database.

3.2 OWASP Threat Dragon

Threat Dragon is a free, open-source, cross platform threat modelling appli-
cation based on diagram models and rule engine to auto-generate threats and
mitigations [5]. It supports STRIDE [3] classification and CIA. The tool was

254 D. Granata et al.

presented during the OWASP Open Security Summit in June 2020 by OWASP
Lab Project and it is available as open-source code in [11]. The tool requires
the application to be modelled through a graph-based model in which the nodes
represent the components, while the edges define the transfer of data between
them. Each node can be: (i) A generic running process, (ii) An actor or (iii) A
component that stores the data. Each element (node or edge) is characterized
by a set of attributes that can be used to identify its security problems. All the
parameters related to each element of the graph are described in the Table 2.

Table 2. Parameters related to each Component Type.

Component type Parameters

Actor Provide authentication

Process Handle card payment

Is a web application

Handles goods and services

Store Is a log

Stores credentials

Stores inventory

Is encrypted

Is signed

Data Flow Protocol

Is encrypted

Is over a public network

The pair (componentType, associatedParameters) is used to obtain the
threats associated with the component/flow (i.e. asset) of the diagram. For exam-
ple, a store that has is encrypted as a parameter may be subject to the Vulnerable
encryption algorithm threat that could lead a malicious user to obtain data out
of the application. The threats are obtained from the related catalog [16] in a
fully automatic way. The user can also define some custom threats and associate
them with each element of the application. For each pair (asset, threat), the tool
asks the user for the Threat status (Open or Mitigated) field and a priority level
(Low, Medium, high) and then suggest a list of possible Mitigations.

3.3 SLAGenerator

The SLAGenerator threat modelling technique [12,18] relies on MACM (Multi-
purpose Application Composition Model) an expressive model that describes
WHAT to assess and test. The MACM is a graph-based modelling technique
in which each graph node represents a component of the system, and each edge
characterizes the existing connection between two different components. MACM

Automated Threat Modeling Approaches 255

offers a simple way to synthesize an application architecture, focusing on its
main components and relationships, enabling the security evaluation automation
of the assessed systems. Nodes have a primary label, which identifies the asset
class and may have a secondary label, which further specifies the primary class.
Moreover, each node has a set of properties that better describe more specific
aspects. A mandatory property is the Asset Type, which specifies the functional
behaviour of the asset represented by the node. The allowed Asset Types for a
node depends on the labels. Labels and supported Asset Types are listed and
described in Table 3.

Table 3. MACM node labels and assets.

Primary label Secondary label Asset type(s) Description

CSC CSC.Human A customer that uses

services

CSP CSP A service Provider like

Amazon, Google, or a

telecom provider

Service IaaS VM, Container Virtual Machine or

Containers

Service PaaS VM, Container Virtual Machine or

Containers

Service SaaS Service.Web, Service.DB,

Service.IOTGW,

Service.MQTTBroker

Software (typically COTS)

offered as a service

Network WAN Internet A wide area Network,

typically the Internet

Network LAN Network.WiFi,

Network.Wired

Network, the assets differs

depending on the involved

technologies

Network PAN Network.BLE,

Network.ZigBee

Personal Area Network, the

assets differs depending on

the involved technologies

HW HW.server, HW.PC,

HW.UE

HW.micro, HW.IOTDevice

A physical hosting

hardware

The possible relationships between the nodes are uses, hosts, provides, con-
nects, described extensively in some works, cited above. In order to manage the
MACM model the tool represent them in a graph database, namely Neo4j. The
MACM is preliminary produced by the user in Neo4j and then requested by
the tool (available at link1) for the threat modeling phase. The tool commu-
nicates with the graph database, obtaining the correctly modeled applications.
The technique selects all the threats applicable to the SuA by evaluating the
asset-type field of each component (i.e. MACM node). The technique relies on
a Threat Catalogue, which organizes the threats according to their asset type.
The catalogue describes the threats with 8 parameters, as shown in Table 4.
1 https://github.com/DanieleGranata94/SlaGenerator.

https://github.com/DanieleGranata94/SlaGenerator

256 D. Granata et al.

Table 4. Threat catalogue template

Threat catalogue field Description

Threat A synthetic high-level label of the behaviour

Asset type The asset typology to which the threat is subject

Relationship Relation Type

Protocol Protocol used in the communication

Role in relationship Role in communication

Behaviour Detailed description of the threat

STRIDE Stride classification [3]

Compromised Which assets the malicious behaviour compromises

A threat can be linked to an asset (asset type) or a communication protocol.
For this reason, some fields may be left blank. For example, if a threat affects a
specific asset typology, i.e. the Read DB Configuration threat for a service.DB
asset type, both the relationship and role fields are left unspecified.

The Compromised field indicates the asset that is compromised by the mali-
cious behaviour and it can assume the following values:

– self, if the threat compromises only the node specified by the asset type;
– source(relation), when it compromises the node pointing from the arch;
– target(relation), when it compromises the node pointed by the arch;

It is worth noting that when the Compromised field is source or target, the
argument relation can be uses, connects or hosts. The threats are then obtained
by the tool by considering both the asset-type field of the component and the
related communication protocols used by the component. The tool also suggests,
for each selected threat, one (or more) NIST SP-800-53 [13] controls.

4 Tool Comparison

In this chapter we want to compare the different threat modeling tools and
the approaches they adopt. In order to show the differences, we will use a very
common application, typically executed on a cloud infrastructure: an e-commerce
site developed on top of WordPress. Considering this application, we modeled
the system with the three different tools and documented the threat modelling
results each tool offered.

4.1 The WordPress Case Study

WordPress is an open source content management system, which allows the
creation and distribution of an Internet site made up of textual or multimedia
contents, which can be managed and updated dynamically. The web application
WP is hosted on a cloud virtual machine on top of an Apache web server and

Automated Threat Modeling Approaches 257

interfaced with a mySQL database. In order to enable scalability, the WordPress
component can be deployed multiple times, reusing always the same Database
(that can scale only vertically, i.e. adding memory and/or CPU to the hosting
VM). A Load Balancer distributes the Client requests to the connected WP
instances. The developer simply customizes the WP instances, through custom
plugins and customizing the application behaviour.

Even if the development of such systems is simple and commonly relies on
very limited skills from the developer/system administrators, the application
manages money and personal data, so it has strict security requirements. It must
be considered that an incredible amount of WordPress instances on the web are
vulnerable (see [2]), due to incorrect security planning and management.

4.2 Microsoft Tool Analysis

The Microsoft tool allowed us to describe the Wordpress application in complete
way, as it supports a large number of stencils. As described above, the Microsoft
tool considers the interactions between components (arcs of the graph) as assets
and obtains security information by evaluating the type of the two components
involved in the communication (Fig. 1).

Fig. 1. Microsoft tool model Wordpress

In order to model the application, the client was modeled as a Browser, while
Wordpress and Load Balancer as a Web Application. MySQL Database instead
was modelled as a Database component value. Each service is running on a
Host node. Once the used has modelled the application, the tool automatically
generates the threats for each asset (i.e. threat model) by producing a report in
HTML format. Part of the threat model is described in the Table 5.

It is important to note that the threat model shows, in this case, three values
as asset field: sourcenode, typeofrelationship, destinationnode. From the results
it can be noted that, for example, each service exposes some threats in the
relation to the Generic process it hosts. As an example, a malicious user can get
sensitive data from the service configuration files. A possible countermeasure that
the tool suggests is to encrypt only the configuration files that contain sensitive

258 D. Granata et al.

Table 5. Part of the Threat Model Wordpress using Microsoft tool.

Asset Threat STRIDE Mitigation

VM-hosts-
Service

An adversary can gain
access to sensitive data
stored in Web App’s
config files

Tampering Encrypt sections of
Web App’s
configuration files that
contain sensitive data

Client-request-
LoadBalancer

An adversary can steal
sensitive data like user
credentials

Spoofing Explicitly disable the
autocomplete HTML
attribute in sensitive
forms and inputs, ...

LoadBalancer-
request-
Wordpress

An adversary can
reverse weakly
encrypted or hashed
content

Information
Disclosure

Do not expose security
details in error
messages, Implement
Default error handling
page

Wordpress-
request-
MySQL

An adversary can gain
access to sensitive data
by sniffing traffic to
database

Information
Disclosure

Ensure SQL server
connection encryption
and certificate
validation

data. The sending of the access credentials by the user to the service can also be
compromised. In fact, a malicious user can steal these data in different ways. In
order to reduce the risk that this threat happens, Microsoft tool suggests some
countermeasures. Ad an example, the user can disable the auto-complete HTML
attribute in sensitive forms and inputs. The analysis also shows problems related
to the use of weak encryption algorithms in the communication between the Load
Balancer and Wordpress. In fact, a malicious user can intercept the packets
containing the encrypted data and apply an encryption reversing algorithm to
recover the plain-text data.

4.3 Dragon Analysis

We modeled the system using Threat Dragon diagram tool. The number of
stencils available is limited, so, as shown in Fig. 2, The Wordpress application
was modeled using only the Process, Store and Actor.

Fig. 2. Threat Dragon model Wordpress

Automated Threat Modeling Approaches 259

Load Balancer and Wordpress were modeled as two processes, while for the
Client and Mysql Database we have chosen the stencil of Actor and Store respec-
tively. Each node of the graph communicate through a DataFlow relationship.
As highlighted in the previous section, the tool considers both the nodes and
the arcs of the graph as assets (i.e. resource to be protected). Each asset has a
set of properties aimed at selecting the related threats, as shown in the Table 6.
We modeled the Load Balancer service and Wordpress application as a Web
Application. In particular, we assumed that the Wordpress-based website is an
e-commerce (manages payment cards) that stores data and encrypted credentials
in a MySQL database. Each communication is made on a public network with
http protocol. Considering the selected parameters, the tool automatically col-
lects threats (i.e. threat name, description and STRIDE classification) for each
component of the application and suggests the related mitigations. A partial list
of threats for each component is shown in the Table 7. As the user can access from
a public network, a malicious user can exploit a fingerprinting threat against the
data exchange between the client and the load balancer, sending specific requests
to obtain information in order to profile the application. The Wordpress-based
web application on the other hand it can be subject to Card Cracking threat
since it manages payment cards. In this case, the malicious user can carry out a
brute force attack on the payment process in order to identify the missing values
of the card (i.e. expiry date, security code etc.) A brute force attack prevention
system can (partially) mitigate the threat.

Table 6. Parameters related to each Component Type.

Component Selected parameters

Client Provide authentication

Load Balancer Web application

Handles goods and services

Wordpress Web application

Handles goods and services

Handles card payment

MySQL Database Stores credentials

Is a stores inventory

Is encrypted

Each Data Flow protocol: http

Is over a public network

260 D. Granata et al.

Table 7. Part of the Threat Model Wordpress using Dragon TM.

Asset Threat Description STRIDE Mitigation

Client →
Load
Balancer

Fingerprinting Specific requests
are sent to the
application
eliciting
information in
order to profile
the application

Information
Disclosure

Defence includes
restricting what
information is
provided, for
example version
numbers and package
details

Use
encryption

Unencrypted
data sent over a
public network
may be
intercepted and
read by an
attacker

Information
Disclosure

Data should be
encrypted either at
the message or
transport level

Load
Balancer

Sniping Automated
exploitation of
system latencies
in the form of
timing attacks

Elevation
of
privileges

Anti-automation and
prevention of abuse
of functionality

Wordpress Denial of
Service

Usage may
resemble
legitimate
application usage
but leads to
exhaustion of
resources

Elevation
of
privileges

Providing backoff,
resource
management and
avoiding forced
deadlock

Card Cracking Brute force
attack against
application
payment card
process to
identify the
missing values

Information
Disclosure

Interaction
frequency, preventing
brute force attacks
and anti-automation

MySQL
Database

Account
Creation

Bulk account
creation, and
sometimes profile
population, by
using the
application’s
account signup
processes

Elevation
of
privileges

Interaction
frequency,
enforcement of a
single unique a
action and
enforcement of
behavioral workflow

Automated Threat Modeling Approaches 261

4.4 SLAgenerator Analysis

Figure 3 shows the MACM model of our case study. Each label affect the color
of the nodes, while attributes are not visible in the picture. As anticipated, the
system is composed of a Cloud Service Provider (e.g. Azure or a private Cloud)
that provides three virtual machines. Which are labeled as IaaS, and their Asset
Type is VM, e.g. virtual machine. One VM hosts a Load Balancer service while
the other two VMs host respectively a WordPress instance and a MySQL a
database instance. We modeled the Load Balancer (LB) and WordPress (WP)
as SaaS nodes and we set their Asset Type as Web Application. The MySQL
instance, instead, was labeled as a SaaS, but with Database (DB) value as Asset
Type. The LB uses the WP that, in turn, uses the DB. The Client (modeled
as a CSC node) uses the Load Balancer service, that acts as application inter-
face. Each SaaS service is connected to the public Network. Applying our threat
modelling technique we produce a list of threats but, for simplicity’ sake we
report in Table 8 just one for each asset type. The full list of Threats is not
compatible with the length of the paper. The results show how nodes labelled
as SERVICE.Web can be subject to Injection threat in which an attacker legit-
imately sends commands to the exposed service without proper authorization.
In order to mitigate this threat, we suggest the usage of NIST Control SI-10,
Invalid input validation. The tool also models the threats associated with the
Network, such as Message Reply threat for which an attacker can re-transmit
some packets (previously intercepted) in order to obtain data.

Fig. 3. Wordpress MACM

262 D. Granata et al.

Table 8. Part of the Threat Model Wordpress using SlaGenerator.

Asset Asset type Threat Description STRIDE NIST Control

Wordpress SERVICE.Web Injection The attacker’s hostile

data can trick the

interpreter into executing

unintended commands

Tampering SI-10 Invalid

input validation

MySQL

Database

SERVICE.DB Remote DoS Made the DBMS

unaccessible to remote

clients

Denial Of

Service

SC-5, DoS

Protection

VMs SERVICE.VM Authorization

Abuse

An adversary is able to

circumvent the

authorization controls

Elevation of

privileges

CA-6

Authorization

Network Network Message Reply An adversary can

re-transmit the content of

the packets coming from

the asset at a later time

Spoofing AC-12, Session

Termination

4.5 Comparison

It is worth noting that, as highlighted above, all the tool rely on a graph-based
model to describe the target system, where the node represent the asset and the
edge their connections. However, the tools differ on the interpretation and meta-
data associated to both nodes and edges of the graph. According to Microsoft’s
approach, there is a large variety of possible nodes, but the key role in the
threat modeling is associated to the connection among them: in fact the threat
are listed per-connection, taking into account the connected nodes and the con-
nection attributes. According to OWASP, on the other hand, the Threat Dragon
tool evaluates both the nodes and the arcs of the graph as assets, associating
the threats to each element. However the type of nodes and edges are very lim-
ited and the threats are selected according to few attributes associated to both
nodes and relationship. The SLAGenerator, on the other hand, focuses on sys-
tem assets (the graph nodes) and identifies the possible threats relying on the
asset type attribute, which offer a large variety of different values, similarly to
the Microsoft Threat Modeling tool. Moreover, relationships affect the possible
threats to which each node, but the threats are always listed as associated to
nodes. It is out of the scope of this work to say which approach is better (we aim
at comparing the ideas not at making a rank of the tools), but it is worth noting
that in the graph they made completely different choice: one focuses on edge,
one on nodes and the last on both of them. However, the final result, in all the
cases, is a list of threats that contains an explicit description of the malicious
behaviour (in natural language) and the classification of the threat according to
STRIDE or respect to the threat impact on Confidentiality, Integrity and Avail-
ability. The three tools, even in the case of the Wordpress application, which
is pretty simple, produce a pretty long list of threats (88 for the MS threat
Modeling tool, 84 for SLAgenerator and 31 for the Dragon tool). We, acting as
experts, consider that the choice of listing threats only respect to assets or only
respect to relationships (the choices done by SLAGenerator and by MS Threat
Modeling Tool) helps the expert work in the analysis of the results, but this is

Automated Threat Modeling Approaches 263

and remain a subjective choice. However, the number of threat outlined by the
OWASP tool looks, at state of art, limited respect to the other tools. This is due
to the limited set of parameters available for the selection and, probably, to the
underlying threat catalogue dimension.

Table 9. Comparison table.

Asset SLAGenerator
threat

Microsoft threat OWASP
threat

Wordpress Data Leakage Read web app’s config
files

Fingerprinting

Steal sensitive data like
user credentials

Carding

Card cracking

Wordpress Injection SQL injection through
Web App

–

Database Read Injection SQL injection –

Database Insert
Injection

Account
Creation

VM Data Breach Access to sensitive data
from log files

–

VM Denial of
Service

–

Another interesting aspect is that the three techniques present threats at
different levels of granularity, as shown in the Table 9. As an example, the Sla-
Generator tool underlines how Wordpress can be subject to data leakage. The
same threat is (partially) expressed by the Microsoft tool with read configuration
files and steal user credentials threats. According to OWASP, instead, data loss
can be caused both by an application profiling technique (e.g. fingerprinting) and
by techniques that aim at obtaining information on users’ virtual cards. In gen-
eral, the threats affecting Wordpress were 10 for both OWASP and SlaGenerator
and 25 according to Microsoft. It is important to note, however, that threats are
expressed with different levels of detail. The analysis also shows how a Injection
threat can affect both Wordpress and the database. Considering Database as an
asset, a Microsoft SQL injection can be as SlaGenerator Read/Insert injection
that takes into account that a malicious user wants to get information from the
database or write to it (e.g. create an account). In this case, the threats accord-
ing to SlaGenerator tool are 15, while OWASP and Microsoft consider only 8.
Virtual machines, on the other hand, are not considered in the OWASP model,
the table shows the comparison only between SLAGenerator and Microsoft tool.
One of the 13 threats described by the SLAGenerator is that of Data Breach,
partially mapped with Access to sensitive data from log files by Microsoft (which

264 D. Granata et al.

instead considers 6 threats). Network assets were modeled only by the SLAGen-
erator and threat modeling reported 12 threats2.

5 Conclusion

In this paper we have analyzed three threat modeling techniques that make
use of different models in order to select the threats applicable to the system.
The tools analyzed were SlaGenerator, Microsoft tool and Threat Dragon by
OWASP. The analysed tools require a very simplified graph-based model of the
application in which the nodes represent the components of the system and the
arcs represent the interactions between the various components. The simplicity
of modeling allows the user in all three approaches to obtain security information
in a fully automatic way. The approaches were applied to a case study involving
Wordpress, a Content Management System that allows you to manage a website.
The results show that the threats are described at different levels of detail, but
still compatible. In particular, OWASP threat dragon has proved to be the tool
that produces a less complete threat model than the others. The number of
threats related to the Wordpress component was greater (25) with the Microsoft
tool, while the threat model related to the database and virtual machines was
more complete with SlaGenerator. Furthermore, the tool also considered the
network as an asset, highlighting 12 threats.

References

1. Microsoft threat modeling tool (2018). https://docs.microsoft.com/it-it/azure/
security/develop/threat-modeling-tool

2. Abela, R.: Statistics show why WordPress is a popular hacker target (2020)
3. Ansari, M.T., Pandey, D., Alenezi, M.: STORE: security threat oriented require-

ments engineering methodology (2019)
4. Arsac, W., Bella, G., Chantry, X., Compagna, L.: Multi-attacker protocol valida-

tion. J. Autom. Reason. 46(3–4), 353–388 (2011)
5. Bhattacharya, D.: OWASP threat dragon review (2020)
6. Casola, V., Benedictis, A.D., Rak, M., Villano, U.: Preliminary design of a

platform-as-a-service to provide security in cloud. In: Proceedings of the 4th Inter-
national Conference on Cloud Computing and Services Science - CLOSER, pp.
752–757 (2014)

7. Casola, V., De Benedictis, A., Rak, M., Rios, E.: Security-by-design in clouds:
a security-SLA driven methodology to build secure cloud applications. Procedia
Comput. Sci. 97, 53–62 (2016). 2nd International Conference on Cloud Forward:
From Distributed to Complete Computing

8. Casola, V., De Benedictis, A., Rak, M., Villano, U.: Toward the automation of
threat modeling and risk assessment in IoT systems. Internet Things 7, 100056
(2019)

9. Drake: Threat Modeling. https://owasp.org/www-community/Threat Modeling

2 Full threat modelling comparison is available on request.

https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool
https://owasp.org/www-community/Threat_Modeling

Automated Threat Modeling Approaches 265

10. Frydman, M., Ruiz, G., Heymann, E., César, E., Miller, B.P.: Automating risk
analysis of software design models. Sci. World J. 2014, 805856 (2014)

11. Goodwin, M.: OWASP Threat Dragon. https://github.com/owasp/threat-dragon/
releases

12. Granata, D., Rak, M.: Design and development of a technique for the automation
of the risk analysis process in IT Security, p. 14 (2021)

13. Joint Task Force Interagency Working Group: Security and privacy controls for
information systems and organizations. NIST (2020)

14. Kornecki, A.J., Janusz, Z.: Threat modeling for aviation computer security.
CrossTalk 28, 21–27 (2015)

15. Musman, S., Turner, A.J.: A game oriented approach to minimizing cybersecurity
risk. Saf. Secur. Stud. 8, 212–222 (2018)

16. OWASP: OWASP Automated Threats to Web Applications (2018)
17. OWASP: Threat Modeling Manifesto. https://www.threatmodelingmanifesto.org/
18. Rak, M., Salzillo, G., Granata, D.: EssecA: an automated expert system for threat

modelling and penetration testing for IoT ecosystems. Comput. Electr. Eng. 99,
107721 (2022)

19. Schaad, A., Borozdin, M.: TAM: automated threat analysis. In: Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC 2012, pp. 1103–1108.
Association for Computing Machinery, New York (2012)

20. Singh, S., Tu, H., Allanach, J., Areta, J., Willett, P., Pattipati, K.: Modeling
threats. IEEE Potentials 23(3), 18–21 (2004)

21. Tatam, M., Shanmugam, B., Azam, S., Kannoorpatti, K.: A review of threat mod-
elling approaches for apt-style attacks. Heliyon 7(1), e05969 (2021)

22. Xiong, W., Lagerström, R.: Threat modeling - a systematic literature review. Com-
put. Secur. 84, 53–69 (2019)

https://github.com/owasp/threat-dragon/releases
https://github.com/owasp/threat-dragon/releases
https://www.threatmodelingmanifesto.org/

Understanding Black-Box Attacks
Against Object Detectors from a User’s

Perspective

Kim André Midtlid, Johannes Åsheim, and Jingyue Li(B)

Norwegian University of Science and Technology, Trondheim, Norway
kamidtli@stud.ntnu.no, {johannes.asheim,jingyue.li}@ntnu.no

Abstract. Due to recent developments in object detection systems, and
the realistic threat of black-box adversarial attacks on object detector
models, we argue the need for a contextual understanding of the attacks
from the users’ perspective. Existing literature reviews either do not pro-
vide complete and up-to-date summaries of such attacks or focus on the
knowledge from the researchers’ perspective. In this research, we con-
ducted a systematic literature review to identify state-of-the-art black-
box attacks and extract the information to help users evaluate and mit-
igate the risks. The literature review resulted in 29 black-box attack
methods. We analyzed each attack from the following main aspects:
attackers’ knowledge needed to perform the attack, attack consequences,
attack generalizability, and strategies to mitigate the attacks. Our results
demonstrate an emerging increase in highly generalizable attacks, which
now make up more than 50% of the landscape. We also reveal that more
than 50% of recent attacks remain untested against mitigation strategies.

Keywords: Artificial intelligence · Object detection · Image
classification · Adversarial attacks

1 Introduction

As Deep Neural Networks (DNNs) becomes more and more pertinent in image
recognition and object detection tasks, their robustness also becomes more of a
concern. Goodfellow et al. [14] have shown that the robustness of these mod-
els is susceptible to adversarial attacks. Such vulnerabilities have motivated
researchers to develop adversarial attacks to exploit the object detection sys-
tems and contribute to improving their robustness. White-box attacks that
assume knowledge about the target model continue to dominate the adversar-
ial attack landscape, but there is an increase in black-box attacks. Black-box
attacks assume no or very limited knowledge about the target model and are,
therefore, more realistic approaches to adversarial attacks [34]. We argue that the
increase in black-box attacks should be followed by a contextual understanding
of the attacks from a user perspective. We define a user as a person who wants

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 266–280, 2022.
https://doi.org/10.1007/978-3-031-14179-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_18&domain=pdf
http://orcid.org/0000-0002-7958-391X
https://doi.org/10.1007/978-3-031-14179-9_18

Black-Box Attacks Against Object Detectors from a User’s Perspective 267

to know the risk and impact of adversarial attacks and how to defend against
these attacks without knowing specific attack implementation details. There-
fore, this paper omits the technical properties of the attacks for the traditional
researcher perspective. Existing surveys and reviews of adversarial attacks on
image classification and object detection, e.g., [6,20], focus mostly on the infor-
mation needed by researchers and do not cover sufficient up-to-date black-box
attacks. Our research motivation is to summarize the state-of-the-art black-box
attacks targeting object detection models to help users evaluate and mitigate
the risks. We focus on answering the following research questions.

– RQ1: What does the attacker need to know about the target model?
– RQ2: How generalizable is the attack?
– RQ3: What are the consequences of the attack?
– RQ4: Which mitigation strategies have been tested against the attack?

We performed a systematic literature review on articles published between
2017 and 2021 to collect state-of-the-art black-box attacks. Through the system-
atic literature review and snowballing, we uncovered 29 state-of-the-art attack
methods, which we analyze and present in this paper. Our study benefits indus-
trial practitioners and scientists. The contributions of the study are twofold.

– We provide comprehensive and up-to-date consolidated knowledge about
black-box attacks targeting object detection models to help users to evaluate
the risks and choose effective mitigation solutions.

– We identify the trends and weaknesses of existing studies in this field, which
may inspire researchers’ future work.

The rest of the paper is organized as follows: Section 2 introduces the back-
ground. Section 3 presents the related work. Section 4 explains our research meth-
ods, and Sect. 5 presents the results. We then discuss our results in Sect. 6. Con-
clusions and future work are in Sect. 7.

2 Background

Object detection is the field of Artificial Intelligence (AI) that uses deep learning
to extract high-dimensional information from images and videos. An autonomous
car with camera sensors uses image processing to navigate the road and detect
obstacles.

2.1 Object Detection and Image Classification

Image classification is the task of classifying an input image by assigning it to
a specific label [42], while object detection is the task of localizing and classify-
ing distinct objects in an image or video. Current object detectors can be split
into two main categories: two-stage and one-stage detectors. Two-stage detectors
consist of two main parts. First, the detector uses a Region Proposal Network

268 K. A. Midtlid et al.

(RPN) to calculate proposed regions for objects. The RPN uses a set of prede-
fined anchor boxes uniformly placed over the image to calculate proposed regions
before outputting a predefined number of proposed bounding boxes with a cor-
responding objectiveness score. The objectiveness score indicates whether the
proposed region belongs to an object class or the background. These proposed
regions significantly reduce the computational complexity needed to localize and
classify an object. In the second stage, the proposed regions from the RPN are
passed to a high-quality image classifier to recognize objects. One-stage detec-
tors aim to improve the inference speed while still achieving acceptable accuracy.
One-stage detectors achieve this goal by removing the region proposal stage
required by the two-stage detectors. Instead, they run detection on a dense sam-
pling of predefined default boxes. The ability to skip the region proposal step
significantly decreases inference time and has led to the development of many
one-stage detectors, e.g., [30,38].

2.2 Threat Models

The threat model of an attack is based on what the adversary knows about the
target model, thus we can categorize the attacks into three threat models. White-
box attacks, e.g., FGSM [14], assume the adversary has complete knowledge of
the target model, which include the model’s internal structure, such as weights
and parameters of the target model, and knowledge of the output given an input.
In some cases, the adversary knows the training data distribution. This allows
the adversary to construct attack methods specific to the given model. Black-
box attacks, assume no internal information of the target model, but the ability
to observe the output for a given input. Usually, black-box attack methods are
constructed based on querying the target model [5,8,9]. Han Xu et al. [46] intro-
duce grey-box attacks as a hybrid of white-box attacks and black-box attacks,
where the attacker trains a generative model to create adversarial examples in
white-box setting. Then the target model is attacked in the black-box setting
with adversarial examples from the trained generative model.

3 Related Work

Bhambri et al. [6] performed a survey focusing on adversarial black-box attacks.
The paper aims to conduct a comparative study of both adversarial attacks and
defenses. Nineteen black-box attacks were compared on the number of queries,
success rate, and perturbation norm. The survey categorizes the attacks based on
gradient estimation, transferability, local search and combinatorics. Shilin Qiu
et al. [37] presents a comprehensive study of the research of adversarial attack
and defenses. The paper details white-box and black-box attack methods but
mainly focuses on defense strategies. Kong et al. [25] reviewed adversarial attack
literature in the different application fields of AI security. The fields include
images, texts and malicious code. The paper presents attack algorithms for the
different application domains and includes 13 attacks for the image domain, five

Black-Box Attacks Against Object Detectors from a User’s Perspective 269

of which are black-box attacks. The survey further elaborates on defense methods
and how they affect the presented attacks. In order to help new researchers in
the field, the paper introduces and discusses the different datasets and tools
available. There are other surveys and articles, i.e., [1,27,46,48], which discuss
adversarial attacks and defenses. The common limitation of these studies are
the low number of included black-box attacks. In addition, the studies focus on
consolidating information from the researchers’ perspective.

4 Research Design and Implementation

We performed a Systematic Literature Review (SLR) and followed the SLR
guidelines proposed by Kitchenham and Charters [24]. After analyzing the terms
related to our research questions and their synonyms, we chose to use the search
query: Adversarial AND Attack AND (“Object detection” OR “Object detec-
tor”).

We chose oria.no, a search engine that covers many scientific databases,
including IEEE Xplore, Springer, ACM Digital library, and Scopus. To include
only recent literature and to reduce the scope, we used the advanced search
functionality in oria.no, and included only peer-reviewed and published scien-
tific papers from the last 5 years back from 2021. The identified articles were
filtered mainly based on their relevance to the research questions by reading
their abstract, introduction, and, in some cases, methodology. After filtering, we
identified 11 relevant primary studies. Then, we performed a snowballing search
following the process proposed by [45], with the exception that forward and back-
ward snowballing searches were limited to a single iteration each. The forward
snowballing was performed using Google Scholar. The snowballing identified 16
more papers, resulting in 27 primary studies.

5 Research Results

In this section, we present our answers to each research question. Attack names
preceded by asterisks (*) were not presented with a name in their corresponding
paper. Therefore, a descriptive name is given based on the attack method.

5.1 RQ1—Attacker’s Knowledge

How much information the attacker requires from the output labels varies across
the identified papers but can be split into three categories: Soft-labels refer
to the threat model where an attacker accesses the output probabilities P (y|x)
for y in the top k classes. Soft-labels also might include the label for each of
the output probabilities. For object detectors, information about the bounding
boxes indicates soft-labels. Hard-labels refer to a more restricted threat model
where an attacker only has access to a list of k ∈ Z

+ output labels. Different
attacks make different assumptions about k. For k = 1, the attacker only has

270 K. A. Midtlid et al.

access to the single predicted class. In the case of k > 1, the list of classes is
often ordered by decreasing probabilities but does not include the probabilities.
For object detectors, the hard-label category signifies no information about the
bounding boxes. Some attacks assume the target model outputs k = 1 or k > 1
labels. No-labels refer to the most restricted threat model, where an attacker
requires no access to the output of the target model.

Table 1. Attacks grouped by attacker knowledge

Attack name Year Knowledge

NRDM [33] 2018 No-labels

DaST [51] 2020 Hard-labels and Soft-labels

HopSkipJumpAttack [9] 2020 Hard-labels

∗Partial-retraining [36] 2020 Hard-labels

∗Evolutionary Attack [13] 2019 Hard-labels

Label-Only Attack [20] 2018 Hard-labels

Opt-Attack [11] 2018 Hard-labels

Boundary Attack [8] 2017 Hard-labels

CMA-ES [19] 2021 Soft-labels

Simple Transparent Adversarial Examples [7] 2021 Soft-labels

∗Discrete Cosine Transform Attack [26] 2021 Soft-labels

∗Differential Evolution Attack [44] 2021 Soft-labels

BMI-FGSM [29] 2020 Soft-labels

∗Transferable Universal Perturbation Attack [49] 2020 Soft-labels

Adv-watermark [23] 2020 Soft-labels

Evaporate Attack [43] 2020 Soft-labels

Daedalus [41] 2019 Soft-labels

One-Pixel-Attack [39] 2019 Soft-labels

Single Scratch attack [22] 2019 Soft-labels

GenAttack [2] 2019 Soft-labels

Universal perturbation attack [50] 2019 Soft-labels

Query-Limited Attack [20] 2018 Soft-labels

Partial-Info Attack [20] 2018 Soft-labels

Bandits [21] 2018 Soft-labels

Gradient Estimation Attacks [5] 2018 Soft-labels

R-AP [28] 2018 Soft-labels

ZOO [10] 2017 Soft-labels

LocSearchAdv [32] 2016 Soft-labels

∗Substitute Attack [34] 2016 Soft-labels

Table 1 presents the attacks grouped by the required attacker knowledge. We
notice that more than 75% of the discussed attacks use the soft-labels approach.
Table 1 also illustrates that about 25% of the discussed attacks use hard-labels

Black-Box Attacks Against Object Detectors from a User’s Perspective 271

as part of their method. We can also see that the number of hard-label attacks
has tripled from 2017 to 2020, which might indicate that hard-label attacks are
becoming more popular. The new trend might suggest that hard-label attacks
have room for improvement in the coming years and should be investigated
further. It is also worth noting DaST [51], which can be used in both a soft-
and hard-label scenario because the attack is customizable. This might be an
indication of a new type of attack that can be modified based on the target model.
NRDM [33] requires no labels at all. These two attacks illustrate a possibility
in the landscape, as attacks can become more applicable to any target model
and more independent of the attacker’s knowledge.

5.2 RQ2—Attack Generalizability

The generalization of adversarial black-box attacks examines the number of dif-
ferent types of object detection models which are claimed to have been suc-
cessfully attacked. We have defined four categories of generalization and present
the results in Table 2. The categories are None, Low, High and Very High. The
presented attack is tested on and successful against either one, two, three to
five or six or more target models respectively. The term generalizability is only
determined based on the number of attacked target models, and do not include
datasets, model accuracy, attack hyperparameters and model hyperparameters.
It is important to note that the generalizability is derived from the number of
models claimed by the authors of the primary studies. Therefore an attack with
None may be generalizable, but the authors only includes experiments against
one target model.

Most of the attacks only target image classifiers, but the focus could be
on one-stage models, two-stage models, or a combination of both for object
detectors. An attack targeting both types of object detectors poses a significant
threat, as it generalizes to most model architectures. This aspect is captured
in the target architecture column in Table 2. Attacks targeting object detectors
are labeled with one-stage, two-stage, or both, while attacks targeting image
classifiers are labeled correspondingly.

From Table 2, we observe a balanced distribution between high and low gen-
eralizability. Both attack types show promising results, but the ones with high
generalizability might be more interesting to be studied further, as they are
successful across a broader range of object detectors. The number of highly gen-
eralizable attacks has increased from 2019, as shown in Fig. 1. From Table 2, we
also notice that R-AP [28] and NRDM [33] stand out. They are both classified
as very high, meaning they have been tested and exhibited promising perfor-
mance on six or more different models. Additionally, NRDM has been tested
against both image classifiers and object detectors, demonstrating notable gener-
alizability. It is also worth noting that [9,28] mention the possibility of combining
R-AP and HopSkipJumpAttack, respectively, with other adversarial attacks
as areas for future work. This combination demonstrates a potential to improve
attacks through amalgamation, which is worth considering in future research.
Many of the discussed attacks have also been tested on real-world APIs, which

272 K. A. Midtlid et al.

Table 2. Attacks grouped by their level of generalizability

Attack name Year Generalization Target
architecture

NRDM [33] 2018 Very High Image classifiers

R-AP [28] 2018 Very High Two-stage

CMA-ES [19] 2021 High One-stage and

two-stage

∗Differential Evolution Attack [44] 2021 High Image classifiers

Adv-watermark [23] 2020 High Image classifiers

Evaporate Attack [43] 2020 High One-stage and
two-stage

HopSkipJumpAttack [9] 2020 High Image classifiers

∗Partial-retraining [36] 2020 High Image classifiers

∗Transferable Universal Perturbation Attack [49] 2020 High One-stage and
two-stage

Daedalus [41] 2019 High One-stage

One-Pixel-Attack [39] 2019 High Image classifiers

Universal perturbation attack [50] 2019 High Image classifiers

Single Scratch attack [22] 2019 High Image classifiers

Bandits [21] 2018 High Image classifiers

Gradient Estimation Attacks [5] 2018 High Image classifiers

Boundary Attack [8] 2017 High Image classifiers

∗Substitute Attack [34] 2016 High Image classifiers

∗Discrete Cosine Transform Attack [26] 2021 Low Image classifiers

BMI-FGSM [29] 2020 Low Image classifiers

DaST [51] 2020 Low Image classifiers

∗Evolutionary Attack [13] 2019 Low Image classifiers

GenAttack [2] 2019 Low Image classifiers

Opt-Attack [11] 2018 Low Image classifiers

Query-Limited Attack [20] 2018 Low Image classifiers

Partial-Info Attack [20] 2018 Low Image classifiers

Label-Only Attack [20] 2018 Low Image classifiers

LocSearchAdv [32] 2016 Low Image classifiers

Simple Transparent Adversarial Examples [7] 2021 None Image classifiers

ZOO [10] 2017 None Image classifiers

are listed in Table 3. From a user perspective, this illustrates a potential area of
focus and risks to consider in the future.

Black-Box Attacks Against Object Detectors from a User’s Perspective 273

Table 3. Attacks against real-world APIs

Attack name Year Real-world API

∗Discrete Cosine Transform Attack [26] 2021 AWS Rekognition [4]

∗Partial retraining [36] 2020 Google AutoML Vision [15]

Partial-Info Attack [20] 2018 Google Cloud Vision [16]

Gradient Estimation Attacks [5] 2018 Clarifai [12]

Boundary Attack [8] 2017 Clarifai [12]

∗Substitute Attack [34] 2016 Amazon and Google Oracles [3,16]

Fig. 1. The ratio of generalization levels for each year

5.3 RQ3—Attack Consequences

Classification attack is divided into targeted and untargeted attacks. Targeted
attacks aim to misclassify a adversarial input image i′ of class c′, where the
target model would have classified input image i in to class c. In other words,
the attacker wants to force the target model to predict a chosen class. Untar-
geted attacks aim to misclassify an adversarial input image i′ in to any class c′,
where c′ �= c. Object detection attack can lead to object vanishing and object
population. An object vanishing attack aims to suppress all object detection in
a input image, while an object population attack aims to fabricate false objects
in a predicted image.

Table 4 shows the consequences of each attack. Untargeted attacks are the
most common, making up more than 75% of the discussed attacks. Even though
these attacks make up the majority and pose a significant threat, targeted attacks
might be more dangerous from a defender’s perspective. Targeted attacks still
make up about 65% of discussed attacks, and it is worth noting that most image
classification attacks provide both targeted and untargeted versions. This trend
suggests that attacks are not limited to a single purpose but can achieve mul-
tiple goals. In the realm of object detection attacks, we have looked at five
attacks. Four of them exploit the object vanishing vulnerability, while only one
focuses on object population. CMA-ES [19] stands out because it combines
object detection and image classification attacks. CMA-ES is a very recently

274 K. A. Midtlid et al.

Table 4. Attacks grouped by their consequences

Attack name Year Target

architecture

Consequences

CMA-ES [19] 2021 One-stage and

two-stage

Vanishing,

Targeted, and

Untargeted

Evaporate Attack [43] 2020 One-stage and

two-stage

Vanishing

∗Transferable Universal Perturbation Attack [49] 2020 One-stage and

two-stage

Vanishing

R-AP [28] 2018 Two-stage Vanishing

Daedalus [41] 2019 One-stage Population

∗Differential Evolution Attack [44] 2021 Image classifiers Targeted and

Untargeted

BMI-FGSM [29] 2020 Image classifiers Targeted and

Untargeted

DaST [51] 2020 Image classifiers Targeted and

Untargeted

HopSkipJumpAttack [9] 2020 Image classifiers Targeted and

Untargeted

One-Pixel-Attack [39] 2019 Image classifiers Targeted and

Untargeted

Single Scratch attack [22] 2019 Image classifiers Targeted and

Untargeted

Gradient Estimation Attacks [5] 2018 Image classifiers Targeted and

Untargeted

Query-Limited Attack [20] 2018 Image classifiers Targeted and

Untargeted

Partial-Info Attack [20] 2018 Image classifiers Targeted and

Untargeted

Label-Only Attack [20] 2018 Image classifiers Targeted and

Untargeted

Bandits [21] 2018 Image classifiers Targeted and

Untargeted

Opt-Attack [11] 2018 Image classifiers Targeted and

Untargeted

Boundary Attack [8] 2017 Image classifiers Targeted and

Untargeted

ZOO [10] 2017 Image classifiers Targeted and

Untargeted

LocSearchAdv [32] 2016 Image classifiers Targeted and

Untargeted

∗Discrete Cosine Transform Attack [26] 2021 Image classifiers Targeted

∗Partial-retraining [36] 2020 Image classifiers Targeted

GenAttack [2] 2019 Image classifiers Targeted

Simple Transparent Adversarial Examples [7] 2021 Image classifiers Untargeted

Adv-watermark [23] 2020 Image classifiers Untargeted

∗Evolutionary Attack [13] 2019 Image classifiers Untargeted

Universal perturbation attack [50] 2019 Image classifiers Untargeted

NRDM [33] 2018 Image classifiers Untargeted

∗Substitute Attack [34] 2016 Image classifiers Untargeted

Black-Box Attacks Against Object Detectors from a User’s Perspective 275

developed attack that could hint at a change of focus in the landscape. Addi-
tionally, Daedalus [41] is the only attack that can execute object population.
Results in Table 4 also show the emerging focus on attacks against object detec-
tors from 2018.

5.4 RQ4—Mitigation Strategies

Table 5 contains a summary of all the mitigation strategies an attack is claimed
to have been tested against. The Vulnerable Mitigations column lists all tested
mitigation strategies where the attack is still able to reduce the overall accu-
racy of the system significantly. The definition of a significant drop in accuracy
is claimed by each paper. The Robust Mitigations column lists all mitigation
strategies where the attack cannot reduce the overall accuracy of the system sig-
nificantly. It is worth noting that None tested in the Robust Mitigations column
only means that the attack has not been tested on any mitigation strategy. It
does not mean that the attack is able to bypass all defense strategies. This also
applies to the Vulnerable Mitigations column. A cell with “-” means that none
of the tested mitigation strategies applies to that column. A list of defenses in
the Vulnerable Mitigations column and “-” in the Robust Mitigations column
means that none of the tested defenses successfully defended against the attack.
From Table 5, we notice that more than half of the discussed attacks have not
been tested against any mitigation strategies. This illustrates that mitigation
strategies have not been given enough attention. We also notice that Adversar-
ial Training and Input Transformations repeat across different attacks in the
Vulnerable Mitigations column. The repetition indicates that no single mitiga-
tion strategy works for all attacks, and that most modern mitigation strategies
struggle to defend against the discussed attacks. It is worth noting that many
of the mitigation strategies listed are umbrella terms, covering multiple defense
implementations. For example, input transformations [18] cover multiple defense
mechanisms such as JPEG-compression, clipping and median filtering. Although
Fig. 2 shows an increase in the number of mitigation strategies evaluated, we can
also see a large emerging ratio of untested attacks from 2018.

Fig. 2. The ratio of mitigation strategies each year

276 K. A. Midtlid et al.

Table 5. Attacks grouped by mitigation strategies they have been tested against

Attack Year Vulnerable Mitigations Robust Mitigations

∗Differential Evolution Attack [44] 2021 Feature squeezing [47]

Input Transformations [18]

-

Adv-watermark [23] 2020 Adversarial Training [40]

Input Transformations [18]

-

HopSkipJumpAttack [9] 2020 Adversarial Distillation [35],

Region-based classification

Adversarial Training [40]

∗Partial-retraining [36] 2020 Adversarial Detection [17]

Adversarial Distillation [35]

Adversarial Training [40]

Feature squeezing [47]

-

GenAttack [2] 2019 Adversarial Training [40],

Input Transformations [18]

-

One-Pixel-Attack [39] 2019 - Adversarial Detection [17]

Daedalus [41] 2019 MagNet [31]

Minimize bounding box size

-

Single Scratch attack [22] 2019 Input Transformations

(JPEG-compression) [18]

Input Transformations

(Clipping) [18]

Input Transformations

(Median Filtering) [18]

Gradient Estimation Attacks [5] 2018 Adversarial Training [40] Rounded output

probabilities

NRDM [33] 2018 Input Transformations [18] -

Boundary Attack [8] 2017 Adversarial Distillation [35] -

ZOO [10] 2017 Adversarial Detection [17]

Adversarial Distillation [35]

Adversarial Training [40]

LocSearchAdv [32] 2016 Adversarial Training [40] Query-access prevention

∗Substitute Attack [34] 2016 Adversarial Distillation [35]

Adversarial Training [40]

-

CMA-ES [19] 2021 None tested None tested

∗Discrete Cosine Transform Attack

[26]

2021 None tested None tested

Simple Transparent Adversarial

Examples [7]

2021 None tested None tested

DaST [51] 2020 None tested None tested

Evaporate Attack [43] 2020 None tested None tested

BMI-FGSM [29] 2020 None tested None tested

∗Transferable Universal Perturbation

Attack [49]

2020 None tested None tested

∗Evolutionary Attack [13] 2019 None tested None tested

Universal perturbation attack [50] 2019 None tested None tested

Bandits [21] 2018 None tested None tested

Label-Only Attack [20] 2018 None tested None tested

Opt-Attack [11] 2018 None tested None tested

R-AP [28] 2018 None tested None tested

Query-Limited Attack [20] 2018 None tested None tested

Partial-Info Attack [20] 2018 None tested None tested

6 Discussion

The aim of our work is to summarize the state-of-the-art black-box attacks tar-
geting object detectors to help users evaluate and mitigate the risks. No related
work outlined in Sect. 3 takes the user’s perspective but rather explains black-

Black-Box Attacks Against Object Detectors from a User’s Perspective 277

box attacks from a researcher’s perspective and focuses on explaining the attack
methods. For example, Kong et al. [25] and Bhambri et al. [6] provide categories
of black-box attacks, but the categorization is based on the attack method.
Understanding a black-box attack method requires a high level of competence
in a user. Our study does not focus on the attack methods because they are
not the most relevant information for a user. The main focuses from a user per-
spective are covered in our research questions. Results of RQ1 (Knowledge) can
inform a user of the attacks which can and cannot be executed on a system.
Results of RQ2 (Generalization) warns the user of which attacks have a large
impact area and could affect the system. Results of RQ3 (Consequences) give
the user insight into the attacks’ results. Results of RQ4 (Mitigation strategies)
are highly important to the user because they contain information that can help
the user implement relevant defenses to the system.

The results of the survey show that many modern adversarial attack studies
have not focused on testing mitigation strategies, as shown in Table 5. Eighty
percent of the discussed attacks against object detectors have not been tested
against any mitigation strategies. Our study shows that the generalizability of
recent attacks is increasing, which poses a more significant threat to the indus-
try. No longer do the attacks focus on a single objective or target model, but
rather, they combine all these goals into broader attacks. This means that mod-
ern attacks can bypass more defenses and achieve multiple attack objectives.

7 Conclusion and Future Work

We conducted a systematic literature review in order to summarize state-of-the-
art black-box attacks targeting object detection models to help users evaluate
and mitigate the risks. The literature review resulted in 29 unique black-box
attack methods from 27 papers. Our analyses summarized the status and trends
regarding attackers’ knowledge needed to perform the attack, consequences, gen-
eralizability, and current mitigation strategies for each attack. We acknowledge
that the SLR may have left out some papers due to missing search queries and
limited database coverage. One finding from our study is that mitigation strate-
gies should be comprehensively tested on the identified black-box attacks to find
out which defenses are robust and which could be improved. We plan to focus
on evaluating and improving different mitigation strategies as our future work.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. IEEE Access 6, 14410–14430 (2018). https://doi.org/10.1109/
ACCESS.2018.2807385

2. Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.J., Srivastava,
M.: GenAttack: practical black-box attacks with gradient-free optimization (2018).
https://doi.org/10.48550/ARXIV.1805.11090. https://arxiv.org/abs/1805.11090

3. Amazon: AWS machine learning (2021). https://aws.amazon.com/machine-
learning

https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.1109/ACCESS.2018.2807385
https://doi.org/10.48550/ARXIV.1805.11090
https://arxiv.org/abs/1805.11090
https://aws.amazon.com/machine-learning
https://aws.amazon.com/machine-learning

278 K. A. Midtlid et al.

4. Amazon: AWS Rekognition (2021). https://aws.amazon.com/rekognition/
5. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural

networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01258-8 10

6. Bhambri, S., Muku, S., Tulasi, A., Buduru, A.B.: A survey of black-box adversarial
attacks on computer vision models (2019). https://doi.org/10.48550/ARXIV.1912.
01667. https://arxiv.org/abs/1912.01667

7. Borkar, J., Chen, P.Y.: Simple transparent adversarial examples (2021). https://
doi.org/10.48550/ARXIV.2105.09685. https://arxiv.org/abs/2105.09685

8. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: reli-
able attacks against black-box machine learning models (2017). https://doi.org/
10.48550/ARXIV.1712.04248. https://arxiv.org/abs/1712.04248

9. Chen, J., Jordan, M.I., Wainwright, M.J.: HopSkipJumpAttack: a query-efficient
decision-based attack. In: 2020 IEEE Symposium on Security and Privacy (SP),
pp. 1277–1294 (2020). https://doi.org/10.1109/SP40000.2020.00045

10. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO: zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security. ACM, November 2017. https://doi.org/10.1145/3128572.3140448

11. Cheng, M., Le, T., Chen, P.Y., Yi, J., Zhang, H., Hsieh, C.J.: Query-efficient hard-
label black-box attack: an optimization-based approach (2018). https://doi.org/
10.48550/ARXIV.1807.04457. https://arxiv.org/abs/1807.04457

12. Clarifai: The world’s AI (2021). https://www.clarifai.com/
13. Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face

recognition (2019). https://doi.org/10.48550/ARXIV.1904.04433. https://arxiv.
org/abs/1904.04433

14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). https://doi.org/10.48550/ARXIV.1412.6572. https://arxiv.org/
abs/1412.6572

15. Google: AutoML (2021). https://cloud.google.com/automl
16. Google: Vision AI (2021). https://cloud.google.com/vision
17. Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (statis-

tical) detection of adversarial examples (2017). https://doi.org/10.48550/ARXIV.
1702.06280. https://arxiv.org/abs/1702.06280

18. Guo, C., Rana, M., Cisse, M., van der Maaten, L.: Countering adversarial images
using input transformations (2017). https://doi.org/10.48550/ARXIV.1711.00117.
https://arxiv.org/abs/1711.00117

19. Haoran, L., Yu’an, T., Yuan, X., Yajie, W., Jingfeng, X.: A CMA-ES-Based adver-
sarial attack against black-box object detectors. Chin. J. Electron. 30(3), 406–412
(2021). https://doi.org/10.1049/cje.2021.03.003. https://ietresearch.onlinelibrary.
wiley.com/doi/abs/10.1049/cje.2021.03.003

20. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with lim-
ited queries and information (2018). https://doi.org/10.48550/ARXIV.1804.08598.
https://arxiv.org/abs/1804.08598

21. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial
attacks with bandits and priors (2018). https://doi.org/10.48550/ARXIV.1807.
07978. https://arxiv.org/abs/1807.07978

22. Jere, M., Rossi, L., Hitaj, B., Ciocarlie, G., Boracchi, G., Koushanfar, F.:
Scratch that! An evolution-based adversarial attack against neural networks (2019).
https://doi.org/10.48550/ARXIV.1912.02316. https://arxiv.org/abs/1912.02316

https://aws.amazon.com/rekognition/
https://doi.org/10.1007/978-3-030-01258-8_10
https://doi.org/10.48550/ARXIV.1912.01667
https://doi.org/10.48550/ARXIV.1912.01667
https://arxiv.org/abs/1912.01667
https://doi.org/10.48550/ARXIV.2105.09685
https://doi.org/10.48550/ARXIV.2105.09685
https://arxiv.org/abs/2105.09685
https://doi.org/10.48550/ARXIV.1712.04248
https://doi.org/10.48550/ARXIV.1712.04248
https://arxiv.org/abs/1712.04248
https://doi.org/10.1109/SP40000.2020.00045
https://doi.org/10.1145/3128572.3140448
https://doi.org/10.48550/ARXIV.1807.04457
https://doi.org/10.48550/ARXIV.1807.04457
https://arxiv.org/abs/1807.04457
https://www.clarifai.com/
https://doi.org/10.48550/ARXIV.1904.04433
https://arxiv.org/abs/1904.04433
https://arxiv.org/abs/1904.04433
https://doi.org/10.48550/ARXIV.1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://cloud.google.com/automl
https://cloud.google.com/vision
https://doi.org/10.48550/ARXIV.1702.06280
https://doi.org/10.48550/ARXIV.1702.06280
https://arxiv.org/abs/1702.06280
https://doi.org/10.48550/ARXIV.1711.00117
https://arxiv.org/abs/1711.00117
https://doi.org/10.1049/cje.2021.03.003
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cje.2021.03.003
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cje.2021.03.003
https://doi.org/10.48550/ARXIV.1804.08598
https://arxiv.org/abs/1804.08598
https://doi.org/10.48550/ARXIV.1807.07978
https://doi.org/10.48550/ARXIV.1807.07978
https://arxiv.org/abs/1807.07978
https://doi.org/10.48550/ARXIV.1912.02316
https://arxiv.org/abs/1912.02316

Black-Box Attacks Against Object Detectors from a User’s Perspective 279

23. Jia, X., Wei, X., Cao, X., Han, X.: Adv-watermark: a novel watermark pertur-
bation for adversarial examples (2020). https://doi.org/10.48550/ARXIV.2008.
01919. https://arxiv.org/abs/2008.01919

24. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering 2 (2007)

25. Kong, Z., et al.: A survey on adversarial attack in the age of artificial intel-
ligence. Wirel. Commun. Mob. Comput. 2021 (2021). https://doi.org/10.1155/
2021/4907754

26. Kuang, X., Gao, X., Wang, L., Zhao, G., Ke, L., Zhang, Q.: A discrete
cosine transform-based query efficient attack on black-box object detectors. Inf.
Sci. 546, 596–607 (2021). https://doi.org/10.1016/j.ins.2020.05.089. https://www.
sciencedirect.com/science/article/pii/S0020025520305077

27. Li, G., Zhu, P., Li, J., Yang, Z., Cao, N., Chen, Z.: Security matters: a survey
on adversarial machine learning (2018). https://doi.org/10.48550/ARXIV.1810.
07339. https://arxiv.org/abs/1810.07339

28. Li, Y., Tian, D., Chang, M.C., Bian, X., Lyu, S.: Robust adversarial pertur-
bation on deep proposal-based models (2018). https://doi.org/10.48550/ARXIV.
1809.05962. https://arxiv.org/abs/1809.05962

29. Lin, J., Xu, L., Liu, Y., Zhang, X.: Black-box adversarial sample generation
based on differential evolution (2020). https://doi.org/10.48550/ARXIV.2007.
15310. https://arxiv.org/abs/2007.15310

30. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

31. Meng, D., Chen, H.: MagNet: a two-pronged defense against adversarial examples
(2017). https://doi.org/10.48550/ARXIV.1705.09064. https://arxiv.org/abs/1705.
09064

32. Narodytska, N., Kasiviswanathan, S.: Simple black-box adversarial attacks on
deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pp. 1310–1318 (2017). https://doi.org/
10.1109/CVPRW.2017.172

33. Naseer, M., Khan, S.H., Rahman, S., Porikli, F.: Task-generalizable adversarial
attack based on perceptual metric (2018). https://doi.org/10.48550/ARXIV.1811.
09020. https://arxiv.org/abs/1811.09020

34. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning (2016). https://doi.org/10.48550/
ARXIV.1602.02697. https://arxiv.org/abs/1602.02697

35. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense
to adversarial perturbations against deep neural networks (2015). https://doi.org/
10.48550/ARXIV.1511.04508. https://arxiv.org/abs/1511.04508

36. Park, H., Ryu, G., Choi, D.: Partial retraining substitute model for query-
limited black-box attacks. Appl. Sci. 10(20), 1–19 (2020). https://doi.org/10.3390/
app10207168

37. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial
attack and defense technologies. Appl. Sci. 9(5), 909 (2019). https://doi.org/10.
3390/app9050909

38. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018). https://
doi.org/10.48550/ARXIV.1804.02767. https://arxiv.org/abs/1804.02767

39. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural net-
works. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019). https://doi.org/10.
1109/TEVC.2019.2890858

https://doi.org/10.48550/ARXIV.2008.01919
https://doi.org/10.48550/ARXIV.2008.01919
https://arxiv.org/abs/2008.01919
https://doi.org/10.1155/2021/4907754
https://doi.org/10.1155/2021/4907754
https://doi.org/10.1016/j.ins.2020.05.089
https://www.sciencedirect.com/science/article/pii/S0020025520305077
https://www.sciencedirect.com/science/article/pii/S0020025520305077
https://doi.org/10.48550/ARXIV.1810.07339
https://doi.org/10.48550/ARXIV.1810.07339
https://arxiv.org/abs/1810.07339
https://doi.org/10.48550/ARXIV.1809.05962
https://doi.org/10.48550/ARXIV.1809.05962
https://arxiv.org/abs/1809.05962
https://doi.org/10.48550/ARXIV.2007.15310
https://doi.org/10.48550/ARXIV.2007.15310
https://arxiv.org/abs/2007.15310
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.48550/ARXIV.1705.09064
https://arxiv.org/abs/1705.09064
https://arxiv.org/abs/1705.09064
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.48550/ARXIV.1811.09020
https://doi.org/10.48550/ARXIV.1811.09020
https://arxiv.org/abs/1811.09020
https://doi.org/10.48550/ARXIV.1602.02697
https://doi.org/10.48550/ARXIV.1602.02697
https://arxiv.org/abs/1602.02697
https://doi.org/10.48550/ARXIV.1511.04508
https://doi.org/10.48550/ARXIV.1511.04508
https://arxiv.org/abs/1511.04508
https://doi.org/10.3390/app10207168
https://doi.org/10.3390/app10207168
https://doi.org/10.3390/app9050909
https://doi.org/10.3390/app9050909
https://doi.org/10.48550/ARXIV.1804.02767
https://doi.org/10.48550/ARXIV.1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858

280 K. A. Midtlid et al.

40. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.:
Ensemble adversarial training: attacks and defenses (2017). https://doi.org/10.
48550/ARXIV.1705.07204. https://arxiv.org/abs/1705.07204

41. Wang, D., et al.: Daedalus: breaking nonmaximum suppression in object detection
via adversarial examples. IEEE Trans. Cybern., 1–14 (2021). https://doi.org/10.
1109/TCYB.2020.3041481

42. Wang, S., Su, Z.: Metamorphic testing for object detection systems (2019). https://
doi.org/10.48550/ARXIV.1912.12162. https://arxiv.org/abs/1912.12162

43. Wang, Y., Tan, Y.A., Zhang, W., Zhao, Y., Kuang, X.: An adversarial attack
on DNN-based black-box object detectors. J. Netw. Comput. Appl. 161, 102634
(2020). https://doi.org/10.1016/j.jnca.2020.102634

44. Wei, X., Guo, Y., Li, B.: Black-box adversarial attacks by manipulating image
attributes. Inf. Sci. 550, 285–296 (2021). https://doi.org/10.1016/j.ins.2020.10.028

45. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering - EASE 2014. ACM Press
(2014). https://doi.org/10.1145/2601248.2601268

46. Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a
review. Int. J. Autom. Comput. 17(2), 151–178 (2020). https://doi.org/10.1007/
s11633-019-1211-x

47. Xu, W., Evans, D., Qi, Y.: Feature squeezing: Detecting adversarial examples in
deep neural networks. In: Proceedings 2018 Network and Distributed System Secu-
rity Symposium (2018). https://doi.org/10.14722/ndss.2018.23198

48. Zhang, J., Li, C.: Adversarial examples: opportunities and challenges. IEEE Trans.
Neural Netw. Learn. Syst. 31(7), 2578–2593 (2020). https://doi.org/10.1109/
TNNLS.2019.2933524

49. Zhang, Q., Zhao, Y., Wang, Y., Baker, T., Zhang, J., Hu, J.: Towards cross-task
universal perturbation against black-box object detectors in autonomous driv-
ing. Comput. Netw. 180, 107388 (2020). https://doi.org/10.1016/j.comnet.2020.
107388. https://www.sciencedirect.com/science/article/pii/S138912862030606X

50. Zhao, Y., Wang, K., Xue, Y., Zhang, Q., Zhang, X.: An universal perturbation
generator for black-box attacks against object detectors. In: Qiu, M. (ed.) Smart-
Com 2019. LNCS, vol. 11910, pp. 63–72. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34139-8 7

51. Zhou, M., Wu, J., Liu, Y., Liu, S., Zhu, C.: DaST: data-free substitute training for
adversarial attacks (2020). https://doi.org/10.48550/ARXIV.2003.12703. https://
arxiv.org/abs/2003.12703

https://doi.org/10.48550/ARXIV.1705.07204
https://doi.org/10.48550/ARXIV.1705.07204
https://arxiv.org/abs/1705.07204
https://doi.org/10.1109/TCYB.2020.3041481
https://doi.org/10.1109/TCYB.2020.3041481
https://doi.org/10.48550/ARXIV.1912.12162
https://doi.org/10.48550/ARXIV.1912.12162
https://arxiv.org/abs/1912.12162
https://doi.org/10.1016/j.jnca.2020.102634
https://doi.org/10.1016/j.ins.2020.10.028
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/s11633-019-1211-x
https://doi.org/10.1007/s11633-019-1211-x
https://doi.org/10.14722/ndss.2018.23198
https://doi.org/10.1109/TNNLS.2019.2933524
https://doi.org/10.1109/TNNLS.2019.2933524
https://doi.org/10.1016/j.comnet.2020.107388
https://doi.org/10.1016/j.comnet.2020.107388
https://www.sciencedirect.com/science/article/pii/S138912862030606X
https://doi.org/10.1007/978-3-030-34139-8_7
https://doi.org/10.1007/978-3-030-34139-8_7
https://doi.org/10.48550/ARXIV.2003.12703
https://arxiv.org/abs/2003.12703
https://arxiv.org/abs/2003.12703

Alice in (Software Supply) Chains: Risk
Identification and Evaluation

Giacomo Benedetti(B) , Luca Verderame , and Alessio Merlo

DIBRIS - University of Genoa, Genoa, Italy
{giacomo.benedetti,luca.verderame,alessio.merlo}@dibris.unige.it

Abstract. The fast pace of modern development paradigms like DevOps
boosted the complexity of development pipelines. In particular, devel-
opers rely on many external assets and third-party software to build
the final product and match the demanding requirements in terms of
release cycles and functionalities. However, such a choice impacts all the
elements of the development pipeline composing the so-called Software
Supply Chain (SSC), degrading its maintainability and security. From
a security standpoint, successful attacks can go unnoticed and impact
many targets that use the affected software before being resolved. Unfor-
tunately, traditional security assessment methodologies might detect the
symptoms (e.g., the piece of vulnerable code) but not the cause, i.e., the
attack vector and the affected asset of the SSC, failing to mitigate the
risk of new attack campaigns.

In this paper, we propose Sunset, a methodology with a two-fold objec-
tive. First, it allows the automatic reconnaissance of the SSC assets and
dependencies to alleviate the burden of monitoring the composition of the
SSC. Then, it computes a risk profile, identifying the SSC risk sources
and how they can impact the final software to support the identifica-
tion of the weakest points of the SSC and activate the necessary orga-
nizational and technical countermeasures to prevent future SSC attack
campaigns.

Keywords: Software supply chain · Software supply chain security ·
Risk identification · Software security

1 Introduction

The DevOps paradigm has tightly integrated development, delivery, and opera-
tions, into the development process, facilitating and speeding up the continuous
release of software components [10]. Such a paradigm drove the tight integra-
tion of heterogeneous components such as software artifacts (e.g., third-party
libraries and binaries), assets (e.g., software repositories and package managers),
and personnel that contribute to a software product or that have the opportu-
nity to modify its content (e.g., developers and maintainers). Those elements
compose the so-called Software Supply Chain (SSC) [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 281–295, 2022.
https://doi.org/10.1007/978-3-031-14179-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_19&domain=pdf
http://orcid.org/0000-0003-2609-6787
http://orcid.org/0000-0001-7155-7429
http://orcid.org/0000-0002-2272-2376
https://doi.org/10.1007/978-3-031-14179-9_19

282 G. Benedetti et al.

In the last years, however, SSC has become hard to maintain and under-
stand, as it needs to be adapted to cope with the evolution of the underlying
software and systems, including technological changes (e.g., changes in architec-
tures, operating systems, or library upgrades) [44]. For instance, some parts of
the SSC become unnecessary during the evolution of the software and can be
removed, or some others (e.g., testing environments) become obsolete and should
be upgraded/replaced.

In addition, from a security standpoint, the SSC offers an appealing entry
point for attackers that aim to target the final software and its consumers, as
witnessed by recent security reports [2,27]. In particular, a successful attack
in the software supply chain might go unnoticed for a long period, impact-
ing a large number of companies that use the affected supplier’s software. The
CodeCov attack [20], for example, exploited a configuration vulnerability in the
Docker files of the CodeCov code coverage tool that allowed external attackers
to access the source code stored in the repositories of 23000 customers. The
difficulty of maintaining and evaluating the security posture of a SSC drove
the attention of both the industrial and research community. For this reason,
different approaches emerged in recent years. These approaches can be mainly
divided into two groups. The first set of methodologies and tools focuses on
detecting vulnerabilities in the software code directly in the DevOps pipelines.
Notable examples include snyk [31] and slscan [29]. Other solutions, instead,
focus on the integrity of software and its dependencies, such as Google SLSA
[32], MITRE D3FEND [18], and ReproducibleBuilds [26]. However, we argue
that the proposed solutions allow the mitigation of security vulnerabilities but
fail to identify their root causes and, thus, to prevent future attack campaigns.
Supporting that, the ENISA reports that 66% of attacks targeting the Software
Supply Chain come from unknown sources [11]. In order to fill such a gap, this
paper presents Sunset (Software Supply Chain Risk Identification), a method-
ology that supports the maintenance and the risk evaluation of Software Supply
Chains. First, the methodology allows for the automatic reconnaissance of all
the elements of a Software Supply Chain and their dependencies. Then, it sup-
ports the identification of all the security risks of the SSC and its components
by generating a risk profile that details where threats originate, which path they
follow to reach the final software, and their severity.

Structure of the Paper. The rest of the paper is organized as follows: Section 2
introduces the software supply chain along with its vulnerabilities and attacks.
Section 3 details the Sunset methodology and its architecture. Section 4 discusses
the current state-of-the-art for software supply chain security, while Sect. 5 con-
cludes the paper and points out some future extensions of this work.

2 Software Supply Chain

The Software Supply Chain (SSC) contains all the elements, called assets, that
contribute to the development of a software artifact, namely the final product.
SSC assets include structural elements (e.g., code repositories and development

Alice in (Software Supply) Chains: Risk Identification and Evaluation 283

servers), software components (e.g., libraries and executables), and organiza-
tional entities (e.g., developers and software maintainers). Inside the SSC, we
can distinguish between supplier assets and customer assets. The former con-
tains all assets not explicitly created or defined for the final product, e.g., an
external library or a package manager. The latter comprises assets the final
software will interface with once deployed in the production environment.

In a typical DevOps scenario, depicted in Fig. 1, the SSC contributes to
the pre-release phase, where the organization selects (plan), implements (code),
packs (build), and tests (test) all the elements composing the final software.

PLAN CODE BUILD TEST RELEASE DEPLOY OPERATE MONITOR

Pre-Release Phase Post-Release Phase

Fig. 1. The DevOps workflow.

MyWebApp

Std Libs
Std Libs

Dev/
seclogin

SecLogin

PyPI
Modules

pallets/
flask

benoitc/
gunicorn

Flask

gunicorn

Maintainer

Contributors

Contributors

Fig. 2. MyWebApp software supply chain.

Figure 2 depicts an example of supplier assets composing the SSC of a Python
web app called MyWebApp. MyWebApp uses a set of standard python libraries
(e.g., os and glob) and two external modules (i.e., Flask and Gunicorn) imported

284 G. Benedetti et al.

using the PyPI package manager. Both modules are hosted on public GitHub
repositories, where maintainers and contributors provide regular updates and
new functionalities. Also, MyWebApp manually imports another library, called
SecLogin. SecLogin is developed and hosted on a GitLab repository by a single
maintainer and relies on standard python libraries as well.

2.1 Software Supply Chain Vulnerabilities and Attacks

An SSC vulnerability is defined as a security vulnerability affecting an asset that
could evolve into an attack once exploited. Such vulnerability may happen during
the different stages of software development. In particular, Common Weakness
Enumeration [40], i.e., CWE, highlights that 91% of security weaknesses are
introduced during design (462 CWEs) and implementation (724 CWEs).

One of the most significant advantages of attack campaigns targeting software
supply chains is that their impacts are not limited to the final software. They
can also harm assets belonging to more than one SSC and the affected software
customers. As a result, this form of attack is more likely to go unnoticed and
deliver a higher payout to the attacker [43].

Supporting the importance of the security evaluation of software supply
chains, the MITRE ATT&CK framework [39], identified the supply chain com-
promise as an initial access tactic.

Let’s consider the SSC example in Fig. 2. If the maintainer introduces a Static
Application Security Testing (SAST) tool, during the build phase of the final
software, to evaluate MyWebApp, the analysis may identify some security vul-
nerabilities and map them to known CWEs. In our example, the code analyzer
detects CWE-20 (Improper Input Validation) [34], CWE-89 (Improper Neutral-
ization of Special Elements used in an SQL Command) [37], and CWE-798 (Use
of Hard-coded Credentials) [36].

Thanks to the SAST security report, the developers of MyWebApp can patch
the source code. However, the developers do not have information regarding the
SSC asset that caused the vulnerability or the used attack vectors.

This lack of information is caused by the closed range analysis provided
by vulnerability assessment techniques, which aim to just alert developers of
vulnerability. Then developers cannot effectively patch the vulnerability by tak-
ing actions considering the smallest possible piece of asset which originates the
threat.

For instance, the vulnerability assessment tools cannot detect that the cre-
dential of one of the contributors of the GitLab repository of the SecLogin module
has been compromised using a social engineering attack. Indeed, thanks to this
attack vector, attackers can inject malicious code into the module and, thus, the
SSC, reaching the final software. This lack of information prevents developers
from identifying the compromised repository and adopting a mitigation action
(e.g., disconnecting the SecLogin repository) to cope with the risk to the final
software.

Alice in (Software Supply) Chains: Risk Identification and Evaluation 285

3 Sunset

This section introduces the basics of Sunset (Software Supply Chain Risk Identi-
fication), a methodology to automatically model the SSC and to identify the risk
that assets pose to the final software.

Analysis

Assets
Identification

Relationships
Identification

Model
Composition

SSC
Model

Risk
Analysis

SSC Risk
Report

SSC Risk
Model

SSC
Structure

Properties
Analysis

Model
Composition

Risk
Identification

Project Source
Code

Fig. 3. Sunset architecture.

Sunset automatically extracts a model of the Software Supply Chain in terms
of assets and dependencies, given only the source code of the final software. Then,
it extracts the cybersecurity risk of each asset and computes how it can impact
the security of the final software product.

The workflow of the methodology, depicted in Fig. 3, consists of three phases:
(I) The identification of assets and the extraction of their functional properties.
(II) The modeling of the assets as well as the relationships linking them. (III)
The identification of the risk of specific assets and the computation of the risk
propagation to the final software.

3.1 Property Analysis

Asset Identification. Sunset identifies assets based on four distinct categories,
namely software artifacts, code holders, distribution networks, and actors.

– Software Artifact. It represents any kind of software included or devel-
oped in the SSC. Sunset further discerns between (i) compiled software (e.g.,
binaries and pre-compiled libraries) and (ii) source code artifacts.

– Holder. This type of asset is responsible for storing and maintaining software
artifacts. A Holder can be further categorized in:
• Local Storage. It represents storage solutions that are not connected with

any management system. This category includes, for instance, a local
folder containing software artifacts.

• Version Control System (VCS). A VCS allows managing software artifacts
using a management system that supports code control features like ver-
sioning and tracking. The VCS kind of holder can be classified in remote
and local depending on its location.

286 G. Benedetti et al.

– Distribution Network. Also known as package managers, it includes ser-
vices and systems that allow the categorization, search, and distribution of
software artifacts. Typical distribution networks include Maven and PyPI,
which support the distribution of Java and Python libraries, respectively.
The majority of open and closed source projects take advantage of distribu-
tion networks to import software dependencies [13].

– Actor. Actors represent humans involved in the software supply chain. An
actor can be classified based on its privileges on the asset it is connected to,
i.e.:
• Maintainer. It has full access to the asset who is connected to. Moreover,

it is able to set privileges for other actors connected to the same asset.
• Contributor. It has restricted access to the asset who is connected to.

The identification of assets happens in the first stage of the workflow depicted
in Fig. 4. In particular, the methodology analyses the project files and their
content to detect the assets composing the software supply chain.

True

False
Code

 Available
Retrieve Code

True

False

Origin
Identified

Advanced
Origin Search

Actors
Identification

Project
Analysis

Holder
Identification

Distribution
Network

Identification

Software
Artifact

Identification

Stage 1

Local Data
Analysis

Metadata
Analysis

Code Parsing

Remote Data
Analysis

Assets Related
Analysis

Open Source
Information

Analysis

Stage 2

False

TrueCompiled Decomplilation

Fig. 4. Property extraction workflow.

Assets belonging to the software artifact category are identified starting from
the entry file of the project. The methodology recursively identifies software arti-
facts via parsing the code files in the project. When Sunset is not able to match
a software artifact with the parsed source code, it tries to find a correspond-
ing artifact online (e.g., by searching for publicly available implementation of
the software artifact). If the methodology identifies multiple artifacts, it selects
the most exhaustive implementation (considering lines of code and last update
time, if available). Nevertheless, when this event happens, Sunset collects the
differences between artifact versions as evidence of possible attack vectors (e.g.,
typosquatting [42], i.e., trick users into downloading a malicious package by
squatting the name of a popular package).

The methodology identifies holders through the analysis of project files. VCSs
use the local file system to deal with code versioning (e.g., indexing files and con-
figuration files), then Sunset detects this class of holder through these fingerprint
files. In the case there is no local fingerprint, the methodology takes advantage of
software artifacts source code to explore available public repositories in order to

Alice in (Software Supply) Chains: Risk Identification and Evaluation 287

couple software artifacts to a VCS. When the methodology fails to associate soft-
ware artifacts to a VCS, it creates a local storage holder to contain the software
artifacts.

Programming languages of software artifacts defines the distribution net-
works involved in the SSC, i.e., a Python software artifact rely on PyPI, while
a rust program on Cargo. Sunset identifies also private distribution networks
searching for specific configurations in software artifact source code or configu-
ration files.

The methodology identifies the actors during the analysis of holders and
distribution networks. Indeed, actors interact with both of these categories of
assets. An actor interfaces with an asset through a virtual identity that differs
from its physical person. The methodology refers to this virtual identity to model
the actor asset.

Properties Extraction. The methodology extracts a different set of proper-
ties for each category of assets. The properties of interest are divided in two
categories, namely:

– Structural properties, which are oriented to the understanding of the struc-
tural composition of the asset. These properties provide information about
the structure and the quality of the asset in terms of usage and involvement
in the software supply chain.

– Security properties, which concern the security posture of the asset. They
provide information regarding possible flaws and entry points.

Each category contains different groups of properties, as detailed in Table 1.
Sunset extracts properties from assets during their identification. Depending

on the asset category, the methodology extracts the proper groups of properties.
The single properties of each group receive a quantitative evaluation, depending
on their characteristics and the availability of plugins to support the extraction,
e.g., a static code analyzer for security properties of software artifacts.

Similarly to the identification process, Sunset adopts a strategy to extract
properties based on the asset category. Stage 2 of the workflow (Fig. 4) depicts
the corresponding extraction workflow.

For software artifact assets, properties extraction consists of analyzing the
metadata, the source code (if available), and the result of SAST tools. In the
case of a compiled software artifact, instead, Sunset analyses the decompiled
code relying on state-of-the-art decompilation tools [17,23,25].

Assets belonging to the Holder and Distribution Network categories are ana-
lyzed by considering (i) the metadata located in the project (e.g., indexing files,
mirror files), (ii) the remote information (e.g., remote branches, pull requests,
versioning information), and (iii) the existence of known security issues on pub-
licly available vulnerability databases.

For the actor assets, the methodology takes advantage of the information
provided by the assets from which the actor has been obtained (e.g., contribu-
tion to the repository). The information gathered through the asset where the

288 G. Benedetti et al.

Table 1. Properties categories and groups divided per asset category.

Structural Security

Software artifact Conditional statements Buffers validation

Functions Input sanitization

Required user interactions Insecure patterns

Read and write operations

Holder Commits Security policies

Pull requests Community standards

Issues Known security issues

Workflows

Distribution network Mirrors Known security issues

Packages required

Actor Homepage OSINT results

Overall contributions Known malicious actions

Public repositories

Forks

actor contributes is integrated with the analysis of open-source information [7].
Different actors can be connected to a single physical person. Analyzing the
links bounding them to a physical person allows for a better understanding of
their involvement in the software supply chain. Thanks to this understanding, it
would be possible to capture information on potential threat actors. The iden-
tification of these links involves the use of state-of-the-art tools for the analysis
of personas [21,30].

3.2 Model Composition

The model composition phase (Fig. 3) allows for the building of a structured
representation of the software supply chain.

The generation of the model organizes the assets and their inter-dependencies
using a direct graph structure, where nodes represent assets and edges detail their
relations.

The final software is the central node of the model. This particular node has
only entering edges. The edges entering the node connect the final software to
the subgraphs containing the assets identified during the Asset Identification
phase. Figure 5 depicts the set of possible relationships between two assets.

Figure 6 depicts the model generated by the analysis and modeling phase of
the SSC of MyWebApp of Fig. 2.

The SSC model also supports the graphical plotting and manipulation using
state-of-the-art tools, e.g., [16]. The visual representation allows a high-level
overview of the SSC that can support maintenance tasks and preliminary security

Alice in (Software Supply) Chains: Risk Identification and Evaluation 289

Actor

Interacts

Holder

Imports

Distribution Network

Contributes

Software Artifact

Imports

Provides

Imports

Imports

Contributes

Contributes

Contributes

Modifies

Hosts

Fig. 5. Possible relationships among SSC asset categories.

assessments. For instance, the centrality of nodes [4] can be used to understand
which nodes have more influence w.r.t. the final software.

MyWebApp
PyPI

pallets

Flask
gunicorn

benoitc

Contributor1

Contributor319

Maintainer

DevSecLogin

Lib1

LibN

SW Art.

Lib1 LibN

Holder

HolderHolder

Actor

Actor

Actor

Contributor1

Contributor651

Actor

Actor

SW Art.

SW Art.

SW Art. SW Art.

SW Art.

Dist. Net.

os

SW Art.

glob

SW Art.

Fig. 6. Example of model representation.

3.3 Risk Identification

The Sunset methodology takes advantage of SSC model obtained in the model
composition phase to carry on risk identification. Risk identification concerns
searching and analyzing risk sources in the software supply chain. This phase
considers the risk generated on the single assets and its propagation through the
software supply chain. Figure 7 depicts the workflow for the risk identification
phase.

290 G. Benedetti et al.

Get Active
CWEs

For Each NodeSSC Model

Get Active
Attack Vectors

True

False

Software
Artifact

Get associated
CVEs

Compute Risk
Score

Assign AVs to
outgoing

relationships

Enrich Model with RIsk Data

Aggregate local
risk with

incoming risk

Get Risk from
parent nodes

Weakness Analysis

Attack Vector Analysis Risk Aggregation and
Propagation

Fig. 7. Risk analysis module workflow.

Sunset explores the model graph with a breadth-first search algorithm [6].
The exploration starts from the border of the graph to represent how the outer
assets’ risk impacts inner nodes and reaches the final software.

The methodology defines two types of analysis depending on the category of
the asset:

– Weakness analysis, for software artifacts.
– Attack Vector analysis, for holders, distribution networks, and actors.

Sunset relies on a Knowledge Base for the evaluation of weaknesses and attack
vectors. The knowledge base maps assets’ structural and security properties with
either a CWE or an attack vector (AV). Sunset considers all CWEs linked to
the pre-release phase, grouped in the CWE View 699 [38] and the set of attack
vectors listed by ENISA [11].

In detail, the knowledge base contains a list of first-order logic statements
evaluating structural properties (P), security properties (S), and the presence of
specific attack vectors (AV). Each property can be compared with a threshold
value (T), joint or disjoint with other properties or predicates, and evaluated in
its presence or absence (� operator).

For example, the first expression in Listing 1.1 states that attack vector AVx

is enabled when both properties P1 and P2 are greater than their respective
critical values C1 and C2 and when the attack vector AVy is active. The second
statement in Listing 1.1 details how CWEz is enabled either when properties
P1 and P2 are greater than critical values C1 and C2 or when the attack vector
AVx is active. More detailed examples are presented in Listings 1.2 and 1.4.

1 . AVx “ñ (P1 ą C1) ^ (P2 ą C2) ^ AVy

2 . CWEz “ñ (P1 ą C1) ^ (P2 ą C2) _ AVx

Listing 1.1. Mapping rules of Sunset knowledge base.

Alice in (Software Supply) Chains: Risk Identification and Evaluation 291

Weakness Analysis. The weakness analysis leverages the CWE database, the
CVSS scoring system [12], and the properties extracted for the software artifacts.
Sunset considers all CWEs linked to the pre-release phase, grouped in the CWE
View 699 [38].

During the analysis of a software artifact asset, the methodology identifies
active CWEs. A CWE is active on an asset if it is included (or can be derived)
from a security property of the asset or from an attack vector. By verifying
asset properties and the attack vectors inherited from the connected edges, Sun-
set provides the list of active CWEs of the asset.

For example, the presence of conditional statements (Pcond) but the lack of
variable sanitization (Ssan) triggers the rule on CWE-478 [35] (lack of default
condition in switch statements) detailed in Listing 1.2.

CWE-478 “ñ Pcond ^ �Ssan

Listing 1.2. KB rule for CWE-478.

After the evaluation of active CWEs, Sunset proceeds with the definition of
the overall risk associated with the asset. For the computation, the methodology
retrieves all the Common Vulnerabilities Exposures (CVE) [33] grouped w.r.t.
a given CWE, i.e., the vulnerabilities linked to each CWE that are available
on public databases. For each CVE, Sunset extracts the corresponding CVSS
score [12] and uses it to compute the CVSS risk value of the asset.

In detail, we define Gx as the group of active CWEs on an asset X (1);
for each CWE in Gx, the methodology gathers the corresponding list of CVSS
vectors (Si), one for each CVE. Each Si contains L different metrics M (2). The
risk score of the CWE j (RCWEj) is a new vector where each metric Ki is the
mean value of all the same metrics of each CVSS score contained in CWE j (3).
The overall score Rx of the asset is the max value among the set of RCWE (4).

(1) Gx “ {CWE1, ...,CWET }
(2) CWEj “ {S1, ...,SN} where Si “ {Mi1, ...,MiL}
(3) RCWEj

“ {K1, ...,KL} where Ki “ M1i`...`MNi

N
(4) Rx “ max {RCWE1 , ..., RCWET

}
Listing 1.3. Equations for computing the risk score of an asset.

Attack Vector Analysis. Attack vector analysis follows the same concept as
weaknesses analysis. In detail, Sunset identifies a set of active AVs insisting on an
asset X if and only if the functional and security properties allow their presence.
For the evaluation, the methodology exploits the rules defined in the knowledge
base.

For example, the asset X is susceptible to manipulation attacks (AVman) if
the asset X inherits the attack vector social engineering (AVse) from a linked
asset and the security property weak password (Swp) is below the threshold Tl,
according to the rule in Listing 1.4.

292 G. Benedetti et al.

AVman “ñ AVse ^ (Swp ă Tl)
Listing 1.4. KB rule for the manipulation attack vector.

Risk Aggregation and Propagation. Attack vectors and risk evaluations
propagate in the SSC model according to the interconnections among the differ-
ent assets. Weaknesses and attack vectors flow from the boundary of the SSC
model toward the final software. In this sense, a relationship between two assets
has two goals:

I. Carry attack vectors useful for the weakness analysis.
II. Transport the risk value obtained on connected assets.

Hence, the total risk on an asset consists of aggregating the risk value gen-
erated on the asset with the risk values inherited from inbound relationships.

In detail, Sunset starts the exploration of the SSC model from the border of
the final software SSC using a breadth-first search algorithm.

For each inbound connection, the methodology adds the risk score and the
attack vectors inherited from the parent node. Then it iterates the process for
each node until it finds the final software. On each step, Sunset updates the
weakness analysis and the AV analysis to match the new conditions.

Looking back at example in Fig. 2, the sources of risk of the MyWebApp are
the relationships incoming from the Dev/seclogin holder, the Std Libs software
artifacts, and the PyPI distribution network. Suppose that the methodology
reports a social engineering attack vector on the maintainer of Dev/seclogin. In
that case, such AV will be propagated on the holder and, consequently, in the
software artifact of the module and the final software.

4 Related Work

Both the industrial and scientific communities proposed several solutions to
increase the security of software [9]. Most of the activities focused mainly on
vulnerability analysis and software integrity.

Tools like the OWASP Dependency-Check [24], snyk [31], slscan [29], and
shhgit [8] provide the developer with detailed vulnerability reports of vulnerabil-
ity patterns and insecure dependencies. Also, the scientific community provided
several solutions to detect and mitigate software vulnerabilities, such as [14,19].

Another field of activities was devoted to ensuring the integrity assurance of
open-source software. Such works aim to prevent unauthorized modifications/-
tampering of the software during the development pipeline.

Two of the most recent industry proposal are SLSA [32] and Reproducible
builds [26]. Supply chain Levels for Software Artifacts (SLSA) is an end-to-
end framework to guarantee the integrity of dependencies all along the devel-
opment process. Through SLSA certifications, developers obtain information on

Alice in (Software Supply) Chains: Risk Identification and Evaluation 293

the integrity assurance a given artifact can offer. However, the certification pro-
cess requires an extended interaction with the developers and hardly copes with
the level of automation needed for the DevOps paradigm.

Reproducible builds [26], instead, is a collection of software development
processes that aims to standardize the build and compilation process in terms
of configurations and requisites. This approach enables maintainers to detect
if an attacker has compromised the building process by comparing the assets
generated during the compilation process.

Hence, Reproducible Builds focuses on the integrity compromise happening
in the build step. Weaknesses inserted in the software by mistake or intention-
ally are then considered a trusted part of the build. On the same approach,
the authors of LastPyMile [41] proposed a methodology to detect the differ-
ences between build artifacts of software packages and the respective source
code repository.

The aforementioned approaches might detect vulnerable dependencies and
insecure code and contribute to software packages’ integrity. Still, they hardly
cope with the root cause of the problem, the attack vector, and the affected asset
of the SSC, failing to mitigate the risk of new attack campaigns. Such lack of
control is particularly disruptive in complex software supply chains containing
thousands of assets, thereby limiting the benefits of adopting VA and integrity
solutions. Sunset is one of the first attempts to mitigate such pain for developers
and SSC maintainers.

5 Conclusion and Future Work

In this paper, we introduced Sunset, a new methodology to model software sup-
ply chains and evaluate their security risk and the detail of the single asset.
Sunset is not intended to substitute traditional VA and PT procedures or risk
management activities. The methodology, instead, aims to alleviate the burden
of maintaining a secure and updated SSC by providing a means to (i) evaluate
the risk of each asset and how it will influence the security posture of the final
software and (ii) identifies the sources of risk to prioritize mitigation activities.
Also, the evaluation of Sunset can be performed offline without impacting the
performance of the development process.

In future works, we plan to extend the methodology to cope with the cur-
rent limitations. First, we will enrich the type of assets and properties that can
be modeled with Sunset to support complex scenarios. Then, we will provide
an open-source prototype implementation of the methodology to test its appli-
cability and efficacy in tracing security vulnerabilities, and sources of risk in
real-world scenarios like mobile [3,22], CPS [15] and IoT [5], whose development
pipeline and threat model are well-known to our research group. The implemen-
tation will exploit both state-of-the-art tools (e.g., slscan [29] and COSMO [28]
to extract security properties) and ad-hoc heuristics (e.g., a module for detecting
GitHub software artifacts).

294 G. Benedetti et al.

References

1. Alberts, C.J., Dorofee, A.J., Creel, R., Ellison, R.J., Woody, C.: A systemic app-
roach for assessing software supply-chain risk. In: 2011 44th Hawaii International
Conference on System Sciences, Kauai, HI, pp. 1–8, January 2011. https://doi.org/
10.1109/HICSS.2011.36

2. Argon: 2021 software supply chain security report (2021). https://info.aquasec.
com/argon-supply-chain-attacks-study

3. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling BYOD through secure
meta-market. In: Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless & Mobile Networks, WiSec 2014, pp. 219–230. Association for Com-
puting Machinery, New York (2014). https://doi.org/10.1145/2627393.2627410

4. Barabási, A.L.: Network Science. Cambridge University Press (2016). http://
networksciencebook.com/

5. Caputo, D., Verderame, L., Ranieri, A., Merlo, A., Caviglione, L.: Fine-hearing
google home: why silence will not protect your privacy. J. Wireless Mob. Netw.
Ubiquit. Comput. Dependable Appl., 35–53 (2020). https://doi.org/10.22667/
JOWUA.2020.03.31.035

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2017)

7. Cumming, A.: Open Source Intelligence (OSINT): Issues for Congress (2007)
8. Darkport Technologies Limited: shhgit. https://github.com/eth0izzle/shhgit
9. Dowd, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment:

Identifying and Preventing Software Vulnerabilities. Pearson Education (2006)
10. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. (3),

94–100 (2016). https://doi.org/10.1109/MS.2016.68
11. European Union Agency for Cybersecurity: ENISA Threat Landscape for Sup-

ply Chain Attacks. Publications Office, LU (2021). https://data.europa.eu/doi/
10.2824/168593

12. FIRST.ORG Inc.: CVSS. https://www.first.org/cvss/
13. Flynn, C.: PyPI Stats. https://pypistats.org/packages/ all
14. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery

using machine-learning and data-mining techniques: a survey. ACM Comput. Surv.
(4) (2017). https://doi.org/10.1145/3092566

15. Gobbo, N., Merlo, A., Migliardi, M.: A denial of service attack to GSM networks
via attach procedure. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L.
(eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 361–376. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40588-4 25

16. Graphviz Authors: Graphviz. https://graphviz.org/
17. Hex-Rays: Ida Decompiler. https://hex-rays.com/decompiler/
18. Kaloroumakis, P.E., Smith, M.J.: Toward a knowledge graph of cybersecurity coun-

termeasures (2021)
19. Liu, B., Shi, L., Cai, Z., Li, M.: Software vulnerability discovery techniques: a

survey. In: 2012 Fourth International Conference on Multimedia Information Net-
working and Security, pp. 152–156 (2012). https://doi.org/10.1109/MINES.2012.
202

20. Jackson, M.: Codecov supply chain breach - explained step by step. https://blog.
gitguardian.com/codecov-supply-chain-breach/

21. Maltego Technologies: Maltego. https://www.maltego.com/

https://doi.org/10.1109/HICSS.2011.36
https://doi.org/10.1109/HICSS.2011.36
https://info.aquasec.com/argon-supply-chain-attacks-study
https://info.aquasec.com/argon-supply-chain-attacks-study
https://doi.org/10.1145/2627393.2627410
http://networksciencebook.com/
http://networksciencebook.com/
https://doi.org/10.22667/JOWUA.2020.03.31.035
https://doi.org/10.22667/JOWUA.2020.03.31.035
https://github.com/eth0izzle/shhgit
https://doi.org/10.1109/MS.2016.68
https://data.europa.eu/doi/10.2824/168593
https://data.europa.eu/doi/10.2824/168593
https://www.first.org/cvss/
https://pypistats.org/packages/__all__
https://doi.org/10.1145/3092566
https://doi.org/10.1007/978-3-642-40588-4_25
https://graphviz.org/
https://hex-rays.com/decompiler/
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1109/MINES.2012.202
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.maltego.com/

Alice in (Software Supply) Chains: Risk Identification and Evaluation 295

22. Migliardi, M., Merlo, A.: Improving energy efficiency in distributed intrusion detec-
tion systems. J. High Speed Netw. 3, 251–264 (2013). https://doi.org/10.3233/
JHS-130476

23. National Security Agency: Ghidra. https://ghidra-sre.org/
24. OWASP Foundation Inc.: OWASP dependency-check. https://owasp.org/www-

project-dependency-check/
25. radareorg: Radare2. https://rada.re/
26. ReproducibleBuilds: Reproduciblebuilds. https://reproducible-builds.org/
27. Revenera: The 2022 state of the software supply chain report (2022). https://info.

revenera.com/SCA-RPT-OSS-License-Compliance-2022/
28. Romdhana, A., Ceccato, M., Georgiu, G.C., Merlo, A., Tonella, P.: COSMO: code

coverage made easier for android. In: 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST), pp. 417–423 (2021). https://doi.org/
10.1109/ICST49551.2021.00053

29. ShiftLeftSecurity: SLScan. https://slscan.io/
30. Shodan: Shodan. https://www.shodan.io/
31. Snyk Limited: Snyk open source. https://snyk.io/
32. The Linux Foundation: SLSA. https://slsa.dev/
33. The MITRE Corporation: CVE. https://cve.mitre.org/
34. The MITRE Corporation: CWE-20: improper input validation. https://cwe.mitre.

org/data/definitions/20.html
35. The MITRE Corporation: CWE-478: missing default case in switch statement.

https://cwe.mitre.org/data/definitions/478.html
36. The MITRE Corporation: CWE-798: use of hard-coded credentials. https://cwe.

mitre.org/data/definitions/798.html
37. The MITRE Corporation: CWE-89: improper neutralization of special ele-

ments used in an SQL command (‘SQL Injection’). https://cwe.mitre.org/data/
definitions/89.html

38. The MITRE Corporation: CWE VIEW 699: software development. https://cwe.
mitre.org/data/definitions/699.html

39. The MITRE Corporation: MITRE ATT&CK. https://attack.mitre.org/
40. The MITRE Corporation: MITRE Common Weakness Enumeration. https://cwe.

mitre.org/
41. Vu, D.L., Massacci, F., Pashchenko, I., Plate, H., Sabetta, A.: LastPyMile: iden-

tifying the discrepancy between sources and packages. In: Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Athens Greece, pp. 780–792,
August 2021. https://doi.org/10.1145/3468264.3468592

42. Vu, D.L., Pashchenko, I., Massacci, F., Plate, H., Sabetta, A.: Typosquatting and
combosquatting attacks on the python ecosystem. In: 2020 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS PW), pp. 509–514 (2020).
https://doi.org/10.1109/EuroSPW51379.2020.00074

43. Yan, D., Niu, Y., Liu, K., Liu, Z., Liu, Z., Bissyandé, T.F.: Estimating the attack
surface from residual vulnerabilities in open source software supply chain. In: 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
(QRS), pp. 493–502 (2021). https://doi.org/10.1109/QRS54544.2021.00060

44. Zampetti, F., Geremia, S., Bavota, G., Di Penta, M.: CI/CD pipelines evolution
and restructuring: a qualitative and quantitative study. In: 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 471–482 (2021).
https://doi.org/10.1109/ICSME52107.2021.00048

https://doi.org/10.3233/JHS-130476
https://doi.org/10.3233/JHS-130476
https://ghidra-sre.org/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://rada.re/
https://reproducible-builds.org/
https://info.revenera.com/SCA-RPT-OSS-License-Compliance-2022/
https://info.revenera.com/SCA-RPT-OSS-License-Compliance-2022/
https://doi.org/10.1109/ICST49551.2021.00053
https://doi.org/10.1109/ICST49551.2021.00053
https://slscan.io/
https://www.shodan.io/
https://snyk.io/
https://slsa.dev/
https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://attack.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://doi.org/10.1109/QRS54544.2021.00060
https://doi.org/10.1109/ICSME52107.2021.00048

Evaluating Tangle Distributed Ledger
for Access Control Policy Distribution
in Multi-region Cloud Environments

Carlo Mazzocca(B) , Andrea Sabbioni , Rebecca Montanari ,
and Michele Colajanni

University of Bologna, Bologna, Italy
{carlo.mazzocca,andrea.sabbioni5,rebecca.montanari,

michele.colajanni}@unibo.it

Abstract. Nowadays, an increasing number of applications, services,
and devices are shifting towards a less centralized cloud computing
model. Cloud providers allow customers to deploy applications across
multiple regions of their infrastructures to achieve high availability, be
compliant with data privacy laws and regulations, and provide more
robustness. Although an application can be deployed in different areas,
it still has to behave as a single service that undergoes the same access
control policies. However, verifying access control is a challenging task
since the desired requirements are often in conflict (i.e., high availabil-
ity and strict consistency) according to the use-case scenario taken into
account. Different solutions have been proposed to distribute access con-
trol policies that are used to grant or deny user requests to access data or
services. In this direction, Distributed Ledger Technologies (DLTs) seem
to be a promising solution to distribute policies across different regions
while still enabling their integrity, authenticity, and confidentiality. In
this work, we propose an access control framework that uses IOTA, a
novel DLT implemented through a directed acyclic graph named Tangle,
to distribute policies. We implemented a prototype of our solution and
compared it with its corresponding where the Tangle was replaced by a
globally distributed NoSQL database.

Keywords: Access control · Multi-region · Distributed ledger ·
Tangle · IOTA

1 Introduction

Cloud computing is a widespread computing paradigm aiming at improving the
use of distributed resources to solve large-scale computation problems [14]. Cloud
providers allow customers to deploy applications across multiple regions to sat-
isfy their needs. Multi-region applications reduce network latency and improve
user experience by storing data close to end-users. Such applications provide sig-
nificant robustness since the failure of a region will not cause the unavailability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 296–306, 2022.
https://doi.org/10.1007/978-3-031-14179-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_20&domain=pdf
http://orcid.org/0000-0001-8949-2221
http://orcid.org/0000-0001-9817-1702
http://orcid.org/0000-0002-3687-0361
http://orcid.org/0000-0002-9499-1559
https://doi.org/10.1007/978-3-031-14179-9_20

Evaluating Tangle Distributed Ledger for Access Control Policy Distribution 297

of the entire service. Moreover, this kind of deployment enables customers to be
compliant with data privacy laws and regulations by storing user-related data
in specific areas [7].

Although this approach brings several advantages, it also introduces many
security and management issues that have to be properly handled [1]. A multi-
region application has to behave as a single service that undergoes the same
access control policies with a unified vision of involved data. Managing data is
one of the major challenges: centralizing them in a single area would impact
the robustness of the system and degrade performance due to continuous data
transfers; while replicating them across multiple regions would lead to synchro-
nization issues. To offer high availability, multi-region cloud platforms replicate
data at multiple locations, even across countries. Therefore, they have to guaran-
tee that all data replicas, used by different instances of applications and services,
are protected under the same access control policies. However, keeping a unified
view of access control policies across different regions is a challenging task since
when a policy has been updated in a certain area such modifications have to be
quickly propagated to all the other instances of applications and services, thus,
choosing the technology to adopt is a key point to carefully consider [9].

In this direction, Distributed Ledger Technologies (DLTs) are considered
promising solutions to share access control policies in multi-region applications
where involved services may be spread across different countries. In this paper,
we evaluate the feasibility to employ a Tangle-based distributed ledger to store
access control policies by implementing a prototype version of an access control
architecture and comparing it with a corresponding implementation that uses a
document-oriented NoSQL database. To the best of our knowledge, we are the
first to compare a Tangle-based distributed ledger and a globally distributed
NoSQL database to store and manage access control policies.

The remainder of this paper is structured as follows: Sect. 2 introduces the
background and related work. Section 3 presents the proposed architecture and
gives some implementation details, while Sect. 4 evaluates the performance of
our proposal. Finally, Sect. 5 draws our conclusions and outlook for future work.

2 Background and Related Work

In this section, we report brief insights about DLTs and relevant technologies
with a special focus on IOTA [12]. Furthermore, we discuss some of the exist-
ing research efforts that employ such technologies to distribute access control
policies.

2.1 Distributed Ledger Technologies

A distributed ledger is a type of distributed database, replicated across multiple
nodes where data can only be appended or read. A malicious node cannot corrupt
a ledger due to the consensus mechanism, an algorithm that ensures to achieve
an agreement on a value or a state of the network among distributed entities

298 C. Mazzocca et al.

under consideration of network failures. Indeed, one of the main innovations of
DLTs is their capability of dynamically changing a set of nodes when Byzantine
failures occur without impacting the service availability [17].

DTLs owe their fame to Blockchain, a distributed, cryptographically secure,
immutable, traceable, and transparent technology presented by Nakamoto in
2008 [10]. Such technology has been mainly employed to transfer digital assets,
in particular cryptocurrencies, due to the lack of a central authority to verify the
trustworthiness of transactions. However, it suffers from scalability issues, this
is one of the main reasons that lead us to consider alternative DLTs. Moreover,
the high automation, transparency, and security of blockchain make it the ideal
enabling technology for Smart Contracts.

Smart contracts are executable codes that execute the terms of a contract
on DLTs. The main purpose of this paradigm is to address contractual condi-
tions while minimizing exceptions and the need for third parties. The capability
of smart contracts depends entirely on the programming language adopted to
express the contract and the features of the DLT employed [2]. At the state of
the art, many blockchains provide support to run smart contracts.

2.2 IOTA

IOTA is a novel DLT designed and developed to address scalability issues of
blockchains while still providing security, immutability, traceability, and trans-
parency. For these reasons, it is particularly suitable for the Internet of Things
(IoT) world due to its capability of handling large volumes of data coming from
several IoT devices. The main novelty introduced by such cryptocurrency is the
Tangle (sketched in Fig. 1), a distributed ledger implemented through a Directed
Acyclic Graph (DAG). A DAG is a collection of interconnected nodes used to
store transactions. A node represents a transaction, while an edge that connects
two nodes represents its validation. In the Tangle, the are no block producers,
so every user is allowed to issue new transactions and attach them to different
Tangle parts. When a transaction is attached, it has to verify the two transac-
tions to whom it is directly connected. Therefore, the progress of transactions
is significantly speeded up compared to blockchain solutions. Moreover, the lack
of a middleman enables zero-cost transactions.

Fig. 1. The tangle.

Evaluating Tangle Distributed Ledger for Access Control Policy Distribution 299

An IOTA network is a network of nodes, either private or permissionless,
where all nodes are aware of the history of transactions. Private networks can be
accessed only after the network owner has granted the access, on the contrary,
in permissionless networks, anyone can join and every transaction will be visible
to anyone.

In IOTA there is a distinction between client and node. A client is any entity
that sends to a node a transaction to attach to the Tangle, while a node is
responsible for verifying the correctness of collected transactions, as well as,
adding them to the Tangle. In such an environment, there are other two types
of nodes named Coordinator and Permanode. Each IOTA network has only a
Coordinator that regularly generates milestones, signed transactions that nodes
trust to confirm transactions. If you randomly pick a transaction, the node you
are connected could be malicious, however, nodes can not fake the signatures on
milestones, hence milestones can be always considered legit. A transaction in the
Tangle is confirmed only when directly or indirectly referenced by a milestone
that nodes have validated. On the other hand, Permanodes are deemed to main-
tain the history of all the transactions that have ever happened. Since IOTA
has been engineered for IoT, nodes may also be constrained devices that can-
not memorize the entire Tangle, and therefore they periodically delete recorded
transactions using a pruning operation. Permanodes address this need by per-
manently memorizing all data stored on the Tangle.

2.3 Storing Policies on DLTs

The growing interest from both academia and the industrial world for DLTs,
along with their features of sharing data securely, has led to many studies to
propose these technologies as an innovative solution for access control mecha-
nisms [8]. However, most of these work focuses on blockchains, while very few
consider other DLTs.

In [6], the authors addressed the problem of consistently and securely sharing
data replicas within a distributed system by using blockchain technology. Simi-
larly to this work, the blockchain is leveraged to hold a global view of security
policies within the system. Maesa et al. [3] proposed an access control app-
roach where policies, related to the right to access resources, are published on
a blockchain. Due to the public nature of blockchain, every user is allowed to
verify which policy has been bound to a resource and who has the right to access
it. Since the right of access is stored as a transaction, it can be easily transferred
from one user to another through a new transaction created by the last right
owner. Moreover, blockchain is also exploited to provide trust to the owner of
the resource and who is attempting to access it while policies are evaluated.
To minimize the amount of data stored, the authors decided to store policies
coded in a custom-built efficient format. However, policy evaluation through
smart contracts was introduced only successively in [4]. Another blockchain-
based framework for fine-grained access control is introduced by Wang et al.
[18]. In their proposal, the data owner encrypts the system master key, stores
it on the blockchain, and deploys a smart contract. Then, the user submits a

300 C. Mazzocca et al.

Fig. 2. Proposed access control architecture.

registration request to the owner who generates a user secret key and encrypts
it with the shared key. Finally, the transaction ID and smart contract address
are sent to the user through a secure channel. Such data will be used for future
connections.

In [15], the authors presented a decentralized access control system for IoT
based on IOTA, which is used to store policies and access rights. The owner of a
resource defines and publishes the security policies on the Tangle. A request to
access a resource will be granted only if it will meet the conditions specified in the
access control policy. Another access control framework for IoT was proposed by
[11], the authors employ the Tangle to store encrypted tokens, issued by object
owners, that involve policy and access rights.

3 Proposed Architecture

In this section, we propose an access control architecture that can be employed
in multi-region applications. Our proposal foresees components that typically
belong to the XACML architecture [16]:

– Policy Enforcement Point (PEP): intercepts access requests and, for each
request, builds a query in a language that can be interpreted by the PDP.
Then, based on the result of the policy evaluation, performed by the PDP, it
grants or denies access to a resource or a service;

– Policy Decision Point (PDP): evaluates the access request according to the
corresponding access control policy;

– Policy Administration Point (PAP): is used by administrators for loading,
updating, and revoking policies. This component provides policies to the
PDP;

– Tangle: a distributed ledger that guarantees a unified view of access control
policies across multiple regions.

We suppose that a requester has already been authenticated by an identity
provider. In Fig. 2, we report our proposal from a high-level perspective also
highlighting the information flow for the proposed framework. The steps are
detailed in the following:

Evaluating Tangle Distributed Ledger for Access Control Policy Distribution 301

1. The requester sends an access request to the PEP;
2. The PEP extracts information (i.e., user attributes, resource to access, etc.)

from the incoming request and builds a query that can be interpreted by the
PDP;

3. The PAP retrieves policies from the Tangle;
4. collected policies are provided to the PDP that evaluates the request through

the related policy queries;
5. The PDP provides the policy decision to the PEP;
6. The PEP grants or deny the access request according to the result provided

by the PDP;
7. An administrator, through the PAP, can load new policies, or update and/or

delete those existing;
8. The PAP interacts with the Tangle to satisfy administrator requests.

Since we are referring to multi-region applications, such components, except
the Tangle, are replicated on different instances. Due to the nature of the Tangle,
we are able to guarantee that an application, although it might be deployed in a
different area, is subject to the same access control policies since all the instances
of the PAP will access policies from a unique source.

3.1 Policies Properties

In this section, we discuss the main properties that must be addressed when
policies are stored and how these requirements are met through the Tangle.

Integrity. A policy must be stored without alteration. An altered policy may
cause data violation and/or grant unauthorized access. DLTs have been engi-
neered to provide data immutability, indeed, every information memorized on
the Tangle cannot be modified.

Authenticity. Using policies that have been created or modified by malicious
users may lead to undesired situations. To address this worry, we decided to
use a private Tangle. Therefore, only legitimate users are allowed to access the
Tangle to manage policies. This choice may still present some limitations related
to the difficulties of controlling how the Tangle is accessed. A solution could be
accepting only the policies submitted by a set of addresses. However, since we
decided to use zero-cost transactions, IOTA would not consider the address of the
sender and receiver. To overcome this issue, we should distribute IOTA tokens
to entities allowed to interact with the Tangle. Another solution is to resort
to external mechanisms such as digital signature or HMAC. In this work, we
consider a private Tangle that can be accessed only by authorized users leaving
as future work the adoption of alternative techniques.

302 C. Mazzocca et al.

Confidentiality. In some cases, policy confidentiality can be extremely rele-
vant. For example, a patient may not want to reveal that a doctor with a certain
specialization is accessing her/his medical record because it exposes patient pri-
vacy to potential leakage. In this paper, we assume that a private Tangle can
not be accessed by curios or malicious users. However, confidentiality can be eas-
ily addressed by adopting encryption mechanisms such as once implemented in
IOTA through the Masked Authenticated Messaging (MAM) library that allows
transmitting encrypted data to the Tangle.

3.2 Implementation

We implemented a first prototype of the architecture sketched in Fig. 2. The
PEP was realized through Envoy1, an L7 proxy and communication bus designed
for large-scale modern services. As our PDP, we employed Open Policy Agent
(OPA)2, a lightweight general-purpose policy engine service that decouples the
evaluation of policies from their enforcement. Policies are defined through Rego3,
the declarative policy language used by OPA, and stored on the Tangle that, as
mentioned above, is realized through IOTA. In our implementation, we opted
for a private IOTA network that comprises a Coordinator, a Spammer, and
a node, this latter replicated for each instance. The Spammer is a node that
periodically sends messages to the Tangle, thus enabling a minimal message load
to support transaction approval as per the IOTA protocol. The PAP is involved
in all the interactions with the Tangle. Hence, it is an abstraction of both the
mechanism that implements zero-cost transactions for loading, updating, and
revoking policies and the Bundle Service, a software application that groups
Rego policies from the Tangle and provide them to OPA. To memorize policies
on IOTA, we use zero-cost transactions embedding the policy as text. However, if
a policy has to be modified or revoked, due to the immutability of the distributed
ledger, we have to send new transactions on the Tangle. Policy modification and
revocation can be achieved by adding in the message of transactions a reference
to which operation it represents. In order to update policies in OPA without
restarting it, OPA can periodically download a bundle of policies that will be
immediately enforced. The bundle is assembled by the Bundle Service keeping
into account the order of transactions. Moreover, this service has to split out
policies in the corresponding Rego package, only examining rules belonging to
the requested bundle. All the aforementioned information: package name, type
of action, and policy text are embedded in the message of transactions as shown
in Listing 1.

On the other hand, the information related to the bundle to whom a pol-
icy belongs is retrieved by the transaction tag. IOTA allows users to look up
transactions based on their tag, hence policies of a bundle can be easily col-
lected. Although the proposed mechanisms could be replicated also on other

1 https://www.envoyproxy.io/docs/envoy/latest.
2 https://www.openpolicyagent.org.
3 https://www.openpolicyagent.org/docs/latest/policy-language.

https://www.envoyproxy.io/docs/envoy/latest
https://www.openpolicyagent.org
https://www.openpolicyagent.org/docs/latest/policy-language

Evaluating Tangle Distributed Ledger for Access Control Policy Distribution 303

{
"package": <rules_package>,
"action": <add | delete>,
"policy": <policy>

}

Listing 1: Message structure.

DLTs, IOTA offers many features that make it more adequate to manage access
control policies. Our choice is mainly motivated by the following points:

1. IOTA gives the possibility to associate a tag to a transaction, simplifying how
policies are looked for from the Tangle. Not every DLTs offer this feature, so an
alternative consists in adding a tag within the text of a transaction worsening
the time needed to find requested policies;

2. Thanks to zero-cost transactions, we can neglect the cryptocurrency of IOTA.
Such transactions significantly reduce the complexity of the mechanisms to
add or revoke policies. Otherwise, we should establish a cost-value corre-
sponding to each transaction, providing administrators and bundle services
with enough founds to perform their tasks;

3. Finally, the Tangle structure enables reducing the time to memorize a new
transaction. Transactions just created are memorized on the Tangle, while
in blockchain-based solutions a transaction will not be memorized until it is
stored into a block.

It is worthy to outline that since we are referring to multi-region applications,
the components of our architecture, except the Coordinator and the Spammer,
will be replicated across different areas.

4 Evaluation

In order to evaluate the feasibility of using a Tangle to distribute access control
policies, we have conducted some preliminary experiments aiming to evaluate
the performance of the Tangle under different circumstances. In this regard, we
compared our proposal with the same architecture replacing the Tangle with
CouchDB4, a document-oriented NoSQL database that exploits a Multi-Version
Concurrency Control (MVCC) protocol to enable the synchronization and repli-
cation of documents over one or more instances. All experiments were conducted
on two nodes equipped with an Intel(R) Core(TM) i7-7700HQ CPU running
at 2.80GHz and 16 GB of RAM. For the first configuration, on one node, we
deployed Envoy, OPA, Bundle Service, and an IOTA node, while the other node
was used to reproduce the rest of an IOTA network, composed of a Coordina-
tor, a Spammer, and an IOTA node. For the second configuration, we replaced
the IOTA node with a CouchDB slave-replica and the IOTA network with a
CouchDB master-replica.
4 https://couchdb.apache.org.

https://couchdb.apache.org

304 C. Mazzocca et al.

100 101 102 103 104 105 106 107 108

read

create

update

1.29 · 105

1.4 · 105

71,000.18

850

2.8 · 106

3.08 · 106

Latency(µs)

CouchDB

IOTA

Fig. 3. Comparison of operation performance on a logarithmic scale.

4.1 Operation Performance

We evaluated the latency between the Bundle Service and data source (IOTA
and CouchDB) while creating, reading, and updating policies under different
load conditions. Both configurations were tested by generating a linearly grow-
ing number of requests in 60 s. In particular, we emulated 10 virtual users, each
started with a delay of 5 s. The constant throughput of each user was set to 1000
requests/min for evaluating all the operations on CouchDB and the reading from
IOTA, while we decreased it to 100 requests/min for creating and updating oper-
ations on IOTA. Figure 3 shows the average latency, expressed in microseconds,
of the aforementioned operations.

By observing the graph, we can state that IOTA outperforms CouchDB dur-
ing reading policies. On the other hand, CouchDB grants a more constant latency
since all the operations take about 100ms. Although IOTA is about one order
of magnitude slower than CouchDB for creating and updating policies, this time
can be still considered acceptable since creating and updating operations are
not that frequent. We expected a higher time in updating policies, due to the
immutability of the ledger, it consists of two create transactions: one to revoke
the policy and the other one to create a new version. Moreover, we also eval-
uated the latency between the creation of a new policy and its availability. In
this regard, the average latency of IOTA is about 600ms, while a new policy is
available after approximately 150ms when using CouchDB. In this case, the time
required by IOTA is much slower than that needed for creating and updating
policies reported in Fig. 3. This is because, while evaluating availability latency,
we did not stress the IOTA network as in the previous experiments. As far as
CouchDB is concerned, it does not show significant variations compared to the
previous experiments.

Evaluating Tangle Distributed Ledger for Access Control Policy Distribution 305

5 Conclusions and Future Work

Although many applications are currently deployed across different regions, they
still have to behave as single services: each instance of an application has to
undergo the same access control policies. Therefore, how these policies are dis-
tributed in different areas is a primary interest concern. In recent years, some
research efforts have proposed DLTs as enabling technology for access con-
trol mechanisms, however, just a few of them consider solutions alternative to
blockchain.

In this work, we proposed and implemented an access control framework that
uses the Tangle to distribute access control policies. The Tangle allows achiev-
ing integrity, authenticity, and confidentiality while providing higher scalability
than blockchains. We evaluated our solution by comparing it with a correspond-
ing implementation that employs a globally distributed NoSQL database. The
experimental results showed that IOTA outperforms CouchDB in reading opera-
tions, while CouchDB is one order of magnitude faster in creating and updating
policies.

In future research, to satisfy different requirements of highly distributed sce-
narios, we aim to extend our proposal by integrating different technologies for
managing policies. Moreover, we seek to lay the foundations for establishing
adequate security mechanisms to enable the use of permissionless networks to
further simplify network management. Finally, we plan to deploy and test the
proposed architecture in a real-world scenario to evaluate how to better support
popular use cases of smart cities such as smart tourism, smart agriculture, and
smart transportation [5,13,19].

References

1. Casola, V., De Benedictis, A., Rak, M., Villano, U.: Security-by-design in multi-
cloud applications: an optimization approach. Inf. Sci. 454–455, 344–362 (2018).
https://doi.org/10.1016/j.ins.2018.04.081

2. Alharby, M., van Moorsel, A.: Blockchain based smart contracts: a systematic map-
ping study. In: Computer Science & Information Technology (CS & IT). Academy
& Industry Research Collaboration Center (AIRCC) (2017). https://doi.org/10.
5121/csit.2017.71011

3. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access control.
In: Chen, L.Y., Reiser, H.P. (eds.) DAIS 2017. LNCS, vol. 10320, pp. 206–220.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59665-5_15

4. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access control ser-
vices. In: 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 1379–1386 (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00237

5. Dsouza, C., Ahn, G.J., Taguinod, M.: Policy-driven security management for fog
computing: preliminary framework and a case study. In: Proceedings of the 2014
IEEE 15th International Conference on Information Reuse and Integration (IEEE
IRI 2014), pp. 16–23 (2014). https://doi.org/10.1109/IRI.2014.7051866

https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.5121/csit.2017.71011
https://doi.org/10.5121/csit.2017.71011
https://doi.org/10.1007/978-3-319-59665-5_15
https://doi.org/10.1109/Cybermatics_2018.2018.00237
https://doi.org/10.1109/IRI.2014.7051866

306 C. Mazzocca et al.

6. Esposito, C., Ficco, M., Gupta, B.B.: Blockchain-based authentication and autho-
rization for smart city applications. Inf. Process. Manage. 58(2), 102468 (2021).
https://doi.org/10.1016/j.ipm.2020.102468

7. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
2013 IEEE Sixth International Conference on Cloud Computing, pp. 887–894
(2013). https://doi.org/10.1109/CLOUD.2013.133

8. Ghaffari, F., Bertin, E., Hatin, J., Crespi, N.: Authentication and access con-
trol based on distributed ledger technology: a survey. In: 2020 2nd Confer-
ence on Blockchain Research & Applications for Innovative Networks and Ser-
vices (BRAINS), pp. 79–86 (2020). https://doi.org/10.1109/BRAINS49436.2020.
9223297

9. Hu, V.C., et al.: General access control guidance for cloud systems. NIST Spec.
Publ. 800(210), 50-2ex (2020)

10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.
Rev. 21260 (2008)

11. Nakanishi, R., Zhang, Y., Sasabe, M., Kasahara, S.: IOTA-based access control
framework for the Internet of Things. In: 2020 2nd Conference on Blockchain
Research & Applications for Innovative Networks and Services (BRAINS), pp.
87–95 (2020). https://doi.org/10.1109/BRAINS49436.2020.9223293

12. Popov, S.: The tangle. White paper (2018)
13. Sabbioni, A., Villano, T., Corradi, A.: An architecture for service integration

to fully support novel personalized smart tourism offerings. Sensors 22(4), 1619
(2022). https://doi.org/10.3390/s22041619

14. Sadiku, M.N., Musa, S.M., Momoh, O.D.: Cloud computing: opportunities and
challenges. IEEE Potentials 33(1), 34–36 (2014). https://doi.org/10.1109/MPOT.
2013.2279684

15. Shafeeq, S., Alam, M., Khan, A.: Privacy aware decentralized access control sys-
tem. Futur. Gener. Comput. Syst. 101, 420–433 (2019). https://doi.org/10.1016/
j.future.2019.06.025

16. Standard OASIS: extensible access control markup language (xacml) version 3.0
(2013)

17. Sunyaev, A.: Distributed ledger technology. In: Internet Computing, pp. 265–299.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34957-8_9

18. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437–38450 (2018). https://doi.org/10.1109/ACCESS.2018.2851611

19. Yang, X., et al.: A survey on smart agriculture: development modes, technologies,
and security and privacy challenges. IEEE/CAA J. Autom. Sin. 8(2), 273–302
(2021). https://doi.org/10.1109/JAS.2020.1003536

https://doi.org/10.1016/j.ipm.2020.102468
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/BRAINS49436.2020.9223297
https://doi.org/10.1109/BRAINS49436.2020.9223297
https://doi.org/10.1109/BRAINS49436.2020.9223293
https://doi.org/10.3390/s22041619
https://doi.org/10.1109/MPOT.2013.2279684
https://doi.org/10.1109/MPOT.2013.2279684
https://doi.org/10.1016/j.future.2019.06.025
https://doi.org/10.1016/j.future.2019.06.025
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1109/ACCESS.2018.2851611
https://doi.org/10.1109/JAS.2020.1003536

Toward the Adoption of Secure Cyber
Digital Twins to Enhance Cyber-Physical

Systems Security

Alessandra De Benedictis1(B) , Christiancarmine Esposito2 ,
and Alessandra Somma1

1 University of Napoli “Federico II”, Napoli, Italy
{alessandra.debenedictis,alessandra.somma}@unina.it

2 University of Salerno, Fisciano, SA, Italy
esposito@unisa.it

Abstract. Cyber-Physical Systems (CPSs) and Digital Twins (DTs)
currently represent the two most notable examples of cyber-physical
integration enabled by modern ICT technologies, and their adoption is
becoming predominant to implement and analyse complex systems in
several application domains. So-called cyber DTs are increasingly being
used to carry out security analysis, monitoring and testing on the vir-
tual replicas of complex systems rather than on the physical counter-
parts, especially when these may not be directly feasible due to cost and
other constraints. However, since physical and virtual replicas live side
by side in complex ecosystems, the need for secure and trustworthy DTs
arises. In this paper, we introduce a preliminary conceptual framework
aimed to increase the level of security of a complex CPS by leveraging a
cyber DT providing advanced anomaly detection capabilities, achieved
by means of state-of-art machine learning solutions (i.e., federated learn-
ing). The framework will also address the security and trustworthiness
of the cyber DT itself, by leveraging both HW and SW solutions to sup-
port a secure communication and storage of the critical data exchanged
among the physical and virtual worlds. To this aim, the integration of
the blockchain technology into the DT architecture will be investigated.

Keywords: Cyber Digital Twin · Secure Digital Twin ·
Cyber-Physical Systems · Blockchain · Federated learning

1 Introduction

State-of-the-art ICT technologies such as Internet of Things (IoT), edge com-
puting, cloud computing, Artificial Intelligence and data analytics have greatly
stimulated the development of modern applications and systems based on deep
cyber-physical integration, of which Cyber-Physical Systems (CPSs) and Digital
Twins (DTs) currently represent the two most notable examples. CPSs integrate
sensing, control, computation and communication capabilities to achieve a tight
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 307–321, 2022.
https://doi.org/10.1007/978-3-031-14179-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_21&domain=pdf
http://orcid.org/0000-0001-7455-4653
http://orcid.org/0000-0002-0085-0748
http://orcid.org/0000-0001-5372-4588
https://doi.org/10.1007/978-3-031-14179-9_21

308 A. De Benedictis et al.

connection and interdependence among the physical and cyber worlds in order
to enable smart decision-making, complex monitoring and control in several
domains (e.g., smart manufacturing, smart grids, autonomous driving systems,
smart health). DTs, on the other hand, create dynamic and self-evolving virtual
replicas of physical objects or processes, characterized by a bi-directional seam-
less communication that allows real-time data sharing between the physical and
digital worlds. DT are typically used to predict and detect possible issues in a
system sooner, more accurately or at a lower cost, and/or to optimize products
and processes. Noticeably, cyber-security is a major concern in CPSs, as the high
levels of digitization and connectivity enable to exploit both cyber and physi-
cal vulnerabilities to negatively affect system operation and possibly endanger
human life. Unfortunately, the high complexity and component heterogeneity of
CPSs make it very challenging to identify and eliminate all possible vulnerabil-
ities. Moreover, in several critical contexts, it may be very hard or not econom-
ically viable to deploy and integrate security monitoring and assessment tools
into a CPS to verify the level of security and privacy achieved (which is needed,
for example, for compliance verification). In this context, the DT technology
may be very useful to conduct security analyses and tests on the digital replica
of a CPS rather than on the original system, in order to limit/avoid interference
with the system functionalities. In fact, several approaches have been recently
proposed that adopt DTs to improve system security by providing intrusion
detection and security testing capabilities, HW/SW misconfiguration detection,
patch management and compliance verification. However, since DTs communi-
cate and share data with the physical twins in real time and live together with
them in a complex ecosystem, the need for secure and trustworthy DTs arises.

In this paper, we provide an overview of the literature related to the adop-
tion of Digital Twins as a cybersecurity tool, and also investigate the inherent
cybersecurity issues arising from the adoption of Digital Twins. Moreover, we
introduce a preliminary conceptual framework, named S4DT-DT4S, providing a
high-level architectural view of the HW and SW components and modules needed
to realize a secure digital replica of a CPS able to provide anomaly detection
capabilities. The framework, in particular, will leverage federated learning to
detect anomalies and identify possible cyber-security issues based on the data
collected in real-time from the system. The Digital Twin itself will be secured
by adopting state of art HW and SW solutions, such as Trusted Execution Envi-
ronment platforms, Physically Unclonable Functions (PUFs) for device authen-
tication and secure communication, and blockchains for DT data sharing.

The manuscript is organized as follows: Section 2 will provide some back-
ground on Digital Twins, outlining their main components and applications.
Section 3 will provide an overview of the uses of the DT technology for security
purposes, while Sect. 4 will discuss the main security issues arising in a DT archi-
tecture and some existing blockchain-based security solutions in DTs. Finally,
Sect. 5 will provide a high-level view of the conceptual S4DT-DT4S framework
and Sect. 6 will present a roadmap for future work.

Toward the Adoption of Secure CDT to Enhance CPS Security 309

2 Digital Twins

Firstly presented in 2002, the Digital Twin is a virtual representation of a phys-
ical system or process characterized by the seamless two-way communication
between the virtual and the real system enabling real-time data exchange. Tao
et al. [23] proposed a five-dimensional (5D) model (Fig. 1):

MDT = (PS, V S, Ss,DD,CN) (1)

where i) the physical space (PS) consists of objects, systems and/or processes
and their internal and external interactions. Sensors capture essential events or
environmental changes are transferred to the virtual counterpart. Through the
actuators, the physical entities reply to the inputs; furthermore, they can also
accept commands that control their behavior or change parameter configurations
across suitable controllers. ii) The virtual space (VS) contains the faithful dig-
ital replicas feed with real-time data obtained from the physical world combined
with historical data. iii) Twin data (DD) are Digital Twin fuel: DT deals with
multi-temporal scale, multi-dimension, multi-source, and heterogeneous data,
some are obtained from the physical world and some are generated through vir-
tual models, but there are also data coming from the service layer and knowledge
gained by domain experts [23,25]. iv) The Digital Twin technology can be used
for two main purposes, i.e. interrogative when the DT is questioned about the
current or past state of its physical twin and predictive when the DT is used for
predicting the future behavior and performance of its physical counterpart [5,25].
According to its purpose, the Services (Ss) offered through the DT technology
are simulation, real-time monitoring, control, optimization of new or existing
assets, prediction of future states [23]. v) Finally, as depicted in Fig. 1, there are
6 connections (CN) that enable the cooperation between the four parties.

Fig. 1. Five-dimensional Digital Twin Model based on [23].

310 A. De Benedictis et al.

3 Digital Twin for Security

The Digital Twin technology can be profitably used to analyze and mitigate
cyber-security risks affecting a system [8,17]. More specifically, with the term
Cyber Digital Twin it is identified the application of DT technology for secu-
rity analysis and monitoring, which may not be directly feasible on the physical
counterpart without causing disruption [17]. According to the scientific litera-
ture, Digital Twin applications that aim to improve systems’ security can be
classified as follows:

1. Secure design. Using the Digital Twin in the planning and design stage
of the physical system/process enables the so-called security-by-design
paradigm [8,12,14,28]. In fact, it can help detect vulnerabilities and thus
create a secure-aware asset, integrate security and safety rules into the sys-
tem [8], and reduce the attack surface [12]. For example, a DT may help
identify, at the design stage, unnecessary or unused components [14] as well
as unnecessary functionalities or even unprotected services, which would allow
an attacker to gain a foothold in the system [11,12]. For instance, Bécue et al.
[6] in 2018 and Vilberth et al. in 2021 [28] proposed to use the Digital Twin
to create cyber-ranges, namely test-beds that allow on the one hand to test
the security of Cyber-Physical Systems [6] and on the other to train analysts
of Security Operations Centers (SOCs) [28].

2. Intrusion detection. Intrusion Detection Systems (IDSs) are typically used
to protect a network from malicious external attacks; therefore, they can be
adopted to increase the reliability and resilience of a system by detecting and
reacting to those behaviors that can damage a CPS [14]. Detection techniques
belong to two types: i) detection based on anomalies or profiles uses heuris-
tic and behavior models to identify activities that differ from normal use;
ii) signature-based detection identifies threats within a system by mapping
known attack scenarios [12,14]. When a Digital Twin is available that is able
to faithfully replicate the behavior of a physical system [8], then it possible
to build an IDS in the Digital Twin rather than in the real system,
so that the digital counterpart can be tested without interfering with the
functionalities of the real replica [9,11,12,14].
For example, Eckhart et al. [11] proposed a framework for the creation of a
knowledge-based IDS which automatically generates a virtual environment
from the CPSs specifications; during the CPS operational stage, the Digital
Twin is continuously monitored for security and safety rules breaches. How-
ever, this first solution implements an IDS into a Digital Twin that operates
in simulation mode, i.e., without integrating real-time data collected by the
sensors within the physical system. In their later work, Eckhart et al. [10]
realized a behavior-specification-based IDS integrated in the DT working in
replication mode, so the Digital Twin is able to detect abnormal behaviors
that the real CPS exhibits.

3. Hardware/software misconfiguration detection. Assuming that hard-
ware and software components of the physical system are simulated or emu-
lated within the Digital Twin, virtual replicas of a real system must represent

Toward the Adoption of Secure CDT to Enhance CPS Security 311

the behavior of the system with a certain level of detail; therefore, if hard-
ware and/or software configurations of physical devices were manipulated, the
Digital Twin would manifest a different behavior that would be indicative of
malicious activity [12,14]. For instance, manipulated software configurations
could be detected by comparing the configurations data of physical devices
with those of their virtual replicas [11]. The implementation of this use case
assumes that the Digital Twin runs in an isolated environment protected from
malicious attacks. Otherwise, an attacker may first alter the Digital Twin con-
figurations to ensure that no manipulation of the physical configurations of
the device is noted.

4. Security testing. Conducting security testing in Operational Technology -
OT environments is a critical activity, especially when testing must be con-
ducted during the operational phase of a CPS. The adoption of a DT would
ensure the possibility to run security tests virtually, i.e., on the virtual
replicas rather than on the real systems: this application can be used not only
for security assessments and security weaknesses reporting [9,14], but
also for penetration testing, which aims to exploit vulnerabilities to verify
the feasibility of malicious activities [11,12]. In this case, the challenge is to
balance the degree of fidelity of the Digital Twins and the costs of creating
them. A very recent example of this application is the “SecurityTwin” project
(https://www.sba-research.org/research/projects/securitytwins/) of the SBA
Research Group in collaboration with the University of Vienna, in which they
presented a high-level architectural proposal for the implementation of a Dig-
ital Twin whose objective is to inspect the CPS for security testing without
the risk of interfering with it.

5. Improved patch management. Due to a lack of proper asset management
and inadequate system design, many OT owners have several difficulties in
patch management that typically allows a regular OT systems update. The
Digital Twins can be used not only to address these issues, but also to under-
stand the impact on the whole system when applying a security patch or
changing a configuration [17]. In fact, without the DT technology, these anal-
yses would require testing of individual devices in isolation, while DTs usage
for simulating the OT systems allows to explore possible solutions with-
out the need to maintain an expensive secondary system only for testing
purposes. This advantage is particularly useful in the case of safety-critical
applications [17].

6. Privacy and Legal Compliance enforcement and verification. Authors
of [7] proposed a design and implementation method for privacy-enhancement
mechanisms based on Digital Twins: the real-time data received by the
embedded sensors are integrated into the Digital Twin with machine learn-
ing methods; before using and eventually transferring these data, they are
anonymized in order to preserve privacy. The Digital Twin can also be used
to ensure legal compliance. In particular, by realizing an accurate replica-
tion of the CPSs, it is possible to monitor and document safety and security
aspects during the entire life cycle of the physical system. Monitoring activity
can provide evidence to meet safety standards such as IEC 62443 [12,14].

https://www.sba-research.org/research/projects/securitytwins/

312 A. De Benedictis et al.

7. Digital Forensics. When attacks occur during a real-world asset’s operation
phase, digital forensics can play a decisive role. The DTs can be used for
both live and post-mortem digital forensics, supporting the identification and
replication of malicious activities and the conservation of evidence that may
contribute to investigations.

4 Security for Digital Twin

The Cyber Digital Twin benefits are not obtained for free, as Digital Twins
are inherently exposed to security threats that significantly undermine their
availability, accessibility, integrity and confidentiality requirements [15,17,19].
For this reason, we can classify the security threats of the Digital Twin both
from the perspective of security requirements and from the perspective of DT’s
attack surfaces, i.e., the physical layer, the digital layer and the connectivity level
that enables the closed-loop connection according to Tao et al. 5D model [23].

4.1 Security Requirements Perspective

1. Availability and accessibility: the Digital Twin technology aims to
enhance the maintainability and longevity of its real replica and thus sup-
ports availability over its lifetime, even if it can be financially demanding.
However, the Digital Twin results can lead to undesirable interactions which
can affect the availability of the overall system; moreover, a Digital Twin
can create an additional failure point in the system that can be exploited by
cyber-attack [17,19]. Losing access to the Digital Twin or the Digital Twin
being unreachable for any reason can lead to disruptions in the production
life cycle or huge financial losses [19].

2. Integrity: unauthorised modification or destruction of data/operations while
being processed, in transit or in storage must be prevented [15,17,19]. The
integrity of the system itself must be maintained to ensure that the system is
reliable and safe to operate [17] and to avoid bias estimation and decision mak-
ing that could cause high risk [19]. Ensuring system integrity is also essential
to ensure non-repudiation and authenticity of system commands/actions that
are fundamental to its secure operation and also support incident response
capabilities [17].

3. Confidentiality: threats to confidentiality are leak of customer data, intel-
lectual property issues, revealing trade secrets and so on [17]. Ensuring autho-
rised access constraints to facilities and system data are crucial for the con-
fidence of business and personal information [19]. For example, a company
with a digital twin of their industrial control system (ICS) may use real-
system code in their digital twin in order to offer a more accurate virtual
replica. However, this solution can increase business risk further, because any
theft of damage to the Digital Twin would impact both the digital replica as
well as the existing ICS components themselves.

Toward the Adoption of Secure CDT to Enhance CPS Security 313

4.2 Attack Surfaces Perspective

1. Physical Layer: the physical security of the IoT devices is important as
they can be damaged, destroyed, or even stolen by the attacker [19]. Physical
products can use many technologies to protect their data from modification
such as using tamper-proof and tamper-resistant hardware, but data exfiltra-
tion and modification by attacker is still possible, as it can be implemented
with data poisoning attacks or by exploiting the system, software, and data
communication vulnerabilities. Side-channel attacks, for example, attempt to
extract secrets from a physical device by measuring or analyzing various phys-
ical parameters such as supply current, execution time, and electromagnetic
emission. Moreover, threats to the digital layer, in which lives the virtual
replica, can also have effects on the physical system [15,19]. If the Digital
Twin is obtained by a hacker, it can serve as a blueprint of the real system, of
its components, their behaviors and their interfaces. In this way, the attacker
has a complete view of the system that would allow him to compromise it [15].

2. Connectivity Layer: common communication technologies have well-known
security issues [19], threats on data communication may be divided into five
main types. In Man-in-the-middle (MITM) attack the attacker can inject
malicious code or can disclose the conversion between two communicating
nodes; Denial of Service (DoS) and Distributed Denial of Service (DDOS)
affect the availability and accessibility; in eavesdropping attack, the network
traffic between sensors to the controllers can be captured; in a spoofing attack
the attacker changes and conceals his identity to carry out malicious and
deceptive operations, e.g., spoofing-attackers could corrupt the signals or mes-
sages sent from sensors to the controller. Lastly, the replay attack requires
that the attackers monitors, reads and saves a set of data to be used in re-
transmission.

3. Digital Layer: in this level there is a set of many components that make
up the Digital Twin itself, i.e., models, codes and software environments,
data and machine learning algorithms. If the attackers gain access to the
early version of the digital twin software or the software source code, this can
result in a threat to intellectual property and trade secrets, denial of service
or heavy losses [15,19].
Moreover, as Digital Twin data can be stored in local or cloud-based reposi-
tories, there are many trust concerns and privacy issues. Finally, Digital Twin
decision systems are based on machine learning algorithms that are vulner-
able to security and privacy attacks [19]. These attacks can be classified as
poisoning attack, evasion attack, impersonate attack, inversion attack that
will result in a decrease in the performance and reliability of the system [19].

As suggested by [1], adaptive techniques may be used to dynamically change
the attack surface of a system at different architectural layers in order to intro-
duce uncertainty for the attacker and increase overall resiliency to attacks.

314 A. De Benedictis et al.

4.3 Blockchain for Digital Twins

Firstly implemented in 2008 to develop the well-known Bitcoin cryptocurrency,
the blockchain technology is a distributed, incorruptible and tamper resis-
tant ledger in which verified transactions are recorded as append-only time-
stamped logs by a multi-parties system.

Each party, referred to as a node, initiates a transaction, the basic unit in
a blockchain network, by employing a digital signature using private key cryp-
tography [20,29]; the resultant signature is attached to the transaction. All the
transactions are stored in an “unconfirmed transaction pool” and flooded in the
network so that peers can choose and validate these transactions according to
some criteria depending on the specific blockchain protocol (mining). Verified
and validated by the miners, i.e., network peers who use their computational
power to mine blocks, the transaction is included in a block whose header con-
tains the previous (parent) block header hash. The miner who can solve the
computational puzzle first will become a winner and obtain the right to create
a new block. Every block in the chain is divided into header and body parts.
The block header contains not only the hash of the parent block, but also
the current timestamp as seconds, the current hashing target in a compact for-
mat (nBits), block version, nonce field that usually starts with 0 and increases
for every hash calculation and the Merkle tree root, i.e., the hash value of all
the transactions in the block. The block body is composed of a transaction
counter and transactions [20,29]. After successfully creating a new block, the
miner receives a small amount of incentive (reward) and all the peers in the
network verify the new block using a consensus protocol (e.g. the Proof-of-Work
in Bitcoin blockchain). Finally, the new block will be added to the existing chain
and to the local copy of each peer’s immutable ledger [29].

Basically, blockchains enable a group of selected participants to share data
that is suitably broken up into shared blocks, chained together with unique
identifiers in the form of cryptographic hashes. There are two main types of
blockchains: in a public (or permission-less) blockchain, anyone can participate
without restrictions; Permissioned or private blockchains are those that allow
only authorized users (i.e., users that have been granted specific permissions
and that must identify themselves with certificates or other means) to access
blockchain data. The blockchain technology can be employed in DTs to ensure
data and data-generating sources trustworthiness, supporting secure distribution
and storage of critical data. In fact, according to blockchain-based Digital Twin
literature [16,27,31], the key benefits of using blockchain for Digital Twins are
the followings:

Digital Twins data protection. The tamper-proof and immutable nature of
the blockchain can be used to securely deliver data to multiple participat-
ing entities. On the one hand, thanks to the possession of multiple pseudo-
names, the nodes of the blockchain can remain anonymous (privacy). On the
other hand, the data of the Digital Twin can be shared between multiple
untrusted (or partially trusted) parties ensuring confidentiality, integrity and

Toward the Adoption of Secure CDT to Enhance CPS Security 315

availability [16,27]. Moreover, the immutability property of the blockchain
makes it possible to make the Digital Twin history transactions unalterable.

Data traceability. Creating heterogeneous data archives distributed through
the blockchain allows to ensure reliability [26]. Moreover, using data prove-
nance (metadata that records the link between data, source and set of actions
performed on that data [26]) it is possible to know the current state in terms
of why, where, how through blockchain [31]. Therefore, record keeping, prove-
nance tracking and auditability can be easily achieved in solutions based on
blockchain [31].

Access privileges of DTs. Blockchain eliminates the risks of unauthorized
access that can often cause data tampering. Through blockchain-based access
control, all Digital Twins information and policies can be managed in a dis-
tributed manner, so that each DT can act independently [27]. For example,
smart contracts can be used to automate different scenarios depending on the
application requirements [27].

Enforcing transparency and accountability. Transparency and accountabil-
ity properties are guaranteed by the fact that each blockchain user has a public
address, visible to everyone [26].

Counterfeits. The combination of DTs with blockchain can ensure the identi-
fication of counterfeit products through the authenticity of the product [27].
Creating a digital certificate on the blockchain provides transparency and
helps build both proof-of-legitimacy and an anti-theft mechanism (for exam-
ple, unverified Digital Twins cannot be used anywhere) [26].

5 S4DT-DT4S Conceptual Framework

As anticipated in the Introduction, in this work we propose a conceptual frame-
work having two main objectives, i.e., to solve the security issues manifested in
the different levels of the Digital Twin and to use the secure Digital Twin in
order to enhance the security of a CPS by providing anomaly detection features.
As depicted in Fig. 2, the framework includes a Secure Digital Twin archi-
tecture and a Digital Twin-based Service layer enabled by advanced machine
learning algorithms fed by the DT data.

The Secure Digital Twin architecture comprises three main layers, namely
the physical layer , represented by the CPS under study, the digital layer ,
providing the intelligence to create and maintain the CPS virtual replica, and
the storage layer , devoted to managing the persistence and distribution of
data exchanged among the two previous layers.

The physical layer includes the physical and digital objects belonging to the
CPS, which consists of multiple sensors and actuators integrated with complex
computational processes providing intelligent decision-making [2]. CPSs
are characterized by many interconnected entities that exchange and elaborate
a massive amount of data for operational and monitoring purposes. Part of these
data, together with additional data obtained by suitably instrumenting the CPS,
will feed the digital layer of the Secure DT and enable the dynamic evolution

316 A. De Benedictis et al.

Fig. 2. The proposed framework S4DT-DT4S for securing Digital Twin enabling DT-
based anomaly detection service.

of the CPS virtual replica. Ensuring trustworthiness, security and privacy of
exchanged data is fundamental, not only for the inherent CPS operation, but also
and even more when Digital Twins are involved, as discussed in Sect. 4. Physical
devices are the most critical entities from the security point of view, due to
deployment conditions and to their high heterogeneity in terms of technology and
resource constraints. For example, devices may be subject to physical damage,
replacement, or even theft, and generated and transmitted data must be properly
secured.

Consequently, identity and access management capabilities in addition to
data protection features must be enforced at the physical layer, for both
devices and information systems involved. While plenty of effective security
solutions are available in the IT world, devices may have specific resource con-
straints that would make traditional security primitives and protocols not fea-
sible. Recently, Physical Unclonable Functions (PUFs) [22] have been investi-

Toward the Adoption of Secure CDT to Enhance CPS Security 317

gated for the implementation of HW-based security primitives at the device
level. Basically, PUFs are electronic circuits whose unique behavior (in terms of
the response provided by the circuit to given inputs - the challenges) depends
on the inherent stochastic nanoscale imperfections imprinted by the manufac-
turing process. PUFs can be used for identification, authentication and secure
communication purposes, and have been found useful to secure IoT devices [3].
PUF-based protocols and mechanisms, together with other technologies such as
Trusted Platform Modules (TPM), may be successfully leveraged in the phys-
ical layer to enhance the security of the involved devices. In particular, in our
framework we envision the adoption of a decentralized solution for identity man-
agement according to which unique cryptographic PUF-based keys represent the
identities of each IoT device, and mutual authentication is achieved via suitable
PUF-based protocols such as [4].

The digital layer hosts the actual replica of the CPS under study. According
to Schroeder et al. [25], the following main Digital Twin components can be
identified: i) the Models, that digitally represent the physical asset; ii) an Event
Source, that generates information and/or commands to the physical system;
iii) a Human Machine Interface, that enables the interfacing between humans
and the digital replica; iv) a set of AI algorithms, that aims to extract, from
the storage level, useful information to feed Digital Twin models and the event
generation block.

Digital Twin data, including modeling information, AI algorithms’ tuning
parameters and event data, as well as data conveyed by the physical layer (Phys-
ical Twin data), represent the Digital Twin fuel. For this reason, the framework
presents an ad-hoc layer, i.e. the storage layer, devoted to storing and managing
all relevant data and information. Addressing security and privacy issues in the
data layer becomes imperative. Due to its decentralized and secure nature, as dis-
cussed in Sect. 4.3, the blockchain technology can be used to store information
on-chain and impose a weak consistency model through distributed consensus
algorithms. However, the blockchain has the block-size limitation problem. For
this reason, our framework devises the combination of blockchains with a dis-
tributed file system empowered with cryptography, such as InterPlanetary File
System (IPFS). IPFS-based storage ensures reliability, accessibility and integrity
of the stored data and lower costs than on-chain data storage [16]: each file is
stored in the IPFS and has a unique Content Identifier (CID), subsequently each
file is sliced into many small chunks, each of which is hashed. This identifier can
be stored within the blockchain, jointly with additional data such as DTs models
which can be retrieved if authorized.

The combination of a blockchain and distributed file system solution to store
information into the Data Layer and PUF-based keys to identify IoT devices of
Physical Layer allows us to establish the source of data (i.e., data provenance)
and to enforce data integrity [18,24]. In fact, the association of a unique ID to
each IoT device through PUFs provides immunity from impersonation attacks
and establish data provenance, while the blockchain provides data integrity,
traceability and transparent auditing capabilities.

318 A. De Benedictis et al.

To conclude the discussion on the Secure Digital Twin architecture, the bidi-
rectional communication between the physical and digital layer can be affected
by attacks such as disrupting service delivery (denial of service attacks) or alter-
ing exchanged data (via packet injection, hijacking and spoofing). Therefore, the
exchange of information between layers should be secured by means of encryp-
tion measures and suitable intrusion detection system to protect the system
against external and internal sources.

As said, we plan to adopt the Secure Digital Twin to build up an anomaly
detection service. In fact, DTs can generate the needed dataset for anomaly
detection thanks to their monitoring, optimization and planning capabilities;
these data will then be used as the training dataset of decentralized and collab-
orative machine learning (ML) algorithms. According to literature [32], collab-
orative machine learning is a type of training framework that enables several
participants to construct a common model with their training data set. It can
be divided into two distinct groups: centralized training approach and federated
learning. Traditional machine learning approaches are realized in a centralized
manner, where a central node uses all the data collected as training set of a
global model and then shares the model to all participants [13,32]. However,
ML-based solutions present several disadvantages such as i) all training data
must be available on a central server, ii) there are security risks related to the
transfer of raw data from final devices to a central server, iii) training large vol-
umes of data on a single server can be computationally expensive [21,32]. This
approach, in summary, is unsustainable for large data sets or sensitive informa-
tion that participants are not interested in sharing with others.

One of the promising and well-scalable approaches that can address these
drawbacks is Federated Learning [13,21], in which the global model is trained
in a distributed manner among n participants. In FL, each participant trains
the ML model locally and only the ML model weights learned are transferred
to a central server. This strategy has proven its worth in securing user data
privacy, making it the preferred approach over non-FL solutions [21]. However,
FL still suffers from shortcomings: i) single point of failure because FL paradigm
employs a central server (i.e., aggregator) to perform the integration of local
training results and to update the global model; ii) malicious clients and false
data because of the large number of participants that can not be assumed to be
honest and so there can be malicious clients submitting false data about their
local training results; iii) lack of incentives as traditional FL clients do not receive
any payments for contributing their computing powers [30]. As our framework
already requires blockchain technology for the reasons aforementioned, FL can
be integrated with blockchain, implementing the so-called paradigm FLchain [30]
that does not require any central server and mitigates the previously mentioned
risks replacing the central aggregator with the peer-to-peer blockchain system.

FL technology provides not only data privacy but also seamless, flexible,
scalable and high-performance communication to support highly dynamic time-
critical applications, e.g., anomaly detection. An anomaly detection model has
to capture all benign patterns of behaviour so that they can be distinguished

Toward the Adoption of Secure CDT to Enhance CPS Security 319

from malicious actions. The adoption of FL for anomaly detection allows to rec-
ognize anomalies - patterns in data that do not conform to a well defined normal
behavior - using decentralized on-device data ensuring security and privacy. For
instance, Mothukuri et al. [21] proposed a decentralized federated learning app-
roach that enables on-device training of anomaly detection ML model on IoT net-
works without transferring data to a centralized server. In conclusion, FL-based
anomaly detection service detects anomalies in a decentralized manner and
it is constructed upon the DTs ecosystem taking advantages from the Digital
Twin capabilities, i.e., it faithfully replicates a representative use case that can
be experimented under nominal operative conditions by injecting various kinds
of faults and attacks.

6 Conclusion

In this paper, we have investigated the adoption of the prominent Digital Twin
technology to enhance the security of Cyber-Physical systems. DTs and CPSs
are both characterized by a strong integration between the physical and cyber
worlds, but DTs can be used to provide CPSs with advanced security moni-
toring capabilities by reducing the interference with normal operations while
conducting analyses on its replica. Since a system and its virtual representation
typically live together in a complex ecosystem, we also addressed the inherent
security of DTs, by introducing a conceptual framework that integrates state of
art technologies and solutions (e.g., federated learning, blockchains, distributed
file systems, PUFs) to obtain a Secure DT on top of which it is possible to build
anomaly detection capabilities.

The proposed framework is currently in the concept design phase. Several
open issues must be addressed, including the definition of a generalized DT
architecture (that can be applied to different case studies), the identification
of the measurements to take on the CPS in order to feed the models and the
anomaly detection algorithms, and the blockchain architecture. Nevertheless, we
believe that the framework is worth an in-depth analysis and study.

References

1. Albanese, M., Battista, E., Jajodia, S., Casola, V.: Manipulating the attacker’s view
of a system’s attack surface. In: 2014 IEEE Conference on Communications and
Network Security, pp. 472–480 (2014). https://doi.org/10.1109/CNS.2014.6997517

2. Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Cyber-physical systems and their
security issues. Comput. Ind. 100, 212–223 (2018). https://doi.org/10.1016/j.
compind.2018.04.017

3. Barbareschi, M., Casola, V., De Benedictis, A., Montagna, E.L., Mazzocca, N.:
On the adoption of physically unclonable functions to secure IIoT devices. IEEE
Trans. Industr. Inf. 17(11), 7781–7790 (2021). https://doi.org/10.1109/TII.2021.
3059656

https://doi.org/10.1109/CNS.2014.6997517
https://doi.org/10.1016/j.compind.2018.04.017
https://doi.org/10.1016/j.compind.2018.04.017
https://doi.org/10.1109/TII.2021.3059656
https://doi.org/10.1109/TII.2021.3059656

320 A. De Benedictis et al.

4. Barbareschi, M., De Benedictis, A., La Montagna, E., Mazzeo, A., Mazzocca, N.:
A PUF-based mutual authentication scheme for Cloud-Edges IoT systems. Future
Gener. Comput. Syst. 101, 246–261 (2019). https://doi.org/10.1016/j.future.2019.
06.012

5. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on Digital Twin: definitions,
characteristics, applications, and design implications. IEEE Access 7, 167653–
167671 (2019). https://doi.org/10.1109/ACCESS.2019.2953499

6. Bécue, A., et al.: CyberFactory1 securing the industry 4.0 with cyber-ranges and
digital twins. In: 2018 14th IEEE International Workshop on Factory Commu-
nication Systems (WFCS), pp. 1–4 (2018). https://doi.org/10.1109/WFCS.2018.
8402377

7. Damjanovic-Behrendt, V.: A Digital Twin-based privacy enhancement mechanism
for the automotive industry. In: 2018 International Conference on Intelligent Sys-
tems (IS), pp. 272–279 (2018). https://doi.org/10.1109/IS.2018.8710526

8. Dietz, M., Pernul, G.: Unleashing the Digital Twin’s potential for ICS secu-
rity. IEEE Secur. Priv. 18(4), 20–27 (2020). https://doi.org/10.1109/MSEC.2019.
2961650

9. Dietz, M., Vielberth, M., Pernul, G.: Integrating Digital Twin security simulations
in the security operations center. In: Proceedings of the 15th International Con-
ference on Availability, Reliability and Security, ARES 2020. Association for Com-
puting Machinery, New York (2020). https://doi.org/10.1145/3407023.3407039

10. Eckhart, M., Ekelhart, A.: A specification-based state replication approach for Dig-
ital Twins. In: Proceedings of the 2018 Workshop on Cyber-Physical Systems Secu-
rity and PrivaCy, CPS-SPC 2018, pp. 36–47. Association for Computing Machin-
ery, New York (2018). https://doi.org/10.1145/3264888.3264892

11. Eckhart, M., Ekelhart, A.: Towards security-aware virtual environments for Digi-
tal Twins. In: Proceedings of the 4th ACM Workshop on Cyber-Physical System
Security, CPSS 2018, pp. 61–72. Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3198458.3198464

12. Eckhart, M., Ekelhart, A.: Digital Twins for cyber-physical systems security: state
of the art and outlook. In: Security and Quality in Cyber-Physical Systems Engi-
neering, pp. 383–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25312-7 14

13. Esposito, C., Sperl̀ı, G., Moscato, V., Zhao, Z.: On attacks to federated learning
and a blockchain-empowered protection. In: 2022 IEEE 19th Annual Consumer
Communications & Networking Conference (CCNC), pp. 1–6 (2022). https://doi.
org/10.1109/CCNC49033.2022.9700723

14. Faleiro, R., Pan, L., Pokhrel, S.R., Doss, R.: Digital Twin for cybersecurity: towards
enhancing cyber resilience. In: Xiang, W., Han, F., Phan, T.K. (eds.) BROAD-
NETS 2021. LNICST, vol. 413, pp. 57–76. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-93479-8 4

15. Hearn, M., Simon, R.: Cybersecurity considerations for digital twin implementa-
tions. Ind. Internet Consortium (IIC) J. Innov. (Nov 2019), 107–113 (2019)

16. Hemdan, E.E.-D., Mahmoud, A.S.A.: BlockTwins: a blockchain-based Digital
Twins framework. In: Choudhury, T., Khanna, A., Toe, T.T., Khurana, M., Gia
Nhu, N. (eds.) Blockchain Applications in IoT Ecosystem. EICC, pp. 177–186.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65691-1 12

17. Holmes, D., Papathanasaki, M., Maglaras, L., Ferrag, M.A., Nepal, S., Janicke,
H.: Digital Twins and cyber security - solution or challenge? In: 2021 6th South-
East Europe Design Automation, Computer Engineering, Computer Networks and

https://doi.org/10.1016/j.future.2019.06.012
https://doi.org/10.1016/j.future.2019.06.012
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1109/WFCS.2018.8402377
https://doi.org/10.1109/WFCS.2018.8402377
https://doi.org/10.1109/IS.2018.8710526
https://doi.org/10.1109/MSEC.2019.2961650
https://doi.org/10.1109/MSEC.2019.2961650
https://doi.org/10.1145/3407023.3407039
https://doi.org/10.1145/3264888.3264892
https://doi.org/10.1145/3198458.3198464
https://doi.org/10.1007/978-3-030-25312-7_14
https://doi.org/10.1007/978-3-030-25312-7_14
https://doi.org/10.1109/CCNC49033.2022.9700723
https://doi.org/10.1109/CCNC49033.2022.9700723
https://doi.org/10.1007/978-3-030-93479-8_4
https://doi.org/10.1007/978-3-030-93479-8_4
https://doi.org/10.1007/978-3-030-65691-1_12

Toward the Adoption of Secure CDT to Enhance CPS Security 321

Social Media Conference (SEEDA-CECNSM), pp. 1–8 (2021). https://doi.org/10.
1109/SEEDA-CECNSM53056.2021.9566277

18. Javaid, U., Aman, M.N., Sikdar, B.: BlockPro: blockchain based data provenance
and integrity for secure IoT environments, BlockSys 2018, pp. 13–18. Association
for Computing Machinery, New York (2018)

19. Karaarslan, E., Babiker, M.: Digital Twin security threats and countermea-
sures: an introduction. In: 2021 International Conference on Information Secu-
rity and Cryptology (ISCTURKEY), pp. 7–11 (2021). https://doi.org/10.1109/
ISCTURKEY53027.2021.9654360

20. Monrat, A.A., Schelén, O., Andersson, K.: A survey of blockchain from the perspec-
tives of applications, challenges, and opportunities. IEEE Access 7, 117134–117151
(2019). https://doi.org/10.1109/ACCESS.2019.2936094

21. Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivas-
tava, G.: Federated-learning-based anomaly detection for IoT security attacks.
IEEE Internet Things J. 9(4), 2545–2554 (2022). https://doi.org/10.1109/JIOT.
2021.3077803

22. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002). https://doi.org/10.1126/science.1074376

23. Qi, Q., et al.: Enabling technologies and tools for digital twin. J. Manuf. Syst. 58,
3–21 (2021). https://doi.org/10.1016/j.jmsy.2019.10.001

24. Rahim, K., Tahir, H., Ikram, N.: Sensor based PUF IoT authentication model for a
smart home with private blockchain. In: 2018 International Conference on Applied
and Engineering Mathematics (ICAEM), pp. 102–108 (2018). https://doi.org/10.
1109/ICAEM.2018.8536295

25. Schroeder, G.N., et al.: A methodology for digital twin modeling and deployment
for industry 4.0. Proc. IEEE 109(4), 556–567 (2021). https://doi.org/10.1109/
JPROC.2020.3032444

26. Suhail, S., Hussain, R., Jurdak, R., Hong, C.S.: Trustworthy digital twins in the
industrial internet of things with blockchain. IEEE Internet Comput., 1 (2021).
https://doi.org/10.1109/MIC.2021.3059320

27. Suhail, S., Hussain, R., Jurdak, R., Oracevic, A., Salah, K., Hong, C.S.:
Blockchain-based digital twins: research trends, issues, and future challenges.
CoRR abs/2103.11585 (2021). https://arxiv.org/abs/2103.11585

28. Vielberth, M., Glas, M., Dietz, M., Karagiannis, S., Magkos, E., Pernul, G.: A
digital twin-based cyber range for SOC analysts. In: Barker, K., Ghazinour, K.
(eds.) DBSec 2021. LNCS, vol. 12840, pp. 293–311. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81242-3 17

29. Wang, X., et al.: Survey on blockchain for Internet of Things. Comput. Commun.
136, 10–29 (2019). https://doi.org/10.1016/j.comcom.2019.01.006

30. Wang, Z., Hu, Q.: Blockchain-based federated learning: a comprehensive survey.
CoRR abs/2110.02182 (2021). https://arxiv.org/abs/2110.02182

31. Yaqoob, I., Salah, K., Uddin, M., Jayaraman, R., Omar, M., Imran, M.: Blockchain
for digital twins: recent advances and future research challenges. IEEE Netw. 34(5),
290–298 (2020). https://doi.org/10.1109/MNET.001.1900661

32. Zhao, Y., Chen, J., Wu, D., Teng, J., Yu, S.: Multi-task network anomaly detection
using federated learning. In: Proceedings of the Tenth International Symposium
on Information and Communication Technology, SoICT 2019, pp. 273–279. ACM,
New York (2019). https://doi.org/10.1145/3368926.3369705

https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566277
https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566277
https://doi.org/10.1109/ISCTURKEY53027.2021.9654360
https://doi.org/10.1109/ISCTURKEY53027.2021.9654360
https://doi.org/10.1109/ACCESS.2019.2936094
https://doi.org/10.1109/JIOT.2021.3077803
https://doi.org/10.1109/JIOT.2021.3077803
https://doi.org/10.1126/science.1074376
https://doi.org/10.1016/j.jmsy.2019.10.001
https://doi.org/10.1109/ICAEM.2018.8536295
https://doi.org/10.1109/ICAEM.2018.8536295
https://doi.org/10.1109/JPROC.2020.3032444
https://doi.org/10.1109/JPROC.2020.3032444
https://doi.org/10.1109/MIC.2021.3059320
https://arxiv.org/abs/2103.11585
https://doi.org/10.1007/978-3-030-81242-3_17
https://doi.org/10.1007/978-3-030-81242-3_17
https://doi.org/10.1016/j.comcom.2019.01.006
https://arxiv.org/abs/2110.02182
https://doi.org/10.1109/MNET.001.1900661
https://doi.org/10.1145/3368926.3369705

Author Index

Aho, Markus 175
Aperribai, Julen 3
Åsheim, Johannes 266
Ayala, Claudia P. 18

Barboni, Morena 61
Benedetti, Giacomo 281
Beszédes, Árpád 93

Caballero, Ismael 190
Capretz, Luiz Fernando 127
Casoni, Francesco 61
Catillo, Marta 223
Cavalli, Ana R. 205
Cilardo, Alessandro 239
Colajanni, Michele 296

De Benedictis, Alessandra 307
de Magalhães, Cleyton V. C. 127
de Sousa, Marlon A. S. 127
de Souza Santos, Ronnie E. 127
Dominguez, Javier 3
Durelli, Rafael 156

Esposito, Christiancarmine 307

Figueiredo, Eduardo 156
Flauzino, Matheus 156
Franch, Xavier 18
Freitas, Alberto 190

García, Boni 31
Giamattei, Luca 46
Gómez, Cristina 18
Granata, Daniele 250
Guerriero, Antonio 46

Haindl, Philipp 3
Hoch, Thomas 3

Jäntti, Marko 175

Leotta, Maurizio 31, 77, 108
Lew, Philip 140
Li, Jingyue 266
Lopes, Fernando 190

Maisto, Vincenzo 239
Mallouli, Wissam 205
Marchetto, Alessandro 77
Martínez-Fernández, Silverio 18
Mazzocca, Carlo 296
Mazzocca, Nicola 239
Merlo, Alessio 281
Midtlid, Kim André 266
Montanari, Rebecca 296
Morichetta, Andrea 61

Nguyen, Luong 205

Oca, Edgardo Montes de 205
Oliveira, Johnatan 156
Olsina, Luis 140

Paparella, Davide 108
Pecchia, Antonio 223
Pietrantuono, Roberto 46
Polini, Andrea 61

Rak, Massimiliano 250
Ricca, Filippo 31, 77, 108
Rocco di Torrepadula, Franca 239
Russo, Stefano 46

Sabbioni, Andrea 296
Salzillo, Giovanni 250
Santos, João Vasco 190
Sarhan, Qusay Idrees 93
Segovia, Mariana 205
Somma, Alessandra 307
Souza, Júlio 190
Souza, Maurício 156
Souza, Rodrigo E. C. 127
Stoppa, Simone 77

Tebes, Guido 140
Tunçel, Mehmet 3

Ure, Nazim Kemal 3

Verderame, Luca 281
Villano, Umberto 223

	 Preface
	 Organization
	 Contents
	Smart and Advanced Systems
	Quality Characteristics of a Software Platform for Human-AI Teaming in Smart Manufacturing
	1 Introduction
	2 Research Context
	2.1 UC1: Quality Inspection
	2.2 UC2: Parameter Optimization
	2.3 UC3: Large-Scale Parts Assembly
	2.4 Stakeholder Roles

	3 Related Work
	4 Research Questions and Methodology
	5 Results
	5.1 RQ1
	5.2 RQ2 and RQ3

	6 Discussion
	7 Threats to Validity
	8 Conclusion and Future Work
	References

	Architectural Decisions in AI-Based Systems: An Ontological View
	1 Introduction
	2 Background
	2.1 Architecting AI-Based Systems
	2.2 Architectural Decisions

	3 Research Questions and Method
	4 An Ontology for AI-Based Systems Architectural Decision-Making
	5 Discussion and Research Agenda
	6 Conclusions
	References

	Verification and Validation
	An Empirical Study to Quantify the SetUp and Maintenance Benefits of Adopting WebDriverManager
	1 Introduction
	2 WebDriverManager
	2.1 Selenium WebDriver
	2.2 Driver Management
	2.3 Automated Driver Management

	3 Experiment Definition, Design and Settings
	4 Results
	4.1 Post-Experiment Questionnaire
	4.2 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Assessing Black-box Test Case Generation Techniques for Microservices
	1 Introduction
	2 Related Work
	3 The uTest combinatorial testing strategy
	3.1 Background
	3.2 Combinatorial Test Case Generation Strategy
	3.3 The uTest tool

	4 Experimental Comparison
	4.1 Subjects
	4.2 Experiments
	4.3 Metrics

	5 Results
	5.1 Scenario 1: Tests with Valid Input
	5.2 Scenario 2: Tests with Valid and Invalid Input

	6 Threats to Validity
	7 Conclusions
	References

	ReSuMo: Regression Mutation Testing for Solidity Smart Contracts
	1 Introduction
	2 Background
	3 The ReSuMo Approach
	3.1 Granularity of Computation
	3.2 Computing File Changes
	3.3 Computing File Dependencies
	3.4 Identifying Contracts to Be Mutated
	3.5 Identifying Regression Tests
	3.6 Mutation Score Calculation

	4 The ReSuMo Tool
	4.1 Design
	4.2 Workflow

	5 Validation
	5.1 Experiment Set-up
	5.2 Results

	6 Related Work
	7 Conclusions and Future Work
	References

	Is NLP-based Test Automation Cheaper Than Programmable and Capture&Replay?
	1 Introduction
	2 Related Work
	3 Background
	4 Case Study Design
	4.1 Study Design
	4.2 Software Objects
	4.3 Research Questions and Metrics
	4.4 Procedure
	4.5 Threats to Validity

	5 Analysis of Results
	5.1 RQ1: Developing Time
	5.2 RQ2: Reuse
	5.3 RQ3: Evolution Time
	5.4 RQ4: Cumulative Effort

	6 Conclusions
	References

	Effective Spectrum Based Fault Localization Using Contextual Based Importance Weight
	1 Introduction
	2 Background of SBFL
	2.1 SBFL Process
	2.2 Code Example
	2.3 Program Spectra and Basic Statistics
	2.4 SBFL Formulas
	2.5 Suspiciousness Scores
	2.6 Suspiciousness Ranking

	3 Related Works
	4 The Proposed SBFL Enhancing Approach
	4.1 The Frequency-Based Ef ()
	4.2 The Proposed Approach

	5 Evaluation
	5.1 Subject Programs
	5.2 Granularity of Data Collection
	5.3 Evaluation Baselines

	6 Experimental Results and Discussion
	6.1 Achieved Improvements in the Average Ranks
	6.2 Achieved Improvements in the Top-N Categories

	7 Threats to Validity
	8 Conclusions
	References

	Comparing the Effectiveness of Assertions with Differential Testing in the Context of Web Testing
	1 Introduction
	2 Differential Testing vs Assertions
	3 Testing Tools and Framework Considered
	3.1 Selenium WebDriver
	3.2 Differential Testing with Recheck

	4 Empirical Evaluation
	4.1 Research Questions
	4.2 Experimental Procedure
	4.3 Additional Details on the Mutations Analysis (RQ2)

	5 Results
	5.1 RQ1 Development Time
	5.2 RQ2 Effectiveness in Detecting Bugs
	5.3 RQ3 Execution Time
	5.4 Discussion
	5.5 Threats to Validity

	6 Conclusions and Future Work
	References

	Skills and Education
	Roadblocks to Attracting Students to Software Testing Careers: Comparisons of Replicated Studies
	1 Introduction
	2 Background
	2.1 Software Testing in Academic Curricula
	2.2 Replications of Empirical Studies in Software Engineering
	2.3 Original Study and First Replication

	3 Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Findings
	4.1 After you Graduate, Would you Consider a Career in Software Testing?
	4.2 What are the Advantages and Drawbacks of Taking up a Career in Software Testing?

	5 Conclusions
	References

	Analyzing Quality Issues from Software Testing Glossaries Used in Academia and Industry
	1 Introduction
	2 Terminological Categories for Testing and Study Scope
	2.1 Terminological Categories and Numbers
	2.2 Scope of the Quality Exploratory Study

	3 Analyzing Quality Issues Between Glossaries
	3.1 Procedure to Get Syntactically Matching Terms Between Glossaries
	3.2 Analysis of Syntactic and Semantic Consistency
	3.3 Other Quality Issues

	4 Related Work and Discussion
	5 Conclusions and Future Work
	References

	Can Source Code Analysis Indicate Programming Skills? A Survey with Developers
	1 Introduction
	2 Identifying Programming Skills
	3 Study Settings
	3.1 Goal and Research Questions
	3.2 Evaluation Steps
	3.3 Dataset
	3.4 Survey Design
	3.5 Data Analysis

	4 Results
	4.1 Overview
	4.2 Programming Language Skill
	4.3 Back-end & Front-end Profiles
	4.4 Test Development
	4.5 Feedback from Developers

	5 Discussion
	5.1 Accuracy of the Evaluated Heuristics

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	References

	Industrial Experiences and Applications
	Improving the Quality of ICT and Forestry Service Processes with Digital Service Management Approach: A Case Study on Forestry Liquids
	1 Introduction
	2 Research Methods
	2.1 Target Organization
	2.2 Data Collection Methods
	2.3 Data Analysis Methods

	3 Results
	3.1 Diagnose Problem
	3.2 Action Planning
	3.3 Action Taking
	3.4 Evaluating Action

	4 Analysis
	5 Conclusions
	References

	Towards a Process Reference Model for Clinical Coding
	1 Introduction
	2 State of the Art and Related Works
	2.1 Existing Works on Clinical Coding
	2.2 Alarcos’ Model for Data Improvement (MAMDv3.0)

	3 Research Method
	4 The CODE.CLINIC Process Reference Model
	4.1 The Strategic Process Group
	4.2 The Main Process Group
	4.3 The Support Process Group
	4.4 The Other Process Group
	4.5 Customization of the Framework for a Specific Context

	5 Discussion, Conclusions and Future Work
	References

	Digital Twin for IoT Environments: A Testing and Simulation Tool
	1 Introduction
	2 Related Work
	3 A Test and Simulation (TaS) Tool Based on Digital Twin for IoT Environment
	3.1 The Approach and Architecture of the Tool
	3.2 Tool Implementation

	4 Experimentation and Validation
	4.1 Application of TaS to ITS Use Case
	4.2 Results

	5 Discussion
	6 Conclusion and Future Work
	References

	Safety, Security and Privacy
	Simpler Is Better: On the Use of Autoencoders for Intrusion Detection
	1 Introduction
	2 Related Work
	3 Background and Datasets
	3.1 Autoencoders (AE)
	3.2 AE for Classification and Evaluation Metrics
	3.3 Reference Dataset: CICIDS2017

	4 Proposed IDS Approach with a Single AE
	4.1 AE Dimensions and Depth
	4.2 Training and Validation
	4.3 Results

	5 Feature Selection
	5.1 Results

	6 Lessons Learned and Conclusion
	References

	A Proposal for FPGA-Accelerated Deep Learning Ensembles in MPSoC Platforms Applied to Malware Detection
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Ensemble Learning
	2.2 Deep Learning Hardware Solutions

	3 A Proposal for an FPGA-Based MPSoC EL Platform
	3.1 System Architecture
	3.2 Preliminary Security Analysis

	4 Conclusion
	References

	Automated Threat Modeling Approaches: Comparison of Open Source Tools
	1 Introduction
	2 Threat Modeling Practices
	3 Threat Modeling Tools
	3.1 Microsoft Threat Modeling Tool
	3.2 OWASP Threat Dragon
	3.3 SLAGenerator

	4 Tool Comparison
	4.1 The WordPress Case Study
	4.2 Microsoft Tool Analysis
	4.3 Dragon Analysis
	4.4 SLAgenerator Analysis
	4.5 Comparison

	5 Conclusion
	References

	Understanding Black-Box Attacks Against Object Detectors from a User's Perspective
	1 Introduction
	2 Background
	2.1 Object Detection and Image Classification
	2.2 Threat Models

	3 Related Work
	4 Research Design and Implementation
	5 Research Results
	5.1 RQ1—Attacker's Knowledge
	5.2 RQ2—Attack Generalizability
	5.3 RQ3—Attack Consequences
	5.4 RQ4—Mitigation Strategies

	6 Discussion
	7 Conclusion and Future Work
	References

	Alice in (Software Supply) Chains: Risk Identification and Evaluation
	1 Introduction
	2 Software Supply Chain
	2.1 Software Supply Chain Vulnerabilities and Attacks

	3 Sunset
	3.1 Property Analysis
	3.2 Model Composition
	3.3 Risk Identification

	4 Related Work
	5 Conclusion and Future Work
	References

	Evaluating Tangle Distributed Ledger for Access Control Policy Distribution in Multi-region Cloud Environments
	1 Introduction
	2 Background and Related Work
	2.1 Distributed Ledger Technologies
	2.2 IOTA
	2.3 Storing Policies on DLTs

	3 Proposed Architecture
	3.1 Policies Properties
	3.2 Implementation

	4 Evaluation
	4.1 Operation Performance

	5 Conclusions and Future Work
	References

	Toward the Adoption of Secure Cyber Digital Twins to Enhance Cyber-Physical Systems Security
	1 Introduction
	2 Digital Twins
	3 Digital Twin for Security
	4 Security for Digital Twin
	4.1 Security Requirements Perspective
	4.2 Attack Surfaces Perspective
	4.3 Blockchain for Digital Twins

	5 S4DT-DT4S Conceptual Framework
	6 Conclusion
	References

	Author Index

